
6th International Conference on
Formal Structures for
Computation and Deduction

FSCD 2021, July 17–24, 2021, Buenos Aires, Argentina
(Virtual Conference)

Edited by

Naoki Kobayashi

LIPIcs – Vo l . 195 – FSCD 2021 www.dagstuh l .de/ l ip i c s

Editors

Naoki Kobayashi
The University of Tokyo, Japan
koba@is.s.u-tokyo.ac.jp

ACM Classification 2012
Theory of computation → Models of computation; Theory of computation → Formal languages and
automata theory; Theory of computation → Logic; Theory of computation → Semantics and reasoning;
Software and its engineering → Language features; Software and its engineering → Formal language
definitions; Software and its engineering → Formal methods

ISBN 978-3-95977-191-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-191-7.

Publication date
July, 2021

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.FSCD.2021.0

ISBN 978-3-95977-191-7 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-0537-0604
mailto:koba@is.s.u-tokyo.ac.jp
https://www.dagstuhl.de/dagpub/978-3-95977-191-7
https://www.dagstuhl.de/dagpub/978-3-95977-191-7
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.FSCD.2021.0
https://www.dagstuhl.de/dagpub/978-3-95977-191-7
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

FSCD 2021

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Naoki Kobayashi . 0:ix

Committees
. 0:xi

External Reviewers
. 0:xiii

List of Authors
. 0:xv

Invited Talks

Duality in Action
Paul Downen and Zena M. Ariola . 1:1–1:32

Completion and Reduction Orders
Nao Hirokawa . 2:1–2:9

Process-As-Formula Interpretation: A Substructural Multimodal View
Elaine Pimentel, Carlos Olarte, and Vivek Nigam . 3:1–3:21

Some Formal Structures in Probability
Sam Staton . 4:1–4:4

Regular Papers

The Expressive Power of One Variable Used Once: The Chomsky Hierarchy and
First-Order Monadic Constructor Rewriting

Jakob Grue Simonsen . 5:1–5:17

Church’s Semigroup Is Sq-Universal
Rick Statman . 6:1–6:6

Call-By-Value, Again!
Axel Kerinec, Giulio Manzonetto, and Simona Ronchi Della Rocca 7:1–7:18

Predicative Aspects of Order Theory in Univalent Foundations
Tom de Jong and Martín Hötzel Escardó . 8:1–8:18

A Strong Call-By-Need Calculus
Thibaut Balabonski, Antoine Lanco, and Guillaume Melquiond 9:1–9:22

A Bicategorical Model for Finite Nondeterminism
Zeinab Galal . 10:1–10:17

Failure of Cut-Elimination in the Cyclic Proof System of Bunched Logic with
Inductive Propositions

Kenji Saotome, Koji Nakazawa, and Daisuke Kimura . 11:1–11:14
6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

A Functional Abstraction of Typed Invocation Contexts
Youyou Cong, Chiaki Ishio, Kaho Honda, and Kenichi Asai . 12:1–12:18

Beth Semantics and Labelled Deduction for Intuitionistic Sentential Calculus
with Identity

Didier Galmiche, Marta Gawek, and Daniel Méry . 13:1–13:21

New Minimal Linear Inferences in Boolean Logic Independent of Switch and
Medial

Anupam Das and Alex A. Rice . 14:1–14:19

A Modular Associative Commutative (AC) Congruence Closure Algorithm
Deepak Kapur . 15:1–15:21

Derivation of a Virtual Machine For Four Variants of Delimited-Control Operators
Maika Fujii and Kenichi Asai . 16:1–16:19

Positional Injectivity for Innocent Strategies
Lison Blondeau-Patissier and Pierre Clairambault . 17:1–17:22

Synthetic Undecidability of MSELL via FRACTRAN Mechanised in Coq
Dominique Larchey-Wendling . 18:1–18:20

An RPO-Based Ordering Modulo Permutation Equations and Its Applications to
Rewrite Systems

Dohan Kim and Christopher Lynch . 19:1–19:17

Some Axioms for Mathematics
Frédéric Blanqui, Gilles Dowek, Émilie Grienenberger, Gabriel Hondet, and
François Thiré . 20:1–20:19

Non-Deterministic Functions as Non-Deterministic Processes
Joseph W. N. Paulus, Daniele Nantes-Sobrinho, and Jorge A. Pérez 21:1–21:22

Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset
Functor

Niccolò Veltri . 22:1–22:18

Resource Transition Systems and Full Abstraction for Linear Higher-Order
Effectful Programs

Ugo Dal Lago and Francesco Gavazzo . 23:1–23:19

Z; Syntax-Free Developments
Vincent van Oostrom . 24:1–24:22

Recursion and Sequentiality in Categories of Sheaves
Cristina Matache, Sean Moss, and Sam Staton . 25:1–25:22

Polymorphic Automorphisms and the Picard Group
Pieter Hofstra, Jason Parker, and Philip J. Scott . 26:1–26:17

What’s Decidable About (Atomic) Polymorphism?
Paolo Pistone and Luca Tranchini . 27:1–27:23

Coalgebra Encoding for Efficient Minimization
Hans-Peter Deifel, Stefan Milius, and Thorsten Wißmann . 28:1–28:19

Contents 0:vii

On the Logical Strength of Confluence and Normalisation for Cyclic Proofs
Anupam Das . 29:1–29:23

Abstract Clones for Abstract Syntax
Nathanael Arkor and Dylan McDermott . 30:1–30:19

Tuple Interpretations for Higher-Order Complexity
Cynthia Kop and Deivid Vale . 31:1–31:22

Output Without Delay: A π-Calculus Compatible with Categorical Semantics
Ken Sakayori and Takeshi Tsukada . 32:1–32:22

FSCD 2021

Preface

This volume contains the proceedings of the 6th International Conference on Formal Structures
for Computation and Deduction (FSCD 2021). The conference was held during July 17 –
July 24, 2021 as a virtual conference. It was initially planned to be held in Buenos Aires,
Argentina, but was actually held as a virtual conference due to the COVID-19 pandemic.
The conference (https://fscd-conference.org/) covers all aspects of formal structures
for computation and deduction, from theoretical foundations to applications. Building on
two communities, RTA (Rewriting Techniques and Applications) and TLCA (Typed Lambda
Calculi and Applications), FSCD embraces their core topics and broadens their scope to
include closely related areas in logics and proof theory, new emerging models of computation,
semantics and verification in new challenging areas.

The FSCD program featured four invited talks given by Zena M. Ariola (University of
Oregon, USA), Nao Hirokawa (JAIST, Japan), Elaine Pimentel (UFRN, Brazil), and Sam
Staton (University of Oxford, UK). FSCD 2021 received 72 submissions with contributing
authors from 22 countries. The program committee consisted of 31 members from 18 countries.
Each submitted paper has been reviewed by at least three PC members with the help of
130 external reviewers. The reviewing process, which included a rebuttal phase, took place
over nine weeks. A total of 28 regular research papers were accepted for publication and are
included in these proceedings. The Program Committee awarded the FSCD 2021 Best Paper
Award by Junior Researchers to Tom de Jong and Martín Hötzel Escardó for their paper
“Predicative Aspects of Order Theory in Univalent Foundations”.

In addition to the main program, 7 FSCD-associated workshops were held, also virtually:
HoTT/UF: 6th Workshop on Homotopy Type Theory/Univalent Foundations
ITRS: 10th Workshop on Intersection Types and Related Systems
WPTE: 7th International Workshop on Rewriting Techniques for Program Transforma-
tions and Evaluation
UNIF: 35th International Workshop on Unification
LSFA: 16th Logical and Semantics Frameworks with Applications
IWC: 10th International Workshop on Confluence
IFIP WG 1.6: 24th meeting of the IFIP Working Group 1.6: Rewriting

This volume of FSCD 2021 is published in the LIPIcs series under a Creative Commons
license: online access is free to all papers and authors retain rights over their contributions.
We thank the Leibniz Center for Informatics at Schloss Dagstuhl, in particular Michael
Wagner for his prompt replies to any questions regarding the production of these proceedings.

Many people have helped to make FSCD 2021 a successful meeting. On behalf of the
Program Committee, I thank the authors of submitted papers for considering FSCD as a
venue for their work and the invited speakers who have agreed to speak at this meeting. The
Program Committee and the external reviewers deserve special thanks for their careful review
and evaluation of the submitted papers. The EasyChair conference management system has
been a useful tool in all phases of the work of the Program Committee.

The associated workshops have made a big contribution to the lively scientific atmosphere
of this virtual meeting and I thank the workshop organizers and workshop chairs Mauricio
Ayala-Rincón and Carlos López Pombo for their efforts and enthusiasm in making sure
that workshops continued to be an important element of FSCD. Alejandro Díaz-Caro, the
Conference Chair, and the organising committee members of FSCD 2021 deserve special
appreciation for the overall organization of the conference; although the conference was held
6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://fscd-conference.org/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Preface

virtually at the end, they pursued various possibilities, including a hybrid conference. Carsten
Fuhs, as Publicity Chair, made a significant contribution in advertising the conference. The
steering committee provided excellent guidance in setting up this meeting and in ensuring
that FSCD will have a bright and enduring future. I would like to especially thank Delia
Kesner, the steering committee chair, for her numerous pieces of advice in managing the
conference.

FSCD 2021 was held in-cooperation with ACM SIGLOG and ACM SIGPLAN. It was
supported by Universidad de Buenos Aires, Universidad Nacional de Quilmes, CONICET
(Grant RD2256), Ministerio de Ciencia, Tecnología e Innovación (Grant RC-RPI-2020-
00004), Onapsis, IRIF (Institut de Recherche en Informatique Fondamentale), FUNDACEN
(Fundación Ciencias Exactas y Naturales), the CNRS/CONICET International Research
Project SINFIN, and CertiSur. Finally, I thank all of the participants of the virtual conference
for contributing to the success of the event.

Naoki Kobayashi
Program Chair of FSCD 2021

Committees

PROGRAM COMMITTEE

Mauricio Ayala-Rincón Universidade de Brasília
Stefano Berardi University of Torino
Frédéric Blanqui INRIA
Eduardo Bonelli Stevens Institute of Technology
Évelyne Contejean CNRS, Université Paris-Saclay
Thierry Coquand University of Gothenburg
Thomas Ehrhard CNRS, Université de Paris
Santiago Escobar Univ. Politècnica de València
José Espírito Santo University of Minho
Claudia Faggian CNRS, Université de Paris
Amy Felty University of Ottawa
Santiago Figueira Universidad de Buenos Aires
Marcelo Fiore University of Cambridge
Marco Gaboardi Boston University
Silvia Ghilezan University of Novi Sad & Mathematical Institute SASA
Ichiro Hasuo National Institute of Informatics
Delia Kesner Université de Paris
Naoki Kobayashi (chair) The University of Tokyo
Robbert Krebbers Radboud University Nijmegen
Temur Kutsia Johannes Kepler University Linz
Barbara König University of Duisburg-Essen
Marina Lenisa University of Udine
Naoki Nishida Nagoya University
Luke Ong University of Oxford
Paweł Parys University of Warsaw
Jakob Rehof TU Dortmund University
Camilo Rocha Pontificia Univ. Javeriana Cali
Alexandra Silva University College London
Alwen Tiu Australian National University
Sarah Winkler University of Bozen-Bolzano
Hongseok Yang KAIST, South Korea

CONFERENCE CHAIR

Alejandro Díaz-Caro Quilmes Univ. & ICC/CONICET

WORKSHOP CHAIRS

Mauricio Ayala-Rincón Universidade de Brasília
Carlos López Pombo Universidad de Buenos Aires

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xii Committees

ORGANISING COMMITTEE

Local Organisers
Alejandro Díaz-Caro Universidad Nacional de Quilmes & ICC (UBA/CONICET)
Santiago Figueira Universidad de Buenos Aires & ICC (UBA/CONICET)
Carlos López Pombo Universidad de Buenos Aires & ICC (UBA/CONICET)
Ricardo Rodríguez Universidad de Buenos Aires & ICC (UBA/CONICET)

Collaborators
Mauricio Ayala-Rincón Universidade de Brasília
Mauro Jaskelioff Universidad Nacional de Rosario & CIFASIS (UNR/CONICET)
Nora Szasz Universidad ORT Uruguay
Beta Ziliani Universidad Nacional de Córdoba & CONICET

PUBLICITY CHAIR

Carsten Fuhs Birkbeck, University of London

STEERING COMMITTEE
Zena M. Ariola University of Oregon
Mauricio Ayala-Rincón University of Brasilia
Carsten Fuhs Birkbeck, University of London
Herman Geuvers Radboud University & Eindhoven University of Technology
Silvia Ghilezan University of Novi Sad & Mathematical Institute SASA
Stefano Guerrini CNRS, Université Sorbonne Paris Nord
Delia Kesner (Chair) Université de Paris
Hélène Kirchner Inria
Cynthia Kop Radboud University
Damiano Mazza CNRS, Université Sorbonne Paris Nord
Luke Ong Oxford University
Jakob Rehof TU Dortmund
Jamie Vicary University of Cambridge

External Reviewers

Andreas Abel
Beniamino Accattoli
Benedikt Ahrens
Andrea Aler Tubella
Fabio Alessi
Takahito Aoto
Thaynara Arielly de Lima
Kazuyuki Asada
Martin Avanzini
Arthur Azevedo de Amorim
David Baelde
Patrick Baillot
Demis Ballis
Pablo Barenbaum
Chris Barrett
Yves Bertot
Jan Bessai
Marc Bezem
Siddharth Bhaskar
Filippo Bonchi
Flavien Breuvart
Guillaume Burel
Marco Carbone
Davide Castelnovo
Horatiu Cirstea
Mario Coppo
Łukasz Czajka
Mariangiola Dezani-Ciancaglini
Pietro Di Gianantonio
Amina Doumane
Gilles Dowek
Paul Downen
Andrej Dudenhefner
Peter Dybjer
Raul Fervari
Mathias Fleury
Yannick Forster
Soichiro Fujii
Nicola Gambino
Richard Garner
Thomas Genet
Armaël Guéneau
Giulio Guerrieri
Walter Guttmann
Claudio Hermida

Tom Hirschowitz
Cédric Ho Thanh
Furio Honsell
Ross Horne
Naohiko Hoshino
Atsushi Igarashi
Farzad Jafarrahmani
Ohad Kammar
Shin-Ya Katsumata
Ken-Ichi Kawarabayashi
Kei Kimura
Daisuke Kimura
Oleg Kiselyov
Aleks Kissinger
Yuichi Komorida
Cynthia Kop
Roman Kuznets
Ambroise Lafont
Rodolphe Lepigre
Paul Blain Levy
Jean-Jacques Lévy
Ugo de’Liguoro
Tim Lyon
Philippe Malbos
Sonia Marin
Cristina Matache
Marek Materzok
Ralph Matthes
Dylan McDermott
Doriana Medic
Paul-André Melliès
Thiago Mendonça Ferreira Ramos
Joshua Moerman
Rasmus Ejlers Møgelberg
Ike Mulder
Keisuke Nakano
Koji Nakazawa
Daniele Nantes-Sobrinho
Sara Negri
Satoru Niki
Carlos Olarte
Eugenio Orlandelli
Yota Otachi
Edi Pavlovic
Luiz Carlos Pereira

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv External Reviewers

Marco Peressotti
Francesca Poggiolesi
Damien Pous
Thomas Powell
Matija Pretnar
Jakub Radoszewski
Steven Ramsay
Martin Riener
Adrian Riesco
Simona Ronchi Della Rocca
Reuben Rowe
Antonino Salibra
Tetsuya Sato
Ivan Scagnetto
Alceste Scalas
Hiroyuki Seki
Michael Shulman
Sonja Smets
Paweł Sobociński
Simon Spies
Giannos Stamoulis
Dario Stein
Sorin Stratulat
Matias Toro
Riccardo Treglia
Takeshi Tsukada
Taichi Uemura
Hiroshi Unno
Paweł Urzyczyn
John van de Wetering
Benno van den Berg
Niels van der Weide
Gerco van Heerdt
Daniel Ventura
Alicia Villanueva
Andrés Ezequiel Viso
Masaki Waga
Marcin Wrochna
Ahmed Younes
Krzysztof Ziemiański

List of Authors

Zena M. Ariola (1)
Department of Computer & Information Science,
University of Oregon, Eugene, OR, USA

Nathanael Arkor (30)
University of Cambridge, UK

Kenichi Asai (12, 16)
Ochanomizu University, Tokyo, Japan

Thibaut Balabonski (9)
Université Paris-Saclay, CNRS,
ENS Paris-Saclay, LMF,
Gif-sur-Yvette, 91190, France

Frédéric Blanqui (20)
Université Paris-Saclay, ENS Paris-Saclay, LMF,
CNRS, Inria, France

Lison Blondeau-Patissier (17)
Université Lyon, EnsL, UCBL, CNRS, LIP,
F-69342, Lyon Cedex 07, France

Pierre Clairambault (17)
Université Lyon, EnsL, UCBL, CNRS, LIP,
F-69342, Lyon Cedex 07, France

Youyou Cong (12)
Tokyo Institute of Technology, Japan

Ugo Dal Lago (23)
University of Bologna, Italy;
INRIA Sophia Antipolis, France

Anupam Das (14, 29)
University of Birmingham, UK

Tom de Jong (8)
University of Birmingham, UK

Hans-Peter Deifel (28)
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

Gilles Dowek (20)
Université Paris-Saclay, ENS Paris-Saclay, LMF,
CNRS, Inria, France

Paul Downen (1)
Department of Computer & Information Science,
University of Oregon, Eugene, OR, USA

Martín Hötzel Escardó (8)
University of Birmingham, UK

Maika Fujii (16)
Ochanomizu University, Tokyo, Japan

Zeinab Galal (10)
IRIF, Université de Paris, France

Didier Galmiche (13)
Université de Lorraine, CNRS, LORIA,
Nancy, France

Francesco Gavazzo (23)
University of Bologna, Italy;
INRIA Sophia Antipolis, France

Marta Gawek (13)
Université de Lorraine, CNRS, LORIA,
Nancy, France

Émilie Grienenberger (20)
Université Paris-Saclay, ENS Paris-Saclay, LMF,
CNRS, Inria, France

Nao Hirokawa (2)
Japan Advanced Institute of Science and
Technology, Ishikawa, Japan

Pieter Hofstra (26)
Dept. of Mathematics & Statistics,
University of Ottawa, Canada

Kaho Honda (12)
Ochanomizu University, Tokyo, Japan

Gabriel Hondet (20)
Université Paris-Saclay, ENS Paris-Saclay, LMF,
CNRS, Inria, France

Chiaki Ishio (12)
Ochanomizu University, Tokyo,Japan

Deepak Kapur (15)
Department of Computer Science,
University of New Mexico,
Albuquerque, NM, USA

Axel Kerinec (7)
Laboratoire LIPN, CNRS UMR 7030,
Université Sorbonne Paris-Nord, France

Dohan Kim (19)
Clarkson University, Potsdam, NY, USA

Daisuke Kimura (11)
Toho University, Japan

Cynthia Kop (31)
Department of Software Science,
Radboud University Nijmegen, The Netherlands

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5551-8294
https://doi.org/10.4230/LIPIcs.FSCD.2021.1
https://orcid.org/0000-0002-4092-7930
https://doi.org/10.4230/LIPIcs.FSCD.2021.30
https://doi.org/10.4230/LIPIcs.FSCD.2021.12
https://doi.org/10.4230/LIPIcs.FSCD.2021.16
https://doi.org/10.4230/LIPIcs.FSCD.2021.9
https://orcid.org/0000-0001-7438-5554
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://doi.org/10.4230/LIPIcs.FSCD.2021.17
https://doi.org/10.4230/LIPIcs.FSCD.2021.17
https://orcid.org/0000-0003-2315-6182
https://doi.org/10.4230/LIPIcs.FSCD.2021.12
https://orcid.org/0000-0001-9200-070X
https://doi.org/10.4230/LIPIcs.FSCD.2021.23
https://orcid.org/0000-0002-0142-3676
https://doi.org/10.4230/LIPIcs.FSCD.2021.14
https://doi.org/10.4230/LIPIcs.FSCD.2021.29
https://orcid.org/0000-0003-1585-3172
https://doi.org/10.4230/LIPIcs.FSCD.2021.8
https://orcid.org/0000-0002-9542-9664
https://doi.org/10.4230/LIPIcs.FSCD.2021.28
https://orcid.org/0000-0001-6253-935X
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://orcid.org/0000-0003-0165-9387
https://doi.org/10.4230/LIPIcs.FSCD.2021.1
https://orcid.org/0000-0002-4091-6334
https://doi.org/10.4230/LIPIcs.FSCD.2021.8
https://doi.org/10.4230/LIPIcs.FSCD.2021.16
https://doi.org/10.4230/LIPIcs.FSCD.2021.10
https://doi.org/10.4230/LIPIcs.FSCD.2021.13
https://orcid.org/0000-0002-2159-0615
https://doi.org/10.4230/LIPIcs.FSCD.2021.23
https://doi.org/10.4230/LIPIcs.FSCD.2021.13
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://orcid.org/0000-0002-8499-0501
https://doi.org/10.4230/LIPIcs.FSCD.2021.2
https://doi.org/10.4230/LIPIcs.FSCD.2021.26
https://doi.org/10.4230/LIPIcs.FSCD.2021.12
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://doi.org/10.4230/LIPIcs.FSCD.2021.12
https://doi.org/10.4230/LIPIcs.FSCD.2021.15
https://doi.org/10.4230/LIPIcs.FSCD.2021.7
https://doi.org/10.4230/LIPIcs.FSCD.2021.19
https://doi.org/10.4230/LIPIcs.FSCD.2021.11
https://orcid.org/0000-0002-6337-2544
https://doi.org/10.4230/LIPIcs.FSCD.2021.31
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi Authors

Antoine Lanco (9)
Université Paris-Saclay, CNRS,
ENS Paris-Saclay, Inria, LMF,
Gif-sur-Yvette, 91190, France

Dominique Larchey-Wendling (18)
Université de Lorraine, CNRS, LORIA,
Vandœuvre-lès-Nancy, France

Christopher Lynch (19)
Clarkson University, Potsdam, NY, USA

Giulio Manzonetto (7)
Laboratoire LIPN, CNRS UMR 7030,
Université Sorbonne Paris-Nord, France

Cristina Matache (25)
University of Oxford, UK

Dylan McDermott (30)
Reykjavik University, Iceland

Guillaume Melquiond (9)
Université Paris-Saclay, CNRS,
ENS Paris-Saclay, Inria, LMF,
Gif-sur-Yvette, 91190, France

Stefan Milius (28)
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

Sean Moss (25)
University of Oxford, UK

Daniel Méry (13)
Université de Lorraine, CNRS, LORIA,
Nancy, France

Koji Nakazawa (11)
Nagoya University, Japan

Daniele Nantes-Sobrinho (21)
University of Brasília, Brazil

Vivek Nigam (3)
Huawei Munich Research Center, Germany

Carlos Olarte (3)
School of Science and Technology,
Federal University of Rio Grande Do Norte,
Natal, Brazil

Jason Parker (26)
Department of Mathematics & Computer
Science, Brandon University, Canada

Joseph W. N. Paulus (21)
University of Groningen, The Netherlands

Elaine Pimentel (3)
Department of Mathematics,
Federal University of Rio Grande Do Norte,
Natal, Brazil

Paolo Pistone (27)
University of Bologna, Italy

Jorge A. Pérez (21)
University of Groningen, The Netherlands;
CWI, Amsterdam, The Netherlands

Alex A. Rice (14)
University of Cambridge, UK

Simona Ronchi Della Rocca (7)
Computer Science Department,
University of Torino, Italy

Ken Sakayori (32)
The University of Tokyo, Japan

Kenji Saotome (11)
Nagoya University, Japan

Philip J. Scott (26)
Dept. of Mathematics & Statistics,
University of Ottawa, Canada

Jakob Grue Simonsen (5)
Department of Computer Science,
University of Copenhagen, Denmark

Rick Statman (6)
Carnegie Mellon University,
Pittsburgh, PA, USA

Sam Staton (4, 25)
University of Oxford, UK

François Thiré (20)
Nomadic Labs, Paris, France

Luca Tranchini (27)
Eberhard Karls Universität Tübingen, Germany

Takeshi Tsukada (32)
Chiba University, Japan

Deivid Vale (31)
Department of Software Science,
Radboud University Nijmegen,
The Netherlands

Vincent van Oostrom (24)
Universität Innsbruck, Austria

Niccolò Veltri (22)
Department of Software Science, Tallinn
University of Technology, Estonia

Thorsten Wißmann (28)
Radboud University Nijmegen, The Netherlands

https://doi.org/10.4230/LIPIcs.FSCD.2021.9
https://orcid.org/0000-0001-9860-7203
https://doi.org/10.4230/LIPIcs.FSCD.2021.18
https://doi.org/10.4230/LIPIcs.FSCD.2021.19
https://doi.org/10.4230/LIPIcs.FSCD.2021.7
https://doi.org/10.4230/LIPIcs.FSCD.2021.25
https://orcid.org/0000-0002-6705-1449
https://doi.org/10.4230/LIPIcs.FSCD.2021.30
https://doi.org/10.4230/LIPIcs.FSCD.2021.9
https://orcid.org/0000-0002-2021-1644
https://doi.org/10.4230/LIPIcs.FSCD.2021.28
https://doi.org/10.4230/LIPIcs.FSCD.2021.25
https://doi.org/10.4230/LIPIcs.FSCD.2021.13
https://doi.org/10.4230/LIPIcs.FSCD.2021.11
https://orcid.org/0000-0002-1959-8730
https://doi.org/10.4230/LIPIcs.FSCD.2021.21
https://orcid.org/0000-0003-4089-1218
https://doi.org/10.4230/LIPIcs.FSCD.2021.3
https://orcid.org/0000-0002-7264-7773
https://doi.org/10.4230/LIPIcs.FSCD.2021.3
https://doi.org/10.4230/LIPIcs.FSCD.2021.26
https://doi.org/10.4230/LIPIcs.FSCD.2021.21
https://orcid.org/0000-0002-7113-0801
https://doi.org/10.4230/LIPIcs.FSCD.2021.3
https://doi.org/10.4230/LIPIcs.FSCD.2021.27
https://orcid.org/0000-0002-1452-6180
https://doi.org/10.4230/LIPIcs.FSCD.2021.21
https://orcid.org/0000-0002-2698-5122
https://doi.org/10.4230/LIPIcs.FSCD.2021.14
https://doi.org/10.4230/LIPIcs.FSCD.2021.7
https://orcid.org/0000-0003-3238-9279
https://doi.org/10.4230/LIPIcs.FSCD.2021.32
https://doi.org/10.4230/LIPIcs.FSCD.2021.11
https://doi.org/10.4230/LIPIcs.FSCD.2021.26
https://doi.org/10.4230/LIPIcs.FSCD.2021.5
https://doi.org/10.4230/LIPIcs.FSCD.2021.6
https://doi.org/10.4230/LIPIcs.FSCD.2021.4
https://doi.org/10.4230/LIPIcs.FSCD.2021.25
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://doi.org/10.4230/LIPIcs.FSCD.2021.27
https://orcid.org/0000-0002-2824-8708
https://doi.org/10.4230/LIPIcs.FSCD.2021.32
https://orcid.org/0000-0003-1350-3478
https://doi.org/10.4230/LIPIcs.FSCD.2021.31
https://orcid.org/0000-0002-4818-7383
https://doi.org/10.4230/LIPIcs.FSCD.2021.24
https://orcid.org/0000-0002-7230-3436
https://doi.org/10.4230/LIPIcs.FSCD.2021.22
https://orcid.org/0000-0001-8993-6486
https://doi.org/10.4230/LIPIcs.FSCD.2021.28

Duality in Action
Paul Downen # Ñ

Department of Computer & Information Science, University of Oregon, Eugene, OR, USA

Zena M. Ariola # Ñ

Department of Computer & Information Science, University of Oregon, Eugene, OR, USA

Abstract
The duality between “true” and “false” is a hallmark feature of logic. We show how this duality
can be put to use in the theory and practice of programming languages and their implementations,
too. Starting from a foundation of constructive logic as dialogues, we illustrate how it describes a
symmetric language for computation, and survey several applications of the dualities found therein.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases Duality, Logic, Curry-Howard, Sequent Calculus, Rewriting, Compilation

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.1

Category Invited Talk

Funding This work is supported by the NSF under Grants No. 1719158 and No. 1423617.

1 Introduction

Mathematical logic, through the Curry-Howard correspondence [25], has undoubtably proved
its usefulness in the theory of computation and programming languages. It gave us tools
to reason effectively about the behavior of programs, and serves as the backbone for proof
assistants that let us formally specify and verify program correctness. We’ve found that
the same correspondence with logic provides a valuable inspiration for the implementation
of programming languages, too. The entire computer industry is based on the difference
between the ability to know something versus actually knowing it, and the fact that real
resources are needed to go from one to the other. In other words, the cost of an answer is
just as important as its correctness. Thankfully, logic provides solutions for both.

We start with a story on the nature of “truth” (Section 2), and investigate different logical
foundations with increasing nuance. The classical view of ultimate truth is quite different
from constructive truth, embodied by intuitionistic logic, requiring that proofs be backed
with evidence. However, the intuitionistic view of truth sadly discards many of the pleasant
dualities of classical logic. Instead, we can preserve duality in constructivity by re-imagining
logic not as a solitary exercise, but as a dialogue between two disagreeing characters: the
optimistic Sage who argues in favor, and the doubtful Skeptic who argues against. Symmetry
is restored – still backed by evidence – when both sides can enter the debate.

This dialogic notion of constructive classical logic can be seen as a symmetric language
for describing computation (Section 3). The Sage and Skeptic correspond to producers
and consumers of information; their debate corresponds to interaction in a program. The
two-sided viewpoint brings up many dualities that are otherwise hidden implicitly in today’s
programming languages: questions versus answers, programs versus contexts, construction
versus destruction, and so on. But more than this, the symmetric calculus allows us to
express more types – and more relationships between them – than possible in the conventional
programming languages used today.

© Paul Downen and Zena M. Ariola;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 1; pp. 1:1–1:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pdownen@cs.uoregon.edu
https://www.pauldownen.com
https://orcid.org/0000-0003-0165-9387
mailto:ariola@cs.uoregon.edu
http://ix.cs.uoregon.edu/~ariola/
https://orcid.org/0000-0001-5551-8294
https://doi.org/10.4230/LIPIcs.FSCD.2021.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Duality in Action

From there, we survey several applications of computational duality (Section 4) across
both theoretical and practical concerns. The theory of the untyped λ-calculus can be
improved by viewing functions as codata (Section 4.1). Duality can help us design and
analyze different forms of loops found in programs and proofs (Section 4.2). Compilers use
intermediate languages to help generate code and perform optimizations, and logic can be put
to action at this middle stage in the life of a program (Section 4.3). To bring it all together, a
general-purpose method based on orthogonality provides a framework for developing models
of safety that let us prove that well-typed programs do what we want (Section 4.4).

2 Logic as Dialogues

One of the most iconic principles of classical logic is the law of the excluded middle, A ∨ ¬A:
everything is either true or false. This principle conjures ideas of an omniscient notion of
truth. That once all is said and done, every claim must fall within one of these two cases.
While undoubtedly useful for proving theorems, the issue with the law of the excluded middle
is that we as mortals are not omniscient: we cannot decide for everything, a priori, which
case it is. As a consequence, reckless use of the excluded middle means that even if we know
something must be true, we might not know exactly why it is true.

Consider this classic proof about irrational power [20].

▶ Theorem 1. There exist two irrational numbers, x and y, such that xy is rational.

Proof. Since
√

2 is irrational, consider
√

2
√

2. This exponent is either rational or not.
If
√

2
√

2 rational, then x = y =
√

2 are two irrational numbers (coincidentally the same)
whose exponent is rational (by assumption).
Otherwise,

√
2

√
2 must be irrational. In this case, observe that the exponent (

√
2

√
2)

√
2

simplifies down to just 2, because
√

22 = 2, like so: (
√

2
√

2)
√

2 =
√

2
√

22

=
√

22 = 2.

Therefore, the two chosen irrational numbers are x =
√

2
√

2 and y =
√

2 whose exponent
is the rational number 2. ◀

On the one hand, this proof shows Theorem 1 is true in the sense that appropriate values
for x and y cannot fail to exist. On the other hand, this proof fails to actually demonstrate
which values of x and y satisfy the required conditions; it only presents two options without
definitively concluding which one is correct. The root problem is in the assertion that the
“exponent is either rational or not.” If we had an effective procedure to decide which of the
two options is correct, we could simply choose the correct branch to pursue. But alas, we do
not. Depending on an undecidable choice results in a failure to provide a concrete example
verifying the truth of the theorem. Can we do better?

2.1 Constructive truth
In contrast to the proof of Theorem 1, constructive logic demands that proofs construct real
evidence to back up the truth of a claim. The most popular constructive logic is intuitionistic
logic, wherein a proposition A is only considered true when a proof produces specific evidence
that verifies the truth of A [3, 24]. As such, the basic logical connectives are interpreted
intuitionistically in terms of the shape of the evidence needed to verify them.

Conjunction Evidence for A ∧B consists of both evidence for A and evidence for B.
Disjunction Evidence for A ∨B can be either evidence for A or evidence for B.

P. Downen and Z. M. Ariola 1:3

Existence Evidence for ∃x:D.P (x) consists of a specific example value n ∈ D (e.g., a concrete
number when the domain of objects D is N) along with evidence for P (n).

Universal Evidence for ∀x:D.P (x) is an algorithm that, applied to any possible value n in
the domain D, provides evidence for P (n).

Negation Evidence for ¬A is a demonstration that evidence for A generates a contradiction.

The most iconic form of evidence is for the existential quantifier ∃x:D.P (x). Intuitionist-
ically, we must provide a real example for x such that P (x) holds. Instead, classically we are
not obligated to provide any example, but only need to demonstrate that one cannot fail to
exist, as in Theorem 1. This is why intuitionistic logic rejects the law of the excluded middle
as a principle that holds uniformly for every proposition. Without knowing more about the
details of A, we have no way to know how to construct evidence for A or for ¬A. But still,
A ∨ ¬A is never false; intuitionistic logic admits there may be things not yet known.

Intuitionistic logic is famous for its connection with computation, the λ-calculus, and
functional programming [25]. Constructivity also gives us a more nuanced lens to study
logics. For example, one way of understanding and comparing different logics is through
the propositions they prove true. In this sense, intuitionistic and classical logic are different
because classical logic accepts that A ∨ ¬A is true in general for any A, but intuitionistic
logic does not. But this reduces logics to be merely nothing more than the set of their true
propositions, irrespective of the reason why they are true. In a world in which we care about
evidence, this reductive view ignores all evidence. Instead, we can go a step further to also
compare the informational content of evidence provided by different logics.

In this sense, intuitionistic logic does very well in describing why propositions are
true, especially compared to classical logic. The evidence supporting the truth of different
connectives (like conjunction and disjunction) and quantifiers (like existential and universal)
are tailor-made to fit the situation. But the evidence demonstrating falsehood is another
story. Indeed, intuitionistic logic does not speak directly about what it means to be false.
Rather, it instead says indirectly that “not A is true,” i.e., ¬A. In this case, the evidence of
falsehood is rather poor, and always cast in the same form as a hypothetical: truth would
be contradictory. For example, concrete evidence that ∀x:N. x + 1 ̸= 3 is false should be
a specific counterexample for which the property fails; the same informational content as
the evidence needed to prove ∃x:N.x + 1 = 3 is true. For example, choosing 2 for x leads
to 2 + 1 ̸= 3, which is obviously wrong. Yet, an intuitionistic proof of ¬∀x:N.x + 1 ̸= 3 is
under no such obligation to provide a specific counterexample, it only needs to show that a
counterexample cannot fail to exist. The intuitionistic treatment of falsehood sounds awfully
similar to the noncommittal vagueness of classical truth. Can we do better?

2.2 Constructive dialogues
The famous asymmetry of intuitionism is reflected by its biased treatment of the two basic
truth values: it demands concretely constructed evidence of truth, but leaves falsehood as
the mere shadow left behind from the absence of truth. This models the scenario of a solitary
Sage building evidence to support a grand theorem. When the wise Sage delivers a claim we
can be sure it is true – and verify the evidence for ourselves – but what if the Sage is silent?
Is that passive evidence of falsehood, or just merely an artifact that work takes time? What
is missing is a devil’s advocate to actively argue the other side.

In reality, the uncharted frontier on the edge of current knowledge is occupied by
contentious debate. Before something is fully known, there is a space where multiple people
can honestly hold different, conflicting claims, even though they are all ultimately interested

FSCD 2021

1:4 Duality in Action

in discovering the same shared truth. There is no need to be confined to the isolated work
of cloistered ivory towers. Instead, there can be a dialogue between disagreeing parties,
who influence one another and poke holes in questionable lines of reasoning. The search
for truth is then found inside the dialogue of debate, of (at least) two sides exchanging
probing questions and rebutting answers, where the victorious side defeats their opponent by
eventually constructing the complete body of evidence that finally proves their position.

To keep things simple, let’s assume the proposition A is under dispute by only two people:
the Sage and the Skeptic. Whereas the Sage is optimistically trying to prove A is true, as
before, the Skeptic is doubtful and asserts A is false. The dispute over A is resolved by the
process of dialogue between the Sage and the Skeptic. But who is responsible for providing
the first piece of evidence supporting their claim? Whoever has the burden of proof.

A positive burden of proof is when the Sage must provide evidence supporting that A is
true. The shape of evidence for A’s truth follows the shape of the disputed proposition A,
and shares similarities with the evidence of truth for the same intuitionistic logical concepts.

Conjunction Evidence for A⊗B is both evidence for A and evidence for B.
Disjunction Evidence for A⊕B is either evidence for A or evidence for B.
Existence Evidence for ∃x:D.P (x) is an example value n ∈ D along with evidence for P (n).
Negation Evidence for ⊖A is the same as evidence against A.

Notice that new symbols are used for the connectives, and the evidence for negation is
completely different. Both changes are due to the fact that there are other logical concepts
that demand evidence of falsehood, rather than truth. These involve a negative burden of
proof, where the Skeptic must provide evidence supporting that A is false. Just like the
positive burden of proof (and contrary to intuitionistic logic), the shape of the evidence
against A depends on the shape of A.

Conjunction Evidence against A & B is either evidence against A or evidence against B.
Disjunction Evidence against A

&

B is both evidence against A and evidence against B.
Universal Evidence against ∀x:D.P (x) is a counterexample value n ∈ D (e.g., a concrete

number when D is N) along with evidence against P (n).
Negation Evidence against ¬A is the same as evidence for A.

Now we can see that the new symbols for conjunction and disjunction disambiguate
between the positive and negative burdens of proof, which carry complementary forms of
evidence. In contrast, the two quantifiers ∃ and ∀ are not duplicated, but rather arranged to
prioritize “finite” evidence (one specific example or counter example in the domain) instead
of “infinite” hypothetical evidence (a general algorithm for generating evidence based on
any object in the domain). Furthermore, there are two different notions of negation, the
positive ⊖A and negative ¬A, internalizing the duality between evidence for and against.
The construction of evidence for or against each connectives is captured by these inference
rules with two judgments: A true directly verifies A’s truth and A false directly refutes it.

A true B true
A⊗B true

A true
A⊕B true

B true
A⊕B true

n ∈ D P (n) true
∃x:D.P (x) true

A false
⊖A true

A false B false
A

&

B false
A false

A & B false
B false

A & B false
n ∈ D P (n) false
∀x:D.P (x) false

A true
¬A false

What does the other party without the burden of proof do? While they can wait to
rebut the specific evidence they are given, it may take a long time (perhaps forever) for
that evidence to be constructed. And absence of evidence does not imply the evidence of

P. Downen and Z. M. Ariola 1:5

absence. For example, the Skeptic may doubt a universal conjecture, but cannot come up
with a counterexample that shows it false yet; this alone does not prove the conjecture true.
Instead, in the face of negative burden of proof, the Sage can prove truth with a hypothetical
argument that no such evidence against exists: systematically consider all possible evidence
for the falsehood of A and show that each one leads to a contradiction. Dually, the Skeptic –
waiting for the positive burden of proof to be fulfilled – can prove falsehood by hypothetically
refuting all evidence of truth, showing all possible evidence for the truth of A leads to a
contradiction. These proofs by contradiction are captured by the following inference rules for
a proposition A (having positive burden of truth) and B (having negative burden of proof)
using a third and final judgment contra representing a logical contradiction.

A true....
contra
A false

B false....
contra
B true

We can now see that the evidence for ¬A’s truth hasn’t changed from Section 2.1. To show
¬A true via proof by contradiction, we assume evidence that ¬A is false – the same as
assuming evidence A is true – and derive a contradiction. In contrast, ⊖A is entirely new.

2.3 The duality of constructive evidence
Viewing logic as a dialogue between an advocate and adversary – rather than just a lone
advocate building constructions by themself – already improves the evidence of falsehood by
giving the adversary a voice. Moreover, it improves some pleasant symmetries of truth with
a more nuanced library of logical connectives expressing the full range of burden of proof.

For example, consider the classical law of double-negation elimination, ¬¬A =⇒ A

(where =⇒ stands for implication): if A cannot be untrue, then A is true. Intuitionists reject
this law because the evidence for ¬¬A is much weaker than for A. For example, the evidence
for ¬¬∃x:N.∃y:N. x2 = y is a hypothetical argument that only says that it is contradictory
for ∃x:N.∃y:N. x2 = y to lead to a contradiction. In contrast, one example of direct evidence
for ∃x:N.∃y:N. x2 = y is the witness that for x = 3 and y = 9, we have 32 = 9. One possible
conclusion, taken by intuitionists, is that double-negation elimination is just incompatible
with constructive evidence. But another conclusion is that the wrong negation has been
used. Instead, consider the shape evidence for ⊖¬∃x:N.∃y:N. x2 = y given by the more
refined, dual definitions of ⊖ and ¬ in Section 2.2: evidence proving ⊖¬∃x:N.∃y:N. x2 = y

true consists of evidence proving ¬∃x:N.∃y:N. x2 = y false, which in turn is the same as just
evidence proving ∃x:N.∃y:N. x2 = y true. So while ¬¬A =⇒ A for a generic A might not
be considered constructive, ⊖¬A =⇒ A definitively is.

More generally, we can look at how negation interacts with the other logical connectives.
In classical logic, the de Morgan laws describe how negation distributes over dual connectives,
converting between conjunction (∧) and disjunction (∨) as well as existential (∃) and universal
(∀) quantifiers, like so (where ⇐⇒ means “if and only if”):

¬(A ∨B) ⇐⇒ (¬A) ∧ (¬B) ¬(∃x:D.P (x)) ⇐⇒ ∀x:D.¬P (x)
¬(A ∧B) ⇐⇒ (¬A) ∨ (¬B) ¬(∀x:D.P (x)) ⇐⇒ ∃x:D.¬P (x)

However, not all of these laws hold intuitionistically. In particular, ¬(A∧B) ≠⇒ (¬A)∨(¬B)
because knowing that the combination of A and B is contradictory is not enough to show
definitively which of A or B is contradictory. Likewise, ¬(∀x:D.P (x)) ≠⇒ ∃x:D.¬P (x)
because, as we have seen before, knowing that it is contradictory for P (x) to be universally
true does not point out the specific element of D where P fails.

FSCD 2021

1:6 Duality in Action

Figure 1 Law of excluded middle A⊕ ¬A as a miraculous feat of time travel.

Figure 2 Law of excluded middle A

&

¬A as a mundane contradiction of falsehood.

Again, this problem with the asymmetry of the De Morgan laws can be seen as the
classical logician being too vague about the burden of proof in their connectives. Rephrasing,
we get the following symmetric versions of the De Morgan laws in terms of ¬ and ⊖ that are
nonetheless constructive:

¬(A⊕B) ⇐⇒ (¬A) & (¬B) ⊖(A & B) ⇐⇒ (⊖A)⊕ (⊖B)
¬(A⊗B) ⇐⇒ (¬A) &(¬B) ⊖(A &

B) ⇐⇒ (⊖A)⊗ (⊖B)
¬(∃x:D.P (x)) ⇐⇒ ∀x:D.¬P (x) ⊖(∀x:D.P (x)) ⇐⇒ ∃x:D.⊖ P (x)

Note the new meanings of the previously offensive directions. On the one hand, evidence for
⊖(A & B) consists of evidence against A & B that boils down to either evidence against A or
evidence against B; exactly the same as the evidence for (⊖A)⊕ (⊖B). On the other hand,
evidence against ¬(A ⊗ B) is the same as evidence for A ⊗ B which consists of evidence
for both A and B simultaneously; exactly the same as the evidence against (¬A) &(¬B).
Similarly, evidence for ⊖(∀x:D.P (x)) is a specific counterexample n in D such that P (n) is
false, which is exactly the same evidence needed to prove ∃x:D.⊖ P (x) true.

Finally, let’s return to the troublesome law of the excluded middle, A∨¬A that we started
with. Now equipped with two different versions of disjunction, we can understand this law
constructively in two very different ways. The first understanding is based on the connection
of classical logic with control [23], which represents the excluded middle as the seemingly
impossible choice A⊕¬A. This proposition is true through a cunning act of bait and switch
as shown in Figure 1. First, the Sage (in the blue academic square cap) baselessly asserts
that ¬A is true hoping that this is ignored. Later the Skeptic (in the Sherlock Holmesian
brown deerstalker) can call the Sage’s bluff by providing evidence that A is in fact true.
In response, the Sage miraculously turns back the clock and changes their claim, instead
asserting that A is true by using the Skeptic’s own evidence against them. Now, the use of

P. Downen and Z. M. Ariola 1:7

time travel to change answers might seem a bit excessive, but luckily there is a much more
mundane understanding based on the more modest A

&

¬A. This proposition is true, almost
trivially, as a basic contradiction shown in Figure 2, based on the fact that evidence for A

is identical to evidence against ¬A. Here, the Sage merely asserts that A cannot be both
true and false at the same time, to which the Skeptic has no retort. Thus, restoring the
balance between true and false does a better job of explaining the constructive evidence of
both classical and intuitionistic logic.

3 Computing with Duality

What does a calculus for writing logical dialogues look like? In order to prepare for repres-
enting hypothetical arguments, we will use a logical device called a sequent written:

A1, A2, . . . , An ⊢ B1, B2, . . . , Bm

that groups together multiple propositions into a single package revolving around a central
entailment denoted by the turnstyle (⊢). This sequent can be read as “if A1, A2, . . . , An

are all true, then something among B1, B2, . . . , Bm must be true,” or more simply “the
conjunction of the left (A1, . . . , An) implies the disjunction of the right (B1, . . . , Bm).” In
order to understand the practical meaning of the compound sequent, it can help to look at
special cases where it contains at most one proposition, forcing either the left or the right
side of entailment to be empty (denoted by •).

True The sequent • ⊢ A means that A is true. The assumption is trivial because the
conjunction of nothing is true (asserting everything in an empty set passes some test is a
vacuously true statement). Since A is the only option on the right, A must be true.

False The sequent A ⊢ • means that A is false. The conclusion is impossible because the
disjunction of nothing is false (asserting that a true element is found among an empty set
is immediately false). Since assuming A is true implies falsehood, A must be false.

Contradiction The sequent • ⊢ • denotes a contradiction. Following the reasoning above,
• ⊢ • means “true implies false,” which is just plainly impossible.

Thus far, this is just rephrasing the basic judgments we had discussed in Section 2.2
(therein written A true, A false, and contra, respectively). What is more interesting is
how these forms of logical judgments can be reinterpreted as analogous forms of expressions
in a calculus for representing computation as interaction.

Production The typing judgment • ⊢ v : A | means that the term v produces information of
type A. By analogy with Section 2.2, v represents the Sage who is trying to prove that A

is true, and the value returned by v represents the evidence (of type A) that verifies the
veracity of their claim.

Consumption The typing judgment | e : A ⊢ • means that the coterm (a.k.a continuation) e

consumes information of type A. The coterm e is analogous to the Skeptic who is trying
to prove that A is false. In this sense, the covalue returned by e represents the evidence
of a counter argument (of type A), which refutes values of type A.

Computation The typing judgment c : (• ⊢ •) means that the command c is an executable
statement. Commands are the computational unit of the language where all reductions
happen; each step of reduction corresponds to the back-and-forth dialogue between the
Sage and the Skeptic. The fundamental form of commands is an interaction ⟨v||e⟩ between
a term v and a coterm e. The command ⟨v||e⟩ means that the value returned by v is
given to e as input, or dually the covalue constructed by e inspects v’s output.

FSCD 2021

1:8 Duality in Action

Note that, whereas terms • ⊢ v : A | produce output (i.e., provide answers) and coterms
| e : A ⊢ • consume input (i.e., ask questions), the command c : (• ⊢ •) does not produce or
consume anything itself, and acts as an isolated computation. To interact with a command,
it is necessary to provide for free variables x which stand for places to read inputs and free
covariables α standing for places to send outputs. Open commands with free (co)variables
have the more general typing judgment

c : (x1 : A1, x2 : A2, . . . , xn : An ⊢ α1 : B1, α2 : B2, . . . , αm : Bm)

As shorthand, we use Γ to denote a list of inputs x1 : A1, . . . , xn : An and ∆ to denote a list
of outputs α1 : B1, . . . , αm : Bm. Similar to open commands of type c : (Γ ⊢ ∆), we also
have open terms Γ ⊢ v : A | ∆ and open coterms Γ | e : A ⊢ ∆ which might also use free
(co)variables in Γ and ∆. Reference to these free (co)variables looks like this:1

Γ, x : A ⊢ x : A | ∆ V arR Γ | α : A ⊢ α : A, ∆ V arL

As another example, the typing rule for safe interactions in a command ⟨v||e⟩ corresponds to
the Cut rule, which only connects together a producer and consumer that agree on a shared
type A of information being exchanged:

Γ ⊢ v : A | ∆ Γ | e : A ⊢ ∆
⟨v||e⟩ : (Γ ⊢ ∆) Cut

The exciting part of this language is the way it renders the many dualities in logic directly
in its syntax. We know that true is dual to false, and for the same reason things on the left
of a sequent (i.e., to the left of ⊢) are dual to things on the right. In this sense, the turnstyle
⊢ serves as an axis of duality in logic. The same axis exists in the form of commands ⟨v||e⟩,
where the left and right components are dual to one another. The most direct way to see this
duality is in the exchange of answers and questions between the two sides of a command.

⟨v||e⟩

Answers

Questions

However, there are many other dualities besides the answer-question dichotomy to explore
along this same axis. While we imagine that information flows left-to-right, it turns out
that control flows right-to-left. There is the construction-destruction dynamic between
the creation of concrete evidence and the inspection of it, which can be arranged in either
direction. Likewise, abstraction over types and hidden information gives rise to dual notions of
generics (à la parametric polymorphism in functional languages and Java generics) which hide
information in the consumer/client and modules (à la the SML module system) which hide
information in the producer/server. So now let’s consider how each of these computational
dualities manifest themselves in the logical foundation of this language.

1 The rules are named with an R and L because their conclusion below the horizontal line of inference
introduces a new term on the Right of the turnstyle (⊢) and a new coterm on the Left, respectively.
This naming convention comes from the sequent calculus, which we will follow throughout the paper.

P. Downen and Z. M. Ariola 1:9

3.1 Positive burden of proof as data
In the constructive dialogues of Section 2.2, consider the case where the Sage has the positive
burden of truth, and is responsible for constructing a concrete piece of evidence that backs up
their claim that some proposition is true. The shape of the Sage’s evidence depends on the
proposition in question, and will contain enough information to fully justify truth in a way
the Skeptic can examine. In computational terms, constructing this positive form of evidence
corresponds to constructing values of a data type. In this sense, the Sage constructing
evidence of A’s truth is analogous to a producer v which constructs a value of type A.

For example, consider the basic cases for positive evidence of conjunction (A⊗B) and
disjunction (A⊕B). The evidence of the conjunction A⊗B is made up of a combination of
evidence v of A along with evidence w of B. In other words, it is a pair (v, w) of the tuple
type A⊗B. In contrast, the evidence of the disjunction A⊕B is a choice of either evidence
v for A or evidence w for B. In other words, it is one of the two tagged values ι1v or ι2w of
the sum type A⊕B. These constructions are captured by the following typing rules, which
resemble the inference rules for A⊗B true and A⊕B true in Section 2.2:

Γ ⊢ v : A | ∆ Γ ⊢ w : B | ∆
Γ ⊢ (v, w) : A⊗B | ∆ ⊗R

Γ ⊢ v : A | ∆
Γ ⊢ ι1v : A⊕B | ∆ ⊕R1

Γ ⊢ w : B | ∆
Γ ⊢ ι2w : A⊕B | ∆ ⊕R2

How, then, might the Skeptic respond to the evidence contained in these values? In
general, the Skeptic is only obligated to show that evidence following these rules cannot
be constructed, because their existence would lead to a contradiction. This corresponds
to pattern matching or deconstructing on the shape of all possible values of a data type.
A rebuttal of A ⊗ B is a process demonstrating a contradiction c given any generic pair
(x, y) : A⊗B, i.e., in the context of two generic values x : A and y : B. Similarly, a rebuttal
of A⊕B is a process that demonstrates two different contradictions: c1 which responds to a
tagged value ι1x : A⊕B (i.e., in the context of a generic value x : A) and c2 which responds
to a tagged value ι2y : A⊕B (i.e., in the context of y : B). The two rebuttals are captured
by the deconstructing consumers µ̃(x, y).c and µ̃[ι1x.c1 | ι2y.c2] given by these typing rules:

c : (Γ, x : A, y : B ⊢ ∆)
Γ | µ̃(x, y).c : A⊗B ⊢ ∆ ⊗L

c1 : (Γ, x : A ⊢ ∆) c2 : (Γ, y : B ⊢ ∆)
Γ | µ̃[ι1x.c1 | ι2y.c2] : A⊕B ⊢ ∆ ⊕L

Although more intricate, the evidence for or against an existential follows this same
pattern of constructing values in the term and deconstructing them in the coterm. For
simplicity, assume that the quantifiers’ domain ranges over other types. ∃X.B describes
values of type B, which might reference a hidden type X. This kind of information hiding
corresponds to modules in a program where the code implementing the module is written
with full knowledge of a specific type X, but the client code using the module does not know
which type was used for X. To be explicit about the module’s hidden choice for X, we can
use the (Sage’s) constructor form (A, v) which means to produce the value v whose type
depends on A. The client (Skeptic) side can unpack a generic value (evidence) of the form
(X, y) to run a command (demonstrate a contradiction), which looks like µ̃(X, y).c. This
pair of construction-deconstruction looks like:2

2 The ∃L rule has the additional side condition X /∈ F V (Γ ⊢ ∆), meaning the type variable X is not
found among the free variables of environments Γ and ∆. The side condition makes sure that X stands
for a truly generic type parameter, which would be ruined if Γ and ∆ constrained X with additional
assumptions about it. Similar side conditions weren’t needed in ⊗L and ⊕L because ordinary variables
x, y cannot be referenced by types in Γ and ∆ without dependent types. Alternatively, we could have
also introduced yet another environment Θ = X, Y, Z, . . . for keeping track of the free type variables in
the sequent, as is often done in the type systems in polymorphic languages like System F [22].

FSCD 2021

1:10 Duality in Action

Γ ⊢ v : B{A/x} | ∆
Γ ⊢ (A, v) : ∃X.B | ∆ ∃R

c : (Γ, y : B ⊢ ∆) X /∈ FV (Γ ⊢ ∆)
Γ | µ̃(X, y).c : ∃X.B ⊢ ∆ ∃L

3.2 Negative burden of proof as codata
If the positive burden of truth corresponds to constructing values of a data type, then what
is the computational interpretation of the negative burden of proof? Applying syntactic
duality of our symmetric calculus – that is, flipping the roles of producers v and consumers e

in the command ⟨v||e⟩ to get the analogue of ⟨e||v⟩ – leaves us only one answer: constructing
covalues of a codata type, which are defined in terms of observations rather than values. This
corresponds to the evidence constructed by the Skeptic within a negative burden of proof,
which has a different shape depending on the proposition A being argued against. Thus, the
Skeptic’s evidence can be represented by a consumer e of type A.

Consider the basic cases for negative evidence against conjunctions (A & B) and disjunc-
tions (A &

B). Contrary to before, the evidence against a conjunction comes in one of two
forms: either evidence e against A or evidence f against B. In other words, it is a first
projection π1e or second projection π2f out of a product type A & B. The evidence against
a disjunction instead has just one form, containing both evidence e against A and evidence
f against B. Taken together, this is a pair [e, f] – dual to a tuple of values – of the type
A

&

B. These constructions of consumers are captured by the following typing rules, which
resemble the inference rules for A & B false and A

&

B false from Section 2.2:

Γ | e : A ⊢ ∆
Γ | π1e : A & B ⊢ ∆ &L1

Γ | f : B ⊢ ∆
Γ | π2f : A & B ⊢ ∆ &L2

Γ | e : A ⊢ ∆ Γ | f : B ⊢ ∆
Γ | [e, f] : A

&

B ⊢ ∆

&

L

If the Skeptic is now constructing concrete evidence, then the Sage must be the one
responding to it in some way. This proof of truth involves arguing that the Skeptic cannot
possibly argue against the proposition: every potential piece of negative evidence that might
be constructed leads to a contradiction. The computational interpretation of the Sage’s
response corresponds to an object that defines a reaction to every possible observation on it,
which can be written via copattern matching [1] which deconstructs the shape of its observer.

A rebuttal in favor of A & B is a process that demonstrates two different contradictions:
c1 which responds to a generic first projection π1α : A & B, and c2 which responds to a
generic second projection π2β : A & B. Instead, a rebuttal in favor of A

&

B responds with
just one contradiction c, given a generic [α, β] : A

&

B that combines both pieces of negative
evidence (α against A and β against B). The two rebuttals in favor of A & B and A

&

B are
captured by the copattern-matching producers µ(π1α.c1 | π2β.c2) and µ[α, β].c, respectively,
given by these two typing rules:

c1 : (Γ ⊢ α : A, ∆) c2 : (Γ ⊢ β : B, ∆)
Γ ⊢ µ(π1α.c1 | π2β.c2) : A & B | ∆ &R

c : (Γ ⊢ α : A, β : B, ∆)
Γ ⊢ µ[α, β].c : A

&

B | ∆

&

R

Universal quantification can be derived mechanically as the dual of existential quanti-
fication, where the roles of information hiding have been flipped between the implementor
and client. With the polymorphic type ∀X.B – describing values of type B that are generic
in type X – it is now the clients using values of type ∀X.B that get to choose X. For
example, consider the polymorphic function ∀X.X → X: the callers of this function get to
choose the specific type for X – it could be integers, booleans, lists, etc.– before passing an
argument of that type to receive a returned value of the same type. The implementor which

P. Downen and Z. M. Ariola 1:11

produces a value of type ∀X.B must instead be generic in X: it cannot know which X was
chosen because different clients might all choose different specializations for X. Thus, the
implementation (Sage) side can unpack a generic covalue (evidence) of the form [X, β] to
run a command (demonstrate a contradiction), which looks like µ[X, β].c corresponding to
System F’s ΛX.v [22]. These (de)constructors follow rules dual to ∃R and ∃L:

Γ | e : B{A/X} ⊢ ∆
Γ | [A, e] : ∀X.B ⊢ ∆ ∀L

c : (Γ ⊢ β : B, ∆) X /∈ FV (Γ ⊢ ∆)
Γ ⊢ µ[A, β].c : ∀X.B | ∆ ∀R

3.3 The two dual negations
Now that we have introduced the computational content of both the positive and negative
burden of proof, we can finally examine the nature of negation which reverses these two roles.
In Section 2.2, we had two different forms of negation: ⊖A is described by positive evidence
in favor of it, whereas ¬A is described by negative evidence against it. Following our analogy,
⊖A corresponds to a data type: the Sage’s evidence in favor of ⊖A, written (e), contains
specific evidence e against A. The Skeptic then responds by showing why any construction
of the form (α) : ⊖A leads to a contradiction c, as expressed by these typing rules:

Γ | e : A ⊢ ∆
Γ ⊢ (e) : ⊖A | ∆ ⊖R

c : (Γ ⊢ α : A, ∆)
Γ | µ̃(α).c : ⊖A ⊢ ∆ ⊖L

The other negation ¬A is its dual codata type: the Skeptic’s evidence against ¬A, written [v],
contains specific evidence v in favor (i.e., producing a value) of A. The Sage then responds
by showing why any construction of the form [x] : ¬A leads to a contradiction c, as in:

Γ ⊢ v : A | ∆
Γ | [v] : ¬A ⊢ ∆ ¬L

c : (Γ, x : A ⊢ ∆)
Γ ⊢ µ[x].c : ¬A | ∆ ¬R

3.4 Proof by contradiction as control
We have talked about many different indirect proofs and (co)terms: those that show how
potential constructions lead to a contradiction (i.e., command), rather than giving a concrete
construction itself. These include all the coterms which pattern-match on specific values of
data types, as well as all the terms which copattern-match on the specific covalues of codata
types. But in practical programming languages, we aren’t forced to always match on the
shape of a value. We can also just give any value a name, as in the expression let z = v in w

found in many functional languages. What does this look like in our symmetric language?
We could generalize coterms like µ̃(x, y).c to just the generic µ̃z.c which names their input
before running a command c (just like let z = v in w names v before running w). The dual
of the generic µ̃ is a generic µ: the term µα.c names its output before running a command
c.3 The typing rules for these two dual abstractions correspond to the two forms of proof by
contradiction from Section 2.2: if assuming A true leads to a contradiction, then A false;
and dually if assuming A false leads to a contradiction, then A true.

c : (Γ, x : A ⊢ ∆)
Γ | µ̃x.c : A ⊢ ∆ ActL

c : (Γ ⊢ α : A, ∆)
Γ ⊢ µα.c : A | ∆ ActR

Notice how these two rules can be seen as simplifications of matching rules on the left (⊗L,
⊕L, ∃L) and right (&R, &

R, ∀R) to not depend on the structure of the abstracted type.

3 The term µα.c gets the simpler name because it came first in Parigot’s λµ-calculus [31] for classical
logic. The dual coterm µ̃x.c was derived after in the sequent calculus [4] for call-by-value computation.

FSCD 2021

1:12 Duality in Action

Although generic µ and µ̃ might seem innocuous, they can have a serious impact on
computational power. Whereas µ̃ corresponds to the pervasive (and relatively innocent)
feature of value-naming as expressed by basic let-bindings, µ corresponds to a notion of
control effect equivalent to Scheme’s call/cc operator [7]. In terms of a logic, µ can also
increase the propositions that can be proven true.

For example, consider the two different interpretations of the law of the excluded middle
from Section 2.3. The negative version, A

&

¬A corresponds to the term µ[α, [x]].⟨x||α⟩
written in terms of nested copatterns. Intuitively, this term is isomorphic to the identity
function, λx.x : A→ A, and it’s typing derivation (i.e., proof) is given like so:

x : A ⊢ x : A | α : A, β : ¬A
V arR

x : A | α : A ⊢ α : A, β : ¬A
V arL

⟨x||α⟩ : (x : A ⊢ α : A, β : ¬A) Cut

⊢ µ[x].⟨x||α⟩ : ¬A | α : A, β : ¬A
¬R | β : ¬A ⊢ α : A, β : ¬A

V arL

⟨µ[x].⟨x||α⟩||β⟩ : (⊢ α : A, β : ¬A) Cut

⊢ µ[α, β].⟨µ[x].⟨x||α⟩||β⟩ : A

&

¬A |

&

R

Notice how – in addition to the core Cut and V ar rules – we only use the type-specific
matching rules for &and ¬ here. There is no need to resort to the generic ActR or ActL.

In contrast, the positive law of the excluded middle, A⊕ ¬A, corresponds to the term
µα.⟨ι2µ[x].⟨ι1x||α⟩||α⟩. Notice the use of the generic µα . . . , requiring the ActR rule in its
typing derivation (omitting the names for V ar and Cut rules):

x : A ⊢ x : A | α : A⊕ ¬A

x : A ⊢ ι1x : A⊕ ¬A | α : A⊕ ¬A
⊕R1

x : A | α : A⊕ ¬A ⊢ α : A⊕ ¬A

⟨ι1x||α⟩ : (x : A ⊢ α : A⊕ ¬A)
⊢ µ[x].⟨ι1x||α⟩ : ¬A | α : A⊕ ¬A

¬R

⊢ ι2µ[x].⟨ι1x||α⟩ : A⊕ ¬A | α : A⊕ ¬A
⊕R2 | α : A⊕ ¬A ⊢ α : A⊕ ¬A

⟨ι2µ[x].⟨ι1x||α⟩||α⟩ : (⊢ α : A⊕ ¬A)
⊢ µα.⟨ι2µ[x].⟨ι1x||α⟩||α⟩ : A⊕ ¬A | ActR

Whereas A

&

¬A is like the simple identity function, the term of type A⊕¬A invokes a serious
manipulation of control flow. Intuitively, this term corresponds to the Scheme expression:

(call/cc (lambda (alpha)
(cons 2 (lambda (x) (alpha (cons 1 x)))))))

Here, the “time travel” needed to implement the positive law of the excluded middle
is expressed by the control operator call/cc. Before doing anything else, the current
continuation is saved (in alpha), just in case we need to change our answer. Then, we
first return the second option (represented by a numerically-labeled cons-cell (cons 2 ...))
containing a function. If that function is ever called with a value x of type A, then we invoke
the continuation alpha which rolls back the clock and lets us change our answer to the first
option (cons 1 x): deftly giving back the value we were just given.

3.5 A symmetric system of computation
Thus far, we have only discussed how to build objects (producers and consumers) following
this two-sided method of interaction. That alone does not tell us how to compute; we also
need to know how the interaction unfolds over time.

P. Downen and Z. M. Ariola 1:13

(β⊗) ⟨(v, w)||µ̃(x, y).c⟩ = ⟨v||µ̃x.⟨w||µ̃y.c⟩⟩ (η⊗) µ̃(x, y).⟨(x, y)||α⟩ = α (α : A⊗B)
(β⊕) ⟨ιiv||µ̃[ιixi.ci]⟩ = ⟨v||µ̃xi.ci⟩ (η⊕) µ̃[ιixi.⟨ιixi||α⟩] = α (α : A⊕B)
(β∃) ⟨(A, v)||µ̃(X, y).c⟩ = ⟨v||µ̃y.c{A/X}⟩ (η∃) µ̃(X, y).⟨(X, y)||α⟩ = α (α : ∃X.B)
(β⊖) ⟨(e)||µ̃(α).c⟩ = ⟨µα.c||e⟩ (η⊖) µ̃(β).⟨(β)||α⟩ = α (α : ⊖A)
(β&) ⟨µ(πiαi.ci)||πie⟩ = ⟨µαi.ci||e⟩ (η&) µ(πiαi.⟨x||πiαi⟩) = x (x : A & B)
(β &) ⟨µ[α, β].c||[e, f]⟩ = ⟨µα.⟨µβ.c||f⟩||e⟩ (η &) µ[α, β].⟨x||[α, β]⟩ = x (x : A

&

B)
(β∀) ⟨µ[X, β].c||[A, e]⟩ = ⟨µβ.c{A/x}||e⟩ (η∀) µ[X, β].⟨x||[X, β]⟩ = x (x : ∀X.B)
(β¬) ⟨µ[x].c||[v]⟩ = ⟨v||µ̃x.c⟩ (η¬) µ[y].⟨x||[y]⟩ = x (x : ¬A)

Plus compatibility, symmetry, reflexivity, and transitivity.

Figure 3 Equational reasoning for (co)pattern matching in the dual core sequent calculus.

One of the simplest ways of viewing the computation of interaction is through the axioms
which characterize the equality of expressions. These axioms, given in Figure 3, come in two
main forms. The β family of laws say what happens when a matching term and coterm of a
type meet up in a command. For example, when the tuple construction (v, w) meets up with
a tuple deconstruction µ̃(x, y).c, the interaction can be simplified with β⊗ by matching the
structure of (v, w) with the pattern (x, y), and bind v to x and w to y (with the help of the
generic µ̃). When there is a choice like in the sum type A⊕B, then the appropriate response
is selected by β⊕. When the right construction ι2v meets up with the sum deconstruction
µ̃[ι1x.c1 | ι2y.c2], then the result is c2 with v bound to y from the matching pattern ι2y. The
same kind of matching happens for the codata types, but with the roles reversed. Instead, it
is the coterm side that is constructed, like the second projection π2e of a product type A & B,
and the term side selects a response, like the term µ(π1α.c1 | π2β.c2) which matches with
π2e by binding e to β and running c2 as per β&. Note that the β rules for both negations
(⊖ and ¬) end up swapping the two sides of a command.

The other family of laws are the η axioms, which give us a notion of extensionality. In
each case, the η axioms say that deconstructing a structure and reconstructing it exactly
as it was before does nothing. The side where this simplification applies depends on the
type of the structure in question. For data types, the consumer does the deconstructing,
so the η⊗, η⊕, η∃, and η⊖ axioms apply to a generic unknown coterm – represented by the
covariable α – waiting to receive its input. Whereas for codata types, the producer does
the deconstructing, so the η&, η &, η∀, and η¬ axioms apply to a generic unknown term –
represented by the variable x – waiting to receive an output request.

But equational axioms are quite far from a real implementation in a machine. They
give the ultimate freedom of choice on where the rules can apply (in any context, due to
compatibility) and in which direction (due to symmetry). In reality, a machine implementation
will make a (deterministic) choice on the next step to take, and always move forward. This
is modeled by the operational semantics given in Figure 4, where each step c 7→ c′ applies
exactly to the top of the command itself. The happy coincidence of a dual calculus based on
the sequent calculus is that its operational semantics is an abstract machine [10], since there
is never a search for the next redex which is always found at the top. Thus, this style of
calculus is a good framework for studying the low-level details of computation needed to
implement languages in real machines.

FSCD 2021

1:14 Duality in Action

Call-by-value definition of values (V+) and covalues (E+):

Value+ ∋ V+, W+ ::= x | (V+, W+) | ι1V+ | ι2V+ | (A, V+) | (E+)
| µ(π1α.c1 | π2β.c2) | µ[α, β].c | µ[X, β].c | µ[x].c

CoValue+ ∋ E+, F+ ::= e

Call-by-name definition of values (V−) and covalues (E−):

Value− ∋ V−, W− ::= v

CoValue− ∋ E−, F− ::= α | [E−, F−] | π1E− | π2E− | [A, E−] | [V−]
| µ̃[ι1x.c1 | ι2y.c2] | µ̃[x, y].c | µ̃(X, y).c | µ̃(α).c

Reduction rules for call-by-value (s = +) and call-by-name (s = −) evaluation.

(βs
⊗) ⟨(Vs, Ws)||µ̃(x, y).c⟩ 7→ c{Vs/x, Ws/y} (ςs

⊗) ⟨(v, w)||Es⟩ 7→ ⟨v||µ̃x.⟨w||µ̃y.⟨(x, y)||Es⟩⟩⟩
(βs

⊕) ⟨ιiVs||µ̃[ιixi.ci]⟩ 7→ ci{Vs/xi} (ςs
⊕) ⟨ιiv||Es⟩ 7→ ⟨v||µ̃x.⟨ιix||Es⟩⟩

(βs
∃) ⟨(A, Vs)||µ̃(X, y).c⟩ 7→ c{A/X, Vs/y} (ςs

∃) ⟨(A, v)||Es⟩ 7→ ⟨v||µ̃x.⟨(A, x)||Es⟩⟩
(βs

⊖) ⟨(Es)||µ̃(α).c⟩ 7→ c{Es/α} (ςs
⊖) ⟨(e)||Es⟩ 7→ ⟨µα.⟨(α)||Es⟩||e⟩

(βs
&) ⟨µ(πiαi.ci)||πiEs⟩ 7→ ci{Es/αi} (ςs

&) ⟨Vs||πie⟩ 7→ ⟨µα.⟨Vs||πiα⟩||e⟩
(βs &) ⟨µ[α, β].c||[Es, Fs]⟩ 7→ c{Es/α, Fs/β} (ςs &) ⟨Vs||[e, f]⟩ 7→ ⟨µα.⟨µβ.⟨Vs||[α, β]⟩||f⟩||e⟩
(βs

∀) ⟨µ[X, β].c||[A, Es]⟩ 7→ c{A/x, Es/β} (ςs
∀) ⟨Vs||[A, e]⟩ 7→ ⟨µα.⟨Vs||[A, α]⟩||e⟩

(βs
¬) ⟨µ[x].c||[Vs]⟩ 7→ c{Vs/x} (ςs

¬) ⟨Vs||[v]⟩ 7→ ⟨v||µ̃x.⟨Vs||[x]⟩⟩

In each of the ςs rules, assume that (v, w), ιiv, (A, v), and (e) are not in Values,
respectively, and πie, [e, f], [A, e], and [v] are not in CoValues, respectively.

Figure 4 Operational semantics for (co)pattern matching in the dual core sequent calculus.

The difference between the β rules in the operational semantics (Figure 4) from the
ones in the equational theory (Figure 3) is that the operational rules completely resolve
the matching in one step. Rather than forming new bindings with generic µs and µ̃s, the
components of the construction (on either side) are substituted directly for the (co)pattern
variables. To do so, we need to use a notion of evaluation strategy which informs us which
terms can be substituted for variables (we call these values) and which coterms can be
substituted for covariables (we call these covalues, which represent evaluation contexts).

Call-by-value evaluation simplifies terms first before substituting them for variables, so it
has a quite restrictive notion of value (V+) for constructed values like (V+, W+) and ιiV+,
but all coterms represent call-by-value evaluation contexts (hence every e is substitutable).
Dually, call-by-name evaluation will substitute any term for a variable (hence a value V−
could be any v), but only certain coterms represent evaluation contexts: for example, the
projection π1E− only represents an evaluation context because E− does, but π1e does not
when e does not need its input yet.

The other cases of reduction are handled by the ς rules, which say what to do when
a construction isn’t a (co)value yet. In a call-by-value language like OCaml, the term
(1+2, 3+4) first evaluates the two components before returning the pair value (3, 7). This
scenario is handled by the ς+

⊗ step, which lifts the two computations in the tuple to the top
of the command, replacing ⟨(1 + 2, 3 + 4)||α⟩ with ⟨1 + 2||µ̃x.⟨3 + 4||µ̃y.⟨(x, y)||α⟩⟩⟩; now we
know that the next step is to simplify 1 + 2 before binding it to x.

P. Downen and Z. M. Ariola 1:15

Equational axioms for µµ̃ in both call-by-value (s = +) and call-by-name (s = −) reduction:

(βs
µ) ⟨µα.c||Es⟩ = c{Es/α} (ηµ) µα⟨v||α⟩ = v (α /∈ FV (v))

(βs
µ̃) ⟨Vs||µ̃x.c⟩ = c{Vs/x} (ηµ̃) µ̃x.⟨x||e⟩ = e (x /∈ FV (e))

Operational semantics for µµ̃ in both call-by-value (s = +) and call-by-name (s = −):

(βs
µ) ⟨µα.c||Es⟩ 7→ c{Es/α} (βs

µ̃) ⟨Vs||µ̃x.c⟩ 7→ c{Vs/x}

Figure 5 Rules for data flow and control flow in the dual core sequent calculus.

data A⊕B where
ι1 : A ⊢ A⊕B |
ι2 : B ⊢ A⊕B |

data A⊗B where
(_, _) : A, B ⊢ A⊗B |

data⊖A where
(_) : ⊢ ⊖A | A

data ∃F where
(_, _) : F A ⊢ ∃F |

codata A & B where
π1 : | A & B ⊢ A

π2 : | A & B ⊢ B

codata A

&

B where
[_, _] : | A &

B ⊢ A, B

codata¬A where
[_] : A | ¬A ⊢

codata ∀F where
[_, _] : | ∀F ⊢ F A

Figure 6 (Co)Data declarations of the core connectives and quantifiers.

The last piece of the puzzle is what to do with the generic µs and µ̃s. Fortunately, these
are simpler than the individual rules for the various connectives and quantifiers. A coterm
µ̃x.c binds its partner to x wholesale, without inspecting it further, and likewise µα.c binds
its entire partner to α. These two actions are captured by βs

µ̃ and βs
µ in Figure 5 which,

like the rules in Figure 4, are careful to only substitute values and covalues. This careful
consideration of substitutability prevents the fundamental critical pair between µ and µ̃:

c1{µ̃x.c2/α} ←[β+
µ
⟨µα.c1||µ̃x.c2⟩ 7→β−

µ̃
c2{µα.c1/x}

This restriction is necessary for both the equational axioms as well as the operational reduction
steps (which are identical in name and result). These restrictions ensure that the operational
semantics is deterministic and the equational theory is consistent (i.e., not all commands
are equated). Similarly, the η axioms for µ and µ̃ say that binding a (co)variable just to
use it immediately does nothing. While the η laws in Figures 3 and 5 are not themselves
necessary for computation, they do give us a hint on how to keep going when we might get
stuck. Specifically, the ς rules from Figure 4 can be derived from βη equality, showing that
these two families of axioms are complete for specifying computation [8].

▶ Observation 2. If c 7→βς c′ then c =βη c′.

3.6 (Co)Data in the wild
The connectives from Sections 3.1 and 3.2 originally arose from the field of logic, but that
doesn’t mean they are disconnected from programming. Indeed, the concept of data and
codata they embody can be found to some degree in programming languages that are already
in wide use today, although not in their full generality.

FSCD 2021

1:16 Duality in Action

First, we can imagine a mechanism for declaring new connectives as (co)data types which
list their patterns of construction. For example, all the connectives we have seen so far are
given declarations in Figure 6. Each (term or coterm) constructor is given a type signature
in the form of a sequent: input parameters are to the left of ⊢, and output parameters are to
the right. For data types, constructors build a value returned as output, whose type is given
in a special position to the right of the turnstyle between it and the vertical bar (i.e., the A

in · · · ⊢ A | . . .). Dually for codata types, constructors build a covalue that takes an input,
whose type is given in the special position on the left between the turnstyle and the vertical
bar (i.e., the A in · · · | A ⊢ . . .).

This notion of data type corresponds to algebraic data types in typed functional languages.
For example, the declarations for A ⊕ B and A ⊗ B correspond to the following Haskell
declarations for sum (Either) and pair (Both) types:

data Either a b where
Left :: a -> Either a b
Right :: b -> Either a b

data Both a b where
Pair :: a -> b -> Both a b

Even the existential quantifier corresponds to a Haskell data type, whose constructor
introduces a new generic type variable a not found in the return type Exists f.

data Exists f where Pack :: f a -> Exists f

However, the negation ⊖A does not correspond to any data type in Haskell. That’s because
⊖A’s constructor requires two outputs (notice the two types to the right of the turnstyle: the
main ⊖A plus the additional output parameter A). This requires some form of continuations
or control effects, which is not available in a pure functional language like Haskell.

The dual notion of codata type corresponds to interfaces in typed object-oriented lan-
guages. For example, the declaration for A & B corresponds to the following Java interface
for a generic Product:

interface Product<A,B> { A first(); B second(); }

Java’s type system is not strong enough to capture quantifiers.4 However, if its type system
were extended so that generic types could range over other parameterized generic types, we
could declare a Forall interface corresponding to the ∀ quantifier:

interface Forall<F> { F<A> specialize<A>(); }

Unfortunately, the types A

&

B and ¬A suffer the same fate as ⊖A; their constructors require
a number of outputs different from 1: [α, β] has two outputs (both α and β), and [x] has
no outputs (x is an input, not an output). So they cannot be represented in Java without
added support for juggling multiple continuations.

The possibilities for modeling additional information in the constructions of the type –
representing pre- and post-conditions in a program – become much more interesting when
we look at indexed (co)data types. For a long time, functional languages have been using
generalized algebraic data types (GADTs), also known as indexed data types, that allow each
constructor return a value with a more constrained version of that type. The classic example

4 Unlike Haskell, Java does not support generic type variables with higher kinds. The Haskell declaration
of Exists f relies on the fact that the type variable f has the kind * -> *, i.e., f stands for a function
that turns one type into another.

P. Downen and Z. M. Ariola 1:17

of indexed data types is representing expression trees with additional typing information.
For example, here is a data type representing a simple expression language with literal values,
plus and minus operations on numbers, an “is zero” test, and an if-then-else expression:

data Expr X where
Literal : X ⊢ Expr X |

Plus : Expr Int, Expr Int ⊢ Expr Int |
Minus : Expr Int, Expr Int ⊢ Expr Int |

IsZero : Expr Int ⊢ Expr Bool |
IfThenElse : Expr Bool, Expr X, Expr X ⊢ Expr X |

The type parameter X acts as an index, and it lets us constrain the types of values an
expression can represent. For example, IsZero expects an integer and returns a boolean.
This lets us write a typed evaluation function eval : Expr X → X, and not worry about
mistyped edge cases because the type system rules out poorly-constructed expressions.

The dual of indexed data types are indexed codata types, which let us constrain each
observation of the codata type to only accept certain inputs which model another form of pre-
and post-conditions [18]. For example, we can embed a basic socket protocol – for sending
and receiving information along an address – inside this indexed codata type:

codata Socket X where
Bind : String | Socket Raw ⊢ Socket Bound

Connect : | Socket Bound ⊢ Socket Live
Send : String | Socket Live ⊢ ()

Receive : | Socket Live ⊢ String
Close : | Socket Live ⊢ ()

A new Socket starts out as Raw. We can Bind a Socket Raw to an address, after which it is
Bound and can be Connected to make it Live. A Socket Live represents a connection we
can use to Send and Receive messages, and is discarded by a Close.5

4 Applications of Duality

So a constructive view of symmetric classical logic gives us a dual language for expressing
computation as interaction. Does this form of duality have any application in the broader
scope of programs? Yes! Let’s look at a few examples where computational duality can be
put into action for solving problems in programming.

4.1 Functions as Codata
There is a delicate trilemma in the theory of the untyped λ-calculus: one cannot combine
non-strict weak-head reduction, function extensionality, and computational effects. The
specific reduction we are referring to follows two properties: “non-strict” means that functions
are called without evaluating their arguments first, and “weak-head” means that evaluation
stops at a λ-abstraction. Function extensionality is captured by the η law – λx. f x = f –
from the foundation of the λ-calculus. And finally effects could be anything – from mutable

5 This interface can be further improved by linear types, which ensure that outdated states of the Socket
cannot be used, and forces the programmer to properly Close a Socket instead of leaving it hanging.

FSCD 2021

1:18 Duality in Action

state to exceptions – but for our purposes, non-termination introduced by general recursion
is enough. That is to say, the infinite loop Ω = (λx.x x) (λx.x x) already expressible in the
“pure” untyped λ-calculus counts as an effect.

So what is the problem when all three are combined in the same calculus? The conflict
arises when we observe a λ-abstraction as the final result of evaluation. Because of weak-
head reduction, any λ-abstraction counts as a final result, including λx.Ωx. Because of
extensionality, the η law says that λx.Ωx is equivalent to Ω. Taken together, this means that
a program that ends immediately is the same as one that loops forever: an inconsistency.

4.1.1 Efficient head reduction
One way to fix the trilemma is to change from weak-head reduction to head reduction. With
head reduction, evaluation no longer stops at a λ-abstraction. Instead, head reduction looks
inside of λs to keep going until a head-normal form of the shape λx1 . . . λxn.xi M1 . . . Mm is
found. But going inside λs means that evaluation has to deal with open terms, i.e., terms
with free variables in them. How can we perform head reduction efficiently, when virtually
all efficient implementations assume that evaluation only handles closed terms?

Our idea is to look at functions as yet another form of codata, just like A

&

B and A & B.
Following the other declarations in Figure 6, the type of functions can be defined as:

codata A→ B where _ ·_ : A | A→ B ⊢ B

This says that the coterm which observes a function of type A→ B has the form of a call
stack v · e, where v is the argument (of type A), and e represents a kind of “return pointer”
(expecting the returned B). The stack-like nature can be seen in the way a chain of function
arrows requires a stack of arguments; for instance a coterm of type Int→ Int→ Int→ Int

has the stack shape 1 · 2 · 3 · α, where α is a place to put the result.
Rather than the usual λ-abstraction, the codata view suggests that we can instead write

functions in terms of copattern matching: µ[x · β].c is a function of type A→ B where c is
the command to run in the scope of the (co)variables x : A and β : B. Both forms of writing
functions are equivalent to one another (via general µ):

µ[x · β].c = λx.µβ.c λx.v = µ[x · β].⟨v||β⟩ (β /∈ FV (v))

This way, the main rule for reducing a call-by-name function call is to match on the structure
of a call stack (recall from Section 3.5 that call-by-name covalues are restricted to E−, so
covalue call stacks have the form v · E− in call-by-name) like so:

⟨µ[x · β].c||v · E−⟩ 7→ c{v/x, E−/β}

But what happens when we encounter a function at the top-level? This is represented
by the command ⟨µ[x · β].c||tp⟩ where tp is a constant standing in for the empty, top-level
context. Normally, we would be stuck, so instead lets look at functions from the other side.
A call stack v · E− is similar to a pair (v, w). In some programming languages, we access
a pair by matching on its structure (analogous to µ̃(x, y).c). But in other languages, we
are given primitive projections for accessing its fields. We can make the same change with
functions: rather than matching on the structure of a call (with µ[x · β].c or λx.v), we can
instead project out of a call stack [26]. The projection arg[v · E−] gives us the argument v

and ret[v ·E−] gives us the return pointer E−. These two projections let us keep going when
a function reaches the top level, by projecting the argument and return pointer out of tp:

⟨µ[x · β].c||tp⟩ 7→ c{arg tp /x, ret tp /β}

P. Downen and Z. M. Ariola 1:19

This goes “inside” the function, and yet there are no free variables in sight. Instead, the
would-be free x is replaced with the placeholder arg tp, and we get a new “top-level” context
ret tp, which stands for the context expecting the result of an implicit call with arg tp.

As we keep going, we may return another function to ret tp, and the process continues
with the new placeholder argument arg[ret tp] and the next top-level ret[ret tp]. Rewriting
these rules in terms of the more familiar λ-abstractions, we get the following small abstract
machine for closed head reduction, which says what to do when a function is called (with
w · E−) or returned to any of the series of “top-level” contexts (retn E−):

⟨v w||E−⟩ 7→ ⟨v||w · E−⟩
⟨λx.v||w · E−⟩ 7→ ⟨v{w/x}||E−⟩
⟨λx.v||retn tp⟩ 7→ ⟨v{arg[retn tp]/x}||retn+1 tp⟩

For example, the η-expansion of the infinite loop Ω also loops forever, instead of stopping:

⟨λx.Ωx||tp⟩ 7→ ⟨Ω (arg tp)||ret tp⟩ 7→ ⟨Ω||arg tp · ret tp⟩ 7→→ ⟨Ω||arg tp · ret tp⟩ . . .

4.1.2 Effective confluence
A similar issue arises when we consider confluence of the reduction theory. In particular, the
call-by-name version of η for functions can be expressed as simplifying the deconstruction-
reconstruction detour µ[x ·β].⟨v||x · β⟩ →η−

→
v, similar to Figure 3.6 We might expect that βη

reduction is now confluent like it is in the λ-calculus. Unfortunately, it is not, due to a critical
pair between function extensionality and a general µ (_ stands for an unused (co)variable):7

µ_.c←η−
→

µ[x · β].⟨µ_.c||x · β⟩ →β−
µ

µ[x · β].c

Can we restore confluence of function extensionality in the face of control effects? Yes! The
key to eliminating this critical pair is to replace the η−

→ rule with an alternative extensionality
rule provided by viewing functions as codata types, equipped with projections out of their
constructed call stacks. Under this view, every function is equivalent to a µα.c, where arg α

replaces the argument, and ret α replaces the return continuation. Written as a reduction
that replaces copatterns with projections, we have:

µ[x · β].c→µ→ µα.c{arg α/x, ret α/β}

Analogously, the µ→ rule can be understood in terms of the ordinary λ-abstraction as
λx.v → µα.⟨v{arg α/x}||ret α⟩. If all functions immediately reduce to a general µ, then how
can we execute function calls? The steps of separating the argument and the result are done
by the rules for projection, which have their own form of β-reduction along with a different
extensionality rule surj→ capturing the surjective pair property of call stacks:

arg[v · E−]→βarg v ret[v · E−]→βret E− [arg E−] · [ret E−]→surj→ E−

The advantage of these rules is that they are confluent in the presence control effects [27].
Even though surjective pairs can cause non-confluence troubles in general [28], the coarse
distinction between terms and coterms is enough to resolve the problem for call-by-name call
stacks. Moreover, these rules are strong enough to simulate the λ-calculus’ βη laws:

6 This is the call-by-name version of µ[x · β].⟨y||x · β⟩ →η→ y because we have substituted a call-by-name
value v ∈ Value− for the variable y.

7 Note, this is not just a problem with copatterns; the same issue arises in Parigot’s λµ-calculus with
ordinary λ-abstractions and η law: µ_.c← λx.(µ_.c) x→ λx.µ_.c.

FSCD 2021

1:20 Duality in Action

(λx.v) w = µα.⟨µ[x · β].⟨v||β⟩||w · α⟩ →µ→ µα.⟨µγ.⟨v{arg γ/x}||ret γ⟩||w · α⟩
→β−

µ
µα.⟨v{arg[w · α]/x}||ret[w · α]⟩ →→βretβarg µα.⟨v{w/x}||α⟩ →ηµ

v{w/x}

λx.(v x) = µ[x · β].⟨v||x · β⟩ →µ→ µα.⟨v||[arg α] · [ret α]⟩ →surj→ µα.⟨v||α⟩ →ηµ
v

4.2 Loops in Types, Programs, and Proofs
Thus far, we’ve only talked about finite types of information: putting together a fixed number
of things. However, real programs are full of loops. Many useful types are self-referential,
letting them model information whose size is bounded but arbitrarily large (like lists and
trees), or whose size is completely unbounded (like infinite streams). Programs using these
types need to be able to loop over arbitrarily large data sets, and generate infinite objects
in streams. Once those loops are introduced, reasoning about programs becomes much
harder. Let’s look at how duality can help us understand the least understood loops in types,
programs, and proofs.

4.2.1 (Co)Recursion
Lists and trees – which cover structures that could be any size, as long as they’re finite –
are modeled by the familiar concept of inductive data types found in all mainstream, typed
functional programming languages. The dual of these are coinductive codata types, which is a
relatively newer feature that is finding its way into more practical languages for programming
and proving. We already saw instances of both of these as Expr and Socket from Section 3.6.
The canonical examples of (co)inductive (co)data are the types for natural numbers and
infinite streams, which are defined like so:

data Nat where
Zero : ⊢ Nat |
Succ : Nat ⊢ Nat |

codata Stream X where
Head : | Stream X ⊢ X

Tail : | Stream X ⊢ Stream X

The recursive nature of these two types are in the fact that they have constructors that take
parameters of the type being declared: Succ takes a Nat as input before building a new Nat,
whereas Tail consumes a Stream X to produce a new Stream X as output.

To program with inductive types, functional languages allow programmers to write
recursive functions that match on the structure of its argument. For example, here is a
definition of the addition function plus:

plus Zero x = x plus (Succ y) x = plus y (Succ x)

We know that this function is well-founded – that is, it always terminates on any input –
because it’s structurally recursive: the first argument shown in red shrinks on each recursive
call, where Succ y is replaced with the smaller y. The second argument in blue doesn’t
matter; it can grow from x to Succ x since we already have a termination condition.

Translating this example into the dual language reveals that the same notion of structural
recursion covers both induction and coinduction [16]. Instead of defining plus as matching
on just its arguments, we can define it as matching on the structure of its entire call stack
α in the command ⟨plus||α⟩. Generalizing to the entire call stack lets us write coinductive
definitions using the same technique. For example, here is the definition of plus in the dual
language alongside count which corecursively produces a stream of numbers from a given
starting point (i.e., count x = x, x + 1, x + 2, x + 3, . . .):

P. Downen and Z. M. Ariola 1:21

⟨plus||Zero · x · α⟩ = ⟨x||α⟩ ⟨plus||Succ y · x · α⟩ = ⟨plus||y · Succ x · α⟩
⟨count||x · Head α⟩ = ⟨x||α⟩ ⟨count||x · Tail α⟩ = ⟨count||Succ x · α⟩

Both definitions are well-founded because they are structurally recursive, but the difference
is the structure they are focused on within the call stack. Whereas the value Succ y shrinks
to y in the recursive call to plus, it’s the covalue Tail α that shrinks to α in the corecursive
call to count. In both, the growth in blue doesn’t matter, since the red always shrinks.

Here are two more streams defined by structural recursion on the shape of the stream
projection Head α or Tail α. iterate repeats the same function over and over on some starting
value (i.e., iterate f x = x, f x, f(f x), f(f(f x)), . . .) and maps modifies an infinite stream
by applying a function to every element (i.e., maps f (x1, x2, x3 . . .) = f x1, f x2, f x3, . . .):

⟨iterate||f · x · Head α⟩ = ⟨f ||x · α⟩
⟨iterate||f · x · Tail α⟩ = ⟨iterate||f · µβ.⟨f ||x · β⟩ · α⟩
⟨maps||f · xs · Head α⟩ = ⟨f ||µβ.⟨xs||Head β⟩ · α⟩
⟨maps||f · xs · Tail α⟩ = ⟨maps||f · µβ.⟨xs||Tail β⟩ · α⟩

4.2.2 (Co)Induction
Examining the structure of (co)values isn’t just good for programming; it’s good for proving,
too. For example, if we want to prove some property Φ about values of type A ⊕ B, it’s
enough to show it holds for the (exhaustive) cases of ι1x1 : A⊕B and ι1x2 : A⊕B like so:

Φ(ι1x1) : (Γ, x1 : A ⊢ ∆) Φ(ι2x2) : (Γ, x2 : B ⊢ ∆)
Φ(x) : (Γ, x : A⊕B ⊢ ∆) ⊕Induction

Exhaustiveness is key to ensure that all cases are covered and no possible value was left
out. This becomes difficult to do directly for recursive types like Nat, because it represents
an infinite number of cases (0, 1, 2, 3, . . .). Instead, we can prove a property Φ indirectly
through the familiar notion of structural induction: prove Φ(Zero) specifically and prove
that the inductive hypothesis Φ(y) implies Φ(Succ y) as expressed by this inference rule

Φ(Zero) : (Γ ⊢ ∆)

Φ(y) : (Γ, y : Nat ⊢ ∆) IH
....

Φ(Succ y) : (Γ, y : Nat ⊢ ∆)
Φ(x) : (Γ, x : Nat ⊢ ∆) NatInduction

But how can we deal with coinductive codata types? There are also an infinite number
of cases to consider, but the values don’t follow the same, predictable patterns. Here is a
conventional but questionable form of coinduction that takes the entire goal Φ(x) to be the
coinductive hypothesis, as in:

Φ(x) : (Γ, x : Stream A ⊢ ∆) CoIH
.... ???

Φ(x) : (Γ, x : Stream A ⊢ ∆)
Φ(x) : (Γ, x : Stream A ⊢ ∆)

Questionable CoInduction

FSCD 2021

1:22 Duality in Action

But this rule obviously has serious problems: CoIH could just be used immediately, leading
to a viciously circular proof. To combat this clear flaw, other secondary, external checks
and guards have to be put into place that go beyond the rule itself, and instead analyze the
context in which CoIH is used to prevent circular proofs. As a result, a prover can build a
coinductive proof that follows all the rules, but run into a nasty surprise in the end when the
proof is rejected because it fails some implicit guard. Can we do better?

Just like the way structural induction looks at the shape of values, structural coinduction
looks at the shape of covalues which represent contexts [12]. For example, here is the
coinductive rule dual to ⊕Induction for concluding that a property Φ holds for any output
of A & B by checking the (exhaustive) cases π1α1 : A & B and π2α2 : A & B:

Φ(π1α1) : (Γ ⊢ α1 : A, ∆) Φ(π2α2) : (Γ ⊢ α2 : A, ∆)
Φ(α) : (Γ ⊢ α : A & B, ∆) &CoInduction

Just like Nat, streams have too many cases (Head β, Tail[Head β], Tail[Tail[Head β]], . . .) to
exhaustively check directly. So instead, here is the dual form of proof as NatInduction for
proving Φ for any observation α of type Stream A: it proves the base case Φ(Head β) directly,
and then shows that the coinductive hypothesis Φ(γ) implies the next step Φ(Tail γ), like so:

Φ(Head β) : (Γ ⊢ β : A, ∆)

Φ(γ) : (Γ ⊢ γ : Stream A, ∆) CoIH
....

Φ(Tail γ) : (Γ ⊢ γ : Stream A, ∆)
Φ(α) : (Γ ⊢ α : Stream A, ∆) StreamCoInduction

Notice the similarities between this rule and the one for Nat induction. In the latter, even
though the inductive hypothesis Φ(y) is assumed for a generic y, then there is no need
for external checks because we are forced to provide Φ(Succ y) for the very same y. The
information flow between the introduction of y in IH and its use in the final conclusion
of Φ(Succ y) prevents viciously circular proofs. In the same way, the coinductive rule here
assumes Φ(γ) for a generic γ, but we are forced to prove Φ(Tail γ) for the very same γ. In
this case, there is an implicit control flow between the introduction of γ in CoIH and its use
in the final conclusion Φ(Tail γ). Thus, CoIH can be used in any place it fits, without any
secondary guards or checks after the proof is built; StreamCoInduction is sound as-is.

How can this form of coinduction be used to reason about corecursive programs? Con-
sider this interaction between maps and iterate: maps f (iterate f x) = iterate f (f x).
Written in the dual language, this property translates to an equality between commands:
⟨maps||f · µβ.⟨iterate||f · x · β⟩ · α⟩ = ⟨iterate||f · µβ.⟨f ||x · β⟩ · α⟩. We can prove this property
(for any starting value x) using coinduction with these two cases:
α = Head α′. The base case follows by direct calculation with the definitions.

⟨maps||f · µβ.⟨iterate||f · x · β⟩ · Head α′⟩ = ⟨f ||µβ.⟨iterate||f · x · Head β⟩ · α′⟩ (maps, βµ)
= ⟨f ||µβ.⟨f ||x · β⟩ · α′⟩ (iterate)
= ⟨iterate||f · µβ.⟨f ||x · β⟩ · Head α′⟩ (iterate)

α = Tail α′. First, assume the coinductive hypothesis (CoIH) which is generic
in the value of the initial x: for all x, ⟨maps||f · µβ.⟨iterate||f · x · β⟩ · α′⟩ =
⟨iterate||f · µβ.⟨f ||x · β⟩ · α′⟩. The two sides are equated by applying CoIH with an
updated value for x:

P. Downen and Z. M. Ariola 1:23

⟨maps||f · µβ.⟨iterate||f · x · β⟩ · Tail α′⟩
= ⟨maps||f · µβ.⟨iterate||f · x · Tail β⟩ · α′⟩ (maps, βµ)
= ⟨maps||f · µβ.⟨iterate||f · µγ.⟨f ||x · γ⟩ · β⟩ · α′⟩ (iterate)
= ⟨iterate||f · µβ.⟨f ||µγ.⟨f ||x · γ⟩ · β⟩ · α′⟩ (CoIH{µγ.⟨f ||x · γ⟩/x})
= ⟨iterate||f · µγ.⟨f ||x · γ⟩ · Tail α′⟩ (iterate)

4.3 Compilation and Intermediate Languages
In Section 3, we saw how a symmetric language based on the sequent calculus closely resembles
the structure of an abstract machine, which helps to reveal the details of how programs are
really implemented. This resemblance raises the question: does a language based on the
sequent calculus be a good intermediate language (IL) used to compile programs to machine
code? The λ-calculus’ syntax structure buries the most relevant part of an expression. For
example, applying f to four arguments is written as ((((f 1) 2) 3) 4); we are forced to search
for the next step – f 1 – found at the bottom of the tree. Instead, the syntax of the dual
calculus raises up the next step of a program to the top; the same application is written as
⟨f ||1 · (2 · (3 · (4 · α)))⟩, where calling f with 1 is the first part of the command.

We have found that the sequent calculus can in fact be used as an intermediate language
of a compiler [17]. The feature of bringing out the most relevant expression to the top of a
program is shared by other commonly-used representations like continuation-passing style
(CPS) [2] and static single assignment (SSA) [5]. However, the sequent calculus is uniquely
flexible. Unlike SSA which is an inherently imperative representation, the sequent calculus is
a good fit for both purely functional and effectful languages. And unlike CPS, the sequent
calculus preserves enough of the original structure of the program to enable high-level rewrite
rules expressed in terms of the source, as done by the Glasgow Haskell Compiler (GHC).
Besides these advantages, our experience with a sequent calculus IL has led the following
new techniques, which apply more broadly to other compiler ILs, too.

4.3.1 Join points in control flow
Join points are places where separate lines of control flow come back together. They are as
pervasive as the branching structures in a program. For example, the statement

if x > 100: print "x is large"
else: print "x is small"
print "goodbye"

splits off in two different directions to print a different statement depending on the value
of x. But in either case, both branches of control flow will rejoin at the shared third line
to print "goodbye". Compilers need to represent these join points for code generation and
optimization, in a way that is efficient in both time and space. Ideally, we want to generate
code to jump to the join point in as few instructions as possible. And it’s not acceptable to
copy the common code into each branch; this leads to a space inefficiency that can cause an
exponential blowup in the size of the generated code.

In the past, GHC represented these join points as ordinary functions bound by a let-
expression. For example, the function j in let j x = . . . x . . . in if z then j 10 else j 20 serves
as the join point for both branches of the if-expression. Of course, this is space efficient,

FSCD 2021

1:24 Duality in Action

since it avoids duplicating code of j. But a full-fledged function call is much less efficient
than a simple jump. Fortunately, the local function j has some special properties: it is
always used in tail-call position and never escapes the scope of the let . These properties
let GHC compile the calls j 10 and j 20 as efficient jumps. Unfortunately, the necessary
properties for optimization aren’t stable under other useful optimizations. For example, it
usually helps to push (strict) evaluation contexts inside of an if-then-else or case-expression.
While semantically correct, this can break the tail-call property of join points like here:

3 + let j y = 10 + (y + y)
in case x of

ι1z1 → j z1
ι2z2 → j (−z2)

→

let j y = 10 + (y + y)
in case x of

ι1z1 → 3 + (j z1)
ι2z2 → 3 + (j (−z2))

Before, j could be compiled as a join point, but after it is used in non-tail-call positions
3 + (j z1) and 3 + (j (−z2)). To combat this issue, we developed a λ-calculus with purely-
functional join points [29]. While this calculus ostensibly contains labels and jumps – which
are indeed compiled to jumps into assembly code – from the outside there is no observable
effect. Instead, this calculus gives rules for optimizing around join points while ensuring they
are still compiled efficiently. The example above is rewritten like so, where the context 3 +□
is now pushed into the code of the join point, rather than inside of the case-expression:

3 + join j y = 10 + (y + y)
in case x of

ι1z1 → jump j z1
ι2z2 → jump j (−z2)

→

join j y = 3 + 10 + (y + y)
in case x of

ι1z1 → jump j z1
ι2z2 → jump j (−z2)

→

join j y = 13 + (y + y)
in case x of

ι1z1 → jump j z1
ι2z2 → jump j (−z2)

Besides preserving the efficiency of j itself, this new form of code movement enables new
optimizations. In this case, we can perform some additional constant folding of 3 + 10, and
other optimizations such as loop fusion can be expressed in this way as well.

4.3.2 Polarized primitive types
Another key feature found in the duality of logic is the polarization of different propositions.
In terms of computation [33, 30], polarization is the combination of an “ideal” evaluation
strategy based on the structure of types. Consider the η laws expressing extensionality of
the various types in Figure 3. All the η laws for data types (e.g., built with ⊗, ⊕, ⊖, and ∃)
are about expanding covalues α. These laws are the strongest in the call-by-value strategy,
which maximizes the number of covalues. Dually, the η laws for codata types (e.g., built
with &, &, ¬, and ∀) are about expanding values x. These are the strongest in call-by-name.

Usually, we think of picking one evaluation strategy for a language. But this means that
in either case, we are necessarily weakening extensionality of data or codata types (or both,
if we choose something other than call-by-value or call-by-name). Instead, we can use a
polarized language which improves η laws for all types by combining both strategies. This
involves separating types into two different camps – the positive Type+ and the negative
Type− – following our analogy of the burden of proof from Section 2.2 like so:

Sign ∋ s ::= + | −
Type+ ∋ A+, B+ ::= X+ | A+ ⊕B+ | A+ ⊗B+ | ∃Xs.A+ | ⊖A− | ´A−

Type− ∋ A−, B− ::= X− | A− & B− | A−

&

B− | ∀Xs.A− | ¬A+ | ˆA+

By separating types in two, we also have to add the polarity shifts ´A− and ˆA+ so they can
still refer to one another. For example, the plain A⊕ (B & C) becomes A+ ⊕ ´(B− & C−).

P. Downen and Z. M. Ariola 1:25

Once this separation of types has occurred, we can bring them back together and
intermingle both within a single language. The distinction can be made explicit in a refined
Cut rule, which is the only rule which creates computation, so that the type (and its sign)
becomes part of the program:

Γ ⊢ v : A | ∆ A : s Γ | e : A ⊢ ∆
⟨v|A:s|e⟩ : (Γ ⊢ ∆) Cut

Since there is no longer one global evaluation strategy, we instead use types to determine the
order. The additional annotation in commands let us drive computation with more nuance,
referring to the sign s of the command to determine the priorities of µ and µ̃ computations:

(βs
µ) ⟨µα.c|A:s|Es⟩ = c{Es/α} (βs

µ̃) ⟨Vs|A:s|µ̃x.c⟩ = c{Vs/x}

The advantage of this more nuanced form of computation is that the types of the language
express the nice properties that usually only hold up in an idealized, pure theory; however,
now they hold up in the pragmatic practice that combines all manner of computational
effects like control flow, state, and general recursion. For example, we might think that
curried and uncurried functions – A→ (B → C) versus (A⊗B)→ C – are exactly the same.
In both Haskell and OCaml, they are not, due to interactions with non-termination or side
effects. But in a polarized language, they are the same, even with side effects.

These ideal properties of polarized types let us encode a vast array of user-defined
data and codata types into a small number of basic primitives. We can choose a perfectly
symmetric basis of connectives found in Section 3 [11] or an asymmetric alternative that
is suited for purely functional programs [9]. The ideal properties provided by polarization
can be understood in terms of the dualities of evidence in Section 2.3. For example, the
equivalence between the propositions ⊖¬A and A corresponds to an isomorphism between
the polarized types ⊖¬A+ and A+ (and dually ¬ ⊖ A− and A−). Intuitively, the only
(closed) values of type ⊖¬A have exactly the form ([Vv]), which is in bijection with the plain
values Vv. And coterms of those two types are also in bijection due to the optimized η laws.
All the de Morgan equivalences in Section 2.3 correspond to type isomorphisms, too. For
example, the only (closed) values of ⊖∀Xs.B− have the form ([As, E−]), which is in bijection
with ∃Xs. ⊖ B−’s (closed) values of the form (As, (E−)). In contrast, the other negation
¬´∀Xs.B− includes abstract values of the form µ[x].c, which are not isomorphic to the more
concrete values (As, µ[x].c) of ∃Xs.¬´B− that witness their chosen As. Thus, constructivity,
computation, and full de Morgan symmetry depend on both polarized negations.

Polarization itself only accounts for call-by-value and call-by-name evaluation. However,
other evaluation strategies are sometimes used in practice for pragmatic reasons. For
example, implementations of Haskell use call-by-need evaluation, which can lead to better
asymptotic performance than call-by-name. How do other evaluation strategies fit? We can
add additional signs – besides − and + – that stand in for other strategies like call-by-need.
But do we need to duplicate the basic primitives? No! We only need additional shifts that
convert between the new sign(s) with the original + and −, four in total:

data ´s(X : s) : + where
Boxs : X : s ⊢ ´sX : + |

data ⇑s(X : +) : s where
Returns : X : + ⊢ ⇑sX : s |

codata ˆs(X : s) : −where
Evals : | ˆsX : − ⊢ X : s

codata ⇓s(X : −) : s where
Enters : | ⇓sX : s ⊢ X : −

FSCD 2021

1:26 Duality in Action

4.3.3 Static calling conventions
Systems languages like C give the programmer fine-grained control over low-level represent-
ations and calling conventions. When defining a structure, the programmer can choose if
values are stored directly or indirectly (i.e., boxed) as a pointer into the heap. When calling
a function, the programmer can choose how many arguments are passed at once, and if
they are passed directly in the call stack, or indirectly by reference. High-level functional
languages save programmers from these details, but at the cost of using less efficient – but
more uniform – representations and calling conventions. Is there a way to reconcile both
high-level ease and low-level control?

It turns out that polarization also provides a logical foundation for efficient representations
and calling conventions, too. Decades ago [32], Haskell implementors designed a way to add
unboxed representations into the compiler IL, making it possible to more efficiently pass
values directly in registers. However, doing so required extending the language, because
unboxed values must be call-by-value, and the types of unboxed values are different from the
other, ordinary Haskell types. This sounds awfully similar to polarization: unboxed values
correspond to positive data types, which have a different polarity from Haskell’s types.

With this inspiration, we considered the dual problem: what do negative types correspond
to? If an unboxed pair (V+, W+) is described by the positive type A+ ⊗B+, then does an
unboxed call stack V+ · E− correspond to the negative function type A+ → B−? In [19], we
found that negative functions correspond to a more primitive type of functions found in
the machine, where the power of the polarized η law lets us express the arity of functions
statically in the type. Static arity is important for optimizing higher-order functions. In

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f (a:as) (b:bs) = f a b : zipWith f as bs
zipWith f _ _ = []

we cannot compile f a b as a simple binary function call even though f’s type suggests so.
It might be that f only expects one argument, then computes a closure expecting the next.
Instead, using negative functions, which are fully extensional, lets us statically optimize
zipWith to pass both arguments to f at once.

However, this approach runs into some snags in practice, due to polymorphism. In order
to be able to statically compile code, we sometimes need to know the representation of a
type (to move its values around) or the calling convention of a type (to jump to its code in
the correct environment). But if a type is unknown – because it’s some polymorphic type
variable – then that runtime information is unknown at compile time. A solution to this
problem is given in [21], which introduces the idea of storing the runtime representation of
values in the kind of their type. So even when a type is not known statically, their kind is.
Following this idea, we combined the kind-based approach with function arity by storing
both representations and calling conventions in kinds [14].

This can be seen as a refinement on the course-grained polarization from Section 4.3.2.
Rather than just a basic sign – such as − or + – types are described by a pair of both
a representation and a calling convention. Positive types like A ⊗ B can have interesting
representations (their values can be tuples, tagged unions, or machine primitives) but have
a plain convention (their terms are always just evaluated to get the resulting value). In
contrast, negative types like A → B can have interesting conventions (they can be called
with several arguments, which can have their own representations by value or reference) but
have a plain representation (they are just stored as pointers). This approach lets us integrate
efficient calling conventions in a higher-level language with polymorphism, and also lets us
be polymorphic in representations and calling conventions themselves, introducing new forms
of statically-compilable code re-use.

P. Downen and Z. M. Ariola 1:27

4.4 Orthogonal Models of Safety
We’ve looked at several applications based on the dual calculus in Section 3, but how do
we know the calculus is safe? That is, what sorts of safety properties do the typing rules
provide? For example, in certain applications, we might want to know for sure that well-typed
programs, like the ones in Section 4.2, always terminate. We also might want a guarantee
that the βη equational theory in Section 3.5 is actually consistent. To reason about the
impact of types, we must identify the safety property we’re interested in. This is done with a
chosen set of commands ‚ called the pole which contains only those commands we deem as
“safe.” Despite being tailor-made to classify different notions of safety, there are shockingly
few requirements of ‚. In fact, the only requirement is that the pole must be closed under
expansion: c 7→ c′ ∈‚ implies c ∈‚. Any set of commands closed under expansion can be
used for ‚. This gives the general framework for modeling type safety a large amount of
flexibility to capture different properties, types, and language features. So in the following,
assume only that ‚ is an arbitrary set closed under expansion, and the sign s can stand for
either + (call-by-value) or − (call-by-name) throughout.

4.4.1 Orthogonality and intuitionistic negation
The central concept in these family of models is orthogonality given in terms of the chosen
pole ‚. At an individual level, a term and coterm are orthogonal to one another, written
v ‚ e, if they form a command in the pole: ⟨v||e⟩ ∈ ‚. Generalizing to groups, a set of
terms A+ and a set of coterms A− are orthogonal, written A+ ‚ A−, if every combination
drawn from the two sets is orthogonal: v ‚ e for all v ∈ A+ and e ∈ A−. Working with sets
has the benefit that we can always find the biggest set orthogonal to another. That is, for
any set of terms A+, there is a largest set of coterms called A+‚ such that A+ ‚ A+‚ (and
vice versa for any coterm set A−, there is a largest A−‚ ‚ A−), defined as:

e ∈ A+‚ ⇐⇒ ∀v ∈ A+.⟨v||e⟩ ∈‚ v ∈ A−‚ ⇐⇒ ∀e ∈ A−.⟨v||e⟩ ∈‚
The fascinating thing about this notion of orthogonality is that – despite the fact that it was
designed for symmetric and classical systems – it so closely mimics the properties of negation
from the asymmetric intuitionistic logic. For example, it enjoys the properties analogous to
double negation introduction (A =⇒ ¬¬A) and triple negation elimination (¬¬¬A ⇐⇒ A)
where A±‚ corresponds to the negation of A± (which could be either a set of terms or a set
of coterms) and set inclusion A± ⊆ B± corresponds to implication.

▶ Lemma 3 (Orthogonal Introduction/Elimination). A± ⊆ A±‚‚ and A±‚‚‚ = A±‚.

However, the classical principle of double negation elimination (¬¬A =⇒ A) does not hold
for orthogonality: in general, A±‚‚ ⊈ A±. This connection is not just a single coincidence.
Orthogonality also has properties corresponding to the contrapositive (A =⇒ B implies
¬B =⇒ ¬A) as well as all the intuitionistic directions of the de Morgan laws from Section 2.3
– where set union (A±∪B±) denotes disjunction and intersection (A±∩B±) denotes conjunction
– but, again, not the classical-only directions like ¬(A ∧B) =⇒ (¬A) ∨ (¬B).

Where does ‚’s closure under expansion come into play? It lets us reason about sets
of the form A±‚, and argue that they must contain certain elements by virtue of the way
they behave with elements of the underlying A±, rather than the way they were built. For
example, we can show that general µs and µ̃s belong to orthogonally-defined sets, as long as
their commands are safe under any possible substitution.

FSCD 2021

1:28 Duality in Action

▶ Observation 4. For any set of values A+, if c{Vs/x} ∈‚ for all Vs ∈ A+ then µ̃x.c ∈ A+‚.
For any set of covalues A−, if c{Es/α} ∈‚ for all Es ∈ A− then µα.c ∈ A−‚.

Proof. For all values, Vs ∈ A+, observe that ⟨Vs||µ̃x.c⟩ 7→βs
µ̃

c{Vs/x} ∈‚. Thus, ⟨Vs||µ̃x.c⟩ ∈
‚ by closure under expansion, so µ̃x.c ∈ A+‚ by definition. The other case is dual. ◁

Note the fact that Observation 4 starts with only a set of values or covalues, rather than
general (co)terms. This (co)value restriction is necessary to ensure that the βs

µ̃ and βs
µ rules

can fire, which triggers the closure-under-expansion result. Formally, we write this restriction
as A±V to denote the subset of A± containing only (co)values, which is built into the very
notion of candidates that model safety of individual types.

▶ Definition 5 (Candidates). A reducibility candidate, A ∈ RC, is a pair A = (A+,A−) of a
set of terms (A+) and set of coterms (A−) that is:
Sound For all v ∈ A+ and e ∈ A−, ⟨v||e⟩ ∈‚ (i.e., A+ ‚ A−).
Complete If ⟨v||Es⟩ ∈‚ for all covalues Es ∈ A− then v ∈ A+ (i.e., A−V‚ ⊆ A+).

If ⟨Vs||e⟩ ∈‚ for all values Vs ∈ A+, then e ∈ A− (i.e., A+V‚ ⊆ A−).
We write v ∈ A as shorthand for v ∈ A+ and e ∈ A for e ∈ A−.

There are two distinct ways of defining specific reducibility candidates. We could begin
with a set A+ of terms, and build the rest of the candidate around the values of A+, or we
can start with a set A− of coterms, and build the rest around the covalues of A−. These are
the positive (Pos(A+)) and negative (Neg(A−)) construction of candidates, defined as:

Pos(A+) = (A+V‚V‚,A+V‚V‚V‚) Neg(A−) = (A−V‚V‚V‚,A−V‚V‚)

Importantly, these constructions are indeed reducibility candidates, meaning they are both
sound and complete. But why are three applications of orthogonality needed instead of just
two (like some other models in this family)? The extra orthogonality is needed because of the
(co)value restriction A±V interleaved with orthogonality A±‚. Taken together, (co)value-
restricted orthogonality has similar introduction and elimination properties as the general
one (Lemma 3), but restricted to just (co)values rather than general (co)terms.

▶ Lemma 6. A±V ⊆ A±V‚V‚V and A±V‚V‚V‚V = A±V‚V.

Thus, the final application of orthogonality takes these (co)values and soundly completes the
rest of the candidate.8

4.4.2 An orthogonal view of types
With the positive and negative construction of candidates, we can define operations that
are analogous to the positive and negative burden of proof from Section 2.2. Here, terms
represent evidence of truth, and coterms represent evidence of falsehood, so the various
connectives are built like so:

A⊗ B = Pos{(v, w) | v ∈ A, w ∈ B}
A⊕ B = Pos({ι1v | v ∈ A} ∪ {ι2w | w ∈ B})
⊖A = Pos{(e) | e ∈ A}

A

&

B = Neg{[e, v] | e ∈ A, f ∈ B}
A & B = Neg({π1e | e ∈ A} ∪ {π2f | f ∈ B})
¬A = Neg{[v] | v ∈ A}

8 In fact, the simpler double-orthogonal constructions are valid, but only in certain evaluation strategies.
In call-by-value, where A−V = A− because every coterm is a covalue, the positive construction simplifies
to just the usual Pos(A+) = (A+‚‚,A+‚) when A+ contains only values. Dually in call-by-name, the
negative construction simplifies to just Neg(A−) = (A−‚,A−‚‚) when A− contains only covalues.

P. Downen and Z. M. Ariola 1:29

Similarly, evidence for or against the existential and universal quantifiers can be defined as
operations taking a function F : RC → RC over reducibility candidates, and producing a
specific reducibility candidate that quantifies over all possible instances of F(B).9

∃F = Pos{(A, v) | B ∈ RC, v ∈ F(B)} ∀F = Neg{[A, e] | B ∈ RC, e ∈ F(B)}

With a semantic version of the connectives, we have a direct way to translate each
syntactic type to a reducibility candidate. The translation JAKθ is aided by a map θ from
type variables to reducibility candidates, and the cases of translation are now by the numbers:

JXKθ = θ(X) JA⊗BKθ = JAKθ ⊗ JBKθ . . . J∀X.BKθ = ∀(λA:RC.JBKθ{A/X})

Going further, we can translate typing judgments to logical statements.

Jc : (Γ ⊢ ∆)Kθ = ∀σ ∈ JΓ ⊢ ∆Kθ. c{σ} ∈‚
JΓ ⊢ v : A | ∆Kθ = ∀σ ∈ JΓ ⊢ ∆Kθ. v{σ} ∈ JAKθ

JΓ | e : A ⊢ ∆Kθ = ∀σ ∈ JΓ ⊢ ∆Kθ. e{σ} ∈ JAKθ

Each judgment is based on a translation of the environment, σ ∈ JΓ ⊢ ∆Kθ, which says that
σ is a syntactic substitution of (co)values for (co)variables such that x{σ} ∈ JAKθ if x : A is
in Γ, and similarly for α : A in ∆. The main result is that typing derivations imply the truth
of their concluding judgment, which follows by induction on the derivation.

▶ Theorem 7 (Adequacy). c : (Γ ⊢ ∆) implies Jc : (Γ ⊢ ∆)Kθ (and similar for (co)terms).

4.4.3 Applications of adequacy
Adequacy (Theorem 7) may not seem like a special property, but the generality of the model
means that it has many serious implications. We get different results by plugging in a
different notion of safety for ‚. The most basic corollary of adequacy is given by the most
trivial pole: ‚ = {} is vacuously closed under expansion since it is empty to start with.
By instantiating adequacy with ‚ = {}, we get a notion of logical consistency, there is no
derivation of a closed contradiction c : (• ⊢ •) since Jc : (• ⊢ •)K means that c ∈ {}.

▶ Corollary 8 (Logical Consistency). There is no well-typed c : (• ⊢ •).

However, the most interesting results come from instances where ‚ is not empty. For
example, the set of terminating commands, {c | c 7→→ c′ ̸7→}, is also closed under expansion.
Defining ‚ as this set ensures that all well-typed commands are terminating.

▶ Corollary 9 (Termination). If c : (Γ ⊢ ∆) then c 7→→βς c′ ̸7→.

But perhaps the most relevant application to discuss here is how constructivity from
Section 2 is reconciled with computation in Section 3. The notion of positive constructive
evidence of A⊕ B (Section 2.2) corresponds directly with the two value constructors: we
have ι1V1 : A1 ⊕A2 and ι2V2 : A1 ⊕A2 for any value Vi : Ai. Similarly, the evidence in favor
of ∃X.B corresponds directly with the constructed value (A, V) : ∃X.B where V : B[A/X].

9 Note that there is no connection between the syntactic type A used in (A, v) and [A, e] and the actual
reducibility candidate used in F(B) that classifies v and e. Just like System F’s model of impredicativity
[22], we can get away with this bald-faced lie because of parametricity of ∀ and ∃: the (co)term that
unpacks (A, v) or [A, e] is not allowed to react any differently based on the choice for A.

FSCD 2021

1:30 Duality in Action

But both of these types also have the general µ abstractions µα.c : A⊕B and µβ.c′ : ∃X.B,
which do not directly correspond with either. How do we know that both of these µs will
compute and eventually produce the required evidence? We can instantiate ‚ with only the
commands that do so. For A⊕B we can set ‚ = {c | c 7→→ ⟨ιiV ||α⟩}, and for ∃X.B we can
set ‚ = {c | c 7→→ ⟨(A, V)||α⟩}; both of these definitions are closed under expansion, which is
all we need to apply adequacy to compute the construction matching the type.

▶ Corollary 10 (Positive Evidence). If • ⊢ v : A1 ⊕A2 | then ⟨v||α⟩ 7→→βsςs ⟨ιiVs||α⟩ such that
Vs ∈ JAiK. If • ⊢ v : ∃X.B | then ⟨v||α⟩ 7→→βsςs ⟨(A, Vs)||α⟩ such that Vs ∈ JBK{JAK/X}.

Dually, we can design similar poles which characterize the computation of negative evidence.
For example, types like A1 & A2 and ∀X.B include general µ̃ abstractions of the form µ̃x.c in
addition to the constructed covalues π1E1 : A1, π2E2 : A2, and [A, E] : ∀X.B that correspond
to the negative evidence of these connectives. Luckily, we can set the global ‚ to either
{c | c 7→→ ⟨x||πiE⟩} or {c | c 7→→ ⟨x||[A, E]⟩} to ensure that general µ̃s compute the correct
concrete evidence for these negative types.

▶ Corollary 11 (Negative Evidence). If | e : A1 & A2 ⊢ • then ⟨x||e⟩ 7→→βsςs ⟨x||πiEs⟩ such
that Es ∈ JAiK. If | e : ∀X.B ⊢ • then ⟨x||e⟩ 7→→βsςs ⟨x||[A, Es]⟩ such that Es ∈ JBK{JAK/X}.

This model is extensible with other language features, too, without fundamentally
changing the shape of adequacy (Theorem 7). For example, because reducibility candidates
are two-sided objects, there are two different ways to order them:

A ⊑ B ⇐⇒ A+ ⊆ B+ and A− ⊆ B− A ≤ B ⇐⇒ A+ ⊆ B+ and A− ⊇ B−

The first order A ⊑ B where both sides are in the same direction is analogous to ordinary set
containment. However, the second order A ≤ B where the two sides are opposite instead
denotes subtyping [15]. Besides modeling subtyping as a language feature itself, this idea is
the backbone of several other type features, including (co)inductive types [12], intersection
and union types [13], and indexed (co)data types [16]. It also lets us model non-determinism
[15], where the critical pair between µ and µ̃ is allowed.

We can also generalize the form of our model, to capture properties that are binary relations
rather than unary predicates. This only requires that we make each of the fundamental
components binary, without changing their overall structure. For example, the pole ‚ is
generalized from a set to a relation between commands that is closed under expansion:
c1 7→→ c′

1 ‚ c′
2 ←←[c2 implies c1 ‚ c2. From there, reducibility candidates become a pair of

term relation v A+ v and coterm relation e A− e′, where soundness and completeness can be
derived from the generalized notion of orthogonality between relations:

A+ ‚ A− ⇐⇒ ∀(v A+ v′), (e A− e′). ⟨v||e⟩‚ ⟨v′||e′⟩

This lets us represent equalities between commands and (co)terms in the orthogonality model,
and prove that the equational theory is consistent with contextual equivalence [6], i.e., equal
expressions produce the same result in any context. As a consequence, (co)values built with
distinct constructors – such as ι1 and ι2 or π1 and π2 – are never equal.

▶ Corollary 12 (Equational Consistency). The equalities Γ ⊢ ι1Vs = ι2V ′
s : A ⊕ B | ∆ and

Γ | π1Es = π2E′
s : A & B ⊢ ∆ are not derivable.

P. Downen and Z. M. Ariola 1:31

5 Conclusion

Duality is not just an important idea in logic; it is also a useful tool to study and implement
programs. By re-imagining constructive logic as a fair debate between multiple competing
viewpoints, we derive a symmetric calculus that lets us transfer the logical idea of duality to
computation. This modest idea has serious ramifications, and leads to several applications in
both the theory and practice of programming languages. Moreover, it reveals new ideas and
new relationships that are not expressible in today’s languages. We hope the next generation
of programming languages puts the full force of duality into programmers’ hands.

References

1 Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copatterns: Pro-
gramming infinite structures by observations. In Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, pages
27–38, 2013.

2 Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.
3 L. E. J. Brouwer. Over de Grondslagen der Wiskunde. PhD thesis, University of Amsterdam,

1907.
4 Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Proceedings of the

Fifth ACM SIGPLAN International Conference on Functional Programming, ICFP ’00, pages
233–243. ACM, 2000.

5 Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, 13(4):451–490, 1991.

6 Paul Downen. Sequent Calculus: A Logic and a Language for Computation and Duality. PhD
thesis, University of Oregon, 2017.

7 Paul Downen and Zena M. Ariola. Compositional semantics for composable continuations:
From abortive to delimited control. In Proceedings of the 19th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’14, pages 109–122. ACM, 2014.

8 Paul Downen and Zena M. Ariola. The duality of construction. In Programming Languages
and Systems - 23rd European Symposium on Programming, ESOP 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014, Proceedings, volume 8410 of Lecture Notes in Computer Science,
pages 249–269. Springer Berlin Heidelberg, 2014.

9 Paul Downen and Zena M. Ariola. Beyond polarity: Towards a multi-discipline intermediate
language with sharing. In 27th EACSL Annual Conference on Computer Science Logic, CSL
2018, September 4-7, 2018, Birmingham, UK, LIPIcs, pages 21:1–21:23. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2018.

10 Paul Downen and Zena M. Ariola. A tutorial on computational classical logic and the sequent
calculus. Journal of Functional Programming, 28:e3, 2018.

11 Paul Downen and Zena M. Ariola. Compiling with classical connectives. Logical Methods in
Computer Science, 16:13:1–13:57, 2020. arXiv:1907.13227.

12 Paul Downen and Zena M. Ariola. A computational understanding of classical (co)recursion.
In 22nd International Symposium on Principles and Practice of Declarative Programming,
PPDP ’20. Association for Computing Machinery, 2020.

13 Paul Downen, Zena M. Ariola, and Silvia Ghilezan. The duality of classical intersection and
union types. Fundamenta Informaticae, 170:1–54, 2019.

14 Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A. Eisenberg. Kinds are
calling conventions. Proceedings of the ACM on Programming Languages, 4(ICFP), 2020.

FSCD 2021

http://arxiv.org/abs/1907.13227

1:32 Duality in Action

15 Paul Downen, Philip Johnson-Freyd, and Zena Ariola. Abstracting models of strong normal-
ization for classical calculi. Journal of Logical and Algebraic Methods in Programming, 111,
2019.

16 Paul Downen, Philip Johnson-Freyd, and Zena M. Ariola. Structures for structural recursion. In
Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2015, pages 127–139. ACM, 2015.

17 Paul Downen, Luke Maurer, Zena M. Ariola, and Simon Peyton Jones. Sequent calculus as
a compiler intermediate language. In Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, pages 74–88. ACM, 2016.

18 Paul Downen, Zachary Sullivan, Zena M. Ariola, and Simon Peyton Jones. Codata in action.
In Programming Languages and Systems - 28th European Symposium on Programming, ESOP
2019, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, volume 11423 of Lecture
Notes in Computer Science, pages 119–146. Springer International Publishing, 2019.

19 Paul Downen, Zachary Sullivan, Zena M. Ariola, and Simon Peyton Jones. Making a faster
curry with extensional types. In Proceedings of the 12th ACM SIGPLAN International
Symposium on Haskell, Haskell 2019, pages 58–70. ACM, 2019.

20 M. Dummett and R. Minio. Elements of Intuitionism. Oxford University Press, 1977.
21 Richard A. Eisenberg and Simon Peyton Jones. Levity polymorphism. In Proceedings of

the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, page 525–539. Association for Computing Machinery, 2017.

22 Jean-Yves Girard. Une extension de l’interprétation de Gödel à l’analyse, et son application
à l’élimination de coupures dans l’analyse et la théorie des types. In J. E. Fenstad, editor,
Proceedings of the 2nd Scandinavian Logic Symposium, pages 63–92. North-Holland, 1971.

23 Timothy G. Griffin. A formulae-as-types notion of control. In Proceedings of the 17th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’90, pages
47–58. ACM, 1990.

24 Arend Heyting. Die formalen regeln der intuitionistischen logik. Sitzungsbericht PreuBische
Akademie der Wissenschaften, pages 42–56, 1930.

25 William Alvin Howard. The formulae-as-types notion of construction. In Haskell Curry, Hindley
B., Seldin J. Roger, and P. Jonathan, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus, and Formalism. Academic Press, 1980.

26 Philip Johnson-Freyd, Paul Downen, and Zena M. Ariola. First class call stacks: Exploring
head reduction. In Workshop on Continuations, volume 212 of WOC, 2015.

27 Philip Johnson-Freyd, Paul Downen, and Zena M. Ariola. Call-by-name extensionality and
confluence. Journal of Functional Programming, 27:e12, 2017.

28 Jan W. Klop and Roel C. de Vrijer. Unique normal forms for lambda calculus with surjective
pairing. Information and Computation, 80(2):97–113, 1989.

29 Luke Maurer, Paul Downen, Zena M. Ariola, and Simon Peyton Jones. Compiling without
continuations. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, pages 482–494. ACM, 2017.

30 Guillaume Munch-Maccagnoni. Syntax and Models of a non-Associative Composition of
Programs and Proofs. PhD thesis, Université Paris Diderot, 2013.

31 Michel Parigot. Lambda-my-calculus: An algorithmic interpretation of classical natural deduc-
tion. In Proceedings of the International Conference on Logic Programming and Automated
Reasoning, LPAR ’92, pages 190–201. Springer-Verlag, 1992.

32 Simon L. Peyton Jones and John Launchbury. Unboxed values as first class citizens in a non-
strict functional language. In Functional Programming Languages and Computer Architecture,
5th ACM Conference, Cambridge, MA, USA, August 26-30, 1991, Proceedings, volume 523 of
Lecture Notes in Computer Science, pages 636–666. Springer-Verlag, 1991.

33 Noam Zeilberger. The Logical Basis of Evaluation Order and Pattern-Matching. PhD thesis,
Carnegie Mellon University, 2009.

Completion and Reduction Orders
Nao Hirokawa #

Japan Advanced Institute of Science and Technology, Ishikawa, Japan

Abstract
We present three techniques for improving the Knuth–Bendix completion procedure and its variants:
An order extension by semantic labeling, a new confluence criterion for terminating term rewrite
systems, and inter-reduction for maximal completion.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases term rewriting, completion, reduction order

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.2

Category Invited Talk

Funding Nao Hirokawa: JSPS KAKENHI Grant Numbers 17K00011.

1 Introduction

Completion [11] is a procedure that takes an equational system and a reduction order to
construct a conversion-equivalent complete (terminating and confluent) term rewrite system.

Consider the equational system for commuting group endomorphisms (CGE2):

e + x ≈ x f(x+ y) ≈ f(x) + f(y)
i(x) + x ≈ e g(x+ y) ≈ g(x) + g(y)

(x+ y) + z ≈ x+ (y + z) f(x) + g(y) ≈ g(y) + f(x)

This system is known as a challenging completion problem. Stump and Löchner [16] showed
that it admits the following complete TRS consisting of 20 rewrite rules:

e + x→ x

x+ e→ x

i(x) + x→ e
x+ i(x)→ e

x+ (i(x) + y)→ y

i(x) + (x+ y)→ y

(x+ y) + z → x+ (y + z)

f(e)→ e
g(e)→ e
i(e)→ e

i(i(x))→ x

i(f(x))→ f(i(x))
i(g(x))→ g(i(x))

i(x+ y)→ i(y) + i(x)
f(x+ y)→ f(x) + f(y)
g(x+ y)→ g(x) + g(y)

f(x) + g(y)→ g(y) + f(x)
f(x) + (f(y) + z)→ f(x+ y) + z

g(x) + (g(y) + z)→ g(x+ y) + z

g(x) + (f(y) + z))→ f(y) + (g(x) + z)

The main difficulty is that termination of the complete TRS cannot be shown by standard
reduction orders such as the Knuth–Bendix order (KBO) [11] and the lexicographic path
order (LPO) [8]. Therefore, existing completion tools capable of handling such a system
either employ termination tools or adopts the dependency pair method [1, 5], giving up
direct termination proofs by reduction orders. Instances of the former are [18, 15, 21], and
an instance of the latter is [14].

In this note we present another approach to the problem. The idea is easy. We simply
develop powerful reduction orders to use them for (maximal) completion. To this end, we
reformulate Zantema’s semantic labeling [22] as an order extension method for reduction
orders (in Section 3). In order to perform completion with powerful orders effectively,

© Nao Hirokawa;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 2; pp. 2:1–2:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hirokawa@jaist.ac.jp
https://orcid.org/0000-0002-8499-0501
https://doi.org/10.4230/LIPIcs.FSCD.2021.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Completion and Reduction Orders

we introduce a new variant of maximal completion [10, 14] that integrates the feature of
rule simplification [7, 3], known as inter-reduction (in Section 5). In addition to them, we
show that confluence of terminating systems can be characterized by rewrite strategies (in
Section 4). This results in a new critical pair criterion.

2 Preliminaries

We assume familiarity with the basic notions of term rewriting and completion [2, 17]. Here
we shortly recapitulate terminology and notation that we use in this note.

An abstract rewrite system ARS A is a pair of a set A and a binary relation →A on
the set A. An ARS A = (A,→A) is terminating if there exists no infinite rewrite sequence
a1 →A a2 →A t3 →A · · · . An ARS A is confluent if ∗

A← · →∗
A ⊆ ↓A holds. Here ↓A stands

for the joinability relation →∗
A · ∗

A←. An element a is a normal form of A if there is no
element b with a→A b. The set of all normal forms is denoted by NF(A). When an ARS A
is terminating, an arbitrary element a admits a normal form b such that a→∗

A b. By a↓A we
denote some fixed normal form of a.

Terms are built from a signature F and a countable set V of variables. An equational
system over F is a set of equations. Here we assume that equations are ordered pairs of
terms over F . We write s ≈ t for the equation (s, t). An equation s ≈ t is called a rewrite
rule, denoted by s→ t, if s is a non-variable term and Var(t) ⊆ Var(s) holds. A term rewrite
system (TRS) over F is an equational system consisting of rewrite rules over F . The rewrite
step →R of a TRS R is defined as follows: s→R t if there exist a rule ℓ→ r ∈ R, a position
p of s, and a substitution σ such that s|p = ℓσ and t = s[rσ]p. Any TRS R can be regarded
as the ARS comprising the set of terms and the rewrite relation →R.

A TRS is complete if it is terminating and confluent. A complete TRS R is called
canonical if for every rule ℓ → r ∈ R we have r ∈ NF(R) and ℓ ∈ NF(R′), where R′

consists of R-rules that are not a variant of ℓ → r. We say that R is a TRS for an
equational system E if they are conversion-equivalent, namely, ↔∗

R = ↔∗
E . The aim of

completion procedures is to find a complete (or canonical) TRS for a given equational system.
Let R be a terminating TRS and E a set of equations. Notation E↓R stands for the set
{s↓R ≈ t↓R | s ≈ t ∈ E and s↓R ̸= t↓R}.

Reduction orders are well-founded orders on terms that are closed under contexts and
substitutions. LPO and KBO are instances of reduction orders. We denote them by ≻lpo
and ≻kbo, respectively.

▶ Theorem 1. A TRS R is terminating if R ⊆ ≻ holds for some reduction order ≻.

Confluence of terminating TRSs is characterized by the notion of critical pair.

▶ Definition 2 ([6]). Let R be a TRS. A tuple (ℓ1 → r1, p, ℓ2 → r2)σ is an overlap of R if
ℓ1 → r1 and ℓ2 → r2 are variants of rules in R with Var(ℓ1) ∩ Var(ℓ2) = ∅,
p is a function position of ℓ2,
σ is a most general unifier of ℓ1 and ℓ2|p, and
p ̸= ϵ or ℓ1 → r1 is not a variant of ℓ2 → r2.

Such an overlap induces the critical peak (ℓ2σ)[r1σ]p R← (ℓ2σ)[ℓ1σ]p = ℓ2σ
ϵ−→R r2σ, and

the equation (ℓ2σ)[r1σ]p ≈ r2σ is called a critical pair of R. We write t R←−⋊−→R u for
critical pair (t, u).

▶ Theorem 3 ([11]). A terminating TRS R is confluent if and only if R←−⋊−→R ⊆ ↓R holds.

N. Hirokawa 2:3

Finally, we define terminologies for algebras. An F-algebra M is a pair of a set A and
the set of interpretations fM : An → A for each f ∈ F , where n is the arity of f . Mappings
from V to A are called assignments. Let M = (A, {fM}f∈F) be an F-algebra and α an
assignment from V to A. The valuation [α]M(t) of a term t under α is inductively defined as
follows:

[α]M(t) =
{
α(t) if t is a variable
fM([α]M(t1), . . . , [α]M(tn)) if t = f(t1, . . . , tn)

Suppose that A is non-empty and equipped with a well-founded order >. If every interpreta-
tion fA is weakly monotone, M is said to be a weakly monotone well-founded algebra.

3 Reduction Orders Extended by Semantic Labeling

Semantic labeling introduced by Zantema [22] is a powerful transformation technique for
proving termination of term rewrite systems. In this section we reformulate it as an order
extension for reduction orders. This is technically trivial but it is useful for completion.

Semantic labeling employs a labeling function for terms. Let F be a signature. To each
n-ary function symbol f ∈ F we assign a fresh n-ary function symbol f ♯. The union of F
and {f ♯ | f ∈ F} is denoted by F ♯.

▶ Definition 4. Let F and G be signatures with F ⊆ G ⊆ F ♯, and let M = (A, {fM}f∈G)
be a G-algebra. Given a term t over F and an assignment α : V → A, the labeled term
labM(t, α) is inductively defined as follows:

labM(t, α) =

t if t is a variable
fa(labM(t1, α), . . . , labM(tn, α)) if t = f(t1, . . . , tn) and f ♯ ∈ G
f(labM(t1, α), . . . , labM(tn, α)) if t = f(t1, . . . , tn) and f ♯ /∈ G

where, a = [α]M(f ♯(t1, . . . , tn)). Note that labeled terms are terms over the signature
Flab := F ∪ {fa | f ♯ ∈ G \ F and a ∈ A}.

▶ Example 5. Consider the algebraM = (N, {gM, fM, f♯
M}) with gM(x) = 0, fM(x) = 1, and

f♯
M(x) = x, and the assignment α defined by α(x) = 2. Then, we have labM(f(g(f(x))), α) =

f0(g(f2(x))). Here labels 0 and 2 are determined by [α]M(f♯(g(f(x)))) = 0 and [α]M(f♯(x)) = 2.

We now present an order extension by semantic labeling.

▶ Definition 6. Suppose F ⊆ G ⊆ F ♯. Let (M, >) be a weakly monotone well-founded
G-algebra, and ≻ a strict order on terms over Flab. We define the binary relation ≻M on
terms over F as follows: s ≻M t if for every assignment α the following inequalities hold:

[α]M(s) ⩾ [α]M(t) labM(s, α) ≻ labM(t, α)

Moreover, we define the TRS Dec(M, >) as follows:

Dec(M, >) = {fa(x1, . . . , xn)→ fb(x1, . . . , xn) | f ♯ ∈ G \ F and a > b}

where, x1, . . . , xn are pairwise distinct variables and n is the arity of f .

▶ Theorem 7. Suppose F ⊆ G ⊆ F ♯. Let (M, >) be a weakly monotone well-founded
G-algebra, and ≻ a reduction order on terms over Flab. If Dec(M, >) ⊆ ≻ holds, ≻M is a
reduction order on terms over F .

Proof. Immediate from [22, Theorem 8]. ◀

FSCD 2021

2:4 Completion and Reduction Orders

In the remaining part of the paper, the extended versions of KBO and LPO (≻M
kbo and

≻M
lpo) are referred to as EKBO and ELPO, respectively. We illustrate the use of EKBO by

examples.

▶ Example 8. Consider the one-rule TRS R:

f(f(x))→ f(g(f(x)))

Let M = (N, {gM, fM, f♯
M}) be the weakly monotone well-founded algebra given by the

interpretations gM(x) = 0, fM(x) = 1, and f♯
M(x) = x. The KBO ≻kbo with the weight

function given by

w(g) = 0 w(fa) = 1 for all a ∈ N w(x) = 1 for all variables x

and the well-founded precedence g ≻ · · · ≻ f2 ≻ f1 ≻ f0 satisfies the inclusion:

Dec(M, >) = {fa(x)→ fb(x) | a > b} ⊆ ≻kbo

Thus, the EKBO ≻M
kbo is a reduction order. Let ℓ→ r denote the rule of the TRS. We have the

inequalities [α]M(ℓ) = 1 ⩾ 1 = [α]M(r) and labM(ℓ, α) = f1(fα(x)(x)) ≻kbo f0(g(fα(x)(x)))) =
labM(r, α) for all assignments α. Therefore, ℓ ≻M

kbo r holds. Hence, R is terminating.

▶ Example 9. We show termination of the complete TRS R for CGE2 in the introduc-
tion. Let M = (N, {eM, fM, gM, iM,+M,+♯

M}) be the weakly monotone algebra with the
interpretations:

eM = 0 fM(x) = 0 gM(x) = 1 iM(x) = x x+M y = x+ y x+♯
M y = x

The KBO ≻kbo comprising the weight function

w(i) = 0 w(+a) = 0 for all a ∈ N
w(g) = w(f) = w(e) = 1 w(x) = 1 for all variables x

and the well-founded precedence i ≻ g ≻ · · · ≻ +2 ≻ +1 ≻ +0 ≻ e ≻ f satisfies the inclusion:

Dec(M, >) = {x+a y → x+b y | a > b} ⊆ ≻kbo

Thus, ≻M
kbo is a reduction order. It is easy to verify that [α]M(ℓ) ⩾ [α]M(r) holds for every

rules ℓ→ r ∈ R and assignment α. The inequality labM(ℓ, α) ≻kbo labM(r, α) holds too:

e +0 x ≻kbo x

x+a e ≻kbo x

i(x) +a x ≻kbo e
x+a i(x) ≻kbo e

x+a (i(x) +a y) ≻kbo y

i(x) +a (x+a y) ≻kbo y

(x+a y) +a+b z ≻kbo x+a (y +b z)

f(e) ≻kbo e
g(e) ≻kbo e
i(e) ≻kbo e

i(i(x)) ≻kbo x

i(f(x)) ≻kbo f(i(x))
i(g(x)) ≻kbo g(i(x))

i(x+a y) ≻kbo i(y) +b i(x)
f(x+a y) ≻kbo f(x) +0 f(y)
g(x+a y) ≻kbo g(x) +1 g(y)

f(x) +0 g(y) ≻kbo g(y) +1 f(x)
f(x) +0 (f(y) +0 z) ≻kbo f(x+a y) + z

g(x) +1 (g(y) +1 z) ≻kbo g(x+a y) + z

g(x) +1 (f(y) +0 z)) ≻kbo f(y) +0 (g(x) +1 z)

where, a = α(x) and b = α(y). Therefore, R ⊆ ≻M
kbo holds. Hence, R is terminating.

By using SAT/SMT solvers one can easily implement a program to find suitable parameters
for EKBOs and ELPOs. See [12] for SAT/SMT encoding technique. As a final remark in
the section, ELPO is almost same as the lexicographic version of the semantic path order
(SPO) [8]; see [22] for discussions on the relation between semantic labeling and SPO.

N. Hirokawa 2:5

a

a′

b′ c′

b c

· ·

· ·

I.H.I.H.

I.H.

·

A A

A
∗

A
∗B

A ∗

A
∗

A∗

A
∗

A ∗

A
∗

A∗

A
∗

A
∗

A
∗

Figure 1 Proof of Theorem 11.

4 Confluence via Rewrite Strategies

In this section we present a new confluence criterion based on rewrite strategies.

▶ Definition 10 ([17, Section 9.1]). Let A = (A,→A) be an ARS. We say that an ARS
B = (A,→B) is a rewrite strategy if →B ⊆ →+

A and NF(A) = NF(B).

▶ Theorem 11. A terminating ARS A is confluent if and only if the inclusion B← · →A ⊆ ↓A
holds for some rewrite strategy B of A.

Proof. The “only if”-direction is trivial as we can take B = A. We show the “if”-direction.
Let A be a terminating ARS and B a rewrite strategy for A with B← · →A ⊆ ↓A. Suppose
b ∗

A← a→∗
A c. As A is terminating, →+

A is a well-founded order. So we perform well-founded
induction on a with respect to →+

A to show b ↓A c. If b = a then b→∗
A c. Thus, b ↓A c holds.

Similarly, if a = c then b ∗
A← c. Thus, b ↓A c holds. Otherwise, there exist b′ and c′ such

that b ∗
A← b′

A← a→A c′ →∗
A c holds. Because B is a rewrite strategy, a /∈ NF(A) = NF(B).

Thus, there exists an element a′ with a→B a′. Since a′, b′, and c′ are smaller than a with
respect to →+

A, the corresponding induction hypotheses and the assumption B← · →A ⊆ ↓A
yield the diagram indicated in Figure 1. ◀

Using this characterization, we develop a new critical pair criterion. Let α−→R be a rewrite
strategy for a TRS R. We say that a critical peak t R← s

ϵ−→R u is an α-critical peak if
s

α−→R t. The corresponding critical pair (t, u) is denoted by t R
α←−⋊→R u. For instance, the

innermost strategy i−→R is a rewrite strategy. Innermost critical pairs R
i←−⋊−→R correspond

to prime critical pairs.1

▶ Corollary 12 ([9]). A terminating TRS R is confluent if and only if R
i←−⋊−→R ⊆ ↓R holds.

This result can be refined by adopting the leftmost innermost strategy li−→R. Since li−→R is
a subrelation of i−→R, the inclusion R

li←−⋊−→R ⊆ R
i←−⋊−→R holds in general.

▶ Corollary 13. A terminating TRS R is confluent if and only if R
li←−⋊−→R ⊆ ↓R holds.

Proof. Since R
li←−⋊−→R ⊆ ↓R and R

li←− · →R ⊆ ↓R are equivalent, Theorem 11 applies. ◀

1 This was pointed out by Masahiko Sakai (personal communication).

FSCD 2021

2:6 Completion and Reduction Orders

delete (E ⊎ {s ≈ s}, R) ⊢≻ (E , R)
orient1 (E ⊎ {s ≈ t}, R) ⊢≻ (E , R ∪ {s → t}) if s ≻ t

orient2 (E ⊎ {s ≈ t}, R) ⊢≻ (E , R ∪ {t → s}) if t ≻ s

simplify1 (E ⊎ {s ≈ t}, R) ⊢≻ (E ∪ {u ≈ t}, R) if s →R u

simplify2 (E ⊎ {s ≈ t}, R) ⊢≻ (E ∪ {s ≈ u}, R) if t →R u

collapse (E , R ⊎ {t → s}) ⊢≻ (E ∪ {u ≈ s}, R) if t →R u

compose (E , R ⊎ {s → t}) ⊢≻ (E , R ∪ {s → u}) if t →R u

Figure 2 Inference rules of abstract completion except deduce.

▶ Example 14. Consider the terminating TRS R:

−0→ 0 x+ 0→ x (−x) + x→ 0 (−x) + (−x)→ 0

The TRS admits five overlaps and they form the five critical peaks (a–e):

(−0) + 0

0 + 0 0≈

1 ϵ

(−0) + 0

−0 0≈

ϵ ϵ

(−0) + 0

0 −0≈

ϵ ϵ

(−0) + (−0)

0 + (−0) 0≈

1 ϵ

(−0) + (−0)

(−0) + 0 0≈

2 ϵ

(a) (b) (c) (d) (e)

Out of the five, only (a) and (d) are leftmost innermost critical pairs (R
li←−⋊−→R), and they

are joinable: 0 + 0 ↓R 0 and 0 + (−0) ↓R 0. Hence, confluence of the TRS R is concluded.
Note that R

i←−⋊−→R contains one more critical pair (e).

▶ Example 15. The complete TRS for CGE2 in the introduction admits 115 overlaps. Out of
them, 18 overlaps are discarded by the condition of leftmost innermost critical pairs (li←−⋊−→).
For this rewrite system i←−⋊−→ and li←−⋊−→ coincide.

Unfortunately, the outermost strategy o−→R cannot be used for discarding critical pairs.
The culprit is that R

o←−⋊−→R ⊆ ↓R does not imply R
o←− · →R ⊆ ↓R in general.

▶ Example 16. Consider the terminating TRS R = {f(f(x))→ a}. Since the only critical
peak

f(a) R← f(f(f(x))) ϵ−→R a

is not an outermost critical peak, the inclusion R
o←−⋊−→R = ∅ ⊆ ↓R holds. However, R is

not confluent, as f(a) and a are not joinable.

5 Maximal Completion with Inter-reduction

In this section we present a new variant of maximal completion [10, 14], which incorporates
inter-reduction of standard completion [7]. Figure 2 shows a subset of the inference rules
of abstract completion [3], where the deduce rule is excluded. Inter-reduction corresponds
to collapse and compose. Due to absence of deduce, the derivation relation ⊢≻ fulfils the
termination property. So for any finite equational system E the pair (E ,∅) has a normal
form with respect to ⊢≻. We denote its arbitrary but fixed normal form by ψ(E ,≻).

We now formalize our procedure. Let O be a mapping from an equational system to
a finite set of reduction order, and S a mapping from an equational system E to a set of
equations s ≈ t satisfying s↔∗

E t.

N. Hirokawa 2:7

▶ Definition 17. For an equational system E the partial function φ(E) is defined as follows:

φ(E) =
{
R if E ′ = ∅ and R

li←−⋊−→R ⊆ ↓R for some ≻ ∈ O(E)
φ(E ∪ S(E)) otherwise

where (E ′,R) = ψ(E ,≻).

▶ Theorem 18. If φ(E) is defined then it is a complete presentation of E.

Proof. Immediate from ↔∗
E =↔∗

E′∪R and ↔∗
E =↔∗

E∪S(E). ◀

The procedure φ(E) runs as follows: (1) O(E) generates reduction orders; (2) for each of
them ψ(E ,≻) runs standard completion without the deduce rule; (3) if one of them results
in a confluent TRS R, the procedure returns R; (4) otherwise E is extended by S(E). The
second step ψ is a new ingredient to maximal completion [10, 14, 19].

In order to evaluate effectiveness of the presented framework we implemented it on the
top of the completion tool Maxcomp [10].2 In the implementation S(E) selects 21 smallest
equations from the set:⋃

≻∈O(E)

(
E≻ ∪R≻ ∪ CPli(R≻)↓R≻

)
\ E

where, (E≻,R≻) = ψ(E ,≻) and CPli(R) stands for R
li←−⋊−→R. The definition of O is based

on Sato and Winkler’s heuristic method [14, 19]. The method aims to find canonical
TRSs P for E such that P ⊆ E ∪ E−1. Assume that we want to find k orders from
a designated class RO of reduction orders. We define RO(E , k) as RO(E , 0) = ∅ and
RO(E , k + 1) = RO(E , k) ∪ {(P,≻)}. Here P is a TRS and ≻ is a reduction order in RO
that minimizes the cardinality of P subject to the three constraints: The inclusion

P ⊆ {s→ t ∈ E ∪ E−1 | s ≻ t}

holds, all non-trivial equations in E are P-reducible, and P ̸= P ′ for all (P ′,≻′) ∈ RO(E , k).
Our tool employs O defined by O(E) = {≻ | (P,≻) ∈ RO(E , 2) }.

▶ Example 19. Let RO be the class of EKBOs. Following our procedure, we complete the
next equational system:

1: s(p(x)) ≈ x 2: p(s(x)) ≈ x 3: s(x) + y ≈ s(x+ y)

The run of φ proceeds as follows: φ({1, 2, 3}) = φ({1, 2, 3, 4, 5}) = φ({1, 2, . . . , 8}), where:

4: p(s(x) + y) ≈ x+ y 6: s((p(x) + y) + z) ≈ (x+ y) + z 8: p(x) + y ≈ p(x+ y)
5 : s(p(x) + y) ≈ x+ y 7: p((s(x) + y) + z) ≈ (x+ y) + z

Let E = {1, 2, . . . , 8}. The function RO(E , 2) yields {(P1,≻1), (P2,≻2)}, which pinpoints
canonical TRSs for E :

P1 = { s(p(x))→ x, p(s(x))→ x, s(x) + y → s(x+ y), p(x) + y → p(x+ y) }
P2 = { s(p(x))→ x, p(s(x))→ x, s(x+ y)→ s(x) + y, p(x+ y)→ p(x) + y }

Although they are ignored by O, uniqueness of canonical TRSs [13] ensures that ψ reproduces
the same TRSs: ψ(E ,≻i) = (∅,Pi). Thus, φ(E) returns one of them. Note that the EKBOs
≻1 and ≻2 employ algebras like sM(x) = pM(x) = 0 and x+M y = 1 to avoid unnecessary
orientations for 4–7.

2 https://www.jaist.ac.jp/project/maxcomp/

FSCD 2021

https://www.jaist.ac.jp/project/maxcomp/

2:8 Completion and Reduction Orders

Table 1 Experimental results on 115 equational systems.

LPO ELPO KBO EKBO ELPO + EKBO KBCV MaxcompDP
of completed systems 81 89 82 85 96 86 97

▶ Example 20. Recall the equational system E of CGE2. The procedure φ(E) with the united
class of ELPOs and EKBOs results in the same complete TRS in the introduction. At the
last step φ maintains 120 equations. Sato and Winkler’s method automatically constructs an
EKBO like Example 9 to produce the 20-rule complete TRS R indicated in the introduction
(or a symmetric variant that employs the right-associative rule x+ (y + z)→ (x+ y) + z).

Table 1 summaries experimental results on the standard set of completion problems.3

The tests were single-threaded run on a system equipped with an Intel Core i7-1065G7 CPU
with 1.3 GHz and 32 GB of RAM using a timeout of 600 seconds. We used SMT solver Z34

for computing RO(E , k). See [10, 14] for the employed encoding techniques. Note that k = 2
is used in the implementation.

The first five columns indicate the results of our completion procedure with the classes of
reduction orders LPO, ELPO, KBO, EKBO, and the union of ELPO and EKBO, respectively.
Linear interpretations on natural numbers with 0, 1-coefficients were employed for ELPO
and EKBO. The union of ELPO and EKBO is the most powerful and subsumes all results
of the other classes. The use of ordinary critical pairs did not change any number. For the
comparison sake, we also included in the table the results of completion tools KBCV version
2.1.0.6 [15] and MaxcompDP [14].

6 Conclusion

We have presented an order extension by semantic labeling and maximal completion with
inter-reduction as well as a confluence criterion based on rewrite strategies. Our primary
future work is to evaluate these methods in the setting of (maximal) ordered completion [4, 20].

References
1 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical

Computer Science, 236:133–178, 2000.
2 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
3 L. Bachmair, N. Dershowitz, and J. Hsiang. Orderings for equational proofs. In Proc. 1st

Symposium on Logic in Computer Science, pages 346–357, 1986.
4 L. Bachmair, N. Dershowitz, and D. A. Plaisted. Resolution of Equations in Algebraic

Structures: Completion without Failure, volume 2, pages 1–30. Academic Press, 1989.
5 J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting using dependency

pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.
6 G. Huet. Confluent reductions: Abstract properties and applications to term rewriting systems.

Journal of the ACM, 27(4):797–821, 1980.
7 G. Huet. A complete proof of correctness of the Knuth-Bendix completion algorithm. Journal

of Computer and System Sciences, 21(1):11–21, 1981.
8 S. Kamin and J.J. Lévy. Two generalizations of the recursive path ordering. Technical report,

University of Illinois, 1980. Unpublished manuscript.

3 The problem set and detailed data are available from: http://www.jaist.ac.jp/project/maxcomp/
4 https://github.com/Z3Prover/

http://www.jaist.ac.jp/project/maxcomp/
https://github.com/Z3Prover/

N. Hirokawa 2:9

9 D. Kapur, D.R. Musser, and P. Narendran. Only prime superpositions need be considered in
the Knuth-Bendix completion procedure. Journal of Symbolic Computation, 6(1):19–36, 1988.

10 D. Klein and N. Hirokawa. Maximal completion. In Proc. 22nd International Conference on
Rewriting Techniques and Applications, volume 10 of LIPIcs, pages 71–80, 2011.

11 D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras. In J. Leech, editor,
Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, 1970.

12 A. Koprowski and A. Middeldorp. Predictive labeling with dependency pairs using SAT. In
Proc. 21st International Conference on Automated Deduction, volume 4603 of LNCS (LNAI),
pages 410–425, 2007.

13 Y. Métivier. About the rewriting systems produced by the Knuth-Bendix completion algorithm.
Information Processing Letter, 16(1):31–34, 1983.

14 H. Sato and S. Winkler. Encoding DP techniques and control strategies for maximal completion.
In Proc. 25th International Conference on Automated Deduction, volume 9195 of LNCS, pages
152–162, 2015.

15 T. Sternagel and H. Zankl. KBCV – Knuth–Bendix completion visualizer. In Proc. 6th
International Joint Conference on Automated Reasoning, volume 7364 of LNCS (LNAI), pages
530–536, 2012.

16 A. Stump and B. Löchner. Knuth–Bendix completion of theories of commuting group endo-
morphisms. Information Processing Letter, 98(6):195–198, 2006.

17 Terese. Term Rewriting Systems. Cambridge University Press, 2003.
18 I. Wehrman, A. Stump, and E. M. Westbrook. Slothrop: Knuth-Bendix completion with a

modern termination checker. In Proc. 17th International Conference on Rewriting Techniques
and Applications, volume 4098 of LNCS, pages 287–296, 2006.

19 S. Winkler. Extending maximal completion. In Proc. 4th International Conference on Formal
Structures on Computation and Deduction, volume 131 of LIPIcs, pages 3:1–3:15, 2019.

20 S. Winkler and G. Moser. MædMax: A maximal ordered completion tool. In Proc. 9th
International Joint Conference on Automated Reasoning, volume 10900 of LNCS, pages
472–480, 2018.

21 S. Winkler, H. Sato, M. Kurihara, and A. Middeldorp. Multi-completion with termination
tools (system description). Journal of Automated Reasoning, 50:317–354, 2013.

22 H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta Informaticae,
24:89–105, 1995.

FSCD 2021

Process-As-Formula Interpretation:
A Substructural Multimodal View
Elaine Pimentel1 ! Ï

Department of Mathematics, Federal University of Rio Grande Do Norte, Natal, Brazil

Carlos Olarte ! Ï

School of Science and Technology, Federal University of Rio Grande Do Norte, Natal, Brazil

Vivek Nigam ! Ï

Huawei Munich Research Center, Germany

Abstract
In this survey, we show how the processes-as-formulas interpretation, where computations and
proof-search are strongly connected, can be used to specify different concurrent behaviors as logical
theories. The proposed interpretation is parametric and modular, and it faithfully captures behaviors
such as: Linear and spatial computations, epistemic state of agents, and preferences in concurrent
systems. The key for this modularity is the incorporation of multimodalities in a resource aware logic,
together with the ability of quantifying on such modalities. We achieve tight adequacy theorems by
relying on a focusing discipline that allows for controlling the proof search process.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Process calculi

Keywords and phrases Linear logic, proof theory, process calculi

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.3

Category Invited Talk

Funding Elaine Pimentel: Partially funded by the project MOSAIC (MSCA RISE 101007627).
Carlos Olarte: Partially funded by CNPq.

1 Introduction

Computational logic research has produced deep and fruitful cross-fertilizations between
programming languages and proof theory. Arguably, the most well-known one is the Curry-
Howard correspondence (also known as types-as-formulas) where (functional) programs
correspond to formal proofs and their execution to cut-elimination. A second type of
correspondence, processes-as-formulas (also known as computation-as-proof-search), was
initiated by Miller [21] where, instead, (logic) programs correspond to formulas and their
execution to proof search. These two foundational correspondences have been exploited to
propose new programming language paradigms as well as greatly extend the expressiveness
of existing ones.

When processes or programs are specified as formulas, one has to be careful with the level
of adequacy obtained. In particular, it is expected that logical steps in derivations correspond
to steps of computations in programs. However, different from computational systems, where
one step of computation is rigidly determined by the operation semantics, one step of logical
reasoning depends strongly on the logical framework chosen. Also, the logic should capture,
in a natural way, the behavior of programs. For instance, intuitionistic logic (IL) is not
adequate to specify systems that may consume information (substructural behavior), execute

1 Corresponding author.

© Elaine Pimentel, Carlos Olarte, and Vivek Nigam;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 3; pp. 3:1–3:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:elaine.pimentel@gmail.com
https://sites.google.com/site/elainepimentel/
https://orcid.org/0000-0002-7113-0801
mailto:carlos.olarte@gmail.com
https://sites.google.com/site/carlosolarte/
https://orcid.org/0000-0002-7264-7773
mailto:vivek.nigam@gmail.com
http://nigam.info/
https://orcid.org/0000-0003-4089-1218
https://doi.org/10.4230/LIPIcs.FSCD.2021.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Process-As-Formula Interpretation: A Substructural Multimodal View

processes in different locations (spatial modalities) or time instances (timed reasoning), or
when the information shared by processes is subject to quantitative information (such as
preferences or costs).

Hence the need for a more expressive logic (such as multimodal and resource aware logics)
and an appropriate notion of normal proofs as the logical counterpart of the processes-as-
formulas correspondence. This paper surveys one of such choices: focused linear logic with
subexponentials (SELLF) [28]. We present different mechanisms previously explored by the
authors to both: extend SELLF with quantification over subexponentials; and give adequate
characterizations of existing concurrent languages. This fruitful collaboration between the
two areas has been useful to provide reasoning techniques for process calculi with the motto
reachability as entailment, and also to propose declarative extensions of concurrent languages
with solid logical grounds.

The focusing discipline [1] determines an alternating mechanism on proofs (between
focused and unfocused phases), which controls the non-determinism during proof search,
producing normal form proofs. Such normalization of proofs leads to a practical approach to
identify logical steps: a focused step is a block determined by a focused phase followed by an
unfocused one, in a (bottom-up) focused proof.

In Section 2 we recall the proof theory of focused intuitionistic linear logic (ILLF), which will
be the base logical language for the processes-as-formulas correspondences addressed in this
paper. Section 3 then introduces the base computational counterpart of the correspondence,
Concurrent Constraint Programming (CCP) [42], a declarative model for concurrency. We
show how to adequately capture the behavior of CCP processes in ILLF.

The level of adequacy attained in such interpretations will be important in order to justify
the choice of the underlying logic: the closer the two systems are, the easier is to prove the
correspondence. Also, a strong adequacy allows for the use of the logical system for proving
properties of the computational system, or reconstructing counter-examples from failing
derivations. Following [29], we classify the level of adequacy into two classes:

FCP (full completeness of proofs) claims that processes outputting an observable are in
1-1 correspondence with the corresponding completed proofs.
FCD (full completeness of derivations) claims that one step of computation should
correspond to one step of logical reasoning.

In the first case, even though the outputs of a program are characterized by proofs in the
underlying logic, it may be the case that there are steps in the logical reasoning that do not
correspond to computational steps and vice-versa. In the second case, computational and
(in our case, focused) logical steps are in one-to-one correspondence. We present a careful
discussion about these different levels of adequacy regarding CCP and ILLF in Section 3.2,
and indicate throughout the text, in each result, its level of adequacy.

Even though (focused, intuitionistic) linear logic is suitable for the encoding of (vanilla)
CCP, the situation changes when modalities are added to concurrent systems: For that,
linear logic subexponentials are needed. In Section 4 we present SELLF, which shares with
ILL all its connectives except the exponential: instead of having a single !, it may contain as
many subexponentials as one needs (written !a). Such labels are organized in a pre-order,
and different organizations give rise to different CCP flavors. Section 5 is then devoted
to show how to add such structures parametrically to SELLF, obtaining strongly adequate
specifications. In this way, processes may be executed and add/query constraints in different
locations, where the meaning of such locations may vary, for example: Spaces of computation,
the epistemic state of agents, time units, levels of preferences, etc. Modularity is guaranteed
by the fact that the underline interpretation is the same: Locations in CCP become labels in
SELLF. Finally, Section 6 concludes the paper.

E. Pimentel, C. Olarte, and V. Nigam 3:3

2 Focused intuitionistic linear logic

Linear logic (LL) is a substructural logic proposed by Girard [13] as a refinement of classical
and intuitionistic logics, joining the dualities of the former with many of the constructive
properties of the latter.

In this paper, we will concentrate in the intuitionistic version of linear logic (ILL) [13],
with formulas built from the following grammar

F, G ::= A | 1 | 0 | ⊤ | F ⊗ G | F & G | F ⊕ G | F −◦ G | ! F | ∀x.F | ∃x.F

Here, A denotes an atomic formula; −◦, ⊗, 1 represent the multiplicative implication,
conjunction and true, respectively; &, ⊤, ⊕, 0 are the additive conjunction, true, disjunction,
and false, respectively; ! is the exponential; and ∃, ∀ represent the existential and universal
quantifiers, respectively.2

These connectives can be separated into two classes, the negative: ⊸, &, ⊤, ∀ and the
positive: ⊗, ⊕, !, 1, 0, ∃. The polarity of non-atomic formulas is inherited from its outermost
connective (e.g., F ⊗ G is a positive formula) and any bias can be assigned to atomic
formulas.3 This partition induces an alternating mechanism on proofs, known as focusing,
which aims at reducing the non-determinism during proof search. In this sense, focused
proofs can be interpreted as normal form proofs.

The focusing discipline [1] is determined by the alternation of focused and unfocused phases
in the proof construction. In the unfocused phase, inference rules can be applied eagerly
and no backtracking is necessary; in the focused phase, on the other hand, either context
restrictions apply, or choices within inference rules can lead to failures for which one may need
to backtrack. These phases are totally determined by the polarities of formulas: provability
is preserved when applying right/left rules for negative/positive formulas respectively, but
not necessarily in other cases.

The focused intuitionistic linear logic system (ILLF) is depicted in Figure 1.
There are three contexts on the left side of ILLF sequents: the set Θ denotes the unbounded

context, containing only formulas with a banged scope; Γ is a linear context containing only
negative or atomic formulas; and ∆ is the general linear context. Observe that formulas
in the context Θ behave as in classical logic: they can be weakened (erased) or contracted
(duplicated). Formulas in the other contexts are linear, and are consumed when used.

The phase distinction is reflected in the design of sequents in ILLF: the presence of “⇑”
indicates unfocused sequents, while “⇓” marks the formula under focus in focused sequents.
Sequents in ILLF have one of the following shapes:

i. Θ; Γ ⇑ ∆ ⊢ F ⇑ is an unfocused sequent.
ii. Θ; Γ ⇑ · ⊢ · ⇑ F is an unfocused sequent representing the end of an unfocused phase.
iii. Θ; Γ ⊢ F ⇓ is a sequent focused on the right.
iv. Θ; Γ ⇓ F ⊢ R is a sequent focused on the left.

The swing between focused and unfocused phases is described below.
At the beginning of an unfocused phase, sequents have the shape (i) and: non-atomic
negative formulas appearing in the right context, and positive non-atomic formulas
appearing in ∆ are eagerly introduced; atomic/negative left formulas are stored in Γ
using the store rule Sl; atomic/positive right formulas are stored in the outermost right
context using the store rule Sr.
When this phase ends, sequents have the form (ii).

2 Observe that the multiplicative false ⊥ could be added to ILL’s syntax. However, this would break the
nice feature of having exactly one formula on succedent of sequents.

3 Although the bias assigned to atoms does not interfere with provability, it changes considerably the
shape of proofs (see, e.g., [19]).

FSCD 2021

3:4 Process-As-Formula Interpretation: A Substructural Multimodal View

Unfocused introduction rules

Θ; Γ ⇑ F, ∆ ⊢ G ⇑
Θ; Γ ⇑ ∆ ⊢ F −◦ G ⇑

−◦r
Θ; Γ ⇑ F, G, ∆ ⊢ R

Θ; Γ ⇑ F ⊗ G, ∆ ⊢ R
⊗l

F, Θ; Γ ⇑ ∆ ⊢ R
Θ; Γ ⇑ ! F, ∆ ⊢ R !l

Θ; Γ ⇑ ∆ ⊢ F ⇑ Θ; Γ ⇑ ∆ ⊢ G ⇑
Θ; Γ ⇑ ∆ ⊢ F & G ⇑ &r

Θ; Γ ⇑ F, ∆ ⊢ R Θ; Γ ⇑ G, ∆ ⊢ R
Θ; Γ ⇑ F ⊕ G, ∆ ⊢ R

⊕l

Θ; Γ ⇑ ∆ ⊢ F [y/x] ⇑
Θ; Γ ⇑ ∆ ⊢ ∀x.F ⇑ ∀r

Θ; Γ ⇑ F [y/x], ∆ ⊢ R
Θ; Γ ⇑ ∃x.F, ∆ ⊢ R ∃l

Θ; Γ ⇑ ∆ ⊢ ⊤ ⇑ ⊤r
Θ; Γ ⇑ ∆ ⊢ R

Θ; Γ ⇑ 1, ∆ ⊢ R 1l Θ; Γ ⇑ 0, ∆ ⊢ R 0l

Focused introduction rules

Θ; Γ1 ⊢ F ⇓ Θ; Γ2 ⇓ G ⊢ R

Θ; Γ1, Γ2 ⇓ F −◦ G ⊢ R
−◦l

Θ; Γ ⊢ Fi ⇓
Θ; Γ ⊢ F1 ⊕ F2 ⇓

⊕ri

Θ; Γ ⇓ Fi ⊢ R

Θ; Γ ⇓ F1 & F2 ⊢ R
&li

Θ; Γ1 ⊢ F ⇓ Θ; Γ2 ⊢ G ⇓
Θ; Γ1, Γ2 ⊢ F ⊗ G ⇓ ⊗r

Θ; · ⇑ · ⊢ F ⇑
Θ; · ⊢ ! F ⇓ !r

Θ; Γ ⇓ F [t/x] ⊢ R

Θ; Γ ⇓ ∀x.F ⊢ R
∀l

Θ; Γ ⊢ F [t/x] ⇓
Θ; Γ ⊢ ∃x.F ⇓ ∃r Θ; · ⊢ 1 ⇓ 1r

Structural and identity rules

Θ; Γ ⇓ N ⊢ R

Θ; Γ, N ⇑ · ⊢ · ⇑ R
Dl

Θ, F ; Γ ⇓ F ⊢ R

Θ, F ; Γ ⇑ · ⊢ · ⇑ R
Du

Θ; Γ ⊢ P ⇓
Θ; Γ ⇑ · ⊢ · ⇑ P

Dr

Θ; Γ ⇑ P ⊢ · ⇑ R

Θ; Γ ⇓ P ⊢ R
Rl

Θ; Γ ⇑ · ⊢ N ⇑
Θ; Γ ⊢ N ⇓ Rr

Θ; C, Γ ⇑ ∆ ⊢ R
Θ; Γ ⇑ C, ∆ ⊢ R Sl

Θ; Γ ⇑ · ⊢ · ⇑ D

Θ; Γ ⇑ · ⊢ D ⇑ Sr

Θ; A ⊢ A ⇓ I Θ, A; · ⊢ A ⇓ Ic

Here, P is positive, N is negative, C is a negative formula or positive atom, D a positive
formula or negative atom, and A is a positive atom. Other formulas are arbitrary. R denotes
∆1 ⇑ ∆2 where the union of ∆1 and ∆2 contains exactly one formula. In the rules ∀r and ∃l

the eigenvariable y does not occur free in any formula of the conclusion.

Figure 1 The focused intuitionistic linear sequent calculus ILLF.

The focused phase begins by choosing, via one of the decide rules Dl, Du or Dr, a formula
to be focused on, enabling sequents of the forms (iii) or (iv). Rules are then applied on
the focused formula until either: an axiom is reached (in which case the proof ends); the
right promotion rule !r is applied; or a negative formula on the right or a positive formula
on the left is derived. At this point, focusing will be lost, and the proof switches to the
unfocused phase again.

We will call a focused step a focused phase followed by an unfocused one, in a (bottom-up)
focused proof.

E. Pimentel, C. Olarte, and V. Nigam 3:5

Observe that the design of the axioms I and Ic in ILLF induces a positive polarity to atoms.
As it will become clear in Section 3.2, this is necessary for guaranteeing the higher level of
adequacy on encodings.

Sequents in ILL will be denoted by Γ ⊢ A. Rules for ILL are the same as in ILLF, only not
considering focusing, and the structural rules being substituted by the usual bang left rules:
dereliction (D), weakening (W) and contraction (C):

Γ, F ⊢ G

Γ, ! F ⊢ G
D Γ ⊢ G

Γ, ! F ⊢ G
W

Γ, ! F, ! F ⊢ G

Γ, ! F ⊢ G
C

Note that, in ILLF, dereliction is embedded into the bang left (!l) and unbounded decide
(Du) rules.

3 Concurrent Constraint Processes as LL Formulas

In this section we shall see how the process-as-formula interpretation can be used for both,
providing verification techniques for a process calculus and characterizing different semantics
for it in a uniform way. We start by describing the model of computation of Concurrent
Constraint Programming (CCP) to later show that ILLF provides a suitable framework for
interpreting CCP processes.

Concurrent Constraint Programming (CCP) [41, 42, 43, 37] is a model for concurrency
based upon the shared-variables communication model. CCP traces its origins back to the
ideas of computing with constraints [25], Concurrent Logic Programming [45] and Constraint
Logic Programming (CLP) [15]. Different from other models for concurrency, based on
point-to-point communication as in CCS [23], the π-calculus [24], CSP [14] among several
others, the CCP model focuses on the concept of partial information, traditionally referred
to as constraints. Under this paradigm, the conception of store as valuation in the von
Neumann model is replaced by the notion of store as constraint, and processes are seen as
information transducers.

The model of concurrency in CCP is quite simple: concurrent agents (or processes)
interact with each other and their environment by posting and asking information (i.e.,
constraints) in a medium, a so-called store. As we shall see, CCP processes can be seen as
both computing processes (behavioral style) and as formulas in logic (logical declarative style).
In particular, we shall see a strong connection between ILL and CCP originally developed in
[11] and later refined in [34].

3.1 Constraint system and processes
We start by defining the language of processes and constraints. The type of constraints
processes may act on is not fixed but parametric in a constraint system. Such systems can be
formalized as Scott information systems [44] as in [40], or they can be built upon a suitable
fragment of logic e.g. as in [46, 11, 26]. Here we shall follow the second approach. More
precisely, a constraint system is a tuple C = (C, |=∆) where the set of constraints C is built
from a first-order signature and the grammar

F ::= true | A | F ∧ F | ∃x.F

where A is an atomic formula. We shall use c, c′, d, d′, etc, to denote elements in C. The
entailment relation |=∆ is parametric on a set of non-logical axioms ∆ of the form ∀x.[c ⊃ c′]
where all free variables in c and c′ are in x. We say that d entails c, written as d |=∆ c, iff

FSCD 2021

3:6 Process-As-Formula Interpretation: A Substructural Multimodal View

the sequent ∆, d ⊢ c is provable in intuitionistic logic (IL). Intuitively, the entailment relation
specifies inter-dependencies between constraints: c |=∆ d means that the information d can
be deduced from the information represented by c, e.g. x > 42 |=∆ x > 0.

The constraint store, shared by processes, is a conjunction of constraints and true denotes
the empty store. The existential quantifier is used to specify variable hiding.

Processes are built from constraint as follows:

P, Q ::= tell(c) |
∑
i∈I

ask ci then Pi | P ∥ Q | (local x) P | p(x)

A process tell(c) adds the constraint c to the store, thus incrementing the information
in it. The guarded choice

∑
i∈I

ask ci then Pi, where I is a finite set of indexes, chooses

non-deterministically one of the processes Pj whose guard cj can be deduced from the
current store. If none of the guards can be deduced, this process remains blocked until more
information is added. Hence, ask agents implement a synchronization mechanism based on
entailment of constraints. The interleaved parallel composition of P and Q is denoted as
P ∥ Q. The agent (local x) P behaves as P and binds the variable x to be local to it. Finally,
given a possibly recursive process definition p(y) ∆= P , where all free variables of P are in
the set of pairwise distinct variables y, the process p(x) evolves into P [x/y].

The operational semantics of CCP is given by the transition relation γ −→ γ′ satisfying
the rules in Figure 2. Here we follow the semantics in [11] and a configuration γ is a triple of
the form (X; Γ; c), where c is a constraint specifying the store, Γ is a multiset of processes,
and X is the set of hidden (local) variables of c and Γ. The multiset Γ = P1, P2, . . . , Pn

represents the process P1 ∥ P2... ∥ Pn. We shall indistinguishably use both notations to
denote parallel composition of processes.

Processes are quotiented by a structural congruence relation ∼= satisfying: (1) P ∼= Q if
they differ only by a renaming of bound variables (alpha-conversion); (2) P ∥ Q ∼= Q ∥ P ;
and (3) P ∥ (Q ∥ R) ∼= (P ∥ Q) ∥ R. Furthermore, Γ = {P1, ..., Pn} ∼= {P ′

1, ..., P ′
n} = Γ′ iff

Pi
∼= P ′

i for all 1 ≤ i ≤ n. Finally, (X; Γ; c) ∼= (X ′; Γ′; c′) iff X = X ′, Γ ∼= Γ′ and c ≡∆ c′

(i.e., c |=∆ c′ and c′ |=∆ c).
Rules RT and RC are self-explanatory. Rule REQUIV says that structurally congruent

processes have the same transitions. Rule RL adds the variable x to the set of variables X

when it is fresh (otherwise, Rule REQUIV can be used to apply alpha conversion). The rule
RA says that the process

∑
i∈I

ask ci then Pi evolves into Pj if the current store d entails cj .

▶ Definition 1 (Observables). Let −→∗ be the reflexive and transitive closure of −→. If
(X; Γ; d) −→∗ (X ′; Γ′; d′) and ∃X ′.d′ |=∆ c we write (X; Γ; d) ⇓c. If X = ∅ and d = true we
simply write Γ ⇓c.

Intuitively, if P is a process then P ⇓c says that P outputs c under input true.

3.2 Interpretation and adequacy
We shall present different encodings for processes (P[[·]]) and constraints (C[[·]]) as formulas
in ILL. Our goal is to show that the outputs of a process P can be characterized by
proofs in ILLF. More precisely, we shall show that P outputs c iff a sequent of the form
P [[Ψ]], C[[∆]] : ·⇑P [[P]] ⊢ C[[c]] ⊗⊤⇑ is provable in ILLF, where Ψ is a set of process definitions
and ∆ is the set of non-logical axioms in the constraint system. Note the use of ⊤: we shall
erase the formulas corresponding to processes that were not executed. Below, we will see
how to tune the process interpretation to get the highest level of adequacy possible.

E. Pimentel, C. Olarte, and V. Nigam 3:7

(X; Γ; c) ∼= (X ′; Γ′; c′) −→ (Y ′; ∆′; d′) ∼= (Y ; ∆; d)
(X; Γ; c) −→ (Y ; ∆; d)

REQUIV

(X; tell(c), Γ; d) −→ (X; Γ; c ∧ d) RT
d |=∆ cj

⟨X,
∑
i∈I

ask ci then Pi, Γ, d⟩ −→ ⟨X, Pj , Γ, d⟩ RA

(X; (local x) P, Γ; d) −→ (X ∪ {x}; P, Γ; d) RL
p(x) ∆= P

(X; p(y), Γ; d) −→ (X; P [y/x], Γ; d) RC

Figure 2 Operational semantics of CCP. In RL, x ̸∈ X and it does not occur free in Γ nor in d.

▶ Definition 2. Constraints and axioms in CCP are encoded in ILL as follows:

C[[true]] = 1 C[[A]] = ! A C[[F1 ∧ F2]] = C[[F1]] ⊗ C[[F2]]
C[[∃x.F]] = ∃x.C[[F]] C[[∀x.(c ⊃ d)]] = ∀x.(C[[c]] −◦ C[[d]])

For the processes and process definition, the interpretation is the following:

P[[tell(c)]]]] = C[[c]] P[[P ∥ Q]] = P[[P]] ⊗ P [[Q]]
P[[

∑
i∈I

ask ci then Pi]] = &
i∈I

(C[[ci]] ⊸ P[[Pi]]) P[[(local x) P]] = ∃x.P[[P]]

P[[p(y)]] = p(y) P[[p(x) ∆= P]] = ∀x.(p(x) ⊸ P[[P]])

Since the store in CCP is monotonic, i.e., constraints cannot be removed, we mark atomic
formulas with a bang (to be stored in the unbounded context). Parallel composition is
identified with multiplicative conjunction and the act of choosing one of the branches in a
non-deterministic choice is specified with additive conjunction. The action of querying the
store in ask agents is specified with a linear implication. Similarly, the unfolding of a process
definition is guarded by the atomic proposition p(y⃗) (denoting the call).

If Γ is a set of constraints, or axioms of the form ∀x.[c ⊃ c′], we write C[[Γ]] to denote the
set {C[[d]] | d ∈ Γ}. A similar convention applies for P[[·]]. Moreover, !Γ = {!F | F ∈ Γ}.

▶ Theorem 3 (Adequacy – ILL [11]). Let (C, |=∆) be a constraint system, P be a process and
Ψ be a set of process definitions. Then, for any constraint c, P ⇓c iff there is a proof of the
sequent ! P[[Ψ]], ! C[[∆]], P[[P]] ⊢ C[[c]] ⊗ ⊤ in ILL. The level of adequacy is FCP.

Without focusing (as originally done in [11]), the proof of this theorem is not straightfor-
ward and a low level of adequacy is obtained: there may be logical steps not corresponding
to any operational step and vice-versa. Let us focus first in the case where logical steps do
not correspond to the operational ones. We will come back to the other direction later.

Consider the two derivations bellow.
π1

Γ, c1 −◦ F1 ⊢ d

Γ, (c1 −◦ F1) & (c2 −◦ F2) ⊢ d
&l

π2
Γ1, F1 ⊢ d

π3
Γ2 ⊢ c1

Γ1, Γ2, c1 ⊸ F1 ⊢ d
⊸l (1)

In the first, one of the branches is chosen but, in π1, it could be the case that c1 is never
proved (and F1 is never added to the context). This is not the intended meaning in Rule RA,
that first checks the entailment of cj to immediately add the corresponding process Pj to the
context. In the second example, π3 could contain sub-derivations that have nothing to do
with the proof of the guard c1. For instance, process definitions could be unfolded or other
processes could be executed. This would correspond, operationally, to the act of triggering
an ask process ask c then P with no guarantee that its guard c will be derivable only from
the set of non-logical axioms ∆ and the current store. For instance, it may be the case, in
π3, that c1 will be later produced by a process Q such that P[[Q]] ∈ Γ2. This is clearly not
allowed by the operational semantics.

FSCD 2021

3:8 Process-As-Formula Interpretation: A Substructural Multimodal View

Let’s now put focusing into play. An inspection in the encoding reveals that the fragment
of ILL used is restricted to the following grammar:

G := 1 | ! A | G ⊗ G | ∃x.G Guards and Goals
P := G | P ⊗ P | P & P | G ⊸ P | ∃x.P | p(t) Processes
PD := ∀x.p(x) ⊸ P. Process Definitions

where A is an atomic formula (constraint) in C and p (a process identifier) is also atomic but
p /∈ C. In any derivation, the only formulas that can appear on the right are guards/goals G

and heads p. The other formulas, including processes, process definitions and axioms, appear
on the left. Hence, only instances of the unfocused rules 1l, ⊗l, ∃l, !l, ⊤r and the focused rules
⊗r,⊸l, ∃r, !r, &l, ∀l are used.

Observe that formulas G, p are strictly positive. Thus, focusing on such a formula on
the right either forces finishing the proof, or the formula will be entirely decomposed into
formulas of the shape 1 or ! A. This means that a proof of A can use only the theory ∆, the
encoding of constraints and process definitions (since all of them are unbounded). In fact, we
can show that the encoding of process definitions can be weakened (since calls of the form
p(y⃗) are necessarily stored in the linear context). Hence, when a goal is focused on, it must
be completely decomposed, and the atomic constraints must be proved only from the current
store and the non-logical axioms.

Formulas occurring on the left of sequents can be positive or negative. Positive formulas on
the left (that cannot be focused on) come from the interpretation of tell, parallel composition
and locality that do not need any interaction with the context. Note, for instance, that
the formula ∃x. ! G1 ⊗ ! G2, resulting from the encoding of tell(∃x.G1 ∧ G2), can be entirely
decomposed in an unfocused phase using the rules ⊗l, ∃l and !l. On the other hand, negative
formulas on the left (that can be chosen for focusing) come from the encodings of guarded
choices and process definitions. They do need to interact with the environment, either for
choosing a path to follow (in non-deterministic choices), or waiting for a guard to be available
(in asks or procedure calls).

Due to completeness of focusing [1], Theorem 3 trivially holds if we replace in it ILL with
ILLF. But using directly the focused system, the proof of the theorem becomes simpler. For
instance, it is a routine exercise to show that non-logical axioms permute up, and it is always
possible to apply them at the top of proofs. Moreover, situations as the ones described
after the derivations in Equation (1) are not longer valid in the focused system: focusing
over c1 −◦ F1 implies immediately proving c1 (from the logical axioms and accumulated
constraints), thus reflecting exactly the operational semantics of CCP.

▶ Example 4. Consider a community coffee machine, which is triggered by the insertion
of a coin, always available at the side of the machine. When the user inserts the coin, the
machine delivers a coffee and returns the coin, which will be available for the next user. This
machine can be specified as the CCP process

P = tell(coin) ∥ m() where m() ∆= ask coin then (tell(coffee) ∥ m())

Hence, P ⇓c, where c = coin ∧ coffee:

⟨∅, P, true⟩ −→ ⟨∅, m(), coin⟩ −→ ⟨∅, tell(coffee) ∥ m(), coin⟩ −→ ⟨∅, m(), coin ∧ coffee⟩

On the other hand, the sequent P[[P]] ⊢ C[[c]] ⊗ ⊤ has the following focused proof

E. Pimentel, C. Olarte, and V. Nigam 3:9

coin, P[[m()]]; · ⊢ ! coin ⇓
!r, Sr, Dr, I

coffee, coin, P[[m()]]; · ⊢ ! coffee ⇓
!r, Sr, Dr, I

coffee, coin, P[[m()]]; · ⊢ ! coin ⇓
!r, Sr, Dr, I

coffee, coin, P[[m()]]; m() ⊢ (! coffee ⊗ ! coin) ⊗ ⊤ ⇓
⊗r, ⊤r

coin, P[[m()]]; · ⇓ ! coffee ⊗ m() ⊢ (! coffee ⊗ ! coin) ⊗ ⊤
Rl, ⊗l, !l, Dr

coin, P[[m()]]; m() ⇓ m() −◦ (! coin −◦ (! coffee ⊗ m())) ⊢ (! coffee ⊗ ! coin) ⊗ ⊤
−◦l, I

coin, P[[m()]]; m() ⇑ · ⊢ · ⇑ (! coffee ⊗ ! coin) ⊗ ⊤ Dl

P[[m()]]; · ⇑ ! coin ⊗ m() ⊢ · ⇑ (! coffee ⊗ ! coin) ⊗ ⊤
⊗l, !l, Sl

Bottom up, we introduce the tell process in the unfocused phase. Then, after focusing on
the encoding of the ask agents, the guard coin is deduced (left-most derivation), and the
token coin is stored into the classical context, thus reflecting the final configuration in the
execution of the process.

Unfortunately, even with focusing, the adequacy level continues to be FCP. In fact, the
focusing discipline causes that some CCP computations do not have a corresponding proof
in ILLF. To see that, consider the following process

P = tell(a ∧ b) ∥ ask a then ask b then tell(ok) ∥
ask b then ask a then tell(ok′)

We denote the two external ask agents in P as Q1 and Q2 respectively. The operational
semantics dictates that there are three possible transitions leading to the final store d =
a ∧ b ∧ ok ∧ ok′. All such transitions start by executing tell(a ∧ b):

Trace 1: ⟨∅, P, true⟩ −→ ⟨∅, Q1 ∥ Q2, a ∧ b⟩ −→ ⟨∅, ask b then tell(ok) ∥ Q2, a ∧ b⟩
−→ ⟨∅, tell(ok) ∥ Q2, a ∧ b⟩ −→ ⟨∅, Q2, a ∧ b ∧ ok⟩ −→∗ ⟨∅, ·, d⟩ ̸−→

Trace 2: ⟨∅, P, true⟩ −→ ⟨∅, Q1 ∥ Q2, a ∧ b⟩ −→ ⟨∅, Q1 ∥ ask a then tell(ok′), a ∧ b⟩
−→ ⟨∅, Q1 ∥ tell(ok′), a ∧ b⟩ −→ ⟨∅, Q1, a ∧ b ∧ ok′⟩ −→∗ ⟨∅, ·, d⟩ ̸−→

Trace 3: ⟨∅; P ; true⟩ −→ ⟨∅; Q1 ∥ Q2; a ∧ b⟩ −→ ⟨∅; ask b then tell(ok) ∥ Q2; a ∧ b⟩
−→ ⟨∅, ask b then tell(ok) ∥ ask a then tell(ok′), a ∧ b⟩
−→ ⟨∅, tell(ok) ∥ ask a then tell(ok′), a ∧ b⟩ −→ ⟨∅, tell(ok) ∥ tell(ok′), a ∧ b⟩
−→∗ ⟨∅, ·, d⟩

Trace 1 and Trace 2 correspond exactly to a different focused proof of the sequent
P[[P]] ⊢ C[[d]]: one focusing first on P[[Q1]] and the other focusing first on P[[Q2]]. On the
other hand, Trace 3 corresponds to an interleaved execution of Q1 and Q2. We note that
such a trace does not have any correspondent derivation in ILLF. In fact, since ⊸ is a
negative connective, focusing on C[[Q1]] will decompose the formula !a ⊸!b ⊸!ok producing
the focused formula !b ⊸!ok, which is still negative. Hence focusing cannot be lost and the
inner ask has to be triggered.

This example shows something interesting: although the formulas F ⊗ G −◦ H and
F −◦ G −◦ H are logically equivalent, they are operationally different when concurrent
computations are considered. In fact, if we allow processes to consume constraints as the
linear version of CCP in [11], an interleaving execution as the one in Trace 3 may not output
the constraint ok, since the two agents are competing for the same resources.

In order to recover interleaving executions as the one in Trace 3, logical delays [28] can
be introduced.

▶ Definition 5. The positive and negative delay operators δ+(·), δ−(·) are defined as δ+(F) =
F ⊗ 1 and δ−(F) = 1 −◦ F respectively.

Observe that δ+(F) ≡ δ−(F) ≡ F , hence delays can be used in order to replace a formula
with a provably equivalent formula of a given polarity.

FSCD 2021

3:10 Process-As-Formula Interpretation: A Substructural Multimodal View

We define the encoding P[[·]]+ as P[[·]] but replacing the following cases:

P[[
∑
i∈I

ask ci then Pi]]+ = &
i∈I

(C[[ci]] ⊸ δ+(P[[Pi]]+))

P[[p(x) ∆= P]]+ = ∀x.p(x) ⊸ δ+(P[[P]]+)

The use of delays forces the focused phase to end, e.g., once the guard of the ask agent is
entailed. In this encoding, we can prove a stronger adequacy theorem.

▶ Theorem 6 (Strong adequacy [34]). Let (C, |=∆) be a constraint system, P be a process
and Ψ be a set of process definitions. Then, for any constraint c,

P ⇓c iff there is a proof of the sequent P[[Ψ]]+, C[[∆]]; · ⇑ P [[P]]+ ⊢ · ⇑ C[[c]] ⊗ ⊤

in ILLF. The adequacy level is FCD.

Now derivations in logic have a one-to-one correspondence with traces of a computation
in a CCP program.

It is possible to modify the encoding to introduce negative actions (tell, parallel and
local) during a focused phase (thus counting them as a focused step). For that, it suffices to
introduce, in the encoding, negative delays δ−(F). By using a multi-focusing systems [38],
maximal parallelism semantics [9] - where all the enabled agents must all proceed in one
step - can be also captured. Finally, if recursive definitions are interpreted as fixed points,
more interesting properties of infinite computations can be specified and proved. See [34] for
further details.

4 LL with multi-modalities

A careful analysis of the rules for the exponential ! in Figure 1 reveals that this connective
has a differentiated behavior w.r.t. the other ones. In fact, ! is the only operator having a
positive/negative behavior: the application of the right rule (!r) immediately breaks focusing.
Also, this is the only rule in ILLF that is context dependent, in the sense that it demands the
linear context Γ to be empty in order to be applied.

This distinguished character of the exponential in linear logic is akin to the behavior
found in modal connectives. In particular, the connective ! is not canonical, in the sense
that, if we label ! with different colors, say b (for blue – !b) and r (for red – !r), but with
the same introduction rules, then it is not possible to prove, in the resulting proof system,
the equivalence !rA ≡ !bA for an arbitrary formula A, where H ≡ G denotes the formula
(H ⊸ G) & (G ⊸ H). Not surprisingly, this exercise would have a different outcome for
any other linear logic connective. For instance, if we construct a proof system with two
labeled connectives, e.g., ⊗r and ⊗b, together with their introduction rules, then it would be
possible to prove A ⊗b B ≡ A ⊗r B for any A and B. This opens the possibility of defining
new connectives: the colored exponentials, known as subexponentials [8].

4.1 Linear logic with subexponentials
Linear logic with subexponentials (SELL)4 shares with intuitionistic linear logic all its
connectives except the exponential: instead of having a single !, SELL may contain as many
subexponentials, written !a for a label (or color) a, as one needs.

4 Although in this paper we are mostly interested in the intuitionistic version of SELL, it was proven
in [3] that classical and intuitionistic subexponential logics are equally expressive. Hence we will abuse
the notation and use SELL for intuitionistic linear logic system with subexponentials.

E. Pimentel, C. Olarte, and V. Nigam 3:11

Such labels are organized in a pre-order, giving rise to a subexponential signature Σ =
⟨I, ⪯, U⟩, where I is a set of labels, U ⊆ I is a set specifying which subexponentials behave
classically (i.e., those labels that allow for weakening and contraction), and ⪯ is a pre-order
among the elements of I. We shall use a, b, . . . to range over elements in I, and we will
assume that ⪯ is upwardly closed with respect to U , i.e., if a ∈ U and a ⪯ b, then b ∈ U .

The division of unbounded (a ∈ U) and linear or bounded (a ̸∈ U) subexponentials induces
also a partition of the subexponential context Θ, which is split into two: a set Θu and a
multiset Θb of labeled formulas, having the form

Θu = {a1 : Θu
1 , . . . , an : Θu

n} Θb = {b1 : Θb
1, . . . , bm : Θb

m}

The formulas in Θu
i are under the scope of the unbounded subexponential !ai , and formulas

in Θb
j are under the scope of the bounded subexponential !bj . The linear context Γ continues

containing only negative or atomic formulas, as in ILLF.
The focused proof system SELLF [28] is constructed by adding all the rules for the

intuitionistic linear logic connectives as shown in Figure 1,5 except for the exponentials. The
rules for subexponentials are the following:

A formula F under the scope of !a is stored in the exponential context Θ accordingly: if
a is unbounded/bounded, then F is added to the set/multiset Θa, which is created if it
does not exist. This action is represented by Θ ⊎ {a : F}.

Θ ⊎ {a : F}; Γ ⇑ ∆ ⊢ R
Θ; Γ ⇑ !aF, ∆ ⊢ R !al

The unbounded decide rule in ILLF is split into bounded and unbounded versions,
depending of the nature of the subexponential.

Θu, Θb; Γ ⇓ F ⊢ R

Θu, Θb ⊎ {a : F}; Γ ⇑ · ⊢ · ⇑ R
Db

Θu ⊎ {a : F}, Θb; Γ ⇓ F ⊢ R

Θu ⊎ {a : F}, Θb; Γ ⇑ · ⊢ · ⇑ R
Du

The promotion rule has the form

Θu
≥a, Θb; · ⇑ · ⊢ F ⇑
Θu, Θb; · ⊢ !aF ⇓

!ar

with the proviso that, for all bj : Θb
j in Θb, it must be the case that a ⪯ bj . In the premise

of the rule, Θu
≥a ⊆ Θu contains only elements of the form ai : Θu

i where a ⪯ ai (the other
contexts are weakened). That is, !aF is provable only if F can be proved in the presence
of subexponentials greater than a.

It is known that subexponentials greatly increase the expressiveness of the system when
compared to linear logic. For instance, subexponentials can be used to represent contexts
of proof systems [32], to mark the epistemic state of agents [27], or to specify locations
in sequential computations [28]. The key difference is that, while linear logic has only
seven logically distinct prefixes of bangs and question-marks (? is the dual of !), SELL
allows for an unbounded number of such prefixes, e.g., !i, or !i?j . As we show later, by
using different prefixes, we can interpret subexponentials in more creative ways, such as
linear constraints, epistemic modalities or preferences. The interested reader can also check
in [30, 35, 31] the interpretation of subexponentials as temporal units, and the study of
dynamical subexponentials in distributed systems.

5 Taking the extra-care of splitting the bounded context Θb for the multiplicative rules −◦l and ⊗r.

FSCD 2021

3:12 Process-As-Formula Interpretation: A Substructural Multimodal View

The organization of subexponentials in pre-orders brings at least two interesting aspects
that can be further investigated: what kind of refinements of the proof system can be obtained
by adopting richer algebraic structures for subexponentials (Section 4.2 below); and what is
the proof-theoretic notion of quantification over modalities (Section 4.3 below).

Being able to quantify over subexponentials is important, e.g., for specifying properties
that are valid in an unbounded number of locations or agents. It is also crucial for establishing
a certain notion of mobility, or permissibility of resources, that can be available, e.g., iff they
are marked with a label of some specific sort. But one has to be careful here: the pre-order
structure is a minimal requirement in subexponential signatures in order to guarantee the
cut-elimination property [8]. Since, in the presence of quantifiers, proving cut-elimination
requires substitution lemmas, a naive approach of exchanging labels could invalidate such
results (see [31] for an extensive discussion on the topic).

On the other hand, if we move above the pre-order minimality and consider, e.g., ∧-semi-
lattices as subexponential structures, then the side condition in the promotion rule, a ⪯ ai

for all ai ∈ Θ≥a, is equivalent to a ⪯
∧

i ai. And this reflects certain kinds of preferences, as
explained next.

4.2 Richer subexponential signatures
We now explore a refinement of SELLF, where richer structures are considered as subexponen-
tial signatures. For that, we shall use an algebraic structure that defines a mean to compare
(⪯) and accumulate (•) values.

More precisely, a complete lattice monoid [12] is a tuple CLM = ⟨D, ⪯, •⟩ such that
⟨D, ⪯⟩ is a complete lattice, ⊥ and ⊤ are, respectively, the least and the greatest elements of
D and {D, •, ⊤} is a abelian monoid. Moreover, • distributes over lubs, i.e., for all v ∈ D and
X ⊆ D, v • ⊔X = ⊔{v • x | x ∈ X}. Due to distributivity, • is monotone and decreasing:
a • b ⪯ a.

Observe that, if the SELL signature structure is a lattice, then a ⪯ {b, c} is equivalent to
a ⪯ glb(b, c). Moreover, in the presence of •, promotion can be refined so to consider the
combination of values as follows.

Given a SELL signature Σ = ⟨D, ⪯, U⟩ with ⟨D, ⪯, •⟩ a CLM , the promotion rule !ar• is
defined as:

Θu
≥a, Θb; · ⇑ · ⊢ F ⇑
Θu, Θb; · ⊢ !aF ⇓

!ar•, provided a ⪯ •{ai, bj}

Note that, if the CLM is •-idempotent (i.e. a • a = a), then glb(a, b) = a • b, and the above
rule coincides with SELLF’s promotion rule.

▶ Example 7. Consider the signature Σ = ⟨D, ⪯, D⟩, with the following instances of CLM .
⟨{pub, sec}, ⪯, ∧⟩, where pub and sec represent public and private information, respect-
ively. The ordering is pub ≺ sec and a ∧ b = sec iff a = b = sec. Hence, any proof of
Θ; · ⊢ !secF ⇓ does not make use of any public information.
⟨[0, 1], ≤R, min⟩ (fuzzy), where [0, 1] ⊂ R, and ≤R is the usual order in R. In this case,
we can interpret !0.2c as “c is believed with preference 0.2”. Note that the sequent
!0.2c ⊗ !0.7d ⊢ !a(c ⊗ d) is provable only if a ≤R 0.2.
⟨[0, 1], ≤R, ×⟩ (probabilistic), where × is the multiplication operator in R. This is a non-
idempotent CLM , and the sequent !0.2c ⊗ !0.7d ⊢ !a(c ⊗ d) is provable only if a ≤R 0.14.

E. Pimentel, C. Olarte, and V. Nigam 3:13

In [39] we have showed that this new version of the promotion rule is not at all ad-hoc.
The resulting system, SELLS, is a smooth extension of ILLF and it is a closed subsystem of
SELLF, which is strict when non-idempotent CLMs are considered. Hence SELLS inherits
all SELLF good properties such as cut-elimination.

The SELLS system has inspired the development of new CCP-based calculi where processes
can tell and ask soft constraints, understood as formulas of the form !ac where a is an element
of a given CLM [39]. Also, since the underlying logic is the same, it is possible to obtain
adequate interpretations of processes as formulas as the ones in Section 3.2. More interestingly,
it is also possible to combine, in a uniform way, different modalities [35], all of them grounded
on linear logic principles. Some of these modalities will be explored in Section 5.

4.3 Subexponential Quantifiers
This section introduces the focused system SELLF⋒, containing two novel connectives ⋒ and
⋓, representing, respectively, a universal and existential quantifiers over subexponentials.6

As mentioned in Section 4.1, in order to guarantee cut-elimination of the resulting system,
the substitution of subexponentials in the rules for quantification should be done carefully.
As showed in [31], it is enough to require that labels are substituted, bottom-up, for smaller
ones. Also, the possibility of creating new labels dynamically implies that there should be
two sorts of labels: constants and variables. This justifies the next definition.

▶ Definition 8. Given a pre-order (I, ⪯) and a ∈ I, the ideal generated by a is the set
↓ a = {b ∈ I | b ⪯ a}.

The subexponential signature of SELL⋒ is the triple Σ = ⟨I, ⪯, U⟩, where I is a set of
subexponential constants, ⪯ is a pre-order over I and U ⊆ I is the upwardly closed set of
unbounded constants.

The sets of typed subexponential constants and typed subexponential variables are
denoted respectively by

TΣ = {b : a | b ∈↓ a} Tx = {lx1 : a1, . . . , lxn : an}

where {lx1 , . . . , lxn
} is a disjoint set of subexponential variables, and {a1, . . . , an} ⊆ I are

subexponential constants.

Formally, only these subexponential constants and variables may appear free in an index of
subexponential bangs and question marks.

Sequents in SELLF⋒ have the same form as in SELLF, with the difference that there is an
extra context T = TΣ ∪ Tx.

The rules for for ⋒ and ⋓ are the novelty with respect to the focused proof system for
SELLF. They behave exactly as the first-order quantifiers: the ⋒r and ⋓l belong to the
negative phase because they are invertible, while ⋒l and ⋓r are positive since they are not
invertible.

T ∪ {le : a}; Θ; Γ ⇑ ∆ ⊢ F [le/lx] ⇑
T ; Θ; Γ ⇑ ∆ ⊢ ⋒lx : a.F ⇑

⋒r
T ∪ {le : a}; Θ; Γ ⇑ ∆, F [le/lx] ⊢ R

T ; Θ; Γ ⇑ ∆,⋓lx : a.F ⊢ R
⋓l

T ; Θ; Γ ⇓ F [l/lx] ⊢ R

T ; Θ; Γ ⇓ ⋒lx : a.F ⊢ R
⋒l

T ; Θ; Γ ⊢ F [l/lx] ⇓
T ; Θ; Γ ⊢ ⋓lx : a.F ⇓

⋓r

6 Some motivation for the symbols ⋒ and ⋓. The former resembles the symbol for intersection, which
is the usual semantics assigned to for all quantifiers, namely, the intersection of all models, while the
latter is same for exists and union.

FSCD 2021

3:14 Process-As-Formula Interpretation: A Substructural Multimodal View

In the left rule of ⋒ and the right rule of ⋓, lx is substituted with a subexponential of the
right type: l : b ∈ T , b ∈↓ a. In the rules ⋒r and ⋓l, a fresh variable le of type a is created
and added to the context T .

Next, we shall see that the quantifiers allows for encoding, in a modular way, systems
dealing with an unbounded number of modalities.

5 Parametric interpretations

This section illustrates how focusing, subexponentials and quantifiers in SELLF⋒ can be
used to give adequate interpretations to CCP calculi featuring different modalities. The
interpretation is modular: there is only one base logic – SELL⋒; and parametric: each modal
flavor of CCP is specified by a signature in SELL having a particular algebraic structure. In
this way, processes may be executed and add/query constraints in different locations, where
the meaning of such locations may vary, for example: spaces of computation, the epistemic
state of agents, time units, levels of preferences, etc. But the underline interpretation is the
same: locations in CCP become labels in SELL.

Another modular aspect of our process-as-formula interpretation is the organization of
the encodings of constraints, processes and process definitions, into non-comparable families
of subexponentials, so that focusing on an element of a family forces all elements of the
other families to be erased during proof search. This ensures the discipline necessary for
guaranteeing the highest level of adequacy (FCD).

Formally, let M be an underlying set of labels, with least and greatest elements represented
by nil and ∞ respectively, ordered with a pre-order ⪯M . The families of subexponentials
are built with marked copies of elements of M : c(·) for constraints, p(·) for processes, and
d(·) for process definitions. The subexponential signature Σ = ⟨I, ⪯, U⟩ is built from M in
the following way:

The set of labels is: I = {l, c(l), p(l), d(l) | l ∈ M}; that is, besides the elements in M ,
we consider three additional distinct copies of the labels, each of them marked with the
appropriate family.
The subexponential pre-order is: l ⪯ l′ iff l ⪯M l′ and f(l) ⪯ f(l′) iff l ⪯M l′ where
f ∈ {c, p, d}; note that subexponentials pertaining to different families are not related.
The set U of unbounded subexponentials will vary depending on the encoded system.

Constraints and CCP processes are encoded into SELLF⋒ by using the functions C[[·]]l and
P[[·]]l as in Definition 2, now parametric w.r.t. subexponentials l ∈ M as follows.7

▶ Definition 9 (General Encoding). Constraints and axioms of the constraint system are
encoded in SELL⋒ as:

C[[true]]l = 1 C[[A]]l = !c(l)A C[[c1 ∧ c2]]l = C[[c1]]l ⊗ C[[c2]]l

C[[∃x.c]]l = ∃x.C[[c]]l C[[∀x.(d ⊃ c)]] = ⋒lx : ∞.∀x.(C[[d]]lx −◦ C[[c]]lx)

7 We observe that, technically, the encoding functions should also consider subexponential variables.
However, the encoded processes/axioms are stored on left contexts, and the left introduction rule for
universal quantifiers does not create fresh variables.

E. Pimentel, C. Olarte, and V. Nigam 3:15

The encoding of processes and process definitions is:

P[[tell(c)]]l = !p(l)[⋒lx : l.(C[[c]]lx)]
P[[

∑
i∈I

ask c then P]]l = !p(l)[⋒lx : l.(&
i∈I

[C[[ci]]lx −◦ P [[Pi]]lx])]

P[[(local x) P]]l = !p(l)[⋒lx : l.∃x.(P[[P]]lx)]
P[[P ∥ Q]]l = P[[P]]l ⊗ P [[Q]]l
P[[p(x)]]l = !d(l)p(x)
P[[p(x⃗) ∆= P]] = ⋒lx : ∞.∀x.(!d(lx)p(x) −◦ P [[P]]lx

)

The main difference between the encodings in SELL⋒ and ILL is the presence of mobility
of processes, given by the universal quantifier ⋒ over subexponentials. This enables the
specification of systems to govern an unbounded number of modalities.

Intuitively, when (left) focusing over a quantified clause of the form ⋒lx : l.!f(lx)F , a
location a ∈↓ l is chosen, and F becomes available in the location a, inside a family f, which
is totally determined by the nature of the encoded object: c for constraints, p for processes,
d for process definitions. In the special case of l = ∞, F can be allocated anywhere inside
the family. This is the case for example, of axioms and process definitions.

Let us now illustrate how the use of subexponentials and quantifiers allow for attaining
the highest level of adequacy. The first thing to note is that, due to the shape of the encoding,
the subexponential context can be divided into 3 zones: C, D and P , containing the formulas
marked, respectively, with subexponentials of the form c(·), d(·) and p(·).

Using simple logical equivalences, we can rewrite the encoding of a constraint C[[c]]l so
that it has the following shape ∃x.

(
!c(l1)A1 ⊗ · · · ⊗ !c(ln)An

)
, where A1, . . . , An are atomic

(positive) formulas. Whenever such a formula appears in the left-hand side, it is completely
decomposed and stored in the C context:

C ⊎ {c(l1) : A1, · · · , c(ln) : An}, D, P; · ⇑ ∆ ⊢ R

C, D, P; · ⇑ !c(l1)A1, · · · , !c(ln)An, ∆ ⊢ R
!al

C, D, P; · ⇑ !c(l1)A1 ⊗ · · · ⊗ !c(ln)An, ∆ ⊢ R
∃l, ⊗l

That is, in the negative phase, the atomic formulas A1, . . . , An appearing in the premise of
this derivation are moved to the contexts C.

Consider now a derivation that focuses on the encoding of a process. For instance, let
Q = ask c then P , and P [[Q]]l = !p(l)F , with F = ⋒lx : a.(C[[c]]lx −◦ P [[P]]lx). Focusing on F

results necessarily in a focused derivation of the following shape:

π
C′; · ⊢ C[[c]]l′ ⇓

C′′, D, P ′ ⊎ {p(l′) : FP }; · ⇑ · ⊢ G ⇑
C′′, D, P ′; · ⇓ P[[P]]l′ ⊢ G

Rl, !al

C, D, P ′; · ⇓ ⋒lx : a(C[[c]]lx −◦ P[[P]]lx) ⊢ G
⋒l,⊸l

C, D, P ⊎ {p(l) : F }; · ⇑ · ⊢ · ⇑ G
Du/Db

If p(l) ∈ U (resp. p(l) ̸∈ U) the rule Du (resp. Db is applied) and P ′ = P ⊎ {p(l) : F} (resp.
P ′ = P). Since C[[c]]l′ contains only positive formulas, it will be totally decomposed, and
every exponential context in π will be a C context. That is, only constraints and axioms
from the constraint system can be used in the proof π.

A similar analysis can be done when a process definition is selected: only the context D,
storing all the calls, can be used to entail the needed guard.

In the following, we instantiate the general definition of the encoding for different flavors
of CCP. The adequacy we obtain, in each case is at the FCD level.

FSCD 2021

3:16 Process-As-Formula Interpretation: A Substructural Multimodal View

Classical and linear CCP
For encoding the language in Section 3, the set of modalities is the simplest one: M = {nil, ∞}.
All the subexponentials but p(nil) and d(·) are unbounded.

▶ Theorem 10. Let (C, |=∆) be a constraint system, P be a CCP process and Ψ be a set of
process definitions. Then, for any constraint c,

P ⇓c iff · ⇑!c(∞)C[[∆]],!p(∞)JΨK, P[[P]]nil ⊢ C[[c]]nil ⊗ ⊤ ⇑

It is worth noticing that all the processes remain in the location nil (denoting “without
modality”) and then, the universal quantification in the encoding is always forced to instantiate
lx with nil.

Linear CCP. As we already know, the store in CCP increases monotonically: once a
constraint is added, it cannot be removed from the store. This can be problematic for
the specification of systems where resources can be consumed. In linear CCP (lcc) [11],
constraints are built from formulas in the following fragment of ILL:

F ::= A | 1 | F ⊗ F | ∃x.F |!F

In this setting, the empty store is 1 and constraints are accumulated using ⊗. The extra
case !F , as expected, is used to denote persistent constraints.

▶ Example 11. The vending coffee machine has the same CCP specification as the community
coffee machine presented in Example 4. However, as expected, linear asks consume constraints
when querying the store and the coin does not come back after delivering the coffee:

⟨∅, P, 1⟩ −→ ⟨∅, m(), coin⟩ −→ ⟨∅, tell(coffee) ∥ m(), 1⟩ −→ ⟨∅, m(), coffee⟩

In order to characterize the semantics of lcc, we configure the encoding in Definition 9 as
follows. We declare c(nil) /∈ U (i.e., constraints can be consumed) and c(∞) ∈ U . Moreover,
the encoding is extended for the case of unbounded constraints: C[[! c]]l = C[[c]]∞. In this
way, we obtain an adequacy theorem as the one in Theorem 10, also at the FCD level, in
contrast to the weakest level of adequacy (FCP) obtained originally in [11] (for linear logic
and without focusing).

It is important to note that the characterization in Theorem 6, that uses (vanilla)
linear logic, does not work for lcc at the FCD level. Take for instance the process
Q = ask c ⊗ d then P being executed in the store !(c ⊗ d). Clearly, Q reduces to P and the
store remains unchanged. If we were to use the encoding in Theorem 6, before focusing on
P [[Q]], we have to do an intermediary step without an operational counterpart: focus on c⊗d,
stored in the classical context, to produce a copy of c and d in the linear context. Only after
that, the implication in P [[Q]] is able to entail the guard c ⊗ d. In the encoding of the present
section, proving the query of Q results in focusing on !c(nil)c ⊗ !c(nil)d. After decomposing
the tensor, focusing is lost and only linear c(nil) and replicated (c(∞)) constraints and the
axioms of the constraint systems can be used to deduce the atoms c and d. This adequately
reflects the semantics of linear asks.

Epistemic CCP
Now let us consider a richer system where different modalities will play a fundamental role.
Epistemic CCP (eccp) [16] is a CCP-based language where systems of agents are considered
for distributed and epistemic reasoning. In eccp, the constraint system is extended to
consider space of agents, denoted as sa(c), and meaning “c holds in the space –store– of
agent a.” The function sa(·) satisfies certain conditions to reflect epistemic behaviors:

E. Pimentel, C. Olarte, and V. Nigam 3:17

nil

a b · · ·

a.a a.b b.a . . .

a.a.a . . . a.b.b . . .b.a.b. . .

.

∞

nil

a1 a2 a3

a{1,2} a{1,3} a{2,3}

∞

a{1,2,3}

Figure 3 Subexponential signature for eccp.

(X; P, Γ; c) −→ (X ′; P ′, Γ; d)
(X; [P]a, Γ; c) −→ (X ′; [P]a, P ′, Γ; d) RE

(X; P, Γ; da) −→ (X ′; P ′, Γ; d′)
(X; [P]a, Γ; d) −→ (X ′; [P ′]a, Γ; d ∧ sa(d′)) RS

Figure 4 Operational rules for eccp and sccp.

1. sa(1) = 1 (bottom preserving)
2. sa(c ∧ d) = sa(c) ∧ sa(d) (lub preserving)
3. If d ⊢∆e

c then sa(d) ⊢∆e
sa(c) (monotonicity)

4. sa(c) ⊢∆e
c (believes are facts –extensiveness–)

5. sa(sa(c)) = sa(c) (idempotence)

In eccp, the language of processes is extended with the constructor [P]a that represents
P running in the space of the agent a. The operational rules for [P]a are specified in Figure 4.
In epistemic systems, agents are trustful, i.e., if an agent a knows some information c, then c

is necessarily true. Furthermore, if b knows that a knows c, then b also knows c. For example,
given a hierarchy of agents as in [[P]a]b, it should be possible to propagate the information
produced by P in the space a to the outermost space b. This is captured exactly by the rule
RE, which allows a process P in [P]a to run also outside the space of agent a. Notice that
the process P is contracted in this rule. The rule RS, on the other hand, allows us to observe
the evolution of processes inside the space of an agent. There, the constraint da represents
the information the agent a may see or have of d, i.e., da =

∧
{c | d ⊢∆e

sa(c)}. For instance,
a sees c from the store sa(c) ∧ sb(c′) but it does not see c′.

We now configure the encoding in Definition 9 so to capture the behavior of eccp
processes. We consider a possibly infinite set of agents A = {a1, a2, ...} and the set of
locations/modalities M , besides nil and ∞, contains the set A+ of non-empty strings of
elements in A; for example, if a, b ∈ A, then a, b, a.a, b.a, a.b.a, . . . ∈ A+. We use a, b, etc to
denote elements in A+ and nil will denote the empty string. The only linear subexponentials
are d(nil) and p(nil). This reflects the fact that both constraints and processes in the
space of an agent are unbounded, as specified by rule RE. Intuitively, !p(1.2.3) specifies a
process in the structure [[[·]3]2]1, denoting “agent 1 knows that agent 2 knows that agent
3 knows” expressions. The connective !c(1.2.3), on the other hand, specifies a constraint of
the form s1(s2(s3(·))). We thus extend the encoding accordingly: C[[si(c)]]l = C[[c]]l.i and
P[[[P]i]]l = P[[P]]l.i.

The pre-order ⪯ is as depicted in Figure 3 on the left. Note that for every two different
agent names a and b in A, the subexponentials a and b are unrelated. Moreover, a ≈ a.a

and b1.b2.bn ⪯ a1.b1.a2.b2.an.bn.an+1 where each ai is a possible empty string of
elements in A. The shape of the pre-order is key for our encoding. For instance, the formula

FSCD 2021

3:18 Process-As-Formula Interpretation: A Substructural Multimodal View

⋒lx : a.b.b.P[[P]]lx on the left, allows us to place P on the (outer) location a.b and b as
required by RE. In fact, we can show that the sequent P [[P]]l.i ⊢ P [[P]]l is provable in SELL⋒

for any process P and subexponentials l and i. We can also show that the encoding of
constraints satisfy the axioms of an epistemic constraint system. For instance, the sequent
C[[si(c)]]l ⊢ C[[c]]nil is provable, showing that believes are facts. Hence, a tailored version of
Theorem 10 applies for this language, with the same level of adequacy.

As an interesting example of epistemic behavior, it is possible to specify common knowledge
by extending the subexponential signature as in Figure 3 on the right, where for all S ⊆ A,
a ⪯ aS for any string a ∈ S+. Then, the announcement of c on the group of agents S can
be represented by !c(aS)c. Notice that the sequent !c(aS)c ⊢ !c(a)c ⊗ ⊤ can be proved for any
a ∈ S+. For instance, if S = {ai, aj}, from !c(aS)c one can prove that ai knows that aj knows
that ai knows that ai knows ... c, i.e., c is common knowledge between ai and aj .

Spatial CCP

Inconsistent information in CCP arises when considering theories containing axioms such
as c ∧ d ⊢∆ 0. Unlike epistemic scenarios, in spatial computations, a space can be locally
inconsistent and it does not imply the inconsistency of the other spaces (i.e., sa(0) does not
imply sb(0)). Moreover, the information produced by a process in a space is not propagated
to the outermost spaces (i.e., sa(sb(c)) does not imply sa(c)).

In [16], spatial computations are specified in spatial CCP (sccp) by considering processes
of the form [P]a as in the epistemic case, but excluding the rule RE in the system shown in
Figure 4. Furthermore, some additional requirements are imposed on the representation of
agents’ spaces sa(·). In particular, sa(·) must satisfy false containment, i.e., if c ∧ d |=∆ 0, it
does not necessarily imply that sa(c) ∧ sb(d) |=∆ 0 if a ̸= b.

We build the subexponential signature as we did in the epistemic case but the pre-order
is much simpler: for any a ∈ A+, a ⪯ ∞. That is, two different elements of A+ are unrelated.
Moreover, since sccp does not contain the RE rule, processes in spaces are again treated
linearly. Thus: U = {c(a) | a ∈ I} ∪ {p(∞)}.

By modifying the pre-order we partially capture the behavior of spatial systems. However,
it is not enough to confine inconsistencies. In particular, note that !a0 ⊢ G for any a and G.
The solution for information confinement, as shown in [31], is to consider combinations of
bangs and question marks (the dual of bang). In this case, !a?a0 ⊢ !a?aG but !a?a0 ̸⊢ !b?bG

for a, b not related. Hence, the encoding remains the same, but for the base cases: atomic
propositions are encoded as !c(l)?c(l)A, and procedure calls as !d(l)?d(l)p(x⃗).

6 Conclusion and future work

We have shown that the process-as-formula interpretation can provide useful reasoning
techniques for process calculi, by faithfully capturing the behavior of processes. The inter-
pretations we have achieved are modular and parametric, and they can capture different
modal behaviors as Table 1 summarizes.

Other examples of processes-as-formulas interpretations, relating computation and proof
search, include linear logic-based models for the π-calculus [22], abstract transition systems
and operational semantics [20], CCS [10], Bigraphs [5], P-systems [33] and concurrent object
oriented programming languages [36]. Also, in [4] we have tailored the notion of fixed points
in linear logic [2] to the system SELL⋒, and this allowed the encoding of CTL (Computational
Tree Logic) formulas as SELL theories, thus opening the possibility of specifying and proving
temporal properties inside the same logical framework.

E. Pimentel, C. Olarte, and V. Nigam 3:19

Table 1 Encoding of CCP modalities in SELL⋒.

General Encoding
Connective Meaning`

s = !s !sP is located at s.`
s =!s?s !s?sP is confined to s.

⋒l : a P P can move to locations below (outside) a

Epistemic Modalities
Pre-order Meaning
a.a ∼ a Modalities are idempotent: [[P]a]a ∼ [P]a
a ⪯ a.b Processes can move outside [[P]b]a −→ [P ∥ [P]b]a

Spatial Modalities
Pre-order Meaning

a ̸⪯ b P does not communicate with Q in [P]a ∥ [Q]b
a.a ̸∼ a Modalities are not necessarily idempotent.
a ̸⪯ a.b Processes are confined: [[P]b]a ̸∼ [P ∥ [P]b]a

Regarding future work, in [17] we have shown how to incorporate other modal behaviors
(besides the structural ones of weakening and contraction) in linear logic, thus extending
the multiplicative and additive fragment of LL with simply dependent multi-modalities. The
interpretations we have presented here have inspired new CCP-based calculi [35]. We foresee
that the finer control of modalities given in [17], as well as the extensions with non-normal
modalities [6, 18, 7], may contribute with other declarative models of concurrency with strong
logical foundations.

References
1 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. Log. Comput.,

2(3):297–347, 1992.
2 David Baelde. Least and greatest fixed points in linear logic. ACM Trans. Comput. Log.,

13(1):2:1–2:44, 2012.
3 Kaustuv Chaudhuri. Classical and intuitionistic subexponential logics are equally expressive.

In Anuj Dawar and Helmut Veith, editors, CSL 2010, volume 6247 of LNCS, pages 185–199.
Springer, 2010.

4 Kaustuv Chaudhuri, Joëlle Despeyroux, Carlos Olarte, and Elaine Pimentel. Hybrid linear
logic, revisited. Math. Struct. Comput. Sci., 29(8):1151–1176, 2019.

5 Kaustuv Chaudhuri and Giselle Reis. An adequate compositional encoding of bigraph structure
in linear logic with subexponentials. In Martin Davis, Ansgar Fehnker, Annabelle McIver, and
Andrei Voronkov, editors, LPAR-20, volume 9450 of LNCS, pages 146–161. Springer, 2015.

6 Brian F. Chellas. Modal Logic. Cambridge University Press, 1980. doi:10.1017/
CBO9780511621192.

7 Tiziano Dalmonte, Björn Lellmann, Nicola Olivetti, and Elaine Pimentel. Hypersequent calculi
for non-normal modal and deontic logics: countermodels and optimal complexity. J. Log.
Comput., 31(1):67–111, 2021. doi:10.1093/logcom/exaa072.

8 Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. The structure of exponentials:
Uncovering the dynamics of linear logic proofs. In Georg Gottlob, Alexander Leitsch, and
Daniele Mundici, editors, Kurt Gödel Colloquium, volume 713 of LNCS, pages 159–171.
Springer, 1993.

9 Frank S. de Boer, Maurizio Gabbrielli, and Maria Chiara Meo. Proving correctness of timed
concurrent constraint programs. ACM Trans. Comput. Log., 5(4):706–731, 2004.

FSCD 2021

https://doi.org/10.1017/CBO9780511621192
https://doi.org/10.1017/CBO9780511621192
https://doi.org/10.1093/logcom/exaa072

3:20 Process-As-Formula Interpretation: A Substructural Multimodal View

10 Yuxin Deng, Robert J. Simmons, and Iliano Cervesato. Relating reasoning methodologies in
linear logic and process algebra. Math. Struct. Comput. Sci., 26(5):868–906, 2016.

11 François Fages, Paul Ruet, and Sylvain Soliman. Linear concurrent constraint programming:
Operational and phase semantics. Information and Computation, 165(1):14–41, 2001.

12 Fabio Gadducci, Francesco Santini, Luis Fernando Pino, and Frank D. Valencia. Observational
and behavioural equivalences for soft concurrent constraint programming. J. Log. Algebr.
Meth. Program., 92:45–63, 2017.

13 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
14 C. A. R. Hoare. Communications Sequential Processes. Prentice-Hall, Englewood Cliffs (NJ),

USA, 1985.
15 Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey. J. Log. Program.,

19/20:503–581, 1994.
16 Sophia Knight, Catuscia Palamidessi, Prakash Panangaden, and Frank D. Valencia. Spatial

and epistemic modalities in constraint-based process calculi. In Maciej Koutny and Irek
Ulidowski, editors, CONCUR, volume 7454 of LNCS, pages 317–332. Springer, 2012.

17 Björn Lellmann, Carlos Olarte, and Elaine Pimentel. A uniform framework for substructural
logics with modalities. In Thomas Eiter and David Sands, editors, LPAR-21, volume 46 of
EPiC Series in Computing, pages 435–455. EasyChair, 2017.

18 Björn Lellmann and Elaine Pimentel. Modularisation of sequent calculi for normal and non-
normal modalities. ACM Trans. Comput. Log., 20(2):7:1–7:46, 2019. doi:10.1145/3288757.

19 Chuck Liang and Dale Miller. Focusing and polarization in intuitionistic logic. In J. Duparc
and T. A. Henzinger, editors, CSL 2007: Computer Science Logic, volume 4646 of LNCS,
pages 451–465. Springer, 2007.

20 Raymond McDowell, Dale Miller, and Catuscia Palamidessi. Encoding transition systems in
sequent calculus. Theor. Comput. Sci., 294(3):411–437, 2003.

21 Dale Miller. Hereditary harrop formulas and logic programming. In Proceedings of the VIII
International Congress of Logic, Methodology, and Philosophy of Science, pages 153–156,
Moscow, 1987.

22 Dale Miller. The pi-calculus as a theory in linear logic: Preliminary results. In Evelina Lamma
and Paola Mello, editors, ELP’92, volume 660 of LNCS, pages 242–264. Springer, 1992.

23 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer, 1980.

24 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Inf.
Comput., 100(1):1–40, 1992.

25 Ugo Montanari. Networks of constraints: Fundamental properties and applications to picture
processing. Inf. Sci., 7:95–132, 1974.

26 M. Nielsen, C. Palamidessi, and F. Valencia. Temporal concurrent constraint programming:
Denotation, logic and applications. Nordic Journal of Computing, 9(1):145–188, 2002.

27 Vivek Nigam. On the complexity of linear authorization logics. In LICS, pages 511–520. IEEE,
2012.

28 Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic with subexponentials.
In António Porto and Francisco Javier López-Fraguas, editors, Proc. of PPDP’09, pages
129–140. ACM, 2009.

29 Vivek Nigam and Dale Miller. A framework for proof systems. J. Autom. Reasoning, 45(2):157–
188, 2010.

30 Vivek Nigam, Carlos Olarte, and Elaine Pimentel. A general proof system for modalities in
concurrent constraint programming. In Pedro R. D’Argenio and Hernán C. Melgratti, editors,
CONCUR, volume 8052 of Lecture Notes in Computer Science, pages 410–424. Springer, 2013.

31 Vivek Nigam, Carlos Olarte, and Elaine Pimentel. On subexponentials, focusing and modalities
in concurrent systems. Theor. Comput. Sci., 693:35–58, 2017.

32 Vivek Nigam, Elaine Pimentel, and Giselle Reis. An extended framework for specifying and
reasoning about proof systems. J. Log. Comput., 26(2):539–576, 2016.

https://doi.org/10.1145/3288757

E. Pimentel, C. Olarte, and V. Nigam 3:21

33 Carlos Olarte, Davide Chiarugi, Moreno Falaschi, and Diana Hermith. A proof theoretic view
of spatial and temporal dependencies in biochemical systems. Theor. Comput. Sci., 641:25–42,
2016.

34 Carlos Olarte and Elaine Pimentel. On concurrent behaviors and focusing in linear logic.
Theor. Comput. Sci., 685:46–64, 2017.

35 Carlos Olarte, Elaine Pimentel, and Vivek Nigam. Subexponential concurrent constraint
programming. Theor. Comput. Sci., 606:98–120, 2015.

36 Carlos Olarte, Elaine Pimentel, and Camilo Rueda. A concurrent constraint programming
interpretation of access permissions. Theory Pract. Log. Program., 18(2):252–295, 2018.

37 Carlos Olarte, Camilo Rueda, and Frank D. Valencia. Models and emerging trends of concurrent
constraint programming. Constraints, 18(4):535–578, 2013.

38 Elaine Pimentel, Vivek Nigam, and João Neto. Multi-focused proofs with different polarity
assignments. In Mario R. F. Benevides and René Thiemann, editors, Proc. of LSFA’15, volume
323 of ENTCS, pages 163–179. Elsevier, 2015.

39 Elaine Pimentel, Carlos Olarte, and Vivek Nigam. A proof theoretic study of soft concurrent
constraint programming. Theory Pract. Log. Program., 14(4-5):649–663, 2014.

40 V. Saraswat and Martin Rinard. Concurrent constraint programming. In 17th ACM Symp. on
Principles of Programming Languages, pages 232–245, San Francisco, CA, 1990.

41 Vijay A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.
42 Vijay A. Saraswat and Martin C. Rinard. Concurrent constraint programming. In Frances E.

Allen, editor, POPL, pages 232–245. ACM Press, 1990.
43 Vijay A. Saraswat, Martin C. Rinard, and Prakash Panangaden. Semantic foundations of

concurrent constraint programming. In David S. Wise, editor, POPL, pages 333–352. ACM
Press, 1991.

44 Dana S. Scott. Domains for denotational semantics. In Mogens Nielsen and Erik Meineche
Schmidt, editors, ICALP, volume 140 of LNCS, pages 577–613. Springer, 1982.

45 Ehud Shapiro. The family of concurrent logic programming languages. ACM Comput. Surv.,
21(3), 1989.

46 Gert Smolka. A foundation for higher-order concurrent constraint programming. In J.-P.
Jouannaud, editor, Proceedings of Constraints in Computational Logics, volume 845 of LNCS,
pages 50–72. Springer-Verlag, 1994.

FSCD 2021

Some Formal Structures in Probability
Sam Staton
University of Oxford, UK

Abstract
This invited talk will discuss how developments in the Formal Structures for Computation and
Deduction can also suggest new directions for the foundations of probability theory. I plan to focus
on two aspects: abstraction, and laziness. I plan to highlight two challenges: higher-order random
functions, and stochastic memoization.

2012 ACM Subject Classification Theory of computation → Program semantics; Mathematics of
computing → Nonparametric statistics

Keywords and phrases Probabilistic programming

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.4

Category Invited Talk

Funding Sam Staton: Research supported by a Royal Society University Research Fellowship and
the ERC BLAST grant.

Summary

Probabilistic programming is a popular tool for statistics and machine learning. The idea is
to describe a probabilistic model as a program with random choices. The program might be
a simulation of some system, such as a physics model, a model of viral spread, or a model of
electoral behaviour. We can now carry out statistical inference over the system by running a
Monte Carlo simulation – running the simulation 100,000’s of times. The key observation of
probabilistic programming is that we can actually run this same probabilistic program with
different advanced simulation methods, instead of a naive Monte Carlo simulation, such as a
Hamiltonian Monte Carlo simulation or Variational Inference, without changing the program.
See [20] for an overview.

Part of the practical appeal of probabilistic programming is this separation between
probabilistic models and inference algorithms. But this also has a foundational appeal: if
we can understand probabilistic models as programs, then the foundations of probability
and statistics can be discussed in terms of program semantics. This might take the lead
of denotational semantics, by interpreting programs in terms of traditional measure theory
(e.g. [17, 18]). But there is also a chance of new foundational perspectives on probability by
following other semantic methods, such as equational reasoning, rewriting, or categorical
axiomatics (see also [1, 4]).

This programming-based foundation for probability is attractive because there are some
intuitively simple probabilistic scenarios which have an easy programming implementation
but for which a plain measure-theoretic interpretation seems impossible. I now highlight
some issues in abstraction and laziness.

Abstraction. Abstraction is a crucial concept in probability: statistics arise by abstracting
away information. At a higher level, we have argued that de Finetti’s theorem, a fundamental
theorem in probability, can be understood in terms of abstract data types [15], and so too
generalizations [8, 16].

© Sam Staton;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 4; pp. 4:1–4:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSCD.2021.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Some Formal Structures in Probability

Function types are a key abstraction in programming theory, but are less well understood
in probability. For example, write Pr(X) for the space of probability distributions on X, and
consider the functional

piecewise : Pr(R → R) → Pr(R → R)

which converts a random function to a random piecewise version of it (see Figure 1). It is easy
to define in a few lines of code: piecewise(f) will draw a random partition of the x-axis, draw
random functions from f for each part, and splice them together. But although statistics and
probability make plenty of use of random piecewise linear functions, random piecewise constant
functions, and so on, the piecewise functional itself has no direct interpretation in traditional
measure theory. This has led to some recent semantic developments (e.g. [6, 3, 13, 2, 7, 14]).

Figure 1 Bayesian regression for the data set indicated by black dots. The regression was done
using constant, piecewise constant, linear, and piecewise linear functions respectively. The piecewise
functional was used to program the random piecewise functions.

Laziness. Laziness in programming is a counterpart to the notion of “process” which
is fundamental in probability. This has long been understood [5, 9, 10], and I recently
explored more aspects of laziness in the prototype LazyPPL [19]. For example, a “stick
breaking” process randomly divides the unit interval into an infinite number of parts, each
part representing a different cluster of some data. If this is computed lazily, it always
terminates, because the data is finite (Figure 2(a)).

One outstanding problem is a semantic interpretation of stochastic memoization. In the
non-probabilistic setting, memoization is a program optimization, where we are lazy about
re-evaluating a function at a given argument, by caching or tabling. But in the probabilistic
setting it gives new semantic possibilities. Stochastic memoization is a functional

memoize : (X → Pr(Y)) → Pr(X → Y)

...

0

1

la
zi

ly
 b

ro
ke

n
st

ic
k

data points

(a) (b)

Figure 2 (a) Stick-breaking: To group the data points (right) into an unknown number of clusters,
we randomly divide the unit interval “stick” into an infinite partition (left), and then assign a
cluster to each data point by randomly picking a number in [0, 1] for each point (lines from the data
points to the stick). In practice, this is done lazily. (b) Lazily building the adjacency matrix of an
uncountable random graph, as a memoized random function [0, 1]2 → bool.

S. Staton 4:3

which converts a family f : X → Pr(Y) of probability distributions into a distribution on
functions X → Y , by sampling f(x) once for every x. When X is infinite, this is impossible to
do eagerly, but it is no problem lazily. For example, consider a function g : [0, 1]2 → Pr(bool)
where g(x, y) is the Bernoulli distribution (a coin flip); then memoize(g) : Pr([0, 1]2 → bool) is
the random adjacency matrix of a random uncountable graph (Figure 2(b)). More generally, g

is a “graphon” (e.g. [12]). This also generalizes clustering by stick-breaking, because clusters
can be regarded as connected components of graphs.

This memoize functional is easy to implement. It appears in several languages [5, 11, 19],
and is practically useful in random graphs, probabilistic logic [11], clustering [5, §2.1], and
natural language modelling [21]. But there remains a big open problem:

▶ Open problem. To find a denotational model for a language with stochastic memoization.

I will discuss some recent progress on this problem, based on ongoing work with Swaraj
Dash, Younesse Kaddar, Hugo Paquet, and others.

References
1 Kenta Cho and B. Jacobs. Disintegration and Bayesian inversion via string diagrams. Math.

Struct. Comput. Sci., 29:938–971, 2019.
2 Fredrik Dahlqvist and Dexter Kozen. Semantics of higher-order probabilistic programs with

conditioning. In Proc. POPL 2020, 2020.
3 Thomas Ehrhard, Michele Pagani, and Christine Tasson. Measurable cones and stable,

measurable functions: a model for probabilistic higher-order programming. In Proc. POPL
2018, 2018.

4 T. Fritz. A synthetic approach to Markov kernels, conditional independence and theorems on
sufficient statistics. Adv. Math., 370, 2020.

5 N. D. Goodman, V. K. Mansinghka, et al. Church: a language for generative models. In
Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence, 2008.

6 Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient category for
higher-order probability theory. In Proc. LICS 2017, 2017.

7 Xiaodong Jia, Bert Lindenhovius, Michael W. Mislove, and Vladimir Zamdzhiev. Commutative
monads for probabilistic programming languages. In Proc. LICS 2021, 2021.

8 P. Jung, J. Lee, S. Staton, and H. Yang. A generalization of hierarchical exchangeability on
trees to directed acyclic graphs. Annales Henri Lebesgue, 4, 2021.

9 Oleg Kiselyov and Chung-chieh Shan. Embedded probabilistic programming. In Proc. DSL
2009, 2009.

10 Daphne Koller, David McAllester, and Avi Pfeffer. Effective Bayesian inference for stochastic
programs. In Proc. AAAI 1997, 1997.

11 Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey
Kolobov. BLOG: Probabilistic models with unknown objects. In Introduction to Statistical
Relational Learning. MIT Press, 2007.

12 Peter Orbanz and Daniel M. Roy. Bayesian models of graphs, arrays and other exchangeable
random structures. IEEE Trans. Pattern Anal. Mach. Intell., 37(2):437–461, 2015.

13 Hugo Paquet and Glynn Winskel. Continuous probability distributions in concurrent games.
In Proc. MFPS 2018, pages 321–344, 2018.

14 Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman. Probabilistic programming
semantics for name generation. In Proc. POPL 2021, 2021.

15 S. Staton, D. Stein, H. Yang, L. Ackerman, C. E. Freer, and D. M. Roy. The Beta-Bernoulli
process and algebraic effects. In Proceedings of the 45th International Colloquium on Automata,
Languages, and Programming (ICALP), 2018.

16 S. Staton, H. Yang, N. L.. Ackerman, C. Freer, and D. Roy. Exchangeable random process
and data abstraction. In PPS 2017, 2017.

FSCD 2021

4:4 Some Formal Structures in Probability

17 Sam Staton. Commutative semantics for probabilistic programming. In Proc. ESOP 2017,
2017.

18 Sam Staton. Probabilistic programs as measures. In Foundations of Probabilistic Programming.
CUP, 2020.

19 Sam Staton. LazyPPL, 2021. URL: https://bitbucket.org/samstaton/lazyppl/src/.
20 Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An introduction

to probabilistic programming, 2018. arXiv:1809.10756.
21 Frank D. Wood, Cédric Archambeau, Jan Gasthaus, Lancelot James, and Yee Whye Teh. A

stochastic memoizer for sequence data. In Proc. ICML 2009, 2009.

https://bitbucket.org/samstaton/lazyppl/src/
http://arxiv.org/abs/1809.10756

The Expressive Power of One Variable Used Once:
The Chomsky Hierarchy and First-Order Monadic
Constructor Rewriting
Jakob Grue Simonsen !

Department of Computer Science, University of Copenhagen, Denmark

Abstract
We study the implicit computational complexity of constructor term rewriting systems where
every function and constructor symbol is unary or nullary. Surprisingly, adding simple and natural
constraints to rule formation yields classes of systems that accept exactly the four classes of languages
in the Chomsky hierarchy.

2012 ACM Subject Classification Theory of computation → Grammars and context-free languages;
Theory of computation → Equational logic and rewriting; Theory of computation → Computability

Keywords and phrases Constructor term rewriting, Chomsky Hierarchy, Implicit Complexity

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.5

Acknowledgements I wish to thank the anonymous referees for diligent comments that have helped
improve the presentation of the paper.

1 Introduction

A natural means of studying the expressive power of declarative programming languages
is via constructor term rewriting systems; In these, the set of symbols are partitioned into
defined symbols and constructor symbols, the former representing function names, and the
latter representing data constructors.

The study of implicit complexity for a class of rewrite systems is, roughly, the study of
the set of problems that can be accepted, decided, or otherwise characterized by the class.
Implicit complexity has been studied extensively in functional programming (see – amongst
many others – [4, 18, 22]), and in term rewriting [3, 2, 9, 19, 8].

In this paper, we study the implicit complexity of constructor term rewriting systems
where all function and constructor symbols are restricted to have arity at most one (monadic
systems); the rewriting systems are characterized according to the computational complexity
of the constructor terms they accept. Unsurprisingly, the most general class of monadic
systems accept the entire class of recursively enumerable sets. However, imposing simple and
natural restrictions leads to exact characterization of the three other classes in the Chomsky
hierarchy [7]: Context-sensitive, context-free, and regular languages. The results hold for the
unrestricted rewriting relation, that is, we impose no evaluation order, and no typing beyond
partitioning into sets of defined symbols and constructor symbols.

The restrictions we impose echo the usual intuition about classes in the Chomsky hierarchy:
R.e. languages are accepted by Turing machines (finite state + two stacks), context-free
languages by PDAs (finite state + one stack), regular languages by DFAs (finite state
+ no stacks), and context-sensitive languages by LBAs (finite-state + two stacks with a
boundedness condition). The novel bits are that (i) we do not enforce machine-like restrictions
on the rewrite relation (e.g., rewriting is not required to be innermost), and (ii) that both
the encoding of the stacks and the behaviour of tail vs. general recursion have to be done
with some finesse.

© Jakob Grue Simonsen;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 5; pp. 5:1–5:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:simonsen@diku.dk
https://doi.org/10.4230/LIPIcs.FSCD.2021.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 The Chomsky Hierarchy and the Expressive Power of Monadic Rewriting

Classes:
Type Restriction on rules

l → r

Example(s) of rule(s) Expressive power

Unrestricted None f(c(x)) →
g(h((a(d(x)))))

RE

Non-length-
increasing

|r| ≤ |l| f(c(d(x))) →
g(h(a(x)))

CSL

(Strongly) cons-free No constructor sym-
bols in r

f(c(x)) → g(h(x)),
f(c(d(x))) → x

CFL

(Strongly) cons-free &
tail recursive

cons-free, and the or-
der of defined symbols
in r respect a certain
preorder

f(c(x)) → g(x),
f(x) → f(g(h(x))
(with f not appearing
below g or h in the
rhs of any rule with g

or h in the lhs)

REG

Figure 1 Classes of monadic constructor TRSs and the classes of sets they accept.

Figure 1 gives an overview of the four classes of systems we consider and their relation to
the language classes in the Chomsky hierarchy.

Related work

For characterizing context-free and regular languages, we disallow constructors in the right-
hand side of rules; this idea stems from Jones’ work on the expressive power of higher-
order types in functional programming [18] where a number of complexity classes were
characterized in programs with call-by-value semantics and where functions may have
arbitrary arity. Similar ideas have since been used in rewriting with less strict constraints on
the evaluation order [9, 19], but for symbols with arbitrarily high finite arity. Correspondences
between context-free languages and so-called monadic recursion schemes – essentially function
declarations where all functions and data constructors are unary – were investigated some
40 years ago [14, 11, 10, 12]; the research focused mostly on decidability results, but close
correspondences between monadic programs with very limited data construction abilites and
context-free languages, was established there. Caron [6] proved undecidability of termination
for non-length-increasing TRSs by encoding a certain class of linear bounded automata; we
use a very similar approach to show that non-length-increasing constructor TRSs precisely
accept the context-sensitive languages. Implicit complexity for term rewriting systems has
been investigated in a number of papers; see the references above. Finally, the restriction to
unary and nullary symbols means that all results in the paper can be viewed as concerning an
especially well-behaved class of string rewriting; we refer the reader to [27, 28] for overviews
of the correspondence between string rewriting and rewriting with unary symbols.

2 Preliminaries

We assume a non-empty alphabet, A, of characters and consider languages L ⊆ A+ where
A+ is the set of non-empty strings of characters from A. The empty string over any alphabet
will be denoted ϵ. We presuppose general familiarity with the Chomsky hierarchy, including
the four classes of recursively enumerable languages (RE, type-0), context-sensitive languages
(CSL, type-1), context-free languages (CFL, type-2), and regular languages (REG, type-3).

J. G. Simonsen 5:3

Ample introductions can be found in [15, 26]. For (constructor) term rewriting, we refer
to [27] for basic definitions; we very briefly recapitulate the most pertinent notions in the
below definition.

▶ Definition 1. We assume a denumerably infinite set Var of variables; given a signature Σ
of symbols with non-negative integer arities, we define the set of terms Ter(Σ, Var) over Σ
and Var inductively as usual: Var ⊆ Ter(Σ, Var) and if s1, . . . , sn ∈ Ter(Σ, Var) and f ∈ Σ
has arity n, then f(s1, . . . , sn) ∈ Ter(Σ, Var).

A rule is a pair of terms, written l → r such that l and r are terms with l /∈ Var and such
that every variable occurring in r occurs in l. A term rewriting system (abbreviated TRS) is
a set of rules.

Let Σ = F ∪C where F and C are disjoint sets of defined symbols and constructor symbols,
respectively. A constructor TRS is a TRS where each rule l → r satisfies l = f(t1, . . . , tn)
where f ∈ F and t1, . . . , tn ∈ Ter(C, Var).

A TRS is said to be monadic if the arity of all function and constructor symbols is at
most 1. If R is monadic and l → r is a rule of R, we occasionally write l(x) → r(x) where x

is the unique variable occurring in l and r (and we extend the notation to the case where
there are no variables in l or r – in which case the choice of x does not matter).

A substitution is a partial map θ : Var −→ Ter(Σ, Var). In monadic systems, each term
s contains at most one variable, and we shall write sθ for the term obtained by replacing the
variable x in s by θ(x) (if x ∈ dom(θ)).

A context in a monadic TRS is a term over the variable set Var∪{□} where □ /∈ Σ∪Var;
if C is a context and w is a term, we denote by C[w] the term obtained by replacing the
(unique!) □ in C by w. For s, t ∈ Ter(Σ, Var), we write s → t if there is a context C, a rule
l → r, and a substitution θ such that s = C[lθ] and t = C[rθ], and we call (C, l → r, θ) a
redex in s; The redex is said to be contracted in the step s → t. The position of a redex
is 1k where k is the number of symbols in C (we set 10 = ϵ); we say that the rule l → r is
applied to s at position p. We write →∗ for the reflexive, transitive closure of → and →+ as
the transitive closure. We call s →∗ t a reduction or rewrite sequence.

Two redexes (C, l → r, θ) and (C ′, l′ → r′, θ′) in s = C[lθ] = C ′[l′θ′] overlap if a symbol
in l and a symbol in l′ share the same position in C[lθ] = C ′[l′θ′].

A redex v at position p in s is innermost if, for any redex w at position p′ > p, w overlaps
v (intuitively: v is innermost if no other redex occurs “to the right of v”). The size of a
term s in a monadic TRS is defined by induction as: |s| = 1 if s is a variable or a nullary
function symbol, and |s| = 1 + |s′| if s = g(s′) where g ∈ Σ.

Throughout the paper, we assume that all rewrite systems have a finite set of rules.

▶ Definition 2. Let A be an alphabet and ▷ a nullary constructor symbol. For every a ∈ A,
we associate a unary constructor symbol ã, and we define Ã = ∪a∈A{ã}. For any string
α = a1 · · · an ∈ A+, we associate the constructor term α̃ = ã1(· · · ãn(▷)), and set ϵ̃ = ▷.

▶ Remark 3. Throughout the paper, every term is built from unary or nullary symbols. Hence,
there is a natural correspondence between terms and strings: If f1, . . . , fm are unary symbols
and b is nullary, then f1(f2(· · · fm(b))) corresponds to the string of symbols f1f2 · · · fmb.

▶ Definition 4. Let A be an alphabet and let R be a constructor TRS with Σ = F ∪ C, such
that (Ã ∪ {▷}) ⊆ C where ▷ is a nullary symbol. R is said to accept L ⊆ A+ if there is
a defined symbol f0 ∈ F – the “start function” – such that for every α ∈ A+, there is a
reduction f0(α̃) →∗ ▷ iff α ∈ L.

FSCD 2021

5:4 The Chomsky Hierarchy and the Expressive Power of Monadic Rewriting

▶ Remark 5. The use of ▷ in f0(α̃) →∗ ▷ can be replaced by a fresh constructor (instead of
the “nil” constructor ▷), or a nullary defined symbol when characterizing the classes RE or
CSL. For CFL and RE, we consider systems where rules cannot contain any constructors in
the right-hand side; there, acceptance by ▷–the last constructor in the representation α̃ of
any string α ∈ A+–is completely natural (it could wlog. be replaced by introducing rules of
the form f(▷) → h with h a nullary symbol in F , but there seems to be no good reason to
do so).

▶ Definition 6. Let R be a monadic constructor TRS with alphabet Σ = F ∪ C. R is said
to be tail recursive if there is a preorder ≤ on F such that for every rule f(w) → r in R

and every occurrence of a defined symbol g ∈ F in r, either (i) f > g, or (ii) f ≥ g and the
occurrence of g is at position ϵ.

The reason for requiring ≤ to be (only) a preorder as in [8] (rather than a partial order
as in, e.g. [18]) is that recursion should be limited to tail calls (so, in rewriting terms, at the
root of the rhs), but that the tail call does not need to be the same defined symbol as in the
left-hand-side, merely a symbol having the same rank in the ≤-order.

3 Recursively enumerable languages: General monadic systems

For each of the class of languages we consider, we first remind the reader of their associated
class of accepting machine; for recursively enumerable languages, these are Turing machines.

▶ Definition 7. A (one-tape, non-deterministic) Turing machine is a tuple (Q, A, Γ, δ, q0, qh)
where Q is a set of states, A is the input alphabet (which does not contain blanks), Γ
is the tape alphabet (with A ⊆ Γ and a designated symbol □ ∈ Γ representing “blank”),
δ : Q × Γ −→ P(Q × (Γ ∪ {ϵ}) × {L, R}) is the transition function, q0 ∈ Q is the start state,
and qh ∈ Q is the accept state.

We write δ(q, a) → (q′, b, H) if (q′, b, H) ∈ δ(a, b); note that several such transition rules
may exist for each (q, a). On a transition rule δ(q, a) → (q′, b, H), the machine is said to
transition, when reading symbol a in state q, to state q′, writing symbol b (or not writing
anything when b = ϵ), and moving either left or right on the tape, according to whether
H = L or H = R.

As usual, we define Turing machine configurations as a (tape contents, tape head position,
state)-triple:

▶ Definition 8. A configuration of a machine M = (Q, Γ, A, δ, q0, qh) is a triple (T, n, q)
where T ∈ Γ+ is the current content of the tape (disregarding the infinite strings of blanks
to the left and right of the portion of the tape that contains the input and the set of cells
scanned by M so far; T is assumed to have length at least 1, possibly consisting of a single
blank symbol), n is an integer where 1 ≤ n ≤ |T | (the position of the tape head in T), and
q ∈ Q. M transitions in one step on configuration (T, n, q) to configuration (T ′, n′, q′) on
transition δ(q, b) → (q′, b′, H) if the nth element of T is b and (T ′, n′, q′) represents the
machine state after the corresponding move. We say that “A transitions to B” if A reduces
to B by a sequence of ≥ 0 steps. M accepts input α if it transitions from (α, 1, q0) to a
configuration (T, n, qh) – we also say that M transitions to qh on input α. A language L ⊆ A+

is recursively enumerable if there is a Turing machine that, for each α ∈ A+, accepts α iff
α ∈ L.

Huet and Lankford proved that monadic TRSs can simulate Turing machines [16]. For
completeness, we re-prove Huet and Lankford’s result in a new setting, giving a new proof of
simulation of Turing machines by constructor TRSs with unary function and constructor

J. G. Simonsen 5:5

M = (Q, A, Γ, δ, q0, qh)
Sets of function and constructor symbols:

F = {fq : q ∈ Q} ∪ {fb : b ∈ Γ} ∪ {f0, f◁}
C = {b : b ∈ Γ} ∪ {cq : q ∈ Q} ∪ {▷}

Note: f□ ∈ F and □ ∈ C. If b ∈ A, then b = b̃. The constructors cq are fresh symbols designed
to “store” the state of M on left-moves.

Rewrite rules induced by transition rules of M :
(L/R)-move rewrite rules (for each q ∈ Q, b ∈ Γ)

δ(q, b) → (q′, b′, R) fq(b(x)) → fb′ (fq′ (x))
δ(q, b) → (q′, ϵ, R) fq(b(x)) → fb(fq′ (x)))
δ(q, b) → (q′, b′, L) fq(b(x)) → cq′ (b′(x))
δ(q, b) → (q′, ϵ, L) fq(b(x)) → cq′ (b(x))

Housekeeping rules for endmarkers:
rewrite rules (for each q ∈ Q \ {qh})

fq(▷) → fq(□(▷))
f◁(cq(x)) → f◁(fq(□(x))))

Propagation and start rules:
rewrite rules (for each q ∈ Q, b ∈ Γ)

fqh (x) → cqh (x)
f◁(cqh (x)) → ▷

fb(cq(x)) → fq(b(x))
f0(x) → f◁(fq0 (x))

Figure 2 Basic encoding ∆1(M) of a Turing machine M : The part of the tape to the left of the
single read/write head is represented by a string of defined symbols f , and the part to the right by
a string of constructor symbols c.

symbols. The constructor TRS simulating a given Turing machine is given in Figure 2;
the construction is similar to that given in [27], but uses only unary function and unary
and nullary constructor symbols. The simulation serves as illustration of an observation
we shall exploit throughout the paper: A term f1(· · · fm(c1(· · · cn(▷)))) may be viewed as
composed of a “call stack” of defined symbols and a “memory stack” of constructor symbols;
intuitively, we thus obtain the expressive power of the (Turing-complete) class of 2-counter
machines [23].

The following is tedious, but not hard, to prove:

▶ Lemma 9. Let α ∈ A+. Then, f0(α̃) →∗ ▷ iff M transitions to qh on input α.

We then have:

▶ Theorem 10. Let L ⊆ A+. The following are equivalent: (i) L is recursively enumerable,
(ii) L is accepted by a monadic constructor TRS.

Proof. If R is a monadic constructor TRS accepting L, we may construct a (non-deterministic)
Turing machine accepting L by encoding the finitely many rules of R and non-deterministically
applying the rules to input α. If this simulation reaches ▷, the machine halts. It therefore
suffices to prove that every recursively enumerable language is accepted by a monadic
constructor TRS. By standard results (see e.g. [25, Thm. 17.2]), L is recursively enumerable
iff it is accepted by a non-deterministic Turing machine. Lemma 9 then furnishes that, for
each α ∈ A+, we have f0(α̃) →∗ ▷ iff M accepts α, as desired. ◀

FSCD 2021

5:6 The Chomsky Hierarchy and the Expressive Power of Monadic Rewriting

4 Context-sensitive languages: Non-length-increasing rules

The class of context-sensitive languages is characterized by its class of acceptors: the linearly
bounded automata. The following definition is standard.

▶ Definition 11. A non-deterministic Turing (multi-tape) machine M accepts L ⊆ A+ in
non-deterministic linear space if there is a k such that all computation branches halts on all
inputs and any computation scans at most k · |x| distinct cells on each of its tapes. The set
of languages acceptable by such machines is called NLINSPACE.

▶ Proposition 12. Let L ⊆ A+ be a language accepted by an m-tape Turing machine in
space O(n). Then there is a one-tape Turing machine with input alphabet A (but possibly a
much larger tape alphabet) that accepts L in space ≤ n on all inputs.

Proof. Standard exercise in linear space reduction, see e.g. [17, Prop. 21.1.5] for the reduction
to one-tape machines (at the cost of an input-independent constant factor of more space use),
and [24] for the technique of getting rid of constant space factors on one-tape machines. ◀

By Proposition 12 we may restrict attention to machines that accept their input using
no more space than that originally allocated to the input: The linear bounded automata.
To ensure that linear bounded automata do not exceed their tape allowance, we make the
provision that inputs are always bookended by special stoppers ◀ and ▶. For example, if
A = {0, 1} the string 10010 will be fed to the automaton as ◀ 10010 ▶.

▶ Definition 13. A linear bounded automaton (LBA) over alphabet A is a one-tape Turing
machine (Q, A, Γ, δ, q0, qh) with input alphabet A′ = A ∪ {◀,▶} and where ◀ and ▶ are
the left and right stoppers, respectively, and such that: (i) ◀,▶/∈ Γ, (ii) for every rule
δ(q, b) → (q′, b′, H), we have b′ /∈ {◀,▶} (i.e. stoppers are not written on the tape), (iii)
for every rule δ(q,◀) → (q′, b′, H), we have b′ = ϵ and H = R (i.e. the left stopper is
not overwritten, and the tape head cannot move left of the left stopper), (iv) for every rule
δ(q,▶) → (q′, b′, H), we have b′ = ϵ and H = L (the right stopper is not overwritten and the
tape head cannot move to the right of the stopper endmarker). An LBA is said to accept
input α ∈ A+ if its underlying Turing machine accepts the string ◀ α ▶.

Thus: A linear bounded automaton can only use the space that its input originally occupies:
Space exactly n where n is the size of the input. The following proposition makes this precise:

▶ Proposition 14. Let M be an LBA. If (◀ b1 · · · bm ▶, n, q) is a configuration of M and
b1, . . . , bm ∈ Γ\{◀,▶}, and M transitions to configuration (T ′, n′, q′), then T ′ =◀ b′

1 · · · b′
m ▶

for b′
1, . . . , b′

m ∈ Γ \ {◀,▶}.

Proof. By the assumptions on the form of the rules of the LBA in Definition 13, neither of
the symbols ◀ and ▶ can be overwritten by M , nor can any symbol be overwritten by ◀ or
▶. By the same assumptions on the form of rules, M cannot move to the left of a ◀, nor to
the right of a ▶. ◀

▶ Theorem 15. Let L ⊆ A+. The following are equivalent: (i) L is accepted by an LBA,
(ii) L is context-sensitive, (iii) L ∈ NLINSPACE.

Proof. Standard textbook exercise, see e.g. [21, Exerc. 6.29], or [25, Thm. 24.3]. For the
original proof, see [20]. ◀

J. G. Simonsen 5:7

For every (a, b, d) ∈ A3:

Mabd = (Qabd, A ∪ {◀,▶}, Γ, δabd, qabd
0 , qh)

(where Mabd is given by Proposition 16)

Fabd = {fq : q ∈ Qabd} ∪ {fb : b ∈ Γ} ∪ {f◁}

Cabd = {b : b ∈ Γ} ∪ {cq : q ∈ Qabd} ∪ {▷}

Note that as A ∪ {◀,▶} ⊆ Γ, we have f◀, f▶ ∈ Fabd, and ◀,▶∈ Cabd.

Rules induced by transition rules of Mabd:
(L/R)-move rewrite rules (q ∈ Qabd, b ∈ Γ)

δ(q, b) → (q′, b′, R) fq(b(x)) → fb′ (fq′ (x))
δ(q, b) → (q′, ϵ, R) fq(b(x)) → fb(fq′ (x)))
δ(q, b) → (q′, b′, L) fq(b(x)) → cq′ (b′(x))
δ(q, b) → (q′, ϵ, L) fq(b(x)) → cq′ (b(x))

Propagation rules:
rewrite rules (q ∈ Qabd, b ∈ Γ)

fqh (x) → cqh (x)
f◁(cqh (x)) → ▷

fb(cq(x)) → fq(b(x))

Figure 3 Non-length-increasing constructor TRS defined from an LBA Mabd. Observe that
f0 /∈ Fabd and that the constructor TRS will not accept any strings on its own. .

Due to our convention that constructor TRSs must start their computations on terms on
the form f0(α̃), we encounter the problem that non-length-increasingness prevents us from
setting up the simulation of the LBA tape and state: We would need a rule of the form
f0(x) → f◁(fq0(· · ·)). The problem is solved by the following proposition:

▶ Proposition 16. Let LBA M accept the language L ⊆ A+ and let (a, b, d) ∈ A3. Then
there exists an LBA Mabd with input and tape alphabets identical to those of M that accepts
the language L′ = {β ∈ A∗ : abd · β ∈ L}.

Proof. If the input to M has size n ≥ 3, we may encode all possible configurations of the
leftmost 3 cells of the tape of M in |Γ|3 states. If M has |Q| states, we may construct an
LBA Mabd with (4|Γ|3) × |Q| states that encodes any changes to the leftmost 3 cells in its
states (the factor 4 is used by Mabd to keep track of where the tape head is (either of the
first three “cells” encoded by the states, or to their right), and only uses n − 3 tape cells
(where it simply simulates M) . ◀

For each LBA M and (a, b, d) ∈ A3, we define a non-length-increasing constructor TRS
∆abd

LBA(M) by the translation given in Figure 3 – effectively the same translation as that in
Figure 2, except for the absence of a start rule and the addition of rules for stopper fitting.
For each LBA M , we define a corresponding non-length-increasing system ∆LBA(M) by
taking the union of all rules from all of the |Γ|3 LBAs Mabd and adding rules to start the
computation. The resulting constructor TRS is shown in Figure 4.

▶ Proposition 17. If M is an LBA, then ∆LBA(M) is a non-length-increasing monadic
constructor TRS.

Proof. Observe that every rule of M is translated by ∆LBA(·), whence ∆LBA(M) is defined
for all M . Furthermore, every rule of ∆LBA(M) is non-length-increasing, and the general
result follows. ◀

FSCD 2021

5:8 The Chomsky Hierarchy and the Expressive Power of Monadic Rewriting

F =

 ⋃
(a,b,d)∈A3

Fabd

 ∪ {f0} C =
⋃

(a,b,d)∈A3

Cabd

The rules of ∆LBA(M) are the union of
⋃

(a,b,c)∈A3 Rabd with the set of rules below:
Start rules and stopper rules:

rewrite rules (for each a, b, d ∈ A, not necessarily distinct)
f0(ã(▷)) → ▷ if M accepts a

f0(ã(̃b(▷))) → ▷ if M accepts ab

f0(ã(̃b(d̃(x)))) → f◁(fqabd
0

(◀ (e(x))))
e(ã(x)) → ã(e(x))

e(▷) →▶ (▷)

Figure 4 Encoding ∆LBA(M) of an LBA M as a non-length-increasing system.

Again, the following is tedious, but not hard, to prove:

▶ Lemma 18. Let α ∈ A+. Then LBA M transitions to the halting state on input ◀ α ▶
iff f0(α̃) →∗

∆LBA(M) ▷.

We can now prove the main result of the section:

▶ Theorem 19. Let L ⊆ A+. The following are equivalent: (i) L is context-sensitive, (ii) L

is accepted by a monadic non-length-increasing constructor TRS.

Proof. If L is context-sensitive, it is accepted by an LBA M by Theorem 15. Then,
Lemma 18 furnishes that ∆LBA(M) accepts L, and by Proposition 17, ∆LBA(M) is a
monadic non-length-increasing constructor TRS. Conversely, if L is accepted by a monadic
non-length-increasing constructor TRS R over alphabet Σ, we can define a non-deterministic
Turing machine with tape alphabet Σ that runs in linear space and accepts L: In every rule
l → r, both l and r are terms over unary and nullary symbols, hence essentially strings. As
|l| ≥ |r|, a rewrite step corresponds to replacing a substring by a substring of at most the
same size. Thus, we may simply encode the rules of R in the states M . The current state of
the term f1(f2(· · · fm(b))) is encoded in m + 1 symbols f1f2 · · · fmb on the Turing machine’s
tape, and application of a rule is simply done by replacing the symbols on the relevant tape
cells. Choosing what rule to apply and where to apply it is selected non-deterministically by
M . As |l| ≥ |r|, the number of tape cells used will never increase, whence the machine runs
in linear space, and Theorem 15 furnishes that L is context-sensitive. ◀

5 Context-Free Languages: (Strongly) cons-free systems

We now treat context-free languages; we first need their corresponding notion of accepting
machine.

▶ Definition 20. A pushdown automaton (PDA) is a tuple (Q, A, Γ, δ, q0, Z0) where Q is a
finite set of states, A is a finite set of input symbols, Γ is a finite stack alphabet, q0 ∈ Q is
the start state, Z0 ∈ Γ is the start stack symbol, and δ is a relation consisting of a finite
number of transition rules of the form δ(q, a, X) → (p, γ) where q ∈ Q, a ∈ A ∪ {ϵ}, X ∈ Γ,
p ∈ Q, and γ ∈ Γ∗.

J. G. Simonsen 5:9

The definition of PDA above has no final states, and will thus accept by empty stack
(and empty input), as is common in the literature [26]. We make the convention that the
bottom of the stack is written to the left and the top to the right; hence, symbols are pushed
and popped to the right.

As we shall only consider one-state PDAs in this paper; the below definition of acceptance
has been specialized to that case (for the general case, see any standard textbook, e.g. [26]):

▶ Definition 21. A one-state PDA is said to accept input α ∈ A+ if α = a1 · · · am where
each ai ∈ A∪{ϵ} and there is a sequence of strings s1, . . . , sm from Γ∗ such that: (i) s0 = Z0,
(ii) for i = 0, . . . , m − 1, there is a rule δ(ai+1, Z) → Z ′ where si = tZ and si+1 = tZ ′ for
some Z, Z ′ ∈ Γ ∪ {ϵ} with Z ̸= ϵ, and t ∈ Γ∗ (that is, the PDA moves according to the stack
and next input symbol)1, (iii) am = ϵ and sm = ϵ (that is, empty input and empty stack are
reached at the end). Otherwise, the PDA is said to reject the input.

The following proposition is standard; see for example [13] for a proof.

▶ Proposition 22. If L ⊆ A∗ is accepted by a PDA, it is accepted by a one-state PDA
({q0}, A, Γ′, δ, q0, Z0) (where we assume acceptance by empty stack).

The following theorem is standard (see e.g. [26, Thm. 2.12])

▶ Theorem 23. A language L ⊆ A+ is context-free iff it is accepted by a PDA with input
alphabet A.

By Proposition 22 and Theorem 23, a language is thus context-free iff it is accepted by a
one-state PDA.

As with the language classes RE and CSL, we shall prove that a particular class of
monadic rewrite systems corresponds to CFL; this class consists of the (strongly) cons-free
systems:

▶ Definition 24. A constructor TRS is said to be (strongly) cons-free if, for every rule l → r

there are no constructor symbols in r.

▶ Remark 25. Cons-freeness has been used for multiple characterizations of complexity
classes (see, e.g., [18, 5, 19, 8]). The gist is that, during rewriting, no new constructor terms
can be built; thus, the definition of cons-freeness is usually less restrictive than the strong
cons-freeness of Definition 24 [19, 8]2, but we believe that the restriction to the very simple
notion of strong cons-freeness is cleaner and simpler to work with here.

▶ Remark 26. As pointed out by a referee, there are likely simpler grammar-based proofs
that the class of strongly cons-free constructor TRSs characterizes CFL compared to the one
we give using PDAs. However, the proof via PDAs shed light on the intuition that rewriting
in monadic constructor TRSs essentially consist of manipulation of up to two stacks – and
that for (strongly) cons-free systems, the manipulation is essentially a single “general” stack
and a “restricted” stack that can only be decremented, exactly as in a PDA.

The following proposition shows that we may disregard nullary defined symbols in the
remainder of the paper:

1 As the PDA has only a single state, we have suppressed the state in the notation of the rule δ(ai+1, Z) →
Z′.

2 For example, cons-freeness of a rule l → r in [8] is defined as the requirement that every subterm of the
form c(s) in r (where c ∈ C) either occurs in l, or is a ground constructor term.

FSCD 2021

5:10 The Chomsky Hierarchy and the Expressive Power of Monadic Rewriting

M = ({q0}, A, Γ, δ, q0, Z0)

F = {fZ : Z ∈ Γ} ∪ {f0} and C = {ã : a ∈ A} ∪ {▷}
Rewrite rules induced by transition rules in δ:

transition rule in δ rule of Rm

δ(a, Z) → Z1 · · · Zm fZ(ã(x)) → fZ1 (· · · fZm (x))
δ(a, Z) → ϵ fZ(ã(x)) → x

δ(ϵ, Z) → Z1 · · · Zm fZ(x) → fZ1 (· · · fZm (x))
δ(ϵ, Z) → ϵ fZ(x) → x

Start rule:
rewrite rules

f0(x) → fZ0 (x)

Figure 5 Rules of the cons-free system RM induced by the PDA M . As M has only one state,
the state argument has been omitted from δ.

▶ Proposition 27. Let R be a cons-free, monadic constructor TRS that accepts L ⊆ A+,
and let R′ be the monadic, cons-free constructor TRS obtained by omitting all rules in R

that contain a nullary defined symbol. Then R′ accepts L.

To greatly simplify our proofs for context-free and regular languages, we introduce normal
systems:

▶ Definition 28. A rule l → r is normal if l contains at most one constructor symbol, and
that constructor symbol is unary, that is either l = f(c(x)), or l = f(x) (for some f ∈ F
and c ∈ C). A constructor TRS R is normal if every rule is normal.

The following lemma shows that we can transform a set of rules with “large” left-hand
sides into (a larger set of) normal rules that accept the same language:

▶ Lemma 29. If L ⊆ A+ is accepted by a monadic, cons-free constructor TRS R, then L is
accepted by a monadic, cons-free, normal constructor TRS R′ with C = Ã ∪ {▷}. If R is tail
recursive, then R′ may be chosen to be tail recursive as well.

For each one-state PDA, we define a cons-free constructor TRS RM as given in Figure 5.
In Figure 5, the presence of transition rules of the form δ(ϵ, Z) → r force us to let RM

contain rules of the form f(x) → r′. By the definition of TRSs, application of such a rule may
occur anywhere in a term. However, as we want to simulate the PDA stack by a string of
defined symbols, applying a rule f(x) → r′ corresponds to removing a symbol in the middle
of the stack rather than popping it off the top. Hence, we are forced to require that redexes
in RM are contracted only at places corresponding to the top of the stack – which is the
case if the redexes are innermost. This is also sufficient, as we shall see shortly.

▶ Definition 30. Let p be a non-negative integer. A ground term s has a border position at
p if s = f1(· · · (fp(t)) · · ·) where p ≥ 1, f1, . . . , fp ∈ F and t is a ground constructor term.

The following proposition is proved by induction on the length of the involved rewrite
sequence:

▶ Proposition 31. Let R be a monadic, cons-free constructor TRS. If t is a ground term
with a border position such that t −→∗ ▷, then every term in the rewrite sequence, except the
last, has a border position, and an innermost redex at the border position.

Even if R contains overlapping redexes, innermost rewite steps can be retracted across
non-innermost ones (and efficiently so, as monadic systems cannot make more than a single
copy of each subterm):

J. G. Simonsen 5:11

▶ Proposition 32. Let R be a monadic, cons-free constructor TRS, let s be a term containing
a redex at a border position, and let m ≥ 0. If s →k t′ by non-innermost steps, and t′ →IM t,
then there is a term s′ such that s →IM s′ →k t, where →IM is innermost reduction.

Proof. As R is a constructor TRS, every redex at a border position is innermost, whence s

contains an innermost redex. As every non-innermost redex cannot overlap an innermost
redex, all innermost redexes in s are preserved across any non-innermost reduction, and
remain innermost. Consider the redex u contracted in the step t′ → t; as the innermost redex
at border position in s is preserved across s →k t′, it overlaps with u. But as the left-hand
sides of all redexes in R are of the form f(w) where w is a constructor term, no redexes
created in the reduction s →k t′ can overlap with the descendants of redexes at innermost
position in s. Hence, u is the descendant of an innermost redex u′ in s. Furthermore,
contracting an innermost redex cannot destroy any redexes except those that overlap with it
(and are thus, by definition, also innermost), and thus we may contract u′ to obtain the step
s →IM s′, followed by mimicking the steps in s →k t′ starting from the term s′ (all of which
can be performed, as u′ does not overlap with any non-innermost redex). Thus, s′ →k t,
concluding the proof. ◀

▶ Lemma 33. Let R be a monadic, cons-free, normal constructor TRS. If s = f0(α̃) →∗ ▷,
then s −→∗

IM ▷.

Proof. By Proposition 31, every term in s −→∗ ▷, except the last, contains an innermost
redex at a border position. Divide s −→∗ ▷ into subsequences, each of the form s′ →∗

IM
s′′ →k t′ →+

IM t′′ where s′′ →k t′ consists solely of non-innermost steps for some k ≥ 1.
Observe that this is always possible because the last step of s −→∗ ▷ must be innermost
as R is cons-free and ▷ is a constructor. By repeated application of Proposition 32, we
obtain s′ →+

IM s′′′ →k t′′ for some term s′′′. Hence, a straightforward induction on the length
of s −→∗ ▷ shows that all innermost steps can be retracted across non-innermost steps,
resulting in a reduction s →∗

IM t′′′ →∗ ▷ of length no more than the original where t′′′ →∗ ▷
contains no innermost steps. But as the last step of any reduction s →∗ ▷ must be innermost,
the length of t′′′ →∗ ▷ is zero, and thus s →∗

IM ▷, as desired. ◀

As with our previous simulation results, the following result is tedious to prove, but not
difficult:

▶ Lemma 34. Let M be a one-state PDA accepting language L ⊆ A+. Then RM accepts L

by innermost evaluation.

We now show how to simulate any cons-free constructor TRS by a one-state PDA. We
consider only normal systems, as this suffices by Lemma 29. For any normal, monadic,
cons-free constructor TRS with C = Ã∪{▷}, we define a one-state PDA as shown in Figure 6.

Again, the following is tedious, but fairly straightforward:

▶ Lemma 35. Let L ⊆ A+ be accepted by innermost reduction by a normal, cons-free,
monadic constructor TRS R. Then PDAR accepts L.

We thus have:

▶ Theorem 36. The following are equivalent for a language L ⊆ A+: (i) L is context-free,
(ii) L is accepted by a monadic cons-free constructor TRS.

FSCD 2021

5:12 The Chomsky Hierarchy and the Expressive Power of Monadic Rewriting

PDAR = ({q0}, A, {Zf : f ∈ F}, δ, q0, Zf0)

rule of R transition rule in δ

f(c(x)) → f1(· · · fm(x)) δ(c, Zf) → Zf1 · · · Zfm

f(x) → f1(· · · fm(x)) δ(ϵ, Zf) → Zf1 · · · Zfm

f(c(x)) → x δ(c, Zf) → ϵ
f(x) → x δ(ϵ, Zf) → ϵ

Figure 6 Definition of the pushdown automaton PDAR from a normal, monadic, cons-free
constructor TRS R with signature F ∪ C = F ∪ (Ã ∪ {▷}).

Proof. If L is context-free, Theorem 23 yields that L is accepted by a PDA M , which we
may assume by Proposition 22, has exactly one state. Lemma 34 yields that RM accepts
L by innermost reduction, and Lemma 33 shows that the elements of A∗ accepted by RM

are exactly those accepted by innermost reduction. Clearly, RM is a monadic, cons-free
constructor TRS.

Conversely, if L is accepted by a monadic, cons-free constructor TRS R, Lemma 33 yields
that R accepts L by innermost reduction, and by Lemma 29 we may assume wlog. that
R is normal. Lemma 35 now shows that PDAR accepts L, whence L is context-free by
Theorem 23. ◀

6 Regular languages: tail recursive cons-free systems

We shall now consider the class of regular languages. We assume the reader to be familiar
with the fact that a language is regular iff it is accepted by an NFA iff it is accepted by a
DFA. To fix notation, we give the following definition:

▶ Definition 37. A non-deterministic finite automaton (NFA) is a tuple (Q, A, δ, q0, Qaccept)
such that Q is a non-empty set of states, A is the input alphabet, δ is a set of transition
rules on one of the forms δ(q, a) → q′ or δ(q, ϵ) → q′ where q, q′ ∈ Q and a ∈ A, q0 ∈ Q is
the start state, and Qaccept ⊆ Q is the set of accept states. Furthermore, for any q ∈ Q and
any a ∈ A, there is at least one transition of the form δ(q, a) → q′. A deterministic finite
automaton (DFA) is an NFA such that there are no transitions of the form δ(q, ϵ) → q′, and
if there is a transition of the form δ(q, a) → q′, then there is no transition δ(q, a) → q′′ with
q′ ̸= q′′.

The class REG is characterized by the monadic constructor TRSs that are both cons-free
and one-call (see Definition 40).

In tail-recursive functional programming, the height of the call stack is bounded above
by a constant; a similar result holds here for innermost reduction:

▶ Proposition 38. Let R be a monadic, normal, cons-free, tail-recursive constructor TRS.
Then there is a constant c such that for any α ∈ A∗ and any innermost reduction f0(α̃) →∗

IM ▷,
the number of defined symbols in any term of the reduction is at most c.

Proof. By Proposition 31, any term in the reduction f0(α̃) →∗
IM ▷ contains an innermost

redex at border position. Hence, the position of any rewrite step in a term t in the reduction
will occur at the rightmost element of F in t. Thus, redex contraction in innermost reduction
will always occur at the rightmost element of F in t. Let f ∈ F be such an element, and let
f(c(x)) → f1(· · · fm(x)) be the rule of a redex at that position (if there is no variable in the

J. G. Simonsen 5:13

right-hand side of the rule, the supposition that R is cons-free entails that no future steps
will be able to produce ▷, a contradiction). As R is tail recursive, we have f > f2, . . . , fm,
and f ≥ f1.

Let l be the maximum number of occurrences of symbols from F in any right-hand side
among rules of R. Any totally ordered chain f1 > f2 > · · · > fm in F has length at most
|F|, and thus, the maximal number of defined symbols in any term in f0(α̃) →∗

IM ▷ is at
most c ≜ 1 + l · |F|. ◀

▶ Example 39. The assumption that f0(α̃) →∗
IM ▷ in Proposition 38 cannot be omitted

(that is, the presence of ▷ as the final term is crucial). Consider the following constructor
TRS:

R =

f0(x) → f0(g(x))
f0(x) → f0(h(x))
f0(x) → g(x)

g(ã(x)) → x for all a ∈ A

Observe that R is tail recursive and accepts A+ (because f0(α̃) →∗ f0(g|α|−1(α̃)) →
g|α|(α̃) →∗ ▷. But the number of elements of F in terms occurring in reductions starting
from f0(α̃) is unbounded, as witnessed by f0(α̃) → f0(g(α̃)) → · · · and f0(α̃) → f0(h(α̃)) →
f0(h(h(α̃))) → · · · ; in particular, the latter reduction shows that there are infinite reductions
with an innermost redex at the root of every term, and where the number of elements of F
in the terms has no upper bound.

We now define one-call systems:

▶ Definition 40. A monadic constructor TRS is said to be one-call if, for every rule l → r,
the right-hand side r contains at most one element of F .

The following lemma shows that instead of tail recursion, we could instead have considered
one-call systems:

▶ Lemma 41. Let R be a monadic, cons-free, tail-recursive constructor TRS accepting
language L ⊆ A+. Then, there is a one-call, normal, monadic, cons-free constructor TRS
that accepts L.

Proof. By Lemma 29, we may assume wlog. that R is normal. By Lemma 33, for every
α ∈ A+, if f0(α̃) →∗ ▷, then f0(α̃) →∗

IM ▷. By Proposition 38, there is a constant c such
that for every α ∈ A+, for every reduction of the form f0(α̃) →∗

IM ▷, the number of elements
of F in any term of the reduction is at most c.

We now construct a one-call (and normal, monadic, cons-free) constructor TRS R′ that
accepts L. R′ will have a new set of defined symbols F ′ and use the same set of constructors
C as R. For every integer k with 0 < k ≤ c and every (f1, . . . , fk) ∈ Fk, create a defined
symbol gf1···fk

∈ F ′. As R is normal and cons-free, every rule of R is on one of the forms
f(c(x)) → r or f(x) → r. For each symbol gf1···fk

∈ F ′, and each rule l → r of R such that
the root symbol of l is fk, create a rule of R′ as follows:

gf1···fk
(c(s)) → gf1···fk−1h1···hm(s) if l → r = fk(c(x)) → h1(· · · hm(s)) (where s = x or

s ∈ F).
gf1···fk

(x) → gf1···fk−1h1···hm(s) if l → r = fk(x) → h1(· · · hm(s)) (where s = x or s ∈ F).

Define S to be the resulting TRS. By construction, S is one-call, monadic, and cons-free.

FSCD 2021

5:14 The Chomsky Hierarchy and the Expressive Power of Monadic Rewriting

NFAR = (Q, A, δ, {qf0 }, {qh}) where Q = {qf : f ∈ F} ∪ {qh}

Transition rules in δ:
rule(s) of R transition rule in δ

f(c(x)) → g(x) δ(qf , c) → qg

f(x) → g(x) δ(qf , ϵ) → qg

f(c(x)) → x δ(qf , c) → qh

f(x) → x, δ(qf , ϵ) → qh

Figure 7 The NFA–NFAR–defined from a normal, monadic cons-free, one-call constructor TRS R.

We claim that, for each α ∈ A+, we have f0(α̃) →∗
R ▷ iff f0(α̃) →∗

S ▷.
If f0(α̃) →∗

IM ▷, write the reduction as t0 = f0(α̃) →IM t1 →IM→ · · · → ▷ = tn. Observe
that each term ti = f1(· · · fk(c)) (where c is a constructor term) in the reduction can be
mimicked in S by a term of the form gf1···fk

(c).
By Proposition 31, every term of f0(α̃) →∗

R,IM ▷, except the last, contains at
least one innermost redex at border position, and hence, the step ti → ti+1 must be
f1(· · · fk(c)) → f1(· · · fk−1(h1(· · · hm(· · ·))) using some rule fk(c(x)) → h1(· · · hm(s)) or
fk(x) → h1(· · · hm(s)) (for some m ≥ 0). Hence, the step can clearly be mimicked by
application of a rule in S, and we have f0(α̃) →∗

S ▷.
Conversely, if f0(α̃) →∗

S ▷, by construction of S, every term in the reduction is of
the form gf1···fk

(c) for some constructor term c. For each such term, there is a step
gf1···fk

(c) → gf1···fk−1h1···hm(s′{x 7→ c}) iff there is a rule fk(s) → h1(· · · hm(s′)) in R, and
hence f1(· · · fk(c)) →R f1(· · · fk−1(h1(· · · hm(s′{x 7→ c)))).

Thus, every step of f0(α̃) →∗
S ▷ can be mimicked by an innermost step in R, whence

f0(α̃) →∗
R ▷, as desired. Hence, S accepts L, and by construction, S is normal, monadic,

and one-call. ◀

▶ Lemma 42. Let R be a normal, monadic, cons-free, one-call constructor TRS deciding
language L ⊆ A+. Then, the NFA NFAR (see Fig. 7) accepts L.

Proof. Recall from basic automata theory that we may wlog. assume that an NFA only
accepts if it is in an accepting state when all of its input has been consumed. Denote by
L(NFAR) the language accepted by NFAR. By construction of NFAR, any run of NFAR

clearly mimicks reductions of R: every rewrite step is mimicked by exactly one transition
in NFAR, and conversely, any transition in NFAR can be mimicked by a rewrite step in R.
If f0(α̃) →∗ ▷, there is in particular a run of NFAR ending in qh with the entire input α

having been consumed in the run, and hence L ⊆ L(NFAR). Conversely, if α ∈ L(NFAR,
there is a run of NFAR on input α that (i) consumes all the input, and (ii) ends in qh, and
hence there is a rewrite sequence starting from f0(α̃) that ends with one of the two rewrite
steps f(c(▷)) → ▷ or f(▷) → ▷, whence L(NFAR) ⊆ L. ◀

By the equivalence of DFAs and NFAs, it suffices to simulate DFAs by rewriting systems.
In Figure 8 we show how to obtain such a system.

▶ Lemma 43. If M = (Q, A, δ, Qaccept) is a DFA accepting language L ⊆ A+, then RDFA
M

(see Fig. 8) accepts L.

J. G. Simonsen 5:15

M = (Q, A, δ, q0, Qaccept) F = {fq : q ∈ Q} C = Ã ∪ {▷}

Rules:
transition in δ rewrite rule

δ(q, a) → q′ fq(ã(x)) → fq′ (x)

Accepting run:

Rule (for every q ∈ Qaccept)
fq(x) → x

(recall that DFAs do not have ϵ-transitions)

Figure 8 Monadic cons-free, tail recursive constructor TRS RDFA
M induced by a DFA M .

Proof. As the DFA is deterministic, there are no ϵ-transitions, and for every (q, a) ∈ Q × A,
there is at most one transition δ(q, a) → q′. Thus, the constructor TRS RDFA

M is monadic,
cons-free and one-call. Furthermore, if q0 is the start state, set f0 = fq0 . We claim that for
any α ∈ A+, we have f0(α̃) →∗ ▷ iff there is an accepting run of the automaton on input α

starting in q0. To see this, note that there is a transition on string b1b2 · · · bk from state q to
state q′ /∈ Qaccept iff there is a rule δ(q, b1) → q′ iff fq (̃b1(̃b2 · · · b̃k(▷))) → fq′ (̃b2 · · · b̃k(▷))).
Thus, M reaches an accepting state after emptying the input iff f0(α̃) →∗ fq(▷) where
q ∈ Qaccept; and fq(▷) → ▷ iff q ∈ Qaccept. Hence, the DFA accepts string α iff the above
system accepts string α, and the result follows. ◀

We thus have the final result of the paper:

▶ Theorem 44. The following are equivalent for a language L ⊆ A+: (i) L is regular, (ii) L

is accepted by a one-call, monadic, cons-free constructor TRS, (iii) L is accepted by a tail
recursive, monadic, cons-free constructor TRS.

Proof. If L is regular, it is accepted by a DFA, hence by Lemma 43 accepted by a monadic,
cons-free, one-call constructor TRS. Conversely, if L is accepted by a monadic cons-free,
one-call constructor TRS, Lemma 29 shows that we may wlog. assume that R is normal
and one-call. Lemma 42 then shows that there is an NFA accepting L, whence L is regular.
Finally, observe that a one-call TRS is always tail-recursive (by relating all defined symbols in
the weak component of the ordering), and that Lemma 41 shows that any language accepted
by a tail-recursive monadic, cons-free constructor TRS is also accepted by a one-call monadic,
cons-free constructor TRS. ◀

7 Conclusion and future work

While we have characterized the original 4 language classes in the Chomsky hierarchy, it is
clear that similar characterizations should exist for other classes, e.g., the visibly pushdown
languages [1], or for deterministic context-free languages (where it is natural to conjecture
that non-overlapping (strongly) cons-free constructor TRSs suffice). However, the proofs of
the correspondences asserted in this paper followed from intuition about the (set of) stacks
maintained by the restricted computational models traditionally used to characterize the
classes; it is unclear whether this intuition can be used for more esoteric classes of languages.

On a different note, while the restriction to monadic systems plays well with the Chomsky
hierarchy, it seems to be less amenable to characterizations of the usual complexity classes
of interest in implicit complexity theory, e.g. PTIME, and it would be interesting to find
natural constraints on monadic systems that allowed characterization of these classes in
a liberal rewriting setting (i.e., no typing beyond what is strictly necessary, and with no
restrictions on the evaluation order).

FSCD 2021

5:16 The Chomsky Hierarchy and the Expressive Power of Monadic Rewriting

Finally, it should be investigated whether strong cons-freeness can be relaxed to more
lenient versions of cons-freeness, but for the reasons noted in the paper, this may not give as
short and clean a characterization as for strongly cons-free systems.

References
1 R. Alur and P. Madhusudan. Visibly pushdown languages. In László Babai, editor, Proceedings

of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16,
2004, pages 202–211. ACM, 2004.

2 M. Avanzini, N. Eguchi, and G. Moser. A path order for rewrite systems that compute
exponential time functions. In Manfred Schmidt-Schauß, editor, Proceedings of the 22nd
International Conference on Rewriting Techniques and Applications, RTA 2011, volume 10 of
LIPIcs, pages 123–138. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

3 M. Avanzini, G. Moser, and A. Schnabl. Automated implicit computational complexity analysis.
In Proceedings of the 4th International Joint Conference on Automated Reasoning (IJCAR
’08), volume 5195 of Lecture Notes in Computer Science, pages 132–138. Springer-Verlag, 2008.

4 S. Bellantoni and S.A. Cook. A new recursion-theoretic characterization of the polytime
functions. Computational Complexity, 2:97–110, 1992.

5 Guillaume Bonfante. Some programming languages for logspace and ptime. In Michael Johnson
and Varmo Vene, editors, Algebraic Methodology and Software Technology, 11th International
Conference, AMAST 2006, Kuressaare, Estonia, July 5-8, 2006, Proceedings, volume 4019 of
Lecture Notes in Computer Science, pages 66–80. Springer, 2006.

6 A.-C. Caron. Linear bounded automata and rewrite systems: Influence of initial configurations
on decision properties. In Samson Abramsky and T. S. E. Maibaum, editors, TAPSOFT,
Vol.1, volume 493 of Lecture Notes in Computer Science, pages 74–89. Springer, 1991. doi:
10.1007/3-540-53982-4_5.

7 N. Chomsky. On certain formal properties of grammars. Information and Control, 2(2):137–167,
1959.

8 L. Czajka. Term rewriting characterisation of LOGSPACE for finite and infinite data. In
Hélène Kirchner, editor, 3rd International Conference on Formal Structures for Computation
and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, volume 108 of LIPIcs, pages
13:1–13:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

9 D. de Carvalho and J. G. Simonsen. An implicit characterization of the polynomial-time
decidable sets by cons-free rewriting. In G. Dowek, editor, Rewriting and Typed Lambda
Calculi - Joint International Conference, RTA-TLCA 2014, volume 8560 of Lecture Notes in
Computer Science, pages 179–193. Springer, 2014.

10 E. P. Friedman. Equivalence problems for deterministic context-free languages and monadic
recursion schemes. Journal of Computer and Systems Sciences, 14(3):344–359, 1977.

11 E. P. Friedman. Simple context-free languages and free monadic recursion schemes. Mathem-
atical Systems Theory, 11(1):9–28, 1977.

12 E. P. Friedman and Sheila A. Greibach. Monadic recursion schemes: The effect of constants.
Journal of Computer and Systems Sciences, 18(3):254–266, 1979.

13 J. Goldstine, J. K. Price, and D. Wotschke. On reducing the number of states in a pda.
Mathematical Systems Theory, 15(4):315–321, 1982.

14 S. A. Greibach. Theory of Program Structures: Schemes, Semantics, Verification, volume 36
of Lecture Notes in Computer Science. Springer-Verlag, 1975.

15 J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Pearson Education International Inc., 2 edition, 2003.

16 G. Huet and D.S. Lankford. On the uniform halting problem for term rewriting systems.
Rapport Laboria 283, IRIA, 1978.

17 N. D. Jones. Computability and Complexity from a Programming Perspective. The MIT Press,
1997.

https://doi.org/10.1007/3-540-53982-4_5
https://doi.org/10.1007/3-540-53982-4_5

J. G. Simonsen 5:17

18 N.D. Jones. The expressive power of higher-order types, or: Life without cons. Journal of
Functional Programming, 11(1):55–94, 2001.

19 C. Kop and J. G. Simonsen. Complexity hierarchies and higher-order cons-free term rewriting.
Log. Methods Comput. Sci., 13(3), 2017.

20 S. Kuroda. Classes of languages and linear-bounded automata. Information and Control,
7(2):207–223, 1964.

21 H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall,
1981.

22 J.-Y. Marion. Analysing the implicit complexity of programs. Information and Computation,
183(1):2–18, 2003.

23 M. L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other topics in theory of
Turing machines. The Annals of Mathematics, 74(3):437–455, 1961.

24 C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
25 E. Rich. Automata, Computability and Complexity: Theory and Applications. Pearson Prentice

Hall, 2008.
26 M. Sipser. Introduction to the Theory of Computation. Thomson Course Technology, 2nd

edition, 2006.
27 Terese, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 2003.
28 R. Thiemann, H. Zantema, J. Giesl, and P. Schneider-Kamp. Adding constants to string

rewriting. Appl. Algebra Eng. Commun. Comput., 19(1):27–38, 2008. doi:10.1007/
s00200-008-0060-6.

FSCD 2021

https://doi.org/10.1007/s00200-008-0060-6
https://doi.org/10.1007/s00200-008-0060-6

Church’s Semigroup Is Sq-Universal
Rick Statman #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
We prove Church’s lambda calculus semigroup is sq-universal.

2012 ACM Subject Classification Theory of computation → Lambda calculus

Keywords and phrases lambda calculus, Church’s semigroup, sq-universal

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.6

1 Introduction

In 1937 ([2]) Church formulated lambda calculus as a semigroup. His ideas were pursued by
Curry and Feys ([3]), and later by Bohm (Barendregt [1, 532]) and Dezani ([4]). If lambda
terms in some way represent functions, then such a presentation based on composition is a
quite natural complement to the presentation based on application. Of course, it is widely
held that lambda calculus, therefore this semigroup, is an important part of the foundation
of functional programming.

In 1968 Peter Neumann [6] introduced the notion of an sq-universal group. Many results
in classical group theory can be interperted as saying that a particular group (or class of
groups) is sq-universal. The notion of sq-universal makes perfectly good sense for semigroups
as well as groups. A countable semigroup O is sq-universal if every countable semigroup is a
subsemigroup of a homomorphic image (quotient) of O (“sq” stands for “sub . . . of quotient
. . .”).

We shall show that Church’s semigroup is sq-universal. We shall also characterize lambda
theories as special kinds of quotients of the semigroup (there are quotients which do not
correspond to lambda theories) at least when I = 1 (eta).

2 Church’s semigroup

Some notation will be useful. We adopt for the most part the notation and terminology
of [1].

I := λx. x

1 := λxy. xy

B := λxyz. x(yz)
K := λxy. x

C := λxyz. xzy.

∼ := beta conversion
→ := beta reduction
↠ := beta reduction multistep.

Both Church and Curry observed that the combinators form a semigroup under multi-
plication B and beta conversion. The same is true for addition λxyuv. xu(yuv) and beta
conversion. Since these satisfy the right distributive law

(λxyz. x(yz))((λxyuv. xu(yuv))ab)c ∼ (λxyuv. xu(yuv))((λxyz. x(yz))ac)(((λxyz. x(yz))bc)

they form a near semiring.
© Rick Statman;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 6; pp. 6:1–6:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:statman@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.FSCD.2021.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Church’s Semigroup Is Sq-Universal

Many years ago I noticed a generalization of this near semiring structure to a hierarchy
of semigroups. Define

An := λxyu1 · · · unv. xu1 · · · un(yu1 · · · unv)

so A0 := B and A1 is Church’s addition. Then combinators form a semigroup with multiplic-
ation An with beta conversion. Again the right distributive law holds. More precisely we
have

(associativity) Am(Anxy) ∼ A0(Anx)(Any) if m = n,

(distributivity) Am(Anxy) ∼ An+1(Amx)(Amy) if m < n.

and in addition,

(i) Amx ∼ Am+1(Kx)I
(ii) K(Amxy) ∼ Am+1(Kx)(Ky).

Let On be the semigroup of all combinators with multiplication An. Let J = λx. xI (J is
usually written C∗∗). Now we adopt the infix notation ∗ for the prefixing of B.

(iii) J ∗ K ∼ I

(iv) J(Am+1xy) ∼ Am(Jx)(Jy).

3 Homomorphisms

A homomorphism h of On induces a congruence relation H defined by M H N iff h(M) =
h(N). Here we identify h with the map that takes M to its congruence class {N | M H N},
so h is a set valued map.

▶ Example 1. h(M) := BM defines a homomorphism of O0.

▶ Definition 2. h is said to be “entire” if
(a) h(KM) = K(h(M))
(b) h(JM) contains J(h(M))
(c) h(1M) = h(M)

▶ Example 3. h(M) := the beta-eta congruence class of M is entire. For, if KM beta-eta
converts to N there exists P s.t. N beta converts to KP . This follows from Church-Rosser
and eta postponement.

Now if h is an entire homomorphism for On then h is a homomorphism for every Om

with m < n, for we have

K(h(An−1xy)) ∼
h(K(An−1xy)) ∼
h(An(Kx)(Ky)) ∼
An(h(Kx))(h(Ky)) ∼
An(K(h(x)))(K(h(y))) ∼
K(An−1(h(x))(h(y)))

so by (iii) h(An−1xy) ∼ An−1(h(x))(h(y)).

R. Statman 6:3

Lambda theories are defined as in [1] 4.1.1. Each lambda theory T over beta conversion
induces a homomorphism for each On where H is defined by M H N iff T ⊢ M = N . Each
lambda theory T over beta- eta conversion induces an entire homomorphism for each On

where H is defined by M H N iff T ⊢ M = N . Now there are O0 homomorphisms which
are not induced by theories. For example, the Rees factor monoid induced by the ideal
{KM | all M}. However we shall show that this is essentially the only example.

▶ Theorem 4. Let h be an entire homomorphism for O1. Then T = {M = N | M H N} is
closed under logical consequence over beta conversion.

Proof. We suppose that T ⊢ M = N over beta conversion. For what follows we will use a
theorem of Jacopini [5] in the form exposited and marginally improved in [8].

By Jacopini’s theorem, there exist Mi = Ni in T for i = 1, . . . , n and closed terms
P1, . . . , Pn such that

M ∼ P1M1N1

P1N1M1 ∼ P2M2N2

P2N2M2 ∼ P3M3N3

...
PnNnMn ∼ N.

Thus by Church’s theorem ([1, 531]), which uses eta in one spot,

M H CIN1 ∗ CIM1 ∗ CIP1 ∗ B ∗ B ∗ CI

CIM1 ∗ CIN1 ∗ CIP1 ∗ B ∗ B ∗ CI H CIN2 ∗ CIM2 ∗ CIP2 ∗ B ∗ B ∗ CI

CIM2 ∗ CIN2 ∗ CIP2 ∗ B ∗ B ∗ CI H CIN3 ∗ CIM3 ∗ CIP3 ∗ B ∗ B ∗ CI

...
CIMn ∗ CINn ∗ CIPn ∗ B ∗ B ∗ CI H N.

Now let us write # for A1 infixed. We have

KM H K(CIN1) # K(CIM1) # K(CIP1) # KB # KB # K(CI)
K(CIM1) # K(CIN1) # K(CIP1) # KB # KB # K(CI) H

K(CIN2) # K(CIM2) # K(CIP2) # KB # KB # K(CI)
K(CIM2) # K(CIN2) # K(CIP2) # KB # KB # K(CI) H

K(CIN3) # K(CIM3) # K(CIP3) # KB # KB # K(CI)
...
K(CIMn) # K(CINn) # K(CIPn) # KB # KB # K(CI) H KN

by (ii). Now K(CIx) ∼ CI ∗ Kx so since h is entire

h(K(CIMi)) = h(K(CINi)) for i = 1, . . . , n.

Thus, since h is a # homomorphism, h(KM) = h(KN). But h is entire so h(M) = h(N). ◀

▶ Corollary 5. Let h be an entire homomorphism for O1. Then T = {M = N | M H N} is
closed under logical consequence over beta-eta conversion.

▶ Corollary 6. If h is an entire homomorphism for O1 then it is an entire homomorphism
for all On.

FSCD 2021

6:4 Church’s Semigroup Is Sq-Universal

4 SQ universality

▶ Definition 7. A set $ of order zero lambda-I terms is said to be independent if for every
member M of $ no beta reduct of M contains a beta reduct of any member of $ as a proper
subterm.

▶ Example 8. The set of terms (λx. xx)(λx. xx)N , where N is a non-zero Church numeral
is independent.

Curiously, independent sets must exist for recursion theoretic reasons.

▶ Lemma 9. There must be an infinite independent set.

Proof. We construct an increasing sequence of finite independent sets by induction.
Basis: {(λx. xx)(λx. xx)} is independent.
Induction step; we suppose that $ is a finite independent set. Now the following sets of

lambda-I terms are RE and closed under beta reduction
(i) the set of combinators with positive order
(ii) the set of combinators M s.t. there is a beta reduct of a member of $ ∪ {M} which is a

proper subterm of a beta reduct of M .
In addition, both of these sets have non-empty complements. Thus by Visser’s theorem (as
modified in [7] and adapted to lambda-I) the intersection of the complements of these two
sets is infinite (modulo beta-conversion). Thus one element can be added to $. ◀

▶ Definition 10. The B polynomials over $ are defined as follows. Any variable or member
of $ is a B polynomial. If F and G are B polynomials then so is F ∗ G.

▶ Lemma 11. Let $ be an independent set. Let P, P1, . . . , Pk be products of the members of $.
Then if P ∼ MP1 · · · Pk there exists a B polynomial F (x1, . . . , xk) over $ s.t. Mx1 · · · xk ∼
F (x1, . . . , xk).

Proof. Wlog we can assume that P = λx. J1(· · · (Jlx) · · ·) for the Ji members of $ where if
l = 1 then P = J1. When l = 1 consider a standard reduction of MP1 · · · Pk to P . Now if
one of the Pj comes to the head of the head reduction part of the standard reduction we have

Pj ↠ J1

and Mx1 · · · xk ↠ xj . Otherwise since the members of $ are independent Mx1 · · · xk ↠ J1.
Let l > 1, and let

MP1 · · · Pk ↠ λx. J1(· · · (Jlx) · · ·)

by a standard beta reduction. Now if one of the Pj comes to the head of the head reduction part
let @ be the substitution [P1/x1, . . . , Pk/xk]. We have for some X, Pj = λx. J1(· · · (Jmx) · · ·)
or J1

λx. Pj(@ X) ↠ P

(λx1 · · · xkx. X)P1 · · · Pk ↠ λx. Jm+1(· · · (Jlx) · · ·).

In this case the proposition follows by induction on l. If no Pj comes to the head then at the
end of the head reduction we have a term

λx. @((λy. Y)Y1 · · · Ym)

R. Statman 6:5

which reduces to P by internal reductions. Thus m = 2 and @((λy. Y)Y1) ↠ J1 by internal
reductions, and

(λx1 · · · xkx. Y2)P1 · · · Pk ↠ λx. J2(· · · (Jlx) · · ·).

Since the Ji are independent (λy. Y)Y1 ↠ J1 and the case follows by induction. ◀

Now if T is any set of equations between products of members of the independent set
$ then the lambda theory generated by T is certainly consistent since all these terms are
unsolvables. Now these equations can be thought of as the presentation of a semigroup on
the alphabet $. If P = Q is an equation between products of members of $ then we may
have T ⊢ P = Q where T is a lambda calculus theory, or T ⊢ P = Q where T is thought of
as the presentation of a semigroup. It will be convenient to use the terminology T ⊨ P = Q

for the semigroup case. Clearly if T ⊨ P = Q then T ⊢ P = Q.

▶ Lemma 12. If T ⊢ P = Q then T ⊨ P = Q.

Proof. Suppose that T ⊢ P = Q. By Jacopini’s theorem ([5]) there exist M1, . . . , Mm, and
P1 = Q1, . . . , Pm = Qm in T s.t.

P ∼ M1P1Q1

M1Q1P1 ∼ M2P2Q2

M2Q2P2 ∼ M3P3Q3

...
MmQmPm ∼ Q,

The proof is by induction on m. Wlog we can assume that P = λx. J1(· · · (Jlx) · · ·). By
lemma 11 there exists a B polynomial F (x1, x2) over $ s.t.

M1x1x2 ∼ F (x1, x2)

so

P ∼ F (P1, Q1)
T ⊨ P = F (P1, Q1)
T ⊨ P = F (Q1, P1)

F (Q1, P1) ∼ M2P2Q2

and we can apply the induction hypothesis to

F (Q1, P1) ∼ M2P2Q2

M2Q2P2 ∼ M3P3Q3

...
MmQmPm ∼ Q. ◀

▶ Theorem 13. O0 is sq-universal.

Proof. Suppose that the countable semigroup S is given. We take a set of generators and
a presentation of S on these generators. Using lemma 9, we construct an independent set,
which we identify with these generators, and we construct a lambda theory T , which encodes
the presentation of S. By lemma 12 T ⊢ P = Q if and only if P = Q is true in S. But by
section 2 there is a homomorphism h of O0 s.t. T ⊢ P = Q if and only if h(P) = h(Q). ◀

FSCD 2021

6:6 Church’s Semigroup Is Sq-Universal

References
1 Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume 103 of

Studies in logic and the foundations of mathematics. North-Holland, 1985.
2 Alonzo Church. The Calculi of Lambda Conversion. Princeton University Press, 1941.
3 Haskell B. Curry and Robert Feys. Combinatory Logic, volume 1. North Holland, 1958.
4 Mariangiola Dezani-Ciancaglini. Characterization of Normal Forms Possessing Inverse in

the lambda-beta-eta-Calculus. Theor. Comput. Sci., 2(3):323–337, 1976. doi:10.1016/
0304-3975(76)90085-2.

5 Giuseppe Jacopini. A condition for identifying two elements of whatever model of combinatory
logic. In Corrado Böhm, editor, Lambda-Calculus and Computer Science Theory, Proceedings
of the Symposium Held in Rome, Italy, March 25-27, 1975, volume 37 of Lecture Notes in
Computer Science, pages 213–219. Springer, 1975. doi:10.1007/BFb0029527.

6 P. Neumann. The SQ-universality of some finitely presented groups. J. Austral. Math. Soc.,
16:1–6, 1973.

7 Richard Statman. Morphisms and Partitions of V-Sets. In Georg Gottlob, Etienne Grandjean,
and Katrin Seyr, editors, Computer Science Logic, 12th International Workshop, CSL ’98,
Annual Conference of the EACSL, Brno, Czech Republic, August 24-28, 1998, Proceedings,
volume 1584 of Lecture Notes in Computer Science, pages 313–322. Springer, 1998. doi:
10.1007/10703163_21.

8 Richard Statman. Consequences of Jacopini’s Theorem: Consistent Equalities and Equations.
In Jean-Yves Girard, editor, Typed Lambda Calculi and Applications, 4th International Con-
ference, TLCA’99, L’Aquila, Italy, April 7-9, 1999, Proceedings, volume 1581 of Lecture Notes
in Computer Science, pages 355–364. Springer, 1999. doi:10.1007/3-540-48959-2_25.

https://doi.org/10.1016/0304-3975(76)90085-2
https://doi.org/10.1016/0304-3975(76)90085-2
https://doi.org/10.1007/BFb0029527
https://doi.org/10.1007/10703163_21
https://doi.org/10.1007/10703163_21
https://doi.org/10.1007/3-540-48959-2_25

Call-By-Value, Again!
Axel Kerinec #

Laboratoire LIPN, CNRS UMR 7030, Université Sorbonne Paris-Nord, France

Giulio Manzonetto # Ñ

Laboratoire LIPN, CNRS UMR 7030, Université Sorbonne Paris-Nord, France

Simona Ronchi Della Rocca # Ñ

Computer Science Department, University of Torino, Italy

Abstract
The quest for a fully abstract model of the call-by-value λ-calculus remains crucial in programming
language theory, and constitutes an ongoing line of research. While a model enjoying this property
has not been found yet, this interesting problem acts as a powerful motivation for investigating
classes of models, studying the associated theories and capturing operational properties semantically.

We study a relational model presented as a relevant intersection type system, where intersection
is in general non-idempotent, except for an idempotent element that is injected in the system. This
model is adequate, equates many λ-terms that are indeed equivalent in the maximal observational
theory, and satisfies an Approximation Theorem w.r.t. a system of approximants representing finite
pieces of call-by-value Böhm trees. We show that these tools can be used for characterizing the most
significant properties of the calculus – namely valuability, potential valuability and solvability – both
semantically, through the notion of approximants, and logically, by means of the type assignment
system. We mainly focus on the characterizations of solvability, as they constitute an original result.
Finally, we prove the decidability of the inhabitation problem for our type system by exhibiting a
non-deterministic algorithm, which is proven sound, correct and terminating.

2012 ACM Subject Classification Theory of computation → Denotational semantics; Theory of
computation → Linear logic

Keywords and phrases λ-calculus, call-by-value, intersection types, solvability, inhabitation

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.7

Funding Giulio Manzonetto: This work is partly supported by ANR Project ANR-19-CE48-0014.

Acknowledgements We would like to thank Giulio Guerrieri for interesting discussions, as well as
the anonymous reviewers for helpful suggestions.

Introduction

Despite the fact that the call-by-value (CbV) λ-calculus has been introduced by Plotkin
several decades ago [22], the problem of finding a denotational model satisfactorily reflecting
its operational semantics is not completely solved, yet. While a plethora of adequate models
has been constructed, e.g., in the Scott continuous and stable semantics [13, 23, 18], none
enjoys completeness and it is therefore fully abstract. Similarly, the theory of program
approximations for the CbV λ-calculus remained for a longtime rather involuted compared
to the one developed in the call-by-name (CbN) setting (see [5, Ch. 14]). As an example, in
[26] the authors show that the continuous model built in [13] does satisfy an Approximation
Theorem, but the considered notion of approximant turns out to be too weak for capturing
any interesting operational property. The main problem one encounters when approximating
CbV reductions is that certain redexes remain stuck along reductions for silly reasons, thus
preventing the creation of other redexes and leading to premature CbV normal forms (see [2]).
A possible solution has been proposed in [10] by introducing permutation reductions that
allow to unblock such redexes without altering fundamental operational properties of the

© Axel Kerinec, Giulio Manzonetto, and Simona Ronchi Della Rocca;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 7; pp. 7:1–7:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kerinec@lipn.univ-paris13.fr
mailto:manzonetto@univ-paris13.fr
https://lipn.univ-paris13.fr/~gmanzonetto/
mailto:ronchi@di.unito.it
http://www.di.unito.it/~ronchi/
https://doi.org/10.4230/LIPIcs.FSCD.2021.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Call-By-Value, Again!

calculus, like the capability of a program of reducing to a value or the notion of solvability
(as shown in [17]). This breakthrough has renewed the interest in the CbV λ-calculus within
the scientific community and led to a wealth of original results [2, 17, 3, 20, 19].

Inspired by the relational semantics of Linear Logic [15] and exploiting Girard’s “boring”
translation of intuitionistic arrow in linear logic, sending A → B into !(A ⊸ B), Ehrhard
introduced a class of relational models for CbV λ-calculus [14]. Like filter models correspond
to intersection type systems under the celebrated Stone duality [1], also relational models can
be nicely presented in a similar fashion [25], except for the fact that the intersection becomes
a non-idempotent operator. Thus, the type α1 ∧· · ·∧αn can be seen as a multiset [α1, . . . , αn].
The advantage of counting the multiplicities is that it allows to expose quantitative properties
of programs, e.g., by extracting a bound to their head reduction sequences [12]. The disad-
vantage of using relational models is that they are extremely poor in terms of representable
theories. In the CbN setting, it is clear from [7] that all non-extensional relational graph
models induce the same theory, and we have reasons to believe that the same holds for the
class of CbV models from [14]. Therefore, in order to obtain different theories, one needs to
substantially modify the construction of the model. Now, in coherent spaces, it is possible
construct CbV models by performing a “lifting” that injects a new point ⋆ (coherent with
all existing points) [18], leading to a solution of the domain equation D ∼= [D →s D] ⊕ {⋆},
where [· →s ·] denotes the domain of stable functions [6]. Mimicking this construction
in the relational semantics, a new class of relational models for the CbV λ-calculus was
introduced in [20]. The main difference is that, in the associated type assignment systems,
the intersection is still non-idempotent except for an idempotent element [], which is available
at will and can be used to type any value in the empty environment. The authors show that
all models in this class satisfy adequacy, a property they share with Ehrhard’s relational
models, but induce different theories. More precisely, they equate many λ-terms that are
indeed equal in the maximal observational equivalence, whence the induced theory is closer
to full abstraction. A notable example is given by the λ-terms (λx.xx)M and MM that
are observationally indistinguishable – even when M is not a value – but have distinct
interpretations in Ehrhard’s models [16]. Moreover it has been proved that all models in this
class enjoy an Approximation Theorem.

In this paper we study a particular relational model M living in the class of [20], cor-
responding to a relevant intersection type system having countably many atoms and no
additional equivalences among types (in particular, atoms are not equivalent to arrow types).
We show that the model M satisfies an Approximation Theorem with respect to a refined
notion of syntactic approximants, that take permutation rules into account and were success-
fully applied in [19] to introduce a CbV notion of Böhm trees. By exploiting the resource
consciousness of the model, we are able to provide an easy inductive proof of this result
(Theorem 23) and avoid the impredicative techniques based on reducibility candidates that
are needed in the continuous and stable semantics (see, e.g., [4, Ch. 17] or [26, Thm. 11.1.19]).
As a consequence of the Approximation Theorem we derive that the model M equates all
λ-terms having the same CbV Böhm tree. The fact that M is sensitive to the amount of
resources needed by a λ-term during its execution still breaks the full abstraction property
(a counter-example is given in [20]).

Despite the lack of full abstraction, we show that the model M and the associated system
of approximants allow to characterize nicely operational properties like valuability, potential
valuability, and solvability. A λ-term is (potentially) valuable if it reduces to a value (under
suitable substitutions), and solvable if it is capable of generating a completely defined result,
like the identity, when plugged in a suitable context. The notion of solvability, inherited from

A. Kerinec, G. Manzonetto, and S. Ronchi Della Rocca 7:3

the CbN λ-calculus, is particularly interesting since it identifies the “meaningful” programs. In
CbN, solvability has been characterized operationally (via head reduction), logically (through
typability) and semantically (by building models assigning non-trivial interpretations to
solvable terms exclusively). The model M provides a logical and semantic characterization
of CbV solvability. On the logical side, we show that a λ-term is solvable if and only if it is
typable in M with types that are “proper”, in the sense of Definition 31. On the semantic
side, we prove that all solvables admit approximants having a particular shape. Both the
logical and semantic characterizations are presented in Theorem 36 and, as a consequence, we
obtain that M is not sensible, but semi-sensible. This means that the model is “meaningful”
since it does not equate all unsolvables, but neither equates a solvable to an unsolvable.

Finally, since the model M is presented as an intersection type system, it feels natural to
wonder whether the type inhabitation problem is decidable.

The Inhabitation Problem (IHP): Given any type environment Γ and any type α, is
there a λ-term M having type α in Γ?

Since Urzyczyn’s work [27], it is known that IHP is undecidable for the CbN (idempotent)
intersection type system presented in [11]. Van Bakel subsequently simplified the system
using strict types [29], where intersection is only allowed on the left-hand side of an arrow,
while maintaining the undecidability of inhabitation – even in its “relevant” version where
type environments only contain the consumed premises (Urzyczyn’s proof extends easily [28]).
On the one hand, this shows that the decidability of inhabitation is not strictly connected
with the relevance of the system, on the other hand IHP has been proven decidable for several
non-idempotent intersection type systems [9]. In Section 4, we describe a non-deterministic
algorithm taking an environment Γ and a type α as inputs, and generating as output all
minimal approximants having type α in Γ. First, we show that the algorithm is terminating
(Theorem 46), a result only possible because there are finitely many approximants satisfying
the above criteria. Then we demonstrate the soundness and completeness properties of the
algorithm (Theorem 48), from which the decidability of IHP in this setting follows. Although
our inhabitation algorithm is clearly inspired by [9], the adaptation is non-trivial for two
reasons: the presence in the CbV setting of normal inhabitants having the shape (λx.M)N
of a β-redex, and the presence of an idempotent element in the type assignment system.

Some related works
Despite the existence of several models of the CbV λ-calculus, their theories have rarely been
explored. An exception is [26], where the theory of the model from [13] has been extensively
studied. A semantic characterization of solvability is given, but not completely satisfactory
because of the weak notion of approximation employed. The first logical characterization
of CbV solvability is in [21], through a particular class of (idempotent) intersection types –
it is, in some sense, similar to ours, but it is not based on a semantic model. Two known
attempts at characterizing this notion from an operational point of view are [21, 10], both
based on ad hoc reduction rules that are however unsound for CbV semantics. This suggests
that CbV languages still lack a satisfactory rewriting theory.

1 Preliminaries

For the syntax of λ-calculus we mainly follow Barendregt’s first book [5], for its call-by-value
version [26], and for its extension with permutation rules [10].

FSCD 2021

7:4 Call-By-Value, Again!

1.1 The call-by-value λ-calculus
We consider fixed a countable set V of variables. The set Λ of λ-terms and the set Val of
values are defined inductively via the following grammar (where x ∈ V):

(Λ) M, N ::= MN | V (Val) V, U ::= x | λx.M

Application is represented as juxtaposition. As usual, we assume that it associates to the left
and has higher-precedence than abstraction. Given M ∈ Λ, we shorten λx1.(· · · (λxk.M) · · ·)
as λx1 . . . xk.M or even as λx⃗.M . For example, λxyz.xyz stands for λx.(λy.(λz.(xy)z)).
Given N1, . . . , Nn ∈ Λ, we write MN⃗ for MN1 · · · Nn and MN∼k

1 for MN1 · · · N1 (k-times).
The set FV(M) of free variables of M and α-conversion are defined as usual [5, §2.1].

We say that a λ-term M is closed, or a combinator, whenever FV(M) = ∅. We denote by Λo

the set of all combinators. From now on, λ-terms are considered up to α-conversion.
Concerning specific combinators, we fix the following notations (for n ∈ N):

K = λxy.x ∆ = λx.xx, Ω = ∆∆, Pn = λx0 . . . xn.xn,

B = λfgx.f(gx), K⋆ = ZK, Z = λf.(λy.f(λz.yyz))(λy.f(λz.yyz)),

where K is the first projection, ∆ the self-application, Ω the paradigmatic looping combinator,
Pn erases n arguments, B is the composition, K⋆ an ogre and Z a CbV recursion operator.
Notice that P0 = λx0.x0 is the identity, therefore we also use I as an alternative notation.

▶ Definition 1. On Λ, we define the following notions of reduction (for V ∈ Val):

(βv) (λx.M)V → M [V/x], where [V/x] denotes capture-free substitution,
(σ1) (λx.M)NP → (λx.MP)N, with x /∈ FV(P),
(σ3) V ((λx.M)N) → (λx.V M)N, with x /∈ FV(V).

We also define (σ) = (σ1) ∪ (σ3) and (v) = (βv) ∪ (σ). Each R ∈ {βv, σ1, σ3, σ, v} induces a
one-step (resp. multi-steps) reduction relation →R (↠R), and a conversion relation =R. We
say that a λ-term M is in R-normal form (R-nf, for short) if there is no N ∈ Λ such that
M →R N . We say that M has an R-nf if M ↠R N for some λ-term N in R-nf.

▶ Fact 2. The set Val is closed under substitutions ϑ : V → Val and v-reductions.

Plotkin’s original formulation of the CbV λ-calculus only considers the βv-reduction [22].
The permutation rules (σ), introduced by Regnier in the CbN setting [24], have been extended
by Carraro and Guerrieri to CbV in [10], where the following properties are shown.

▶ Proposition 3.
(i) The reduction →σ is strongly normalizing. More precisely, there exists a measure

s : Λ → N such that M →σ N entails s(N) < s(M).
(ii) The reduction →v is confluent. In particular, the v-nf of M ∈ Λ (if any) is unique.

▶ Example 4.
(i) Ω →βv Ω, λx.Ω →βv λx.Ω and Ix →βv x, while I(xy) is a v-nf.
(ii) (λy.∆)(xI)∆ is a βv-nf, but (λy.∆)(xI)∆ →σ1 (λy.Ω)(xI) →βv (λy.Ω)(xI) →βv · · ·
(iii) I(∆(xx)) is a βv-nf, but contains a σ3-redex, indeed I(∆(xx)) →σ3 (λz.I(zz))(xx).
(iv) Z is called a recursion operator since ZV =βv V (λx.ZV x), for all V ∈ Val and x fresh.
(v) K⋆ =v K(λy.K⋆y) =v λx0x1.K⋆x1 =v λx0x1x2.K⋆x2 =v · · · =v λx0 . . . xn.K⋆xn.
(vi) For all V⃗ ∈ Val, we have K⋆V⃗ =v K⋆ and PnV1 · · · Vm ↠v Pn−m provided n ≥ m.

A. Kerinec, G. Manzonetto, and S. Ronchi Della Rocca 7:5

Lambda terms are classified into valuable, potentially valuable, solvable or unsolvable
depending on their behavior and their capability of interaction with the environment.

▶ Definition 5. A λ-term M is called:
(i) valuable if it reduces to a value, namely M ↠v V for some V ∈ Val.
(ii) potentially valuable if there exists a substitution ϑ : V → Val such that Mϑ is valuable.
(iii) solvable if there exist sequences x⃗, V⃗ ∈ Val such that (λx⃗.M)V⃗ ↠v I.
(iv) unsolvable, if it is not solvable.

Notice that the notions of solvability and valuability are both stronger than potential
valuability, but orthogonal with each other. We provide some discriminating examples.

▶ Example 6.
(i) I, ∆, Pn, ∆(II), P1(λx.Ω) are (potentially) valuable and solvable.
(ii) P1x(λx.Ω), xyI∆ and ∆(xy) are not valuable, but potentially valuable and solvable.
(iii) λx.Ω, ZB and K⋆ are valuable, but unsolvable. The term K⋆ is called an ogre because

of its capability of eating any V⃗ while remaining valuable: K⋆V⃗ ↠βv λx.M ∈ Val.
(iv) Ω, Ω(xy), (λy.∆)(xI)∆, IΩ, ZI are not potentially valuable nor solvable. The same

holds for YM , where Y is a CbN fixed point operator and M is a λ-term.
▶ Remark 7. The original definitions of valuability, potential valuability and solvability are
given in terms of βv-reduction (see [22] and [26], respectively). In [10] and [17], it is shown
that all these notions are preserved when considering the extended v-reduction. In particular,
for all λ-terms M , we have that M ↠βv I holds exactly when M ↠v I does.

▶ Property 8. If M = (λx1 . . . xk.P)N1 · · · Nn ↠v I then each Ni is valuable, say Ni ↠v Vi.
Moreover, we must have k ≤ n + 1.

Proof. By the above remark, M ↠v I entails M ↠βv I. Therefore, k > n + 1 would imply
M ↠βv (λx⃗.P)V⃗ ↠βv λxn+1 . . . xk.P ′ ̸=βv I. ◀

For the model theory of CbV λ-calculus, we refer to [26]. Every model S comes equipped
with an interpretation map [[−]] that allows to compute the denotation [[M]] of M ∈ Λ. We
say that S equates M, N ∈ Λ whenever [[M]] = [[N]]. The least requirement for a model S is
that it equates all βv-convertible λ-terms (soundness). A model S is called consistent if it
does not equate all λ-terms; inconsistent if it is not consistent; sensible if it is consistent and
equates all unsolvables; semi-sensible if it does not equate a solvable and an unsolvable.

2 A Call-by-Value Relational Model

We define a particular model M living in the class of relational models introduced in [20]. A
model S in this class can be described as a type assignment system, where finite multisets of
types appear at the left-hand side of an arrow. Such a model S is uniquely identified by a set
A of atomic types and a congruence ≃ on types, respecting the multiset cardinalities. The
model M under consideration corresponds to the relational model having countably many
atoms, and the trivial congruence relation on types (namely, ≃ is the equality =).

2.1 The Type Assignment System M

In order to define the type assignment system M, we need to introduce some basic notions
and notations concerning finite multisets. Given a set A, we represent a finite multiset over
A as an unordered list [α1, . . . , αn], possibly with repetitions, where n ∈ N and each αi ∈ A.

FSCD 2021

7:6 Call-By-Value, Again!

x : [α] ⊢ x : α
(var) Γ, x : σ ⊢ M : α

Γ ⊢ λx.M : σ → α
(lam) Γ0 ⊢ M : σ → α Γ1 ⊢ N : σ

Γ0 + Γ1 ⊢ MN : α
(app)

Γ1 ⊢ M : α1 · · · Γn ⊢ M : αn n > 0∑n
i=1 Γi ⊢ M : [α1, . . . , αn]

(val>0) V ∈ Val
⊢ V : []

(val0)

Figure 1 The inference rules of the type assignment system M. In (lam) we assume x /∈ dom(Γ).

The empty multiset will be denoted by []. We write Mf(A) for the set of all finite multisets
over A. Given σ, τ ∈ Mf(A), we write σ +τ for their multiset union. The operator + extends
to the n-ary case σ1, . . . , σn ∈ Mf(A) in the obvious way, in symbols,

∑n
i=1 σi ∈ Mf(A).

▶ Definition 9. Let us fix a countable set A = {a, b, c, . . . } of constants called atomic types.
(i) The set T of types over A and the set T! of multiset types are defined by (for n ≥ 0):

(T) α, β ::= a | [] | σ → α

(T!) σ, τ, ρ ::= [α1, . . . , αn] with αi ̸= [], for all i (1 ≤ i ≤ n).

The arrow is right associative, i.e., σ1 → · · · → σn → α = (σ1 → (· · · (σn → α) · · ·)).
(ii) Type environments are functions Γ : V → T! having a finite domain, which is defined

by dom(Γ) = {x | Γ(x) ̸= []}. The multiset sum is extended to type environments Γ and
∆ pointwisely, namely, by setting (Γ + ∆)(x) = Γ(x) + ∆(x), for all x ∈ V.

(iii) We denote by x1 : σ1, . . . , xn : σn the type environment Γ defined by setting:

Γ(x) =
{

σi, if y = xi for some i ∈ {1, . . . , n},

[], otherwise.

Intuitively, the multiset type [α1, . . . , αn] ∈ T! = Mf(T − {[]}) represents an intersection
type α1 ∧ · · · ∧ αn, where ∧ enjoys associativity and commutativity, but not idempotency
(α ∧ α ̸= α). The empty multiset [] belongs both to T and T!, but with different meanings:
[] ∈ T should be thought of as a special “idempotent” type atom which is available at will;
morally, [] ∈ T! is a multiset only containing an indeterminate amount of atoms [] ∈ T.

▶ Definition 10.
(i) A typing judgement has shape Γ ⊢ M : ξ, where Γ is an environment, M ∈ Λ and

ξ ∈ T ∪ T!. The inference rules of the type system M are given in Figure 1.
(ii) We write Π ▷ Γ ⊢ M : ξ to indicate that Π is a derivation of Γ ⊢ M : ξ. Hereafter,

when writing Γ ⊢ M : ξ, we assume that Π ▷ Γ ⊢ M : ξ holds for some derivation Π.

The rules (var), (lam) and (app) are self-explanatory. In case x /∈ FV(M), the rule (lam)
assigns λx.M the type [] → α in the environment Γ. The rule (val0) can be used to type
every value with [] in the empty environment. The rule (val>0) allows to collect several types
of M into a non-empty multiset type, by adding the corresponding environments together.
The type system is relevant in the sense that Γ ⊢ M : α entails dom(Γ) ⊆ FV(M).

▶ Example 11. The following is a derivation Π in system M (setting Γ = f : [[a, a] → a]):

Γ ⊢ f : [a, a] → a

x : [[] → a] ⊢ x : [] → a ⊢ y : []
x : [[] → a] ⊢ xy : a

x : [[b] → a] ⊢ x : [b] → a y : [b] ⊢ y : b
x : [[b] → a], y : [b] ⊢ xy : a

x : [[] → a, [b] → a], y : [b] ⊢ xy : [a, a]
Γ + x : [[] → a, [b] → a], y : [b] ⊢ f(xy) : a

Other derivable typing judgements are ⊢ I : [a] → a, ⊢ Ix : [] and x : [a] ⊢ (λy.x)x : a.

A. Kerinec, G. Manzonetto, and S. Ronchi Della Rocca 7:7

Through the rule (val0), it is possible to assign the type [] to a value V without inspecting
its shape and typing its subterms1 – we say that such a V is not fully typed. Similarly, in
a derivation of Γ ⊢ M : α, certain subterms of M might not be fully typed. E.g., in any
derivation of x : [a] ⊢ (λy.x)x : a, the former occurrence of x must be fully typed, while the
latter cannot be. To identify occurrences of a subterm and formalize this intuitive property,
we introduce single-hole contexts. A single-hole context C[] is a λ-term containing exactly
one occurrence of a distinguished algebraic variable [], traditionally called its hole. Given a
single-hole context C[] and N ∈ Λ, we write C[N] for the λ-term obtained by substituting N

for the occurrence of the hole [] in C[], possibly with capture of free variables. Every such
context C[] uniquely identifies one occurrence of a subterm N of M , as in M = C[N].

▶ Definition 12. Let M ∈ Λ, and Π ▷ Γ ⊢ M : ξ for some context Γ and ξ ∈ T ∪ T!.
(i) The set fto(Π) of fully typed occurrences of subterms of M in Π is the set of single-hole

contexts defined by structural induction on Π and by cases on its last applied rule:

(var) fto(Π) = {[]}.
(lam) fto(Π) = {[]} ∪ {λx.C[] | C[] ∈ fto(Π′)}, if M = λx.M ′ and Π′ is the premise

of Π.
(app) fto(Π) = {[]} ∪ {(C[])Q | C[] ∈ fto(Π1)} ∪ {P (C[]) | C[] ∈ fto(Π2)}, where

M = PQ and Π1, Π2 are the major and minor premises of Π, respectively.
(val0) fto(Π) = ∅.

(val>0) fto(Π) =
⋂

1≤i≤n fto(Π′
i), where (Π′

i)1≤i≤n are the premises of Π.

(ii) We say that N is a typed subterm occurrence of M in Π if M = C[N] for C[] ∈ fto(Π).
(iii) On Π, define a measure m(Π) = ⟨app(Π), s(M)⟩ ∈ N2 (lexicographically ordered) where

app(Π) is the number of (app) rules in Π, and
s(M) is the measure from Proposition 3(i), strictly decreasing along (σ) steps.

▶ Remark 13. When the last rule of Π is (val>0), a subterm occurrence is typed if and only
if it is typed in all subjects of the premises. For example, in the derivation Π of Example 11,
the occurrence of y in f(xy) is not fully typed since fto(Π) = {[], [](xy), f([]y)}.

▶ Proposition 14. Let M, N ∈ Λ be such that M →v N , Γ be an environment and α ∈ T.
(i) (Weighted Subject Reduction) If Π ▷ Γ ⊢ M : α then Π′ ▷ Γ ⊢ N : α for some Π′.

Moreover, if the redex occurrence contracted in M is fully typed in Π then m(Π′) < m(Π).
(ii) (Subject Expansion) If Γ ⊢ N : α is derivable, then so is Γ ⊢ M : α.

Proof. By Lemma 4.14 in [20]. ◀

From this proposition, the soundness of the model M follows easily.

▶ Definition 15. The interpretation of a λ-term M in the model M is given by:

[[M]] = {(Γ, α) | Γ ⊢ M : α}.

We write M |= M = N whenever [[M]] = [[N]] holds.

▶ Corollary 16 (Soundness). For M, N ∈ Λ, M =v N entails M |= M = N .

1 This includes the case ⊢ x : [], although x contains itself as a subterm and it is assigned a type. This is
consistent with the fact that (val0) uses the information that x is a value, without looking at its shape.

FSCD 2021

7:8 Call-By-Value, Again!

2.2 The Approximation Theory of M

We now show that the model M is also well-suited to model the theory of program approx-
imation introduced in [19] for defining Call-by-Value Böhm trees. In particular, we provide a
quantitative proof of the Approximation Theorem in the spirit of [7, 9, 20].

▶ Definition 17.
(i) Let Λ⊥ be the set of λ-terms possibly containing occurrences of a constant ⊥, and

Val⊥ = ⊥ ∪ V ∪ {λx.M | M ∈ Λ⊥} ⊆ Λ⊥ the set of extended values.
(ii) The set A of (finite) approximants is inductively defined by the grammar (for n ≥ 0):

(A) A ::= H | R

H ::= ⊥ | x | λx.A | xHA1 · · · An

R ::= (λx.A)(yHA1 · · · An)

Terms of shape H are called head approximants as they remind those used for building
CbN Böhm trees, while approximants of shape R are called redex-like because they look
like a β-redex. Let H (resp. R) be the set of all head (resp. redex-like) approximants.

(iii) Define ⊑⊥ ⊆ Λ2
⊥ as the least order relation compatible with abstraction and application,

and including ⊥ ⊑⊥ V for all V ∈ Val⊥. Given a set X ⊆ Λ⊥, we write ↑ X if its
elements are pairwise compatible, and in this case

⊔
X denotes their least upper bound.

(iv) For M ∈ Λ, define the set A(M) of (finite) approximants of M as follows

A(M) = {A ∈ A | ∃N ∈ Λ . M ↠v N and A ⊑⊥ N}

We say that two λ-terms M, N have the same CbV Böhm tree when A(M) = A(N).

▶ Remark 18.
(i) Although not formally needed, one could extend the v-reduction to terms in Λ⊥ in

the obvious way, and check that all approximants A ∈ A are in v-normal form. The
subterm of shape H in xHA1 · · · An is precisely needed to prevent a σ3-redex.

(ii) The terminology “M and N have the same CbV Böhm tree” is consistent with [19],
where the CbV Böhm tree of a λ-term M is defined as the possibly infinite tree

⊔
A(M).

Indeed, it is easy to check that A(M) = A(N) if and only if their suprema coincide.

▶ Example 19.
(i) A(Ω) = A(Ω(xy)) = A(ZI) = ∅.
(ii) A(∆) = {⊥, λx.x⊥, λx.xx}, A(λx.Ω) = {⊥} and A(K∗) = {λx1 . . . xn.⊥ | n ≥ 0}.
(iii) A(Z) =

⋃
n∈N{λf.f(λz0.f(λz1.f · · · (λzn.f⊥ Zn) · · · Z1)Z0) | ∀i . Zi ∈ {zi, ⊥}} ∪ {⊥}.

(iv) A(ZB) = {⊥, λf0.⊥} ∪ {λf0x0.(· · · (λfn−1xn−1.(λfn.⊥)(fn−1Xn−1)) · · ·)(f0X0) |
n > 0, ∀i ∈ {1, . . . , n} . Xi ∈ {xi, ⊥}}.

▶ Definition 20.
(i) The rules in Figure 1 and the interpretation [[−]] in Definition 15 are extended to Λ⊥

in the obvious way. E.g., (val0) becomes ⊢ V : [], for all V ∈ Val⊥.
(ii) We say that a derivation Π ▷Γ ⊢ M : α is in typed v-normal form if, for all C[] ∈ fto(Π),

M = C[N] entails N is not a v-redex.

A. Kerinec, G. Manzonetto, and S. Ronchi Della Rocca 7:9

(iii) A derivation Π induces a term MΠ ∈ Λ⊥ defined by induction on Π as follows:

(var) MΠ = x, if Π ▷ Γ ⊢ x : α.
(lam) MΠ = λx.MΠ′ , if Π ▷ Γ ⊢ λx.N : α and Π′ is the premise of Π.
(app) MΠ = MΠ1MΠ2 , where Π1, Π2 are the major and minor premises of Π,

respectively.
(val0) MΠ = ⊥.

(val>0) MΠ =
⊔

{MΠi
| 1 ≤ i ≤ n}, where (Π′

i)1≤i≤n are the premises of Π.

In the case (val>0), notice that ↑{MΠi | 1 ≤ i ≤ n}, whence its supremum is well-defined.
Whenever MΠ ∈ A, we rather call this term AΠ to stress the fact that it is an approximant.

Intuitively, Π ▷ Γ ⊢ M : α is in typed v-nf if no redex occurrence in M is fully typed in Π.

▶ Lemma 21.
(i) For all A ∈ A, there exist α ∈ T and Γ such that Γ ⊢ A : α.
(ii) For all A ∈ A and N ∈ Λ, Γ ⊢ A : α and A ⊑⊥ N entail Γ ⊢ N : α.

Proof. Both items follow by a straightforward induction on the structure of A. ◀

▶ Lemma 22. If Π ▷ Γ ⊢ N : α is in typed v-nf, then MΠ ∈ A(N) and Γ ⊢ MΠ : α.

Proof. Straightforward induction on the structure of Π. ◀

▶ Theorem 23 (Approximation Theorem). Let M ∈ Λ, α ∈ T and Γ be an environment.

Γ ⊢ M : α ⇐⇒ ∃A ∈ A(M) . Γ ⊢ A : α

Proof. (⇒) Assume Γ ⊢ M : α. By weighted subject reduction (Proposition 14(i)), M ↠v N

for some N ∈ Λ such that there exists Π ▷ Γ ⊢ N : α in typed v-nf. Conclude by Lemma 22.
(⇐) Assume Γ ⊢ A : α for some A ∈ A(M). By definition, M ↠v N for some N satisfying

A ⊑⊥ N . By Lemma 21(ii), Γ ⊢ N : α. Conclude by subject expansion (Lemma 14(ii)). ◀

▶ Corollary 24. If M, N ∈ Λ have the same CbV Böhm trees then M |= M = N .

Proof. Assume A(M) = A(N). By applying the Approximation Theorem 23, we get [[M]] =⋃
A∈A(M)[[A]] =

⋃
A∈A(N)[[A]] = [[N]]. As a consequence, we conclude M |= M = N . ◀

3 Characterizations of Operational Properties

We now provide two characterizations of the most significant properties of the calculus,
namely valuability, potential valuability and solvability. The former is logical, through the
type assignment system, the latter semantic, through the Approximation Theorem.

▶ Theorem 25 (Characterizations of valuability and potential valuability). Let M ∈ Λ, then:
1. M is valuable ⇐⇒ ⊢ M : [] ⇐⇒ ⊥ ∈ A(M).
2. M is potentially valuable ⇐⇒ ∃Γ, α . Γ ⊢ M : α ⇐⇒ A(M) ̸= ∅.

Proof. See [20] for the logical characterizations, and [19] for the semantic ones. ◀

To characterize solvability, we need a deeper analysis of the structure of the approximants.

FSCD 2021

7:10 Call-By-Value, Again!

▶ Definition 26. The subsets S, U ⊆ A are defined inductively by the grammars (for n ≥ 0):

(S) S ::= H ′ | R′ (U) U ::= ⊥ | λx.U

H ′ ::= x | λx.S | xHA1 · · · An | (λx.U)(yHA1 · · · An)
R′ ::= (λx.S)(yHA1 · · · An)

Note that {S, U} constitutes a partition of A, namely A = S ∪ U and S ∩ U = ∅.

▶ Example 27.
(i) x, I, xK⊥, I(zz), ∆(zz), K(yI⊥), (λx.(I(yz)))(zy⊥) ∈ S.
(ii) ⊥, λx0 . . . xn.⊥, (λx.⊥)(zz), (λx.⊥)(yII), (λx.(λy.⊥)(wz))(zw) ∈ U .
(iii) Finally, notice that A(Ω), A(ZI), A(λx.Ω), A(K⋆) ⊆ U .

We are going to show that the existence of an approximant A ∈ A(M) of shape S is
enough to ensure the solvability of M . Conversely, when M is unsolvable, A(M) is only
populated by approximants of shape U . We need a couple of technical lemmas.

▶ Lemma 28 (Substitution Lemma). Let M ∈ Λ, A(M) ̸= ∅ and x⃗ = {x1, . . . , xi} ⊇ FV(M).
Then, for all j ≥ 0 large enough and n1, . . . , ni ≥ j, we have

M [Pn1/x1, . . . , Pni/xi] ↠v V, for some V ∈ Val ∩ Λo.

Moreover, if xmHA1 · · · An ∈ A(M) then we can take V = Pℓ, for ℓ = nm − n − 1 ≥ 0.

Proof. If A ∈ A(M), then there is N ∈ Λ such that M ↠v N and A ⊑⊥ N . By Fact 2,
setting ϑ = [Pn1/x1, . . . , Pni

/xi], we have Mϑ ↠v Nϑ ∈ Λo. It suffices to check Nϑ ↠v V .
By structural induction on A.
Case A = xm for some m (1 ≤ m ≤ i). Then N = xm, so Nϑ = Pnm

and we are done.
Case A = λy.A0. Then N = λy.N0 with y /∈ x⃗ (wlog), whence Nϑ = λy.Nϑ

0 ∈ Val.
Case A = ⊥. Since ⊥ ⊑⊥ N entails N ∈ Val, we have either N = xm or N = λy.N0.

Therefore, we proceed as above.
Case A = xmHA1 · · · An for m (1 ≤ m ≤ i). Then A ⊑⊥ N entails N = xmN0 · · · Nn

with H ∈ A(N0) and Ar ∈ A(Nr) for all r (1 ≤ r ≤ n). Assuming j > n, we obtain

Nϑ = PnmNϑ
0 · · · Nϑ

n , by definition of ϑ,

↠v Pnm
V0 · · · Vn, by I.H. (induction hypothesis),

↠βv Pnm−n−1, with nm − n − 1 ≥ 0, since nm ≥ j > n.

Case A = (λy.A0)(xHA1 · · · An) with x ∈ x⃗ and, wlog, y /∈ x⃗. From A ⊑⊥ N , we derive
N = (λy.N0)N1 where A0 ∈ A(N0) and xHA1 · · · An ∈ A(N1). Easy calculations give:

Nϑ = (λy.Nϑ
0)Nϑ

1 , since y /∈ dom(ϑ), then for some ℓ1 ≥ 0 we get:
↠v (λy.Nϑ

0)Pℓ1 , as the I.H. on N1 gives Nϑ
1 ↠v Pℓ1 since xHA1 · · · An ∈ A(N1),

→v Nϑ
0 [Pℓ1/y], by (βv),

↠v V, by applying the I.H. to N0 and ϑ ◦ [Pℓ1/y]. ◀

▶ Proposition 29 (Context Lemma). Let M ∈ Λ and {x1, . . . , xi} ⊇ FV(M). If A ∈ A(M)∩S
then, for all j ≥ 0 large enough, there is k ≥ 0 such that for all n1, . . . , ni+k ≥ j we have

M [Pn1/x1, . . . , Pni
/xi]Pni+1 · · · Pni+k

↠v Pℓ, for some ℓ ≥ 0.

Proof. Since A ∈ A(M), there exists N ∈ Λ such that M ↠v N and A ⊑⊥ N . Now, setting
ϑ = [Pn1/x1, . . . , Pni

/xi], we have Mϑ ↠v Nϑ. Proceed by structural induction on A ∈ S.
Case A = x. Take k = 0 and proceed as in the proof of Lemma 28.

A. Kerinec, G. Manzonetto, and S. Ronchi Della Rocca 7:11

Case A = xHA1 · · · An. Again, take k = 0 and apply Lemma 28.
Case A = λy.S. Then N = λy.N0 with y /∈ x⃗ and S ∈ A(N0). By induction hypothesis,

there is k′ ≥ 0 such that n1, . . . , ni+k′+1 ≥ j entails Nϑ
0 [Pni+1/y]Pni+2 · · · Pni+k′+1 ↠v Pℓ,

for some ℓ ≥ 0. Taking k = k′ + 1, easy calculations give (λy.N0)ϑPni+1 · · · Pni+k
↠v Pℓ.

Case A = (λy.S)(xmHA1 · · · An) with 1 ≤ m ≤ i and, wlog, y /∈ x⃗. From A ⊑⊥ N , we
obtain N = (λy.N0)N1 with S ∈ A(N0), FV(N0) ⊆ {x⃗, y}, and xmHA1 · · · An ∈ A(N1). By
induction hypothesis, for all j′ large enough, there is k′ such that for all h1, . . . , hi+k′+1 ≥ j′

we have N0[Ph1/x1, . . . , Phi/xi, Phi+1/y]Phi+2 · · · Phi+k′+1 ↠v Pℓ, for some ℓ ≥ 0. Therefore,
taking k = k′ + 1, we obtain, for all j ≥ j′ + n + 1 and n1, . . . , ni+k ≥ j, the following:

NϑPni+1 · · · Pni+k
= (λy.Nϑ

0)Nϑ
1 Pni+1 · · · Pni+k

, as y /∈ dom(ϑ),
↠v (λy.Nϑ

0)Pnm−n−1Pni+1 · · · Pni+k
, by Lemma 28,

→v Nϑ
0 [Pℓ′/y]Pni+1 · · · Pni+k

, setting ℓ′ = nm − n − 1,

↠v Pℓ, by I.H. since ℓ′ ≥ j′. ◀

▶ Corollary 30. Let M ∈ Λ and A ∈ A(M). If A ∈ S then M is solvable.

Proof. Assume A ∈ A(M)∩S and FV(M) = {x⃗}. By Proposition 29, there are P1, . . . , Pk ∈
Λo such that (λx⃗.M)P⃗ ↠v Pn for some n ≥ 0. By applying the identity n times, we get
(λx⃗.M)P⃗ I∼n ↠v I. We conclude that M is solvable. ◀

▶ Definition 31 (Proper type). A type α is trivial if it has the following shape (for n ≥ 0):

α = σ1 → · · · → σn → []

The type α is called proper if it is not trivial.

▶ Example 32.
(i) Every atom a ∈ A is proper.
(ii) The following types are proper: [] → a, [a] → a, [[] → []] → a and [a, a] → a.
(iii) The following types are trivial: [] → [], [a] → [], [[] → []] → [] and [a, a] → [].

▶ Remark 33. If α ∈ T is proper (resp. trivial), then so is σ → α for all σ ∈ T!.
We show that solvable terms admit proper types in appropriate type environments.

Conversely, unsolvables are either not typable or they only admit trivial types.

▶ Lemma 34. Let M ∈ Λ. If M is solvable then there exist an environment Γ and a proper
type α such that Γ ⊢ M : α is derivable.

Proof. Assume M solvable and let FV(M) = {x1, . . . , xk}. By definition of solvability, there
exist V1, . . . , Vn ∈ Val such that (λx⃗.M)V⃗ ↠v I. Now, for β proper, we have ⊢ I : [β] → β.
By subject expansion (Proposition 14(ii)), there is a derivation Π ▷ ⊢ (λx⃗.M)V⃗ : [β] → β. If
n = k = 0 then M ↠v I and we are done taking Γ = ∅ and α = β. Otherwise, we split into
cases depending on the values of n, k. By Property 8, only the following cases are possible.

Subcase k = n + 1. For some Γ = x1 : σ1, . . . , xk−1 : σk−1, xk : [β], Π must have shape:

Π0
Γ ⊢ M : β

⊢ λx⃗.M : σ1 → · · · → σn → [β] → β
(lam) Π1

⊢ V1 : σ1 · · ·
Πn

⊢ Vn : σn

⊢ (λx⃗.M)V1 · · · Vn : [β] → β
(app)

We found a derivation Π0 ▷ Γ ⊢ M : β, so we conclude because β is proper.

FSCD 2021

7:12 Call-By-Value, Again!

Case k ≤ n > 0. For some Γ = x1 : σ1, . . . , xk : σk, Π must have the following shape:

Π0
Γ ⊢ M : σk+1 → · · · → σn → [β] → β

⊢ λx⃗.M : σ1 → · · · → σn → [β] → β
(lam) Π1

⊢ V1 : σ1 · · ·
Πn

⊢ Vn : σn

⊢ (λx⃗.M)V1 · · · Vn : [β] → β
(app)

Thus, we can take α = σk+1 → · · · → σn → [β] → β, which is proper by Remark 33. ◀

▶ Lemma 35. For every A ∈ A, we have:
(i) A ∈ S ⇐⇒ ∃Γ, α . Γ ⊢ A : α, with α proper.
(ii) A ∈ U ⇐⇒ ∀Γ, α . Γ ⊢ A : α implies that α is trivial.

Proof. It is enough to show that (⇒) holds for (i) and (ii). The converse implication follows
taking the contrapositive and using the facts that U = A − S and S = A − U , respectively.

(i) By induction on the structure of A ∈ S (following the grammar in Definition 26).
Case A = x. For every a ∈ A, which is a proper type, we have x : [a] ⊢ x : a by (var).
Case A = λx.S. By I.H., there exist Γ, x : σ and a proper type α such that Γ, x : σ ⊢ S : α.

Thus Γ ⊢ λx.S : σ → α is derivable by (lam), where σ → α is a proper type by Remark 33.
Case A = xHA1 · · · An. In this case we can assign A any type β, in the appropriate Γ. By

Lemma 21(i), there are environments Γ0, . . . , Γn and types α0, . . . , αn such that Γ0 ⊢ H : α0
and Γi ⊢ Ai : αi for all i (1 ≤ i ≤ n). Setting Γ =

∑
i Γi + [x : [[α0] → · · · → [αn] → β]], we

get Γ ⊢ xHA1 · · · An : β via (val>0) and (app). We conclude by taking, e.g., β = a ∈ A.
Case A = (λy.S)(xHA1 · · · An). By I.H., there exist Γ0 and a proper type α such that

Γ0 ⊢ S : α. Let Γ0(y) = [α1, . . . , αk] with k ≥ 0, then there are environments Γ1, . . . , Γk such
that Γi ⊢ xHA1 · · · An : αi for all i (1 ≤ i ≤ k), as we have seen above that such term can be
assigned any type. Taking Γ =

∑n
i=0 Γi, we conclude Γ ⊢ A : α where α is proper.

(ii) By induction on the structure of A ∈ U (following the grammar in Definition 26).
Case A = ⊥. The only applicable rule is (val0), namely ⊢ ⊥ : [].
Case A = λx.U . Assume that Γ ⊢ λx.U : σ → α holds, then also Γ, x : σ ⊢ U : α is

derivable. By I.H. the type α is trivial, therefore σ → α is also trivial by Remark 33.
Case A = (λy.U)(xHA1 · · · An). Assume that Γ ⊢ A : α holds, then there exists a

decomposition Γ = Γ0 +Γ1 and a σ ∈ T! such that Γ0, y : σ ⊢ U : α and Γ1 ⊢ xHA1 · · · An : σ.
By applying the I.H. on Γ0, y : σ ⊢ U : α, we conclude that α is trivial. ◀

▶ Theorem 36 (Characterizations of solvability). For M ∈ Λ, the following are equivalent:
1. M is solvable.
2. There exists a proper type α such that Γ ⊢ M : α, for some environment Γ.
3. There exists an approximant A ∈ A(M) ∩ S.

Proof. (1 ⇒ 2) By Lemma 34.
(2 ⇒ 3) By the Approximation Theorem, there exists A ∈ A(M) such that Γ ⊢ M : α.

By Lemma 35(i), we derive A ∈ S.
(3 ⇒ 1) By Corollary 30. ◀

▶ Corollary 37. A λ-term M is unsolvable exactly when A(M) ⊆ U , equivalently, whenever
Γ ⊢ M : α entails that α is a trivial type.

▶ Corollary 38. The model M is not sensible, but semi-sensible.

Proof. The model is not sensible as [[Ω]] = ∅ and [[λx.Ω]] = {[]}, entail M ̸|= Ω = λx.Ω. If
M is solvable and N is unsolvable, by Theorem 36 there exist an environment Γ and a type
α proper such that (Γ, α) ∈ [[M]] − [[N]], therefore the model is semi-sensible. ◀

A. Kerinec, G. Manzonetto, and S. Ronchi Della Rocca 7:13

⊥ ∈ IM(∅; []) (bot!)
Ai ∈ IT(Γi; αi) ↑{Ai}i∈I A =

⊔
i∈I Ai

A ∈ IM(Σi∈IΓi; [αi]i∈I) (sup!)

⊥ ∈ IT(∅; [])
(bot)

A ∈ IT(Γ, x : σ; α)
λx.A ∈ IT(Γ; σ → α)

(abs)
x ∈ IT(x : [α]; α)

(head0)

Aj ∈ IM(Γj ; σj) 0 ≤ j ≤ n A0 ∈ H
xA0 · · · An ∈ IT(

∑n
j=0 Γj + x : [σ0 → · · · → σn → α]; α)

(head>0)

Aj ∈ IM(Γj ;
∑m

i=0 τ i
j) 0 ≤ j ≤ n A0 ∈ H A ∈ IT(Γn+1, x : [αi]0≤i≤m; α)

(λx.A)(yA0 · · · An) ∈ IT(
∑n+1

j=0 Γj + y : [τ i
0 → · · · → τ i

n → αi]0≤i≤m; α)
(redlike)

Figure 2 The inhabitation algorithm for system M. In (redlike), we assume x /∈ FV(yA0 · · · An).

4 Decidability of the Inhabitation Problem

The inhabitation problem for system M requires to determine for every environment Γ and
type α whether there is a λ-term M satisfying Γ ⊢ M : α. To show that this problem is
decidable we describe an algorithm that takes (Γ, α) as input and returns as output the set
of all approximants A satisfying Γ ⊢ A : α as well as the following minimality condition.

▶ Definition 39. Let Γ be an environment and ξ ∈ T ∪ T!. An A ∈ A is minimal for (Γ, ξ) if
Γ ⊢ A : ξ and, for all A′ ∈ A compatible with A (i.e. ↑{A, A′}), Γ ⊢ A′ : ξ entails A ⊑⊥ A′.

Finding the minimal approximants inhabiting (Γ, α) is enough for solving the original
inhabitation problem because Γ ⊢ M : α holds exactly when there is an A ∈ A(M) minimal
for (Γ, α). Following [9, 8], we present the inhabitation algorithm as a deductive system.

▶ Definition 40.
(i) Let Γ be an environment and α ∈ T. The inhabitation algorithm IT(Γ; α) for M

is given in Figure 2, via an auxiliary predicate IM(Γ; σ), for σ ∈ T!. Note that the
condition A0 ∈ H occurring as a premise of the rules (head>0) and (redlike) is decidable
since H is generated by a context-free grammar (Definition 17(ii)).

(ii) A run of the algorithm is a deduction tree built bottom-up by applying the rules in
Figure 2 in such a way that every node is an instance of a rule (as in Example 41).
We say that a run of the algorithm terminates if such a tree is finite. The algorithm
terminates if it needs to execute a finite number of different terminating runs.

It is easy to check that A ∈ IT(Γ; α) (resp. A ∈ IM(Γ; σ)) implies FV(A) ⊆ dom(Γ).
We are going to prove that the inhabitation algorithm is terminating, sound and complete.
Completeness is achieved by exploiting the non-determinism of the algorithm: indeed, when
α = σ → β, the rules (abs), (redlike) and (head−) might be applicable and in (redlike) and
(head>0), the environment Γ can be decomposed in countably many different ways (taking
many Γi = ∅). By collecting all possible runs, we recover all minimal approximants for (Γ, α).

▶ Example 41. The following are examples of possible runs of the algorithm on IT(Γ; α).
(i) Let Γ = y : [[] → a] and α = a. There are two runs:

(bot!)
⊥ ∈ IM(∅; []) ⊥ ∈ H

(head0)
x ∈ IT(x : [a]; a)

(λx.x)(y⊥) ∈ IT(y : [[] → a]; a)
(redlike)

(bot!)
⊥ ∈ IM(∅; []) ⊥ ∈ H
y⊥ ∈ IT(y : [[] → a]; a)

(head>0)

FSCD 2021

7:14 Call-By-Value, Again!

(ii) Let Γ = y : [[] → []] and α = [a] → a. The only possible run is redlike(abs(head0), bot!)
which constructs the approximant (λx.I)(y⊥).

(iii) Let Γ = ∅ and α = [[a] → a, [a] → a] → [a] → a. Also in this case, the only possible run
is abs(abs(head>0(sup!(head>0(sup!(head0)))))), which constructs λxy.x(xy).

(iv) Let Γ = ∅ and α = [[a] → a] → [a] → a. The run abs(head0) constructs λx.x, while the
run abs(abs(head>0(sup!(head0)))) constructs λxy.xy.

(v) Let Γ = x : [[] → [] → a] and α = a. There are two possible runs: head>0(bot!, bot!),
building x⊥⊥, and redlike(bot!, head0), building (λz.z)(x⊥⊥).

▶ Definition 42. To show that the inhabitation algorithm terminates we define two measures,
#(·) on types, and (·)• on multiset types and type environments, as follows (for a ∈ A, n ≥ 0):

#a = #[] = 1, #(σ → α) = σ• + #α + 3,

[α1, . . . , αn]• =
∑n

i=1 #αi, Γ• =
∑

x∈dom(Γ) Γ(x)•.

Note that #α ≥ 1, while []• = 0. If σ = σ1 + σ2 then σ• = σ•
1 + σ•

2 , thus Γ =
∑

i∈I Γi entails
Γ• =

∑
i∈I Γ•

i . The measure #(·) is extended to judgements IT(−; −) and IM(−; −) by

#(IT(Γ; α)) = Γ• + #α, #(IM(Γ; σ)) = Γ• + σ• + 1.

Given M ∈ Λ⊥, we define inductively the size of its syntax-tree, written tsize(M), by:

tsize(⊥) = tsize(x) = 0, tsize(λx.P) = tsize(P)+1, tsize(PQ) = tsize(P)+ tsize(Q)+1.

▶ Example 43.
(i) We have #([] → []) = #([] → a) = 4, so (x : [[] → [], [] → a, a])• = 9.

(ii) Since #[[a] → a] = 5, we get #IT(x : [[a] → a]; a) = 6, while #IM(x : [[a] → a]; [a]) = 7.
(iii) tsize((λx.⊥)(x⊥)) = 3, tsize(Pn) = n + 1 and tsize(x⊥∼n) = n, for all n ≥ 0.

▶ Lemma 44. Every run of the inhabitation algorithm terminates.

Proof. We need to show that every run is a finite tree. Since we are considering finite
multisets and all indices range over N, the premises of each rule in Figure 2 are finitely many
(i.e., a run is a finitely branching tree), whence it is enough to show that there is no infinite
path (by König’s Lemma). This follows from the fact that the measure # calculated on each
premise of a rule, is strictly smaller than the measure associated with its conclusion. We
proceed by cases on the rules applied, the cases (bot), (bot!), and (head0) being vacuous.

Cases (abs) and (sup!) follow straightforwardly from Definition 42.
Case (head>0) with premises IM(Γj ; σj), for all j (0 ≤ j ≤ n), and as a conclusion

IT(Γ + x : [σ0 → · · · → σn → α]; α) for Γ =
∑n

j=0 Γj . The measure # applied to the j-th
premise gives Γ•

j + σ•
j + 1; on the conclusion, it gives Γ• + σ•

0 + · · · + σ•
n + 2(#α) + 3(n + 1).

In the worse case, namely n = j = 0 and #α = 1, we still get Γ•
0 + σ•

0 + 1 < Γ•
0 + σ•

0 + 5.
Case (redlike) with premises IM(Γj ;

∑m
i=0 τij), for 0 ≤ j ≤ n, and IT(Γn+1, x :

[αi]0≤i≤m; α), and conclusion IT(Γ + y : [τi0 → · · · → τin → αi]0≤i≤m; α) for Γ =∑n
j=0 Γj + Γn+1. For the measure applied to the conclusion, easy calculations give the

following number K:

K = Γ• + 3(n + 1)(m + 1) +
∑m

i=0(
∑n

j=0 τ•
ij + #αi) + #α

= Γ•
n+1 + 3(n + 1)(m + 1) +

∑n
j=0(Γ•

j +
∑m

i=0(τ•
ij + #αi)) + #α

For the j-th premise we can easily check Γ•
j +

∑m
i=0 τ•

ij + 1 < K. For the remaining one,
we get Γ•

n+1 +
∑m

i=0 #αi + #α. In the worst case, i.e. n = m = 0, Γ• = Γ•
0 + Γ•

1 = Γ•
1 and

τ•
00 = 0, we obtain Γ• + #α0 + #α < Γ• + #α0 + #α + 3. This concludes the proof. ◀

A. Kerinec, G. Manzonetto, and S. Ronchi Della Rocca 7:15

We show that the size of the approximants generated by IT(Γ; α) is bounded by Γ• + #α.
In fact, the coefficient 3 in the definition of #(σ → α) has been chosen to absorb the size of
the “λx.” and of the outer application in redex-like approximants as (λx.A)(yA0 · · · An).

▶ Lemma 45. For a type environment Γ, α ∈ T, σ ∈ T!, we have:
(i) A ∈ IT(Γ; α) entails tsize(A) ≤ #IT(Γ; α).
(ii) A ∈ IM(Γ; σ) entails tsize(A) < #IM(Γ; σ).

Proof. We prove (i) and (ii) by induction on a run of A ∈ IT(Γ; α) (resp. A ∈ IM(Γ; σ)).
Cases (bot), (bot!) and (head0). Trivial, since tsize(⊥) = tsize(x) = 0 and IM(Γ; α) ≥ 1.
Case (sup!) follows from I.H., because A =

⊔
i∈I Ai implies tsize(A) ≤

∑
i∈I tsize(Ai).

Case (abs) with α = σ → β. By induction hypothesis, we get tsize(A) ≤ Γ• + σ• + #β,
therefore we obtain tsize(λx.A) = tsize(A) + 1 ≤ Γ• + σ• + #β + 3 = #IT(Γ; σ → β).

Case (head>0) with Γ =
∑n

j=0 Γj + x : [σ0 → · · · → σn → α]. By IH, tsize(Aj) ≤ Γ•
j + σ•

j .
So, tsize(xA0 · · · An) =

∑n
j=0 tsize(Aj)+n+1 ≤

∑n
j=0 Γ•

j +σ•
j +2#α+3(n+1) = #IT(Γ; α).

Case (redlike) with Γ =
∑n+1

j=0 Γj + y : [τi0 → · · · → τin → αi]0≤i≤m. By I.H., we have
tsize(Aj) ≤ Γ•

j +
∑m

i=0 τ•
ij for all j (0 ≤ j ≤ n), and tsize(A) ≤ Γ•

n+1 +
∑m

i=0 #αi +#α. Thus,
tsize(yA0 · · · An) =

∑n
j=0 tsize(Aj) + n + 1 ≤

∑n
j=0 Γ•

j +
∑m

i=0(τ•
i0 + · · · + τ•

in) + n + 1 and:

tsize((λx.A)(yA0 · · · An)) = tsize(λx.A) + tsize(yA0 · · · An) + 1
≤ Γ•

n+1 +
∑m

i=0 #αi + #α + tsize(yA0 · · · An) + 2
≤

∑n+1
j=0 Γ•

j +
∑m

i=0(τ•
i0 + · · · + τ•

in + #αi) + #α + n + 3
≤

∑n+1
j=0 Γ•

j +
∑m

i=0(
∑n

j=0 τ•
ij + #αi) + #α + 3(n + 1)(m + 1)

where the last inequation holds since n + 3 ≤ 3(n + 1)(m + 1) for all n, m ≥ 0. ◀

▶ Theorem 46 (Termination). The inhabitation algorithm terminates.

Proof. Fix an input (Γ, α). By Lemma 44, every run A ∈ IT(Γ; α) terminates. The set
{A ∈ A | FV(A) ⊆ dom(Γ) ∧ tsize(A) ≤ Γ• + #α} is finite, because one cannot add variables
or ⊥ without adding applications. By Lemma 45, we get that the number of runs is finite. ◀

To better understand the inhabitation algorithm it is convenient to provide an effective
way of constructing minimal approximants. We have seen in Definition 20(iii) that we are
able to associate an approximant AΠ with every derivation Π in typed v-normal form. This
last condition is always satisfied by derivations Π ▷Γ ⊢ A : α for A ∈ A because approximants
do not contain any occurrence of a v-redex. We now show that the approximants AΠ so
constructed are minimal for (Γ, α) and that all such minimal approximants arise in this way.

▶ Lemma 47. Let Γ be a type environment, α ∈ T and A ∈ A. The following are equivalent:
1. A ∈ IT(Γ; α).
2. A = AΠ for some derivation Π ▷ Γ ⊢ A : α.
3. A is minimal for (Γ, α).

Proof. To perform the induction properly, we prove simultaneously the analogous statement
on σ ∈ T!: A ∈ IM(Γ; σ) ⇐⇒ A = AΠ for some Π ▷ Γ ⊢ A : σ ⇐⇒ A is minimal for (Γ, σ).

(1 ⇒ 2) By induction on a run of A ∈ IT(Γ; α) (resp. A ∈ IM(Γ; σ)).
Cases (bot), (bot!) and (head0) are trivial.
Cases (sup!) and (abs). Easy. Use the I.H. and apply (val>0) and (lam), respectively.

FSCD 2021

7:16 Call-By-Value, Again!

Case (head>0) with Γ =
∑n

j=0 Γj + Γ′ where Γ′ = x : [σ0 → · · · → σn → α] and
A = xA0 · · · An. Let Π′ ▷ Γn+1 ⊢ x : σ0 → · · · → σn → α with AΠ′ = x. By I.H., for every
j(0 ≤ j ≤ n), there is a derivation Πj ▷ Γj ⊢ Aj : σj such that Aj = AΠj

. For Π, take:

Π′ ▷ Γ′ ⊢ x : σ0 → · · · → σn → α Πj ▷ Γj ⊢ Aj : σj 0 ≤ j ≤ n

Γ ⊢ xA0 · · · An : α
(app)

and conclude because AΠ = AΠ′AΠ0 · · · AΠn = xA0 · · · An.
Case (redlike) with Γ =

∑n+1
j=0 Γj + Γ′, where Γ′ = y : [τ i

0 → · · · → τ i
n → αi]0≤i≤m, and

A = (λx.A′)(yA0 · · · An). By I.H., there exists Πn+1 ▷ Γn+1, x : [αi]0≤i≤m ⊢ A′ : α with
A′ = AΠn+1 . Moreover, for each 0 ≤ j ≤ n, there is Πj ▷ Γj ⊢ Aj :

∑m
i=0 τ i

j with Aj = AΠj
.

This holds exactly when there exists a decomposition Γj =
∑m

i=0 Γi
j and Πi

j ▷ Γi
j ⊢ Aj : τ i

j

satisfying Aj =
⊔m

i=0 AΠi
j
, although individually Aj ̸= AΠi

j
might hold. Construct Π as:

Πn+1 ▷
Γn+1, x : [αi]0≤i≤m ⊢ A′ : α

Γn+1 ⊢ λx.A′ : [αi]0≤i≤m → α

y : [τ i
0 → · · · → τ i

n → αi]
⊢ y : τ i

0 → · · · → τ i
n → αi

Πi
0 ▷

Γi
0 ⊢ A0 : τ i

0 · · ·
Πi

n ▷

Γi
n ⊢ An : τ i

n∑n
j=0 Γi

j + y : [τ i
0 → · · · → τ i

n → αi] ⊢ yA0 · · · An : αi∑n
j=0 Γj + Γ′ ⊢ yA0 · · · An : [αi]0≤i≤m

∀i∑n+1
j=0 Γj + Γ′ ⊢ (λx.A′)(yA0 · · · An) : α

It is now easy to check that (λx.A′)(yA0 · · · An) = AΠ, for the derivation Π above.
(2 ⇒ 3) By straightforward induction on Π ▷ Γ ⊢ A : α. In the case (val>0) with premises

(Πi)i∈I , use the fact that AΠ =
⊔

i∈I AΠi
is defined as the least upper bound.

(3 ⇒ 1) By induction on a derivation Π ▷ Γ ⊢ A : α, where A is minimal for (Γ, α). The
only non-trivial case to handle is (app). We split into subcases depending on the shape of A.

Subcase A = xA0 · · · An with A0 ∈ H. Then there is a decomposition Γ =
∑n

j=0 Γj + x :
[σ0 → · · · → σn → α] such that Π has subderivations Πj ▷ Γj ⊢ Aj : σj with Aj minimal for
(Γj , σj). By I.H., Aj ∈ IM(Γj ; σj) from which xA0 · · · An ∈ IT(Γ; α) follows by (head>0).

Subcase A = (λx.A′)(yHA1 · · · An). Then, the derivation Π ▷ Γ ⊢ A : α must have the
shape above (see proof of (1 ⇒ 2), case (redlike)) for some decomposition Γ =

∑n+1
j=0 Γj + Γ′,

where Γ′ = y : [τ i
0 → · · · → τ i

n → αi]0≤i≤m and setting A0 = H ∈ H. Since A is minimal for
(Γ, α) and Γi

j ⊢ Aj : τ i
j for every j (0 ≤ j ≤ n), we must have Aj minimal for (Γj ,

∑m
i=0 τ i

j)
and A′ minimal for ((Γn+1, x : [αi]0≤i≤m), α). By I.H., we obtain Aj ∈ IM(Γj ;

∑m
i=0 τ i

j) and
A′ ∈ IT((Γn+1, x : [αi]0≤i≤m); α). As A0 ∈ H, we get A ∈ IT(Γ; α) by applying (redlike). ◀

▶ Theorem 48 (Soundness and Completeness).
(i) If A ∈ IT(Γ; α) then, for all M ∈ Λ satisfying A ⊑⊥ M , we have Γ ⊢ M : α.
(ii) If Γ ⊢ M : α then there exists A ∈ IT(Γ; α) such that A ∈ A(M).

Proof. (i) By Lemma 47, we have Γ ⊢ A : α. Since A ⊑⊥ M , we conclude by Lemma 21(ii).
(ii) By the Approximation Theorem, there exists A′ ∈ A(M) satisfying Γ ⊢ A′ : α. Then,

there is an approximant A ↑ A′ which is minimal for (Γ, α). By Lemma 47, we obtain
A ∈ IT(Γ; α) and since A(M) is downward closed (by definition) we conclude A ∈ A(M). ◀

Conclusions

In this paper we have shown that the model M allows to characterize solvability semantically,
but we believe that Theorem 36 extends to all relational models defined in [20] having a
non-empty set of atoms, and whose type equivalence preserves the non-triviality of the types.
The fact that M constitutes a model of CbV λ-calculus has been shown in [20] by exploiting

A. Kerinec, G. Manzonetto, and S. Ronchi Della Rocca 7:17

the environmental definition à la Hindley-Longo (namely, Definition 10.0.1 in [26]). In future
works, we plan to analyze the categorical construction behind this class of models as they do
not seem to be an instance of any categorical definition proposed so far.

References
1 Samson Abramsky. Domain theory in logical form. Ann. Pure Appl. Log., 51(1-2):1–77, 1991.

doi:10.1016/0168-0072(91)90065-T.
2 Beniamino Accattoli and Giulio Guerrieri. Open call-by-value. In Atsushi Igarashi, editor,

Programming Languages and Systems – 14th Asian Symposium, APLAS 2016, Hanoi, Vietnam,
November 21-23, 2016, Proceedings, volume 10017 of Lecture Notes in Computer Science,
pages 206–226, 2016. doi:10.1007/978-3-319-47958-3_12.

3 Beniamino Accattoli and Giulio Guerrieri. Types of fireballs. In Sukyoung Ryu, editor,
Programming Languages and Systems – 16th Asian Symposium, APLAS 2018, Wellington,
New Zealand, December 2-6, 2018, Proceedings, volume 11275 of Lecture Notes in Computer
Science, pages 45–66. Springer, 2018. doi:10.1007/978-3-030-02768-1_3.

4 Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus
with Types. Perspectives in logic. Cambridge University Press, 2013. URL: http:
//www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/
lambda-calculus-types.

5 Henk P. Barendregt. The lambda-calculus, its syntax and semantics. Number 103 in Studies
in Logic and the Foundations of Mathematics. North-Holland, second edition, 1984.

6 O. Bastonero, Alberto Pravato, and Simona Ronchi Della Rocca. Structures for lazy semantics.
In David Gries and Willem P. de Roever, editors, Programming Concepts and Methods,
IFIP TC2/WG2.2,2.3 International Conference on Programming Concepts and Methods
(PROCOMET ’98) 8-12 June 1998, Shelter Island, New York, USA, volume 125 of IFIP
Conference Proceedings, pages 30–48. Chapman & Hall, 1998.

7 Flavien Breuvart, Giulio Manzonetto, and Domenico Ruoppolo. Relational graph models at
work. Log. Methods Comput. Sci., 14(3), 2018. doi:10.23638/LMCS-14(3:2)2018.

8 Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. Solvability = typability
+ inhabitation. Log. Methods Comput. Sci., 17(1), 2021. URL: https://lmcs.episciences.
org/7141.

9 Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. Inhabitation for non-
idempotent intersection types. Log. Methods Comput. Sci., 14(3), 2018. doi:10.23638/
LMCS-14(3:7)2018.

10 Albero Carraro and Giulio Guerrieri. A semantical and operational account of call-by-value
solvability. In Anca Muscholl, editor, Foundations of Software Science and Computation
Structures – 17th International Conference, FOSSACS 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April
5-13, 2014, Proceedings, volume 8412 of Lecture Notes in Computer Science, pages 103–118.
Springer, 2014. doi:10.1007/978-3-642-54830-7_7.

11 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Functional characters of
solvable terms. Math. Log. Q., 27(2-6):45–58, 1981. doi:10.1002/malq.19810270205.

12 Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection
types. Math. Struct. Comput. Sci., 28(7):1169–1203, 2018. doi:10.1017/S0960129516000396.

13 Lavinia Egidi, Furio Honsell, and Simona Ronchi Della Rocca. Operational, denotational and
logical descriptions: a case study. Fundam. Informaticae, 16(1):149–169, 1992.

14 Thomas Ehrhard. Collapsing non-idempotent intersection types. In Patrick Cégielski and
Arnaud Durand, editors, Computer Science Logic (CSL’12) – 26th International Workshop/21st
Annual Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France,
volume 16 of LIPIcs, pages 259–273. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2012.
doi:10.4230/LIPIcs.CSL.2012.259.

FSCD 2021

https://doi.org/10.1016/0168-0072(91)90065-T
https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1007/978-3-030-02768-1_3
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
https://doi.org/10.23638/LMCS-14(3:2)2018
https://lmcs.episciences.org/7141
https://lmcs.episciences.org/7141
https://doi.org/10.23638/LMCS-14(3:7)2018
https://doi.org/10.23638/LMCS-14(3:7)2018
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1002/malq.19810270205
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.4230/LIPIcs.CSL.2012.259

7:18 Call-By-Value, Again!

15 Jean-Yves Girard. Normal functors, power series and λ-calculus. Ann. Pure Appl. Log.,
37(2):129–177, 1988. doi:10.1016/0168-0072(88)90025-5.

16 Giulio Guerrieri. Personal communication, 2017.
17 Giulio Guerrieri, Luca Paolini, and Simona Ronchi Della Rocca. Standardization and conser-

vativity of a refined call-by-value lambda-calculus. Log. Methods Comput. Sci., 13(4), 2017.
doi:10.23638/LMCS-13(4:29)2017.

18 Furio Honsell and Marina Lenisa. Some results on the full abstraction problem for restricted
lambda calculi. In Andrzej M. Borzyszkowski and Stefan Sokolowski, editors, Mathematical
Foundations of Computer Science 1993, 18th International Symposium, MFCS’93, Gdansk,
Poland, August 30 – September 3, 1993, Proceedings, volume 711 of Lecture Notes in Computer
Science, pages 84–104. Springer, 1993. doi:10.1007/3-540-57182-5_6.

19 Emma Kerinec, Giulio Manzonetto, and Michele Pagani. Revisiting call-by-value Böhm
trees in light of their Taylor expansion. Log. Methods Comput. Sci., 16(3), 2020. URL:
https://lmcs.episciences.org/6638.

20 Giulio Manzonetto, Michele Pagani, and Simona Ronchi Della Rocca. New semantical
insights into call-by-value λ-calculus. Fundam. Informaticae, 170(1-3):241–265, 2019. doi:
10.3233/FI-2019-1862.

21 Luca Paolini and Simona Ronchi Della Rocca. Call-by-value solvability. RAIRO Theor.
Informatics Appl., 33(6):507–534, 1999. doi:10.1051/ita:1999130.

22 Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput.
Sci., 1(2):125–159, 1975. doi:10.1016/0304-3975(75)90017-1.

23 Alberto Pravato, Simona Ronchi Della Rocca, and Luca Roversi. The call by value λ-calculus:
a semantic investigation. Mathematical Structures in Computer Science, 9(5):617–650, 1999.

24 Laurent Regnier. Une équivalence sur les lambda-termes. Theor. Comput. Sci., 126(2):281–292,
1994. doi:10.1016/0304-3975(94)90012-4.

25 Simona Ronchi Della Rocca. Intersection types and denotational semantics: An extended
abstract (invited paper). In Silvia Ghilezan, Herman Geuvers, and Jelena Ivetic, editors, 22nd
International Conference on Types for Proofs and Programs, TYPES 2016, May 23-26, 2016,
Novi Sad, Serbia, volume 97 of LIPIcs, pages 2:1–2:7. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPIcs.TYPES.2016.2.

26 Simona Ronchi Della Rocca and Luca Paolini. The Parametric λ-Calculus: a Metamodel for
Computation. EATCS Series. Springer, Berlin, 2004.

27 Pawel Urzyczyn. The emptiness problem for intersection types. J. Symb. Log., 64(3):1195–1215,
1999. doi:10.2307/2586625.

28 Pawel Urzyczyn. Personal communication, 2014.
29 Steffen van Bakel. Complete restrictions of the intersection type discipline. Theor. Comput.

Sci., 102(1):135–163, 1992. doi:10.1016/0304-3975(92)90297-S.

https://doi.org/10.1016/0168-0072(88)90025-5
https://doi.org/10.23638/LMCS-13(4:29)2017
https://doi.org/10.1007/3-540-57182-5_6
https://lmcs.episciences.org/6638
https://doi.org/10.3233/FI-2019-1862
https://doi.org/10.3233/FI-2019-1862
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1016/0304-3975(94)90012-4
https://doi.org/10.4230/LIPIcs.TYPES.2016.2
https://doi.org/10.2307/2586625
https://doi.org/10.1016/0304-3975(92)90297-S

Predicative Aspects of Order Theory in
Univalent Foundations
Tom de Jong # Ñ

University of Birmingham, UK

Martín Hötzel Escardó # Ñ

University of Birmingham, UK

Abstract
We investigate predicative aspects of order theory in constructive univalent foundations. By predicat-
ive and constructive, we respectively mean that we do not assume Voevodsky’s propositional resizing
axioms or excluded middle. Our work complements existing work on predicative mathematics by
exploring what cannot be done predicatively in univalent foundations. Our first main result is that
nontrivial (directed or bounded) complete posets are necessarily large. That is, if such a nontrivial
poset is small, then weak propositional resizing holds. It is possible to derive full propositional
resizing if we strengthen nontriviality to positivity. The distinction between nontriviality and
positivity is analogous to the distinction between nonemptiness and inhabitedness. We prove our
results for a general class of posets, which includes directed complete posets, bounded complete
posets and sup-lattices, using a technical notion of a δV -complete poset. We also show that nontrivial
locally small δV -complete posets necessarily lack decidable equality. Specifically, we derive weak
excluded middle from assuming a nontrivial locally small δV -complete poset with decidable equality.
Moreover, if we assume positivity instead of nontriviality, then we can derive full excluded middle.
Secondly, we show that each of Zorn’s lemma, Tarski’s greatest fixed point theorem and Pataraia’s
lemma implies propositional resizing. Hence, these principles are inherently impredicative and a
predicative development of order theory must therefore do without them. Finally, we clarify, in
our predicative setting, the relation between the traditional definition of sup-lattice that requires
suprema for all subsets and our definition that asks for suprema of all small families.

2012 ACM Subject Classification Theory of computation → Constructive mathematics; Theory of
computation → Type theory

Keywords and phrases order theory, constructivity, predicativity, univalent foundations

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.8

1 Introduction

We investigate predicative aspects of order theory in constructive univalent foundations.
By predicative and constructive, we respectively mean that we do not assume Voevodsky’s
propositional resizing axioms [26, 27] or excluded middle. Our work is situated in our
larger programme of developing domain theory constructively and predicatively in univalent
foundations. In previous work [12], we showed how to give a constructive and predicative
account of many familiar constructions and notions in domain theory, such as Scott’s
D∞ model of untyped λ-calculus and the theory of continuous dcpos. The present work
complements this and other existing work on predicative mathematics (e.g. [2, 21, 6]) by
exploring what cannot be done predicatively, as in [7, 8, 9, 10, 11]. We do so by showing
that certain statements crucially rely on resizing axioms in the sense that they are equivalent
to them. Such arguments are important in constructive mathematics. For example, the
constructive failure of trichotomy on the real numbers is shown [4] by reducing it to a
nonconstructive instance of excluded middle.

© Tom de Jong and Martín Hötzel Escardó;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:t.dejong@pgr.bham.ac.uk
https://www.cs.bham.ac.uk/~txd880
https://orcid.org/0000-0003-1585-3172
mailto:m.escardo@cs.bham.ac.uk
https://www.cs.bham.ac.uk/~mhe
https://orcid.org/0000-0002-4091-6334
https://doi.org/10.4230/LIPIcs.FSCD.2021.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Predicative Aspects of Order Theory in UF

Our first main result is that nontrivial (directed or bounded) complete posets are ne-
cessarily large. In [12] we observed that all our examples of directed complete posets have
large carriers. We show here that this is no coincidence, but rather a necessity, in the
sense that if such a nontrivial poset is small, then weak propositional resizing holds. It is
possible to derive full propositional resizing if we strengthen nontriviality to positivity in
the sense of [19]. The distinction between nontriviality and positivity is analogous to the
distinction between nonemptiness and inhabitedness. We prove our results for a general class
of posets, which includes directed complete posets, bounded complete posets and sup-lattices,
using a technical notion of a δV -complete poset. We also show that nontrivial locally small
δV -complete posets necessarily lack decidable equality. Specifically, we can derive weak
excluded middle from assuming the existence of a nontrivial locally small δV -complete poset
with decidable equality. Moreover, if we assume positivity instead of nontriviality, then we
can derive full excluded middle.

Secondly, we prove that each of Zorn’s lemma, Tarski’s greatest fixed point theorem
and Pataraia’s lemma implies propositional resizing. Hence, these principles are inherently
impredicative and a predicative development of order theory in univalent foundations must
thus forgo them.

Finally, we clarify, in our predicative setting, the relation between the traditional definition
of sup-lattice that requires suprema for all subsets and our definition that asks for suprema
of all small families. This is important in practice in order to obtain workable definitions of
dcpo, sup-lattice, etc. in the context of predicative univalent mathematics.

Our foundational setup is the same as in [12], meaning that our work takes places in
intensional Martin-Löf Type Theory and adopts the univalent point of view [24]. This means
that we work with the stratification of types as singletons, propositions (or subsingletons
or truth values), sets, 1-groupoids, etc., and that we work with univalence. At present,
higher inductive types other than propositional truncation are not needed. Often the only
consequences of univalence needed here are functional and propositional extensionality. An
exception is Section 2.3. Full details of our univalent type theory are given at the start
of Section 2.

Related work

Curi investigated the limits of predicative mathematics in CZF [2] in a series of papers [7, 8,
9, 10, 11]. In particular, Curi shows (see [7, Theorem 4.4 and Corollary 4.11], [8, Lemma 1.1]
and [9, Theorem 2.5]) that CZF cannot prove that various nontrivial posets, including
sup-lattices, dcpos and frames, are small. This result is obtained by exploiting that CZF is
consistent with the anti-classical generalized uniformity principle GUP [25, Theorem 4.3.5].
Our related Theorem 35 is of a different nature in two ways. Firstly, our theorem is in the
spirit of reverse constructive mathematics [18]: Instead of showing that GUP implies that
there are no non-trivial small dcpos, we show that the existence of a non-trivial small dcpo
is equivalent to weak propositional resizing, and that the existence of a positive small dcpo
is equivalent to full propositional resizing. Thus, if we wish to work with small dcpos, we
are forced to assume resizing axioms. Secondly, we work in univalent foundations rather
than CZF. This may seem a superficial difference, but a number of arguments in Curi’s
papers [9, 10] crucially rely on set-theoretical notions and principles such as transitive set,
set-induction, weak regular extension axiom wREA, which cannot even be formulated in the
underlying type theory of univalent foundations. Moreover, although Curi claims that the
arguments of [7, 8] can be adapted to some version of Martin-Löf Type Theory, it is presently
not known whether there is any model of univalent foundations which validates GUP.

T. de Jong and M. H. Escardó 8:3

Organization

Section 2: Foundations and size matters, including impredicativity, relation to excluded
middle, univalence and closure under embedded retracts. Section 3: Nontrivial and positive
δV -complete posets and reductions to impredicativity and excluded middle. Section 4:
Predicative invalidity of Zorn’s lemma, Tarski’s fixed point theorem and Pataraia’s lemma.
Section 5: Comparison of completeness w.r.t. families and w.r.t. subsets. Section 6: Conclusion
and future work.

2 Foundations and Size Matters

We work with a subset of the type theory described in [24] and we mostly adopt the
terminological and notational conventions of [24]. We include + (binary sum), Π (dependent
products), Σ (dependent sum), Id (identity type), and inductive types, including 0 (empty
type), 1 (type with exactly one element ⋆ : 1), N (natural numbers). We assume a universe
U0 and two operations: for every universe U a successor universe U+ with U : U+, and
for every two universes U and V another universe U ⊔ V such that for any universe U , we
have U0 ⊔ U ≡ U and U ⊔ U+ ≡ U+. Moreover, (−) ⊔ (−) is idempotent, commutative,
associative, and (−)+ distributes over (−) ⊔ (−). We write U1 :≡ U+

0 , U2 :≡ U+
1 , . . . and

so on. If X : U and Y : V, then X + Y : U ⊔ V and if X : U and Y : X → V, then the
types Σx:XY (x) and Πx:XY (x) live in the universe U ⊔ V ; finally, if X : U and x, y : X, then
IdX(x, y) : U . The type of natural numbers N is assumed to be in U0 and we postulate
that we have copies 0U and 1U in every universe U . We assume function extensionality and
propositional extensionality tacitly, and univalence explicitly when needed. Finally, we use a
single higher inductive type: the propositional truncation of a type X is denoted by ∥X∥
and we write ∃x:XY (x) for ∥

∑
x:X Y (x)∥.

2.1 The Notion of Size
We introduce the fundamental notion of a type having a certain size and specify the
impredicativity axioms under consideration (Section 2.2). We also note the relation to
excluded middle (Section 2.2) and univalence (Section 2.3). Finally in Section 2.4 we review
embeddings and sections and establish our main technical result on size, namely that having
a certain size is closed under retracts whose sections are embeddings.

▶ Definition 1 (Size, UF-Slice.html in [16]). A type X in a universe U is said to have size V
if it is equivalent to a type in the universe V. That is, X has-size V :≡

∑
Y :V(Y ≃ X).

2.2 Impredicativity and Excluded Middle
We consider various impredicativity axioms and their relation to (weak) excluded middle.
The definitions and propositions below may be found in [15, Section 3.36], so proofs are
omitted here.

▶ Definition 2 (Impredicativity axioms).
(i) By Propositional-ResizingU,V we mean the assertion that every proposition P in a

universe U has size V.
(ii) The type of all propositions in a universe U is denoted by ΩU . Observe that ΩU : U+.

We write Ω -ResizingU,V for the assertion that the type ΩU has size V.

FSCD 2021

https://www.cs.bham.ac.uk/~mhe/agda-new/UF-Size.html#_has-size_

8:4 Predicative Aspects of Order Theory in UF

(iii) The type of all ¬¬-stable propositions in a universe U is denoted by Ω¬¬
U , where a

proposition P is ¬¬-stable if ¬¬P implies P . By Ω¬¬ -ResizingU,V we mean the
assertion that the type Ω¬¬

U has size V.
(iv) For the particular case of a single universe, we write Ω -ResizingU and Ω¬¬ -ResizingU

for the respective assertions that ΩU has size U and Ω¬¬
U has size U .

▶ Proposition 3.
(i) The principle Ω -ResizingU,V implies Propositional-ResizingU,V for every two universes

U and V.
(ii) The conjunction of Propositional-ResizingU,V and Propositional-ResizingV,U implies

Ω -ResizingU,V+ for every two universes U and V.
It is possible to define a weaker variation of propositional resizing for ¬¬-stable propositions
only (and derive similar connections), but we don’t have any use for it in this paper.

▶ Definition 4 ((Weak) excluded middle).
(i) Excluded middle in a universe U asserts that for every proposition P in U either

P or ¬P holds.
(ii) Weak excluded middle in a universe U asserts that for every proposition P in U either

¬P or ¬¬P holds.
We note that weak excluded middle says precisely that ¬¬-stable propositions are decidable
and is equivalent to de Morgan’s Law.

▶ Proposition 5. Excluded middle implies impredicativity. Specifically,
(i) Excluded middle in U implies Ω -ResizingU,U0 .
(ii) Weak excluded middle in U implies Ω¬¬ -ResizingU,U0 .

2.3 Size and Univalence
Assuming univalence we can prove that Propositional-ResizingU,V and Ω -ResizingU,V are
subsingletons. More generally, univalence allows us to prove that the statement that X has
size V is a proposition, which is needed in Section 3.5.

▶ Proposition 6 (cf. has-size-is-subsingleton in [15]). If V and U ⊔ V are univalent
universes, then X has-size V is a proposition for every X : U .

The converse also holds in the following form.

▶ Proposition 7. The type X has-size U is a proposition for every X : U if and only if U is
a univalent universe.

Proof. Note that X has-size U is
∑

Y :U Y ≃ X, so this can be found in [15, Section 3.14]. ◀

2.4 Size and Retracts
We show our main technical result on size here, namely that having a size is closed under
retracts whose sections are embeddings.

▶ Definition 8 (Sections, retractions and embeddings).
(i) A section is a map s : X → Y together with a left inverse r : Y → X, i.e. the maps

satisfy r ◦ s ∼ id. We call r the retraction and say that X is a retract of Y .
(ii) A function f : X → Y is an embedding if the map apf : (x = y) → (f(x) = f(y)) is an

equivalence for every x, y : X. (See [24, Definition 4.6.1(ii)].)
(iii) A section-embedding is a section s : X → Y that moreover is an embedding. We also

say that X is an embedded retract of Y .

T. de Jong and M. H. Escardó 8:5

We recall the following facts about embeddings and sections.

▶ Lemma 9.
(i) A function f : X → Y is an embedding if and only if all its fibres are subsingletons,

i.e.
∏

y:Y is-subsingleton(fibf (y)). (See [24, Proof of Theorem 4.6.3].)
(ii) If every section is an embedding, then every type is a set. (See [22, Remark 3.11(2)].)
(iii) Sections to sets are embeddings. (See [15, lc-maps-into-sets-are-embeddings].)

In phrasing our results it is helpful to extend the notion of size from types to functions.

▶ Definition 10 (Size (for functions), UF-Slice.html in [16]). A function f : X → Y is said
to have size V if every fibre has size V.

▶ Lemma 11 (cf. UF-Slice.html in [16]).
(i) A type X has size V if and only if the unique map X → 1U0 has size V.
(ii) If f : X → Y has size V and Y has size V, then so does X.
(iii) If s : X → Y is a section-embedding and Y has size V, then s has size V too, regardless

of the size of X.

Proof. The first two claims follow from the fact that for any map f : X → Y we have an
equivalence X ≃

∑
y:Y fibf (y) (see [24, Lemma 4.8.2]). For the third claim, suppose that

s : X → Y an embedding with retraction r : Y → X. By the second part of the proof of
Theorem 3.10 in [22], we have fibs(y) ≃ ∥s(r(y)) = y∥, from which the claim follows. ◀

▶ Lemma 12.
(i) If X is an embedded retract of Y and Y has size V, then so does X.
(ii) If X is a retract of a set Y and Y has size V, then so does X.

Proof. The first statement follows from (ii) and (iii) of Lemma 11. The second follows from
the first and item (iii) of Lemma 9. ◀

3 Large Posets Without Decidable Equality

We show that constructively and predicatively many structures from order theory (directed
complete posets, bounded complete posets, sup-lattices) are necessarily large and necessarily
lack decidable equality. We capture these structures by a technical notion of a δV -complete
poset in Section 3.1. In Section 3.2 we define when such structures are nontrivial and introduce
the constructively stronger notion of positivity. Section 3.3 and Section 3.4 contain the two
fundamental technical lemmas and the main theorems, respectively. Finally, Section 3.5
considers alternative formulations of being nontrivial and positive that ensure that these
notions are properties, as opposed to data and shows how the main theorems remain valid,
assuming univalence.

3.1 δV-complete Posets
We start by introducing a class of weakly complete posets that we call δV -complete posets.
The notion of a δV -complete poset is a technical and auxiliary notion sufficient to make our
main theorems go through. The important point is that many familiar structures (dcpos,
bounded complete posets, sup-lattices) are δV -complete posets (see Examples 15).

FSCD 2021

https://www.cs.bham.ac.uk/~mhe/agda-new/UF-Size.html#_Has-size_
https://www.cs.bham.ac.uk/~mhe/agda-new/UF-Size.html#_Has-size_

8:6 Predicative Aspects of Order Theory in UF

▶ Definition 13 (δV -complete poset, δx,y,P ,
∨
δx,y,P). A poset is a type X with a subsingleton-

valued binary relation ⊑ on X that is reflexive, transitive and antisymmetric. It is not
necessary to require X to be a set, as this follows from the other requirements. A poset (X,⊑)
is δV -complete for a universe V if for every pair of elements x, y : X with x ⊑ y and every
subsingleton P in V, the family

δx,y,P : 1 + P → X

inl(⋆) 7→ x;
inr(p) 7→ y;

has a supremum
∨
δx,y,P in X.

▶ Remark 14 (Every poset is δV -complete, classically). Consider a poset (X,⊑) and a pair of
elements x ⊑ y. If P : V is a decidable proposition, then we can define the supremum of
δx,y,P by case analysis on whether P holds or not. For if it holds, then the supremum is y,
and if it does not, then the supremum is x. Hence, if excluded middle holds in V, then the
family δx,y,P has a supremum for every P : V. Thus, if excluded middle holds in V, then
every poset (in any universe) is δV -complete.
The above remark naturally leads us to ask whether the converse also holds, i.e. if every
poset is δV -complete, does excluded middle in V hold? As far as we know, we can only get
weak excluded middle in V, as we will later see in Proposition 18. This proposition also
shows that in the absence of excluded middle, the notion of δV -completeness isn’t trivial.
For now, we focus on the fact that, also constructively and predicatively, there are many
examples of δV -complete posets.

▶ Examples 15.
(i) Every V-sup-lattices is δV -complete. That is, if a poset X has suprema for all families

I → X with I in the universe V, then X is δV -complete.
(ii) The V-sup-lattice ΩV is δV -complete. The type ΩV of propositions in V is a V-sup-lattice

with the order given by implication and suprema by existential quantification. Hence,
ΩV is δV -complete. Specifically, given propositions Q, R and P , the supremum of
δQ,R,P is given by Q ∨ (R× P).

(iii) The V-powerset PV(X) :≡ X → ΩV of a type X is δV-complete. Note that PV(X) is
another example of a V-sup-lattice (ordered by subset inclusion and with suprema given
by unions) and hence δV -complete.

(iv) Every V-bounded complete posets is δV-complete. That is, if (X,⊑) is a poset with
suprema for all bounded families I → X with I in the universe V, then (X,⊑) is
δV -complete. A family α : I → X is bounded if there exists some x : X with α(i) ⊑ x

for every i : I. For example, the family δx,y,P is bounded by y.
(v) Every V-directed complete poset (dcpo) is δV -complete, since the family δx,y,P is directed.

We note that [12] provides a host of examples of V-dcpos.

3.2 Nontrivial and Positive Posets
In Remark 14 we saw that if we can decide a proposition P , then we can define

∨
δx,y,P by

case analysis. What about the converse? That is, if δx,y,P has a supremum and we know
that it equals x or y, can we then decide P? Of course, if x = y, then

∨
δx,y,P = x = y, so

we don’t learn anything about P . But what if add the assumption that x ̸= y? It turns
out that constructively we can only expect to derive decidability of ¬P in that case. This
is due to the fact that x ̸= y is a negated proposition, which is rather weak constructively,
leading us to later define (see Definition 20) a constructively stronger notion for elements of
δV -complete posets.

T. de Jong and M. H. Escardó 8:7

▶ Definition 16 (Nontrivial). A poset (X,⊑) is nontrivial if we have designated x, y : X with
x ⊑ y and x ̸= y.

▶ Lemma 17. Let (X,⊑, x, y) be a nontrivial poset. We have the following implications for
every proposition P : V:

(i) if the supremum of δx,y,P exists and x =
∨
δx,y,P , then ¬P is the case.

(ii) if the supremum of δx,y,P exists and y =
∨
δx,y,P , then ¬¬P is the case.

Proof. Let P : V be an arbitrary proposition. For (i), suppose that x =
∨
δx,y,P and assume

for a contradiction that we have p : P . Then y ≡ δx,y,P (inr(p)) ⊑
∨
δx,y,P = x, which is

impossible by antisymmetry and our assumptions that x ⊑ y and x ̸= y. For (ii), suppose
that y =

∨
δx,y,P and assume for a contradiction that ¬P holds. Then x =

∨
δx,y,P = y,

contradicting our assumption that x ̸= y. ◀

▶ Proposition 18 (cf. Section 4 of [12]). Let 2 be the poset with exactly two elements 0 ⊑ 1.
If 2 is δV -complete, then weak excluded middle in V holds.

Proof. Suppose that 2 were δV -complete and let P : V be an arbitrary subsingleton. We
must show that ¬P is decidable. Since 2 has exactly two elements, the supremum

∨
δ0,1,P

must be 0 or 1. But then we apply Lemma 17 to get decidability of ¬P . ◀

That the conclusion of the implication in Lemma 17(ii) cannot be strengthened to say that
P is the case is shown by the following observation.

▶ Proposition 19. Recall Examples 15, which show that ΩV is δV -complete. If for every two
propositions Q and R with Q ⊑ R and Q ̸= R we have that the equality R =

∨
δQ,R,P in ΩV

implies P for every proposition P : V, then excluded middle in V follows.

Proof. Assume the hypothesis in the proposition. We are going to show that ¬¬P → P for
every proposition P : V , from which excluded middle in V holds. Let P be a proposition in V
and assume that ¬¬P . This yields 0 ̸= P , so by assumption the equality P =

∨
δ0,P,P implies

P . But, recalling item (ii) of Examples 15, we have exactly this equality
∨
δ0,P,P = P . ◀

We have seen that having a pair of elements x, y with x ⊑ y and x ̸= y is very weak con-
structively. As promised in the introduction of this section, we now introduce a constructively
stronger notion.

▶ Definition 20 (Strictly below, x ⊏ y). Let (X,⊑) be a δV -complete poset and x, y : X.
We say that x is strictly below y if x ⊑ y and, moreover, for every z ⊒ y and every proposition
P : V, the equality z =

∨
δx,z,P implies P .

Note that with excluded middle, x ⊏ y is equivalent to the conjunction of x ⊑ y and x ̸= y.
But constructively, the former is much stronger, as the following example and proposition
illustrate.

▶ Example 21 (Strictly below in ΩV). Recall from Examples 15 that ΩV is δV -complete. Let
P : V be an arbitrary proposition. Observe that 0V ̸= P precisely when ¬¬P holds. However,
0V is strictly below P if and only if P holds.

▶ Proposition 22. For a δV -complete poset (X,⊑) and x, y : X, we have that x ⊏ y implies
both x ⊑ y and x ̸= y. However, if the conjunction of x ⊑ y and x ̸= y implies x ⊏ y for
every x, y : ΩV , then excluded middle in V holds.

FSCD 2021

8:8 Predicative Aspects of Order Theory in UF

Proof. Note that x ⊏ y implies x ⊑ y by definition. Now suppose that x ⊏ y and assume
x = y for a contradiction. Since we assumed x ⊏ y, the equality y =

∨
δx,y,0V implies that

0V holds. But this equality holds since x = y by our other assumption, so x ̸= y, as desired.
For P : ΩV we observed that 0V ̸= P is equivalent to ¬¬P and that 0V ⊏ P is equivalent

to P , so if we had ((x ⊑ y) × (x ̸= y)) → x ⊏ y in general, then we would have ¬¬P → P

for every proposition P in V, which is equivalent to excluded middle in V. ◀

▶ Lemma 23. Let (X,⊑) be a δV -complete poset and x, y, z : X. The following hold:
(i) If x ⊑ y ⊏ z, then x ⊏ z.
(ii) If x ⊏ y ⊑ z, then x ⊏ z.

Proof. For (i), assume x ⊑ y ⊏ z, let P be an arbitrary proposition in V and suppose that
z ⊑ w. We must show that w =

∨
δx,w,P implies P . But y ⊏ z, so we know that the

equality w =
∨
δy,w,P implies P . Now observe that

∨
δx,w,P ⊑

∨
δy,w,P , so if w =

∨
δx,w,P ,

then w =
∨
δy,w,P , finishing the proof. For (ii), assume x ⊏ y ⊑ z, let P be an arbitrary

proposition in V and suppose that z ⊑ w. We must show that w =
∨
δx,w,P implies P . But

x ⊏ y and y ⊑ w, so this follows immediately. ◀

▶ Proposition 24. Let (X,⊑) be a V-sup-lattice and let y : X. The following are equivalent:
(i) the least element of X is strictly below y;
(ii) for every family α : I → X with I : V and y ⊑

∨
α, there exists some element i : I.

(iii) there exists some x : X with x ⊏ y.

Proof. Write ⊥ for the least element of X. By Lemma 23 we have:

⊥ ⊏ y ⇐⇒ ∃x:X(⊥ ⊑ x ⊏ y) ⇐⇒ ∃x:X(x ⊏ y),

which proves the equivalence of (i) and (iii). It remains to prove that (i) and (ii) are equivalent.
Suppose that ⊥ ⊏ y and let α : I → X with y ⊑

∨
α. Using ⊥ ⊏ y ⊑

∨
α and Lemma 23, we

have ⊥ ⊏
∨
α. Hence, we only need to prove

∨
α ⊑

∨
δ⊥,

∨
α,∃i:I , but αj ⊑

∨
δ⊥,

∨
α,∃i:I for

every j : I, so this is true indeed. For the converse, assume that y satisfies (ii), suppose z ⊒ y

and let P : V be a proposition such that z =
∨
δ⊥,z,P . We must show that P holds. But

notice that y ⊑ z =
∨
δ⊥,z,P =

∨
((p : P) 7→ z), so P must be inhabited as y satisfies (ii). ◀

Item (ii) in Proposition 24 says exactly that y is a positive element in the sense of [19, p. 98].
We note that item (iii) in Proposition 24 makes sense even when (X,⊑) is not a V-sup-lattice,
but just a δV -complete poset. Accordingly, we make the following definition.

▶ Definition 25 (Positive element). An element of a δV -complete poset is positive if it satisfies
item (iii) in Proposition 24.

An element of a V-dcpo is called compact if it is inaccessible by directed joins of families
indexed by types in V [12, Definition 44].

▶ Proposition 26. A compact element x of a V-dcpo with least element ⊥ is positive if and
only if x ̸= ⊥.

Proof. One implication is taken care of by Proposition 22. For the converse, suppose that
x ̸= ⊥. We show that ⊥ is strictly below x. For if x ⊑ y =

∨
δ⊥,y,P , then by compactness of

x, there must exist i : 1 + P such that x ⊑ δ⊥,y,P (i) already. But i can’t be equal to inl(⋆),
since x is assumed to be different from ⊥. Hence, i = inr(p) and P must hold. ◀

Looking to strengthen the notion of a nontrivial poset, we make the following definition,
whose terminology is inspired by Definition 25.

T. de Jong and M. H. Escardó 8:9

▶ Definition 27 (Positive poset). A δV -complete poset X is positive if we have designated
x, y : X with x strictly below y.

▶ Examples 28.
(i) Consider an element P of the δV-complete poset ΩV . The pair (0V , P) witnesses

nontriviality of ΩV if and only if ¬¬P holds, while it witnesses positivity if and only if
P holds.

(ii) Consider the V-powerset PV(X) on a type X as a δV -complete poset (recall Examples 15).
We write ∅ : PV(X) for the map x 7→ 0V . Say that a subset A : PV(X) is nonempty
if A ̸= ∅ and inhabited if there exists some x : X such that A(x) holds. The pair
(∅, A) witnesses nontriviality of PV(X) if and only if A is nonempty, while it witnesses
positivity if and only if A is inhabited. In particular, PV(X) is positive if and only if
X is an inhabited type.

3.3 Retract Lemmas
We show that the type of propositions in V is a retract of any positive δV -complete poset and
that the type of ¬¬-stable propositions in V is a retract of any nontrivial δV -complete poset.

▶ Definition 29 (∆x,y : ΩV → X). Suppose that (X,⊑, x, y) is a nontrivial δV-complete
poset. We define ∆x,y : ΩV → X by the assignment P 7→

∨
δx,y,P .

We will often omit the subscripts in ∆x,y when it is clear from the context.

▶ Definition 30 (Locally small). A δV -complete poset (X,⊑) is locally small if its order has
values of size V, i.e. we have ⊑V : X → X → V with (x ⊑ y) ≃ (x ⊑V y) for every x, y : X.

▶ Examples 31.
(i) The V-sup-lattices ΩV and PV(X) (for X : V) are locally small.
(ii) All examples of V-dcpos in [12] are locally small.

▶ Lemma 32. A locally small δV -complete poset (X,⊑) is nontrivial, witnessed by elements
x ⊑ y, if and only if the composite Ω¬¬

V ↪→ ΩV
∆x,y−−−→ X is a section.

Proof. Suppose first that (X,⊑, x, y) is nontrivial and locally small. We define

r : X → Ω¬¬
V

z 7→ z ̸⊑V x.

Note that negated propositions are ¬¬-stable, so r is well-defined. Let P : V be an
arbitrary ¬¬-stable proposition. We want to show that r(∆x,y(P)) = P . By propositional
extensionality, establishing logical equivalence suffices. Suppose first that P holds. Then
∆x,y(P) ≡

∨
δx,y,P = y, so r(∆x,y(P)) = r(y) ≡ (y ̸⊑V x) holds by antisymmetry and our

assumptions that x ⊑ y and x ̸= y. Conversely, assume that r(∆x,y(P)) holds, i.e. that we
have

∨
δx,y,P ̸⊑V x. Since P is ¬¬-stable, it suffices to derive a contradiction from ¬P . So

assume ¬P . Then x =
∨
δx,y,P , so r(∆x,y(P)) = r(x) ≡ x ̸⊑V x, which is false by reflexivity.

For the converse, assume that Ω¬¬
V ↪→ ΩV

∆x,y−−−→ X has a retraction r : Ω¬¬
V → X. Then

0V = r(∆x,y(0V)) = r(x) and 1V = r(∆x,y(1V)) = r(y), where we used that 0V and 1V are
¬¬-stable. Since 0V ̸= 1V , we get x ̸= y, so (X,⊑, x, y) is nontrivial, as desired. ◀

The appearance of the double negation in the above lemma is due to the definition of
nontriviality. If we instead assume a positive poset X, then we can exhibit all of ΩV as a
retract of X.

FSCD 2021

8:10 Predicative Aspects of Order Theory in UF

▶ Lemma 33. A locally small δV -complete poset (X,⊑) is positive, witnessed by elements
x ⊑ y, if and only if for every z ⊒ y, the map ∆x,z : ΩV → X is a section.

Proof. Suppose first that (X,⊑, x, y) is positive and locally small and let z ⊒ y be arbitrary.
We define

rz : X 7→ ΩV

w 7→ z ⊑V w.

Let P : V be arbitrary proposition. We want to show that rz(∆x,z(P)) = P . Because of
propositional extensionality, it suffices to establish a logical equivalence between P and
rz(∆x,z(P)). Suppose first that P holds. Then ∆x,z(P) = z, so rz(∆x,z(P)) = rz(z) ≡
(z ⊑V z) holds as well by reflexivity. Conversely, assume that rz(∆x,z(P)) holds, i.e. that we
have z ⊑V

∨
δx,z,P . Since

∨
δx,z,P ⊑ z always holds, we get z =

∨
δx,z,P by antisymmetry.

But by assumption and Lemma 23, the element x is strictly below z, so P must hold.
For the converse, assume that for every z ⊒ y, the map ∆x,z : ΩV → X has a retraction

rz : X → ΩV . We must show that the equality z = ∆x,z(P) implies P for every z ⊒ y

and proposition P : V. Assuming z = ∆x,z(P), we have 1V = rz(∆x,z(1V)) = rz(z) =
rz(∆x,z(P)) = P , so P must hold indeed. Hence, (X,⊑, x, y) is positive, as desired. ◀

3.4 Reductions to Impredicativity and Excluded Middle
We present our main theorems here, which show that, constructively and predicatively,
nontrivial δV -complete posets are necessarily large and necessarily lack decidable equality.

▶ Definition 34 (Small). A δV -complete poset is small if it is locally small and its carrier
has size V.

▶ Theorem 35.
(i) There is a nontrivial small δV -complete poset if and only if Ω¬¬ -ResizingV holds.
(ii) There is a positive small δV -complete poset if and only if Ω -ResizingV holds.

Proof. (i) Suppose that (X,⊑, x, y) is a nontrivial small δV -complete poset. By Lemma 32,
we can exhibit Ω¬¬

V as a retract of X. But X has size V by assumption, so by Lemma 12
and the fact that Ω¬¬

V is a set, the type Ω¬¬
V has size V as well. For the converse, note that

(Ω¬¬
V ,→, 0V , 1V) is a nontrivial V-sup-lattice with

∨
α given by ¬¬∃i:Iαi. And if we assume

Ω¬¬ -ResizingV , then it is small.
(ii) Suppose that (X,⊑, x, y) is a positive small poset. By Lemma 33, we can exhibit

ΩV as a retract of X. But X has size V by assumption, so by Lemma 12 and the fact that
ΩV is a set, the type ΩV has size V as well. For the converse, note that (ΩV ,→, 0V , 1V) is a
positive V-sup-lattice. And if we assume Ω -ResizingV , then it is small. ◀

▶ Lemma 36 (retract-is-discrete and subtype-is-¬¬-separated in [16]).
(i) Types with decidable equality are closed under retracts.
(ii) Types with ¬¬-stable equality are closed under retracts.

▶ Theorem 37. There is a nontrivial locally small δV -complete poset with decidable equality
if and only if weak excluded middle in V holds.

Proof. Suppose that (X,⊑, x, y) is a nontrivial locally small δV -complete poset with decidable
equality. Then by Lemmas 32 and 36, the type Ω¬¬

V must have decidable equality too. But
negated propositions are ¬¬-stable, so this yields weak excluded middle in V. For the
converse, note that (Ω¬¬

V ,→, 0V , 1V) is a nontrivial V-sup-lattice that has decidable equality
if and only if weak excluded middle in V holds. ◀

https://www.cs.bham.ac.uk/~mhe/agda-new/DiscreteAndSeparated.html#retract-is-discrete
https://www.cs.bham.ac.uk/~mhe/agda-new/DiscreteAndSeparated.html#subtype-is-%C2%AC%C2%AC-separated

T. de Jong and M. H. Escardó 8:11

▶ Theorem 38. The following are equivalent:
(i) There is a positive locally small δV -complete poset with ¬¬-stable equality.
(ii) There is a positive locally small δV -complete poset with decidable equality.
(iii) Excluded middle in V holds.

Proof. Note that (ii) ⇒ (i), so we are left to show that (iii) ⇒ (ii) and that (i) ⇒ (iii). For
the first implication, note that (ΩV ,→, 0V , 1V) is a positive V-sup-lattice that has decidable
equality if and only if excluded middle in V holds. To see that (i) implies (iii), suppose
that (X,⊑, x, y) is a positive locally small δV -complete poset with ¬¬-stable equality. Then
by Lemmas 33 and 36 the type ΩV must have ¬¬-stable equality. But this implies that
¬¬P → P for every proposition P in V which is equivalent to excluded middle in V. ◀

Lattices, bounded complete posets and dcpos are necessarily large and necessarily lack
decidable equality in our predicative constructive setting. More precisely,

▶ Corollary 39.
(i) There is a nontrivial small V-sup-lattice (or V-bounded complete poset or V-dcpo)

if and only if Ω¬¬ -ResizingV holds.
(ii) There is a positive small V-sup-lattice (or V-bounded complete poset or V-dcpo)

if and only if Ω -ResizingV holds.
(iii) There is a nontrivial locally small V-sup-lattice (or V-bounded complete poset or V-dcpo)

with decidable equality if and only if weak excluded middle in V holds.
(iv) There is a positive locally small V-sup-lattice (or V-bounded complete poset or V-dcpo)

with decidable equality if and only if excluded middle in V holds.

3.5 Unspecified Nontriviality and Positivity
The above notions of non-triviality and positivity are data rather than property. Indeed, a
nontrivial poset (X,⊑) is (by definition) equipped with two designated points x, y : X such
that x ⊑ y and x ̸= y. It is natural to wonder if the propositionally truncated versions of
these two notions yield the same conclusions. In this section we show that this is indeed the
case if we assume univalence. The need for the univalence assumption comes from the fact
that the notion of having a given size is property precisely if univalence holds, as shown in
Propositions 6 and 7.

▶ Definition 40 (Nontrivial/positive in an unspecified way). A poset (X,⊑) is nontrivial
in an unspecified way if there exist some elements x, y : X such that x ⊑ y and x ̸= y,
i.e. ∃x:X∃y:X((x ⊑ y) × (x ̸= y)). Similarly, we can define when a poset is positive in an
unspecified way by truncating the notion of positivity.

▶ Theorem 41. Suppose that the universes V and V+ are univalent.
(i) There is a small δV -complete poset that is nontrivial in an unspecified way if and only

if Ω¬¬ -ResizingV holds.
(ii) There is a small δV -complete poset that is positive in an unspecified way if and only if

Ω -ResizingV holds.

Proof. (i) Suppose that (X,⊑) is a δV -complete poset that is nontrivial in an unspecified
way. By Proposition 6 and univalence of V and V+, type Ω¬¬

V has-size V is a proposition.
By the universal property of the propositional truncation, in proving that Ω¬¬

V has-size V we
can therefore assume that are given points x, y : X with x ⊑ y and x ̸= y. The result then
follows from Theorem 35. (ii) By reduction to item (ii) of Theorem 35. ◀

FSCD 2021

8:12 Predicative Aspects of Order Theory in UF

Similarly, we can prove the following theorems by reduction to Theorems 37 and 38.

▶ Theorem 42.
(i) There is a locally small δV -complete poset with decidable equality that is nontrivial in

an unspecified way if and only if weak excluded middle in V holds.
(ii) There is a locally small δV -complete poset with decidable equality that is positive in an

unspecified way if and only if excluded middle in V holds.

4 Maximal Points and Fixed Points

In this section we construct a particular example of a V-sup-lattice that will prove very useful
in studying the predicative validity of some well-known principles in order theory.

▶ Definition 43 (Lifting, cf. [14]). Fix a proposition PU in a universe U . Lifting PU with
respect to a universe V is defined by

LV(PU) :≡
∑

Q:ΩV

(Q → PU).

This is a subtype of ΩV and it is closed under V-suprema (in particular, it contains the
least element).

▶ Examples 44.
(i) If PU :≡ 0U , then LV(PU) ≃

(∑
Q:ΩV

¬Q
)

≃
(∑

Q:ΩV
Q = 0V

)
≃ 1.

(ii) If PU :≡ 1U , then LV(PU) ≡
(∑

Q:ΩV
(Q → 1U)

)
≃ ΩV .

What makes LV(PU) useful is the following observation.

▶ Lemma 45. Suppose that the poset LV(PU) has a maximal element Q : ΩV . Then PU
is equivalent to Q, which is the greatest element of LV(PU). In particular, PU has size V.
Conversely, if PU is equivalent to a proposition Q : ΩV , then Q is the greatest element
of LV(PU).

Proof. Suppose that LV(PU) has a maximal element Q : ΩV . We wish to show that Q ≃ PU .
By definition of LV(PU), we already have that Q → PU . So only the converse remains.
Therefore suppose that PU holds. Then, 1V is an element of LV(PU). Obviously Q → 1V ,
but Q is maximal, so actually Q = 1V , that is, Q holds, as desired. Thus, Q ≃ PU .
It is then straightforward to see that Q is actually the greatest element of LV(PU), since
LV(PU) ≃

∑
Q′:ΩV

(Q′ → Q). For the converse, assume that PU is equivalent to a proposition
Q : ΩV . Then, as before, LV(PU) ≃

∑
Q′:ΩV

(Q′ → Q), which shows that Q is indeed the
greatest element of LV(PU). ◀

▶ Corollary 46. Let PU be a proposition in U . The V-sup-lattice LV(PU) has all V-infima if
and only if PU has size V.

Proof. Suppose first that LV(PU) has all V-infima. Then it must have a infimum for the
empty family 0V → LV(PU). But this infimum must be the greatest element of LV(PU). So
by Lemma 45 the proposition PU must have size V.

Conversely, suppose that PU is equivalent to a proposition Q : V . Then the infimum of a
family α : I → LV(PU) with I : V is given by (Q× Πi:Iαi) : V. ◀

▶ Definition 47 (Zorn’s-LemmaV,U ,T). Let U , V and T be universes. Zorn’s-LemmaV,U ,T
asserts that every pointed V-dcpo with carrier in U and order taking values in T (cf. [12])
has a maximal element.

T. de Jong and M. H. Escardó 8:13

It important to note that Zorn’s lemma does not imply the Axiom of Choice in the absence
of excluded middle [3]. If it did, then the following would be useless, since the Axiom of
Choice implies excluded middle, which in turn implies propositional resizing.

▶ Theorem 48. Zorn’s-LemmaV,V+⊔U ,V implies Propositional-ResizingU,V .

In particular, Zorn’s-LemmaV,V+,V implies Propositional-ResizingV+,V .

Proof. Suppose that Zorn’s-LemmaV,V+⊔U ,V were true. Then LV(P) : V+ ⊔U has a maximal
element for every P : ΩU . Hence, by Lemma 45, every P : ΩU has size V. ◀

We can also use Lemma 45 to show that the following version of Tarski’s fixed point
theorem [23] is not available predicatively.

▶ Definition 49 (Tarski’s-TheoremV,U ,T). The assertion Tarski’s-TheoremV,U ,T says that
every monotone endofunction on a V-sup-lattice with carrier in a universe U and order taking
values in a universe T has a greatest fixed point.

▶ Theorem 50. Tarski’s-TheoremV,V+⊔U ,V implies Propositional-ResizingU,V .

In particular, Tarski’s-TheoremV,V+,V implies Propositional-ResizingV+,V .

Proof. Suppose that Tarski’s-TheoremV,V+⊔U ,V were true and let P : ΩU be arbitrary.
Consider the V-sup-lattice LV(P) : V+ ⊔ U . By assumption, the identity map on this poset
has a greatest fixed point, but this must be the greatest element of LV(P), which implies
that P has size V by Lemma 45. ◀

Another famous fixed point theorem, for dcpos this time, is due to Pataraia [20, 13]
which says that every monotone endofunction on a pointed dcpo has a least fixed point.
(A dcpo is called pointed if it has a least element.) A crucial step in proving Pataraia’s
theorem is the observation that every dcpo has a greatest monotone inflationary endofunction.
(An endomap f : X → X is inflationary when x ⊑ f(x) for every x : X.) We refer to this
intermediate result as Pataraia’s lemma.

▶ Definition 51 (Pataraia’s-LemmaV,U ,T , Pataraia’s-TheoremV,U ,T).
(i) Pataraia’s-TheoremV,U ,T says that every monotone endofunction on a pointed V-dcpo

with carrier in a universe U and order taking values in a universe T has a least
fixed point.

(ii) Pataraia’s-LemmaV,U ,T says that every V-dcpo with carrier in a universe U and order
taking values in a universe T has a greatest monotone inflationary endofunction.

A careful analysis of the proof in [13, Section 2] shows that in our predicative setting we
can still prove that Pataraia’s-LemmaV,U⊔T ,U⊔T implies Pataraia’s-TheoremV,U ,T . However,
Pataraia’s lemma is not available predicatively.

▶ Theorem 52. Pataraia’s-LemmaV,V+⊔U ,V implies Propositional-ResizingU,V .

In particular, Pataraia’s-LemmaV,V+,V implies Propositional-ResizingV+,V .

Proof. Suppose that Pataraia’s-LemmaV,V+⊔U ,V were true and let P : ΩU be arbitrary.
Consider the V-dcpo LV(P) : V+ ⊔U . By assumption, it has a greatest monotone inflationary
endomap g : LV(P) → LV(P). We claim that g(0V) is a maximal element of LV(P), which
would finish the proof by Lemma 45. So suppose that we have Q : LV(P) with g(0V) ⊑ Q.
Then we must show that Q ⊑ g(0V). Define fQ : LV(P) → LV(P) by Q′ 7→ Q′ ∨ Q. Note
that fQ is monotone and inflationary, so that fQ ⊑ g. Hence, Q = fQ(0V) ⊑ g(0V), as
desired. ◀

FSCD 2021

8:14 Predicative Aspects of Order Theory in UF

▶ Remark 53. For a single universe U , the usual proofs (see resp. [23] and [13, Section 2])
of Tarski’s-TheoremU,U ,U , Pataraia’s-LemmaU,U ,U and (hence) Pataraia’s-TheoremU,U ,U are
also valid in our predicative setting. However, in light of Theorem 35, these statements are
not useful predicatively, because one would never be able to find interesting examples of
posets to apply the statements to.

Finally, we note that Zorn’s lemma implies Pataraia’s lemma with the following universe
parameters. Together with Theorem 52 this yields another proof that Zorn’s-LemmaV,V+,V
implies Propositional-ResizingV+,V .

▶ Lemma 54. Zorn’s-LemmaV,U⊔T ,U⊔T implies Pataraia’s-LemmaV,U ,T .

Proof. Assume Zorn’s-LemmaV,U⊔T ,U⊔T and let D : U be V-dcpo with order taking values
in T . Consider the type MID of monotone and inflationary endomaps on D. We can order
these maps pointwise to get a V-dcpo with carrier and order taking values in U ⊔ T . Finally,
MID has a least element: the identity map. Hence, by our assumption, it has a maximal
element g : D → D. It remains to show that g is in fact the greatest element. To this end,
let f : D → D be an arbitrary monotone inflationary endomap on D. We must show that
f ⊑ g. Since f is inflationary, we have g ⊑ f ◦ g. So by maximality of g, we get g = f ◦ g.
But f is monotone and g is inflationary, so f ⊑ f ◦ g = g, finishing the proof. ◀

The answer to the question whether Pataraia’s theorem (or similarly, a least fixed point
theorem version of Tarki’s theorem) is inherently impredicative or (by contrast) does admit
a predicative proof has eluded us thus far.

5 Families and Subsets

In traditional impredicative foundations, completeness of posets is usually formulated using
subsets. For instance, dcpos are defined as posets D such that every directed subset D has
a supremum in D. Examples 15 are all formulated using small families instead of subsets.
While subsets are primitive in set theory, families are primitive in type theory, so this could
be an argument for using families above. However, that still leaves the natural question of
how the family-based definitions compare to the usual subset-based definitions, especially
in our predicative setting, unanswered. This section aims to answer this question. We first
study the relation between subsets and families predicatively and then clarify our definitions
in the presence of impredicativity. In our answers we will consider sup-lattices, but similar
arguments could be made for posets with other sorts of completeness, such as dcpos.

All Subsets

We first show that simply asking for completeness w.r.t. all subsets is not satisfactory from a
predicative viewpoint. In fact, we will now see that even asking for all subsets X → ΩT for
some fixed universe T is problematic from a predicative standpoint.

▶ Theorem 55. Let U and V be universes and fix a proposition PU : U . Recall LV(PU)
from Definition 43, which has V-suprema. Let T be any type universe. If LV(PU) has
suprema for all subsets LV(PU) → ΩT , then PU has size V independently of T .

Proof. Let T be a type universe and consider the subset S of LV(PU) given by Q 7→ 1T .
Note that S has a supremum in LV(PU) if and only if LV(PU) has a greatest element, but
by Lemma 45, the latter is equivalent to PU having size V. ◀

T. de Jong and M. H. Escardó 8:15

All Subsets Whose Total Spaces Have Size V

The proof above illustrates that if we have a subset S : X → ΩT , then there is no reason why
the total space

∑
x:X x ∈ S :≡

∑
x:X(S(x) holds) should have size T . In fact, for S(x) :≡ 1T

as above, the latter is equivalent to asking that X has size T .

▶ Definition 56 (Total space of a subset, T). Let T be a universe, X a type and S : X → ΩT
a subset of X. The total space of S is defined as T(S) :≡

∑
x:X x ∈ S.

A naive attempt to solve the problem described in Theorem 55 would be to stipulate
that a V-sup-lattice X should have suprema for all subsets S : X → ΩV for which T(S)
has size V . Somewhat less naively, we might be more liberal and ask for suprema of subsets
S : X → ΩU⊔V for which T(S) has size V . Here the carrier of X is in a universe U . Perhaps
surprisingly, even this more liberal definition is too weak to be useful as the following example
shows.

▶ Example 57 (Naturally occurring subsets whose total spaces are not necessarily small). Let X
be a poset with carrier in U and suppose that it has suprema for all (directed) subsets
S : X → ΩU⊔V for which T(S) has size V. Now let f : X → X be a Scott continuous
endofunction on X. We would want to construct the least fixed point of f as the supremum
of the directed subset S :≡ {⊥, f(⊥), f2(⊥), . . . }. Now, how do we show that its total space
T(S) ≡

∑
x:X(∃n:N x = fn(⊥)) has size V? A first guess might be that N ≃ T(S), which

would do the job. However, it’s possible that fm(⊥) = fm+1(⊥) for some natural number m,
which would mean that T(S) ≃ Fin(m) for the least such m. The problem is that in the
absence of decidable equality on X we might not be able to decide which is the case. But X
seldom has decidable equality, as we saw in Theorems 37 and 38.

▶ Remark 58. The example above also makes clear that it is undesirable to impose an
injectivity condition on families, as the family N → X,n 7→ fn(⊥) is not necessarily injective.
In fact, for every type X : U there is an equivalence between embeddings I ↪→ X with I : V
and subsets of X whose total spaces have size V, cf. [16, Slice.html].

All V-covered Subsets

The point of Example 57 is analogous to the difference between Bishop finiteness and
Kuratowski finiteness. Inspired by this, we make the following definition.

▶ Definition 59 (V-covered subset). Let X be a type, T a universe and S : X → ΩT a subset
of X. We say that S is V-covered for a universe V if we have a type I : V with a surjection
e : I ↠ T(S).

In the example above, the subset S :≡ {⊥, f(⊥), f2(⊥), . . . } is U0-covered, because
N ↠ T(S).

▶ Theorem 60. For X : U and any universe V we have an equivalence between V-covered
subsets X → ΩU⊔V and families I → X with I : V.

Proof. The forward map φ is given by (S, I, e) 7→ (I, pr1 ◦e). In the other direction, we
define ψ by mapping (I, α) to the triple (S, I, e) where S is the subset of X given by
S(x) :≡ ∃i:I x = α(i) and e : I ↠ T(S) is defined as e(i) :≡ (α(i), |(i, refl)|). The composite
φ ◦ ψ is easily seen to be equal to the identity. To show that ψ ◦ φ equals the identity, we
need the following intermediate result, which is proved using function extensionality and
path induction.

FSCD 2021

https://www.cs.bham.ac.uk/~mhe/agda-new/Slice.html#%F0%9D%93%95-equiv

8:16 Predicative Aspects of Order Theory in UF

▷ Claim. Let S, S′ : X → ΩU⊔V , e : I → T(S) and e′ : I → T(S′). If S = S′ and
pr1 ◦ e ∼ pr1 ◦ e′, then (S, e) = (S′, e′).

The result then follows from the claim using function extensionality and propositional
extensionality. ◀

▶ Corollary 61. Let X be a poset with carrier in U and let V be any universe. Then X has
suprema for all V-covered subsets X → ΩU⊔V if and only if X has suprema for all families
I → X with I : V.

Families and Subsets in the Presence of Impredicativity

Finally, we compare our family-based approach to the subset-based approach in the presence
of impredicativity.

▶ Theorem 62. Assume Ω -ResizingT ,U0
for every universe T . Then the following are

equivalent for a poset X in a universe U :
(i) X has suprema for all subsets;
(ii) X has suprema for all U-covered subsets;
(iii) X has suprema for all subsets whose total spaces have size U ;
(iv) X has suprema for all families I → X with I : U .

Proof. Clearly (i) ⇒ (ii) ⇒ (iii). We show that (iii) implies (i), which proves the equivalence
of (i)–(iii). Assume that X has suprema for all subsets whose total spaces have size U and
let S : X → ΩT be any subset of X. Using Ω -ResizingT ,U0

, the total space T(S) has size U .
So X has a supremum for S by assumption, as desired. Finally, (ii) and (iv) are equivalent
by Corollary 61. ◀

Notice that (iv) in Theorem 62 implies that X has suprema for all families I → X with
I : V and V such that V ⊔ U ≡ U . Typically, in the examples of [12] for instance, U :≡ U1
and V :≡ U0, so that V ⊔ U ≡ U holds. Thus, our V-families-based approach generalizes the
traditional subset-based approach.

6 Conclusion

Firstly, we have shown, constructively and predicatively, that nontrivial dcpos, bounded
complete posets and sup-lattices are all necessarily large and necessarily lack decidable
equality. We did so by deriving a weak impredicativity axiom or weak excluded middle
from the assumption that such nontrivial structures are small or have decidable equality,
respectively. Strengthening nontriviality to the (classically equivalent) positivity condition,
we derived a strong impredicativity axiom and full excluded middle.

Secondly, we proved that Zorn’s lemma, Tarski’s greatest fixed point theorem and
Pataraia’s lemma all imply impredicativity axioms. Hence, these principles are inherently
impredicative and a predicative development of order theory (in univalent foundations) must
thus do without them.

Thirdly, we clarified, in our predicative setting, the relation between the traditional
definition of a lattice that requires completeness with respect to subsets and our definition
that asks for completeness with respect to small families.

In future work, we wish to study the predicative validity of Pataraia’s theorem and Tarski’s
least fixed point theorem. Curi [9, 10] develops predicative versions of Tarki’s fixed point
theorem in some extensions of CZF. It is not clear whether these arguments could be adapted

T. de Jong and M. H. Escardó 8:17

to univalent foundations, because they rely on the set-theoretical principles discussed in the
introduction. The availability of such fixed-point theorems would be especially useful for
application to inductive sets [1], which we might otherwise introduce in univalent foundations
using higher inductive types [24]. In another direction, we have developed a notion of
apartness [5] for continuous dcpos [12] that is related to the notion of being strictly below
introduced in this paper. Namely, if x ⊑ y are elements of a continuous dcpo, then x is
strictly below y if x is apart from y. In upcoming work, we give a constructive analysis of
the Scott topology [17] using this notion of apartness.

References
1 Peter Aczel. An introduction to inductive definitions. In Jon Barwise, editor, Handbook of

Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics, pages
739–782. Elsevier, 1977. doi:10.1016/S0049-237X(08)71120-0.

2 Peter Aczel and Michael Rathjen. Notes on constructive set theory. Book draft, August 2010.
URL: https://www1.maths.leeds.ac.uk/~rathjen/book.pdf.

3 J. L. Bell. Zorn’s lemma and complete Boolean algebras in intuitionistic type theories. The
Journal of Symbolic Logic, 62(4):1265–1279, 1997. doi:10.2307/2275642.

4 Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics, volume 97 of
London Mathematical Society Lecture Note Series. Cambridge University Press, 1987.

5 Douglas S. Bridges and Luminiţa Simona Vîţǎ. Apartness and Uniformity: A Constructive
Development. Springer, 2011. doi:10.1007/978-3-642-22415-7.

6 Thierry Coquand, Giovanni Sambin, Jan Smith, and Silvio Valentini. Inductively generated
formal topologies. Annals of Pure and Applied Logic, 124(1–3):71–106, 2003. doi:10.1016/
s0168-0072(03)00052-6.

7 Giovanni Curi. On some peculiar aspects of the constructive theory of point-free spaces.
Mathematical Logic Quarterly, 56(4):375–387, 2010. doi:10.1002/malq.200910037.

8 Giovanni Curi. On the existence of Stone-Čech compactification. The Journal of Symbolic
Logic, 75(4):1137–1146, 2010. doi:10.2178/jsl/1286198140.

9 Giovanni Curi. On Tarski’s fixed point theorem. Proceedings of the American Mathematical
Society, 143(10):4439–4455, 2015. doi:10.1090/proc/12569.

10 Giovanni Curi. Abstract inductive and co-inductive definitions. The Journal of Symbolic Logic,
83(2):598–616, 2018. doi:10.1017/jsl.2018.13.

11 Giovanni Curi and Michael Rathjen. Formal Baire space in constructive set theory. In
Ulrich Berger, Hannes Diener, Peter Schuster, and Monika Seisenberger, editors, Logic,
Construction, Computation, volume 3 of Ontos Matematical Logic, pages 123–136. De Gruyter,
2012. doi:10.1515/9783110324921.123.

12 Tom de Jong and Martín Hötzel Escardó. Domain theory in constructive and predicative
univalent foundations. In Christel Baier and Jean Goubault-Larrecq, editors, 29th EACSL
Annual Conference on Computer Science Logic (CSL 2021), volume 183 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 28:1–28:18. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.CSL.2021.28.

13 Martín H. Escardó. Joins in the frame of nuclei. Applied Categorical Structures, 11:117–124,
2003. doi:10.1023/A:1023555514029.

14 Martín H. Escardó and Cory M. Knapp. Partial elements and recursion via dominances in
univalent type theory. In Valentin Goranko and Mads Dam, editors, 26th EACSL Annual
Conference on Computer Science Logic (CSL 2017), volume 82 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 21:1–21:16. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.CSL.2017.21.

15 Martín Hötzel Escardó. Introduction to univalent foundations of mathematics with Agda,
November 2020. arXiv:1911.00580.

FSCD 2021

https://doi.org/10.1016/S0049-237X(08)71120-0
https://www1.maths.leeds.ac.uk/~rathjen/book.pdf
https://doi.org/10.2307/2275642
https://doi.org/10.1007/978-3-642-22415-7
https://doi.org/10.1016/s0168-0072(03)00052-6
https://doi.org/10.1016/s0168-0072(03)00052-6
https://doi.org/10.1002/malq.200910037
https://doi.org/10.2178/jsl/1286198140
https://doi.org/10.1090/proc/12569
https://doi.org/10.1017/jsl.2018.13
https://doi.org/10.1515/9783110324921.123
https://doi.org/10.4230/LIPIcs.CSL.2021.28
https://doi.org/10.1023/A:1023555514029
https://doi.org/10.4230/LIPIcs.CSL.2017.21
http://arxiv.org/abs/1911.00580

8:18 Predicative Aspects of Order Theory in UF

16 Martín Hötzel Escardó. Various new theorems in constructive univalent mathematics written in
Agda. https://github.com/martinescardo/TypeTopology, June 2020. Agda development.

17 G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. Continu-
ous Lattices and Domains, volume 93 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2003. doi:10.1017/CBO9780511542725.

18 Hajime Ishihara. Reverse mathematics in Bishop’s constructive mathematics. Philosophia
Scientiæ, CS 6:43–59, 2006. doi:10.4000/philosophiascientiae.406.

19 Peter T. Johnstone. Open locales and exponentiation. In J. W. Gray, editor, Mathematical
Applications of Category Theory, volume 30 of Contemporary Mathematics, pages 84–116.
American Mathematical Society, 1984. doi:10.1090/conm/030/749770.

20 Dito Pataraia. A constructive proof of Tarski’s fixed-point theorem for dcpos. Presented at
the 65th Peripatetic Seminar on Sheaves and Logic, 1997.

21 Giovanni Sambin. Intuitionistic formal spaces – a first communication. In Mathematical logic
and its applications, pages 187–204. Springer, 1987. doi:10.1007/978-1-4613-0897-3_12.

22 Michael Shulman. Idempotents in intensional type theory. Logical Methods in Computer
Science, 12(3):1–24, 2016. doi:10.2168/LMCS-12(3:9)2016.

23 Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5(2):285–309, 1955. doi:10.2140/pjm.1955.5.285.

24 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

25 Benno van den Berg. Predicative topos theory and models for constructive set theory. PhD
thesis, Utrecht University, 2006. URL: http://dspace.library.uu.nl/handle/1874/8850.

26 Vladimir Voevodsky. Resizing rules – their use and semantic justification. Slides from a talk at
TYPES, Bergen, 11 September, 2011. URL: https://www.math.ias.edu/vladimir/sites/
math.ias.edu.vladimir/files/2011_Bergen.pdf.

27 Vladimir Voevodsky. An experimental library of formalized mathematics based on the univalent
foundations. Mathematical Structures in Computer Science, 25(5):1278–1294, 2015.

https://github.com/martinescardo/TypeTopology
https://doi.org/10.1017/CBO9780511542725
https://doi.org/10.4000/philosophiascientiae.406
https://doi.org/10.1090/conm/030/749770
https://doi.org/10.1007/978-1-4613-0897-3_12
https://doi.org/10.2168/LMCS-12(3:9)2016
https://doi.org/10.2140/pjm.1955.5.285
https://homotopytypetheory.org/book
http://dspace.library.uu.nl/handle/1874/8850
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2011_Bergen.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2011_Bergen.pdf

A Strong Call-By-Need Calculus
Thibaut Balabonski !

Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, Gif-sur-Yvette, 91190, France

Antoine Lanco !

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, LMF, Gif-sur-Yvette, 91190, France

Guillaume Melquiond !

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, LMF, Gif-sur-Yvette, 91190, France

Abstract
We present a call-by-need λ-calculus that enables strong reduction (that is, reduction inside the
body of abstractions) and guarantees that arguments are only evaluated if needed and at most once.
This calculus uses explicit substitutions and subsumes the existing strong-call-by-need strategy, but
allows for more reduction sequences, and often shorter ones, while preserving the neededness.

The calculus is shown to be normalizing in a strong sense: Whenever a λ-term t admits a normal
form n in the λ-calculus, then any reduction sequence from t in the calculus eventually reaches
a representative of the normal form n. We also exhibit a restriction of this calculus that has the
diamond property and that only performs reduction sequences of minimal length, which makes it
systematically better than the existing strategy. We have used the Abella proof assistant to formalize
part of this calculus, and discuss how this experiment affected its design.

2012 ACM Subject Classification Theory of computation → Operational semantics

Keywords and phrases strong reduction, call-by-need, evaluation strategy, normalization

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.9

Related Version Full Version: https://hal.inria.fr/hal-03149692

1 Introduction

Lambda-calculus is seen as the standard model of computation in functional programming
languages, once equipped with an evaluation strategy [26]. The most famous evaluation
strategies are call-by-value, which eagerly evaluates the arguments of a function before
resolving the function call, call-by-name, where the arguments of a function are evaluated
when they are needed, and call-by-need [28, 5], which extends call-by-name with a memoization
or sharing mechanism to remember the value of an argument that has already been evaluated.

The strength of call-by-name is that it only evaluates terms whose value is effectively
needed, at the (possibly huge) cost of evaluating some terms several times. Conversely, the
strength and weakness of call-by-value (by far the most used strategy in actual programming
languages) is that it evaluates each function argument exactly once, even when its value is
not actually needed and when its evaluation does not terminate. At the cost of memoization,
call-by-need combines the benefits of call-by-value and call-by-name, by only evaluating
needed arguments and evaluating them only once.

A common point of these strategies is that they are concerned with evaluation, that is
computing values. As such they operate in the subset of λ-calculus called weak reduction, in
which there is no reduction inside λ-abstractions, the latter being already considered to be
values. Some applications however, such as proof assistants or partial evaluation, require
reducing inside λ-abstractions, and possibly aiming for the actual normal form of a λ-term.

The first known abstract machine computing the normal form of a term is due to
Crégut [16] and implements normal order reduction. More recently, several lines of work
have transposed the known evaluation strategies to strong reduction strategies or abstract

© Thibaut Balabonski, Antoine Lanco, and Guillaume Melquiond;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 9; pp. 9:1–9:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thibaut.balabonski@lri.fr
mailto:antoine.lanco@lri.fr
mailto:guillaume.melquiond@inria.fr
https://doi.org/10.4230/LIPIcs.FSCD.2021.9
https://hal.inria.fr/hal-03149692
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 A Strong Call-By-Need Calculus

machines: call-by-value [19, 10, 3], call-by-name [1], and call-by-need [9, 11]. Some non-
advertised strong extensions of call-by-name or call-by-need can also be found in the internals
of proof assistants, notably Coq.

These strong strategies are mostly conservative over their underlying weak strategy, and
often proceed by iteratively applying a weak strategy to open terms. In other words, they use
a restricted form of strong reduction to enable reduction to normal form, but do not try to
take advantage of strong reduction to obtain shorter reduction sequences. Since call-by-need
has been shown to capture optimal weak reduction [8], it is known that the deliberate use of
strong reduction [20] is the only way of allowing shorter reduction sequences.

This paper presents a strong call-by-need calculus, which obeys the following guidelines.
First, it only reduces needed redexes. Second, it keeps a level of sharing at least equal to
that of call-by-value and call-by-need. Third, it tries to enable strong reduction as generally
as possible. This calculus builds on the syntax and a part of the meta-theory of λ-calculus
with explicit substitutions, which we recall in Section 2.

Neededness of a redex is undecidable in general, thus the first and third guidelines are
antagonist. Section 3 resolves this tension by exposing a simple syntactic criterion capturing
more needed redexes than what is already used in call-by-need strategies. Through reducing
only needed redexes, our calculus enjoys a normalization preservation theorem that is stronger
than usual: Any λ-term that is weakly normalizing in the pure λ-calculus (there is at least
one reduction sequence to a normal form, but some other sequences may diverge) will be
strongly normalizing in our calculus (any reduction sequence is normalizing). This strong
normalization theorem, related to the usual completeness results of call-by-name or call-by-
need strategies, is completely dealt with using a system of non-idempotent intersection types.
This avoids the traditional tedious syntactic commutation lemmas, hence providing more
elegant proofs. This is an improvement over the technique used in previous works [22, 9].

While our calculus contains the strong call-by-need strategy introduced in [9], it also
allows more liberal call-by-need strategies that anticipate some strong reduction steps in
order to reduce the overall length of the reduction to normal form. Section 4 presents a
restriction of the calculus that guarantees reduction sequences of minimal length.

Finally, Section 5 presents a formalization of parts of our results in Abella [6]. Beyond the
proof safety provided by such a tool, this formalization has also influenced the design of our
strong call-by-need calculus itself in a positive way. In particular, it promoted a presentation
based on SOS-style local reduction rules [27], which later became a lever for a more efficient
use of non-idempotent intersection types. The formalization can be found at the following
address: https://hal.inria.fr/hal-03149692.

2 The host calculus λc

Our strong call-by-need calculus is included in an already known calculus λc, that serves as
a technical tool in [9] and which we name our host calculus. This calculus gives the general
shape of reduction rules allowing memoization and comes with a system of non-idempotent
intersection types. Its reduction however is not constrained by any notion of neededness.

The λc-calculus uses the following syntax of λ-terms with explicit substitutions, which is
isomorphic to the original syntax of the call-by-need calculus using let-bindings [5].

t ∈ Λc ::= x | λx.t | t t | t[x\t]

The free variables fv(t) of a term t are defined as usual. We call pure λ-term a term that
contains no explicit substitution. We write C for a context, i.e., a term with exactly one
hole □, and L for a context with the specific shape □[x1\t1] . . . [xn\tn] (n ⩾ 0). We write C[t]

https://hal.inria.fr/hal-03149692

T. Balabonski, A. Lanco, and G. Melquiond 9:3

for the term obtained by plugging the subterm t in the hole of the context C (with possible
capture of free variables of t by binders in C), or tL when the context is of the specific
shape L. We also write CJtK for plugging a term t whose free variables are not captured by C.
The values we consider are λ-abstractions.

Reduction in λc is defined by the following three reduction rules, applied in any context.
Rather than using traditional propagation rules for explicit substitutions [21], it builds on
the Linear Substitution Calculus [25, 4, 2] which is more similar to the let-in constructs
commonly used for defining call-by-need.

(λx.t)L u →dB t[x\u]L
CJxK[x\vL] →lsv CJvK[x\v]L with v value

t[x\u] →gc t with x ̸∈ fv(t)

The rule →dB describes β-reduction “at a distance”. It applies to a β-redex whose λ-
abstraction is possibly hidden by a list of explicit substitutions. This rule is a combination
of a single use of β-reduction with a repeated use of the structural rule lifting the explicit
substitutions at the left of an application. The rule →lsv describes the linear substitution
of a value, i.e., the substitution of one occurrence of the variable x bound by an explicit
substitution. It has to be understood as a lookup operation. Similarly to →dB, this rule
embeds a repeated use of a structural rule for unnesting explicit substitutions. Note that this
calculus only allows the substitution of λ-abstractions, and not of variables as it is sometimes
seen [24]. This restricted behavior is enough for the main results of this paper, and will
allow a more compact presentation. Finally, the rule →gc describes garbage collection of an
explicit substitution for a variable that does not live anymore. Reduction by any of these
rules in any context is written t →c u.

A term t of λc is related to a pure λ-term t⋆ by the unfolding operation which applies all
the explicit substitutions. We write t{x\u} for the meta-level substitution of x by u in t.

x⋆ = x (t u)⋆ = t⋆ u⋆

(λx.t)⋆ = λx.(t⋆) (t[x\u])⋆ = (t⋆){x\u⋆}

Through unfolding, any reduction step t →c u in λc is related to a sequence of reductions
t⋆ →∗

β u⋆ in the pure λ-calculus.
The host calculus λc comes with a system of non-idempotent intersection types [15, 18],

defined in [23] by adding explicit substitutions to an original system from [18]. A type τ

may be a type variable α or an arrow type M → τ , where M is a multiset {{σ1, . . . , σn}} of
types. A typing environment Γ associates to each variable in its domain a multiset of types.
This multiset contains one type for each potential use of the variable, and may be empty
if the variable is not actually used. A typing judgment Γ ⊢ t : τ assigns exactly one type
to the term t. As shown by the typing rules in Fig. 1, an argument of an application or of
an explicit substitution may be typed several times in a derivation. Note that, in the rules,
the subscript σ ∈ M quantifies on all the instances of elements in the multiset M. This
type system is known to characterize λ-terms that are weakly normalizing for β-reduction, if
associated with the side condition that the empty multiset {{}} does not appear at a positive
position in the typing judgment. Posititive type occurrences T+(Γ ⊢ t : τ) and negative type
occurrences T−(Γ ⊢ t : τ) of a typing judgment are defined by the following equations.

T+(α) = {α} T−(α) = ∅
T+(M) = {M} ∪

⋃
σ∈M T+(σ) T−(M) =

⋃
σ∈M T−(σ)

T+(M → σ) = {M → σ} ∪ T−(M) ∪ T+(σ) T−(M → σ) = T+(M) ∪ T−(σ)
T+(Γ ⊢ t : σ) = T+(σ) ∪

⋃
x∈dom(Γ) T−(Γ(x))

FSCD 2021

9:4 A Strong Call-By-Need Calculus

ty-var

x : {{σ}} ⊢ x : σ

ty-@
Γ ⊢ t : M → τ (∆σ ⊢ u : σ)σ∈M

Γ +
∑

σ∈M ∆σ ⊢ t u : τ

ty-λ
Γ; x : M ⊢ t : τ

Γ ⊢ λx.t : M → τ

ty-es
Γ; x : M ⊢ t : τ (∆σ ⊢ u : σ)σ∈M

Γ +
∑

σ∈M ∆σ ⊢ t[x\u] : τ

Figure 1 Typing rules for λc.

▶ Theorem 1 (Typability [17, 12]). If the pure λ-term t is weakly normalizing for β-reduction,
then there is a typing judgment Γ ⊢ t : τ such that {{}} ̸∈ T+(Γ ⊢ t : τ).

A typing derivation Φ for a typing judgment Γ ⊢ t : τ (written Φ ▷ Γ ⊢ t : τ) defines in t a
set of typed positions, which are the positions of the subterms of t for which the derivation Φ
contains a subderivation. More precisely:

ε is a typed position for any derivation;
if Φ ends with rule ty-λ, ty-@ or ty-es, then 0p is a typed position of Φ if p is a typed
position of the subderivation Φ′ relative to the first premise;
if Φ ends with rule ty-@ or ty-es, then 1p is a typed position of Φ if p is a typed position
of the subderivation Φ′ relative to one of the instances of the second premise.

Note that, in the latter case, there is no instance of the second premise and no typed position
1p when the multiset M is empty. On the contrary, when M has several elements, we get
the union of the typed positions contributed by each instance.

These typed positions have an important property; they satisfy a weighted subject
reduction theorem ensuring a decreasing derivation size, which we will use in the next section.
We call size of a derivation Φ the number of nodes of the derivation tree.

▶ Theorem 2 (Weighted subject reduction [9]). If Φ ▷ Γ ⊢ t : τ and t →c t′ by reduction of a
redex at a typed position, then there is a derivation Φ′ ▷ Γ ⊢ t′ : τ with Φ′ smaller than Φ.

3 Strong call-by-need calculus λsn

Our strong call-by-need calculus is defined by the same terms and reduction rules as λc,
with restrictions on where the reduction rules can be applied. These restrictions ensure in
particular that only the needed redexes are reduced. Notice that gc-reduction is never needed
in this calculus and will thus be ignored from now on.

3.1 Reduction in λsn

The main reduction relation is written t →sn t′ and represents one step of dB or lsv reduction
at an eligible position of the term t. The starting point is the same as the one for the original
(weak) call-by-need calculus. Since the argument of a function is not always needed, we do
not reduce in advance the right part of an application t u. Instead, we first evaluate t to an
answer (λx.t′)L, then apply a dB-reduction to put the argument u in the environment of t′,
and then go on with the resulting term t′[x\u]L, evaluating u only if and when it is required.

T. Balabonski, A. Lanco, and G. Melquiond 9:5

Strong reduction. The previous principle is enough for weak reduction, but new behaviors
appear with strong reduction. For instance, consider the top-level term λx.x t u. It is
an abstraction, which would not need to be further evaluated in weak call-by-need. Here
however, we have to reduce it further to reach its putative normal form. So, let us gather
some knowledge on the term. Given its position, we know that this abstraction will never be
applied to an argument. This means in particular that its variable x will never be substituted
by anything; it is blocked and is now part of the rigid structure of the term. Following [9],
we say that variable x is frozen. As for the arguments t and u given to the frozen variable x,
they will always remain at their respective positions and their neededness is guaranteed. So,
the calculus allows their reduction. Moreover, these subterms t and u will never be applied
to other subterms; they are in top-level-like positions and can be treated as independent
terms. In particular, assuming that the top-level term is λx.x (λy.t′) u (that is, t is the
abstraction λy.t′), the variable y will never be substituted and both variables x and y can be
seen as frozen in the subterm t′.

Let us now consider the top-level term (λx.x (λy.t′) u) v, i.e., the previous one applied
to some argument v. The analysis becomes radically different. Indeed, both abstractions in
this term are at positions where they may eventually interact with other parts of the term:
(λx . . .) is already applied to an argument, while (λy.t′) might eventually be substituted at
some position inside v whose properties are not yet known. Thus, none of the abstractions
is at a top-level-like position and we cannot rule out the possibility that some occurrences
of x or y become substituted eventually. Consequently, neither x nor y can be considered
as frozen. In addition, notice that the subterms λy.t′ and u are not even guaranteed to be
needed in (λx.x (λy.t′) u) v. Thus our calculus shall not allow them to be reduced yet.

Therefore, the set of top-level-like positions of a subterm t, and more importantly the set
of its positions that are eligible for reduction largely depend on the context surrounding t.
Consequently, the bulk of the definition of t →sn t′ is an inductive relation t

ρ,φ,µ−−−→sn t′ that
plays two roles: identifying a position where a reduction rule can be applied in t, depending
on some outer context information, and performing said reduction. The information on the
context is abstracted by two parameters of the inductive relation:

a flag µ indicating whether t is at a top-level-like position (⊤) or not (⊥);
the set φ of variables that are frozen at the considered position.

The flow of this information along the inductive rules is a critical aspect of the definitions.
Since the identification of positions that are eligible for reduction does not depend on the

choice of the rule dB or lsv, the inductive reduction relation is also parametric with respect to
the rule. This is the role of the parameter ρ of ρ,φ,µ−−−→sn, whose value can be dB, lsv, or others
that we will introduce shortly. Thus, the top-level reduction relation t →sn t′ holds whenever
t

dB,φ,⊤−−−−→sn t′ or t
lsv,φ,⊤−−−−→sn t′, where the flag µ is ⊤, and the set φ is typically empty when t

is closed, or contains the free variables of t otherwise.

Inductive rules. The inference rules for ρ,φ,µ−−−→sn are given in Fig. 3. Notice that information
about φ and µ flow outside-in, that is from top-level to the position of the reduction, or
equivalently upward in the inference rules, while ρ flows the other way. Notice also that in
this paper, we define top-level-like positions and frozen variables only through these inductive
rules.

Rule @-left makes reduction always possible on the left of an application, but as shown
by the premise this position is not a ⊤ position. Rule @-right on the other hand allows
reducing on the right of an application, and even doing so in ⊤ mode, but only when the
application is led by a frozen variable.

FSCD 2021

9:6 A Strong Call-By-Need Calculus

x ∈ φ

x ∈ Sφ

t ∈ Sφ

t u ∈ Sφ

t ∈ Sφ

t[x\u] ∈ Sφ

t ∈ Sφ∪{x} u ∈ Sφ

t[x\u] ∈ Sφ

Figure 2 Structures of λsn.

@-left
t

ρ,φ,⊥−−−−→sn t′

t u
ρ,φ,µ−−−→sn t′ u

@-right
t ∈ Sφ u

ρ,φ,⊤−−−−→sn u′

t u
ρ,φ,µ−−−→sn t u′

λ-top
t

ρ,φ∪{x},⊤−−−−−−−→sn t′

λx.t
ρ,φ,⊤−−−−→sn λx.t′

λ-bot
t

ρ,φ,⊥−−−−→sn t′

λx.t
ρ,φ,⊥−−−−→sn λx.t′

es-left
t

ρ,φ,µ−−−→sn t′

t[x\u] ρ,φ,µ−−−→sn t′[x\u]

es-left-φ

t
ρ,φ∪{x},µ−−−−−−−→sn t′ u ∈ Sφ

t[x\u] ρ,φ,µ−−−→sn t′[x\u]

es-right
t

idx,φ,µ−−−−→sn t u
ρ,φ,⊥−−−−→sn u′

t[x\u] ρ,φ,µ−−−→sn t[x\u′]

id

x
idx,φ,µ−−−−→sn x

sub

x
subx\v,φ,µ
−−−−−−−→sn v

dB
t →db t′

t
dB,φ,µ−−−−→sn t′

lsv
t

φ,µ−−→lsv t′

t
lsv,φ,µ−−−−→sn t′

Figure 3 Reduction rules for λsn.

The latter criterion is made formal through the notion of structure, which is an application
x t1 . . . tn led by a frozen variable x, possibly interlaced with explicit substitutions (Fig. 2).
As implied by the last rule in Fig. 2, an explicit substitution in a structure may even affect
the leading variable, provided that the content of the substitution is itself a structure. We
write Sφ the set of structures under a set φ of frozen variables. It differs from the notion
in [9] in that it does not require the term to be in normal form.

Notice that frozen variables in a term t are either free variables of t, or variables introduced
by binders in t. As such they obey the usual renaming conventions. In particular, the third
and fourth rules in Fig. 2 implicitly require that the variable x bound by the explicit
substitution is fresh and hence not in the set φ. We keep this freshness convention in all the
definitions of the paper.

Rules λ-top and λ-bot make reduction always possible inside a λ-abstraction, i.e.,
unconditional strong reduction. If the abstraction is in a ⊤ position, its variable is added to
the set of frozen variables while reducing the body of the abstraction. Rules es-left and
es-left-φ show that it is always possible to reduce a term affected by an explicit substitution.
If the substitution contains a structure, the variable bound by the substitution can be added
to the set of frozen variables. Rule es-right restricts reduction inside a substitution to the
case where an occurrence of the substituted variable is at a reducible position. It uses an
auxiliary rule idx, which propagates using the same inductive reduction relation, to probe a
term for the presence of some variable x at a reduction position. By freshness, x ̸∈ φ. This
auxiliary rule does not modify the term to which it applies, as witnessed by its base case id.

T. Balabonski, A. Lanco, and G. Melquiond 9:7

dB-base

(λx.t) u →db t[x\u]

lsv-base
t

subx\v,φ,µ
−−−−−−−→sn t′ v value

t[x\v] φ,µ−−→lsv t′[x\v]

dB-σ
t u →db v

t[x\w] u →db v[x\w]

lsv-σ
t[x\u] φ,µ−−→lsv t′

t[x\u[y\w]] φ,µ−−→lsv t′[y\w]

lsv-σ-φ

t[x\u] φ∪{y},µ−−−−−→lsv t′ w ∈ Sφ

t[x\u[y\w]] φ,µ−−→lsv t′[y\w]

Figure 4 Auxiliary reduction rules for λsn.

Rules dB and lsv are the base cases for applying reductions dB or lsv. Using the notations
of λc, they allow the following reductions.

(λx.t)L u
dB,φ,µ−−−−→sn t[x\u]L

CJxK[x\vL] lsv,φ,µ−−−−→sn CJvK[x\v]L with v value, and C a suitable context

Each is defined using an auxiliary reduction relation dealing with the list L of explicit
substitutions. These auxiliary reductions are given in Fig. 4.

Rules dB-base and lsv-base describe the base cases of the auxiliary reductions, where
the list L is empty. Note that, while dB-base is an axiom, the inference rule lsv-base uses
as a premise a reduction ρ,φ,µ−−−→sn using a new reduction rule ρ = subx\v. This reduction rule
substitutes one occurrence of the variable x at a reducible position by the value v (with,
by freshness, x ̸∈ φ). As seen for idx above, this reduction rule propagates using the same
inductive reduction relation, and its base case is the rule sub in Fig. 3. The presence of
this premise t

subx\v,φ,µ−−−−−−−→sn t′ in the rule is the primary reason why the auxiliary relation
φ,µ−−→lsv is parameterized by φ and µ. The combination of the rules lsv and lsv-base makes
it possible, in the case of a lsv-reduction, to resume the search for a reducible variable in the
context in which the substitution has been found (instead of resetting the context). In [9], a
similar effect was achieved using a more convoluted condition on a composition of contexts.

Rule dB-σ makes it possible to float out an explicit substitution applied to the left part
of an application. That is, if a dB-reduction is possible without the substitution, then the
reduction is performed and the substitution is applied to the result. Rules lsv-σ and lsv-σ-φ
achieve the same effect with the nested substitutions applied to the value substituted by an
lsv-reduction step. As with rule es-left-φ, if the substitution is a structure, the variable
can be frozen. This difference between lsv-σ and lsv-σ-φ can be ignored until Sec. 4.

Finally, note that the strong call-by-need strategy introduced in [9] is included in our
calculus. One can recover this strategy by imposing two restrictions on ρ,φ,µ−−−→sn:

remove the rule λ-bot, so as to only reduce abstractions that are in top-level-like positions;

restrict the rule @-right to the case where the left member of the application is a
structure in normal form, since the strategy imposes left-to-right reduction of structures.

FSCD 2021

9:8 A Strong Call-By-Need Calculus

x ∈ φ

x ∈ Nφ

t ∈ Nφ t ∈ Sφ u ∈ Nφ

t u ∈ Nφ

t ∈ Nφ∪{x}

λx.t ∈ Nφ

t ∈ Nφ∪{x} u ∈ Nφ u ∈ Sφ

t[x\u] ∈ Nφ

t ∈ Nφ

t[x\u] ∈ Nφ

Figure 5 Normal forms of λsn.

Example. The reduction (λa.a x)[x\(λy.t)[z\u] v] →sn (λa.a x)[x\t[y\v][z\u]] is allowed by
λsn, as shown by the following derivation. The left branch of the derivation checks that an
occurrence of the variable x is actually at a needed position in λa.a x, while its right branch
reduces the argument of the substitution.

λ-top

@-right
a ∈ S{a} x

idx,{a},⊤−−−−−−→sn x
id

a x
idx,{a},⊤−−−−−−→sn a x

λa.a x
idx,∅,⊤−−−−→sn λa.a x

(λy.t) v →db t[y\v]
dB-base

(λy.t)[z\u] v →db t[y\v][z\u]
dB-σ

(λy.t)[z\u] v
dB,∅,⊥−−−−→sn t[y\v][z\u]

dB

(λa.a x)[x\(λy.t)[z\u] v] dB,∅,⊤−−−−→sn (λa.a x)[x\t[y\v][z\u]]
es-right

3.2 Soundness
The calculus λsn is sound with respect to the λ-calculus, in the sense that any normalizing
reduction in λsn can be related to a normalizing β-reduction through unfolding. This section
establishes this result (Th. 6). All proofs in this section are formalized in Abella.

The first part of the proof requires relating λsn-reduction to β-reduction.

▶ Lemma 3 (Simulation). If t →sn t′ then t⋆ →∗
β t′⋆.

Proof. By induction on the reduction t
ρ,φ,µ−−−→sn t′. ◀

The second part requires relating the normal forms of λsn to β-normal forms. The normal
forms of λsn correspond to the normal forms of the strong call-by-need strategy [9]. They
can be characterized by the inductive definition given in Fig. 5.

▶ Lemma 4 (Normal forms). t ∈ Nφ if and only if there is no reduction t
ρ,φ,µ−−−→sn t′.

Proof. The first part (a term cannot be in normal form and reducible) is by induction on
the reduction rules. The second part (any term is either a normal form or a reducible term)
is by induction on t. ◀

▶ Lemma 5 (Unfolded normal forms). If t ∈ Nφ then t⋆ is a normal form in the λ-calculus.

Proof. By induction on t ∈ Nφ. ◀

Soundness is a direct consequence of the three previous lemmas.

▶ Theorem 6 (Soundness). Let t be a λsn-term. If there is a reduction t →∗
sn u with u a

λsn-normal form, then u⋆ is the β-normal form of t⋆. ◀

T. Balabonski, A. Lanco, and G. Melquiond 9:9

This theorem implies that all the λsn-normal forms of a term t are equivalent modulo
unfolding. This mitigates the fact that the calculus, without a gc rule, is not confluent. For
instance, the term (λx.x) (λy.(λz.z)y) admits two normal forms (λy.z[z\y])[x\λy.(λz.z)y]
and (λy.z[z\y])[x\λy.z[z\y]], but both of them unfold to λy.y.

3.3 Completeness
Our strong call-by-need calculus is complete with respect to normalization in the λ-calculus
in a strong sense: Whenever a λ-term t admits a normal form in the pure λ-calculus, every
reduction path in λsn eventually reaches a representative of this normal form. This section is
devoted to proving this completeness result (Th. 12). The proof relies on the non-idempotent
intersection type system in the following way. First, typability (Th. 1) ensures that any
weakly normalizing λ-term admits a typing derivation (with no positive occurrence of {{}}).
Second, we prove that any λsn-reduction in a typed λsn-term t (with no positive occurrence of
{{}}) is at a typed position of t (Th. 11). Third, weighted subject reduction (Th. 2) provides
a decreasing measure for λsn-reduction. Finally, the obtained normal form is related to the
β-normal form using Lemmas 3, 4, and 5.

The proof of the forthcoming typed reduction (Th. 11) uses a refinement of the non-
idempotent intersection types system of λc, given in Fig. 6. Both systems derive the same
typing judgments with the same typed positions. The refined system however features an
annotated typing judgment Γ ⊢µ

φ t : τ embedding the same context information that are
used in the inductive reduction relation ρ,φ,µ−−−→sn, namely the set φ of frozen variables at the
considered position and a marker µ of top-level-like positions. These annotations are faithful
counterparts to the corresponding annotations of λsn reduction rules; their information flows
upward in the inference rules following the same criteria.

In particular, the rule for typing an abstraction is split in two versions ty-λ-⊥ and
ty-λ-⊤, the latter being applicable to ⊤ positions and thus freezing the variable bound by
the abstraction (in both rules, by freshness convention we assume x ̸∈ φ). The rule for typing
an application is also split in two version: ty-@-S is applicable when the left part of the
application is a structure and marks the right part as a ⊤ position, while ty-@ is applicable
otherwise. Note that this second rule allows the argument of the application to be typed
even if its position is not (yet) reducible, but its typing is in a ⊥ position. Finally, the rule
for typing an explicit substitution is similarly split in two versions, depending on whether
the content of the substitution is a structure or not, and handling the set of frozen variables
accordingly. In both cases, the content of the substitution is typed in a ⊥ position, since
this position is never top-level-like. We write Φ ▷ Γ ⊢µ

φ t : τ if there is a derivation Φ of the
annotated typing judgment Γ ⊢µ

φ t : τ . We denote fzt(Φ) the set of types associated to frozen
variables in judgments of the derivation Φ.

▶ Lemma 7 (Typing derivation annotation). If there is a derivation Φ ▷ Γ ⊢ t : τ , then for
any φ and µ there is a derivation Φ′ ▷ Γ ⊢µ

φ t : τ such that the sets of typed positions in Φ
and Φ′ are equal.

Proof. By induction on Φ, since annotations do not interfere with typing. ◀

The converse property is also true, by erasing of the annotations, but is not used in the proof
of the completeness result.

The most crucial part of the proof of Th. 11 is ensuring that any argument of a typed
structure is itself at a typed position. This follows from the following three lemmas.

▶ Lemma 8 (Typed structure). If Γ ⊢µ
φ t : τ and t ∈ Sφ, there is x ∈ φ such that τ ∈ T+(Γ(x)).

FSCD 2021

9:10 A Strong Call-By-Need Calculus

ty-var

x : {{σ}} ⊢µ
φ x : σ

ty-λ-⊥
Γ; x : M ⊢⊥

φ t : τ

Γ ⊢⊥
φ λx.t : M → τ

ty-λ-⊤
Γ; x : M ⊢⊤

φ∪{x} t : τ

Γ ⊢⊤
φ λx.t : M → τ

ty-@
Γ ⊢⊥

φ t : M → τ (∆σ ⊢⊥
φ u : σ)σ∈M

Γ +
∑

σ∈M ∆σ ⊢µ
φ t u : τ

ty-@-S
Γ ⊢⊥

φ t : M → τ t ∈ Sφ (∆σ ⊢⊤
φ u : σ)σ∈M

Γ +
∑

σ∈M ∆σ ⊢µ
φ t u : τ

ty-es
Γ; x : M ⊢µ

φ t : τ (∆σ ⊢⊥
φ u : σ)σ∈M

Γ +
∑

σ∈M ∆σ ⊢µ
φ t[x\u] : τ

ty-es-φ
Γ; x : M ⊢µ

φ∪{x} t : τ u ∈ Sφ (∆σ ⊢⊥
φ u : σ)σ∈M

Γ +
∑

σ∈M ∆σ ⊢µ
φ t[x\u] : τ

Figure 6 Annotated system for non-idempotent intersection types.

Proof. By induction on the structure of t.1 The most interesting case is the one of an explicit
substitution t1[x\t2]. The induction hypothesis applied on t1 can give the variable x which
does not appear in the conclusion, but in that case t2 is guaranteed to be a structure whose
type contains τ . ◀

▶ Lemma 9 (Subformula property).

1. If Φ ▷ Γ ⊢⊤
φ t : τ then

{
T+(fzt(Φ)) ⊆

⋃
x∈φ T+(Γ(x)) ∪ T−(τ)

T−(fzt(Φ)) ⊆
⋃

x∈φ T−(Γ(x)) ∪ T+(τ)

2. If Φ ▷ Γ ⊢⊥
φ t : τ then

{
T+(fzt(Φ)) ⊆

⋃
x∈φ T+(Γ(x))

T−(fzt(Φ)) ⊆
⋃

x∈φ T−(Γ(x))

Proof. By mutual induction on the typing derivations.1 Most cases are fairly straightforward.
The only difficult case comes from the rule ty-@-S, in which there is a premise ∆ ⊢⊤

φ u : σ

with mode ⊤ but with a type σ that does not clearly appear in the conclusion. Here we need
the typed structure (Lem. 8) to conclude. ◀

▶ Lemma 10 (Typed structure argument). If Φ ▷ Γ ⊢µ
φ t : τ with {{}} ̸∈ T+(Γ ⊢ t : τ), then

every typing judgment of the shape Γ′ ⊢µ′

φ′ s : M → σ in Φ with s ∈ Sφ′ satisfies M ̸= {{}}.

Proof. Let Γ′ ⊢µ′

φ′ s : M → σ in Φ with s ∈ Sφ′ . By Lemma 8, there is x ∈ φ′ such
that M → σ ∈ T+(Γ′(x)). Then M ∈ T−(Γ′(x)) and M ∈ T−(fzt(Φ)). By Lemma 9,
M ∈ T+(Γ ⊢µ

φ t : τ), thus M ̸= {{}}. ◀

▶ Theorem 11 (Typed reduction). If Φ ▷ Γ ⊢µ
φ t : τ with {{}} ̸∈ T+(Γ ⊢ t : τ), then every

λsn-reduction t
ρ,φ,µ−−−→sn t′ is at a typed position.

Proof. We prove by induction on t
ρ,φ,µ−−−→sn t′ that, if Φ ▷ Γ ⊢µ

φ t : τ with Φ such that any
typing judgment Γ′ ⊢µ′

φ′ s : M → σ in Φ with s ∈ Sφ′ satisfies M ̸= {{}}, then t
ρ,φ,µ−−−→sn t′

reduces at a typed position (the restriction on Φ is enabled by Lemma 10). Since all other
reduction cases concern positions that are systematically typed, we focus here on @-right
and es-right.

1 See appendix for the complete proof.

T. Balabonski, A. Lanco, and G. Melquiond 9:11

t
subx\v,φ,µ
−−−−−−−→sn t′ v ∈ Nφ,∅,⊥

t[x\v] φ,µ−−→lsv t′[x\v]
lsv-base

Figure 7 New rule lsv-base for λsn+.

Case @-right: t u
ρ,φ,µ−−−→sn t u′ with t ∈ Sφ and u

ρ,φ,⊤−−−−→sn u′, assuming Φ ▷ Γ ⊢µ
φ t u : σ.

By inversion of the last rule in Φ we know there is a subderivation Φ′ ▷ Γ′ ⊢⊥
φ t : M → σ

and by hypothesis M ̸= {{}}. Then u is typed in Φ and we can conclude by induction
hypothesis.
Case es-right: t[x\u] ρ,φ,µ−−−→sn t[x\u′] with t

idx,φ,µ−−−−→sn t′ and u
ρ,φ,⊥−−−−→sn u′, assuming

Φ ▷ Γ ⊢µ
φ t[x\u] : τ . By inversion of the last rule in Φ we kown there is a subderivation

Φ′ ▷ Γ′; x : M ⊢µ
φ t : τ . By induction hypothesis we know that reduction t

idx,φ,µ−−−−→sn t′ is
at a typed position in Φ′, thus x is typed in t and M ̸= {{}}. Then u is typed in Φ and
we can conclude by induction hypothesis on u

ρ,φ,⊥−−−−→sn u′. ◀

▶ Theorem 12 (Completeness). If a λ-term t is weakly normalizing in the λ-calculus, then
t is strongly normalizing in λsn. Moreover, if nβ is the normal form of t in the λ-calculus,
then any normal form nsn of t in λsn is such that n⋆

sn = nβ.

Proof. Let t be a pure λ-term that admits a normal form nβ for β-reduction. By Theorem 1
there exists a derivable typing judgment Γ ⊢ t : τ such that {{}} ̸∈ T+(Γ ⊢ t : τ). Thus by
Theorems 11 and 2, the term t is strongly normalizing for →sn. Let t →∗

sn nsn be a maximal
reduction in λsn. By Lemma 4, nsn ∈ Nφ, and by Lemma 5, n⋆

sn is a normal form in the
λ-calculus. Moreover, by simulation (Lem. 3), there is a reduction t⋆ →∗

β n⋆
sn. By uniqueness

of the normal form in the λ-calculus, n⋆
sn = nβ . ◀

Note that, despite the fact that λsn does not enjoy the diamond property, our theorems of
soundness (Th. 6) and completeness (Th. 12) imply that, in λsn, a term is weakly normalizing
if and only if it is strongly normalizing.

4 Relatively optimal strategies

Our proposed λsn-calculus guarantees that, in the process of reducing a term to its strong
normal form, only needed redexes are ever reduced. This does not tell anything about the
length of reduction sequences, though. Indeed, a term might be substituted several times
before being reduced, thus leading to duplicate computations. To prevent this duplication,
we introduce a notion of local normal form, which is used to restrict the value criterion in
the lsv-base rule. This restricted calculus, named λsn+, has the same rules as λsn (Fig. 3
and 4), except that lsv-base is replaced by the rule shown in Fig. 7.

We then show that this restriction is strong enough to guarantee the diamond property.
Finally, we explain why our restricted calculus only produces minimal sequences, among all
the reduction sequences allowed by λsn. This makes it a relatively optimal strategy.

4.1 Local normal forms
In λc and λsn, substituted terms can be arbitrary values. In particular, they might be
abstractions whose body contains some redexes. Since substituted variables can appear
multiple times, this would cause the redex to be reduced several times if the value is

FSCD 2021

9:12 A Strong Call-By-Need Calculus

x ∈ φ ∪ ω

x ∈ Nφ,ω,µ

var
t ∈ Nφ∪{x},ω,⊤

λx.t ∈ Nφ,ω,⊤
λ-φ

t ∈ Nφ,ω∪{x},⊥

λx.t ∈ Nφ,ω,⊥
λ-ω

t ∈ Nφ,ω,µ

t[x \ u] ∈ Nφ,ω,µ

es

t ∈ Nφ,ω,µ t ∈ Sφ u ∈ Nφ,ω,⊤

t u ∈ Nφ,ω,µ

@-φ
t ∈ Nφ,ω,µ t ∈ Sω

t u ∈ Nφ,ω,µ

@-ω

t ∈ Nφ∪{x},ω,µ u ∈ Nφ,ω,⊥ u ∈ Sφ

t[x \ u] ∈ Nφ,ω,µ

es-φ
t ∈ Nφ,ω∪{x},µ u ∈ Sω

t[x \ u] ∈ Nφ,ω,µ

es-ω

Figure 8 Local normal forms.

substituted too soon. Let us illustrate this phenomenon on the following example, where
id = λx.x. The sequence of reductions does not depend on the set φ of frozen variables nor
on the position µ, so we do not write them to lighten a bit the notations. Subterms that are
about to be substituted or reduced are underlined.

(λw.w w) (λy.id y) db−→sn (w w)[w\λy.id y]
lsv−→sn ((λy.id y) w)[w\λy.id y]
db−→sn ((λy.x[x\y]) w)[w\λy.id y]
db−→sn x[x\y][y\w][w\λy.id y]

lsv × 3−−−−→sn (λy.id y)[x\λy.id y][y\λy.id y][w\λy.id y]
db−→sn (λy.x[x\y])[x\λy.id y][y\λy.id y][w\λy.id y]

Notice how id y is reduced twice, which would not have happened if the second reduction
had focused on the body of the abstraction.

This suggests that a substitution should only be allowed if the substituted term is in
normal form. But such a strong requirement is incompatible with our calculus, as it would
prevent the abstraction λy.y Ω (with Ω a diverging term) to ever be substituted in the
following example, thus preventing normalization (with a a closed term).

w (λx.a)[w\λy.y Ω] lsv−→sn (λy.y Ω) (λx.a)[w\λy.y Ω]
db−→sn (y Ω)[y\λx.a][w\λy.y Ω]
lsv−→sn ((λx.a) Ω)[y\λx.a][w\λy.y Ω]
db−→sn a[x\Ω][y\λx.a][w\λy.y Ω]

Notice how the sequence of reductions has progressively removed all the occurrences of Ω,
until the only term left to reduce is the closed term a.

To summarize, substituting any value is too permissive and can cause duplicate computa-
tions, while substituting only normal forms is too restrictive as it prevents normalization. So,
we need some relaxed notion of normal form, which we call local normal form. The intuition
is as follows. The term λy.y Ω is not in normal form, because it could be reduced if it was
in a ⊤ position. But in a ⊥ position, variable y is not frozen, which prevents any further
reduction of y Ω. The inference rules are presented in Fig. 8.

If an abstraction is in a ⊤ position, its variable is added to the set φ of frozen variables,
as in Fig. 3. But if an abstraction is in a ⊥ position, its variable is added to a new set ω, as
shown in rule λ-ω of Fig. 8. That is what will happen to y in λy.y Ω.

T. Balabonski, A. Lanco, and G. Melquiond 9:13

For an application, the left part is still required to be a structure. But if the leading
variable of the structure is not frozen (and thus in ω), our λsn-calculus guarantees that no
reduction will occur in the right part of the application. So, this part does not need to be
constrained in any way. This is rule @-ω of Fig. 8. It applies to our example, since y Ω is a
structure led by y ∈ ω. Substitutions are handled in a similar way, as shown by rule es-ω.

4.2 Diamond property
As mentioned before, in both λc and λsn, terms might be substituted as soon as they are
values, thus potentially causing duplicate computations. As a consequence, these calculi
cannot have the diamond property, as shown on the following example.

(w w)[w\λx.(λy.y) x]

((λx.(λy.y) x) w)[w\λx.(λy.y) x]

(w w)[w\λx.y[y\x]] ((λx.y[y\x]) w)[w\λx.y[y\x]]

((λx.y[y\x]) w)[w\λx.(λy.y) x]
1

2

4

3

/

In λsn, the leftmost term can be reduced, either by rule lsv (arrow 1) because the
substituted term is a value, or by rule dB (arrow 2). The top term can only be reduced
by rule dB (arrow 3) because the substitution variable is not reachable. The bottom term
can only be reduced by rule lsv (arrow 4) because the substituted term is not reducible.
The two new terms are different, thus breaking the diamond property. It would take one
more reduction step (in λc) for the top sequence to reach the bottom-right term. But in
our restricted calculus λsn+, arrow 1 is forbidden, since the substituted term is not in local
normal form. By preventing such sequences, the diamond property is restored.

▶ Theorem 13 (Diamond). Suppose t
ρ1,φ,µ−−−−→sn+ t1 and t

ρ2,φ,µ−−−−→sn+ t2. Assume that, if ρ1
and ρ2 are sub or id, then they apply to separate variables. Then there exists t′ such that
t1

ρ2,φ,µ−−−−→sn+ t′ and t2
ρ1,φ,µ−−−−→sn+ t′.

Proof. The statement has first to be generalized so that the steps t → t1 and t → t2 can use
the main reduction ρ,φ,µ−−−→sn or the auxiliary reductions →db and φ,µ−−→lsv. Then it becomes a
tedious but rather unsurprising induction on t, with reasoning by case on the last inference
rule applied on each side. One notable case is when the two reductions are respectively given
by rules @-left and @-right. Indeed, the reduction on the left does not interfere with the
reduction on the right thanks to a stability property of structures (Lem. 14 below). ◀

▶ Lemma 14 (Stability of structures). If t ∈ Sφ and t
ρ,φ,µ−−−→sn+ t′ then t′ ∈ Sφ

4.3 Relative optimality
The λsn+-calculus is a restriction of λsn that requires terms to be eagerly reduced to local
normal form before they can be substituted (Fig. 7). This eager reduction is never wasted:
λsn (and a fortiori its subset λsn+) only reduces needed redexes, that is redexes that are
necessarily reduced in any reduction to normal form. As a consequence, reductions in λsn+ are
never longer than equivalent reductions in λsn. On the contrary, by forcing some reductions
to be performed before a term is substituted (i.e., potentially duplicated), this strategy
produces in many cases reduction sequences that are strictly shorter than the ones given by
the original strong call-by-need strategy [9].

▶ Theorem 15 (Minimality). With t′ ∈ Nφ, if t −→n
sn t′ and t −→m

sn+ t′ then m ⩽ n.

FSCD 2021

9:14 A Strong Call-By-Need Calculus

Remark that this minimality result is relative to λsn. The reduction sequences of λsn+
are not necessarily optimal with respect to the unconstrained λc or λ-calculi. For instance,
neither λsn+ nor λsn allow reducing r in the term (λx.x (x a)) (λy.y r) prior to its duplication.

5 Formalization in Abella

We used the Coq proof assistant for our first attempts to formalize our results. We experi-
mented both with the locally nameless approach [13] and parametric higher-order abstract
syntax [14]. While we might eventually have succeeded using the locally nameless approach,
having to manually handle binders felt way too cumbersome. So, we turned to a dedicated for-
mal system, Abella [6], in the hope that it would make syntactic proofs more straightforward.
This section describes our experience with this tool.2

5.1 Nominal variables and λ-tree syntax
Our initial motivation for using Abella was the availability of nominal variables through
the nabla quantifier. Indeed, in order to open a bound term, one has to replace the bound
variable with a fresh global variable. This freshness is critical to avoid captures; but handling
it properly causes a lot of bureaucracy in the proofs. By using nominal variables, which are
guaranteed to be fresh by the logic, this issue disappears.

Here is an excerpt of our original definition of the nf predicate, which states that a term
is in normal form for our calculus. The second line states that any nominal variable is in
normal form, while the third line states that an abstraction is in normal form, as long as the
abstracted term is in normal form for any nominal variable.

Define nf : trm -> prop by
nabla x, nf x;
nf (abs U) := nabla x, nf (U x);
...

Note that Abella is based on a λ-tree approach (higher-order abstract syntax). In the
above excerpt, U has a bound variable and (U x) substitutes it with the fresh variable x.
More generally, (U V) is the term in which the bound variable is substituted with the term V.

This approach to fresh variables was error-prone at first. Several of our formalized
theorems ended up being pointless, despite seemingly matching the statements of our pen-
and-paper formalization. Consider the following example. This proposition states that, if T
is a structure with respect to x, and if U is related to T by the unfolding relation star, then
U is also a structure with respect to x.

forall T U, nabla x,
struct T x -> star T U -> struct U x.

Notice that the nominal variable x is quantified after T. As a consequence, its freshness
ensures that it does not occur in T. Thus, the proposition is vacuously true, since T cannot
be a structure with respect to a variable that does not occur in it. Had the quantifiers
been exchanged, the statement would have been fine. Unfortunately, Abella kind of requires
universal quantifiers to happen before nominal ones in theorem statements, thus exacerbating
the issue. The correct way to state the above proposition is by carefully lifting any term in
which a given free variable could occur:

2 See appendix for the definitions and the statement of the main theorems, and online material for the
full development.

T. Balabonski, A. Lanco, and G. Melquiond 9:15

forall T U, nabla x,
struct (T x) x -> star (T x) (U x) -> struct (U x) x.

Once one has overcome these hurdles, advantages become apparent. For example, to state
that some free variable does not occur in a term, not lifting this term is sufficient. And if it
needed to be lifted for some other reason, one can always equate it to a constant λ-tree. For
instance, one of our theorems needs to state that the free variable x occurring in T cannot
occur in U, by virtue of star. This is expressed as follows (with y\V denoting y 7→ V):

star (T x) (U x) -> exists V, U = (y\ V).

5.2 Judgments, contexts, and derivations
Abella provides two levels of logic: a minimal logic used for specifications and an intuitionistic
logic used for inductive reasoning over relations. At first, we only used the reasoning logic.
By doing so, we were using Abella as if we were using Coq, except for the additional nabla
quantifiers. We knew of the benefits of the specification logic when dealing with judgments
and contexts; but in the case of the untyped λ-calculus, we could not see any use for those.

Our point of view started to shift once we had to manipulate sets of free variables, in
order to distinguish which of them were frozen. We could have easily formalized such sets by
hand; but since Abella is especially designed to handle sets of binders, we gave it a try. Let
us consider the above predicate nf anew, except that it is now defined using λ-Prolog rules
(pi is the universal quantifier in the specification logic).

nf X :- frozen X.
nf (abs U) :- pi x\ frozen x => nf (U x).
...

Specification-level propositions have the form {L |- P}, with P a proposition defined in
λ-Prolog and L a list of propositions representing the context of P. Consider the proposition
{L |- nf (abs T)}. If there were only the two rules above, there would be only three ways
of deriving the proposition. Indeed, it can be derived from {L |- frozen (abs T)} (first
rule). It can also be derived from nabla x, {L, frozen x |- nf (T x)} (second rule).
Finally, the third way to derive it is if nf (abs T) is already a member of the context L.

The second and third derivations illustrate how Abella automates the handling of contexts.
But where Abella shines is that some theorems come for free when manipulating specification-
level properties, especially when it comes to substitution. Suppose that one wants to prove
{L |- P (T U)}, i.e., term T whose bound variable was replaced with U satisfies predicate P
in context L. The simplest way is if one can prove nabla x, {L |- P (T x)}. In that case,
one can instantiate the nominal variable x with U and conclude.

But more often that not, x occurs in the context, e.g., {L, Q x |- P (T x)} instead of
{L |- P (T x)}. Then, proving {L |- P (T U)} is just a matter of proving {L |- Q x}.
But, what if the latter does not hold? Suppose one can only prove {L |- R x}, with R V
:- Q V. In that case, one can reason on the derivation of {L, Q x |- P (T x)} and prove
that {L, R x |- P (T x)} necessarily holds, by definition of R. This ability to inductively
reason on derivations is a major strength of Abella.

Having to manipulate contexts led us to revisit most of our pen-and-paper concepts.
For example, a structure was no longer defined as a relation with respect to its leading
variable (e.g., struct T x) but with respect to all the frozen variables (e.g., {frozen x |-
struct T}). In turn, this led us to handle live variables purely through their addition to
contexts: φ ∪ {x}. Our freshness convention is a direct consequence, as in Fig. 2 for example.

FSCD 2021

9:16 A Strong Call-By-Need Calculus

Performing specification-level proofs does not come without its own set of issues, though.
As explained earlier, a proposition {L |- nf (abs T)} is derivable from the consequent
being part of the context L, which is fruitless. The way around it is to define a predicate
describing contexts that are well-formed, e.g., L contains only propositions of the form (nf x)
with x nominal. As a consequence, the case above can be eliminated because (abs T) is
not a nominal variable. Unfortunately, defining these predicates and proving the associated
helper lemmas is tedious and extremely repetitive. Thus, the user is encouraged to reuse
existing context predicates rather than creating dedicated new ones, hence leading to sloppy
and convoluted proofs. Having Abella provide some automation for handling well-formed
contexts would be a welcome improvement.

5.3 Functions and relations
Our Abella formalization assumes a type trm and three predefined ways to build elements of
that type: application, abstraction, and explicit substitution. For example, a term t[x\u] of
our calculus will be denoted (es (x\t) u) with t containing some occurrences of x.

type app trm -> trm -> trm.
type abs (trm -> trm) -> trm.
type es (trm -> trm) -> trm -> trm.

Since Abella does not provide functions, we instead use a relation to define the unfolding
function t 7→ t⋆. Of particular interest is the way binders are handled; they are characterized
by stating that they are their own image: star x x.

star (app U V) (app X Y) :- star U X, star V Y.
star (abs U) (abs X) :- pi x\ star x x => star (U x) (X x).
star (es U V) (X Y) :- star V Y, pi x\ star x x => star (U x) (X x).

Since this is just a relation, we have to prove that it is defined over all the closed terms
of our calculus, that it maps only to pure λ-terms, and that it maps to exactly one λ-term.
Needless to say, all of that would be simpler if Abella had native support for functions.

6 Conclusion

This paper presents a λ-calculus dedicated to strong reduction. In the spirit of a call-by-need
strategy with explicit substitutions, it builds on a linear substitution calculus [2]. Our
calculus, however, embeds a syntactic criterion that ensures that only needed redexes are
considered. Moreover, by delaying substitutions until they are in so-called local normal forms
rather than just values, all the reduction sequences are of minimal length.

Properly characterizing these local normal forms proved difficult and lots of iterations
were needed until we reached the presented definition. Our original approach relied on
evaluation contexts, as in the original presentation of a strong call-by-need strategy [9].
While tractable, this made the proof of the diamond property long and tedious. It is the use
of Abella that led us to reconsider this approach. Indeed, the kind of reasoning Abella favors
forced us to give up on evaluation contexts and look for reduction rules that were much more
local in nature. In turn, these changes made the relation with typing more apparent. In
hindsight, this would have avoided a large syntactic proof in [9].

Due to decidability, our syntactic criterion can characterize only part of the needed
redexes at a given time. All the needed reductions will eventually happen, but detecting
the neededness of a redex too late might prevent the optimal reduction. It is an open
question whether some other simple criterion would characterize more needed redexes, and
thus potentially allow for even shorter sequences than our calculus.

T. Balabonski, A. Lanco, and G. Melquiond 9:17

Even with the current criterion, there is still work to be done. First and foremost, the
Abella formalization should be completed to at least include the diamond property. There
are also some potential improvements to consider. For example, our calculus could be made
to not substitute variables that are not applied (rule lsv-base), following [29, 3] but it opens
the question of how to characterize the normal forms then. Another venue for investigation
is how this work interacts with fully lazy sharing, wich avoids more duplications but whose
properties are tightly related to weak reduction [7]. Finally, this paper stops at describing the
reduction rules of our calculus and does not investigate what an efficient abstract machine
would look like.

References
1 Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. A strong distillery. In Xinyu

Feng and Sungwoo Park, editors, Programming Languages and Systems, volume 9458 of Lecture
Notes in Computer Science, pages 231–250, 2015. doi:10.1007/978-3-319-26529-2_13.

2 Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, and Carlos Lombardi. A nonstandard
standardization theorem. In 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, page 659–670, 2014. doi:10.1145/2535838.2535886.

3 Beniamino Accattoli, Andrea Condoluci, and Claudio Sacerdoti Coen. Strong call-by-value is
reasonable, implosively, 2021. arXiv:2102.06928.

4 Beniamino Accattoli and Delia Kesner. The structural λ-calculus. In Anuj Dawar and Helmut
Veith, editors, Computer Science Logic, pages 381–395, 2010. doi:10.5555/1887459.1887491.

5 Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler. A
call-by-need lambda calculus. In 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’95, pages 233–246, 1995. doi:10.1145/199448.199507.

6 David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Nadathur, Alwen
Tiu, and Yuting Wang. Abella: A system for reasoning about relational specifications. Journal
of Formalized Reasoning, 7(2):1–89, 2014. doi:10.6092/issn.1972-5787/4650.

7 Thibaut Balabonski. A unified approach to fully lazy sharing. In John Field and Michael Hicks,
editors, 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL, pages 469–480, 2012. doi:10.1145/2103656.2103713.

8 Thibaut Balabonski. Weak optimality, and the meaning of sharing. In Greg Morrisett and
Tarmo Uustalu, editors, ACM SIGPLAN International Conference on Functional Programming,
ICFP’13, pages 263–274, September 2013. doi:10.1145/2500365.2500606.

9 Thibaut Balabonski, Pablo Barenbaum, Eduardo Bonelli, and Delia Kesner. Foundations of
strong call by need. Proc. ACM Program. Lang., 1(ICFP), 2017. doi:10.1145/3110264.

10 Malgorzata Biernacka, Dariusz Biernacki, Witold Charatonik, and Tomasz Drab. An abstract
machine for strong call by value. In Bruno C. d. S. Oliveira, editor, Programming Languages and
Systems - 18th Asian Symposium, APLAS 2020, volume 12470 of Lecture Notes in Computer
Science, pages 147–166. Springer, 2020. doi:10.1007/978-3-030-64437-6_8.

11 Malgorzata Biernacka and Witold Charatonik. Deriving an Abstract Machine for Strong Call
by Need. In Herman Geuvers, editor, 4th International Conference on Formal Structures for
Computation and Deduction (FSCD 2019), volume 131 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 8:1–8:20, 2019. doi:10.4230/LIPIcs.FSCD.2019.8.

12 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the Lambda-Calculus. Logic Journal of the IGPL, 25(4):431–464, July 2017. doi:10.1093/
jigpal/jzx018.

13 Arthur Charguéraud. The locally nameless representation. Journal of Automated Reasoning,
49(3):363–408, 2012. doi:10.1007/s10817-011-9225-2.

14 Adam Chlipala. Parametric higher-order abstract syntax for mechanized semantics. In 13th
ACM SIGPLAN International Conference on Functional Programming, ICFP, pages 143–156,
2008. doi:10.1145/1411204.1411226.

FSCD 2021

https://doi.org/10.1007/978-3-319-26529-2_13
https://doi.org/10.1145/2535838.2535886
http://arxiv.org/abs/2102.06928
https://doi.org/10.5555/1887459.1887491
https://doi.org/10.1145/199448.199507
https://doi.org/10.6092/issn.1972-5787/4650
https://doi.org/10.1145/2103656.2103713
https://doi.org/10.1145/2500365.2500606
https://doi.org/10.1145/3110264
https://doi.org/10.1007/978-3-030-64437-6_8
https://doi.org/10.4230/LIPIcs.FSCD.2019.8
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1145/1411204.1411226

9:18 A Strong Call-By-Need Calculus

15 M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for the
λ-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 1980. doi:10.1305/ndjfl/
1093883253.

16 Pierre Crégut. An abstract machine for lambda-terms normalization. In ACM Conference on
LISP and Functional Programming, LFP ’90, page 333–340, 1990. doi:10.1145/91556.91681.

17 Daniel de Carvalho. Sémantiques de la logique linéaire et temps de calcul. PhD thesis,
Université Aix-Marseille II, 2007.

18 Philippa Gardner. Discovering needed reductions using type theory. In Masami Hagiya and
John C. Mitchell, editors, Theoretical Aspects of Computer Software, pages 555–574, 1994.

19 Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong reduction. In
7th ACM SIGPLAN International Conference on Functional Programming, ICFP ’02, page
235–246, 2002. doi:10.1145/581478.581501.

20 Carsten Kehler Holst and Darsten Krogh Gomard. Partial evaluation is fuller laziness. In ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
PEPM ’91, page 223–233, 1991. doi:10.1145/115865.115890.

21 Delia Kesner. A theory of explicit substitutions with safe and full composition. Logical Methods
in Computer Science, 5(3), 2009. doi:10.2168/LMCS-5(3:1)2009.

22 Delia Kesner. Reasoning about call-by-need by means of types. In Bart Jacobs and Christof
Löding, editors, Foundations of Software Science and Computation Structures, pages 424–441,
2016. doi:10.1007/978-3-662-49630-5_25.

23 Delia Kesner and Daniel Ventura. Quantitative types for the linear substitution calculus.
In Josep Diaz, Ivan Lanese, and Davide Sangiorgi, editors, Theoretical Computer Science,
volume 8705 of Lecture Notes in Computer Science, pages 296–310, 2014. doi:10.1007/
978-3-662-44602-7_23.

24 John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda calculus. J.
Funct. Program., 8(3):275–317, May 1998. doi:10.1017/S0956796898003037.

25 Robin Milner. Local bigraphs and confluence: Two conjectures. Electron. Notes Theor. Comput.
Sci., 175(3):65–73, 2007. doi:10.1016/j.entcs.2006.07.035.

26 Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theoretical Computer
Science, 1(2):125–159, 1975. doi:10.1016/0304-3975(75)90017-1.

27 Gordon D. Plotkin. A structural approach to operational semantics. Technical report, DAIMI
FN-19, Computer Science Department, Aarhus University, 1981.

28 Christopher P. Wadsworth. Semantics and Pragmatics of the Lambda Calculus. PhD thesis,
Oxford, 1971.

29 Nobuko Yoshida. Optimal reduction in weak-lambda-calculus with shared environments. In
Conference on Functional Programming Languages and Computer Architecture, FPCA ’93,
page 243–252, 1993. doi:10.1145/165180.165217.

A Formal definitions

This appendix describes the main definitions of the Abella formalization. The reduction
rules of λsn and λsn+ presented in Fig. 3 are as follows.

step R top (abs T) (abs T’) :-
pi x\ frozen x => step R top (T x) (T’ x).

step R B (abs T) (abs T’) :- pi x\ omega x => step R bot (T x) (T’ x).
step R B (app T U) (app T’ U) :- step R bot T T’.
step R B (app T U) (app T U’) :- struct T, step R top U U’.
step R B (es T U) (es T’ U) :- pi x\ omega x => step R B (T x) (T’ x).
step R B (es T U) (es T’ U) :-

pi x\ frozen x => step R B (T x) (T’ x), struct U.
step R B (es T U) (es T U’) :-

pi x\ active x => step (idx x) B (T x) (T x), step R bot U U’.
step (idx X) B X X :- active X.

https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1145/91556.91681
https://doi.org/10.1145/581478.581501
https://doi.org/10.1145/115865.115890
https://doi.org/10.2168/LMCS-5(3:1)2009
https://doi.org/10.1007/978-3-662-49630-5_25
https://doi.org/10.1007/978-3-662-44602-7_23
https://doi.org/10.1007/978-3-662-44602-7_23
https://doi.org/10.1017/S0956796898003037
https://doi.org/10.1016/j.entcs.2006.07.035
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1145/165180.165217

T. Balabonski, A. Lanco, and G. Melquiond 9:19

step (sub X V) B X V :- active X.
step db B T T’ :- aux_db T T’.
step lsv B T T’ :- aux_lsv B T T’.

A small difference with the core of the paper is the predicate active, which characterizes
the variable being considered idx (idx) and subx\v (sub). This predicate is just a cheap way
of remembering that the active variable is fresh yet not frozen. Similarly, the predicate omega
is used in two rules to tag a variable as being neither frozen nor active. Another difference is
rule λ-bot. While the antecedent of the rule is at position ⊥ as in the paper, the consequent
is in any position rather than just ⊥. Since any term reducible in position ⊥ is provably
reducible in position ⊤, this is just a conservative generalization of the rule.

The auxiliary rules for λsn+, as given in Fig. 4 and Fig. 7 for rule lsv-base, are the same
as in the core of the paper.

aux_db (app (abs T) U) (es T U).
aux_db (app (es T W) U) (es T’ W) :-

pi x\ aux_db (app (T x) U) (T’ x).
aux_lsv B (es T (abs V)) (es T’ (abs V)) :-

pi x\ active x => step (sub x (abs V)) B (T x) (T’ x),
lnf bot (abs V).

aux_lsv B (es T (es U W)) (es T’ W) :-
pi x\ omega x => aux_lsv B (es T (U x)) (T’ x).

aux_lsv B (es T (es U W)) (es T’ W) :-
pi x\ frozen x => aux_lsv B (es T (U x)) (T’ x), struct W.

Finally, an actual reduction is just comprised of rules dB and lsv in a ⊤ position:

red T T’ :- step db top T T’.
red T T’ :- step lsv top T T’.

The normal forms of λsn and λsn+, given in Fig. 5, are as follows.

nf X :- frozen X.
nf (app U V) :- nf U, nf V, struct U.
nf (abs U) :- pi x\ frozen x => nf (U x).
nf (es U V) :- pi x\ frozen x => nf (U x), nf V, struct V.
nf (es U V) :- pi x\ nf (U x).

They make use of structures (struct), as given in Fig. 2.

struct X :- frozen X.
struct (app U V) :- struct U.
struct (es U V) :- pi x\ struct (U x).
struct (es U V) :- pi x\ frozen x => struct (U x), struct V.

The local norm forms of Fig. 8 are as follows. As for the step relation, one of the rules
for abstraction was generalized with respect to the paper. This time, it is for the ⊤ position,
since any term that is locally normal in a ⊤ position is locally normal in any position.

lnf B X :- frozen X.
lnf B X :- omega X.
lnf B (app T U) :- lnf B T, struct T, lnf top U.
lnf B (app T U) :- lnf B T, struct_omega T.
lnf B (abs T) :- pi x\ frozen x => lnf top (T x).
lnf bot (abs T) :- pi x\ omega x => lnf bot (T x).
lnf B (es T U) :- pi x\ active x => lnf B (T x).
lnf B (es T U) :- pi x\ frozen x => lnf B (T x), lnf bot U, struct U.
lnf B (es T U) :- pi x\ omega x => lnf B (T x), struct_omega U.

FSCD 2021

9:20 A Strong Call-By-Need Calculus

Structures with respect to the set ω use a dedicated predicate struct_omega, which is
just a duplicate of struct. Another approach, perhaps more elegant, would have been to
parameterize struct with either frozen or omega.

struct_omega X :- omega X.
struct_omega (app U V) :- struct_omega U.
struct_omega (es U V) :- pi x\ struct_omega (U x).
struct_omega (es U V) :-

pi x\ omega x => struct_omega (U x), struct_omega V.

Normal forms of the λ-calculus are defined as follows:

nfb X :- frozen X.
nfb (abs T) :- pi x\ frozen x => nfb (T x).
nfb (app T U) :- nfb T, nfb U, notabs T.
notabs T :- frozen T.
notabs (app T U).

The definition of λsn-terms is sometimes useful to allow induction on terms rather than
induction on one of the previous predicates.

trm (app U V) :- trm U, trm V.
trm (abs U) :- pi x\ trm x => trm (U x).
trm (es U V) :- pi x\ trm x => trm (U x), trm V.

Finally, let us remind the definitions of a pure λ-term, of the unfolding operation from λc
to λ, of a β-reduction, and of a sequence of zero or more β-reductions.

pure (app U V) :- pure U, pure V.
pure (abs U) :- pi x\ pure x => pure (U x).
star (app U V) (app X Y) :- star U X, star V Y.
star (abs U) (abs X) :- pi x\ star x x => star (U x) (X x).
star (es U V) (X Y) :- star V Y, pi x\ star x x => star (U x) (X x).

beta (app M N) (app M’ N) :- beta M M’.
beta (app M N) (app M N’) :- beta N N’.
beta (abs R) (abs R’) :- pi x\ beta (R x) (R’ x).
beta (app (abs R) M) (R M).
betas M M.
betas M N :- beta M P, betas P N.

B Formally verified properties

This appendix states the theorems that were fully proved using Abella. First comes the
simulation property (Lem. 3), which states that, if T →sn+ U , then T ⋆ →∗

β U⋆.

Theorem simulation ’ : forall T U T* U*,
{star T T*} -> {star U U*} -> {red T U} -> {betas T* U*}.

Then comes the fact that (local) normal forms are exactly the terms that are not reducible
in λsn+ (Lem. 4).

Theorem lnf_nand_red : forall T U,
{lnf top T} -> {red T U} -> false.

Theorem nf_nand_red : forall T U,
{nf T} -> {red T U} -> false.

T. Balabonski, A. Lanco, and G. Melquiond 9:21

Theorem lnf_or_red : forall T,
{trm T} -> {lnf top T} \/ exists U, {red T U}.

Theorem nf_or_red : forall T,
{trm T} -> {nf T} \/ exists U, {red T U}.

Finally, if T is a normal form of λsn, then T ⋆ is a normal form of the λ-calculus (Lem. 5).

Theorem nf_star ’ : forall T T*,
{nf T} -> {star T T*} -> {nfb T*}.

C Proof of the subformula properties

We recall here Lemma 8:
If Γ ⊢µ

φ t : τ and t ∈ Sφ, then there is x ∈ φ such that τ ∈ T+(Γ(x)).

Proof. By induction on the structure of t.
Case t = x. By inversion of x ∈ Sφ we deduce x ∈ φ. Moreover the only rule applicable
to derive Γ ⊢µ

φ x : τ is ty-var, which gives the conclusion.
Case t = t1 t2. By inversion of t1 t2 ∈ Sφ we deduce t1 ∈ Sφ. Moreover the only
rules applicable to derive Γ ⊢µ

φ t1 t2 : τ are ty-@ and ty-@-S. Both have a premise
Γ′ ⊢⊥

φ t1 : M → τ with Γ′ ⊆ Γ, to which the induction hypothesis applies, ensuring
M → τ ∈ T+(Γ′(x)) and thus τ ∈ T+(Γ′(x)) and τ ∈ T+(Γ(x)).
Case t = t1[x\t2]. We reason by case on the last rules applied to derive t1[x\t2] ∈ Sφ and
Γ ⊢µ

φ t1[x\t2] : τ . There are two possible rules for each.
Case where t1[x\t2] ∈ Sφ is deduced from t1 ∈ Sφ (with x ̸∈ φ) and Γ ⊢µ

φ t1[x\t2] : τ

comes from rule ty-es. This rule has in particular a premise Γ′ ⊢µ
φ t1 : τ for a

Γ′ = Γ′′; x : M such that Γ′′ ⊆ Γ. We thus have by induction hypothesis on t1 that
τ ∈ T+(Γ′(y)) for some y ∈ φ ∩ dom(Γ′). Since y ∈ φ and x ̸∈ φ we have y ≠ x. Then
y ∈ dom(Γ′′) and y ∈ dom(Γ), and Γ(y) = Γ′′(y).
In the three other cases, we have:

1. a hypothesis t1 ∈ Sφ or t1 ∈ Sφ∪{x}, from which we deduce t1 ∈ Sφ∪{x},
2. a hypothesis Γ′ ⊢µ

φ t1 : τ or Γ′ ⊢µ
φ∪{x} t1 : τ (for a Γ′ = Γ′′; x : M such that Γ′′ ⊆ Γ),

from which we deduce Γ′ ⊢µ
φ∪{x} t1 : τ , and

3. a hypothesis t2 ∈ Sφ, coming from the derivation of t1[x\t2] or the derivation of
Γ ⊢µ

φ t1[x\t2] : τ (or both).
Then by induction hypothesis on t1 we have τ ∈ T+(Γ′(y)) for some y ∈ φ ∪ {x}.
∗ If y ̸= x, then y ∈ φ and Γ(y) = Γ′′(y), which allows a direct conclusion.
∗ If y = x, then τ ∈ T+(Γ′(x)) implies M ̸= {{}}. Let σ ∈ M with τ ∈ T+(σ). The

instance of the rule ty-es or ty-es-φ we consider thus has at least one premise
∆ ⊢⊥

φ t2 : σ with ∆ ⊆ Γ. Since t2 ∈ Sφ, by induction hypothesis on t2 there is
z ∈ φ ∩ dom(∆) such that σ ∈ T+(∆(z)). Then τ ∈ T+(∆(z)), and τ ∈ Γ. ◀

We recall here Lemma 9:

1. If Φ ▷ Γ ⊢⊤
φ t : τ then

{
T+(fzt(Φ)) ⊆

⋃
x∈φ T+(Γ(x)) ∪ T−(τ)

T−(fzt(Φ)) ⊆
⋃

x∈φ T−(Γ(x)) ∪ T+(τ)

2. If Φ ▷ Γ ⊢⊥
φ t : τ then

{
T+(fzt(Φ)) ⊆

⋃
x∈φ T+(Γ(x))

T−(fzt(Φ)) ⊆
⋃

x∈φ T−(Γ(x))

FSCD 2021

9:22 A Strong Call-By-Need Calculus

Proof. By mutual induction on the typing derivations.
Both properties are immediate in case ty-var, where fzt(Φ) = {σ}.
Cases for abstractions.

If Φ ▷ Γ ⊢⊥
φ λx.t : M → τ by rule ty-λ-⊥ with premise Φ′ ▷ Γ; x : M ⊢⊥

φ t : τ .
Write Γ′ = Γ; x : M. By induction hypothesis we have T+(fzt(Φ′)) ⊆

⋃
y∈φ T+(Γ′(y)).

Since x ̸∈ φ by renaming convention, we deduce that T+(fzt(Φ′)) ⊆
⋃

y∈φ T+(Γ(y)) and
T+(fzt(Φ)) ⊆

⋃
y∈φ T+(Γ(y)). The same applies to negative type occurrences, which

concludes the case.
If Φ ▷ Γ ⊢⊤

φ λx.t : M → τ by rule ty-λ-⊤ with premise Φ′ ▷ Γ; x : M ⊢⊤
φ∪{x} t : τ .

Write Γ′ = Γ; x : M. By induction hypothesis we have

T+(fzt(Φ′)) ⊆
⋃

y∈(φ∪{x}) T+(Γ′(y)) ∪ T−(τ)
=

⋃
y∈φ T+(Γ(y)) ∪ T+(M) ∪ T−(τ)

=
⋃

y∈φ T+(Γ(y)) ∪ T−(M → τ)

Thus T+(fzt(Φ)) ⊆
⋃

y∈φ T+(Γ(y)) ∪ T−(M → τ). The same applies to negative
occurrences, which concludes the case.

Cases for application.
Cases for ty-@ are by immediate application of the induction hypotheses.
If Φ ▷ Γ ⊢µ

φ t u : τ by rule ty-@-S, with premises Φt ▷ Γt ⊢⊥
φ t : M → τ , t ∈ Sφ

and Φσ ▷ ∆σ ⊢⊤
φ u : σ for σ ∈ M, with Γt ⊆ Γ and Γσ ⊆ Γ for all σ ∈ M.

Independently of the value of µ, we show that T+(fzt(Φ)) ⊆
⋃

x∈φ T+(Γ(x)) and
T−(fzt(Φ)) ⊆

⋃
x∈φ T−(Γ(x)) to conclude on both sides of the mutual induction.

Directly from the induction hypothesis, T+(fzt(Φt)) ⊆
⋃

x∈φ Γt(x) ⊆ T+(fzt(Φ)). By
induction hypothesis on the other premises we have T+(fzt(Φσ)) ⊆

⋃
x∈φ Γσ(x) ∪ T−(τ)

for σ ∈ M. We immediately have
⋃

x∈φ Γσ(x) ⊆
⋃

x∈φ Γ(x). We conclude by showing
that T−(σ) ⊆ T+(Γt(x)) for some x ∈ φ. Since t ∈ Sφ, by the first subformula
property and the typing hypothesis on t we deduce that there is a x ∈ φ such that
M → τ ∈ T+(Γt(x)). By closeness of type occurrences sets T+(τ) this means T+(M →
τ) ⊆ T+(Γt(x)). By definition T+(M → τ) = T−(M) ∪ T+(τ) =

⋃
σ∈M T−(σ) ∪ T+(τ),

which allows us to conclude the proof that
⋃

x∈φ Γσ(x) ∪ T−(τ) ⊆
⋃

x∈φ Γ(x).
The same argument also applies to negative positions, and concludes the case.

Cases for explicit substitution immediately follow the induction hypothesis. ◀

A Bicategorical Model for Finite Nondeterminism
Zeinab Galal
IRIF, Université de Paris, France

Abstract
Finiteness spaces were introduced by Ehrhard as a refinement of the relational model of linear logic.
A finiteness space is a set equipped with a class of finitary subsets which can be thought of being
subsets that behave like finite sets. A morphism between finiteness spaces is a relation that preserves
the finitary structure. This model provided a semantics for finite non-determism and it gave a
semantical motivation for differential linear logic and the syntactic notion of Taylor expansion. In
this paper, we present a bicategorical extension of this construction where the relational model
is replaced with the model of generalized species of structures introduced by Fiore et al. and the
finiteness property now relies on finite presentability.

2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation
→ Categorical semantics

Keywords and phrases Differential linear logic, Species of structures, Finiteness, Bicategorical
semantics

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.10

Funding This work was partly funded by the ANR project PPSANR-19-CE48-0014.

1 Introduction

1.1 Quantitative semantics
In quantitative semantics, the interpretation of a program provides information on the number
of times the program uses its input to compute a given output whereas qualitative semantics
only allows us to recover which inputs were used. Quantitative semantics originates from
Girard’s normal functor semantics of system F [16]. His original intuition was to interpret
types as vector spaces such that linear maps between them correspond to programs using
their arguments exactly once and analytic functions correspond to general programs.

This approach led to the birth of linear logic but it does not directly provide a model
for it. Indeed, the exponential modality of linear logic leads to infinite dimensional vector
spaces which are no longer isomorphic to their double dual, a property required to model
classical negation. Topological vector spaces were therefore considered to circumvent this
issue [17, 6, 8]. In this setting, the series interpreting a program usually has infinite support
describing all its possible behaviors for all possible inputs which allows for the study of
non-deterministic languages.

1.2 Controlling non-deterministic computation
Finiteness spaces are a model of linear logic introduced by Ehrhard as a way to enforce finite
interactions between programs and reject infinite computations [9]. Finiteness spaces do
not provide a model of PCF since the fixpoint operator is not a morphism in the model.
Vaux showed however that it allows for primitive recursion and is hence a model of Gödel’s
system T [26].

The construction of the finiteness spaces model is done in two steps: the first step is
a double glueing construction (in the sense of Hyland and Schalk [20]) on the relational
model Rel. A finiteness space A = (|A| , FA) is a countable set |A| together with a set of

© Zeinab Galal;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 10; pp. 10:1–10:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSCD.2021.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 A Bicategorical Model for Finite Nondeterminism

finitary subsets FA such that the intersection of a finitary subset in FA together with a
finitary subset in the dual type FA⊥ is always finite. Morphisms between finiteness spaces
are relations that preserve the finitary structure backward and forward.

The second step is parameterized by a fixed field (or commutative semi-ring) R: for every
finiteness space, one can define a vector space (or semi-module) whose vectors are linear
combinations with finitary support, and this space is endowed with a topology induced by
the duality. In this setting, morphisms in the linear category correspond to linear continuous
maps between these vector spaces and non-linear maps correspond to analytic maps for
which there is a natural notion of differentiation. This construction provided the semantical
motivation for differential linear logic and the syntactic notion of Taylor expansion which
associates a formal sum of resource terms to a given term [11, 10]. Finiteness spaces were
also used to characterize strongly normalizing terms in non-deterministic λ-calculus [25].
More recently, finiteness spaces were used in the theory of generalized power series rings and
topological groupoids [5, 1].

This finiteness space construction yields a model of controlled non-determinism: the
objects can be infinite dimensional vector spaces and the morphisms are series with possibly
infinite support but whenever an explicit computation is made, the result is always finite.
It corresponds to the operational property that a program always has a finite number of
reduction paths for a given input and output.

1.3 Generalized species of structures
In this paper, we use species of structures to extend the finiteness construction on the relational
model to a bicategorical setting. Species of structures were originally introduced by Joyal as
a unified framework for the theory of generating series in enumerative combinatorics [21].
Fiore et al. then presented a generalized definition that both encompasses Joyal’s species and
constitutes a model of differential linear logic [13]. This model of generalized species is based
on the bicategory of profunctors Prof and it can be considered as a generalization of the
differential relational model Rel. It follows the line of research of categorifying λ-calculus
models by replacing sets or preorders by richer categorical structures [7, 19]. Generalized
species are also connected to the Girard’s normal functor model [16] which was later extended
by Hasegawa [18].

The exponential modality in the model of generalized species is based on the free symmetric
monoidal completion for small categories which generalizes the finite multiset construction
for the relational model. Morphisms in the co-Kleisli bicategory correspond to the notion of
analytic functors which provide the series counterpart of generalized species [12].

1.4 Finiteness spaces with profunctors
In the original model of relational finiteness spaces, types are interpreted as pairs A =
(|A| , FA) of countable set |A| with a set of so-called finitary subsets FA ⊆ P(|A|) satisfying
FA = (FA)⊥⊥. In our setting, the types will correspond to pairs A = (|A| , FA) of a
locally finite category |A| equipped with a full subcategory of finite presheaves FA ↪→
[|A|op

, FinSet] such that FA ∼= (FA)⊥⊥.
The categorification of the orthogonality relation allows us to work in a better behaved

setting of focused orthogonalities where forward preservation is equivalent to backward
preservation for morphisms preserving the finiteness structure [20]. In our case, a morphism
from (|A| , FA) to (|B| , FB) will be a finite profunctor P : |A| −7−→f |B| such that (P)FA ↪→
FB which will imply that (P ⊥)FB⊥ ↪→ FA⊥. We follow the same pattern of the double-

Z. Galal 10:3

glueing construction for 1-categories to obtain a bicategory of finiteness spaces and profunctors
between them where computations are enforced to be finite and show that all the differential
linear logic constructions in Prof can be refined to our bicategory.

Notation
For an integer n ∈ N, we write n for the set {1, . . . , n}.
For a small category A, we denote by Â the presheaf category [Aop, Set] and write
yA : A → Â for the Yoneda embedding.
We denote by 1 the category with one object and one morphism and by 0 the empty
category.
We use ∼= for natural isomorphisms between functors or category isomorphisms and ≃
for equivalences.

2 Relational Finiteness Spaces

The model of relational finiteness spaces is obtained from Rel via a glueing construction
along hom-functors using the following orthogonality relation:

▶ Definition 1. For a countable set S, subsets x ∈ Rel(1, S) ∼= P(S) and x′ ∈ Rel(S, 1) ∼=
P(S), we say that x and x′ are orthogonal if x∩x′ is a finite set and we denote it by x ⊥S x′.

The idea is that morphisms in Rel(1, S) are thought of as closed programs of type S and
morphisms in Rel(S, 1) correspond to counter-programs or environments. The orthogonality
relation allows for more control on interactions between programs and environments as
we require their interaction to always be finite even if the type S is infinite. For a subset
F ⊆ P(S), we define its orthogonal as F ⊥ := {x ∈ P(S) | ∀x′ ∈ F , x ⊥ x′} ⊆ P(S). This
orthogonality relation induces a Galois connection on PP(S)

PP(S) PP(S)

(−)⊥

(−)⊥

⊥

where finiteness spaces, introduced below, are its fixpoints F = F ⊥⊥.

▶ Definition 2. A relational finiteness space is a pair A = (|A| , F (A)) where |A| is a
countable set and F (A) is a subset of P(|A|) satisfying F (A) = F (A)⊥⊥.

For any countable set S, the smallest finiteness structure is given by the set of finite subsets of
S, Pfin(S) whose orthogonal is given by the whole powerset P(S). For a relational finiteness
space A, while elements of F (A) may be infinite subsets of |A|, they are called finitary
subsets as they “behave” like finite sets in that F (A) is closed under inclusion (for x ∈ F (A),
if x′ ⊆ x, then x′ ∈ F (A)) and finite unions.

▶ Definition 3. The category FinRel has objects finiteness spaces and morphisms are
relations that preserve the finitary structure forward and backward. Explicitly, for finiteness
spaces A = (|A| , F (A)) and B = (|B| , F (B)), a relation R ⊆ |A|×|B| induces two functions
R⋆ and R⋆ given by R⋆ : x 7→ {b ∈ |B| | ∃a ∈ |A| , (a, b) ∈ R} and R⋆ : y 7→ {a ∈ |A| | ∃b ∈
|B| , (a, b) ∈ R}. The relation R is said to be a morphism of finiteness spaces from A to B if
for all x ∈ F (A), R⋆ · x ∈ F (B) and for all y ∈ F (B)⊥, R⋆ · y ∈ F (A)⊥.

FSCD 2021

10:4 A Bicategorical Model for Finite Nondeterminism

P(|A|) P(|B|)

F (A) F (B)

R⋆ P(|B|) P(|A|)

F (B)⊥ F (A)⊥

R⋆

Formally, the category FinRel is the tight orthogonality category in the sense of Hyland
and Schalk obtained from the orthogonality relation defined above [20]. Ehrhard showed
that the linear logic structure from Rel can be lifted to FinRel which constitutes a model of
differential linear logic [10]. The morphisms in the co-Kleisli category of FinRel play the role
of supports for power series for the second part of the construction: for a fixed field (or semi-
ring) R, we can define for every relational finiteness space A = (|A| , F (A)), the following
vector space (or semi-module): R⟨A⟩ := {X ∈ R|A| | support(X) ∈ F (A)}. Ehrhard showed
that R⟨A⟩ can be endowed with a topology TA such that a matrix M ∈ R⟨A ⊸ B⟩
corresponds to a linear continuous map R⟨A⟩ → R⟨B⟩ and a matrix M ∈ R⟨!A ⊸ B⟩
corresponds to an analytic map R⟨A⟩ → R⟨B⟩ [9].

3 Profunctorial Finiteness Spaces

3.1 Orthogonality on bicategories
We work with a fragment of Prof where the objects are locally finite categories, it has the
important consequence that finitely presentable presheaves are always finite presheaves as
we will see below.

▶ Definition 4. A small category A is said to be locally finite if it is enriched over finite
sets i.e. for any objects a, a′ ∈ A, the homset A(a, a′) is finite.

▶ Definition 5. For a category A, a presheaf X : Aop → Set is said to be finite if for all
a ∈ A, X(a) is a finite set. We denote by Âfin ↪→ Â the full subcategory of finite presheaves.
Note that the Yoneda embedding yA for a locally finite category A factors through the inclusion
Âfin ↪→ Â by an embedding A ↪→ Âfin.

For presheaf categories, finitely presentable objects can be characterized as presheaves
that are isomorphic to a finite colimit of representables. For a locally finite category A, since
a finite colimit of finite presheaves is also a finite presheaf, there is an embedding from the
subcategory of finitely presentable objects Âfp to Âfin.

▶ Definition 6. A profunctor F : A −7−→ B between two small categories A and B is a functor
F : A × Bop → Set or equivalently a functor F : A → B̂. F is said to be a finite profunctor
if it can be factored as a functor F : A → B̂fin through the embedding B̂fin ↪→ B̂. In other
words, for all a ∈ A and b ∈ B, F (a, b) is a finite set. A finite profunctor will be denoted by
F : A −7−→f B.

The composite of two profunctors F : A −7−→ B and G : B −7−→ C is the profunctor
G ◦ F : A −7−→ C given by the coend formula:

(a, c) 7→
∫ b∈B

F (a, b) × G(b, c) ∼=

(∑
b∈B

F (a, b) × G(b, c)
)

/∼

where ∼ is the least equivalence relation such that (b, F (a, f)(s), t) ∼ (b′, s, G(f, c)(t)) for
s ∈ F (a, b′), t ∈ G(b, c) and f : b → b′ ∈ B. Composition of profunctors is associative only
up to natural isomorphisms which puts us in the setting of a bicategory [3]. Note that the

Z. Galal 10:5

composite of two finite profunctors between locally finite categories need not to be finite
(since the sum above can be infinite if B has an infinite object set for example) but we will
see how finiteness structures will enable us to make this notion compositional.

▶ Definition 7. Let A be a locally finite category, X : Aop → Set a presheaf and X ′ :
A → Set a copresheaf, we say that X and X ′ are orthogonal and write X ⊥A X ′ if the set
⟨X, X ′⟩ :=

∫ a∈A
X(a) × X ′(a) is finite.

In the bicategorical case, presheaves in Â or equivalently profunctors 1 −7−→ A (where 1
is the terminal category) are thought of as closed programs of type A and co-presheaves
in Âop or profunctors A −7−→ 1 correspond to environments. In our setting, the interaction
between a program X : Aop → Set and an environment X ′ : A → Set corresponds to their
composition in Prof : X ′ ◦ X =

∫ a∈A
X(a) × X ′(a).

Adding the orthogonality structure on categories allows us to work in a setting where we
enforce this composite to always be finite. Note that the condition in Definition 7 becomes
X ′ ◦ X ∈ FinSet ↪→ Set ∼= Prof(1, 1). In the case of 1-categories, for C a model of
linear logic with monoidal units 1 and ⊥, and for ‚⊆ C(1, ⊥) a distinguished pole, if the
orthogonality relation ⊥c↪→ C(1, c) × C(c, ⊥) is given by:

⊥c = {(x, x′) ∈ C(1, c) × C(c, ⊥) | x′ ◦ x ∈‚}

we say that the orthogonality is focused and it is one of the better behaved cases [20]. It
implies in particular that for all x ∈ C(1, c), f ∈ C(c, d) and y ∈ C(d, ⊥), f ◦ x ⊥d y if and
only if x ⊥c y ◦ f . In the general case, a morphism preserving the orthogonality needs to
preserve it forward and backward whereas in the focused case, forward preservation becomes
equivalent to backward preservation which simplifies the proofs significantly since we do not
have to prove both directions every time. Unlike the relational case, the orthogonality in the
categorified setting becomes focused so that the two preservation conditions for relations
of Definition 3 reduce to a single preservation condition for profunctors as we will see in
Definition 14.

▶ Lemma 8. For all X : 1 −7−→f A, Y : B −7−→f 1 and F : A −7−→f B, we have:

F ◦ X ⊥B Y ⇔ X ⊥A Y ◦ F.

Proof. It follows from the fact that the sets ⟨F ◦ X, Y ⟩ and ⟨X, Y ◦ F ⟩ are both isomorphic
to
∫ a∈A ∫ b∈B

F (a, b) × X(a) × Y (b). ◀

For a set A considered as a discrete category, a subset x ⊆ A can be viewed as a presheaf
x : Aop → Set (or a copresheaf x : A → Set) that maps a ∈ A to the singleton {⋆} if a ∈ x

and to the empty set otherwise. Hence, for x ⊆ A viewed as a presheaf and x′ ⊆ A viewed
as a copresheaf, x ∩ x′ is finite is equivalent to the set

∫ a∈A
x(a) × x′(a) being finite. This

analogy provides the connection between the bicategorical case and the relational case.

▶ Definition 9. For a subcategory C ↪→ Âfin, we denote by C⊥, the full subcategory of Âopfin
of finite copresheaves X ′ such that for all X ∈ C, X ′ ⊥A X.

Let Sub(Â) be the poset of full subcategories of Â, the orthogonality relation induces a
Galois connection:

FSCD 2021

10:6 A Bicategorical Model for Finite Nondeterminism

Sub(Â) Sub(Âop)op

(−)⊥

(−)⊥

⊥

whose fixed points are full subcategories C verifiying C⊥⊥ ∼= C.

▶ Definition 10. A finiteness structure is a pair A = (|A| , FA) of a locally finite category
|A| and a full subcategory FA ↪→ |̂A|fin verifying FA ∼= FA⊥⊥.

▶ Lemma 11. For a finiteness structure A = (|A| , FA), the subcategory of finitely present-
able objects |̂A|fp ↪→ |̂A|fin is always a full subcategory of FA.

Proof. If X is finitely presentable, then X is isomorphic to a finite colimit of representables
X ∼= lim−→i∈I

|A| (−, ai) : |A|op → Set. For any X ′ ∈ (FA)⊥,

⟨X, X ′⟩ =
∫ a∈|A|

X(a) × X ′(a) ∼= lim−→
i∈I

∫ a∈|A|
|A| (a, ai) × X ′(a) ∼= lim−→

i∈I

X ′(ai).

Since a finite colimit of finite sets is finite, we obtain that X ⊥A X ′ as desired. ◀

The minimal finiteness structure is (|A| , |̂A|fp) and its orthogonal is the maximal finiteness
structure (|A| , |̂A|fin) so for any finiteness structure A = (|A| , FA), we have

(|A| , |̂A|fp) A (|A| , |̂A|fin).

▶ Lemma 12. If A is a finite category (both the object and morphism sets are finite), then
there is a unique finiteness structure given by Âfin.

Proof. By Lemma 11, it suffices to show that if A is finite, then any finite presheaf X :
Aop → FinSet is finitely presentable. If A is finite, then the category of elements

∫
X of X

is finite as well and since X ∼= lim−→(
∫

X → A → Â), X is a finite colimit of representables
and hence is finitely presentable. ◀

In the relational case, for a finiteness structure A = (|A| , FA), FA can be larger than
Pfin(|A|) but its elements “behave” like finite sets in the sense that x ⊆ y ∈ F (A) implies
x ∈ F (A) and a finite union of finitary elements is finitary. In the categorical case, F (A)
can be thought of as a category larger than |̂A|fp but its elements “behave” like finitely
presentable elements as F (A) is closed under retractions and finite colimits.

▶ Lemma 13. Let A = (|A| , F (A)) be a finiteness structure, then the following two
properties hold:
1. if X ′ is a retract of an element X ∈ F (A), then X ′ ∈ F (A);
2. F (A) is closed under finite colimits.

Proof. Let α : X ⇒ X ′ be a retraction in |̂A|. Since a retraction is an epimorphism and
colimits in |̂A| are computed pointwise, for every a ∈ |A|, αa : X(a) → X ′(a) is a surjection.
Hence, for every Y ∈ F (A)⊥,

⟨Y, X⟩ =
∫ a∈|A|

Y (a) × X(a) ↠
∫ a∈|A|

Y (a) × X ′(a) = ⟨Y, X ′⟩

which implies that ⟨Y, X ′⟩ is a finite set as well so that X ′ ∈ F (A). The second property
follows from the fact that a finite colimit of finite sets is finite. ◀

Z. Galal 10:7

▶ Definition 14. Given two finiteness structures A = (|A| , FA) and B = (|B| , FB), a
finite profunctor F : |A| −7−→f |B| is called a finiteness profunctor if F̂ := Lany|A|F : |̂A| → |̂B|
verifies F̂ (FA) ↪→ FB i.e if there exists a functor FA → FB making the diagram below
commute:

|̂A| |̂B|

FA FB

F̂

▶ Lemma 15. Given two finiteness structures A = (|A| , FA) and B = (|B| , FB),
a profunctor F : |A| −7−→f |B| is a finiteness profunctor A −7−→f B if and only if F ⊥ :
(|B|op

, FB⊥) −7−→f (|A|op
, FA⊥) is also a finiteness profunctor.

Proof. Direct consequence of Lemma 8. ◀

Since the categories Prof (1, |A|) and |̂A| are isomorphic, we will abuse notation and identify
presheaves X ∈ |̂A| with profunctors 1 −7−→ |A| and write F ◦ X instead of F̂X. Under this
isomorphism, we can reformulate the condition of Definition 14 as follows: F is a finiteness
profunctor if for all presheaves X in FA, F ◦ X is in FB. Likewise, using the isomorphism
Prof (|B| , 1) ∼= |̂B|op, F ⊥ is a finiteness profunctor if for all copresheaves Y in FB⊥, Y ◦ F

is in FA⊥.

▶ Definition 16. Define FinProf to be the bicategory whose 0-cells are finiteness structures,
1-cells are finiteness profunctors as in Definition 14 and 2-cells are natural transformations
between such profunctors.

Proof. We show below that FinProf is indeed a bicategory.
Identity For a finiteness structure A = (|A| , FA), id|A| : |A| −7−→ |A| is a finite profunctor

as |A| is a locally finite category. Since id|A| verifies îd|A| ∼= id
|̂A|

, it is a finiteness
profunctor A −7−→f A.

Composition Let A = (|A| , FA), B = (|B| , FB) and C = (|C| , FC) be finiteness struc-
tures and F : A −7−→f B and G : B −7−→f C be finiteness profunctors. It is clear that
if F̂ (FA) ↪→ FB and Ĝ(FB) ↪→ FC, then Ĝ ◦ F (FA) ∼= Ĝ ◦ F̂ (FA) ↪→ FC. It
remains to show that G ◦ F is a finite profunctor. For all a ∈ |A| and c ∈ |C|, we have

(G ◦ F)(a, c) =
∫ b∈|B|

F (a, b) × G(b, c) ∼= Ĝ(F̂ (y(a)))(c).

Since y(a) ∈ FA, Ĝ(F̂ (y(a)) is an element of FC so it is a finite presheaf, which implies
that Ĝ(F̂ (y(a)))(c) is finite as desired. ◀

We obtain as a corollary of Lemma 15 that the mapping A 7→ A⊥ := (|A|op
, FA⊥) can

be extended to a full and faithful functor FinProfop → FinProf .

▶ Lemma 17. The forgetful functor U : FinProf → Prof is locally fully faithful and
injective on 1-cells. Explicitely, for finiteness structures A and B, the induced functor
FinProf(A, B) → Prof(|A| , |B|) is injective on objects and fully faithful.

FSCD 2021

10:8 A Bicategorical Model for Finite Nondeterminism

4 Linear Logic Structure

In this section, we prove that the differential linear logic structure in Prof can be lifted
to FinProf . While the full definition of a bicategorical model of linear logic has yet to be
spelled out, the standard 1-categorical constructions have canonical bicategorical analogues
which we use. The proofs will make use of the lemma below that shows how certain families of
adjoint equivalences needed for the linear logic structure can be lifted from Prof to FinProf
using the fact that the forgetful functor is locally fully faithful.

▶ Lemma 18. Let A, B, C, D be categories and (L : A → B, R : B → A, η, ε) be an adjoint equi-
valence. Let L′ : C → D, R′ : D → C, F : C → A and G : D → B be functors such that F and
G are fully faithful, GL′ = LF and FR′ = RG. Then L′ and R′ are adjoint equivalent L′ ⊣ R′.

A B

C D

L

R

L′

R′

F G

≃ ⊥

Proof. For objects c ∈ C and d ∈ D, using the hypotheses above, we have:

C(c, R′d) ∼= A(Fc, FR′(d)) = A(Fc, RGd) ∼= B(LFc, Gd) = B(GL′c, Gd) ∼= D(L′c, d)

which implies that L′ ⊣ R′.
For c ∈ C, the component of the unit η′ of the adjunction L′ ⊣ R′ is the morphism

η′
c determined by F (η′

c) = ηF (c). It is an isomorphism since F is fully faithful and hence
conservative. We can show that the counit of the adjunction L′ ⊣ R′ is an isomorphism in a
similar fashion. ◀

4.1 Additive structure
Similarly to the 1-categorical case, FinProf is endowed with a finite biproduct structure.
For a family of categories (Ai)i∈I , we denote by &iAi their coproduct in Cat. There is an
isomorphism &̂iAi

∼=
∏

i Âi, so we will often identify a presheaf Z ∈ &̂iAi with a tuple of
presheaves (Zi)i∈I ∈

∏
i Âi.

▶ Lemma 19. For a finite family of finiteness structures (Ai)i∈I , &iAi := (&i |Ai| ,
∏

i FAi)
is a finiteness structure.

Proof. It suffices to show that (
∏

i FAi)⊥ ∼=
∏

i(FAi)⊥. ◀

▶ Definition 20. For a family of finiteness structures (Ai)i∈I , we define the finiteness
structure ⊕iAi by (&i |Ai| , (F (&iA⊥

i))⊥).

▶ Lemma 21. The empty category 0 with its presheaf category (0, 0̂) forms a finiteness
structure that is the neutral for & and ⊕.

▶ Lemma 22. For a finite family of finiteness structures (Ai)i∈I , the profunctors πi :
&i |Ai| −7−→ |Ai| and inji : |Ai| −7−→ &i |Ai| are finiteness profunctors &iAi −7−→f Ai and
Ai −7−→f ⊕iAi respectively. They induce adjoint equivalences:

FinProf(X, &iAi) ≃
∏

i

FinProf(X, Ai) and FinProf(⊕iAi, X) ≃
∏

i

FinProf(Ai, X).

Z. Galal 10:9

Proof. The profunctors πi and inji are given by πi : ((i, ai), a) 7→ |Ai| (a, ai) and inji :
(a, (i, ai)) 7→ |Ai| (ai, a) so they are finite profunctors since the category |Ai| is locally
finite. For Z ∈ F (&iAi) and X ∈ FA⊥

i , ⟨πiZ, X⟩ ∼= ⟨Zi, X⟩ ∈ FinSet which implies
that πi ∈ FinProf(&iAi, Ai). Likewise, for X in FAi and Z ∈ F (⊕iAi)⊥, ⟨injiX, Z⟩ ∼=
⟨X, Zi⟩ ∈ FinSet so that inji ∈ FinProf(Ai, ⊕iAi).

Using Lemma 18, the adjoint equivalences above follow from the biproduct structure
in Prof where we have adjoint equivalences Prof(|X| , &i |Ai|) ≃

∏
i Prof(|X| , |Ai|) and

Prof(&i |Ai| , |X|) ≃
∏

i Prof(|Ai| , |X|). ◀

4.2 Star-Autonomous Structure
The bicategory Prof is symmetric monoidal with tensor product given by the cartesian
product of categories (A, B) 7→ A × B and monoidal unit 1. The duality functor A 7→ Aop

provides Prof with a compact closed structure. Adding the orthogonality structure allows for
less degenerate model as the bicategory FinProf is now ∗-autonomous with dualizing object
1. To show that the symmetric monoidal structure in Prof lifts to FinProf , it suffices to
prove that the tensor product lifts to a pseudo-functor FinProf × FinProf → FinProf
and that the symmetry, associator and left and right unitors pseudo-natural transformations
have components in FinProf .

For relational finiteness spaces, the tensor product of A = (|A| , F (A)) and B =
(|B| , F (B)) is the smallest structure that contains all products x × y of subsets x ∈ F (A)
and y ∈ F (B). Since the set {x × y | x ∈ F (A), y ∈ F (B)} is not necessarily closed under
double orthogonality A ⊗ B is defined as (|A| × |B| , {x × y | x ∈ F (A), y ∈ F (B)}⊥⊥).
In the categorified case, the construction is similar, for finiteness structures A and B,
F (A ⊗ B) is the smallest finiteness structure containing all products X × Y for X ∈ F (A)
and Y ∈ F (B) where X × Y : (|A| × |B|)op → Set is the presheaf given by the pointwise
product (a, b) 7→ X(a) × Y (b).

▶ Definition 23. For finiteness structures A = (|A| , FA) and B = (|B| , FB), their tensor
product is defined as A⊗B := (|A|× |B| , F (A⊗B)) where F (A⊗B) is the full subcategory
of ̂|A| × |B|fin whose object set is given by {X × Y | X ∈ FA and Y ∈ FB}⊥⊥.

▶ Lemma 24. For finiteness profunctors F1 : A1 −7−→f B1 and F2 : A2 −7−→f B2, the profunctor
F1⊗F2 : |A1|×|A2| −7−→ |B1|×|B2| given by (F1⊗F2)((a1, a2), (b1, b2)) := F1(a1, b1)×F2(a2, b2)
is in FinProf(A1 ⊗ A2, B1 ⊗ B2).

Proof. Using Lemma 15, we show that (F1 ⊗ F2)⊥F (B1 ⊗ B2)⊥ ↪→ F (A1 ⊗ A2)⊥. Let
Z be in F (B1 ⊗ B2)⊥ i.e. for all Y1 ∈ FB1 and Y2 ∈ FB2, ⟨Z, Y1 × Y2⟩ ∈ FinSet.
(F1 ⊗ F2)⊥(Z) ∈ F (A1 ⊗ A2)⊥ is equivalent to:

∀X1 ∈ FA1, ∀X2 ∈ FA2, ⟨(F1 ⊗ F2)⊥(Z), X1 × X2⟩ ∈ FinSet
⇔∀X1 ∈ FA1, ∀X2 ∈ FA2, ⟨Z, (F1X1) × (F2X2)⟩ ∈ FinSet

Since F1X1 is in FB1 and F2X2 is in FB2, we obtain the desired result. ◀

▶ Lemma 25. (1, FinSet) is the tensor unit.

Proof. Let A be a finiteness structure, we show that F (A)⊥ ∼= F (A ⊗ 1)⊥ ∼= F (1 ⊗A)⊥

so that the components of the left unitor l|A| : |A| × |1| −7−→ |A| and right unitor r|A| :
|1| × |A| −7−→ |A| are in FinProf . Let Y ∈ F (A)⊥, X ∈ F (A) and S ∈ FinSet. We
have ⟨Y, X × S⟩ ∈ FinSet ⇔ ⟨Y × S, X⟩ ∈ FinSet. Since F (A)⊥ is closed under finite

FSCD 2021

10:10 A Bicategorical Model for Finite Nondeterminism

colimits, Y × S is in F (A)⊥ which implies the desired result. Now, for Y ∈ F (A ⊗ 1)⊥ and
X ∈ F (A), ⟨Y, X⟩ ∼= ⟨Y, X × {∗}⟩ ∈ FinSet so that Y ∈ F (A)⊥ as desired. The proof for
F (A)⊥ ∼= F (1 ⊗A)⊥ is similar. ◀

▶ Lemma 26. For finiteness structures A = (|A| , FA) and B = (|B| , FB), the categories
F (A ⊗ B) and F (B ⊗ A) are isomorphic which implies that the component of the symmetry
σ|A|,|B| : |A| × |B| −7−→ |B| × |A| is in FinProf(A ⊗ B, B ⊗ A).

Proof. Immediate. ◀

Showing that the associator has components in FinProf is difficult to prove directly so
we make use of the duality between the tensor and the internal hom to do it.

▶ Lemma 27. For finiteness structures A = (|A| , FA) and B = (|B| , FB), define the
finiteness structure A ⊸ B as (|A|op × |B| , F (A ⊸ B)) where F (A ⊸ B) is the full
subcategory of finite presheaves ̂|A|op × |B|fin that verify Definition 14.

Proof. We prove that A ⊸ B is indeed a finiteness structure. We first show that for
X ∈ FA and Y ′ ∈ FB⊥, X × Y ′ ∈ F (A ⊸ B)⊥. Indeed, for F ∈ F (A ⊸ B), we have:

⟨X × Y ′, F ⟩ =
∫ a∈|A|,b∈|B|

X(a) × Y ′(b) × F (a, b) ∼= ⟨Y ′, FX⟩ ∈ FinSet.

Now, let W ∈ F (A ⊸ B)⊥⊥, we want to show that W ∈ F (A ⊸ B), i.e. that for all
X ∈ FA, WX ∈ FB. Let Y ′ ∈ FB⊥, ⟨Y ′, WX⟩ ∼= ⟨X × Y ′, W ⟩ ∈ FinSet by the previous
remark. ◀

▶ Lemma 28. For finiteness structures A = (|A| , FA) and B = (|B| , FB), the categories
F (A ⊗ B) and F (A ⊸ B⊥)⊥ are isomorphic.

Proof. We prove that F (A ⊗ B)⊥ ∼= F (A ⊸ B⊥). Let F : A −7−→ Bop, we have:

F ∈ F (A ⊗ B)⊥ ⇔ ∀X ∈ F (A), ∀Y ∈ F (B)⟨F, X × Y ⟩ ∈ FinSet
⇔ ∀X ∈ F (A), ∀Y ∈ F (B)⟨FX, Y ⟩ ∈ FinSet
⇔ ∀X ∈ F (A), FX ∈ F (B)⊥ ⇔ F ∈ F (A ⊸ B⊥) ◀

▶ Lemma 29. For finiteness structures A = (|A| , FA), B = (|B| , FB) and C = (|C| , FC),
the categories F ((A ⊗ B) ⊸ C) and F (A ⊸ (B ⊸ C)) are isomorphic.

Proof. Let F : |A| × |B| −7−→f |C| be in F ((A ⊗ B) ⊸ C) and denote by F : |A| −7−→f |B|op ×
|C| the corresponding profunctor obtained from the isomorphism Prof(|A| × |B| , |C|) ∼=
Prof(|A| , |B|op × |C|). Let X ∈ F (A), we want to show that FX is in F (B ⊸ C),
i.e. for all Y ∈ F (B), F (X)(Y) ∈ F (C). We have that X × Y is in F (A ⊗ B) so that
F ◦ (X × Y) ∼= F (X)(Y) is in F (C).

For the other direction, let G : |A| −7−→f |B|op × |C| be in F (A ⊸ (B ⊸ C)) and denote
by G the corresponding profunctor in Prof(|A| × |B| , |C|). We show that G

⊥ ∈ F (C⊥ ⊸

(A ⊗ B)⊥). Let Z ∈ F (C)⊥, we want G
⊥

Z ∈ F (A ⊗ B)⊥ i.e. for all X ∈ FA and
Y ∈ FB, ⟨G⊥

Z, X × Y ⟩ ∈ FinSet. Since ⟨G⊥
Z, X × Y ⟩ ∼= ⟨G(X)(Y), Z⟩, we obtain the

desired result. ◀

Z. Galal 10:11

▶ Corollary 30. For finiteness structures A = (|A| , FA), B = (|B| , FB) and C =
(|C| , FC), the component of the associator α|A|,|B|,|C| : (|A| × |B|) × |C| −7−→ |A| × (|B| × |C|)
given by:

((a1, b1, c1), (a2, b2, c2)) 7→ |A| (a2, a1) × |B| (b2, b1) × |C| (c2, c1)

is a finiteness profunctor in FinProf((A ⊗ B) ⊗ C, A ⊗ (B ⊗ C)).

Proof. It suffices to show that the categories F ((A ⊗ B) ⊗ C) and F (A ⊗ (B ⊗ C)) are
isomorphic. By Lemmas 28 and 29, we have

F ((A ⊗ B) ⊗ C) ∼= F ((A ⊗ B) ⊸ C⊥)⊥ ∼= F (A ⊸ (B ⊸ C⊥))⊥

∼= F (A ⊸ (B ⊸ C⊥)⊥⊥)⊥ ∼= F (A ⊗ (B ⊗ C)). ◀

A symmetric monoidal bicategory B is ∗-autonomous if there exists a full and faithful
functor (−)∗ : Bop → B verifying A ≃ A∗∗ and for every objects A, B and C, a pseudo-
natural family of adjoint equivalences B(A ⊗ B, C∗) ≃ B(A, (B ⊗ C)∗).

▶ Proposition 31. FinProf a ⋆-autonomous bicategory.

Proof. The duality (−)⊥ : A 7→ A⊥ = (|A|op
, FA⊥) induces a full and faithful functor by

Lemma 15. For finiteness structures A = (|A| , FA), B = (|B| , FB) and C = (|C| , FC),
by Lemma 18, there is a pseudo-natural family of adjoint equivalences FinProf (A⊗B, C⊥) ≃
FinProf(A, (B ⊗ C)⊥). ◀

The interpretation of the ` connective is defined by dualizing the tensor A ` B =
(A⊥ ⊗ B⊥)⊥. In the compact closed bicategory Prof , the two connectives have the same
interpretation whereas in FinProf , adding the orthogonality eliminates this degeneracy. The
inclusion F (A ⊗ B) ↪→ F (A ` B) always hold which implies that we can interpret the mix
rule in FinProf . It can be derived from the set inclusion

{X × Y | X ∈ FA⊥ and Y ∈ FB⊥} ↪→ {X × Y | X ∈ FA and Y ∈ FB}⊥

and the fact that F (A ` B) has object set {X × Y | X ∈ F (A)⊥ and Y ∈ F (B)⊥}⊥.
The other inclusion does not hold in general: consider the presheaf P : ((! 1)op × ! 1)op →

Set given by (n, m) 7→ ! 1(m, n) corresponding to the identity profunctor ! 1 −7−→f ! 1. P is in
F (! 1 ⊸ ! 1) ∼= F ((! 1)⊥ ` ! 1) but it is not in F ((! 1)⊥ ⊗ ! 1). Indeed, let Q : (! 1)op × ! 1) →
Set be dually given by (n, m) 7→ ! 1(n, m), it verifies that for all X ∈ F (! 1)⊥ and Y ∈ F (! 1),

⟨X × Y, Q⟩ =
∫ n,m

X(n) × Y (m) × ! 1(n, m) ∼= ⟨X, Y ⟩ ∈ FinSet

which implies that Q is in F ((! 1)⊥ ⊗ ! 1)⊥. However, ⟨P, Q⟩ =
∫ n,m ! 1(m, n) × ! 1(n, m) ∼=∫ n ! 1(n, n) /∈ FinSet.

4.3 Exponential structure
The exponential modality in the setting of generalized species presented by Fiore et al. relies
on the free symmetric strict monoidal completion construction for a small category.

▶ Definition 32. For a small category A, define !A as the category whose objects are finite
sequences ⟨a1, . . . , an⟩ of objects of A and a morphism f between two sequences ⟨a1, . . . , an⟩
and ⟨b1, . . . bn⟩ consists of a pair (σ, (fi)i∈n) where σ is a permutation in the symmetric group
Sn and (fi : ai → bσ(i))i∈n is a sequence of morphisms in A.

FSCD 2021

10:12 A Bicategorical Model for Finite Nondeterminism

The category !A described above is symmetric monoidal with tensor product ⊗ : (u, v) 7→
u⊗v given by the concatenation of sequences and unit the empty sequence. This construction
induces a 2-monad on Cat which lifts to a pseudo-monad on Prof [14]. By dualization, one
obtains a pseudo-comonad on Prof where the counit der and the comultiplication dig have
the following components:

derA : !A −7−→ A digA : !A −7−→ !!A
(u, a) 7→ !A(⟨a⟩, u) (u, ⟨u1, . . . , un⟩) 7→ !A(u1 ⊗ · · · ⊗ un, u)

For a profunctor P : A −7−→ B, the action of the pseudo-comonad is given by

!P : (u, v) 7→
∑

σ∈Sn

n∏
i=1

P (ui, vσ(i))

if u ∈ !A and v ∈ !B are sequences of length n and !P : (u, v) 7→ ∅ if u and v have different
lengths. Generalized species correspond to the 1-cells in the co-Kleisli bicategory Prof !. For a
species F : !A −7−→ B, its comonadic lifting F ! : !A −7−→ !B is given by (!F) ◦digA. The composite
of two species G : !B −7−→ C and F : !A −7−→ B in Prof ! is then given by G ◦ F ! : !A −7−→ C.

We show in this section that the comonadic structure described above can be refined to
the setting of finiteness structures.

▶ Definition 33. For a finiteness structure A = (|A| , FA), we define !(A, FA) :=
(! |A| , F !A) where F !A is the full subcategory of !̂ |A|fin with object set {X ! | X ∈ FA}⊥⊥.

Note that for a presheaf X : |A|op → Set (seen as a species ! 0 −7−→ |A|), its lifting X ! :
(!A)op → Set is given by ⟨a1, . . . , an⟩ 7→ !X ◦ dig0(⟨a1, . . . , an⟩) ∼=

∏
i∈n X(ai). In particular,

if X is a finite presheaf, then so is X !.
Joyal presented the notion of analytic functor as the Taylor series counterpart of combin-

atorial species [22]. Fiore extended Joyal’s results in the setting of generalized species and
showed that there is a biequivalence between the bicategory of generalized species (restricted
to groupoids) and the 2-category of analytic functors [12]. For small categories A and B, a
functor P : Â → B̂ is said to be analytic if there exists a generalized species F : !A −7−→ B such
that P is isomorphic to LansAF (denoted by F̃):

!A B̂

Â

⇓

F

LansAF = F̃sA

where sA : !A → Â is the functor that maps a sequence ⟨a1, . . . an⟩ in !A to the presheaf
n∑

i=1
yA(ai) in Â so that F̃ is given by X 7→

∫ u∈!A
F (u) × Â(sA(u), X) ∼=

∫ u∈!A
F (u) × X !(u).

▶ Lemma 34. For finiteness structures A = (|A| , FA) and B = (|B| , FB), a species
F : |!A| −7−→f |B| is in F (!A ⊸ B) (viewed as a finite presheaf (|!A|op × |B|)op → Set) if and
only if for all X ∈ F (A), F̃X is in F (B).

Proof. Assume that F is in F (!A ⊸ B) and let X be in F (A). Since X ! is in F (!A), we
have that FX ! ∼= F̃X ∈ F (B).

For the other direction, it suffices to show that if for all X ∈ F (A), FX ! is in F (B),
then F ⊥(F (B)⊥) ↪→ (F (!A)⊥). Let Y be in (FB)⊥ and X ∈ FA, since ⟨F ⊥Y, X !⟩ ∼=
⟨FX !, Y ⟩ ∈ FinSet, we obtain the desired result. ◀

Z. Galal 10:13

We obtain as a corollary that for a finiteness structure A = (|A| , FA), (F !A)⊥ is
isomorphic to the full subcategory of finite copresheaves P : |!A| → Set (or equivalently
finite profunctors |!A| −7−→f 1) such that P̃ (FA) ↪→ FinSet.

▶ Example 35. In particular, F (! 1)⊥ is isomorphic to species whose analytic functor maps
finite sets to finite sets. In other words, F : ! 1 → Set must verify that for all S ∈ FinSet,∑
n∈N

F (n) ×Sn
Sn is finite.

Similarly to relational finiteness spaces, we can see here that the fixpoint operator cannot
be interpreted in FinProf . Indeed, consider the species of binary trees B : ! 1 −7−→ 1, it
is a solution of the fixpoint equation B = 1 + X · B2 where 1 : ! 1 −7−→ 1 is the species
(u, ⋆) 7→ ! 1(⟨⟩, u) whose analytic functor Set → Set is the constant S 7→ {⋆} and X : ! 1 −7−→ 1
is the species (u, ⋆) 7→ ! 1(⟨⋆⟩, u) whose analytic functor Set → Set is the identity S 7→ S

(see [4] for more details). Both 1 and X are finiteness species since their analytic functors
restrict to FinSet → FinSet. The species of binary trees however has analytic functor
Set → Set given by S 7→

∑
n∈N Cn ×Sn where Cn is the nth Catalan number so this functor

can not be restricted as a functor FinSet → FinSet.

▶ Lemma 36. For finiteness structures A = (|A| , FA) and B = (|B| , FB), if F : A −7−→f B
is a finiteness profunctor, then !F : |!A| −7−→ |!B| is in FinProf(!A, !B).

Proof. We show that (!F)(F !B⊥) ↪→ F !A⊥. Let P be in F !B⊥, i.e. for all Y in FB, P̃ Y

is in FinSet.

(!F)(P) ∈ F !A⊥ ⇔ ∀X ∈ FA,

∫ u∈|!A|,v∈!|B|
!F (u, v) × P (v) × X !(u) ∈ FinSet

⇔ ∀X ∈ FA,

∫ v∈|!B|
P (v) × (!F ◦ X !)(v) ∈ FinSet

⇔ ∀X ∈ FA,

∫ v∈|!B|
P (v) × (F ◦ X)!(v) ∈ FinSet

Since FX is in FB, (FX)! ∈ F !B which implies the desired result. ◀

We now show that the pseudo-comonad structure in Prof can be restricted to FinProf .

▶ Lemma 37. For a finiteness structure A = (|A| , FA), the component of the counit
pseudo-natural transformation der|A| : |!A| −7−→ |A| is in FinProf(!A, A).

Proof. Since ! |A| is locally finite, der|A| is a finite profunctor. By Lemma 15, it remains
to show that der⊥

|A|((FA)⊥) ↪→ (F !A)⊥ i.e. that for all X ′ ∈ (FA)⊥ and X ∈ FA,
(der⊥

|A|)X ′ ⊥ X !.

⟨(der⊥
|A|)X ′, X !⟩ =

∫ u∈!|A|
X !(u) ×

∫ a∈|A|
! |A| (⟨a⟩, u) × X ′(a)

∼=
∫ a,a′∈|A|

X(a′) × |A| (a, a′) × X ′(a) ∼=
∫ a∈|A|

X(a) × X ′(a) ∈ FinSet ◀

▶ Lemma 38. For a finiteness structure A = (|A| , FA), the component of the comultiplica-
tion pseudo-natural transformation dig|A| : |!A| −7−→ |!!A| is in FinProf(!A, !!A).

Proof. Since ! |A| is locally finite, dig|A| is a finite profunctor. We show that
(dig⊥

|A|)(F !!A)⊥ ↪→ (F !A)⊥.

FSCD 2021

10:14 A Bicategorical Model for Finite Nondeterminism

For a presheaf X in FA considered as a species ! 0 −7−→ |A|, we have dig|A| ◦ X ! =
dig|A| ◦ !X ◦ dig0

∼= !!X ◦ dig! 0 ◦ dig0
∼= !!X ◦ !dig0 ◦ dig0

∼= X !!, the first isomorphism follows
from the pseudo-naturality of dig and the last from the pseudo-comonad axioms. Hence, for
W in F !!A⊥ and X in FA, we have ⟨(dig⊥

|A|)W, X !⟩ ∼= ⟨W, dig|A|X
!⟩ ∼= ⟨W, X !!⟩. Since X !!

is in F !!A, we obtain the desired result. ◀

4.4 Cartesian closed structure
We show in this section that the cartesian closed structure of Prof ! exhibited by Fiore et
al. [13] can be extended to FinProf .

▶ Definition 39. A cartesian bicategory B is closed if for every pair of objects A, B ∈ B,
we have:
1. an exponential object A ⇒ B together with an evaluation map EvA,B ∈ B((A ⇒ B)&A, B)

and
2. for every X ∈ B, an adjoint equivalence pseudo-natural in A, B and X:

B(X, BA) B(X & A, B)

EvA,B ◦ ((−) & A)

Λ

⊥

For finiteness structures A and B, the exponential object A ⇒ B is given by !A ⊸ B. We
first show that the Seely adjoint equivalence in Prof lifts to FinProf .

▶ Lemma 40. For finiteness structures A = (|A| , FA) and B = (|B| , FB), the Seely
profunctors S|A|,|B| : !(|A| & |B|) −7−→ ! |A| ⊗ ! |B| and I|A|,|B| : ! |A| ⊗ ! |B| −7−→ !(|A| & |B|)
induce an adjoint equivalence !(A & B) ≃ !A ⊗ !B in FinProf .

Proof.
We first show that S|A|,|B| : !(|A| & |B|) −7−→ ! |A| ⊗ ! |B| given by (w, (u, v)) 7→
! |A| (u, π1w)×! |B| (v, π2w) is in FinProf (!(A&B), !A⊗!B) i.e. (S⊥

|A|,|B|)F (!A⊗!B)⊥ ↪→
(F !(A & B))⊥.
Let T be in F (!A ⊗ !B)⊥, we want to show that for all W = (W1, W2) ∈ F (A & B),
⟨S⊥

|A|,|B|(T), W !⟩ ∈ FinSet. The set ⟨S⊥
|A|,|B|(T), W !⟩ is isomorphic to:

∫ w∈!(|A|&|B|)
W !(w) ×

∫ u∈!|A|,v∈!|B|
! |A| (u, π1w) × ! |B| (v, π2w) × T (u, v)

∼=
∫ u∈!|A|,v∈!|B|

W !
1(u) × W !

2(v) × T (u, v)

Since W is in F (A & B), W1 and W2 are in F (A) and F (B) respectively, so that W !
1

and W !
2 are in F (!A) and F (!B) respectively. Hence, T ⊥ W !

1 × W !
2 as desired.

We show that I|A|,|B| : ! |A| ⊗ ! |B| −7−→ !(|A| & |B|) given by ((u, v), w) 7→ ! |A| (π1w, u) ×
! |B| (π2w, v) is in F ((!A⊗ !B) ⊸ !(A&B)). By Lemma 29, F ((!A⊗ !B) ⊸ !(A&B)) ∼=
F (!A ⊸ (!B ⊸ !(A & B)) and using Lemma 27 twice, it suffices to show that for all
X ∈ FA and Y ∈ FB, (I|A|,|B|X

!)Y ! is in F !(A & B). Let Z be F (!(A & B))⊥, the
set ⟨(IA,BX !)Y !, Z⟩ is isomorphic to:

Z. Galal 10:15

∫ w∈!(A&B),u∈!A,v∈!B
Z(w) × !A(π1w, u) × !B(π2w, v) × X !(u) × Y !(v)

∼=
∫ w∈!(A&B)

Z(w) × (X, Y)!(w)

Since (X, Y)! is in F (!(A & B)), we obtain the desired result. ◀

It remains to show that the non-linear evaluation and currying preserve the finiteness
structure. The non-linear evaluation Ev|A|,|B| : !((|A| ⇒ |B|) & |A|) −7−→ |B| is given by the
composite ev!|A|,|B| ◦(der|A|⇒|B| ⊗id)◦S|A|⇒|B|,|A| where ev|A|,|B| : A⊗(A ⊸ B) −7−→ B is the
linear evaluation coming from the monoidal closed structure in the linear bicategory FinProf .
As a composite of finiteness profunctors, Ev|A|,|B| is in FinProf !((A ⇒ B) & A, B). For a
finiteness species P in FinProf !(A & B, C), its currying Λ(P) ∈ FinProf !(A, B ⇒ C) is
given by λ(P ◦ I|A|,|B|) where λ : FinProf (!A⊗ !B, C) → FinProf (!A, !B ⊸ C) is provided
by the monoidal closed structure on FinProf .

▶ Theorem 41. FinProf ! is cartesian closed.

Proof. Direct consequence of the remarks above and Lemma 18. ◀

4.5 Differential structure
The bicategory of generalized species Prof ! is a model of differential linear logic where
differentiation on analytic functors generalises the standard differential operation on formal
power series [13]. We show in this section that the differential structure extends to FinProf .
It suffices to show that the codereliction, coweakening and cocontraction pseudo-natural trans-
formations have components in FinProf and all the coherence axioms will be immediately
verified.

▶ Lemma 42. For a finiteness structure A = (|A| , FA), the component of codereliction
pseudo-natural transformation der|A| : |A| −7−→ ! |A| given by (a, u) 7→ ! |A| (u, ⟨a⟩) is a
finiteness profunctor A −7−→f !A.

Proof. Since |A| is locally finite, der|A| is a finite profunctor. By Lemma 15, it remains
to show that der⊥

|A|((F !A)⊥) ↪→ (FA)⊥ i.e. that for all Z ∈ (F !A)⊥ and X ∈ FA,
(der⊥

|A|)Z ⊥ X.

⟨(der⊥
|A|)Z, X⟩ =

∫ u∈!|A|,a∈|A|
Z(u) × ! |A| (u, ⟨a⟩) × X(a)

∼=
∫ a∈|A|

Z(⟨a⟩) × X(a) ↪→
∫ u∈!|A|

Z(u) × X !(u) ∈ FinSet

The last inclusion follows from the isomorphism X !(⟨a⟩) ∼= X(a). ◀

Since the components of the coweakening w|A| : 1 −7−→ ! |A| and cocontraction
c|A| : ! |A| × ! |A| −7−→ ! |A| pseudo-natural transformations are obtained from the Seely equi-
valences and the biproduct structure, it is immediate that they can be extended to FinProf .
It implies that the deriving pseudo-natural transformation δ|A| : |A| −7−→ ! |A| × |A| given by

! |A| × |A| ! |A| × ! |A| ! |A|
id × der|A| c|A|

FSCD 2021

10:16 A Bicategorical Model for Finite Nondeterminism

is therefore a finiteness profunctor !A ⊗ A −7−→f !A so that for a finiteness species F : !A −7−→ B
its differential F ◦ δ|A| : !A ⊗ A −7−→f B given by ((u, a), b) 7→ F (u ⊗ ⟨a⟩, b) is also a finiteness
species.

Conclusion and perspectives
We have constructed a new bicategorical model of differential linear logic categorifying the
finiteness model first introduced by Ehrhard [9]. The resulting cartesian closed bicategory
refines the model of generalized species by Fiore et al. [13]. The objects are endowed with an
additional structure which enables to enforce finite computations as morphisms are species
that preserve the finiteness structure.

In future work, we aim to prove that our construction can be generalized to the setting of
enriched species studied by Gambino and Joyal [15]. In the 1-categorical model of finiteness
spaces, we can express various forms of non-determinism depending on the semi-ring of
scalars chosen for the series coefficients. In our case, the analogous variation would come
from changing the enrichment basis. In particular, for species enriched over vector spaces,
our construction will guarantee that computations are always finite dimensional even if we
work in an infinite dimensional setting which could lead to interesting applications for the
semantics of quantum λ-calculus [24] and stochastic rewriting systems [2].

In this paper, we have worked on a focused orthogonality on the subclass of finitely
presented objects. Our construction opens the way for a lot of variation in terms of the
chosen class of objects: for example, restricting the interactions to absolutely presentable
objects could yield to a model of totality in the spirit of the one studied by Loader [23].

References
1 Joey Beauvais-Feisthauer, Richard Blute, Ian Dewan, Blair Drummond, and Pierre-Alain

Jacqmin. Finiteness spaces, étale groupoids and their convolution algebras. In Semigroup
Forum, pages 1–16. Springer, 2020.

2 Nicolas Behr. On Stochastic Rewriting and Combinatorics via Rule-Algebraic Methods. In
Patrick Bahr, editor, Proceedings 11th International Workshop on Computing with Terms and
Graphs (TERMGRAPH 2020), volume 334, pages 11–28. Open Publishing Association, 2021.

3 Jean Bénabou. Distributors at work, 2000. Lecture notes written by Thomas Streicher. URL:
https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf.

4 F. Bergeron, G. Labelle, and P. Leroux. Combinatorial species and tree-like structures,
volume 67 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
Cambridge, 1998. Translated from the 1994 French original by Margaret Readdy, With a
foreword by Gian-Carlo Rota.

5 Richard Blute, Robin Cockett, Pierre-Alain Jacqmin, and Philip Scott. Finiteness spaces and
generalized power series. Electronic Notes in Theoretical Computer Science, 341:5–22, 2018.

6 Richard F. Blute. Hopf algebras and linear logic. Mathematical Structures in Computer
Science, 6(2):189–212, 1996.

7 Gian Luca Cattani and Glynn Winskel. Profunctors, open maps and bisimulation. Mathematical
Structures in Computer Science, 15:553–614, June 2005.

8 Thomas Ehrhard. On köthe sequence spaces and linear logic. Mathematical. Structures in
Comp. Sci., 12(5):579–623, 2002.

9 Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Computer Science, 15(4):615–
646, 2005. 32 pages.

10 Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and antide-
rivatives. Mathematical Structures in Computer Science, 28(7):995–1060, 2018.

https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf

Z. Galal 10:17

11 Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theor. Comput. Sci.,
309(1):1–41, 2003.

12 Marcelo Fiore. Analytic functors between presheaf categories over groupoids. Theor. Comput.
Sci., 546:120–131, 2014.

13 Marcelo Fiore, Nicola Gambino, Martin Hyland, and Glynn Winskel. The cartesian closed
bicategory of generalised species of structures. J. Lond. Math. Soc. (2), 77(1):203–220, 2008.

14 Marcelo Fiore, Nicola Gambino, Martin Hyland, and Glynn Winskel. Relative pseudomonads,
Kleisli bicategories, and substitution monoidal structures. Selecta Mathematica, 24(3):2791–
2830, 2018.

15 Nicola Gambino and André Joyal. On Operads, Bimodules and Analytic Functors. Memoirs of
the American Mathematical Society. American Mathematical Society, 2017.

16 Jean-Yves Girard. Normal functors, power series and λ-calculus. Ann. Pure Appl. Logic,
37(2):129–177, 1988.

17 Jean-Yves Girard. Coherent Banach Spaces: a continuous denotational semantics extended
abstract. Electronic Notes in Theoretical Computer Science, 3:81–87, 1996. Linear Logic 96
Tokyo Meeting.

18 Ryu Hasegawa. Two applications of analytic functors.Theoretical Computer Science, 272(1):113–
175, 2002. Theories of Types and Proofs 1997.

19 Martin Hyland. Some reasons for generalising domain theory. Mathematical Structures in
Computer Science, 20(2):239–265, 2010.

20 Martin Hyland and Andrea Schalk. Glueing and orthogonality for models of linear logic.
Theoretical Computer Science, 294(1):183–231, 2003. Category Theory and Computer Science.

21 André Joyal. Une théorie combinatoire des séries formelles. Adv. in Math., 42(1):1–82, 1981.
22 André Joyal. Foncteurs analytiques et espèces de structures. In Gilbert Labelle and Pierre

Leroux, editors, Combinatoire énumérative, pages 126–159, Berlin, Heidelberg, 1986. Springer
Berlin Heidelberg.

23 Ralph Loader. Linear logic, totality and full completeness. In In Proceedings of LiCS ‘94,
pages 292–298. Press, 1994.

24 Michele Pagani, Peter Selinger, and Benoît Valiron. Applying quantitative semantics to higher-
order quantum computing. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 647–658, 2014.

25 Michele Pagani, Christine Tasson, and Lionel Vaux. Strong normalizability as a finiteness struc-
ture via the Taylor expansion of lambda-terms. In International Conference on Foundations
of Software Science and Computation Structures, pages 408–423. Springer, 2016.

26 Lionel Vaux. A non-uniform finitary relational semantics of system T. RAIRO – Theoretical
Informatics and Applications, 47(1):111–132, 2013.

FSCD 2021

Failure of Cut-Elimination in the Cyclic Proof
System of Bunched Logic with Inductive
Propositions
Kenji Saotome1 !

Nagoya University, Japan

Koji Nakazawa !

Nagoya University, Japan

Daisuke Kimura !

Toho University, Japan

Abstract
Cyclic proof systems are sequent-calculus style proof systems that allow circular structures represent-
ing induction, and they are considered suitable for automated inductive reasoning. However, Kimura
et al. have shown that the cyclic proof system for the symbolic heap separation logic does not satisfy
the cut-elimination property, one of the most fundamental properties of proof systems. This paper
proves that the cyclic proof system for the bunched logic with only nullary inductive predicates does
not satisfy the cut-elimination property. It is hard to adapt the existing proof technique chasing
contradictory paths in cyclic proofs since the bunched logic contains the structural rules. This
paper proposes a new proof technique called proof unrolling. This technique can be adapted to the
symbolic heap separation logic, and it shows that the cut-elimination fails even if we restrict the
inductive predicates to nullary ones.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Separation logic

Keywords and phrases cyclic proofs, cut-elimination, bunched logic, separation logic, linear logic

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.11

Funding This work was partially supported by the Japan Society for the Promotion of Science
(JSPS), Core-to-Core Program (A. Advanced Research Networks), and Grantz-in-Aid for Scientific
Research KAKENHI 18K11161.

1 Introduction

Static verification of software often needs to check the validity of entailments, which are
implications between logical formulas. One of the ways to check entailments is an automated
proof search in some proof systems.

The bunched logic [9] was introduced to reason compositional properties of resources with
some additional logical connectives such as the multiplicative conjunction. The separation
logic [11], which is based on the bunched logic, is one of the most successful logical foundations
for verification of heap-manipulating programs using pointers. For inductive reasoning in
these logics, Brotherston et al. proposed some cyclic proof systems for the bunched logic
[3] and the separation logic [4, 5]. The cyclic proof systems allow cycles in proofs, which
correspond to induction. They offer an efficient way for automated validity checking of
entailments with inductive definitions since they provide a proof search algorithm that does
not require finding induction hypothesis formulas a priori.

1 Corresponding author

© Kenji Saotome, Koji Nakazawa, and Daisuke Kimura;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 11; pp. 11:1–11:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:saotomekenji@sqlab.jp
mailto:knak@i.nagoya-u.ac.jp
mailto:kmr@is.sci.toho-u.ac.jp
https://doi.org/10.4230/LIPIcs.FSCD.2021.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Failure of Cut-Elimination in Cyclic BI

The cut-elimination property of proof systems means that the provability does not change
with or without the cut rule:

A ⊢ C C ⊢ B
A ⊢ B

(Cut)
.

From a theoretical viewpoint, the cut-elimination property means that applying lemma
is admissible, and it implies significant properties such as the subformula property and
consistency. The cut-elimination property is also important from a practical viewpoint:
When the cut rule is included as a candidate of the next rules during an automated proof
search, we have to find a suitable cut formula, namely the formula C in the cut rule above.
In general, cut formulas are independent of formulas in the conclusion of cut rules, and we
have to find them heuristically.

Hence, we expect proof systems to enjoy the cut-elimination property, and it holds in
many proof systems such as Gentzen’s LK for the first-order logic and the (non-cyclic)
proof system LBI for the bunched logic [10]. Furthermore, it has been shown that the
cut-elimination property holds in some infinitary proof systems [6, 7, 2]. The cut-elimination
processes in the existing proofs are not closed under the regularity of infinitary proof trees,
and that suggests that the cut-elimination does not hold in the cyclic proof systems since
cyclic proofs are regular infinitary proofs.

Kimura et al. [8] showed that the cut-elimination property fails for Brotherston’s cyclic
proof system [4] for the symbolic heaps, which are restricted forms of the separation logic
formulas. They gave a counterexample entailment ls(x, y) ⊢ sl(x, y), where both ls(x, y)
and sl(x, y) are inductive predicates that represent the semantically same data structure,
namely singly-linked list from x to y, but are defined in the different ways. They assumed
the existence of a cut-free cyclic proof of this counterexample and showed that a unique
infinite path in the cyclic proof is a contradictory path, namely, an infinite path in which
the sizes of sequents are strictly increasing. The contradictory path leads to a contradiction
since it breaks the finiteness of the cyclic proof.

In [8], they guessed that the cut-elimination would not hold for the bunched logic either,
but suggested that their proof technique needs some modification to handle the structural
rules, the left weakening and the left contraction rules, in the bunched logic. The structural
rules cause much more possibilities of paths than the symbolic heap separation logic, and we
have to find a contradictory path from them. For example, we can assume a segment of a
cyclic proof of the sequent PAB ⊢ PBA in the bunched logic as in Figure 1, where PAB and
PBA are inductively defined as

PAB := PB | PAB ∗A PA := I | PA ∗A
PBA := PA | PBA ∗B PB := I | PB ∗B.

Here, the separators “,” and “;” on the left-hand sides of sequents correspond to the
multiplicative conjunction (∗) and the additive conjunction (∧), respectively. The proposition
constants I and ⊤ are the units for ∗ and ∧, respectively. The rule (UL) unfolds predicates
on the left-hand side from bottom to top. The rule (E) replaces the left-hand side with an
equivalent one. The rules (W) and (C) are the left weakening and the left contraction rules,
respectively. The rule (⊤) is admissible using the left weakening rule, and a link between two
sequents marked with (†) forms a cycle, which satisfies the soundness condition for the cyclic
proofs, the global trace condition [6]. Therefore, the rightmost path contains no contradiction.
Furthermore, the part (⋆) is easily proved. This means that, to find a contradictory path, we

K. Saotome, K. Nakazawa, and D. Kimura 11:3

.... (⋆)
PB ⊢ PBA

PAB ; PB ⊢ PBA
(W)

.... (#)
PAB ; (PB ,⊤) ⊢ PBA

PAB ; (PAB ,⊤) ⊢ PBA (†)
PAB ; (PAB , (A,⊤)) ⊢ PBA

(⊤)

PAB ; ((PAB , A),⊤) ⊢ PBA
(E)

PAB ; (PAB ∗A,⊤) ⊢ PBA
(∗L)

PAB ; (PAB ,⊤) ⊢ PBA(†) (UL)2

PAB ; (PAB , A) ⊢ PBA
(⊤)

PAB ; PAB ∗A ⊢ PBA
(∗L)

PAB ; PAB ⊢ PBA
(UL)1

PAB ⊢ PBA
(C)

Figure 1 A proof segment in the cyclic proof system of the bunched logic.

.... (#′)
I ∗Am; (I,⊤) ⊢ PBA (†)
I ∗Am; (I, (A,⊤)) ⊢ PBA

(⊤)

I ∗Am; ((I, A),⊤) ⊢ PBA
(E)

....
I ∗Am; (I ∗Am−2,⊤) ⊢ PBA

I ∗Am; (I ∗Am−2, (A,⊤)) ⊢ PBA

(⊤)

I ∗Am; ((I ∗Am−2, A),⊤) ⊢ PBA

(E)

I ∗Am; (I ∗Am−1,⊤) ⊢ PBA (†)
(∗L)

I ∗Am; (I ∗Am−1, A) ⊢ PBA

(⊤)

I ∗Am; I ∗Am ⊢ PBA
(∗L)

I ∗Am ⊢ PBA
(C)

Figure 2 Proof unrolling.

have to chase it in the part (#), and hence we sometimes have to choose the right assumption
(at (UL)1), and also have to choose the left assumption (at (UL)2). Therefore, it is hard to
find such a contradictory path in cyclic proofs.

Kimura et al. also mentioned a possibility to recover the cut-elimination property by
restricting the number of arities (to unary or nullary) for inductive predicates. Restricting
arities of inductive predicates may drastically change the situation as the result of Tatsuta
et al [12]. They showed the decidability of the entailment checking problem for the symbolic
heap separation logic with only unary inductive predicates whereas the problem for that
with general inductive predicates is known to be undecidable [1].

In this paper, we show that the cut-elimination property fails for the cyclic proof system
of the bunched logic [3] by a counterexample only with nullary inductive predicates. We
develop a proof technique called proof unrolling. For a cut-free cyclic proof of Γ ⊢ ϕ, by
using proof unrolling, we can construct a cut-free non-cyclic proof of ∆ ⊢ ϕ for any ∆
obtained by unfolding inductive predicates in Γ. For the example in Figure 1 and the formula
I ∗Am = ((I ∗A) ∗ · · · ∗A) ∗A (m copies of A’s) obtained by unfolding PAB , we can construct
the non-cyclic proof of I ∗ Am ⊢ PBA in Figure 2 by proof unrolling. During the proof
unrolling, we unroll the cycle (at (†)), and choose cases at the rule (UL) depending on the
unfolding tree of PAB to obtain I ∗Am. We will show that, for any cyclic proof of PAB ⊢ PBA,
if m is sufficiently large, any path in the non-cyclic proof by proof unrolling corresponds

FSCD 2021

11:4 Failure of Cut-Elimination in Cyclic BI

to a contradictory path in the original cyclic proof. The remaining path in the part (#′)
of Figure 2 corresponds to a contradictory path in the part (#) of Figure 1. Hence, the
existence of a cyclic proof of PAB ⊢ PBA derives a contradiction.

The proof unrolling is a general technique almost independent of a choice of logic. We
can straightforwardly adapt our proof to any cyclic proof system of a logic that contains
a connective representing resource composition such as the separation logic and the mul-
tiplicative linear logic. Hence, the cut-elimination fails for the cyclic proof system of the
separation logic even if we restrict inductive predicates to nullary ones.

The structure of the paper is as follows. Section 2 introduces a simple fragment of the
propositional bunched logic BIID0 with inductive definitions, and its cyclic proof system
CLBIω

ID0, which is a subsystem of CLBIω
ID given by Brotherston [3]. Section 3 presents our

proof unrolling technique. Section 4 proves the main result of this paper, which shows that
the cut-elimination property does not hold in CLBIω

ID0 using the proof unrolling technique.
It also discusses that our proof technique can be adapted to other systems including CLBIω

ID.
Section 5 concludes.

2 Bunched Logic with Inductive Propositions

In this section, we define the syntax and semantics of a core of the bunched logic BIID0,
which is based on the logic in [3]. In BIID0, atomic and inductive predicates are restricted
to nullary ones, which we call atomic propositions and inductive propositions, respectively.
We also define proof systems for BIID0: one is the ordinary proof system LBIID0, and the
other is the cyclic proof system CLBIω

ID0.
In the following sections, we will prove that cuts cannot be eliminated in CLBIω

ID0, and
this result can be easily extended to the system in [3].

2.1 Syntax of BIID0

We use metavariables A, B,. . . for atomic propositions and P , Q,. . . for inductive proposi-
tions. We implicitly fix a language Σ consisting of atomic and inductive propositions. Note
that in BIID0, we have neither terms, variables, nor function symbols.

▶ Definition 1 (Formulas of BIID0). Let I and ⊤ be propositional constants. The formulas
of BIID0, denoted by ϕ, ψ,. . . , are defined as

ϕ ::= I | ⊤ | A | P | ϕ ∗ ϕ | ϕ ∧ ϕ.

In this paper, ∗ and ∧ are treated as left-associative operators, that is, we write ϕ1 ∗ϕ2 ∗ϕ3
for (ϕ1 ∗ ϕ2) ∗ ϕ3. The notation An denotes A ∗ · · · ∗ A where the number of A’s is n. We
also use the notation P ∗An for P ∗A ∗ · · · ∗A, namely (· · · ((P ∗A) ∗A) · · ·) ∗A).

▶ Definition 2 (Bunch). The bunches, denoted by Γ,∆, . . . , are defined as

Γ,∆ ::= ϕ | Γ,Γ | Γ; Γ.

We sometimes use terminologies of trees to bunches by identifying a bunch as a tree
whose internal nodes are labeled by “,” or “;”, and whose leaves are labeled by a formula.
We write Γ(∆) to mean that Γ of which ∆ is a subtree. For a bunch Γ(∆), Γ(∆′) is a bunch
obtained by replacing the subtree ∆ of Γ by ∆′.

K. Saotome, K. Nakazawa, and D. Kimura 11:5

The labels “,” and “;” intuitively mean ∗ and ∧, respectively. For a bunch Γ, we define
the bunch formula ϕΓ as the formula defined as:

ϕΓ = Γ, (Γ is a formula);
ϕΓ1,Γ2 = ϕΓ1 ∗ ϕΓ2 ;
ϕΓ1;Γ2 = ϕΓ1 ∧ ϕΓ2 .

▶ Definition 3 (Equivalence of bunches). Define the bunch equivalence ≡ as the least equival-
ence relation satisfying:

commutative monoid equations for ’,’ and I;

commutative monoid equations for ’;’ and ⊤;

congruence: if ∆ ≡ ∆′ then Γ(∆) ≡ Γ(∆′).

▶ Definition 4 (Size of formulas and bunches). Let ϕ be a formula and Γ be a bunch. The
size of ϕ (denoted by |ϕ|) is as

|ϕ| = 1 (ϕ = I or ⊤ or A or P);
|ϕ| = |ψ| + |ψ′| + 1 (ϕ = ψ ∗ ψ′ or ψ ∧ ψ′).

The size of Γ (denoted by |Γ|) is as

|Γ| = |ϕ| (Γ = ϕ);
|Γ| = |∆| + |∆′| + 1 (Γ = ∆,∆′ or ∆; ∆′).

▶ Definition 5 (Inductive definition). An inductive definition clause of P is of the form
P := ϕ. For a set Φ of inductive definition clauses of inductive propositions, we define
ΦP = {ϕ | P := ϕ ∈ Φ}. We say that P is defined by P := ϕ1 | · · · | ϕk in Φ if and only if
ΦP = {ϕ1, · · · , ϕk}.

▶ Definition 6 (BIID0 sequent). Let Γ be a bunch and ϕ be a formula. Γ ⊢ ϕ is called a
BIID0 sequent. Γ is called the antecedent of Γ ⊢ ϕ and ϕ is called the succedent of Γ ⊢ ϕ.
We define L(Γ ⊢ ϕ) = Γ and R(Γ ⊢ ϕ) = ϕ.

2.2 Semantics of BIID0

We recall a standard model [3] as the semantics of BIID0. In the following, we fix a set Φ of
inductive definition clauses.

▶ Definition 7 (BIID0 standard model). A BIID0 standard model is a tuple M =
(⟨R, ◦, e⟩,AM) satisfying the following:

⟨R, ◦, e⟩ is a partial commutative monoid with the unit e;

AM is a set consisting of AM ⊆ R for each atomic proposition A.

FSCD 2021

11:6 Failure of Cut-Elimination in Cyclic BI

Let M be a BIID0 standard model and let r ∈ R. We define the satisfaction relation
M, r |= ϕ by

M, r |= ⊤ ⇐⇒ true

M, r |= I ⇐⇒ r = e

M, r |= A ⇐⇒ r ∈ AM (for atomic proposition A)

M, r |= P (0) never holds

M, r |= P (m+1) ⇐⇒ M, r |= ϕ[P (m)
1 , . . . , P

(m)
k /P1, . . . , Pk]

for some ϕ ∈ ΦP containing inductive propositions P1, . . . , Pk

M, r |= P ⇐⇒ M, r |= P (m) for some m
M, r |= ϕ1 ∧ ϕ2 ⇐⇒ M, r |= ϕ1 and M, r |= ϕ2

M, r |= ϕ1 ∗ ϕ2 ⇐⇒ r = r1 ◦ r2 and M, r1 |= ϕ1 and M, r2 |= ϕ2 for some r1, r2 ∈ R ,

where P (m) are auxiliary proposition symbols, and ϕ[P (m)
1 , . . . , P

(m)
k /P1, . . . , Pk] is the formula

obtained by replacing each Pi by P (m)
i . We define M, r |= Γ as M, r |= ϕΓ.

By defining in this way, the satisfaction relation for inductive propositions is the same as
that in the standard model of [3].

▶ Definition 8 (Validity). Let M be a standard model. A sequent Γ ⊢ ϕ is true in M , denoted
by Γ |=M ϕ, if and only if, M, r |= Γ implies M, r |= ϕ for any r. A sequent Γ ⊢ ϕ is valid,
denoted by Γ |= ϕ, if and only if, it is true for any standard models. Γ |=M ∆ and Γ |= ∆ are
similarly defined.

▶ Example 9. An example of the standard models is the multiset model. Let the set of atomic
propositions Σ be {A,B}. The multiset model Mmulti for Σ is the tuple (⟨Rmulti,⊎, ∅⟩,AMmulti)
such that

Rmulti is the set of multisets consisting of a and b;
⊎ is the merging operation of two multisets;
AM and BM are {{a}} and {{b}}, respectively.

For example, Mmulti, {a} |= A, Mmulti, {a, b} |= A ∗ B, and Mmulti, {a, a} |= A ∗ A ∗ I are
true, and Mmulti, {a} |= B and Mmulti, {a} |= A ∗A are false.

2.3 Inference rules of LBIID0 and CLBIω
ID0

This and the next subsection define two proof systems LBIID0 and CLBIω
ID0. The system

LBIID0 is a non-cyclic proof system and the system CLBIω
ID0is a cyclic proof system. The

common inference rules of them are given as follows.

▶ Definition 10. The common inference rules of the proof systems LBIID0 and CLBIω
ID0

are the following.

ϕ ⊢ ϕ
(Ax)

Γ ⊢ ϕ ∆(ϕ) ⊢ ψ

∆(Γ) ⊢ ψ
(Cut)

,

Γ(∆) ⊢ ϕ

Γ(∆; ∆′) ⊢ ϕ
(W)

Γ(∆; ∆) ⊢ ϕ

Γ(∆) ⊢ ϕ
(C) Γ ⊢ ϕ

∆ ⊢ ϕ
(E) (∆ ≡ Γ)

,

Γ(ϕ, ψ) ⊢ χ

Γ(ϕ ∗ ψ) ⊢ χ
(∗L) Γ ⊢ ϕ ∆ ⊢ ψ

Γ,∆ ⊢ ϕ ∗ ψ (∗R)
Γ(ϕ;ψ) ⊢ χ

Γ(ϕ ∧ ψ) ⊢ χ
(∧L) Γ ⊢ ϕ Γ ⊢ ψ

Γ ⊢ ϕ ∧ ψ
(∧R)

.

K. Saotome, K. Nakazawa, and D. Kimura 11:7

Γ(ϕ1) ⊢ ϕ · · · Γ(ϕn) ⊢ ϕ

Γ(P) ⊢ ϕ
(UL) Γ ⊢ ϕi

Γ ⊢ P
(UR) (1 ≤ i ≤ n)

,

where the inductive predicate P is defined by P := ϕ1 | . . . | ϕn. (UL) and (UR) are called
unfolding rules. The formula ϕ in (Cut) is called its cut formula.

2.4 Proofs in LBIID0 and CLBIω
ID0

Let Seq be the set of the BIID0 sequents, Rules be the set of the common inference rules of
LBIID0 and CLBIω

ID0, and Rules+ be the set Rules ∪ {(Bud)}.

▶ Definition 11 (LBIID0 Proof). An LBIID0 proof is a tuple Pr = (N, l, r) satisfying the
following:

N is the set of nodes for a finite tree. The elements of N are strings of positive integers,
the root is the empty string ε, and children of v are v1, v2,. . . , where vi is a concatenation
of the string v and the integer i.
l : N → Seq is a label function.
r : N → Rules is a rule function.
If r(v) ∈ Rules is a rule with n premises, then v has exactly n children, and
l(v1) . . . l(vn)

l(v)
r(v) is a correct rule instance of LBIID0.

An LBIID0 proof Pr = (N, l, r) is called an LBIID0 proof of l(ε). When r(v) is not (Cut)
for any v ∈ N , Pr is called a cut-free LBIID0 proof.

▶ Definition 12 (CLBIω
ID0 pre-proof). A CLBIω

ID0 pre-proof is a tuple Pr = (N, l, r, ρ)
satisfying the following:

N and l are defined similarly as those of the LBIID0 proofs.
r : N → Rules+ is a rule function.
ρ : {v ∈ N | r(v) = (Bud)} → N is a bud-companion function.
If r(v) ∈ Rules is a rule with n premises, then v has exactly n children, and
l(v1) . . . l(vn)

l(v)
r(v) is a correct rule instance.

If r(v) = (Bud), then v has no child and we have l(v) = l(ρ(v)).
When r(v) = (Bud), v is called a bud, and ρ(v) is called the companion of v.

▶ Definition 13 (Path). Let Pr = (N, l, r, ρ) be a CLBIω
ID0 pre-proof. The proof graph G(Pr)

is a directed graph whose set of the nodes are N , and which has an edge from v to v′ if and
only if either v′ is a child of v or v′ is the companion of v. A path in Pr is a path in G(Pr).

The path of LBIID0 is defined in the same way except for the bud-companion edges. We
consider both finite and infinite paths in proofs. We use α for either a natural number or the
ordinal ω, and we denote a path by (vi)i<α.

▶ Definition 14 (Trace). Let (vi)i<α be a path in a CLBIω
ID0 pre-proof Pr. A trace along

(vi)i<α is a sequence of occurrences of inductive predicates (Pi)i<α such that each Pi occurs
in L(l(vi)), and satisfies the following conditions:

If r(vi) = (UL) and Pi is unfolded by this rule instance, Pi+1 appears as a subformula in
the unfolding result of Pi in L(l(vi+1)). In this case, i is called a progressing point of the
trace (Pi)i<α.
Otherwise, Pi+1 is the subformula occurrence in L(l(vi+1)) corresponding to Pi in L(l(vi)).

If a trace contains infinitely many progressing points, it is called an infinitely progressing
trace.

FSCD 2021

11:8 Failure of Cut-Elimination in Cyclic BI

▶ Definition 15 (CLBIω
ID0 Proof). A CLBIω

ID0 pre-proof Pr = (N, l, r, ρ) is called a
CLBIω

ID0 proof when it satisfies the global trace condition, that is, for every infinite path
(vi)i<ω in Pr, there is an infinitely progressing trace following some tail of the path (vi)n≤i<ω.
A CLBIω

ID0 proof Pr = (N, l, r, ρ) is called a CLBIω
ID0 proof of l(ε). When r(v) is not (Cut)

for any v ∈ N , Pr is called a cut-free CLBIω
ID0 proof.

Both the proof systems LBIID0 and CLBIω
ID0 are subsystems of CLBIω

ID in [3], and
hence their soundness follows from the soundness of CLBIω

ID.

▶ Theorem 16 (Soundness of LBIID0 and CLBIω
ID0). If Γ ⊢ ϕ is provable in either LBIID0

or CLBIω
ID0, then Γ ⊢ ϕ is valid.

3 Proof Unrolling

In this section, we introduce a new technique, called proof unrolling, for constructing a
non-cyclic proof from a given cyclic proof: we first define a non-cyclic proof system that is a
variant of LBIID0 (say LBI ′

ID0), and then, for a cyclic proof of Γ ⊢ ϕ in CLBIω
ID0 and Γ′

obtained from Γ by unfolding inductive propositions, construct a non-cyclic proof of Γ′ ⊢ ϕ

in LBI ′
ID0.

▶ Definition 17 (Unfolded formula and unfolded bunch). The set Unf(ϕ) of unfolded formulas
of ϕ is defined with auxiliary sets Unfm(ϕ), which is the set of formulas without inductive
propositions obtained by at most m-time unfoldings of inductive predicates in ϕ, as follows:

Unf(ϕ) =
⋃
m

Unf(m)(ϕ);

Unf(m)(ϕ) = {ϕ} (when ϕ is I, ⊤, or an atomic proposition);

Unf(m)(ϕ1 ∗ ϕ2) = {ϕ′
1 ∗ ϕ′

2 | ϕ′
1 ∈ Unf(m)(ϕ1) and ϕ′

2 ∈ Unf(m)(ϕ2)};

Unf(m)(ϕ1 ∧ ϕ2) = {ϕ′
1 ∧ ϕ′

2 | ϕ′
1 ∈ Unf(m)(ϕ1) and ϕ′

2 ∈ Unf(m)(ϕ2)};

Unf(0)(P) = ∅;

Unf(m+1)(P) =
⋃

ϕ∈ΦP

Unf(m)(ϕ).

The set Unf(Γ) of unfolded bunches of Γ is defined as follows:

Unf(Γ) = Unf(ϕ) (when Γ = ϕ)
Unf(Γ,Γ′) = {∆,∆′ | ∆ ∈ Unf(Γ) and ∆′ ∈ Unf(Γ′)}
Unf(Γ; Γ′) = {∆; ∆′ | ∆ ∈ Unf(Γ) and ∆′ ∈ Unf(Γ′)}.

Before discussing the proof unrolling technique, we define an weakened variant of the rule
(Ax) in LBIID0.

▶ Definition 18. We consider the following inference rule.

ϕ ⊢ ψ
(Ax′) ϕ ∈ Unf(ψ)

We define LBI ′
ID0 as LBIID0 in which (Ax) is replaced by (Ax′).

▶ Lemma 19. If a sequent is cut-free provable in LBI ′
ID0, then it is cut-free provable in

LBIID0, and hence LBI ′
ID0 is sound.

K. Saotome, K. Nakazawa, and D. Kimura 11:9

Proof. It is sufficient to prove ϕ ⊢ ψ is cut-free provable in LBIID0 for any n and ϕ ∈
Unf(n)(ψ), and it is proved by induction on (n, ψ). The only nontrivial case is the case where
n > 1, ψ = P , and ϕ ∈ Unf(n)(P). In this case, for some definition clause ψ′ of P , we have
ϕ ∈ Unf(n−1)(ψ′). By the induction hypothesis, we have ϕ ⊢ ψ′, and hence we have ϕ ⊢ P

by the rule (UR). ◀

▶ Lemma 20. If ∆ ∈ Unf(Γ), then ∆ |= Γ holds.

Proof. It is proved by induction on Γ and the soundness of the rule (Ax′) by Lemma 19. ◀

▶ Lemma 21. If an LBI ′
ID0 proof contains a finite path (vi)i≤n such that l(v0) = Γ ⊢ ϕ,

l(vn) = Γ′ ⊢ ϕ, and r(vi) is either (W), (C), (E), or (∗L) for 0 ≤ i < n, then we have
Γ |= Γ′.

Proof. It is sufficient to show that Γ |= Γ′ holds for any rule instance

Γ′ ⊢ ϕ

Γ ⊢ ϕ
(R)

,

where (R) is either (W), (C), (E), or (∗L). It is easily proved. ◀

▶ Lemma 22. Let (R) be a rule of CLBIω
ID0 except for (Cut). If Γ ⊢ ϕ is inferred by (R)

from the premises Γ1 ⊢ ϕ1, . . . ,Γn ⊢ ϕn, and ∆ ∈ Unf(Γ), we have the following.
1. If (R) = (Ax), ∆ ⊢ ϕ is inferred by (Ax′).
2. If (R) = (UL), ∆ ∈ Unf(Γi) and ϕ = ϕi hold for some i.
3. Otherwise, ∆ ⊢ ϕ is inferred by (R) from ∆1 ⊢ ϕ1, . . . ,∆n ⊢ ϕn for some ∆i ∈ Unf(Γi)

(1 ≤ i ≤ n).

Proof.
1. By the definition of (Ax′).
2. In the definition of ∆ ∈ Unf(Γ), we choose an inductive definition clause of P , which is

unfolded by the rule (UL). If the clause is i-th one, we can choose a premise Γi ⊢ ϕ such
that ∆ ∈ Unf(Γi) holds.

3. If (R) is a left rule, by the definition of the unfolded bunches, ∆ ⊢ ϕ contains the
corresponding connectives of the principal formula in Γ ⊢ ϕ for (R). Otherwise, it is
easily proved. ◀

▶ Definition 23 (UL path). A finite path (vi)i≤m in a cyclic proof (N, l, r, ρ) is called a UL
path when r(vi) is either (UL) or (Bud) for any i such that 0 ≤ i < m.

▶ Lemma 24 (Proof unrolling). Let Pr1 = (N1, l1, r1, ρ1) be a cut-free CLBIω
ID0 proof of

Γ1 ⊢ ϕ and Γ2 ∈ Unf(Γ1). We can construct a cut-free LBI ′
ID0 proof Pr2 = (N2, l2, r2) of

Γ2 ⊢ ϕ accompanied with a mapping f : N2 → N1 such that the following hold:
f(ε) = ε.
For any v ∈ N2, L(l2(v)) ∈ Unf(L(l1(f(v)))) and R(l2(v)) = R(l1(f(v))).
For any v ∈ N2, there is a UL path (vi)0≤i≤m in Pr1 such that v0 = f(v), r1(vm) = r2(v),
and f(vn) = vmn.

Proof. (Sketch) We can construct Pr2 from Pr1 by unrolling the cyclic structures and choosing
the premises of (UL) depending on the definition of the unfolded bunch Γ2. Lemma 22
guarantees that this construction works well and the global trace condition guarantees that
the construction eventually terminates for the unfolded bunch Γ2 since any infinite path in
Pr1 has an infinitely progressing trace. ◀

FSCD 2021

11:10 Failure of Cut-Elimination in Cyclic BI

I ⊢ I(2)
(Ax)

I ⊢ PA
(UR)

PAA ⊢ PA(8)(†) A ⊢ A(9)
(Ax)

PAA, A ⊢ PA ∗A(7)
(∗R)

PAA, A ⊢ PA(6)
(UR)

A ⊢ A(10)
(Ax)

(PAA, A), A ⊢ PA ∗A(5)
(∗R)

(PAA, A), A ⊢ PA(4)
(UR)

PAA ∗A,A ⊢ PA(3)
(∗L)

PAA ∗A ∗A ⊢ PA
(∗L)

PAA ⊢ PA(1)(†)
(UL)

Figure 3 CLBIω
ID0 proof of PAA ⊢ PA.

I ⊢ I(2)
(Ax′)

I ⊢ PA(8)
(UR)

I, A ⊢ PA ∗A(7)
(∗L)

I, A ⊢ PA(6)
(UR)

A ⊢ A(10)
(Ax′)

(I, A), A ⊢ PA ∗A(5)
(∗L)

(I, A), A ⊢ PA(4)
(UR)

I ∗A,A ⊢ PA(3)
(∗L)

I ∗A ∗A ⊢ PA(8)
(∗L)

A ⊢ A(9)
(Ax′)

I ∗A ∗A,A ⊢ PA ∗A(7)
(∗R)

I ∗A ∗A,A ⊢ PA(6)
(UR)

A ⊢ A(10)
(Ax′)

(I ∗A ∗A,A), A ⊢ PA ∗A(5)
(∗R)

(I ∗A ∗A,A), A ⊢ PA(4)
(UR)

I ∗A ∗A ∗A,A ⊢ PA(3)
(∗L)

I ∗A ∗A ∗A ∗A ⊢ PA(1)
(∗L)

Figure 4 LBI ′
ID0 proof of I ∗ A ∗ A ∗ A ∗ A ⊢ PA constructed by proof unrolling.

Intuitively, a cyclic proof of Γ ⊢ ϕ contains several (possibly infinite) cases according to
the unfolding of inductive propositions in Γ. The proof unrolling technique takes one case
among them by Γ′ ∈ Unf(Γ) and extracts a non-cyclic proof of Γ′ ⊢ ϕ from the cyclic proof
of Γ ⊢ ϕ.

▶ Example 25. We consider two inductive propositions PA and PAA, which are defined by

PA := I | PA ∗A PAA := I | PAA ∗A ∗A.

For these inductive propositions, the sequent PAA ⊢ PA is provable in CLBIω
ID0 as Figure 3.

The sequents marked (†) are corresponding bud and companion. The numbers (1), (2), . . .
are identifiers of sequents.

From this cyclic proof, we can construct an LBI ′
ID0 (non-cyclic) proof of I ∗A∗A∗A∗A ⊢

PA for I ∗A ∗A ∗A ∗A ∈ Unf(PAA) by the proof unrolling as Figure 4. The identifiers of
sequents indicate the corresponding nodes in the cyclic proof, where we unroll the cycle at
(†) twice, and for (UL) in the cyclic proof, we choose the right premise twice at (3) and the
left premise at (2).

K. Saotome, K. Nakazawa, and D. Kimura 11:11

PAB ⊢ PBA(@)

PA ⊢ PA
(Ax)

A ⊢ A
(Ax)

PA, A ⊢ PA ∗A (∗R)

PA, A ⊢ PA
(UR)

PA, A ⊢ PBA
(UR)

PBA, A ⊢ PBA(#) B ⊢ B
(Ax)

(PBA, A), B ⊢ PBA ∗B
(∗R)

(PBA, B), A ⊢ PBA ∗B
(E)

(PBA, B), A ⊢ PBA
(UR)

PBA ∗B,A ⊢ PBA
(∗L)

PBA, A ⊢ PBA(#)
(UL)

PAB , A ⊢ PBA
(Cut)

PAB ∗A ⊢ PBA (1)
(∗L)

is the subproof of the following proof figure:

I ⊢ I
(Ax)

I ⊢ PA
(UR)

I ⊢ PBA
(UR)

PB ⊢ PBA(†) B ⊢ B
(Ax)

PB , B ⊢ PBA ∗B (∗R)

PB , B ⊢ PBA
(UR)

PB ∗B ⊢ PBA
(∗L)

PB ⊢ PBA(†)
(UL)

.... the above proof figure
PAB ∗A ⊢ PBA (1) ,

PAB ⊢ PBA(@)
(UL)

Each bud marked (†), (@), or (#) has its companion with the same mark.

Figure 5 CLBIω
ID0 proof of PAB ⊢ PBA.

4 Failure of Cut-Elimination

In this section, we give a counterexample of the cut-elimination property in CLBIω
ID0. We fix

the language Σ consisting of the atomic propositions A and B, and the inductive propositions
PAB, PBA, PA, and PB. We also fix the set Φ of inductive definitions for PAB, PBA, PA,
and PB defined by:

PAB := PB | PAB ∗A; PA := I | PA ∗A;
PBA := PA | PBA ∗B; PB := I | PB ∗B.

Intuitively, PA and PB mean I ∗ An and I ∗ Bm with arbitrary n,m ≥ 0, respectively.
PAB and PBA mean (I ∗Bm)∗An and (I ∗Am)∗Bn with arbitrary n,m ≥ 0, respectively. We
note that PAB and PBA are logically equivalent in the standard models since the separating
conjunction ∗ and the formula I are interpreted as a commutative monoid operator and the
unit of it, respectively.

The intention of the name PAB is that, during the unfolding of PAB, A’s appear first,
and then B’s appear in the unfolding of PB . PBA is also named by a similar intention.

Our main result will be obtained by showing the entailment PAB ⊢ PBA is a counter-
example for the cut-elimination. We need to show two things: One is that PAB ⊢ PBA is
provable in CLBIω

ID0 with (Cut), and the other is that PAB ⊢ PBA is not cut-free provable
in CLBIω

ID0.
First, we show that PAB ⊢ PBA is provable in CLBIω

ID0 with (Cut).

▶ Proposition 26. PAB ⊢ PBA is provable in CLBIω
ID0.

Proof. The proof figures in Figure 5 show this proposition. ◀

FSCD 2021

11:12 Failure of Cut-Elimination in Cyclic BI

To show that PAB ⊢ PBA is not cut-free provable in CLBIω
ID0, we assume that it is

cut-free provable to derive a contradiction. For this purpose, we will consider only the
multiset model Mmulti introduced in Example 9. We omit Mmulti in the satisfaction relation,
that is, r |= ϕ means Mmulti, r |= ϕ. We write {an} for the multiset consisting of n a’s.

We shall describe our proof approach before starting the formal discussion. We assume
the existence of a cut-free cyclic proof of PAB ⊢ PBA. By the proof unrolling, we can
construct proofs of ϕ ⊢ PBA in LBI ′

ID0 for any unfolded formula ϕ of PAB . Hence we have
proofs of I ∗ An ⊢ PBA for arbitrary n. We consider parts of the proofs of I ∗ An ⊢ PBA

which contain the conclusion and do not contain the rule (UR). We call such parts the proof
segments. In such a proof segment, {an} ∈ Mmulti satisfies every antecedent. Then, {an}
also satisfies every antecedent in the corresponding part of the cyclic proof. Since the cyclic
proof is finite, for a sufficiently large n, the antecedents cannot contain An, but they must
contain either PAB or ⊤, and then both {an} and {an, b} satisfy the antecedents. On the
other hand, since the proof segment does not contain (UR), every succedent is PBA. When
we unfold PBA, we have to decide either PA or PBA ∗B. However, neither of them can be
satisfied by both {an} and {an, b}.

To achieve our plan, we prepare some definitions and theorems.

▶ Definition 27 (PAB-formula and PAB-bunch). A PAB-formula ϕPAB
is defined as follows:

ϕPAB
::= I | ⊤ | A | B | PAB | PB | PAB ∗A | PB ∗B.

A PAB-bunch ΓPAB
is a bunch all of whose leaves are PAB-formulas.

▶ Lemma 28. Let (N, l, r, ρ) be a cut-free CLBIω
ID0 proof of PAB ⊢ ϕ. For any v ∈ N ,

L(l(v)) is a PAB-bunch.

Proof. This lemma is proved by induction on the size of N . ◀

▶ Lemma 29. Let Γ be a PAB-bunch. If we have {ai} |= Γ for i > 2|Γ|, then we also have
{ai, b} |= Γ.

Proof. It is proved by induction on Γ. The only nontrivial case is the case of Γ = ∆,∆′. In
this case, we have {aj} |= ∆ and {aj′} |= ∆′ for some j and j′ such that j + j′ = i. By the
assumption, we have i > 2 ·2|Γ|−1 > 2 ·2max(|∆|,|∆′|). Hence either j > 2|∆| or j′ > 2|∆′| holds.
By the induction hypothesis, we have either {aj , b} |= ∆ or {aj′

, b} |= ∆′ holds. Therefore
we have {ai, b} |= Γ. ◀

▶ Definition 30 (Proof segment). Let Pr1 = (N1, l1, r1) be a LBI ′
ID0 proof. Pr = (N2, l2, r2)

is a proof segment of Pr1 when it enjoys the following conditions:
N2 ⊆ N1 holds, and vi ∈ N2 implies v ∈ N2.
For any v ∈ N2, l2(v) = l1(v) and r2(v) = r1(v) hold.

Note that leaves of a proof segment are not necessarily assigned the rule (Ax′).

▶ Proposition 31. PAB ⊢ PBA is not cut-free provable in CLBIω
ID0.

Proof. This proposition is shown by contradiction. We assume that there is a cut-free
CLBIω

ID0 proof Pr1 = (N1, l1, r1, ρ1) of PAB ⊢ PBA. Let n = max{|L(l1(v))| | v ∈ N1}.
Since I ∗A2n+1 ∈ Unf(PAB), we can construct a cut-free LBI ′

ID0 proof Pr2 = (N2, l2, r2)
of I ∗A2n+1 ⊢ PBA and the mapping f : N2 → N1 by Lemma 24.

Let PrBA
2 = (NBA

2 , lBA
2 , rBA

2) be the biggest proof segment of Pr2 such that R(lBA
2 (v)) =

PBA for any v ∈ NBA
2 . Note that PrBA

2 is not empty since R(l2(ε)) = PBA. For any
v ∈ NBA

2 , rBA
2 (v) is either (W), (C), (∗L), (E), (Ax′), or (UR). In particular, (Ax′) and

K. Saotome, K. Nakazawa, and D. Kimura 11:13

(UR) are only applied to leaves of PrBA
2 , and the other rules are not applied to leaves since

these rules do not change the succedents. We have {a2n+1} |= I ∗ A2n+1 in the multiset
model, and hence we have {a2n+1} |= L(lBA

2 (v)) holds for any v ∈ NBA
2 by Lemma 21.

Let v be a leaf node of PrBA
2 . Then, rBA

2 (v) is either (Ax′) or (UR).
In the case of (Ax′), by Lemma 24, there is a UL path from f(v) to some v′ in Pr1

such that r1(v′) = (Ax). By Lemma 28, l1(v′) = Γ ⊢ PBA for some PAB-bunch Γ, and it
contradicts r1(v′) = (Ax) since PBA is not a PAB-bunch. Hence, (Ax′) is not the case.

In the case of (UR), let v′ be the premise of v in Pr2. Since we have lBA
2 (v) = l2(v) =

Γ ⊢ PBA for some Γ, l2(v′) is either Γ ⊢ PBA ∗B or Γ ⊢ PA, but it is proved as follows that
both of them are not the case.

For l2(v′) = Γ ⊢ PBA ∗ B, we have {a2n+1} |= Γ and {a2n+1} ̸|= PBA ∗ B, and hence
Γ ⊢ PBA ∗B is invalid. It contradicts the soundness of LBI ′

ID0. Hence, this is not the case.
For l2(v′) = Γ ⊢ PA, we have l1(f(v′)) = Γ′ ⊢ PA for some PAB-bunch Γ′ such that

Γ ∈ Unf(Γ′). Then, we have {a2n+1} |= Γ′ by Lemma 20, and {a2n+1, b} |= Γ′ by Lemma 29
and 2n + 1 > 2|Γ′|. Since {a2n+1, b} ̸|= PA, it contradicts the soundness of LBI ′

ID0. Hence,
this is not the case.

Therefore, there is no possible rule at the leaves of PrBA
2 , and hence there is no cut-free

CLBIω
ID0 proof of PAB ⊢ PBA. ◀

▶ Theorem 32 (Failure of cut-elimination in CLBIω
ID0). CLBIω

ID0 does not enjoy the cut-
elimination property.

Proof. By Proposition 26 and Proposition 31, PAB ⊢ PBA is a counterexample. ◀

This result is easily extended to the original cyclic proof system CLBIω
ID in [3], which

contains full logical connectives of the bunched logic and inductive predicates with arbitrary
arity.

▶ Corollary 33 (Failure of cut elimination in CLBIω
ID). CLBIω

ID does not enjoy cut-elimination
property.

Proof. PAB ⊢ PBA is a counterexample. It is provable in CLBIω
ID, since the proof in Figure 5

is also a CLBIω
ID proof with cuts. If there is a cut-free CLBIω

ID proof of PAB ⊢ PBA, it is
a cut-free CLBIω

ID0 proof since neither logical connectives other than ∗, inductive predicates
accompanied by some arguments, nor first-order terms can occur in the proof. ◀

5 Conclusion and Future Work

We have proved by the proof unrolling technique that the cut-elimination fails for the cyclic
proof system of the bunched logic CLBIω

ID in [3] only with nullary inductive predicates.
For a logic with a connective representing resource composition such as the separation

logic and the multiplicative linear logic, we can straightforwardly adapt our proof technique
to the cyclic proof system for the logic.

For the separation logic, we allow arbitrary substitution in the definition of Unf for
existentially quantified variables as

Unf(m+1)(P) =
⋃

∃x⃗.ϕ(x⃗) ∈ ΦP and t⃗ : arbitrary terms

Unf(m)(ϕ(⃗t)),

and we reread the atomic propositions A and B in our proof as to the following nullary
predicates, for example,

FSCD 2021

11:14 Failure of Cut-Elimination in Cyclic BI

A = ∃x(x 7→ x) B = ∃x(x 7→ nil),

and then we can prove that the cut-elimination fails for the cyclic proof system of the
separation logic with only nullary predicates.

We can adapt the proof unrolling to cyclic proof system CLKIDω [6] for the first-order
logic when we consider a cut-free cyclic proof that contains only positive occurrences of
inductive predicates. However, the proof in Section 4 depends on the multiset model, and it
is an interesting question if we can apply our proof idea for the first-order logic. Another
direction of future work is to find reasonable restrictions for the inductive predicates to
recover the cut-elimination property in the cyclic proof systems. Our result shows that the
restriction on the arity of predicates is not sufficient.

References
1 T. Antonopoulos, N. Gorogiannis, C. Haase, M. Kanovich, and J. Ouaknine. Foundations

for decision problems in separation logic with general inductive predicates. In Proceedings of
FoSSaCS 2014, volume 8412 of LNCS, pages 411–425, 2014.

2 D. Baelde, A. Doumane, and A. Saurin. Infinitary proof theory: the multiplicative additive
case. In 25th EACSL Annual Conference on Computer Science Logic (CSL 2016), volume 62
of LIPIcs, pages 42:1–42:17, 2016.

3 J. Brotherston. Formalised inductive reasoning in the logic of bunched implications. In
Proceedings of SAS ’07, volume 4634 of LNCS, pages 87–103, 2007.

4 J. Brotherston, D. Distefano, and R. L. Petersen. Automated cyclic entailment proofs in
separation logic. In Proceedings of CADE-23, volume 6803 of LNAI, pages 131–146, 2011.

5 J. Brotherston, N. Gorogiannis, and R. L. Petersen. A generic cyclic theorem prover. In
Proceedings of APLAS 2012, volume 7705 of LNCS, pages 350–367, 2012.

6 J. Brotherston and A. Simpson. Sequent calculi for induction and infinite descent. Journal of
Logic and Computation, 21(6):1177–1216, 2011.

7 J. Fortier and L. Santocanale. Cuts for circular proofs: semantics and cut-elimination. In
Computer Science Logic 2013 (CSL 2013), volume 23 of LIPIcs, pages 248–262, 2013.

8 D. Kimura, K. Nakazawa, T. Terauchi, and H. Unno. Failure of cut-elimination in cyclic
proofs of separation logic. Comupter Software, 37(1):39–52, 2020.

9 P. O’Hearn and D. Pym. The logic of bunched implications. Bulletin of Symbolic Logic,
5(2):215–244, 1999.

10 D. J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications. Springer,
2002.

11 J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings
of LICS 2002, pages 55–74, 2002.

12 M. Tatsuta and D. Kimura. Separation logic with monadic inductive definitions and implicit
existentials. In Proceedings of APLAS 2015, volume 9458 of LNCS, pages 69–89, 2015.

A Functional Abstraction of
Typed Invocation Contexts
Youyou Cong # Ñ

Tokyo Institute of Technology, Japan

Chiaki Ishio #

Ochanomizu University, Tokyo,Japan

Kaho Honda #

Ochanomizu University, Tokyo, Japan

Kenichi Asai # Ñ

Ochanomizu University, Tokyo, Japan

Abstract
In their paper “A Functional Abstraction of Typed Contexts”, Danvy and Filinski show how to
derive a type system of the shift and reset operators from a CPS translation. In this paper, we
show how this method scales to Felleisen’s control and prompt operators. Compared to shift and
reset, control and prompt exhibit a more dynamic behavior, in that they can manipulate a trail
of contexts surrounding the invocation of captured continuations. Our key observation is that, by
adopting a functional representation of trails in the CPS translation, we can derive a type system
that allows fine-grain reasoning of programs involving manipulation of invocation contexts.

2012 ACM Subject Classification Theory of computation → Functional constructs; Theory of
computation → Control primitives; Theory of computation → Type structures

Keywords and phrases delimited continuations, control operators, control and prompt, CPS transla-
tion, type system

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.12

Supplementary Material Model (Agda Formalization): https://github.com/YouyouCong/
fscd21-artifact; archived at swh:1:dir:9eaf9840fc9b223e030f633c3f9b3b5ea7b47bc6

Funding Youyou Cong: supported in part by JSPS KAKENHI under Grant No. 19K24339.
Kenichi Asai: supported in part by JSPS KAKENHI under Grant No. JP18H03218.

Acknowledgements We sincerely thank the reviewers for their constructive feedback.

1 Introduction

Delimited continuations have been proven useful in diverse domains. Their applications
range from representation of monadic effects [19], to formalization of partial evaluation [13],
and to implementation of automatic differentiation [41]. As a means to handle delimited
continuations, researchers have designed a variety of control operators [18, 15, 21, 16, 32].
Among them, Danvy and Filinski’s shift/reset operators [15] have a solid theoretical
foundation: there are a canonical CPS translation [15], a general type system [14], and a set
of equational axioms [25]. Recent work by Materzok and Biernacki [32, 31] has also fostered
understanding of shift0 and reset0, by establishing similar artifacts for these operators.
Other variants, however, are not as well-understood as the aforementioned ones, due to their
complex semantics.

Understanding the subtleties of control operators is important, especially given the
rapid adoption of algebraic effects and handlers [36, 6] observed in the past decade. Effect
handlers can be thought of as a form of exception handlers that provide access to delimited

© Youyou Cong, Chiaki Ishio, Kaho Honda, and Kenichi Asai;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 12; pp. 12:1–12:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cong@c.titech.ac.jp
http://prg.is.titech.ac.jp/people/cong/
https://orcid.org/0000-0003-2315-6182
mailto:ishio.chiaki@is.ocha.ac.jp
mailto:g1720538@is.ocha.ac.jp
mailto:asai@is.ocha.ac.jp
http://pllab.is.ocha.ac.jp/~asai/
https://doi.org/10.4230/LIPIcs.FSCD.2021.12
https://github.com/YouyouCong/fscd21-artifact
https://github.com/YouyouCong/fscd21-artifact
https://archive.softwareheritage.org/swh:1:dir:9eaf9840fc9b223e030f633c3f9b3b5ea7b47bc6;origin=https://github.com/YouyouCong/fscd21-artifact;visit=swh:1:snp:373313627617f63181509188a8b0c474bf25b38f;anchor=swh:1:rev:c88b251d074865dd2d22d7cd755a2ffa40c42891
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 A Functional Abstraction of Typed Invocation Contexts

continuations. As suggested by the similarity in the functionality, effect handlers have a close
connection with control operators [20, 35], and in fact, they are often implemented using
control operators provided by the host language [27, 28]. This means, a well-established
theory of control operators is crucial for safer and more efficient implementation of effect
handlers.

In this paper, we formalize a typed calculus of control and prompt, a pair of control
operators proposed by Felleisen [18]. These operators bring an interesting behavior into
programs: when a captured continuation k is invoked, the subsequent computation may
capture the context surrounding the invocation of k. From a practical point of view, the
ability to manipulate invocation contexts is useful for implementing sophisticated algorithms,
such as list reversing [8] and breadth-first traversal [10]. From a theoretical perspective, on
the other hand, this ability makes it hard to type programs in a way that fully reflects their
runtime behavior.

We address the challenge with typing by rigorously following Danvy and Fillinski’s [14]
recipe for building a type system of a delimited control calculus. The idea is to analyze
the CPS translation of the calculus, and identify all the constraints that are necessary for
making a translated expression well-typed. In fact, the recipe has already been applied to
the control and prompt [26] operators, but the type system obtained is not satisfactory for
two reasons. First, the type system imposes certain restrictions on the contexts in which a
captured continuation may be invoked. Second, the type system does not precisely describe
the way contexts compose and propagate during evaluation. We show that, by choosing
a right representation of invocation contexts in the CPS translation, we can build a type
system without such limitations.

Below is a summary of our specific contributions:
We present a type system of control and prompt that allows fine-grain reasoning
of programs involving manipulation of invocation contexts. The type system is the
control/prompt-equivalent of Danvy and Filinski’s [14] type system for shift/reset,
in that it incorporates all and only constraints that are imposed by the CPS translation.
We prove three properties of our calculus: type soundness, type preservation of the CPS
translation, and termination of well-typed programs. Among these, termination relies on
the precise typing of invocation contexts available in our calculus; indeed, the property
does not hold for the existing type system of control and prompt [26].

We begin with an informal account of control and prompt (Section 2), highlighting the dy-
namic behavior of these operators. We next formalize an untyped calculus of control/prompt
(Section 3) and its CPS translation (Section 4), which is equivalent to the translation given
by Shan [40]. Then, from the CPS translation, we derive a type system of our calculus
(Section 5), and prove its properties (Section 6). Lastly, we discuss related work (Section 7)
and conclude with future directions (Section 8).

As an artifact, we provide a formalization of our calculus and proofs in the Agda proof
assistant [34]. The code is checked using Agda version 2.6.0.1, and is available online at:

https://github.com/YouyouCong/fscd21-artifact

Relation to Prior Work. This is an updated and extended version of our previous paper [2].
The primary contributions of this paper are a complete proof of type soundness of the
proposed calculus, and a proper formalization of the target language of the CPS translation.
We have also changed the title to clarify the kind of contexts considered in the paper.

https://github.com/YouyouCong/fscd21-artifact

Y. Cong, C. Ishio, K. Honda, and K. Asai 12:3

2 Control and Prompt

As a motivating example, consider the following program:

⟨(Fk1. is0 (k1 5)) + (Fk2. b2s (k2 8))⟩

Throughout the paper, we write F to mean control and ⟨⟩ to mean prompt. We also assume
two primitive functions: is0, which tells us if a given integer is zero or not, and b2s, which
converts a boolean into a string "true" or "false".

Under the call-by-value, left-to-right evaluation strategy, the above program evaluates in
the following way:

⟨(Fk1. is0 (k1 5)) + (Fk2. b2s (k2 8))⟩
= ⟨is0 (k1 5) [λx. x + (Fk2. b2s (k2 8))/k1]⟩
= ⟨is0 (5 + (Fk2. b2s (k2 8)))⟩
= ⟨b2s (k2 8) [λx. is0 (5 + x)/k2]⟩
= ⟨b2s (is0 (5 + 8))⟩
= ⟨b2s (is0 13)⟩
= ⟨b2s false⟩
= ⟨"false"⟩
= "false"

The first control operator captures the delimited context up to the enclosing prompt, namely
[.] + (Fk2. b2s (k2 8)) (where [.] denotes a hole). The captured context is then reified into
a function λx. x + (Fk2. b2s (k2 8)), and evaluation shifts to the body is0 (k1 5), where
k1 is the reified continuation. After β-reducing the invocation of k1, we obtain another
control in the evaluation position. This control captures the context is0 (5 + [.]), which
is a composition of two contexts: the addition context originally surrounding the control
construct, and the application of is0 surrounding the invocation of k1. The context is then
reified into a function λx. is0 (5 + x), and evaluation shifts to the body b2s (k2 8), where
k2 is the reified continuation. By β-reducing the invocation of k2, we obtain the expression
b2s (is0 (5 + 8)), where the original delimited context, the invocation context of k1, and
the invocation context of k2 are all composed together. The expression returns the value
"false" to the enclosing prompt clause, and the evaluation of the whole program finishes
with this value.

From the above example, we can make two observations. First, a control operator can
capture the context surrounding the invocation of a previously captured continuation. More
generally, control may capture a trail of such invocation contexts. The ability comes from
the absence of the delimiter in the body of captured continuations. Indeed, if we replace
control with shift (S) in the above program, the second shift would have no access to
the context is0 [.], since the first shift would insert a reset into the continuation k1. As a
consequence, the program gets stuck after the application of k2.

⟨(Sk1. is0 (k1 5)) + (Sk2. b2s (k2 8))⟩
= ⟨is0 (k1 5) [λx. ⟨x + (Sk2. b2s (k2 8))⟩/k1]⟩
= ⟨is0 ⟨5 + (Sk2. b2s (k2 8))⟩⟩
= ⟨is0 ⟨b2s (k2 8) [λx. ⟨5 + x⟩/k2]⟩⟩
= ⟨is0 ⟨b2s ⟨5 + 8⟩⟩⟩
= ⟨is0 ⟨b2s 13⟩⟩

FSCD 2021

12:4 A Functional Abstraction of Typed Invocation Contexts

Syntax

v ::= c | x | λx. e Values e ::= v | e e | Fk. e | ⟨e⟩ Expressions

Evaluation Contexts

E ::= [.] | E e | v E | ⟨E⟩ General Contexts
F ::= [.] | F e | v F Pure Contexts

Reduction Rules

E[(λx. e) v]⇝ E[e [v/x]] (β)
E[⟨F [Fk. e]⟩]⇝ E[⟨e [λx. F [x]/k]⟩] (F)

E[⟨v⟩]⇝ E[v] (P)

Figure 1 λF : A Calculus of control and prompt.

The second observation is that a trail of invocation contexts can be heterogeneous. In our
particular example, the first continuation k1 is called in a int-to-bool context, whereas the
second continuation k2 is called in a bool-to-string context. These are apparently distinct
types, and furthermore, the input and output types of each context are also different.

It turns out that our motivating example would be judged ill-typed by the existing type
system for control and prompt [26]. This is because the type system imposes the following
restrictions on the type of invocation contexts.

All invocation contexts within a prompt clause must have the same type.
For each invocation context, the input and output types must be the same.

We claim that, a fully general type system of control and prompt should be more flexible
about the type of invocation contexts. Now the question is: Is it possible to allow such
flexibility? Our answer is “yes”. As we will see in Section 5, we can build a type system that
accommodates invocation contexts having varying types, and that accepts our motivating
example as a well-typed program.

3 λF : A Calculus of control and prompt

In Figure 1, we present λF , a λ-calculus featuring the control and prompt operators.
The calculus has a separate syntactic category for values, which, in addition to variables
and abstractions, has a set of constants c, such as integers, booleans, and string literals.
Expressions consist of values, application, and delimited control constructs control and
prompt.

We equip λF with a call-by-value, left-to-right evaluation strategy. As is usual with
delimited control calculi, there are two groups of evaluation contexts: general contexts
(E) and pure contexts (F). Their difference is that general contexts may contain prompt
surrounding a hole, while pure contexts can never have such prompt. The distinction is used
in the reduction rule (F) of control, which says, control always captures the context up to
the nearest enclosing prompt. In the reduct, we see that the body of a captured continuation
is not surrounded by prompt, as we observed in the previous section. On the other hand, the
body of control is evaluated in a prompt clause. The reduction rule (P) for prompt simply
removes a delimiter surrounding a value.

Note that λF is currently presented as an untyped calculus. We will introduce types in
Section 5, according to the CPS translation to be defined in the next section.

Y. Cong, C. Ishio, K. Honda, and K. Asai 12:5

Syntax

v ::= c | x | λx. e | () Values
e ::= v | e e | (case t of () ⇒ e | k ⇒ e) Expressions

Evaluation Contexts

E ::= [.] | E e | v E | (case E of () ⇒ e | k ⇒ e)

Reduction Rules

E[(λx. e) v]⇝ E[e [v/x]] (β)
E[case () of () ⇒ e1 | k ⇒ e2]⇝ E[e1] (case-())
E[case v of () ⇒ e1 | k ⇒ e2]⇝ E[e2 [v/k]] (case-k)

Figure 2 λC : Target Calculus of CPS Translation.

4 CPS Translation

As we mentioned earlier, the type system of a delimited control calculus is often derived
from a translation into continuation-passing style (CPS) [14]. When the source calculus has
control and prompt, a CPS translation exposes both continuations and trails of invocation
contexts. Trails can be represented either as a list of functions [8, 9] or as a composition
of functions [40]. While previous work [26] on typing control and prompt adopts the list
representation, we adopt the functional representation, as it fits better for the purpose of
building a general type system (see Section 5 for details).

4.1 λC: Target Calculus of CPS Translation

In Figure 2, we define the target calculus of the CPS translation, which we call λC . The
calculus is a pure, call-by-value λ-calculus featuring the unit value (), which represents an
empty trail, and a case analysis construct, which allows inspection of trails. Note that a
non-empty trail is represented as a regular function.

As in λF , we evaluate λC programs under a call-by-value, left-to-right strategy. The
particular choice of evaluation strategy is not necessary in our setting, but it is mandatory
if the source and target calculi of the CPS translation have non-control effects (such as
non-termination and I/O), because the result of the translation may have non-tail calls.

4.2 The CPS Translation

In Figure 3, we present the CPS translation J_K from λF to λC , which is equivalent to the
translation given by Shan [40]. The translation converts an expression into a function that
takes in a continuation k and a trail t. The trail is the composition of the invocation contexts
encountered so far, and is used together with a continuation to produce an answer (hence a
continuation now receives a trail). Below, we detail the translation of three representative
constructs: variables, prompt, and control.

FSCD 2021

12:6 A Functional Abstraction of Typed Invocation Contexts

Variables. The translation of a variable is an η-expanded version of the standard, call-by-
value translation. The trivial use of the current trail t communicates the fact that a variable
can never change the trail during evaluation. In general, the CPS translation of a pure
expression uniformly calls the continuation with an unmodified trail.

Prompt. The translation of prompt has the same structure as the translation of variables,
because prompt forms a pure expression. The translated body JeK is run with the identity
continuation kid and an empty trail ()1, describing the behavior of prompt as a control
delimiter. Note that, in this CPS translation, the identity continuation is not the identity
function. It receives a value v and a trail t, and behaves differently depending on whether
t is empty or not. When t is empty, the identity continuation simply returns v. When t

is non-empty, t must be a function composed of one or more invocation contexts, which
looks like λx. En[... E1[x] ...]. In this case, the identity continuation builds an expression
En[... E1[v] ...] by calling the trail with v and ().

Control. The translation of control shares the same pattern with the translation of
prompt, because its body is evaluated in a prompt clause (as defined by the (F) rule in
Figure 1). The translated body JeK is applied a substitution that replaces the variable c with
the trail t @ (k′ :: t′), describing how the trail is extended when a captured continuation is
invoked2. Recall that, in this CPS translation, trails are represented as functions. The @
and :: operators are thus defined as a function producing a function3. More specifically, these
operators compose contexts in a first-captured, first-called manner (as we can see from the
second clause of ::). Notice that :: is defined as a recursive function4. The reason is that,
when extending a trail t with a continuation k, we need to produce a function that takes in
a trail t′, which in turn must be composed with a continuation k′.

The CPS translation is correct with respect to the definitional abstract machine given by
Biernacka et al. [7]. The statement is proved by Shan [40], using the functional correspond-
ence [1] between evaluators and abstract machines.

As a last note, let us mention here that the alternative CPS translation of control and
prompt, where trails are represented as lists, can be obtained by replacing () with the empty
list, and the two operations @ and :: with ones that work on lists.

5 Type System

Having defined a CPS translation, we now derive a type system of λF . We proceed in
three steps. First, we specify the syntax of trail types (Section 5.1). Next, we identify
an appropriate form of typing judgment (Section 5.2). Lastly, we define the typing rules
of individual syntactic constructs (Section 5.3). In each step, we contrast our outcome
with its counterpart in Kameyama and Yonezawa’s [26] type system, showing how different
representations of trails in the CPS translation lead to different typing principles.

1 The identity continuation kid and the empty trail () correspond to the send function and the #f value
of Shan [40], respectively.

2 There is in fact a superficial difference between our CPS translation and Shan’s original translation [40].
In the rule for control, we replace the continuation variable c with the function λx. λk′. λt′. k x (t @ (k′ ::
t′)), while Shan replaces c with λx. λk′. λt′. (k :: t) x (k′ :: t′). However, by expanding the definition of
@ and ::, we can easily see that the two functions are equivalent. We prefer the one that uses @ because
it is closer to the abstract machine given by Biernacki et al. [9], as well as the list-based CPS translation
derived from it.

3 The :: function is equivalent to Shan’s compose function.
4 While recursive, the :: function is guaranteed to terminate, as the types of the two arguments become

smaller in every three successive recursive calls (or they reach the base case in fewer steps).

Y. Cong, C. Ishio, K. Honda, and K. Asai 12:7

JcK = λk. λt. k c t

JxK = λk. λt. k x t

Jλx. eK = λk. λt. k (λx. λk′. λt′. JeK k′ t′) t

Je1 e2K = λk. λt. Je1K (λv1. λt1. Je2K (λv2. λt2. v1 v2 k t2) t1) t

JFc. eK = λk. λt. JeK [λx. λk′. λt′. k x (t @ (k′ :: t′))/c] kid ()
J⟨e⟩K = λk. λt. k (JeK kid ()) t

kid = λv. λt. case t of () ⇒ v | k ⇒ k v ()
@ = λt. λt′. case t of () ⇒ t′ | k ⇒ k :: t′

:: = λk. λt. case t of () ⇒ k | k′ ⇒ λv. λt′. k v (k′ :: t′)

Figure 3 CPS Translation of λF Expressions.

5.1 Syntax of Trail Types
Recall from Section 4.1 that, in λC , trails have two possible forms: () or a function.
Correspondingly, in λF , trail types µ are defined by a two-clause grammar: • | τ → ⟨µ⟩ τ ′.
The latter type is interpreted in the following way.

The trail accepts a value of type τ .
The trail is to be composed with a context of type µ.
After the composition, the trail produces a value of type τ ′.

Put differently, τ is the input type of the innermost invocation context, τ ′ is the output type
of the context to be composed in the future, and µ is the type of this future context.

To better understand non-empty trail types, let us revisit the example from Section 2.

⟨(Fk1. is0 (k1 5)) + (Fk2. b2s (k2 8))⟩
= ⟨is0 (k1 5) [λx. x + (Fk2. b2s (k2 8))/k1]⟩
= ⟨is0 (5 + (Fk2. b2s (k2 8)))⟩
= ⟨b2s (k2 8) [λx. is0 (5 + x)/k2]⟩
= ⟨b2s (is0 (5 + 8))⟩
= "false"

When the continuation k1 is invoked, the trail is extended with the context is0 [.]. This
context will be composed with the invocation context b2s [.] of k2 later in the reduction
sequence. Therefore, the trail at this point is given type int → ⟨bool → ⟨•⟩ string⟩ string,
consisting of the input type of is0, the type of b2s, and the output type of b2s.

When the continuation k2 is invoked, the trail is extended with the context b2s [.] (hence
the whole trail looks like b2s (is0 [.])). This context will not be composed with any further
contexts in the subsequent steps of reduction. Therefore, the trail at this point is given type
int → ⟨•⟩ string, consisting of the input type of is0, the type of an empty trail, and the
output type of b2s.

Observe that our trail types can be inhabited by heterogeneous trails, where the input
and output types of each invocation context may be different. The flexibility is exactly what
we wish a general type system of control and prompt to have, as we discussed in Section 2.

FSCD 2021

12:8 A Functional Abstraction of Typed Invocation Contexts

Comparison with Previous Work. In the CPS translation of Kameyama and Yonezawa [26],
a trail is treated as a list of invocation contexts. Such a list is given a recursive type Trail(ρ)
defined as follows:

Trail(ρ) = µX. list(ρ → X → ρ)

We can easily see that the definition restricts the type of invocation contexts in two ways.
First, all invocation contexts in a trail must have the same type. This is because lists are
homogeneous by definition. Second, each invocation context must have equal input and
output types. This is a direct consequence of the first restriction. The two restrictions
prevent one from invoking a continuation in a context such as is0 [.] or b2s [.]. Moreover, the
use of the list type makes empty and non-empty trails indistinguishable at the level of types,
and extension of trails undetectable in types. On the other hand, these limitations allow one
to use an ordinary expression type (such as int, instead of a type designed specifically for
trails) to encode the information of trails in the control/prompt calculus. That is, if a trail
has type Trail(ρ) in the target, it has type ρ in the source.

5.2 Typing Judgment
We next turn our attention to the typing of a CPS-translated expression. Suppose e is a λF
expression of type τ . In the general case, the CPS counterpart of e is typed in the following
way:

Jeτ K = λkτ→µα→α. λtµβ . e′β

Here, α and β are answer types, representing the return type of the enclosing prompt before
and after evaluation of e. It is well-known that delimited control can make the two answer
types distinct [14], and since they are needed for deciding the typability of programs, they
must be integrated into the typing judgment. The other pair of types, µβ and µα, are trail
types, representing the composition of invocation contexts encountered before and after
evaluation of e. As control can extend a given trail by invoking a captured continuation,
the two trail types may be different, and have to be integrated into the typing judgment.

Summing up the above discussion, we conclude that a fully general typing judgment for
control and prompt must carry five types, as follows:

Γ ⊢ e : τ ⟨µα⟩ α ⟨µβ⟩ β

We place the types in the same order as their appearance in the annotated CPS expression.
That is, the first three types τ , µα, and α correspond to the continuation of e, the next
one µβ represents the trail required by e, and the last one β stands for the eventual value
returned by e. We will hereafter call α and β initial and final answer types, and µβ and µα

initial and final trail types – be careful of the direction in which answer types and trail types
change.

With the typing judgment specified, we can define the syntax of expression types in λF
(Figure 4). Expression types are formed with base types ι (such as int and bool) and arrow
types τ1 → τ2 ⟨µα⟩ α ⟨µβ⟩ β. Notice that the codomain of arrow types carries five components.
These types represent the control effect of a function’s body, and correspond exactly to the
five types that appear in a typing judgment.

Comparison with Previous Work. In the type system developed by Kameyama and Yonez-
awa [26], a CPS-translated expression is typed in the following way:

λkτ→Trail(ρ)→α. λtTrail(ρ). e′β

Y. Cong, C. Ishio, K. Honda, and K. Asai 12:9

It is obvious that the typing is not as general as ours, since the two trail types are equal.
This constraint is imposed by the list representation of trails: since a list type is insensitive
to extension, we can always use a trail of the same type for the evaluation of e and the rest
of the computation. Thus, Kameyama and Yonezawa arrive at a typing judgment carrying
four types, with the last one (ρ) representing the information of trails:

Γ ⊢ e : τ, α, β/ρ

Correspondingly, they assign source functions an arrow type of the form τ1 → τ2, α, β/ρ.

5.3 Typing Rules
Now we are ready to define the typing rules of λF (Figure 4). As in the previous section, we
elaborate the typing rules of variables, prompt, and control.

Variables. Recall that the CPS translation of variables is an η-expanded version of the
standard translation. If we annotate the types of each subexpression, a translated variable
would look like:

λkτ→µα→α. λtµα . (k x t)α

We see duplicate occurrences of the answer type α and the trail type µα. The duplication
arises from the application k x t, and reflects the fact that a variable cannot change the
answer type or the trail type. By a straightforward conversion from the annotated expression
into a typing judgment, we obtain rule (Var) in Figure 4. In general, when the subject of a
typing judgment is a pure construct, the answer types and trail types both coincide.

Prompt. We next analyze the CPS translation of prompt, again with type annotations.

λkτ→µα→α. λtµα . (k (JeK(β→µid→β′)→•→τ kid ()) t)α

As ⟨e⟩ is a pure expression, we again have equal answer types α and trail types µα for the
whole expression. The initial trail type • and final answer type τ of e are determined by
the application JeK kid () and k (JeK kid ()), respectively. What is left is to ensure that the
application of JeK to the identity continuation kid is type-safe. In our type system, we use
a relation is-id-trail(τ, µ, τ ′) to ensure this type safety. The relation holds when the type
τ → µ → τ ′ can be assigned to the identity continuation. The valid combination of τ , µ, and
τ ′ is derived from the definition of the identity continuation, repeated below:

λvτ . λtµ. case t of () ⇒ vτ ′
| k ⇒ (k v ())τ ′

When t is an empty trail () of type •, the return value of kid is v, which has type τ . Since
the expected return type of kid is τ ′, we need the equality τ ≡ τ ′.

When t is a non-empty trail k of type τ1 → µ → τ1
′, the return value of kid is the result

of the application k v (), which has type τ1
′. Since the expected return type of kid is τ ′, we

need the equality τ ′ ≡ τ1
′. Furthermore, since k must accept v and () as arguments, we need

the equalities τ ≡ τ1 and µ ≡ •.
We define is-id-trail as an encoding of these constraints, and in the rule (Prompt), we

use is-id-trail(β, µid, β′) to constrain the type of the continuation of e. Now, it is statically
guaranteed that e can be safely evaluated in an empty context.

FSCD 2021

12:10 A Functional Abstraction of Typed Invocation Contexts

Syntax of Types

τ, α, β ::= ι | τ → τ ⟨µα⟩ α ⟨µβ⟩ β Expression Types
µ, µα, µβ ::= • | τ → ⟨µ⟩ τ Trail Types

Typing Rules Γ ⊢ e : τ ⟨µα⟩ α ⟨µβ⟩ β

c : ι ∈ Σ
Γ ⊢ c : ι ⟨µα⟩ α ⟨µα⟩ α

(Const)
x : τ ∈ Γ

Γ ⊢ x : τ ⟨µα⟩ α ⟨µα⟩ α
(Var)

Γ, x : τ1 ⊢ e : τ2 ⟨µα⟩ α ⟨µβ⟩ β

Γ ⊢ λx. e : (τ1 → τ2 ⟨µα⟩ α ⟨µβ⟩ β) ⟨µγ⟩ γ ⟨µγ⟩ γ
(Abs)

Γ ⊢ e1 : (τ1 → τ2 ⟨µα⟩ α ⟨µβ⟩ β) ⟨µγ⟩ γ ⟨µδ⟩ δ

Γ ⊢ e2 : τ1 ⟨µβ⟩ β ⟨µγ⟩ γ

Γ ⊢ e1 e2 : τ2 ⟨µα⟩ α ⟨µδ⟩ δ
(App)

Γ, k : τ → τ1 ⟨µ1⟩ τ1
′ ⟨µ2⟩ α ⊢ e : γ ⟨µid⟩ γ′ ⟨•⟩ β

is-id-trail(γ, µid, γ′)
compatible((τ1 → ⟨µ1⟩ τ1

′), µ2, µ0)
compatible(µβ , µ0, µα)

Γ ⊢ Fk. e : τ ⟨µα⟩ α ⟨µβ⟩ β
(Control)

Γ ⊢ e : β ⟨µid⟩ β′ ⟨•⟩ τ

is-id-trail(β, µid, β′)
Γ ⊢ ⟨e⟩ : τ ⟨µα⟩ α ⟨µα⟩ α

(Prompt)

Auxiliary Relations

is-id-trail(τ, •, τ ′) = τ ≡ τ ′

(first branch of kid in Figure 3)
is-id-trail(τ, (τ1 → ⟨µ⟩ τ ′

1), τ ′) = (τ ≡ τ1) ∧ (τ ′ ≡ τ ′
1) ∧ (µ ≡ •)

(second branch of kid in Figure 3)

compatible(•, µ2, µ3) = µ2 ≡ µ3

(first branch of @ in Figure 3)
compatible(µ1, •, µ3) = µ1 ≡ µ3

(first branch of :: in Figure 3)
compatible((τ1 → ⟨µ1⟩ τ ′

1), µ2, •) = ⊥
(no counterpart in Figure 3)

compatible((τ1 → ⟨µ1⟩ τ ′
1), µ2, (τ3 → ⟨µ3⟩ τ ′

3)) = (τ1 ≡ τ3) ∧ (τ ′
1 ≡ τ ′

3) ∧ (compatible(µ2, µ3, µ1))
(second branch of :: in Figure 3)

Figure 4 Type System of λF . We assume a global signature Σ mapping constants to base types.

Y. Cong, C. Ishio, K. Honda, and K. Asai 12:11

Control. Lastly, we apply the same method to control. Here is the annotated CPS
translation:

λkτ→µα→α. λtµβ . JeK(γ→µid→γ′)→•→β [λxτ . λk′τ1→µ1→τ1
′

. λt′µ2 . k x (t @ (k′ :: t′)µ0)/c] kid ()

As the body e of control is evaluated in a prompt clause, we again have an empty initial
trail type for e, and we know that the types γ, µid, and γ′ must satisfy the is-id-trail relation.
What is left is to ensure that the composition of contexts in t @ (k′ :: t′) is type-safe. In
our type system, we use a relation compatible(µ1, µ2, µ3) to ensure this type safety. The
relation holds when composing a context of type µ1 and another context of type µ2 results
in a context of type µ3. Intuitively, the relation can be thought of as an addition over trail
types, and the valid combination of µ1, µ2, and µ3 is derived from the definition of the @
and :: functions.

tµ1 @ t′µ2 = case t of () ⇒ t′µ3 | k ⇒ (k :: t′)µ3

kτ1→µ1→τ1
′

:: tµ2 = case t of () ⇒ kτ3→µ3→τ3
′

| k′ ⇒ (λv. λt′. k v (k′ :: t′))τ3→µ3→τ3
′

The first clause of @ and that of :: are straightforward: they tell us that the empty trail
type • serves as the left and right identity of the addition.

The second clause of :: requires more careful reasoning. The return value of this case is
the result of the application k v (k′ :: t′), which has type τ1

′. Since the expected return type
of :: is τ3

′, we need the equality τ1
′ ≡ τ3

′. Moreover, since k must accept v and k′ :: t′ as
arguments, we need the equality τ1 ≡ τ3, as well as a recursive use of compatible, where the
third type is µ1.

The definition of @ and :: further tells us that, when either of their arguments is non-
empty, the result of composition cannot be an empty trail. In terms of types, this can be
rephrased as: when one of µ1 and µ2 is an arrow type, µ3 cannot be the empty trail type.

We define compatible as an encoding of these constraints, and in the (Control) rule, we
use two instances of this relation to constrain the type of contexts appearing in t @ (k′ :: t′).
Among the two instances, the first one compatible((τ1 → ⟨µ1⟩ τ1

′), µ2, µ0) states that consing
k′ to t′ is type-safe, and the result has type µ0. The second one compatible(µβ , µ0, µα) states
that appending t to k′ :: t′ is type-safe, and the result has type µα, which is required by the
continuation k of the whole control expression.

Comparison with Previous Work. In the type system of Kameyama and Yonezawa [26],
the typing rules for control and prompt are defined as follows:

Γ, k : τ → ρ, ρ, α/ρ ⊢ e : γ, γ, β/γ

Γ ⊢ Fk. e : τ, α, β/ρ
(Control)

Γ ⊢ e : ρ, ρ, τ/ρ

Γ ⊢ ⟨e⟩ : τ, α, α/σ
(Prompt)

The rules are simpler than the corresponding rules in our type system. In particular, there is
no equivalent of is-id-trail or compatible, since the homogeneous nature of trails makes those
relations trivial. Note that the input and output types shared among invocation contexts
come from the body of prompt, namely the first occurrence of ρ in the premise of (Prompt).

5.4 Typing Motivating Example
We now show that the motivating example discussed in Section 2 is judged well-typed in
λF

5. The well-typedness of the whole program largely relies on the well-typedness of the
two control constructs, so let us look at the typing of these constructs:

5 Our online artifact includes an Agda implementation of this example (exp4 in lambdaf.agda).

FSCD 2021

12:12 A Functional Abstraction of Typed Invocation Contexts

⊢ Fk1. is0 (k1 5) : int ⟨µ1⟩ string ⟨•⟩ string

⊢ Fk2. b2s (k2 8) : int ⟨µ2⟩ string ⟨µ1⟩ string

For brevity, we write µ1 to mean int → ⟨bool → ⟨•⟩ string⟩ string, and µ2 to mean
int → ⟨•⟩ string. We can see how the trail type changes from empty (•), to one that refers
to a future context (µ1), and to one that mentions no further context (µ2). In particular, µ2
is the result of “adding” µ1 and the type of b2s [.]; that is, the invocation of k2 discharges
the future context awaited by is0 [.]. The trail type µ2 serves as the final trail type of the
body of the enclosing prompt, and as it allows us to establish the is-id-trail relation required
by (Prompt), we can conclude that the whole program is well-typed.

6 Properties

The type system of λF enjoys various pleasant properties. First, the type system is sound,
that is, well-typed programs do not go wrong [33]. Following Wright and Felleisen [42], we
prove type soundness via the preservation and progress theorems.

▶ Theorem 1 (Preservation). If Γ ⊢ e : τ ⟨µα⟩ α ⟨µβ⟩ β and e ⇝ e′, then Γ ⊢ e′ :
τ ⟨µα⟩ α ⟨µβ⟩ β.

Proof. The proof is by induction on the typing derivation, and is formalized in Agda
(the Reduce relation in lambdaf-red.agda). Note that, to prove type preservation of the
control reduction (rule (F) in Figure 1), we need to define a set of typing rules for evaluation
contexts. ◀

▶ Theorem 2 (Progress). If • ⊢ e : τ ⟨µα⟩ α ⟨µβ⟩ β, then either (i) e is a value, (ii) e takes a
step, or (iii) e is a stuck term of the form F [Fk. e′].

Proof. The proof is by induction on the typing derivation. The third alternative is commonly
found in the progress property of effectful calculi [3, 43]. We can remove this alternative
by refining our type system to one that can decide the purity of an expression; with this
refinement, we can state the usual progress theorem for pure expressions (which include
top-level programs). ◀

▶ Theorem 3 (Type Soundness). If • ⊢ ⟨e⟩ : τ ⟨µα⟩ α ⟨µα⟩ α, then evaluation of ⟨e⟩ does not
get stuck.

Proof. The statement is a direct implication of preservation and progress. The need for the
top-level prompt stems from the fact that a well-typed, closed expression may be a stuck
term (corresponding to the third clause of the progress theorem). ◀

Secondly, our CPS translation preserves typing, i.e., it converts a well-typed λF expression
into a well-typed λC expression. To establish this theorem, we define the type system of λC

(Figure 5) and a CPS translation ∗ on λF types (Figure 6).
Let us elaborate on rule (Case) in Figure 5, which is the only non-trivial typing rule.

This rule is used to type the case analysis construct in the three auxiliary functions of
the CPS translation, namely kid, @, and ::. Unlike the standard typing rule for case
analysis, rule (Case) type-checks the two branches using equality assumptions µ ≡ • and

Y. Cong, C. Ishio, K. Honda, and K. Asai 12:13

Syntax of Types

τ = ι | τ → τ | •

Typing Rules

c : ι ∈ Σ
Γ ⊢ x : ι

(Const)
x : τ ∈ Γ
Γ ⊢ x : τ

(Var)
Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx. e : τ1 → τ2
(Abs)

Γ ⊢ () : •
(Unit)

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2
(App)

Γ ⊢ t : µ∗ Γ, µ ≡ • ⊢ e1 : τ

∀τ1, µ1, τ1
′. Γ, k : µ∗, µ ≡ τ1 → ⟨µ1⟩ τ1

′ ⊢ e2 : τ

Γ ⊢ case t of () ⇒ e1 | k ⇒ e2 : τ
(Case)

Figure 5 Type System of λC . We assume a global signature Σ mapping constants to base types.

µ ≡ τ1 → ⟨µ1⟩ τ1
′6. These assumptions, together with the is-id-trail and compatible relations,

allow us to fill in the gap between the expected and actual return types. To see how the
assumptions work, consider the typing of kid:

λvτ . λtµ. case t of () ⇒ vτ ′
| k ⇒ (k v ())τ ′

In the first branch, we see an inconsistency between the expected return type τ ′ and the
actual return type τ . However, by the typing rules defined in Figure 4, we know that kid

is used only when the relation is-id-trail(τ, µ, τ ′) holds, and that if µ ≡ •, we have τ ≡ τ ′.
The equality assumption µ ≡ • made available by rule (Case) allows us to derive τ ≡ τ ′

and conclude that the first branch has the correct type. Similarly, in the second branch, we
use the equality assumption µ ≡ τ1 → ⟨µ1⟩ τ ′

1 to derive τ ≡ τ1, τ ′ ≡ τ ′
1, and µ1 ≡ •, which

imply the well-typedness of the application k v (). The @ and :: functions can be typed in
an analogous way.

▶ Theorem 4 (Type Preservation of CPS Translation). If Γ ⊢ e : τ ⟨µα⟩ α ⟨µβ⟩ β in λF , then
Γ∗ ⊢ JeK : (τ∗ → µ∗

α → α∗) → µ∗
β → β∗ in λC .

Proof. The proof is by induction on the typing derivation, and is formalized in Agda (the
cpse function in cps.agda). With the carefully designed rule for case analysis, we can prove
the statement in a straightforward manner, as our type system is directly derived from the
CPS translation. ◀

Thirdly, and most interestingly, our type system enjoys termination.

6 The use of equality assumptions in (Case) is inspired by dependent pattern matching [12] available
in dependently typed languages. Our case analysis is weaker than the dependent variant, in that the
return type only depends on the type of the scrutinee, not on the scrutinee itself.

FSCD 2021

12:14 A Functional Abstraction of Typed Invocation Contexts

Translation of Expression Types

ι∗ = ι

(τ1 → τ2 ⟨µα⟩ α ⟨µβ⟩ β)∗ = τ∗
1 → (τ∗

2 → µ∗
α → α∗) → µ∗

β → β∗

Translation of Trail Types

•∗ = •
(τ → ⟨µ⟩ τ ′)∗ = τ∗ → µ∗ → τ ′∗

Figure 6 CPS Translation of λF Types.

▶ Theorem 5 (Termination). If Γ ⊢ e : τ ⟨•⟩ α ⟨•⟩ α, then there exists some value v such that
e⇝∗ v, where ⇝∗ is the reflexive, transitive closure of ⇝ defined in Figure 1.

Proof. The statement is witnessed by a CPS interpreter of λF implemented in Agda (the
go function in lambdaf.agda). Since every well-typed Agda program terminates, and
since our interpreter is judged well-typed, we know that evaluation of λF expressions must
terminate. ◀

The termination property is unique to our type system. In the existing type system of
Kameyama and Yonezawa [26], it is possible to write a well-typed program that does not
evaluate to a value, as shown below:

⟨(Fk1. k1 1; k1 1); (Fk2. k2 1; k2 1)⟩
= ⟨k1 1; k1 1 [λx. x; (Fk2. k2 1; k2 1)/k1]⟩
= ⟨(Fk2. k2 1; k2 1); ((λx. x; (Fk2. k2 1; k2 1)) 1)⟩
= ⟨k2 1; k2 1 [λy. y; (λx. x; (Fk2. k2 1; k2 1)) 1/k2]⟩
= ⟨(Fk2. k2 1; k2 1); (λy. y; (λx. x; (Fk2. k2 1; k2 1)) 1) 1⟩
= ...

We see that the two succeeding invocations of captured continuations result in duplication of
control, leading to a looping behavior.

The well-typedness of the above program in Kameyama and Yonezawa’s type system is
due to the limited expressiveness of trail types. More precisely, their trail types are mere
expression types, which carry no information about the type of contexts to be composed in
the future. In our type system, on the other hand, trail types explicitly mention the type of
future contexts. This prevents us from duplicating expressions forever, which in turn allows
us to statically reject the above looping program.

7 Related Work

Variations of Control Operators. There are four variants of delimited control operators
in the style of control and prompt, differing in whether the control operator keeps the
surrounding delimiter, and whether it inserts a delimiter into the captured continuation [16].

Y. Cong, C. Ishio, K. Honda, and K. Asai 12:15

Among those variants, shift and reset [15] are called static, as the extent of a captured
continuation can always be determined from the lexical structure of the program. Other
variants are all dynamic, since the control operator may capture the invocation contexts of
previously captured continuations (as control does), or the meta-contexts outside of the
original innermost delimiter (as shift0 [32] does), or both kinds of contexts (as control0 [16]
does). Dynamic control operators all have a semantics that involves a trail-like structure,
containing the contexts beyond the lexically enclosing one.

Type Systems for Control Operators. The CPS-based approach to designing type systems
has been applied to several variants of delimited control operators, including shift/reset [14,
3], control/prompt [26], and shift0/prompt0 [32]. While Danvy and Filinski [14] consider
all expressions as effectful (like we do), subsequent studies distinguish between pure and
effectful expressions. This is typically done by not mentioning the answer type (and trail
type) of syntactically pure expressions. Having pure expressions makes more programs
typable [3, 26, 32], and allows more efficient compilation via a selective CPS translation [37,
32, 4].

Algebraic Effects and Handlers. In the past decade, algebraic effects and handlers [6, 36]
have become a popular tool for handling delimited continuations. A prominent feature of
effect handlers is that a captured continuation is used at the delimiter site. This makes
it unnecessary to keep track of answer types in the type system, as we can decide within
a handler whether the use of a continuation is consistent with the actual context. The
irrelevance of answer types in turn makes the connection between the type system and CPS
translation looser. Indeed, type systems of effect handlers [5, 27] existed before their CPS
semantics [29, 24, 23]. Also, type-preserving CPS translation of effect handlers is an open
problem in the community [23].

8 Conclusion and Future Work

In this paper, we show how to derive a general type system for the control and prompt
operators. The main idea is to identify all the typing constraints from a CPS translation,
where trails are represented as a composition of functions.

The present study is part of a long-term project on formalizing delimited control facilities
whose theory is not yet fully developed. In the rest of this section, we describe several
directions for future work.

Implementation. Having designed a type system for control and prompt, a natural next
step is to implement a language based on the type system. To make the language practical,
we need to address the following challenges. First, we must extend our type system with a
form of effect polymorphism or subtyping [26, 32], in order to allow a function or continuation
to be called in different contexts. We are currently attempting to adapt Kameyama and
Yonezawa’s treatment of trail polymorphism to a setting where every typing judgment carries
two trail types. Second, we need to design an algorithm for type inference and type checking.
We conjecture that answer types can be left implicit in the user program, because it is the
case in a calculus featuring shift and reset [3]. On the other hand, we anticipate that some
of the trail types need to be explicitly given by the user, as it does not seem always possible
to synthesize the intermediate trail types (µ0, τ1 → ⟨µ1⟩ τ1

′, and µ2) in the (Control) rule.
Once we have done these, we will develop an implementation (possibly as an extension of
OchaCaml [30]) and experiment with various programs from the continuations literature.

FSCD 2021

12:16 A Functional Abstraction of Typed Invocation Contexts

Equational Theory. The semantics of control and prompt is currently given in the form of
a CPS translation or an abstract machine [40, 9]. A more direct approach to specifying the
semantics of these operators is to establish an equational theory, that is, we identify a set of
equations that are sound and complete with respect to the existing semantics. Such equations
are particularly useful for compilation: for instance, they enable converting an optimization
in a CPS compiler into a rewrite in a direct-style (DS) program [38]. We intend to develop
an equational theory for control and prompt, following previous studies on call/cc [38],
shift/reset [25], and shift0/reset0 [31].

Reflection. An equational theory can be strengthened to a reflection [39] by defining a DS
translation that serves as a left inverse of the CPS translation. Having a reflection means
every reduction in the DS calculus has a corresponding reduction in the CPS calculus, and
vice versa. We seek to establish a reflection for control and prompt, by extending Biernacki
et al.’s [11] reflection for shift and reset.

Control0/Prompt0 and Shallow Effect Handlers. The control0 and prompt0 operators
are a variation of control and prompt that remove the matching delimiter upon capturing
of a continuation (which is a feature of shift0 and reset0). We plan to formalize a typed
calculus of control0/prompt0, as well as their equational theory, by combining the insights
from our work on control/prompt and previous studies on shift0/reset0 [32, 31]. As shown
by Piróg et al. [35], there exists a pair of macro translations [17] between control0/prompt0
and shallow effect handlers [22]. Therefore, an equational theory for control0/prompt0
could potentially serve as a stepping stone to optimization of shallow handlers, which has
not yet been explored [43].

References
1 Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional corres-

pondence between evaluators and abstract machines. In Proceedings of the 5th ACM SIGPLAN
International Conference on Principles and Practice of Declaritive Programming, PPDP ’03,
pages 8–19, New York, NY, USA, 2003. ACM. doi:10.1145/888251.888254.

2 Kenichi Asai, Youyou Cong, and Chiaki Ishio. A functional abstraction of typed trails.
Short paper presented at the ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation (PEPM 2021), 2021.

3 Kenichi Asai and Yukiyoshi Kameyama. Polymorphic delimited continuations. In Proceedings
of the 5th Asian Conference on Programming Languages and Systems, APLAS’07, pages
239–254, Berlin, Heidelberg, 2007. Springer-Verlag.

4 Kenichi Asai and Chihiro Uehara. Selective CPS transformation for shift and reset. In
Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
PEPM ’18, pages 40–52, New York, NY, USA, December 2017. ACM. doi:10.1145/3162069.

5 Andrej Bauer and Matija Pretnar. An effect system for algebraic effects and handlers. In
Reiko Heckel and Stefan Milius, editors, Algebra and Coalgebra in Computer Science, pages
1–16, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

6 Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. Journal
of Logical and Algebraic Methods in Programming, 84(1):108–123, 2015.

7 Malgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational foundation for
delimited continuations in the CPS hierarchy. Logical Methods in Computer Science, 1, 2005.

8 Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. A dynamic continuation-passing style
for dynamic delimited continuations. BRICS Report Series, 13(15), 2006.

https://doi.org/10.1145/888251.888254
https://doi.org/10.1145/3162069

Y. Cong, C. Ishio, K. Honda, and K. Asai 12:17

9 Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. A dynamic continuation-passing
style for dynamic delimited continuations. ACM Trans. Program. Lang. Syst., 38(1), 2015.
doi:10.1145/2794078.

10 Dariusz Biernacki, Olivier Danvy, and Chung-chieh Shan. On the static and dynamic extents
of delimited continuations. Science of Computer Programming, 60(3):274–297, 2006.

11 Dariusz Biernacki, Mateusz Pyzik, and Filip Sieczkowski. A reflection on continuation-
composing style. In Proceedings of 5th International Conference on Formal Structures for
Computation and Deduction, FSCD ’20. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2020.

12 Thierry Coquand. Pattern matching with dependent types. In Proceedings of the Third
Workshop on Logical Frameworks, 1992.

13 Olivier Danvy. Type-directed partial evaluation. In Proceedings of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’96, pages 242–257.
ACM, 1996.

14 Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts. BRICS 89/12,
1989.

15 Olivier Danvy and Andrzej Filinski. Abstracting control. In Proceedings of the 1990 ACM
conference on LISP and functional programming, pages 151–160. ACM, 1990.

16 R. Kent Dyvbig, Simon Peyton Jones, and Amr Sabry. A monadic framework for de-
limited continuations. J. Funct. Program., 17(6):687–730, November 2007. doi:10.1017/
S0956796807006259.

17 Matthias Felleisen. On the expressive power of programming languages. In Selected Papers
from the Symposium on 3rd European Symposium on Programming, ESOP ’90, pages 35–75,
New York, NY, USA, 1991. Elsevier North-Holland, Inc.

18 Mattias Felleisen. The theory and practice of first-class prompts. In Proceedings of the 15th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’88,
pages 180–190, New York, NY, USA, 1988. ACM. doi:10.1145/73560.73576.

19 Andrzej Filinski. Representing monads. In Proceedings of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’94, pages 446–457, New York,
NY, USA, 1994. ACM. doi:10.1145/174675.178047.

20 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. On the expressive power
of user-defined effects: Effect handlers, monadic reflection, delimited control. Proc. ACM
Program. Lang., 1(ICFP):13:1–13:29, August 2017. doi:10.1145/3110257.

21 Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization of exceptions and control
in ML-like languages. In Proceedings of the Seventh International Conference on Functional
Programming Languages and Computer Architecture, FPCA ’95, pages 12–23, New York, NY,
USA, 1995. ACM. doi:10.1145/224164.224173.

22 Daniel Hillerström and Sam Lindley. Shallow effect handlers. In Asian Symposium on
Programming Languages and Systems, APLAS ’18, pages 415–435. Springer, 2018.

23 Daniel Hillerström, Sam Lindley, and Robert Atkey. Effect handlers via generalised continu-
ations. Journal of Functional Programming, 30, 2020. doi:10.1017/S0956796820000040.

24 Daniel Hillerström, Sam Lindley, Robert Atkey, and KC Sivaramakrishnan. Continuation
passing style for effect handlers. In Proceedings of 2nd International Conference on Formal
Structures for Computation and Deduction, FSCD ’17, pages 18:1–18:19. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2017.

25 Yukiyoshi Kameyama and Masahito Hasegawa. A sound and complete axiomatization of
delimited continuations. In Proceedings of the 8th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’03, pages 177–188. ACM, 2003.

26 Yukiyoshi Kameyama and Takuo Yonezawa. Typed dynamic control operators for delimited
continuations. In International Symposium on Functional and Logic Programming, FLOPS
’08, pages 239–254. Springer, 2008.

FSCD 2021

https://doi.org/10.1145/2794078
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1145/73560.73576
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/3110257
https://doi.org/10.1145/224164.224173
https://doi.org/10.1017/S0956796820000040

12:18 A Functional Abstraction of Typed Invocation Contexts

27 Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In Proceedings of the
18th ACM SIGPLAN International Conference on Functional Programming, ICFP ’13, pages
145–158, New York, NY, USA, 2013. ACM. doi:10.1145/2500365.2500590.

28 Oleg Kiselyov and K. C. Sivaramakrishnan. Eff directly in ocaml. In ML Workshop, 2016.
29 Daan Leijen. Type directed compilation of row-typed algebraic effects. In Proceedings of the

44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL ’17, pages
486–499, New York, NY, USA, 2017. ACM. doi:10.1145/3009837.3009872.

30 Moe Masuko and Kenichi Asai. Caml Light+ shift/reset= Caml Shift. In Theory and Practice
of Delimited Continuations, TPDC ’11, pages 33–46, 2011.

31 Marek Materzok. Axiomatizing subtyped delimited continuations. In Computer Science Logic
2013, CSL 2013. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

32 Marek Materzok and Dariusz Biernacki. Subtyping delimited continuations. In Proceedings of
the 16th ACM SIGPLAN International Conference on Functional Programming, ICFP ’11,
pages 81–93, New York, NY, USA, 2011. ACM. doi:10.1145/2034773.2034786.

33 Robin Milner. A theory of type polymorphism in programming. Journal of computer and
system sciences, 17(3):348–375, 1978.

34 Ulf Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Chalmers University of Technology, 2007.

35 Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Typed equivalence of effect handlers and
delimited control. In 4th International Conference on Formal Structures for Computation and
Deduction (FSCD 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

36 Gordon Plotkin and Matija Pretnar. Handlers of algebraic effects. In European Symposium on
Programming, ESOP ’09, pages 80–94. Springer, 2009.

37 Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing first-class polymorphic delimited
continuations by a type-directed selective CPS-transform. In Proceedings of the 14th ACM
SIGPLAN International Conference on Functional Programming, ICFP ’09, pages 317–328,
New York, NY, USA, 2009. ACM. doi:10.1145/1596550.1596596.

38 Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style.
Lisp and symbolic computation, 6(3):289–360, 1993.

39 Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM transactions on programming
languages and systems (TOPLAS), 19(6):916–941, 1997.

40 Chung-chieh Shan. A static simulation of dynamic delimited control. Higher-Order and
Symbolic Computation, 20(4):371–401, 2007.

41 Fei Wang, Daniel Zheng, James Decker, Xilun Wu, Grégory M Essertel, and Tiark Rompf.
Demystifying differentiable programming: Shift/reset the penultimate backpropagator. Pro-
ceedings of the ACM on Programming Languages, 3(ICFP):1–31, 2019.

42 Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and computation, 115(1):38–94, 1994.

43 Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp Schuster, and
Daan Leijen. Effect handlers, evidently. Proceedings of the ACM on Programming Languages,
4(ICFP):1–29, 2020. doi:10.1145/3408981.

https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/2034773.2034786
https://doi.org/10.1145/1596550.1596596
https://doi.org/10.1145/3408981

Beth Semantics and Labelled Deduction for
Intuitionistic Sentential Calculus with Identity
Didier Galmiche !

Université de Lorraine, CNRS, LORIA, Nancy, France

Marta Gawek !

Université de Lorraine, CNRS, LORIA, Nancy, France

Daniel Méry !

Université de Lorraine, CNRS, LORIA, Nancy, France

Abstract
In this paper we consider the intuitionistic sentential calculus with Suszko’s identity (ISCI). After
recalling the basic concepts of the logic and its associated Hilbert proof system, we introduce a
new sound and complete class of models for ISCI which can be viewed as algebraic counterparts
(and extensions) of sheaf-theoretic topological models of intuitionistic logic. We use this new class
of models, called Beth semantics for ISCI, to derive a first labelled sequent calculus and show its
adequacy w.r.t. the standard Hilbert axiomatization of ISCI. This labelled proof system, like all
other current proof systems for ISCI that we know of, does not enjoy the subformula property,
which is problematic for achieving termination. We therefore introduce a second labelled sequent
calculus in which the standard rules for identity are replaced with new special rules and show that
this second calculus admits cut-elimination. Finally, using a key regularity property of the forcing
relation in Beth models, we show that the eigenvariable condition can be dropped, thus leading to
the termination and decidability results.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Algebraic Semantics, Beth Models, Labelled Deduction, Intuitionistic Logic

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.13

1 Introduction

In this paper we consider the intuitionistic sentential calculus with identity (ISCI) which
extends intuitionistic logic with Suszko’s identity operator ≈ introduced in [12] for non-
Fregean logics, and studied in the context of classical logic in [9] and [1].

Under the usual Fregean interpretation, the question of the equivalence of two formulas
reduces to the problem of asking whether or not they have the same logical value. In presence
of the non-truth functional identity operator, the rejection of the Fregean axiom makes
it possible for two logically equivalent formulas to be considered non-identical in Suszko’s
sense. The philosophical motivation behind the Sentential Calculus with Identity (SCI) is
related to the ontology of situations. In classical logic, only two situations are possible: truth
and falsity, and truth (resp. falsity) is described and witnessed by any true (resp. false)
proposition. According to [1], this is unfortunate and could be remedied by allowing a new
identity connective ≈ to describe and witness the fact that two propositions denote the same
situation. From this point of view, SCI can be considered as a generalization of classical logic
in which we assume that there are more than (and at least) two different situations [7, 9].

In this paper, our aim is to revisit the interpretation of the identity connective on the
grounds of intuitionistic logic [3] and to propose a new labelled sequent calculus with good
properties like termination from which we can obtain the decidability of the logic. Related
works include sequent calculi for both the classical and intuitionistic variants of SCI [2]. Such
sequent calculi are obtained following the strategy described in [10] and do not have the

© Didier Galmiche, Marta Gawek, and Daniel Méry;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 13; pp. 13:1–13:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:didier.galmiche@loria.fr
mailto:marta.gawek@loria.fr
mailto:daniel.mery@loria.fr
https://doi.org/10.4230/LIPIcs.FSCD.2021.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Beth Semantics and Labelled Deduction for ISCI

subformula property. They have been compared with other proof systems for SCI [6, 13]
but cannot lead to a decidability procedure for SCI [2]. In the case of the intuitionistic
version ISCI, there exists an initial algebraic semantics that combines the ideas of the matrix
semantics for sentential calculi with the Kripke semantics of intuitionistic logic. An Hilbert
proof system is provided in [9]. A Kripke semantics for ISCI is introduced in [3] along with a
sequent calculus for which cut elimination holds. However, since the sequent calculus is not
analytic, the cut elimination theorem does not provide a decidability argument.

In Section 2 we introduce ISCI and its standard Hilbert calculus HISCI. In Section 3,
we propose a new class of models for ISCI, called Beth semantics, which can be viewed as
algebraic counterparts (and extensions) of sheaf-theoretic topological models of intuitionistic
logic. We first show that general Beth models are complete w.r.t. HISCI (Th. 11). Then, we
define the more specific class of regular Beth models and show that they are also complete
w.r.t. HISCI (Th. 14). In Section 4, we introduce a first labelled calculus L1ec

ISCI which is proved
complete w.r.t. HISCI (Th. 22) and also w.r.t. Beth models (Th. 23). In Section 5, we derive a
second labelled calculus L2ec

ISCI with new rules for identity and show that L2ec
ISCI is also complete

w.r.t. HISCI (Th. 25) and w.r.t. Beth models (Th. 26), but more interestingly, we show that
any L1ec

ISCI-proof can be translated into an L2ec
ISCI-proof (Th. 27). Moreover, we show that cut

is admissible in L2ec
ISCI, leading to the cut-free labelled calculus L2e

ISCI (Th. 33). In Section 6,
we derive L2

ISCI, a liberalized variant of L2e
ISCI in which the eigenvariable condition can be

dropped. We show the soundness of L2
ISCI w.r.t. regular Beth models (Th. 40), which implies

the soundness of regular Beth models w.r.t. HISCI and the soundness of all our labelled calculi
w.r.t. regular Beth models, as depicted and summarized in the picture below

⊨A ⊢HISCI A
Th. 11

⊨r A

⊢L1ec
ISCI ATh. 22 ⊢L2ec

ISCI ATh. 27 ⊢L2e
ISCI ATh. 33 ⊢L2

ISCI ATh. 34

Th. 40Th. 14

Finally, we discuss and give arguments for the termination of L2
ISCI, from which we deduce

the decidability of ISCI.

2 Intuitionistic Sentential Calculus with Identity

In this section, we recall the basic notions of intuitionistic sentential calculus with Suszko’s
identity (ISCI) [9, 12]. ISCI extends propositional intuitionistic logic by adding a set of
axioms that formalizes the non-truth functional nature of the identity connective ≈. The
Hilbert-style system for ISCI [3, 9] is introduced and illustrated with examples.

▶ Definition 1. Let P = { p, q, . . . } be a countable set of propositional letters. The formulas
of ISCI, the set of which is denoted F, are given by the grammar:

A ::= P | ⊥ | A ∧ A | A ∨ A | A ⊃ A | A ≈ A

Formulas of the form A ≈ B are called equations. We write F/≈ for the restriction of F
to equations. Negation ¬A and truth ⊤ are respectively defined as A ⊃ ⊥ and ⊥ ⊃ ⊥.
To reduce the amount of parentheses, we interpret connectives up to left associativity
according to the following strictly decreasing order of precedence: ¬, ≈, ∧, ∨, ⊃. Therefore,
A ∧ B ∧ A ∨ C ⊃ ¬A ≈ B ⊃ C means ((((A ∧ B) ∧ A) ∨ C) ⊃ ((¬A) ≈ B)) ⊃ C.

ISCI can be axiomatized by adding the four identity axioms described in Figure 1 to
any axiom schemata for intuitionistic logic (IL). We call “HISCI” the Hilbert proof system
consisting of the four axioms for identity, the ten axioms for IL and the rule of modus

D. Galmiche, M. Gawek, and D. Méry 13:3

(≈1) A ≈ A
(≈2) (A ≈ B) ⊃ (¬A ≈ ¬B)
(≈3) (A ≈ B) ⊃ (B ⊃ A)
(≈4) (A ≈ B) ∧ (C ≈ D) ⊃ (A ⊗ C) ≈ (B ⊗ D) where ⊗ ∈ { ∧, ∨, ⊃, ≈ }

(IL1) A ⊃ (B ⊃ A) (IL2) (A ⊃ B) ⊃ ((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C))
(IL3) A ⊃ (B ⊃ (A ∧ B)) (IL4) (A ∧ B) ⊃ A
(IL5) (A ∧ B) ⊃ B (IL6) (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C))
(IL7) A ⊃ (A ∨ B) (IL8) B ⊃ (A ∨ B)
(IL9) (A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A) (IL10) ¬A ⊃ (A ⊃ B)
(MP) From A and A ⊃ B deduce B.

Figure 1 Axioms for ISCI.

(1) A ≈ B assumption
(2) B ≈ B ≈1

(3) ((B ≈ B) ∧ (A ≈ B)) ⊃ ((B ≈ A) ≈ (B ≈ B)) ≈4

(4) (B ≈ B) ⊃ ((A ≈ B) ⊃ ((B ≈ B) ∧ (A ≈ B))) IL3

(5) (A ≈ B) ⊃ ((B ≈ B) ∧ (A ≈ B)) MP 2, 4
(6) (B ≈ B) ∧ (A ≈ B) MP 1, 5
(7) (B ≈ A) ≈ (B ≈ B) MP 3, 6
(8) ((B ≈ A) ≈ (B ≈ B)) ⊃ ((B ≈ B) ⊃ (B ≈ A)) ≈3

(9) (B ≈ B) ⊃ (B ≈ A) MP 7, 8
(10) B ≈ A MP 2, 9

Figure 2 Proof of ≈ - symmetry: A ≈ B ⊢HISCI B ≈ A.

ponens. We write S ⊢HISCI B to mean that a formula B is derivable in HISCI from a finite set
S = { A1, . . . , An } of assumptions. Whenever S is empty, B is called a thesis or a theorem of
HISCI and we write ⊢HISCI B instead of ∅ ⊢HISCI B. Let us note that ∅ ⊢HISCI B iff ⊤ ⊢HISCI B and
that the deduction theorem holds for HISCI, i.e. A1, . . . , An ⊢HISCI B iff ⊢HISCI A1 ∧ . . . ∧ An ⊃ B.

Figure 2 and Figure 3 show that identity is a symmetric and transitive connective.

3 Beth Semantics for ISCI

In this section we propose a new class of models, which we call Beth semantics for ISCI. Let
us recall that there already exists an algebraic semantics for ISCI [9]. A Kripke semantics
has also been recently investigated in [3]. Kripke-style semantics are usually better suited to
the construction of labelled proof systems than algebraic semantics since the forcing relation
enables an easy interpretation of a labelled formula A : x as ρ(x) ⊩ A, where ρ(x) is the
denotation of the label x in some suitable class of models. Kripke models have succeeded
in becoming the most popular forcing semantics for intuitionistic logic. One reason for this
success is their very natural interpretation of disjunction as m ⊩A ∨ B iff m ⊩A or m ⊩ B,
whereas Beth and topological models require more complex notions such as bars and covers.

The models we propose in this section interpret disjunctions in a way which is similar
to their interpretation in (sheaf-theoretic) topogical models of intuitionistic logic, but in
the more algebraic context of distributive bounded lattices (Heyting algebras). While we
pay the price of losing the very natural Kripke interpretation of disjunction, we gain a
regularity property that allows us to build a labelled proof system that does not require any
eigenvariable conditions, thus opening the way for simpler termination arguments.

▶ Definition 2. Let M be a set of elements, called worlds, such that ω, π ∈ M and ω ̸= π.

FSCD 2021

13:4 Beth Semantics and Labelled Deduction for ISCI

(1) A ≈ B assumption
(2) B ≈ C assumption
(3) (A ≈ B) ⊃ (B ≈ A) ≈ - symmetry
(4) B ≈ A MP 1, 3
(5) (B ≈ A) ⊃ ((B ≈ C) ⊃ ((B ≈ A) ∧ (B ≈ C))) IL3

(6) (B ≈ C) ⊃ ((B ≈ A) ∧ (B ≈ C)) MP 4, 5
(7) (B ≈ A) ∧ (B ≈ C) MP 3, 6
(8) ((B ≈ A) ∧ (B ≈ C)) ⊃ ((B ≈ B) ≈ (A ≈ C)) ≈4

(9) (B ≈ B) ≈ (A ≈ C) MP 7, 8
(10) (B ≈ B) ≈ (A ≈ C) ⊃ (A ≈ C) ≈ (B ≈ B) ≈ - symmetry
(11) (A ≈ C) ≈ (B ≈ B) MP 9, 10
(12) ((A ≈ C) ≈ (B ≈ B)) ⊃ ((B ≈ B) ⊃ (A ≈ C)) ≈3

(13) (B ≈ B) ⊃ (A ≈ C) MP 11, 12
(14) B ≈ B ≈1

(15) A ≈ C MP 13, 14

Figure 3 Proof of ≈ - transitivity: (A ≈ B), (B ≈ C) ⊢HISCI A ≈ C.

A Beth frame is a bounded distributive lattice F = (M,⩽, ⊔, ω, ⊓, π) with ω and π as least
and greatest elements respectively.

▶ Definition 3. A Beth pre-model is a triple M = (F , [·],⊩), where F is a Beth frame, and
[·] is a valuation function from M to ℘(P ∪ F/≈), such that for all worlds m and n:
(Mπ) [π] = P ∪ F/≈,
(MK) if m ⩽ n then [m] ⊆ [n],
(M≈1) A ≈ A ∈ [m],
(M≈2) if A ≈ B ∈ [m] then ¬A ≈ ¬B ∈ [m],
(M≈4) for all ⊗ ∈ { ∧, ∨, ⊃, ≈ }, if A ≈ B, C ≈ D ∈ [m] then A ⊗ C ≈ B ⊗ D ∈ [m].
The forcing relation ⊩ is inductively defined as the smallest relation on M × F such that:

m ⊩ p iff p ∈ [m],
m ⊩A ≈ B iff A ≈ B ∈ [m],
m ⊩⊥ iff π ⩽ m,
m ⊩A ∧ B iff m ⊩A and m ⊩ B,
m ⊩A ⊃ B iff for all worlds n, if n ⊩A then m ⊔ n ⊩ B,
m ⊩A ∨ B iff there exist two worlds n1, n2 such that n1 ⊓ n2 ⩽ m, n1 ⊩A and n2 ⊩ B.

A Beth-model is a Beth pre-model in which ⊩ satisfies the following admissibility condition:
(M≈3) if m ⊩A ≈ B then m ⊩ B ⊃ A.

As usual, a formula A is true (or satisfied) in a Beth model M, written M ⊨ A, iff
m ⊩ A for all worlds m in M (or equivalently, iff ω ⊩ A) and valid, written ⊨A, iff it is
true in all Beth models. It is routine to show that Mπ and MK extend from propositional
letters and equations to all formulas. MK is the well-known Kripke monotonicity condition,
which applies to equations in our setting (see [3] for a discussion on alternative choices). Let
us remark that Mπ implies that all Beth models have a world π that forces all formulas,
including inconsistency (⊥).

3.1 Completeness of Beth models
A standard way of proving the completeness of a given semantics is to build a canonical
model that relates the denotation of formulas to a derivability relation that syntactically
defines the logic under consideration (often an Hilbert proof system). Algebraic semantics are

D. Galmiche, M. Gawek, and D. Méry 13:5

usually obtained through Lindenbaum-Tarski constructions that mostly rely on equivalence
classes of formulas w.r.t. the underlying derivability relation (for ISCI, we would consider
classes such as Ȧ = { B | B ⊢HISCI A and A ⊢HISCI B }). Following an idea of Beth, we replace
equivalence classes with theories of formulas to build a canonical model for ISCI in which the
forcing relation faithfully mimics the derivability relation in HISCI.

▶ Definition 4. The theory At associated with a formula A is the set { B | A ⊢HISCI B }.

Let T denote the set { At | A ∈ F } of theories generated by all formulas of ISCI. Reading
A ⊢HISCI B as “A ⩽ B”, all sets of formulas can be preordered by derivability in HISCI. We
define min(X) as the set { A ∈ X | ∀ B ∈ X, A ⊢HISCI B } of all formulas that are minimal
in X w.r.t. ⊢HISCI. It follows that for all theories X ∈ T, X = At for all A ∈ min(X).
Moreover, for all formulas A, B ∈ F, if X = At = Bt then both A ⊢HISCI B and B ⊢HISCI A.

▶ Definition 5. The canonical Beth frame for ISCI is the structure T = (T, ⊆, ⊔, ⊤t, ⊓, ⊥t),
where for all theories X, Y ∈ T:

X ⊓ Y = X ∩ Y and X ⊔ Y =
⋃

{ (A ∧ B)t | A ∈ min(X), B ∈ min(Y) }.

▶ Lemma 6. For all theories X, Y ∈ T and all formulas A ∈ min(X), B ∈ min(Y), the
canonical Beth frame for ISCI satisfies the following properties:

(a) X ⊓ Y = (A ∨ B)t, (b) X ⊔ Y = (A ∧ B)t, (c) X ⊆ Y iff B ⊢HISCI A.

Proof. Since A ∈ min(X) and B ∈ min(Y) we have both X = At and Y = Bt.
For (a), by definition At ⊓ Bt = At ∩ Bt. Firstly, we show At ∩ Bt ⊆ (A ∨ B)t. If

C ∈ At ∩Bt then A ⊢HISCI C and B ⊢HISCI C, which implies A∨B ⊢HISCI C (by axiom IL6). Thus,
C ∈ (A ∨ B)t. Secondly, we show (A ∨ B)t ⊆ At ∩ Bt. If C ∈ (A ∨ B)t, then A ∨ B ⊢HISCI C.
Since axioms IL7 and IL8 imply A ⊢HISCI A ∨ B and B ⊢HISCI A ∨ B, we have A ⊢HISCI C and
B ⊢HISCI C. Thus, C ∈ At ∩ Bt.

For (b), by definition, (A ∧ B)t ⊆ X ⊔ Y . We show X ⊔ Y ⊆ (A ∧ B)t. If C ∈ X ⊔ Y

then C ∈ (F ∧ G)t for some F ∈ min(X) and some G ∈ min(Y). Since X = At = Ft and
Y = Bt = Gt, we have A ⊢HISCI F and B ⊢HISCI G, which implies A ∧ B ⊢HISCI F ∧ G. By
definition, C ∈ (F ∧ G)t implies F ∧ G ⊢HISCI C. Thus, A ∧ B ⊢HISCI C implies C ∈ (A ∧ B)t.

For (c), we show that B ⊢HISCI A iff At ⊆ Bt. If B ⊢HISCI A then for all C ∈ At, we have
A ⊢HISCI C, from which it follows that B ⊢HISCI C, i.e. C ∈ Bt. Conversely, since A ⊢HISCI A
implies A ∈ At, if At ⊆ Bt then A ∈ Bt, i.e. B ⊢HISCI A. ◀

Lemma 6 shows that, in the canonical Beth frame T , the partial order defined as set
inclusion mimics derivability in HISCI. Moreover, the lattice meet ⊓ and join ⊔ respectively
correspond to disjunction and conjunction in the logic. It then easily follows that T is a
bounded distributive lattice since ∧ and ∨ distribute over one another in the logic. Let us note
that while the meet of two theories coincides with intersection, their join does not coincide
with union since for any two distinct propositional letters p and q, we have p ∧ q ∈ (p ∧ q)t,
but neither p ∧ q ∈ pt, nor p ∧ q ∈ qt (since neither p ⊢HISCI p ∧ q, nor q ⊢HISCI p ∧ q).

▶ Definition 7. The canonical Beth model for ISCI is the triple Mt = (T , [·],⊩), where the
canonical valuation is defined as [X] =

⋃
{ At | A ∈ min(X) } ∩ (P ∪ F/≈) for all X ∈ T.

▶ Lemma 8. The canonical valuation satisfies the conditions of Definition 3 and for all
theories X ∈ T and all formulas A ∈ min(X), [X] = At ∩ (P ∪ F/≈).

FSCD 2021

13:6 Beth Semantics and Labelled Deduction for ISCI

Proof. [X] = At ∩ (P ∪ F/≈) for all A ∈ min(X) follows from the fact that Ct = Dt for all
C, D ∈ min(X), which implies

⋃
{ Bt | B ∈ min(X) } = At for all A ∈ min(X).

Case Mπ: By definition, [⊥t] = { B | B ∈ ⊥t ∩(P ∪ F/≈) }. Since ⊥ ⊢HISCI B for all formulas
B, we have ⊥t = F, which implies ⊥t ∩(P ∪ F/≈) = (P ∪ F/≈) = [⊥t].

Case MK: Suppose we have X, Y ∈ T such that X ⊆ Y , then X = At and Y = Bt

for some A ∈ min(X) and some B ∈ min(Y). Since X ⊆ Y implies At ⊆ Bt, if
C ∈ [X] = At ∩ (P ∪ F/≈), then C ∈ Bt ∩ (P ∪ F/≈) = [Y]. Thus, [X] ⊆ [Y].

The other cases M≈i∈{ 1,2,4 } easily follow from the HISCI axioms ≈i∈{ 1,2,4 }. ◀

▶ Lemma 9. For all X ∈ T, for all A ∈ min(X), X ⊩ B iff At ⊩ B iff B ∈ At iff A ⊢HISCI B.

Proof. By definition of a theory we have B ∈ At iff A ⊢HISCI B. Moreover, since X = At for
all A ∈ min(X), we only need to prove that At ⊩ B iff B ∈ At by structural induction on B.
Base case: B ∈ (P ∪ F/≈). Lemma 8 implies B ∈ [At] iff B ∈ At. Since At ⊩ B iff B ∈ [At]

by Definition 3, At ⊩ B iff B ∈ At.
Case B = B1 ∨ B2:

At ⊩ B1 ∨ B2 ⇔ ∃ C1
t, C2

t. C1
t ⊓ C2

t ⊆ At, C1
t ⊩ B1, C2

t ⊩ B2

⇔ ∃ C1
t, C2

t. (C1 ∨ C2)t ⊆ At, B1 ∈ C1
t, B2 ∈ C2

t Lem. 6, I.H.
⇔ ∃ C1, C2. A ⊢HISCI C1 ∨ C2, C1 ⊢HISCI B1, C2 ⊢HISCI B2 Lem. 6, Def. 4
⇔ A ⊢HISCI B1 ∨ B2 Logic
⇔ B1 ∨ B2 ∈ At Def. 4

Case B = B1 ⊃ B2:
At ⊩ B1 ⊃ B2 ⇔ ∀ Ct. if Ct ⊩ B1 then At ⊔ Ct ⊩ B2

⇔ ∀ Ct. if B1 ∈ Ct then B2 ∈ (A ∧ C)t Lem. 6, I.H.
⇔ ∀ C. if C ⊢HISCI B1 then A ∧ C ⊢HISCI B2 Def. 4
⇔ A ⊢HISCI B1 ⊃ B2 Logic
⇔ B1 ⊃ B2 ∈ At Def. 4

The other cases are similar. ◀

▶ Lemma 10. The canonical Beth model Mt satisfies the admissibility condition M≈3 .

Proof. Any X ∈ T such that X ⊩ A ≈ B entails C ⊢HISCI A ≈ B for all C ∈ min(X) by
Lemma 9, which implies C ⊢HISCI B ⊃ A by axiom (≈3). Thus, X ⊩ B ⊃ A by Lemma 9. ◀

▶ Theorem 11. Beth models for ISCI are complete, i.e., if ⊨A then ⊢HISCI A.

Proof. We show that ⊬HISCI A implies ⊭A. Suppose that ⊬HISCI A, then ⊤ ⊬HISCI A which
implies A ̸∈ ⊤t. By Lemma 9 we get ⊤t ⊮A in Mt, which by definition implies ⊭A. ◀

3.2 Regular Beth Models
We now show that the canonical Beth model for ISCI satisfies a regularity property that is
essential for the termination arguments in Section 6.3.

▶ Definition 12. Let M = (F , [·],⊩) be a Beth model. M is regular iff for all formulas A, if
m⊩A for some world m, then there exists a world mA, called A-minimal, such that mA ⊩A
and for all worlds n, n ⊩A implies mA ⩽ n. We write ⊨r (instead of ⊨) for the restriction
of validity to the class of regular Beth models.

▶ Lemma 13. The canonical model Mt is regular: for all formulas A, At is A-minimal.

Proof. Suppose that Bt⊩A for an arbitrary theory Bt. Then, B ⊢HISCI A by Lemma 9, which
implies At ⊆ Bt by Lemma 6. ◀

D. Galmiche, M. Gawek, and D. Méry 13:7

▶ Theorem 14. Regular Beth models for ISCI are complete: if ⊨r A then ⊢HISCI A.

Proof. The result is an immediate consequence of Lemma 13. ◀

▶ Theorem 15. Regular Beth models for ISCI are sound: if ⊢HISCI A then ⊨r A.

Proof. The result follows from Theorems 22, 27, 33, 34 and 40. ◀

Let us remark that non-regular Beth models are neither sound for ISCI, nor for IL. Indeed,
p ∨ p ⊃ p is a theorem of IL, but ω ⊮ p ∨ p ⊃ p in the Beth model ((M,⩽, ⊔, ω, ⊓, π), [·],⊩),
where M = { ω, m1, m2, π }, m ⩽ n iff m = ω or n = π, [ω] = { A ≈ A | A ∈ F },
[m1] = [m2] = [ω] ∪ { p }, and [π] = P ∪ F/≈.

▶ Theorem 16. In a regular Beth model M, if m ⊩A and n ⊩A then m ⊓ n ⊩A.

Proof. Since M is regular, m⊩A and n⊩A imply the existence of an A-minimal world mA.
Since mA ⩽ m and mA ⩽ n imply mA ⩽ m ⊓ n, m ⊓ n ⊩A by Kripke monotonicity. ◀

4 Labelled Deduction for ISCI

In this section we propose a new labelled sequent calculus, called L1ec
ISCI, which is derived from

the Beth models described in Section 3. The methodology is inspired by and in the spirit
of our works on labelled deduction in BI and bi-intuitionistic logic [4, 5]. Let us note that
there exists a label-free sequent calculus for ISCI [3], built following the strategy described
in [10, 11], which like L1ec

ISCI does not enjoy the subformula property.

4.1 A Labelling Algebra
Let Ln be the set { S | S ⊂ N and |S| = n } of all subsets of N of size (cardinal) n. The set L∗

of label letters is defined as
⋃

n∈N Ln. Let Lu = { ∅,N } be the set of label units, the set L
of labels is then defined as L∗ ∪ Lu. We use the (possibly subscripted or primed) letters
a, b, c to denote labels which are singletons (i.e., elements of L1) and save the letters x, y, z
to denote arbitrary labels. A label x is a sublabel of a label y if x ⊆ y.

We work with a labelling algebra L defined as the lattice (L, ⊆, ∪, ∅, ∩,N), where join ∪

and meet ∩ are standard set union and intersection. We consider that ∪ binds stronger
than ∩ and we shall frequently write xy instead of x ∪ y (xx′ ∩ yy′ should therefore be read as
(x ∪ x′) ∩ (y ∪ y′)). In this paper, we shall only use examples with label letters built from the
subset { 1, . . . , 9 }. Therefore, we shall use the more concise notation 13 to unambiguously
refer to { 1, 3 } (and not to the label letter { 13 }).

4.2 The Labelled Sequent Calculus L1ec
ISCI

▶ Definition 17. A labelled formula is a pair (C, x), written C : x, where C is a formula and
x is a label. A labelled sequent is a pair (Γ, ∆), written Γ ⊢ ∆, where Γ, ∆ are multi-sets of
labelled formulas.

We use the generic notation O(T) to mean that the object T is a subobject of an object O

(for some well defined notion of object inclusion). For example, when S is a set, S(e1, . . . , en)
means that { e1, . . . , en } is a subset of S. Similarly, if F and G are formulas, F(G) means
that G is a subformula of F and if x is a label, x(y) means that y is a sublabel of x. If ∆
is a set or multi-set of labelled formulas, we define x ⊆ ∆ as ∃A : y ∈ ∆ such that x ⊆ y,
which is more shortly written ∆(x). The notation x ⊆ A : y is a shorthand for x ⊆ { A : y }.
A labelled sequent Γ ⊢ ∆ is connected iff x ⊆ ∆ for all A : x ∈ Γ.

FSCD 2021

13:8 Beth Semantics and Labelled Deduction for ISCI

id(x ⊆ y)
Γ(A : x) ⊢ ∆(A : y)

⊥L(x ⊆ y)
Γ(⊥ : x) ⊢ ∆(A : y)

Γ, A : x, B : x ⊢ ∆
∧L

Γ(A ∧ B : x) ⊢ ∆
Γ ⊢ ∆, A : x Γ ⊢ ∆, B : x

∧R
Γ ⊢ ∆(A ∧ B : x)

Γ ⊢ ∆, A : y Γ, B : x ∪ y ⊢ ∆
⊃L(x ∪ y ⊆ ∆)

Γ(A ⊃ B : x) ⊢ ∆
Γ, A : a ⊢ ∆, B : x ∪ a

⊃R(a ̸⊆ Γ ∪ ∆)
Γ ⊢ ∆(A ⊃ B : x)

Γ, A : x ∪ a ⊢ ∆, C : y ∪ a Γ, B : x ∪ b ⊢ ∆, C : y ∪ b
∨L(a ̸= b ̸⊆ Γ ∪ ∆, x ⊆ y)

Γ(A ∨ B : x) ⊢ ∆(C : y)

Γ ⊢ ∆, A : x, B : x
∨R

Γ ⊢ ∆(A ∨ B : x)
Γ ⊢ ∆, C : x C : x, Γ ⊢ ∆

cut(x ⊆ ∆)
Γ ⊢ ∆

Γ, A ≈ A : x ⊢ ∆
≈L1(x ⊆ ∆)

Γ ⊢ ∆

Γ, ¬A ≈ ¬B : x ⊢ ∆
≈L2

Γ(A ≈ B : x) ⊢ ∆
Γ, B ⊃ A : x ⊢ ∆

≈L3
Γ(A ≈ B : x) ⊢ ∆

Γ, A ⊗ C ≈ B ⊗ D : x ⊢ ∆
≈L4

Γ(A ≈ B : x, C ≈ D : x) ⊢ ∆
Γ, A ⊗ A ≈ B ⊗ B : x ⊢ ∆

≈L4′

Γ(A ≈ B : x) ⊢ ∆

Figure 4 Labelled Sequent Calculus L1ec
ISCI.

id
B ≈ B : ∅ ⊢ B ≈ B : ∅

≈L1
⊢ B ≈ B : ∅

id
B ≈ A : 1 ⊢ B ≈ A : 1

⊃L
(B ≈ B) ⊃ (B ≈ A) : 1 ⊢ B ≈ A : 1

≈L3
(B ≈ A) ≈ (B ≈ B) : 1 ⊢ B ≈ A : 1

≈L4B ≈ B : 1, A ≈ B : 1 ⊢ B ≈ A : 1
≈L1A ≈ B : 1 ⊢ B ≈ A : 1 ⊃R

⊢ (A ≈ B) ⊃ (B ≈ A) : ∅

Figure 5 L1ec
ISCI-Proof of ≈-symmetry.

The labelled calculus L1ec
ISCI is given in Figure 4. The only structural rule in L1ec

ISCI is cut. All
lattice properties of Beth models are implicity reflected in our labelling algebra by our choice
of labels as subsets of N. The rules ⊃R and ∨L have eigenvariable (or freshness) conditions
on the label letters a, b they introduce. Since connectedness plays a significant role in our
forthcoming proof of cut elimination, the rules of L1ec

ISCI have been carefully designed so as
to preserve this property from their conclusion to their premise. For instance, the cut rule
has a side condition that requires the label of the cut formula to occur as a sublabel on the
right-hand side of the conclusion.

▶ Definition 18. A formula A is a theorem of (or derivable in) L1ec
ISCI, written ⊢L1ec

ISCI A, if the
labelled sequent ⊢ A : ∅ is derivable from the rules given in Figure 4.

The proof rules in Figure 4 are formulated in a non-destructive way, i.e. they preserve
(a copy of) their principal formulas in their premise. This is only a technical choice that
makes the proofs of the forthcoming admissibility results shorter, but we shall use the more
standard destructive versions of the rules in our examples to keep them more concise.

Figure 5 gives a labelled proof in L1ec
ISCI of the symmetry of the identity connective, from

which one can easily derive a symmetry rule ≈LS, as illustrated in Figure 6, which proves
the transitivity of ≈. More examples are given in the proof of Lemma 20.

D. Galmiche, M. Gawek, and D. Méry 13:9

id
B ≈ B : ∅ ⊢ B ≈ B : ∅

≈L1
⊢ B ≈ B : ∅

id
A ≈ C : 1 ⊢ A ≈ C : 1

⊃L
(B ≈ B) ⊃ (A ≈ C) : 1 ⊢ A ≈ C : 1

≈L3
(A ≈ C) ≈ (B ≈ B) : 1 ⊢ A ≈ C : 1

≈LS
(B ≈ B) ≈ (A ≈ C) : 1 ⊢ A ≈ C : 1

≈L4B ≈ A : 1, B ≈ C : 1 ⊢ A ≈ C : 1
≈LSA ≈ B : 1, B ≈ C : 1 ⊢ A ≈ C : 1

∧L
(A ≈ B) ∧ (B ≈ C) : 1 ⊢ A ≈ C : 1

⊃R
⊢ (A ≈ B) ∧ (B ≈ C) ⊃ (A ≈ C) : ∅

Figure 6 L1ec
ISCI-Proof of ≈-Transitivity.

4.3 Soundness and Completeness of L1ec
ISCI

▶ Theorem 19 (Soundness). If ⊢L1ec
ISCI A then ⊢HISCI A.

Proof. A corollary of Theorems 27, 33, 34 and 40. ◀

▶ Lemma 20. All of the axioms for ≈ given in Figure 1 are derivable in L1ec
ISCI.

Proof. Axiom ≈1: id
A ≈ A : ∅ ⊢ A ≈ A : ∅

≈L1
⊢ A ≈ A : ∅

Axioms ≈2, ≈3:

id
¬A ≈ ¬B : 1 ⊢ ¬A ≈ ¬B : 1 ≈L2A ≈ B : 1 ⊢ ¬A ≈ ¬B : 1 ⊃R
⊢ (A ≈ B) ⊃ (¬A ≈ ¬B) : ∅

id
B : 2 ⊢ B : 2

id
A : 12 ⊢ A : 12 ⊃LB ⊃ A : 1, B : 2 ⊢ A : 12

≈L3A ≈ B : 1, B : 2 ⊢ A : 12
⊃RA ≈ B : 1 ⊢ B ⊃ A : 1 ⊃R

⊢ (A ≈ B) ⊃ (B ⊃ A) : ∅
Axiom ≈4:

id
(A ⊗ C) ≈ (B ⊗ D) : 1 ⊢ (A ⊗ C) ≈ (B ⊗ D) : 1

≈L4
A ≈ B : 1, C ≈ D : 1 ⊢ (A ⊗ C) ≈ (B ⊗ D) : 1

∧L
(A ≈ B) ∧ (C ≈ D) : 1 ⊢ (A ⊗ C) ≈ (B ⊗ D) : 1

⊃R
⊢ (A ≈ B) ∧ (C ≈ D) ⊃ (A ⊗ C) ≈ (B ⊗ D) : ∅

◀

▶ Lemma 21. All of the axioms for IL given in Figure 1 are derivable in L1ec
ISCI.

Proof. Axiom IL6:
id

A : 34 ⊢ A : 234
id

C : 1234 ⊢ C : 1234 ⊃LA ⊃ C : 1, A : 34 ⊢ C : 1234

id
B : 35 ⊢ B : 135

id
C : 1235 ⊢ C : 1235 ⊃LB ⊃ C : 2, B : 35 ⊢ C : 1235

∨LA ⊃ C : 1, B ⊃ C : 2, A ∨ B : 3 ⊢ C : 123
⊃R

A ⊃ C : 1, B ⊃ C : 2 ⊢ (A ∨ B) ⊃ C : 12
⊃R

A ⊃ C : 1 ⊢ (B ⊃ C) ⊃ ((A ∨ B) ⊃ C) : 1
⊃R

⊢ (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C)) : ∅

Axioms IL7, IL8, IL10:
id

A : 1 ⊢ A : 1, B : 1
∨RA : 1 ⊢ A ∨ B : 1 ⊃R

⊢ A ⊃ (A ∨ B) : ∅

id
B : 1 ⊢ A : 1, B : 1

∨RB : 1 ⊢ A ∨ B : 1 ⊃R
⊢ B ⊃ (A ∨ B) : ∅

id
A : 2 ⊢ A : 2

⊥L⊥ : 12 ⊢ B : 12 ⊃L¬A : 1, A : 2 ⊢ B : 12
⊃R¬A : 1 ⊢ A ⊃ B : 1 ⊃R

⊢ ¬A ⊃ (A ⊃ B) : ∅

FSCD 2021

13:10 Beth Semantics and Labelled Deduction for ISCI

Γ ⊢ ∆, Cσ : y
≈LR(x ⊆ y, A ̸= B)

Γ(A ≈ B : x) ⊢ ∆(C : y)
≈R

Γ ⊢ ∆(A ≈ A : x)

σ = [B 7→ A] if |A| ⩽ |B| and [A 7→ B] otherwise.

Figure 7 L2ec
ISCI “Special” Identity Rules.

Rule MP: We use admissibility of weakening, which is stated and proved in the paper for
L2ec

ISCI in Lemma 29, but which also holds for L1ec
ISCI with a similar proof.

⊢ A : ∅
⊢ B : ∅, A : ∅

⊢ A ⊃ B : ∅
A : ∅ ⊢ B : ∅, A ⊃ B : ∅

id
A : ∅ ⊢ A : ∅

id
B : ∅ ⊢ B : ∅

⊃L
A ⊃ B : ∅, A : ∅ ⊢ B : ∅

cut
A : ∅ ⊢ B : ∅

cut
⊢ B : ∅

The other cases are similar. ◀

▶ Theorem 22 (HISCI completeness). If ⊢HISCI A then ⊢L1ec
ISCI A.

Proof. A direct consequence of Lemma 20 and Lemma 21. ◀

▶ Theorem 23 (Beth completeness). If ⊨A then ⊢L1ec
ISCI A.

Proof. If ⊨A then Theorem 11 yields ⊢HISCI A, which by Theorem 22 implies ⊢L1ec
ISCI A. ◀

5 The Labelled Calculus L2ec
ISCI

L1ec
ISCI is not very interesting from the point of view of termination as it lacks the subformula

property. Indeed, even if we eliminate the cut rule from L1ec
ISCI, we can still introduce infinitely

many subformulas using the identity rule ≈L1. Moreover, defining the size |A| of a formula A
as the number of its connectives, it is easy to see that the identity rules ≈L4 and ≈L4′

introduce in their single premiss an active formula the size of which is greater than the size
of the principal formula in their conclusion.

As a first step toward termination we define L2ec
ISCI as the variant of L1ec

ISCI in which all of
the identity rules of Figure 4 are replaced with the identity rules of Figure 7. Depending on
the size of A and B, the rule ≈LR simultaneously replaces all occurrences of the formula B in
C with the formula A whenever |A| ⩽ |B| and A is not syntactically equal to B.

5.1 Soundness and Completeness
▶ Theorem 24 (Soundness). If ⊢L2ec

ISCI A then ⊢HISCI A.

Proof. A corollary of Theorems 33, 34 and 40. ◀

▶ Theorem 25 (HISCI completeness). If ⊢HISCI A then ⊢L2ec
ISCI A.

Proof. Similar to the proof of Theorem 22. ◀

▶ Theorem 26 (Beth completeness). If ⊨A then ⊢L2ec
ISCI A.

Proof. If ⊨A then Theorem 11 yields ⊢HISCI A, which by Theorem 25 implies ⊢L2ec
ISCI A. ◀

D. Galmiche, M. Gawek, and D. Méry 13:11

▶ Theorem 27 (L1ec
ISCI to L2ec

ISCI). If Π is an L1ec
ISCI proof of A, then there exists a translation

t(Π) of Π which is an L2ec
ISCI proof of A.

Proof. The proof is by induction on the height of L1ec
ISCI proofs. Since L2ec

ISCI only differs from
L1ec

ISCI on the identity rules, the base cases for axioms are immediate and we only need to
show that L2ec

ISCI can simulate L1ec
ISCI identity rules. We assume without loss of generality that

|A| ⩽ |B| and |C| ⩽ |D|. Moreover, in the translated proofs below, the occurrences of ≈LR
only actually exist when the formulas on both sides of the principal identity connective are
not syntactically equal.
Case ≈L1:

Π1

Γ, A ≈ A : x ⊢ ∆
≈L1

Γ ⊢ ∆
⇝

≈R
Γ ⊢ ∆, A ≈ A : x

t(Π1) from I.H.
Γ, A ≈ A : x ⊢ ∆

cut
Γ ⊢ ∆

Case ≈L2:
Π1

Γ, ¬A ≈ ¬B : x ⊢ ∆
≈L2

Γ(A ≈ B : x) ⊢ ∆
⇝

≈R
Γ(A ≈ B : x) ⊢ ∆, ¬A ≈ ¬A : x

≈LR(A ̸= B)
Γ(A ≈ B : x) ⊢ ∆, ¬A ≈ ¬B : x

t(Π1) from I.H.
Γ, ¬A ≈ ¬B : x ⊢ ∆

cut
Γ(A ≈ B : x) ⊢ ∆

Case ≈L3:

Π1

Γ, B ⊃ A : x ⊢ ∆
≈L3

Γ(A ≈ B : x) ⊢ ∆
⇝

id
Γ(A ≈ B : x), A : a ⊢ ∆, A : xa

⊃R
Γ(A ≈ B : x) ⊢ ∆, A ⊃ A : x

≈LR(A ̸= B)
Γ(A ≈ B : x) ⊢ ∆, B ⊃ A : x

t(Π1) from I.H.
Γ, B ⊃ A : x ⊢ ∆

cut
Γ(A ≈ B : x) ⊢ ∆

Case ≈L4:
Π1

Γ, A ⊗ C ≈ B ⊗ D : x ⊢ ∆
≈L4

Γ(A ≈ B : x, C ≈ D : x) ⊢ ∆

⇝

≈R
Γ(A ≈ B : x, C ≈ D : x) ⊢ ∆, A ⊗ C ≈ A ⊗ C : x

≈LR(C ̸= D)
Γ(A ≈ B : x, C ≈ D : x) ⊢ ∆, A ⊗ C ≈ A ⊗ D : x

≈LR(A ̸= B)
Γ(A ≈ B : x, C ≈ D : x) ⊢ ∆, A ⊗ C ≈ B ⊗ D : x

t(Π1) from I.H.
Γ, A ⊗ C ≈ B ⊗ D : x ⊢ ∆

cut
Γ(A ≈ B : x, C ≈ D : x) ⊢ ∆

Case ≈L4′ :
Π1

Γ, A ⊗ A ≈ B ⊗ B : x ⊢ ∆
≈L4′

Γ(A ≈ B : x) ⊢ ∆

⇝

≈R
Γ(A ≈ B : x) ⊢ ∆, A ⊗ A ≈ A ⊗ A : x

≈LR(A ̸= B)
Γ(A ≈ B : x) ⊢ ∆, A ⊗ A ≈ B ⊗ B : x

t(Π1) from I.H.
Γ, A ⊗ A ≈ B ⊗ B : x ⊢ ∆

cut
Γ(A ≈ B : x) ⊢ ∆

◀

FSCD 2021

13:12 Beth Semantics and Labelled Deduction for ISCI

5.2 Cut Elimination in L2ec
ISCI

We now eliminate the cut rule from L2ec
ISCI. The cut free version of L2ec

ISCI is denoted L2e
ISCI (the c

superscript is dropped). Let us write h(Π) for the height of a proof Π defined as the length
of its longest branch. For a proof system S and a formula or labelled sequent s, the notation
⊢nS s means that s is derivable in S with a proof Π such that h(Π) ⩽ n (n ∈ N).

Label substitution is defined as follows: if y ⊆ x then x[u/y] = (x − y) ∪ u, otherwise
x[u/y] = x. For instance, 374[∅/7] = { 3, 7, 4 } − { 7 } ∪ ∅ = { 3, 4 } = 34. Label substitutions
straightforwardly extend to labelled formulas and labelled sequents.

▶ Lemma 28. Let s = Γ ⊢ ∆. If ⊢nL2e
ISCI s then ⊢nL2e

ISCI s[u/c], where c ∈ L1 or c = ∅.

Proof. By induction on the height h of the proof of Γ ⊢ ∆. The base case h = 0 is when s

is the conclusion of an axiom.
Case id: s is of the form Γ(A : x) ⊢ ∆(A : y) with x ⊆ y. If c ̸⊆ y then s[u/c] = s and the

result is immediate. Otherwise, c ⊆ y and y = (y − c) ∪ c. Since x ⊆ y, y = (y − x) ∪ x
implies y = (y − (x ∪ c)) ∪ (x − c) ∪ c. Hence, y[u/c] = (y − (x ∪ c)) ∪ (x − c) ∪ u. We then
show that s[u/c] remains an axiom for A by showing that x[u/c] ⊆ y[u/c]. If c ̸⊆ x then
x[u/c] = x = x − c and x − c ⊆ y[u/c]. If c ⊆ x then x[u/c] = ((x − c) ∪ c)[u/c] = (x − c) ∪ u
and (x − c) ∪ u ⊆ y[u/c].

Case ⊥L: Similar to Case id.
For the inductive case h = n + 1, let r be the last rule applied (which has s as a conclusion).
If r requires the introduction of eigenvariables we proceed as follows.
Case ∨L: s is of the form Γ, A ∨ B : x ⊢ ∆(C : y) and is obtained by the rule ∨L from the

premise s1 = Γ, A ∨ B : x, A : xa ⊢ ∆, C : ya and s2 = Γ, A ∨ B : x, B : xb ⊢ ∆, C : yb, where
a, b ̸⊆ Γ ∪ ∆, which have proofs Π1, Π2 such that h(Π1), h(Π2) ⩽ n. We choose two
labels a′ ̸= b′ such that a′, b′ ̸⊆ Γ ∪ ∆ and a′, b′ ̸⊆ xyuabc. By I.H. on Π1 and Π2 with
substitutions [a′/a] and [b′/b] we get proofs Π′

1 and Π′
2 of Γ, A ∨ B : x, A : xa′ ⊢ ∆, C : ya′

and Γ, A ∨ B : x, B : xb′ ⊢ ∆, C : yb′. Then, by I.H. on Π′
1 and Π′

2 with substitution [u/c],
we get proofs Π′′

1 and Π′′
2 of Γ[u/c], A ∨ B : x[u/c], A : x[u/c]a′ ⊢ ∆[u/c], C : y[u/c]a′ and

Γ[u/c], A ∨ B : x[u/c], B : x[u/c]b′ ⊢ ∆[u/c], C : y[u/c]b′ from which we infer the conclusion
Γ[u/c], A ∨ B : x[u/c] ⊢ ∆[u/c] by the rule ∨L.

Case ⊃R: Similar to Case ∨L.
If r does not require eigenvariables, we apply the I.H. on all of the premise of r since they
have proofs of height strictly less than n + 1 and we conclude s[u/c] by reapplying r. ◀

▶ Lemma 29. If ⊢nL2e
ISCI Γ ⊢ ∆ then ⊢nL2e

ISCI Γ, Γ′ ⊢ ∆, ∆′.

Proof. By induction on the height h of a proof Π of Γ ⊢ ∆. For h = 0, it is immediate
that when Γ ⊢ ∆ is an axiom, then so is Γ, Γ′ ⊢ ∆, ∆′. For h = n + 1, let r be the last rule
applied in Π. If r is not ⊃R or ∨L, we apply the I.H. on the premise of r and conclude by
reapplying r. Otherwise, we first use Lemma 28 to replace the eigenvariables in all of the
premise of r with variables not occurring in Γ ∪ Γ′ ∪ ∆ ∪ ∆′ and then apply the I.H. to the
modified premise before concluding with a new instance of r. ◀

▶ Lemma 30. All L2e
ISCI rules are height preserving invertible.

Proof. A k-ary proof rule r with premise s1 . . . sk and conclusion s is height preserving
invertible if ⊢nL2e

ISCI s implies ⊢nL2e
ISCI si for all 1 ⩽ i ⩽ k. Let s = Γ ⊢ ∆. Since proof rules are

non-destructive, each premiss si can be represented as Γ, Γi ⊢ ∆, ∆i, where Γi, ∆i are the
active parts of r. If k = 0 (for axioms), the result is immediate. Otherwise, if we have a
proof Π of s, then by Lemma 29, we have a proof Πi of si such that h(Πi) ⩽ h(Π). ◀

D. Galmiche, M. Gawek, and D. Méry 13:13

▶ Lemma 31. If ⊢nL2e
ISCI Γ(A : x, A : y) ⊢ ∆ and x ⊆ y then ⊢nL2e

ISCI Γ(A : x) ⊢ ∆. Similarly, if
⊢nL2e

ISCI Γ ⊢ ∆(A : x, A : y) and y ⊆ x then ⊢nL2e
ISCI Γ ⊢ ∆(A : x).

Proof. By induction on the height of the proofs, using Lemma 30. ◀

▶ Lemma 32. If Π is a proof of either Γ, A : x ⊢ ∆, or Γ ⊢ ∆, A : x, in which A : x is never
principal for any sequent in Π, then there exists a proof Π′ of Γ ⊢ ∆ such that h(Π′) ⩽ h(Π).

Proof. By induction on the height of the proof Π deleting all occurrences of A : x. ◀

▶ Theorem 33 (Cut elimination). The cut rule is admissible in L2ec
ISCI.

Proof. Our proof follows the pattern given in [10] or in [8] for Boolean BI. We define the
cut rank of (an instance) of the cut rule as the pair (|C|, h(Π1) + h(Π2)), where C is the cut
formula and Πi∈{1,2} is the proof whose conclusion is the sequent si corresponding to the
i-th premiss above the cut. For the base case we consider that one of the premiss of the
cut has a proof of height 0. For the inductive step, we distinguish three cases: C : z is not
principal in s1, C : z is principal only in s1, C : z is principal in both s1 and s2. We only do a
few illustrative or difficult cases. More cases are given in the appendix (see Theorem 43).
Cases n1.⊥L, p1.⊥L: s1 is the conclusion of ⊥L. If C : z is not principal in s1 (Case n1.⊥L),

then let A : y denote the principal formula of ⊥L in s1. By the side condition of ⊥L, we
have x ⊆ y. If C : z is principal in s1 (Case p1.⊥L), then by the connectedness property,
⊥ : x ∈ Γ implies A : y ∈ ∆ for some A and y such that x ⊆ y. In both cases, we eliminate
the cut rule as follows:

⊥L
Γ(⊥ : x) ⊢ ∆(A : y), C : z

Π2

C : z, Γ ⊢ ∆(A : y)
cut

Γ(⊥ : x) ⊢ ∆(A : y)
⇝ ⊥L

Γ(⊥ : x) ⊢ ∆(A : y)

Case p1.∨Rp2.∨L: C : z is principal in both s1 and s2, C has the form A ∨ B, z ⊆ y.

Π1

Γ ⊢ ∆, A ∨ B : z, A : z, B : z
∨R

Γ ⊢ ∆, A ∨ B : z

Π1
2

A : za, A ∨ B : z, Γ ⊢ ∆, D : ya
Π2

2

B : zb, A ∨ B : z, Γ ⊢ ∆, D : yb
∨L

A ∨ B : z, Γ ⊢ ∆(D : y)
cut

Γ ⊢ ∆

We first use a cut on A ∨ B : z of strictly lower cut height to get the following proof:

Π3

Π1

Γ ⊢ ∆, A ∨ B : z, A : z, B : z
Π1′

2 from Lemma 29 Π2′

2 from Lemma 29
∨L

A ∨ B : z, Γ ⊢ ∆, A : z, B : z
cut

Γ ⊢ ∆, A : z, B : z

We apply Lemma 28 on Π1
2 with [∅/a] and on Π2

2 with [∅/b] to get:

Π4

{
Π1

2[∅/a]

A : z, A ∨ B : z, Γ ⊢ ∆(D : y), D : y
Π5

{
Π2

2[∅/b]

B : z, A ∨ B : z, Γ ⊢ ∆(D : y), D : y

We apply Lemma 31 on Π4 and Π5 to get:

Π′
4

A : z, A ∨ B : z, Γ ⊢ ∆(D : y)
Π′

5

B : z, A ∨ B : z, Γ ⊢ ∆(D : y)

We use two cuts on A ∨ B : z of strictly lower cut height to get Π6, Π7, which are finally
combined with Π3 to obtain a proof with two cuts on strictly smaller formulas.

FSCD 2021

13:14 Beth Semantics and Labelled Deduction for ISCI

Π6

Π′

1 from Lemma 29
A : z, Γ ⊢ ∆, A ∨ B : z, A : z, B : z

∨R
A : z, Γ ⊢ ∆, A ∨ B : z

Π′
4

A : z, A ∨ B : z, Γ ⊢ ∆(D : y)
cut

A : z, Γ ⊢ ∆

Π7

Π′′

1 from Lemma 29
B : z, Γ ⊢ ∆, A ∨ B : z, A : z, B : z

∨R
B : z, Γ ⊢ ∆, A ∨ B : z

Π′
5

B : z, A ∨ B : z, Γ ⊢ ∆(D : y)
cut

B : z, Γ ⊢ ∆

Π3

Γ ⊢ ∆, A : z, B : z
Π′

7 from Lemma 29
B : z, Γ ⊢ ∆, A : z

cut
Γ ⊢ ∆, A : z

Π6

A : z, Γ ⊢ ∆
cut

Γ ⊢ ∆ ◀

6 Liberalizing L2e
ISCI and Decidability

Even restricted to the simple case of intuitionistic logic, the termination of a labelled proof
system is not straightforward. A problem is the rules ⊃L and ∨R (called β-rules) can be used
several times as long as there are yet untried labels satisfying their requirements. Combined
with the fact that the rules ⊃R and ∨L (called α-rules) require the systematic introduction
of fresh singleton labels, the proof-search process might degenerate into the construction of
infinite branches when there are α-formulas in the scope of β-formulas.

Let us assume a globally fixed1 total injective indexing function i : F × N → L1 that
given a formula A and an index n maps the pair (A, n) to the singleton label denoted in

A.
We define L2

ISCI as the labelled proof system obtained from L2e
ISCI in which the eigenvariable

requirements are dropped by replacing the α-rules of Figure 4 with the following ones:

Γ, A : i1
A⊃B ⊢ ∆, B : x ∪ i1

A⊃B ⊃R
Γ ⊢ ∆(A ⊃ B : x)

Γ, A : x ∪ i1
A∨B ⊢ ∆, C : y ∪ i1

A∨B Γ, B : x ∪ i2
A∨B ⊢ ∆, C : y ∪ i2

A∨B ∨L(x ⊆ y)
Γ(A ∨ B : x) ⊢ ∆(C : y)

▶ Theorem 34. If ⊢nL2e
ISCI A then ⊢nL2

ISCI A.

Proof. By induction on the height of the L2e
ISCI proof of A. ◀

6.1 Validity of the Replacement Law for ISCI
▶ Lemma 35. Let A, B, C be formulas and let C[A 7→ B] be the formula obtained from C
by simultaneously replacing all occurrences of A in C with B. Then, the formula (A ≈ B) ⊃
(C ≈ C[A 7→ B]) is valid in Beth semantics.

Proof. Let M be a Beth model and m be a world such that m ⊩ A ≈ B. If C does not
contain any occurrence of A then C[A 7→ B] = C and condition M≈1 of Definition 3 then
implies m ⊩ C ≈ C. If C contains at least one occurrence of A, let d(F, C) denote the
depth at which a subformula F is nested in C. We proceed by induction on the depth

1 The use of a globally fixed indexing function is just for technical convenience. One could also associate
each derivation with a partial indexing function defined only on the formulas occurring in that derivation.

D. Galmiche, M. Gawek, and D. Méry 13:15

d = min{ d(A, C) | A ∈ C } of the least deeply nested occurrence(s) of A in C (e.g., if
C = (A ⊃ D) ∧ ((A ∨ B) ≈ A) then d = 2). The base case is when d = 0, i.e., when C = A.
Thus, C[A 7→ B] = B and we have m ⊩ A ≈ B by assumption. For the inductive case, C is of
the form C1 ⊗ C2, where ⊗ is a binary connective. We assume as an I.H. that the property
holds for all formulas C and all d′ such that 0 ≤ d′ < d. By definition of a substitution,
(C1 ⊗ C2)[A 7→ B] = C1[A 7→ B] ⊗ C2[A 7→ B]. For Ci ∈ { C1, C2 }, if A does not occur
in Ci then Ci[A 7→ B] = Ci. Thus, m ⊩ Ci ≈ Ci[A 7→ B] by condition M≈1 of Definition 3.
Otherwise, if A occurs in Ci then m ⊩ Ci ≈ Ci[A 7→ B] by I.H. Hence, by condition M≈4 of
Definition 3, we get (C1 ⊗ C2) ≈ (C1[A 7→ B] ⊗ C2[A 7→ B]). ◀

▶ Lemma 36. If m ⊩A ≈ B then for all formulas C, m ⊩ C iff m ⊩ C[A 7→ B].

Proof. By Lemma 35, if m ⊩A ≈ B then m ⊩ C ≈ D, where D = C[A 7→ B]. By symmetry
of ≈, m ⊩ C ≈ D implies m ⊩D ≈ C. Therefore, by condition M≈3 of Definition 3, we get
both m ⊩D ⊃ C and m ⊩ C ⊃ D. Consequently, if m ⊩ C, then m ⊩ C ⊃ D implies m ⊩D.
Conversely, if m ⊩D, then m ⊩D ⊃ C implies m ⊩ C. ◀

6.2 Liberalized Soundness
To show that L2

ISCI is sound even in the absence of the eigenvariable condition, we take
advantage of the completeness of ISCI w.r.t. regular Beth models (Theorem 14) by semantically
interpreting (realizing) the unique index iA of a formula A by an A-minimal world.

▶ Definition 37 (Realization). Let M be a regular Beth model. Let s = Γ ⊢ ∆ be a labelled
sequent. A realization of s in M is a partial function ρ : L → M such that:

ρ(∅) = ω, ρ(N) = π, ρ(in∈{1,2}
A1⊗A2) = mAn for all in∈{1,2}

A1⊗A2 ⊆ s and ρ(x ∪ y) = ρ(x) ⊔ ρ(y),
for all x, y ⊆ Γ, if x ⊆ y then ρ(x) ⩽ ρ(y) holds in M,
for all A : x in Γ, ρ(x) ⊩A and for all A : x in ∆, ρ(x) ⊮ A.

A sequent s is realizable in M if there exists a realization of s in M, and realizable if it is
realizable in some regular Beth model M.

▶ Lemma 38. If the sequent s = Γ ⊢ ∆ is an initial sequent in an L2
ISCI-proof, i.e., a leaf

sequent that is the conclusion of a zero-premiss rule, then s is not realizable.

Proof. If s is realizable, then we have a realization ρ of s in some regular Beth model M.
We proceed by case analysis on the zero-premiss rule of which s is the conclusion.
Case id: s = Γ, A : x ⊢ ∆, A : y with x ⊆ y, which implies the contradiction ρ(y) ⊮ A since

ρ(x) ⩽ ρ(y) and ρ(x) ⊩A imply ρ(y) ⊩A by Kripke monotonicity.
Case ⊥L: s = Γ, ⊥ : x ⊢ ∆, A : y with x ⊆ y, which implies the contradiction ρ(y) ⊮ A since

ρ(x) = ρ(y) = π and π ⊩A for all A.
Case ≈R: s = Γ ⊢ ∆, A ≈ A : x, which implies the contradiction ρ(x) ⊮ A ≈ A. ◀

▶ Lemma 39. Every proof rule in L2
ISCI preserves realizability in regular Beth models.

Proof. By case analysis of the proof rules of L2
ISCI. We show that whenever the conclusion of

a rule is realizable in some regular model M for some realization ρ, then at least one of its
premise is also realizable in M for some extension of ρ. We write s = Γ ⊢ ∆ for the sequent
which is the conclusion of the rule and si = Γi ⊢ ∆i for the i-th premiss (for i ∈ { 1, 2 }).
Since ρ realizes both Γ and ∆ in s, ρ also realizes Γi and ∆i in si since Γi ⊆ Γ and ∆i ⊆ ∆.
Therefore, we only need to consider the principal and active parts of each rule.

FSCD 2021

13:16 Beth Semantics and Labelled Deduction for ISCI

Case ∨L: If ρ realizes s = Γ(A ∨ B : x) ⊢ ∆(C : y) in M, then ρ(x) ⊩ A ∨ B implies that
there exist n1, n2 ∈ M such that n1 ⊓ n2 ⩽ ρ(x), n1 ⊩ A and n2 ⊩ B. Moreover, a = i1

A∨B

and b = i2
A∨B. If ρ(a) is already defined then ρ(a) = mA by definition. Otherwise,

we extend ρ by setting ρ(a) = mA. We proceed similarly for ρ(b) to get ρ(b) = mB.
Since mA is A-minimal, we get mA ⩽ n1 and ρ(x) ⊔ ρ(a) ⊩ A. Similarly, since mB is
B-minimal, we get mB ⩽ n2 and ρ(x) ⊔ ρ(b) ⊩ B. Moreover, mA ⩽ n1 and mB ⩽ n2
imply mA ⊓ mB ⩽ n1 ⊓ n2. Thus, xa ∩ xb = x implies (ρ(x) ⊔ ρ(a)) ⊓ (ρ(x) ⊔ ρ(b)) = ρ(x).
Now if both ρ(y) ⊔ ρ(a) ⊩ C and ρ(y) ⊔ ρ(b) ⊩ C then, since M is a regular Beth model,
there exists a C-minimal world mC. Thus, mC ⩽ ρ(y) ⊔ ρ(a) and mC ⩽ ρ(y) ⊔ ρ(b),
which implies mC ⩽ (ρ(y) ⊔ ρ(a)) ⊓ (ρ(y) ⊔ ρ(b)) = ρ(y). Hence, ρ(y) ⊩ C, which is a
contradiction since ρ(y) ⊮ C by definition. Therefore, either ρ(y) ⊔ ρ(a) ⊮ C and s1 is
realizable, or ρ(y) ⊔ ρ(b) ⊮ C and s2 is realizable.

Case ∨R: If ρ realizes s = Γ ⊢ ∆(A ∨ B : x) then ρ(x)⊮A ∨ B. Suppose that ρ(x)⊩A. Since
M is regular there exists an A-minimal world mA. Since mA ⊩A and π⊩B by definition,
we have mA ⊓ π = mA ⩽ ρ(x) which implies the contradiction ρ(x) ⊩ A ∨ B. Similarly, if
ρ(x) ⊩ B we also get the contradiction ρ(x) ⊩A ∨ B. Hence, s1 is realizable.

Case ≈LR: This case directly follows from Lemma 36.
The other cases are similar. ◀

▶ Theorem 40 (Liberalized soundness). If ⊢L2
ISCI A then ⊨r A.

Proof. Suppose that ⊢L2
ISCI A, then there exists an L2

ISCI-proof Π of ⊢ A : ∅. If ⊭r A, then there
is a regular Beth model M such that ω ⊮ A. Since ⊢ A : ∅ is trivially realizable, Lemma 39
implies that Π contains a branch the sequents of which are all realizable. Since Π is a proof,
this branch ends with an initial sequent s that is the conclusion of an axiom rule. Lemma 38
then implies that s is not realizable, which is a contradiction. Therefore, ⊨r A. ◀

6.3 Termination and Decidability
Giving a full-fledged proof that L2

ISCI is a terminating proof-system is out of the scope of
this paper as it would require a detailed proof-search algorithm with a well defined proof
strategy. Moreover, since L2

ISCI proof rules as formulated non-destructively, we would also
need a suitable notion of (sequent) saturation to decide whether a labelled formula is fully
analyzed or not. For instance, an occurrence of A ∧ B : x on the left-hand side of a sequent
Γ ⊢ ∆ would be considered fully analyzed whenever A : y and B : z occur in Γ for some labels
y, z such that y, z ⊆ x. We now sketch the proof that L2

ISCI has a finite proof search space.

▶ Theorem 41 (Termination). L2
ISCI is a terminating proof system.

Proof sketch. Firstly, without any eigenvariable requirements, only finitely many singleton
labels can occur in an L2

ISCI derivation of A. Since labels occurring in an L2
ISCI derivation of A

are finite unions of singleton labels, there can only be finitely many of them. Secondly, let
n = |A| and let At(A) be the set of propositional letters occurring in A. It is easy to see
that the active formula introduced by an instance of the rule ≈LR has a size m ⩽ n and is
built using only atoms in At(A) (this can be viewed as a weak form of subformula property).
There can only be finitely many formulas of size ⩽ n built from At(A). Finally, with a finitely
many subformulas and labels, one can only generate a finite number of labelled formulas.
Therefore, only finitely many unsaturated labelled sequents can occur in a L2

ISCI derivation
of A. Thus, the proof search space for ⊢ A : ∅ in L2

ISCI is finite. ◀

▶ Corollary 42 (Decidability). ISCI is a decidable logic.

D. Galmiche, M. Gawek, and D. Méry 13:17

References
1 S.L. Bloom and R. Suszko. Investigations into the Sentential Calculus with Identity. Notre

Dame Journal of Formal Logic, 13(3):289–308, 1972.
2 S. Chlebowski. Sequent Calculi for SCI. Studia Logica, 106(3):541–563, 2018.
3 S. Chlebowski and D. Leszcyńska-Jasion. An Investigation into Intuitionistic Logic with

Identity. Bulletin of the Section of Logic, 48(4):259–283, 2019.
4 D. Galmiche, D. Méry, and D. Pym. The semantics of BI and Resource Tableaux. Mathematical

Structures in Computer Science, 15(6):1033–1088, 2005.
5 D. Galmiche and D. Méry. A Connection-based Characterization of Bi-intuitionistic Validity.

Journal of Automated Reasoning, 51(1):3–26, 2013. doi:10.1007/s10817-013-9279-4.
6 J. Golińska-Pilarek. Rasiowa–Sikorski proof system for the non-Fregean sentential logic.

Journal of Applied Non-Classical Logics, 17(4):511–519, 2007.
7 J. Golińska-Pilarek and T. Huuskonen. Non-Fregean Propositional Logic with Quantifiers.

Notre Dame Journal of Formal Logic, 57(2):249–279, 2016. doi:10.1215/00294527-3470547.
8 Z. Hou, R. Goré, and A. Tiu. A labelled sequent calculus for BBI: Proof theory and proof search.

Journal of Logic and Computation, 28(4):809–872, 2018. doi:10.1007/978-3-642-40537-2_
16.

9 P. Lukowski. Intuitionistic sentential calculus with identity. Bulletin of the Section of Logic,
19(3):92–99, 1990.

10 S. Negri and J. von Plato. Cut elimination in the presence of axioms. Bulletin of Symbolic
Logic, 4(4):418–435, 1998.

11 S. Negri and J. von Plato. Proof Analysis - A Contribution to Hilbert’s Last Problem. Cam-
bridge University Press, 2014. URL: http://www.cambridge.org/de/academic/subjects/
philosophy/logic/proof-analysis-contribution-hilberts-last-problem?format=PB.

12 R. Suszko. Abolition of the Fregean axiom. In Logic Colloquium, pages 169–239, 1975. Springer.
13 A. Wasilewska. DFC-algorithms for Suszko logic and one-to-one Gentzen type formalizations.

Studia Logica, 43(4):395–404, 1984.

A Appendix

A.1 Cut Elimination
▶ Theorem 43 (Cut elimination). The cut rule is admissible in L2ec

ISCI.

Proof. Our proof follows the pattern given in [10] or in [8] for Boolean BI. We define the
cut rank of (an instance) of the cut rule as the pair (|C|, h(Π1) + h(Π2)), where C is the cut
formula and Πi∈{1,2} is the proof whose conclusion is the sequent si corresponding to the
i-th premiss above the cut. For the base case we consider that one of the premiss of the
cut has a proof of height 0. For the inductive step, we distinguish three cases: C : z is not
principal in s1, C : z is principal only in s1, C : z is principal in both s1 and s2.

Case n1.id: s1 is the conclusion of id, C : z is not principal in s1, x ⊆ y.

id
Γ(A : x) ⊢ ∆(A : y), C : z

Π2

C : z, Γ ⊢ ∆
cut

Γ(A : x) ⊢ ∆(A : y)
⇝ id

Γ(A : x) ⊢ ∆(A : y)

Case p1.id: s1 is the conclusion of id, C : z is principal in s1, x ⊆ z.

id
Γ(C : x) ⊢ ∆, C : z

Π2

C : z, Γ ⊢ ∆
cut

Γ(C : x) ⊢ ∆
⇝

Π′
2 from Lemma 31

Γ(C : x) ⊢ ∆

FSCD 2021

https://doi.org/10.1007/s10817-013-9279-4
https://doi.org/10.1215/00294527-3470547
https://doi.org/10.1007/978-3-642-40537-2_16
https://doi.org/10.1007/978-3-642-40537-2_16
http://www.cambridge.org/de/academic/subjects/philosophy/logic/proof-analysis-contribution-hilberts-last-problem?format=PB
http://www.cambridge.org/de/academic/subjects/philosophy/logic/proof-analysis-contribution-hilberts-last-problem?format=PB

13:18 Beth Semantics and Labelled Deduction for ISCI

Case n2.id: s2 is the conclusion of id, C : z is not principal in s2. Similar to Case n1.id.
Case p2.id: s2 is the conclusion of id, C : z is principal in s2. Similar to Case p1.id.
Case n1.⊥L: s1 is the conclusion of ⊥L, C : z is not principal in s1, x ⊆ y.

⊥L
Γ(⊥ : x) ⊢ ∆(A : y), C : z

Π2

C : z, Γ ⊢ ∆
cut

Γ(⊥ : x) ⊢ ∆(A : y)
⇝ ⊥L

Γ(⊥ : x) ⊢ ∆(A : y)

Case p1.⊥L: s1 is the conclusion of ⊥L, C : z is principal in s1, x ⊆ z.

⊥L
Γ(⊥ : x) ⊢ ∆, C : z

Π2

C : z, Γ ⊢ ∆
cut

Γ(⊥ : x) ⊢ ∆
⇝

connectedness: x ⊆ u
⊥L

Γ(⊥ : x) ⊢ ∆(A : u)

Case n2.⊥L: s2 is the conclusion of ⊥L, C : z is not principal in s2. Similar to Case n1.⊥L.
Case p2.⊥L: s2 is the conclusion of ⊥L, C : z is principal in s2. Similar to Case p1.⊥L.
Case n1.≈R: s1 is the conclusion of ≈R, C : z is not principal in s1.

≈R
Γ ⊢ ∆(A ≈ A : x), C : z

Π2

C : z, Γ ⊢ ∆
cut

Γ ⊢ ∆(A ≈ A : x)
⇝ ≈R

Γ ⊢ ∆(A ≈ A : x)

Case p1.≈R: s1 is the conclusion of ≈R, C : z is principal in s1. Then, C has the form A ≈ A
for some A. Since A ̸= A is not satisfiable, A ≈ A : x can never be the principal formula
of an occurrence of ≈LR in Π2. Therefore, the only way for A ≈ A : x to be principal in
Π2 is if s2 is the conclusion of an occurrence of id, which then implies that ∆ contains an
occurrence of A ≈ A : y for some x ⊆ y. In this case, we have

≈R
Γ ⊢ ∆, A ≈ A : x

Π2

A ≈ A : x, Γ ⊢ ∆(A ≈ A : y)
cut

Γ ⊢ ∆(A ≈ A : y)
⇝ ≈R

Γ ⊢ ∆(A ≈ A : y)

Otherwise, A ≈ A : x is never principal in Π2 and we apply Lemma 32 on Π2 to get a
proof Π′

2 of Γ ⊢ ∆ as follows

≈R
Γ ⊢ ∆, A ≈ A : x

Π2

A ≈ A : x, Γ ⊢ ∆
cut

Γ ⊢ ∆
⇝

Π′
2 from Lemma 32

Γ ⊢ ∆

Case n2.≈R: s2 is the conclusion of ≈R, C : z is not principal in s2. Similar to Case n1.≈R.

Π1

Γ ⊢ ∆, C : z
≈R

C : z, Γ ⊢ ∆(A ≈ A : x)
cut

Γ ⊢ ∆(A ≈ A : x)
⇝ ≈R

Γ ⊢ ∆(A ≈ A : x)

Case p2.≈R: cannot happen (A ≈ A : z on the left-hand side cannot be principal for ≈R).

Case n1.r1: C : z is not principal in s1, r is a rule with one premiss and active parts Γ′, ∆′.

Π1

Γ, Γ′ ⊢ ∆, ∆′, C : z
r

Γ ⊢ ∆, C : z
Π2

C : z, Γ ⊢ ∆
cut

Γ ⊢ ∆

⇝

Π1

Γ, Γ′ ⊢ ∆, ∆′, C : z

Π′
2 from Lemma 29

C : z, Γ, Γ′ ⊢ ∆, ∆′

cut
Γ, Γ′ ⊢ ∆, ∆′

r
Γ ⊢ ∆

The rank of the new cut is (|C|, h(Π1) + h(Π′
2)), which is strictly lower than the rank

(|C|, 1 + h(Π1) + h(Π2)) of the original cut.

D. Galmiche, M. Gawek, and D. Méry 13:19

Case p1n2.r1: C : z is only principal in s1, r is a rule with one premiss and active parts
Γ′, ∆′. Similar to Case n1.r1.

Π1

Γ ⊢ ∆, C : z

Π2

C : z, Γ, Γ′ ⊢ ∆, ∆′

r
C : z, Γ ⊢ ∆

cut
Γ ⊢ ∆

⇝

Π′
1 from Lemma 29

Γ, Γ′ ⊢ ∆, ∆′, C : z
Π2

C : z, Γ, Γ′ ⊢ ∆, ∆′

cut
Γ, Γ′ ⊢ ∆, ∆′

r
Γ ⊢ ∆

The rank of the new cut is (|C|, h(Π′
1) + h(Π2)), which is strictly lower than the rank

(|C|, h(Π1) + h(Π2) + 1) of the original cut.
Case n1.r2: C : z is not principal in s1, r is a rule with two premise and active parts Γ′, ∆′

in the first premiss and Γ′′, ∆′′ in the second one. We apply Lemma 29 twice on Π2 to
get Π′

2 and Π′′
2 .

Π1
1

Γ, Γ′ ⊢ ∆, ∆′, C : z

Π2
1

Γ, Γ′′ ⊢ ∆, ∆′′, C : z
r

Γ ⊢ ∆, C : z
Π2

C : z, Γ ⊢ ∆
cut

Γ ⊢ ∆

⇝

Π1
1

Γ, Γ′ ⊢ ∆, ∆′, C : z

Π′
2

C : z, Γ, Γ′ ⊢ ∆, ∆′

cut
Γ, Γ′ ⊢ ∆, ∆′

Π2
1

Γ, Γ′′ ⊢ ∆, ∆′′, C : z

Π′′
2

C : z, Γ, Γ′′ ⊢ ∆, ∆′′

cut
Γ, Γ′′ ⊢ ∆, ∆′′

r
Γ ⊢ ∆

The ranks (|C|, h(Π1
1) + h(Π′

2)) and (|C|, h(Π2
1) + h(Π′′

2)) of the two new cuts are strictly
lower than the rank (|C|, 1 + max(h(Π1

1), h(Π2
1)) + h(Π2)) of the original cut.

Case p1n2.r2: C : z is only principal in s1, r is a rule with two premises and active parts
Γ′, ∆′ in the first premiss and Γ′′, ∆′′ in the second one. We apply Lemma 29 twice on
Π1 to get Π′

1 and Π′′
1 . Similar to Case n1.r2.

Π1

Γ ⊢ ∆, C : z

Π1
2

C : z, Γ, Γ′ ⊢ ∆, ∆′

Π2
2

C : z, Γ, Γ′′ ⊢ ∆, ∆′′

r
C : z, Γ ⊢ ∆

cut
Γ ⊢ ∆

⇝

Π′
1

Γ, Γ′ ⊢ ∆, ∆′, C : z

Π1
2

C : z, Γ, Γ′ ⊢ ∆, ∆′

cut
Γ, Γ′ ⊢ ∆, ∆′

Π′′
1

Γ, Γ′′ ⊢ ∆, ∆′′, C : z

Π2
2

C : z, Γ, Γ′′ ⊢ ∆, ∆′′

cut
Γ, Γ′′ ⊢ ∆, ∆′′

r
Γ ⊢ ∆

The ranks (|C|, h(Π′
1) + h(Π1

2)) and (|C|, h(Π′′
1) + h(Π2

2)) of the two new cuts are strictly
lower than the rank (|C|, h(Π1) + max(h(Π1

2), h(Π2
2)) + 1) of the original cut.

Case p1.∧Rp2.∧L: C : z is principal in both s1 and s2, C has the form A ∧ B.

Π1
1

Γ ⊢ ∆, A ∧ B : z, A : z
Π2

1

Γ ⊢ ∆, A ∧ B : z, B : z
∧R

Γ ⊢ ∆, A ∧ B : z

Π2

A ∧ B : z, A : z, B : z, Γ ⊢ ∆
∧L

A ∧ B : z, Γ ⊢ ∆
cut

Γ ⊢ ∆

We use three cuts on A ∧ B : z of strictly lower cut height to get the following proofs:

Π3

Π′

1 from Lemma 29
∧R

A : z, B : z, Γ ⊢ ∆, A ∧ B : z
Π2

A ∧ B : z, A : z, B : z, Γ ⊢ ∆
cut

A : z, B : z, Γ ⊢ ∆

FSCD 2021

13:20 Beth Semantics and Labelled Deduction for ISCI

Π4

Π2

1

Γ ⊢ ∆, B : z, A ∧ B : z

Π′
2 from Lemma 29

A ∧ B : z, A : z, B : z, Γ ⊢ ∆, B : z
∧L

A ∧ B : z, Γ ⊢ ∆, B : z
cut

Γ ⊢ ∆, B : z

Π5

Π1

1

Γ ⊢ ∆, A : z, A ∧ B : z

Π′′
2 from Lemma 29

A ∧ B : z, A : z, B : z, Γ ⊢ ∆, A : z
∧L

A ∧ B : z, Γ ⊢ ∆, A : z
cut

Γ ⊢ ∆, A : z

We construct the following proof using two cuts on strictly smaller formulas:

Π5

Γ ⊢ ∆, A : z

Π′
4 from Lemma 29
A : z, Γ ⊢ ∆, B : z

Π3

A : z, B : z, Γ ⊢ ∆
cut

A : z, Γ ⊢ ∆
cut

Γ ⊢ ∆

Case p1.⊃Lp2.⊃R: C : z is principal in both s1 and s2, C has the form A ⊃ B.

Π1

A : a, Γ ⊢ ∆, B : z ∪ a
⊃R

Γ ⊢ ∆, A ⊃ B : z

Π1
2

A ⊃ B : z, Γ ⊢ ∆, A : x
Π2

2

A ⊃ B : z, B : z ∪ x, Γ ⊢ ∆
⊃L

A ⊃ B : z, Γ ⊢ ∆
cut

Γ ⊢ ∆

We first apply Lemma 28 on Π1 to replace a with x.

Π3

A : x, Γ ⊢ ∆, B : z ∪ x

We then apply Lemma 29 on Π1 to get Π′
1:

Π′
1

A : a, Γ ⊢ ∆, B : z ∪ a, A : x

We combine Π′
1 and Π1

2 to get the following proof with a cut of strictly lower cut height:

Π4

Π′

1

A : a, Γ ⊢ ∆, B : z ∪ a, A : x
⊃R

Γ ⊢ ∆, A : x, A ⊃ B : z
Π1

2

A ⊃ B : z, Γ ⊢ ∆, A : x
cut

Γ ⊢ ∆, A : x

Applying Lemma 29 on Π4 we get Π′
4:

Π′
4

Γ ⊢ ∆, B : z ∪ x, A : x

Since B : z ∪ x occurs on the left-hand side of the conclusion of Π2
2, z ∪ x necessarily is a

sublabel of some label in ∆. We can therefore apply Lemma 29 on Π1 to get Π′′
1 :

Π′′
1

A : a, Γ, B : z ∪ x ⊢ ∆, B : z ∪ a

We combine Π′′
1 and Π2

2 to get the following proof with a cut of strictly lower cut height:

D. Galmiche, M. Gawek, and D. Méry 13:21

Π5

Π′′

1

A : a, Γ, B : z ∪ x ⊢ ∆, B : z ∪ a
⊃R

Γ, B : z ∪ x ⊢ ∆, A ⊃ B : z
Π2

2

A ⊃ B : z, Γ, B : z ∪ x ⊢ ∆
cut

Γ, B : z ∪ x ⊢ ∆

We finally cut on strictly smaller formulas:

Π′
4

Γ ⊢ ∆, B : z ∪ x, A : x
Π3

A : x, Γ ⊢ ∆, B : z ∪ x
cut

Γ ⊢ ∆, B : z ∪ x
Π5

B : z ∪ x, Γ ⊢ ∆
cut

Γ ⊢ ∆

◀

FSCD 2021

New Minimal Linear Inferences in Boolean Logic
Independent of Switch and Medial
Anupam Das # Ñ

University of Birmingham, UK

Alex A. Rice # Ñ

University of Cambridge, UK

Abstract
A linear inference is a valid inequality of Boolean algebra in which each variable occurs at most
once on each side. Equivalently, it is a linear rewrite rule on Boolean terms that constitutes a valid
implication. Linear inferences have played a significant role in structural proof theory, in particular
in models of substructural logics and in normalisation arguments for deep inference proof systems.

Systems of linear logic and, later, deep inference are founded upon two particular linear inferences,
switch : x ∧ (y ∨ z) → (x ∧ y) ∨ z, and medial : (w ∧ x) ∨ (y ∧ z) → (w ∨ y) ∧ (x ∨ z). It is well-known
that these two are not enough to derive all linear inferences (even modulo all valid linear equations),
but beyond this little more is known about the structure of linear inferences in general. In particular
despite recurring attention in the literature, the smallest linear inference not derivable under switch
and medial (“switch-medial-independent”) was not previously known.

In this work we leverage recently developed graphical representations of linear formulae to
build an implementation that is capable of more efficiently searching for switch-medial-independent
inferences. We use it to find two “minimal” 8-variable independent inferences and also prove that no
smaller ones exist; in contrast, a previous approach based directly on formulae reached computational
limits already at 7 variables. One of these new inferences derives some previously found independent
linear inferences. The other exhibits structure seemingly beyond the scope of previous approaches
we are aware of; in particular, its existence contradicts a conjecture of Das and Strassburger.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting; Theory
of computation → Proof theory; Theory of computation → Linear logic

Keywords and phrases rewriting, linear inference, proof theory, linear logic, implementation

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.14

Supplementary Material An associated implementation can be found here:
Software (Source Code): https://github.com/alexarice/lin_inf [25]

archived at swh:1:dir:47d6487bfda3d3848d7289f3b5cfae1824e2ae78

Funding This work was supported by a UKRI Future Leaders Fellowship, Structure vs. Invariants
in Proofs, project reference MR/S035540/1. Alex Rice acknowledges funding from the Royal Society.

Acknowledgements The authors would like to thank Lutz Strassburger, Ross Horne and Matteo
Acclavio for several interesting discussions surrounding this work. We are also grateful to the
anonymous reviewers for their valuable feedback and suggestions.

1 Introduction

A linear inference is a valid implication φ → ψ of Boolean logic, where φ and ψ are linear,
i.e. each variable occurs at most once in each of φ and ψ. Such implications have played a
crucial role in many areas of structural proof theory. For instance the inference switch,

s : x ∧ (y ∨ z) → (x ∧ y) ∨ z

governs the logical behaviour of the multiplicative connectives ` and ⊗ of linear logic [16],
and similarly the inference medial,

© Anupam Das and Alex A. Rice;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 14; pp. 14:1–14:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.das@bham.ac.uk
https://anupamdas.com/
https://orcid.org/0000-0002-0142-3676
mailto:alex.rice@cl.cam.ac.uk
https://alexarice.github.io/
https://orcid.org/0000-0002-2698-5122
https://doi.org/10.4230/LIPIcs.FSCD.2021.14
https://github.com/alexarice/lin_inf
https://archive.softwareheritage.org/swh:1:dir:47d6487bfda3d3848d7289f3b5cfae1824e2ae78;origin=https://github.com/alexarice/lin_inf;visit=swh:1:snp:023c1fef567616b8fbc114fb02790dce5c7300cd;anchor=swh:1:rev:b3f6ba34f5597735b3130be9c4f29a5bb9684455
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

m : (w ∧ x) ∨ (y ∧ z) → (w ∨ y) ∧ (x ∨ z)

together with the structural rules weakening and contraction, governs the logical behaviour
of the additive connectives ⊕ and & [26, 27]. Both of these inferences are fundamental to
deep inference proof theory, in particular allowing weakening and contraction to be reduced
to atomic form [6, 5], thereby admitting elegant “geometric” proof normalisation procedures
based on atomic flows [18, 19]. One particular feature of these normalisation procedures is
that they are robust under the addition of further linear inferences to the system, thanks to
the atomisation of structural steps.

On the other hand the set of all linear inferences L plays an essential role in certain
models of linear logic and related substructural logics. In particular, the multiplicative
fragment of Blass’ game semantics model of linear logic validates just the linear inferences
(there called “binary tautologies”) [3], and this coincides too with the multiplicative fragment
of Japaridze’s computability logic, cf., e.g., [20]. From a complexity theoretic point of view,
the set L is sufficiently rich to encode all of Boolean logic: it is coNP-complete [30, 15].

It was recently shown by one of the authors, together with Strassburger, that, despite its
significance, L admits no feasible1 axiomatisation by linear inferences unless coNP = NP
[14, 15], resolving a long-standing open problem of Blass and Japaridze for their respective
logics (see, e.g., [21]). From a Boolean algebra point of view, this means that the class
of linear Boolean inequalities has no feasible basis (unless coNP = NP). From a proof
theoretic point of view this means that any propositional proof system (in the Cook-Reckhow
sense [8, 9], see also [22]) must necessarily admit some “structural” behaviour, even when
restricted to proving only linear inferences (unless coNP = NP).

An immediate consequence of this result is that s and m above do not suffice to generate
all linear inferences (unless coNP = NP), even modulo all valid linear equations.2 In fact,
this was known before the aforementioned result, due to the identification of an explicit 36
variable inference in [30].3 Already in that work the question was posed whether such an
inference was minimal, and since then the identification of a minimal {s,m}-independent
linear inference has been a recurring theme in the literature of this area.

It has been verified in [11] that a minimal {s,m}-independent linear inference must be
“non-trivial”, as long as we admit all true linear equations. Intuitively, “non-triviality” rules
out pathological inferences such as x ∧ y → x ∨ y or x ∧ (y ∨ z) → x ∨ (y ∧ z). For these
inferences the variable, say, y is, in a sense, redundant; it turns out that they may be
derived in {s,m}, modulo linear equations, from a smaller non-trivial “core”. We recall these
arguments in Section 2.

Furthermore [11] identified a 10 variable linear inference that is not derivable by switch
and medial (even under linear equations), which Strassburger conjectured was minimal
[29]. Around the same time Šipraga attempted a computational approach, searching for
independent linear inferences by brute force [31]. However, computational limits were reached
already at 7 variables. In particular, every linear inference of up to 6 variables is already
derivable by switch and medial, modulo linear equations; due to the aforementioned 10
variable inference, any minimal independent linear inference must have size 7,8,9, or 10.

1 By “feasible”, in this work, we always mean polynomial-time computable. This is a natural condition
arising from proof theory [8, 9], and is also required for the result to be meaningful: it prevents us just
taking the entire set L as an axiomatisation.

2 The valid linear equations are just associativity, commutativity, and unit laws, cf. [14, 15].
3 Strassburger refers to the inference as a “balanced tautology”, but like the “binary tautologies” of Blass

and Japaridze, these are equivalent to linear inferences. In particular we recast Strassburger’s example
as a bona fide linear inference in Section 3.1.

A. Das and A. A. Rice 14:3

Since 2013 there have been significant advances in the area, in particular through the
proliferation of graph-theoretic tools. Indeed, the interplay between formulae and graphs was
heavily exploited for the aforementioned result of [14, 15]. Since then, multiple works have
emerged in the world of linear proof theory that treat these graphs as “first class citizens”,
comprising a now active area of research [23, 2, 1, 7].

Contribution

In this work we revisit the question of minimal {s,m}-independent linear inferences by
exploiting the aforementioned recent graph theoretic techniques. Such an approach vastly
reduces the computational resources necessary and, in particular, we are able to provide a
conclusive result: the smallest {s,m}-independent linear inference has size 8. In fact there
are two minimal such ones:4

(z ∨ (w ∧ w′)) ∧ ((x ∧ x′) ∨ ((y ∨ y′) ∧ z′))
→ (z ∧ (x ∨ y)) ∨ ((w ∨ y′) ∧ ((w′ ∧ x′) ∨ z′))

(1)

((w ∧ w′) ∨ (x ∧ x′)) ∧ ((y ∧ y′) ∨ (z ∧ z′))
→ (w ∧ y) ∨ ((x ∨ (w′ ∧ z′)) ∧ ((x′ ∧ y′) ∨ z))

(2)

We dedicate some discussion to each of these separately in Section 3.2, and include a manual
verification of their soundness and {s,m}-independence in Appendix A, as a sanity check.

Our main contribution is an implementation that checks inference for {s,m}-derivability,
which was able to confirm that all 7 variable linear inference are derivable from switch and
medial. In fact we found (1) independently of the implementation presented in this paper.5
Ultimately, we improved the implementation to run on inferences of size 8 too, and our
inference (1) was duly found, as well as (2) above and its dual. One highlight of this find is
that it exhibits a peculiar structural property that refutes Conjecture 7.9 from [15], as we
explain in Section 3.2.2.

Our implementation [25] is split into a library and an executable, where the executable
implements our search algorithm described in Section 5.2, and the library contains foundations
for working with linear inferences using the graph theoretic techniques presented in Section 4.
These are written in Rust and designed to be relatively fast while maintaining readability.
Our intention is that this could form a reusable base for future investigations in the area,
both for linear formulae and for the recent linear graph theoretic settings of [23, 2, 1, 7].

2 Preliminaries

Throughout this paper we shall work with a countably infinite set of variables, written
x, y, z etc. A linear formula on a (finite) set of variables V is defined recursively as follows:

⊤ and ⊥ are linear formulae on ∅, the empty set of variables (called units or constants).
x and ¬x are linear formulae on {x}, for each variable x.6
If φ is a linear formula on V1 and ψ is a linear formula on V2, with V1 ∩ V2 = ∅, then
φ ∨ ψ and φ ∧ ψ are linear formulae on V1 ∪ V2.

4 Minimal with respect to inter-derivability; unique up to associativity, commutativity, renaming of
variables and De Morgan duality.

5 These two developments were respectively communicated via blog posts [24] and [13].
6 Note that the restriction of negation to only variables does not compromise expressivity, since the De

Morgan laws preserve linearity on a set of variables.

FSCD 2021

14:4 New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

A linear formula that does not contain ⊤ or ⊥ is constant-free. A linear formula with no
negated variables (i.e. formulas of form ¬x) is negation-free. Later in the paper, we will be
able to restrict our search to inferences between constant-free negation-free formulae.

In what follows, we shall omit explicit consideration of variable sets, assuming that they
are disjoint whenever required by the notation being used.

A relation ∼ on linear formulae is closed under contexts if for all φ,ψ, χ, we have:

φ ∼ ψ =⇒ φ ∧ χ ∼ ψ ∧ χ φ ∼ ψ =⇒ φ ∨ χ ∼ ψ ∨ χ

φ ∼ ψ =⇒ χ ∧ φ ∼ χ ∧ ψ φ ∼ ψ =⇒ χ ∨ φ ∼ χ ∨ ψ

An equivalence relation (on linear formulae) that is closed under contexts is called a (linear)
congruence.

▶ Definition 1 (Linear equations). Let ∼ac be the smallest congruence satisfying,

φ ∨ ψ ∼ac ψ ∨ φ φ ∧ (ψ ∧ χ) ∼ac (φ ∧ ψ) ∧ χ

φ ∧ ψ ∼ac ψ ∧ φ φ ∨ (ψ ∨ χ) ∼ac (φ ∨ ψ) ∨ χ

∼u is the smallest congruence satisfying:

φ ∧ ⊤ ∼u φ φ ∨ ⊥ ∼u φ ⊤ ∧ φ ∼u φ ⊥ ∨ φ ∼u φ

φ ∧ ⊥ ∼u ⊥ φ ∨ ⊤ ∼u ⊤ ⊥ ∧ φ ∼u ⊥ ⊤ ∨ φ ∼u ⊤
(3)

∼acu is the smallest congruence containing both ∼ac and ∼u.

Note that we can have φ ∼u ψ even when φ and ψ have different sets of variables. Moreover,
∼u generates a unique normal form of linear formulae by maximally eliminating constants:

▶ Proposition 2 (Folklore, e.g. [10]). Every formula is ∼u-equivalent to a unique constant-free
formula, or is equivalent to ⊥ or ⊤.

▶ Remark 3 (On logical equivalence). Clearly, if φ ∼acu ψ then φ and ψ are logically equivalent.
In fact, for linear formulae, we also have a converse: two linear formulae φ and ψ are logically
equivalent if and only if φ ∼acu ψ [14, 15]. This property follows from Proposition 2 above,
the results of Section 2.2, and the graphical representation of linear formulae and their
semantics in Section 4.

2.1 Linear inferences
A linear inference is just a valid implication φ → ψ (with respect to usual Boolean
semantics) where φ and ψ are linear formulae. The left-hand side (LHS) and right-hand
side (RHS) of a linear inference, generally speaking, need not be linear formulae on the
same variables. Nonetheless we shall occasionally refer to linear inferences “on V” or “on n

variables”, assuming that the LHS and RHS are both linear formulae on some fixed V with
|V| = n.

There are two linear inferences we shall particularly focus on, due to their prevalence in
structural proof theory. Switch is the following inference on 3 variables,

s : x ∧ (y ∨ z) → (x ∧ y) ∨ z (4)

and medial is the following inference on 4 variables:

m : (w ∧ x) ∨ (y ∧ z) → (w ∨ y) ∧ (x ∨ z) (5)

A. Das and A. A. Rice 14:5

We may compose switch and medial (and more generally an arbitrary set of linear
inferences) to form new linear inferences by construing them as term rewriting rules. More
generally, we will consider rewriting derivations modulo the equivalence relations ∼ac and
∼acu we introduced earlier. In the latter case, as previously mentioned, the underlying set of
variables may change during a derivation, though Proposition 2 will later allow us to work
with some fixed set of variables throughout {s,m} derivations.

▶ Definition 4 (Rewriting). We write →s and →m for the term rewrite systems generated
by (4) and (5) respectively. I.e. →s and →m are the smallest relations satisfying (4) and
(5), respectively, closed under substitution and contexts. Write φ⇝m ψ if there are φ′, ψ′ s.t.
φ ∼ac φ

′ →m ψ′ ∼ac ψ, and φ ⇝mu ψ for the same with ∼ac replaced by ∼acu. Define ⇝s,
⇝su, ⇝ms, ⇝msu similarly (in particular, ⇝ms = ⇝m ∪⇝s).

We write ∗
⇝ms for the reflexive transitive closure of ⇝ms, and say φ → ψ is {s, m}-

derivable if φ ∗
⇝ms ψ. We may similarly write φ

∗
⇝s ψ (or φ ∗

⇝m ψ), saying φ → ψ is
{s}-derivable (resp., {m}-derivable), and similarly for other sets of linear inferences.

Finally, we also write ∗
⇝msu for the reflexive transitive closure of ⇝msu, and say that

φ → ψ is {s,m}-derivable with units if φ ∗
⇝msu ψ. Similarly for ∗

⇝su, ∗
⇝mu and other sets

of linear inferences.

Clearly, s and m are valid, so any derivation φ
∗
⇝msu ψ comprises a linear inference.

▶ Example 5 (“Mix”). Units can help us derive even constant-free linear inferences. For
instance, mix: φ ∧ ψ → φ ∨ ψ is {s,m}-derivable with units:

φ ∧ ψ ∼acu φ ∧ (⊥ ∨ ψ) →s (φ ∧ ⊥) ∨ ψ ∼acu ψ ∧ (⊤ ∨ φ) →s (ψ ∧ ⊤) ∨ φ ∼acu φ ∨ ψ

Note that mix is not derivable without using instances of ∼u.

▶ Example 6 (Weakening and duality). By setting φ = ⊤ and ψ = ⊥ in Example 5, we have:

⊥ ∼acu ⊤ ∧ ⊥ ∗
⇝msu ⊤ ∨ ⊥ ∼acu ⊤

Using this we may {s,m}-derive weakening, φ → φ ∨ χ, with units as follows:

φ ∼acu φ ∨ (⊥ ∧ χ) ∗
⇝msu φ ∨ (⊤ ∧ χ) ∼acu φ ∨ χ

Notice that ∗
⇝msu is closed under De Morgan duality: If φ ∗

⇝msu χ and φ̄ and χ̄ are obtained
from φ and χ, respectively, by flipping each ∨ to a ∧ and vice versa, then χ̄

∗
⇝msu φ̄. This

follows by direct inspection of s, m and each clause of ∼acu; indeed the same property holds
for ∗
⇝ms by the same reasoning. As a result, we also have that coweakening, φ ∧ χ → φ, is

{s,m}-derivable with units.

We are now able to state the main theorem of this paper:

▶ Theorem 7. Suppose φ is a linear formula over V1 and ψ is a linear formula over V2 and
r : φ → ψ is a linear inference. Then if |V1 ∩ V2| ≤ 7 we have that φ ∗

⇝msu ψ.
Furthermore, there is a valid linear inference φ → ψ on 8 variables with φ ̸ ∗⇝msu ψ, so 7

is maximal with the property above.

2.2 Trivial inferences
In order to state Theorem 7 above in its most general form, we have allowed linear formulae
to include constants and negation, and linear inferences to be between formulae with different
variable sets. However it turns out that we may proceed to prove Theorem 7, without loss of

FSCD 2021

14:6 New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

generality, by working with constant-free, negation-free formulae on some fixed set of variables,
as was already shown in [11]. This is done by defining the notion of a trivial inference, whose
{s,m}-derivability, with units, may be reduced to that of a smaller non-trivial inference.

▶ Definition 8. An inference φ → ψ is trivial at a variable x if φ[⊤/x] → ψ[⊥/x] is
again a valid inference. An inference is trivial if it is trivial at one of its variables.

▶ Example 9. The mix inference from Example 5, x ∧ y → x ∨ y, is trivial at x and trivial
at y. Note, however, that it is not trivial at x and y “at the same time”, in the sense that
the simultaneous substition of ⊥ for x and y in the LHS and ⊤ for x and y in the RHS does
not result in a valid implication. In contrast, the linear inference w ∧ (x ∨ y) → w ∨ (x ∧ y)
from [11] is, indeed, trivial at x and y “at the same time”.

Neither switch nor medial are trivial.

▶ Remark 10 (Global vs local triviality). Note that triviality is closed under composition by
linear inferences: if φ → ψ is trivial at x and ψ → χ is valid, then φ → χ is trivial at x.
Similarly for χ → ψ if χ → φ is valid. One pertinent feature is that the converse does not
hold: there are “globally” trivial derivations that are nowhere “locally” trivial. For instance
consider the following derivation (from [15, Remark 5.6]):

w ∧ x ∧ (y ∨ z)⇝s w ∧ ((x ∧ y) ∨ z)⇝s (w ∧ z) ∨ (x ∧ y)⇝m (w ∨ x) ∧ (y ∨ z)

The derived inference is just an instance of mix, from Example 5, on the redex w ∧ x, which
is trivial. However, no local step is trivial.

To prove (the first half of) Theorem 7, in Section 5 we will actually prove the following
apparent weakening of that statement:

▶ Theorem 11. Let n < 8. Let φ and ψ be constant-free negation-free linear formulae on n

variables and suppose φ → ψ is a non-trivial linear inference. Then φ
∗
⇝ms ψ.

In fact this statement is no weaker at all, and we will now see how the consideration of
triviality allows us to only deal with such special cases without loss of generality.

▶ Proposition 12 ([11, Theorem 34]). Let φ and ψ be linear formulae on V1 and V2,
respectively, and let r : φ → ψ be a linear inference. There is a non-trivial linear inference
r′ : φ′ → ψ′ on some V ′ ⊆ V1 ∩ V2 such that r : φ → ψ is {s,m, r′}-derivable with units.

Note in particular that, in the statement above, if r′ is {s,m}-derivable with units, then
so is r. This is also the case for the next result.

▶ Proposition 13. Let r : φ → ψ be a non-trivial linear inference among variables V ̸= ∅.
Then there is a constant-free negation-free non-trivial linear inference r′ : φ′ → ψ′ on V s.t.
r : φ → ψ is {s,m, r′}-derivable with units.

Proof. First, note that both φ and ψ must be linear formulae on V , since φ → ψ is non-trivial.
For the same reason, no variable can occur positively in φ and negatively in ψ or vice-versa,
since φ → ψ is non-trivial, and so any negated variable may be safely replaced by its positive
counterpart. From here, we simply set φ′ and ψ′ to be the constant-free formulae (uniquely)
obtained from Proposition 2 by ∼u. Non-triviality of r′ follows from that of r by logical
equivalence. ◀

▶ Corollary 14. The statement of Theorem 11 implies (the first half of) the statement of
Theorem 7.

A. Das and A. A. Rice 14:7

Proof. Let r be as in Theorem 7. Let r′ be the non-trivial linear inference obtained by
Proposition 12 above, and let r′′ be the non-trivial constant-free negation-free linear inference
thence obtained by Proposition 13. By Theorem 11, r′′ is {s,m}-derivable and so, by
Proposition 12 and Proposition 13, r is also {s,m}-derivable with units. ◀

It is clear that if an inference is derivable with switch and medial then it is also derivable
with switch, medial, and units. The following proposition, while not necessary for the proof
of Corollary 14, allows the the converse in some cases, and is the reason why our search
algorithm in Section 5 will only check for {s,m}-derivability.

▶ Proposition 15 (Follows from [11], Lemma 28). Suppose φ → ψ is a non-trivial constant-
free negation-free linear inference that is {s,m}-derivable with units. Then φ → ψ is also
{s,m}-derivable (without units).

The idea here is to systematically rewrite a derivation with units to one without, line by
line under Proposition 13. Crucially, the invariant of non-triviality constrains the contexts
in which constants may occur, ensuring that the constant-elimination procedure preserves
instances of s or m.

2.3 Minimality of inferences
Let us take a moment to explain the various notions of “inference minimality” that we shall
mention in this work.

Size minimality refers simply to the number of variables the inference contains. E.g.
when we say that the 8-variable inferences in the next section are size minimal (or “smallest”)
non-{s,m}-derivable with units (or {s, m}-independent linear inferences, we mean that
there are no {s,m}-independent linear inferences with fewer variables.

A linear inference φ → ψ is logically minimal if there is no ∼acu-distinct interpolating
linear formula. I.e. if φ → χ and χ → ψ are linear inferences, then χ is ∼acu-equivalent to φ
or ψ (and so, by Remark 3, is logically equivalent to φ or ψ).

Finally, a linear inference φ → ψ is {s,m}-minimal if there is no formula χ s.t. φ⇝ms χ

or χ ⇝ms ψ and χ → ψ or φ → χ, respectively, is a valid linear inference which is not a
logical equivalence.

It is clear from the definitions that any logically minimal inference is also {s,m}-minimal,
though the converse may not be true. The reason for considering {s,m}-minimality is that
it is easier to systematically check by hand. In fact, the implementation we give later in
Section 5 further verifies that our new 8-variable inferences are logically minimal.

Logical minimality also serves an important purpose for our proof of Theorem 11, as it
allows the following reduction, greatly reducing the search space for our implementation, in
fact to nearly 1% of its original size for 8 variable inferences:7

▶ Lemma 16. Suppose the statement of Theorem 11 holds whenever φ → ψ is logically
minimal. Then the statement of Theorem 11 holds (even when φ → ψ is not logically
minimal).

Proof. Suppose we have a non-trivial inference between constant-free negation-free linear
inferences φ → ψ. Then φ → ψ can be refined into a chain of logically minimal linear
inferences φ → χ0 → · · · → χn → ψ. All of these must be non-trivial, as triviality of any of
them would imply triviality of φ → ψ, cf. Remark 10. Therefore if all such inferences are
derivable from switch and medial (with units) then so is φ → ψ, by transitivity. ◀

7 5364/514486 ≈ 1.04%

FSCD 2021

14:8 New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

3 New 8-variable {s, m}-independent linear inferences

In this section we shall present the new 8-variable linear inferences of this work ((1) and
(2) from the introduction), and give self-contained arguments for their {s,m}-independence
and {s,m}-minimality, as a sort of sanity check for the implementation described in the
next section. We shall also briefly discuss some of their structural properties, in reference
to previous works in the area. Thanks to the results of the previous section, in particular
Proposition 13 and Remark 10, we shall only consider non-trivial constant-free negation-free
linear inferences with the same variables in the LHS and RHS. Furthermore, by Proposition 15
we shall only consider {s,m}-derivability (i.e., without units).

3.1 Previous linear inferences

In [30] Strassburger presented a 36-variable inference that is {s,m}-independent, by an
encoding of the pigeonhole principle with 4 pigeons and 3 holes. He there referred to it as a
“balanced” tautology, but in our setting it is a linear inference that can be written as follows:8

3∧
i=1

i∧
j=1

(xij ∨ x′
ij) ∧

3∧
i=1

i∧
j=1

(yij ∨ y′
ij) ∧

3∧
i=1

i∧
j=1

(zij ∨ z′
ij)

→

((x11 ∨ x21 ∨ x31) ∧ (y11 ∨ y21 ∨ y31) ∧ (z11 ∨ z21 ∨ z31))

∨ ((x′
11 ∨ x22 ∨ x32) ∧ (y′

11 ∨ y22 ∨ y32) ∧ (z′
11 ∨ z22 ∨ z32))

∨ ((x′
21 ∨ x′

22 ∨ x33) ∧ (y′
21 ∨ y′

22 ∨ y33) ∧ (z′
21 ∨ z′

22 ∨ z33))
∨ ((x′

31 ∨ x′
32 ∨ x′

33) ∧ (y′
31 ∨ y′

32 ∨ y′
33) ∧ (z′

31 ∨ z′
32 ∨ z′

33))

In [11] Das noticed that a more succinct encoding of the pigeonhole principle could be carried
out, with only 3 pigeons and 2 holes, resulting in a 10-variable {s,m}-independent linear
inference. A variation of that, e.g. as used in [12], is the following:

(z ∨ (w ∧ w′)) ∧ (y ∨ y′) ∧ (u ∨ u′) ∧ ((x ∧ x′) ∨ z′)
→ (z ∧ (x ∨ y)) ∨ (u ∧ x′) ∨ (w′ ∧ u′) ∨ ((w ∨ y′) ∧ z′)

(6)

In fact this is not a {s,m}-minimal inference, but we write this one here for comparison to
one of the new 8-variable inferences in the next subsection. It can be checked valid and
non-trivial by simply checking all cases, or by use of a solver. We do not give an argument
for {s,m}-independence here, but such an argument is similar to the one we give for an
8-variable inference Equation (7), which is given the next subsection.

3.2 The two minimal 8 variable {s, m}-independent linear inferences

Pre-empting Section 5.2, let us explicitly give the two minimal linear inferences found by our
algorithm and justify their {s,m}-independence and {s,m}-minimality, as a sort of sanity
check for our implementation later. As we will see, they both turn out to be significant in
their own right, which is why we take the time to consider them separately.

8 We write Strassburger’s inference by encoding each qi1j as xij , each qi2j as yij , each qi3j as zij , and
using “primed” variables instead of duals, with the LHS of the inference being the appropriate instances
of excluded middle.

A. Das and A. A. Rice 14:9

3.2.1 A refinement of the 3-2-pigeonhole-principle
First let us consider the 8 variable linear inference that may be used to derive Equation (6),
cf. Appendix A.1 (identical to (1) from the introduction):

(z ∨ (w ∧ w′)) ∧ ((x ∧ x′) ∨ ((y ∨ y′) ∧ z′))
→ (z ∧ (x ∨ y)) ∨ ((w ∨ y′) ∧ ((w′ ∧ x′) ∨ z′))

(7)

Recalling the notion of “duality” from Example 6, let us formally define the dual of a linear
inference φ → χ to be the linear inference χ̄ → φ̄, where φ̄ and χ̄ are obtained from φ and
χ, respectively, by flipping all ∨s to ∧s and vice-versa. Considering linear inferences up to
renaming of variables, we have:

▶ Observation 17. (7) is self-dual.

Indeed, the formula structure of the RHS is clearly the dual of that of the LHS, and the
mapping from a variable in the LHS to the variable at the same position in the RHS is, in
fact, an involution. I.e., u is mapped to itself; v is mapped to y which in turn is mapped
to v; v′ is mapped to w which is in turn mapped to v′; x is mapped to y′ which in turn is
mapped to x; and z is mapped to itself. Validity may be routinely checked by any solver,
but we give a case analyis of assignments in Appendix A.2.

We may also establish {s,m}-independence and {s,m}-minimality by checking all applic-
ations of s or m to the LHS (note that we do not need to check the RHS, by Observation 17
above). This analysis is given explicitly in Appendix A.4.

3.2.2 A counterexample to a conjecture of Das and Strassburger
Finally, our search algorithm found a completely new linear inference (identical to (2) from
the introduction):

((w ∧ w′) ∨ (x ∧ x′)) ∧ ((y ∧ y′) ∨ (z ∧ z′))
→ (w ∧ y) ∨ ((x ∨ (w′ ∧ z′)) ∧ ((x′ ∧ y′) ∨ z)) (8)

Again, validity is routine, but a case analysis is given in Appendix A.3. We may establish
{s,m}-independence and {s,m}-minimality again by checking all possible rule applications.
This analysis is given in Appendix A.5.

This new inference exhibits a rather interesting property, which we shall frame in terms
of the following notion, since it will be used in the next section:

▶ Definition 18. Let φ be a linear formula on a variable set V. For distinct x, y ∈ V, the
least common connective (lcc) of x and y in φ is the connective ∨ or ∧ at the root of the
smallest subformula of φ containing both x and y.

Note that, in the inference (8) above, the lcc of w′ and x′ changes from ∨ to ∧, but the lcc of
y and y′ changes from ∧ to ∨. No such example of a minimal linear inference exhibiting both
of these properties was known before; switch, medial and all of the linear inferences of this
section either preserve ∨-lccs or preserve ∧-lccs. In fact, Das and Strassburger showed that
any valid linear inference preserving ∧-lccs is already derivable by medial [15, Theorem 7.5],
and further conjectured that there was no minimal inference that preserves neither ∧-lccs
nor ∨-lccs. Naturally, our new inference is a counterexample to that:

▶ Theorem 19. Conjecture 7.9 from [15] is false.

FSCD 2021

14:10 New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

4 A graph-theoretic presentation of linear inferences

A significant cause of algorithmic complexity when searching for linear inferences is the
multitude of formulae equivalent modulo associativity and commutativity (∼ac). For example,
for 7 variables, there are 42577920 formulae (ignoring units), yet only 78416 equivalence
classes. Under Remark 3 it would be ideal if we could deal with ∼ac-equivalence classes
directly, realising logical and syntactic notions on them in a natural way. This is precisely
what is accomplished by the graph-theoretic notion of a relation web, cf. [17, 28, 14, 15].

Throughout this section we work only with constant-free negation-free linear formulae,
cf. Theorem 11. Recall the notion of least common connective (lcc) from Definition 18.

▶ Definition 20. Let φ be a linear formula on a variable set V. The relation web (or
simply web) of φ, written W(φ), is a simple undirected graph with:

The set of nodes of W(φ) is just V, i.e. the variables occurring in φ.
For x, y ∈ V, there is an edge between x and y in W(φ) if the lcc of x and y in φ is ∧.

When we draw graphs, we will draw a solid red line x y if there is an edge between
x and y, and a green dotted line x y otherwise.

▶ Example 21. Let φ be the linear formula w ∧ (x ∧ (y ∨ z)). W(φ) is the following graph:

w x

y z

Note that linear formulae equivalent up to associativity and commutativity have the same
relation web, since ∼ac does not affect the lccs. For instance, if ψ = (w ∧ x) ∧ (z ∨ y), then
W(ψ) is still just the relation web above. In fact, we also have the converse:

▶ Proposition 22 (E.g., [15], Proposition 3.5). Given linear formulae φ and ψ, φ ∼ac ψ if
and only if W(φ) = W(ψ).

Thus relation webs are natural representations of equivalence classes of linear formulae
modulo associativity and commutativity.

It is easy to see that the image of W is just the cographs. A cograph is either a single node,
or has the form R S or R S for cographs R and S.9 A cograph decomposition
of a cograph R is just a definition tree according to these construction rules (its “cotree”),
from which we may easily extract a linear formula with web R. Note from Example 21 that
the cograph decomposition of a relation web need not be unique, since formulae equivalent
modulo associativity and commutativity have the same relation web.

Cographs admit an elegant local characterisation by means of forbidden subgraphs:

▶ Definition 23. P4 is the following graph:

w x

y z

A graph G is P4-free if none of its induced10 subgraphs are isomorphic to P4.

9 Formally, R S has as nodes the disjoint union of the nodes of R and the nodes of S; edges within
the R component are inherited from R and similarly for S; there is also an edge between every node in
R and every node in S. R S is defined similarly, but without the last clause.

10 An induced subgraph is one whose edges are just those of G restricted to a subset of the nodes.

A. Das and A. A. Rice 14:11

▶ Proposition 24 (E.g. [17, 28]). A graph is a cograph if and only if it is P4-free. Thus,
relation webs are just the P4-free graphs whose nodes are variables.

Note, in particular, that this characterisation gives us an easy way to check whether
a graph is the web of some formula: just check every 4-tuple of nodes for a P4. What is
more, we may also verify several semantic properties of linear inferences, such as validity and
triviality, directly at the level of relation webs:

▶ Proposition 25 (Follows from Proposition 4.4 and Theorem 4.6 in [15]). Let φ and ψ be
linear formulae on the same set of variables. φ → ψ is a valid linear inference if and only if
for every maximal clique P of W(φ), there is some Q ⊆ P such that Q is a maximal clique
of W(ψ).

▶ Proposition 26 (E.g., [15], Proposition 5.7). Let φ and ψ be linear formulae on the same
variables. φ → ψ is a linear inference that is trivial at x if and only if for every maximal
clique P of W(φ), there is some Q ⊆ P \ {x} such that Q is a maximal clique of W(ψ).

Note that the criterion for triviality is a strict strengthening of that for validity, as we would
expect. For both of the results above, there is a dual characterisation in terms of maximal
stable sets instead of maximal cliques. For instance, the characterisation of validity morally
states “whenever φ evaluates to 1, then ψ evaluates to 1”. The dual characterisation is that
for every maximal stable set Q of W(ψ) there is a maximal stable set P of W(φ) with P ⊆ Q,
which morally states “whenever ψ evaluates to 0, then φ evaluates to 0”. We will not make
use of these dual characterisations in this work.

▶ Example 27 (Validity of switch and medial, triviality of mix). The switch and medial inferences
can be construed as the following “graph rewrite” rules on relation webs, respectively:

s : x

y

z

→ x

y

z

m :
w x

y z

→
w x

y z

It is easy to see that the validity criterion of Proposition 25 holds for each of these rules.
For s, the maximal cliques {x, y} and {x, z} in the LHS are mapped to {x, y} and {z} in the
RHS respectively. For m, the maximal cliques {w, x} and {y, z} in the LHS are mapped to
themselves in the RHS.

Now consider the trivial inference x ∧ y → x ∨ y, construed as the graph rewrite rule:

x y → x y

We can easily verify the criterion for triviality at x from Proposition 26 since the only
maximal clique on the LHS, {x, y} has {y} ⊆ {x, y} \ {x} as a maximal clique on the RHS.

▶ Remark 28. With the results in this section, the notation for inferences between formulae
can be equally used for relation webs. For example, for webs R and S, we can write R⇝ms S
is valid to mean that the inference between (any choice of) the underlying linear formulae is
an instance of ⇝ms, and R ∗

⇝ms S to mean the there is a derivation from switch and medial
between the underlying formulae. Since these relations are invariant under associativity and
commutativity, they are independent of the particular cograph decomposition chosen.

Furthermore, to prove Theorem 11, it is sufficient to show that for all webs R and S with
size less than 8, if R → S is valid and non-trivial then R ∗

⇝ms S.
The final component needed to be able to work fully with webs is a way to check if a

given inference is an instance of switch or medial. Such characterisations exist:

FSCD 2021

14:12 New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

▶ Proposition 29 ([28, Theorem 5]). Let R → S represent a constant-free negation-free
non-trivial linear inference. Then R → S is derivable from medial if and only if:

Whenever x y in R, also x y in S.
Whenever x y in R but x y in S there exists w and z such that

w x

y z

is an induced subgraph of R and
w x

y z

is an induced subgraph of S.

The second condition can, in fact, be replaced by simply requiring that R → S is valid [15,
Theorem 7.5]. A relation web characterisation for switch derivability can also be found in
[28, Theorem 6.2], however we do not use it in our implementation.

5 Implementation

As stated in previous sections, Theorem 11 is proved using a computational search. In this
section we describe the algorithm used to search for {s,m}-independent inferences, as well as
some of the optimisations we employ so that this search finishes in a reasonable time. Many
of these optimisations may be of self-contained theoretical interest.

The implementation is written in Rust,11 which offers a combination of good performance
(both in terms of speed and memory management) but also provides a variety of high
level abstractions such as algebraic data types. Furthermore, it has built-in support for
iterators, allowing the code to be written in a more functional style, and has a built-in testing
framework, meaning that sanity checks can be built into the code base. The code is available
at [25] and has been split into two parts: a library containing types for undirected linear
graphs and formulae and some operations on them, and an executable which implements the
search algorithm using this library as a base.

5.1 Library
The library portion of the implementation defines methods for working with relation webs,
as well as the ability to convert formulae to relation webs and vice versa. The majority of
the library consists of the LinGraph trait, which is an interface for types that can be treated
as undirected graphs. This allows us to query the edges between variables as well as perform
more involved operations such as checking whether a graph is P4-free. We may also ask
whether a pair of relation webs forms a valid linear inference and check whether the inference
is trivial using Propositions 25 and 26.

Storing graphs and relation webs. The library was designed with the intention of storing
graphs as compactly as possible. Therefore there are implementations of LinGraph which
pack the data (a series of bits for whether there exists an edge between each pair of nodes)
into various integer types. The implementation is given for unsigned 8 bit, 16 bit, 32 bit
(which can store up to 8 variable graphs), 64 bit, and 128 bit integers. Furthermore there
is an implementation using vectors (variable length arrays) of Boolean values, which is
less memory efficient but can store relation webs of arbitrary size. A further improvement
could be to use an external library implementing bit arrays to make a memory efficient, yet
infinitely scalable implementation.

11 https://www.rust-lang.org/

https://www.rust-lang.org/

A. Das and A. A. Rice 14:13

Checking an inference between graphs. In order to implement linear inference checking,
we use a data type representing maximal cliques of a relation web, which we represent as the
trait MClique. It is possible to use Rust’s inbuilt HashSet12 to do this but, as above, a more
memory efficient solution is provided where we store the data in a single integer, with each
bit determining whether a node is contained in the clique. For example a maximal clique on
an 8 node graph can be encoded into a single byte. While checking for linear inferences and
triviality, the main operation on maximal cliques is asking whether one is a subset of the
other. This operation can be carried out very quickly using bitwise operations. Lastly we
also need a way to generate the maximal cliques of a relation web. This is done using the
Bron-Kerbosch algorithm [4], which is fast enough for our purposes (as we are only finding
the maximal cliques of relatively small graphs).

Working with isomorphism. There is also code for working with isomorphisms of graphs,
which is used in the search algorithm to shrink the search space further. This is implemented
as a module where permutations and operations on these permutations are defined, as well
as having the ability to apply a permutation to the nodes of a graph, to get a new but
isomorphic graph.

Generating all P4-free graphs. The library also has a function that allows all P4-free
graphs of a certain size to be generated. The naive algorithm for doing this which simply
generates all graphs and checks each one for being P4-free is computationally infeasible for
graphs with more than a few variables, as the number of graphs scales superexponentially
with the number of variables (for instance there are 221 7-variable relation webs). Instead,
we use a recursive algorithm that generates all P4-free graphs of size n by first generating the
P4-free graphs of size n− 1 and then checking all possible extensions of these graphs to see if
they are P4-free. Correctness of this procedure is due to the fact that induced subgraphs
of a P4-free are themselves P4-free. In fact, a further optimisation is also added: when we
check whether the extensions are P4-free, it is sufficient to only check if subsets of the nodes
containing the added node are not isomorphic to P4, instead of checking every subset.

Sanity checks. Finally, the library also contains some automated tests used as sanity checks
on the code, which may be used to check various implementations against each other.

5.2 Search algorithm

The main part of the implementation is a search algorithm to find logically minimal non-
trivial inferences between relation webs that are not derivable from switch and medial. The
search algorithm functions in multiple phases. After each phase the results are serialised and
saved to disk so that the algorithm can be restarted from this point.

Phase 1: generating P4-free graphs on n nodes. Suppose we are searching for {s,m}-
independent linear inferences between webs on n variables. The first phase, as described in
the previous section, is to gather all P4-free graphs with n nodes.

12 https://doc.rust-lang.org/std/collections/struct.HashSet.html

FSCD 2021

https://doc.rust-lang.org/std/collections/struct.HashSet.html

14:14 New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

Phase 2: identifying isomorphism classes and canonical representatives. To describe the
second phase we need to introduce some new notions. Without loss of generality, we will
assume henceforth that the variable set is given by V = {0, . . . , n− 1}.

▶ Definition 30. Note that the function ι : {(x, y) ∈ N × N | x < y} → N given by
ι(x, y) = x+

∑
i<y i is a bijection. Define the numerical representation of a linear graph

R, written N(R), to be the natural number whose ι(x, y)th least significant bit is 1 if and
only if (x, y) ∈ R.

This is the encoding used to store graph in integers as described in the previous section.

▶ Definition 31. Given a bijection ρ : V → V, we write ρ(R) for the graph on V with edges
(ρ(x), ρ(y)) for each edge (x, y) ∈ R. R and S are isomorphic if S = ρ(R), for some
bijection ρ : V → V, in which case ρ is called an isomorphism from R to S.

As isomorphism is an equivalence relation, we can partition the set of P4-free graphs into
isomorphism classes. It can readily be checked that N (from Definition 30) is injective and
can therefore be used to induce a strict total ordering on graphs. Say that a relation web
is least if it is the smallest element in its isomorphism class (with respect to this ordering
induced from N).

The second phase of the algorithm is to identify these least relation webs, as well as
identify the isomorphism between every relation web and its isomorphic least relation web.
It will become clear why this data is needed later on in the section. To obtain this, first
the relation webs are sorted (by numerical representation) and then, taking each graph
R in turn, applying every possible permutation to its nodes, and seeing if any result in a
smaller web (with respect to N). If none do then we record it as a least relation web (with
the identity isomorphism). Otherwise suppose it is isomorphic to R′ with isomorphism ρ

where N(R′) < N(R). As we are checking graphs in order, we must already know that
R′ is isomorphic to least graph R′′ with isomorphism π. Then we can record R as being
isomorphic to R′′ with isomorphism π ◦ ρ. This allows us to use the following lemma.

▶ Lemma 32. The statement of Theorem 11 follows from the following: for any valid
non-trivial logically minimal inference R → S on n < 8 variables, where R is least, we have
R ∗
⇝ms S.

Proof. To show the statement of Theorem 11, let R and S be relation webs on n variables
and suppose R → S is a non-trivial linear inference (cf. Remark 28). By Lemma 16, we can
further assume that R → S is logically minimal. Then let ρ be an isomorphism from R to
R′ least isomorphic to R, and let S ′ = ρ(S). Then R ∗

⇝ms S if and only if R′ ∗
⇝ms S ′, as

required. ◀

The above lemma allows us to only search inferences from least webs to arbitrary webs.
This increases the speed of the search greatly as it turns out there are relatively few least
webs. For example, there are 78416 P4-free graphs with 7 variables with only 180 of them
being least (the number of isomorphism classes). Note that we may not similarly restrict the
RHS of inferences to least webs. This means we need to know the maximal cliques of every
P4-free graph to determine whether there are inferences between them.

Phase 3: generating all maximal cliques. In phase three we generate all the maximal
cliques of the graphs found in phase one and store them so that they do not need to be
recomputed every time we check a linear inference. As we can store each maximal clique in a
single byte, storing all this data is feasible.

A. Das and A. A. Rice 14:15

Phase 4: generating “least” linear inferences. With the maximal clique data, phase
four of generating a list of all valid linear inferences (from a least web to an arbitrary web)
can be easily done by iterating through all possible combinations and checking them using
Proposition 25.

Phase 5: checking for non-triviality. Similarly phase five of checking which of these
inferences are non-trivial is also simple using Proposition 26. This data is stored in a
HashMap of sets for quick indexing.

Phase 6: restricting to logically minimal inferences. Phase six is now to restrict our
inferences to only those that are logically minimal. Write ΦR be the set of webs distinct
from R that R (non-trivially) implies. We calculate, for a least web R, the set MR of webs
S with R → S a logically minimal linear inference using the identity:

MR = ΦR \
⋃

R′∈ΦR

ΦR′

Note that to calculate this, we need to be able to generate ΦR for arbitrary (i.e. not necessarily
least) webs. This is where the isomorphism data stored in phase two becomes useful, as if ρ
is an isomorphism from R to R′, with R′ least, we can use,

ΦR = {ρ−1(S) | S ∈ ΦR′}

to generate ΦR, where we already have ΦR′ . In the implementation, we generate each ΦR
on the fly (from ΦR′), though we could have pre-generated all of these, which might provide
further speedup for this phase.

Phase 7: checking for switch-medial derivability. The last phase is to check the remaining
inferences, of which there are now few enough to feasibly do so. Logically minimal inferences
have one further benefit: a logically minimal inference (and in fact any {s,m}-minimal
inference) φ → ψ is derivable from switch and medial if and only if it is derivable from a
single switch or medial step. To check if it is a medial we can use the criterion for medial
derivability from Proposition 29.

To check if the inference R → S is a switch, we simply run through all possible cograph
decompositions of R and check if any of the possible switch applications yields S. It would
have been possible to use the criterion for switch derivability from [28] (mentioned at the
end of Section 4), but running through possible partitions of the nodes of R was fast enough
and easier to implement.

Evaluation and main results. After running all phases on 7 variables, we found that there
were 78416 P4-free graphs of which 180 were least. There were 35110 non-trivial inferences
from a least web to an arbitrary web of which 1352 were minimal. Of these minimal inferences,
968 were an instance of switch, 384 were an instance of medial, and there were no other
inferences, which completes the proof of Theorem 11.

Furthermore, the algorithm was fast enough to run on 8 variables, where there were
1320064 P4-free graphs of which 522 were least. There were 514486 non-trivial inferences
from a least web to an arbitrary web of which 5364 were minimal, Of these, 3506 were an
instance of switch, 1770 were an instance of medial, and there were 88 other inferences. After
quotienting out by isomorphism (as restricting to inferences from least graphs does not rule
out self isomorphisms on the LHS of the inference), we were left with 3 inferences, of which
two were dual to each other leaving the logically minimal {s,m}-independent inferences given
in Section 3. These give a proof of Theorem 7, the main theorem of this paper.

FSCD 2021

14:16 New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

6 Conclusions

In this work we undertook a computational approach towards the classification of linear
inferences. To this end we succeeded in exhausting the linear inferences up to 8 variables,
showing that there are two (distinct) 8 variable linear inferences that are independent of
switch and medial. One of these new inferences contradicts a Conjecture 7.9 from [15].
Conversely, all linear inferences on 7 variables or fewer are already derivable using switch
and medial.

We point out that it should be possible to adapt our implementation to a variety of
logics and, in particular, graph-based systems such as those from [2, 1, 7]. This would be an
interesting avenue for future work.

References
1 Matteo Acclavio, Ross Horne, and Lutz Straßburger. An analytic propositional proof system

on graphs. CoRR, abs/2012.01102, 2020. arXiv:2012.01102.
2 Matteo Acclavio, Ross Horne, and Lutz Straßburger. Logic beyond formulas: A proof system

on graphs. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors,
LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken,
Germany, July 8-11, 2020, pages 38–52. ACM, 2020. doi:10.1145/3373718.3394763.

3 Andreas Blass. A game semantics for linear logic. Ann. Pure Appl. Log., 56(1-3):183–220,
1992. doi:10.1016/0168-0072(92)90073-9.

4 Coenraad Bron and Joep Kerbosch. Finding all cliques of an undirected graph (algorithm
457). Commun. ACM, 16(9):575–576, 1973.

5 Kai Brünnler. Deep inference and symmetry in classical proofs. PhD thesis, Dresden University
of Technology, Germany, 2003. URL: http://hsss.slub-dresden.de/hsss/servlet/hsss.
urlmapping.MappingServlet?id=1064911987703-3819.

6 Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In Robert Nieuwenhuis
and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning,
8th International Conference, LPAR 2001, Havana, Cuba, December 3-7, 2001, Proceedings,
volume 2250 of Lecture Notes in Computer Science, pages 347–361. Springer, 2001. doi:
10.1007/3-540-45653-8_24.

7 Cameron Calk, Anupam Das, and Tim Waring. Beyond formulas-as-cographs: an extension of
boolean logic to arbitrary graphs. CoRR, abs/2004.12941, 2020. arXiv:2004.12941.

8 Stephen A. Cook and Robert A. Reckhow. On the lengths of proofs in the propositional
calculus (preliminary version). In Robert L. Constable, Robert W. Ritchie, Jack W. Carlyle,
and Michael A. Harrison, editors, Proceedings of the 6th Annual ACM Symposium on Theory
of Computing, April 30 - May 2, 1974, Seattle, Washington, USA, pages 135–148. ACM, 1974.
doi:10.1145/800119.803893.

9 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. J. Symb. Log., 44(1):36–50, 1979. doi:10.2307/2273702.

10 Anupam Das. On the proof complexity of cut-free bounded deep inference. In Kai Brünnler
and George Metcalfe, editors, Automated Reasoning with Analytic Tableaux and Related
Methods - 20th International Conference, TABLEAUX 2011, Bern, Switzerland, July 4-8,
2011. Proceedings, volume 6793 of Lecture Notes in Computer Science, pages 134–148. Springer,
2011. doi:10.1007/978-3-642-22119-4_12.

11 Anupam Das. Rewriting with Linear Inferences in Propositional Logic. In Femke van
Raamsdonk, editor, 24th International Conference on Rewriting Techniques and Applications
(RTA 2013), volume 21 of Leibniz International Proceedings in Informatics (LIPIcs), pages
158–173, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.RTA.2013.158.

http://arxiv.org/abs/2012.01102
https://doi.org/10.1145/3373718.3394763
https://doi.org/10.1016/0168-0072(92)90073-9
http://hsss.slub-dresden.de/hsss/servlet/hsss.urlmapping.MappingServlet?id=1064911987703-3819
http://hsss.slub-dresden.de/hsss/servlet/hsss.urlmapping.MappingServlet?id=1064911987703-3819
https://doi.org/10.1007/3-540-45653-8_24
https://doi.org/10.1007/3-540-45653-8_24
http://arxiv.org/abs/2004.12941
https://doi.org/10.1145/800119.803893
https://doi.org/10.2307/2273702
https://doi.org/10.1007/978-3-642-22119-4_12
https://doi.org/10.4230/LIPIcs.RTA.2013.158
https://doi.org/10.4230/LIPIcs.RTA.2013.158

A. Das and A. A. Rice 14:17

12 Anupam Das. An unavoidable contraction loop in monotone deep inference, 2017. URL:
http://cs.bath.ac.uk/ag/das/con-loop.pdf.

13 Anupam Das. A new linear inference of size 8. The Proof Theory Blog, June 2020. URL:
https://prooftheory.blog/2020/06/25/new-linear-inference/.

14 Anupam Das and Lutz Straßburger. No complete linear term rewriting system for propositional
logic. In Maribel Fernández, editor, 26th International Conference on Rewriting Techniques
and Applications, RTA 2015, June 29 to July 1, 2015, Warsaw, Poland, volume 36 of LIPIcs,
pages 127–142. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.
RTA.2015.127.

15 Anupam Das and Lutz Straßburger. On linear rewriting systems for boolean logic and some
applications to proof theory. Log. Methods Comput. Sci., 12(4), 2016. doi:10.2168/LMCS-12(4:
9)2016.

16 Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. doi:10.1016/
0304-3975(87)90045-4.

17 Alessio Guglielmi. A system of interaction and structure. ACM Trans. Comput. Log., 8(1):1,
2007. doi:10.1145/1182613.1182614.

18 Alessio Guglielmi and Tom Gundersen. Normalisation control in deep inference via atomic
flows. Log. Methods Comput. Sci., 4(1), 2008. doi:10.2168/LMCS-4(1:9)2008.

19 Tom Gundersen. A General View of Normalisation through Atomic Flows. PhD thesis,
University of Bath, UK, 2009. URL: https://tel.archives-ouvertes.fr/tel-00441540.

20 Giorgi Japaridze. Introduction to cirquent calculus and abstract resource semantics. CoRR,
abs/math/0506553, 2005. arXiv:math/0506553.

21 Giorgi Japaridze. Elementary-base cirquent calculus I: parallel and choice connectives. CoRR,
abs/1707.04823, 2017. arXiv:1707.04823.

22 Jan Krajícek. The cook-reckhow definition. CoRR, abs/1909.03691, 2019. arXiv:1909.03691.
23 Lê Thành Dung Nguyên and Thomas Seiller. Coherent interaction graphs. In Thomas Ehrhard,

Maribel Fernández, Valeria de Paiva, and Lorenzo Tortora de Falco, editors, Proceedings Joint
International Workshop on Linearity & Trends in Linear Logic and Applications, Linearity-
TLLA@FLoC 2018, Oxford, UK, 7-8 July 2018, volume 292 of EPTCS, pages 104–117, 2018.
doi:10.4204/EPTCS.292.6.

24 Alex Rice. Linear inferences of size 7. The Proof Theory Blog, October 2020. URL:
https://prooftheory.blog/2020/10/01/linear-inferences-of-size-7/.

25 Alex Rice. lin_inf rust crate. https://github.com/alexarice/lin_inf, 2021.
26 Lutz Straßburger. A local system for linear logic. In Matthias Baaz and Andrei Voronkov,

editors, Logic for Programming, Artificial Intelligence, and Reasoning, 9th International Con-
ference, LPAR 2002, Tbilisi, Georgia, October 14-18, 2002, Proceedings, volume 2514 of Lecture
Notes in Computer Science, pages 388–402. Springer, 2002. doi:10.1007/3-540-36078-6_26.

27 Lutz Straßburger. Linear logic and noncommutativity in the calculus of structures. PhD thesis,
Dresden University of Technology, Germany, 2003. URL: http://hsss.slub-dresden.de/
hsss/servlet/hsss.urlmapping.MappingServlet?id=1063208959250-7293.

28 Lutz Straßburger. A characterization of medial as rewriting rule. In Franz Baader, editor,
Term Rewriting and Applications, 18th International Conference, RTA 2007, Paris, France,
June 26-28, 2007, Proceedings, volume 4533 of Lecture Notes in Computer Science, pages
344–358. Springer, 2007. doi:10.1007/978-3-540-73449-9_26.

29 Lutz Straßburger. Personal communication, 2012.
30 Lutz Straßburger. Extension without cut. Ann. Pure Appl. Log., 163(12):1995–2007, 2012.

doi:10.1016/j.apal.2012.07.004.
31 Alvin Šipraga. An automated search of linear inference rules. Summer research project.

Supervised by Alessio Guglielmi and Anupam Das, 2012. URL: http://arcturus.su/mimir/
autolininf.pdf.

FSCD 2021

http://cs.bath.ac.uk/ag/das/con-loop.pdf
https://prooftheory.blog/2020/06/25/new-linear-inference/
https://doi.org/10.4230/LIPIcs.RTA.2015.127
https://doi.org/10.4230/LIPIcs.RTA.2015.127
https://doi.org/10.2168/LMCS-12(4:9)2016
https://doi.org/10.2168/LMCS-12(4:9)2016
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/1182613.1182614
https://doi.org/10.2168/LMCS-4(1:9)2008
https://tel.archives-ouvertes.fr/tel-00441540
http://arxiv.org/abs/math/0506553
http://arxiv.org/abs/1707.04823
http://arxiv.org/abs/1909.03691
https://doi.org/10.4204/EPTCS.292.6
https://prooftheory.blog/2020/10/01/linear-inferences-of-size-7/
https://github.com/alexarice/lin_inf
https://doi.org/10.1007/3-540-36078-6_26
http://hsss.slub-dresden.de/hsss/servlet/hsss.urlmapping.MappingServlet?id=1063208959250-7293
http://hsss.slub-dresden.de/hsss/servlet/hsss.urlmapping.MappingServlet?id=1063208959250-7293
https://doi.org/10.1007/978-3-540-73449-9_26
https://doi.org/10.1016/j.apal.2012.07.004
http://arcturus.su/mimir/autolininf.pdf
http://arcturus.su/mimir/autolininf.pdf

14:18 New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

A Further proofs and examples

Proof sketch of Proposition 2. Write ⇝ for the rewriting relation obtained by orienting
every pair of (3) left-to-right. Clearly ⇝ is terminating since each step decreases formula
size. For confluence, note that every critical pair must reduce to the same constant:

⊥ ∨ ⊥⇝ ⊥ ⊥ ∨ ⊤⇝ ⊤ ⊤ ∨ ⊥⇝ ⊤ ⊤ ∨ ⊤⇝ ⊤
⊥ ∧ ⊥⇝ ⊥ ⊥ ∧ ⊤⇝ ⊥ ⊤ ∧ ⊥⇝ ⊥ ⊤ ∧ ⊤⇝ ⊤

◀

A.1 Recovering an 8 variable inference
The reason for writing the variation (6) in Section 3.1 instead of the one originally presented
in [11] is that it allows us to recover one of the new 8-variable inferences, by a particular
reduction first noticed in a blog post [13].

By setting x′ = u′ = ¬u in (6) and simplifying, we obtain the linear inference:

(z ∨ (w ∧ w′)) ∧ (y ∨ y′) ∧ ((x ∧ x′) ∨ z′)
→ (z ∧ (x ∨ y)) ∨ (w′ ∧ x′) ∨ ((w ∨ y′) ∧ z′)

Again, the inference above is not {s,m}-minimal, since there are two possible applications of
switch to the LHS that nonetheless imply the RHS:

((z ∧ (y ∨ y′)) ∨ (w ∧w′)) ∧ ((x∧ x′) ∨ z′) or (z ∨ (w ∧w′)) ∧ ((x∧ x′) ∨ ((y ∨ y′) ∧ z′))

Furthermore, are two switch applications leading to the RHS that are nonetheless implied by
their respective formulae above:13

((z ∨ (w′ ∧ x′)) ∧ (x∨ y)) ∨ ((w ∨ y′) ∧ z′) or (z ∧ (x∨ y)) ∨ ((w ∨ y′) ∧ ((w′ ∧ x′) ∨ z′))

The two resulting linear inferences are, in fact, isomorphic and indeed {s,m}-minimal, as
we shall explain in the next subsection. As we have already mentioned, the fact that this is
a logically minimal linear inference is shown by means of the implementation presented in
Section 5.

A.2 Validity of Equation 7
We consider each assignment that satisfies the LHS and argue that it also satisfies the RHS:

{z, x, x′} satisfies z ∧ (x ∨ y).
{z, y, z′} satisfies z ∧ (x ∨ y).
{z, y′, z′} satisfies (w ∨ y′) ∧ ((w′ ∧ x′) ∨ z′).
{w,w′, x, x′} satisfies (w ∨ y′) ∧ ((w′ ∧ x′) ∨ z′).
{w,w′, y, z′} and {w,w′, y′, z′} satisfy (w ∨ y′) ∧ ((w′ ∧ x′) ∨ z′).

A.3 Validity of Equation 8
We consider each assignment that satisfies the LHS and argue that it also satisfies the RHS:

{w,w′, y, y′} satisfies w ∧ y.
{w,w′, z, z′} satisfies w′ ∧ z′ and z.
{x, x′, y, y′} satisfies x and x′ ∧ y′.
{x, x′, z, z′} satisfies x and z.

13 Note that these switch applications were overlooked in the blog post [13].

A. Das and A. A. Rice 14:19

A.4 {s, m}-independence and {s, m}-minimality of Equation 7
There are two possible medial applications to the subformula (x∧x′) ∨ ((y∨y′) ∧ z′) resulting
in the following new LHSs:

(z ∨ (w ∧ w′)) ∧ (x ∨ y ∨ y′) ∧ (x′ ∨ z′). In this case {z, y′, x′} is a countermodel.
(z ∨ (w ∧ w′)) ∧ (x ∨ z′) ∧ (x′ ∨ y ∨ y′). In this case {z, z′, x′} is a countermodel.

There are two possible switch applications to the subformula (y ∨ y′) ∧ z′ resulting in the
following new LHSs:

(z ∨ (w ∧ w′)) ∧ ((x ∧ x′) ∨ y ∨ (y′ ∧ z′)). In this case {w,w′, y} is a countermodel.
(z ∨ (w ∧ w′)) ∧ ((x ∧ x′) ∨ y′ ∨ (y ∧ z′)). In this case {z, y′} is a countermodel.

Finally any other switch application is on the top-level conjunction, resulting in a formula
of the form z∨X, (w∧w′)∨X, (x∧x′)∨X or ((y∨y′)∧z′)∨X, which admits a countermodel
{z}, {w,w′}, {x, x′} or {y, z′}, respectively.

A.5 {s, m}-independence and {s, m}-minimality of Equation 8
Let us first consider rules applicable to the LHS. There are four possible medial applications,
resulting in the following new LHSs:

(w ∨ x) ∧ (w′ ∨ x′) ∧ ((y ∧ y′) ∨ (z ∧ z′)). In this case {w, x′, y, y′} is a countermodel.
(w ∨ x′) ∧ (w′ ∨ x) ∧ ((y ∧ y′) ∨ (z ∧ z′)). In this case {x′, w′, y, y′} is a countermodel.
((w ∧ w′) ∨ (x ∧ x′)) ∧ (y ∨ z) ∧ (y′ ∨ z′). In this case {x, x′, y, z′} is a countermodel.
((w ∧ w′) ∨ (x ∧ x′)) ∧ (y ∨ z′) ∧ (y′ ∨ z). In this case {w,w′, z′, y′} is a countermodel.

Any switch application to the LHS must be on the top-level conjunction, and will have the
form (a ∧ a′) ∨X, for a ∈ {w, x, y, z}. However, {w,w′}, {x, x′}, {y, y′} and {z, z′} are each
countermodels for the RHS.

Now let us consider the possible rule applications leading to the RHS. There are two
possible medial instances, coming from the following new RHSs:

(w ∧ y) ∨ (x ∧ x′ ∧ y′) ∨ (w′ ∧ z′ ∧ z). In this case {x, x′, z, z′} is a countermodel.
(w ∧ y) ∨ (x ∧ z) ∨ (w′ ∧ z′ ∧ x′ ∧ y′). In this case {w,w′, z, z′} is a countermodel.

Now let us consider the switch instances:
If the contractum of the switch is x ∨ (w′ ∧ z′), then {x, x′, y, y′} is a countermodel.
If the contractum of the switch is (x′ ∧ y′) ∨ z, then {w,w′, z, z′} is a countermodel.
If the redex of the switch has the form w∧X or y∧X, then {x, x′, z, z′} is a countermodel.
If the redex of the switch has the form X ∧ (x ∨ (w′ ∧ z′)) or X ∧ ((x′ ∧ y′) ∨ z), then
{w,w′, y, y′} is a countermodel.

FSCD 2021

A Modular Associative Commutative (AC)
Congruence Closure Algorithm
Deepak Kapur #

Department of Computer Science, University of New Mexico, Albuquerque, NM, USA

Abstract
Algorithms for computing congruence closure of ground equations over uninterpreted symbols
and interpreted symbols satisfying associativity and commutativity (AC) properties are proposed.
The algorithms are based on a framework for computing the congruence closure by abstracting
nonflat terms by constants as proposed first in Kapur’s congruence closure algorithm (RTA97). The
framework is general, flexible, and has been extended also to develop congruence closure algorithms
for the cases when associative-commutative function symbols can have additional properties including
idempotency, nilpotency and/or have identities, as well as their various combinations. The algorithms
are modular; their correctness and termination proofs are simple, exploiting modularity. Unlike
earlier algorithms, the proposed algorithms neither rely on complex AC compatible well-founded
orderings on nonvariable terms nor need to use the associative-commutative unification and extension
rules in completion for generating canonical rewrite systems for congruence closures. They are
particularly suited for integrating into Satisfiability modulo Theories (SMT) solvers.

2012 ACM Subject Classification Software and its engineering; Theory of computation; Mathematics
of computing

Keywords and phrases Congruence Closure, Associative and Commutative, Word Problems, Finitely
Presented Algebras, Equational Theories

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.15

Funding Research partially supported by the NSF award: CCF-1908804.

Acknowledgements Heartfelt thanks to the referees for their reports which substantially improved
the presentation.

1 Introduction

Equality reasoning arises in many applications including compiler optimization, functional
languages, and reasoning about data bases, most importantly, reasoning about different
aspects of software and hardware. The significance of the congruence closure algorithms on
ground equations in compiler optimization and verification applications was recognized in
the mid 70’s and early 80’s, leading to a number of algorithms for computing the congruence
closure of ground equations on uninterpreted function symbols [8, 28, 25]. Whereas congruence
closure algorithms were implemented in earlier verification systems [28, 25, 19, 32], their role
has become particularly critical in Satisfiability modulo Theories (SMT) solvers as a glue to
combine different decision procedure for various theories.

We present algorithms for the congruence closure of ground equations which in addition
to uninterpreted function symbols, have symbols with the associative (A) and commutative
(C) properties. Using these algorithms, it can be decided whether another ground equation
follows from a finite set of ground equations with associative-commutative (AC) symbols
and uninterpreted symbols. Canonical forms (unique normal forms) can be associated with
congruence classes. Further, a unique reduced ground congruence closure presentation can
be associated with a finite set of ground equations, enabling checks whether two different
finite sets of ground equations define the same congruence closure or one is contained in the
other. In the presence of disequations on ground terms with AC and uninterpreted symbols,
a finite set of ground equations and disequations can be checked for satisfiability.

© Deepak Kapur;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 15; pp. 15:1–15:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kapur@cs.unm.edu
https://doi.org/10.4230/LIPIcs.FSCD.2021.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Modular AC Congruence Closure

The main contributions of the paper are (i) a modular combination framework for the
congruence closure of ground equations with multiple AC symbols, uninterpreted symbols,
and constants, leading to (ii) modular and simple algorithms that can use flexible termination
orderings on ground terms and do not need to use AC/E unification algorithms for generating
canonical forms; (iii) the termination and correctness proofs of these algorithms are modular
and easier. The key insights are based on extending the author’s previous work presented in
[13, 14]: introduction of new constants for nested subterms, resulting in flat and constant
equations, extended to purification of mixed subterms with many AC symbols by flattening
AC ground terms and introducing new constants for pure AC terms in each AC symbol,
resulting in disjoint subsets of ground equations on single AC symbols with shared constants.
The result of this transformation is a finite union of disjoint subsets of ground equations
with shared constants: (i) a finite set of constant equations, (ii) a finite set of flat equations
with uninterpreted symbols, and (iii) for each AC symbol, a finite set of equations on pure
flattened terms in a single AC symbol.

With the above decomposition, reduced canonical rewrite systems are generated for each
of the subsystems using their respective termination orderings that extend a common total
ordering on constants. A combination of the reduced canonical rewrite systems is achieved
by propagating constant equalities among various rewrite systems; whenever new implied
constant equalities are generated, each of the reduced canonical rewrite systems must be
updated with additional computations to ensure their canonicity. Due to this modularity and
factoring/decomposition, the termination and correctness proofs can be done independently
of each subsystem, providing considerable flexibility in choosing termination orderings.

The combination algorithm terminates when no additional implied constant equalities
are generated. Since there are only finitely many constants in the input and only finitely
many constants are needed for purification, the termination of the combination algorithm
is guaranteed. The result is a reduced canonical rewrite system corresponding to the AC
congruence closure of the input ground equations, which is unique for a fixed family of
total orderings on constants and different pure AC terms in each AC symbol. The reduced
canonical rewrite system can be used to generate canonical signatures of ground terms with
respect to the congruence closure.

The framework provides flexibility in choosing orderings on constants and terms with
different AC symbols, enabling canonical forms suitable for applications instead of restrictions
imposed due to the congruence closure algorithms. Interpreted AC symbols can be further
enriched with properties including idempotency, nilpotency, existence of identities, and
simply commutativity, without restrictions on orderings on mixed terms. Termination and
correctness proofs of congruence closure algorithms are modular and simple in contrast to
complex arguments and proofs in [5, 24]. These features of the proposed algorithms make
them attractive for integration into SMT solvers as their implementation does not need heavy
duty infrastructure including AC unification, extension rules, and AC compatible orderings.

The next subsection contrasts in detail, the results of this paper with the previous methods,
discussing the advantages of the proposed framework and the resulting algorithms. Section 2
includes definitions of congruence closure with uninterpreted and interpreted symbols. This
is followed by a review of key constructions used in the congruence closure algorithm over
uninterpreted symbols as proposed in [13]. Section 3 introduces purification and flattening of
ground terms with AC and uninterpreted symbols by extending the signature and introducing
new constants. This is followed by an algorithm first reported in [11] for computing the
congruence closure and the associated canonical rewrite system from ground equations with
a single AC symbol and constants. It is shown how additional properties of AC symbols

D. Kapur 15:3

such as idempotency, nilpotency and identity can be integrated into the algorithm. In the
next subsection, an algorithm for computing congruence closure of AC ground equations
with multiple AC symbols and constants is presented. Section 4 generalizes to the case of
combination of AC symbols and uninterpreted symbols. Section 5 discusses a variety of
examples illustrating the proposed algorithms. Section 6 illustrates the power and elegance
of the proposed framework by demonstrating how the congruence closure algorithm for two
AC symbols can be further generalized to get a Gröbner basis algorithm on polynomial ideals
over the integers. Section 7 concludes with some ideas for further investigation. Appendix
includes proofs of some of the results in the paper.

1.1 Related Work
Congruence closure algorithms have been developed and analyzed for over four decades [8,
28, 25]. The algorithms presented here use the framework first informally proposed in [13] for
congruence closure in which the author separated the algorithm into two parts: (i) constant
equivalence closure, and (ii) nonconstant flat terms related to constants by flattening nested
terms by introducing new constants to stand for them, and (iii) update nonconstant rules
as constant equivalence closure evolves. This simplified the presentation, the correctness
argument as well as the complexity analysis, and made the framework easier to generalize
to other settings including conditional congruence closure [14] and semantic congruence
closure [1]. Further, it enables the generation of a reduced unique canonical rewrite system
for a congruence closure, assuming a total ordering on constants; most importantly, the
framework gives freedom in choosing orderings on ground terms, leading to desired canonical
forms appropriate for applications.

To generate congruence closure in the presence of AC symbols, the proposed framework
builds on the author and his collaborators’ work dating back to 1985, where they demonstrated
how an ideal-theoretic approach based on Gröbner basis algorithms could be employed for
word problems and unification problems over commutative algebras [11].

Congruence closure algorithms on ground equations with interpreted symbols can be
viewed as special cases of the Knuth-Bendix completion procedure [20] on (nonground)
equations with universal properties characterizing the semantics of the interpreted symbols.
In case of equations with AC symbols, Peterson and Stickel’s extension of the Knuth-Bendix
completion [27] using extension rules, AC unification and AC compatible orderings can be
used for congruence closure over AC symbols. For an arbitrary set E of universal axioms
characterizing the semantics of interpreted symbols, E-completion with coherence check
and E-unification along with E-compatible orderings need to be used. Most of the general
purpose methods do not terminate in general. Even though the Knuth-Bendix procedure
can be easily proved to terminate on ground equations of uninterpreted terms, that is not
necessarily case for its extensions for other ground formulas.

In [6], a generalization of the Knuth-Bendix completion procedure [20] to handle AC
symbols [27] is adapted to develop decision algorithms for word problems over finitely
presented commutative semigroups; this is equivalent to the congruence closure of ground
equations with a single AC symbol on constants. Related methods using extension rules
introduced to handle AC symbols and AC rewriting for solving word problems over other
finite presented commutative algebras were subsequently reported in [29].

In [24], the authors used the completion algorithm discussed in [11] and a total AC-
compatible polynomial reduction ordering on congruence classes of AC ground terms to
establish the existence of a ground canonical AC system first with one AC symbol. To extend
their method to multiple AC symbols, particularly the instances of distributivity property

FSCD 2021

15:4 Modular AC Congruence Closure

relating ground terms in two AC symbols ∗ and +: the authors had to combine an AC-
compatible total reduction ordering on terms along with complex polynomial interpretations
with polynomial ranges, resulting in a complicated proof to orient the distributivity axiom
from left to right. Using this highly specialized generalization of polynomial orderings, it was
proved in [24] that every ground AC theory has a finite canonical system which also serves
as its congruence closure.

The proposed approach, in contrast, is orthogonal to ordering arguments on AC ground
terms; instead a total ordering on constants in the extended signature is extended to many
different possible orderings on pure terms with a single AC symbol is sufficient to compute a
canonical ground AC rewrite system. Different orderings on AC terms with different AC
symbols can be used; for example, for ground terms of an AC symbol + could be oriented
in a completely different way than ground terms for another AC symbol ∗. Instances of
the distributivity property expressed on different AC ground terms can also be oriented in
different nonuniform ways. This leads to flexible ordering requirements on uninterpreted and
interpreted symbols based on the properties desired of canonical forms.

In [21], a different approach was taken for computing a finite canonical rewrite system
for ground equations on AC symbols. Marche first proved a general result about AC ground
theories that for any finite set of ground equations with AC symbols, if there is an equivalent
canonical rewrite system modulo AC, then that rewrite system must be finite. He gave an
AC completion procedure, which does not terminate even on ground equations; he then
proved its termination on ground equations with AC symbols using a special control on its
inference rules using a total ordering on AC ground terms in [24]. Neither in [24] nor in [21],
any explicit mention is made of uninterpreted symbols appearing in ground equations.

Similar to [6], several approaches based on adapting Peterson and Stickel’s generalization
of the Knuth-Bendix completion procedure to consider special ground theories have been
reported [29, 21]. In [4, 5], the authors adapted Kapur’s congruence closure [13] using its
key ideas to an abstract inference system (Table for new constant symbols defining flat
terms introducing during flattening of nested nonconstant terms in Make_Rule were called
D-rule for defining a flat term and C-rule for introducing a new constant symbol). Various
congruence closure algorithms, including Sethi, Downey and Tarjan [8], Nelson and Oppen [25]
and Shostak [28], from the literature can be expressed as different combinations of these
inference steps. They also proposed an extension of this inference system to AC function
symbols, essentially integrating it with [27] of the Knuth-Bendix completion procedure using
extension rules, adapted to ground equations with AC symbols. All of these approaches
based on Paterson and Stickel’s generalization used extension rules introduced in [27] to
define rewriting modulo AC theories so that a local-confluence test for rules with AC symbols
could be developed using AC unification. During completion on ground terms, rules with
variables appear in intermediate computations. All of these approaches suffer from having
to consider many unnecessary inferences due to extension rules and AC unification, as it is
well-known that AC unification can generate doubly exponentially many unifiers [18].

An approach based on normalized rewriting was proposed in [22] and decision procedures
were reported for ground AC theories with AC symbols satisfying additional properties
including idempotency, nilpotency and identity as well as their combinations. This was an
attempt to integrate Le Chenadec’s method [29] for finitely presented algebraic structures
with Peterson and Stickel’s AC completion, addressing weaknesses in E-completion and
constrained rewriting, while considering additional axioms of AC symbols, including identity,
idempotency and nilpotency for which termination orderings are difficult to design. However,
that approach had to redefine local confluence for normalized rewriting and normalized
critical pairs, leading to a complex completion procedure whose termination and proof of
correctness needed extremely sophisticated machinery of normalized proofs.

D. Kapur 15:5

The algorithms presented in this paper, in contrast, are very different and are based on
an approach first presented in [11] by the author with his collaborators. Their termination
and correctness proofs are based on the termination and correctness proofs of a congruence
closure algorithm for uninterpreted symbols (if present) and the termination and correctness
of an algorithm for deciding the word problems of a finitely presented commutative semig-
roup using Dickson’s Lemma. Since the combination is done by propagating equalities on
shared constants among various components, the termination and correctness proofs of the
combination algorithm become much easier since there are only finitely many constants to
consider, as determined by the size of the input ground equations.

A detailed comparison leads to several reasons why the proposed algorithms are simpler,
modular, easier to understand and prove correct: (i) there is no need in the proposed approach
to use extension rules whereas almost all other approaches are based on adapting AC/E
completion procedures for this setting requiring considerable/sophisticated infrastructure
including AC unification and E/Normalized rewriting As a result, proofs of correctness and
termination become complex using heavy machinery including proof orderings and normalized
proof methods not to mention arguments dealing with fairness of completion procedures.
(ii) all require complex total AC compatible orderings. In contrast, ordering restrictions
in the proposed algorithms are dictated by individual components–little restriction for the
uninterpreted part, independent orderings on +-monomials for each AC symbol + insofar
as orderings on constants are shared by all parts, thus giving considerable flexibility in
choosing termination orderings. In most related approaches except for [24], critical pairs
computed using expensive AC unification steps are needed, which are likely to make the
algorithms inefficient; it is well-known that many superfluous critical pairs are generated
due to AC unification. These advantages make us predict that the proposed algorithms can
be easily integrated with SMT solvers since they do not require sophisticated machinery of
AC-unification and AC-compatible orderings, extension rules and AC completion.

2 Preliminaries

Let F be a set of function symbols including constants and GT (F) be the ground terms
constructed from F ; sometimes, we will write it as GT (F, C) to highlight the constants of
F . We will abuse the terminology by calling a k-ary function symbol as a function symbol
if k > 0 and constant if k = 0. A function term is meant to be a nonconstant term with a
nonconstant outermost symbol. Symbols in F are either uninterpreted (to mean no semantic
property of such a function is assumed) or interpreted satisfying properties expressed as
universally quantified equations (called universal equations).

2.1 Congruence Relations
▶ Definition 1. Given a finite set S = {ai = bi|1 ≤ i ≤ m} of ground equations where ai, bi ∈
GT (F), the congruence closure CC(S) is inductively defined as follows: (i) S ⊆ CC(S), (ii)
for every a ∈ GT (F), a = a ∈ CC(S), (iii) if a = b ∈ CC(S), b = a ∈ CC(S), (iv) if a = b

and b = c ∈ CC(S), a = c ∈ CC(S), and (v) for every nonconstant f ∈ F of arity k > 0, if
for all 1 ≤ k, ai = bi ∈ CC(S), then f(a1, · · · , ak) = f(b1, · · · , bk) ∈ CC(S). Nothing else
is in CC(S).

CC(S) is thus the smallest relation that includes S and is closed under reflexivity,
symmetry, transitivity, and under function application. It is easy to see that CC(S) is also
the equational theory of S [2, 1].

FSCD 2021

15:6 Modular AC Congruence Closure

2.2 Kapur’s Congruence Closure Algorithm for Uninterpreted Symbols
The algorithm in [13, 14] for computing congruence closure of a finite set S of ground equations
serves as the main building block in this paper. The algorithm extends the input signature
by introducing new constant symbols to recursively stand for each nonconstant subterm
and generates two types of equations: (i) constant equations, and (ii) flat terms of the form
f(c1, · · · , ck) equal to constants. A disequation is converted to a disequation on constants
by introducing new symbols for the terms. It can be proved that the congruence closure
of ground equations on the extended signature when restricted to the original signature, is
indeed the congruence closure of the original equations [1].

Using a total ordering on constants (typically with new constants introduced to extend
the signature being smaller than constants from the input), the output of the algorithm
in [13, 14] is a reduced canonical rewrite system RS associated with CC(S) (as well as S)
that includes function, also called flat rules of the form f(c1, · · · , ck) → d and constant rules
c → d such that no two left sides of the rules are identical; further, all constants are in
canonical forms. As proved in [13] (see also [26]),

▶ Theorem 2 ([13]). Given a set S of ground equations, a reduced canonical rewrite system
RS on the extended signature, consisting of nonconstant flat rules f(c1, . . . , ck) → d, and
constant rules c → d, can be generated from S in O(n2) steps. The complexity can be further
reduced to O(n ∗ log(n)) steps if all function symbols are binary or unary. For a given total
ordering ≫ on constants, RS is unique for S, subject to the introduction of the same set of
new constants for nonconstant subterms.

As shown in [8] (see [26]), function symbols of arity > 2 can be encoded using binary
symbols using additional linearly many steps.

The canonical form of a ground term g using RS is denoted by ĝ and is its canonical
signature (in the extended language). Ground terms g1, g2 are congruent in CC(S) iff ĝ1 = ĝ2.

2.3 AC Congruence Closure
The above definition of congruence closure CC(S) is extended to consider interpreted symbols.
Let IE be a finite set of universally quantified equations with variables, specifying properties
of interpreted function symbols in F . For example, the properties of an AC symbol f are:
∀x, y, z, f(x, y) = f(y, x), f(x, f(y, z)) = f(f(x, y), z). An idempotent symbol g, for another
example, is specified as ∀x, g(x, x) = x. To incorporate the semantics of these properties:

(vi) from a universal axiom s = t ∈ IE, for each variable x in s, t, for any ground
substitution σ, i.e., σ(x) ∈ GT (F), σ(s) = σ(t) ∈ CC(S).

CC(S) is thus the smallest relation that includes S and is closed under reflexivity,
symmetry, transitivity, function application, and the substitution of variables in IE by
ground terms. CC(S) is also the ground equational theory of S.

Given a finite set S of ground equations with uninterpreted and interpreted symbols,
the congruence closure membership problem is to check whether another ground equation
u = v ∈ CC(S) (meaning semantically that u = v follows from S, written as S |= u = v). A
related problem is whether given two sets S1 and S2 of ground equations, CC(S2) ⊆ CC(S1),
equivalently S1 |= S2. Birkhoff’s theorem relates the syntactic properties, the equational
theory, and the semantics of S.

If S also includes ground disequations, then besides checking the unsatisfiability of a
finite set of ground equations and disequations, new disequations can be derived in case S is
satisfiable. The inference rule for deriving new disequations for an uninterpreted symbol is:

f(c1, . . . , ck) ̸= f(d1, · · · , dk) =⇒ (c1 ̸= d1 ∨ · · · ∨ ck ̸= dk).
In particular, if f is unary, then the disequation is immediately derived.

D. Kapur 15:7

Disequations in case of interpreted symbols generate more interesting formulas. In
case of a commutative symbol f , for example, the disequation f(a, b) ̸= f(c, d) implies
(a ̸= c ∨ a ̸= c ∨ b ≠ d ∨ c ̸= d). For an AC symbol g, as an example, the disequation
g(a, g(b, c)) ̸= g(a, g(a, g(a, c))) implies (a ̸= g(a, c) ∨ b ̸= c ∨ b ̸= g(a, a) ∨ · · ·).

To emphasize the presence of AC symbols, let ACCC(S) stand for the AC congruence
closure of S with AC symbols; we will interchangeably use ACCC(S) and CC(S).

2.4 Flattening and Purification
Let F include a finite set C of constants, a finite set FU of uninterpreted symbols, and a
finite set FAC of AC symbols. i.e., F = FAC ∪ FU ∪ C.

Following [13], ground equations in GT (F) with AC symbols are transformed into three
kinds of equations by introducing new constants for subterms: (i) constant equations of the
form c = d, (ii) flat equations with uninterpreted symbols of the form h(c1, · · · , ck) = d,
and (iii) for each f ∈ FAC , f(c1 · · · , cj) = f(d1, · · · , dj′), where c’s, d’s are constants in
C, h ∈ FU , and every AC symbol f is viewed to be variadic (including f(c) = c). Nested
subterms of every AC symbol f are repeatedly flattened: f(f(s1, s2), s3) to f(s1, s2, s3)
and f(s1, f(s2, s3)) to f(s1, s2, s3) until all arguments to f are constants or nonconstant
terms with outermost symbols different from f . Nonconstant arguments of a mixed AC
term f(t1, · · · , tk) are transformed to f(u1, · · · , uk), where ui’s are new constants, with
ti = ui if ti is not a constant. A subterm whose outermost function symbol is uninterpreted,
is also flattened by introducing new constants for their nonconstant arguments. These
transformations are recursively applied on the equations with new constants.

New constants are introduced only for nonconstant subterms and their number is minim-
ized by introducing a single new constant for each distinct subterm irrespective of its number
of occurrences (which is equivalent to representing terms by directed acyclic graphs (DAGs)
with full sharing whose each non-leaf node is assigned a distinct constant). As an example,
((f(a, b) ∗ g(a)) + f(a + (a + b), (a ∗ b) + b)) ∗ ((g(a) + ((f(a, b) + a) + a)) + (g(a) ∗ b)) = a is
purified and flattened with new constants ui’s, resulting in {f(a, b) = u1, g(a) = u2, u1 ∗ u2 =
u3, a + a + b = u4, a ∗ b = u5, u5 + b = u6, f(u4, u6) = u7, u3 + u7 = u8, u2 ∗ b =
u9, u2 + u1 + a + a + u9 = u10, u7 ∗ u10 = a

The arguments of an AC symbol are represented as a multiset since the order does not
matter but multiplicity does. For an AC symbol f , let f(M) be a flattened term f(a1, · · · , ak)
with M = {{a1, · · · , ak}}, a multiset of constants; f(M) is called an f-monomial. In case
f has its identity e, i.e., f(x, e) = x, then e is written as is, or f({{}}). A singleton constant
c is written as is or equivalently f({{c}}). An f -monomial f(M1) is equal to f(M2) iff the
multisets M1 and M2 are equal.

Without any loss of generality, the input to the algorithms below are assumed to be the
above set of flattened ground equations on constants.

3 Congruence Closure with Associative-Commutative (AC) Functions

The focus in this section is on interpreted symbols with the associative-commutative properties;
later, uninterpreted symbols are considered.

Checking whether a ground equation on AC terms is in the congruence closure ACCC(S)
of a finite set S on ground equations is the word problem over finitely presented commutative
algebraic structures, presented by S characterizing their interpretations as discussed in
[11, 29, 6]. In the presence of disequations over AC ground terms, one is also interested
in determining whether the set of ground equations and disequations is satisfiable or not.

FSCD 2021

15:8 Modular AC Congruence Closure

Another goal is to associate a reduced canonical rewrite system as a unique presentation of
ACCC(S) and a canonical signature with every AC congruence class in the AC congruence
closure of a satisfiable S.

For a single AC symbol f and a finite set S of monomial equations {f(Mi) = f(M ′
i)|1 ≤

i ≤ k}, ACCC(S) is the reflexive, symmetric and transitive closure of S closed under f : if
f(M1) = f(M2) and f(N1) = f(N2) in ACCC(S), then f(M1 ∪ N1) = f(M2 ∪ N2) is also in
ACCC(S). In case of multiple AC symbols, for every AC symbol g ̸= f , g(f(M1), f(N1)) =
g(f(M2), f(N2)) ∈ ACCC(S).

3.1 Congruence Closure with a Single AC Symbol
As in [13], we follow a rewrite-based approach for computing the AC congruence closure
ACCC(S) by generating a canonical rewrite system from S. To make rewrite rules from
equations in S, a total ordering ≫ on the set C of constants is extended to a total ordering
on f -monomials and denoted as ≫f . One of the main advantages of the proposed approach
is the flexibility in using termination orderings on f -monomials, both from the literature on
termination orderings on term rewriting systems as well as well-founded orderings (also called
admissible orderings) from the literature on symbolic computation including Gröbner basis.

Using the terminology from the Gröbner basis literature, an ordering ≫f on the set of
f -monomials, GT ({f}, C), is called admissible iff i) f(A) ≫f f(B) if the multiset B is a
proper subset of the multiset A (subterm property) for any nonempty multiset M , and (ii)
for any multiset B, f(A1) ≫f f(A2) =⇒ f(A1 ∪ B) ≫f f(A2 ∪ B) (the compatibility
property). f({{}}) may or may not be included in GT (F) depending upon an application.

From S, a rewrite system RS is associated with S by orienting nontrivial equations in S

(after deleting trivial equations t = t from S) using ≫f : a ground equation f(A1) = f(A2)
is oriented into a terminating rewrite rule f(A1) → f(A2), where f(A1) ≫f f(A2). The
rewriting relation induced by this rewrite rule is defined below.

▶ Definition 3. A flattened term f(M) is rewritten in one step, denoted by →AC (or simply
→), using a rule f(A1) → f(A2) to f(M ′) iff A1 ⊆ M and M ′ = (M − A1) ∪ A2, where
−, ∪ are operations on multisets.

Given that f(A1) ≫f f(A2), it follows that f(M) ≫f f(M ′), implying the rewriting
terminates. Standard notation and concepts from [2] are used to represent and study
properties of the reflexive and transitive closure and transitive closure of →AC induced by
RS ; the reflexive, symmetric and transitive closure of →AC is the AC congruence closure
ACCC(S) of S. Below, the subscript AC is dropped from →AC , f is dropped from Sf and
≫f whenever obvious from the context.

A rewrite relation → defined by RS is called terminating iff there are no infinite rewrite
chains of the form t0 → t1 → · · · → tk → · · · . A rewrite relation → is locally confluent iff for
any term t such that t → u1, t → u2, there exists v such that u1→∗v, u2→∗v. → is confluent
iff for any term t such that t →∗ u1, t →∗ u2, there exists v such that u1 →∗ v, u2 →∗ v.
→ is canonical iff it is terminating and locally-confluent (and hence also terminating and
confluent). A term t is in normal form iff there is no u such that t → u.

An f -monomial f(M) is in normal form with respect to RS iff f(M) cannot be rewritten
using any rule in RS .

Define a nonstrict partial ordering on f -monomials, informally capturing when an f -
monomial rewrites another f -monomial, called the Dickson ordering: f(M) ≫D f(M ′) iff
M ′ is a subset of M . Observe that the strict subpart of this ordering, while well-founded, is
not total; for example, two distinct singleton multisets (constants) {{a}} ̸= {{b}} cannot be
compared. This ordering is later used to show the termination of the completion algorithm.

D. Kapur 15:9

A rewrite system RS is called reduced iff neither the left side nor the right side of any
rule in RS can be rewritten by any of the other rules in RS .

As in [11], the local confluence of RS can be checked using the following constructions of
superposition and critical pair.

▶ Definition 4. Given two distinct rewrite rules f(A1) → f(A2), f(B1) → f(B2), let
AB = (A1 ∪ B1) − (A1 ∩ B1); f(AB) is then the superposition of the two rules, and the
critical pair is (f((AB − A1) ∪ A2), f((AB − B1) ∪ B2)).

To illustrate, consider two rules f(a, b) → a, f(b, c) → b; their superposition f(a, b, c)
leads to the critical pair (f(a, c), f(a, b)).

A rule can have a constant on its left side and a nonconstant on its right side. As stated
before, a singleton constant stands for the multiset containing that constant.

A critical pair is nontrivial iff the normal forms of its two components in →AC as multisets
are not the same (i.e., they are not joinable). A nontrivial critical pair generates an implied
equality relating distinct normal forms of its two components.

For the above two rewrite rules, normal forms of two sides are (f(a, c), a), respectively,
indicating that the two rules are not locally confluent. A new derived equality is generated:
f(a, c) = a which is in ACCC({f(a, b) = a, f(b, c) = b}).

It is easy to prove that if A1, B1 are disjoint multisets, their critical pair is trivial. Many
critical pair criteria to identify additional trivial critical pairs have been investigated and
proposed in [7, 17, 3].

▶ Lemma 5. An AC rewrite system RSf
is locally confluent iff the critical pair: (f((AB −

A1) ∪ A2), f((AB − B1) ∪ B2)) between every pair of distinct rules f(A1) → f(A2), f(B1) →
f(B2) is joinable, where AB = (A1 ∪ B1) − (A1 ∩ B1).

See the Appendix for a proof.
Using the above local confluence check, a completion procedure is designed in the classical

manner; equivalently, a nondeterministic algorithm can be given as a set of inference rules [2].
If a given rewrite system is not locally confluent, then new rules generated from nontrivial
critical pairs (that are not joinable) are added until the resulting rewrite system is locally
confluent. New rules can always be oriented since an ordering on f -monomials is assumed to
be total. This completion algorithm is a special case of Gröbner basis algorithm on monomials
built using a single AC symbol. The result of the completion algorithm is a locally confluent
and terminating rewrite system for ACCC(S).

Doing the completion algorithm on the two rules in the above examples, the derived
equality is oriented into a new rule f(a, c) → a. The system {f(a, b) → a, f(b, c) →
b, f(a, c) → a} is indeed locally-confluent. This canonical rewrite system is a presentation of
the congruence closure of {f(a, b) = a, f(b, c) = b}. Using the rewrite system, membership
in its congruence closure can be decided by rewriting: f(a, b, b) = f(a, b, c) ∈ ACCC(S)
whereas f(a, b, b) ̸= f(a, a, b).

A simple completion algorithm is presented for the sake of completeness. It takes as input,
a finite set SC of constant equations and a finite set Sf of equations on f -monomials, and a
total ordering ≫f on f -monomials extending a total ordering ordering ≫ on constants, and
computes a reduced canonical rewrite system Rf (interchangeably written as RS) such that
ACCC(S) = ACCC(SRf

), where SRf
is the set of equations l = r for every l → r ∈ Rf .

FSCD 2021

15:10 Modular AC Congruence Closure

Algorithm 1 1AC-Completion(S = Sf ∪ SC , ≫f).

1. Orient constant equations in SC into terminating rewrite rules RC using ≫ and interreduce
them. Equivalently, using Tarjan’s Union-Find data structure, for every constant c ∈ C,
compute, from SC , the equivalence class [c] of constants containing c and make RC =
∪c∈C{c → ĉ | c ̸= ĉ and ĉ is the least element in [c]}.

Initialize Rf to be RC . Let T := Sf .
2. Pick an f -monomial equation l = r ∈ T using some selection criterion (typically an

equation of the smallest size) and remove it from T . Compute normal forms l̂, r̂ using
Rf . If equal, then discard the equation, otherwise, orient into a terminating rewrite rule
using ≫f . Without any loss of generality, let the rule be l̂ → r̂.

3. Generate critical pairs between l̂ → r̂ and every f -rule in Rf , adding them to T .1
4. Add the new rule l̂ → r̂ into Rf ; interreduce other rules in Rf using the new rule.

(i) For every rule l → r in Rf whose left side l is reduced by l̂ → r̂, remove l → r from
Rf and insert l = r in T . If l cannot be reduced but r can be reduced, then reduce r by
the new rule and generate a normal form r′ of the result. Replace l → r in Rf by l → r′.

5. Repeat the previous three steps until the critical pairs among all pairs of rules in Rf are
joinable, and T becomes empty.

6. Output Rf as the canonical rewrite system associated with S.

▶ Theorem 6. The algorithm 1AC-Completion terminates, i.e., in Step 4, rules to Rf

cannot be added infinitely often.

See the Appendix for a proof.

▶ Theorem 7. Given a finite set S of ground equations with a single AC symbol f and
constants, and a total admissible ordering ≫f on flattened AC terms and constants, a reduced
canonical rewrite system Rf is generated by the above completion procedure, which serves as
a decision procedure for ACCC(S).

The proof the theorem is classical, typical of a correctness proof of a completion algorithm
based on ensuring local confluence by adding new rules generated from superpositions whose
critical pairs are not joinable.

▶ Theorem 8. Given a total ordering ≫f on f-monomials, there is a unique reduced
canonical rewrite system associated with Sf

See the Appendix for a proof.
The complexity of this specialized decision procedure has been proved to require expo-

nential space and double exponential upper bound on time complexity [23, 31].
The above completion algorithm generates a unique reduced canonical rewrite system Rf

for the congruence closure ACCC(S) because of interreduction of rules whenever a new rule
is added to Rf ; Rf (RS) thus serves as its unique presentation. Using the same ordering ≫
on f -monomials, two sets S1, S2 of AC ground equations have identical (modulo presentation
of multisets as AC terms) reduced rewrite systems RS1 = RS2 iff ACCC(S1) = ACCC(S2),
thus generalizing the result for the uninterpreted case. Every f -monomial in GT ({f}, C) has
its canonical signature–its canonical form computed using Rf generated from S.

3.2 Idempotent and/or Nilpotent AC Symbols with Identity
If an AC symbol f has additional properties such as nilpotency, idempotency and/or unit,
the above completion algorithm can be easily extended by expanding the local confluence
check. Along with the above discussed critical pairs from a distinct pair of rules, additional

D. Kapur 15:11

critical pairs must be considered from each rule in Rf . We discuss below the case of an AC
symbol being idempotent in detail; analysis for a nilpotent AC symbol, an AC symbol with
identity, and various combination of properties is similar.

For any rule f(M) → f(N) where f is idempotent and M, N do not have duplicates,
for every constant a ∈ M , generate a superposition f(M ∪ {{a}}), a new critical pair
(f(N ∪ {{a}}), f(M)) and check its joinability. It can be proved that Rf is locally confluent
iff the critical pairs constructed as above, from each distinct pair of rules in Rf and the new
critical pair from each rule are joinable; see the Appendix for a proof. For an example, from
f(a, b) → c with an idempotent f , the superpositions are f(a, a, b) and f(a, b, b), leading to
the critical pairs: (f(a, c), f(a, b)) and (f(b, c), f(a, b)), respectively, which further reduces
to (f(a, c), c) and (f(b, c), c), respectively. See the Appendix for a proof sketch.

For a nilpotent AC symbol f with f(x, x) = e, for every rule f(M) → f(N), generate a
critical pair (f(N ∪ {{a}}), f((M − {{a}}) ∪ {{e}})). If f has identity, say e, no additional
critical pair is needed since from every rule f(M) → f(N), (f(N ∪{{e}}), f(M)) are trivially
joinable. The termination proof from the previous subsection extends to each of these cases
and their combination.

3.3 Computing Congruence Closure with Multiple AC symbols
The extension of the above algorithm for computing congruence closure with a single AC
symbol to multiple AC symbols is straightforward.

Given a total ordering ≫ on constants, for each AC symbol f , define a total well-founded
admissible ordering ≫f on f -monomials extending ≫. However, nonconstant f -monomials
are not comparable with nonconstant g-monomials for f ̸= g.

From SC and each Sf , reduced canonical rewrite systems RC and Rf , respectively are
independently generated using the algorithm of the previous subsection. Equalities on shared
constants must be propagated until no additional implied equalities are generated.

Any constant equality c = d generated in an Rf , f ∈ FAC , is oriented as a rewrite rule;
wlog c → d is added to RC with c reduced to d everywhere in various Rf ’s. If c appears in
the left side of a rule in some Rg, it is removed from Rg and instead viewed as an equation,
which is further reduced and the normalized equation is oriented as a rewrite rule using ≫g

and checked for local confluence with other rules in Rg. This process is continued until no
new implied constant equalities are generated and local confluence of each Rf is restored.

A subtle issue is when two distinct Rf and Rg, f ̸= g, have rewrite rules with the same
constant on their left sides, i.e., there is a rule c → f(M) ∈ Rf and c → g(N) ∈ Rg, f ̸= g.
This implies that a constant c is congruent to both nonconstant f -monomial as well as g-
monomial. The above can happen if in ≫f and ≫g, c ≫f f(M) and c ≫g g(N), respectively.
However, f(M) and g(N) are noncomparable in ≫f or ≫g since they have two different AC
symbols. We will call this case to be that of a shared constant having two distinct normal
forms in different AC symbols.

A new constant u is introduced with c ≫ u, as is usually the case with new constants;
≫f and ≫g are extended to include monomials in which u appears with the constraint that
f(M) ≫f u and g(N) ≫g u. Add a rule c → u ∈ RC , replace the rule c → f(M) ∈ Rf by
f(M) → u and c → g(N) ∈ Rg by g(N) → u. These restrictions are easily satisfied.

The replacements of c → f(M) to f(M) → u in Rf and similarly of c → g(N) to
g(N) → u in Rg may violate the local confluence of Rf and Rg. New superpositions are
generated in Rf as well as Rg, possibly leading to new rules. After local confluence is
restored, the result is new R′

f and R′
g. To illustrate, consider S = {c = a + b, c = a ∗ b}

with AC +, ∗. For an ordering c ≫ b ≫ a with both ≫+ and ≫∗ being pure lexicographic,

FSCD 2021

15:12 Modular AC Congruence Closure

R+ = {c → a + b}, R∗ = {c → a ∗ b}. These canonical rewrite systems have a shared constant
c with two different normal forms. Introduce a new constant u with c ≫ b ≫ a ≫ u; make
RS = {a + b → u, a ∗ b → u, c → u}. The reader must have observed that whereas in the
extended signature, the above rewrite system is unique, reduced, and canonical, on the
original signature, it is not even locally confluent. A choice about whether the canonical
form of c is an f -monomial or a g-monomial is not made as part a of this algorithm since
nonconstant f -monomials and g-monomials are noncomparable.

A reduced canonical rewrite system R = RC ∪
⋃

f∈FAC
Rf is generated from S to compute

the AC congruence closure ACCC(S) in which rules have distinct left sides.

Algorithm 2 Combination Algorithm (S = SC ∪
⋃

f∈FAC
Sf , {≫f |f ∈ fAC}).

1. Generate a reduced canonical rewrite system RC from SC using the total ordering ≫
on C; equivalently, as in step 1 of the algorithm for the single AC symbol, Tarjan’s
Union-Find data structure, can be employed.

2. Normalize each Sf using Rc, resulting in equations on f -monomials on canonical constants.
Wlog, we will continue to call the result Sf . This step is eagerly applied as new constant
equalities on constants are generated in the steps below.

3. Run the congruence closure algorithm on each Sf from the previous subsection using
the ordering ≫f , generating a reduced canonical rewrite system Rf for the congruence
closure ACCC(Sf).

4. If any of Rf ’s generates an implied constant equality, say c → d, include it in RC and
inter-reduce. If c → d and any other constant rewrite rule generated from RC , reduces a
rule, say g(M) → g(N) in any Rg, two cases are considered: (i) g(M) is rewritten using
the new rules: move g(M) = g(N) from Rg to Tg

2, and check for the local confluence of
the modified Rg along with Tg by generating new superposition, if any, and adding new
rules in Rg. (ii) g(M) is not rewritten but g(N) is, then replace g(M) → g(N ′), where
g(N ′) is a normal form of g(N) using Rg.

5. Shared constant with canonical forms in different AC symbols:
If two different canonical rewrite subsystems Rf , Rg, f ≠ g have identical constants as
the left sides, i.e. if there is a rule c → f(M) ∈ Rf and c → g(N) ∈ Rg, f ≠ g, introduce
a new constant u, make c ≫ u extending ≫f on f -monomials with u making f(M) ≫f u

and g(N) ≫g u, and add a rule c → u ∈ RC , replace rules c → f(M) ∈ Rf by f(M) → u

and c → g(N) ∈ Rg by g(N) → u. Since u is a new symbol, orderings on f -monomials
and g-monomials are extended to satisfy these requirements.
Replacing c → f(M) by f(M) → u can result in additional superpositions with other
rules in Rf and possibly new rules using u; this applies to Rg as well. After ensuring local-
confluence of all new superpositions and adding new rules if needed, reduced canonical
rewrite systems are generated for each Rf .

6. If no new constant equalities are generated and the set of rewrite systems Rf ’s do not
satisfy the shared constant condition, the algorithm terminates.

7. Output the combined rewrite system consisting of a reduced canonical RC on constants
and a reduced canonical Rf for each f ∈ FAC . These canonical Rewrite systems do not
share a constant symbol appearing on the left side of any rule.

The termination and correctness of the algorithm follows from the termination and
correctness of the algorithm for a single AC symbol and the fact there are finitely many new
constant equalities that can be added.

D. Kapur 15:13

The result of the above algorithm is a finite reduced canonical rewrite system RS =
RC ∪

⋃
f∈FAC

RSf
, a disjoint union of sets of reduced canonical rewrite rules on f -monomials

for each AC symbol f , along with a canonical rewrite system RC consisting of constant rules
such that the left sides of rules are distinct. RS is unique in the extended signature assuming
a family of total admissible orderings on f -monomials for every f ∈ FAC , extending a total
ordering on constants; this assumes a fixed choice of new constants standing for the same
set of subterms during purification and flattening. In the original signature, however, RS

is neither unique nor even locally confluent (or canonical) if it includes a shared constant
having multiple canonical forms in two different AC symbols as illustrated in the above
example. It then becomes necessary to compare monomials in different AC symbols.

▶ Theorem 9. RS as defined above is a unique reduced canonical rewrite system in the
extended signature for a given family {≫f |f ∈ fAC} of admissible orderings on f -monomials
extending a total ordering on constants, such that ACCC(RS), with rewrite rules in RS

viewed as equations, on the original signature is ACCC(S).

The proof of the theorem follows from the fact that (i) each RSf
is reduced and canonical,

and is unique for Sf using ≫f , (ii) the left sides of all rules are distinct, (iii) these rewrite
systems are normalized using RC .

4 Congruence Closure with Uninterpreted and Multiple AC symbols

The algorithm presented in the previous subsection to compute AC congruence closure
with multiple AC symbols is combined with Kapur’s congruence closure algorithm for
uninterpreted symbols. The combination is straightforward given that the output of the
congruence closure algorithm is a unique reduced canonical rewrite system consisting of flat
rules of the form h(a1, · · · , ak) → b and constant rules a → b. There is no interaction between
flat rules and other rules generated from AC monomials. When new constant equalities are
generated, they can reduce flat rules, making the left sides of some flat rules equal, resulting
in additional equalities which are handled in the same way as constant equalities generated
during completion on equations on f -monomials. All other steps are the same as in the case
of the congruence closure algorithm in the previous subsection for multiple AC symbols. The
output of this general algorithm share the properties of the output of the congruence closure
over multiple AC symbols.

It is preferable to generate RC first and then generate RU to check if any implied constant
equalities are generated. The result is a reduced canonical rewrite system RC ∪ RU for the
congruence closure of SC ∪ SU over uninterpreted symbols. RC , RU can be computed very
fast in O(n ∗ log(n)) steps, whereas computing Rf from a set of f -monomial equations is
very expensive, so it always pays off to deduce constant equalities from RC and RU . During
the computation of generating canonical rewrite systems for Rf from Sf , f ∈ FAC , if a new
constant equality is implied and generated, it is eagerly used to update RC ∪ RU to generate
any new implied equalities, and used to update monomial equations and monomial rewrite
systems constructed so far.

The algorithm from the previous subsection for computing reduced canonical rewrite
systems from each Sf is applied, looking for new constant equalities generated and checking
shared constant condition. As discussed in the previous subsection, in both cases, local
confluence of Rf ’s may have to restored for checking additional superpositions, leading to
possibly new rules.

The result is a modular combination, whose termination and correctness is established in
terms of the termination and correctness of its various components: (i) the termination and
correctness of algorithms for generating canonical rewrite systems from ground equations

FSCD 2021

15:14 Modular AC Congruence Closure

in a single AC symbol, for each AC symbol in FAC , and their combination together with
each other, and (ii) the termination and correctness of congruence closure over uninterpreted
symbols and its combination with the AC congruence closure for multiple AC symbols.

Given a total ordering ≫ on C, let ≫U =≫ ∪{h ≫U c, h ∈ FU , c ∈ C}. For each AC
symbol f , define a total admissible ordering ≫f on f -monomials extending ≫ on C.

Algorithm 3 General Congruence Closure(S = SC ∪SU ∪∪f∈FAC Sf , ≫U ∪{≫f |f ∈ FAC}).

1. From SC ∪ SU , generate a reduced canonical rewrite system RC ∪ RU representing the
congruence closure over uninterpreted symbols such that each rule has its left side as
h(c1, · · · , ck) → c or a → b and no two left sides are the same.

2. Normalize Sf , f ∈ FAC using RC .
3. Run the AC congruence closure for multiple AC symbols from the previous subsection,

on the output from the previous step, using ≫f for each f ∈ FAC .
4. If new constant equalities are generated and/or shared constant condition is satisfied,

redo steps 1, 2, 3, restoring local confluence of RC , RU and each Rf .
5. Repeat this step until no more new constant equalities are generated and until shared

constant condition is satisfied, leading to the termination of the algorithm.

Since there are finitely many constants, bounded by the size of input ground equations,
only finitely many constant equalities on them can be added during the propagation. As a
result, the termination of the general algorithm follows from the termination of the algorithms
for each of the components–SU and Sf , for every AC symbol f . The correctness proof of the
general algorithm is also structured in a modular fashion using the correctness proofs of the
components SU and Sf , f ∈ FAC .

▶ Theorem 10. Given a set S of ground equations in GT (F), the above algorithm generates
a reduced canonical rewrite system RS on the extended signature such that RS = RC ∪ Ru ∪⋃

f∈FAC
Rf , where each of RC , RU , Rf is a reduced canonical rewrite system using a set of

total admissible monomial orderings ≫f on f -monomials, which extends a ordering ≫U on
uninterpreted symbols and constants as defined above, and ACCC(RS), with rules in RS

viewed as equations, on the original signature is ACCC(S). Further, for this given set of
orderings ≫U and {≫f | f ∈ FAC}, RS is unique for S in the extended signature.

It should be noted that it is not necessary to run a completion algorithm for each AC
symbol separately, instead, they can be interleaved along with any new constant equalities
generated to reduce constants appearing in other Rf eagerly. Even though there are new
constants introduced in the generation of a reduced canonical rewrite system if two different
Rf , Rg have the same constant appearing on the left sides of rules with f -monomials and
g-monomials on their right side, the number of choices for canonical forms is finite given that
there are only finite many AC symbols and finitely many constants.

5 Examples

The proposed algorithms are illustrated using several examples which are mostly picked from
the above cited literature with the goal of not only to show how the proposed algorithms
work, but also contrast them with the algorithms reported in the literature.

D. Kapur 15:15

▶ Example 1. Consider an example from [5]: S = {f(a, c) = a, f(c, g(f(b, c))) = b, g(f(b, c)) =
f(b, c)} with g being uninterpreted and f being an AC symbol. A number of variations of
the same example will be considered.

Mixed term f(c, g(f(b, c))) is purified by introducing new symbols u1 for f(b, c) and u2
for g(u1), gives {f(a, c) = a, f(b, c) = u1, g(u1) = u2, f(c, u2) = b, u2 = u1}. (i) SC =
{u2 = u1}, (ii) SU = {g(u1) = u2}, and (iii) Sf = {f(a, c) = a, f(b, c) = u1, f(c, u2) = b}.

Different total orderings on constants are used to illustrate how different canonical forms
can be generated. Consider a total ordering f ≫ g ≫ a ≫ b ≫ u2 ≫ u1. RC = {1. u2 → u1}
normalizes the uninterpreted equation and it is oriented as: RU = {2. g(u1) → u1}.

To generate a reduced canonical rewrite system for AC f -terms, an admissible ordering
on f -terms must be chosen. The degree-lexicographic ordering on monomials will be used for
simplicity: f(M1) ≫f f(M2) iff |M1| > |M2| or |M1| = |M2| ∧ M1 − M2 includes a constant
≫ every constant in M2 − M1. f -equations are normalized using rules 1 and 2, and oriented:
{3. f(a, c) → a, 4. f(c, u1) → b, 5. f(b, c) → u1}.

Applying the AC congruence closure completion algorithm, the superposition between
the rules 3, 5 is f(a, b, c) with the critical pair: (f(a, b), f(a, u1)), leading to a rewrite rule
6. f(a, b) → f(a, u1); the superposition between the rules 3, 4 is f(a, c, u1) with the critical
pair: (f(a, u1), f(a, b)) which is trivial by rule 6. The superposition between the rules 4, 5 is
f(b, c, u1) with the critical pair: (f(b, b), f(u1, u1)) giving : 7. f(b, b) → f(u1, u1). The rewrite
system Rf = {3, 4, 5, 6, 7} is a reduced canonical rewrite system for Sf . RS = {1, 2} ∪ Rf is
a reduced canonical rewrite system associated with the AC congruence closure of the input
and serves as its decision procedure.

In the original signature, the rewrite system RS is: {g(f(b, c))) → f(b, c), f(a, c) →
a, f(b, c, c) → b, f(a, b) → f(a, b, c), f(b, b) → f(b, b, c, c)} with 5 becoming trivial. The
reader would observe this rewrite system is locally confluent but not terminating.

Consider a different ordering: f ≫ g ≫ a ≫ b ≫ u1 ≫ u2. This gives rise to a related
rewrite system in which u1 is replaced by u2: {u1 → u2, g(u2) → u2, f(a, c) → a, f(c, u2) →
b, f(b, c) → u2, f(a, b) → f(a, u2), f(b, b) → f(u2, u2)}. Compare it in the original signature
with the above system: RS = {f(b, c) → g(f(b, c)), g(g(f(b, c))) → g(f(b, c)), f(a, c) →
a, f(c, g(f(b, c))) → b, f(a, b) → f(a, g(f(b, c))), f(b, b) → f(g(f(b, c)), g(f(b, c)))}.

▶ Example 2. This example illustrates interaction between congruence closures over uninter-
preted symbols and AC symbols. Let S = {g(b) = a, g(d) = c, a ∗ c = c, b ∗ c = b, a ∗ b = d}
where g is uninterpreted and ∗ is AC. Let ∗ ≫ g ≫ a ≫ b ≫ c ≫ d with g, ∗. Apply-
ing the steps of the algorithm, RU , the congruence closure over uninterpreted symbols, is
{g(b) → a, g(d) → c}, Completion on the ∗-equations using degree lexicographic ordering,
oriented as {a ∗ c → c, b ∗ c → b, a ∗ b → d}, generates an implied constant equality b = d

from the critical pair of a ∗ c → c, b ∗ c → b. Using the rewrite rule b → d, the AC rewrite
system reduces to: R∗ = {a ∗ c → c, c ∗ d → d, a ∗ d → d}, which is canonical.

The implied constant equality b = d is added to RC : {b → d} and is also propagated
to RU , which makes the left sides of g(b) → a and g(d) → c equal, generating another
implied equality a = c. This equality is oriented and added to RC : {a → c, b → d}, and RU

becomes {g(d) → c}. This implied equality is propagated to the AC rewrite system on ∗. RC

normalizes R∗ to {c ∗ c → c, c ∗ d → d, a ∗ d → d}.

The output of the algorithm is a canonical rewrite system: {g(d) → c, b → d, a → c, c∗c →
c, c ∗ d → d}. In general, propagation of equalities can result in the left sides of the rules in
AC subsystems change, generating new superpositions, much like in the uninterpreted case.

FSCD 2021

15:16 Modular AC Congruence Closure

▶ Example 3. Consider another example with multiple AC symbols from [24]: S = {a + b =
a ∗ b, a ∗ c = g(e), e = e′} with +, ∗ being AC and g as uninterpreted, to illustrate flexibility
in choosing orderings in our framework.

Purification leads to introduction of new constants : {1. a+b = u0, 2. a∗b = u1, 3. a∗c =
u2, 4. g(e) = u2, 5. e = e′, 6. u0 = u1}. Depending upon a total ordering on constants
a, b, c, e, e′, there are thus many possibilities depending upon the desired canonical forms.

Recall that a + b cannot be compared with a ∗ b, however u0 and u1 can be compared.
If canonical forms are desired so that the canonical form of a + b is a ∗ b, the ordering
should include u0 ≫ u1. Consider an ordering a ≫ b ≫ c ≫ e ≫ e′ ≫ u2 ≫ u0 ≫ u1.
Degree-lexicographic ordering is used on + and ∗ monomials. This gives rise to: RC =
{6. u0 → u1, 5. e → e′}, RU = {4′. g(e′) → u2} along with R+ = {1. a + b → u1} and
R∗ = {2. a ∗ b → u1, 3. a ∗ c → u2}. The canonical rewrite system for ∗ is: {2. a ∗ b →
u1, 3. a ∗ c → u2, 7. b ∗ u2 → c ∗ u1}.

The rewrite system RS = {1. a + b → u1, 2. a ∗ b → u1, 2. u0 → u1, 3. a ∗ c →
u2, 4′. g(e′) → u2, 5. e → e′, 6. b ∗ u2 → c ∗ u1} is canonical. Both a + b and a ∗ b have the
same normal form u1 standing for a ∗ b in the original signature.

With u1 ≫ u0, another canonical rewrite system RS = {1. a + b → u0, 2. a ∗ b →
u0, 6′. u1 → u0, 3. a ∗ c → u2, 4. g(e′) → u2, 5. e → e′, 6. b ∗ u2 → c ∗ u0} in which a + b

and a ∗ b have the normal form u0 standing for a + b, different from the one above.

6 A Gröbner Basis Algorithm as an AC Congruence Closure

Buchberger’s Gröbner basis algorithm when extended to polynomial ideals over integers [10]
can be interestingly viewed as a special congruence closure algorithm with multiple AC
symbols + and ∗ which in addition, satisfy the properties of a commutative ring with unit.
A manuscript proposing this new perspective on Gröbner basis algorithms with interesting
implications is under preparation [15]. Below, we illustrate this new insight using an example
from [10]. Relationship between Gröbner basis algorithm and the Knuth-Bendix completion
procedure has been investigated in [9, 30, 12, 22], but the proposed insight is novel.

The ring structure of polynomials gives rise to additional interaction when a canonical
rewrite system for the congruence closure of +-monomials is combined with a canonical
rewrite system for the congruence closure of ∗-monomials. Along with the identities for
+, x + 0 = x, and for ∗, x ∗ 1 = x, and the distributivity axiom, + also has an inverse
operation: x + −(x) = 0, −0 = 0, −(−x) = x, −(x + y) = −x + −y. Abusing the notation,
x + −(y) will be written as x − y. In addition, x ∗ 0 = 0. With the distributivity rule:
x ∗ (y + z) = (x ∗ y) + (x ∗ z), these axioms when oriented from left to right constitute a
canonical rewrite system for a commutative ring with unit and are used for normalizing
terms to polynomials.

An additive monomial c t, where c ̸= 0, is an abbreviation of repeating ∗-monomial
t c times; if c is positive, say 3, then 3 t is an abbreviation for t + t + t; similarly if c is
negative, say −2, then −2 t is an abbreviation for −t − t. A ∗-monomial with unit coefficient
is a pure term expressed in ∗, but a monomial 3 y ∗ y ∗ y, for example,is a mixed term
y ∗ y ∗ y + y ∗ y ∗ y + y ∗ y ∗ y with + as the outermost symbol which has ∗ subterms.

Consider an example [10]; a related example is also discussed in [22], so an interested
reader is invited to contrast the proposed approach with the one there. The input basis is:
7 x ∗ x ∗ y = 3 x, 4 x ∗ y ∗ y = x ∗ y, 3 y ∗ y ∗ y = 0 of a polynomial ideal over the integers [10].

Purification of the above equations leads to: 1. 7 u1 = 3 x, 2. 4 u2 = u3, 3. 3 u4 = 0 with
4. x ∗ x ∗ y = u1, 5. x ∗ y ∗ y = u2, 6. x ∗ y = u3.7. y ∗ y ∗ y = u4.

D. Kapur 15:17

Let a total ordering on all constants be: u1 ≫ u2 ≫ u4 ≫ u3 ≫ x ≫ y. Extend it
using the degree-lexicographic ordering on +-monomials as well as ∗-monomials, Orienting
∗ equations: R∗ = {4. x ∗ x ∗ y → u1, 5. x ∗ y ∗ y → u2, 6. x ∗ y → u3, 7. y ∗ y ∗ y → u4}.
Orienting + equations, R+ = {1. 7 u1 → 3 x, 2. 4 u2 → u3, 3. 3 u4 → 0}.

Completion on the ground equations on ∗ terms generates a reduced canonical rewrite
system: R∗ = {6. x ∗ y → u3, 7. y ∗ y ∗ y → u4, 8. u3 ∗ y → u2, 9. u3 ∗ x → u1, 10. u2 ∗ x →
u3∗u3, 11. u1∗y → u3∗u3, 12. u1∗u4 → u2∗u2, 13. u4∗x∗x → u2∗u3, 14. u3∗u3∗u3 → u1∗u2}.
This system captures relationships among all product monomials appearing in the input.
The canonical rewrite system for + is: R+ = {1. 7 u1 → 3 x, 2. 4 u2 → u3, 3. 3 u4 → 0}.

Rules in R+ and R∗ interact, leading to new superpositions and critical pairs: for
c u → r ∈ R+, u ∗ m → r′ ∈ R∗, where c ∈ Z − {0}, u is a constant and m is *-monomial,
the superposition is (c u) ∗ m generating the critical pair (r ∗ m, c r′), which is normalized
using distributivity and other rules. It can be shown that only this superposition needs to
be considered to check local confluence of R+ ∪ R∗[15].

As an example, rules 3 : 3 u4 → 0 and 12 : u1 ∗ u4 → u2 ∗ u2 give the superposition
u1 ∗ u4 + u1 ∗ u4 + u1 ∗ u4, which is 3u1 ∗ u4, generating the critical pair (3 u2 ∗ u2, 0); rules 3
and 13 gives a trivial critical pair. Considering all such superpositions, the resulting canonical
rewrite system can be shown to include {3 x → 0, u1 → 0, u2 → u3, 3 u4 → 0} among other
rules. When converted into the original signature, this is precisely the Gröbner basis reported
as generated using Kandri-Rody and Kapur’s algorithm: {3 x → 0, x ∗ x ∗ y → 0, x ∗ y ∗ y →
x ∗ y, 3 y ∗ y ∗ y → 0} as reported in [10].

The above illustrates the power and elegance of the proposed combination framework.
Comparing with [22], it is reported there that a completion procedure using normalized
rewriting generated 90 critical pairs in contrast to AC completion procedure [27] computed
1990 critical pairs; in the proposed approach, much fewer critical pairs are generated in
contrast, without needing to use any AC unification algorithm or extension rules.

The proposed approach can also be used to compute Gröbner basis of polynomial ideals
with coefficients over finite fields such as Zp for a prime number p, as well as domain with zero
divisor such as Z4 [16]. For example, in case of Z5, another rule is added: 1+1+1+1+1 → 0
added to the input basis.

7 Conclusion

A modular algorithm for computing the congruence closure of ground equations expressed
using AC function symbols and uninterpreted symbols is presented. The algorithm is derived
by generalizing the framework first presented in [13] for generating the congruence closure
of ground equations over uninterpreted symbols. The key insight from [13]–flattening of
subterms by introducing new constants and congruence closure on constants, is generalized
by flattening mixed AC terms and purifying them by introducing new constants to stand
for pure AC terms in every (single) AC symbol. The result of this transformation on a set
of equations on mixed ground terms is a set of constant equations, a set of flat equations
relating a nonconstant term in an uninterpreted symbol to a constant, and a set of equations
on pure AC terms in a single AC symbol. Such decomposition and factoring enable using
congruence closure algorithms for each of the subproblems independently, which propagate
equalities on shared constants. Once the propagation of constant equalities stabilizes (reaches
a fixed point), the result is (i) unique reduced canonical rewrite systems for each subproblem
and finally, (ii) a unique reduced canonical rewrite system for the congruence closure of a
finite set of ground equations over multiple AC symbols and uninterpreted symbols. The
algorithms extend easily when AC symbols have additional properties such as idempotency,
identity and nilpotency.

FSCD 2021

15:18 Modular AC Congruence Closure

The modularity of the algorithms leads to easier and simpler correctness and termination
proofs in contrast to those in [5, 22]. The complexity of the procedure is governed by the
complexity of generating a canonical rewrite system for AC ground equations on constants.

The proposed algorithm is a direct generalization of Kapur’s algorithm for the uninter-
preted case, which has been shown to be efficiently integrated into SMT solvers including
BarcelogicTools [26]. We believe that the AC congruence closure can also be effectively
integrated into SMT solvers. Unlike other proposals, the proposed algorithm neither uses
specialized AC compatible orderings on nonground terms nor extension rules often needed
in AC/E completion algorithms and AC/E-unification, thus avoiding explosion of possible
critical pairs for consideration.

A by-product of this new algorithm based on the proposed framework is a new way to
view a Gröbner basis algorithm for polynomial ideals over integers, as a congruence closure
algorithm over a commutative ring with unit, which is a congruence closure algorithm with
two AC symbols + and ∗, extended to consider the additional properties of + and ∗.

References

1 Franz Baader and Deepak Kapur. Deciding the word problem for ground identities with
commutative and extensional symbols. In Nicolas Peltier and Viorica Sofronie-Stokkermans,
editors, Automated Reasoning – 10th International Joint Conference, IJCAR 2020, Paris,
France, July 1-4, 2020, Proceedings, Part I, volume 12166 of Lecture Notes in Computer
Science, pages 163–180. Springer, 2020. doi:10.1007/978-3-030-51074-9_10.

2 Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press,
1998.

3 Leo Bachmair and Nachum Dershowitz. Critical pair criteria for completion. J. Symb. Comput.,
6(1):1–18, 1988. doi:10.1016/S0747-7171(88)80018-X.

4 Leo Bachmair, I. V. Ramakrishnan, Ashish Tiwari, and Laurent Vigneron. Congruence closure
modulo associativity and commutativity. In Hélène Kirchner and Christophe Ringeissen,
editors, Frontiers of Combining Systems, Third International Workshop, FroCoS 2000, Nancy,
France, March 22-24, 2000, Proceedings, volume 1794 of Lecture Notes in Computer Science,
pages 245–259. Springer, 2000. doi:10.1007/10720084_16.

5 Leo Bachmair, Ashish Tiwari, and Laurent Vigneron. Abstract congruence closure. J. Autom.
Reason., 31(2):129–168, 2003. doi:10.1023/B:JARS.0000009518.26415.49.

6 A. Michael Ballantyne and Dallas Lankford. New decision algorithms for finitely presented
commutative semigroups. Computers and Mathematics Applications, 7:159–165, 1981.

7 Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gröbner bases – a computational
approach to commutative algebra, volume 141 of Graduate texts in mathematics. Springer,
1993.

8 Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subexpres-
sion problem. J. ACM, 27(4):758–771, 1980. doi:10.1145/322217.322228.

9 Abdelilah Kandri-Rody and Deepak Kapur. On relationship between buchberger’s gröbner
basis algorithm and the knuth-bendix completion procedure. Technical report no. ge-83crd286,
General Electric Corporate Research and Development, Schenectady, NY, November 1983.

10 Abdelilah Kandri-Rody and Deepak Kapur. Computing a gröbner basis of a polynomial ideal
over a euclidean domain. J. Symb. Comput., 6(1):37–57, 1988. doi:10.1016/S0747-7171(88)
80020-8.

11 Abdelilah Kandri-Rody, Deepak Kapur, and Paliath Narendran. An ideal-theoretic approach
to work problems and unification problems over finitely presented commutative algebras. In
Jean-Pierre Jouannaud, editor, Rewriting Techniques and Applications, First International
Conference, RTA-85, Dijon, France, May 20-22, 1985, Proceedings, volume 202 of Lecture
Notes in Computer Science, pages 345–364. Springer, 1985. doi:10.1007/3-540-15976-2_17.

https://doi.org/10.1007/978-3-030-51074-9_10
https://doi.org/10.1016/S0747-7171(88)80018-X
https://doi.org/10.1007/10720084_16
https://doi.org/10.1023/B:JARS.0000009518.26415.49
https://doi.org/10.1145/322217.322228
https://doi.org/10.1016/S0747-7171(88)80020-8
https://doi.org/10.1016/S0747-7171(88)80020-8
https://doi.org/10.1007/3-540-15976-2_17

D. Kapur 15:19

12 Abdelilah Kandri-Rody, Deepak Kapur, and Franz Winkler. Knuth-bendix procedure and
buchberger algorithm: A synthesis. In Gaston H. Gonnet, editor, Proceedings of the ACM-
SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, ISSAC ’89,
Portland, Oregon, USA, July 17-19, 1989, pages 55–67. ACM, 1989. doi:10.1145/74540.
74548.

13 Deepak Kapur. Shostak’s congruence closure as completion. In Hubert Comon, editor,
Rewriting Techniques and Applications, 8th International Conference, RTA-97, Sitges, Spain,
June 2-5, 1997, Proceedings, volume 1232 of Lecture Notes in Computer Science, pages 23–37.
Springer, 1997. doi:10.1007/3-540-62950-5_59.

14 Deepak Kapur. Conditional congruence closure over uninterpreted and interpreted symbols. J.
Syst. Sci. Complex., 32(1):317–355, 2019. doi:10.1007/s11424-019-8377-8.

15 Deepak Kapur. Weird gröbner bases: An application of associative-commutative congruence
closure algorithm. Tech report under preparation, Department of Computer Science, University
of New Mexico, May 2021.

16 Deepak Kapur and Yongyang Cai. An algorithm for computing a gröbner basis of a polynomial
ideal over a ring with zero divisors. Math. Comput. Sci., 2(4):601–634, 2009. doi:10.1007/
s11786-009-0072-z.

17 Deepak Kapur, David R. Musser, and Paliath Narendran. Only prime superpositions need be
considered in the knuth-bendix completion procedure. J. Symb. Comput., 6(1):19–36, 1988.
doi:10.1016/S0747-7171(88)80019-1.

18 Deepak Kapur and Paliath Narendran. Double-exponential complexity of computing a complete
set of ac-unifiers. In Proceedings of the Seventh Annual Symposium on Logic in Computer
Science (LICS ’92), Santa Cruz, California, USA, June 22-25, 1992, pages 11–21. IEEE
Computer Society, 1992. doi:10.1109/LICS.1992.185515.

19 Deepak Kapur and Hantao Zhang. An overview of rewrite rule laboratory (rrl). Computers
and Mathematics Applications, 29:91–114, 1995.

20 Donald Knuth and Peter Bendix. Simple word problems in universal algebras. In Leech, editor,
Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, 1970.

21 Claude Marché. On ground ac-completion. In Ronald V. Book, editor, Rewriting Techniques
and Applications, 4th International Conference, RTA-91, Como, Italy, April 10-12, 1991,
Proceedings, volume 488 of Lecture Notes in Computer Science, pages 411–422. Springer, 1991.
doi:10.1007/3-540-53904-2_114.

22 Claude Marché. Normalized rewriting: An alternative to rewriting modulo a set of equations.
J. Symb. Comput., 21(3):253–288, 1996. doi:10.1006/jsco.1996.0011.

23 Ernst W. Mayr and Albert Meyer. The complexity of the word problems for commutative
semigroups and polynomial ideals. Advances in Mathematics, 46:305–439, 1982.

24 Paliath Narendran and Michaël Rusinowitch. Any gound associative-commutative theory has
a finite canonical system. In Ronald V. Book, editor, Rewriting Techniques and Applications,
4th International Conference, RTA-91, Como, Italy, April 10-12, 1991, Proceedings, volume
488 of Lecture Notes in Computer Science, pages 423–434. Springer, 1991. doi:10.1007/
3-540-53904-2_115.

25 Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure. J.
ACM, 27(2):356–364, 1980. doi:10.1145/322186.322198.

26 Robert Nieuwenhuis and Albert Oliveras. Fast congruence closure and extensions. Inf. Comput.,
205(4):557–580, 2007. doi:10.1016/j.ic.2006.08.009.

27 Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some equational
theories. J. ACM, 28(2):233–264, 1981. doi:10.1145/322248.322251.

28 Robert E. Shostak. An algorithm for reasoning about equality. Commun. ACM, 21(7):583–585,
1978. doi:10.1145/359545.359570.

29 Franz Winkler. Canonical forms in the finitely presented algebras. Ph.d. dissertation, U. of
Paris 11, 1983.

FSCD 2021

https://doi.org/10.1145/74540.74548
https://doi.org/10.1145/74540.74548
https://doi.org/10.1007/3-540-62950-5_59
https://doi.org/10.1007/s11424-019-8377-8
https://doi.org/10.1007/s11786-009-0072-z
https://doi.org/10.1007/s11786-009-0072-z
https://doi.org/10.1016/S0747-7171(88)80019-1
https://doi.org/10.1109/LICS.1992.185515
https://doi.org/10.1007/3-540-53904-2_114
https://doi.org/10.1006/jsco.1996.0011
https://doi.org/10.1007/3-540-53904-2_115
https://doi.org/10.1007/3-540-53904-2_115
https://doi.org/10.1145/322186.322198
https://doi.org/10.1016/j.ic.2006.08.009
https://doi.org/10.1145/322248.322251
https://doi.org/10.1145/359545.359570

15:20 Modular AC Congruence Closure

30 Franz Winkler. The Church-Rosser Property in Computer Algebra and Special Theorem Proving:
An Investigation of Critical-Pair/Completion Algorithms. Ph.d. dissertation, University of
Linz, 1984.

31 Chee-Keng Yap. A new lower bound construction for commutative thue systems with aapplic-
ations. J. Symb. Comput., 12(1):1–28, 1991. doi:10.1016/S0747-7171(08)80138-1.

32 Hantao Zhang. Implementing contextual rewriting. In Michaël Rusinowitch and Jean-Luc
Rémy, editors, Conditional Term Rewriting Systems, Third International Workshop, CTRS-
92, Pont-à-Mousson, France, July 8-10, 1992, Proceedings, volume 656 of Lecture Notes in
Computer Science, pages 363–377. Springer, 1992. doi:10.1007/3-540-56393-8_28.

A Appendix: Proofs

▶ Lemma 5. An AC rewrite system RS is locally confluent iff the critical pair: (f((AB−A1)∪
A2), f((AB − B1) ∪ B2)) between every pair of distinct rules f(A1) → f(A2), f(B1) → f(B2)
is joinable, where AB = (A1 ∪ B1) − (A1 ∩ B1).

Proof. Consider a flat term f(C) rewritten in two different ways in one step using not
necessarily distinct rules: f(A1) → f(A2), f(B1) → f(B2). The result of the rewrites is:
(f((C − A1) ∪ A2), f((C − B1) ∪ B2)). Since A1 ⊆ C as well as B1 ⊆ C, AB ⊆ C; let
D = C − AB. The critical pair is then (f(D ∪ ((AB − A1) ∪ A2))f(D ∪ ((AB − B1) ∪ B2))),
all rules applicable to the critical pair to show its joinability, also apply, thus showing the
joinability of the pair. The other direction is straightforward. The case of when at least one
of the rules has a constant on its left side is trivially handled. ◀

▶ Theorem 6. The algorithm 1AC-Completion terminates, i.e., in Step 4, rules to Rf

cannot be added infinitely often.

Proof. Proof by Contradiction. A new rule l̂ → r̂ in Step 4 of the algorithm is added to Rf

only if no other rule can reduce it, i.e, for every rule l → r ∈ Rf , l̂ and l are noncomparable
in ≫D. For Rf to be infinite, implying the nontermination of the algorithm means that Rf

must include infinitely many noncomparable left sides in ≫D, a contradiction to Dickson’s
Lemma. ◀

▶ Theorem 8. Given a total ordering ≫f on f-monomials, there is a unique reduced
canonical rewrite system associated with Sf .

Proof. Proof by Contradiction. Suppose there are two distinct reduced canonical rewrite
systems R1 and R2 associated with Sf for the same ≫f . Pick the least rule l → r in ≫f on
which R1 and R2 differ; wlog, let l → r ∈ R1. Given that R2 is a canonical rewrite system
for Sf and l = R ∈ ACCC(Sf), l and r must reduce using R2 implying that there is a rule
l′ → r′ ∈ R2 such that l ≫D l′; since R1 has all the rules of R2 smaller than l → r, l → r

can be reduced in R1, contradicting the assumption that R1 is reduced. If l → r′ ∈ R2 where
r′ ̸= r but r′ ≫f r, then r′ is not reduced implying that R2 is not reduced. ◀

▶ Lemma 5Idem. An AC rewrite system RS with f(x, x) = x, is locally confluent iff (i)
the critical pair: (f((AB − A1) ∪ A2), f((AB − B1) ∪ B2)) between every pair of distinct
rules f(A1) → f(A2), f(B1) → f(B2) is joinable, where AB = (A1 ∪ B1) − (A1 ∩ B1), and
(ii) for every rule f(M) → f(N) ∈ RS and for every constant a ∈ M , the critical pair,
(f(M), f(N ∪ {{a}}), is joinable.

Proof. Consider a flat term f(C) rewritten in two different ways in one step using not
necessarily distinct rules and/or f(x, x) → x. There are three cases: (i) f(C) is rewritten
in two different ways in one step using f(x, x) → x to f(C − {{a}}) and f(C − {{b}}).
After single step rewrites, the idempotent rule can be applied again on both sides giving
f(C − {{a, b}}).

https://doi.org/10.1016/S0747-7171(08)80138-1
https://doi.org/10.1007/3-540-56393-8_28

D. Kapur 15:21

(ii) f(C) is rewritten in two different ways, with one step using f(x, x) → x and another
using f(M) → f(N). An application of the idempotent rule implies that C includes a constant
a, say, at least twice; the result of one step rewriting is: (f(C −{{a}}), f((C −M)∪N). This
implies there exists a multiset A such that C = A ∪ M ∪ { a}}. The critical pair generated
from f(M) → f(N) is (f(M), f(N ∪ {{a}}). The rewrite steps used to show the joinability
of (f(M), f(N ∪ {{a}}) apply also on (f(C − {{a}}), f((C − M) ∪ N), showing joinability.
The third case is the same as that of Lemma 5 and is omitted. ◀

Similar local confluence lemmas can be proved in case f is nilpotent, has unit and various
combinations.

FSCD 2021

Derivation of a Virtual Machine For
Four Variants of Delimited-Control Operators
Maika Fujii #

Ochanomizu University, Tokyo, Japan

Kenichi Asai # Ñ

Ochanomizu University, Tokyo, Japan

Abstract
This paper derives an abstract machine and a virtual machine for the λ-calculus with four variants of
delimited-control operators: shift/reset, control/prompt, shift0/reset0, and control0/prompt0.
Starting from Shan’s definitional interpreter for the four operators, we successively apply various
meaning-preserving transformations. Both trails of invocation contexts (needed for control and
control0) and metacontinuations (needed for shift0 and control0) are defunctionalized and
eventually represented as a list of stack frames. The resulting virtual machine clearly models not
only how the control operators and captured continuations behave but also when and which portion
of stack frames is copied to the heap.

2012 ACM Subject Classification Theory of computation → Control primitives; Theory of computa-
tion → Lambda calculus; Theory of computation → Operational semantics; Theory of computation
→ Abstract machines; Software and its engineering → Virtual machines

Keywords and phrases delimited-control operators, functional derivation, CPS transformation,
defunctionalization, abstract machine, virtual machine

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.16

Supplementary Material Software (Source Code): https://github.com/FujiiMaika/fscd21
archived at swh:1:dir:e523c86111370f0dce57a8b6c5506fcf7c35c1f1

Funding Kenichi Asai: supported in part by JSPS KAKENHI under Grant No. JP18H03218.

Acknowledgements We are grateful to Youyou Cong and anonymous reviewers for their valuable
comments and suggestions.

1 Introduction

Manipulation of control structure of a program is inevitable. In addition to the standard
exception handling, more sophisticated manipulation of control using algebraic effects and
handlers has been proposed [4, 25] and is becoming widely used [20]. To support such
mechanisms in a compiler, one can either (i) transform the source program into continuation-
passing style (CPS), or (ii) implement manipulation of control directly via the modification of
a portion of a stack without transforming the program into CPS. There is extensive research
comparing which approach (among more variants) is better in which circumstances [12].

However, for four variants of delimited-control operators, i.e., shift and reset [8, 9],
control and prompt [13], shift0 and reset0 [23], and control0 and prompt0 [16], almost no
low-level implementation has been considered. The only exceptions we are aware of are all on
shift/reset: direct implementation of shift/reset in Scheme48 [15], in OchaCaml [22],
and the derivation of a virtual machine for shift/reset [3]. Without proper low-level
implementation strategies for all the four delimited-control operators, we cannot even discuss
pros and cons of CPS vs. direct-style implementations for those operators. This omission
could affect the low-level implementation strategies for algebraic effects and handlers, since
they have a close connection with shift0 and control0 [14, 24].

© Maika Fujii and Kenichi Asai;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 16; pp. 16:1–16:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:g1720537@is.ocha.ac.jp
mailto:asai@is.ocha.ac.jp
http://pllab.is.ocha.ac.jp/~asai/
https://doi.org/10.4230/LIPIcs.FSCD.2021.16
https://github.com/FujiiMaika/fscd21
https://archive.softwareheritage.org/swh:1:dir:e523c86111370f0dce57a8b6c5506fcf7c35c1f1;origin=https://github.com/FujiiMaika/fscd21.git;visit=swh:1:snp:cce046a850a15c88a6908ba792dd848f1a78f852;anchor=swh:1:rev:521af9c0dd94b169eb02f41aa19d3e01c558f355
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Virtual Machine for Four Delimited-Control Operators

In this paper, we derive an abstract machine and a virtual machine for the λ-calculus
with four delimited-control operators. Starting from Shan’s definitional interpreter [28], we
successively apply various meaning-preserving transformations, following Danvy’s recipe [2, 7].
The overall derivation is similar to our previous work [3] on deriving a virtual machine for
shift/reset. However, handling of invocation contexts (needed for control and control0)
and metacontinuations (needed for shift0 and control0) is non-trivial: we need to have
a trail of invocation contexts to be a tree structure to support concatenation of invocation
contexts and have a metacontinuation to maintain a list of code pointers representing the
contexts outside delimiters.

In summary, we make the following contributions in this paper:

We present the first virtual machine that supports four delimited-control operators and
that explains how they manipulate stacks.

We show it is possible to apply Danvy’s method of inter-deriving semantic artifacts to
four delimited-control operators, giving another non-trivial example and widening its
applicability.

We clarify how trails and metacontinuations can be represented in a stack, suggesting a
low-level implementation strategy for four delimited-control operators.

After introducing four delimited-control operators in the next section, we first show the
definitional interpreter in Section 3. We then apply various program transformation to obtain
a stack-based interpreter in Section 4, showing an abstract machine in passing. In Sections 5
and 6, we derive a compiler and a virtual machine. Related work is discussed in Section 7
and the paper concludes in Section 8. The appendix shows an example how a program is
compiled to a list of instructions and executed on the virtual machine. The omitted OCaml
code is available as supplementary material.

2 Four Delimited-Control Operators

Delimited-control operators enable us to capture the current continuation up to the enclosing
delimiter and use it in the subsequent program. There are four variants of delimited-control
operators: shift (S) and reset [8, 9], control (F) and prompt [13], shift0 (S0) and reset0
[23], and control0 (F0) and prompt0 [16]. Since the behavior of all the four delimiters
(reset, prompt, reset0, and control0) are exactly the same, we use a uniform notation ⟨⟩
for them. The basic behavior of the four operators are to capture the current continuation up
to the enclosing delimiter and execute their body. We describe their exact behavior below.

A shift expression, Sc. e, clears the current continuation up to the enclosing delimiter,
binds it to c, and execute e. Thus, in 1 + ⟨(Sc. 2 × c 3) + 4⟩, the continuation ⟨[] + 4⟩ is
cleared, bound to c, and 2 × c 3 is executed in reset. The original expression reduces to
1 + ⟨2 × c 3⟩, giving the final result 15.

A control expression, Fc. e, differs from shift in that it does not insert a delimiter
into the captured continuation. In 1 + ⟨(Fc. 2 × c 3) + 4⟩, c is bound to [] + 4 without
surrounding reset. If the captured continuation contains another control, as in 1 +
⟨(Fc. 2 × c 3) + Fc′. 4⟩, c is bound to [] + Fc′. 4. The original expression reduces to 1 +
⟨2 × (3 + Fc′. 4)⟩, where the second F captures (and discards) not just 3 + [] but also the
invocation context of c, namely 2 × [], giving the final result 5. Using F , one can access the
context in which the captured continuation is invoked. This is in contrast to the shift case:
1 + ⟨(Sc. 2 × c 3) + Sc′. 4⟩ reduces to 1 + ⟨2 × ⟨3 + Sc′. 4⟩⟩, giving the final result 9. Using

M. Fujii and K. Asai 16:3

more than one F in the same context, we can capture multiple invocation contexts.1 To
account for the invocation contexts of captured continuations, an interpreter for F must
maintain a trail of continuations [5].

A shift0 expression, S0c. e, on the other hand, removes the original reset surrounding
the shift0 expression (but retains the reset around the captured continuation as in S).
By nesting S0, one can access the context outside the enclosing reset. For example,
⟨1 + ⟨(S0c. S0c′. 2 × c′3) + 4⟩⟩ reduces to ⟨1 + (S0c′. 2 × c′3)⟩ where c is bound to ⟨[] + 4⟩ but
is discarded. Note that there is no reset around S0c′. 2 × c′3. Thus, c′ is bound to the
context ⟨1 + []⟩, which was outside the original reset, giving the final result 8. This is
in contrast to the shift case: ⟨1 + ⟨(Sc. Sc′. 2 × c′3) + 4⟩⟩ reduces to ⟨1 + ⟨(Sc′. 2 × c′3)⟩⟩.
Now, c′ is bound to an empty context [], giving the final result 7. With more nested
occurrences of S0, arbitrarily outer contexts can be captured. To account for hierarchical
contexts, the interpreter for S0 must maintain a metacontinuation [23].

A control0 expression, F0c. e, has both the characteristics of F and S0: the captured con-
tinuation does not come with a surrounding reset and the original reset is removed. As such,
the interpreter for F0 must maintain both a trail of continuations and a metacontinuation.

Shan [28] provides a detailed explanation on the difference between the four control
operators, as well as an example where the choice of the four operators results in four
different result values. Dyvbig, Peyton Jones, and Sabry [11] explain the four delimited-
control operators in terms of different primitive control operators.

3 The Definitional Interpreter

Listing 1 shows the definitional interpreter for the λ-calculus extended with four delimited-
control operators and the delimiter, written in OCaml. The interpreter is written in
continuation-, trail-, and metacontinuation-passing style. Although the main interpreter
function f1 receives a trail and a metacontinuation explicitly, they do not play any roles for
the pure λ-calculus terms. If we η-reduce them, the definition coincides with the standard
continuation-passing style interpreter.

As in our previous work [3], an environment is represented as two lists, a list of variable
names xs and a list of values vs, instead of an association list. This design comes from the
goal of this work. Since we will decompose the interpreter into a compiler and a virtual
machine, we separate an environment into the part that depends only on the input term and
the part that depends on runtime values. The function Env.offset returns the offset of a
variable within a given list.

In the interpreter, the current continuation and trail in the innermost surrounding
delimiter are stored in the arguments c and t (of types c and t, respectively), while the
continuations and trails outside the delimiter are stored in metacontinuation m, which is a
list2 of pairs of a continuation and a trail of each context. Thus, the context is delimited
(in the Reset (e) case) by storing c and t to m and evaluating the body e in the initial
continuation idc and the empty trail TNil.

To capture the current continuation and trail, one of four control operators is used. In
all four cases, the current continuation c and trail t are captured, bound to x, and the body
of the control operator is evaluated under appropriate settings.

1 See [6] for the general case as well as other (typed) examples of the use of F .
2 We use MNil and MCons to construct metacontinuations. We cannot use (c * t) list as the definition

of m, because the types c and m would then be circular.

FSCD 2021

16:4 Virtual Machine for Four Delimited-Control Operators

Listing 1 The definitional interpreter.
(* syntax *)
type e = Var of string | Fun of string * e | App of e * e

| Shift of string * e | Control of string * e
| Shift0 of string * e | Control0 of string * e
| Reset of e

type v = VFun of (v -> c -> t -> m -> v) (* value *)
| VContS of c * t | VContC of c * t

and c = v -> t -> m -> v (* continuation *)
and t = TNil | Trail of (v -> t -> m -> v) (* trail *)
and m = MNil | MCons of (c * t) * m (* metacontinuation *)

(* initial continuation : v -> t -> m -> v *)
let idc v t m = match t with

TNil -> (match m with
MNil -> v

| MCons ((c,t),m) -> c v t m)
| Trail(h) -> h v TNil m

(* cons : (v -> t -> m -> v) -> t -> t *)
let rec cons h t = match t with

TNil -> Trail(h)
| Trail(h’) -> Trail(fun v t’ m -> h v (cons h’ t’) m)

(* apnd : t -> t -> t *)
let apnd t0 t1 = match t0 with

TNil -> t1
| Trail(h) -> cons h t1

(* f1 : e -> string list -> v list -> c -> t -> m -> v *)
let rec f1 e xs vs c t m = match e with

Var(x) -> c (List.nth vs (Env. offset x xs)) t m
| Fun(x,e) ->

c (VFun(fun v c’ t’ m’ -> f1 e (x::xs) (v::vs) c’ t’ m ’)) t m
| App(e0 ,e1) ->

f1 e0 xs vs (fun v0 t0 m0 ->
f1 e1 xs vs (fun v1 t1 m1 ->
(match v0 with

VFun(f) -> f v1 c t1 m1
| VContS (c’,t’) -> c’ v1 t’ (MCons ((c,t1),m1))
| VContC (c’,t’) -> c’ v1 (apnd t’ (cons c t1)) m1)) t0 m0) t m

| Shift(x,e) -> f1 e (x::xs) (VContS (c,t):: vs) idc TNil m
| Control (x,e) -> f1 e (x::xs) (VContC (c,t):: vs) idc TNil m
| Shift0 (x,e) -> (match m with

MCons ((c0 ,t0),m0) -> f1 e (x::xs) (VContS (c,t):: vs) c0 t0 m0)
| Control0 (x, e) -> (match m with

MCons ((c0 ,t0),m0) -> f1 e (x::xs) (VContC (c,t):: vs) c0 t0 m0)
| Reset(e) -> f1 e xs vs idc TNil (MCons ((c,t),m))

(* f : e -> v *)
let f expr = f1 expr [] [] idc TNil MNil

M. Fujii and K. Asai 16:5

For Shift (x, e) and Control (x, e), the body e is evaluated under the initial con-
tinuation and the empty trail. This reflects the fact that the original reset surrounding
the control operator remains for these cases. Even if we use control operators within e,
we cannot access the contexts outside reset because they reside in m.
For Shift0 (x, e) and Control0 (x, e), on the other hand, the body e is evaluated
under the topmost continuation and trail stored in the metacontinuation m.3 This reflects
the fact that the original reset surrounding the control operator is removed for these cases.
By using control operators within e, we can access the context outside the innermost
reset.

The captured continuation and trail are packaged into VContS for Shift (x, e) and
Shift0 (x, e) and into VContC for Control (x, e) and Control0 (x, e). When VContS
or VContC is applied (in the App case), it behaves differently depending on whether reset is
present around the invocation.

For VContS (c’, t’), the continuation c and trail t1 at the invocation time are pushed
into metacontinuation m1. This reflects the fact that the invocation of a continuation
captured by Shift (x, e) or Shift0 (x, e) is surrounded by reset. Even if we use
control operators within c’, we cannot access c and t1 because they reside in the
metacontinuation.
For VContC (c’, t’), on the other hand, the continuation c and trail t1 at the invocation
time are concatenated to the current trail t’. This reflects the fact that the invocation
of a continuation captured by Control (x, e) or Control0 (x, e) is not surrounded
by reset; since the invocation-time continuation and trail are put into the trail, they
can be captured by using control operators within c’.

Adding a continuation to a trail and appending two trails are realized by cons and
apnd, respectively. A trail is either an empty trail TNil or a non-empty trail Trail holding
a continuation, which represents functional composition of all the invocation contexts
(continuations) encountered so far.

The interpreter is identical to Shan’s interpreter [28] except for two points. First, Shan
uses higher-order functions directly to represent captured continuations, while we use a
defunctionalized form. We could have started from the higher-order functions; by applying
defunctionalization to it, we obtain Listing 1. Second, Shan concatenates the captured
continuation c’ and trail t’ with the continuation c and trail t1 at the invocation time as
((cons c’ t’) v1 (cons c t1)). By case analysis on t’, it is straightforward to verify
that Shan’s code is equivalent to (c’ v1 (apnd t’ (cons c t1))) which we adopt. The
latter is also used by Biernacki, Danvy, and Millikin [5] and Kameyama and Yonezawa [19].

4 Stack Introduction

In this and next sections, we successively apply meaning-preserving program transformations
to the definitional interpreter to obtain a compiler and a virtual machine. In this section, we
introduce a stack into the interpreter by (1) defunctionalizing continuations (Section 4.1),
(2) linearizing them into a list of frames (Section 4.2), and (3) separating static and dynamic
data in the frames (Section 4.3). Along the way, we derive a stack-based abstract machine
(Section 4.5).

3 Metacontinuation m must be non-empty here. Otherwise, a pattern-match error is raised. (In the
supplementary material, a more sensible error message “shift0/control0 is used without enclosing reset”
is given.)

FSCD 2021

16:6 Virtual Machine for Four Delimited-Control Operators

Listing 2 Type definition for defunctionalized interpreter.
type v = VFun of (v -> c -> t -> m -> v)

| VContS of c * t | VContC of c * t
and c = C0 | CApp0 of e * string list * v list * c | CApp1 of v * c
and t = TNil | Trail of (v -> t -> m -> v)
and m = MNil | MCons of (c * t) * m

Listing 3 Type definition for linearized interpreter.
type v = VFun of (v -> c -> t -> m -> v)

| VContS of c * t | VContC of c * t
and f = CApp0 of e * string list * v list | CApp1 of v
and c = f list
and t = TNil | Trail of (v -> t -> m -> v)
and m = MNil | MCons of (c * t) * m

4.1 Defunctionalization
We first defunctionalize [26, 27] continuations in the definitional interpreter. In Listing 1,

the type c is higher order. We turn it into a datatype as shown in Listing 2. The identity
continuation is represented as C0, while two continuations in the App case are represented as
App0 and App1 where the arguments represent free variables of the respective continuations.
The resulting datatype essentially represents evaluation contexts.

We do not defunctionalize the argument of VFun at this point, because it is not necessary
for stack introduction. This choice is arbitrary: we could defunctionalize it and the rest of
derivations would go through without any problem. We will defunctionalize it later when we
need to do so, to derive an abstract machine and a virtual machine.

We do not defunctionalize the argument of Trail, either. Even though the type of
the argument of Trail is the same as c, defunctionalizing it together with c leads to tree-
structured continuations. We can still obtain the same abstract machine and virtual machine,
but by defunctionalizing it separately at a later stage, we can keep the definition of c to
have a list structure (as in our previous work [3]) and postpone the introduction of a tree
structure until Section 5.3.

We omit the standard definition of the defunctionalized interpreter due to the lack of
space; see the supplementary material. We simply introduce a dispatch function for c and use
it whenever a continuation is applied. The transformation is the standard defunctionalization
and thus the resulting interpreter behaves the same as the definitional interpreter.

4.2 Linearizing Continuations
The type c in Listing 2 is isomorphic to a list where C0 is an empty list and CApp0 and

CApp1 are conses. Thus, we linearize continuations, i.e., we transform c into an OCaml list
as shown in Listing 3. The type c is now a list of frames, where a frame f stores data that
were previously held in CApp0 and CApp1.

Obviously, the new interpreter (omitted) behaves the same as the previous one.

4.3 Introducing Stacks
Examining the type f in Listing 3, we notice that the constructors CApp0 and CApp1

contain both static (compile-time) and dynamic (run-time) data. Static data include the
term e and the variable list string list in CApp0, which are fixed once the input program

M. Fujii and K. Asai 16:7

Listing 4 Type definition for stack-based interpreter.
type v = VFun of (v -> c -> s -> t -> m -> v)

| VContS of c * s * t | VContC of c * s * t
| VEnv of v list

and f = CApp0 of e * string list | CApp1
and c = f list
and s = v list
and t = TNil | Trail of (v -> t -> m -> v)
and m = MNil | MCons of (c * s * t) * m

Listing 5 Type definition for delinearized interpreter.
type v = VFun of (v -> c -> s -> t -> m -> v)

| VContS of c * s * t | VContC of c * s * t
| VEnv of v list

and c = C0 | CApp0 of e * string list * c | CApp1 of c
and s = v list
and t = TNil | Trail of (v -> t -> m -> v)
and m = MNil | MCons of (c * s * t) * m

is given. Dynamic data include v list in CApp0 and v in CApp1, which are available only
at run-time. Since our goal is to transform the interpreter into a compiler and a virtual
machine, we separate these two types of data by introducing a stack.

Listing 4 shows the resulting data definition. The previous continuation c is split into
a pair of a continuation c and a stack s. The former is a list of frames, where the frame
f now keeps only the static data. The runtime data are kept in the stack, which is a list
of values. Since the previous CApp0 included v list, the value v is extended with VEnv to
store the v list as a single value.4 Since the new c (a list of frames) and s (a list of values)
are obtained by splitting a single list (a list of f in Listing 3), they always have the same
length. In the subsequent derivations, we keep this invariant throughout.

Because we only changed the representation of c locally, we immediately see that the
new interpreter behaves the same as the previous one.

4.4 Delinearizing Continuations
The purpose of defunctionalization (Section 4.1) and linearization of continuations (Sec-

tion 4.2) was to introduce a data stack. Now that we have introduced a data stack, we
transform continuations back to the higher-order form via delinearization. In this section,
we convert lists into constructors.

Listing 5 shows the resulting data definition. Here, only the static f is incorporated into
c. The stack s remains as a list of values. Note that c contains only static data (in contrast
to c in Listing 2 that contains both static and dynamic data). All the dynamic data are still
carried around in s. As in Section 4.2, the old and new representations of c are isomorphic,
and thus the new interpreter behaves the same as the previous one.

4 The introduction of VEnv into v is arbitrary. Although we introduced it to emulate caller-save registers
often found in the compiled code, a user cannot write a program that evaluates to VEnv. Instead, we
could introduce a new type for stack items that consists of either a value or a list of values (VEnv). In
the current paper, we followed our previous work [3] and included VEnv directly to v.

FSCD 2021

16:8 Virtual Machine for Four Delimited-Control Operators

Figure 1 Abstract machine.

e ⇒ ⟨e, [], [], C0, [], TNil, []⟩
⟨x, xs, vs, c, s, t, m⟩ ⇒ ⟨c, List.nth vs (offset x xs), s, t, m⟩

⟨λx.e, xs, vs, c, s, t, m⟩ ⇒ ⟨c, VFun(e, x, xs, vs), s, t, m⟩
⟨e0 e1, xs, vs, c, s, t, m⟩ ⇒ ⟨e0, xs, vs, CApp0(e1, xs, c), VEnv(vs) :: s, t, m⟩

⟨Shift(x, e), xs, vs, c, s, t, m⟩ ⇒ ⟨e, x :: xs, VContS(c, s, t) :: vs, C0, [], TNil, m⟩
⟨Control(x, e), xs, vs, c, s, t, m⟩ ⇒ ⟨e, x :: xs, VContC (c, s, t) :: vs, C0, [], TNil, m⟩

⟨Shift0(x, e), xs, vs, c, s, t, (c0, s0, t0) :: m0⟩ ⇒ ⟨e, x :: xs, VContS(c, s, t) :: vs, c0, s0, t0, m0⟩
⟨Control0(x, e), xs, vs, c, s, t, (c0, s0, t0) :: m0⟩ ⇒ ⟨e, x :: xs, VContC (c, s, t) :: vs, c0, s0, t0, m0⟩

⟨Reset(e), xs, vs, c, s, t, m⟩ ⇒ ⟨e, xs, vs, C0, [], TNil, (c, s, t) :: m⟩
⟨C0, v, [], TNil, []⟩ ⇒ v

⟨C0, v, [], TNil, (c, s, t) :: m⟩ ⇒ ⟨c, v, s, t, m⟩
⟨C0, v, [], Trail(h), m⟩ ⇒ ⟨h, v, TNil, m⟩

⟨CApp0(e, xs, c), v, VEnv(vs) :: s, t, m⟩ ⇒ ⟨e, xs, vs, CApp1(c), v :: s, t, m⟩
⟨CApp1 (c), v, VFun(e, x, xs, vs) :: s, t, m⟩ ⇒ ⟨e, x :: xs, v :: vs, c, s, t, m⟩

⟨CApp1(c), v, VContS(c′, s′, t′) :: s, t, m⟩ ⇒ ⟨c′, v, s′, t′, (c, s, t) :: m⟩
⟨CApp1(c), v, VContC (c′, s′, t′) :: s, t, m⟩ ⇒ ⟨c′, v, s′, apnd t′ (cons (Hold (c, s)) t), m⟩

⟨Hold (c, s), v, t, m⟩ ⇒ ⟨c, v, s, t, m⟩
⟨Append (h, h′), v, t, m⟩ ⇒ ⟨h, v, cons h′ t, m⟩

4.5 Abstract Machine

In this section, we briefly describe the abstract machine that can be derived from the
interpreter in Section 4.4. Since all the interpreters in this paper receive a continuation
and a metacontinuation, all the calls to interpreter functions (such as f1 and the dispatch
function for continuations) are tail calls. As such, we can easily derive an abstract machine
by simply regarding the arguments to interpreter functions as a state of the abstract machine.
The derived abstract machine is shown in Figure 1. Although we omit the code for the
interpreter, one can imagine how it looks like from the abstract machine. To extract the
abstract machine, we further performed the following transformations:

We defunctionalized the argument of VFun. A function is now represented as a closure.
We will perform the same transformation later; see Section 5.3.
We defunctionalized the argument of Trail. The Trail data are constructed in the
two branches of cons (see Listing 1). The first one is represented as Hold that holds an
invocation context; the second one as Append that appends two trails. We will perform
the same transformation later; see Section 5.3 for details.
Instead of MNil and MCons, we use standard lists for metacontinuations.

Because we have introduced a stack into the interpreter, we obtain a stack-based abstract
machine. This is in contrast to the previous abstract machines [5, 11, 28] which do not carry
a stack explicitly. The obtained abstract machine clearly describes the behavior of control
operators. When one of the control operators is used, the current continuation c, stack s,
and trail t are captured, put into a stack, and bound to x. Then, the body of the control
operator is executed. For Shift and Control, the current continuation and trail are cleared,
whereas for Shift0 and Control0, the ones in the metacontinuation are used. The reset
operator pushes the current c, s, and t on the metacontinuation m, and initializes them.

When a continuation captured by Shift or Shift0 is invoked, the current c, s, and t are
pushed onto m and the captured state is reinstated. When a continuation captured by
Control or Control0 is invoked, on the other hand, t is extended by c and s (via cons), and
the result is in turn extended by t′ (via apnd).

M. Fujii and K. Asai 16:9

4.6 Refunctionalizing Continuations
Finally, Listing 6 shows the refunctionalized interpreter where defunctionalized con-

tinuations are transformed back to higher-order functions. It is similar to the definitional
interpreter in Listing 1, but passes around a stack. Typewise, all the occurrences of a continu-
ation c in Listing 1 are replaced by pairs c * s of a continuation and a stack. Furthermore,
the type c and the type of the argument of VFun are modified to receive a stack.

Compared to the definitional interpreter f1 in Listing 1, the refunctionalized interpreter
f6 receives an additional stack argument s, and whenever it returns a value, a continuation
c is applied to the value together with a stack s. We can also observe that the references
to free variables in the definitional interpreter (vs and v0 in the App case) are now realized
by passing those values via the stack. We push those values at the recursive calls and pop
them when the corresponding continuations are called. Since stacks are extracted from
continuations and stacks have the same structure as (now refunctionalized) continuations,
popping a value would never fail: popped values correspond to the dynamic arguments of
CApp0 and CApp1. This is the consequence of the invariant we keep between continuations
and stacks. Similarly, idc corresponds to C0, which has no dynamic counterpart. Thus, the
stack argument of idc (the second argument of idc in Listing 6) must be an empty stack.

The argument of Trail needs explanation. Since we have not defunctionalized the
argument of Trail yet, we need type conversion to store a continuation c in a trail. See the
first argument to cons in the App case. The continuation c is turned into fun v t m -> c
v s1 t m with s1 being a free variable. Later when we defunctionalize it, the stack s1 will
be extracted; see Section 5.3.

It is not straightforward to obtain the refunctionalized interpreter from the previous one.
One has to verify that the previous interpreter is in defunctionalized form [10]. However, once
it is obtained, it is simple to verify its correctness: by defunctionalizing the refunctionalized
interpreter, we can obtain the previous one.

5 Deriving a Virtual Machine

In this section, we derive a virtual machine from the refunctionalized interpreter obtained in
Section 4.6. We first combine arguments so that values are passed via a stack (Section 5.1).
We then stage the interpreter into a compiler that operates on instructions represented as
functions (Section 5.2). By defunctionalizing the instructions (Section 5.3) and linearizing
instructions (Section 5.4) and stacks (Section 5.5), we obtain the virtual machine (Section 6).

5.1 Combining Arguments
In Listing 6, functions in VFun as well as continuations c receive both a value v and a stack
s. In a low-level implementation, such as a virtual machine, we want to pass all the values
via a stack rather than passing a value and a stack separately. Listing 7 shows the type
definition of the result of such a transformation.

The argument v is removed from the argument of VFun and c. When we call such a
function, we push v to the stack before the call. When the function is called, we pop v from
the stack before the function body is executed. We do the same for the interpreter function:
we remove the vs argument and push it on the stack. As a result, the type of the interpreter
function f7 after the transformation becomes as follows:

(* f7 : e -> string list -> c -> s -> t -> m -> v *)

FSCD 2021

16:10 Virtual Machine for Four Delimited-Control Operators

Listing 6 Refunctionalized interpreter (cons and apnd are the same as in Listing 1).
type v = VFun of (v -> c -> s -> t -> m -> v)

| VContS of c * s * t | VContC of c * s * t
| VEnv of v list

and c = v -> s -> t -> m -> v
and s = v list
and t = TNil | Trail of (v -> t -> m -> v)
and m = MNil | MCons of (c * s * t) * m

(* initial continuation : v -> s -> t -> m -> v *)
let idc v [] t m = match t with

TNil -> (match m with
MNil -> v

| MCons ((c,s,t),m) -> c v s t m)
| Trail(h) -> h v TNil m

(* f6 : e -> string list -> v list -> c -> s -> t -> m -> v *)
let rec f6 e xs vs c s t m = match e with

| Var(x) -> c (List.nth vs (Env. offset x xs)) s t m
| Fun(x,e) ->

c (VFun(fun v c’ s’ t’ m’ -> f6 e (x::xs) (v::vs) c’ s’ t’ m ’))
s t m

| App(e0 ,e1) ->
f6 e0 xs vs (fun v0 (VEnv(vs):: s0) t0 m0 ->
f6 e1 xs vs (fun v1 (v0::s1) t1 m1 ->
(match v0 with

VFun(f) -> f v1 c s1 t1 m1
| VContS (c’,s’,t’) -> c’ v1 s’ t’ (MCons ((c,s1 ,t1),m1))
| VContC (c’,s’,t’) ->

c’ v1 s’ (apnd t’ (cons (fun v t m -> c v s1 t m) t1)) m1))
(v0::s0) t0 m0) (VEnv(vs)::s) t m

| Shift(x,e) -> f6 e (x::xs) (VContS (c,s,t):: vs) idc [] TNil m
| Control (x,e) -> f6 e (x::xs) (VContC (c,s,t):: vs) idc [] TNil m
| Shift0 (x,e) -> (match m with

MCons ((c0 ,s0 ,t0),m0) ->
f6 e (x::xs) (VContS (c,s,t):: vs) c0 s0 t0 m0)

| Control0 (x,e) -> (match m with
MCons ((c0 ,s0 ,t0),m0) ->

f6 e (x::xs) (VContC (c,s,t):: vs) c0 s0 t0 m0)
| Reset(e) -> f6 e xs vs idc [] TNil (MCons ((c,s,t),m))

(* f : e -> v *)
let f expr = f6 expr [] [] idc [] TNil MNil

Listing 7 Type definition for interpreter with combined arguments.
type v = VFun of (c -> s -> t -> m -> v)

| VContS of c * s * t | VContC of c * s * t
| VEnv of v list

and c = s -> t -> m -> v
and s = v list
and t = TNil | Trail of (v -> t -> m -> v)
and m = MNil | MCons of (c * s * t) * m

M. Fujii and K. Asai 16:11

Since we simply changed the way two arguments are passed locally, we immediately see
that the new interpreter behaves the same as the previous one.

5.2 Introducing Combinators as Instructions
In this section, we extract a compiler from the interpreter. Looking at the type of f7

in the previous section, we notice that the first two arguments are static and the rest of
the arguments are dynamic. We first define the type i of instructions (in Listing 8) as the
dynamic part of the interpreter, which represents the work to be done when dynamic data
are received. We then regard the interpreter as a compiler that accepts two static data and
returns an instruction. Listing 8 shows the result.

The interpreter function f8, or a compiler, processes only the static data: the input term
e and a list of variable names xs. It then produces an instruction of type i, which performs
the rest of the work when dynamic data are given.

For example, in the case of Var (x), the compiler emits an instruction access, which,
given dynamic data, returns the corresponding value in the environment. In the case of App
(e0, e1), we define push_env, pop_env, and call, and concatenate these instructions using
(>>). We employ the same technique as the previous work [3]: we store the return address
VK (added to the definition of v) to the stack in return and retrieve it in call.

This interpreter behaves the same as the previous one, because if we inline all the
instructions, we obtain the interpreter in the previous section.

5.3 Defunctionalizing Instructions
In this section, we defunctionalize the functional instructions introduced in the previous

section into the ones that are closer to machine instructions. Specifically, we defunction-
alize the argument of VFun, i, c, and the argument of Trail, separately, and change the
representation of m. See Listing 9.

First, the argument of VFun (see push_closure and call in Listing 8) is defunctionalized
to a closure. Second, the instruction i is defunctionalized. All the functional instructions are
turned into constructors as shown in i in Listing 9. The corresponding dispatch function
(omitted) is a virtual machine: given an instruction and the current dynamic state, it
performs necessary operations. Observe how a virtual machine is naturally derived by
defunctionalizing functional instructions. Note also that the instruction is not linear: it
includes ISeq corresponding to (>>) and thus has a tree structure.

Third, c is defunctionalized. There are two cases that constitute the value of c in Listing 8:
the identity continuation idc, which is closed, and the second argument to i0 in (>>), fun
s’ t’ m’ -> i1 c s’ t’ m’. Since the free variables of the latter are i1 and c, we can
represent c as a list of i, regarding the former as an empty list and the latter as cons list.

Fourth, the argument of Trail is defunctionalized and given a new type h. The Trail
data are constructed in the two branches of cons (see Listing 1): its argument is either a
continuation h or fun v t’ m -> h v (cons h’ t’) m which has h and h’ as free variables.
They are represented as Hold and Append in Listing 9, respectively. Note that h has a tree
structure. Finally, the metacontinuation m is turned into an OCaml list, as no circular
dependency arises any more.5

Since all these changes are instances of defunctionalization and a simple local change of
data representation, the behavior of the new interpreter is the same as the previous one.

5 Unlike the definitional interpreter. See footnote 2.

FSCD 2021

16:12 Virtual Machine for Four Delimited-Control Operators

Listing 8 Interpreter using combinators factored as instructions.
type v = VFun of (c -> s -> t -> m -> v)

| VContS of c * s * t | VContC of c * s * t
| VEnv of v list | VK of c

and c = s -> t -> m -> v
and s = v list
and t = TNil | Trail of (v -> t -> m -> v)
and m = MNil | MCons of (c * s * t) * m
type i = c -> s -> t -> m -> v

(* (>>) : i -> i -> i *)
let (>>) i0 i1 =

fun c s t m -> i0 (fun s’ t’ m’ -> i1 c s’ t’ m’) s t m

(* instructions *)
let access n = fun c (VEnv(vs)::s) t m -> c ((List.nth vs n)::s) t m
let push_closure i = fun c (VEnv(vs)::s) t m ->

c (VFun(fun c’ (v::s’) t’ m’ -> i c’ (VEnv(v::vs)::s’) t’ m ’)::s)
t m

let return = fun _ (v::VK(c)::s) t m -> c (v::s) t m
let push_env = fun c (VEnv(vs)::s) t m ->

c (VEnv(vs):: VEnv(vs)::s) t m
let pop_env = fun c (v:: VEnv(vs)::s) t m -> c (VEnv(vs)::v::s) t m
let call = fun c (v1::v0::s) t m -> match v0 with

VFun(f) -> f idc (v1::VK(c)::s) t m
| VContS (c’,s’,t’) -> c’ (v1::s’) t’ (MCons ((c,s,t),m))
| VContC (c’,s’,t’) ->

c’ (v1::s’) (apnd t’ (cons (fun v t m -> c (v::s) t m) t)) m
let shift i = fun c (VEnv(vs)::s) t m ->

i idc (VEnv(VContS (c,s,t):: vs)::[]) TNil m
let control i = fun c (VEnv(vs)::s) t m ->

i idc (VEnv(VContC (c,s,t):: vs)::[]) TNil m
let shift0 i = fun c (VEnv(vs)::s) t (MCons ((c0 ,s0 ,t0),m0)) ->

i c0 (VEnv(VContS (c,s,t):: vs):: s0) t0 m0
let control0 i = fun c (VEnv(vs)::s) t (MCons ((c0 ,s0 ,t0),m0)) ->

i c0 (VEnv(VContC (c,s,t):: vs):: s0) t0 m0
let reset i = fun c (VEnv(vs)::s) t m ->

i idc (VEnv(vs)::[]) TNil (MCons ((c,s,t),m))

(* f8 : e -> string list -> i *)
let rec f8 e xs = match e with

Var(x) -> access (Env. offset x xs)
| Fun(x,e) -> push_closure ((f8 e (x::xs)) >> return)
| App(e0 ,e1) ->

push_env >> (f8 e0 xs) >> pop_env >> (f8 e1 xs) >> call
| Shift(x,e) -> shift (f8 e (x::xs))
| Control (x,e) -> control (f8 e (x::xs))
| Shift0 (x,e) -> shift0 (f8 e (x::xs))
| Control0 (x,e) -> control0 (f8 e (x::xs))
| Reset(e) -> reset (f8 e xs)

(* f : e -> v *)
let f expr = f8 expr [] idc (VEnv ([])::[]) TNil MNil

M. Fujii and K. Asai 16:13

Listing 9 Type definition for interpreter with defunctionalized instructions and continuations.
type v = VFun of i * v list

| VContS of c * s * t | VContC of c * s * t
| VEnv of v list | VK of c

and i = IAccess of int | IPush_closure of i | IReturn
| IPush_env | IPop_env | ICall
| IShift of i | IControl of i | IShift0 of i | IControl0 of i
| IReset of i | ISeq of i * i

and c = i list
and s = v list
and h = Hold of c * s | Append of h * h
and t = TNil | Trail of h
type m = (c * s * t) list

Listing 10 The function flat to remove ISeq.
(* flat: i -> i list *)
let rec flat i = match i with

IAccess (n) -> [IAccess (n)]
| ...
| ISeq (i0 , i1) -> flat i0 @ flat i1

5.4 Linearizing Instructions

In the previous section, we used ISeq to combine two instructions. As such, an instruction
had a tree structure. We can turn it into a linear list by flattening the tree into an OCaml
list. With this transformation, i in VFun becomes i list (or equivalently, c) and ISeq is
removed from i.

Although the transformation is intuitively clear, to show its correctness, we need to prove
that the instructions form a monoid. Namely, the grouping of instructions does not matter
as long as the order of instructions is preserved. We briefly sketch the proof. We first define
a flattening function (Listing 10) that turns i into a list of i’s without ISeq. We can define
similar functions (flatV, flatC, etc.) that flatten all the instructions appearing in given
data (a value, a continuation, etc., respectively). We then prove the following equivalences:

flat (f9 e xs) = f10 e xs, stating that the list of instructions generated by the new
compiler is the same as flattening the instruction generated by the old compiler, and

flatV (run_i9 i c s t m) = run_c10 (flat i @ flatC c) (flatS s) (flatT t)
(flatM m), stating that running i under c in the old virtual machine yields the same
result as running the flattened instructions of i and c in the new virtual machine (or
both do not terminate).

The former is proved by induction on the structure of e and the latter on the number of steps
the old virtual machine takes. One has to be careful in the case when i is ISeq. Although
the old virtual machine takes a step to execute it, there is no corresponding execution step
in the new virtual machine, since ISeq is already flattened. Therefore, the termination
behavior of the two virtual machines is different when the instruction list contains infinitely
many ISeq’s: the former continues indefinitely executing ISeq’s while the latter terminates
since all the ISeq’s are already flattened and removed. This does not happen, since all the
instructions are finite.

FSCD 2021

16:14 Virtual Machine for Four Delimited-Control Operators

Listing 11 Interpreter with linearized trails.
type v = VFun of c * v list | VContS of t | VContC of t

| VEnv of v list | VK of c
and i = IAccess of int | IPush_closure of c | IReturn

| IPush_env | IPop_env | ICall
| IShift of c | IControl of c | IShift0 of c | IControl0 of c
| IReset of c

and c = i list
and s = v list
and t = (c * s) list
type m = t list

Figure 2 Virtual machine.

c ⇒ ⟨c, [VEnv([])], [], []⟩
⟨[], v :: [], [], []⟩ ⇒ v

⟨[], v :: [], [], ((c, s) :: t) :: m⟩ ⇒ ⟨c, v :: s, t, m⟩
⟨[], v :: [], (c, s) :: t, m⟩ ⇒ ⟨c, v :: s, t, m⟩

⟨IAccess(n) :: c, VEnv(vs) :: s, t, m⟩ ⇒ ⟨c, (List.nth vs n) :: s, t, m⟩
⟨IPushClosure(c′) :: c, VEnv(vs) :: s, t, m⟩ ⇒ ⟨c, VFun(c′, vs) :: s, t, m⟩

⟨IReturn :: _, v :: VK(c) :: s, t, m⟩ ⇒ ⟨c, v :: s, t, m⟩
⟨IPushEnv :: c, VEnv(vs) :: s, t, m⟩ ⇒ ⟨c, VEnv(vs) :: VEnv(vs) :: s, t, m⟩

⟨IPopEnv :: c, v :: VEnv(vs) :: s, t, m⟩ ⇒ ⟨c, VEnv(vs) :: v :: s, t, m⟩
⟨ICall :: c, v :: VFun(c′, vs) :: s, t, m⟩ ⇒ ⟨c′, VEnv(v :: vs) :: VK(c) :: s, t, m⟩

⟨ICall :: c, v :: VContS((c′, s′) :: t′) :: s, t, m⟩ ⇒ ⟨c′, v :: s′, t′, ((c, s) :: t) :: m⟩
⟨ICall :: c, v :: VContC ((c′, s′) :: t′) :: s, t, m⟩ ⇒ ⟨c′, v :: s′, t′ @ (c, s) :: t, m⟩

⟨IShift(c′) :: c, VEnv(vs) :: s, t, m⟩ ⇒ ⟨c′, VEnv(VContS((c, s) :: t) :: vs) :: [], [], m⟩
⟨IControl(c′) :: c, VEnv(vs) :: s, t, m⟩ ⇒ ⟨c′, VEnv(VContC ((c, s) :: t) :: vs) :: [], [], m⟩

⟨IShift0(c′) :: c, VEnv(vs) :: s, t, ((c0, s0) :: t0) :: m0⟩ ⇒ ⟨c′ @ c0, VEnv(VContS((c, s) :: t) :: vs) :: s0, t0, m0⟩
⟨IControl0(c′) :: c, VEnv(vs) :: s, t, ((c0, s0) :: t0) :: m0⟩ ⇒ ⟨c′ @ c0, VEnv(VContC ((c, s) :: t) :: vs) :: s0, t0, m0⟩

⟨IReset(c′) :: c, VEnv(vs) :: s, t, m⟩ ⇒ ⟨c′, VEnv(vs) :: [], [], ((c, s) :: t) :: m⟩

5.5 Linearizing Trails
Finally, we transform the type t of trails, which had a tree structure (Listing 9), into

a linear list. By regarding TNil as an empty list, Hold as a singleton list consisting of c *
s, and Append as a list append, we can represent t as a list of c * s. The resulting type
definitions are shown in Listing 11. Now that t becomes (c * s) list, we change the type
of VContS and VContC from c * s * t to t by piling up the c * s pair onto t. Similarly, m
can be represented as t list.

To establish the correctness of this transformation, we need to show that the new virtual
machine behaves the same as before:

flatV (run_c10 c s t m) = run_c11 c (flatS s) (flatT t) (flatM m)

where flat functions are defined similarly to the ones in the previous section to flatten the
type of trails. The above equivalence is shown by induction on the number of execution steps
the old virtual machine takes.

6 Virtual Machine

Figure 2 shows the state transition rules for the virtual machine obtained from the interpreter
in the previous section. The main state consists of a tuple (c, s, t, m) of four elements: a
continuation, a stack, a trail, and a metacontinuation. We show an example how a program
is compiled to a list of instructions and executed on the virtual machine in the appendix.

M. Fujii and K. Asai 16:15

The virtual machine succinctly models the low-level behavior of control operators. Just as
in the abstract machine, when one of the control operators is used, the current continuation
(or a pointer to an instruction) c, stack s, and trail t are captured and put into a stack. Then,
the body of the control operator is executed. For IShift and IControl , the current continuation
and trail are cleared, whereas for IShift0 and IControl0, the ones in the metacontinuation
are used. The reset operator pushes the current c, s, and t on the metacontinuation m, and
initializes them.

When a continuation captured by IShift or IShift0 is invoked, the current c, s, and t

are pushed onto m and the captured state is reinstated. When a continuation captured by
IControl or IControl0 is invoked, on the other hand, the current c and s are added to t to
which the captured trail t′ is appended.

Although we maintain s, t, and m separately in the virtual machine, we can represent
them as a single stack. Remember that s is a list of values. Since t is a list of pairs of c and
s, it has the form:

[(c, [v; . . . ; v]); . . . ; (c, [v; . . . ; v])]

Thus, if we represent c as a single value (e.g., using VK) pointing to the first instruction
designated by c, and if we maintain the positions of c in t using pointers, we can represent t

as a list of values. Furthermore, since m is a list of trails (a list of lists of pairs of c and s), it
can be represented as a list of values, too, if we maintain pointers to each element of m.

If we represent s, t, and m as a single stack, we notice that we can sometimes avoid
copying s and t. When c, s, and t are pushed to m in the rules for IReset and the VContS
and VContC cases of ICall, the ordering of s, t, and m does not change. Thus, we can simply
rearrange the pointers to the head of a stack, trail, and metacontinuation appropriately,
without copying s and t. Similarly for s0, t0, and m0 in the rules for IShift0 and IControl0.
When do we have to copy s and t? It is when we use control operators or apply captured
continuations. The s and t must be copied, in the former case to be stored in VContS or
VContC , and in the latter case to use what was stored.

Finally, in the rules for IShift0 and IControl0, the body instructions c′ of the control oper-
ators and the instructions c0 in the metacontinuation are concatenated. This concatenation
reflects the fact that the body of IShift0 and IControl0 has access to the context outside the
current enclosing reset. (In the abstract machine, the concatenation was realized by execut-
ing the body under the continuation stored in the metacontinuation.) Implementation-wise,
this suggests that we need to keep track of a list of pointers to these continuations, which is
an interesting observation that has not been observed before.

7 Related Work

We are not aware of any work that derives a virtual machine for the four delimited-control
operators other than shift/reset. Deriving a virtual machine for other language constructs
includes Ager, Biernacki, Danvy, and Midtgaard’s work [1] for λ-calculus (of various flavors)
and Igarashi and Iwaki’s work [18] for a staged language.

As for an abstract machine, Biernacki, Danvy, and Millikin [5] present abstract machines
for the four delimited-control operators as definitional and derive a CPS interpreter for
control/prompt. Shan [28] derives an abstract machine for control/prompt from the CPS
interpreter for control/prompt. In both work, the derivation is done for control/prompt
only. Their abstract machines are similar to ours but do not maintain a stack explicitly.

Dyvbig, Peyton Jones, and Sabry [11] show an abstract machine for primitive control
operators that can implement four delimited-control operators with named prompts. Since
they use their own primitive control operators, their CPS interpreter is quite different from

FSCD 2021

16:16 Virtual Machine for Four Delimited-Control Operators

ours. They do not use trails and represent concatenation of contexts using a metacontinuation,
which is a list of continuations. Based on this abstract machine, Kiselyov [21] implements
the control operators in OCaml by emulating the behavior of the abstract machine using
OCaml’s exception handling mechanism.

Hillerström, Lindley, and Atkey [17] show CPS translations and abstract machine se-
mantics for algebraic effects and handlers. It would be interesting to see if the program
transformation approach can be used in this setting, too.

8 Conclusion

In this paper, we have derived a compiler and a virtual machine for the four delimited-control
operators from the definitional interpreter. The resulting virtual machine suggests a low-level
implementation method for delimited continuations.

Although we focused on the behavior of the delimited-control operators, we also want
to consider their type systems. We are currently trying to build a type system for the four
delimited-control operators (the one for control/prompt is in [6]). Once we obtain a type
system, we plan to implement the four delimited-control operators in OchaCaml [22] based
on the virtual machine developed in this paper. That would form a solid foundation on
which a different implementation of algebraic effects and handlers can be considered.

References
1 Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. From interpreter to

compiler and virtual machine: a functional derivation. BRICS Report Series, 03(14), 2003.
2 Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional corres-

pondence between evaluators and abstract machines. In Proceedings of the 5th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, 27-29
August 2003, Uppsala, Sweden, pages 8–19. ACM, 2003. doi:10.1145/888251.888254.

3 Kenichi Asai and Arisa Kitani. Functional derivation of a virtual machine for delimited
continuations. In Temur Kutsia, Wolfgang Schreiner, and Maribel Fernández, editors, Pro-
ceedings of the 12th International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, July 26-28, 2010, Hagenberg, Austria, pages 87–98. ACM, 2010.
doi:10.1145/1836089.1836101.

4 Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. J. Log.
Algebraic Methods Program., 84(1):108–123, 2015. doi:10.1016/j.jlamp.2014.02.001.

5 Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. A dynamic continuation-passing style
for dynamic delimited continuations. ACM Trans. Program. Lang. Syst., 38(1):2:1–2:25, 2015.
doi:10.1145/2794078.

6 Youyou Cong, Chiaki Ishio, Kaho Honda, and Kenichi Asai. A functional abstraction of typed
invocation contexts. In Naoki Kobayashi, editor, 6th International Conference on Formal
Structures for Computation and Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires,
Argentina (Virtual Conference), volume 195 of LIPIcs, pages 12:1–12:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSCD.2021.12.

7 Olivier Danvy. Defunctionalized interpreters for programming languages. In James Hook and
Peter Thiemann, editors, Proceeding of the 13th ACM SIGPLAN international conference on
Functional programming, ICFP 2008, Victoria, BC, Canada, September 20-28, 2008, pages
131–142. ACM, 2008. doi:10.1145/1411204.1411206.

8 Olivier Danvy and Andrzej Filinski. Abstracting control. In Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, LFP 1990, Nice, France, 27-29 June 1990,
pages 151–160. ACM, 1990. doi:10.1145/91556.91622.

https://doi.org/10.1145/888251.888254
https://doi.org/10.1145/1836089.1836101
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1145/2794078
https://doi.org/10.4230/LIPIcs.FSCD.2021.12
https://doi.org/10.1145/1411204.1411206
https://doi.org/10.1145/91556.91622

M. Fujii and K. Asai 16:17

9 Olivier Danvy and Andrzej Filinski. Representing control: A study of the CPS transformation.
Math. Struct. Comput. Sci., 2(4):361–391, 1992. doi:10.1017/S0960129500001535.

10 Olivier Danvy and Kevin Millikin. Refunctionalization at work. Sci. Comput. Program.,
74(8):534–549, 2009. doi:10.1016/j.scico.2007.10.007.

11 R. Kent Dybvig, Simon L. Peyton Jones, and Amr Sabry. A monadic framework for delimited
continuations. J. Funct. Program., 17(6):687–730, 2007. doi:10.1017/S0956796807006259.

12 Kavon Farvardin and John H. Reppy. From folklore to fact: comparing implementations of
stacks and continuations. In Alastair F. Donaldson and Emina Torlak, editors, Proceedings
of the 41st ACM SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI 2020, London, UK, June 15-20, 2020, pages 75–90. ACM, 2020.
doi:10.1145/3385412.3385994.

13 Matthias Felleisen. The theory and practice of first-class prompts. In Jeanne Ferrante and
P. Mager, editors, Conference Record of the Fifteenth Annual ACM Symposium on Principles
of Programming Languages, San Diego, California, USA, January 10-13, 1988, pages 180–190.
ACM Press, 1988. doi:10.1145/73560.73576.

14 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. On the expressive power
of user-defined effects: effect handlers, monadic reflection, delimited control. Proc. ACM
Program. Lang., 1(ICFP):13:1–13:29, 2017. doi:10.1145/3110257.

15 Martin Gasbichler and Michael Sperber. Final shift for call/cc: direct implementation of
shift and reset. In Mitchell Wand and Simon L. Peyton Jones, editors, Proceedings of
the Seventh ACM SIGPLAN International Conference on Functional Programming (ICFP
’02), Pittsburgh, Pennsylvania, USA, October 4-6, 2002, pages 271–282. ACM, 2002. doi:
10.1145/581478.581504.

16 Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization of exceptions and control in
ml-like languages. In John Williams, editor, Proceedings of the seventh international conference
on Functional programming languages and computer architecture, FPCA 1995, La Jolla,
California, USA, June 25-28, 1995, pages 12–23. ACM, 1995. doi:10.1145/224164.224173.

17 Daniel Hillerström, Sam Lindley, and Robert Atkey. Effect handlers via generalised continu-
ations. J. Funct. Program., 30:e5, 2020. doi:10.1017/S0956796820000040.

18 Atsushi Igarashi and Masashi Iwaki. Deriving compilers and virtual machines for a multi-
level language. In Zhong Shao, editor, Programming Languages and Systems, 5th Asian
Symposium, APLAS 2007, Singapore, November 29-December 1, 2007, Proceedings, volume
4807 of Lecture Notes in Computer Science, pages 206–221. Springer, 2007. doi:10.1007/
978-3-540-76637-7_14.

19 Yukiyoshi Kameyama and Takuo Yonezawa. Typed dynamic control operators for delimited
continuations. In Jacques Garrigue and Manuel V. Hermenegildo, editors, Functional and
Logic Programming, 9th International Symposium, FLOPS 2008, Ise, Japan, April 14-16, 2008.
Proceedings, volume 4989 of Lecture Notes in Computer Science, pages 239–254. Springer,
2008. doi:10.1007/978-3-540-78969-7_18.

20 Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In Greg Morrisett and
Tarmo Uustalu, editors, ACM SIGPLAN International Conference on Functional Programming,
ICFP’13, Boston, MA, USA – September 25–27, 2013, pages 145–158. ACM, 2013. doi:
10.1145/2500365.2500590.

21 Oleg Kiselyov. Delimited control in ocaml, abstractly and concretely. Theor. Comput. Sci.,
435:56–76, 2012. doi:10.1016/j.tcs.2012.02.025.

22 Moe Masuko and Kenichi Asai. Caml light+ shift/reset= caml shift. Theory and Practice of
Delimited Continuations (TPDC 2011), pages 33–46, 2011.

23 Marek Materzok and Dariusz Biernacki. Subtyping delimited continuations. In Manuel M. T.
Chakravarty, Zhenjiang Hu, and Olivier Danvy, editors, Proceeding of the 16th ACM SIGPLAN
international conference on Functional Programming, ICFP 2011, Tokyo, Japan, September
19-21, 2011, pages 81–93. ACM, 2011. doi:10.1145/2034773.2034786.

FSCD 2021

https://doi.org/10.1017/S0960129500001535
https://doi.org/10.1016/j.scico.2007.10.007
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1145/3385412.3385994
https://doi.org/10.1145/73560.73576
https://doi.org/10.1145/3110257
https://doi.org/10.1145/581478.581504
https://doi.org/10.1145/581478.581504
https://doi.org/10.1145/224164.224173
https://doi.org/10.1017/S0956796820000040
https://doi.org/10.1007/978-3-540-76637-7_14
https://doi.org/10.1007/978-3-540-76637-7_14
https://doi.org/10.1007/978-3-540-78969-7_18
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1016/j.tcs.2012.02.025
https://doi.org/10.1145/2034773.2034786

16:18 Virtual Machine for Four Delimited-Control Operators

24 Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Typed equivalence of effect handlers and
delimited control. In Herman Geuvers, editor, 4th International Conference on Formal Struc-
tures for Computation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany,
volume 131 of LIPIcs, pages 30:1–30:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.FSCD.2019.30.

25 Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic effects. In Giuseppe Castagna,
editor, Programming Languages and Systems, 18th European Symposium on Programming,
ESOP 2009, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume 5502 of Lecture
Notes in Computer Science, pages 80–94. Springer, 2009. doi:10.1007/978-3-642-00590-9_7.

26 John C. Reynolds. Definitional interpreters for higher-order programming languages. In John J.
Donovan and Rosemary Shields, editors, Proceedings of the ACM annual conference, ACM
1972, 1972, Volume 2, pages 717–740. ACM, 1972. doi:10.1145/800194.805852.

27 John C. Reynolds. Definitional interpreters for higher-order programming languages. High.
Order Symb. Comput., 11(4):363–397, 1998. doi:10.1023/A:1010027404223.

28 Chung-chieh Shan. A static simulation of dynamic delimited control. High. Order Symb.
Comput., 20(4):371–401, 2007. doi:10.1007/s10990-007-9010-4.

A Example Execution

In this appendix, we show an example how the compiler and the virtual machine work. We
use the control term in Section 2: 1+ ⟨(Fc. 2 × c 3) + Fc′. 4⟩. It is straightforward to support
numbers and binary operators; see the supplementary material. State transition rules for the
new instructions are summarized in Figure 3.

The list of instructions output by the compiler is:

[IPushEnv1; INum(1); IPopEnv1; IReset(c1); IOp1(+)]

where

c1 = [IPushEnv2; IControl1(c2); IPopEnv2; IControl2(c3); IOp2(+)]
c2 = [IPushEnv3; INum(2); IPopEnv3; IPushEnv4; IAccess(0); IPopEnv4;

INum(3); ICall; IOp3(∗)]
c3 = [INum(4)]

We use subscripts to disambiguate instructions that appear more than once.
The list of instruction is executed as in Figure 4. We can observe that the trails 3 + []

(i.e., ([IOp2(+)], [VNum(3)])) and 2 × [] (i.e., ([IOp3(∗)], [VNum(2)])) are concatenated at
the second invocation of IControl and are captured in vc2.

⟨INum(n) :: c, VEnv(vs) :: s, t, m⟩ ⇒ ⟨c, VNum(n) :: s, t, m⟩
⟨IOp(+) :: c, VNum(n0) :: VNum(n1) :: s, t, m⟩ ⇒ ⟨c, VNum(n0 + n1) :: s, t, m⟩
⟨IOp(∗) :: c, VNum(n0) :: VNum(n1) :: s, t, m⟩ ⇒ ⟨c, VNum(n0 ∗ n1) :: s, t, m⟩

Figure 3 State transition rules for INum and IOp.

https://doi.org/10.4230/LIPIcs.FSCD.2019.30
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1145/800194.805852
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1007/s10990-007-9010-4

M. Fujii and K. Asai 16:19

In
st

ru
ct

io
n:

[IP
us

hE
nv

1;
IN

um
(1

);
IP

op
En

v 1
;

IR
es

et
(c

1)
;

IO
p 1

(+
)]

c 1
=

[IP
us

hE
nv

2;
IC

on
tr

ol
1(

c 2
);

IP
op

En
v 2

;
IC

on
tr

ol
2(

c 3
);

IO
p 2

(+
)]

c 2
=

[IP
us

hE
nv

3;
IN

um
(2

);
IP

op
En

v 3
;

IP
us

hE
nv

4;
IA

cc
es

s(
0)

;
IP

op
En

v 4
;

IN
um

(3
);

IC
al

l;
IO

p 3
(∗

)]
c 3

=
[IN

um
(4

)]
c 4

=
[IO

p 1
(+

)]
c 5

=
[IP

op
En

v 2
;

IC
on

tr
ol

2(
c 3

);
IO

p 2
(+

)]
c 6

=
[IO

p 3
(∗

)]
c 7

=
[IO

p 2
(+

)]
vc

1
=

V
C

on
tC

((
c 5

,[
V

En
v(

[])
])

::
[])

vc
2

=
V

C
on

tC
((

c 7
,[

V
N

um
(3

)])
::

(c
6,

[V
N

um
(2

)])
::

[])

⟨
IP

us
hE

nv
1

::
..

.,
V

En
v(

[])
::

[],
[],

[]⟩
⇒

⟨
IN

um
(1

):
:.

..
,

V
En

v(
[])

::
V

En
v(

[])
::

[],
[],

[]⟩
⇒

⟨
IP

op
En

v 1
::

..
.,

V
N

um
(1

):
:V

En
v(

[])
::

[],
[],

[]⟩
⇒

⟨
IR

es
et

(c
1)

::
..

.,
V

En
v(

[])
::

V
N

um
(1

):
:[

],
[],

[]⟩
⇒

⟨
IP

us
hE

nv
2

::
..

.,
V

En
v(

[])
::

[],
[],

((
c 4

,
[V

N
um

(1
)])

::
[])

::
[]⟩

⇒
⟨I

C
on

tr
ol

1(
c 2

):
:.

..
,

V
En

v(
[])

::
V

En
v(

[])
::

[],
[],

((
c 4

,
[V

N
um

(1
)])

::
[])

::
[]⟩

⇒
⟨

IP
us

hE
nv

3
::

..
.,

V
En

v(
vc

1
::

[])
::

[],
[],

((
c 4

,
[V

N
um

(1
)])

::
[])

::
[]⟩

⇒
⟨

IN
um

(2
):

:.
..

,
V

En
v(

vc
1

::
[])

::
V

En
v(

vc
1

::
[])

::
[],

[],
((

c 4
,

[V
N

um
(1

)])
::

[])
::

[]⟩
⇒

⟨
IP

op
En

v 3
::

..
.,

V
N

um
(2

):
:V

En
v(

vc
1

::
[])

::
[],

[],
((

c 4
,

[V
N

um
(1

)])
::

[])
::

[]⟩
⇒

⟨
IP

us
hE

nv
4

::
..

.,
V

En
v(

vc
1

::
[])

::
V

N
um

(2
):

:[
],

[],
((

c 4
,

[V
N

um
(1

)])
::

[])
::

[]⟩
⇒

⟨
IA

cc
es

s(
0)

::
..

.,
V

En
v(

vc
1

::
[])

::
V

En
v(

vc
1

::
[])

::
V

N
um

(2
):

:[
],

[],
((

c 4
,

[V
N

um
(1

)])
::

[])
::

[]⟩
⇒

⟨
IP

op
En

v 4
::

..
.,

vc
1

::
V

En
v(

vc
1

::
[])

::
V

N
um

(2
):

:[
],

[],
((

c 4
,

[V
N

um
(1

)])
::

[])
::

[]⟩
⇒

⟨
IN

um
(3

):
:.

..
,

V
En

v(
vc

1
::

[])
::

vc
1

::
V

N
um

(2
):

:[
],

[],
((

c 4
,

[V
N

um
(1

)])
::

[])
::

[]⟩
⇒

⟨
IC

al
l:

:.
..

,
V

N
um

(3
):

:v
c 1

::
V

N
um

(2
):

:[
],

[],
((

c 4
,

[V
N

um
(1

)])
::

[])
::

[]⟩
⇒

⟨
IP

op
En

v 2
::

..
.,

V
N

um
(3

):
:V

En
v(

[])
::

[],
(c

6,
[V

N
um

(2
)])

::
[],

((
c 4

,
[V

N
um

(1
)])

::
[])

::
[]⟩

⇒
⟨I

C
on

tr
ol

2(
c 3

):
:.

..
,

V
En

v(
[])

::
V

N
um

(3
):

:[
],

(c
6,

[V
N

um
(2

)])
::

[],
((

c 4
,

[V
N

um
(1

)])
::

[])
::

[]⟩
⇒

⟨
IN

um
(4

):
:[

],
V

En
v(

vc
2

::
[])

::
[],

[],
((

c 4
,

[V
N

um
(1

)])
::

[])
::

[]⟩
⇒

⟨
[],

V
N

um
(4

):
:[

],
[],

((
c 4

,
[V

N
um

(1
)])

::
[])

::
[]⟩

⇒
⟨

IO
p 1

(+
):

:[
],

V
N

um
(4

):
:V

N
um

(1
):

:[
],

[],
[]⟩

⇒
⟨

[],
V

N
um

(5
):

:[
],

[],
[]⟩

Fi
gu

re
4

A
n

ex
am

pl
e

ex
ec

ut
io

n
of

1
+

⟨(
F

c.
2

×
c

3)
+

F
c′ .4

⟩
on

th
e

vi
rt

ua
lm

ac
hi

ne
.

FSCD 2021

Positional Injectivity for Innocent Strategies
Lison Blondeau-Patissier #

Université Lyon, EnsL, UCBL, CNRS, LIP, F-69342, Lyon Cedex 07, France

Pierre Clairambault #

Université Lyon, EnsL, UCBL, CNRS, LIP, F-69342, Lyon Cedex 07, France

Abstract
In asynchronous games, Melliès proved that innocent strategies are positional: their behaviour only
depends on the position, not the temporal order used to reach it. This insightful result shaped our
understanding of the link between dynamic (i.e. game) and static (i.e. relational) semantics.

In this paper, we investigate the positionality of innocent strategies in the traditional setting
of Hyland-Ong-Nickau-Coquand pointer games. We show that though innocent strategies are not
positional, total finite innocent strategies still enjoy a key consequence of positionality, namely
positional injectivity: they are entirely determined by their positions. Unfortunately, this does not
hold in general: we show a counter-example if finiteness and totality are lifted. For finite partial
strategies we leave the problem open; we show however the partial result that two strategies with
the same positions must have the same P-views of maximal length.

2012 ACM Subject Classification Theory of computation → Denotational semantics

Keywords and phrases Game Semantics, Innocence, Relational Semantics, Positionality

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.17

Related Version Full Version: https://arxiv.org/abs/2105.02485

Funding Work supported by the ANR project DyVerSe (ANR-19-CE48-0010-01); and by the Labex
MiLyon (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir”
(ANR-11-IDEX-0007), operated by the French National Research Agency (ANR).

Acknowledgements We thank the reviewers, whose comments greatly helped improve the paper.

1 Introduction

Game semantics presents higher-order computation interactively as an exchange of tokens in
a two-player game between Player (the program under study), and Opponent (its execution
environment) [15, 1]. Game semantics has had a strong theoretical impact on denotational
semantics, achieving full abstraction results for languages for which other tools struggle.

At the heart of Hyland and Ong’s celebrated model [15] are innocent strategies, matching
pure programs. They matter conceptually and technically: many full abstraction results rely
on innocent strategies and their definability properties. Accordingly, innocence is perhaps
the most studied notion on the foundational side of game semantics, with questions including
categorical reconstructions [13], alternative definitions [16, 14], non-deterministic [18, 6],
concurrent [7], or quantitative [17, 4] extensions. In particular, our modern understanding of
innocence is shaped by Melliès’ homotopy-theoretic reformulation in asynchronous games [16].
In this paper, Melliès also introduced an important result: innocent strategies are positional.

Positionality is an elementary notion on games on graphs: a strategy is positional if its
behaviour only depends on the current node – the “position” – and not the path leading
there. In standard game semantics there is, at first sight, no clear notion of position: plays
are primitive, and it is not clear what is the ambient graph. In contrast, asynchronous games
and relatives (e.g. concurrent games) admit a transparent notion of position: two plays
reach the same position if they feature the same moves, though not necessarily in the same
order. In investigating positionality, Melliès’ motivation was to bridge standard play-based
game semantics with more static, relational-like semantics [2, 12]. Indeed, points of the web

© Lison Blondeau-Patissier and Pierre Clairambault;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 17; pp. 17:1–17:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Lison.Blondeau-Patissier@ens-lyon.fr
mailto:Pierre.Clairambault@ens-lyon.fr
https://doi.org/10.4230/LIPIcs.FSCD.2021.17
https://arxiv.org/abs/2105.02485
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Positional Injectivity for Innocent Strategies

in relational semantics correspond to certain positions in game semantics. Positionality of
innocent strategies entails that they are entirely defined by their positions (a property we
shall call positional injectivity), so that collapsing game to relational semantics corresponds
exactly to keeping only certain positions. See [8] for a recent account.

Now, traditional Hyland-Ong arena games are by no means disconnected from those
developments: bridges with relational semantics were also investigated there, notably by
Boudes [3]. There, points of the web match so-called thick subtrees, pomsets representing
partial explorations of the arena with duplications. This provides positions for Hyland-Ong
games. But then, are innocent strategies still positional? Though it came to us as a surprise,
it is not hard to find a counter-example. So we focus on the key weakening of the question: are
innocent strategies positionally injective? Our main result is positive, for total finite innocent
strategies. We first link Hyland-Ong innocence with an alternative, causal formulation
inspired from concurrent games [8], allowing a transparent link between a strategy and its
positions. Drawing inspiration from the proof of injectivity of the relational model for MELL
proof nets [10], we show how to track down duplications in certain well-engineered positions to
recover a sufficient portion of the causal structure; and deduce positional injectivity. However,
we show that in the general case (without finiteness and totality), positional injectivity fails.
Finally, for finite (but not total) innocent strategies we show a partial result, namely that
two strategies with the same positions have the same P-views of maximal length.

Tsukada and Ong [19] show an injective collapse from a category of innocent strategies
onto the relational model. Their collapse is similar to ours, with an important distinction:
they label moves in each play, coloring contiguous Opponent/Player pairs identically. Labels
survive the collapse, allowing to read back causal links directly. This is possible because
the web of atomic types is set to comprise countably many such labels – but then, the
correspondence between positions and points of the web is lost. In contrast, our theorem
requires us to prove injectivity directly, without such labeling.

In Section 2 we introduce the setting and state our main result. In Section 3 we reformulate
the problem via a causal presentation of game semantics. In Section 4 we present the proof
of positional injectivity for total finite innocent strategies. In Section 5, we show some partial
results beyond total finite strategies. Finally, in Section 6, we conclude.

2 Innocent Strategies and Positions

2.1 Arenas and Constructions
We start this paper by giving a definition of arenas, which represent types.

▶ Definition 1. An arena is A = ⟨|A|,≤A, λA⟩ where ⟨|A|,≤A⟩ is a partial order, and
λA : |A| → {−,+} is a polarity function. Moreover, these data must satisfy:

finitary: for all a ∈ |A|, [a]A = {a′ ∈ |A| | a′ ≤A a} is finite,
forestial: for all a1, a2 ≤A a, then a1 ≤A a2 or a2 ≤A a1,

alternating: for all a1 _A a2, then λA(a1) ̸= λA(a2),
negative: for all a ∈ min(A) = {a ∈ |A| | a minimal}, λA(a) = −,

where a1 _A a2 means a1 <A a2 with no event strictly in between.

Though our notations differ superficially, our arenas are similar to [15]. They present
observable computational events (on a given type) along with their causal dependencies:
positive moves are due to Player / the program, and negative moves to Opponent / the

L. Blondeau-Patissier and P. Clairambault 17:3

q−

tt+ ff+

Figure 1 Arena bool.

q−

0+ 1+ 2+ . . .

Figure 2 Arena nat.

(o → o) → o → o

q−

q+ q+

q−

Figure 3 Arena (o ⇒ o) ⇒ o ⇒ o.

environment. We show in Figures 1 and 2, read from top to bottom, the representation of the
datatypes bool and nat as arenas. Opponent initiates the execution with q−, annotated so
as to indicate its polarity, and Player may respond any possible value, with a positive move.

We write 1 for the empty arena and o for the arena with exactly one (negative) move.
More elaborate types involve matching constructions: the product and the arrow.

▶ Definition 2. Consider A1 and A2 arenas. Then, we define A1 ∥ A2 as

|A1 ∥ A2| = ({1} × |A1|) ∪ ({2} × |A2|)
(i, a) ≤A1∥A2 (j, b) ⇔ i = j ∧ a ≤Ai b

λA1∥A2(i, a) = λAi
(a) ,

called their parallel composition or product, and also written A1 ×A2.

For any family (Ai)i∈I of arenas, this extends to
∏
i∈I Ai in the obvious way. Any arena

A decomposes (up to forest iso) as A ∼=
∏
i∈I Ai for some family (Ai)i∈I of arenas which are

well-opened, i.e. with exactly one initial (i.e. minimal) move. We now define the arrow:

▶ Definition 3. Consider A1, A2 arenas with A2 well-opened. Then A1 ⇒ A2 has:

|A1 ⇒ A2| = ({1} × |A1|) ∪ ({2} × |A2|)
(i, a) ≤A1⇒A2 (j, b) ⇔ (i = j ∧ a ≤Ai b) ∨ (i = 2 ∧ a ∈ min(A2))

λA1⇒A2(i, a) = (−1)i · λAi
(a)

This extends to all arenas with A ⇒
∏
i∈I Bi =

∏
i∈I A ⇒ Bi and A ⇒ 1 = 1.

We will mostly use A ⇒ B for B well-opened. Figure 3 displays (o ⇒ o) ⇒ o ⇒ o,
matching the simple type (o → o) → o → o with atomic type o – the position of moves follows
a correspondence between those and atoms of the type. These arena constructions describe
call-by-name computation: once Opponent initiates computation with q−, two Player moves
become available. Player may call the second argument (terminating computation) or evaluate
the first argument, which in turn allows Opponent to call its argument.

2.2 Plays and Strategies
In Hyland-Ong games, players are allowed to backtrack, and resume the play from any earlier
stage. This is made formal by the notion of pointing strings:

▶ Definition 4. A pointing string over set Σ is a string s ∈ Σ∗, where each move may
additionally come equipped with a pointer to an earlier move.

We often write s = s1 . . . sn for pointing strings, leaving pointers implicit.

▶ Definition 5. A play on arena A is a pointing string s = s1 . . . sn over |A| s.t.:

rigid: If si points to sj, then sj _A si,
alternating: for all 1 ≤ i < n, λA(si) ̸= λA(si+1),

legal: for all 1 ≤ i ≤ n, either si ∈ min(A) or si has a pointer.

A play is well-opened iff it has exactly one initial move. We write Plays(A) for the set
of plays on A, Plays+(A) for even-length plays, and Plays•(A) for well-opened plays.

FSCD 2021

17:4 Positional Injectivity for Innocent Strategies

(o → o) → o → o

q−

q+

Figure 4 λfo→o. λxo. x.

(o → o) → o → o
q−

q+

q−

q+

Figure 5 λfo→o. λxo. f x.

(o → o) → o → o
q−

q+
q−

q+
q−

q+

Figure 6 λfo→o. λxo. f (f x).

We write ε for the empty play, ⊑ for the prefix, and ⊑+ if the smaller play has even
length. Plays represent higher-order executions. Figures 4, 5 and 6 show plays on the arena
of Figure 3; matching typical executions of the corresponding simply-typed λ-term. They are
read from top to bottom, with pointers as dotted lines. As in Figure 3, the position of moves
encodes their identity in the arena. Strategies, representing programs, are sets of plays:

▶ Definition 6. A strategy σ : A on arena A is a non-empty set σ ⊆ Plays+(A) satisfying

prefix-closed: ∀s ∈ σ, ∀t ⊑+ s, t ∈ σ ,

deterministic: ∀s ∈ σ, sab, sab′ ∈ σ =⇒ sab = sab′ .

Implicit in the last clause is that sab and sab′ also have the same pointers.

2.3 Visibility and Innocence
Innocence captures that the behaviour only depends on which program phrase currently has
control. Intuitively, the “current program phrase” is captured by the P-view.

▶ Definition 7. For any arena A, we set a partial function ⌜−⌝ : Plays(A) ⇀ Plays(A) as:

⌜si⌝ = i if i ∈ min(A),
⌜sn−m+⌝ = ⌜sn⌝m if the pointer of m is in ⌜sn⌝,
⌜sn+tm−⌝ = ⌜sn⌝m if m points to n,

undefined otherwise. In the last two cases, m keeps its pointer in the resulting play.
If defined, ⌜s⌝ is the P-view of s. A play s ∈ Plays(A) is visible iff ∀t ⊑ s, ⌜t⌝ is defined.

We say that s ∈ Plays(A) is a P-view iff ⌜s⌝ = s. A strategy σ : A is visible iff any s ∈ σ

is visible. In that case, P-views are always well-defined, so that we may formulate:

▶ Definition 8. A strategy σ : A is innocent iff it is visible, and satisfies:

innocence: for all sab, t ∈ σ, if ta ∈ Plays(A) and ⌜sa⌝ = ⌜ta⌝, then tab ∈ σ.

where, in tab, b points “as in sab”, i.e. so as to ensure that ⌜sab⌝ = ⌜tab⌝.

An innocent σ : A is determined by ⌜⌜σ⌝⌝ = {⌜s⌝ | s ∈ σ}, its P-view forest. Figures 4, 5 and
6 present P-views, each inducing an innocent strategy via the P-view forest obtained by even-
length prefix closure. Likewise, Figures 7 and 8 induce strategies for the so-called simply-typed
“Kierstead terms” λf (o→o)→o. f (λxo. f (λyo. x)) and λf (o→o)→o. f (λxo. f (λyo. y)). P-views
are well-opened, so innocent strategies are determined by their set σ• of well-opened plays.

Innocent strategies form a cartesian closed category Inn with as objects arenas, and
morphisms from A to B the innocent strategies σ : A ⇒ B. Composing σ : A ⇒ B and
τ : B ⇒ C involves a “parallel interaction plus hiding” mechanism, which we omit [15].

L. Blondeau-Patissier and P. Clairambault 17:5

((o → o) → o) → o
q−

q+
q−

q+
q−

q+

Figure 7 Kx : ((o → o) → o) → o.

((o → o) → o) → o
q−

q+
q−

q+
q−

q+

Figure 8 Ky : ((o → o) → o) → o.

q− 1✤∂xoo

q+ 2✤oo 4✎
uu

q− 3✤oo 5✎
uu

q+ 6✤oo

1 ✤ ∂y // q−

2
✴))

4 ✤ // q+

3
✴))

5 ✤ // q−

6 ✤ // q+

Figure 9 Deseq. Kx and Ky.

(o→ o →o)→ o → o
q−

q+

q−

q+

q−

q+

(o→ o →o)→o→o
q−

q+

q−

q+

q−

Figure 10 Non-positionality of innocence.

2.4 Positions
Boudes’ “thick subtrees” [3], called positions in this paper, are the central concept informing
the link between innocent game semantics and relational semantics. They are simply
desequentialized plays, or in other words prefixes of the arena with duplications.

To introduce positions, our first stop is the following notion of configuration.

▶ Definition 9. A configuration x ∈ 𝒞(A) of arena A is a tuple x = ⟨|x|,≤x, ∂x⟩ such that
⟨|x|,≤x⟩ is a finite tree, and ∂x : |x| → |A|, the display map, is a labeling function s.t.:

minimality-respecting: for all a ∈ |x|, a is ≤x-minimal iff ∂x(a) is ≤A-minimal,
causality-preserving: for all a1, a2 ∈ |x|, if a1 _x a2 then ∂x(a1) _A ∂x(a2).

We call events the elements of |x|. Note ⟨|x|,≤x⟩ has exactly one minimal event, which
suffices as innocent strategies are determined by well-opened plays. Configurations include:

▶ Definition 10. The desequentialization ⟬s⟭ ∈ 𝒞(A) of s = s1 . . . sn ∈ Plays•(A) has
|⟬s⟭| = {1, . . . , n}, ∂⟬s⟭(i) = si, and i ≤⟬s⟭ j if there is a chain of pointers from sj to si in s.

We show in Figure 9 the desequentialization of the maximal P-views of Kx and Ky from
Figures 7 and 8. Extracting ⟬s⟭ is a first step, we must then forget the identity of its events:

▶ Definition 11. A bijection φ : |x| ∼= |y| is an isomorphism φ : x ∼= y iff it is

arena-preserving: for all a ∈ |x|, ∂y(φ(a)) = ∂x(a),
causality-respecting: for all a1, a2 ∈ |x|, we have a1 _x a2 iff φ(a1) _y φ(a2).

A position of A, written x ∈ ⦗A⦘, is an isomorphism class of configurations.

If s ∈ Plays•(A), the position ⦗s⦘ ∈ ⦗A⦘ is the isomorphism class of ⟬s⟭.
We pause to consider the positionality of innocent strategies as mentioned in the intro-

duction. Though it will only play a very minor role, we define positional strategies:

▶ Definition 12. Consider σ : A a strategy on A. We set the condition:

positional: ∀sab, t ∈ σ, ta′ ∈ Plays(A), ⦗sa⦘ = ⦗ta′⦘ =⇒ ∃ta′b ∈ σ, ⦗sab⦘ = ⦗ta′b⦘.

FSCD 2021

17:6 Positional Injectivity for Innocent Strategies

Innocent strategies are not positional: Figure 10 displays (the two maximal P-views of)
the innocent strategy for the λ-term λfo→o→o. λxo. f (f ⊥x) (f ⊥ ⊥). On the right hand side,
the last Opponent move is grayed out as an extension of a P-view triggering no response. After
the fifth move the position is the same, contradicting positionality. In Melliès’ asynchronous
games [16], explicit copy indices help distinguish the two calls to f . The two plays no longer
reach the same position, restoring positionality. But even in asynchronous games, if positions
were quotiented by symmetry so as to match relational semantics, positionality would fail.

We turn to the weaker positional injectivity. If σ : A, its positions are those reached by
well-opened plays, i.e. ⦗|σ|⦘ = {⦗s⦘ | s ∈ σ•} ⊆ ⦗A⦘. We may finally ask our main question:

▶ Question 13 (Positional Injectivity). If σ, τ are innocent and ⦗|σ|⦘ = ⦗|τ |⦘, do we have
σ = τ?

2.5 Links with the Relational Model
To fully appreciate this question, it is informative to consider the link with the relational
model. We start with the following observation concerning positions on the arrow arena.

▶ Fact 14. Consider A and B arenas, and write Mf (X) for the finite multisets on X.
Then, we have a bijection ⦗A ⇒ B⦘ ∼= Mf (⦗A⦘) × ⦗B⦘.

Recall [12] that the relational model forms a cartesian closed category Rel! having sets as
objects; and as morphisms from A to B the relations R ⊆ Mf (A) ×B. Considering simple
types generated from o and the arrow A → B, and setting the relational interpretation of o
as JoKRel! = {q}, then for any type A, there is a bijection rA : ⦗JAKInn⦘ ∼= JAKRel! .

▶ Theorem 15. This extends to a functor ⦗| − |⦘ : Inn → Rel!, which preserves the interpreta-
tion: for any term M : A of the simply-typed λ-calculus, rA(⦗|JMKInn|⦘) = JMKRel! .

This relational collapse of innocent strategies has been studied extensively [3, 16, 19, 4, 9].
The inclusion ⊆ is easy; the difficulty in proving ⊇ is that game-semantic interaction is
temporal: positions arising relationally might, in principle, fail to appear game-semantically
because reproducing them yields a deadlock. For innocent strategies this does not happen:
this may be proved through connections with syntax [3, 19] or semantically [4, 9].

In [19], Tsukada and Ong prove a similar collapse injective. This seems to answer
Question 13 positively – but this is not so simple. The interpretation in Rel! is parametrized
by a set X for the ground type o. In [19], X is required to be countably infinite: this way
one allocates one tag for each pair of chronologically contiguous O/P moves, encoding the
causal / axiom links. In contrast, for Question 13 we are forced to interpret o with a singleton
set {q}, or lose the correspondence between points of the web and positions. We must
reconstruct strategies directly from their desequentializations, with no help from labeling or
coloring.

2.6 Main result
At first this seems desperate. In [19], an innocent strategy may already be reconstructed
from the desequentialization of its P-views. But here, the two plays of Figures 7 and 8 yield
the configurations of Figure 9, which are isomorphic – so give the same position. Nevertheless
Kx and Ky can be distinguished, via their behaviour under replication. In both plays of
Figure 11, we replay the move to which the deepest q+ points. This brings Kx and Ky to
react differently, obtaining plays whose positions separate ⦗|Kx|⦘ and ⦗|Ky|⦘. So, by observing
the behaviour of a strategy under replication, we can infer some temporal information.

L. Blondeau-Patissier and P. Clairambault 17:7

((o → o) → o) → o ((o → o) → o) → o
q− q−

q+ q+

Kx ∋ q− Ky ∋ q−

q+ q+

q− q−

q+ q+

q− q−

q+ q+

Figure 11 Plays yielding positions distinguishing Kx and Ky.

Most of the paper will be devoted to turning this idea into a proof. However, we have
only been able to prove the result with the following additional restrictions on strategies.

▶ Definition 16. For A an arena, we define conditions on innocent strategies σ : A as:

total: for all s ∈ σ, if sa ∈ Plays(A) then there exists b such that sab ∈ σ,
finite: the set ⌜⌜σ⌝⌝ = {⌜s⌝ | s ∈ σ} is finite.

Total finite strategies are already well-known: on arenas interpreting simple types they
exactly correspond to β-normal η-long normal forms of simply-typed λ-terms.

We now state our main result, positional injectivity:

▶ Theorem 17. For any σ, τ : A innocent total finite, σ = τ iff ⦗|σ|⦘ = ⦗|τ |⦘.

As observed in Section 2.1, all arenas decompose as A =
∏
i∈I Ai with Ai well-opened.

As × is a cartesian product in Inn, strategies σ : A also decompose as σ = ⟨σi | i ∈ I⟩ with
σi : Ai for all i ∈ I. From innocence it follows that ⦗|⟨σi | i ∈ I⟩|⦘ ∼=

∑
i∈I⦗|σi|⦘, so it suffices

to prove Theorem 17 for A well-opened. From now on, we consider all arenas well-opened.

3 Causal Presentation

Besides the behaviour of strategies under replication, plays also include the order, irrelevant
for our purposes, in which branches are explored by Opponent. To isolate the effect of
replication, we introduce a causal version of strategies inspired from concurrent games [5].

3.1 Augmentations

This formulation rests on the notion of augmentations. Intuitively those correspond to
expanded trees of P-views, which enrich configurations with causal wiring from the strategy.

▶ Definition 18. An augmentation on arena A is a tuple 𝓆 = ⟨|𝓆|,≤⟬𝓆⟭,≤𝓆, ∂𝓆⟩, where
⟬𝓆⟭ = ⟨|𝓆|,≤⟬𝓆⟭, ∂𝓆⟩ ∈ 𝒞(A), and ⟨|𝓆|,≤𝓆⟩ is a tree satisfying:

rule-abiding: for all a1, a2 ∈ |𝓆|, if a1 ≤⟬𝓆⟭ a2, then a1 ≤𝓆 a2,
courteous: for all a1 _𝓆 a2, if λ(a1) = + or λ(a2) = −, then a1 _⟬𝓆⟭ a2,

deterministic: for all a− _𝓆 a
+
1 and a− _𝓆 a

+
2 , then a1 = a2,

we then write 𝓆 ∈ Aug(A), and call ⟬𝓆⟭ ∈ 𝒞(A) the desequentialization of 𝓆.

FSCD 2021

17:8 Positional Injectivity for Innocent Strategies

q−

✻vv�
q+

●}}� ③��"
q+
❵���

q+
❵���

q−

✱ 22:

q−

✶ 44=

q−

✱rrz

q−

✶tt}q+ q+

 ∈ exp

q−
❏��	

q+
❵���

q+
❵���

q−

✺ 66?

q−

✺vv�
q+

Figure 12 Causal Kx and its expansion.

q−

❍~~�
q+
❵���

q+
❏��	 ①��!

q−

✲ 33:

q−
❵���

q−
❵���

q+ q+

 ∈ exp

q−
❏��	

q+
❵���

q+
❵���

q−

✺ 66?

q−
❵���
q+

Figure 13 Causal Ky and its expansion.

Events of |𝓆| inherit a polarity with λ(a) = λA(∂𝓆(a)). By rule-abiding and courteous,
⟨|𝓆|,≤𝓆⟩ and ⟨|𝓆|,≤⟬𝓆⟭⟩ have the same minimal event init(𝓆), called the initial event. If
a ∈ |𝓆| is not initial, there is a unique a′ ∈ |𝓆| such that a′ _𝓆 a, written a′ = pred(a)
and called the predecessor of a. Likewise, a non-initial a ∈ |𝓆| also has a unique a′′ ∈ |𝓆|
such that a′′ _⟬𝓆⟭ a, written a′′ = just(a) and called the justifier of a. By courteous and
as immediate causality alternates in A (and hence in ⟬𝓆⟭), both pred(a) and just(a) have
polarity opposite to a. They may not coincide, however from courteous they do for a negative.

Figures 12 and 13 show augmentations – though the corresponding definitions remain to
be seen, those are the causal expansions of Kx and Ky matching the plays of Section 2.6. In
such diagrams, immediate causality from the configuration appears as dotted lines, whereas
that coming from the augmentation itself appears as _. We set a few auxiliary conditions:

▶ Definition 19. Let 𝓆 ∈ Aug(A) be an augmentation. We set the conditions:

receptive: for all a ∈ |𝓆|, if ∂𝓆(a) _A b
−, there is a _𝓆 b

′ such that ∂𝓆(b′) = b,
+-covered: for all a ∈ |𝓆| maximal in 𝓆, we have λ(a) = +,

−-linear: for all a _𝓆 a
−
1 , a _𝓆 a

−
2 , if ∂𝓆(a1) = ∂𝓆(a2) then a1 = a2.

We say that 𝓆 ∈ Aug(A) is total iff it is receptive and +-covered. We will also refer to
receptive −-linear augmentations as causal strategies.

3.2 From Strategies to Causal Strategies
We may easily represent an innocent strategy as a causal strategy:

▶ Proposition 20. For σ : A finite innocent on A well-opened, we set components

|σ̂| = {⌜s⌝ | s ∈ σ ∧ s ̸= ε} ∪ {⌜sa⌝ | s ∈ σ ∧ sa ∈ Plays(A)} ,

s ≤σ̂ t iff s ⊑ t, sa ≤⟬σ̂⟭ satb iff there is a chain of justifiers from b to a, and ∂σ̂(sa) = a.
Then σ̂ = ⟨|σ̂|,≤σ̂,≤⟬σ̂⟭, ∂σ̂⟩ ∈ Aug(A) is a causal strategy, and is total iff σ is total.

The proof is a straightforward verification. As for configurations, so as to forget the
concrete identity of events we consider augmentations up to isomorphism:

▶ Definition 21. A morphism φ : 𝓆 → 𝓅 is a function φ : |𝓆| → |𝓅| satisfying:

arena-preserving: ∂𝓅 ◦ φ = ∂𝓆,
causality-preserving: for all a1, a2 ∈ |𝓆|, if a1 _𝓆 a2 then φ(a1) _𝓅 φ(a2),

configuration-preserving: for all a1, a2 ∈ |𝓆|, if a1 _⟬𝓆⟭ a2 then φ(a1) _⟬𝓅⟭ φ(a2).

An isomorphism is an invertible morphism – we then write φ : 𝓆 ∼= 𝓅.

L. Blondeau-Patissier and P. Clairambault 17:9

Note that by arena-preserving, φ must send init(𝓆) to init(𝓅).
The reader may check that the construction of Proposition 20 applied to Kx and Ky

yields, up to isomorphism, the (small) augmentations of Figures 12 and 13. The next fact
shows that augmentations are indeed an alternative presentation of innocent strategies.

▶ Lemma 22. For any finite innocent strategies σ, τ on arena A, then σ = τ iff σ̂ ∼= τ̂ .

Proof. Clearly, σ = τ implies σ̂ = τ̂ . Conversely, assume φ : σ̂ ∼= τ̂ . Take s = s1 . . . sn ∈ ⌜⌜σ⌝⌝,
and write s≤i = s1 . . . si. Then we have a chain s≤1 _σ̂ s≤2 _σ̂ . . . _σ̂ s≤n−1 _σ̂ s,
transported through φ to t≤1 _τ̂ . . . _τ̂ t. By arena-preserving, ti = si for all 1 ≤ i ≤ n.
Finally by configuration-preserving, s and t have the same pointers, hence s = t and s ∈ τ .
Symmetrically, any P-view t ∈ ⌜⌜τ⌝⌝ is in σ, hence ⌜⌜σ⌝⌝ = ⌜⌜τ⌝⌝ and σ = τ by innocence. ◀

3.3 Expansions of Causal Strategies
Besides including representations of innocent strategies, augmentations can also represent
their expansions, i.e. arbitrary plays, with Opponent’s scheduling factored out.

▶ Definition 23. Consider A an arena, and 𝓅 ∈ Aug(A) a causal strategy.
An expansion of 𝓅, written 𝓆 ∈ exp(𝓅), is 𝓆 ∈ Aug(A) such that:

simulation: there is a (necessarily unique) morphism φ : 𝓆 → 𝓅,
+-obsessional: for all a− ∈ |𝓆| and φ(a−) _𝓅 b

+, there is a− _𝓆 a
′ s.t. φ(a′) = b+.

The relationship between a causal strategy 𝓅 and 𝓆 ∈ exp(𝓅) is analogous to that
between an arena A and a configuration x ∈ 𝒞(A): 𝓆 explores a prefix of 𝓅, possibly visiting
the same branch many times. However, determinism ensures that only Opponent may cause
duplications, and +-obsessional ensures that only Opponent may refuse to explore certain
branches – if a Player move is available in 𝓅, then it must appear in all corresponding
branches of 𝓆. Uniqueness of the morphism follows from −-linearity and determinism.
Figures 12 and 13 show expansions of (the causal strategies corresponding to) Kx and Ky.

Now, we set ⦗|𝓅|⦘ = {⦗𝓆⦘ | 𝓆 ∈ exp(𝓅)} the positions of a causal strategy 𝓅, where ⦗𝓆⦘
is the isomorphism class of ⟬𝓆⟭. By Lemma 22, any innocent σ : A yields a causal strategy
σ̂ : A, so this leaves us with the task to prove that the two notions of position coincide.

▶ Proposition 24. For any total finite innocent strategy σ : A, we have ⦗|σ|⦘ = ⦗|σ̂|⦘.

Proof. Any x ∈ ⦗|σ|⦘ is the isomorphism class of ⟬s⟭ for s = s1 . . . sn ∈ σ. We build an
expansion 𝓆(s) ∈ exp(σ̂) as follows. Its configuration is ⟬𝓆(s)⟭ = ⟬s⟭ (see Definition 10)
with events |𝓆(s)| = {1, . . . , n}. Its causal order is i ≤𝓆(s) j iff j ≥ i and si is reached
in the computation of ⌜s≤j⌝. To show that 𝓆(s) ∈ exp(σ̂) we must provide a morphism
φ : 𝓆(s) → σ̂, which is simply φ(i) = ⌜s≤i⌝. So, x = ⦗𝓆(s)⦘ ∈ ⦗|σ̂|⦘.

Reciprocally, take x ∈ ⦗|σ̂|⦘, obtained as the isomorphism class of some ⟬𝓆⟭, for 𝓆 ∈ exp(σ̂).
From the totality of σ, 𝓆 has maximal events all positive – it has exactly as many Player
as Opponent events, and admits a linear extension s = s1 . . . sn which is alternating, i.e.
λ(si) ̸= λ(si+1) for all 1 ≤ i ≤ n− 1. Besides, for any 1 ≤ i ≤ n, ⌜s≤i⌝ (treating s as a play
on arena ⟬𝓆⟭) coincides with [si]𝓆 = {s ∈ |𝓆| | s ≤𝓆 si}, totally ordered by ≤𝓆. So, writing
∂𝓆(s) = ∂𝓆(s1) . . . ∂𝓆(sn) ∈ Plays(A) with pointers inherited from ⟬𝓆⟭, ⌜∂𝓆(s)≤i⌝ ∈ ⌜⌜σ⌝⌝,
hence ∂𝓆(s) ∈ σ by innocence and ⟬∂𝓆(s)⟭ ∼= ⟬s⟭. Therefore, ⦗𝓆⦘ = ⦗∂𝓆(s)⦘ ∈ ⦗|σ|⦘. ◀

The idea is that plays in σ are exactly linearizations of expansions of σ̂. From a play
we get an expansion by factoring out Opponent’s scheduling, mimicking the construction
of P-views while keeping duplicated branches separate. Reciprocally, an expansion allows

FSCD 2021

17:10 Positional Injectivity for Innocent Strategies

q−

q+ q+ q+

q− q− q− q−

q+ q+

⇝

q−
✽ww�

q+
❑��	 ①��!

q+
❵���

q+
❵���

q−

✳ 33;

q−

✹ 55?

q−

✳ss{

q−

✹uu�
q+ q+

q−

④��#
q+
❑��	 ①��!

q+
❵���

q+
❵���

q−
❵���

q−
❵���

q−
☛``i

q−
④XXc

q+ q+

Figure 14 Non-unique causal explanation.

q−

q+ q+ q+

q− q− q− q− q− q−

q+ q+ q+ q+

⇝

q−

✶tt}q+
▼��
 ✇��!

q+
▼��
 ❛� ✇��!

q+

❛�
q−

✲ 33:

q−

✲ 33:

q−

✰rry

q−

✰rry

q−

✰rry

q−

✰rryq+ q+ q+ q+

Figure 15 Unique causal explanation.

many (alternating) linearizations. For instance, the two plays of Section 2.6 are respectively
linearizations of the expansions of Figures 12 and 13. This proposition fails if σ is not total, as
expansions may then have trailing Opponent moves, preventing an alternating linearization.

Thanks to Proposition 24, we focus on positions reached by expansions of causal strategies.

4 Positional Injectivity

We now come to the main contribution of this paper, the proof of positional injectivity for
total finite causal strategies. We start this section by introducing the proof idea.

4.1 Forks and Characteristic Expansions
Just from the static snapshot offered by positions, we must deduce the strategy.

Given z ∈ 𝒞(A), can we uniquely reconstruct its causal explanation, i.e. 𝓆 ∈ Aug(A) such
that z = ⟬𝓆⟭? In general, there is no reason why 𝓆 would be uniquely determined. Indeed,
in Figure 14, we show on the left hand side the configuration z1 underlying Figure 12 – up to
iso it has exactly two causal explanations, shown on the right. The rightmost augmentation
is not an expansion of Kx, so Kx is not the only strategy featuring (the isomorphism class
of) z1. However, we can find a position unique to Kx. Consider z2 the configuration on the
left hand side of Figure 15. The only possible augmentation (up to iso) yielding z2 as a
desequentialization appears on the right hand side (call it 𝓆): every other attempt to guess
causal wiring fails. In particular, the red and blue immediate causal links are forced by the
cardinality of the subsequent duplications. But 𝓆 is an expansion of the unique maximal
branch of Kx – so it suffices to see z2 in ⦗|σ|⦘ to know that σ = Kx.

This suggests a proof idea: given 𝓅1,𝓅2 : A causal strategies with ⦗|𝓅1|⦘ = ⦗|𝓅2|⦘, we
devise a characteristic expansion of 𝓅1 with duplications chosen to make the causal structure
essentially unique; meaning it must be an expansion of 𝓅2 as well. We do this by using:

▶ Definition 25. A fork in 𝓆 ∈ Aug(A) is a maximal non-empty set X ⊆ |𝓆| s.t.:

negative: for all a ∈ X, λ(a) = −,
sibling: X = {init(𝓆)} or there is b ∈ |𝓆| such that for all a ∈ X, b _𝓆 a,

identical: for all a1, a2 ∈ X, ∂𝓆(a1) = ∂𝓆(a2).

We write Fork(𝓆) for the set of forks in augmentation 𝓆.

If 𝓅 is a causal strategy, 𝓆 ∈ exp(𝓅) and X ∈ Fork(𝓆), the definition of expansions
ensures that all Player moves caused by Opponent moves in X are copies. So if X has
cardinality ♯X = n, and if we find exactly one set of cardinality ≥ n of equivalent Player
moves in ⟬𝓆⟭, we may deduce that there is a causal link. For instance, in Figure 15, the
causal successors for the fork of cardinality 3 may be found so. In general though, several

L. Blondeau-Patissier and P. Clairambault 17:11

q−
❴���

∼φ q−
❴���

q+

✲ssz ☞ !!)
q+

✷uu} ✑ $$,q−
1❴���

q−
2❴���

q−
1❴���

q−
2❴���

q+
✾ww� ✆ ��'

q+
❴���

∼φ q+
❴���

q+
✾ww� ✆ ��'

q−
❴���

q−
❴���

q−
❴���

q−
❴���

q−
❴���

q−
❴���

q+ q+ q+ ∼φ
{(q−,q−)} q+ q+ q+

Figure 16 Distinct characteristic expansions reaching the same position.

Opponent moves may cause indistinguishable Player moves, so that the cardinality of a set Y
of duplicated Player moves is the sum of the cardinalities of the predecessor forks. To allow
us to identify these predecessor sets uniquely, the trick is to construct the expansion so that
all forks have cardinality a distinct power of 2, making it so that the predecessor forks can
be inferred from the binary decomposition of ♯Y . This brings us to the following definition.

▶ Definition 26. A characteristic expansion of 𝓅 is 𝓆 ∈ exp(𝓅) such that:

injective: for X,Y ∈ Fork(𝓆), if ♯X = ♯Y then X = Y ,
well-powered: for all X ∈ Fork(𝓆), there is n ∈ N such that ♯X = 2n,

−-obsessional: for all a+ ∈ |𝓆|, if ∂𝓆(a+) _A b
−, there is a+ _𝓆 a

′ s.t. ∂𝓆(a′) = b−.

This only constrains causal links in 𝓆 from positives to negatives, but by courteous those
are in 𝓆 iff they are in ⟬𝓆⟭. So for 𝓆 ∈ exp(𝓅), that it is a characteristic expansion is in fact a
property of ⟬𝓆⟭. Furthermore it is stable under iso so that if ⦗|𝓅1|⦘ = ⦗|𝓅2|⦘, for 𝓆1 ∈ exp(𝓅1)
characteristic there must be 𝓆2 ∈ exp(𝓅2) characteristic too such that ⟬𝓆1⟭ ∼= ⟬𝓆2⟭ – so it
makes sense to restrict our attention to positions reached by characteristic expansions.

How different can be characteristic 𝓆1 ∈ exp(𝓅1) and 𝓆2 ∈ exp(𝓅2) s.t. ⟬𝓆1⟭ ∼= ⟬𝓆2⟭?
A first guess is isomorphic, but that is off the mark; 𝓆1 and 𝓆2 have some degree of liberty
in swapping forks around (as in Figure 16): they have the “same branches, but with possibly
different multiplicity”. A significant part of our endeavour has been to construct a relation
between augmentations allowing such changes in multiplicity, while ensuring 𝓅1 ∼= 𝓅2.

4.2 Bisimulations Across an Isomorphism
More than simply comparing augmentations, given 𝓆,𝓅 ∈ Aug(A), a ∈ |𝓆|, b ∈ |𝓅|, we shall
need a a predicate a ∼ b expressing that a and b have the same causal follow-up, up to
the multiplicity of duplications. In particular, a and b must have “the same pointer”, but
at first that makes no sense since a and b live in different ambient sets of events. So we
also fix an isomorphism φ : ⟬𝓆⟭ ∼= ⟬𝓅⟭ providing the translation, and aim to define a ∼φ b

parametrized by φ. We give some examples in Figure 16, where φ is any of the two possible
isomorphisms, assuming q−

1 and q−
2 correspond to different moves of the arena.

This is defined via a bisimulation game: for instance, establishing that the roots are in
relation requires us to first match the blue nodes. But as the bisimulation unfolds, requiring
all pointers to match up to φ is too strong: the pointers of red moves do not match – but
seen from q+ this is fine as the justifiers for the red moves are encountered at the same step
of the bisimulation game from q+. So our actual predicate has form a ∼φ

Γ b for Γ a context,
stating a correspondence between negative moves established in the bisimulation game so far:

FSCD 2021

17:12 Positional Injectivity for Innocent Strategies

▶ Definition 27. A context between 𝓆,𝓅 ∈ Aug(A) is Γ : dom(Γ) ∼= cod(Γ) a bijection s.t.
dom(Γ) ⊆ |𝓆|, cod(Γ) ⊆ |𝓅|, λ𝓆(dom(Γ)) ⊆ {−}, and ∀a− ∈ dom(Γ), ∂𝓆(a) = ∂𝓅(Γ(a)).

We may now formulate a first notion of bisimulation across augmentations.

▶ Definition 28. Consider 𝓆,𝓅 ∈ Aug(A) and an isomorphism φ : ⟬𝓆⟭ ∼= ⟬𝓅⟭.
For a ∈ |𝓆|, b ∈ |𝓅| and Γ a context, we define a predicate a ∼φ

Γ b which holds if, firstly,

(a) ∂𝓆(a) = ∂𝓅(b) and Γ ⊢ (a, b)
(b) if just(a+) ∈ dom(Γ), then just(b) ∈ cod(Γ) and Γ(just(a)) = just(b),
(c) if just(a+) ̸∈ dom(Γ), then just(b) ̸∈ cod(Γ) and φ(just(a)) = just(b),

where Γ ⊢ (a, b) means that for all a′ ∈ dom(Γ), ¬(a′ >𝓆 a) and for all b′ ∈ cod(Γ),
¬(b′ >𝓅 b); and inductively, the following two bisimulation conditions hold:

(1) if a+ _𝓆 a
′, then there is b+ _𝓅 b

′ with a′ ∼φ
Γ∪{(a′,b′)} b

′, and symmetrically,
(2) if a− _𝓆 a

′, then there is b− _𝓅 b
′ with a′ ∼φ

Γ b
′, and symmetrically.

As Γ ⊢ (a, b) implies a′ ̸∈ dom(Γ) and b′ ̸∈ cod(Γ), Γ ∪ {(a′, b′)} remains a bijection.
Of particular interest is the case a ∼φ

∅ b over an empty context, written simply a ∼φ b.
From this, we deduce a relation between augmentations: we write 𝓆 ∼φ 𝓅 iff init(𝓆) ∼φ

init(𝓅), for 𝓆,𝓅 ∈ Aug(A) and φ : ⟬𝓆⟭ ∼= ⟬𝓅⟭. Resuming the discussion at the end
of Section 4.1: bisimulations allow us to express that two characteristic expansions with
isomorphic configurations are “the same”. More precisely, in due course we will be able to
prove:

▶ Proposition 29. Consider 𝓅1,𝓅2 ∈ Aug(A) causal strategies, 𝓆1 ∈ exp(𝓅1) and 𝓆2 ∈
exp(𝓅2) characteristic expansions with an isomorphism φ : ⟬𝓆1⟭ ∼= ⟬𝓆2⟭. Then, 𝓆1 ∼φ 𝓆2.

The proof is the core of our injectivity argument, which we will cover in Section 4.5. For
now, we focus on how to conclude from 𝓆1 ∼φ 𝓆2 that we have 𝓅1 ∼= 𝓅2.

4.3 Compositional Properties of Bisimulations
To achieve that, we exploit compositional properties of bisimulations. More precisely, we
show that 𝓆i ∈ exp(𝓅i) induces a bisimulation 𝓆i ∼ 𝓅i, and find a way to compose

𝓅1 ∼ 𝓆1 ∼φ 𝓆2 ∼ 𝓅2 (1)

to deduce 𝓅1 ∼ 𝓅2 in a sense yet to be defined, and 𝓅1 ∼= 𝓅2 will follow. We start with:

▶ Lemma 30. Consider augmentations 𝓆,𝓅,𝓇 ∈ Aug(A), isomorphisms φ : ⟬𝓆⟭ ∼= ⟬𝓅⟭,
ψ : ⟬𝓅⟭ ∼= ⟬𝓇⟭, events a ∈ |𝓆|, b ∈ |𝓅|, c ∈ |𝓇|, and contexts Γ,∆. Then:

reflexivity: a ∼id a,
transitivity: if a ∼φ

Γ b and b ∼ψ
∆ c with cod(Γ) = dom(∆), then a ∼ψ◦φ

∆◦Γ c,
symmetry: if a ∼φ

Γ b then b ∼φ−1

Γ−1 a.

But in order to treat 𝓆i ∈ exp(𝓅i) as a bisimulation between 𝓆i and 𝓅i, Definition 28
does not do the trick: we cannot expect there to be an iso between ⟬𝓆i⟭ and ⟬𝓅i⟭ as 𝓆i has
by construction many more events. We therefore introduce a variant of Definition 28:

L. Blondeau-Patissier and P. Clairambault 17:13

▶ Definition 31. Consider 𝓆,𝓅 ∈ Aug(A). For a ∈ |𝓆|, b ∈ |𝓅|, Γ, we have a ∼Γ b if

(a) ∂𝓆(a) = ∂𝓅(b) and Γ ⊢ (a, b),
(b) just(a+) ∈ dom(Γ) and Γ(just(a)) = just(b),
(1) if a+ _𝓆 a

′, then b+ _𝓅 b
′ with a′ ∼Γ∪{(a′,b′)} b

′, and symmetrically,
(2) if a− _𝓆 a

′, then b− _𝓅 b
′ with a′ ∼Γ b

′, and symmetrically.

This helps us relate 𝓆 and 𝓅 when ⟬𝓆⟭ and ⟬𝓅⟭ are not isomorphic: we set 𝓆 ∼ 𝓅 iff
init(𝓆) ∼{(init(𝓆),init(𝓅))} init(𝓅). A variation of Lemma 30 shows ∼ is an equivalence, and:

▶ Proposition 32. Consider A an arena, 𝓅 ∈ Aug(A) a causal strategy, and 𝓆 ∈ Aug(A).
Then, 𝓆 is a −-obsessional expansion of 𝓅 iff 𝓆 ∼ 𝓅.

Proof. If. We simply construct φ : 𝓆 → 𝓅 for all a ∈ |𝓆| by induction on ≤𝓆. The image is
provided by bisimulation, its uniqueness by determinism and −-linearity.

Only if. For φ : 𝓆 → 𝓅 and a ∈ |𝓆|, write [a]−𝓆 = {a′ ∈ |𝓆| | a′ ≤𝓆 a & λ(a′) = −};
it is totally ordered by ≤𝓆 as 𝓆 is forestial. From the conditions on φ, it is direct that it
induces an order-iso [a]−𝓆 ∼= [φ(a)]−𝓅 , i.e. a context Γ⟨a⟩ : [a]−𝓆 ∼= [φ(a)]−𝓅 . Then, we check that
a ∼Γ⟨a⟩ φ(a) for all a ∈ |𝓆|, using that φ is +-obsessional. We then apply this to init(𝓆). ◀

This vindicates Definition 31. But for (1), we must compose two kinds of bisimulations,
following Definitions 28 and 31. Fortunately, whenever both definitions apply, they coincide:

▶ Lemma 33. Consider 𝓆,𝓅 ∈ Aug(A), and φ : ⟬𝓆⟭ ∼= ⟬𝓅⟭. Then, 𝓆 ∼φ 𝓅 iff 𝓆 ∼ 𝓅.

Proof. If. Straightforward from Definitions 28 and 31: case (c) is never used.
Only if. We actually prove that for all a ∈ |𝓆|, b ∈ |𝓅|, for all context Γ which is complete

in the sense that [a]−𝓆 ⊆ dom(Γ) and [b]−𝓅 ⊆ cod(Γ), if a ∼φ
Γ b then a ∼Γ b. The proof is

immediate by induction: the clause (c) is never used from the hypothesis that Γ is complete.
Finally, we apply this to the roots of 𝓆,𝓅 with context {(init(𝓆), init(𝓅))}. ◀

Altogether, we have:

▶ Proposition 34. Consider 𝓅1,𝓅2 ∈ Aug(A) causal strategies, 𝓆1 ∈ exp(𝓅1),𝓆2 ∈ exp(𝓅2)
characteristic expansions with an iso φ : ⟬𝓆1⟭ ∼= ⟬𝓆2⟭. If 𝓆1 ∼φ 𝓆2, then 𝓅1 ∼= 𝓅2.

Proof. By Lemma 33, 𝓆1 ∼ 𝓆2. As characteristic expansions, 𝓆1 and 𝓆2 are −-obsessional,
so by Proposition 32, 𝓆1 ∼ 𝓅1 and 𝓆2 ∼ 𝓅2. So 𝓅1 ∼ 𝓆1 ∼ 𝓆2 ∼ 𝓅2 but ∼ is an equivalence,
so 𝓅1 ∼ 𝓅2. By Proposition 32, we have φ : 𝓅1 → 𝓅2 and ψ : 𝓅2 → 𝓅1 composing to
ψ ◦ φ : 𝓅1 → 𝓅1. But by −-linear and determinism there is only one morphism from 𝓅1 to
itself, the identity, so ψ ◦ φ = id. Likewise φ ◦ ψ = id, hence φ : 𝓅1 ∼= 𝓅2 as required. ◀

4.4 Clones
In Section 4.1, we introduced characteristic expansions which, via duplications with well-
chosen cardinalities, constrain the causal structure. More precisely, if 𝓆 ∈ exp(𝓅) is
characteristic, looking at a set of duplicated Player moves in ⟬𝓆⟭ of cardinality n as in
Figure 17, decomposing n =

∑
i∈I 2i, we can deduce that the causal predecessors of the q+

j ’s
are among the forks with cardinality 2i for i ∈ I. But that is not enough: this does not tell
us how to distribute the q+

j ’s to the forks, and not all the choices will work: while the q+
j ’s

are copies, their respective causal follow-ups might differ. So the idea is simple: imagine that
the causal follow-ups for the q+

j ’s are already reconstructed. Then we may compare them
using bisimulation, and replicate the same reasoning as above on bisimulation equivalence
classes.

FSCD 2021

17:14 Positional Injectivity for Innocent Strategies

q−

q+
1 q+

2 . . . q+
n

Figure 17 A set of copied Player moves.

q+
✾ww� ❵���

✕ &&-q−
1
❵���

q−
2
❵���

. . . q−
n
❛�

q+
1 ≈ q+

2 ≈ . . . ≈ q+
n

Figure 18 A set of clones switching pointers.

So we are left with the task of leveraging bisimulation to define an adequate equivalence
relation on |𝓆|. This leads to the notion of clones, our last technical tool.

▶ Definition 35. Consider 𝓆,𝓅 ∈ Aug(A), φ : ⟬𝓆⟭ ∼= ⟬𝓅⟭, and a ∈ |𝓆|, b ∈ |𝓅|.
We say that a and b are clones through φ, written a ≈φ b, if there is a context Γ

preserving pointers (i.e. for all a′ ∈ dom(Γ), φ(just(a′)) = just(Γ(a′))) such that a ∼φ
Γ b.

This allows a and b (and their follow-ups) to change their pointers through some unspecified
Γ. Indeed, the picture painted by Figure 17 is limited: a fork might trigger Player moves
with different pointers, as in Figure 18. As a ≈φ b quantifies existentially over contexts,
compositional properties of clones are more challenging. Nevertheless, via a canonical form
for contexts and leveraging Lemma 30, we show that a ≈id a, that a ≈φ b and b ≈ψ c imply
a ≈ψ◦φ c, and that a ≈φ b implies b ≈φ−1 a whenever these typecheck – see Appendix A.2.
Instantiating Definition 35 with 𝓆 = 𝓅 and φ = id, we get an equivalence relation ≈ on |𝓆|.

Moreover, we have the crucial property that forks generate clones (see Appendix A.2):

▶ Lemma 36. Consider 𝓆 a −-obsessional expansion of causal strategy 𝓅 on arena A.
Then, for all a−

1 , a
−
2 ∈ X ∈ Fork(𝓆), for all a−

1 _𝓆 b
+
1 and a−

2 _𝓆 b
+
2 , b1 ≈ b2.

By Lemma 36, if a clone class includes a positive move, it also has all its cousins triggered
by the same fork – so clone classes may be partitioned following forks:

▶ Lemma 37. Let 𝓆 be a characteristic expansion of causal strategy 𝓅, and Y a clone class
of positive events in |𝓆|, with ♯Y =

∑
i∈I 2i for I ⊆ N finite. Then, for all i ∈ N, i ∈ I iff

there is Xi ∈ Fork(𝓆) with ♯Xi = 2i and a− ∈ Xi, b+ ∈ Y such that a− _𝓆 b
+.

Proof. For any i ∈ N, we write Xi the fork of 𝓆 of cardinality 2i, if it exists.
Consider the set J := {j ∈ N | Xj exists, ∃a ∈ Xj , ∃b ∈ Y, a _𝓆 b}. Any b ∈ Y is

positive and so the unique (by determinism) successor of some negative event a. Moreover a
appears in a fork X and by Lemma 36, all events of X are predecessors of events of Y . Hence,
we have Y =

⋃
j∈J succ(Xj), where the union is disjoint since 𝓆 is forest-shaped. Therefore,

♯Y =
∑
j∈J

♯succ(Xj) =
∑
j∈J

♯Xj =
∑
j∈J

2j ,

where the second equality is obtained by determinism. By uniqueness of the binary decom-
position, J = I, which proves the lemma by definition of J . ◀

4.5 Positional Injectivity
We are finally in a position to prove the core of the injectivity argument.

▶ Lemma 38 (Key lemma). Consider 𝓅1,𝓅2 ∈ Aug(A) causal strategies, 𝓆1 ∈ exp(𝓅1) and
𝓆2 ∈ exp(𝓅2) characteristic expansions, and φ : ⟬𝓆1⟭ ∼= ⟬𝓆2⟭. Then, ∀a+ ∈ |𝓆1|, a ≈φ φ(a).

L. Blondeau-Patissier and P. Clairambault 17:15

Proof. The co-depth of a ∈ |𝓆i| is the maximal length k of a = a1 _𝓆i . . . _𝓆i ak a causal
chain in 𝓆i. We show by induction on k the two symmetric properties:

(a) for all a+ ∈ |𝓆1| of co-depth ≤ k, we have a ≈φ φ(a),
(b) for all a+ ∈ |𝓆2| of co-depth ≤ k, we have a ≈φ−1

φ−1(a).

Take a+ ∈ |𝓆1| of co-depth k. If a is maximal in 𝓆1, so is φ(a) in 𝓆2 and a ≈ φ(a). Else,
the successors of a partition as G1, . . . , Gn ⊆ Fork(𝓆1), where Gi = {b−

i,1, . . . , b
−
i,2pi }; likewise

the successors of φ(a) in 𝓆2 are the forks φ(Gi). For all 1 ≤ i ≤ n and 1 ≤ j ≤ 2pi , we claim:

for all bi,j _𝓆1 ci,j , there is φ(bi,j) _𝓆2 di,j satisfying ci,j ≈φ di,j . (2)

Write X = [ci,j]≈ the clone class of ci,j in 𝓆1. It is easy to prove that the clone relation
preserves co-depth, so it follows from the induction hypothesis and Lemma 46 that φ(X) is
a clone class in 𝓆2. By Lemma 37, ♯X has 2pi in its binary decomposition – and as φ is a
bijection, so does ♯(φ(X)). So by Lemma 37, there is φ(bi,j) ∈ φ(Gi) and di,j ∈ φ(X) such
that φ(bi,j) _𝓆2 di,j . Since φ(ci,j), di,j ∈ φ(X) they are clones, so using ci,j ≈φ φ(ci,j) by
induction hypothesis, ci,j ≈φ di,j . Likewise, the mirror property of (2) also holds.

Deducing a ≈φ φ(a) requires some care: cloning is defined via a context, and the
ci,j ≈φ φ(ci,j) might not share the same. However, the contexts can be put into canonical
forms that are shown to agree – Lemma 48 allows us to prove a ≈φ φ(a) from (2) and its
mirror property. Finally, (b) is proved symmetrically. ◀

Now, consider 𝓅1,𝓅2,𝓆1,𝓆2, φ as in Proposition 29. If the 𝓆i’s are empty or singleton
trees, there is nothing to prove. Otherwise 𝓆i starts with a−

i _𝓆i
b+
i with a−

i initial. But
then [b+

i]≈ is the only singleton clone class in 𝓆i. As φ preserves clone classes, φ(b+
1) = b+

2 .
By Lemma 38, b1 ≈φ b2. Thus b1 ∼φ b2, so a1 ∼φ a2 and 𝓆1 ∼φ 𝓆2. This concludes the
proof of Proposition 29. Putting everything together, we obtain:

▶ Theorem 39. For 𝓅1,𝓅2 ∈ Aug(A) causal strategies s.t. ⦗|𝓅1|⦘ = ⦗|𝓅2|⦘, then 𝓅1 ∼= 𝓅2.

Proof. Consider 𝓆1 ∈ exp(𝓅1) a characteristic expansion. By hypothesis, there must be
𝓆2 ∈ exp(𝓅2) and φ : ⟬𝓆1⟭ ∼= ⟬𝓆2⟭; necessarily 𝓆2 is also a characteristic expansion of 𝓅2.
By Proposition 29, we have 𝓆1 ∼φ 𝓆2. By Proposition 34, we have 𝓅1 ∼= 𝓅2. ◀

Finally, Theorem 17 follows from Theorem 39, Proposition 24 and Lemma 22.
Theorem 17 only concerns total finite innocent strategies. In contrast, Theorem 39 requires

no totality assumption: totality comes in not in the injectivity argument, but in Proposition
24 linking standard and causal strategies. Without totality, expansions of σ̂ might not have
as many Opponent as Player moves, and so may not be linearizable via alternating plays.
Intuitively, in alternating plays Opponent may only explore converging parts of the strategy,
whereas in the causal setting Opponent is free to explore simultaneously many branches,
including divergences. Positional injectivity for partial finite innocent strategies may be
studied causally by restricting to +-covered expansions, i.e. with only Player maximal events.
But then we must also abandon −-obsessionality as Opponent moves leading to divergence
will not be played, breaking our proof (Lemma 36 fails) in a way for which we see no fix.

5 Beyond Total Finite Strategies

Finally, we show some subtleties and partial results on generalizations of Theorem 17.
First, positional injectivity fails in general. Consider the infinitary terms f : o → o → o ⊢

T1, T2, L,R : o recursively defined as T1 = f T2 R, T2 = f LT1, L = f L⊥ and R = f ⊥R in
an infinitary simply-typed λ-calculus with divergence ⊥. The corresponding strategies differ:
their causal representations appear in Figures 19 and 20, infinite trees represented via loops.

FSCD 2021

17:16 Positional Injectivity for Innocent Strategies

q−
❵���
q+
❵��� ✎ ##+q−
1
❛�

q−
2
❛�

q+

✹uu�
❵���

q+
❵���

q−
1
❛�

q−
2

✵ 44<

q−
2

✑ddl

q+
❵���
q−

1

✲ 33:

Figure 19 Jλfo→o→o. T1K.

q−
❵���
q+

✹uu�
❵���

q−
1
❴���

q−
2
❴���

q+
❵���

q+
❵��� ✎ ##+q−

1

✲ 33:

q−
1

✍bbj

q−
2
❴���

q+
❵���
q−

2

✑ddl

Figure 20 Jλfo→o→o. T2K.

q+

q−
1 . . .q−

1 q−
2 . . .q−

2

Figure 21 Bricks.

We consider positions reached by plays – or equivalently, by +-covered expansions of
Figures 19 and 20. In fact, both strategies admit all balanced positions on J(o → o → o) → oK,
i.e. with as many Opponent as Player moves. Ignoring the initial q−, a position is a multiset
of bricks as in Figure 21, with i ∈ N occurrences of q−

1 and j ∈ N of q−
2 . A brick with

i = j = 0 is a leaf. The position is balanced if it has as many Opponent as Player moves.
Now, any position can be realized in Jλfo→o→o. TiK by first placing bricks with occurrences

of both q−
1 and q−

2 greedily alongside the spine, shown in red in Figures 19 and 20. At
each step, we continue from only one of the copies opened, leaving others dangling. If this
gets stuck, apart from leaves we are left with only q−

1 ’s, or, only q−
2 ’s, but there is always a

matching non-spine infinite branch available. Finally, leaves can always be placed as their
number matches that of trailing negative moves by the balanced hypothesis.

We have ⦗|Jλfo→o→o. T1K|⦘ = ⦗|Jλfo→o→o. T2K|⦘ as both strategies can realize all balanced
positions on the arena Jo → o → oK, and exactly those: positional injectivity fails.

Positionality for finite innocent strategies remains open. We could only prove:

▶ Theorem 40. Let σ1, σ2 : A be finite innocent strategies with ⦗|σ1|⦘ = ⦗|σ2|⦘.
Then, σ1 and σ2 have the same P-views of maximal length.

For the proof (see Appendix B), we assume σ1 has a P-view s of maximal length n. We
perform an expansion of s where each Opponent branching at co-depth 2d+ 1 has arity d+ 1.
By a combinatorial argument on trees, the only way to reassemble its nodes exhaustively in
a tree with depth bounded by d is to rebuild exactly the same tree. Hence the tree is also
in exp(σ̂2), and s ∈ σ2. This steers us into conjecturing that positional injectivity holds for
partial finite innocent strategies, but our proof attempts have remained inconclusive.

6 Conclusion

Though innocent strategies in the Hyland-Ong sense are not positional, total finite innocent
strategies satisfy positional injectivity – however, the property fails in general.

Beyond its foundational value, we believe this result may be helpful in the game semantics
toolbox. Game semantics can be fiddly; in particular, proofs that two terms yield the same
strategy are challenging to write in a concise yet rigorous manner. This owes a lot to the
complexity of composition: proving that a play s is in JM NK involves constructing an
“interaction witness” obtained from plays in JMK and JNK plus an adequate “zipping” of the
two. Manipulations of plays with pointers are tricky and error-prone, and the link between
plays and terms is obfuscated by the multi-layered interpretation.

L. Blondeau-Patissier and P. Clairambault 17:17

In contrast, Theorem 17 lets us prove innocent strategies equal by comparing their
positions. Now, constructing a position of JMNK simply involves exhibiting matching
positions for JMK and JNK. Side-stepping the interpretation, this can be presented as typing
terms with positions or configurations – combining Section 2.5 and the link between relational
semantics and non-idempotent intersection type systems [11]. For instance, in this way, finite
definability, a basic result seldom presented in full formal details, boils down to typing the
defined term with the same positions as the original strategy.

References
1 Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for PCF.

Inf. Comput., 163(2):409–470, 2000. doi:10.1006/inco.2000.2930.
2 Samson Abramsky and Paul-André Melliès. Concurrent games and full completeness. In 14th

Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999, pages
431–442. IEEE Computer Society, 1999. doi:10.1109/LICS.1999.782638.

3 Pierre Boudes. Thick subtrees, games and experiments. In Pierre-Louis Curien, editor, Typed
Lambda Calculi and Applications, 9th International Conference, TLCA 2009, Brasilia, Brazil,
July 1-3, 2009. Proceedings, volume 5608 of Lecture Notes in Computer Science, pages 65–79.
Springer, 2009. doi:10.1007/978-3-642-02273-9_7.

4 Simon Castellan, Pierre Clairambault, Hugo Paquet, and Glynn Winskel. The concurrent
game semantics of probabilistic PCF. In Anuj Dawar and Erich Grädel, editors, Proceedings of
the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford,
UK, July 09-12, 2018, pages 215–224. ACM, 2018. doi:10.1145/3209108.3209187.

5 Simon Castellan, Pierre Clairambault, Silvain Rideau, and Glynn Winskel. Games and
strategies as event structures. Logical Methods in Computer Science, 13(3), 2017. doi:
10.23638/LMCS-13(3:35)2017.

6 Simon Castellan, Pierre Clairambault, and Glynn Winskel. Symmetry in concurrent games. In
Thomas A. Henzinger and Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL An-
nual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 -
18, 2014, pages 28:1–28:10. ACM, 2014. doi:10.1145/2603088.2603141.

7 Simon Castellan, Pierre Clairambault, and Glynn Winskel. The parallel intensionally fully
abstract games model of PCF. In 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 232–243. IEEE Computer Society,
2015. doi:10.1109/LICS.2015.31.

8 Pierre Clairambault. A tale of additives and concurrency in game semantics. To appear, 2021.
9 Pierre Clairambault and Marc de Visme. Full abstraction for the quantum lambda-calculus.

Proc. ACM Program. Lang., 4(POPL):63:1–63:28, 2020. doi:10.1145/3371131.
10 Daniel de Carvalho. The relational model is injective for multiplicative exponential linear

logic. In 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August 29
- September 1, 2016, Marseille, France, pages 41:1–41:19, 2016. doi:10.4230/LIPIcs.CSL.
2016.41.

11 Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection
types. Math. Struct. Comput. Sci., 28(7):1169–1203, 2018. doi:10.1017/S0960129516000396.

12 Thomas Ehrhard. The Scott model of linear logic is the extensional collapse of its relational
model. Theor. Comput. Sci., 424:20–45, 2012. doi:10.1016/j.tcs.2011.11.027.

13 Russell Harmer, Martin Hyland, and Paul-André Melliès. Categorical combinatorics for
innocent strategies. In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007),
10-12 July 2007, Wroclaw, Poland, Proceedings, pages 379–388. IEEE Computer Society, 2007.
doi:10.1109/LICS.2007.14.

14 Tom Hirschowitz and Damien Pous. Innocent strategies as presheaves and interactive equival-
ences for CCS. Sci. Ann. Comput. Sci., 22(1):147–199, 2012. doi:10.7561/SACS.2012.1.147.

FSCD 2021

https://doi.org/10.1006/inco.2000.2930
https://doi.org/10.1109/LICS.1999.782638
https://doi.org/10.1007/978-3-642-02273-9_7
https://doi.org/10.1145/3209108.3209187
https://doi.org/10.23638/LMCS-13(3:35)2017
https://doi.org/10.23638/LMCS-13(3:35)2017
https://doi.org/10.1145/2603088.2603141
https://doi.org/10.1109/LICS.2015.31
https://doi.org/10.1145/3371131
https://doi.org/10.4230/LIPIcs.CSL.2016.41
https://doi.org/10.4230/LIPIcs.CSL.2016.41
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1016/j.tcs.2011.11.027
https://doi.org/10.1109/LICS.2007.14
https://doi.org/10.7561/SACS.2012.1.147

17:18 Positional Injectivity for Innocent Strategies

15 J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III. Inf. Comput.,
163(2):285–408, 2000. doi:10.1006/inco.2000.2917.

16 Paul-André Melliès. Asynchronous games 2: The true concurrency of innocence. Theor.
Comput. Sci., 358(2-3):200–228, 2006. doi:10.1016/j.tcs.2006.01.016.

17 Takeshi Tsukada and C.-H. Luke Ong. Innocent strategies are sheaves over plays – deterministic,
non-deterministic and probabilistic innocence. CoRR, abs/1409.2764, 2014. arXiv:1409.2764.

18 Takeshi Tsukada and C.-H. Luke Ong. Nondeterminism in game semantics via sheaves. In
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015, pages 220–231. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.30.

19 Takeshi Tsukada and C.-H. Luke Ong. Plays as resource terms via non-idempotent intersection
types. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY,
USA, July 5-8, 2016, pages 237–246. ACM, 2016. doi:10.1145/2933575.2934553.

A Positional Injectivity: Proofs from Section 4

In the sequel, A is a fixed arena. For any augmentation 𝓆 ∈ Aug(A) and event a ∈ |𝓆|, we
define succ(a) := {b | a _𝓆 b} the set of immediate successors of a in ≤𝓆. We also define ↑ a
the set of descendants of a, i.e. ↑ a := {a′ | a ≤𝓆 a

′}.

A.1 Compositional Properties of Bisimulations (Section 4.3)
▶ Lemma 41. Consider 𝓆,𝓅 ∈ Aug(A) where 𝓅 is a causal strategy and 𝓆 ∈ exp(𝓅)
−-obsessional with φ : 𝓆 → 𝓅. Then a ∼Γ⟨a⟩ φ(a).

Proof. Direct by induction on a. ◀

▶ Lemma 42. Consider 𝓆,𝓅 ∈ Aug(A) with φ : 𝓆 ∼= 𝓅. Consider a ∼φ
Γ b for some Γ.

Then for any a′ ∈ ↑ a, there exists b′ ∈ ↑ b such that a′ ∼φ
Γ∪∆ b′ with ∆ a context.

Moreover, if a ∼φ
Γ′ b for a context Γ′, we also have a′ ∼φ

Γ′∪∆ b′.

Proof. The first part is immediate by Definition 28. Moreover, we can remark that ∆ is
exactly the negative moves between a and a′, paired with the negative moves between b and
b′ (straightforward by induction). Finally, we prove the last part by induction on the co-depth
of a (the maximal length k of a = a1 _𝓆 a2 _𝓆 . . . _𝓆 ak a causal chain in 𝓆). ◀

▶ Definition 43. Consider 𝓆,𝓅 ∈ Aug(A), φ : ⟬𝓆⟭ ∼= ⟬𝓅⟭, a ∈ |𝓆|, b ∈ |𝓅| with a ∼φ
Γ b for

some context Γ. We define Γa,b the minimal context for a ∼φ
Γ b as the restriction of Γ s.t.

c ∈ dom(Γa,b) ⇔

{
∃a′ ∈ ↑ a, just(a′) = c (a)
Γ(c) ̸= φ(c) (b)

for all c ∈ |𝓆|,and symmetrically the mirror condition applies to any d ∈ |𝓅|.

▶ Lemma 44. Consider 𝓆,𝓅 ∈ Aug(A) with φ : ⟬𝓆⟭ ∼= ⟬𝓅⟭. Consider a ∈ |𝓆|, b ∈ |𝓅| and
Γ, Γ′ two contexts such that a ∼φ

Γ b and a ∼φ
Γ′ b.

Then Γa,b = Γ′
a,b. Moreover, Γa,b is the minimal (for inclusion) context s.t. a ∼φ

Γa,b
b.

Proof. The equality comes from Lemma 42 and the definition of Γa,b and Γ′
a,b. By induction,

a ∼φ
Γa,b

b, since we can safely remove from dom(Γ) all c that are never “used”, i.e. such that
there exists no a′ ∈ ↑ a having c as pointer; and all c such that Γ(c) = φ(c), because then we
can use condition (c) of Definition 28 instead of condition (b). Finally, for any context Γ′′

such that a ∼φ
Γ′′ b, we have Γa,b = Γ′′

a,b ⊆ Γ′′, so Γa,b is minimal for inclusion. ◀

This lemma allows us to write the minimal context for a, b without mentioning Γ.

https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1016/j.tcs.2006.01.016
http://arxiv.org/abs/1409.2764
https://doi.org/10.1109/LICS.2015.30
https://doi.org/10.1145/2933575.2934553

L. Blondeau-Patissier and P. Clairambault 17:19

A.2 Clones (Section 4.4)
For any a, b events of an augmentation 𝓆, a ≈ b means a ≈id b.

▶ Lemma 45. Consider 𝓆,𝓅,𝓇 ∈ Aug(A) with φ : ⟬𝓆⟭ ∼= ⟬𝓅⟭ and ψ : ⟬𝓅⟭ ∼= ⟬𝓇⟭. For any
a ∈ |𝓆|, b ∈ |𝓅|, and c ∈ |𝓇| such that a ≈φ b and b ≈ψ c, we have a ≈ψ◦φ c.

Proof. Consider Γ1 and Γ2 the minimal contexts such that a ∼φ
Γ1

b and b ∼ψ
Γ2

c. If
cod(Γ1) = dom(Γ2), the result is immediate by Lemma 30. Otherwise, we complete them to:

Γ′
1 := Γ1 ∪ {(φ−1(e′), e′) | e′ ∈ dom(Γ2), e′ /∈ cod(Γ1)} ,

Γ′
2 := Γ2 ∪ {(e, ψ(e)) | e ∈ cod(Γ1), e /∈ dom(Γ2)} ,

two pointer-preserving contexts. Then, we can prove that a ∼ψ◦φ
Γ′

2◦Γ′
1
c, so a ≈ψ◦φ c. ◀

This covers transitivity for the clone relation, with other equivalence properties direct:

▶ Lemma 46. Consider 𝓆,𝓅,𝓇 ∈ Aug(A) augmentations, with φ : ⟬𝓆⟭ ∼= ⟬𝓅⟭ and ψ :
⟬𝓅⟭ ∼= ⟬𝓇⟭ two isomorphisms, and events a ∈ |𝓆|, b ∈ |𝓅|, c ∈ |𝓇|:

reflexivity: a ≈id a,
transitivity: if a ≈φ b and b ≈ψ c, then a ≈ψ◦φ c,
symmetry: if a ≈φ b then b ≈φ−1

a.

▶ Lemma 36. Consider 𝓆 a −-obsessional expansion of causal strategy 𝓅 on arena A.
Then, for all a−

1 , a
−
2 ∈ X ∈ Fork(𝓆), for all a−

1 _𝓆 b
+
1 and a−

2 _𝓆 b
+
2 , b1 ≈ b2.

Proof. First, we prove that b1 and b2 are bisimilar. Since 𝓆 ∈ exp(𝓅), there is φ : 𝓆 → 𝓅.
By Lemma 41, b1 ∼Γ⟨b1⟩ φ(b1) and b2 ∼Γ⟨b2⟩ φ(b2). By −-linearity of 𝓅, φ(a1) = φ(a2),
which implies φ(b1) = φ(b2) by determinism. So cod(Γ⟨b1⟩) = cod(Γ⟨b2⟩), and by Lemma 30,
b1 ∼Γ⟨b2⟩−1◦Γ⟨b1⟩ b2. Finally, we verify that Γ⟨b2⟩−1 ◦ Γ⟨b1⟩ preserves pointers. ◀

A.3 Positional Injectivity (Section 4.5)
In this section, we prove additional lemmas needed in the proof of Lemma 38.

▶ Lemma 47. Consider 𝓆 ∈ Aug(A) and a, b ∈ |𝓆| such that a ≈ b.
Then the minimal context for a and b is either empty or Γ : {c} ∼= {d} for some c, d.

Proof. Assume, seeking a contradiction, that the minimal context Γ has at least two distinct
elements c1, c2 ∈ dom(Γ). First, we can remark that since a ≈ b, there exists Γ′ a pointers-
preserving context such that a ∼Γ′ b, and since Γ ⊆ Γ′, Γ also preserves pointers.

By condition (a) of Definition 43, c1 ≤𝓆 a and c2 ≤𝓆 a. Therefore, c1 ≤𝓆 c2 or c2 ≤𝓆 c1 –
assume w.l.o.g. it is the former. By courtesy, just(c1) ≤𝓆 just(c2) as well. For the same reason,
Γ(c1) ≤𝓆 Γ(c2) or Γ(c2) ≤𝓆 Γ(c1). If it is the latter, this entails that just(Γ(c2)) ≤𝓆 just(Γ(c1))
by courtesy; i.e., since Γ preserves pointers, just(c2) ≤𝓆 just(c1). So just(c1) = just(c2), i.e.
pred(c1) = pred(c2) by courtesy. Because c1 ≤𝓆 c2 we have c1 = c2, contradiction.

So, Γ(c1) ≤𝓆 Γ(c2), and Γ(c1) ̸= Γ(c2) by hypothesis. By courtesy, Γ(c1) ≤𝓆 just(Γ(c2)).
Likewise, c1 ≤𝓆 c2 entails c1 ≤𝓆 just(c2). Moreover, Γ preserves pointers, so just(c2) =
just(Γ(c2)). Hence, we have both Γ(c1) ≤𝓆 just(c2) and c1 ≤𝓆 just(c2), so c1 and Γ(c1)
are comparable for ≤𝓆 since 𝓆 is a forest. But they are negative, so they have the same
antecedent by courtesy. This implies c1 = Γ(c1), contradicting (b) of Definition 43. ◀

FSCD 2021

17:20 Positional Injectivity for Innocent Strategies

just(ei,j)+
❴���
ei,j

��
a+

✲ssz ✒ $$,
bi,j

��

bk,l

��
c′
i,j c′

k,l

just(fi,j)+

✱rrz ✓ %%,
fi,j

&&

just(d′
k,l)

ww
φ(a)+

✱rrz ✔ &&-
φ(bi,j)

��

φ(bk,l)
��

d′
i,j d′

k,l

Figure 22 Justifiers in 𝓆 and 𝓅.

▶ Lemma 48. Consider 𝓆,𝓅 ∈ Aug(A), φ : ⟬𝓆⟭ ∼= ⟬𝓅⟭. Consider also a+ ∈ |𝓆| s.t.
succ(a) =

⋃
i∈I Gi, where I ⊆ N and for i ∈ I, Gi = {bi,1, . . . , bi,2i} ∈ Fork(𝓆) with ♯Gi = 2i.

Then we have a ≈φ φ(a), provided the two conditions hold:

if bi,j _𝓆 ci,j, then φ(bi,j) _𝓅 di,j and ci,j ≈φ di,j , (3)
if φ(bi,j) _𝓅 di,j, then bi,j _𝓆 ci,j and ci,j ≈φ di,j . (4)

Proof. For any i ∈ I, 1 ≤ j ≤ 2i, let Γi,j be the minimal context for bi,j and φ(bi,j). Such a
context exists since either bi,j has no successors, and by (4) neither does φ(bi,j), either bi,j
has only one (by determinism) and ci,j ≈φ di,j by (3). In both cases, bi,j ≈φ φ(bi,j).

We wish to take the union of all Γi,j as the context for a and φ(a), but this is only possible
if they are compatible. More precisely, we must ensure that for all e ∈ 𝓆, i, k ∈ I, 1 ≤ j ≤ 2i
and 1 ≤ l ≤ 2k, if there are c′

i,j ∈ ↑ bi,j and c′
k,l ∈ ↑ bk,l having both e as justifier, then their

matching d′
i,j ∈ ↑φ(bi,j) and d′

k,l ∈ ↑φ(bk,l) also have the same justifier. This can only be a
problem if e appears in dom(Γi,j) or in dom(Γk,l) as otherwise both justifiers are φ(e).

For all i, j, Γi,j has either one or zero element by Lemma 47. If all Γi,j are empty, we can
directly lift the clone relation to a. Otherwise, consider i, j s.t. Γi,j : {ei,j} ∼= {fi,j}. From
Definition 43, ei,j ∈ [bi,j]−𝓆 and fi,j ∈ [φ(bi,j)]−𝓅 . Actually we have fi,j ∈ [φ(a)]−𝓅 : indeed
fi,j ̸= φ(bi,j), since ei,j and fi,j have the same justifier through φ and the only e ∈ [bi,j]−𝓆
s.t. φ(just(e)) = just(φ(bi,j)) is bi,j , which contradicts Definition 43.

Now, assume that for some k, l, there exists c′
k,l ∈ ↑ bk,l s.t. just(c′

k,l) = ei,j . Since
bk,l ≈φ φ(bk,l), there is a matching d′

k,l ∈ ↑φ(bk,l) s.t. φ(just(ei,j)) = just(just(d′
k,l)). For

bi,j ∼φ
Γi,j

φ(bi,j) and bk,l ∼φ
Γk,l

φ(bk,l) to be compatible, we need just(d′
k,l) = fi,j . But since

Γi,j preserves pointers, φ(just(ei,j)) = just(fi,j). Putting both equalities together, we obtain
just(just(d′

k,l)) = just(fi,j), where just(d′
k,l) ∈ [d′

k,l]−𝓅 and fi,j ∈ [φ(a)]−𝓅 . But [φ(a)]−𝓅 ⊆
[d′
k,l]−𝓅 , which is a fully ordered set for ≤𝓅, so just(d′

k,l) and fi,j are comparable. Moreover,
they are negative, so by courtesy just(just(d′

k,l)) = just(fi,j) iff pred(just(d′
k,l)) = pred(fi,j),

where pred is the predecessor for ≤𝓅. Hence, just(d′
k,l) = fi,j (see Figure 22, where _

represents _𝓆, · · · represents _⟬𝓆⟭, and → represents ≤𝓆 (and the same applies for 𝓅)).
So all contexts Γi,j are compatible. Writing Γ = ∪i,jΓi,j it follows that bi,j ∼φ

Γ φ(bi,j) via
a straightforward argument, which entails that a ∼φ

Γ φ(a) by two steps of the bisimulation
game. This implies a ≈φ φ(a) since all Γi,j preserve pointers. ◀

B Beyond Total Finite Strategies: Proofs from Section 5

We now give the proof of Theorem 40. Consider σ1, σ2 : A finite (but not necessarily total)
innocent strategies. If they are empty, there is nothing to prove. Otherwise, let 2n+ 2 be
the length of s the longest P-view among them. W.l.o.g., assume that s ∈ ⌜⌜σ1⌝⌝. Consider
𝓅1 the sub-augmentation of σ̂1 restricted to prefixes of s – it is a linear augmentation of
length 2n+ 2, as shown on the right hand side of Figure 23. We build the wide expansion

L. Blondeau-Patissier and P. Clairambault 17:21

q−
0
❴���

q+
0

✵tt|
❵��� ✓ %%,

n copies q−
1

❴���

. . . q−
1
❴���

. . . q−
1

❴���q+
1

✵tt|
❵��� ✓ %%,

n− 1 copies q−
2
❴���

. . . q−
2
❴���

. . . q−
2
❴���. . .❴���

q+
n−1
❛�

1 copy q−
n
❴���

q+
n

∈ exp

q−
0
❴���

q+
0
❵���
q−

1
❴���

q+
1
❵���
q−

2
❴���. . .❴���

q+
n−1
❛�
q−
n
❴���

q+
n

Figure 23 Wide expansion of a P-view. Figure 24 Rewriting trees.

𝓆1 ∈ exp(𝓅1) as shown in the left hand side of Figure 23: it is the unique −-obsessional and
+-obsessional expansion of 𝓅1 such that each fork of co-depth 2k has cardinality k (except
for the initial move). So for any 1 ≤ k ≤ n, they are n!

(n−k)! copies of q+
k .

As ⦗|σ1|⦘ = ⦗|σ2|⦘, Proposition 24 entails ⦗|σ̂1|⦘ = ⦗|σ̂2|⦘. So there is 𝓆2 ∈ exp(σ̂2) along
with some φ : ⟬𝓆1⟭ ∼= ⟬𝓆2⟭. By abuse of notation, we keep referring to events of |𝓆2| with
the same naming convention as in Figure 23, this is justified by φ. Then 𝓆2 is a tree starting
with q−

0 . By courtesy it cannot break causal links from positives to negatives; so we may
regard it as a tree whose nodes are the q+

k ’s. For each 0 ≤ k ≤ n, it has n!/k! nodes of arity
k (arity means the number of children in the tree) and by hypothesis its depth is bounded
by n+ 1. The essence of the situation is captured by the following simplified setting:

Fix n ∈ N. Simple trees are finite trees made of nodes k of arity k for 0 ≤ k ≤ n. We
set T0 = 0 , and for k > 0, Tk is the tree with root k and k copies of Tk−1 as children. If t
is a simple tree, its size ♯t is its number of nodes, and its depth is the maximal number of
nodes reached in a path. For instance, the depth of Tk is k+1 and its size is ♯Tk = k!

∑k
i=0

1
i! .

Now, let us consider the set Trees(n) of simple trees of depth ≤ n+ 1, and having, for
2 ≤ k ≤ n, n!

k! nodes k , and arbitrarily many nodes 1 and 0 . We prove:

▶ Lemma 49. Let t ∈ Trees(n) of maximal size. Then, t = Tn.

Proof. Seeking a contradiction, assume t is distinct from Tn. Consider a minimal node where
they differ, i.e. closest to the root – say t has some p at the row corresponding to k ’s in
Tn. If k = 0 then p > 0 and this contradicts that the depth of t is less than n. So, k ≥ 1.
If p > k, then p ≥ 2. But by minimality, t is the same as Tn for all rows closer to the root,
so all p for p > k are exhausted. Hence, p < k. If k = 1 and p = 0, then we may replace
p with T1, yielding t′ ∈ Trees(n) of size strictly greater than ♯t, contradicting maximality.

Otherwise, k ≥ 2. Then the number of nodes k is fixed, there are fewer of those on this row
as for Tn, and they cannot occur on rows closer to the root. Therefore, there is an occurrence
of k strictly deeper in t. We then perform the transformation as in Figure 24. This yields
t′ ∈ Trees(n). But ♯t′ > ♯t, contradicting the maximality of t. ◀

Now, from 𝓆2 we extract a simple tree t(𝓆2) ∈ Trees(n) as follows. For each 0 ≤ k ≤ n,
to each q+

n−k we associate a node k , with edges as in 𝓆2. Because all P-views in σ2 have
length lesser or equal to 2n+ 2 and 𝓆2 ∈ exp(σ̂2), t(𝓆2) has depth ≤ n+ 1. The constraints
on the number of each node are ensured by the isomorphism φ : ⟬𝓆1⟭ ∼= ⟬𝓆2⟭. Therefore
t(𝓆2) ∈ Trees(n), and by Lemma 49, t(𝓆2) = Tn.

FSCD 2021

17:22 Positional Injectivity for Innocent Strategies

This induces directly an isomorphism ψ between (𝓆1,≤𝓆1) and (𝓆2,≤𝓆2). We must still
check that ψ preserves _⟬𝓆1⟭, i.e. justification pointers. Assume q−

j _⟬𝓆1⟭ q+
i . Then, q+

i

has arity n− i, and just(just(q+
i)) = q+

j of arity n− j. But then, by construction, it follows
that for any move a+ ∈ |𝓆1| of arity n− i, just(just(a)) has arity n− j. This is transported
by the isomorphism φ, so this property also holds for 𝓆2. Now, consider ψ(q+

i) ∈ |𝓆2|. Its
justifier is some b− ∈ |𝓆2| such that just(b−) has arity n− j. But as arity is preserved by
ψ, there is only one move with this property in the causal history of ψ(q+

i), namely ψ(q−
j).

So, ψ preserves pointers. It also preserves the image in the arena: by construction of 𝓆1,
all positive moves with the same arity have the same image, and all negative moves whose
justifiers have the same arity also have the same image. Hence, the image only depends on
the arity, which is a property of ⟬𝓆1⟭; and since ⟬𝓆1⟭ and ⟬𝓆2⟭ are isomorphic, the same
holds for 𝓆2. Since ψ preserves arity and justifiers, it also preserves the image in the arena.

By construction, maximal branches of 𝓆1 have for image in the arena the chain of prefixes
of s; by the iso it is also true for maximal branches of 𝓆2. Since 𝓆2 ∈ exp(σ̂2), s ∈ ⌜⌜σ̂2⌝⌝.

Synthetic Undecidability of MSELL via
FRACTRAN Mechanised in Coq
Dominique Larchey-Wendling #

Université de Lorraine, CNRS, LORIA, Vandœuvre-lès-Nancy, France

Abstract
We present an alternate undecidability proof for entailment in (intuitionistic) multiplicative sub-
exponential linear logic (MSELL). We contribute the result and its mechanised proof to the Coq
library of synthetic undecidability. The result crucially relies on the undecidability of the halting
problem for two counters Minsky machines, which we also hand out to the library. As a seed of
undecidability, we start from FRACTRAN halting which we (many-one) reduce to Minsky machines
termination by implementing Euclidean division using two counters only. We then give an alternate
presentation of those two counters machines as sequent rules, where computation is performed by
proof-search, and halting reduced to provability. We use this system called non-deterministic two
counters Minsky machines to describe and compare both the legacy reduction to linear logic, and
the more recent reduction to MSELL. In contrast with that former MSELL undecidability proof, our
correctness argument for the reduction uses trivial phase semantics in place of a focused calculus.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Linear logic; Theory of computation → Type theory

Keywords and phrases Undecidability, computability theory, many-one reduction, Minsky machines,
Fractran, sub-exponential linear logic, Coq

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.18

Supplementary Material Software (Source Code):
https://github.com/uds-psl/coq-library-undecidability/releases/tag/FSCD-2021

archived at swh:1:rev:4115398f10c42a41833036f8c4500f24233cc9a7

Funding Dominique Larchey-Wendling: partially supported by the TICAMORE project (ANR grant
16-CE91-0002).

1 Introduction

In the late 80s, Lincoln et al. [17] gave a first proof of the undecidability of propositional linear
logic (LL) via a many-one reduction from “and-branching two-counter machines without
zero-test,” a variant of Minsky machines extended with a fork instruction. The ability of LL
to simulate the increment and decrement operations characteristic of Petri net operations
was spotted very early and lead to paradigmatically characterise LL as a logic for counting
resources. Critically, the exponential modality ! can be exploited to allow unbounded reuse
of some specific resources like (Petri net) transitions or (Minsky machines) instructions.

To establish undecidability, one needed of course to go beyond Petri nets because those
have a decidable reachability problem, a major result from the early 80s with a very involved
proof still actively revisited nowadays [18, 15, 4, 16, 5]. As opposed to Minsky machines,
Petri nets are not able to perform zero tests combined with a jump. Hence, the main idea of
the reduction was to use forking to separate comparison with zero from jumping. In there,
the additive conjunction of LL plays a central role:

Σ ⊢ α = 0 Σ ⊢ jump

Σ ⊢ α = 0 & jump

© Dominique Larchey-Wendling;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 18; pp. 18:1–18:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dominique.larchey-wendling@loria.fr
https://orcid.org/0000-0001-9860-7203
https://doi.org/10.4230/LIPIcs.FSCD.2021.18
https://github.com/uds-psl/coq-library-undecidability/releases/tag/FSCD-2021
https://github.com/uds-psl/coq-library-undecidability/releases/tag/FSCD-2021
https://archive.softwareheritage.org/swh:1:rev:4115398f10c42a41833036f8c4500f24233cc9a7;origin=https://github.com/uds-psl/coq-library-undecidability;visit=swh:1:snp:ee0a960272123425664539ce2e47e3bfeca6b43c
https://ticamore.logic.at/
http://www.agence-nationale-recherche.fr/?Projet=ANR-16-CE91-0002
http://www.agence-nationale-recherche.fr/?Projet=ANR-16-CE91-0002
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Synthetic Undecidability of MSELL via FRACTRAN Mechanised in Coq

Indeed this right introduction rule duplicates the context Σ in the left and right sub-proofs
which allows to delegate checking for emptiness in the left branch, and jumping in the right
branch, the requirement of the two premises ensuring the correctness of the combination.

The same idea was then exploited to establish the undecidability of smaller fragments of
LL [10, 11, 13]. In our own work [8], we gave the first mechanisation of the undecidability of
the elementary fragment of LL in Coq, and hence ILL, based on this forking idea as well.

The multiplicative and exponential fragment (MELL) of linear logic lacks additive connect-
ives, and is thus unable to duplicate the context. Arguably, the question of its decidability
is the most important open conjecture (see e.g. [14]) in the context of LL, even with some
claimed proof of decidability [1], later refuted [20]. The recent encoding of two counters
Minsky machines in a fragment of LL lacking additives opened a new logical perspective on
the MELL question [2]. Indeed, at the cost of a more complex modal structure, forking with
& can be replaced with a constraint on modalities in the promotion rule. This extension of
MELL is called multiplicative sub-exponential linear logic (MSELL).

In this paper, we mechanise this reduction from two counters Minsky machines to MSELL,
following the encoding of [2]. However, we proceed in the intuitionistic version of the logic
(two sided sequents with exactly one conclusion formula) that we call IMSELL. That fragment
only involves the linear implication ⊸ and the modalities !m with m ∈ Λ = {a, b, ∞}, so
it is short to describe. It is also convenient for comparing with our previous encoding in
(elementary) intuitionistic LL [13, 8]. Schematically, we describe and mechanise the following
many-one reduction chain, explained below:

FRACTRANreg ⪯ MMA02 ⪯ MMnd ⪯ IMSELLΛ

Our work is based on and contributes to the Coq library of undecidability proofs; see [9]
for a quick overview. As opposed to the legacy LL argument of forking, which can cope
with Minsky machines using arbitrary many counters, the MSELL and IMSELL reductions
rely on two counters machines in an essential way. Hence, we first had to implement the
undecidability of the “halting on the zero state” problem for two counters Minsky machines,
that we denote MMA02; see Section 3. To establish this, we could follow the legacy reduction
from many counters to just two by Minsky [19], that uses a Gödel coding of lists of natural
numbers as essential trick. Following [12], we profit from the FRACTRAN language [3] that
adequately abstracts away the Gödel coding phase, hence we establish the undecidability
of MMA02 by reducing from (regular) FRACTRAN halting instead, mainly by mechanising
Euclidean division with two counters only.

In Section 4, we provide a sequent calculus style presentation of MMA02, i.e. the instance
(M, x, y) of MMA02 is viewed as a sequent ΣM //n x ⊕ y ⊢ 1, and the Minsky machine M
starting at PC value 1 with register values (x, y) halts on the zero state if and only if the
sequent ΣM //n x ⊕ y ⊢ 1 has a derivation. We call this system and the associated problem
non-deterministic two counters Minsky machines, denoted MMnd. As MMnd is essentially a
specialised proof theory for Minsky machines, reducing from it to logical entailment problems
mainly consists in transformations of derivations. Hence Section 5, targeting IMSELL, can
be understood from a proof theoretic perspective only. In there, we gives details of the
reduction of two counters halting, explaining how the legacy fork trick for ILL is replaced
by the modal constraints in the promotion rule of IMSELL, following [2]. Additionally, our
proof of correctness of the reduction differs significantly: the former proof relies on the
completeness of focused proof-search; we instead generalise our semantic argument [8], i.e.
we prove and use the soundness of trivial phase semantics for IMSELL.

https://github.com/uds-psl/coq-library-undecidability

D. Larchey-Wendling 18:3

Our contributions in this work are the following. First, via a proof theoretic presentation
of Minsky machines, a comparison of their encoding in ILL and in IMSELL, explaining
precisely how and where forking is replaced with modalities. Then, a novel completeness
proof of the IMSELL reduction based on the soundness of trivial phase semantics. On the
implementation side, we provide the mechanized proof of the undecidability of two counters
Minsky machines (with two different presentations), and of IMSELL. The Coq 8.13 code is
available at

https://github.com/uds-psl/coq-library-undecidability/tree/FSCD-2021

and (sub-)section titles generally provide hyperlinks to the relevant source code. Our code
extends the existing library with about 1800 loc, 1200 of which concern the reductions from
FRACTRAN to MMnd, and 600 more for the MMnd to IMSELL reduction.

The paper describes the major steps of the implementation, in the language of type
theory, but should be readable with only basic knowledge of it. We denote P (resp. B and
N) the type of propositions (resp. Booleans and natural numbers). We write LX for the
type of lists over X, where [] represents the empty list, x :: l for the cons operation, l ++ l′

for the concatenation of two lists, and |l| : N for the length of l. We write Xn for vectors v⃗

over type X with length n : N, and Fn for the finite type with exactly n elements. Notations
for lists are overloaded for vectors. Moreover, for p : Fn and x : X, we write v⃗p for the
p-th component of v⃗ : Xn and v⃗ {x/p} when v⃗ is updated with x at component p. The
(non-dependent) sum A + B represents a computable/Boolean choice between an inhabitant
of A or an inhabitant of B. In the case where A and B are propositions (i.e. of type P), the
sum A + B : Type is stronger than the disjunction A ∨ B : P, because one cannot computably
determine which of A or B holds in the later case. We also use the type-theoretic dependent
sum Σx:AB(x), denoted {x : A | B x} in Coq,1 inhabited by (Coq computable) values x : A

paired with a proof of B x.
The framework of synthetic computability [7] is based on the notion of many-one reduction.

If P : X → P is a predicate (on X) and Q : Y → P is a predicate, we say that P many-one
reduces to Q and write P ⪯ Q if there is a Coq function f : X → Y s.t. ∀x : X, P x ↔ Q(f x),
i.e. a many-one reduction from P to Q. Because we work in constructive (axiom-free) Coq,
all definable functions are computable and thus the requirement of the computability of the
reduction function f above can be discarded. If P ⪯ Q and P is undecidable then so is Q.

2 The FRACTRAN seed (files FRACTRAN.v and fractran_utils.v)

The FRACTRAN model of computation is very simple to describe. It was introduced by
Conway [3] but its main idea, the Gödel coding of a list [x1; x2; . . . ; xn] of natural numbers
as the number px1

1 px2
2 · · · pxn

n , predates the introduction of FRACTRAN by several decades.
In the FRACTRAN formalism, programs are lists of formal fractions, i.e. terms Q of type

L (N × N).2 The state of a program is modelled as a natural number x : N. A fraction p/q is
executable at state x if x·p/q is a natural number (i.e. not a proper fraction) and in that case
this is the new state. To allow FRACTRAN to discriminate, and b.t.w. turn it into a Turing
complete model of computation, the first executable fraction in the list has to be picked up
at each step of computation. The program Q stops when no fraction in the list is executable.

1 or simply {x | B x} when the type of x is guessable.
2 For the moment, we can ignore the case of degenerate fractions like p/0.

FSCD 2021

https://github.com/uds-psl/coq-library-undecidability/tree/FSCD-2021
https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/FRACTRAN/FRACTRAN.v
https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/FRACTRAN/FRACTRAN/fractran_utils.v

18:4 Synthetic Undecidability of MSELL via FRACTRAN Mechanised in Coq

Formally this prose translates in a straightforward inductive definition, not even involving
the algebraic notion of fraction, and characterized by the two inductive rules below:

qy = px

p/q :: Q //F x ≻ y

q ∤ px Q //F x ≻ y

p/q :: Q //F x ≻ y

where u ∤ v means u does not divide v, and Q //F x ≻ y reads as the FRACTRAN program Q

transforms state x into state y in one step of computation. The computation is terminated
at x, denoted Q //F x ⊁ ⋆, when there is no possibility to perform one step from x, and
termination from x, denoted by Q //F x ↓, means there is exists a sequence of steps starting
at state x at leading to the terminated state y. Formally, this gives us:

Q //F x ⊁ ⋆ := ∀y, ¬(Q //F x ≻ y) and Q //F x ↓ := ∃y, (Q //F x ≻∗ y ∧ Q //F y ⊁ ⋆)

There are some obvious quick remarks to make here: the empty program Q = [] is
terminated in any state; unless Q = [], the state 0 is not terminated. The step relation
is strongly decidable in the sense that one can discriminate between non-terminated and
terminated states, and in the former case, computationally find a next state, expressed below
using (Coq) dependent types:

▶ Proposition 1. For any FRACTRAN program we have ∀x, {y | Q //F x ≻ y}+(Q //F x ⊁ ⋆).

Proof. By structural induction on the list Q combined with Euclidean division. ◀

The dependent sum {y | Q //F x ≻ y} represents a (computable) state y together with a
proof that y is next after x. The proposition Q //F x ⊁ ⋆ is for a proof that x is a terminated
state. Finally, the outer sum + represents a computable choice between the two alternatives.

Non-regular fractions like 0/0 can make the computation non-deterministic; and non-
proper fractions like 1/1 or 6/2 are always executable, implying that programs including such
fractions have no terminating state. Non-deterministic step relations involves at least two
different notions of termination, weak termination as defined above, and strong termination,
when no infinite sequence of steps from x can exist. For our use of FRACTRAN, it does not
matter because we only consider regular FRACTRAN programs where formal fractions p/0
are disallowed. Regular FRACTRAN is a universal model of computation, up to a Gödel
encoding of natural numbers [3].3

▶ Definition 2. A FRACTRANreg instance is a pair composed of a list of regular formal
fractions and a natural number, i.e. of type

{
(Q, x) : L (N × N) × N | ∀p, p/0 ̸∈ Q

}
, and the

question asked is whether Q //F x ↓ holds or not.

Notice the use of a dependent sum in the type of instances where the predicate ∀p, p/0 ̸∈ Q

acts as a guard against non-regular instances.

▶ Theorem 3 (mechanized in [12]). There is a many-one reduction from the Halting problem
for single tape Turing machines to termination of regular FRACTRAN programs, i.e. Halt ⪯
FRACTRANreg, and thus FRACTRANreg is undecidable.

As a consequence, we can safely use FRACTRANreg as our seed of undecidability for the
chain of many-one reductions described in this paper.

3 However, e.g. the function n 7→ 0 cannot be directly represented by a FRACTRAN program where n
would be the starting state leading, after finitely many steps of computation, to the 0 terminated state.

https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/FRACTRAN/FRACTRAN_undec.v

D. Larchey-Wendling 18:5

3 From FRACTRAN to two registers alternate Minsky machines

3.1 Alternate Minsky machines (files MM.v and mma_defs.v)

We describe alternate n counters (or registers) Minsky machines, where states are described
as (i, v⃗) : N × Nn. The number i : N is the current program counter (PC) value and the
vector v⃗ : Nn describes the n current values of the registers. When convenient, we also denote
states as st , st1... Instructions consist of either incrementing INCa x a register by one, or
decrementing DECa x j a register by one. Notice that when the register values 0, it is not
possible to decrement it. So a conditional jump at j helps at discriminating between the
zero and non-zero cases. Unless there is a conditional jump, the default behaviour after the
register is updated is to jump to the next instruction at PC + 1. In contrast with [8, 12]
where the DEC x j instruction jumps at j when v⃗x is empty, here in DECa x j, the jump occurs
when decrementing is possible, and this is the reason we call these machines alternate and
suffix instructions with an “a” just as a reminder for this alternate semantics. Hence a single
(atomic) step of computation is described by the following relation

INCa x //a (i, v⃗) ≻
(
1+i, v⃗{(1+u)/x}

)
when v⃗x = u

DECa x j //a (i, v⃗) ≻
(
j, v⃗{u/x}

)
when v⃗x = 1+u

DECa x j //a (i, v⃗) ≻ (1+i, v⃗) when v⃗x = 0

where σ //a (i1, v⃗1) ≻ (i2, v⃗2) reads as the MMAn instruction σ at PC value i1 transforms the
state (i1, v⃗1) into the state (i2, v⃗2). Notice that this alternate semantics allows to implement
a universal jump without needing an empty register, which will be critical when we will need
to limit the number of registers to n = 2.

▶ Proposition 4. The step relation for alternate Minsky machines is deterministic and total:
1. for any states st , st1 and st2, if σ //a st ≻ st1 and σ //a st ≻ st2 then st1 = st2;
2. for any state (i1, v⃗1), one can compute a state (i2, v⃗2) such that σ //a (i1, v⃗1) ≻ (i2, v⃗2).

This means that starting from state (i1, v⃗1), the instruction σ at PC value i1 (provided
there is one) changes the state in exactly one possible way, and the new state (i2, v⃗2) is
Coq-computable from the initial state (i1, v⃗1). So the only way for such programs to terminate
is to jump to a PC value which holds no instruction.

A program is pair (i, P) : N × LMMAn composed of the PC value of its first instruction
and the sequence P of consecutive instructions of which is it composed. Informally, the
program (i, [σ0; . . . ; σm−1]) would be read as e.g. i : σ0; 1+i : σ1; . . . ; m−1+i : σm−1 using
labelled instructions. We define the k-steps relation for a program (i, P) inductively with

(i, P) //a st ≻0 st

i1 = |L| + i P = L ++ σ :: R σ //a (i1, v⃗1) ≻ st2 (i, P) //a st2 ≻k st3

(i, P) //a (i1, v⃗1) ≻1+k st3

where the constraints i1 = |L|+ i and P = L++σ ::R impose that the instruction at PC value
i1 of (i, P) is σ. From its structure as lists of instructions, there is at most one instruction
at a given PC value and thus, the k-steps relation is also deterministic. However, it can be
non-total if a jump outside of the interval [i, |P | − 1 + i] occurs, the lack of an instruction
blocking the computation. We write out j (i, P) := j < i ∨ |P | + i ≤ j when there is no
instruction at j in (i, P), and because of Proposition 4 (totality), blocked states are exactly
those outside of the code, i.e. out i1 (i, P) ↔ ∀st2, ¬ (i, P) //a (i1, v⃗1) ≻1 st2.

FSCD 2021

https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/MinskyMachines/MM.v
https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/MinskyMachines/MMA/mma_defs.v

18:6 Synthetic Undecidability of MSELL via FRACTRAN Mechanised in Coq

We define the predicates of computation, of progress, of output and of termination as:

(i, P) //a st1 ≻∗ st2 := ∃k, (i, P) //a st1 ≻k st2 (computation)
(i, P) //a st1 ≻+ st2 := ∃k > 0, (i, P) //a st1 ≻k st2 (progress)

(i, P) //a st1 ⇝ (i2, v⃗2) := (i, P) //a st1 ≻∗ (i2, v⃗2) ∧ out i2 (i, P) (output)
(i, P) //a st1 ↓ := ∃st2, (i, P) //a st1 ⇝ st2 (termination)

output meaning that we have computed until we reach a state blocking the computation.

▶ Definition 5. The problems MMA2 and MMA02 have the same instances: a pair (P, v⃗)
where P is a list of MMA2 instructions (starting at PC value 1) and the vector v⃗ : N2 repres-
ents the initial values of the two registers. MMA2 asks for termination, i.e. (1, P) //a (1, v⃗) ↓.
MMA02 asks for termination on the zero state, i.e. (1, P) //a (1, v⃗)⇝ (0, [0; 0]).

We mention that there is substantial machinery for (alternate) Minsky machines, and
more generally PC based state machines, in the Coq library of undecidable problem initially
described in [8]. These tools enable modular reasoning in those models of computation.

3.2 A basic MMAn library up to Euclidean division (file mma_utils.v)
We specify, implement and verify a small library to compute some basic operations with
MMAn. For this section, n : N is a fixed number of registers but all the below sub-programs
involve at most two registers. In the coming statements, the vector v⃗ : Nn is implicitly
universally quantified over. The names i, j, p, q : N range over PC values, k : N over natural
number constants, and the names x, t, s, d : Fn over registers indices.

Let us start with the easy simulations of an unconditional jump, the nullification of
register x and the operation that adds k units to register x.

▶ Proposition 6. For i, j : N and x : Fn we have (i, JUMPa j x) //a (i, v⃗) ≻+ (j, v⃗) where
JUMPa j x := [INCa x; DECa x j].

▶ Proposition 7. For x : Fn and i : N, we have (i, NULLa x i) //a (i, v⃗) ≻+ (1 + i, v⃗{0/x})
where NULLa x i := [DECa x i].

▶ Proposition 8. For i, k : N, x : Fn, we have (i, INCSa x k) //a (i, v⃗) ≻∗ (k + i, v⃗{(k + v⃗x)/x})
where INCSa x k := [INCa x; . . . ; INCa x] is of length |INCSa x k| = k.

Then we simulate test for emptiness of register x, jumping to PC value p when x is empty,
or else to the end of the sub-program otherwise. Registers are restored to their initial values
when the sub-program is finished (assuming p points outside of its code).

▶ Proposition 9. For x : Fn and p, i : N we have (i, EMPTYa x p i) //a (i, v⃗) ≻+ (j, v⃗) where
EMPTYa x p i := [DECa x (3 + i); JUMPa p x; INCa x], and j := p in case v⃗x = 0, or else j := 4 + i

in case v⃗x ̸= 0.

Notice that this sub-program is of length |EMPTYa x p i| = 4 (despite looking 3), because
we abuse the list notation [. . . ; . . . ; . . .] by allowing dots to be not only single instructions
but also lists of instructions such as JUMPa p x. Hence, EMPTYa x p i is formally defined as
DECa x (3 + i) :: JUMPa p x ++ INCa x :: [] but we choose the friendly display for readability.

We now simulate the transfer of the contents of register s (for source) to d (for destination).

▶ Proposition 10. For s ̸= d : Fn and i : N we have (i, TRANSFERa s d i) //a (i, v⃗) ≻+ (3 + i, w⃗)
where TRANSFERa s d i := [INCa d; DECa s i; DECa d (3 + i)] and w⃗ := v⃗{0/s}{(v⃗s + v⃗d)/d}.

https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/MinskyMachines/MMA/mma_utils.v

D. Larchey-Wendling 18:7

We simulate multiplication of a register by a constant. The idea is similar to transfer but
instead of transferring one for one, when one unit is removed from s, k units are added to d.

▶ Proposition 11. For s ̸= d : Fn, k, i : N we have (i, MULT_CSTa s d k i) //a (i, v⃗) ≻+ (j, w⃗)
where MULT_CSTa s d k i := [DECa s (3 + i); JUMPa (5 + k + i) s; INCSa d k; JUMPa i s], j := 5 +
k + i, w⃗ := v⃗{0/s}{(kv⃗s + v⃗d)/d}, and |MULT_CSTa s d k i| = 5 + k.

We simulate the minus k operation (with overflow management), jumping to PC value p

when k units can be removed from register x, or else to PC value q when register x contains
less than k units (overflow).

▶ Proposition 12. For p, q, k, i : N and x : Fn, we define

DECSa x p q k i := [DECa x (3 + i); JUMPa q x; . . . ; DECa x (3k + i); JUMPa q x; JUMPa p x]

where the pattern DECa x (3u + i); JUMPa q x is repeated for u = 1, . . . , k.
Depending on the comparison between v⃗x and k, we have the following:
if v⃗x < k then (i, DECSa x p q k i) //a (i, v⃗) ≻+ (q, v⃗{0/x});
if v⃗x ≥ k then (i, DECSa x p q k i) //a (i, v⃗) ≻+ (p, v⃗{v⃗x − k/x}).

Using an extra temporary register t, we implement a non-destructive minus k operation
(with overflow management).

▶ Proposition 13. For x ̸= t : Fn and p, q, k, i : N, we define

DECS_COPYa x t p q k i :=

 DECa x (4 − 1 + i); JUMPa q x; INCa t;
. . .

DECa x (4k − 1 + i); JUMPa q x; INCa t;
JUMPa p x

where the pattern DECa x (4u − 1 + i); JUMPa q x; INCa t is repeated for u = 1, . . . , k.

Depending on the comparison between v⃗x and k, we have the following:
if v⃗x < k then (i, DECS_COPYa x t p q k i) //a (i, v⃗) ≻+ (q, v⃗{0/x}{(v⃗x + v⃗t)/t});
if v⃗x ≥ k then (i, DECS_COPYa x t p q k i) //a (i, v⃗) ≻+ (p, v⃗{(v⃗x − k)/x}{(k + v⃗t)/t}).

The length is |DECS_COPYa x t p q k i| = 2 + 4k.

Notice that the initial value of t has to be known if one wants to recover the initial
value of x, e.g. if the initial value of t is 0 and x contains less than k units, then once the
computation is finished, t contains a copy of the initial value of x.

We implement a non-destructive computation of a divisibility test of register x by a
constant k > 0, using a spare register t to preserve the initial value of x.

▶ Proposition 14. For x, t : Fn and p, q, k, i : N, we define

MOD_CSTa x t p q k i := [EMPTYa x p i; DECS_COPYa x t i q k (4 + i)]

and we check the identity |MOD_CSTa x t p q k i| = 6 + 4k. Assuming x ̸= t and k > 0, we have
(i, MOD_CSTa x t p q k i) //a (i, v⃗) ≻+ (j, v⃗{0/s}{(v⃗x + v⃗t)/t}) where j := p when k divides v⃗x,
and j := q otherwise.

We now implement division by a constant k > 0. It will only work when the contents of
the input register s is a multiple of k and the quotient is then stored in d.

▶ Proposition 15. For s, d : Fn and k, i : N, we define

DIV_CSTa s d k i := [DECSa s (2 + 3k + i) (5 + 3k + i) k i; INCa d; JUMPa i s]

and we check the identity |DIV_CSTa s d k i| = 5 + 3k. Assuming s ≠ d, k > 0 and v⃗s = ak,
we have (i, DIV_CSTa s d k i) //a (i, v⃗) ≻+ (5 + 3k + i, v⃗{0/s}{(a + v⃗d)/d}).

FSCD 2021

18:8 Synthetic Undecidability of MSELL via FRACTRAN Mechanised in Coq

3.3 Compiling regular FRACTRAN programs (file fractran_mma.v)
We are now in position to compile regular FRACTRAN programs (with no p/0 fractions).
We start with a sub-program for simulating the FRACTRAN step relation for one regular
fraction p/q then we will chain those sub-programs.

We fix n := 2, and s := 0 : F2 and d := 1 : F2 are the two available registers for two
counters alternate Minsky machines. Let use assume a regular fraction, i.e. p, q : N with
q ̸= 0, and i, j : N where i the starting PC value of the sub-program.

To help the readability of the following code, we decorate it with relevant labels (PC
values), although those are not formally present in the mechanisation:

(i, FRAC_ONEa p q i j) :=

i0: MULT_CSTa s d p i0;
i1: MOD_CSTa d s i2 i5 q i1;
i2: DIV_CSTa s d q i2;
i3: TRANSFERa d s i3;
i4: JUMPa j d;
i5: DIV_CSTa s d p i5;
i6: TRANSFERa d s i6

i7:

where

i0 := i,

i1 := 5 + p + i0,

i2 := 6 + 4q + i1,

i3 := 5 + 3q + i2,

i4 := 3 + i3,

i5 := 2 + i4,

i6 := 5 + 3p + i5,

i7 := 3 + i6

▶ Proposition 16. |FRAC_ONEa p q i j| = 29 + 4p + 7q and i7 = |FRAC_ONEa p q i j| + i.

▶ Proposition 17. If qy = px then (i, FRAC_ONEa p q i j) //a (i, [x; 0]) ≻+ (j, [y; 0]).

▶ Proposition 18. If q ∤ px then (i, FRAC_ONEa p q i j) //a (i, [x; 0]) ≻+ (i7, [x; 0]).

Proof. The proof of Proposition 17 (resp. 18) is sketched in Appendix A (resp. B). ◀

Hence (i, FRAC_ONEa p q i j) performs the multiplication of x by p/q if the result is a
natural number, transferring the control to PC value j, or else, would the result be a proper
fraction, the registers are globally unmodified and the PC is transferred at i7, the end of this
sub-program. Notice that the register d is assumed to be initially empty.

We now chain those sub-programs to simulate one step of a regular FRACTRAN program,
encoding a list Q of fractions by structural recursion on Q:

FRAC_STEPa j [] i := [] FRAC_STEPa j (p/q :: Q) i := P ++ FRAC_STEPa j Q (|P | + i)
where P := FRAC_ONEa p q i j

▶ Lemma 19. For any regular FRACTRAN program Q : L (N × N) and any i, j, x, y : N, if
Q //F x ≻ y then (i, FRAC_STEPa j Q i) //a (i, [x; 0]) ≻+ (j, [y; 0]).

Proof. By induction on the predicate Q //F x ≻ y using Propositions 17 and 18. ◀

▶ Lemma 20. For any regular FRACTRAN program Q : L (N × N) and any i, j, x : N, if
Q //F x ⊁ ⋆ then (i, FRAC_STEPa j Q i) //a (i, [x; 0]) ≻∗ (|FRAC_STEPa j Q i| + i, [x; 0]).

Proof. By induction on Q using Proposition 18. ◀

The instance FRAC_STEPa 1 Q 1 starts at i = 1 and loops on itself (j = 1) until no
fraction can be executed. In addition, we finish by nullifying s and then jump to PC value 0:

FRAC_MMAa Q := FRAC_STEPa 1 Q 1 ++ NULLa s
(
|FRAC_STEPa 1 Q 1| + 1

)
++ JUMPa 0 s

https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/MinskyMachines/MMA/fractran_mma.v

D. Larchey-Wendling 18:9

Σ //n 0 ⊕ 0 ⊢ p
STOPn p ∈ Σ

Σ //n 1+a ⊕ b ⊢ q

Σ //n a ⊕ b ⊢ p
INCn α p q ∈ Σ

Σ //n a ⊕ b ⊢ q

Σ //n 1+a ⊕ b ⊢ p
DECn α p q ∈ Σ

Σ //n 0 ⊕ b ⊢ q

Σ //n 0 ⊕ b ⊢ p
ZEROn α p q ∈ Σ

Σ //n a ⊕ 1+b ⊢ q

Σ //n a ⊕ b ⊢ p
INCn β p q ∈ Σ

Σ //n a ⊕ b ⊢ q

Σ //n a ⊕ 1+b ⊢ p
DECn β p q ∈ Σ

Σ //n a ⊕ 0 ⊢ q

Σ //n a ⊕ 0 ⊢ p
ZEROn β p q ∈ Σ

Figure 1 The S-MMnd sequent style calculus for non-deterministic two counters Minsky machines.

▶ Theorem 21. For any regular FRACTRAN program Q : L (N×N) and any x : N, the three
following properties are equivalent:
1. Q //F x ↓;
2. (1, FRAC_MMAa Q) //a (1, [x; 0])⇝ (0, [0; 0]);
3. (1, FRAC_MMAa Q) //a (1, [x; 0]) ↓.

Proof. A sketch of the proof can be found in Appendix C. ◀

▶ Corollary 22. FRACTRANreg ⪯ MMA2 and FRACTRANreg ⪯ MMA02.

4 Minsky machine termination as provability

While the (heavy) alternate Minsky machines framework was useful to simulate FRACTRAN
programs with two counter machines, using it as a seed for other reductions is not recommen-
ded. First, explaining the semantics and termination predicates requires many definitions,
not necessarily obvious at first. Also, manipulating them without the tools for modular
reasoning is quite difficult.

4.1 Non-deterministic two counters Minsky machines (file ndMM2.v)
For our reductions to linear logic, we replace MMA2 with an equivalent model, much easier to
describe and work with, where computations are performed by proof-search and termination
matches the provability/derivability predicate. Reductions to entailment in logical systems
will thus mainly consist in encoding derivations from one system to another. We call this
model non-deterministic two counters Minsky machines and denote MMnd.

We comment this logical presentation, sequent style, of Minsky machines. MMnd in-
structions are of the form STOPn p | INCn x p q | DECn x p q | ZEROn x p q where x ∈ {α, β} is a
register index, either the first α or the second β,4 and p, q : N are labels, here in type N, but
the definitions in this section are completely parametric in the type of labels. A sequent of
MMnd is of the form Σ //n a ⊕ b ⊢ p where Σ is a list of MMnd instructions viewed as a finite
set, a and b of type N represent the values of the counters α and β respectively and p is the
current label.

We define provability/derivability inductively by the rules the calculus S-MMnd in Fig. 1.
Notice that since computation is simulated by proof-search, the initial state is the conclusion
of a rule and it is transformed into the premise, when there is one. For example, the INCn _ p q

rule contains both the initial label and the jump-to label, hence it can only execute at label

4 hence formally a Boolean value of type B.

FSCD 2021

https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/MinskyMachines/ndMM2.v

18:10 Synthetic Undecidability of MSELL via FRACTRAN Mechanised in Coq

p. However, nothing prevents the simultaneous occurrence of another instruction INCn _ p q′

in Σ, and this could render proof-search non-deterministic, hence our choice of terminology.
However, non-determinism is not relevant to the undecidability of the MMnd.

Notice that it is common practice to represent the sequent and the derivability predicate
of the sequent by the same denotation Σ //n a ⊕ b ⊢ p which could lead to confusion. Usually,
we qualify the notation with the “sequent” word to make it explicit. Unqualified or followed
with “is derivable” means that the notation represents the S-MMnd derivability predicate.

▶ Definition 23. A MMnd problem instance is the data of a sequent Σ //n a ⊕ b ⊢ p, and the
question is whether this sequent is derivable or not using the rules of S-MMnd (Fig. 1).

Notice that ZEROn x p q performs both a zero-test on x and if zero, a jump from p to q

without changing registers. If we remove the ZEROn _ p q rules, we get Petri nets reachability,
more specifically VASS with states, which have a decidable reachability problem with
non-elementary complexity [4], even non-primitive recursive according to [16, 5].

4.2 From MMA02 to MMnd (file MMA2_to_ndMM2_ACCEPT.v)
We give an alternate presentation of termination on zero for two registers Minsky machines,
using the S-MMnd calculus of Section 4.1. Let us consider alternate Minsky machines MMA2
with two counters, s := 0 : F2 and d := 1 : F2. We denote by α, β : B the two registers of
MMnd instructions. We define the following encodings of single instructions and programs:

(·) : F2 → B ⟨·, ·⟩ : N → MMA2 → LMMnd ⟨⟨·, ·⟩⟩ : N → LMMA2 → LMMnd

0 := α ⟨i, INCa x⟩ := [INCn x i (1+i)] ⟨⟨i, []⟩⟩ := []
1 := β ⟨i, DECa x j⟩ := [DECn x i j; ZEROn x i (1+i)] ⟨⟨i, σ :: P ⟩⟩ := ⟨i, σ⟩ ++ ⟨⟨1+i, P ⟩⟩

▶ Proposition 24. The encodings ⟨·, ·⟩ and ⟨⟨·, ·⟩⟩ are sound:
1. assuming the inclusion ⟨i, σ⟩ ⊆ Σ, if σ //a (i, [a; b]) ≻ (j, [a′; b′]) and Σ //n a′ ⊕ b′ ⊢ j is

derivable then so is Σ //n a ⊕ b ⊢ i;
2. assuming ⟨⟨1, P ⟩⟩ ⊆ Σ, if (1, P) //a (i, [a; b]) ≻1 (j, [a′; b′]) and Σ //n a′ ⊕ b′ ⊢ j is derivable

then so is Σ //n a ⊕ b ⊢ i.

Proof. Item 1 is by case analysis on σ and item 2 follows from item 1. ◀

Let us now define ΣP := STOPn 0 :: ⟨⟨1, P ⟩⟩ which constitutes the encoding of MMA2
programs into MMnd sequents. We establish its soundness.

▶ Lemma 25. If (1, P) //a (i, [a, b]) ≻∗ (0, [0; 0]) then ΣP //n a ⊕ b ⊢ i is derivable.

Proof. We have ⟨⟨1, P ⟩⟩ ⊆ ΣP by definition of ΣP . Iterating Proposition 24 (item 2), we
thus get ΣP //n 0 ⊕ 0 ⊢ 0 → ΣP //n a ⊕ b ⊢ i. The derivability of ΣP //n 0 ⊕ 0 ⊢ 0 follows
from STOPn 0 ∈ ΣP and the STOPn 0 rule of S-MMnd. ◀

▶ Lemma 26. If ΣP //n a ⊕ b ⊢ i is derivable then (1, P) //a (i, [a, b]) ≻∗ (0, [0; 0]).

Proof. The argument proceeds by structural induction on the derivation of ΣP //n a ⊕ b ⊢ i,
i.e. by analysing the structure of S-MMnd derivations. The following result is an essential
ingredient in this case analysis: c ∈ ⟨⟨i, P ⟩⟩ → ∃L σ R, P = L ++ σ :: R ∧ c ∈ ⟨|L| + i, σ⟩. It
allows to recover the MMA2 instructions from which MMnd instructions originate. ◀

▶ Corollary 27. MMA02 ⪯ MMnd.

Proof. The reduction maps an instance (P, [a; b]) of MMA02 to the sequent ΣP //n a ⊕ b ⊢ 1.
Lemmas 25 and 26 provide the equivalence between (1, P) //a (1, [a, b])⇝ (0, [0; 0]) and the
derivability of ΣP //n a ⊕ b ⊢ 1, which ensures the correctness of the reduction. ◀

https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/MinskyMachines/Reductions/MMA2_to_ndMM2_ACCEPT.v

D. Larchey-Wendling 18:11

5 Undecidability of Sub-Exponential Linear Logic

Having established the undecidability of MMnd via FRACTRANreg and MMA02, we can now
switch to undecidability in some fragments of linear logic and give a comparison between
two different reductions. We introduce the intuitionistic version of sub-exponential linear
logic [2] (IMSELL) and mechanise a many-one reduction from MMnd to entailment in IMSELL.
Even if the former reduction [2] applies to classical sub-exponential linear logic with one
sided sequents, our own reduction function is inspired from it. However, the completeness
proof that we have mechanised largely differs since we avoid focused proofs (used to recover
computations) and instead, adapt the trivial phase semantics argument [13, 8]. Additionally
we precisely compare the reduction to ILL with the reduction to IMSELL by starting from
the same MMnd seed, detailing what set of logical rules are used to simulate those machines.

5.1 The ILL and IMSELL fragments (files ILL.v and IMSELL.v)
We introduce two fragments/extensions of intuitionistic linear logic (ILL) that allow for a
reduction from non-deterministic two counters Minsky machines.

The first fragment of the ILL logic we consider is composed of propositional formulæ build
from two binary connectives, the linear implication ⊸ and additive conjunction &, and one
modality, exponentiation !. Logical variables come from (a copy of) the N type. Formally, the
formulæ of ILL are of the form A, B ::= X | A⊸B | A & B | !A where X : N. To simplify,
we abusively call this fragment ILL. By cut-elimination, the reduction discussed below also
works for larger fragments containing more connectives like ⊗, ⊕, etc.

The sequents of ILL are intuitionistic, i.e. a pair (Γ, A) written Γ ⊢ A where Γ is a multiset
of formulæ and A is a single formula. Multisets are just lists identified up-to permutations. If
it is more convenient to work with lists, as we do in the Coq mechanization, then an explicit
permutation rule is added to the sequent rules of the S-ILL calculus in Fig. 2.

The three leftmost rules are the identity (or axiom) rule stating that the sequent A ⊢ A

has a trivial proof, and then the left- and right-introduction rules for the linear implication
⊸. The three rules middle-left are two left- and one right-introduction rules for the additive
conjunction &. The two middle-right rules are modal rules, on top, the promotion rule, and
at bottom, the dereliction rule. Finally, on the right-hand-side are the structural rules for
the ! modality, i.e. weakening on top and contraction at the bottom. Notice that specifically,
linear logic does not allow for general weakening or contraction rules.

On the other hand, IMSELL is a purely multiplicative fragment but with several modalities,
among them exponentials. The logic is parameterized with a fixed type Λ of modalities and
a fixed sub-type U : Λ → P of unbounded modalities, also called exponentials. We follow the
set theoretic syntax and write u ∈ U (instead of U u) when u is unbounded. The formulæ of
IMSELLΛ are of the form A, B ::= X | A⊸B | !mA where X : N and m : Λ. So compared
to ILL, the additive & is missing whereas the modality ! becomes indexed as !m with m

spanning over Λ. IMSELLΛ sequents have the same structure Γ ⊢ A as those of ILL except
that they are composed of IMSELLΛ formulæ instead.

Before we describe the associated sequent calculus S-IMSELLΛ, we introduce supplement-
ary structures on modalities: a pre-order ≼ : Λ → Λ → P, i.e. a reflexive and transitive
binary relation, such that U is upward-closed for ≼, i.e. u ≼ m and u ∈ U entail m ∈ U
for any m, u : Λ. In the sequel, we will somehow abuse the notation and denote Λ both
for the base type and the modal structure (Λ, U ,≼) moreover assuming the pre-order and
upward-closure properties.

FSCD 2021

https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/ILL/ILL.v
https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/ILL/IMSELL.v

18:12 Synthetic Undecidability of MSELL via FRACTRAN Mechanised in Coq

A ⊢ A

A, Γ ⊢ B

Γ ⊢ A⊸B

Γ ⊢ A B, ∆ ⊢ C

A⊸B, Γ, ∆ ⊢ C

Γ ⊢ A Γ ⊢ B

Γ ⊢ A & B

A, Γ ⊢ C

A & B, Γ ⊢ C

B, Γ ⊢ C

A & B, Γ ⊢ C

!Γ ⊢ B

!Γ ⊢ !B
A, Γ ⊢ B

!A, Γ ⊢ B

Γ ⊢ B

!A, Γ ⊢ B

!A, !A, Γ ⊢ B

!A, Γ ⊢ B

Figure 2 The S-ILL sequent calculus.

A ⊢ A

A, Γ ⊢ B

Γ ⊢ A⊸B

Γ ⊢ A B, ∆ ⊢ C

A⊸B, Γ, ∆ ⊢ C

!⋆Γ ⊢ B

!⋆Γ ⊢ !mB
m ≼ ⋆

A, Γ ⊢ B

!mA, Γ ⊢ B

Γ ⊢ B

!uA, Γ ⊢ B
u ∈ U

!uA, !uA, Γ ⊢ B

!uA, Γ ⊢ B
u ∈ U

Figure 3 The S-IMSELLΛ sequent calculus with (Λ, U ,≼).

In the sequent rules of the S-IMSELLΛ calculus of Fig. 3, the three leftmost rules are
common with S-ILL, there is no rule for the additive conjunction & since it does belong to
the fragment, and the modal rules have changed a bit. We skip over the two middle rules for
the moment and consider the rightmost structural rules of weakening and contraction which
generalise the corresponding rules of S-ILL, except that their use is limited to unbounded
modalities (u ∈ U). Back to the two middle rules, the bottom dereliction rule applies to
every modality, so a direct generalisation of the corresponding rule of S-ILL. However, the
promotion rule (reproduced below on the left)

!⋆Γ ⊢ B

!⋆Γ ⊢ !mB
m ≼ ⋆

!k1A1, . . . , !knAn ⊢ B

!k1A1, . . . , !knAn ⊢ !mB
m ≼ k1, . . . , m ≼ kn

!mΓ ⊢ B

!mΓ ⊢ !mB

is somehow more complicated and deserves further explanations. The ⋆ notation represents
a multiset k1, . . . , kn of modalities and !⋆Γ represents the multiset !k1A1, . . . , !knAn. The
constraint m ≼ ⋆ imposes that m is lower than every modality in {k1, . . . , kn}. Using these
more explicit notations, we reframe it as in the above displayed middle rule. Finally, the
(uniform) instance where m = k1 = · · · = kn (the rightmost above; the constraint m ≼ ⋆

holds by reflexivity), matches the promotion rule of S-ILL.
Considered independently, all modalities behave like ILL modalities, satisfying dereliction

and promotion rules, while only unbounded modalities allow for contraction and weakening.
However, depending on the relation ≼, the promotion rule allows for non-trivial interactions
between modalities. Given an unbounded modality ∞ ∈ U and replacing ! with !∞, one can
trivially embed the multiplicative fragment of ILL and recover intuitionistic multiplicative and
exponential linear logic (IMELL), of which the (un)decidability of entailment is a notoriously
difficult open problem [14, 20].

5.2 Embedding in S-ILL vs. S-IMSELL (file ndMM2_IMSELL.v)
For the reduction from MMnd to IMSELLΛ to work out properly, we need at least three
modality {a, b, ∞} where ∞ is the only unbounded modality (∞ ∈ U and a, b ̸∈ U), a ≼∞,
b ≼ ∞ and a and b are incomparable, i.e. a ̸≼ b and b ̸≼ a. As a consequence, ∞ is also
strictly above a and b. From now on, we assume that Λ satisfies these requirements. The
coming discussion can also be understood in the minimal case where Λ3 = {a, b, ∞} and we
denote IMSELL3 for either of these logics.

https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/ILL/Reductions/ndMM2_IMSELL.v

D. Larchey-Wendling 18:13

In this section, we review the encoding of MMnd sequents into both ILL and IMSELL3,
and explain how, while mostly similar, they noticeably differ on how they handle zero tests
combined with jumps. Notice that the encoding targeting ILL can be adapted to n registers
Minsky machines (as done in [8]), while in the case of IMSELL3, working with two counters
only is critically important to the construction.

Identifying the exponential ! with the unbounded modality !∞ allows to discuss IMELL,
ILL and IMSELL3 in a common syntactic framework, avoiding cumbersome notations for
trivial embeddings. We show the derivability of the two following rules: generalised weakening
and customised absorption.

▶ Lemma 28. The two following rules are derivable in IMELL, and hence ILL and IMSELL3:

∆ ⊢ B

!∞Σ, ∆ ⊢ B

A, !∞Σ, ∆ ⊢ B

!∞Σ, ∆ ⊢ B
A ∈ Σ

Proof. We obtain the left generalised weakening rule by repeating the weakening rule. For
customised absorption, it is the combination of dereliction and contraction. ◀

These derived rules are essential tools for the reduction from MMnd. Let us review the
other tools. Recall that a MMnd sequent is of the form Σ //n x ⊕ y ⊢ p. We encode this with
an IMSELL3 (or ILL) sequent of the form !∞Σ, ∆ ⊢ p where ∆ := xα, yβ encodes the pair
(x, y) : N × N, i.e. α (resp. β) is repeated x (resp. y) times. Hence increment and decrement
operations on the values x/y naturally correspond to the multiset operations. We do not
need to specify what formulæ are α and β for the moment, but these will differ in the ILL case
compared to the IMSELL3 case. On the other hand, p or q will always be logical variables.

First, we show how to simulate the INCn α p q rule of S-MMnd:

Σ //n 1+x ⊕ y ⊢ q

Σ //n x ⊕ y ⊢ p
INCn α p q ∈ Σ ⇝

!∞Σ, α, ∆ ⊢ q

!∞Σ, ∆ ⊢ α⊸ q p ⊢ p

(α⊸ q)⊸ p, !∞Σ, ∆ ⊢ p
(α⊸ q)⊸ p ∈ Σ

!∞Σ, ∆ ⊢ p

and the DECn α p q rule of S-MMnd:

Σ //n x ⊕ y ⊢ q

Σ //n 1+x ⊕ y ⊢ p
DECn α p q ∈ Σ ⇝

α ⊢ α

!∞Σ, ∆ ⊢ q p ⊢ p

q⊸ p, !∞Σ, ∆ ⊢ p

α⊸ (q⊸ p), !∞Σ, α, ∆ ⊢ p
α⊸ (q⊸ p) ∈ Σ

!∞Σ, α, ∆ ⊢ p

Notice that we only use the customised absorption rule, the left- and right-introduction
rules for ⊸ and the identity (axiom) rule hence simulating INCn α p q and DECn α p q can be
performed within the IMELL fragment.

The axiom rule STOPn p of S-MMnd (acceptance of (0, 0) at p) can also be simulated

Σ //n 0 ⊕ 0 ⊢ p
STOPn p ∈ Σ ⇝

p ⊢ p

⊢ p⊸ p p ⊢ p

(p⊸ p)⊸ p ⊢ p

(p⊸ p)⊸ p, !∞Σ ⊢ p
(p⊸ p)⊸ p ∈ Σ

!∞Σ, ∅ ⊢ p

FSCD 2021

18:14 Synthetic Undecidability of MSELL via FRACTRAN Mechanised in Coq

using the customised absorption rule, then the generalised weakening rule, the left- and
right-introduction rules for ⊸ and the identity rule. Hence an IMELL proof as well.

The remaining rules of MMnd, that of e.g. ZEROn α p q, a zero test combined with a jump
instruction, are the problematic rules to encode in the IMELL fragment. This can however
be done in ILL and in IMSELL3, but the techniques for the two fragments diverge precisely
on these ZEROn α p q instructions.

Let us first review5 the (idea behind the) legacy encoding of Minsky machines into linear
logic [17], mechanized for ILL in [8]. The idea is to fork the ZEROn α p q simulation into a
proof-search branch where only a zero test on α is performed, and in the other branch, only
a jump to q is performed:

Σ //n 0 ⊕ y ⊢ q

Σ //n 0 ⊕ y ⊢ p
ZEROn α p q ∈ Σ ⇝

. . .

!∞Σ, yβ ⊢ α !∞Σ, yβ ⊢ q

!∞Σ, yβ ⊢ α & q p ⊢ p

(α & q)⊸ p, !∞Σ, yβ ⊢ p
(α & q)⊸ p ∈ Σ

!∞Σ, yβ ⊢ p

Notice that α and β denote fresh logical variables. Critically for this encoding, the additive
conjunction & is used to copy the context into the two premises, implementing a fork. The
zero test on left sub-branch can however by performed in IMELL only:

β ⊢ β

!∞Σ, ∅ ⊢ α

· · ·

!∞Σ, yβ ⊢ α α ⊢ α

α⊸ α, !∞Σ, yβ ⊢ α

β⊸ (α⊸ α), !∞Σ, β, yβ ⊢ α
β⊸ (α⊸ α) ∈ Σ

!∞Σ, (1+y)β ⊢ α

α ⊢ α

⊢ α⊸ α α ⊢ α

(α⊸ α)⊸ α, ∅ ⊢ α

(α⊸ α)⊸ α, !∞Σ, ∅ ⊢ α
(α⊸ α)⊸ α ∈ Σ

!∞Σ, ∅ ⊢ α

· · ·

Notice that the dots above !∞Σ, yβ ⊢ α mean repetition of the lower part of the proof until
exhaustion of all the β from the context: this is implemented by an induction on y, and the
base case where y = 0 corresponds to the upper part of the proof, starting at !∞Σ, ∅ ⊢ α and
completed on the right hand side, simulating of a would be STOPn α instruction (see above).

We see that α together with the formulæ β⊸ (α⊸ α) and (α⊸ α)⊸ α in Σ allow α to
perform the elimination of all the β from the context. However, α will not allow the removal
of any α and hence, the zero test branch cannot be completed if ∆ contains an occurrence of
α, i.e. when x ̸= 0. This encoding of the zero test using α, while it can already be performed
in IMELL, is pertinent only for ILL because it is in combination with the fork in (α & q)⊸ p

(see above) that it provides the ability to conditionally jump on zero.

Contrary to the ILL encoding, IMSELL3 does not require (and cannot use) forking but
instead uses sub-modalities to prevent jumping when the zero test fails. In that case, α and
β are not atomic formulæ anymore: they contain the bounded modalities !a and !b, and we
define α := !aα0 and β := !bβ0 where α0, β0 are fresh variables. In the following encoding,

5 here we only discuss the ILL case, i.e. we do not replicate the former ILL mechanisation [8] in the code.

D. Larchey-Wendling 18:15

Σ //n 0 ⊕ y ⊢ q

Σ //n 0 ⊕ y ⊢ p
ZEROn α p q ∈ Σ ⇝

!∞Σ, yβ ⊢ q

!∞Σ, yβ ⊢ !bq p ⊢ p

!bq⊸ p, !∞Σ, yβ ⊢ p
!bq⊸ p ∈ Σ

!∞Σ, yβ ⊢ p

notice that the upper rule is an instance of the promotion rule of S-IMSELL3. It is allowed
because every formula on the left is prefixed either with the unbounded modality !∞ for those
in !∞Σ, or with the modality !b for those in yβ = !bβ0, . . . , !bβ0, and we have both b ≼ ∞
and b ≼ b. On the other hand, an occurrence of α = !aα0 in the context, corresponding to
a non-zero value of x, would prevent the application of the promotion rule (b ̸≼ a). This
interaction of modalities in the promotion rule of IMSELL3 is the key to simulate zero tests.

▶ Definition 29. Let us define α0 := 0, β0 := 1, p := 2 + p, α := !aα0 and β := !bβ0. We
encode MMnd instructions as:

STOPn p := (p⊸ p)⊸ p

INCn α p q := (α⊸ q)⊸ p DECn α p q := α⊸ (q⊸ p) ZEROn α p q := !bq⊸ p

INCn β p q := (β⊸ q)⊸ p DECn β p q := β⊸ (q⊸ p) ZEROn β p q := !aq⊸ p

and then map (·) on the list Σ extensionally, i.e. [σ1; . . . ; σn] := σ1, . . . , σn.

▶ Lemma 30. If Σ //n x ⊕ y ⊢ p can be derived in S-MMnd then the sequent !∞Σ, xα, yβ ⊢ p

is provable in S-IMSELL3.

Proof. The argument proceeds by induction on the derivation of Σ //n x ⊕ y ⊢ p, combining
the proof skeletons of the above discussion in a direct way. ◀

5.3 Trivial Phase semantics for IMSELL (file imsell.v)
We define trivial phase semantics for IMSELLΛ and show soundness w.r.t. the S-IMSELLΛ
calculus. We start with a commutative monoid (M, •, ϵ). Typically, for the completeness
of our reduction, we will only need to use the semantics for M = (N2, +, 0⃗), i.e. vectors of
natural numbers of length 2, but the semantics works for any commutative monoid. For
any X, Y ⊆ M , we define the point-wise extension by X • Y := {x • y | x ∈ X ∧ y ∈ Y } and
its linear adjunct as X −−• Y := {k ∈ M | {k} • X ⊆ Y } providing a residuated monoidal
structure on the subset type M → P.

To interpret the modal structure (Λ, U ,≼), we further require for each modality m ∈ Λ,
a subset Km ⊆ M i.e. a predicate Km : M → P. We assume that the map m 7→ Km is
monotonically decreasing w.r.t. ≼ (on the left below) and satisfies the three extra following
rightmost axioms:

∀m k, m ≼ k → Kk ⊆ Km ∀m, ϵ ∈ Km ∀m, Km •Km ⊆ Km ∀u ∈ U , Ku ⊆ {ϵ}

Given any semantic interpretation [[·]] ⊆ M of logical variables, we extend it inductively
to IMSELLΛ sequents via trivial phase semantics:6

[[A⊸B]] := [[A]] −−• [[B]] [[!mA]] := [[A]] ∩ Km [[A1, . . . , An]] := [[A1]] • · · · • [[An]]

6 The trivial qualifier refers to the use of the identity closure cl(X) = X in the interpretation of modalities,
i.e. [[!mA]] := [[A]] ∩ Km instead of the more general [[!mA]] := cl([[A]] ∩ Km) where cl(·) : (M → P) →
(M → P) is a stable closure operator. This also applies to the (implicit) multiplicative conjunction
where [[A1, . . . , An]] := [[A1]] • · · · • [[An]] instead of [[A1, . . . , An]] := cl([[A1]] • · · · • [[An]]). Notice that
trivial phase semantics is sound but not complete for IMELL, ILL and IMSELLΛ; see [13] for details.

FSCD 2021

https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/ILL/Ll/imsell.v

18:16 Synthetic Undecidability of MSELL via FRACTRAN Mechanised in Coq

Notice that because we work with commutative monoids, the above semantic interpretation
of lists is invariant under permutations, hence is suitable for multisets. An IMSELLΛ sequent
Γ ⊢ A is valid in that interpretation if [[Γ]] ⊆ [[A]], or (equivalently) if ϵ ∈ [[Γ]] −−• [[A]].

▶ Theorem 31. Trivial phase semantics is sound: any sequent Γ ⊢ A provable in S-IMSELLΛ
must satisfy ϵ ∈ [[Γ]] −−• [[A]] for any possible trivial phase semantics interpretation.

Proof. We proceed by structural induction on the S-IMSELLΛ derivation of Γ ⊢ A. In the
code, the proof is limited to the case where M = (Nn, +, 0⃗) for some n : N. Compared to the
soundness of trivial phase semantics for S-ILL [8], the only interesting new case is that of the
promotion rule. In that case, we observe that m ≼ k1, . . . , kn implies Kk1 •· · ·•Kkn

⊆ Km. ◀

5.4 The completeness of the reduction (file ndMM2_IMSELL.v)
▶ Lemma 32. If the sequent !∞Σ, xα, yβ ⊢ p is provable in S-IMSELL3, then there is a
derivation of Σ //n x ⊕ y ⊢ p in S-MMnd.

Proof. We use a soundness argument for trivial phase semantics in place of reasoning by
induction on focused derivation in MSELL as done in [2]. We consider the monoid of vectors
M = (N2, +, [0; 0]) of length 2 of natural numbers. We define the following interpretation for
modalities, Km [x; y] := (a ≼ m → y = 0) ∧ (b ≼ m → x = 0) ∧ (m ∈ U → x = 0 ∧ y = 0),
and as a consequence, we can check that Km satisfies the required axioms as well as
Ka =

{
[x; 0] | x ∈ N

}
, Kb =

{
[0; y] | y ∈ N

}
, and K∞ =

{
[0; 0]

}
. We interpret logical

variables as:

[[α0]] :=
{

[1; 0]
}

and [[β0]] :=
{

[0; 1]
}

and [[p]] =
{

[x; y] | Σ //n x ⊕ y ⊢ p
}

and thus we have [[α]] = [[!aα0]] = [[α0]] ∩ Ka =
{

[1; 0]
}

and [[β]] =
{

[0; 1]
}

. Consequently, we
get [[xα, yβ]] =

{
[x; y]

}
.

We verify that the interpretation of the IMSELL3 encoding σ of MMnd instructions in
Σ contains the zero vector, i.e. ∀σ, σ ∈ Σ → [0; 0] ∈ [[σ]]. For instance, let us consider
the case σ = ZEROn α p q. Then σ = !bq⊸ p is interpreted as ([[q]] ∩ Kb) −−• [[p]]. Hence
[0; 0] ∈ [[σ]] ↔ [[q]] ∩ Kb ⊆ [[p]], i.e. for any [x; y] : N2, if Σ //n x ⊕ y ⊢ q and x = 0 then
Σ //n x ⊕ y ⊢ p which is precisely the instance of rule ZEROn α p q ∈ Σ of S-MMnd.

From the previous observation, we deduce [0; 0] ∈ [[!∞Σ]]. Now let us consider a sequent
!∞Σ, xα, yβ ⊢p which is provable in S-IMSELL3. By the soundness Theorem 31, we know that
[0; 0] ∈ [[!∞Σ, xα, yβ]] −−• [[p]]. Since [x; y] = [0; 0] + [x; y] ∈ [[!∞Σ]] • [[xα, yβ]] = [[!∞Σ, xα, yβ]],
by the definition of −−• we deduce [x; y] = [0; 0] + [x; y] ∈ [[p]], and hence we conclude that
Σ //n x ⊕ y ⊢ p holds. ◀

▶ Theorem 33. Let (Λ, U ,≼) contain three modalities a, b and ∞ such that ∞ ∈ U , a, b ̸∈ U ,
a, b ≼∞, a ̸≼ b and b ̸≼ a. Then we have a reduction MMnd ⪯ IMSELLΛ, hence derivability
in the S-IMSELLΛ calculus is undecidable.

6 Related works and Implementation remarks

While Theorem 33 gives us a mechanised synthetic proof of the undecidability of IMSELL3,
neither its statement nor the arguments deployed directly provide hints towards a solution
to the question of the decidability IMELL/MELL. As in the original pen and paper proof [2],
the two bounded modalities !a and !b, and their interaction with the unbounded modality
!∞ in the promotion rule, play an essential role in the simulation of conditional jumps of

https://github.com/uds-psl/coq-library-undecidability/blob/FSCD-2021/theories/ILL/Reductions/ndMM2_IMSELL.v

D. Larchey-Wendling 18:17

two counters Minsky machines. While the zero test can be implemented in MELL only, the
provided implementation consumes its context and thus cannot conditionally branch at the
same time, hence the fork used in the case of ILL [8].

However Theorem 33 does give indications that certain decidability arguments for MELL
are bound to fail, e.g. those that would also apply to MSELL in general, or IMSELL3 in
particular. It is our understanding that the refutation [20] of the faulty proof attempt for the
decidability of MELL [1] partly proceeds in showing how the claimed “proof” technique would
easily generalise to MSELL. In the same vein, the lower bounds on the complexity of a would
be decision procedure for MELL [14], and more recently the reachability problem for Petri
nets themselves [4], indicate that a decision procedure for MELL must be of non-elementary
complexity. The most recent investigations [16, 5] might very well confirm that this problem
is Ackermann complete and hence not primitive recursive.

Considering formalisation issues, the growing Coq library of undecidability proofs [9] was
of course of great help to this work. Indeed, at the time we decided to try to implement the
undecidability of MSELL, the framework for certified programming with Minsky machines
was already part of the library [8]. Hence, to get two counters Minsky machines, i.e. the seed
of undecidability of the pen and paper proof [2], only a modest step from many counters
machines was necessary and this was even alleviated by the results on the FRACTRAN
language [12], factoring out the Gödel coding phase. In fact, we contributed the seed of two
counters machines much ahead of the MSELL result, and in the meantime, this seed was
used to establish to undecidability uniform boundedness for simple stack machines and then
of the problem of semi-unification [6]. This illustrates a critical aspect of this undecidability
framework: its extensive range of seed problems for plugging into it.

Indeed, there is an important issue to consider when proving undecidability by many-one
reduction, by far the most used method in the field: even mechanised, your proof is only as
strong as the implementation of your seed problem. Typical problems can exhibit subtleties
that show up at the mechanisation level: for instance Turing machines are built on tapes,
a potentially infinite structure of which it could be easy to corrupt the implementation.
Choosing a seed already linked to the many-one equivalence class containing easy to describe
problems such as e.g. the Post correspondence problem or FRACTRAN gives much more
confidence that starting from an isolated seed, still to be mechanically checked undecidable.

Another aspect which is mostly overlooked in pen and paper proofs is the computability
of the reduction function. The reason is that programming with low-level Turing complete
models of computation is hard and painful, with encodings at every corner. To get a glimpse
of the difficulty, think of a Turing machine working with logical formulas: because it only
manipulates text written on tapes, it has to implement a syntax analyser, moreover proved
correct. And only then can it start its real work. The general shortcut used in pen and
paper proofs to avoid this kind of description is to speak about “algorithms” that manipulate
high-level data-structures and rely on an informal and consensual understanding of what
these are, hand-waving away the implementation issues completely.

In this regard, the synthetic computability framework allows, at the price of relying on
the computability of Coq functions – e.g. by avoiding axioms, – to formally describe the
reduction functions in a language strict enough to ensures their computability, but at the
same time powerful enough to largely avoid complex encodings and hence get more natural
correctness proofs following or inspired from pen and paper ones. Using a constructive
framework like e.g. Coq or Agda is essential in that approach, because in classical frameworks,
there is no direct way to automatically ensure the general computability of the defined
(reduction) functions.

FSCD 2021

https://github.com/uds-psl/coq-library-undecidability

18:18 Synthetic Undecidability of MSELL via FRACTRAN Mechanised in Coq

References
1 Katalin Bimbó. The decidability of the intensional fragment of classical linear logic. Theoret.

Comput. Sci., 597:1–17, 2015. doi:10.1016/j.tcs.2015.06.019.
2 Kaustuv Chaudhuri. Expressing additives using multiplicatives and subexponentials. Math.

Structures Comput. Sci., 28(5):651–666, 2018. doi:10.1017/S0960129516000293.
3 John H. Conway. FRACTRAN: A Simple Universal Programming Language for Arithmetic,

pages 4–26. Springer New York, New York, NY, 1987.
4 Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip Mazowiecki.

The reachability problem for Petri nets is not elementary. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, page 24–33, New York, NY,
USA, 2019. Association for Computing Machinery. doi:10.1145/3313276.3316369.

5 Wojciech Czerwiński and Łukasz Orlikowski. Reachability in Vector Addition Systems is
Ackermann-complete, 2021. arXiv:2104.13866.

6 Andrej Dudenhefner. Undecidability of Semi-Unification on a Napkin. In Zena M. Ariola,
editor, 5th International Conference on Formal Structures for Computation and Deduction
(FSCD 2020), volume 167 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 9:1–9:16, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.FSCD.2020.9.

7 Yannick Forster, Dominik Kirst, and Gert Smolka. On synthetic undecidability in Coq, with
an application to the Entscheidungsproblem. In Assia Mahboubi and Magnus O. Myreen,
editors, Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, pages 38–51. ACM, 2019.
doi:10.1145/3293880.3294091.

8 Yannick Forster and Dominique Larchey-Wendling. Certified undecidability of intuitionistic
linear logic via binary stack machines and Minsky machines. In Assia Mahboubi and Magnus O.
Myreen, editors, Proceedings of the 8th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, pages 104–117.
ACM, 2019. doi:10.1145/3293880.3294096.

9 Yannick Forster, Dominique Larchey-Wendling, Andrej Dudenhefner, Edith Heiter, Dominik
Kirst, Fabian Kunze, Gert Smolka, Simon Spies, Dominik Wehr, and Maximilian Wuttke. A
Coq Library of Undecidable Problems. In CoqPL 2020, New Orleans, LA, United States, 2020.
URL: https://github.com/uds-psl/coq-library-undecidability.

10 Max Kanovich. Linear Logic as a Logic of Computations. Ann. Pure Appl. Logic, 67(1–3):183–
212, 1994.

11 Max Kanovich. The direct simulation of Minsky machines in linear logic. In Jean-Yves Girard,
Yves Lafont, and Laurent Regnier, editors, Advances in Linear Logic, volume 222 of London
Mathematical Society Lecture Note Series, chapter 2, pages 123–145. Cambridge University
Press, 1995.

12 Dominique Larchey-Wendling and Yannick Forster. Hilbert’s Tenth Problem in Coq. In 4th
International Conference on Formal Structures for Computation and Deduction, volume 131
of LIPIcs, pages 27:1–27:20, February 2019.

13 Dominique Larchey-Wendling and Didier Galmiche. Nondeterministic Phase Semantics and
the Undecidability of Boolean BI. ACM Trans. Comput. Log., 14(1):6:1–6:41, 2013. doi:
10.1145/2422085.2422091.

14 Ranko Lazić and Sylvain Schmitz. Non-Elementary Complexities for Branching VASS, MELL,
and Extensions. ACM Transactions on Computational Logic, 16(3):20:1–20:30, 2015. doi:
10.1145/2733375.

15 Jérôme Leroux and Sylvain Schmitz. Demystifying Reachability in Vector Addition Systems.
In LICS 2015: Proceedings of the 30th ACM/IEEE Symposium on Logic in Computer Science,
pages 56–67. IEEE, 2015. doi:10.1109/LICS.2015.16.

16 Jérôme Leroux. The Reachability Problem for Petri Nets is Not Primitive Recursive, 2021.
arXiv:2104.12695.

https://doi.org/10.1016/j.tcs.2015.06.019
https://doi.org/10.1017/S0960129516000293
https://doi.org/10.1145/3313276.3316369
http://arxiv.org/abs/2104.13866
https://doi.org/10.4230/LIPIcs.FSCD.2020.9
https://doi.org/10.1145/3293880.3294091
https://doi.org/10.1145/3293880.3294096
https://github.com/uds-psl/coq-library-undecidability
https://doi.org/10.1145/2422085.2422091
https://doi.org/10.1145/2422085.2422091
https://doi.org/10.1145/2733375
https://doi.org/10.1145/2733375
https://doi.org/10.1109/LICS.2015.16
http://arxiv.org/abs/2104.12695

D. Larchey-Wendling 18:19

17 Patrick Lincoln, John C. Mitchell, Andre Scedrov, and Natarajan Shankar. Decision problems
for propositional linear logic. In 31st Annual Symposium on Foundations of Computer Science,
volume 2, pages 662–671. IEEE Computer Society, 1990. doi:10.1109/FSCS.1990.89588.

18 Ernst W. Mayr. An algorithm for the general Petri net reachability problem. In Proceedings
of the Thirteenth Annual ACM Symposium on Theory of Computing, STOC ’81, page 238–246,
New York, NY, USA, 1981. Association for Computing Machinery. doi:10.1145/800076.
802477.

19 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., 1967.
20 Lutz Straßburger. On the decision problem for MELL. Theoret. Comput. Sci., 768:91–98,

2019.

A Proof (sketch) of Proposition 17

Let us use the denotation s (resp. d) for the dynamic value of register s (resp. d). Hence, the
contents of the registers is represented by the vector [s; d] of length 2 with initial value [x; 0].
Also, the initial value of the PC is i0 = i.

The sub-program MULT_CSTa s d p i0 multiplies s with p and adds the result to the
contents of d while emptying s, so the PC moves to i1 and s = 0 and d = px. Then
MOD_CSTa d s i2 i4 q i1 tests the divisibility of d by q, which succeeds under the assumption
qy = px. By Proposition 15, this transfers the control to i2 and now d = 0 and s = px. Then
DIV_CSTa s d q i2 divides s with q while swapping the registers hence now s = 0, d = y and
the PC is at i3. Then TRANSFERa d s i3 swaps s with d hence now s = y and d = 0 and PC is
now i4. Finally, JUMPa j d transfers the control to j without altering the registers.

B Proof (sketch) of Proposition 18

As in the proof of Proposition 17, we reach the state where the PC is at i1 and s = 0 and
d = px. However now, MOD_CSTa d s i2 i4 q i1 gives a negative answer to the divisibility of d

by s hence according to Proposition 14, the control is transferred to i5 while s = px and
d = 0. Then DIV_CSTa s d p i5 divides the contents of s by p, reverting it to its initial value
but there is a swap: PC is at i6, s = 0 and d = x. Finally TRANSFERa d s i6 swaps again and
reverts the registers to their initial values s = x and d = 0 while the PC moves to the end of
the sub-program at i7.

C Proof (sketch) of Theorem 21

The implication 2 =⇒ 3 is trivial. We show 1 =⇒ 2 and 3 =⇒ 1.
Let us start with 1 =⇒ 2. As an instance of Lemma 19, if Q //F x ≻ y holds then we

have (1, FRAC_STEPa 1 Q 1) //a (1, [x; 0]) ≻+ (1, [y; 0]). By transitivity, from Q //F x ≻∗ y we
can deduce (1, FRAC_STEPa 1 Q 1) //a (1, [x; 0]) ≻∗ (1, [y; 0]).

Now assuming Q //F x ↓, we get some y such that Q //F x ≻∗ y and Q //F y ⊁ ⋆. Hence
we have (1, FRAC_STEPa 1 Q 1) //a (1, [x; 0]) ≻∗ (1, [y; 0]). By Lemma 20, as Q //F y ⊁ ⋆, we
get (1, FRAC_STEPa 1 Q 1) //a (1, [y; 0]) ≻∗ (|FRAC_STEPa 1 Q 1| + 1, [y; 0]). We deduce

(1, FRAC_MMAa Q) //a (1, [x; 0]) ≻∗ (|FRAC_STEPa 1 Q 1| + 1, [y; 0])

since (1, FRAC_STEPa 1 Q 1) is a sub-program of (1, FRAC_MMAa Q). The nullifying code and
the jump finish the computation and we get our proof that (1, FRAC_MMAa Q) //a (1, [x; 0])⇝
(0, [0; 0]) holds.

FSCD 2021

https://doi.org/10.1109/FSCS.1990.89588
https://doi.org/10.1145/800076.802477
https://doi.org/10.1145/800076.802477

18:20 Synthetic Undecidability of MSELL via FRACTRAN Mechanised in Coq

Let us now finish with 3 =⇒ 1 and assume (1, FRAC_MMAa Q) //a (1, [x; 0]) ↓. We show
that Q //F x ↓. Because (1, FRAC_STEPa 1 Q 1) is a sub-program of (1, FRAC_MMAa Q), we
also have (1, FRAC_STEPa 1 Q 1) //a (1, [x; 0]) ↓. Hence there is k, j : N and v⃗ : N2 such that
(1, FRAC_STEPa 1 Q 1) //a (1, [x; 0]) ≻k (j, v⃗) and out j (1, FRAC_STEPa 1 Q 1). We prove
Q //F x ↓ by strong induction on k. By Proposition 1, one can decide between two possibilities:

either Q //F x ⊁ ⋆ in which case Q //F x ↓ is obvious;
or there is y such that Q //F x ≻ y. We deduce (1, FRAC_STEPa 1 Q 1) //a (1, [x; 0]) ≻δ

(1, [y; 0]) for some δ > 0 by Lemma 19. Since the step relation is deterministic for Minsky
machines, we have (1, FRAC_STEPa 1 Q 1) //a (1, [y; 0]) ≻k−δ (j, v⃗) hence we can apply the
induction hypothesis (k − δ < k) and we get Q //F y ↓. Combining with Q //F x ≻ y, we
conclude Q //F x ↓.

An RPO-Based Ordering Modulo Permutation
Equations and Its Applications to Rewrite Systems
Dohan Kim #

Clarkson University, Potsdam, NY, USA

Christopher Lynch #

Clarkson University, Potsdam, NY, USA

Abstract
Rewriting modulo equations has been researched for several decades but due to the lack of suitable
orderings, there are some limitations to rewriting modulo permutation equations. Given a finite set
of permutation equations E, we present a new RPO-based ordering modulo E using (permutation)
group actions and their associated orbits. It is an E-compatible reduction ordering on terms with
the subterm property and is E-total on ground terms. We also present a completion and ground
completion method for rewriting modulo a finite set of permutation equations E using our ordering
modulo E. We show that our ground completion modulo E always admits a finite ground convergent
(modulo E) rewrite system, which allows us to obtain the decidability of the word problem of ground
theories modulo E.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases Recursive Path Ordering, Permutation Equation, Permutation Group,
Rewrite System, Completion, Ground Completion

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.19

1 Introduction

Equations with permutations of variables occur frequently in mathematics and computer
science. An equation is called a permutation equation [1] if it is of the form f(x1, . . . , xn) =
f(xρ(1), . . . , xρ(n)), where ρ is a permutation on [n] (i.e. the set {1, . . . , n}). A suitable
ordering modulo permutation equations in the context of term rewriting has not been
well-studied, although the modulo approach is natural for term rewriting with permutation
equations. (For example, a simple permutation equation, such as f(x, y) ≈ f(y, x), cannot
be oriented into a rewrite rule by well-founded orderings.) If there existed an E-compatible
reduction ordering ≻E for a set of permutation equations E, then it can be used for the
extended rewrite system for R modulo E, denoted by R, E [11,20]. (In this paper, an ordering
modulo E and an E-compatible ordering are used interchangeably.) In particular, such an
ordering ≻E provides a simple termination criterion for R, E, i.e., R, E is terminating if
l ≻E r for all rules l→ r ∈ R [11, 20].

The recursive path ordering (RPO) [3, 11, 24] is one of the most well-known orderings for
term rewriting and equational theorem proving. The main underlying idea of RPO is that,
roughly speaking, two terms are first compared by their top symbols and the collections
of their immediate subterms are recursively compared. Given a total precedence ≻F on a
finite set of function symbols F ,1 the recursive path ordering with status [3, 10, 11, 24, 27] on
T (F ,X) is defined in such a way that s ≻ x if and only if s ̸= x and x is a variable in s, or
else s = f(s1, . . . , sm) ≻ g(t1, . . . , tn) = t if and only if

1 In this paper, we assume that a set of function symbols F in T (F ,X) is finite and each function symbol
in F has a fixed (bounded) arity. We also assume that a precedence ≻F on F is total on F .

© Dohan Kim and Christopher Lynch;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 19; pp. 19:1–19:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dohkim@clarkson.edu
mailto:clynch@clarkson.edu
https://doi.org/10.4230/LIPIcs.FSCD.2021.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 An RPO-Based Ordering Modulo Permutation Equations

(i) si ⪰ t for some i ∈ [m], or
(ii) f ≻F g and s ≻ ti for all i ∈ [n], or
(iii) f = g ∈ Lex (and hence m = n), <s1, . . . , sm> ≻lex <t1, . . . , tm>, and s ≻ ti for all

i ∈ [m], or
(iv) f = g ∈Mul (and hence m = n), and {s1, . . . , sm} ≻mul {t1, . . . , tm},

where Lex (resp. Mul) denotes the set of function symbols with the lexicographic
(resp. multiset) status, and ≻lex (resp. ≻mul) denotes the lexicographic (resp. multiset)
extension of ≻.

In [18, 26–28], RPO is adapted for an AC-compatible (resp. A-compatible) simplification
ordering on terms that is AC-total (resp. A-total) on ground terms, where AC (resp. A)
denotes the associative and commutative (resp. associativity) theory (cf. [23]). (There is
also an RPO-like termination relation for a certain class of equations including associativity
(see [8, 9] for details).) An RPO is also briefly described in Section 6.1 of [24] for an ordering
modulo some simple permutation equations without providing a formal proof.2 To our
knowledge, an E-compatible simplification ordering on terms that is E-total on ground terms
for any finite set of permutation equations E has not been studied in the literature.

Meanwhile, a completion procedure [5, 6, 20,21] for a rewrite system provides a decision
procedure for proving the validity of an equational theorem if the procedure generates a finite
convergent rewrite system. A completion procedure was extended to a completion procedure
modulo a set of equations E [6,16,25] for constructing a rewrite system that admits a unique
normal form w.r.t. the congruence induced by E. In particular, ground completion modulo
E for a ground rewrite systems R provides a decision procedure for the word problem of
ground theories modulo E if it generates a finite convergent (modulo E) rewrite system.

In this paper, we present an RPO-based E-compatible simplification ordering ≻E on
terms that is E-total on ground terms for a finite set of permutation equations E. Then we
adapt the existing completion modulo a congruence approach to our completion modulo E

procedure using the ordering ≻E . We also present our ground completion modulo E and
show that it always admits a finite ground convergent (modulo E) rewrite system for a finite
set of permutation equations E.

2 Preliminaries

We assume that the reader has some familiarity with term rewriting [11,20]. The definitions in
this section can be found in [3–5,11,24,27]. (For general references on RPOs, see Section 2.2
in [24], Section 5.4.2 in [3], Section 4 in [11], and [10].) In this paper, we usually denote
variables by x, y, z, etc., constants by a, b, c, etc., function symbols by f, g, h, etc., and terms
by r, s, t, etc., possibly with subscripts. We denote by [n] the set {1, . . . , n}.

We denote by T (F ,X) the set of terms over a finite set of function symbols F and a
denumerable set of variables X . An equation is an expression s ≈ t, where s and t are
(first-order) terms built from F and X . A ground term (resp. ground equation) is a term
(resp. an equation) which does not contain any variable.

We write s[u] if u is a subterm of s and denote by s[t]p the term that is obtained from s

by replacing the subterm at position p of s by t.

2 Our approach uses orbits discussed in the next section, which takes polynomial time for finding them [13].
Without using the group-theoretical approach, the problem of finding the corresponding equivalence
classes using permutation equations may take exponential time if one uses traditional equational
reasoning approaches [2].

D. Kim and C. Lynch 19:3

An equivalence is a reflexive, transitive, and symmetric binary relation. An equivalence
∼ on terms is a congruence if s ∼ t implies u[s]p ∼ u[t]p for all terms s, t, u and positions p.

An equational theory is a set of equations. We denote by ≈E the least congruence on
T (F ,X) that is stable under substitutions and contains a set of equations E. If s ≈E t for
two terms s and t, then s and t are E-equivalent.

A (strict) ordering ≻ on terms is an irreflexive and transitive relation on T (F ,X).
An ordering ≻ on terms is monotonic if s ≻ t implies u[s] ≻ u[t] for all s, t, and non-empty

contexts u. An ordering ≻ on terms is stable under substitutions if s ≻ t implies sσ ≻ tσ for
all s, t, and substitutions σ.

An ordering ≻ on terms is a rewrite ordering if it is monotonic and stable under substitu-
tions. A well-founded rewrite ordering is a reduction ordering.

An ordering ≻ on terms has the subterm property if t[s]p ≻ s for all s, t, and p ̸= λ. (We
denote by λ the top position.) An ordering ≻ on terms is a simplification ordering if it is a
rewrite ordering with the subterm property. (We do not need the deletion property [11] for a
simplification ordering because we assume that each function symbol has a fixed bounded
arity in this paper.)

An ordering ≻ on terms is well-founded if there is no infinite sequence t1 ≻ t2 ≻ · · · .
An ordering ≻ on terms is E-compatible if s′ ≈E s ≻ t ≈E t′ implies s′ ≻ t′ for all s, s′, t

and t′. An ordering ≻ on ground terms is E-total if s ̸≈E t implies s ≻ t or t ≻ s for all
ground terms s and t.

Given a rewrite system R and a set of equations E, the rewrite relation →R,E on T (F ,X)
is defined by s →R,E t if there is a non-variable position p in s, a rewrite rule l → r ∈ R,
and a substitution σ such that s|p≈E lσ and t = s[rσ]p. (In this case, we may also write
s→l→r,σ

R,E t or simply s→l→r
R,E t.) The transitive and reflexive closure of →R,E is denoted by

∗−→R,E . We say that a term t is a R, E-normal form if there is no term t′ such that t→R,E t′.
The rewrite relation →R/E on T (F ,X) is defined by s →R/E t if there are terms u

and v such that s ≈E u, u →R v, and v ≈E t. We simply say the rewrite relation →R/E

(resp.→R,E) on T (F ,X) as the rewrite relation R/E (resp. R, E).
The rewrite relation R, E is Church-Rosser modulo E if for all terms s and t with

s
∗←→R∪E t, there are terms u and v such that s

∗−→R,E u
∗←→E v

∗←−R,E t. The rewrite relation
R, E is convergent modulo E if R, E is Church-Rosser modulo E and R/E is well-founded.

The substitution σ is more general modulo E on X than the substitution θ, denoted by
σ ≤X

E θ, if there exists a substitution τ such that xθ≈Exστ for all x ∈ X.
Let s and t be terms, and let V be the set of all variables occurring in s and t. Then s

and t are E-unifiable if there exists a substitution σ, called an E-unifier, such that sσ ≈E tσ.
A set of E-unifiers of s and t is complete, denoted by CSUE(s, t), if for every E-unifier τ

of s and t, there exists a substitution σ ∈ CSUE(s, t) such that σ ≤V
E τ . A complete set of

E-unifiers of s and t is minimal, denoted by µCSUE(s, t), if for all σ and σ′ in CSUE(s, t),
σ ≤V

E σ′ implies σ = σ′.
The multiset extension of ≈E is defined as the smallest relation ≈mul

E on multisets of
terms such that ∅ ≈mul

E ∅ and M ∪ {s} ≈mul
E M ′ ∪ {t} if s ≈E t ∧M ≈mul

E M ′.
Let ≻e be an E-compatible ordering on terms. The lexicographic extension of ≻e

w.r.t. ≈E is the relation ≻lex
e on n-tuples of terms defined by <s1, . . . , sn> ≻lex

e <t1, . . . , tn>

if s1 ≈E t1, . . . , sk−1 ≈E tk−1 and sk ≻e tk for some k ∈ [n]. The multiset extension
of ≻e w.r.t. ≈E is defined as the smallest ordering ≻mul

e on multisets of terms such that
M ∪ {s} ≻mul

e N ∪ {t1, . . . , tn} if M ≈mul
E N and s ≻e ti for all i ∈ [n].

▶ Lemma 1. Let ≻e be an E-compatible ordering on terms.
(i) If ≻e is transitive, then both ≻lex

e and ≻mul
e are transitive.

(ii) If M ′ ≈mul
E M ≻mul

e N ≈mul
E N ′, then M ′ ≻mul

e N ′ for all multisets of terms M, M ′, N

and N ′.

FSCD 2021

19:4 An RPO-Based Ordering Modulo Permutation Equations

2.1 Leaf permutative equations and permutation groups
We will mainly use the notations and definitions of leaf permutative equations and permutation
groups given in [2, 15].

An equation of the form s ≈ s′ is leaf permutative [2] if s and s′ are linear terms (i.e. no
variable occurs twice in s and s′) that have the same set of variables and are variants of each
other. (Two terms are variants if they are instances of each other.) A set of leaf permutative
equations {s1 ≈ t1, . . . , sn ≈ tn} is uniform if for all i and j, si and sj are variants.

If C[x1, . . . , xn] ≈ C[xρ(1), . . . , xρ(n)] is a leaf permutative equation for which all variables
are indicated explicitly, then C is the context of this equation. We use variable naming in
such a way that the left-hand side of each equation in a uniform set of leaf permutative
equations has the same name of variables x1, . . . , xk from left to right.

If e := C[x1, . . . , xn] ≈ C[xρ(1), . . . , xρ(n)] is a leaf permutative equation for which all
variables are indicated explicitly, then ρ is the permutation of this equation. We denote by
π[e] the permutation of e. For example, ρ is the permutation of the leaf permutative equation
e′ := f(g(x1, x2), x3) ≈ f(g(x1, x3), x2) (i.e. π[e′] = ρ) with ρ(1) = 1, ρ(2) = 3, and ρ(3) = 2.

Let E be a uniform set of leaf permutative equations. Then Π[E] is defined as Π[E] :=
{π[e] | e ∈ E}. The permutation group generated by Π[E] is denoted by <Π[E]>.

▶ Theorem 2 ([2, Theorem 1.4]). Let E be a set of leaf permutative equations and let e

be a leaf permutative equation such that E ∪ {e} is uniform. Then E |= e if and only if
π[e] ∈ <Π[E]>.

▶ Example 3. Let E = {f(x1, x2, x3, x4) ≈ f(x2, x1, x3, x4), f(x1, x2, x3, x4) ≈ f(x2, x3, x4,

x1)}. Then Π[E] consists of two cycles {(1 2), (1 2 3 4)}. Since the two cycles (1 2) and (1 2 3 4)
generate the symmetric group S4, <Π[E]> is S4. Then f(x1, . . . , x4) ≈E f(xρ(1), . . . , xρ(4))
for any permutation ρ ∈ S4 by Theorem 2.

Let G be a group with the identity element I. A (left) action of G on a set X is a function
G×X → X such that for all x ∈ X and all g1, g2 ∈ G: (i) Ix = x, and (ii) (g1g2)x = g1(g2x).
When such an action is given, we say that G acts (left) on the set X, and X is a G-set.

Let X be a G-set. For xi, xj ∈ X, let xi ∼ xj if and only if there exists some g ∈ G

such that gxi = xj . Then, ∼ is an equivalence relation on X. The equivalence classes on X

determined by ∼ are orbits of G on X.

▶ Example 4. Let E = {f(x1, x2, x3, x4) ≈ f(x2, x1, x3, x4), f(x1, x2, x3, x4) ≈ f(x1, x2, x4,

x3)}. Then Π[E] consists of two cycles {(1 2), (3 4)}. Let <Π[E]> act on the set X =
{x1, x2, x3, x4} by gxi = xg(i) for all g ∈ <Π[E]>. Then the orbits of <Π[E]> on X are
{x1, x2} and {x3, x4}.

3 An ordering modulo a set of permutation equations

An equation of the form f(x1, . . . , xn) ≈ f(xρ(1), . . . , xρ(n)) is a permutation equation [1] if ρ

is a permutation on [n], which is a restricted form of a leaf permutative equation. In this
section, given a set of permutation equations E, we provide an E-compatible simplification
ordering on terms that is E-total on ground terms.

Let E be a finite set of permutation equations, where a permutation equation is a restric-
ted form of a leaf permutative equation. Then E can be uniquely decomposed as

⋃n
i=1 Ei

such that (i) each Ei is a finite set of permutation equations, and (ii) Ej and Ek with j ≠ k

are disjoint such that if sj ≈ tj ∈ Ej and sk ≈ tk ∈ Ek, then sj and sk do not have the same
top symbol (and are not variants of each other). Since we assume that each function symbol

D. Kim and C. Lynch 19:5

has a fixed arity, each distinct function symbol occurring in E corresponds to a distinct Ei

in E. We denote by Eq(f) the corresponding equational theory with terms headed by such a
function symbol f . We also denote by FE the set of all function symbols occurring in E and
by Lex the set of all other function symbols in F in T (F ,X) so that F is split into FE and
Lex, i.e., F = FE ∪ Lex. (For comparison, given a total precedence ≻F on F , if F is simply
F = Lex, then the recursive path ordering ≻ (see the lexicographic path ordering (LPO) [11])
is total on ground terms, but not necessarily E-compatible on ground terms.)

Given t = f(s1, . . . , sn) with f(x1, . . . , xn) ≈ f(xp(1), . . . , xp(n)) ∈ E for some permuta-
tion p on [n], let <Π[Eq(f)]> act on the set X = {x1, . . . , xn} by ρxi = xρ(i) for all
ρ ∈ <Π[Eq(f)]>. We denote each orbit of <Π[Eq(f)]> on X by Ok(f, E). (Here X is
understood from f ∈ FE and E.) By Orbitk(f, t) we denote that each xi in Ok(f, E) is
substituted by si. (Note that S = {s1, . . . , sn} can be a multiset, so we first let <Π[Eq(f)]>
act on the set X = {x1, . . . , xn} instead of a (possibly) multiset S = {s1, . . . , sn}, and
then replace each xi in Ok(f, E) with si in order to obtain Orbitk(f, t).) The number
k in Ok(f, E) is assigned (consecutively starting with 1) in a natural way such that if
ki < kj for Oki

(f, E) and Okj
(f, E), then ri < rj for xri

and xrj
, where xri

(resp. xrj
)

is the variable with the smallest index in Oki
(f, E) (resp. Okj

(f, E)). For example, con-
sider E = {f(x1, x2, x3, x4) ≈ f(x2, x1, x3, x4), f(x1, x2, x3, x4) ≈ f(x1, x2, x4, x3)} (see
Example 4) and t = f(a, b, c, d). Then we have O1(f, E) = {x1, x2}, O2(f, E) = {x3, x4},
Orbit1(f, t) = {a, b}, and Orbit2(f, t) = {c, d}. Note that we only need to compute Ok(f, E)
once using <Π[Eq(f)]>. Then it is easy to obtain Orbitk(f, t) from Ok(f, E) for any term t

headed by f ∈ FE . In the following definition, we assume that a total precedence ≻F on a
finite set of function symbols F is given. We denote by s ⪰E t either s ≻E t or s ≈E t.

▶ Definition 5. Given a finite set of permutation equations E, let s = f(s1, . . . , sm) and
t = g(t1, . . . , tn) be terms in T (F ,X). Then s ≻E x if and only if x is a variable in s, or
else s ≻E t if and only if

(i) si ⪰E t for some i ∈ [m], or
(ii) f ≻F g and s ≻E ti for all i ∈ [n], or
(iii) f = g ∈ Lex, <s1, . . . , sm>≻lex

E <t1, . . . , tm>, and s ≻E ti for all i ∈ [m], or
(iv) f = g ∈ FE and there is some positive j such that Orbit1(f, s) ≈mul

E Orbit1(g, t), . . . ,

Orbitj−1(f, s) ≈mul
E Orbitj−1(g, t), Orbitj(f, s) ≻mul

E Orbitj(g, t), and s ≻E ti for all
i ∈ [m].

The following lemma directly follows from the definition of Orbitj(f, t) and ≈E .

▶ Lemma 6. Given a finite set of permutation equations E, let s = f(s1, . . . , sn) and
t = f(t1, . . . , tn) be terms in T (F ,X) with f ∈ FE. Then s ≈E t if and only if
Orbit1(f, s) ≈mul

E Orbit1(f, t), . . . , Orbitk(f, s) ≈mul
E Orbitk(f, t), where k is the number

of orbits of <Π[Eq(f)]> on X = {x1, . . . , xn}.

▶ Example 7. Let E = {f(x1, x2, x3, x4) ≈ f(x2, x1, x3, x4), f(x1, x2, x3, x4) ≈ f(x2, x3, x4,

x1)} (see Example 3) and consider two terms s = f(d, c, b, g(a)) and t = f(a, b, c, d) with
f ≻F g ≻F a ≻F b ≻F c ≻F d. Then E is simply decomposed into E = E1. We have s ≻E t

by Case (iv), since Orbit1(f, s) = {d, c, b, g(a)} ≻mul
E {a, b, c, d} = Orbit1(f, t), s ≻E a,

s ≻E b, s ≻E c, and s ≻E d. It is easy to verify that {d, c, b, g(a)} ≻mul
E {a, b, c, d} since

g(a) ≻E a by Case (i). We leave it to the reader to verify that s ≻E a, s ≻E b, s ≻E c, and
s ≻E d. (This is clear once we have the subterm property of ≻E (see Lemma 13).)

▶ Example 8. Let E = {f(x1, x2, x3, x4) ≈ f(x2, x1, x3, x4), f(x1, x2, x3, x4) ≈ f(x1, x2, x4,

x3)} (see Example 4) and consider two terms s = f(x, a, c, a) and t = f(a, x, b, c) with
f ≻F a ≻F b ≻F c. Then E is simply decomposed into E = E1. We have s ≻E t by

FSCD 2021

19:6 An RPO-Based Ordering Modulo Permutation Equations

Case (iv), since Orbit1(f, s) = {x, a} ≈mul
E {a, x} = Orbit1(f, t), Orbit2(f, s) = {c, a} ≻mul

E

{b, c} = Orbit2(f, t), s ≻E a, s ≻E x, s ≻E b, and s ≻E c. It is easy to verify that
{c, a} ≻mul

E {b, c} since a ≻E b. We leave it to the reader to verify that s ≻E a, s ≻E x,
s ≻E b, and s ≻E c.

▶ Example 9. Let E = {f(x1, x2) ≈ f(x2, x1), g(x1, x2, x3) ≈ g(x2, x1, x3), g(x1, x2, x3) ≈
g(x1, x3, x2)} and consider two terms s = h(f(a, g(b, a, x)), a) and t = h(f(g(a, x, b), a), b)
with h ≻F f ≻F g ≻F a ≻F b. Then E is decomposed into E1 ∪ E2, where E1 =
{f(x1, x2) ≈ f(x2, x1)} and E2 = {g(x1, x2, x3) ≈ g(x2, x1, x3), g(x1, x2, x3) ≈ g(x1, x3, x2)}.
We have s ≻E t by Case (iii), since f(a, g(b, a, x)) ≈E f(g(a, x, b), a) by Lemma 6, a ≻E b,
s ≻E f(g(a, x, b), a), and s ≻E b. We may verify that s ≻E f(g(a, x, b), a) by Case (i) and
Lemma 6. We leave it to the reader to verify that s ≻E b.

▶ Example 10. Let E = {f(x1, x2) ≈ f(x2, x1), g(x1, x2, x3) ≈ g(x2, x1, x3)} and consider
two terms s = f(c, g(b, a, a)) and t = f(g(a, b, b), c) with f ≻F g ≻F a ≻F b ≻F c. Then E

is decomposed into E1 ∪ E2, where E1 = {f(x1, x2) ≈ f(x2, x1)} and E2 = {g(x1, x2, x3) ≈
g(x2, x1, x3)}. We have s ≻E t by Case (iv), since Orbit1(f, s) = {c, g(b, a, a)} ≻mul

E

{g(a, b, b), c} = Orbit1(f, t) by g(b, a, a) ≻E g(a, b, b), s ≻E g(a, b, b), and s ≻E c. We
may verify that g(b, a, a) ≻E g(a, b, b) by Case (iv), since Orbit1(g, g(b, a, a)) = {b, a} ≈mul

E

{a, b} = Orbit1(g, g(a, b, b)), Orbit2(g, g(b, a, a)) = {a} ≻mul
E {b} = Orbit2(g, g(a, b, b)),

g(b, a, a) ≻E a, and g(b, a, a) ≻E b. We leave it to the reader to verify that s ≻E g(a, b, b),
s ≻E c, g(b, a, a) ≻E a, and g(b, a, a) ≻E b.

In the following, we denote by V ars(t) the set of variables occurring in t and by top(t)
the top symbol of t.

▶ Lemma 11. ≻E is E-compatible.

Proof. Let s, s′, t, and t′ be terms with s′ ≈E s ≻E t ≈E t′. We show that s′ ≻E t′. If t is
a variable, then s ̸= t and t ∈ V ars(s). We may infer that t = t′ and s′ is not a variable.
Since s′ is not a variable with V ars(s) = V ars(s′), we have s′ ≠ t′ and t′ ∈ V ars(s′), and
thus s′ ≻E t′. Therefore, we assume that t is not a variable and let s = f(s1, . . . , sm) and
t = g(t1, . . . , tn). We proceed by induction on |s|+ |t|. (Note that we do not need to consider
s′ ≈E s (resp. t ≈E t′) on the top position for the following 1 (resp. 2)).
1. If s ≻E t by Case (i), then we have si ⪰E t for some i ∈ [m]. Then s′ is of the form

s′ = f(s′
1, . . . , s′

m) with sk ≈E s′
ρ(k) for all k ∈ [m] and some (permutation) ρ ∈ Sm.

Since s′
ρ(i) ⪰E t′ for some i ∈ [m] by induction hypothesis, we have s′ ≻E t′ by Case (i).

2. If s ≻E t by Case (ii), then we have f ≻F g and s ≻E ti for all i ∈ [n]. Then t′ is
of the form t′ = g(t′

1, . . . , t′
n) with tk ≈E t′

π(k) for all k ∈ [n] and some π ∈ Sn. Since
top(s′) = f ≻F g = top(t′) and s′ ≻E t′

π(i) for all i ∈ [n] by induction hypothesis, we
have s′ ≻E t′ by Case (ii).

3. If s ≻E t by Case (iii), then we have f = g ∈ Lex, <s1, . . . , sm> ≻lex
E <t1, . . . , tm>, and

s ≻E ti for all i ∈ [m]. Then s′ is of the form s′ = f(s′
1, . . . , s′

m) with sk ≈E s′
k for all

k ∈ [m] and t′ is of the form t′ = g(t′
1, . . . , t′

m) with tk ≈E t′
k for all k ∈ [m]. By induction

hypothesis, we have <s′
1, . . . , s′

m> ≻lex
E <t′

1, . . . , t′
m> and s′ ≻E t′

i for all i ∈ [m], and
thus we have s′ ≻E t′ by Case (iii).

4. If s ≻E t by Case (iv), then we have f = g ∈ FE , and there is some positive j such that
Orbit1(f, s) ≈mul

E Orbit1(g, t), . . . , Orbitj−1(f, s) ≈mul
E Orbitj−1(g, t), Orbitj(f, s) ≻mul

E

Orbitj(g, t), and s ≻E ti for all i ∈ [m]. Then s′ is of the form s′ = f(s′
1, . . . , s′

m)
with sk ≈E s′

ρ(k) for all k ∈ [m] and some ρ ∈ <Π[Eq(f)]> and t′ is of the form t′ =
g(t′

1, . . . , t′
m) with tk ≈E t′

π(k) for all k ∈ [m] and some π ∈ <Π[Eq(g)]>. By the definition

D. Kim and C. Lynch 19:7

of ≈mul
E , we have Orbitk(f, s′) ≈mul

E Orbitk(f, s) and Orbitk(g, t) ≈mul
E Orbitk(g, t′) for

all k ∈ [j − 1], which implies that Orbitk(f, s′) ≈mul
E Orbitk(g, t′) for all k ∈ [j − 1].

Furthermore, by induction hypothesis and Lemma 1(ii), we have Orbitj(f, s′) ≻mul
E

Orbitj(g, t′) and s′ ≻E t′
π(i) for all i ∈ [m], and thus we have s′ ≻E t′ by Case (iv).

(We may apply Lemma 1(ii) here because the induction hypothesis implies that ≻E is
E-compatible for all terms r and u with r ≻E u and |r|+ |u| < |s|+ |t|.) ◀

▶ Lemma 12. ≻E is transitive.

Proof. Suppose that r ≻E s and s ≻E t. Then r and s cannot be variables by Definition 5.
Let r = f(r1, . . . , rl) and s = g(s1, . . . , sm). If t is a variable, then t ∈ V ars(s). We leave
it to the reader to verify that t ∈ V ars(r) as well, which shows that r ≻E t. Therefore, we
assume that t is not a variable and let t = h(t1, . . . , tn). We show that r ≻E t by induction
on |r|+ |s|+ |t|.
1. If r ≻E s by Case (i), then ri ⪰E s for some i ∈ [l]. By induction hypothesis and the

E-compatibility of ≻E , we have ri ⪰E t, and thus r ≻E t by Case (i).
2. If s ≻E t by Case (i) and r ≻E s by Case (ii), (iii), or (iv), then we have r ≻E si for all

i ∈ [m] and sj ⪰E t for some j ∈ [m]. It follows that r ≻E sj ⪰E t for some j ∈ [m], and
thus r ≻E t by induction hypothesis and the E-compatibility of ≻E .

3. If r ≻E s and s ≻E t by Case (ii), (iii), or (iv), then f ⪰F h and s ≻E ti for all i ∈ [n].
3.1. If f ≻F h, then we have r ≻E ti for all i ∈ [n] by induction hypothesis, and thus

r ≻E t by Case (ii).
3.2. If f = g = h ∈ Lex with r ≻E s and s ≻E t by Case (iii), then we have

<r1, . . . , rl> ≻lex
E <t1, . . . , tl> and r ≻E ti for all i ∈ [l] by induction hypothesis

and Lemma 1(i) (using the E-compatibility of ≻E), and thus r ≻E t by Case (iii).
3.3. If f = g = h ∈ FE with r ≻E s and s ≻E t by Case (iv), then there is some positive

j such that Orbit1(f, r) ≈mul
E Orbit1(h, t), . . . , Orbitj−1(f, r) ≈mul

E Orbitj−1(h, t),
Orbitj(f, r) ≻mul

E Orbitj(h, t), and r ≻E ti for all i ∈ [l] by induction hypothesis
and Lemma 1(i) and (ii) (using the E-compatibility of ≻E), and thus r ≻E t by
Case (iv). ◀

▶ Lemma 13. ≻E has the subterm property.

Proof. By the transitivity of ≻E , it suffices to show that s = f(. . . t . . .) ≻E t. If t is a
variable, then we have t ∈ V ars(s), and thus s ≻E t. Therefore, we assume that t is not a
variable. Since t ⪰E t, we have s ≻E t by Case (i). ◀

▶ Lemma 14. ≻E is irreflexive.

Proof. Suppose, towards a contradiction, that there exists some t such that t ≻E t. If t is a
variable, then t ≻E t is not possible by Definition 5, which is a contradiction. Therefore, we
assume that t is not a variable and let t = f(t1, . . . , tn). We proceed by induction on |t|.
1. If t ≻E t by Case (i), then ti ⪰E t. On the other hand, we have t ≻E ti by the subterm

property of ≻E . Then by the E-compatibility and transitivity of ≻E , we have ti ≻E ti,
which is a contradiction by induction hypothesis.

2. If t ≻E t by Case (iii) or (iv), then there must exist some i ∈ [n] such that ti ≻E ti,
which is a contradiction by induction hypothesis. (Note that t ≻E t by Case (ii) is not
possible.) ◀

▶ Lemma 15. ≻E is monotonic.

FSCD 2021

19:8 An RPO-Based Ordering Modulo Permutation Equations

Proof. Let s ≻E t. We show that r = f(s1, . . . , si−1, s, si+1, . . . , sn) ≻E f(s1, . . . , si−1, t,

si+1, . . . , sn) = u, since the monotonicity of ≻E directly follows from this replace-
ment property of ≻E . By the subterm property of ≻E , we have r ≻E sj for all
j ∈ {1, . . . , i− 1, i + 1, . . . , n}. By the subterm property and transitivity of ≻E , we also have
r ≻E t.

If f ∈ Lex, then r ≻E u by Case (iii) because we have s1 ≈E s1, . . . , si−1 ≈E si−1 and s ≻E t.

If f ∈ FE , then there is some positive j such that s ∈ Orbitj(f, r) and t ∈ Orbitj(f, u)
and all other Orbitk(f, r) and Orbitk(f, u) are the same w.r.t. ≈mul

E . Since Orbitj(f, r) and
Orbitj(f, u) differ by only s and t, we have Orbitj(f, r) ≻mul

E Orbitj(f, u) by the definition
of ≻mul

E , and thus r ≻E u by Case (iv). ◀

▶ Lemma 16. ≻E is stable under substitutions.

Proof. Let s = f(s1, . . . , sm) ≻E t. If t is a variable, then t ∈ V ars(s) and tσ is a strict
subterm of sσ for all substitutions σ. By the subterm property of ≻E , we have sσ ≻E tσ.
Therefore, we assume that t is not a variable and let t = g(t1, . . . , tn). We show that sσ ≻E tσ

for all substitutions σ by induction on |s|+ |t|.
1. If s ≻E t by Case (i), then si ⪰E t for some i ∈ [m]. By induction hypothesis and the

stability under substitutions of ≈E , we have siσ ⪰E tσ, and thus sσ ≻E tσ by Case (i).
2. If s ≻E t by Case (ii), then f ≻F g and s ≻E ti for all i ∈ [n]. Since top(sσ) = f ≻F g =

top(tσ) and sσ ≻E tiσ for all i ∈ [n] by induction hypothesis, we have sσ ≻E tσ by Case
(ii).

3. If s ≻E t by Case (iii), then f = g ∈Lex, <s1, . . . , sm> ≻lex
E <t1, . . . , tm>, and s ≻E ti

for all i ∈ [m]. Then we have top(sσ) = f = g = top(tσ) ∈ Lex, <s1σ, . . . , smσ> ≻lex
E

<t1σ, . . . , tmσ>, and sσ ≻E tiσ for all i ∈ [m] by induction hypothesis and the stability
under substitutions of ≈E . Thus, sσ ≻E tσ by Case (iii).

4. If s ≻E t by Case (iv), then f = g ∈ FE , and there is some positive j such that
Orbit1(f, s) ≈mul

E Orbit1(g, t), . . . , Orbitj−1(f, s) ≈mul
E Orbitj−1(g, t), Orbitj(f, s) ≻mul

E

Orbitj(g, t), and s ≻E ti for all i ∈ [m]. Then we have top(sσ) = f =
g = top(tσ) ∈ FE and there is some positive j such that Orbit1(f, sσ) ≈mul

E

Orbit1(g, tσ), . . . , Orbitj−1(f, sσ) ≈mul
E Orbitj−1(g, tσ), Orbitj(f, sσ) ≻mul

E Orbitj(g, tσ),
and sσ ≻E tiσ for all i ∈ [m] by induction hypothesis and the stability under substitutions
of ≈E . Thus, sσ ≻E tσ by Case (iv). ◀

▶ Lemma 17. ≻E is E-total on ground terms.

Proof. Let s and t be ground terms such that s = f(s1, . . . , sm) and t = g(t1, . . . , tn). We
show that either s ≻E t or t ≻E s or s ≈E t by induction on |s|+ |t|. In the following, for all
s′ and t′ with |s′|+ |t′| < |s|+ |t|, we have either s′ ≻E t′ or t′ ≻E s′ or s′ ≈E t′ by induction
hypothesis.
1. If si ⪰E t for some i ∈ [m], then s ≻E t by Case (i).
2. Otherwise, if t ≻E si for all i ∈ [m], then we consider the following subcases:
2.1. If ti ⪰E s for some i ∈ [n], then t ≻E s by Case (i).
2.2. Otherwise, if s ≻E ti for all i ∈ [n], then we consider the following subcases:
2.2.1. If f ≻F g, then s ≻E t by Case (ii).
2.2.2. If g ≻F f , then t ≻E s by Case (ii).
2.2.3. If f = g (and hence m = n), then we consider the following subcases:
2.2.3.1. If sk ≈E tk for all k ∈ [m], then s ≈E t.

D. Kim and C. Lynch 19:9

2.2.3.2. If f = g ∈ Lex and s1 ≈E t1, . . . , sj−1 ≈E tj−1, and sj ≻E tj (resp. tj ≻E sj) for
some j ∈ [m], then s ≻E t (resp. t ≻E s) by Case (iii).

2.2.3.3. If f = g ∈ FE and Orbit1(f, s) ≈mul
E Orbit1(g, t), . . . , Orbitj−1(f, s) ≈mul

E

Orbitj−1(g, t), and Orbitj(f, s) ≻mul
E Orbitj(g, t) (resp. Orbitj(g, t) ≻mul

E Orbitj(f, s))
for some positive j, then s ≻E t (resp. t ≻E s) by Case (iv).

2.2.3.4. If f = g ∈FE and Orbit1(f, s)≈mul
E Orbit1(g, t), . . . , Orbitk(f, s)≈mul

E Orbitk(g, t),
where k is the number of orbits of <Π[Eq(f)]> on X = {x1, . . . , xm}, then s ≈E t.

Thus, we have either s ≻E t or t ≻E s or s ≈E t for each of the above cases by induction
hypothesis. ◀

Lemmas 11–17 now amount to the following theorem.

▶ Theorem 18. Let E be a finite set of permutation equations. Then ≻E is an E-compatible
simplification ordering on terms and is E-total on ground terms.

Since every simplification ordering on terms (i.e. T (F ,X)) is a reduction ordering [3, 24],
we have the following corollary from Theorem 18. (Recall that F is finite in this paper.)

▶ Corollary 19. Let E be a finite set of permutation equations. Then ≻E is an E-compatible
reduction ordering on terms with the subterm property and is E-total on ground terms.

Given a total precedence ≻F on a finite set of function symbols F and two terms s and
t, one can determine whether s ≻rpo t in time O(n2) (measured in n = |s|+ |t|) using the
dynamic programming approach [30, 31], where ≻rpo is the recursive path ordering with
status. Given a finite set of permutation equations E and two terms s and t, one can also
determine whether s ≈E t in time O(n2) (measured in n = |s| + |t|) using an additional
table that can be constructed in polynomial time [1]. In the following theorem, we assume
that this additional table and the orbits Ok(f, E) for each f ∈ FE are given for a (fixed)
finite set of permutation equations E. Note that Ok(f, E) can be computed only once in
polynomial time [13] for each f ∈ FE . Once we have the orbits Ok(f, E), it is easy to see
that every Orbitk(f, t) can be immediately obtained for any term t headed by f ∈ FE . For
the proof of the following theorem, we use the dynamic programming-like technique found in
Section 5 of [17]. Recall that our ordering ≻E assumes a total precedence ≻F on a finite set
of function symbols F .

▶ Theorem 20. Given a finite set of permutation equations E, we can determine whether
s ≻E t for two terms s and t in time O(n4) (measured in n = |s|+ |t|).

Proof. We construct a 2-dimensional array A of size |s| · |t| using a bottom-up approach.
First, we assume that all subterms of s have already been compared to all subterms of t with
the exception of s and t themselves. We also assume that the results are stored and easily
accessible in A in such a way that if si is a subterm of s at position p and tj is a subterm
of t at position q with p ̸= λ or q ̸= λ, then A[p, q] indicates whether si ≈E tj , si ≻E tj ,
tj ≻E si, or si and tj are incomparable.

Now we show that the time required to compare s and t, denoted by TCOMP (s, t), takes
O(n2) time using the above assumptions. We first test whether s ≈E t in O(n2) time. If
s ̸≈E t, then we proceed by case analysis in Definition 5. The straightforward comparisons
of all si with t for Case (i), and s with all ti for Case (ii) in the worst case using the existing
entries of A takes O(n) time. Similarly, it takes O(n) time to compare s and t for Case (iii)
using the existing entries of A. For Case (iv), since we already have the orbits Ok(f, E), it

FSCD 2021

19:10 An RPO-Based Ordering Modulo Permutation Equations

takes at most O(n) time to find every Orbitk(f, s) (and Orbitk(g, t) too). Then all si are
compared to all tj in the worst case using the existing entries of A, which takes O(n2) time.
This shows that TCOMP (s, t) takes O(n2) time.

Finally, it remains to sum up all possible TCOMP (si, tj) in a bottom-up way, where si is
a subterm of s and tj is a subterm of t. Since the number of subterms of s (resp. t) is bounded
above by O(|s|) (resp. O(|t|)), we have

∑
TCOMP (si, tj) = O(|s| · |t| ·TCOMP (s, t)), where

TCOMP (s, t) takes O(n2) time. Thus, s ≻E t can be determined in time O(n4). ◀

4 Completion modulo a set of permutation equations

Knuth-Bendix completion [21] (or simply completion) is a technique using equations as
rewrite rules and is used for solving the word problem for a finite set of equations. It is
often parameterized by a reduction ordering to ensure that the resulting rewrite system
terminates. If the procedure succeeds, then it yields a convergent rewrite system, which
allows one to solve the word problem for a given finite set of equations. If the procedure
encounters an unorientable equation w.r.t. a given reduction ordering, then it fails, i.e., the
procedure cannot be continued.

A permutation equation (e.g. a commutativity equation) often cannot be oriented into
a rewrite rule without losing the termination property, which causes the failure of the
completion procedure. Therefore, it is natural to view permutation equations as structural
axioms [5] (defining a congruence on terms) instead of viewing them as simplifiers (defining
a terminating rewrite relation on terms). In this situation, we need to consider completion
modulo E for a finite set of permutation equations E in order to construct a convergent
(modulo E) rewrite system R, where normal forms w.r.t. R are unique up to the congruence
induced by E. Here we are mainly concerned with the rewrite relation R, E instead of
R/E because R/E tends to be less efficient than R, E [5]. We give an adapted version of
completion modulo E in [5, 6, 20] for a finite set of permutation equations E using R, E in
this section. We first give the necessary definitions used in completion modulo E. In the
following, we denote by FPos(t) the set of non-variable positions of t.

▶ Definition 21 ([5, 20]). Let R be a rewrite system and E be a finite set of equations.
1. A proof for t ≈ t′ is a rewrite proof modulo E for R if for some t1 and t′

1, there is a
proof of the form t

∗−→R,E t1
∗←→E t′

1
∗←−R,E t′.

2. A peak is a proof of the form t1 ←R t →R,E t2 and a cliff is a proof of the form
t1 ↔E t→R,E t2 or t1 →R,E t↔E t2.

3. Given two rules s → t and l → r such that V ars(s) ∩ V ars(l) = ∅ and s|p and l are
E-unifiable at position p of FPos(s) with a minimal complete set of E-unifiers Ψ, the
set {u ≈ v |u = s[r]pσ, v = tσ, σ ∈ Ψ} is called a set of E-critical pairs of the rule l→ r

on s→ t at position p of FPos(s).
4. The set of E-critical pairs between the rules in a rewrite system R is denoted by CPE(R).

The set of E-critical pairs of the rules in R on the equations in E is denoted by CPE(R, E),
where an equation s ≈ t ∈ E is considered as a rule s→ t or t→ s.

If R, E is Church-Rosser modulo E, then every peak or cliff (see Definition 21) can be
replaced by a rewrite proof modulo E, where a proof is a rewrite proof modulo E if and only
if it contains no peak or cliff [5,6]. (Note that non-overlap peaks (resp. cliffs) and variable
overlap peaks (resp. cliffs) can always be replaced by rewrite proofs modulo E (see [5,6]).)
Conversely, if R, E is not Church-Rosser modulo E and R/E is terminating, then there is
some peak or cliff which cannot be replaced by a rewrite proof modulo E [5,6]. In completion

D. Kim and C. Lynch 19:11

P ∪ {p ≈ q}; R
ORIENT: if p ≻E q.

P ; R ∪ {p→ q}

P ; R
DEDUCE: if p ≈ q ∈ CPE(R).

P ∪ {p ≈ q}; R

P ∪ {p ≈ q}; R
SIMPLIFY: if p→R,E p′.

P ∪ {p′ ≈ q}; R

P ∪ {p ≈ q}; R
DELETE: if p

∗←→E q.
P ; R

P ; R ∪ {l→ r}
COMPOSE: if r →R,E r′.

P ; R ∪ {l→ r′}

P ; R ∪ {l→ r}
COLLAPSE: if l→g→d,σ

R,E l′ for g → d ∈ R and l→ r >>E g → d.
P ∪ {l′ ≈ r}; R

Above, ≻E is our E-compatible reduction ordering on terms and ⊐E denotes a proper
encompassment ordering modulo E, where E is a finite set of permutation equations.

Figure 1 Completion modulo a finite set of permutation equations E.

modulo E (or extended completion [5,6]), CPE(R) is used to eliminate peaks that are proper
overlaps, while either CPE(R, E) or EXTE(R) in the following definition is used to eliminate
cliffs that are proper overlaps (see [5,20]). We denote by −→E the set {s→ t, t→ s | s ≈ t ∈ E}.

▶ Definition 22 ([5, 16]). Let l→ r ∈ R and u→ v ∈
−→
E with V ars(l) ∩ V ars(u) = ∅, such

that some proper non-variable subterm u|p of u is E-unifiable with l. Then u[l]p → u[r]p is
the extended rule of l→ r w.r.t. E. The set of all extended rules in R w.r.t. E is denoted by
EXTE(R).

Observe that if E is a set of permutation equations, then EXTE(R) is the empty set for
any rewrite system R because every proper subterm u|p of u in Definition 22 is a variable.
Therefore, extended completion in [5,6] can be easily adapted for completion modulo a finite
set of permutation equations E without taking EXTE(R) into account. Note that we do not
need to compute CPE(R, E) either because cliffs that are proper overlaps do not occur with
E, which is also the reason why EXTE(R) is empty.

The proper encompassment ordering modulo E [20] is defined in such a way that l ⊐E g

if there is some substitution σ such that l|p
∗←→E gσ with p ̸= λ, or l ≈E gσ and σ is not a

renaming. In Figure 1, >>E is defined as follows: l→ r >>E g → d if l ⊐E g or l and g are
subsumption equivalent (w.r.t. ≈E) and r ≻E d (see Section 18.3 and 18.4 in [20]).

In the remainder of this section, we denote by P a set of equations, R a set of rewrite
rules, E a finite set of permutation equations, and by ≻E our E-compatible simplification
ordering on terms. Now we write P ; R ⊢ P ′; R′ to indicate that P ′; R′ can be obtained from
P ; R by application of an inference rule in Figure 1. A derivation is a sequence of states
P0; R0 ⊢ P1; R1 ⊢ · · · . Let P0; R0 ⊢ P1; R1 ⊢ · · · be a derivation. Then P∞ denotes the set of
persisting equations

⋃
i

⋂
j≥i Pj . Similarly, R∞ denotes the set of persisting rules

⋃
i

⋂
j≥i Rj .

A derivation is said to be fair [7] if any transition rule that is (continuously) enabled is

FSCD 2021

19:12 An RPO-Based Ordering Modulo Permutation Equations

P ∪ {p ≈ q}; R
ORIENT: if p ≻E q.

P ; R ∪ {p→ q}

P ∪ {p ≈ q}; R
SIMPLIFY: if p→R,E p′.

P ∪ {p′ ≈ q}; R

P ∪ {p ≈ q}; R
DELETE: if p

∗←→E q.
P ; R

P ; R ∪ {l→ r}
COMPOSE: if r →R,E r′.

P ; R ∪ {l→ r′}

P ; R ∪ {l→ r}
COLLAPSE: if l→g→d

R,E l′ for g → d ∈ R, and if l
∗←→E g, then r ≻E d.

P ∪ {l′ ≈ r}; R

Above, ≻E is our E-compatible total reduction ordering on ground terms with the
subterm property for a finite set of permutation equations E.

Figure 2 Ground completion modulo a finite set of permutation equations E.

applied eventually. If a derivation P0; R0 ⊢ P1; R1 ⊢ · · · is fair and P∞ = ∅ (i.e. non-failing),
then CPE(R∞) is a subset of

⋃
k Pk [5]. Since a finite permutation theory E has a finite

complete unification algorithm [1], and ≻E is E-compatible with the subterm property, the
following theorem is a direct adaptation of Theorem 18.4 in [20] and Theorem 3.21 in [5].

▶ Theorem 23. Let P0; R0 ⊢ P1; R1 ⊢ · · · be a fair derivation such that P0 is a finite set of
equations with R0 = ∅, and P∞ = ∅. Then R∞, E is convergent modulo E.

5 Ground completion modulo a set of permutation equations

It is known that the word problem of ground theories3 modulo E is decidable by using
ground completion modulo E for E = AC, AC ∪U (unit), AC ∪I (idempotent), AG (abelian
group theory), and undecidable for E = A (associativity), AC ∪ D (distributivity), and
G (group theory) (see [22] for details). We show that our ground completion modulo a
finite set of permutation equations E always admits a finite ground convergent (modulo E)
rewrite system, allowing us to provide a decision procedure for the word problem of ground
theories modulo E. In this section, we denote by P a set of ground equations, R a set of
ground rewrite rules, E a finite set of permutation equations, and by ≻E our E-compatible
simplification ordering on terms that is E-total on ground terms.

Note that the DEDUCE inference rule in Figure 1 is no longer needed for our ground
completion modulo E in Figure 2 because the inference steps by DEDUCE can be replaced by
other simplification inference steps, especially by COLLAPSE in Figure 2. Furthermore, an
encompassment ordering modulo E in Figure 1 is also no longer needed for the COLLAPSE
inference rule in Figure 2 for the ground case. We write P ; R ⊢ P ′; R′ to indicate that P ′; R′

can be obtained from P ; R by application of an inference rule in Figure 2.

3 By a ground theory, we mean an equational theory defined by a finite set of ground equations throughout
this paper.

D. Kim and C. Lynch 19:13

▶ Lemma 24. If P ; R ⊢ P ′; R′, then the congruence relations ∗←→E∪P ∪R and ∗←→E∪P ′∪R′ on
T (F) are the same.

Proof. We consider each application of an inference rule τ for P ; R ⊢ P ′; R′. If τ is
ORIENT, SIMPLIFY, DELETE, or COMPOSE, then the conclusion can be easily verified.
If τ is COLLAPSE, then let R = R′′ ∪ {l → r}, P ′ = P ∪ {l′ ≈ r}, and R′ = R′′. Since
(P∪R)−(P ′∪R′) = {l→ r}, we need to show that l

∗←→E∪P ′∪R′ r. As l
∗←→E l̂→g→d

R′ l′ ↔P ′ r

for some g → d ∈ R′′, we have l
∗←→E∪P ′∪R′ r. Conversely, since (P ′∪R′)−(P ∪R) = {l′ ≈ r},

we also need to show that l′ ∗←→E∪P ∪R r. As l′ ←g→d
R l̂

∗←→E l →R r for some g → d ∈ R′′,
we have l′ ∗←→E∪P ∪R r. Thus, the conclusion follows. ◀

▶ Definition 25. Let s = s[uσ] ↔ s[vσ] = t be a proof step with the equation (or rule)
u ≈ v ∈ E ∪ P ∪R. The complexity of this proof step is defined as follows:

(i) ({s},⊥, t) if u ≈ v ∈ E

(ii) ({s, t},⊥,⊥) if u ≈ v ∈ P

(iii) ({s}, u, t) if u→ v ∈ R

(iv) ({t}, v, s) if v → u ∈ R

Complexities of proof steps are lexicographically compared by ≻mul
E in the first component,

and ≻E in the second and the third component, where ⊥ is a new constant symbol and
is assumed to be minimal (w.r.t. ≻E). The complexity of a proof is the multiset of the
complexities of its proof steps [5, 7]. The ordering on proofs, denoted by ≻C , is the multiset
extension of the ordering on the complexities of proof steps. Since the multiset/lexicographic
extension of a well-founded ordering is still well-founded and ≻E is well-founded, we may
infer that ≻C is well-founded. By a ground proof in E ∪ P ∪ R of an equation s ≈ t with
s, t ∈ T (F), we mean a sequence of proof steps such that t0 = s, tn = t and for all ti ∈ T (F),
0 < i ≤ n, one of ti−1 ↔E ti, ti−1 ↔P ti, ti−1 →R ti, ti−1 ←R ti holds.

▶ Lemma 26. If P ; R ⊢ P ′; R′, then for any ground proof ρ in E ∪ P ∪ R of an equation
s ≈ t, there is a ground proof ρ′ in E ∪ P ′ ∪R′ of the equation s ≈ t such that ρ ⪰C ρ′.

Proof. We show that each equation in (P ∪R)− (P ′ ∪R′) has a smaller proof (w.r.t. ≻C) in
E ∪ P ′ ∪R′ by considering each case for P ; R ⊢ P ′; R′.

(i) ORIENT: The proof p ↔P q is transformed to the proof p →R′ q. Since
{({p, q},⊥,⊥)} ≻C {({p}, p, q)}, the newer proof p →R′ q is smaller (w.r.t. ≻C) than
the proof p↔P q.

(ii) SIMPLIFY: The proof p↔P q is transformed to the proof p
∗←→E p̂→R′ p′ ↔P ′ q. The

newer proof is smaller (w.r.t. ≻C) because p↔P q with the complexity {({p, q},⊥,⊥)}
is bigger (w.r.t. ≻C) than all proof steps in p

∗←→E p̂, p̂→R′ p′ and p′ ↔P ′ q in the first
component.

(iii) DELETE: The proof p↔P q is transformed to the proof p
∗←→E q. The proof p↔P q

with the complexity {({p, q},⊥,⊥)} is bigger (w.r.t. ≻C) than all proof steps in p
∗←→E q

in the first component.
(iv) COMPOSE: The proof l→R r is transformed to the proof l→R′ r′ ←R′ r̂

∗←→E r. The
newer proof is smaller (w.r.t. ≻C) because l →R r with the complexity {({l}, l, r)} is
bigger (w.r.t. ≻C) than (a) the proof step in l→R′ r′ in the third component, (b) the
proof step r′ ←R′ r̂ in the first component, and (c) all proof steps in r̂

∗←→E r in the
first component.

(v) COLLAPSE: The proof l →R r is transformed to the proof l
∗←→E l̂ →g→d

R′ l′ ↔P ′ r

for some g → d ∈ R′. The newer proof is smaller (w.r.t. ≻C) because l→R r with the
complexity {({l}, l, r)} is bigger (w.r.t. ≻C) than (a) all proof steps in l

∗←→E l̂ in the
second component, (b) the proof step l̂→g→d

R′ l′ in the second (resp. third) component
if l ̸ ∗←→E g (resp. l

∗←→E g), and (c) the proof step l′ ↔P ′ r in the first component. ◀

FSCD 2021

19:14 An RPO-Based Ordering Modulo Permutation Equations

Note that if P0; R0 ⊢ P1; R1 ⊢ · · · is a fair derivation, then P∞ = ∅ (i.e. non-failing)
because ≻E is E-total on ground terms.

▶ Theorem 27. Let P0; R0 ⊢ P1; R1 ⊢ · · · be a fair derivation such that P0 is a finite set of
ground equations with R0 = ∅. Then the set of persisting rules R∞ is finite and R∞, E is
ground convergent modulo E.

Proof. Suppose that P0; R0 ⊢ P1; R1 ⊢ · · · is a fair derivation such that P0 is a finite set
of ground equations with R0 = ∅. We first define a simple measure of a state Pk; Rk as
the multiset {{{s, t}} | s ≈ t ∈ Pk} ∪ {{{s}, {t}} | s → t ∈ Rk} (cf. [7]). Two states are
compared by these measures using the threefold multiset extension of ≻E . It is easy to see
that any application of an inference rule for a transition Pk; Rk ⊢ Pk+1; Rk+1 reduces this
measure. Since the multiset extension of a well-founded ordering is still well-founded and ≻E

is well-founded, we may infer that any fair derivation starting from P0; R0 is finite. Therefore,
R∞ is finite with P∞ = ∅. Since l ≻E r for all rules l→ r ∈ R∞, R∞/E is also terminating.

Now it remains to show that R∞, E is ground Church-Rosser modulo E. We show that
all minimal (w.r.t. ≻C) proofs in E ∪R∞ are rewrite proofs modulo E.

Suppose that a proof is a minimal proof but not a rewrite proof modulo E. Then it
should contain either a peak (or a cliff) that is a proper overlap (cf. [5]). (Note that every
peak or cliff that is a non-overlap or a variable overlap can be replaced by a rewrite proof
modulo E (see pp. 47–50 in [5]), which is smaller (w.r.t. ≻C) than the original peak or cliff,
so this is not the case.)

Now consider such a peak t1 ←R∞ t→R∞,E t2 that is a proper overlap. (Since EXTE(R)
is empty, we do not need to consider a cliff that is a proper overlap.) By the Extended
Critical Pair Lemma [6, 16], it can be replaced by a proof t1

∗←→E t′ ↔CPE(R∞) t′′ ∗←→E t2.
Since CPE(R∞) ⊆

⋃
k Pk by fairness of the derivation, there is a ground proof t1

∗←→E t′ ↔Pk

t′′ ∗←→E t2 for some k. We name this proof as ρ. We see that the ground proof ρ in E ∪ Pk is
strictly smaller (w.r.t. ≻C) than the original peak t1 ←R∞ t→R∞,E t2. Since P∞ = ∅, there
is a ground proof ρ′ in E ∪R∞ such that ρ ⪰C ρ′ by Lemma 26. Now we may infer that ρ′ is
strictly smaller (w.r.t. ≻C) than the original peak t1 ←R∞ t→R∞,E t2, which is the required
contradiction. ◀

By Theorem 27, the rewrite system R∞ constructed from a fair derivation P0; R0 ⊢
P1; R1 ⊢ · · · may serve as a decision procedure for the word problem of ground theories P0
modulo E.

▶ Corollary 28. Given a finite set of permutation equations E, the word problem of ground
theories modulo E is decidable.

The following example is a variant of the reachability problem [32] modulo a finite set of
permutation equations E.

▶ Example 29. Consider the following set of permutation equations:
E = {f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) ≈ f(x2, x1, x3, x4, x5, x6, x7, x8, x9, x10),

f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) ≈ f(x2, x3, x4, x5, x1, x6, x7, x8, x9, x10),
f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) ≈ f(x1, x2, x3, x4, x5, x7, x6, x8, x9, x10),
f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) ≈ f(x1, x2, x3, x4, x5, x7, x8, x9, x10, x6)}.

In this example, we may view each variable xi as a vertex in a graph with ten
vertices, where each vertex will be assigned to one of three colors: blue (b), red
(r), and white (w). Therefore, each ground term f(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10)

D. Kim and C. Lynch 19:15

with ci = b, r, or w represents a certain coloring of this graph. There is a trans-
ition function with a function symbol g ̸∈ FE , which transforms one coloring to
another coloring of the graph. We assign the precedence as g ≻F f ≻F b ≻F
r ≻F w. We see that

∏
[E] = {(1 2), (1 2 3 4 5), (6 7), (6 7 8 9 10)}, which means that

f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) ≈E f(xρ(1), xρ(2), xρ(3), xρ(4), xρ(5), x6, x7, x8, x9, x10)
for any permutation ρ on the set {1, 2, 3, 4, 5} and f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) ≈E

f(x1, x2, x3, x4, x5, xπ(6), xπ(7), xπ(8), xπ(9), xπ(10)) for any permutation π on the set {6, 7, 8, 9,

10} (see Thereom 2). Therefore, ten vertices are partitioned into two equivalence classes.
We may view them as two components, i.e. {x1, x2, x3, x4, x5} and {x6, x7, x8, x9, x10},
where the order of a coloring does not matter in each component. For example,
f(r, r, b, b, b, w, w, b, b, b) ≈E f(b, b, r, b, r, w, b, b, b, w). We start with the following set of
ground equations:4

1. g(f(b, b, b, b, b, b, b, b, b, b)) ≈ f(r, b, b, b, b, b, b, b, b, b)
2. g(f(b, b, r, b, b, b, b, b, b, b)) ≈ f(r, b, b, b, b, r, b, b, b, b)
3. f(r, b, b, b, b, b, b, b, b, b) ≈ f(w, b, b, b, b, b, b, b, b, b)
4. f(r, b, b, b, b, r, b, b, b, b) ≈ f(w, b, b, b, b, w, b, b, b, b)
5. g(f(w, b, b, b, b, w, b, b, b, b)) ≈ f(w, w, b, b, b, w, w, b, b, b)
6. f(w, w, b, b, b, w, w, b, b, b) ≈ f(r, r, b, b, b, r, r, b, b, b))
7. g(f(r, b, b, b, r, r, b, b, b, r)) ≈ f(r, r, r, r, r, r, r, r, r, r)

The problem is to determine if there is some i such that gi(f(b, b, b, b, b, b, b, b, b, b)) =
f(r, r, r, r, r, r, r, r, r, r), where f(b, b, b, b, b, b, b, b, b, b) is the initial state and f(r, r, r, r, r, r, r,

r, r, r) is the target state. (Here gi(t) denotes that the function symbol g is applied to term
gi−1(t) with g0(t) denoting t.) Now ground completion modulo E works (roughly) as follows:

1(a). g(f(b, b, b, b, b, b, b, b, b, b))→ f(r, b, b, b, b, b, b, b, b, b) ORIENT 1
2(a). g(f(b, b, r, b, b, b, b, b, b, b))→ f(r, b, b, b, b, r, b, b, b, b) ORIENT 2
3(a). f(r, b, b, b, b, b, b, b, b, b)→ f(w, b, b, b, b, b, b, b, b, b) ORIENT 3
1(b). g(f(b, b, b, b, b, b, b, b, b, b))→ f(w, b, b, b, b, b, b, b, b, b) COMPOSE 1(a), 3(a)
2(b). g(f(w, b, b, b, b, b, b, b, b, b)) ≈ f(r, b, b, b, b, r, b, b, b, b) COLLAPSE 2(a), 3(a)
2(c). g(f(w, b, b, b, b, b, b, b, b, b))→ f(r, b, b, b, b, r, b, b, b, b) ORIENT 2(b)
4(a). f(r, b, b, b, b, r, b, b, b, b)→ f(w, b, b, b, b, w, b, b, b, b) ORIENT 4
2(d). g(f(w, b, b, b, b, b, b, b, b, b))→ f(w, b, b, b, b, w, b, b, b, b) COMPOSE 2(c), 4(a)
5(a). g(f(w, b, b, b, b, w, b, b, b, b))→ f(w, w, b, b, b, w, w, b, b, b) ORIENT 5
6(a). f(r, r, b, b, b, r, r, b, b, b))→ f(w, w, b, b, b, w, w, b, b, b) ORIENT 6
7(a). g(f(w, w, b, b, b, w, w, b, b, b)) ≈ f(r, r, r, r, r, r, r, r, r, r) SIMPLIFY 6(a), 7
7(b). g(f(w, w, b, b, b, w, w, b, b, b))→ f(r, r, r, r, r, r, r, r, r, r) ORIENT 7(a)

We eventually obtain the ground convergent (modulo E) rewrite system R∞ (with
P∞ = ∅), which consists of the rewrite rules 1(b), 2(d), 3(a), 4(a), 5(a), 6(a), and 7(b). (It
is easy to see that the remaining rules 1(a), 2(a) and 2(c), and the remaining equations
2(b) and 7(a) are not persistent.) Now we see that g4(f(b, b, b, b, b, b, b, b, b, b)) →R∞,E

g3(f(w, b, b, b, b, b, b, b, b, b))→R∞,E g2(f(w, b, b, b, b, w, b, b, b, b))→R∞,E g(f(w, w, b, b, b, w,

w, b, b, b))→R∞,E f(r, r, r, r, r, r, r, r, r, r). Therefore, we may interpret that f(r, r, r, r, r, r, r,

4 We may consider the additional state transitions using a transformation function with symbol g, or
partition vertices in a different way with a different number of vertices using a different set of permutation
equations.

FSCD 2021

19:16 An RPO-Based Ordering Modulo Permutation Equations

r, r, r) is reachable from f(b, b, b, b, b, b, b, b, b, b) by means of iterative applications of the state
transition function with symbol g. Note that if g(f(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10)) is a
normal form w.r.t. R∞, E, then we may also interpret that f(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10)
is a fixed state (or a stable state) and cannot be further transformed to another state by an
application of the state transition function with symbol g.

6 Conclusion

We have presented an RPO-based E-compatible simplification ordering ≻E on terms that is
E-total on ground terms for a finite set of permutation equations E. Since permutation groups
naturally arise in sets of permutation equations, we have used permutation group theory for
≻E , especially permutation group actions and their associated orbits. Our ordering is simple
and can be adapted from the standard RPO widely used for rewrite systems and theorem
proving. Also, the computation of orbits in permutation groups can be done efficiently using
the existing permutation group algorithms [29] and software tools (e.g. GAP [12]). We have
shown that given two terms s and t, we can determine whether s ≻E t in polynomial time.

Our ordering ≻E provides a simple termination criterion for R, E (resp. R/E), that is,
R, E (resp. R/E) is terminating if l ≻E r for all rules l → r ∈ R. We have used ≻E for a
completion and ground completion procedure for R, E. Furthermore, our ground completion
modulo E always terminates with a finite ground convergent (modulo E) rewrite system,
which allows us to provide a decision procedure for the word problem of ground theories
modulo E. (It is also an interesting question whether other ground completion approaches
and formalisms (e.g. the abstract completion of [14]) can be extended for ground completion
modulo E for a finite set of permutation equations E using ≻E .)

Since permutations and combinations are widely used in mathematics and many fields of
science including computer science, developing applications of term rewriting and equational
theorem proving [19] with built-in permutation equations is one of the promising future
directions of the research discussed in this paper. For example, one may consider reachability
problems modulo E and its applications to hardware and software verification using our
ordering and rewriting modulo E approach for a finite set of permutation equations E.

References
1 Jürgen Avenhaus. Efficient Algorithms for Computing Modulo Permutation Theories. In

David Basin and Michaël Rusinowitch, editors, Automated Reasoning – IJCAR 2004, Cork,
Ireland, July 4–8, pages 415–429, Berlin, Heidelberg, 2004. Springer.

2 Jürgen Avenhaus and David A. Plaisted. General algorithms for permutations in equational
inference. Journal of Automated Reasoning, 26(3):223–268, 2001.

3 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
Cambridge, UK, 1998.

4 Franz Baader and Wayne Snyder. Unification Theory. In Handbook of Automated Reasoning,
Volume I, chapter 8, pages 445–532. Elsevier, Amsterdam, 2001.

5 Leo Bachmair. Canonical Equational Proofs. Birkhäuser, Boston, 1991.
6 Leo Bachmair and Nachum Dershowitz. Completion for rewriting modulo a congruence.

Theoretical Computer Science, 67(2):173–201, 1989.
7 Leo Bachmair, Ashish Tiwari, and Laurent Vigneron. Abstract congruence closure. Journal

of Automated Reasoning, 31(2):129–168, 2003.
8 Frédéric Blanqui. Rewriting Modulo in Deduction Modulo. In Robert Nieuwenhuis, editor,

Rewriting Techniques and Applications, pages 395–409, Berlin, Heidelberg, 2003. Springer.
9 Frédéric Blanqui. Termination of rewrite relations on λ-terms based on Girard’s notion of

reducibility. Theoretical Computer Science, 611:50–86, 2016.

D. Kim and C. Lynch 19:17

10 Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science,
17(3):279–301, 1982.

11 Nachum Dershowitz and David A. Plaisted. Rewriting. In Handbook of Automated Reasoning,
Volume I, chapter 9, pages 535–610. Elsevier, Amsterdam, 2001.

12 GAP Group. Groups, Algorithms, Programming, Version 4.8, 2016. http://www.gap-
system.org.

13 Sumanta Ghosh and Piyush P. Kurur. Permutation Groups and the Graph Isomorphism
Problem, pages 183–202. Springer, Cham, 2014.

14 Nao Hirokawa, Aart Middeldorp, Christian Sternagel, and Sarah Winkler. Abstract Completion,
Formalized. Logical Methods in Computer Science, 15:19:1–19:42, 2019.

15 Thomas W. Hungerford. Algebra. Springer, New York, NY, 1980.
16 Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules modulo a set of

equations. SIAM Journal on Computing, 15(4):1155–1194, 1986.
17 Deepak Kapur, Paliath Narendran, and G. Sivakumar. A path ordering for proving termination

of term rewriting systems. In Hartmut Ehrig, Christiane Floyd, Maurice Nivat, and James
Thatcher, editors, Mathematical Foundations of Software Development, pages 173–187, Berlin,
Heidelberg, 1985. Springer Berlin Heidelberg.

18 Deepak Kapur and G. Sivakumar. Proving Associative-Commutative Termination Using
RPO-Compatible Orderings. In R. Caferra and Gernot Salzer, editors, Automated Deduction
in Classical and Non-Classical Logics, pages 39–61, Berlin, Heidelberg, 2000. Springer.

19 Dohan Kim and Christopher Lynch. Equational Theorem Proving Modulo. In Automated
Deduction – CADE 28: The 28th International Conference on Automated Deduction, Carnegie
Mellon University, Pittsburgh, PA (Virtual Conference), July 11-16, to appear. Springer, 2021.

20 Claude Kirchner and Helene Kirchner. Rewriting, Solving, Proving, 1999. Preliminary version
of a book: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.5349.

21 Donald. E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. In Jörg H.
Siekmann and Graham Wrightson, editors, Automation of Reasoning: 2: Classical Papers on
Computational Logic 1967–1970, pages 342–376. Springer, Berlin, Heidelberg, 1983.

22 Claude Marché. Normalized rewriting: an alternative to rewriting modulo a set of equations.
Journal of Symbolic Computation, 21(3):253–288, 1996.

23 Paliath Narendran and Michaël Rusinowitch. Any ground associative-commutative theory has
a finite canonical system. In R. V. Book, editor, Rewriting Techniques and Applications, pages
423–434, Berlin, Heidelberg, 1991. Springer.

24 Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In Handbook
of Automated Reasoning, Volume I, chapter 7, pages 371–443. Elsevier, Amsterdam, 2001.

25 Gerald E Peterson and Mark E Stickel. Complete sets of reductions for some equational
theories. Journal of the ACM (JACM), 28(2):233–264, 1981.

26 Albert Rubio. Theorem Proving modulo Associativity. In H. Kleine Büning, editor, Computer
Science Logic, pages 452–467, Berlin, Heidelberg, 1996. Springer.

27 Albert Rubio. A Fully Syntactic AC-RPO. Inf. Comput., 178(2):515–533, 2002.
28 Albert Rubio and Robert Nieuwenhuis. A total AC-compatible ordering based on RPO.

Theoretical Computer Science, 142(2):209–227, 1995.
29 Charles C Sims. Computation with finitely presented groups, volume Vol. 48. Cambridge

University Press, Cambridge, UK, 1994.
30 Wayne Snyder. On the complexity of recursive path orderings. Information Processing Letters,

46(5):257–262, 1993.
31 Joachim Steinbach. On the complexity of simplification orderings. Technical Report Technical

Report SR-93-18 (SFB), SEKI University of Kaiserslautern, 1993.
32 Christian Sternagel and Akihisa Yamada. Reachability analysis for termination and confluence

of rewriting. In Tools and Algorithms for the Construction and Analysis of Systems, pages
262–278, Cham, 2019. Springer International Publishing.

FSCD 2021

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.5349

Some Axioms for Mathematics
Frédéric Blanqui # Ñ

Université Paris-Saclay, ENS Paris-Saclay, LMF, CNRS, Inria, France

Gilles Dowek # Ñ

Université Paris-Saclay, ENS Paris-Saclay, LMF, CNRS, Inria, France

Émilie Grienenberger #

Université Paris-Saclay, ENS Paris-Saclay, LMF, CNRS, Inria, France

Gabriel Hondet #

Université Paris-Saclay, ENS Paris-Saclay, LMF, CNRS, Inria, France

François Thiré #

Nomadic Labs, Paris, France

Abstract
The λΠ-calculus modulo theory is a logical framework in which many logical systems can be expressed
as theories. We present such a theory, the theory U , where proofs of several logical systems can be
expressed. Moreover, we identify a sub-theory of U corresponding to each of these systems, and
prove that, when a proof in U uses only symbols of a sub-theory, then it is a proof in that sub-theory.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation → Type
theory; Theory of computation → Equational logic and rewriting

Keywords and phrases logical framework, axiomatic theory, dependent types, rewriting, interoper-
abilty

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.20

Acknowledgements The authors want to thank Michael Färber, César Muñoz, Thiago Felicissimo,
and Makarius Wenzel for helpful remarks on a first version of this paper.

1 Introduction

The λΠ-calculus modulo theory (λΠ/≡) [13], implemented in the system Dedukti [3, 29],
is a logical framework, that is a framework to define theories. It generalizes some previously
proposed frameworks: Predicate logic [28], λ-Prolog [32], Isabelle [34], the Edinburgh logical
framework [27], also called the λΠ-calculus, Deduction modulo theory [17, 18], Pure type
systems [6, 39], and Ecumenical logic [36, 16, 35, 25]. It is thus an extension of Predicate
logic that provides the possibility for all symbols to bind variables, a syntax for proof-terms, a
notion of computation, a notion of proof reduction for axiomatic theories, and the possibility
to express both constructive and classical proofs.

λΠ/≡ enables to express all theories that can be expressed in Predicate logic, such as
geometry, arithmetic, and set theory, but also Simple type theory [10] and the Calculus of
constructions [12], that are less easy to define in Predicate logic.

We present a theory in λΠ/≡, the theory U , where all proofs of Minimal, Constructive,
and Ecumenical predicate logic; Minimal, Constructive, and Ecumenical simple type theory;
Simple type theory with predicate subtyping, prenex predicative polymorphism, or both;
the Calculus of constructions, and the Calculus of constructions with prenex predicative
polymorphism can be expressed. This theory is therefore a candidate for a universal theory,
where proofs developed in implementations of Classical predicate logic (such as automated
theorem proving systems, SMT solvers, etc.), Classical simple type theory (such as HOL 4,

© Frédéric Blanqui, Gilles Dowek, Émilie Grienenberger, Gabriel Hondet, and François Thiré;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 20; pp. 20:1–20:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:frederic.blanqui@inria.fr
https://blanqui.gitlabpages.inria.fr/
https://orcid.org/0000-0001-7438-5554
mailto:gilles.dowek@ens-paris-saclay.fr
http://www.lsv.fr/~dowek/
https://orcid.org/0000-0001-6253-935X
mailto:emilie.grienenberger@ens-paris-saclay.fr
mailto:gabriel.hondet@inria.fr
mailto:francois.thire@nomadic-labs.com
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Some Axioms for Mathematics

HOL Light, Isabelle/HOL, etc.), the Calculus of constructions (such as Coq, Matita, Lean,
etc.), and Simple type theory with predicate subtyping and prenex polymorphism (such as
PVS), can be expressed.

Moreover, the proofs of the theory U can be classified as proofs in Minimal predicate logic,
Constructive Predicate logic, etc. just by identifying the axioms they use, akin to proofs
in geometry that can be classified as proofs in Euclidean, hyperbolic, elliptic, neutral, etc.
geometries. More precisely, we identify sub-theories of the theory U that correspond to each
of these theories, and we prove that when a proof in U uses only symbols of a sub-theory,
then it is a proof in that sub-theory.

In Section 2, we recall the definition of λΠ/≡ and of a theory. In Section 3, we introduce
the theory U step by step. In Section 4, we provide a general theorem on sub-theories in
λΠ/≡, and prove that every fragment of U , including U itself, is indeed a theory, that is, it
is defined by a confluent and type-preserving rewriting systems. Finally, in Section 5, we
detail the sub-theories of U that correspond to the above mentioned systems.

2 The λΠ-calculus modulo theory

λΠ/ ≡ is an extension of the Edinburgh logical framework [27] with a primitive notion of
computation defined with rewriting rules [14, 38].

The terms are those of the Edinburgh logical framework

t, u = c | x | TYPE | KIND | Πx : t, u | λx : t, u | t u

where c belongs to a finite or infinite set of constants C and x to an infinite set V of variables.
The terms TYPE and KIND are called sorts. The term Πx : t, u is called a product. It is
dependent if the variable x occurs free in u. Otherwise, it is simply written t → u. Terms
are also often written A, B, etc. The set of constants of a term t is written const(t).

A rewriting rule is a pair of terms ℓ ↪→ r, such that ℓ = c ℓ1 . . . ℓn, where c is a
constant. If R is a set of rewriting rules, we write ↪→R for the smallest relation closed by
term constructors and substitution containing R, ↪→β for the usual β-reduction, ↪→βR for
↪→β ∪ ↪→R, and ≡βR for the smallest equivalence relation containing ↪→βR.

The typing rules of λΠ/ ≡ are given in Figure 1. The difference with the rules of the
Edinburgh logical framework is that, in the rule (conv), types are identified modulo ≡βR
instead of just ≡β . In a typing judgement Γ ⊢Σ,R t : A, the term t is given the type A with
respect to three parameters: a signature Σ that assigns a type to the constants of t, a context
Γ that assigns a type to the free variables of t, and a set of rewriting rules R. A context Γ is
a list of declarations x1 : B1, . . . , xm : Bm formed with a variable and a term. A signature Σ
is a list of declarations c1 : A1, . . . , cn : An formed with a constant and a closed term, that
is a term term with no free variables. This is why the rule (const) requires no context for
typing A. We write |Σ| for the set {c1, . . . , cn}, and Λ(Σ) for the set of terms t such that
const(t) ⊆ |Σ|. We say that a rewriting rule ℓ ↪→ r is in Λ(Σ) if ℓ and r are, and a context
x1 : B1, . . . , xm : Bm is in Λ(Σ) if B1, . . . , Bm are. It is often convenient to group constant
declarations and rules into small clusters, called “axioms”.

A relation ↪→ preserves typing in Σ, R if, for all contexts Γ and terms t, u and A of Λ(Σ),
if Γ ⊢Σ,R t : A and t ↪→ u, then Γ ⊢Σ,R u : A. The relation ↪→β preserves typing as soon as
↪→βR is confluent (see for instance [7]) for, in this case, the product is injective modulo ≡βR:
Πx : A, B ≡βR Πx : A′, B′ iff A ≡βR A′ and B ≡βR B′. The relation ↪→R preserves typing if
every rewriting rule ℓ ↪→ r preserves typing, that is: for all contexts Γ, substitutions θ and
terms A of Λ(Σ), if Γ ⊢Σ,R θl : A then Γ ⊢Σ,R θr : A.

F. Blanqui, G. Dowek, É. Grienenberger, G. Hondet, and F. Thiré 20:3

⊢Σ,R [] well-formed
(empty)

Γ ⊢Σ,R A : s

⊢Σ,R Γ, x : A well-formed (decl)

⊢Σ,R Γ well-formed
Γ ⊢Σ,R TYPE : KIND

(sort)

⊢Σ,R Γ well-formed ⊢Σ,R A : s

Γ ⊢Σ,R c : A
(const) c : A ∈ Σ

⊢Σ,R Γ well-formed
Γ ⊢Σ,R x : A

(var) x : A ∈ Γ

Γ ⊢Σ,R A : TYPE Γ, x : A ⊢Σ,R B : s

Γ ⊢Σ,R Πx : A, B : s
(prod)

Γ ⊢Σ,R A : TYPE Γ, x : A ⊢Σ,R B : s Γ, x : A ⊢Σ,R t : B

Γ ⊢Σ,R λx : A, t : Πx : A, B
(abs)

Γ ⊢Σ,R t : Πx : A, B Γ ⊢Σ,R u : A

Γ ⊢Σ,R t u : (u/x)B
(app)

Γ ⊢Σ,R t : A Γ ⊢Σ,R B : s

Γ ⊢Σ,R t : B
(conv) A ≡βR B

Figure 1 Typing rules of λΠ/≡ with signature Σ and rewriting rules R.

Although typing is defined with arbitrary signatures Σ and sets of rewriting rules R, we
are only interested in sets R verifying some confluence and type-preservation properties.

▶ Definition 1 (System, theory). A system is a pair Σ, R such that each rule of R is in Λ(Σ).
It is a theory if ↪→βR is confluent on Λ(Σ), and every rule of R preserves typing in Σ, R.

Therefore, in a theory, ↪→βR preserves typing since ↪→β preserves typing (for ↪→βR is
confluent) and ↪→R preserves typing (for every rule preserves typing). We recall two other
basic properties of λΠ/≡ we will use in Theorem 7:

▶ Lemma 2. If Γ ⊢Σ,R t : A, then either A = KIND or Γ ⊢Σ,R A : s for some sort s.
If Γ ⊢Σ,R Πx : A, B : s, then Γ ⊢Σ,R A : TYPE.

3 The theory U

Object-terms

The notions of term, proposition, and proof are not primitive in λΠ/≡. The first axioms of
the theory U introduce these notions. We first define a notion analogous to the Predicate
logic notion of term, to express the objects the theory speaks about, such as the natural
numbers. As all expressions in λΠ/ ≡ are called “terms”, we shall call these expressions
“object-terms”, to distinguish them from the other terms.

The easiest way to build the notion of object-term in λΠ/≡ would be to declare a constant
I of type TYPE and constants of type I → ... → I → I for the function symbols, for instance
a constant 0 of type I and a constant succ of type I → I. The object-terms, for instance

FSCD 2021

20:4 Some Axioms for Mathematics

(succ (succ 0)) and (succ x), would then just be λΠ/≡ terms of type I and, in an object-term,
the variables would be λΠ/ ≡ variables of type I. If we wanted to have object-terms of
several sorts, like in Many-sorted predicate logic, we could just declare several constants I1,
I2, ..., In of type TYPE. But these sorts would be mixed with the other terms of type TYPE,
which we will introduce later. Instead, we declare a constant Set of type TYPE, a constant ι

of type Set, and a constant El to embed the terms of type Set into terms of type TYPE

Set : TYPE (Set-decl)
ι : Set (ι-decl)
El : Set → TYPE (El-decl)

so that the symbol I can be replaced with the term El ι. If we want to have object-terms of
several sorts, we declare several constants ι1, ι2, etc. of type Set. The types of object-terms
then have the form El A and are distinguished among the other terms of type TYPE.

Assigning the type Set → TYPE to the constant El uses the fact that λΠ/ ≡ supports
dependent types.

Propositions

Just like λΠ/ ≡ does not contain a primitive notion of object-term, it does not contain a
primitive notion of proposition, but tools to define this notion. To do so, in the theory U , we
declare a constant Prop of type TYPE

Prop : TYPE (Prop-decl)

and predicate symbols are then just constants of type El ι → . . . → El ι → Prop. Propositions
are then λΠ/≡ terms of type Prop.

Implication

In the theory U , we then declare a constant for implication

⇒ : Prop → Prop → Prop (written infix) (⇒-decl)

Proofs

Predicate logic defines a language for terms and propositions, but proofs have to be defined in
a second step, for instance as derivations in natural deduction, sequent calculus, etc. These
derivations, like object-terms and propositions, are trees. Therefore, they can be represented
as λΠ/≡ terms.

Using the Brouwer-Heyting-Kolmogorov interpretation, a proof of the proposition A ⇒ B

should be a λΠ/≡ term expressing a function mapping proofs of A to proofs of B. Then,
using the Curry-de Bruijn-Howard correspondence, the type of this term should be the
proposition A ⇒ B itself. But, this is not possible in the theory U yet, as the proposition
A ⇒ B has the type Prop, and not the type TYPE. So we introduce an embedding Prf of
propositions into types, mapping each proposition A to the type Prf A of its proofs

Prf : Prop → TYPE (Prf-decl)

Note that this embedding is not surjective. In particular Set, El ι, and Prop are not types
of proofs. So, there are more types than propositions, and propositions and types are not
fully identified.

F. Blanqui, G. Dowek, É. Grienenberger, G. Hondet, and F. Thiré 20:5

According to the Brouwer-Heyting-Kolmogorov interpretation, a proof of A ⇒ A is a
λΠ/ ≡ term expressing a function mapping proofs of A to proofs of A. In particular, the
identity function λx : Prf A, x mapping each proof of A to itself is a proof of A⇒A. According
to the Curry-de Bruijn-Howard correspondence, this term should have the type Prf (A ⇒ A),
but it has the type Prf A → Prf A. So, the types Prf (A ⇒ A) and Prf A → Prf A must be
identified. To do so, we use the fact that λΠ/≡ allows the declaration of rewriting rules, so
that Prf (A ⇒ A) rewrites to Prf A → Prf A

Prf (x ⇒ y) ↪→ Prf x → Prf y (⇒-red)

In the theory U , the Brouwer-Heyting-Kolmogorov interpretation of proofs for implication
is made explicit: it is the rule (⇒-red).

Universal quantification

Unlike implication, the universal quantifier binds a variable. Thus, we express the proposition
∀z A as the proposition ∀ (λz : El ι, A) [10, 32, 34, 27], yielding the type (El ι → Prop) → Prop
for the constant ∀ itself. But, we want to allow quantification over variables of any type
El B, for B of type Set. Thus, we generalize this type to

∀ : Πx : Set, (El x → Prop) → Prop (∀-decl)

and we write ∀ ι (λz : El ι, A) for the proposition ∀z A.
Just like for the implication, we declare a rewriting rule expressing that the type of the

proofs of the proposition ∀ x p is the type of functions mapping each z of type El x to a
proof of p z

Prf (∀ x p) ↪→ Πz : El x, Prf (p z) (∀-red)

Again, the Brouwer-Heyting-Kolmogorov interpretation of proofs for the universal quanti-
fier is made explicit: it is this rule (∀-red).

Other constructive connectives and quantifiers

We define the other connectives and quantifiers, à la Russell, for instance Prf (x ∧ y) as
Πz : Prop, (Prf x → Prf y → Prf z) → Prf z. In this definition, we do not use the quantifier
∀ of the theory U (so far, in the theory U , we can quantify over the type El ι, but not over
the type Prop), but the quantifier Π of the logical framework λΠ/≡ itself.

Remark that, per se, the quantification on the variable z of type Prop is predicative, as
the term Πz : Prop, (Prf x → Prf y → Prf z) → Prf z has type TYPE and not Prop. But, the
rule rewriting Prf (x ∧ y) to Πz : Prop, (Prf x → Prf y → Prf z) → Prf z introduces some
impredicativity, as x ∧ y of type Prop is “defined” as the inverse image, for the embedding
Prf, of the type Πz : Prop, (Prf x → Prf y → Prf z) → Prf z, that contains a quantification
on a variable of type Prop

⊤ : Prop (⊤-decl)
Prf ⊤ ↪→ Πz : Prop, Prf z → Prf z (⊤-red)
⊥ : Prop (⊥-decl)
Prf ⊥ ↪→ Πz : Prop, Prf z (⊥-red)
¬ : Prop → Prop (¬-decl)
Prf (¬ x) ↪→ Prf x → Πz : Prop, Prf z (¬-red)

FSCD 2021

20:6 Some Axioms for Mathematics

∧ : Prop → Prop → Prop (written infix) (∧-decl)
Prf (x ∧ y) ↪→ Πz : Prop, (Prf x → Prf y → Prf z) → Prf z (∧-red)
∨ : Prop → Prop → Prop (written infix) (∨-decl)
Prf (x ∨ y) ↪→ Πz : Prop, (Prf x → Prf z) → (Prf y → Prf z) → Prf z (∨-red)
∃ : Πa : Set, (El a → Prop) → Prop (∃-decl)
Prf (∃ a p) ↪→ Πz : Prop, (Πx : El a, Prf (p x) → Prf z) → Prf z (∃-red)

Infinity

Now that we have the symbols ⊤ and ⊥, we can express that the type El ι is infinite, that is,
that there exists a non-surjective injection from this type to itself. We call this non-surjective
injection succ. To express its injectivity, we introduce its left inverse pred. To express its
non-surjectivity, we introduce an element 0, that is not in its image positive [19]. This choice
of notation enables the definition of natural numbers as some elements of type El ι

0 : El ι (0-decl)
succ : El ι → El ι (succ-decl)
pred : El ι → El ι (pred-decl)
pred 0 ↪→ 0 (pred-red1)
pred (succ x) ↪→ x (pred-red2)
positive : El ι → Prop (positive-decl)
positive 0 ↪→ ⊥ (positive-red1)
positive (succ x) ↪→ ⊤ (positive-red2)

Classical connectives and quantifiers

The disjunction in constructive logic and in classical logic are governed by different deduction
rules, thus they have a different meaning, and they should be expressed with different symbols,
for instance ∨ for the constructive disjunction and ∨c for the classical one, just like, in
classical logic, we use two different symbols for the inclusive disjunction and the exclusive
one. These constructive and classical disjunctions need not belong to different languages,
but they can coexist in the same Ecumenical one [36, 16, 35, 25].

Many Ecumenical logics consider the constructive connectives and quantifiers as primitive
and attempt to define the classical ones from them, using the negative translation as a
definition. In the theory U , we have chosen to define the classical connectives and quantifiers
as in [1], for instance A ∨c B as (¬¬A) ∨ (¬¬B). Using these definitions, the proposition
(P ∧c Q) ⇒c P is (¬¬((¬¬P) ∧ (¬¬Q))) ⇒ (¬¬P), which is not exactly the negative
translation ¬¬((¬¬((¬¬P) ∧ (¬¬Q))) ⇒ (¬¬P)) of (P ∧ Q) ⇒ P , as the double negation
at the root of the proposition is missing. As we already have a distinction between the
proposition A and the type Prf A of its proofs, we can just include this double negation into
the constant Prf, introducing a classical version Prfc of this constant

Prfc : Prop → TYPE (Prfc-decl)
Prfc ↪→ λx : Prop, Prf (¬ ¬ x) (Prfc-red)
⇒c : Prop → Prop → Prop (written infix) (⇒c-decl)
⇒c ↪→ λx : Prop, λy : Prop, (¬ ¬ x) ⇒ (¬ ¬ y) (⇒c-red)
∧c : Prop → Prop → Prop (written infix) (∧c-decl)
∧c ↪→ λx : Prop, λy : Prop, (¬ ¬ x) ∧ (¬ ¬ y) (∧c-red)

F. Blanqui, G. Dowek, É. Grienenberger, G. Hondet, and F. Thiré 20:7

∨c : Prop → Prop → Prop (written infix) (∨c-decl)
∨c ↪→ λx : Prop, λy : Prop, (¬ ¬ x) ∨ (¬ ¬ y) (∨c-red)
∀c : Πa : Set, (El a → Prop) → Prop (∀c-decl)
∀c ↪→ λa : Set, λp : (El a → Prop), ∀ a (λx : El a, ¬ ¬(p x)) (∀c-red)
∃c : Πa : Set, (El a → Prop) → Prop (∃c-decl)
∃c ↪→ λa : Set, λp : (El a → Prop), ∃ a (λx : El a, ¬ ¬(p x)) (∃c-red)

Note that ⊤c and ⊥c are ⊤ and ⊥, by definition. Note also that ¬¬¬A is equivalent to
¬A, so we do not need to duplicate negation either.

Propositions as objects

So far, we have mainly reconstructed the Predicate logic notions of object-term, proposition,
and proof. We can now turn to two notions coming from Simple type theory: propositions
as objects and functionality.

Simple type theory can be expressed in Predicate logic and Predicate logic is a restriction
of Simple type theory, allowing quantification on variables of type ι only. So, once we
have reconstructed Predicate logic, we can either define Simple type theory as a theory in
Predicate logic or as an extension of Predicate logic. In the theory U , we choose the second
option, which leads to a simpler expression of Simple type theory, avoiding the stacking
of two encodings. Simple type theory is thus expressed by adding two axioms on top of
Predicate logic: one for propositions as objects and one for functionality.

Let us start with propositions as objects. So far, the term ι is the only closed term of
type Set. So, we can only quantify over the variables of type El ι. In particular, we cannot
quantify over propositions. To do so, we just need to declare a constant o of type Set and a
rule identifying El o and Prop

o : Set (o-decl)
El o ↪→ Prop (o-red)

Note that just like there are no terms of type ι, but terms, such as 0, which have type
El ι, there are no terms of type o, but terms, such as ⊤, that have type El o, that is Prop.

Applying the constant ∀ to the constant o, we obtain a term of type (El o → Prop) →
Prop, that is (Prop → Prop) → Prop, and we can express the proposition ∀p (p ⇒ p) as
∀ o (λp : Prop, p ⇒ p). The type Prf (∀ o (λp : Prop, p ⇒ p)) of the proofs of this proposition
rewrites to Πp : Prop, Prf p → Prf p. So, the term λp : Prop, λx : Prf p, x is a proof of this
proposition.

Functionality

Besides ι and o, we introduce more types in the theory, for functions and sets. To do so, we
declare a constant ⇝ and a rewriting rule

⇝ : Set → Set → Set (written infix) (⇝-decl)
El (x⇝ y) ↪→ El x → El y (⇝-red)

For instance, these rules enable the construction of the λΠ/ ≡ term ι⇝ ι of type Set
that expresses the simple type ι → ι. The λΠ/≡ term El (ι⇝ ι) of type TYPE rewrites to
El ι → El ι. The simply typed term λx : ι, x of type ι → ι is then expressed as the term
λx : El ι, x of type El ι → El ι that is El (ι⇝ ι).

FSCD 2021

20:8 Some Axioms for Mathematics

Dependent function types

The axiom (⇝) enables us to give simple types to the object-terms expressing functions. We
can also give them dependent types, with the dependent versions of this axiom

⇝d : Πx : Set, (El x → Set) → Set (written infix) (⇝d-decl)
El (x⇝d y) ↪→ Πz : El x, El (y z) (⇝d-red)

Note that, if we apply the constant ⇝d to a term t and a term λz : El t, u, where the
variable z does not occur in u, then El (t⇝d λz : El t, u) rewrites to El t → El u, just like
El (t⇝ u). Thus, the constant ⇝d is useful only if we can build a term λz : El t, u where
the variable z occurs in u. With the symbols we have introduced so far, this is not possible.
Just like we have a constant ι of type Set, we could add a constant array of type El ι → Set
such that array n is the type of arrays of length n. We could then construct the term
(ι⇝d λx : El ι, array x) of type Set and the type El (ι⇝d λx : El ι, array x) that rewrites to
Πx : El ι, El (array x), would be the type of functions mapping a natural number n to an
array of length n. So, this symbol ⇝d becomes useful, only if we add such a constant array,
object-level dependent types, or the symbols π or psub below.

Dependent implication

In the same way, we can add a dependent implication, where, in the proposition A ⇒ B, the
proof of A may occur in B

⇒d : Πx : Prop, (Prf x → Prop) → Prop (written infix) (⇒d-decl)
Prf (x ⇒d y) ↪→ Πz : Prf x, Prf (y z) (⇒d-red)

Proofs in object-terms

To construct an object-term, we sometimes want to apply a function symbol to other object-
terms and also to proofs. For instance, we may want to apply the Euclidean division div
to two numbers t and u and to a proof that u is positive. To be able to so, we introduce
another constant π and the corresponding rewriting rule

π : Πx : Prop, (Prf x → Set) → Set (π-decl)
El (π x y) ↪→ Πz : Prf x, El (y z) (π-red)

This way, we can give, to the constant div, the type

El (ι⇝ ι⇝d λy : El ι, π (positive y) (λz : Prf (positive y), ι))

If we also have a constant eqι of type El (ι⇝ ι⇝ o), we can then express the proposition

positive y ⇒d λp : Prf (positive y), eqι (div x y p) (div x y p)

usually written y > 0 ⇒ x/y = x/y. The proposition x/y = x/y is well-formed, but it
contains an implicit free variable p, for a proof of y > 0. This variable is bound by the
implication, that needs therefore to be a dependent implication.

F. Blanqui, G. Dowek, É. Grienenberger, G. Hondet, and F. Thiré 20:9

Proof irrelevance

If p and q are two non convertible proofs of the proposition positive 2, the terms div 7 2 p

and div 7 2 q are not convertible. As a consequence, even if we had a reflexivity axiom for
the aforementioned equality eqι, the proposition

eqι (div 7 2 p) (div 7 2 q)

would not be provable.
To make these terms convertible, we embed the theory into an extended one, that contains

another constant

div† : El (ι⇝ ι⇝ ι)

and a rule

div x y p ↪→ div† x y

and we define convertibility in this extended theory. This way, the terms div 7 2 p and
div 7 2 q are convertible, as they both reduce to div† 7 2.

Note that, in the extended theory, the constant div† enables the construction of the
erroneous term div† 1 0. But the extended theory is only used to define the convertibility
in the restricted one and this term is not a term of the restricted theory. It is not even the
reduct of a term of the form div 1 0 r [20, 9].

Dependent pairs and predicate subtyping

Instead of declaring a constant div that takes three arguments: a number t, a number u, and
a proof p that u is positive, we can declare a constant that takes two arguments: a number t

and a pair pair ι positive u p formed with a number u and a proof p that u is positive.
The type of the pair pair ι positive u p is written psub ι positive, or informally {x : ι |

positive x}. It can be called “the type of positive numbers”. It is a subtype of the type of
natural numbers defined with the predicate positive. Therefore, the symbol psub introduces
predicate subtyping. We thus declare a constant psub and a constant pair

psub : Πt : Set, (El t → Prop) → Set (psub-decl)
pair : Πt : Set, Πp : El t → Prop, Πm : El t, Prf (p m) → El (psub t p) (pair-decl)

This way, instead of giving the type El (ι⇝ ι⇝d λy : Prf (positive y), ι) to the constant
div, we can give it the type El (ι⇝ psub ι positive⇝ ι).

To avoid introducing a new positive number pair ι positive 3 p with each proof p that 3
is positive, we make this symbol pair proof irrelevant [20, 9] by introducing a symbol pair†

and a rewriting rule that discards the proof

pair† : Πt : Set, Πp : El t → Prop, El t → El (psub t p) (pair†-decl)
pair t p m h ↪→ pair† t p m (pair-red)

This declaration and this rewriting rule are not part of the theory U but of the theory U†

used to define the conversion on the terms of U .

FSCD 2021

20:10 Some Axioms for Mathematics

Finally, we declare the projections fst and snd together with an associated rewriting rule

fst : Πt : Set, Πp : El t → Prop, El (psub t p) → El t (fst-decl)
fst t p (pair† t′ p′ m) ↪→ m (fst-red)
snd : Πt : Set, Πp : El t → Prop, Πm : El (psub t p), Prf (p (fst t p m)) (snd-decl)

Prenex predicative type quantification in types

Using the symbols of the theory U introduced so far, the symbol for equality of elements
of type ι is eqι of type El (ι⇝ ι⇝ o). This equality symbol is not polymorphic. Indeed,
it cannot be used to express the equality of, for example, functions of type ι⇝ ι. This
motivates the introduction of object-level polymorphism [24, 37]. However extending Simple
type theory with object-level polymorphism makes it inconsistent [30, 11], and similarly it
makes the theory U inconsistent. So, object-level polymorphism in U is restricted to prenex
polymorphism. To do so, we introduce a new constant Scheme of type TYPE, a constant Els
to embed the terms of type Scheme into terms of type TYPE, a constant ↑ to embed the terms
of type Set into terms of type Scheme and a rule connecting these embeddings

Scheme : TYPE (Scheme-decl)
Els : Scheme → TYPE (Els-decl)
↑ : Set → Scheme (↑-decl)
Els (↑ x) ↪→ El x (↑-red)

We then introduce a quantifier for the variables of type Set in the terms of type Scheme and
the associated rewriting rule

A: (Set → Scheme) → Scheme (A-decl)
Els (A

p) ↪→ Πx : Set, Els (p x) (A-red)

This way, we can give the polymorphic type Els (A(λA : Set, ↑ (A⇝A⇝ o))) to the equal-
ity eq. In the same way, the type of the identity function is Els (A(λA : Set, ↑ (A⇝A))). It
rewrites to ΠA : Set, El A → El A. Therefore, it is inhabited by the term λA : Set, λx : El A, x.

Prenex predicative type quantification in propositions

When we express the reflexivity of the polymorphic equality, we need also to quantify over a
type variable, but now in a proposition. To be able to do so, we introduce another quantifier
and its associated rewriting rule

A: (Set → Prop) → Prop (A-decl)
Prf (A

p) ↪→ Πx : Set, Prf (p x) (A-red)

This way, the reflexivity of equality can be expressed as
(A(λA : Set, ∀ A (λx : El A, eq A x x))).

The theory U : bringing everything together

The theory U is formed with the 38 axioms with a black bar at the beginning of the line:
(Set), (El), (ι), (Prop), (Prf), (⇒), (∀), (⊤), (⊥), (¬), (∧), (∨), (∃), (Prfc), (⇒c), (∧c), (∨c),
(∀c), (∃c), (o), (⇝), (⇝d), (⇒d), (π), (0), (succ), (pred), (positive), (psub), (pair), (pair†),
(fst), (snd), (Scheme), (Els), (↑), (A), (A). Note that, strictly speaking, the declaration
(pair†-decl) and the rule (pair-red) are not part of the theory U , but of its extension U† used

F. Blanqui, G. Dowek, É. Grienenberger, G. Hondet, and F. Thiré 20:11

to define the conversion on the terms of U . Among these axioms, 12 only have a constant
declaration, 24 have a constant declaration and one rewriting rule, and 2 have a constant
declaration and two rewriting rules. So ΣU contains 38 declarations and RU 28 rules.

This large number of axioms is explained by the fact that λΠ/≡ is a weaker framework
than Predicate logic. The 19 first axioms are needed just to construct notions that are
primitive in Predicate logic: terms, propositions, with their 13 constructive and classical
connectives and quantifiers, and proofs. So the theory U is just 19 axioms on top of the
definition of Predicate logic.

It is also explained by the fact that axioms are more atomic than in Predicate logic,
for instance 4 axioms: (0), (succ), (pred), and (positive) are needed to express “the” axiom
of infinity, 5 (psub), (pair), (pair†), (fst), and (snd) to express predicate subtyping, and 5
(Scheme), (Els), (↑), (A), and (A) to express prenex polymorphism. The 5 remaining axioms
express propositions as objects (o), various forms of functionality (⇝), (⇝d), and (π), and
dependent implication (⇒d).

4 Sub-theories

Not all proofs require all these axioms. Many proofs can be expressed in sub-theories built
by bringing together some of the axioms of U , but not all.

Given subsets ΣS of ΣU and RS of RU , we would like to be sure that a proof in U , using
only constants in ΣS , is a proof in ΣS , RS . Such a result is trivial in Predicate logic: for
instance, a proof in ZFC which does not use the axiom of choice is a proof in ZF, but it
is less straightforward in λΠ/≡, because ΣS , RS might not be a theory. So we should not
consider any pair ΣS , RS . For instance, as Set occurs in the type of El, if we want El in ΣS ,
we must take Set as well. In the same way, as positive (succ x) rewrites to ⊤, if we want
(positive) and (succ) in ΣS , we must include ⊤ in ΣS and the rule rewriting positive (succ x)
to ⊤ in RS .

This leads to a definition of a notion of sub-theory and to prove that, if Σ1, R1 is a sub-
theory of a theory Σ0, R0, Γ, t and A are in Λ(Σ1), and Γ ⊢Σ0,R0 t : A, then Γ ⊢Σ1,R1 t : A.

This property implies that, if π is a proof of A in U and both A and π are in Λ(Σ1), then
π is a proof of A in Σ1, R1, but it does not imply that if A is in Λ(Σ1) and A has a proof in
U , then it has a proof in Σ1, R1.

4.1 Fragments
▶ Definition 3 (Fragment). A signature Σ1 is included in a signature Σ0, Σ1 ⊆ Σ0, if each
declaration c : A of Σ1 is a declaration of Σ0.

A system Σ1, R1 is a fragment of a system Σ0, R0, if the following conditions are satisfied:
Σ1 ⊆ Σ0 and R1 ⊆ R0;
for all (c : A) ∈ Σ1, const(A) ⊆ |Σ1|;
for all ℓ ↪→ r ∈ R0, if const(ℓ) ⊆ |Σ1|, then const(r) ⊆ |Σ1| and ℓ ↪→ r ∈ R1.

We write ⊢i for ⊢Σi,Ri , ↪→i for ↪→βRi , and ≡i for ≡βRi .

▶ Lemma 4 (Preservation of reduction). If Σ1, R1 is a fragment of Σ0, R0, t ∈ Λ(Σ1) and
t ↪→0 u, then t ↪→1 u and u ∈ Λ(Σ1).

Proof. By induction on the position where the rule is applied. We only detail the case of a
top reduction, the other cases easily following by induction hypothesis.

FSCD 2021

20:12 Some Axioms for Mathematics

So, let ℓ ↪→ r be the rule used to rewrite t in u and θ such that t = θℓ and u = θr. As
t ∈ Λ(Σ1), we have ℓ ∈ Λ(Σ1) and, for all x free in ℓ, θx ∈ Λ(Σ1). Thus, as Σ1, R1 is a
fragment of Σ0, R0, r ∈ Λ(Σ1) and ℓ ↪→ r ∈ R1. Therefore t ↪→1 u and u = θr ∈ Λ(Σ1). ◀

▶ Lemma 5 (Preservation of confluence). Every fragment of a confluent system is confluent.

Proof. Let Σ1, R1 be a fragment of a confluent system Σ0, R0. We prove that ↪→1 is confluent
on Λ(Σ1). Assume that t, u, v ∈ Λ(Σ1), t ↪→∗

1 u and t ↪→∗
1 v. Since |Σ1| ⊆ |Σ0|, we have

t, u, v ∈ Λ(Σ0). Since R1 ⊆ R0, we have t ↪→∗
0 u and t ↪→∗

0 v. By confluence of ↪→0 on Λ(Σ0),
there exists a w in Λ(Σ0) such that u ↪→∗

0 w and v ↪→∗
0 w. Since u, v ∈ Λ(Σ1), by Lemma 4,

w ∈ Λ(Σ1), u ↪→∗
1 w and v ↪→∗

1 w. ◀

▶ Definition 6 (Sub-theory). A system Σ1, R1 is a sub-theory of a theory Σ0, R0, if Σ1, R1
is a fragment of Σ0, R0 and it is a theory. As we already know that R1 is confluent, this
amounts to say that each rule of R1 preserves typing in Σ1, R1.

4.2 The fragment theorem
▶ Theorem 7. Let Σ0, R0 be a confluent system and Σ1, R1 be a fragment of Σ0, R0 that
preserves typing. If the judgement Γ ⊢0 t : D is derivable, Γ ∈ Λ(Σ1) and t ∈ Λ(Σ1), then
there exists D′ ∈ Λ(Σ1) such that D ↪→∗

0 D′ and the judgement Γ ⊢1 t : D′ is derivable.

Proof. By induction on the derivation. The important cases are (abs), (app), and (conv).
The other cases are a simple application of the induction hypothesis.

If the last rule of the derivation is

Γ ⊢0 A : TYPE Γ, x : A ⊢0 B : s Γ, x : A ⊢0 t : B

Γ ⊢0 λx : A, t : Πx : A, B
(abs)

as Γ, A, and t are in Λ(Σ1), by induction hypothesis, there exists A′ in Λ(Σ1) such
that TYPE ↪→∗

0 A′ and Γ ⊢1 A : A′ is derivable, and there exists B′ in Λ(Σ1) such that
B ↪→∗

0 B′ and Γ, x : A ⊢1 t : B′ is derivable. As TYPE is a sort, A′ = TYPE. Therefore,
Γ ⊢1 A : TYPE is derivable.
As B is typable and every subterm of a typable term is typable, KIND does not occur in
B. As B ↪→∗

0 B′ and no rule contains KIND, KIND does not occur in B′ as well. Hence,
B′ ̸= KIND. By Lemma 2, as Γ, x : A ⊢1 t : B′ is derivable and B′ ̸= KIND, there exists a
sort s′ such that Γ, x : A ⊢1 B′ : s′ is derivable.
Thus, by the rule (abs), Γ ⊢1 λx : A, t : Πx : A, B′ is derivable. So there is D′ = Πx : A, B′

in Λ(Σ1) such that Πx : A, B ↪→∗
0 D′ and Γ ⊢1 λx : A, t : D′ is derivable.

If the last rule of the derivation is

Γ ⊢0 t : Πx : A, B Γ ⊢0 u : A

Γ ⊢0 t u : (u/x)B
(app)

as Γ, t, and u are in Λ(Σ1), by induction hypothesis, there exist C and A2 in Λ(Σ1), such
that Πx : A, B ↪→∗

0 C, Γ ⊢1 t : C is derivable, A ↪→∗
0 A2, and Γ ⊢1 u : A2 is derivable. As

Πx : A, B ↪→∗
0 C and rewriting rules are of the form (c l1 . . . ln ↪→ r), there exist A1 and

B1 in Λ(Σ1) such that C = Πx : A1, B1, A ↪→∗
0 A1, and B ↪→∗

0 B1. By confluence of ↪→0,
there exists A′ such that A1 ↪→∗

0 A′ and A2 ↪→∗
0 A′. By Lemma 4, as A1 ∈ Λ(Σ1) and

A1 ↪→∗
0 A′, we have A′ ∈ Λ(Σ1) and A1 ↪→∗

1 A′. In a similar way, as A2 ∈ Λ(Σ1) and
A2 ↪→∗

0 A′, we have A2 ↪→∗
1 A′. By Lemma 2, as Γ ⊢1 t : Πx : A1, B1 is derivable and

Πx : A1, B1 ̸= KIND, there exists a sort s such that Γ ⊢1 Πx : A1, B1 : s is derivable. Thus,
by Lemma 2, Γ ⊢1 A1 : TYPE is derivable.

F. Blanqui, G. Dowek, É. Grienenberger, G. Hondet, and F. Thiré 20:13

As Γ ⊢1 Πx : A1, B1 : s, Πx : A1, B1 ↪→∗
1 Πx : A′, B1, and Σ1, R1 preserves typing, Γ ⊢1

Πx : A′, B1 : s is derivable. In a similar way, as Γ ⊢1 A1 : TYPE is derivable, and
A1 ↪→∗

1 A′, Γ ⊢1 A′ : TYPE is derivable. Therefore, by the rule (conv), Γ ⊢1 t : Πx : A′, B1
and Γ ⊢1 u : A′ are derivable. Therefore, by the rule (app), Γ ⊢1 t u : (u/x)B1 is derivable.
So there exists D′ = (u/x)B1 in Λ(Σ1), such that (u/x)B ↪→∗

0 D′ and Γ ⊢1 t u : D′ is
derivable.
If the last rule of the derivation is

Γ ⊢0 t : A Γ ⊢0 B : s

Γ ⊢0 t : B
(conv) A ≡βR0 B

as Γ and t are in Λ(Σ1), by induction hypothesis, there exists A′ in Λ(Σ1) such that
A ↪→∗

0 A′ and Γ ⊢1 t : A′ is derivable. By confluence of ↪→0, there exists C such that
A′ ↪→∗

0 C and B ↪→∗
0 C. As A′ ∈ Λ(Σ1) and A′ ↪→∗

0 C we have, by Lemma 4, C ∈ Λ(Σ1)
and A′ ↪→∗

1 C.
As B is typable and every subterm of a typable term is typable, KIND does not occur in B.
As B ↪→∗

0 C and no rule contains KIND, KIND does not occur in C as well. Thus C ̸= KIND.
As A′ ↪→∗

0 C, A′ ̸= KIND. By Lemma 2, as Γ ⊢1 t : A′ and A′ ≠ KIND, there exists a sort
s′ such that Γ ⊢1 A′ : s′ is derivable. Thus, as A′ ↪→∗

1 C, and Σ1, R1 preserves typing,
Γ ⊢1 C : s′ is derivable. a As Γ ⊢1 t : A′ and Γ ⊢1 C : s′ are derivable and A′ ↪→1 C, by
the rule (conv), Γ ⊢1 t : C is derivable. Thus there exists D′ = C in Λ(Σ1) such that
Γ ⊢1 t : D′ is derivable and B ↪→∗

0 D′. ◀

▶ Corollary 8. Let Σ0, R0 be a confluent system, Σ1, R1 be a fragment of Σ0, R0 that
preserves typing. If Γ ⊢0 t : D, Γ ∈ Λ(Σ1), t ∈ Λ(Σ1), and D ∈ Λ(Σ1), then Γ ⊢1 t : D.

In particular, if Σ0, R0 is a theory, Σ1, R1 be a sub-theory of Σ0, R0, Γ ⊢0 t : D,
Γ ∈ Λ(Σ1), t ∈ Λ(Σ1), and D ∈ Λ(Σ1), then Γ ⊢1 t : D.

Proof. There is a D′ ∈ Λ(Σ1) such that D ↪→∗
0 D′ and Γ ⊢1 t : D′. As D ∈ Λ(Σ1) and

D ↪→∗
0 D′. By Lemma 4 we have D ↪→∗

1 D′, and we conclude with the rule (conv). ◀

▶ Theorem 9 (Sub-theories of U). Every fragment Σ1, R1 of U (including U itself) is a
theory, that is, is confluent and preserves typing.

Proof. The relation ↪→βRU is confluent on Λ(ΣU) since it is an orthogonal combinatory
reduction system [31]. Hence, after the fragment theorem, it is sufficient to prove that every
rule of RU preserves typing in any fragment Σ1, R1 containing the symbols of the rule.

To this end, we will use the criterion described in [8, Theorem 19] which consists in
computing the equations that must be satisfied for a rule left-hand side to be typable, which
are system-independent, and then check that the right-hand side has the same type modulo
these equations in the desired system: for all rules l ↪→ r ∈ Λ(Σ1), sets of equations E and
terms T , if the inferred type of l is T , the typability constraints of l are E , and r has type
type T in the system Λ(Σ1) whose conversion relation ≡βRE has been enriched with E , then
l ↪→ r preserves typing in Λ(Σ1).

This criterion can easily be checked for all the rules but (pred-red2) and (fst-red) because,
except in those two cases, the left-hand side and the right-hand side have the same type.

In (pred-red2), pred (succ x) ↪→ x, the left-hand side has type El ι if the equation
type(x) = El ι is satisfied. Modulo this equation, the right-hand side has type El ι in any
fragment containing the symbols of the rule.

In (fst-red), fst t p (pair† t′ p′ m) ↪→ m, the left-hand side has type El t if type(t) = Set,
type(p) = El t → Prop, El (psub t′ p′) = El (psub t p), type(t′) = Set, type(p′) = El t′ →
Prop, and type(m) = El t′. But, in U , there is no rule of the form El (psub t p) ↪→ r. Hence,

FSCD 2021

20:14 Some Axioms for Mathematics

succ
pred
positive

pair†

0

⇝d

Scheme, Els, ↑,

A

,

A

π

⇒d

psub, pair, fst, snd

Prfc, ⇒c, ∧c, ∨c, ∀c, ∃c

⇝o

⊤, ⊥, ¬, ∧, ∨, ∃

Set, El, ι, Prop, Prf
∀

⇒

Figure 2 The wind rose. In black: Minimal, Constructive, and Ecumenical predicate logic.
In orange: Minimal, Constructive, and Ecumenical simple type theory. In green: Simple type
theory with prenex polymorphism. In blue: Simple type theory with predicate subtyping. In cyan:
Simple type theory with predicate subtyping and prenex polymorphism. In pink: the Calculus of
constructions with a constant ι, without and with prenex polymorphism.

by confluence, the equation El (psub t′ p′) = El (psub t p) is equivalent to the equations t′ = t

and p′ = p. Therefore, the right-hand side is of type El t in every fragment of U containing
the symbols of the rule. ◀

5 Examples of sub-theories of the theory U

We finally identify 13 sub-theories of the theory U , that correspond to known theories. For
each of these sub-theories ΣS , RS , according to the Corollary 8, if Γ, t, and A are in Λ(ΣS),
and Γ ⊢ΣU ,RU t : A, then Γ ⊢RS ,ΣS t : A.

Minimal predicate logic. The 7 axioms (Set), (El), (ι), (Prop), (Prf), (⇒), and (∀) define
Minimal predicate logic. This theory can be proven equivalent to more common formulations
of Minimal predicate logic. As Minimal predicate logic is itself a logical framework, it must
be complemented with more axioms, such as the axioms of geometry, arithmetic, etc.

Constructive predicate logic. The 13 axioms (Set), (El), (ι), (Prop), (Prf), (⇒), (∀), (⊤),
(⊥), (¬), (∧), (∨), and (∃) define Constructive predicate logic. This theory can be proven
equivalent to more common formulations of Constructive predicate logic [15, 3].

Ecumenical predicate logic. The 19 axioms (Set), (El), (ι), (Prop), (Prf), (⇒), (∀), (⊤),
(⊥), (¬), (∧), (∨), (∃), (Prfc), (⇒c), (∧c), (∨c), (∀c), and (∃c) define Ecumenical predicate
logic. This theory can be proven equivalent to more common formulations of Ecumenical
predicate logic [26]. Note that classical predicate logic is not a sub-theory of the theory U ,
because the classical connectives and quantifiers depend on the constructive ones. Yet, it is
known that if a proposition contains only classical connectives and quantifiers, it is provable
in Ecumenical predicate logic if and only if it is provable in classical predicate logic.

F. Blanqui, G. Dowek, É. Grienenberger, G. Hondet, and F. Thiré 20:15

Minimal simple type theory. The 9 axioms (Set), (ι), (El), (Prop), (Prf), (⇒), (∀), (o), and
(⇝) define Minimal simple type theory. And this theory can be proven equivalent to more
common formulations of Minimal simple type theory [2, 3]. We could save the declaration
(Prop-decl) and the rule (o-red) by replacing everywhere Prop with El o[3]. However, by
removing (Prop-decl) and (o-red), this theory does not construct Simple type theory as an
extension of Minimal predicate logic.

Constructive simple type theory. The 15 axioms (Set), (El), (ι), (Prop), (Prf), (⇒), (∀),
(⊤), (⊥), (¬), (∧), (∨), (∃), (o) and (⇝) define Constructive simple type theory.

Ecumenical simple type theory. The 21 axioms (Set), (El), (ι), (Prop), (Prf), (⇒), (∀), (⊤),
(⊥), (¬), (∧), (∨), (∃), (Prfc), (⇒c), (∧c), (∨c), (∀c), (∃c), (o) and (⇝) define Ecumenical
simple type theory. And this theory can be proven equivalent to more common formulations
of Ecumenical simple type theory [26].

Simple type theory with predicate subtyping. Adding to the 9 axioms of Minimal simple
type theory the 5 axioms of predicate subtyping yields Minimal simple type theory with
predicate subtyping, formed with the 14 axioms (Set), (ι), (El), (Prop), (Prf), (⇒), (∀), (o),
(⇝), (psub), (pair), (pair†), (fst), and (snd). This theory can be proven equivalent to more
common formulations of Minimal simple type theory with predicate subtyping [23, 9]. Such
formulations like PVS [33] often use predicate subtyping implicitly to provide a lighter syntax
without (pair), (pair†), (fst) nor (snd) but at the expense of losing uniqueness of type and
making type-checking undecidable. In these cases, terms generally do not hold the proofs
needed to be of a sub-type, which provides proof irrelevance. Our implementation of proof
irrelevance of Section 3 Page 9 extends the conversion in order to ignore these proofs.

Simple type theory with prenex predicative polymorphism. Adding to Minimal simple
type theory the 5 axioms of prenex predicative polymorphism yields Simple type theory with
prenex predicative polymorphism (STT∀) [40, 41] formed with the 14 axioms (Set), (El), (ι),
(Prop), (Prf), (⇒), (∀), (o), (⇝), (Scheme), (Els), (↑), (A), and (A).

Simple type theory with predicate subtyping and prenex polymorphism. Adding to the 9
axioms of Simple type theory both the 5 axioms of predicate subtyping and the 5 axioms of
prenex polymorphism yields a sub-theory with 19 axioms which is a subsystem of PVS [33]
handling both predicate subtyping and prenex polymorphism.

The Calculus of constructions. The 9 axioms (Set), (El), (Prop), (Prf), (⇒d), (∀), (o),
(⇝d), and (π) define the Calculus of constructions. This is the usual expression of the
Calculus of constructions in λΠ/≡ [13, 3] except that we write Prop for U∗, Prf for ε∗, Set
for U□, El for ε□, o for ∗̇, ⇒d for Π̇⟨∗,∗,∗⟩, ∀ for Π̇⟨□,∗,∗⟩, π for Π̇⟨∗,□,□⟩, and⇝d for Π̇⟨□,□,□⟩.
As ⇒d is Π̇⟨∗,∗,∗⟩, ∀ is Π̇⟨□,∗,∗⟩, π is Π̇⟨∗,□,□⟩, and ⇝d is Π̇⟨□,□,□⟩, using the terminology of
Barendregt’s λ-cube [4], the axiom (∀) expresses polymorphism, the axiom (π) dependent
types, and the axiom (⇝d) type constructors. Note that these constants have similar types.

So if Γ is a context and A is a term A in the Calculus of constructions then A is inhabited
in Γ in the Calculus of constructions if and only if the translation of A in λΠ/≡ is inhabited
in the translation of Γ in λΠ/≡ [13, 3]. In the translation of Γ in λΠ/≡, variables have
a λΠ/ ≡ type of the form Prf u or El u, and none of them can have the type Set. But,
in λΠ/ ≡, nothing prevents from declaring a variable of type Set. So, the formulation of

FSCD 2021

20:16 Some Axioms for Mathematics

the Calculus of constructions in λΠ/ ≡ is in fact a conservative extension of the original
formulation of the Calculus of constructions, where the judgement x : Set ⊢ x : Set can be
derived. Allowing the declaration of variables of type Set in the Calculus of constructions
usually requires to add a sort △ and an axiom □ : △ [22]. This is not needed here.

The Calculus of constructions with a type ι. Adding the axiom (ι) to the Calculus of
constructions yields a sub-theory with the 10 axioms (Set), (El), (ι), (Prop), (Prf), (⇒d), (∀),
(o), (⇝d), and (π). It corresponds to the Calculus of constructions with an extra constant ι

of type □. Adding a constant of type Set in λΠ/≡, like adding variables of type Set does
not require to introduce an extra sort △.

Some developments in the Calculus of constructions choose to declare the types of
mathematical objects such as ι, nat, etc. in ∗, that would correspond to ι : Prop, fully
identifying types and propositions. We did not make this choice in the theory U , because,
then, the type ι of the constant 0 has type ∗ and the type ι → ∗ of the constant positive has
type □, while, in Simple type theory, both ι and ι → o are simple types. So the expression
of the simple type ι → o requires type constructors and not dependent types. Dependent
types, the constant π, are thus marginalized to type functions mapping proofs to terms.

In the Calculus of constructions with a constant ι of type □, there are no dependent types
and no polymorphism at the object level, the latter leading to an inconsistent system [30, 11].
There are no object-level dependent types in the theory U , that is the type El ι → Set of the
symbol array is not equivalent to a term of the form ε△ A, but such dependent types could
be added. Polymorphism is discussed below.

The Minimal sub-theory. Adding the axioms (⇒) and (⇝) yields a sub-theory with the
12 axioms (Set), (El), (ι), (Prop), (Prf), (⇒), (∀), (o), (⇝), (⇝d), (⇒d), and (π) called the
“Minimal sub-theory” of the theory U . It contains both the 10 axioms of the Calculus of
constructions and the 9 axioms of Minimal simple type theory. It is a formulation of the
Calculus of constructions where dependent and non dependent arrows are distinguished. A
proof expressed in the Calculus of constructions can be expressed in this theory. In a proof,
every symbol ⇝d or ⇒d that uses a dummy dependency can be replaced with a symbol ⇝
or ⇒. Every proof that does not use ⇝d, ⇒d and π, can be expressed in Minimal simple
type theory.

The Calculus of constructions with prenex predicative polymorphism. Adding the 5
axioms of prenex predicative polymorphism to the 10 axioms of the Calculus of constructions
with a constant ι yields a sub-theory formed with the 15 axioms (Set), (El), (ι), (Prop),
(Prf), (⇒d), (∀), (o), (⇝d), (π), (Scheme), (Els), (↑), (A), and (A) defining the Calculus
of constructions with prenex predicative polymorphism. It is a cumulative type system [5],
containing four sorts ∗, □, △ and ⋄, with ∗ : □, □ : △, and □ ⪯ ⋄, and besides the rules
⟨∗, ∗, ∗⟩, ⟨∗,□,□⟩, ⟨□, ∗, ∗⟩, ⟨□,□,□⟩, a rule ⟨△, ⋄, ⋄⟩ to quantify over a variable of type □
in a scheme and a rule ⟨△, ∗, ∗⟩ to quantify over □ in a proposition [41].

6 Conclusion

The theory U is thus a candidate for a universal theory where proofs developed in various
proof systems: HOL Light, Isabelle/HOL, HOL 4, Coq, Matita, Lean, PVS, etc. can be
expressed. This theory can be complemented with other axioms to handle inductive types,
co-inductive types, universes, etc. [2, 41, 21].

F. Blanqui, G. Dowek, É. Grienenberger, G. Hondet, and F. Thiré 20:17

Each proof expressed in the theory U can use a sub-theory of the theory U , as if the
other axioms did not exist: the classical connectives do not impact the constructive ones,
propositions as objects and functionality do not impact predicate logic, dependent types and
predicate subtyping do not impact simple types, etc.

The proofs in the theory U can be classified according to the axioms they use, inde-
pendently of the system they have been developed in. Finally, some proofs using classical
connectives and quantifiers, propositions as objects, functionality, dependent types, or pre-
dicate subtyping may be translated into smaller fragments and used in systems different
from the ones they have been developed in, making the theory U a tool to improve the
interoperability between proof systems.

References
1 L. Allali and O. Hermant. Semantic A-translation and super-consistency entail classical cut

elimination. CoRR, abs/1401.0998, 2014. arXiv:1401.0998.
2 A. Assaf. A framework for defining computational higher-order logics. PhD thesis, École

polytechnique, 2015.
3 A. Assaf, G. Burel, R. Cauderlier, D. Delahaye, G. Dowek, C. Dubois, F. Gilbert, P. Hal-

magrand, O. Hermant, and R. Saillard. Dedukti: a logical framework based on the lambda-Pi-
calculus modulo theory. Manuscript, 2016.

4 H. Barendregt. Lambda calculi with types. In S. Abramsky, D.M. Gabbay, and T.S.E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages 117–309. Oxford
University Press, 1992.

5 B. Barras. Auto-validation d’un système de preuves avec familles inductives. PhD thesis,
Université Paris 7, France, 1999.

6 S. Berardi. Towards a mathematical analysis of the Coquand-Huet calculus of constructions
and the other systems in Barendregt’s cube. Manuscript, 1988.

7 F. Blanqui. Type theory and rewriting. PhD thesis, Université Paris-Sud, France, 2001. URL:
http://hal.inria.fr/inria-00105525.

8 F. Blanqui. Type Safety of Rewrite Rules in Dependent Types. In Proceedings of the 5th
International Conference on Formal Structures for Computation and Deduction, Leibniz
International Proceedings in Informatics 167, 2020. doi:10.4230/LIPIcs.FSCD.2020.13.

9 F. Blanqui and G. Hondet. Encoding of predicate subtyping and proof irrelevance in the
λπ-calculus modulo theory. In Proceedings of the 26th International Conference on Types for
Proofs and Programs, Leibniz International Proceedings in Informatics 188, 2021.

10 A. Church. A formulation of the simple theory of types. The Journal of Symbolic Logic,
5(2):56–68, 1940.

11 Th. Coquand. An analysis of Girard’s paradox. Technical Report RR-0531, Inria, 1986. URL:
https://hal.inria.fr/inria-00076023.

12 Th. Coquand and G. Huet. The calculus of constructions. Information and Computation,
76(2):95–120, 1988.

13 D. Cousineau and G. Dowek. Embedding pure type systems in the lambda-Pi-calculus modulo.
In Proceedings of the 8th International Conference on Typed Lambda Calculi and Applications,
Lecture Notes in Computer Science 4583, 2007. doi:10.1007/978-3-540-73228-0_9.

14 N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science. Volume B: Formal Models and Semantics, chapter 6, pages
243–320. North-Holland, 1990.

15 A. Dorra. équivalence de curry-howard entre le λΠ calcul et la logique intuitionniste. Internship
report, 2010.

16 G. Dowek. On the definition of the classical connectives and quantifiers. In E.H. Haeusler,
W. de Campos Sanz, and B. Lopes, editors, Why is this a Proof?, Festschrift for Luiz Carlos
Pereira. College Publications, 2015.

FSCD 2021

http://arxiv.org/abs/1401.0998
http://hal.inria.fr/inria-00105525
https://doi.org/10.4230/LIPIcs.FSCD.2020.13
https://hal.inria.fr/inria-00076023
https://doi.org/10.1007/978-3-540-73228-0_9

20:18 Some Axioms for Mathematics

17 G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo. Journal of Automated
Reasoning, 31:33–72, 2003. doi:10.1023/A:1027357912519.

18 G. Dowek and B. Werner. Proof normalization modulo. Journal of Symbolic Logic, 68(4):1289–
1316, 2003. doi:10.2178/jsl/1067620188.

19 G. Dowek and B. Werner. Arithmetic as a theory modulo. In Jürgen Giesl, editor, Term
Rewriting and Applications, 16th International Conference, RTA 2005, Nara, Japan, April
19-21, 2005, Proceedings, volume 3467 of Lecture Notes in Computer Science, pages 423–437.
Springer, 2005.

20 Gaspard Férey and François Thiré. Proof Irrelevance in LambdaPi Modulo Theory. https://
eutypes.cs.ru.nl/eutypes_pmwiki/uploads/Main/books-of-abstracts-TYPES2019.pdf,
2019.

21 G. Genestier. Dependently-Typed Termination and Embedding of Extensional Universe-
Polymorphic Type Theory using Rewriting. PhD thesis, Université Paris-Saclay, 2020.

22 H. Geuvers. The Calculus of Constructions and Higher Order Logic. In Ph. de Groote, editor,
The Curry-Howard isomorphism, volume 8 of Cahiers du Centre de logique, pages 139–191.
Université catholique de Louvain, 1995.

23 F. Gilbert. Extending higher-order logic with predicate subtyping: Application to PVS. (Exten-
sion de la logique d’ordre supérieur avec le sous-typage par prédicats). PhD thesis, Sorbonne
Paris Cité, France, 2018.

24 J.-Y. Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique d’ordre
supérieur. PhD thesis, Université de Paris VII, 1972.

25 É. Grienenberger. A logical system for an Ecumenical formalization of mathematics, 2019.
Manuscript.

26 É. Grienenberger. Expressing Ecumenical systems in the lambda-pi-calculus modulo theory,
2021. In preparation.

27 R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the ACM,
40(1):143–184, 1993. doi:10.1145/138027.138060.

28 D. Hilbert and W. Ackermann. Grundzüge der theoretischen Logik. Springer-Verlag, 1928.
29 G. Hondet and F. Blanqui. The New Rewriting Engine of Dedukti. In Proceedings of the

5th International Conference on Formal Structures for Computation and Deduction, Leibniz
International Proceedings in Informatics 167, 2020. doi:10.4230/LIPIcs.FSCD.2020.35.

30 A. J. C. Hurkens. A simplification of Girard’s paradox. In M. Dezani-Ciancaglini and
G. Plotkin, editors, Typed Lambda Calculi and Applications, pages 266–278, Berlin, Heidelberg,
1995. Springer Berlin Heidelberg.

31 J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems:
introduction and survey. Theoretical Computer Science, 121:279–308, 1993. doi:10.1016/
0304-3975(93)90091-7.

32 G. Nadathur and D. Miller. An overview of lambda-prolog. In Logic Programming, Proceedings
of the Fifth International Conference and Symposium, Seattle, Washington, USA, August
15-19, 1988 (2 Volumes), pages 810–827, 1988.

33 Sam Owre and Natarajan Shankar. The Formal Semantics of PVS. SRI International,
SRI International, Computer Science Laboratory, Menlo Park CA 94025 USA, 1997. URL:
http://pvs.csl.sri.com/doc/semantics.pdf.

34 L.C. Paulson. Isabelle: The next 700 theorem provers. CoRR, cs.LO/9301106, 1993. arXiv:
cs.LO/9301106.

35 L.C. Pereira and R.O. Rodriguez. Normalization, soundness and completeness for the proposi-
tional fragment of Prawitz’Ecumenical system. Revista Portuguesa de Filosofia, 73(3-4):1153–
1168, 2017.

36 D. Prawitz. Classical versus intuitionistic logic. In E.H. Haeusler, W. de Campos Sanz,
and B. Lopes, editors, Why is this a Proof?, Festschrift for Luiz Carlos Pereira. College
Publications, 2015.

https://doi.org/10.1023/A:1027357912519
https://doi.org/10.2178/jsl/1067620188
https://eutypes.cs.ru.nl/eutypes_pmwiki/uploads/Main/books-of-abstracts-TYPES2019.pdf
https://eutypes.cs.ru.nl/eutypes_pmwiki/uploads/Main/books-of-abstracts-TYPES2019.pdf
https://doi.org/10.1145/138027.138060
https://doi.org/10.4230/LIPIcs.FSCD.2020.35
https://doi.org/10.1016/0304-3975(93)90091-7
https://doi.org/10.1016/0304-3975(93)90091-7
http://pvs.csl.sri.com/doc/semantics.pdf
http://arxiv.org/abs/cs.LO/9301106
http://arxiv.org/abs/cs.LO/9301106

F. Blanqui, G. Dowek, É. Grienenberger, G. Hondet, and F. Thiré 20:19

37 J. C. Reynolds. Towards a theory of type structure. In Programming Symposium, pages
408–425. Springer, 1974.

38 TeReSe. Term rewriting systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

39 J. Terlouw. Een nadere bewijstheoretische analyse van GSTT’s. Manuscript, 1989.
40 F. Thiré. Sharing a Library between Proof Assistants: Reaching out to the HOL Family. In

Frédéric Blanqui and Giselle Reis, editors, Proceedings of the 13th International Workshop on
Logical Frameworks and Meta-Languages: Theory and Practice, LFMTP@FSCD 2018, Oxford,
UK, 7th July 2018, volume 274 of EPTCS, pages 57–71, 2018.

41 F. Thiré. Interoperability between proof systems using the Dedukti logical framework. PhD
thesis, Université Paris-Saclay, France, 2020.

FSCD 2021

Non-Deterministic Functions as Non-Deterministic
Processes
Joseph W. N. Paulus
University of Groningen, The Netherlands

Daniele Nantes-Sobrinho
University of Brasília, Brazil

Jorge A. Pérez
University of Groningen, The Netherlands
CWI, Amsterdam, The Netherlands

Abstract
We study encodings of the λ-calculus into the π-calculus in the unexplored case of calculi with
non-determinism and failures. On the sequential side, we consider λ ⊕, a new non-deterministic
calculus in which intersection types control resources (terms); on the concurrent side, we consider sπ,
a π-calculus in which non-determinism and failure rest upon a Curry-Howard correspondence between
linear logic and session types. We present a typed encoding of λ ⊕ into sπ and establish its correctness.
Our encoding precisely explains the interplay of non-deterministic and fail-prone evaluation in λ ⊕ via
typed processes in sπ. In particular, it shows how failures in sequential evaluation (absence/excess
of resources) can be neatly codified as interaction protocols.

2012 ACM Subject Classification Theory of computation→ Type structures; Theory of computation
→ Process calculi

Keywords and phrases Resource calculi, π-calculus, intersection types, session types, linear logic

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.21

Related Version Online appendix with omitted proofs and further examples:
Full Version: https://arxiv.org/abs/2104.14759 [22]

Funding Paulus and Pérez have been partially supported by the Dutch Research Council (NWO)
under project No. 016.Vidi.189.046 (Unifying Correctness for Communicating Software).

Acknowledgements We are grateful to the anonymous reviewers for their careful reading and
constructive remarks.

1 Introduction

Milner’s seminal work on encodings of the λ-calculus into the π-calculus [18] explains how
interaction in π subsumes evaluation in λ. It opened a research strand on formal connections
between sequential and concurrent calculi, covering untyped and typed regimes (see, e.g., [23,
4, 1, 25, 16, 26]). This paper extends this line of work by tackling a hitherto unexplored
angle, namely encodability of calculi in which computation is non-deterministic and may be
subject to failures – two relevant features in sequential and concurrent programming models.

We focus on typed calculi and study how non-determinism and failures interact with
resource-aware computation. In sequential calculi, non-idempotent intersection types [2]
offer one fruitful perspective at resource-awareness. Because non-idempotency distinguishes
between types σ and σ∧σ, this class of intersection types can “count” different resources and
enforce quantitative guarantees. In concurrent calculi, resource-awareness has been much
studied using linear types. Linearity ensures that process actions occur exactly once, which is
key to enforce protocol correctness. To our knowledge, connections between calculi adopting
these two distinct views of resource-awareness via types are still to be established. We aim
to develop such connections by relating models of sequential and concurrent computation.

© Joseph W. N. Paulus, Daniele Nantes-Sobrinho, and Jorge A. Pérez;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 21; pp. 21:1–21:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1959-8730
https://orcid.org/0000-0002-1452-6180
https://doi.org/10.4230/LIPIcs.FSCD.2021.21
https://arxiv.org/abs/2104.14759
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Non-Deterministic Functions as Non-Deterministic Processes

On the sequential side, we introduce λ ⊕: a λ-calculus with resources, non-determinism,
and failures, which distills key elements from λ-calculi studied in [3, 21] (§ 2). Evaluation
in λ ⊕ considers bags of resources, and determines alternative executions governed by non-
determinism. Failure results from a lack or excess of resources (terms), and is captured by
the term failx̃ (for some variables x̃). Non-determinism is non-collapsing: given M and
N with reductions M −→M ′ and N −→ N ′, the non-deterministic sum M + N reduces to
M ′ + N ′. (Under a collapsing view, as in, e.g., [8], M + N reduces to either M or N .)

On the concurrent side, we consider sπ: a session π-calculus with (non-collapsing) non-
determinism and failure proposed in [6] (§ 3). Processes in sπ are disciplined by session types
that specify the protocols that the channels of a process must respect. Exploiting linearity,
session types ensure absence of communication errors and stuck processes; sπ rests upon a
Curry-Howard correspondence between session types and (classical) linear logic extended
with two modalities that express non-deterministic protocols that may succeed or fail.

Contributions. This paper presents the following contributions:
1. The resource calculus λ ⊕, a new calculus that distills the distinguishing elements from

previous resource calculi [4, 21], while offering an explicit treatment of failures in a setting
with non-collapsing non-determinism. Using intersection types, we define well-typed
(fail-free) expressions and well-formed (fail-prone) expressions in λ ⊕ (see below).

2. An encoding of λ ⊕ into sπ, proven correct following established criteria [11, 17] (§ 4).
These criteria attest to an encoding’s quality; we consider type preservation, operational
correspondence, success sensitiveness, and compositionality. Thanks to these correctness
properties, our encoding precisely describes how typed interaction protocols can codify
sequential evaluation in which the absence and excess of resources may lead to failures.

These contributions entail different challenges. The first is bridging the different mechanisms
for resource-awareness involved (intersection types in λ ⊕, session types in sπ). A direct
encoding of λ ⊕ into sπ is far from obvious, as multiple occurrences of a variable in λ ⊕ must
be accommodated into the linear setting of sπ. To overcome this, we introduce λ̂ ⊕: a variant
of λ ⊕ with sharing [13, 10]. This way, we “atomize” occurrences of the same variable, thus
simplifying the task of encoding λ ⊕ expressions into sπ processes.

Another challenge is framing failures (undesirable computations) in λ ⊕ as well-typed sπ
processes. We define well-formed λ ⊕ expressions, which can lead to failure, in two stages.
First, we consider λ⊕, the sub-language of λ ⊕ without failx̃. We give an intersection type
system for λ⊕ to regulate fail-free evaluation. Well-formed expressions are defined on top of
well-typed λ⊕ expressions. We show that sπ can correctly encode the fail-free λ⊕ but, much
more interestingly, also well-formed λ ⊕ expressions, which are fail-prone by definition.

Discussion about our approach and results, and comparisons with related works is in § 5.

2 λ
⊕: A λ-calculus with Non-Determinism and Failure

The syntax of λ ⊕ combines elements from calculi studied by Boudol and Laneve [4] and by
Pagani and Ronchi della Rocca [21]. We use x, y, . . . to range over the set of variables. We
write x̃ to denote the sequence of pairwise distinct variables x1, . . . , xk, for some k ≥ 0. We
write |x̃| to denote the length of x̃.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:3

▶ Definition 1 (Syntax of λ ⊕). The λ ⊕ calculus is defined by the following grammar:

(Terms) M, N, L ::= x | λx.M | (M B) | M⟨⟨B/x⟩⟩ | failx̃

(Bags) A, B ::= 1 | HMI | A ·B
(Expressions) M,N,L ::= M | M + N

We have three syntactic categories: terms (in functional position); bags (in argument
position), which denote multisets of resources; and expressions, which are finite formal sums
that represent possible results of a computation. Terms are unary expressions: they can be
variables, abstractions, and applications. Following [3, 4], the explicit substitution of a bag B

for a variable x, written ⟨⟨B/x⟩⟩, is also a term. The term failx̃ results from a reduction in
which there is a lack or excess of resources to be substituted, where x̃ denotes a multiset of
free variables that are encapsulated within failure.

The empty bag is denoted 1. The bag enclosing the term M is HMI. The concatenation
of bags B1 and B2 is B1 ·B2; this is a commutative and associative operation, where 1 is the
identity. We treat expressions as sums, and use notations such as

∑n
i Ni for them. Sums are

associative and commutative; reordering of the terms in a sum is performed silently.

▶ Notation 2 (Expressions). Notation N ∈M denotes that N is part of the sum denoted by
M. Similarly, we write Ni ∈ B to denote that Ni occurs in the bag B, and B \Ni to denote
the bag that is obtained by removing one occurrence of the term Ni from B.

Full details on the reduction semantics and typing system for λ ⊕ can be found in the
appendix and [22].

A Resource Calculus With Sharing
We define a variant of λ ⊕ with sharing variables, dubbed λ̂ ⊕, inspired by the work by
Gundersen et al. [13] and Ghilezan et al. [10]. In § 4 we shall use λ̂ ⊕ as intermediate language
in our encoding of λ ⊕ into sπ.

The syntax of λ̂ ⊕ only modifies the syntax of λ ⊕-terms, which is defined by the grammar
below; the syntax of bags B and expressions M is as in Def. 1.

(Terms) M, N, L ::= x | λx.(M [x̃← x]) | (M B) | M⟨|N/x|⟩ | failx̃

| M [x̃← x] | (M [x̃← x])⟨⟨B/x⟩⟩

We consider the sharing construct M [x̃← x] and the explicit linear substitution M⟨|N/x|⟩.
The term M [x̃ ← x] defines the sharing of variables x̃ occurring in M using x. We shall
refer to x as sharing variable and to x̃ as shared variables. A variable is only allowed to
appear once in a term. Notice that x̃ can be empty: M [← x] expresses that x does not
share any variables in M . As in λ ⊕, the term failx̃ explicitly accounts for failed attempts
at substituting the variables x̃, due to an excess or lack of resources. There is a difference
with respect to λ ⊕: in the term failx̃, x̃ denotes a set (rather than a multiset) of variables,
which may include shared variables.

In M [x̃ ← x] we require that (i) every xi ∈ x̃ must occur exactly once in M and that
(ii) xi is not a sharing variable. The occurrence of xi can appear within the fail term failỹ,
if xi ∈ ỹ. In the explicit linear substitution M⟨|N/x|⟩, we require: (i) the variable x has to
occur in M ; (ii) x cannot be a sharing variable; and (iii) x cannot be in an explicit linear
substitution occurring in M . For instance, M ′⟨|L/x|⟩⟨|N/x|⟩ is not a valid term in λ̂ ⊕.

To define the reduction semantics of λ̂ ⊕, we require some auxiliary notions: the free
variables of an expression/term, the head of a term, and linear head substitution.

FSCD 2021

21:4 Non-Deterministic Functions as Non-Deterministic Processes

fv(x) = {x} fv(failx̃) = {x̃} fv(HMI) = fv(M)
fv(B1 ·B2) = fv(B1) ∪ fv(B2) fv(M B) = fv(M) ∪ fv(B) fv(1) = ∅

fv(M⟨|N/x|⟩) = (fv(M) \ {x}) ∪ fv(N) fv(M [x̃← x]) = (fv(M) \ {x̃}) ∪ {x}
fv(λx.(M [x̃← x])) = fv(M [x̃← x]) \ {x} fv(M + N) = fv(M) ∪ fv(N)

fv((M [x̃← x])⟨⟨B/x⟩⟩) = (fv(M [x̃← x]) \ {x}) ∪ fv(B)

Figure 1 Free variables for λ̂ ⊕.

▶ Definition 3 (Free Variables). The set of free variables of a term, bag and expressions in
λ̂ ⊕, is defined in Fig. 1. As usual, a term M is closed if fv(M) = ∅.

▶ Notation 4. We write PER(B) to denote the set of all permutations of bag B. Also, Bi(n)
denotes the n-th term in the (permuted) Bi. We define size(B) to denote the number of terms
in bag B. That is, size(1) = 0 and size(HMI ·B) = 1 + size(B).

▶ Definition 5 (Head). The head of a term M , denoted head(M), is defined inductively:

head(x) = x head(λx.(M [x̃← x])) = λx.(M [x̃← x])
head(M B) = head(M) head(M⟨|N/x|⟩) = head(M)
head(failx̃) = failx̃

head(M [x̃← x]) =
{

x If head(M) = y and y ∈ x̃

head(M) Otherwise

head((M [x̃← x])⟨⟨B/x⟩⟩) =
{

fail∅ If |x̃| ̸= size(B)
head(M [x̃← x]) Otherwise

▶ Definition 6 (Linear Head Substitution). Given a term M with head(M) = x, the linear
substitution of a term N for x in M , written M{|N/x|} is inductively defined as:

x{|N/x|} = N

(M B){|N/x|} = (M{|N/x|}) B

(M⟨|L/y|⟩){|N/x|} = (M{|N/x|}) ⟨|L/y|⟩ x ̸= y

((M [ỹ ← y])⟨⟨B/y⟩⟩){|N/x|} = (M [ỹ ← y]{|N/x|}) ⟨⟨B/y⟩⟩ x ̸= y

(M [ỹ ← y]){|N/x|} = (M{|N/x|})[ỹ ← y] x ̸= y

We now define contexts for terms and expressions in λ̂ ⊕. Term contexts involve an
explicit linear substitution, rather than an explicit substitution: this is due to the reduction
strategy we have chosen to adopt, as we always wish to evaluate explicit substitutions first.
Expression contexts can be seen as sums with holes. We assume that the terms that fill in
the holes respect the conditions on explicit linear substitutions (i.e., variables appear in a
term only once, shared variables must occur in the context).

▶ Definition 7 (Term and Expression Contexts in λ̂ ⊕). Let [·] denote a hole. Contexts for
terms and expressions are defined by the following grammar:

C[·], C ′[·] ::= ([·])B | ([·])⟨|N/x|⟩ | ([·])[x̃← x] | ([·])[← x]⟨⟨1/x⟩⟩
D[·], D′[·] ::= M + [·] | [·] + M

The substitution of a hole with term M in a context C[·], denoted C[M], must be a λ̂ ⊕-term.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:5

[RS:Beta]
(λx.M [x̃← x])B −→M [x̃← x]⟨⟨B/x⟩⟩

B = HM1I · · · HMkI k ≥ 1 M ̸= failỹ

[RS:Ex-Sub]
M [x1, . . . , xk ← x]⟨⟨B/x⟩⟩ −→

∑
Bi∈PER(B) M⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(k)/xk|⟩

head(M) = x
[RS:Lin-Fetch]

M⟨|N/x|⟩ −→M{|N/x|}

k ̸= size(B) ỹ = (fv(M) \ {x1, . . . , xk}) ∪ fv(B)
[RS:Fail]

M [x1, . . . , xk ← x]⟨⟨B/x⟩⟩ −→
∑

PER(B) failỹ

ỹ = fv(B)
[RS:Cons1]

failx̃ B −→
∑

PER(B)

failx̃∪ỹ

size(B) = k k + |x̃| ̸= 0 z̃ = fv(B)
[RS:Cons2]

(failx̃∪ỹ[x̃← x])⟨⟨B/x⟩⟩ −→
∑

PER(B)

failỹ∪z̃

z̃ = fv(N)
[RS:Cons3]

failỹ∪x⟨|N/x|⟩ −→ failỹ∪z̃

M −→M ′
1 + · · ·+ M ′

k[RS:TCont]
C[M] −→ C[M ′

1] + · · ·+ C[M ′
k]

M −→ M′
[RS:ECont]

D[M] −→ D[M′]

Figure 2 Reduction rules for λ̂ ⊕.

This way, e.g., the hole in context C[·] = ([·])⟨|N/x|⟩ cannot be filled with y, since
C[y] = (y)⟨|N/x|⟩ is not a well-defined term. Indeed, M⟨|N/x|⟩ requires that x occurs
exactly once within M . Similarly, we cannot fill the hole with failz with z ̸= x, since
C[failz] = (failz)⟨|N/x|⟩ is also not a well-defined term, for the same reason.

Reduction Semantics

The reduction relation −→ operates lazily on expressions; it is defined by the rules in Fig. 2.
A β-reduction in λ̂ ⊕ results into an explicit substitution ⟨⟨B/x⟩⟩, which then evolves into a
linear head substitution {|N/x|} (with N ∈ B). Reduction in λ̂ ⊕ introduces an intermediate
step whereby the explicit substitution expands into a sum of terms involving explicit linear
substitutions ⟨|N/x|⟩, which are the ones to reduce into a linear head substitution. In the
case there is a mismatch between the size of B and the number of shared variables to be
substituted, the term reduces to failure.

More specifically, Rule [RS:Beta] is standard and results into an explicit substitution.
Rule [RS:Ex-Sub] applies when the size k of the bag coincides with the length of x̃ = x1, . . . , xk.
Intuitively, this rule “distributes” an explicit substitution into a sum of terms involving
explicit linear substitutions; it considers all possible permutations of the elements in the bag
among all shared variables. Rule [RS:Lin-Fetch] specifies the evaluation of a term with an
explicit linear substitution into a linear head substitution.

There are three rules reduce to the failure term: their objective is to accumulate all
(free) variables involved in failed reductions. Accordingly, Rule [RS:Fail] formalizes failure
in the evaluation of an explicit substitution M [x̃ ← x]⟨⟨B/x⟩⟩, which occurs if there is a
mismatch between the resources (terms) present in B and the number of occurrences of

FSCD 2021

21:6 Non-Deterministic Functions as Non-Deterministic Processes

M [← x]⟨⟨1/x⟩⟩ ⪰λ M

MB⟨|N/x|⟩ ≡λ (M⟨|N/x|⟩)B with x ̸∈ fv(B)
M⟨|N2/y|⟩⟨|N1/x|⟩ ≡λ M⟨|N1/x|⟩⟨|N2/y|⟩ with x ̸∈ fv(N2)

MA[x̃← x]⟨⟨B/x⟩⟩ ≡λ (M [x̃← x]⟨⟨B/x⟩⟩)A with xi ∈ x̃⇒ xi ̸∈ fv(A)
M [ỹ ← y]⟨⟨A/y⟩⟩[x̃← x]⟨⟨B/x⟩⟩ ⪰λ

(M [x̃← x]⟨⟨B/x⟩⟩)[ỹ ← y]⟨⟨A/y⟩⟩ with xi ∈ x̃⇒ xi ̸∈ fv(A)
C[M] ⪰λ C[M ′] with M ⪰λ M ′

D[M] ⪰λ D[M′] with M ⪰λ M′

Figure 3 Precongruence in λ̂ ⊕.

x to be substituted. The resulting failure term preserves all free variables in M and B

within its attached set ỹ. Rules [RS:Cons1] and [RS:Cons2] describe reductions that lazily
consume the failure term, when a term has failx̃ at its head position. The former rule
consumes bags attached to it whilst preserving all its free variables. Finally, Rule [RS:Cons3]
accumulates into the failure term the free variables involved in an explicit linear substitution.
The contextual rules [RS:TCont] and [RS:Econt] are standard.

▶ Notation 8. As standard, −→ denotes one step reduction; −→+ and −→∗ denote the
transitive and the reflexive-transitive closure of −→, respectively. We write N −→[R] M to
denote that [R] is the last (non-contextual) rule used in inferring the step from N to M.

▶ Example 9. We show how a term can reduce using Rule [RS:Cons2].

(λx.x1[x1 ← x])Hfail∅[← y]⟨⟨HNI/y⟩⟩I −→[RS:Beta] x1[x1 ← x]⟨⟨Hfail∅[← y]⟨⟨HNI/y⟩⟩I/x⟩⟩

−→[RS:Ex-Sub] x1⟨|fail∅[← y]⟨⟨HNI/y⟩⟩/x1|⟩ −→[RS:Lin-Fetch] fail∅[← y]⟨⟨HNI/y⟩⟩ −→[RS:Cons2] failfv(N)

⌟

Notice that the left-hand sides of the reduction rules in λ̂ ⊕ do not interfere with each
other. Reduction in λ̂ ⊕ satisfies a diamond property; see [22].

A Precongruence

Fig. 3 defines a precongruence for λ̂ ⊕ on terms and expressions, denoted ⪰λ. We write
M ≡λ M ′ whenever both M ⪰λ M ′ and M ′ ⪰λ M hold.

▶ Example 10. We illustrate the precongruence in case of failure:

(λx.x1[x1 ← x])Hfail∅[← y]⟨⟨1/y⟩⟩I −→[RS:Beta] x1[x1 ← x]⟨⟨Hfail∅[← y]⟨⟨1/y⟩⟩I/x⟩⟩

−→[RS:Ex-Sub] x1⟨|fail∅[← y]⟨⟨1/y⟩⟩/x1|⟩ −→[RS:Lin-Fetch] fail∅[← y]⟨⟨1/y⟩⟩ ⪰λ fail∅

In the last step, Rule [RS:Cons2] cannot be applied: y is sharing with no shared variables
and the explicit substitution involves the bag 1. ⌟

▶ Example 11. We illustrate how Rule [RS:Fail] can introduce failx̃ into a term. It also
shows how Rule [RS:Cons3] consumes an explicit linear substitution:

x1[← y]⟨⟨HNI/y⟩⟩[x1 ← x]⟨⟨HMI/x⟩⟩ −→[RS:Ex-Sub] x1[← y]⟨⟨HNI/y⟩⟩⟨|M/x1|⟩

−→[RS:Fail] fail{x1}∪fv(N)⟨|M/x1|⟩ −→[RS:Cons3] failfv(M)∪fv(N)

⌟

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:7

Intersection Types
We define a type system for λ̂ ⊕ based on non-idempotent intersection types, similar to the
one defined by Bucciarelli et al. in [5]. Intersection types allow us to reason about types of
resources in bags but also about every occurrence of a variable. That is, non-idempotent
intersection types enable us to distinguish expressions not only by measuring the size of a
bag but also by counting the number of times a variable occurs within a term.

▶ Definition 12 (Types for λ̂ ⊕). We define strict and multiset types by the grammar:

(Strict) σ, τ, δ ::= unit | π → σ (Multiset) π, ζ ::=
∧

i∈I σi | ω

A strict type can be the unit type unit or a functional type π → σ, where π is a multiset
type and σ is a strict type. Multiset types can be either the empty type ω or an intersection
of strict types

∧
i∈I σi, with I non-empty. The operator ∧ is commutative, associative, and

non-idempotent, that is, σ ∧ σ ̸= σ. The empty type is the type of the empty bag and acts
as the identity element to ∧.

Type assignments range over Γ, ∆, . . . and have the form Γ, x : σ, assigning the empty
type to all but a finite number of variables. Multiple occurrences of a variable can occur
within an assignment; they are assigned only strict types. For instance, x : τ → τ, x : τ is a
valid type assignment: it means that x can be of both type τ → τ and τ . The multiset of
variables in Γ is denoted as dom(Γ). Type judgements are of the form Γ ⊢ M : σ, where Γ
consists of variable type assignments, and M : σ means that M has type σ. We write ⊢M : σ

to denote ∅ ⊢M : σ.

▶ Notation 13. Given k ≥ 0, we shall write σk to stand for σ ∧ · · · ∧ σ (k times, if k > 0)
or for ω (if k = 0). Similarly, we write x̂ : σk to stand for x : σ, · · · , x : σ (k times, if k > 0)
or for x : ω (if k = 0).

We define well-formed λ̂ ⊕ expressions, in two stages. We first consider the type system given
in Fig. 4 for λ̂⊕, the sub-calculus of λ̂ ⊕ without the failure term failx̃. Then, we define
well-formed expressions for the full language λ̂ ⊕ via Def. 14 (see below).

We first discuss selected rules of the type system for λ̂⊕, which takes into account the
sharing construct M [x̃← x]. Rule [TS:var] is standard. Rule [TS:1] assigns the empty bag 1
the empty type ω. The weakening rule [TS:weak] deals with k = 0, typing the term M [← x],
when there are no occurrences of x in M , as long as M is typable. Rule [TS:abs-sh] is as
expected: it requires that the sharing variable is assigned the k-fold intersection type σk

(Not. 13). Rule [TS:app] is standard, requiring a match on the multiset type π. Rule [TS:bag]
types the concatenation of bags. Rule [TS:ex-lin-sub] supports explicit linear substitutions.
Rule [TS:ex-sub] types explicit substitutions where a bag must consist of both the same
type and length of the shared variable it is being substituted for. Rule [TS:sum] types the
sum of two expressions of the same type. Rule [TS:share] requires that the shared variables
x1, . . . , xk have the same type as the sharing variable x, for k ̸= 0.

On top of this type system for λ̂⊕, we define well-formed expressions: λ ⊕-terms whose
computation may lead to failure.

▶ Definition 14 (Well-formedness in λ̂ ⊕). An expression M is well formed if there exist Γ
and τ such that Γ |= M : τ is entailed via the rules in Fig. 5.

Rules [FS:wf-expr] and [FS:wf-bag] guarantee that every well-typed expression and bag,
respectively, is well-formed. Since our language is expressive enough to account for failing
computations, we include rules for checking the structure of these ill-behaved terms – terms

FSCD 2021

21:8 Non-Deterministic Functions as Non-Deterministic Processes

[TS:var]
x : σ ⊢ x : σ

[TS:1] ⊢ 1 : ω
∆ ⊢M : τ[TS:weak]

∆, x : ω ⊢M [← x] : τ

∆, x : σk ⊢M [x̃← x] : τ
[TS:abs-sh]

∆ ⊢ λx.(M [x̃← x]) : σk → τ

Γ ⊢M : π → τ ∆ ⊢ B : π[TS:app] Γ, ∆ ⊢M B : τ

Γ ⊢M : σ ∆ ⊢ B : σk
[TS:bag]

Γ, ∆ ⊢ HMI ·B : σk+1
∆ ⊢ N : σ Γ, x : σ ⊢M : τ[TS :ex-lin-sub]

Γ, ∆ ⊢M⟨|N/x|⟩ : τ

∆ ⊢ B : π Γ, x : π ⊢M [x̃← x] : τ
[TS : ex-sub]

Γ, ∆ ⊢M [x̃← x]⟨⟨B/x⟩⟩ : τ

Γ ⊢M : σ Γ ⊢ N : σ[TS:sum] Γ ⊢M + N : σ

∆, x1 : σ, · · · , xk : σ ⊢M : τ x /∈ dom(∆) k ̸= 0
[TS:share]

∆, x : σk ⊢M [x1, · · · , xk ← x] : τ

Figure 4 Typing rules for λ̂⊕.

Γ ⊢M : τ[FS :wf-expr]
Γ |= M : τ

Γ ⊢ B : π[FS :wf-bag]
Γ |= B : π

Γ |= M : τ
[FS :weak]

Γ, x : ω |= M [← x] : τ

Γ, x : σk |= M [x̃← x] : τ x /∈ dom(Γ)
[FS:abs-sh]

Γ |= λx.(M [x̃← x]) : σk → τ

dom(Γ) = x̃
[FS:fail]

Γ |= failx̃ : τ

Γ |= M : σj → τ ∆ |= B : σk

[FS:app]
Γ, ∆ |= M B : τ

Γ |= M : σ ∆ |= B : σk

[FS:bag]
Γ, ∆ |= HMI ·B : σk+1

Γ, x : σ |= M : τ ∆ |= N : σ
[FS:ex-lin-sub]

Γ, ∆ |= M⟨|N/x|⟩ : τ

Γ |= M : σ Γ |= N : σ
[FS:sum]

Γ |= M + N : σ

Γ, x : σk |= M [x̃← x] : τ ∆ |= B : σj

[FS:ex-sub]
Γ, ∆ |= M [x̃← x]⟨⟨B/x⟩⟩ : τ

Γ, x1 : σ, · · · , xk : σ |= M : τ x /∈ dom(Γ) k ̸= 0
[FS:share]

Γ, x : σk |= M [x1, · · · , xk ← x] : τ

Figure 5 Well-formedness rules for λ̂ ⊕.

that can be well-formed, but not typable. For instance, Rules [FS:ex-sub] and [FS:app] differ
from similar typing rules in Fig. 4: the size of the bags (as declared in their types) is no
longer required to match. Also, Rule [FS:fail] has no analogue in the type system: we allow
the failure term failx̃ to be well-formed with any type, provided that the context contains
the types of the variables in x̃. The other rules are self-explanatory.

Well-formed expressions satisfy subject reduction (SR); the proof is standard (cf. [22]).

▶ Theorem 15 (SR in λ̂ ⊕). If Γ |= M : τ and M −→M′ then Γ |= M′ : τ .

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:9

3 sπ: A Session-Typed π-Calculus

The π-calculus [19] is a model of concurrency in which processes interact via names (or
channels) to exchange values, which can be themselves names. Here we overview sπ, in-
troduced by Caires and Pérez in [6], in which session types [14, 15] ensure that the two
endpoints of a channel perform matching actions: when one endpoint sends, the other receives;
when an endpoint closes, the other closes too. Following [7, 27], sπ defines a Curry-Howard
correspondence between session types and a linear logic with two dual modalities (NA and
⊕A), which define non-deterministic sessions. In sπ, cut elimination corresponds to process
communication, proofs correspond to processes, and propositions correspond to session types.

Syntax and Semantics

We use x, y, z, w . . . to denote names implementing the (session) endpoints of protocols
specified by session types. We consider the sub-language of [6] without labeled choices and
replication, which is actually sufficient to encode λ̂ ⊕.

▶ Definition 16 (Processes). The syntax of sπ processes is given by the grammar:

P, Q ::= x(y).P | x(y).P | x.close | x.close; P | [x↔ y] | (P | Q) | (νx)P | 0
| x.some; P | x.none | x.some(w1,··· ,wn); P | P ⊕Q

In the first line, an output process x(y).P sends a fresh name y along session x and then
continues as P . An input process x(y).P receives a name z along x and then continues as
P{z/y}, which denotes the capture-avoiding substitution of z for y in P . Processes x.close
and x.close; P denote complementary actions for closing session x. The forwarder process
[x↔ y] denotes a bi-directional link between sessions x and y. Process P | Q denotes the
parallel execution of P and Q. Process (νx)P denotes the process P in which name x has
been restricted, i.e., x is kept private to P . 0 is the inactive process.

The constructs in the second line introduce non-deterministic sessions which, intuitively,
may provide a session protocol or fail.

Process x.some; P confirms that the session on x will execute and continues as P . Process
x.none signals the failure of implementing the session on x.
Process x.some(w1,··· ,wn); P specifies a dependency on a non-deterministic session x. This
process can either (i) synchronize with an action x.some and continue as P , or (ii) syn-
chronize with an action x.none, discard P , and propagate the failure on x to (w1, · · · , wn),
which are sessions implemented in P . When x is the only session implemented in P , the
tuple of dependencies is empty and so we write simply x.some; P .
P ⊕Q denotes a non-deterministic choice between P and Q. We shall often write

⊕
i∈I Pi

to stand for P1 ⊕ · · · ⊕ Pn.
In (νy)P and x(y).P the distinguished occurrence of name y is binding, with scope P . The
set of free names of P is denoted by fn(P).

The reduction semantics of sπ specifies the computations that a process performs on its
own (Fig. 6). It relies on structural congruence, denoted ≡, which expresses basic identities
on the structure of processes and the non-collapsing nature of non-determinism (cf. [22]).

In Fig. 6, the first reduction rule formalizes communication, which concerns bound names
only (internal mobility): name y is bound in both x(y).Q and x(y).P . The reduction rule
for the forwarder process leads to a name substitution. The reduction rule for closing a
session is self-explanatory, as is the rule in which prefix x.some confirms the availability of a
non-deterministic session. When the non-deterministic session is not available, prefix x.none

FSCD 2021

21:10 Non-Deterministic Functions as Non-Deterministic Processes

x(y).Q | x(y).P −→ (νy)(Q | P)
(νx)([x↔ y] | P) −→ P{y/x} (x ̸= y)

x.close | x.close; P −→ P

x.some; P | x.some(w1,··· ,wn); Q −→ P | Q
x.none | x.some(w1,··· ,wn); Q −→ w1.none | · · · | wn.none

P ≡ P ′ ∧ P ′ −→ Q′ ∧Q′ ≡ Q⇒ P −→ Q Q −→ Q′ ⇒ P | Q −→ P | Q′

P −→ Q⇒ (νy)P −→ (νy)Q Q −→ Q′ ⇒ P ⊕Q −→ P ⊕Q′

Figure 6 Reduction for sπ.

triggers this failure to all dependent sessions w1, . . . , wn; this may in turn trigger further
failures (i.e., on sessions that depend on w1, . . . , wn). Reduction is closed under structural
congruence. The remaining rules define contextual reduction with respect to restriction,
parallel composition, and non-deterministic choice.

Type System

We introduce the session types that govern process behavior:

▶ Definition 17 (Session Types). Session types are given by

A, B ::= ⊥ | 1 | A⊗B | A O B | NA | ⊕A

Types are assigned to names: an assignment x : A enforces the use of name x according
to the protocol specified by A. The multiplicative units ⊥ and 1 are used to type terminated
(closed) endpoints. We use A⊗B to type a name that first outputs a name of type A before
proceeding as specified by B. Similarly, A O B types a name that first inputs a name of type
A before proceeding as specified by B. Then we have the two modalities introduced in [6].
We use NA as the type of a (non-deterministic) session that may produce a behavior of type
A. Dually, ⊕A denotes the type of a session that may consume a behavior of type A.

The two endpoints of a session should be dual to ensure absence of communication errors.
The dual of a type A is denoted A. Duality corresponds to negation (·)⊥ in linear logic [6]:

▶ Definition 18 (Duality). The duality relation on types is given by:

1 = ⊥ ⊥ = 1 A⊗B = A O B A O B = A⊗B ⊕A = NA NA = ⊕A

Typing judgments are of the form P ⊢ ∆, where P is a process and ∆ is a linear context
of assignments of types to names. The empty context is denoted “·”. We write N∆ to denote
that all assignments in ∆ have a non-deterministic type, i.e., ∆ = w1:NA1, . . . , wn:NAn, for
some A1, . . . , An. The typing judgment P ⊢ ∆ corresponds to the logical sequent ⊢ ∆ for
classical linear logic, which can be recovered by erasing processes and name assignments.

Typing rules for processes correspond to proof rules in the logic; Fig. 7 gives a selection
(see [6] and [22] for a full account). Rule [Tid] interprets the identity axiom using the forwarder
process. Rules [T1] and [T⊥] type the constructs for session termination. Rules [T⊗] and
[TO] type output and input of a name along a session, respectively. The last four rules are
used to type constructs for non-determinism and failure. Rules [TNx

d] and [TNx] introduce a
session of type NA, which may produce a behavior of type A: while the former rule covers
the case in which x : A is available, the latter rule formalizes the case in which x : A is not
available (i.e., a failure). Given a sequence of names w̃ = w1, . . . , wn, Rule [T⊕x

w̃
] accounts

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:11

[Tid]
[x↔ y] ⊢ x:A, y:A

[T1]
x.close ⊢ x : 1

P ⊢ ∆[T⊥]
x.close; P ⊢ x:⊥, ∆

P ⊢ ∆, y : A Q ⊢ ∆′, x : B[T⊗]
x(y).(P | Q) ⊢ ∆, ∆′, x : A⊗B

P ⊢ ∆, y : C, x : D[TO]
x(y).P ⊢ ∆, x : C O D

[TNx]
x.none ⊢ x : NA

P ⊢ w̃ : N∆, x : A[T⊕x
w̃
]

x.some
w̃

; P ⊢ w̃:N∆, x:⊕A

P ⊢ ∆, x : A[TNx
d]

x.some; P ⊢ ∆, x : NA

P ⊢ N∆ Q⊢N∆[TN]
P ⊕Q ⊢ N∆

Figure 7 Selected typing rules for sπ.

for the possibility of not being able to consume the session x : A by considering sessions
different from x as potentially not available. Finally, Rule [TN] expresses non-deterministic
choice of processes P and Q that implement non-deterministic behaviors only.

The type system enjoys type preservation, a result that follows directly from the cut
elimination property in the underlying logic; it ensures that the observable interface of a
system is invariant under reduction. The type system also ensures other properties for
well-typed processes (e.g. global progress and confluence); see [6] for details.

▶ Theorem 19 (Type Preservation [6]). If P ⊢ ∆ and P −→ Q then Q ⊢ ∆.

4 The Encoding

To encode λ ⊕ into sπ, we first define the encoding L·M◦ from well-formed expressions in λ ⊕ to
well-formed expressions in λ̂ ⊕. Then, the encoding J·K u (for a name u) translates well-formed
expressions in λ̂ ⊕ to well-typed processes in sπ. We first discuss the encodability criteria.

4.1 Encodability Criteria
We follow most of the criteria in [11], a widely studied abstract framework for establishing the
quality of encodings. A language L is a pair: a set of terms and a reduction semantics −→ on
terms (with reflexive, transitive closure denoted ∗−→). A correct encoding translates terms of
a source language L1 into terms of a target language L2 by respecting certain criteria. The
criteria in [11] concern untyped languages; because we treat typed languages, we follow [17]
in requiring that encodings preserve typability.

▶ Definition 20 (Correct Encoding). Let L1 = (M,−→1) and L2 = (P,−→2) be two
languages. We use M, M ′, . . . and P, P ′, . . . to range over elements in M and P. Also, let
≈2 be a behavioral equivalence on terms in P. We say that a translation J·K :M→ P is a
correct encoding if it satisfies the following criteria:
1. Type preservation: For every well-typed M , it holds that JMK is well-typed.
2. Operational Completeness: For every M, M ′ such that M

∗−→1 M ′, it holds that
JMK ∗−→2≈2 JM ′K.

3. Operational Soundness: For every M and P such that JMK ∗−→2 P , there exists an M ′

such that M −→∗
1 M ′ and P

∗−→2≈2 JM ′K.
4. Success Sensitiveness: For every M , it holds that M✓1 if and only if JMK✓2, where ✓1

and ✓2 denote a success predicate in M and P, respectively.

Besides these semantic criteria, we also consider compositionality, a syntactic criterion
that requires that a composite source term is encoded as the combination of the encodings
of its sub-terms. Operational completeness formalizes how reduction steps of a source
term are mimicked by its corresponding encoding in the target language; ≈2 conveniently

FSCD 2021

21:12 Non-Deterministic Functions as Non-Deterministic Processes

abstracts away from target terms useful in the translation but which are not meaningful
in comparisons. Operational soundness concerns the opposite direction: it formalizes the
correspondence between (i) the reductions of a target term obtained via the translation
and (ii) the reductions of the corresponding source term. The role of ≈2 can be explained
as in completeness. Success sensitiveness complements completeness and soundness, which
concern reductions and therefore do not contain information about observable behaviors. The
so-called success predicates ✓1 and ✓2 serve as a minimal notion of observables; the criterion
then says that observability of success of a source term implies observability of success in the
corresponding target term, and viceversa. Finally, type preservation is self-explanatory.

We choose not to use full abstraction as a correctness criterion. As argued in [12], full
abstraction is not an informative criterion when it comes to an encoding’s quality.

4.2 First Step: From λ
⊕ into λ̂

⊕

We define an encoding L−M◦ from λ ⊕ into λ̂ ⊕ and prove it is correct. The encoding, defined
for well-formed terms in λ ⊕ (cf. Def. 42 in App. A.1), relies on an intermediate encoding L·M•

on closed λ ⊕-terms.
We introduce some notation. Given a term M such that #(x, M) = k and a sequence of

pairwise distinct fresh variables x̃ = x1, . . . , xk we write M⟨x̃/x⟩ or M⟨x1, · · · , xn/x⟩ to stand
for M⟨x1/x⟩ · · · ⟨xk/x⟩. That is, M⟨x̃/x⟩ denotes a simultaneous linear substitution whereby
each distinct occurrence of x in M is replaced by a distinct xi ∈ x̃. Notice that each xi has
the same type as x. We use (simultaneous) linear substitutions to force all bound variables
in λ ⊕ to become shared variables in λ̂ ⊕.

▶ Definition 21 (From λ ⊕ to λ̂ ⊕). Let M ∈ λ ⊕. Suppose Γ |= M : τ , with dom(Γ) = fv(M) =
{x1, · · · , xk} and #(xi, M) = ji. We define LMM◦ as

LMM◦ = LM⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M•[x̃1 ← x1] · · · [x̃k ← xk]

where x̃i = xi1 , · · · , xiji
and the encoding L·M• : λ ⊕ → λ̂ ⊕ is defined in Fig. 8 on closed

λ ⊕-terms. The encoding L·M◦ extends homomorphically to expressions.

The encoding L−M◦ “atomizes” occurrences of variables: it converts n occurrences of a
variable x in a term into n distinct variables x1, . . . , xn. The sharing construct coordinates
the occurrences of these variables by constraining each to occur exactly once within a term.
We proceed in two stages. First, we share all free variables using L−M◦: this ensures that
free variables are replaced by bound shared variables. Second, we apply the encoding L−M•

on the corresponding closed term. Two cases of Fig. 8 are noteworthy. In Lλx.MM•, the
occurrences of x are replaced with fresh shared variables that only occur once within in
M . The definition of LM⟨⟨B/x⟩⟩M• considers two possibilities. If the bag being encoded is
non-empty and the explicit substitution would not lead to failure (the number of occurrences
of x and the size of the bag coincide) then we encode the explicit substitution as a sum of
explicit linear substitutions. Otherwise, the explicit substitution will lead to a failure, and
the encoding proceeds inductively. As we will see, doing this will enable a tight operational
correspondence result with sπ.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:13

LxM• = x LHMI ·BM• = HLMM•I · LBM• Lfailx̃M• = failx̃ LM BM• = LMM• LBM•

L1M• = 1Lλx.MM• = λx.(LM⟨x̃/x⟩M•[x̃← x]) #(x, M) = n, each xi is fresh

LM⟨⟨B/x⟩⟩M• =
∑

Bi∈PER(LBM•)

LM⟨x̃/x⟩M•⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(k)/xk|⟩ #(x, M) = size(B) = k ≥ 1

LM⟨x1. · · · , xk/x⟩M•[x̃← x]⟨⟨LBM•
/x⟩⟩ otherwise, #(x, M) = k ≥ 0

Figure 8 Auxiliary Encoding: λ ⊕ into λ̂ ⊕.

▶ Example 22. Consider the λ ⊕ term y⟨⟨B/x⟩⟩, with fv(B) = ∅ and y ≠ x. Its encoding
into λ̂ ⊕ is Ly⟨⟨B/x⟩⟩M◦ = Ly0⟨⟨B/x⟩⟩M•[y0 ← y] = y0[← x]⟨⟨LBM•

/x⟩⟩[y0 ← y]. Notice that the
encoding induces (empty) sharing on x, even if x does not occur in the term y. ⌟

We consider correctness (Def. 20) for L·M◦. Our encoding is in “two-levels”, because L·M◦ it
is defined in terms of L·M•. As such, it satisfies a weak form of compositionality [11]. In [22]
we have established the following:

▶ Theorem 23 (Correctness for L·M◦). The encoding L·M◦ is type preserving, operationally
complete, operationally sound, and success sensitive.

4.3 Second Step: From λ̂
⊕ to sπ

We now define our encoding of λ̂ ⊕ into sπ, and establish its correctness.

▶ Definition 24 (From λ̂ ⊕ into sπ: Expressions). Let u be a name. The encoding J·K u : λ̂ ⊕ → sπ
is defined in Fig. 9.

As usual in encodings of λ into π, we use a name u to provide the behaviour of the
encoded expression. Here u is a non-deterministic session: the encoded expression can be
available or not; this is signaled by prefixes u.some and u.none, respectively. Notice that
every (free) variable x in a λ̂ ⊕ expression becomes a name x in its corresponding sπ process.

We discuss the most interesting aspects of the translation in Fig. 9. The term M B is
encoded into a non-deterministic sum: this models the fact that application involves a choice
in the order in which the elements of the bag are substituted. The encoding of M⟨|N/x|⟩ is
the parallel composition of the translations of M and N . We need to wait for confirmation of
a behaviour along the variable that is being substituted. The encoding of M [x1, · · · , xn ← x]
first confirms the availability of the behavior along x. Then it sends a dummy variable yi,
which is used to collapse the process in the case of a failed reduction. Subsequently, for
each shared variable, the encoding receives a name, which will act as an occurrence of the
shared variable. At the end, we use x.none to signal that there is no further information to
send over. The encoding of HMI ·B synchronises with the encoding of M [x1, · · · , xn ← x],
just discussed. The name yi is used to trigger a failure in the computation if there is a
lack of elements in the encoding of bag. The encoding of failx1,··· ,xk simply triggers failure
on u and on each of x1, · · · , xk. The encoding of JM + NK u homomorphically preserves
non-determinism.

FSCD 2021

21:14 Non-Deterministic Functions as Non-Deterministic Processes

JxK u = x.some; [x↔ u]

Jλx.M [x̃← x]K u = u.some; u(x).JM [x̃← x]K u

JMBK u =
⊕

Bi∈PER(B)(νv)(JMK v | v.someu,fv(B); v(x).([v ↔ u] | JBiK x))

JM [x̃← x]⟨⟨B/x⟩⟩K u =
⊕

Bi∈PER(B)(νx)(JM [x̃← x]K u | JBiK x)

JM⟨|N/x|⟩K u = (νx)(JMK u | x.somefv(N); JNK x)

JM [← x]K u = x.some.x(yi).(yi.someu,fv(M); yi.close; JMK u | x.none)

JM [x1, · · · , xn ← x]K u =
x.some.x(y1).(y1.some∅; y1.close; 0
| x.some; x.someu,(fv(M)\x1,··· ,xn); x(x1). · · ·
.x.some.x(yn).(yn.some∅; yn.close; 0 | x.some; x.someu,(fv(M)\xn); x(xn)

.x.some; x(yn+1).(yn+1.someu,fv(M); yn+1.close; JMK u | x.none)) · · ·)

Jfailx1,··· ,xkK u = u.none | x1.none | · · · | xk.none

J1K x = x.some∅; x(yn).(yn.some; yn.close | x.some∅; x.none)

JHMI ·BK x = x.somefv(HMI·B); x(yi).x.someyi,fv(HMI·B); x.some; x(xi)
.(xi.somefv(M); JMK xi

| JBK x | yi.none)

JM + NK u = JMK u ⊕ JNK u

Figure 9 Encoding λ̂ ⊕ expressions into sπ processes.

▶ Example 25. We illustrate J·K u in Fig. 9 by encoding the λ̂ ⊕-terms N [← x]⟨⟨HMI/x⟩⟩ and
failfv(N)∪fv(M), where M, N are closed well-formed λ̂ ⊕-terms (i.e. fv(N) = fv(M) = ∅):

JN [← x]⟨⟨HMI/x⟩⟩K u = (νx)(JN [← x]K u | JHMIK x)
= (νx)(x.some.x(yi).(yi.someu; yi.close; JNK u | x.none) |

x.some∅; x(yi).x.someyi ; x.some; x(xi)
.(xi.some∅; JMK xi

| J1K x | yi.none))
Jfailfv(N)∪fv(M)K u = u.none

⌟

We now encode intersection types (for λ ⊕ and λ̂ ⊕) into session types (for sπ):

▶ Definition 26 (From λ̂ ⊕ into sπ: Types). The translation J·K on types is defined in Fig. 10.
Let Γ be an assignment defined as Γ = x1 : σ1, · · · , xm : σk, v1 : π1, · · · , vn : πn. We define
JΓK as x1 : NJσ1K , · · · , xk : NJσkK , v1 : NJπ1K (σ,i1), · · · , vn : NJπnK (σ,in).

The encoding of types captures our use of non-deterministic session protocols (typed with
“N”) to represent non-deterministic and fail-prone evaluation in λ̂⊕. Notice that the encoding
of the multiset type π depends on two arguments (a strict type σ and a number i ≥ 0) which
are left unspecified above. This is crucial to represent mismatches in λ̂ ⊕ (i.e., sources of
failures) as typable processes in sπ. For instance, in Fig. 5, Rule [FS:app] admits a mismatch
between σj → τ and σk, for it allows j ̸= k. In our proof of type preservation, these two
arguments are instantiated appropriately, enabling typability as session-typed processes.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:15

JunitK = N1

Jπ → τK = N((JπK (σ,i)) O JτK) (for some strict type σ, with i ≥ 0)

Jσ ∧ πK (σ,i) = N((⊕⊥)⊗ (N⊕ ((NJσK) O (JπK (σ,i)))))
= ⊕((N1) O (⊕N((⊕JσK)⊗ (JπK (σ,i)))))

JωK (σ,i) =

N((⊕⊥)⊗ (N⊕⊥))) if i = 0

N((⊕⊥)⊗ (N⊕ ((NJσK) O (JωK (σ,i−1))))) if i > 0

Figure 10 Encoding types for λ̂ ⊕ as session types.

With our encodings of expressions and types in place, we can now encode judgments:

▶ Definition 27 (Encoding Judgments). If Γ |= M : τ then JMK u ⊢ JΓK , u : JτK .

We are now ready to consider correctness for J·K , as in Def. 20. First, the compositionality
property follows directly from Fig. 9. We now state the remaining properties in Def. 20, which
we have established in [22]. First, type preservation:

▶ Theorem 28 (Type Preservation for J·K u). Let B and M be a bag and an expression.
1. If Γ |= B : π then JBK u |= JΓK , u : JπK (σ,i), for some strict type σ and some i.
2. If Γ |= M : τ then JMK u |= JΓK , u : JτK .

We now consider operational completeness. Because λ̂ ⊕ satisfies the diamond property,
it suffices to consider completeness based on a single reduction step (N −→M):

▶ Theorem 29 (Operational Completeness). Let N and M be well-formed λ̂ ⊕ closed expressions.
If N −→M then there exists Q such that JNK u −→∗ Q = JMK u.

▶ Example 30 (Cont. Example 25). Since M and N are well-formed we can verify, by applying
rules in Fig. 5 that, N [← x]⟨⟨HMI/x⟩⟩ and failfv(N)∪fv(M) are well-formed. Notice that
N [← x]⟨⟨HMI/x⟩⟩ −→[RS:Fail] failfv(N)∪fv(M). The encoding of the lhs reduces to encoding of
the rhs via the reduction rules of sπ (Fig. 6) as JN [← x]⟨⟨HMI/x⟩⟩K u −→∗ Jfailfv(N)∪fv(M)K u.
The complete example with the reduction steps can be found in [22]. ⌟

In soundness we use the precongruence ⪰λ (Fig. 3). We write N −→⪰λ
N ′ iff N ⪰λ N1 −→

N2 ⪰λ N ′, for some N1, N2. The reflexive, transitive closure of −→⪰λ
is −→∗

⪰λ
.

▶ Theorem 31 (Operational Soundness). Let N be a well-formed, closed λ̂ ⊕ expression. If
JNK u −→∗ Q then Q −→∗ Q′, N −→∗

⪰λ
N′ and JN′K u = Q′, for some Q′,N′.

Finally, we consider success sensitiveness. This requires extending λ̂ ⊕ and sπ with success
predicates. In sπ, we say that P is unguarded if it does not occur behind a prefix.

▶ Definition 32 (Success in λ̂ ⊕). We extend the syntax of terms for λ̂ ⊕ with the ✓ construct.
We define M ⇓✓ iff there exist M1, · · · , Mk such that M −→∗ M1 + · · ·+Mk and head(M ′

j) =
✓, for some j ∈ {1, . . . , k} and term M ′

j such that Mj ⪰λ M ′
j.

▶ Definition 33 (Success in sπ). We extend the syntax of sπ processes with the ✓ construct,
which we assume well typed. We define P ⇓✓ to hold whenever there exists a P ′ such that
P −→∗ P ′ and P ′ contains an unguarded occurrence of ✓.

We now extend Def. 24 by decreeing J✓K u = ✓. We finally have:

▶ Theorem 34 (Success Sensitivity). Let M be a well-formed, closed λ̂ ⊕ expression. Then
M ⇓✓ iff JMK u ⇓✓.

FSCD 2021

21:16 Non-Deterministic Functions as Non-Deterministic Processes

5 Discussion

Summary. We developed a correct encoding of λ ⊕, a new resource λ-calculus in which
expressions feature non-determinism and explicit failure, into sπ, a session-typed π-calculus
in which behavior is non-deterministically available: a protocol may perform as stipulated but
also fail. Our encodability result is obtained by appealing to λ̂ ⊕, an intermediate language with
sharing constructs that simplifies the treatment of variables in expressions. To our knowledge,
we are the first to relate typed λ-calculi and typed π-calculi encompassing non-determinism
and explicit failures, while connecting intersection types and session types, two different
mechanisms for resource-awareness in sequential and concurrent settings, respectively.

Design of λ ⊕ (and λ̂ ⊕). The design of the sequential calculus λ ⊕ has been influenced
by the typed mechanisms for non-determinism and failure in the concurrent calculus sπ.
As sπ stands on rather solid logical foundations (via the Curry-Howard correspondence
between linear logic and session types [7, 27, 6]), λ ⊕ defines a logically motivated addition
to resource λ-calculi in the literature; see, e.g., [3, 4, 21]. Major similarities between λ ⊕ and
these existing languages include: as in [4], our semantics performs lazy evaluation and linear
substitution on the head variable; as in [21], our reductions lead to non-deterministic sums.
A distinctive feature of λ ⊕ is its lazy treatment of failures, via the dedicated term failx̃.
In contrast, in [3, 4, 21] there is no dedicated term to represent failure. The non-collapsing
semantics for non-determinism is another distinctive feature of λ ⊕.

Our design for λ̂ ⊕ has been informed by the λ-calculi with sharing introduced in [13] and
studied in [10]. Also, our translation from λ ⊕ into λ̂ ⊕ borrows insights from the translations
presented in [13]. Notice that the calculi in [13, 10] do not consider explicit failure nor
non-determinism. We distinguish between well-typed and well-formed expressions: this allows
us to make fail-prone evaluation in λ ⊕ explicit. It is interesting that explicit failures can be
elegantly encoded as protocols in sπ– this way, we make the most out of sπ’s expressivity.

Related Works. A source of inspiration for our work is the work by Boudol and Laneve [4].
As far as we know, this is the only prior study that connects λ and π from a resource-oriented
perspective, via an encoding of a λ-calculus with multiplicities into a π-calculus without sums.
The goal of [4] is different from ours, as they study the discriminating power of semantics
for λ as induced by encodings into π. In contrast, we study how typability delineates the
encodability of resource-awareness across sequential and concurrent realms. Notice that the
calculi in [4] are untyped, whereas we consider typed calculi and our encodings preserve
typability. As a result, the encoding in [4] is conceptually different from ours; remarkably,
our encoding of λ̂ ⊕ into sπ respects linearity and homomorphically translates sums.

There are some similarities between λ ⊕ and the differential λ-calculus, introduced in [9].
Both express non-deterministic choice via sums and use linear head reduction for evaluation.
In particular, our fetch rule, which consumes non-deterministically elements from a bag, is
related to the derivation (which has similarities with substitution) of a differential term.
However, the focus of [9] is not on typability nor encodings to process calculi; instead they
relate the Taylor series of analysis to the linear head reduction of λ-calculus.

Prior works have studied encodings of typed λ-calculi into typed π-calculi; see, e.g., [23,
4, 24, 1, 16, 20, 26]. None of these works consider non-determinism and failures; the one
exception is the encoding in [6], which involves a λ-calculus with exceptions and failures
(but without non-determinism due to bags, as in λ ⊕) for which no (reduction) semantics is
given. As a result, the encoding in [6] is different from ours, and only preserves typability:
important semantic properties such as operational completeness, operational soundness, and
success sensitivity are not considered in [6].

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:17

Ongoing and Future Work. In λ ⊕ bags have linear resources, which are used exactly once.
In ongoing work, we have established that our approach to encodability in sπ extends to the
case in which bags contain both linear and unrestricted resources, as in [21]. Handling such
an extension of λ ⊕ requires the full typed process framework in [6], with replicated processes
and labeled choices (which were not needed to encode λ ⊕).

The approach and results developed here enable us to tackle open questions that go
beyond the scope of this work. First, we wish to explore whether our correct encoding can be
defined in a setting with collapsing non-determinism. Second, we plan to investigate formal
results of relative expressiveness that connect λ ⊕ and the resource calculi in [4, 21].

References
1 Martin Berger, Kohei Honda, and Nobuko Yoshida. Genericity and the pi-calculus. In

Andrew D. Gordon, editor, Foundations of Software Science and Computational Structures,
6th International Conference, FOSSACS 2003 Held as Part of the Joint European Conference on
Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings,
volume 2620 of Lecture Notes in Computer Science, pages 103–119. Springer, 2003. doi:
10.1007/3-540-36576-1_7.

2 Viviana Bono and Mariangiola Dezani-Ciancaglini. A tale of intersection types. In Holger
Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11,
2020, pages 7–20. ACM, 2020. doi:10.1145/3373718.3394733.

3 Gérard Boudol. The lambda-calculus with multiplicities (abstract). In Eike Best, editor,
CONCUR ’93, Hildesheim, Germany, August 23-26, 1993, Proceedings, volume 715 of Lecture
Notes in Computer Science, pages 1–6. Springer, 1993. doi:10.1007/3-540-57208-2_1.

4 Gérard Boudol and Cosimo Laneve. lambda-calculus, multiplicities, and the pi-calculus. In
Proof, Language, and Interaction, Essays in Honour of Robin Milner, pages 659–690, 2000.

5 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, 2017.

6 Luís Caires and Jorge A. Pérez. Linearity, control effects, and behavioral types. In
Hongseok Yang, editor, Programming Languages and Systems – 26th European Symposium
on Programming, ESOP 2017, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceed-
ings, volume 10201 of Lecture Notes in Computer Science, pages 229–259. Springer, 2017.
doi:10.1007/978-3-662-54434-1_9.

7 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
CONCUR 2010 – Concurrency Theory, 21th International Conference, CONCUR 2010, Paris,
France, August 31–September 3, 2010. Proceedings, pages 222–236, 2010. doi:10.1007/
978-3-642-15375-4_16.

8 Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Adolfo Piperno. Filter models for a
parallel and non deterministic lambda-calculus. In Andrzej M. Borzyszkowski and Stefan
Sokolowski, editors, Mathematical Foundations of Computer Science 1993, 18th International
Symposium, MFCS’93, Gdansk, Poland, August 30–September 3, 1993, Proceedings, volume
711 of Lecture Notes in Computer Science, pages 403–412. Springer, 1993. doi:10.1007/
3-540-57182-5_32.

9 Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theor. Comput. Sci.,
309(1-3):1–41, 2003. doi:10.1016/S0304-3975(03)00392-X.

10 Silvia Ghilezan, Jelena Ivetic, Pierre Lescanne, and Silvia Likavec. Intersection types for
the resource control lambda calculi. In Theoretical Aspects of Computing – ICTAC 2011 –
8th International Colloquium, Johannesburg, South Africa, August 31–September 2, 2011.
Proceedings, pages 116–134, 2011. doi:10.1007/978-3-642-23283-1_10.

11 Daniele Gorla. Towards a unified approach to encodability and separation results for process
calculi. Inf. Comput., 208(9):1031–1053, 2010. doi:10.1016/j.ic.2010.05.002.

FSCD 2021

https://doi.org/10.1007/3-540-36576-1_7
https://doi.org/10.1007/3-540-36576-1_7
https://doi.org/10.1145/3373718.3394733
https://doi.org/10.1007/3-540-57208-2_1
https://doi.org/10.1007/978-3-662-54434-1_9
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/3-540-57182-5_32
https://doi.org/10.1007/3-540-57182-5_32
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1007/978-3-642-23283-1_10
https://doi.org/10.1016/j.ic.2010.05.002

21:18 Non-Deterministic Functions as Non-Deterministic Processes

12 Daniele Gorla and Uwe Nestmann. Full abstraction for expressiveness: history, myths and
facts. Math. Struct. Comput. Sci., 26(4):639–654, 2016. doi:10.1017/S0960129514000279.

13 Tom Gundersen, Willem Heijltjes, and Michel Parigot. Atomic lambda calculus: A typed
lambda-calculus with explicit sharing. In 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 311–320,
2013. doi:10.1109/LICS.2013.37.

14 Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR ’93, Hildesheim,
Germany, August 23-26, 1993, Proceedings, volume 715 of Lecture Notes in Computer Science,
pages 509–523. Springer, 1993. doi:10.1007/3-540-57208-2_35.

15 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In Chris Hankin, editor,
Programming Languages and Systems – ESOP’98, 7th European Symposium on Programming,
Held as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28–April 4, 1998, Proceedings, volume 1381 of Lecture
Notes in Computer Science, pages 122–138. Springer, 1998. doi:10.1007/BFb0053567.

16 Kohei Honda, Nobuko Yoshida, and Martin Berger. Process types as a descriptive tool for
interaction – control and the pi-calculus. In Gilles Dowek, editor, Rewriting and Typed Lambda
Calculi – Joint International Conference, RTA-TLCA 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 14–17, 2014. Proceedings, volume 8560 of Lecture
Notes in Computer Science, pages 1–20. Springer, 2014. doi:10.1007/978-3-319-08918-8_1.

17 Dimitrios Kouzapas, Jorge A. Pérez, and Nobuko Yoshida. On the relative expressiveness of
higher-order session processes. Inf. Comput., 268, 2019. doi:10.1016/j.ic.2019.06.002.

18 Robin Milner. Functions as processes. Mathematical Structures in Computer Science, 2(2):119–
141, 1992. doi:10.1017/S0960129500001407.

19 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Inf.
Comput., 100(1):1–40, 1992. doi:10.1016/0890-5401(92)90008-4.

20 Dominic A. Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20–22, 2016, pages 568–581. ACM,
2016. doi:10.1145/2837614.2837634.

21 Michele Pagani and Simona Ronchi Della Rocca. Solvability in resource lambda-calculus. In
C.-H. Luke Ong, editor, Foundations of Software Science and Computational Structures, 13th
International Conference, FOSSACS 2010, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.
Proceedings, volume 6014 of Lecture Notes in Computer Science, pages 358–373. Springer,
2010. doi:10.1007/978-3-642-12032-9_25.

22 Joseph Paulus, Daniele Nantes-Sobrinho, and Jorge A. Pérez. Non-Deterministic Functions
as Non-Deterministic Processes (Extended Version). CoRR, abs/2104.14759, 2021. arXiv:
2104.14759.

23 Davide Sangiorgi. From lambda to pi; or, rediscovering continuations. Math. Struct. Comput.
Sci., 9(4):367–401, 1999. URL: http://journals.cambridge.org/action/displayAbstract?
aid=44843.

24 Davide Sangiorgi and David Walker. The Pi-Calculus – a theory of mobile processes. Cambridge
University Press, 2001.

25 Bernardo Toninho, Luís Caires, and Frank Pfenning. Functions as session-typed processes. In
Lars Birkedal, editor, Foundations of Software Science and Computational Structures – 15th
International Conference, FOSSACS 2012, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24–April 1, 2012.
Proceedings, volume 7213 of Lecture Notes in Computer Science, pages 346–360. Springer,
2012. doi:10.1007/978-3-642-28729-9_23.

https://doi.org/10.1017/S0960129514000279
https://doi.org/10.1109/LICS.2013.37
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-319-08918-8_1
https://doi.org/10.1016/j.ic.2019.06.002
https://doi.org/10.1017/S0960129500001407
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1007/978-3-642-12032-9_25
http://arxiv.org/abs/2104.14759
http://arxiv.org/abs/2104.14759
http://journals.cambridge.org/action/displayAbstract?aid=44843
http://journals.cambridge.org/action/displayAbstract?aid=44843
https://doi.org/10.1007/978-3-642-28729-9_23

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:19

26 Bernardo Toninho and Nobuko Yoshida. On polymorphic sessions and functions – A tale
of two (fully abstract) encodings. In Amal Ahmed, editor, 27th European Symposium on
Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14–20, 2018, Proceedings,
volume 10801 of Lecture Notes in Computer Science, pages 827–855. Springer, 2018. doi:
10.1007/978-3-319-89884-1_29.

27 Philip Wadler. Propositions as sessions. In Peter Thiemann and Robby Bruce Findler, editors,
ACM SIGPLAN International Conference on Functional Programming, ICFP’12, Copenhagen,
Denmark, September 9-15, 2012, pages 273–286. ACM, 2012. doi:10.1145/2364527.2364568.

A Appendix

A.1 Omitted Syntactic and Semantic Notations for λ
⊕

Auxiliary Notions. In λ ⊕, a β-reduction induces an explicit substitution of a bag B for a
variable x, denoted ⟨⟨B/x⟩⟩. This explicit substitution is then expanded into a sum of terms,
each of which features a linear head substitution {|Ni/x|}, where Ni is a term in B; the bag
B \Ni is kept in an explicit substitution. In case there is a mismatch between the number of
occurrences of the variable to be substituted and the number of resources available, then the
reduction leads to the failure term. The reduction rules in Fig. 12 rest upon some auxiliary
notions.

▶ Definition 35 (Set and Multiset of Free Variables). The set of free variables of a term, bag,
and expression, is defined in Fig. 11. We use mfv(M) or mfv(B) to denote a multiset of free
variables, defined similarly. We sometimes treat the sequence x̃ as a (multi)set. We write
x̃⊎ ỹ to denote the multiset union of x̃ and ỹ and x̃\y to express that every occurrence of y is
removed from x̃. As usual, a term M is closed if fv(M) = ∅ (and similarly for expressions).

fv(x) = {x} fv(HMI) = fv(M) fv(λx.M) = fv(M)\{x} fv(M B) = fv(M) ∪ fv(B)
fv(1) = ∅ fv(B1 ·B2) = fv(B1) ∪ fv(B2) fv(M + N) = fv(M) ∪ fv(N)
fv(M⟨⟨B/x⟩⟩) = (fv(M) \ {x}) ∪ fv(B) fv(failx1,··· ,xn) = {x1, · · · , xn}

Figure 11 Free variables for λ ⊕.

▶ Notation 36. #(x, M) denotes the number of (free) occurrences of x in M . Similarly, we
write #(x, ỹ) to denote the number of occurrences of x in the multiset ỹ.

▶ Definition 37 (Head). Given a term M , we define head(M) inductively as:

head(x) = x head(λx.M) = λx.M head(M B) = head(M)
head(failx̃) = failx̃

head(M⟨⟨B/x⟩⟩) =

{
head(M) if #(x, M) = size(B)
fail∅ otherwise

▶ Definition 38 (Linear Head Substitution). Let M be a term such that head(M) = x. The
linear head substitution of a term N for x, denoted {|N/x|}, is defined as:

x{|N/x|} = N (M B){|N/x|} = (M{|N/x|}) B

(M ⟨⟨B/y⟩⟩){|N/x|} = (M{|N/x|}) ⟨⟨B/y⟩⟩ where x ̸= y

FSCD 2021

https://doi.org/10.1007/978-3-319-89884-1_29
https://doi.org/10.1007/978-3-319-89884-1_29
https://doi.org/10.1145/2364527.2364568

21:20 Non-Deterministic Functions as Non-Deterministic Processes

[R : Beta]
(λx.M)B −→M ⟨⟨B/x⟩⟩

#(x, M) ̸= size(B)
ỹ = (mfv(M) \ x) ⊎mfv(B)

[R : Fail]
M ⟨⟨B/x⟩⟩ −→

∑
PER(B) failỹ

head(M) = x B = HN1I · · · · · HNkI , k ≥ 1 #(x, M) = k
[R : Fetch]

M ⟨⟨B/x⟩⟩ −→M{|N1/x|}⟨⟨(B \N1)/x⟩⟩+ · · ·+ M{|Nk/x|}⟨⟨(B \Nk)/x⟩⟩

ỹ = mfv(B)
[R : Cons1]

failx̃ B −→
∑

PER(B)

failx̃⊎ỹ

size(B) = k #(z, x̃) + k ̸= 0
ỹ = mfv(B)

[R : Cons2]
failx̃ ⟨⟨B/z⟩⟩ −→

∑
PER(B)

fail(̃x\z)⊎ỹ

M −→M ′
1 + · · ·+ M ′

k[R : TCont]
C[M] −→ C[M ′

1] + · · ·+ C[M ′
k]

M −→M′
[R : ECont]

D[M] −→ D[M′]

Figure 12 Reduction rules for λ ⊕.

Finally, we define contexts for terms and expressions and convenient notations:

▶ Definition 39 (Term and Expression Contexts). Contexts for terms (CTerm) and expressions
(CExpr) are defined by the following grammar:

(CTerm) C[·], C′[·] ::= ([·])B | ([·])⟨⟨B/x⟩⟩ (CExpr) D[·], D′[·] ::= M + [·] | [·] + M

Reduction for λ ⊕. The reduction relation −→ operates lazily on expressions; it is defined
by the rules in Fig. 12. Rule [R : Beta] is standard and admits a bag (possibly empty) as
parameter. Rule [R : Fetch] transforms a term into an expression: it opens up an explicit
substitution into a sum of terms with linear head substitutions, each denoting the partial
evaluation of an element from the bag. Hence, the size of the bag will determine the number
of summands in the resulting expression.

Three rules reduce to the failure term: their objective is to accumulate all (free) variables
involved in failed reductions. Accordingly, Rule [R : Fail] formalizes failure in the evaluation
of an explicit substitution M ⟨⟨B/x⟩⟩, which occurs if there is a mismatch between the
resources (terms) present in B and the number of occurrences of x to be substituted. The
resulting failure preserves all free variables in M and B within its attached multiset ỹ.
Rules [R : Cons1] and [R : Cons2] describe reductions that lazily consume the failure term,
when a term has failx̃ at its head position. The former rule consumes bags attached to it
whilst preserving all its free variables. The latter rule is similar but for the case of explicit
substitutions; its second premise ensures that either (i) the bag in the substitution is not
empty or (ii) the number of occurrences of x in the current multiset of accumulated variables
is not zero. When both (i) and (ii) hold, we apply a precongruence rule (cf. [22]), rather
than reduction.

Finally, Rule [R : TCont] describes the reduction of sub-terms within an expression; in
this rule, summations are expanded outside of term contexts. Rule [R : ECont] says that
reduction of expressions is closed by expression contexts.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:21

▶ Example 40. Let M = (λx.xHxHyII) B, with B = Hz1I · Hz2I · Hz1I. We have:

M −→[R:Beta] xHxHyII⟨⟨Hz1I · Hz2I · Hz1I/x⟩⟩ −→[R:Fail]
∑

PER(B)

faily,z1,z2,z1

The number of occurrences of x in the term obtained after β-reduction (2) does not match
the size of the bag (3). Therefore, the reduction leads to failure.

Notice that the left-hand sides of the reduction rules in λ ⊕ do not interfere with each
other. Therefore, reduction in λ ⊕ satisfies a diamond property:

▶ Proposition 41 (Diamond Property for λ ⊕). For all N, N1, N2 in λ ⊕ s.t. N −→ N1,
N −→ N2 with N1 ̸= N2 then ∃M s.t. N1 −→M, N2 −→M.

Proof. We give a short argument to convince the reader of this. Notice that an expression
can only perform a choice of reduction steps when it is a nondeterministic sum of terms in
which multiple terms can perform independent reductions. For simplicity sake we will only
consider an expression N that consist of two terms where N = N + M . We also have that
N −→ N ′ and M −→M ′. Then we let N1 = N ′ + M and N2 = N + M ′ by the [R : ECont]
rules. Finally we prove that M exists by letting M = N ′ + M ′ ◀

Non-Idempotent Intersection Types. The type system for λ ⊕ is based on non-idempotent
intersection types. The grammar of strict and multiset types, the notions of typing assignments
and judgements are the same as in Section 2.

We define well-formed λ ⊕ expressions, in two stages. We first define a type system for
the sub-language λ⊕, given in Fig. 13, using the types of Def. 12. Then, we define well-formed
expressions for the full language λ ⊕, via Def. 42 (see below).

We first discuss selected rules of the type system for λ⊕ in Fig. 13. Rule [T:var] is
standard. Rule [T:1] assigns the empty bag 1 the empty type ω. Rule [T:weak] introduces a
useful weakening principle. Rule [T:app] is standard, requiring a match on the multiset type
π. Rule [T:ex-sub] types explicit substitutions where a bag must consist of both the same
type and size of the variable it is being substituted for. On top of this type system for λ⊕,
we define well-formed expressions:

▶ Definition 42 (Well-formed λ ⊕ expressions). An expression M is well-formed if there exist
Γ and τ such that Γ |= M : τ is entailed via the rules in Fig. 14.

In Fig. 14, Rules [F:wf-expr] and [F:wf-bag] allow well-typed terms and bags to be well-
formed. Rules [F:abs], [F:bag], and [F:sum] are as in the type system for λ⊕, but extended
to the system of well-formed expressions. Rules [F:ex-sub] and [F:app] differ from similar
typing rules as the size of the bags (as declared in their types) is no longer required to match.
Finally, Rule [F:fail] has no analogue in the type system: we allow the failure term failx̃ to
be well-formed with any type, provided that the context contains the types of the variables
in x̃.

Well-formed expressions satisfy subject reduction (SR); see [22] for a proof.

▶ Theorem 43 (SR in λ ⊕). If Γ |= M : τ and M −→M′ then Γ |= M′ : τ .

Clearly, the set of well-typed expressions is strictly included in the set of well-formed
expressions. Take M = x⟨⟨HN1I · HN2I/x⟩⟩ where both N1 and N2 are well-typed. It is easy to
see that M is well-formed. However, M is not well-typed.

FSCD 2021

21:22 Non-Deterministic Functions as Non-Deterministic Processes

▶ Example 44. The following example illustrates an expression which is not well-formed:

λx.xHλy.yI · Hλz.z1Hz1Hz2III

This is due to the bag being composed of two terms of different types.

[T : var]
x : σ ⊢ x : σ

[T : 1] ⊢ 1 : ω
Γ ⊢M : σ x ̸∈ dom(Γ)

[T : weak] Γ, x : ω ⊢M : σ

Γ, x̂ : σk ⊢M : τ x /∈ dom(Γ)
[T : abs]

Γ ⊢ λx.M : σk → τ

Γ ⊢M : π → τ ∆ ⊢ B : π[T : app] Γ, ∆ ⊢M B : τ

Γ ⊢M : σ ∆ ⊢ B : σk
[T : bag]

Γ, ∆ ⊢ HMI ·B : σk+1
Γ ⊢M : σ Γ ⊢ N : σ[T : sum] Γ ⊢M + N : σ

Γ, x̂ : σk ⊢M : τ ∆ ⊢ B : σk

[T : ex-sub]
Γ, ∆ ⊢M⟨⟨B/x⟩⟩ : τ

Figure 13 Typing rules for the sub-language λ⊕ (i.e., λ ⊕ without the failure term).

Γ ⊢M : τ[F : wf-expr]
Γ |= M : τ

Γ ⊢ B : π[F : wf-bag]
Γ |= B : π

∆ |= M : τ
[F : weak]

∆, x : ω |= M : τ

Γ, x̂ : σn |= M : τ x /∈ dom(Γ)
[F : abs]

Γ |= λx.M : σn → τ

Γ |= M : σ ∆ |= B : σk

[F : bag]
Γ, ∆ |= HMI ·B : σk+1

Γ |= M : σ Γ |= N : σ
[F : sum]

Γ |= M + N : σ

dom(Γ) = x̃
[F : fail]

Γ |= failx̃ : τ

Γ, x̂ : σk |= M : τ ∆ |= B : σj k, j ≥ 0
[F : ex-sub]

Γ, ∆ |= M⟨⟨B/x⟩⟩ : τ

Γ |= M : σj → τ ∆ |= B : σk k, j ≥ 0
[F : app]

Γ, ∆ |= M B : τ

Figure 14 Well-formedness rules for the full language λ ⊕.

Type-Theoretic Constructions of the Final
Coalgebra of the Finite Powerset Functor
Niccolò Veltri #

Department of Software Science, Tallinn University of Technology, Estonia

Abstract
The finite powerset functor is a construct frequently employed for the specification of nondeterministic
transition systems as coalgebras. The final coalgebra of the finite powerset functor, whose elements
characterize the dynamical behavior of transition systems, is a well-understood object which enjoys
many equivalent presentations in set-theoretic foundations based on classical logic.

In this paper, we discuss various constructions of the final coalgebra of the finite powerset functor
in constructive type theory, and we formalize our results in the Cubical Agda proof assistant. Using
setoids, the final coalgebra of the finite powerset functor can be defined from the final coalgebra of
the list functor. Using types instead of setoids, as it is common in homotopy type theory, one can
specify the finite powerset datatype as a higher inductive type and define its final coalgebra as a
coinductive type. Another construction is obtained by quotienting the final coalgebra of the list
functor, but the proof of finality requires the assumption of the axiom of choice. We conclude the
paper with an analysis of a classical construction by James Worrell, and show that its adaptation to
our constructive setting requires the presence of classical axioms such as countable choice and the
lesser limited principle of omniscience.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Constructive mathematics

Keywords and phrases type theory, finite powerset, final coalgebra, Cubical Agda

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.22

Supplementary Material Software (Source Code):
https://github.com/niccoloveltri/final-pfin

Funding This work was supported by the Estonian Research Council grant PSG659 and by the ESF
funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).

Acknowledgements We thank Henning Basold, Tarmo Uustalu, Andrea Vezzosi and Niels van der
Weide for valuable discussions.

1 Introduction

The powerset functor, delivering the set of subsets of a given set, plays a fundamental role in
the behavioral analysis of nondeterministic systems [26], which include process calculi such
as Milner’s calculus of communicating systems [23] and π-calculus [24]. A nondeterministic
system is determined by a function c : S → P S, called a coalgebra, from a set of states
S to the set P S of subsets of S. The function c associates to each state x : S a set of
new states c x reachable from x, so it represents the transition relation of an unlabelled
transition system. Adding labels to transitions is easy, just consider coalgebras of the form
c : S → P (A × S) or c : S → (A → P S) instead, where A is a set of labels. In many
applications, the set of reachable states is known to be finite, so the powerset functor P can
be replaced by the finite powerset functor Pfin delivering only the set of finite subsets.

The behavior of a finitely nondeterministic system starting from a given initial state is
fully captured by the final coalgebra of Pfin. Elements of the final coalgebra are execution
traces obtained by iteratively running the coalgebra function modelling the system on the

© Niccolò Veltri;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 22; pp. 22:1–22:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:niccolo@cs.ioc.ee
https://orcid.org/0000-0002-7230-3436
https://doi.org/10.4230/LIPIcs.FSCD.2021.22
https://github.com/niccoloveltri/final-pfin
https://github.com/niccoloveltri/final-pfin
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

initial state. The resulting traces are possibly infinite trees with finite unordered branching.
Several formal constructions of the final coalgebra of Pfin and other finitary set functors exist
in the literature, developed using various different techniques [6, 2, 32, 33, 3]. Adámek et al.
collect and compare all these characterizations in their recent book draft [4, Chapter 4]. All
these constructions take place in set theory, and reasoning is based on classical logic.

In this work we present various definitions of the final coalgebra of the finite powerset
functor in constructive type theory, which have all been formalized in the Cubical Agda proof
assistant [30]. Cubical Agda is an implementation of cubical type theory [10], which in turn
is a particular presentation of homotopy type theory with support for univalence and higher
inductive types (HITs). The choice of Cubical Agda as our foundational setting, over other
proof assistants based on Martin-Löf type theory or the calculus of constructions such as
plain Agda, Coq or Lean, lays in the fact that both univalence and HITs play an important
role for both encoding and reasoning with the finite powerset datatype in homotopy type
theory [17]. In our development we also take advantage of Cubical Agda’s support for
coinductive types [30].

First, we study the construction of the finite powerset as a setoid [7], i.e. a pair of a
carrier type and an equivalence relation on the carrier. This is inspired by Danielsson’s
setoid of finite multisubsets [13]. The final coalgebra of the finite powerset in this setting
arises as a setoid with the final coalgebra of the List functor as carrier, whose elements are
non-wellfounded trees with finite ordered branching. The equivalence relation on the latter
type relates trees that differ only in the order and multiplicity of their subtrees.

Working with setoids, therefore associating a specific equality relation to each type and
ensuring that all constructions respect this relation, is not in the spirit of homotopy type
theory, where the spotlight is on the notion of propositional equality, also called path equality
in this setting. We then consider Frumin et al.’s presentation of the finite powerset datatype
as a HIT, Pfin A, formally delivering the free join semilattice on A [17]. It is well-known
that coinductive types can be employed for the construction of M-types, i.e. final coalgebras
of polynomial functors. We show that coinductive types can be used in a similar way for
defining the final Pfin-coalgebra. This construction works since in Cubical Agda HITs are
implemented as usual inductive types, in which higher path constructors depend on additional
interval names and satisfy two matching conditions on endpoints [11, 9]. In other words,
HITs are part of the grammar of strictly positive types and as such they are allowed to
appear in the domain type of destructors of coinductive types.

An alternative construction of the final coalgebra of the finite powerset functor (as a
type) is obtainable by performing a quotient operation on the final setoid coalgebra, i.e.
quotienting the final List-coalgebra by the equivalence relation relating trees containing the
same subtrees, possibly in different order and with different multiplicity. This construction is
possible in homotopy type theory due to the existence of a set quotient operation definable
as a HIT [27]. We show that the resulting quotient type is indeed a fixpoint of Pfin, but the
proof of its finality requires the assumption of the full axiom of choice.

The last part of the paper is devoted to the analysis of a classical set-theoretic construction
of the final Pfin-coalgebra by James Worrell [33]. It is well known that the chain of iterated
applications of Pfin on the singleton set does not stabilize after ω steps [2]. This is in antithesis
with the case of polynomial functors, whose final coalgebras (a.k.a. M-types in type theory)
always arise as ω-limits, a fact that can also be proved in homotopy type theory [5]. Worrell
showed that the final Pfin-coalgebra can be obtained by iterating applications of Pfin for extra
ω steps, i.e. as the (ω + ω)-limit of the chain. Elements of the ω-limit are represented by
non-wellfounded trees with unordered but possibly infinite branching, while the (ω+ω)-limit

N. Veltri 22:3

corresponds to the subset of these trees with finite branching at all levels. We study Worrell’s
construction in our constructive setting and show that the (ω + ω)-limit is indeed the final
Pfin-coalgebra modulo the assumption of classical principles such as axiom of countable
choice and the lesser limited principle of omniscience (LLPO). Notably, Worrell’s iterated
construction is inherently classical: the injectivity of the canonical Pfin-algebra on the ω-limit
is equivalent to LLPO. In particular, it is impossible to prove that the (ω + ω)-limit is a
subset of the ω-limit, as in Worrell’s construction, without the assumption of LLPO.

All the material presented in the paper have been formalized in the Cubical Agda proof
assistant. The code is freely available at https://github.com/niccoloveltri/final-pfin.

2 Type Theory and Cubical Agda

Our work takes place in homotopy type theory (HoTT) [27]. Practically, we formalize our
constructions in Cubical Agda [30]. This is an implementation of cubical type theory [10], a
particular flavor of HoTT with support for univalence, function extensionality and higher
inductive types. What follows is a brief description of basic notions employed in our work.
More details on programming in Cubical Agda can be found in Vezzosi et al.’s paper [30].

A few words on notation. We write Type for the universe of small types. We use Agda
notation for dependent function types (x : A) → B x, where B is a type family of type
A→ Type. Implicit arguments of functions are enclosed in curly brackets. We write =df for
definitional equality and we denote judgemental equality by ≡. We reserve the use of the
equality symbol = for path equality. Given an element of a dependent sum type

∑
x : A. B x,

we denote its two projections by fst and snd. The unit type is 1 with unique inhabitant
tt, the empty type is ⊥. The type of Boolean values is Bool with elements true and false,
and the binary sum of types A and B is A + B. The type of natural numbers is N with
constructors zero and suc, the type of lists with entries in A is List A with constructors []
and (::). The unique function from a type A into the unit type is called ! : A→ 1.

2.1 Univalence, Path Types, Higher Inductive Types

In cubical type theory, and therefore Cubical Agda, univalence is a theorem stating that
equality of types corresponds to equivalence. A function f : A→ B is an equivalence if it
has contractible fibers, i.e. if the preimage of any element in B under f is a singleton type.
Any function underlying a type isomorphism defines an equivalence. Writing A ≃ B for the
type of equivalences between A and B, univalence states that the canonical function of type
A = B → A ≃ B is an equivalence. In particular, there is a function ua : A ≃ B → A = B

which turns equivalences into equalities. From any proof of equality built as ua e we need to
be able to extract the equivalence e, so the representation of equality needs to accommodate
such information. Cubical type theory takes inspiration from the cubical interpretation of
HoTT [10] and represents equalities as paths, i.e. functions out of an interval object.

In Cubical Agda there is a primitive interval type I required to be a De Morgan algebra
with two endpoints i0 and i1. This is used in the implementation of the primitive type
Path A x y of path equalities between elements x : A and y : A, which we always denote
by x = y. A path type is similar to a function type with domain I: an element p : x = y is
eliminated by application to an interval element r : I, returning p r : A. Unlike a function
type, this application can compute even when p is unknown by using the endpoints x and y
stored in the type: p i0 reduces to x, while p i1 reduces to y. The introduction of a path is
done via lambda abstraction λ i : I. t : x = y, but this causes the extra requirement to match
the endpoints: t[i0/i] ≡ x and t[i1/i] ≡ y.

FSCD 2021

https://github.com/niccoloveltri/final-pfin

22:4 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

The identification of equalities with special functions from an interval type allows the
provability of the function extensionality principle, stating that pointwise equal functions are
equal. The proof consists of simply swapping the order of the two input arguments:

funExt : {f g : A → B} → ((x : A) → f x = g x) → f = g

funExt p i x=df p x i

A characteristic feature of homotopy type theory, together with Voevodsky’s univalence,
is the presence of higher inductive types (HITs) [27]. A HIT is a type whose constructors
inductively generate both its elements and its (higher) paths. We introduce three HITs:
propositional truncation, set quotient and finite powerset (the latter in Section 4.1).

First, we introduce three classes of types: the contractible types, which have a unique
inhabitant up to path equality, the (mere) propositions, for which any two elements are path
equal, and the sets, whose path types are propositions. The collections of propositions is
called hProp =df

∑
A : Type. isProp A. We follow the informal convention of identifying a

proposition with its underlying type (i.e. its first projection).

isContr A=df
∑

x : A. (y : A) → x = y

isProp A=df (x y : A) → x = y

isSet A=df (x y : A) → isProp (x = y)

The propositional truncation of a type A is the HIT generated by the following constructors:

x : A
|x| : ∥A∥

x, y : ∥A∥
squash x y : x = y

∥A∥ is the proposition associated to type A, in which all elements of A have been unified
thanks to the path constructor squash. Using propositional truncation, we can define an
uninformative existential quantifier ∃x : A. B x=df ∥

∑
x : A. B x∥.

The set quotient of a type A by a (proof-relevant) relation R : A→ A→ Type is the HIT
generated by the following constructors:

x : A
[x] : A/R

x, y : A r : R x y

eq/ r : x = y

x, y : A/R p, q : x = y

squash/ p q : p = q

The element [x] is the R-equivalence class of x, while the path constructor eq/ states that
R-related elements have path equal equivalence classes. The 2-path constructor squash/
forces A/R to be a set.

HITs are supported in cubical type theory [11] and have been implemented in Cubical
Agda, where they can be introduced using the syntax of inductive types. Path constructors
are considered as point constructors depending on extra interval names and satisfying the
required matching conditions on endpoints. Functions out of HITs can be defined via pattern
matching, where now the user has to deal with the extra cases of higher path constructors.
For example, propositional truncation is a functor, and its action on functions is defined as

map∥ : (A → B) → ∥A∥ → ∥B∥
map∥ f |x| =df |f x|
map∥ f (squash x y i) =df squash (map∥ f x)(map∥ f y) i

2.2 Coinductive Types
Agda has native support for coinductive types specified by strictly positive functors, and
this support has been extended to Cubical Agda as well. As an example, which will be
employed in the successive sections, consider the type Tree consisting of finitely-branching

N. Veltri 22:5

record Tree : Type where
coinductive
field

subtreesL : List Tree

record TreeB (t u : Tree) : Type where
coinductive
field

subtreesBL : List TreeB (subtreesL t) (subtreesL u)

Figure 1 Agda definitions of infinite trees and tree bisimilarity.

non-wellfounded trees defined as the final coalgebra of the List functor. In Agda, the latter is
encoded as a coinductive record with one destructor subtreesL, returning the subtrees of the
root, see the left code in Figure 1. The type Tree, together with the destructor subtreesL,
is a coalgebra of the List functor. Elements of coinductive types are characterized by the
result of the application of destructors, which means that an element of type Tree is specified
by the list of its subtrees. This is dual to the construction of elements of inductive types
in terms of constructors. For example, the infinite binary tree is corecursively defined as:
subtreesL binTree =df binTree :: binTree :: [].

An important advantage of working in Cubical Agda is the possibility to prove the
coinduction principle [30]. For the type of trees, this states that tree bisimilarity is equivalent
to path equality. Bisimilarity can be defined as a coinductive relation on trees, and as such it
can be encoded in Agda as a coinductive record, see the right code in Figure 1. In the codomain
of the destructor subtreesBL we employ the lifting of a type family R : A → B → Type to
lists, inductively generated by two constructors:

[] : List R [] []
p : R a b r : List R l m

p :: r : List R (a :: l) (b :: m) (1)

The proof of the coinduction principle bisimL fundamentally employs copatterns [1] and
lambda abstraction of interval variables, i.e. the introduction rule of path types. The
coinduction principle bisimL is simultaneously constructed with an auxiliary proof bisim′

L,
stating that (List TreeB)-related lists of trees are path equal.

bisimL : {t u : Tree} → TreeB t u → t = u

subtreesL (bisimL b i) =df bisim′
L (subtreesBL b) i

bisim′
L : {l m : List Tree} → List TreeB l m → l = m

bisim′
L [] i =df []

bisim′
L (b :: r) i =df bisimL b i :: bisim′

L r i

The productivity, i.e. well-definiteness, of the function bisimL is guaranteed by the
presence of list constructors [] and :: at top level in the definition of bisim′

L. More generally,
corecursively defined terms are accepted as valid by Agda’s productivity checker only
when recursive calls appear directly under the application of a constructor. This syntactic
restriction, while indeed sufficient for ensuring the productivity of corecursive definitions,
makes programming and reasoning with coinductive types in Agda quite cumbersome. For
example, the following construction of the unique coalgebra morphism from the carrier of a
coalgebra c : X → List X to Tree is not accepted in Agda (mapList is the action on functions
of the List functor):

anaTree : (c : X → List X) → X → Tree
subtreesL (anaTree c x) =df mapList (anaTree c) (c x) (2)

For this reason, in our code we parameterize our coinductive types with sizes, to ease the
productivity checking of corecursive definitions [18, 14]. For example, the function anaTree
is accepted by Agda if the type of trees is decorated with size information. Notice that we
use sized types for mere practical convenience: we believe possible, with some extra work, to
massage the corecursive definitions in our Agda code and obtain equivalent characterizations

FSCD 2021

22:6 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

able to overtake Agda’s syntactic productivity checker. In the paper, all mentions to sizes
have been removed.

Since HITs are implemented in Agda as a particular kind of inductive types, Cubical
Agda also allows the construction of coinductive types specified by functors defined as HITs.
This is a somehow experimental feature: the existence of such objects would need to be
verified in the cubical set model, which we leave to future work. We will show an example of
such a coinductive type in Section 4.2.

3 The Finite Powerset and Its Final Coalgebra as a Setoid

Here we introduce the finite powerset construction as a setoid and study its final coalgebra.

A setoid [7], or Bishop set, is a pair (A,R) consisting of a type A and a proof-irrelevant
(i.e. valued in propositions) equivalence relation R on A. We write Setoid for the type of
setoids and, given S : Setoid, we write carr S and eqr S for the carrier and the equivalence
relation of S, respectively. A setoid morphism between setoids (A,R) and (B,S) is a function
f : A → B which is compatible with the equivalence relations: for all x, y : A, if R x y

then S (f x) (f y). We write SetoidMor S T for the type of setoid morphisms between
setoids S and T , and, given h : SetoidMor S T , we write fun h : carr S → carr T for its
underlying function. Setoids and their morphisms form a category Setoid, but this is not the
framework typically employed as a foundational setting for constructive mathematics, since
in this category equality of morphisms is given by path equality, not equivalence relation.
Bishop-style constructive mathematics is instead developed in SetoidRel, which is the
category Setoid enriched in the category of sets and equivalence relations [19]. In this
setting, two setoid morphisms f and g between setoids (A,R) and (B,S) are considered
equal whenever, for all x : A, S (f x) (g x).

In SetoidRel, given an endofunctor F with action on setoid morphisms mapF (satisfying
the functor laws up to the appropriate equivalence relation), the types of F -coalgebras and
F -coalgebra morphisms between two F -coalgebras (S, s) and (T, t) are defined as follows:

Coalgs F =df
∑

S : Setoid. SetoidMor S (F S)
CoalgMors F (S, s) (T, t)=df∑

h : SetoidMor S T. (x : carr S) → eqr T (fun t (fun h x)) (fun (mapF h) (fun s x))
(3)

A coalgebra in SetoidRel is final if there exists a unique coalgebra morphism from any
other coalgebra, up to equivalence relation:

Finals F =df
∑

C : Coalgs F. (D : Coalgs F) → isContrs (CoalgMors F C D) (4)

where elements of isContrs (CoalgMors F C D) are pairs consisting of a coalgebra morphism
h and, for any other coalgebra morphism h′, a proof that h and h′ are equivalent as setoid
morphisms.

N. Veltri 22:7

record TreeR (t u : Tree) : Type where
coinductive
field

subtreesR : L̂ist TreeR (subtreesL t) (subtreesL u)

Figure 2 Agda definition of the coinductive closure of the relator L̂ist.

3.1 The Setoid of Finite Subsets
Given a setoid (A,R), its setoid of finite subsets is defined as Pfins (A,R) =df (List A, L̂ist R),
where L̂ist is a lifting of List to relations, alternative to the lifting given in (1). L̂ist is
sometimes called a relator and plays an important role in the study of applicative bisimilarity
for functional programming languages with nondeterministic choice [21]. Given a type family
R : A→ B → Type, the type family L̂ist R : List A→ List B → Type is defined as

L̂ist R l m=df ((x : A) → x ∈L l → ∃y : B. y ∈L m×R x y)
×
((y : B) → y ∈L m → ∃x : A. x ∈L l ×R y x)

(5)

So two lists are related by L̂ist R when each element of a list is R-related to an element of the
other list. The type family ∈L is the inductive (proof-relevant) membership relation on lists,
the subscript L distinguishes this to the membership relation on the type Pfin introduced
in Section 4.1. Pfins is an endofunctor on SetoidRel. Its action on setoid morphisms
mapPfins : SetoidMor S T → SetoidMor (Pfins S) (Pfins T) has underlying function mapList.

Notice the presence of existential quantifications ∃ in the definition of L̂ist. If we were to
replace them with

∑
, we would obtain a setoid of finite multisubsets instead, as the one

considered by Danielsson [13].

3.2 The Final Coalgebra
The final coalgebra of the final powerset functor in SetoidRel can be constructed using
coinductive types. Consider the coinductive relation of Figure 2 obtained by replacing the
lifting List with the lifting L̂ist in the destructor of the tree bisimilarity relation TreeB in
Figure 1. Two trees are related by TreeR if, for each subtree of one tree, there merely
exists a TreeR-related subtree of the other tree. The setoid νPfins =df (Tree,TreeR) is a
Pfins-coalgebra:

coalgs : SetoidMor νPfins (Pfins νPfins)
coalgs = (subtreesL, subtreesR)

▶ Theorem 1. The Pfins-coalgebra (νPfins, coalgs) is final in SetoidRel.

Proof. We only show the existence of a coalgebra morphism into (νPfins, coalgs). Given
another Pfins-coalgebra (S, s), there is a setoid morphism h from S to (Tree,TreeR) with
underlying function anaTree (fun s).

This function is compatible with equivalence relations. Assume given x, y : carr S such
that eqr S x y. We prove TreeR (anaTree (fun s) x) (anaTree (fun s) y). This is a coinductive
type, so we proceed by applying the destructor of TreeR and we are left to show that
subtreesL (anaTree (fun s) x) is (L̂ist TreeR)-related to subtreesL (anaTree (fun s) y). The
definition of the lifting L̂ist in (5) is symmetric, so it is sufficient to prove the following lemma
(in which we unfold the definition of anaTree as in (2)):

FSCD 2021

22:8 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

(x′ : Tree) → x′ ∈L mapList (anaTree (fun s)) (fun s x)
→ ∃y′ : Tree. y′ ∈L mapList (anaTree (fun s)) (fun s y) × TreeR x′ y′ (6)

Given a tree x′ as in the hypotheses of (6), it is possible to construct another tree x′′ such
that x′′ ∈L fun s x and anaTree (fun s) x′′ = x′. Remember that s is a setoid morphism and
eqr S x y holds by assumption. This implies that, for each element in the list fun s x, there
exists a (eqr S)-related element in the list fun s y. Since x′′ ∈L fun s x, we obtain a tree y′′

such that y′′ ∈ fun s y and eqr S x′′ y′′. The required tree y′ in the goal of (6) is defined
as anaTree (fun s) y′′. The proof of y′ being TreeR-related to x′ is given by the corecursive
hypothesis applied to arguments x′′,y′′ and the proof of eqr S x′′ y′′. ◀

Differently from the case of polynomial functors, the final Pfins-coalgebra cannot be
constructed as an ω-limit in SetoidRel. In fact, the ω-limit of the sequence obtained by
iterated application of Pfins on the unit setoid is not a fixpoint of Pfins. This is in analogy
with the situation in classical set theory described by Adámek and Koubek [2], for which we
give a constructive account in Section 5.

It is possible to prove a version of Theorem 1 for Setoid instead of SetoidRel:
(νPfins, coalgs) is also the final Pfins-coalgebra in Setoid, where one first needs to ap-
propriately adapt the definitions of coalgebra morphism and final coalgebra in (3) and (4) to
Setoid.

4 The Finite Powerset and Its Final Coalgebra as a Type

We now abandon the setoid setting and work with types as primary object instead of setoids,
as typically done in HoTT. Given an endofunctor F : Type→ Type with action on functions
mapF, the types of F -coalgebras and F -coalgebra morphisms between two F -coalgebras (A, a)
and (B, b) are defined as follows:

Coalg F =df
∑

A : Type. A → F A

CoalgMor F (A, a) (B, b) =df
∑

f : A → B. (x : A) → b (f x) = mapF f (a x) (7)

In this setting, a coalgebra is final if there exists a unique (up to path equality) coalgebra
morphism to any other coalgebra.

Final F =df
∑

C : Coalg F. (D : Coalg F) → isContr (CoalgMor F C D) (8)

The definitions in (7) and (8) are the same of Ahrens et al. [5], which they only consider in
the case of F being a polynomial functor specified by a signature. The coinductive type Tree
of Section 2.2 is the final List-coalgebra, with the function anaTree of (2) as unique mediating
coalgebra morphism.

4.1 The Type of Finite Subsets
The action of the finite powerset functor on a type A returns the set of all finite subsets of A.
Following Frumin et al. [17], the finite powerset functor can be encoded as a higher inductive
type in two equivalent ways: as a set quotient of lists or as the term algebra of the theory of
join semilattices.

As a Set Quotient. The set of finite subsets can be defined as a set quotient of the type of
lists: Pfinq A=df List A/SameEls. The subscript q indicates that this type is a set quotient.
The relation SameEls, as the name suggests, relates lists containing the same elements, and
it is given by the relator L̂ist applied to path equality on A, i.e. SameEls =df L̂ist (=).

N. Veltri 22:9

As the Free Join Semilattice. The set of finite subsets can also be defined as the free
join semilattice on a given type A. A join semilattice is a partially ordered set (X,≤)
with a bottom element and a binary join operation. Join semilattices admit an equational
presentation as algebraic theories, from which the following higher inductive type can be
extrapolated:

∅ : Pfin A
a : A

η a : Pfin A
x, y : Pfin A
x ∪ y : Pfin A

x : Pfin A
nr x : x ∪ ∅ = x

x, y, z : Pfin A
assoc x y z : (x ∪ y) ∪ z = x ∪ (y ∪ z)

x, y : Pfin A
comm x y : x ∪ y = y ∪ x

x : Pfin A
idem x : x ∪ x = x

x, y : Pfin A p, q : x = y

squashPfin p q : p = q

The type Pfin A is a join semilattice, with empty subset ∅ as bottom element and binary union
∪ as join operation. The partial order can be recovered in the usual way: x ≤ y=df (x∪y) = y.
The 1-path constructors mimic the equational theory of join semilattices, while the 2-path
constructor squashPfin forces Pfin A to be a set. The constructor η embeds A into Pfin A and
represents the singleton subset operation. The elimination principle of Pfin A corresponds to
the universal property of Pfin A as the free join semilattice on A.

The membership relation ∈ is defined by induction on the finite subset in input.

∈ : A → Pfin A → hProp
a ∈ ∅ =df ⊥
a ∈ η b =df ∥a = b∥
a ∈ x ∪ y =df ∥a ∈ x+ a ∈ y∥

The omitted cases for the higher constructors are dealt with using univalence. Moreover the
right-hand-sides only contain the types underlying the propositions, the proof terms showing
that these satisfy the predicate isProp have been omitted. The subset relation is given by
x ⊆ y=df (a : A)→ a ∈ x→ a ∈ y, which is equivalent to the order relation ≤ defined above.

Given a type family R : A → B → Type, its lifting to Pfin is the type family Pfin R :
Pfin A→ Pfin B → Type defined as

Pfin R s t =df ((x : A) → x ∈ s → ∃y : B. y ∈ t×R x y)
×
((y : B) → y ∈ t → ∃x : A. x ∈ s×R y x)

For all relations R, it is possible to show that Pfin R is a congruence, which means that we
are able to construct elements of the following types:

Pfin R ∅ ∅ Pfin R s1 t1 → Pfin R s2 t2 → Pfin R (s1 ∪ s2) (t1 ∪ t2) (9)

When R is path equality, Pfin (=) corresponds to extensional equality of finite subsets,
i.e. Pfin (=) s t ≃ (s ⊆ t× t ⊆ s). Since the subset relation is antisymmetric, we have that
Pfin (=) s t ≃ (s = t). We call toPfinEq : Pfin (=) s t → (s = t) the left-to-right function
underlying this equivalence.

The two types Pfin A and Pfinq A are provably equivalent [17].

FSCD 2021

22:10 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

record νPfin : Type where
coinductive
field

subtreesP : Pfin νPfin

record νPfinB (t u : νPfin) : Type where
coinductive
field

subtreesBP : Pfin νPfinB (subtreesP t) (subtreesP u)

Figure 3 Agda definitions of coinductive final coalgebra of Pfin and its bisimilarity relation.

4.2 The Final Coalgebra
As a Coinductive Type. As mentioned in the last paragraph of Section 2.2, Cubical Agda
allows the construction of coinductive types specified by functors using HITs in their definition.
When such functor is the finite powerset functor Pfin, this construction is given by the record
type on the left in Figure 3. Notice that νPfin is a set: Pfin A is a set for all types A, so in
particular Pfin νPfin is a set, and the latter is isomorphic to νPfin.

In Figure 3, the coinductive relation on the right is the notion of bisimilarity associated
to the infinite trees in νPfin. The coinduction principle for νPfin is derivable by copattern
matching and path introduction as follows:

bisimP : {t u : νPfin} → νPfinB t u → t = u

subtreesP (bisimP b i) =df

toPfinEq (λxm. map∥(λ(x′,m′, b′). (x′,m′, bisimP b
′)) (fst (subtreesBP b) x m),

λxm. map∥(λ(x′,m′, b′). (x′,m′, bisimP b
′)) (snd (subtreesBP b) x m))

i

▶ Theorem 2. νPfin is the final coalgebra of Pfin in the sense of (8).

Proof. The construction of the mediating coalgebra morphism between a Pfin-coalgebra
(A, a) and νPfin, whose coalgebra is the destructor subtreesP, is analogous to the one in (2):

anaPfin : (c : X → Pfin X) → X → νPfin
subtreesP (anaPfin c x) =df mapPfin (anaPfin c) (c x) (10)

Now assume given another coalgebra morphism f : X → νPfin. We prove simultaneously
the two following lemmata, and conclude uniqueness using the coinduction principle of νPfin.

anaPfinUniq : (x : X) → νPfinB (f x) (anaPfin c x)
anaPfinUniqR : (s : Pfin X) → Pfin νPfinB (mapPfin f s) (mapPfin (anaPfin c) s)

The first lemma is proved by corecursion, so after an application of the destructor of
νPfinB (and after unfolding the definition of anaPfin in (10)), we are left to construct an
element of type Pfin νPfinB (subtreesP (f x)) (mapPfin (anaPfin c) (c x)). Since f is a
coalgebra morphism, we can substitute subtreesP (f x) for mapPfin f (c x) in the latter, and
we return anaPfinUniqR (c x) as the inhabitant of the type resulting from the substitution.

The second lemma is proved by induction on s. Since the return type is a proposition,
we only need to deal with the three cases of the point constructors.

Case s ≡ ∅. We are done by the left result in (9).
Case s ≡ η z. Our goal reduces to Pfin νPfinB (η (f z)) (η (anaPfin c z)). We construct
the first argument of this product type, the second argument is defined analogously.
Assume given x : νPfin and p : x ∈ η (f z), i.e. a truncated equality proof p : ∥x = f z∥.
We need to show that there merely exists y : νPfin such that y ∈ η (anaPfin c z), i.e.
∥y = anaPfin c z∥, and νPfinB x y holds. Take y =df anaPfin c z, and derive νPfinB x y

by first rewriting x to f z using p (we can remove the propositional truncation in p since
the return type is a proposition as well) and subsequently applying anaPfinUniq to z.

N. Veltri 22:11

Case s ≡ s1 ∪ s2. We apply the right result in (9) and we conclude by invoking inductive
hypotheses anaPfinUniqR s1 and anaPfinUniqR s2. ◀

As a Set Quotient. Alternatively, we could quotient the type Tree of finitely ordered
branching trees by the equivalence relation TreeR introduced in Figure 2. The resulting type
is a fixpoint of Pfinq.

▶ Theorem 3. The type Tree/TreeR is equivalent to Pfinq (Tree/TreeR)

Proof. We only discuss the construction of the functions underlying the equivalence. A
function f : Tree/TreeR→ Pfinq (Tree/TreeR) is defined by pattern matching (we only show
the case of the point constructor): f [t] =df [mapList (λx. [x]) (subtreesL t)].

A function g : Pfinq (Tree/TreeR) → Tree/TreeR is also defined by pattern matching.
Notice that this is equivalent to construct a function g′ : List (Tree/TreeR) → Tree/TreeR
which is compatible with the relation SameEls. Since the type List (Tree/TreeR) is equivalent
to List Tree/List TreeR, it is sufficient to define a function g′′ : List Tree/List TreeR →
Tree/TreeR satisfying an adjusted compatibility condition. This is given by pattern matching
(again, we omit the cases of the path constructors): g′′ [l] =df [subtrees−1

L l], where subtrees−1
L

is the inverse of the destructor subtreesL. ◀

Proving finality of the coalgebra underlying the equivalence of Theorem 3 seems to require
the assumption of the full axiom of choice. This is constructively problematic, since in
HoTT the axiom of choice implies the law of excluded middle [27]. We employ an alternative
formulation of the axiom of choice, provably equivalent to the usual one. First, consider two
types A,B and a type family R : B → B → Type. Let Fun R be the lifting of the type family
R to the function space A → B, i.e. given f, g : A → B, define Fun R f g =df (x : A) →
R (f x) (g x). It is possible to define a function θR : (A → B)/Fun R → A → B/R by
pattern matching on the first argument. The existence of a section for θR, for all type
families R, is an equivalent phrasing of the axiom of choice (see e.g. [28] for a proof of this
equivalence):

AC =df {A,B : Type} (R : B → B → Type)
→ ∃ψR : (A → B/R) → (A → B)/Fun R. (x : (A → B)/Fun R) → θR (ψR x) = x

(11)

▶ Theorem 4. Assuming axiom of choice, the type Tree/TreeR is the final coalgebra of Pfinq.

Proof. We only discuss the construction of the mediating coalgebra morphism. We are
asked to construct a function anaPfinq : (c : X → Pfinq X) → X → Tree/TreeR. This
can be obtained from the function anaPfin′

q : (c : X → Pfinq X) → Pfinq X → Tree/TreeR
by precomposition with the coalgebra c. In turn, this can be obtained from the function
anaPfin′′

q : (X → List X)/Fun SameEls → List X/SameEls → Tree/TreeR by precomposition
with the section ψSameEls. The latter is definable by pattern matching on both arguments:
anaPfin′′

q [c] [l] =df [anaTree c l]. The missing cases in the definition have been omitted. ◀

Without the assumption of the axiom of choice, one gets stuck in the construction of anaPfinq.
In fact, the mediating coalgebra morphism may call the coalgebra c : X → Pfinq X an
arbitrarily large number of times, and, since we are given no information on the cardinality of
X, each application of c may happen on a different input x : X. This implies that generally
the recursion principle of set quotients would need to be invoked the same large number of
times, and this could only be achieved by assuming the full axiom of choice.

FSCD 2021

22:12 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

5 Analysis of Worrell’s Classical Set-Theoretic Construction

In classical set theory there are many constructions of the final coalgebra of the finite powerset
functor. See Adámek et al.’s collection and comparison of all these characterizations [4].
In this section we scrutinize a construction due to James Worrell as an (ω + ω)-limit [33].
Worrell’s general construction of final coalgebras of finitary functors as (ω + ω)-limits can
be seen as a generalization of the traditional construction of final coalgebras of polynomial
functors as ω-limits. In the same spirit, one can consider our attempt at internalizing
Worrell’s construction in type theory, here in the special case of the final powerset functor, as
a generalization of Ahrens et al.’s internalization of the construction of M-types in homotopy
type theory [5]. We will see that a sprinkle of classical logic is needed for Worrell’s construction
to work in our constructive setting.

Worrell’s construction starts by considering the ω-limit of the sequence

1 Pfin 1!oo Pfin2 1
mapPfin !oo . . .

map2
Pfin !oo (12)

which in type theory can be encoded as the following dependent sum:

Vω =df
∑

x : (n : N) → Pfinn 1. (n : N) → mapn
Pfin ! (x (suc n)) = x n

Here Pfinn A is the n-iterated application of Pfin to type A, i.e. Pfinzero A =df A and
Pfinsuc n =df Pfin (Pfinn A). Similarly, mapn

Pfin is the n-iterated application of mapPfin. Let
ℓn be the function mapping an element of Vω to its nth approximation in Pfinn 1, i.e.
ℓn x=df fst x n. A function algVω

from Pfin Vω to Vω can be constructed as follows, basically
using the universal property of the ω-limit (we use copatterns and we only show the definition
of the first projection): fst (algVω

s) n =df mapn
Pfin ! (mapPfin ℓn s). As noticed by Adámek

and Koubek [2], Vω is not the final coalgebra of Pfin. This is because Vω is not a fixpoint of
Pfin, as the canonical algebra function algVω

is not an isomorphism.

▶ Proposition 5. The function algVω
: Pfin Vω → Vω is not surjective.

Proof. Consider the sequence

growing : (n : N) → Pfinn1
growing zero =df tt
growing (suc zero) =df η tt
growing (suc (suc n)) =df η ∅ ∪ mapPfin η (growing (suc n))

corresponding pictorially to the following element of Vω:

tt
!←− [

•

tt

mapPfin !←− [
•

∅ •

tt

map2
Pfin !
←− [

•

∅ • •

∅ •

tt

map3
Pfin !
←− [. . .

The top-level branching of the sequence growing is, as the name suggests, growing. It is
possible to show that it is absurd to assume that growing is in the image of algVω

. ◀

Elements of type Vω represent non-wellfounded trees with unordered branching (as
opposed to elements of type Tree, in which branching is ordered). The element growing
introduced in the proof of Proposition 5 shows that these trees generally do not have finite

N. Veltri 22:13

branching, even if all their finite approximations do. So Vω cannot possibly be a fixpoint of
Pfin, and, in particular, it cannot be its final coalgebra.

While the sequence in (12) does not stabilize in ω steps, Worrell shows that, in classical
set theory, it stabilized after ω + ω steps. To this end, he considers the ω-limit Vω+ω of the
sequence

Vω Pfin Vω

algVωoo Pfin2 Vω

mapPfin algVωoo . . .
map2

Pfin algVωoo (13)

which in type theory corresponds to the dependent sum

Vω+ω =df
∑

x : (n : N) → Pfinn Vω. (n : N) → mapn
Pfin algVω

(x (suc n)) = x n

and proves that Vω+ω is the final coalgebra of Pfin. A fundamental ingredient in his proof is
the fact that the function algVω

is injective (even more, classically it is a split monomorphism),
so that Pfin Vω can be characterized as the subset of Vω consisting of all the trees in which
the top-level branching is finite. Consequently, Pfin2 Vω consists of all trees in which the first
two levels of branching are finite. The limit Vω+ω can then be characterized as the subset of
Vω consisting of trees with finite branching at all levels.

In our constructive setting, the injectivity of algVω
is not provable. In fact, under the

assumption of the axiom of countable choice, injectivity of algVω
is equivalent to the lesser

limited principle of omniscience (LLPO):

LLPO =df (a : N → Bool) → isProp (
∑

n : N. a n = true)
→ ∥((n : N) → isEven n → a n = false) + ((n : N) → isOdd n → a n = false)∥

LLPO states that, if a Boolean stream a contains at most one occurrence of value true, then
either all its even positions contain false or all its odd positions contain false. The axiom
of countable choice is just AC in (11) with type A fixed to be N, but we prefer to have a
different (and more standard) equivalent formulation of countable choice that is directly
applicable in the forthcoming constructions:

ACN : (P : N → Type) → ((n : N) → ∥P n∥) → ∥(n : N) → P n∥

Proving that the injectvity of algVω
implies LLPO does not require countable choice.

The proof is obtained as an adaptation of the proof of equivalence between LLPO and the
completeness of finite sets of real numbers in Bishop-style constructive mathematics [22].

▶ Theorem 6. From the injectivity of algVω
we can construct the following term:

complete : {x y1 y2 : Vω} (z : N → Vω)
→ (p : (n : N) → z n = y1 + z n = y2) (q : (n : N) → ℓn x = ℓn (z n))
→ x ∈ η y1 ∪ η y2

(14)

Proof. Assume given a sequence z : N→ Vω with proof terms p and q as in the type above.
Define two elements of Pfin Vω as follows: t =df η y1 ∪ η y2 and s =df η x ∪ t. In order to
prove complete z p q, it is enough to show that algVω

maps s and t to path equal elements,
since then the injectivity of algVω

would imply s = t and therefore also x ∈ t. Proving
algVω

s = algVω
t is equivalent to show ℓn (algVω

s) = ℓn (algVω
t) for all n : N, which,

unfolding the definition of algVω
, is also equivalent to show mapPfin ℓn s = mapPfin ℓn t for all

n : N. Assuming n : N, we invoke the antisymmetry of the subset relation and we are left to
show mapPfin ℓn s ⊆ mapPfin ℓn t (the other direction is trivial since t ⊆ s). Unfolding the
definition of s, the only interesting case to prove is ℓn x ∈ mapPfin ℓn t. The proof proceeds
by case analysis on p n. If z n = y1, then ℓn x = ℓn (z n) = ℓn y1, where the first path
equality is given by q n, so ℓn x ∈ mapPfin ℓn t. The case of z n = y2 is analogous. ◀

FSCD 2021

22:14 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

Intuitively, complete corresponds to the completeness of two-element subsets of Vω wrt. the
pseudometric d(x, y) =df inf{2−n | n : N, ℓn x = ℓn y} [4].

The proof of the next theorem requires the introduction of some auxiliary definitions.
First, long : Vω corresponds to the infinite tree in which each node has exactly one subtree.
We only show the construction of the first projection (the definition uses copatterns).

fst long zero =df tt
fst long (suc n) =df η (fst long n)

Given a sequence a : N → Bool, one can also define a variant long? a of long, which is the
same as long if a contains only value false, but its height stop growing if there is n : N such
that a n is the first true in a. In the latter case, long? a is a finite tree with height n, so that
fst long (suc n) is not equal to fst (long? a) (suc n).

fst (long? a) zero =df tt
fst (long? a) (suc n) =df if a zero then ∅ else η (fst (long? (a ◦ suc)) n)

Lastly, given a sequence a : N→ Bool, a type A with two elements x, y : A and a Boolean b,
we can define a sequence seq a x y b : N→ A as follows:

seq a x y b zero =df if a zero and b then y else x
seq a x y b (suc n) =df if a zero and b then y else seq (a ◦ suc) x y (not b) n

The rationale behind the construction of the latter sequence, in the case when b is true, goes
as follows: seq a x y true n returns y if there exists an even number k : N with k ≤ n such
that a k = true and a j = false for all j < k; in all other cases seq a x y true n returns x.

▶ Theorem 7. The existence of a term complete as in (14) implies LLPO.

Proof. Let a : N → Bool be a sequence with at most one occurrence of value true. Define
y1 =df long, y2 =df long? a and z =df seq a y1 y2 true. Take x to be the diagonal of z, i.e.
fst x n=df ℓn z n, which can in fact be proved to be an element of Vω. Clearly each entry in
z is either y1 or y2, therefore all the hypotheses in the type in (14) are satisfied. Applying
complete to these hypotheses gives x ∈ η y1 ∪ η y2. Invoking the recursion principle of
propositional truncation on the resulting proof term, which we are allowed to use since the
return type of LLPO is a proposition, gives us either x = y1 or x = y2. Assume x = y1,
we show a n = false for all even numbers n : N. Suppose a n = true for a certain even
number n. Since a n = true, and this is the only true in a, we know that z (suc n) ≡
seq a y1 y2 true (suc n) = y2 which in turn implies ℓsuc n x = ℓsuc n (z (suc n)) = ℓsuc n y2.
By assumption ℓsuc n x = ℓsuc n y1, therefore by path composition and path inversion we get
ℓsuc n y1 = ℓsuc n y2, i.e. fst long (suc n) = fst (long? a) (suc n), which is impossible since a n
is true. So a n must be false for all even n. Analogously one can prove that x = y2 implies
a n = false for all odd numbers n : N, therefore concluding the derivation of LLPO. ◀

Patching together Theorems 6 and 7 shows that the injectivity of algVω
implies LLPO.

▶ Corollary 8. The injectivity of algVω
implies LLPO.

This displays the non-constructive nature of the injectivity of algVω
. The reverse implication

also holds, which we have proved assuming the axiom of countable choice. We refrain from
proving this in the paper, but the interested reader can find all the details in the Agda code.

▶ Theorem 9. Assuming countable choice, LLPO implies the injectivity of algVω
.

N. Veltri 22:15

One can also modify the proofs of Corollary 8 and Theorem 9 to show that LLPO is also
equivalent to the injectivity of the function ℓω : Vω+ω → Vω given by ℓω x =df fst x zero.
This demonstrates that Worrell’s construction of the final coalgebra of Pfin as a subset of
the limit Vω is not achievable without the assumption of a certain amount of classical logic
in the metatheory.

▶ Theorem 10.
1. The injectivity of ℓω implies LLPO.
2. Assuming countable choice, LLPO implies the injectivity of ℓω.

Having the injectivity of algVω
at hand, the construction of a coalgebra structure on Vω+ω

and the proof of its finality morally follow Worrell’s description [33].

▶ Theorem 11. Assuming the axiom of countable choice and the injectvity of algVω
, Vω+ω

is a Pfin-coalgebra which is final.

Proof. The meat of the proof lays in the construction of a function of type Vω+ω → Pfin Vω+ω.
We show that the latter comes from an equivalence Vω+ω ≃ Pfin Vω+ω which is constructed
in several steps. First define a family of functions u : (n : N)→ Pfinn Vω → Vω by recursion:
u zero x=df x and u (suc n) x=df u n (mapn

Pfin algVω
x). It is possible to prove that Vω+ω is

equivalent to the wide pullback
⋂
u of the family of functions u. In general, given a family

of functions f : (n : N)→ A n→ C, its wide pullback is defined in type theory as⋂
f =df

∑
x : (n : N) → A n. (n : N) → f (suc n) (x (suc n)) = f zero (x zero)

We use the intersection symbol, and we refer to this pullback as intersection, since all the
families of functions f that we consider have f n injective, for all n : N. In particular, each
function u n is injective, which can be proved by induction on n using the assumption that
algVω

is injective. This implies the existence of an equivalence eqv1 : Pfin Vω+ω ≃ Pfin (
⋂
u).

In an analogous manner, one can prove that the intersection of the family mapPfin ◦ u :
(n : N)→ Pfinsuc n Vω → Pfin Vω is equivalent to the ω-limit of the shifted sequence

Pfin Vω Pfin2 Vω

mapPfin algVωoo Pfin3 Vω

map2
Pfin algVωoo . . .

map3
Pfin algVωoo

It is well-known that the ω-limit of the shifted sequence is equivalent to the ω-limit of the
original sequence in (13), i.e. Vω+ω. We obtain an equivalence eqv3 :

⋂
(mapPfin ◦ u) ≃ Vω+ω.

It is also possible to show, using the axiom of countable choice, that Pfin preserves
intersections: given a generic family of injective functions f : (n : N) → A n → C, the
following equivalence exists: eqv2 : Pfin (

⋂
f) ≃

⋂
(mapPfin ◦ f).

By composing equivalences eqv1, eqv2 and eqv3, we obtain the desired equivalence showing
that Vω+ω is a fixpoint of Pfin. A Pfin-coalgebra for Vω+ω is extracted as the function of
type Vω+ω → Pfin Vω+ω underlying this equivalence. It is possible to continue following
Worrell’s proof and show that this coalgebra is indeed final. ◀

6 Conclusions and Future Work

In this paper we discussed various presentations of the final coalgebra of the finite powerset
functor in Cubical Agda: (i) as a setoid, (ii) as a coinductive type, (iii) as a set quotient and
(iv) as a subset of an ω-limit. Construction (iii) requires the presence of the axiom of choice
in the proof of finality, while construction (iv) corresponds to the classical construction of
the final coalgebra as a (ω+ω)-limit by Worrell, which can be performed in our setting prior

FSCD 2021

22:16 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

the assumption of countable choice and LLPO. For these reasons, we believe the best choice
to be number (ii), i.e. the coinductive type νPfin of Section 4.2, since it does not require the
assumption of classical principles such as choice or LLPO, and it does not force the user to
employ setoids instead of types.

The work presented in this paper is motivated by our will to certify programming
language semantics in proof assistants. We are specifically thinking about languages with
nondeterministic or concurrent behavior. In previous work [29], we presented a fully abstract
denotational model of the early π-calculus, mechanized in Guarded Cubical Agda. We
believe possible to port these result to Cubical Agda using the presentations of the final
Pfin-coalgebra of Section 4.2. Such an attempt would employ Cubical Agda’s coinductive
types instead of the guarded recursive types of Guarded Cubical Agda.

We wish to study the more general construction of final coalgebras of finitary functors in
type theory. Frumin et al.’s functor Pfin captures a particular notion of finite type, known
as Kuratowski finiteness: a type A is finite iff there exists a pair consisting of x : Pfin A
and a proof that (a : A)→ a ∈ x. But in type theory, and more generally in constructive
mathematics, there exist many more inequivalent formulations of finiteness [12, 25, 15, 16, 17].
We plan to investigate final coalgebras of finitary functors using these various formulations.
In particular, we wonder if an alternative notion of finiteness in the specification of the
finite powerset functor would make Worrell’s proof go through without the assumption of
additional classical principles. A large class of finitary functors should be definable via the
syntax for set truncated HITs developed by Basold, Geuvers and van der Weide [8, 31].

The construction of the final coalgebra given in Section 4.2 used a higher inductive type
in the domain of a coinductive type destructor. This definition is allowed in Cubical Agda,
and it is intuitively justified by the treatment of HITs in cubical type theory as inductive
types with constructors possibly depending on extra interval variables [11, 9]. We leave to
future work a formal construction of the final coalgebra of the finite powerset and other
finitary functors in the cubical set model [10]. Inspiration could be drawn from the recent
model of clocked cubical type theory of Kristensen et al. [20], where HITs are shown to
commute on the nose with limits modelling the notion of clock quantification.

References
1 Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copatterns: program-

ming infinite structures by observations. In Roberto Giacobazzi and Radhia Cousot, editors,
Proc. of 40th Ann. ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages,
POPL’13, pages 27–38. ACM, 2013. doi:10.1145/2429069.2429075.

2 Jirí Adámek and Václav Koubek. On the greatest fixed point of a set functor. Theoretical
Computer Science, 150(1):57–75, 1995. doi:10.1016/0304-3975(95)00011-K.

3 Jirí Adámek, Paul Blain Levy, Stefan Milius, Lawrence S. Moss, and Lurdes Sousa. On
final coalgebras of power-set functors and saturated trees. Applied Categorical Structures,
23(4):609–641, 2015. doi:10.1007/s10485-014-9372-9.

4 Jiří Adámek, Stefan Milius, and Lawrence S. Moss. Initial algebras, terminal coalgebras, and the
theory of fixed points of functors. Draft book, available from http://www.stefan-milius.eu,
2021.

5 Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti. Non-wellfounded trees in homotopy
type theory. In Thorsten Altenkirch, editor, Proc. of 13th Int. Conf. on Typed Lambda Calculi
and Applications, TLCA’15, volume 38 of Leibniz International Proceedings in Informatics,
pages 17–30. Schloss Dagstuhl, 2015. doi:10.4230/LIPIcs.TLCA.2015.17.

6 Michael Barr. Terminal coalgebras in well-founded set theory. Theoretical Computer Science,
114(2):299–315, 1993. doi:10.1016/0304-3975(93)90076-6.

https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1016/0304-3975(95)00011-K
https://doi.org/10.1007/s10485-014-9372-9
http://www.stefan-milius.eu
https://doi.org/10.4230/LIPIcs.TLCA.2015.17
https://doi.org/10.1016/0304-3975(93)90076-6

N. Veltri 22:17

7 Gilles Barthe, Venanzio Capretta, and Olivier Pons. Setoids in type theory. Journal of
Functional Programming, 13(2):261–293, 2003. doi:10.1017/S0956796802004501.

8 Henning Basold, Herman Geuvers, and Niels van der Weide. Higher inductive types in
programming. Journal of Universal Computer Science, 23(1):63–88, 2017. doi:10.3217/
jucs-023-01-0063.

9 Evan Cavallo and Robert Harper. Higher inductive types in cubical computational type theory.
PACMPL, 3(POPL):1:1–1:27, 2019. doi:10.1145/3290314.

10 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory: A
constructive interpretation of the univalence axiom. In Tarmo Uustalu, editor, Proc. of 21st
Int. Conf. on Types for Proofs and Programs, TYPES’15, volume 69 of Leibniz International
Proceedings in Informatics, pages 5:1–5:34. Schloss Dagstuhl, 2015. doi:10.4230/LIPIcs.
TYPES.2015.5.

11 Thierry Coquand, Simon Huber, and Anders Mörtberg. On higher inductive types in cubical
type theory. In Anuj Dawar and Erich Grädel, editors, Proc. of the 33rd Ann. ACM/IEEE
Symp. on Logic in Computer Science, LICS’18, pages 255–264. ACM, 2018. doi:10.1145/
3209108.3209197.

12 Thierry Coquand and Arnaud Spiwack. Constructively finite? In Laureano Lambàn, Ana
Romero, and Julio Rubio, editors, Scientific Contributions in Honor of Mirian Andrés Gómez,
pages 217–230. Universidad de La Rioja, 2010.

13 Nils Anders Danielsson. Bag equivalence via a proof-relevant membership relation. In Lennart
Beringer and Amy P. Felty, editors, Proc. of 3rd Int. Conf. on Interactive Theorem Proving,
ITP’12, volume 7406 of Lecture Notes in Computer Science, pages 149–165. Springer, 2012.
doi:10.1007/978-3-642-32347-8_11.

14 Nils Anders Danielsson. Up-to techniques using sized types. PACMPL, 2(POPL):43:1–43:28,
2018. doi:10.1145/3158131.

15 Denis Firsov and Tarmo Uustalu. Dependently typed programming with finite sets. In Patrick
Bahr and Sebastian Erdweg, editors, Proc. of 11th ACM SIGPLAN Workshop on Generic
Programming, WGP’15, pages 33–44. ACM, 2015. doi:10.1145/2808098.2808102.

16 Denis Firsov, Tarmo Uustalu, and Niccolò Veltri. Variations on Noetherianness. In Robert
Atkey and Neelakantan R. Krishnaswami, editors, Proc. of 6th Wksh. on Mathematically
Structured Functional Programming, MSFP’16, volume 207 of Electronic Proceedings in
Theoretical Computer Science, pages 76–88, 2016. doi:10.4204/EPTCS.207.4.

17 Dan Frumin, Herman Geuvers, Léon Gondelman, and Niels van der Weide. Finite sets in
homotopy type theory. In Proc. of 7th ACM SIGPLAN Int. Conf. on Certified Programs and
Proofs, CPP’18, pages 201–214. ACM, 2018. doi:10.1145/3167085.

18 John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems using
sized types. In Proc. of 23rd ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages, POPL’96, pages 410–423, 1996. doi:10.1145/237721.240882.

19 Yoshiki Kinoshita and John Power. Category theoretic structure of setoids. Theoretical
Computer Science, 546:145–163, 2014. doi:10.1016/j.tcs.2014.03.006.

20 Magnus Baunsgaard Kristensen, Rasmus Ejlers Møgelberg, and Andrea Vezzosi. A model of
clocked cubical type theory, 2021. arXiv:2102.01969.

21 Paul Blain Levy. Similarity quotients as final coalgebras. In Martin Hofmann, editor,
Proc. of 14th Int. Conf on Foundations of Software Science and Computational Structures,
FoSSaCS’11, volume 6604 of Lecture Notes in Computer Science, pages 27–41. Springer, 2011.
doi:10.1007/978-3-642-19805-2_3.

22 Mark Mandelkern. Constructively complete finite sets. Mathematical Logic Quarterly, 34(2):97–
103, 1988. doi:10.1002/malq.19880340202.

23 Robin Milner. A calculus of communicating systems, volume 92 of Lecture Notes in Computer
Science. Springer, 1980. doi:10.1007/3-540-10235-3.

24 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Informa-
tion and Computation, 100(1):1–40, 1992. doi:10.1016/0890-5401(92)90008-4.

FSCD 2021

https://doi.org/10.1017/S0956796802004501
https://doi.org/10.3217/jucs-023-01-0063
https://doi.org/10.3217/jucs-023-01-0063
https://doi.org/10.1145/3290314
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.1007/978-3-642-32347-8_11
https://doi.org/10.1145/3158131
https://doi.org/10.1145/2808098.2808102
https://doi.org/10.4204/EPTCS.207.4
https://doi.org/10.1145/3167085
https://doi.org/10.1145/237721.240882
https://doi.org/10.1016/j.tcs.2014.03.006
http://arxiv.org/abs/2102.01969
https://doi.org/10.1007/978-3-642-19805-2_3
https://doi.org/10.1002/malq.19880340202
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0890-5401(92)90008-4

22:18 Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

25 Erik Parmann. Investigating streamless sets. In Hugo Herbelin, Pierre Letouzey, and Matthieu
Sozeau, editors, Proc. of 20th Int. Conf. on Types for Proofs and Programs, TYPES’14,
volume 39 of Leibniz International Proceedings in Informatics, pages 187–201. Schloss Dagstuhl,
2014. doi:10.4230/LIPIcs.TYPES.2014.187.

26 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

27 The Univalent Foundations Program. Homotopy type theory: Univalent foundations of
mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

28 Niccolò Veltri. A type-theoretical study of nontermination. PhD thesis, Tallinn University of
Technology, 2017. URL: https://digi.lib.ttu.ee/i/?7631.

29 Niccolò Veltri and Andrea Vezzosi. Formalizing π-calculus in Guarded Cubical Agda. In Jasmin
Blanchette and Catalin Hritcu, editors, Proc. of 9th ACM SIGPLAN Int. Conf. on Certified
Programs and Proofs, CPP’20, pages 270–283. ACM, 2020. doi:10.1145/3372885.3373814.

30 Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical Agda: A dependently typed
programming language with univalence and higher inductive types. PACMPL, 3(ICFP):87:1–
87:29, 2019. doi:10.1145/3341691.

31 Niels van der Weide and Herman Geuvers. The construction of set-truncated higher inductive
types. In Barbara König, editor, Proc. of 35th Int. Conf. on Mathematical Foundations of
Programming Semantics, MFPS’19, volume 347 of Electronic Notes in Theoretical Computer
Science, pages 261–280. Elsevier, 2019. doi:10.1016/j.entcs.2019.09.014.

32 James Worrell. Terminal sequences for accessible endofunctors. In Bart Jacobs and Jan
J. M. M. Rutten, editors, Proc. of 2nd Int. Wksh. on Coalgebraic Methods in Computer
Science, CMCS’99, volume 19 of Electronic Notes in Theoretical Computer Science, pages
24–38. Elsevier, 1999. doi:10.1016/S1571-0661(05)80267-1.

33 James Worrell. On the final sequence of a finitary set functor. Theoretical Computer Science,
338(1-3):184–199, 2005. doi:10.1016/j.tcs.2004.12.009.

https://doi.org/10.4230/LIPIcs.TYPES.2014.187
https://doi.org/10.1016/S0304-3975(00)00056-6
https://homotopytypetheory.org/book
https://digi.lib.ttu.ee/i/?7631
https://doi.org/10.1145/3372885.3373814
https://doi.org/10.1145/3341691
https://doi.org/10.1016/j.entcs.2019.09.014
https://doi.org/10.1016/S1571-0661(05)80267-1
https://doi.org/10.1016/j.tcs.2004.12.009

Resource Transition Systems and Full Abstraction
for Linear Higher-Order Effectful Programs
Ugo Dal Lago #

University of Bologna, Italy
INRIA Sophia Antipolis, France

Francesco Gavazzo #

University of Bologna, Italy
INRIA Sophia Antipolis, France

Abstract
We investigate program equivalence for linear higher-order (sequential) languages endowed with
primitives for computational effects. More specifically, we study operationally-based notions of
program equivalence for a linear λ-calculus with explicit copying and algebraic effects à la Plotkin
and Power. Such a calculus makes explicit the interaction between copying and linearity, which
are intensional aspects of computation, with effects, which are, instead, extensional. We review
some of the notions of equivalences for linear calculi proposed in the literature and show their
limitations when applied to effectful calculi where copying is a first-class citizen. We then introduce
resource transition systems, namely transition systems whose states are built over tuples of programs
representing the available resources, as an operational semantics accounting for both intensional
and extensional interactive behaviours of programs. Our main result is a sound and complete
characterization of contextual equivalence as trace equivalence defined on top of resource transition
systems.

2012 ACM Subject Classification Theory of computation → Operational semantics

Keywords and phrases algebraic effects, linearity, program equivalence, full abstraction

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.23

Related Version Full Version: https://arxiv.org/abs/2106.12849

Funding The authors are supported by the ERC Consolidator Grant DLV-818616 DIAPASoN.

1 Introduction

This work aims to study operationally-based equivalences for higher-order sequential pro-
gramming languages enjoying three main features, which we are going to explain: algebraic
effects, linearity, and explicit copying.

Algebraic Effects. Since the early days of programming language semantics, the study of
computational effects, i.e. those aspects of computations that go beyond the pure process of
computing, has been of paramount importance. Starting with the seminal work by Moggi
[49, 50], modelling and understanding computational effects in terms of monads [43] has
been a standard practice in the denotational semantics of higher-order sequential languages.
More recently, Plotkin and Power [60, 57, 58] have extended the analysis of computational
effects in terms of monads to operational semantics, introducing the theory of algebraic
effects. Accordingly, computational effects are produced by effect-triggering operations
whose behaviour is, in essence, algebraic. Examples of such operations are nondeterministic
and probabilistic choices, primitives for I/O, primitives for reading and writing from a
global store, and many others. The operational analysis of computational effects in terms
of algebraic operations also gave new insights not only on the operational semantics of

© Ugo Dal Lago and Francesco Gavazzo;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ugo.dallago@unibo.it
https://orcid.org/0000-0001-9200-070X
mailto:francesco.gavazzo@gmail.com
https://orcid.org/0000-0002-2159-0615
https://doi.org/10.4230/LIPIcs.FSCD.2021.23
https://arxiv.org/abs/2106.12849
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Resource Transition Systems

effectful programming languages but also on their theories of equality, this way leading to
the development of, e.g., effectful logical relations [36, 12], effectful applicative and normal
form/open bisimulation [21, 19], and logic-based equivalences [67, 46].

Linearity and Copying. The analysis of effectful computations in terms of monads and
algebraic effects is, in its very essence, extensional : ultimately, a program represents a function
from inputs to monadic outputs. However, when reasoning about computational effects, also
intensional aspects of programs may be relevant. In particular, linearity [34, 69, 8] (and
its quantitative refinements [33, 32, 14, 4, 23]) has been recognised as a fundamental tool
to reason about computational effects [28, 48], as witnessed by a number of programming
languages, such as Clean [55], Rust [47], Granule [52], and Linear Haskell [9], which explicitly
rely on linearity to structure and manage effects. Indeed, the interaction between linearity,
copying, and computational effects deeply influences program equivalence: there are effectful
programs that cannot be discriminated without allowing the environment to copy them, and
thus program transformations which are sound if linearity is guaranteed, but unsound in
presence of copying.

A simple, yet instructive example of such a transformation, which we will carefully
examine in the next section, is given by distributivity of λ-abstraction over probabilistic
choice operators: λx.(e ⊕ f) ≃ (λx.e) ⊕ (λx.f). This transformation is well-known to be
unsound for “classical” call-by-value probabilistic languages [16]. However, it is sound if the
programs involved cannot be copied [27, 26]. What, instead, we expect to be unsound is
the transformation !(e ⊕ f) ≃ !e ⊕ !f , where the operator ! (bang) is the usual linear logic
exponential modality making terms under its scope copyable and erasable. It is thus natural
to ask if, and to what extent, the aforementioned notions of effectful program equivalence
can be extended to linear languages with explicit copying.

Our Contribution. In this paper we introduce resource transition systems as an intensional,
resource-sensitive operational semantics for linear languages with algebraic operations and
explicit copying. Resource transition systems combine standard extensional properties of
effectful computations with linearity and copying, whose nature is, instead, intensional. We
model the former using monads – as one does for ordinary effectful semantics – and the
latter by shifting from program-based transition systems to tuple-based transition systems,
as one does in environmental bisimulation [62, 44]. Indeed, a resource transition system can
be thought of as an ordinary transition system whose states are built over tuples of copyable
programs and linear values representing the available resources produced by a program
while interacting with the external environment. Another possible way to look at resource
transition systems is as an interactive semantics defined on top of the so-called storage model
[68]. We then define and study trace equivalence on resource transition systems. Our main
result states that trace equivalence is sound and complete for contextual equivalence. To the
best of the authors’ knowledge, this is the first full abstraction result for a linear λ-calculus
with arbitrary algebraic effects and explicit copying.
Outline This paper is structured as follows. After an informal introduction to program
equivalence for effectful linear languages (Section 2), Section 3 recalls some background
notions on monads and algebraic operations. Section 4 introduces our vehicle calculus and
its operational semantics. Resource-sensitive resource transition systems and their associated
notions of equivalence are given in Section 5. Due to space constraints, several details have
been omitted. The interested reader can find them in the extended version of the present
paper [20].

U. Dal Lago and F. Gavazzo 23:3

2 Effects, Linearity, and Program Equivalence

In this section, we give a gentle introduction to program equivalence in presence of linearity,
explicit copying, and effects. In this work, we are concerned with operationally-based
equivalences, example of those being contextual and CIU equivalences [51, 45], logical
relations [61, 56, 66] and, bisimulation-based equivalences [1, 40, 41, 62]. Moreover, among
operationally-based equivalences, we seek for lightweight ones, by which we mean equivalences
which are as easy to use as possible (otherwise, contextual equivalence would be enough).
Accordingly, we do not consider equivalences in the spirit of logical relations – which usually
require heavy techniques such as biorthogonality [54] and step-indexing [3] when applied
to calculi in which recursion is present, either at the level of types or at the level of terms.
Instead, we focus on first-order equivalences [44], viz. notions of trace equivalence and
bisimilarity.

Our running examples in this paper are the already mentioned distributivity of (lambda)
abstraction and bang over (fair) probabilistic choice in probabilistic call-by-value λ-calculi
[24, 18, 27]:

λx.(e ⊕ f) ≃ (λx.e) ⊕ (λx.f) (λ-dist)
!(e ⊕ f) ≃ !e ⊕ !f (!-dist)

It is well-known [16] that in call-by-value probabilistic languages, lambda abstraction does
not distribute over probabilistic choice. In a linear setting, however, we see that any resource-
sensitive notion of program equivalence ≃ should actually validate the equivalence (λ-dist)
but not (!-dist). Why? Let us look at the transition systems describing the (interactive)
behaviour (Figure 1) of the programs involved in (λ-dist), where we write JeK for the result of
the evaluation of an expression e. One way to understand the failure of the equivalence (λ-dist)

λx.(e ⊕ f)

eval
��

λx.(e ⊕ f)

@v

��
e[x := v] ⊕ f [x := v]

eval

��

0.5 0.5

Je[x := v]K Jf [x := v]K

(λx.e) ⊕ (λx.f)
eval

��

0.5 0.5

λx.e

@v
��

λx.f

@v
��

e[x := v]

eval
��

f [x := v]

eval
��

Je[x := v]K Jf [x := v]K

Figure 1 Interactive behaviour of λx.(e ⊕ f) and (λx.e) ⊕ (λx.f).

in classical (i.e. resource-agnostic) languages is that several notions of probabilistic program
equivalence (such as probabilistic contextual equivalence [24], applicative bisimilarity [16, 24],
and logical relations [13]) are sensitive to branching. However, sensitivity to branching does
not quite feel like the crux of the failure of distributivity of abstraction over choice in classical
languages. In fact, what we see is that λx.(e ⊕ f) waits for an input, and then resolves

FSCD 2021

23:4 Resource Transition Systems

the probabilistic choice. Dually, (λx.e) ⊕ (λx.f) first resolves the choice, and then waits
for an input. As a consequence, if we evaluate these programs, λx.(e ⊕ f) essentially does
nothing, whereas (λx.e) ⊕ (λx.f) probabilistically chooses if continuing with either λx.e or
λx.f . At this point, there is a crucial difference between the programs obtained: λx.(e ⊕ f)
still has to resolve the probabilistic choice. If we were allowed to use it twice by passing it
an argument v – this way resolving the choice twice – then we could observe a (probabilistic)
behaviour different from both the one of λx.e and of λx.f . Indeed, assuming f [x := v] to
diverge and e[x := v] to converge (with probability 1), then, we would converge (to e[x := v])
with probability 0.25, in the former case, and with probability 0.5, in the latter case. To
observe such a behaviour, however, it is crucial to copy λx.(e ⊕ f). Otherwise, we could only
interact with it by passing it an argument only once, this way validating (λ-dist).

Summing up, to invalidate (λ-dist) one has to be able to copy the results of the evaluation
of the programs involved. This observation suggests that the deep reason why (λ-dist)
fails relies on the copying capabilities of the calculus [63]. If the calculus at hand is linear
(and thus offers no copying capability), we should then expect (λ-dist) to hold, while
!λx.(e ⊕ f) ≃ !(λx.e) ⊕ !(λx.f) (and thus ultimately (!-dist)) to fail. This agrees with a
recent result by Deng and Zhang [27, 26], who observed that if a calculus does not have
copying capabilities, then contextual equivalence (which is a fortiori linear) validates (λ-dist).
More generally, Deng and Zhang showed that linear contextual equivalence, i.e. contextual
equivalence where contexts test their arguments linearly (viz. exactly once), coincides with
linear trace equivalence in probabilistic languages.

But what about (!-dist)? Unfortunately, linear trace equivalence has been designed for
linear languages without copying, only. Moreover, straightforward extensions of linear trace
equivalence to languages with copying would actually validate (!-dist), trace equivalence
being insensitive to branching. The situation does not change much if one looks at different
forms of equivalence, such as Bierman’s applicative bisimilarity [10]. Such equivalences
usually invalidate (!-dist), but they all invalidate (λ-dist), too. We interpret all of this as a
symptom of the lack of intensional structure in the aforementioned notions of equivalence.
Ultimately, this can be traced back to the very operational semantics of the calculus, which
is meant to be an abstract description of the input-output behaviour of programs, but gives
no insight into their intensional structure, i.e. linearity and copying in our case [68].

We propose to overcome this deficiency by giving calculi a resource-sensitive operational
semantics on top of which notions of program equivalence accounting for both intensional
and extensional aspects of programs can be naturally defined. We do so by shifting from
program-based transition systems to transition systems whose states are tuples (Γ; ∆), where
Γ is a sequence of non-linear (hence copyable) programs and ∆ is a sequence of linear values,
as states. Accordingly, fixed a tuple (Γ; ∆) and a program e, we evaluate e, say obtaining a
value v, and add v to the linear environment ∆, this way describing the extensional behaviour
of the program. There are two intensional actions we can make on tuples. If ∆ contains a
value of the form !e, then we can remove !e from ∆ and add e to Γ. Dually, once we have a
program e in Γ, we can decide to evaluate it – and thus to possibly produce a new linear
value – without removing it from Γ, this way reflecting its non-linear nature. Finally, we can
interact with a value λx.f by passing it an argument built using programs in Γ and values in
∆. As the latter are linear, we will then remove them from ∆.

We conclude this section by remarking that although here we have focused on probabil-
istic languages, a similar analysis can be made for languages exhibiting different kinds of
effects, such as input-output behaviours as well as combinations of effects (e.g. probabilistic
nondeterminism and global stores).

U. Dal Lago and F. Gavazzo 23:5

3 Preliminaries: Monads and Algebraic Effects

Starting with the seminal work by Moggi [49, 50], monads have become a standard formalism
to model and study computational effects in higher-order sequential languages. Instead of
working with monads, we opt for the equivalent notion of a Kleisli triple [43]. Additionally,
instead of defining monads on arbitrary categories, we tacitly restrict our analysis to the
category of sets and functions.

▶ Definition 1. A Kleisli triple is triple (T, η, >>=) consisting of a map associating to any set
X a set T (X), a set-indexed family of functions ηX : X → T (X), and a map >>=, called bind,
associating to each function f : X → T (Y) a function >>=f : T (X) → T (Y). Additionally,
these data must obey the following laws, for f and g functions with appropriate (co)domains:

>>=η = id; >>=f ◦ η = f ; >>=g ◦ >>=f = >>=(>>=g ◦ f).

Following standard practice, we write m >>= f for >>=f(m).

The computational interpretation behind Kleisli triples is the following: if A is a set
(or type) of values, then T (A) represent the set of computations returning values in A.
Accordingly, for each set A there is a function ηA : A → T (A) that regards a value a ∈ A

as a trivial computation returning a (and producing no effect). The map η corresponds to
the programming constructor return. Similarly, µ >>= f is the sequential composition of a
computation µ ∈ T (A) with a function f : A → T (B), and corresponds to the sequencing
constructor let x = − in −. Following this interpretation, we can read the identities in
Definition 1 as stipulating that η indeed produces no effect, and that sequencing is associative.

Monads alone are not enough to produce actual effectful computations, as they only
provide primitives to produce trivial effects (via the map η) and to (sequentially) compose
them (via binding). For this reason, we endow monads T with (finitary) operations, i.e. with
set-indexed families of functions opX : T (X)n → T (X), where n ∈ N is the arity of the
operation op.

▶ Example 2. Here are examples of monads modeling some of the computational effects
discussed in Section 1. Further examples, such as global stores and exceptions can be found
in, e.g., [49, 70].
1. We model possibly divergent computations using the maybe monad M(X) ≜ X + {↑}.

An element in M(A) is either an element a ∈ A (meaning that we have a terminating
computation returning a), or the element ↑ (meaning that the computation diverges).
Given a ∈ A, the map ηA simply (left) injects a in M(A), whereas >>=f sends a terminating
computation returning a to f(a), and divergence to divergence:

inr (a) >>= f ≜ f(a); inr (↑) >>= f ≜ inr (↑).

As non-termination is an intrinsic feature of complete programming languages, we do not
consider explicit operations to produce divergence.

2. We model probabilistic computations using the (discrete) subdistribution monad D.
Recall that a discrete subdistribution over a countable set X is a function µ : X → [0, 1]
such that

∑
x µ(x) ≤ 1. An element element µ ∈ D(A) gives for any a ∈ A the probability

µ(a) of returning a. Notice that working with subdistribution we can easily model
divergent computations [25]. Given a ∈ A, ηA(a) is the Dirac distribution on a (mapping
a to 1 and all other elements to 0), whereas for µ ∈ D(A) and f : A → D(B) we define
(µ >>= f)(b) ≜

∑
a µ(a) · f(a)(b). Finally, we generate probabilistic computations using a

binary fair probabilistic choice operation ⊕ thus defined: (µ⊕ν)(x) ≜ 0.5 ·µ(x)+0.5 ·ν(x).

FSCD 2021

23:6 Resource Transition Systems

3. We model computations with output using the output monad O(X) ≜ O∞ × (X + {↑}),
where O∞ is the set of finite and infinite strings over a fixed output alphabet O and ↑ is
a special symbol denoting divergence. An element of O(A) is either a pair (o, inl a), with
a ∈ A, or a pair (o, inr ↑). The former case denotes convergence to a outputting o (in
which case o is a finite string), whereas the former denotes divergence outputting o (in
which case o can be either finite or infinite). Given a ∈ A, the pair (ε, inr a) represents
the trivial computation that returns a and outputs nothing (ε denotes the empty string).
Further, sequential composition of computations is defined using string concatenation as
follows, where f(a) = (o′, x):

(o, inr ↑) >>= f ≜ (o, inr ↑); (o, inl a) >>= f ≜ (oo′, x).

Finally, we produce outputs using (a O-indexed family of) unary operations printc

mapping (o, x) to (co, x).
4. We model computations with input using the input monad I(X) = µα.(X + {↑}) + αI ,

where I is an input alphabet (for simplicity, we take I = {true, false}). An element in
I(A) is a binary tree whose leaves are labeled either by elements in A or by the divergent
symbol ↑. The trivial computation returning a is the single leaf labeled by a, whereas
given a tree t ∈ I(A) and a map f : A → I(B), the tree t >>= f is defined by replacing
the leaves of t labeled by elements a ∈ A with f(a). Finally, we consider a binary input
operation whereby read(ttrue, tfalse) is the tree whose left child is ttrue and whose right
child is tfalse.

We restrict our analysis to monads T preserving weak pullbacks, and thus preserving
injections. As a consequence, if i : A ↪→ X is the subset inclusion map, then T (i) : T (A) ↪→
T (X) is an injection, which can be regarded as monadic inclusion. Intuitively, given an
element µ ∈ T (X), we think about the smallest set i : A ↪→ X such that µ ∈ T (A) as the
support of µ, and denote such a set as supp(µ). Of course, in general the support of an
element µ may not exist and therefore we restrict our analysis to monads coming with a
notion of countable support.

▶ Definition 3. We say that a monad is countable if for any set X and any element
µ ∈ T (X), there exists the smallest countable set i : Y ↪→ X, denoted by supp(µ), such that
µ ∈ T (Y) (i.e. there exists ν ∈ T (Y) such that µ = T (i)(ν)).

All monads in Example 2 are countable (for instance, the subdistribution monad D is
countable by definition). An example of a non-countable monad is the powerset monad P.
Nonetheless, since we will apply monads to countable sets only (viz. sets of λ-terms and
variations thereof), we can regard P to be countable by taking its countable restriction.

3.1 Algebraic Effects
Following Example 2, let us consider a probabilistic program e ≜ E[e1 ⊕ e2], where E is
an evaluation context. The operational behaviour of e is to fairly choose ei ∈ {e1, e2}, and
then execute E[ei]. That is, E[e1 ⊕ e2] evaluates to E[e1] (resp. E[e2]) with probability 0.5.
But that is exactly the behaviour of E[e1] ⊕ E[e2], so that we have the program equivalence
E[e1 ⊕ e2] ≡ E[e1] ⊕ E[e2]. It does not take much to realize that a similar equivalence holds
for all operations in Example 2. Semantically, operations justifying these equivalences are
known as algebraic operations [58, 59].

U. Dal Lago and F. Gavazzo 23:7

▶ Definition 4. An n-ary (set-indexed family of) operation(s) opX : T (X)n → T (X) is an
algebraic operation on T , if for all X, Y , f : X → T (Y), and µ1, . . . , µn ∈ T (X), we have:

(opX(µ1, . . . , µn)) >>= f = opY (µ1 >>= f, . . . , µn >>= f).

Using algebraic operations we can model a large class of effects, including those of
Example 2, pure nondeterminism (using the powerset monad and set-theoretic union as
binary nondeterminism choice), imperative computations (using the global states monad and
operations for reading and updating stores), as well as combinations thereof [35].

3.2 Continuity
Another feature shared by all monads in Example 2 is that they all endow sets T (X) with an
ω-complete pointed partial order (ω-cppo, for short) structure making >>= strict, monotone,
and continuous in both arguments, and algebraic operations monotone and continuous in all
arguments. This property has been formalized in [21] as Σ-continuity.

▶ Definition 5. Let T be a monad and Σ be a set of algebraic operations on T . We say that
T is Σ-continuous if for any set X, T (X) carries an ω-cppo structure such that >>= is strict,
monotone, and continuous in both arguments, and (algebraic) operations in Σ are monotone
and continuous in all arguments.

▶ Example 6.
1. The maybe monad is ∅-continuous, with M(X) endowed with the flat order.
2. The subdistribution monad is {⊕}-continuous, with subdistributions ordered pointwise

(i.e. µ ≤ ν if and only if µ(x) ≤ ν(x), for any x ∈ X).
3. Let Σ ≜ {printc | c ∈ O}. Then, the output monad is Σ-continuous, with O(A)

endowed with the order: (o, x) ⊑ (o′, x′) if and only if either x = inr ↑ and o ⊑ o′ or
x = inl a = x′ and o = o′.

4. The input monad is {read}-continuous with respect to the standard tree ordering.

4 A Linear Calculus with Algebraic Effects

In this section, we introduce a core linear call-by-value calculus with algebraic operations and
explicit copying and its resource-agnostic operational semantics. The syntax of the calculus
is parametric with respect to a signature Σ of operation symbols (notation op ∈ Σ), whereas
its dynamics relies on a Σ-continuous monad T , which we assume to be fixed.

4.1 Syntax
Our vehicle calculus is a linear refinement of fine-grain call-by-value [42], which we call Λ!.
The syntax of Λ! is given by two syntactic classes, values (notation v, w, . . .) and computations
(notation e, f, . . .), which are thus defined:

v ::= x | λx.e | !e

e ::= a | val v | vv | let x = e in e | op(e, . . . , e) | let !a = v in e.

The letter x denotes a linear variable, and thus acts as a placeholder for a value which has
to be used exactly once. Dually, the letter a denotes a non-linear variable, and thus acts as
a placeholder for a computation which can be used ad libitum.

FSCD 2021

23:8 Resource Transition Systems

Following the fine-grain discipline, we require computations to be explicitly sequenced
by means of the let x = − in − constructor. The latter comes in two flavors: in the first
case, we deal with expressions of the form let x = e in f , where x is a linear variable in f

(and thus used once). The intuitive semantics of such an expression is to evaluate e, and
then bind the result of the evaluation to x in f . As x is linear in f , the result of e cannot be
copied. In the second case, we deal with expressions of the form let !a = v in f , where a is
a non-linear variable in f (and thus it can be used as will). As we are going to see, for such
an expression to be meaningful, we need v to be a banged computation !e. The intuitive
semantics of such an expression is thus to “unbang” !e, and then bind e to a in f , this way
enabling f to copy e at will.

When the distinction between values and computations is not relevant, we generically
refer to terms, and denote them as t, s, We adopt standard syntactic conventions as
in [5]. In particular, we work with terms modulo renaming of bound variables, and denote
by t[x := v] (resp. t[a := e]) the result of capture-avoiding substitution of the value v (resp.
computation e) for the variable x (resp. a) in t.

4.2 Statics

The syntax of Λ! allows one to write undesired programs, such as programs having runtime
errors (e.g. (!e)v) and programs that should be forbidden by any reasonable type system
(such as (val !e) ⊕ (val λx.f)). To overcome this problem, we follow [18] and endow Λ! with
a simply-typed system with recursive types, using the system in, e.g., [6]. Types are defined
by the following grammar:

σ ::= x | !σ | σ ⊸ σ | µx.σ ⊸ σ | µx.!σ

where x is a type variable. Types are defined up to equality, as defined in Figure 2, where
σ[τ/x] denotes the substitution of τ for all the (free) occurrences of x in σ. In the third rule
in Figure 2, we require ρ to be productive in x, meaning that each free occurrence of x in ρ

is under the scope of either ⊸ or !.

µx.σ ⊸ τ = σ[µx.σ ⊸ τ/x] ⊸ τ [µx.σ ⊸ τ/x] µx.!σ =!σ[µx.!σ/x]
σ = ρ[σ/x] τ = ρ[τ/x]

σ = τ

Figure 2 Type Equality.

In order to define the collection of well-typed expressions, we consider sequents Σ | Ω ⊢v

v : σ and Σ | Ω ⊢Λ e : σ, where Ω is a linear environment, i.e. a set without repetitions of the
form x1 : σ1, . . . , xn : σn, and Σ is a non-linear environment, i.e. a set without repetitions of
the form a1 : τ1, . . . , an : τn. Rules for derivable sequents are given in Figure 3. We write Vσ

and Λσ for the collection of closed values and computations of type σ, respectively. We write
V and Λ when types are not relevant.

▶ Remark 7 (Notational Convention). In order to facilitate the communication of the main
ideas behind this work and to lighten the (quite heavy) notation we will employ in the next
sections, we avoid to mention types (and ignore them in the notation) whenever possible.
Nonetheless, the reader should keep in mind that from now on we work with typable terms
only. We refer to such an assumption as the type assumption.

U. Dal Lago and F. Gavazzo 23:9

Σ | x : σ ⊢v x : σ a : σ, Σ | ∅ ⊢Λ a : σ

Σ | x : σ, Ω ⊢Λ e : τ

Σ | Ω ⊢v λx.e : σ ⊸ τ

Σ | Ω ⊢v v : σ

Σ | Ω ⊢Λ val v : σ

Σ | Ω ⊢v v : σ ⊸ τ Σ | Ω′ ⊢v w : σ

Σ | Ω, Ω′ ⊢Λ vw : τ

Σ | ∅ ⊢Λ e : σ

Σ | ∅ ⊢v !e : !σ
Σ | Ω ⊢v v : !σ Σ, a : σ | Ω′ ⊢Λ e : τ

Σ | Ω, Ω′ ⊢Λ let !a = v in e : τ

Σ | Ω ⊢Λ e : σ Σ | Ω′, x : σ ⊢Λ f : τ

Σ | Ω, Ω′ ⊢Λ let x = e in f : τ

Σ | Ω ⊢Λ e1 : σ . . . Σ | Ω ⊢Λ en : σ

Σ | Ω ⊢Λ op(e1, . . . , en) : σ

Figure 3 Statics of Λ!.

4.3 Dynamics
The dynamic semantics of Λ! associates to any closed computation e of type σ a monadic
element in T (Vσ). The dynamics of Λ! is defined in Figure 4 by means of an N-indexed family of
evaluation functions mapping a closed computation e ∈ Λσ to an element JeKΛ

k ∈ T (Vσ), where
we stipulate JeKΛ

0 ≜ ⊥. Since (JeKΛ
k)k≥0 forms an ω-chain in T (V), we define JeKΛ ≜

⊔
k≥0JeK

Λ
k.

Notice that thanks to the type assumption, we ignore programs causing runtime errors.
Finally, we lift J−KΛ to monadic computations, i.e. to elements ξ ∈ T (Λ) by setting
JξKΛ∗

≜ ξ >>= (e → JeKΛ) (and similarity for J−KΛ
k).

Jval vKΛ
k+1 ≜ η(v)

J(λx.e)vKΛ
k+1 ≜ Je[x := v]KΛ

k

Jlet x = e in fKΛ
k+1 ≜ JeKΛ

k >>= (v → Jf [x := v]KΛ
k)

Jlet !a = !e in fKΛ
k+1 ≜ Jf [a := e]KΛ

k

Jop(e1, . . . , en)KΛ
k+1 ≜ JopK(Je1KΛ

k, . . . , JenKΛ
k)

Figure 4 Operational Semantics of Λ!.

4.4 Observational Equivalence
In order to compare Λ!-terms, we introduce the notion of contextual equivalence [51]. To do
so, we follow [67, 22] and postulate that once an observer executes a program, she can only
observe the effects produced by the evaluation of the program. For instance, in a pure (resp.
probabilistic) calculus one observes pure (resp. the probability of) convergence. Following
this postulate, we define an observation function obsΛ∗ : T (V) → T (1) as T (!V), where
1 = {∗} is the one-element set and !V : V → 1 is the terminal arrow. As a consequence, we
see that obsΛ∗ is strict and continuous, so that we have, e.g., obsΛ∗(

⊔
k ξk) =

⊔
k obsΛ∗(ξk).

▶ Example 8. Notice that T (1) indeed describes the observations one usually works with
in concrete calculi. For instance, D(1) ∼= [0, 1], so that obsΛ∗(JeK) gives the probability of
convergence of e, and M(1) ∼= {⊥, ⊤}, so that obsΛ∗(JeK) = ⊤ if and only if e converges.

In order to define contextual equivalence, we need to introduce the notion of a Λ!-context.
The latter is simply a Λ!-term with a single linear hole [−] acting as a placeholder for a
computation (we regard a value v as the computation val v). We do not give an explicit
definition of contexts, the latter being standard.

FSCD 2021

23:10 Resource Transition Systems

▶ Definition 9. Define contextual equivalence ≡ctx as follows:

v ≡ctx w ⇐⇒ val v ≡ctx val w e ≡ctx f ⇐⇒ ∀C. obsΛ∗ JC[e]K = obsΛ∗ JC[f]K.

The universal quantification over contexts guarantees ≡ctx to be a congruence relation.
However, it also makes ≡ctx difficult to be used in practice. We overcome this deficiency by
characterising contextual equivalence as a suitable notion of trace equivalence.

5 Resource-Sensitive Semantics and Program Equivalence

The operational semantics of Section 4.3 is resource-agnostic, meaning that linearity de facto
plays no role in the definition of the dynamics of a program. To overcome this deficiency, we
endow Λ! with a resource-sensitive operational semantics: we give the latter by means of a
suitable transition systems, which we dub resource transition systems. Resource transition
systems (RTSs, for short) provide an operational semantics for Λ!-programs accounting for
both their intensional and extensional behaviour. Those are defined as first-order transition
systems in the spirit of [44], and generalise the Markov chains of [18].

5.1 Auxiliary Notions
In order to properly handle resources, it is useful to introduce some notation on sequences.
Let S, S′ be sequences over objects s1, s2, Unless ambiguous, we denote the concatenation
of S and S′ as S, S′. Moreover, for S = s1, . . . , sk we denote by |S| = k the length of
S, and write S[s]i, with i ∈ {1, . . . , k + 1}, for the sequence obtained by inserting s in S

at position i, i.e. the sequence s1, . . . , si−1, s, si, . . . , sk of length k + 1. Given a sequence
S = s1, . . . , sk, we will form new sequences out of it by taking elements in S at given
positions. If c̄ = c1, . . . , cn is a sequence with elements in {1, . . . , k} without repetitions,
then we write Sc̄ for the sequence sc1 , . . . , scn

, and S ⊖ c̄ for the sequence obtained from S

by removing elements in positions c1, . . . , cn. In order to preserve the order of S, we often
consider sequences c̄ = (c1 < · · · < cn) with ci ∈ {1, . . . , k}. We call such sequences valid for
S (although we should say valid for |S|).

System K

The resource-sensitive operational semantics of Λ! is given by the RTS K. Following [44],
K-states are defined as configurations (Γ; Θ), i.e. pairs of sequences of terms, where Γ is a
(finite) sequence of (closed) computations and Θ is a (finite) sequence of (closed) terms in
which only the last one need not be a value. To facilitate our analysis, we write (Γ; ∆; e)
if Θ = ∆, e, with ∆ finite sequence of closed values and e ∈ Λ. Otherwise, we write (Γ; ∆),
with ∆ as above.

In a configuration (Γ; ∆; e) (and similarly in (Γ; ∆)), Γ represents the non-linear resources
available, which are (closed) computations: the environment can freely duplicate and evaluate
them, as well as use them ad libitum to build arguments to be passed as input to other
programs. Once a resource in Γ has been used, it remains in Γ, this way reflecting its
non-linear nature. Dually, ∆ represents the linear resources available, which are closed values.
Values in ∆ being closed, they are either abstractions or banged computations. In the latter
case, the environment can take a value !e, unbang it, and put e in Γ. In the former case, the
environment can pass to a value λx.f an input argument made out of a context C (provided
by the very environment) using values and computations in Γ, ∆. Since resources in ∆ are
linear, once they are used by C, they must be removed from ∆. Finally, the program e is
the tested program. The environment can only evaluate it, possibly producing effects and
values (linear resources). Once a linear resource v has been produced, it is put in ∆.

U. Dal Lago and F. Gavazzo 23:11

The calculus Λ! being typed, it is convenient to extend the notion of a type to con-
figurations by defining a configuration type (notation α, β, . . .) as a pair of sequences
(σ1, . . . , σn; τ1, . . . , τm) of ordinary types. We say that a configuration K = (Γ; Θ) has
type α = (σ1, . . . , σn; τ1, . . . , τm) (and write ⊢ K : α) if each computation ei at position i in
Γ has type σi, and each term ti at position i in Θ has type τi.

Notice that configuration types almost completely describe the structure of configurations.
However, they do not allow one to see whether the last argument in the second component
Θ of a configuration (Γ; Θ) is a value (so that the type will be inhabitated by configurations
of the form (Γ; ∆)) or a computation (so that the type will be inhabitated by configurations
of the form (Γ; ∆; e)). To avoid this issue, we add a special label to the last type τm of the
second component of a configuration type, this way specifying whether τm refers to a value
or to a computation.

We denote by Cα the collection of configurations of type α. Notice that if K, L ∈ Cα,
then they have the same structure. In particular, terms in K and L at the same position
have the same type and belong to the same syntactic class. As usual, following the type
assumption, we will omit configuration types whenever possible.

States of K are thus (typable) configurations, whereas its dynamics is based on three
kind of actions: evaluation, duplication, and resource-based application, which are extensional,
intensional, and mixed extensional-intensional actions, respectively. Formally, we consider
transitions from (typable) configurations, i.e. elements in

⋃
α Cα to monadic configurations

in
⋃

α T (Cα), i.e. monadic configurations κ such that all configurations in the support of
κ have the same type. This ensures that all configurations in supp(κ) can make the same
actions. As usual, such a property follows by typing, hence by the type assumption. We now
spell out the main ideas behind the dynamics of K.

Given a configuration (Γ; ∆; e), the environment simply evaluates e. That is, we have the
transition:

(Γ; ∆; e) eval−−→ JeK >>= (v → η(Γ; ∆, v)).

Given a configuration of the form (Γ; ∆[!e]l), the environment adds e to the non-linear
environment, and removes !e from the linear one. We thus have the transition:

(Γ; ∆[!e]l)
?l−−→ η(Γ, e; ∆).

In a configuration of the form (Γ[e]l; ∆), the environment has the non-linear resource e at
its disposal, which can be duplicated (and eventually evaluated via an eval action). We
model such a behaviour as the following transition (notice that e is not removed from
Γ[e]l):

(Γ[e]l; ∆) !l−−→ η(Γ[e]l; ∆; e).

For the last action, namely resource-based application, we consider open terms as playing
the role of contexts. An open term is simply a term Σ | Ω ⊢ t. We refer to an open
term a1, . . . , an | x1, . . . , xm ⊢ t as a (n, m)-(value/computation) context, depending on
whether t is a value or a computation. Given sequences Γ = e1, . . . , en, ∆ = v1, . . . , vm,
we write t[Γ, ∆] for the substitution of variables in t with the corresponding elements in
Γ, ∆. As usual, following the type-assumption we assume types of variables to match types
of the substituted terms. Given sequences ı̄, ȷ̄ of length n, m valid for Γ, ∆, respectively,

FSCD 2021

23:12 Resource Transition Systems

we can build a new (closed) term out of Γ, ∆ and a (n, m)-context t as t[Γı̄, ∆ȷ̄]. Since
resources in ∆ are linear, the construction of t[Γı̄, ∆ȷ̄] affects ∆, this way leaving only
resources ∆ ⊖ ȷ̄ available. We formalise this behaviour as the transition:

t (n, m)-value context |̄ı| = n, |ȷ̄| = m ı̄, ȷ̄ valid for Γ, ∆

(Γ; ∆[λx.f]l)
(ı̄,ȷ̄,l,t)−−−−→ η(Γ; ∆ ⊖ ȷ̄; f [x := t[Γı̄, ∆ȷ̄]])

▶ Definition 10. System K is the (resource) transition system having typable configurations
as states, actions

{eval, ?l, !l, , (̄ı, ȷ̄, l, t), α | l ∈ N, t (n, m)-value context, |̄ı| = n, |ȷ̄| = m}

where α ranges over configuration types, and dynamics defined by the transition rules in
Figure 5, where we employ the notation of previous discussion.

(Γ; ∆; e) eval−−→ JeK >>= v → η(Γ; ∆, v) (Γ; ∆[!e]l)
?l−−→ η(Γ, e; ∆).

(Γ[e]l; ∆) !l−−→ η(Γ[e]l; ∆; e) (Γ; ∆[λx.f]l)
(ı̄,ȷ̄,l,t)−−−−→ η(Γ; ∆ ⊖ ȷ̄; f [x := t[Γı̄, ∆ȷ̄]])

Figure 5 Transition rules for K.

▶ Remark 11. Notice that given K ∈ Cα, K can always make a α-transition, this way making
its type visible. Additionally, we see that the transition structure of K is type-driven. That
is, given a configuration K ∈ Cα and a K-action ℓ, α and ℓ alone determine whether K

can make an ℓ-transition. Moreover, if that is the case, then there is a unique κ such that
K

ℓ−−→ κ. Besides, κ ∈ T (Cβ) for some configuration type β which is uniquely determined by
ℓ and α. That is, there is a partial function b from configuration types and actions such that
if b(α, ℓ) is defined and K ∈ Cα, then K

ℓ−−→ κ with κ ∈ T (Cb(α,ℓ)). From now on, we write
b(α, ℓ) = β to mean that b(α, ℓ) is defined and equal β. As a consequence, we have the rule:

K ∈ Cα ∧ b(α, ℓ) = β =⇒ ∃!κ ∈ T (Cβ). K
ℓ−−→ κ.

Having defined system K, there are at least two natural ways to compare its states.
The first one is by means of bisimilarity, which can be defined in a standard way [21].
Unfortunately, bisimilarity being sensitive to branching, it is bound not to work well for our
purposes, as already extensively discussed. The second natural way to compare K-states is
by means of trace equivalence which, contrary to bisimilarity, is not sensitive to branching,
and thus qualifies as a suitable candidate program equivalence for our purposes.

▶ Definition 12. A K-trace (just trace) is a finite sequence of K-actions. That is, a trace
t is either the empty sequence (denoted by ε), or a sequence of the form ℓ · u, where ℓ is a
K-action and u a trace.

We are interested in observing the behaviour of K-states on those traces that are coherent
with their type. Therefore, given a K-state K, we define the set Tr(K) of its traces by
stipulating that ε ∈ Tr(K), for any K, and that ℓ · u ∈ Tr(K) whenever K

ℓ−−→ κ, for some
monadic configuration κ, and u ∈ Tr(L), for any L ∈ supp(κ). Notice that the latter clause
is meaningful, since Tr(K) is actually determined by the type of K (rather than by K itself),
and if K

ℓ−−→ κ, then all configurations in the support of κ have the same type.

U. Dal Lago and F. Gavazzo 23:13

Now, given a K-state K, and a trace t ∈ Tr(K), the observable behaviour of K on t is
the element in T (1) computed using the map st thus defined:

st(K, ε) ≜ η(∗); st(K, ℓ · u) ≜ κ >>= (L → st(L, u)) where K
ℓ−−→ κ.

▶ Example 13. Let us consider the (sub)distribution monad D, and let K be a configuration.
Recall that D(1) ∼= [0, 1], and notice that st(K, ε) = 1. Suppose now K

eval−−→
∑

i∈n pi · Li.
Then, we see that st(K, eval · u) =

∑
i∈n pi · st(Li, u) ∈ [0, 1], meaning that st(K, t) gives

the probability that K passes the trace t.

▶ Definition 14. The relation ≃K
Tr on K-states is thus defined:

K ≃K
Tr L ⇐⇒ Tr(K) = Tr(L) ∧ ∀t ∈ Tr(K). st(K, t) = st(L, t)

We extend the action of ≃K
Tr to Λ!-terms by regarding a computation e as the configuration

(∅; ∅; e), and a value v as the computation val v. We denote the resulting notion ≃Λ
Tr.

Having added ≃K
Tr to our arsenal of operational techniques, it is time to investigate its

structural properties and its relationship with contextual equivalence. Before doing so,
however, we take a fresh look at our running example.

▶ Example 15. Let us use the machinery developed so far to review our introductory
examples. First, we show

val λx.(e ⊕ f) ≃Λ
Tr (val λx.e) ⊕ (val λx.f).

Let us call g the former program, and h the latter. To see that g ≃Λ
Tr h, we simply observe

that Tr(∅; ∅; g) = Tr(∅; ∅; h) and that for any t ∈ Tr(g), the probability that (∅; ∅; g) passes
t coincides with the one of (∅; ∅; h). All of this can be easily observed by inspecting the
following transition systems.

(∅; ∅; val λx.(e ⊕ f))

eval
��

(∅; λx.(e ⊕ f))

1,v

��
(∅; ∅; e[x := v] ⊕ f [x := v])

eval

��

0.5 0.5

(∅; ∅; Je[x := v]K) (∅; ∅; Jf [x := v]K)

(∅; ∅; (val λx.e) ⊕ (val λx.f))
eval

��

0.5 0.5

(∅; λx.e)

1,v

��

(∅; λx.f)

1,v

��
(∅; ∅; e[x := v])

eval
��

(∅; ∅; f [x := v])

eval
��

(∅; ∅; Je[x := v]K) (∅; ∅; Jf [x := v]K)

In light of Theorem 17, we can then conclude g ≡ctx h. Next, we prove that such an
equivalence is only linear: val !(e ⊕ f) ̸≡ctx (val !e) ⊕ (val !f). For that, it is sufficient to
instantiate e and f as the identity program val (λx.val x) and the purely divergent program
Ω, respectively, and to take the context C defined as let x = [−] in let !a = x in (a; a; val v),
where v is closed value, and e; f denotes trivial sequencing. Indeed, what C does is to
evaluate its input and then test the result thus obtained twice.

FSCD 2021

23:14 Resource Transition Systems

5.2 Full Abstraction of Trace Equivalence
In this section, we outline the proof of full abstraction of trace equivalence for contextual
equivalence. Our proof of full abstraction builds upon the technique given by Deng and
Zhang [27] and Crubillé and Dal Lago [18] to prove similar full abstraction results for trace
equivalences and metrics, respectively. Due to the large amount of technicalities, the full
proof of full abstraction of trace equivalence goes beyond the scope of this paper, so that
here we only outline its main points (see [20] for details). Let us begin by showing that trace
equivalence is sound for contextual equivalence.

▶ Proposition 16. ≃Λ
Tr ⊆ ≡ctx.

To prove Proposition 16, we have to show that if e ≃Λ
Tr f , then we have obsΛ∗JC[e]KΛ =

obsΛ∗JC[e]KΛ, for any context C. Our proof proceeds by progressively building systems with
increasingly more complex state spaces, but with finer dynamics. We summarise our strategy
in the following diagram.

Λ
C[−] //� _

��

Λ∗ obsΛ∗
// T1

K � � // K∗ C[−] // F � � // F∗

push

OO

obsF∗

99

Since ≃Λ
Tr is defined in terms of ≃K

Tr, we consider configurations – K-states – and contexts for
them, where a context for a K-state K is just a standard multiple-holes context whose holes
have to be filled with with terms in K. The first step of our strategy is the determinization
of K. This is achieved by lifting the state space of K from configurations to monadic
configurations. The dynamics of K is then lifted relying on the (strong) monad structure of T

in a standard way [22]. We call the resulting system K∗. The advantage of working with K∗

is that K∗-bisimilarity and K∗-trace equivalence coincide, K∗ being deterministic. In general,
most of the transition systems we rely on can be ultimately described as systems S = (X, δ)
made of a state space X and a dynamics δ : X → T (X)A, for some set A of actions. The
determinization of S, which we usually denote by S∗, has T (X) as state space and dynamics
δ∗ : T (X) → T (X)A defined as the strong Kleisli extension of δ (modulo (un)currying).

Having determinized K, we reach a situation where we have to study the computational
behaviour of a monadic configuration κ – i.e. a K∗-state – and a context C for the configura-
tions in the support of κ. To do so, we build a further system, called F , whose states are pairs
C : κ made of a monadic configuration κ and a context C for it. The dynamics of F is given
by an evaluation function which, when applied to a F-state C : κ, gives the same result of
evaluating the monadic computation C[κ] ∈ T (Λ), where C[κ] = κ >>= (K → η(C[K])). Such
a dynamics explicitly separates the computational steps acting on C only from those making
C and κ interact. This feature is crucial, as it shows that any interaction between C and κ

corresponds to a K∗-action, so that equivalent K∗-states will have the same F -dynamics when
paired with the same context. That gives us a finer analysis of the computational behaviour
of the compound monadic computation C[κ], and ultimately of a compound computation
C[e]. As we did for K, it is actually convenient to determinise F . We call the resulting
system F∗. Finally, from F∗ we can come back to T (Λ) using the map push : F∗ → T (Λ)
defined by push(ξ) ≜ ξ >>= (C : κ 7→ C[κ]). We summarize the systems introduced so far in
the following table.

System K K∗ F F∗

States Configurations K Monadic configurations κ Pairs C : κ Monadic pairs
Dynamics Definition 10 Kleisli lifting of K JC[κ]K∗ Kleisli lifting of F

U. Dal Lago and F. Gavazzo 23:15

What remains to be clarified is how relations between computations can be transformed
into relations on the aforementioned systems. The answer to this question is given by the
following lax1 commutative diagram:

Λ � � //

≃Λ
Tr
❴
��

K � � //

≃K
Tr
❴
��

K∗ C[−] //

≃K∗
Tr

❴
��

F � � //

C(≃K∗
Tr)❴

��

F∗ obsF∗
//

BC(≃K∗
Tr)❴

��

T1

=❴
��

Λ � � // K � � // K∗
C[−]

// F � � // F∗
obsF∗

// T1

Here, C(R) denotes the contextual closure of R, whereas B(R) is the Barr extension of R

[7, 38]. Finally, the map obsF∗ is obtained postcomposing the observation map obs with
push. Let us now move to full abstraction.

▶ Theorem 17. ≡ctx = ≃Λ
Tr.

To prove Theorem 17 it is sufficient to show ≡ctx ⊆ ≃Λ
Tr. The latter is proved by noticing

that any K-action can be encoded as a context. The encoding of K-actions as contexts is
essentially the same one of the one given by Crubillé and Dal Lago [18].

6 Conclusion and Future Work

In this paper, we have introduced resource transition systems as an operational account of
both intensional and extensional behaviours of linear effectful programs with explicit copying.
On top of resource transition systems, we have defined trace equivalence and showed that
the latter is fully abstract for contextual equivalence.

Although the present paper focuses on linearity (and effects), the authors believe that
resource transition systems can be extended to deal with finer notions of context dependence
such as structural coeffects [53, 29, 14, 52]. To do so, one should modify resource transition
systems by considering sequences of terms indexed by elements of a resource algebra (the
latter being a preordered semiring), and let transitions update resources. Thus, for instance,
from a sequence (Γ, ⟨e⟩r+1, ∆), meaning that e is available according to the resource r + 1,
we have a transition to (Γ, ⟨e⟩r, ∆; e). The authors also believe that resource transition
systems can be used to generalise Crubillé and Dal Lago probabilistic program metric to
arbitrary algebraic effects. To do so, one would simply replace ordinary relations with
relations taking values over quantales [30, 31]. In the same direction, it would be interesting
to study whether resource transition systems give fully abstract equivalences in presence
of continuous, rather than discrete, probability (applicative bisimilarity, for instance, has
been proved to be sound but not fully abstract on higher-order calculi with sampling from
continuous distributions [39]).

Finally, as a long term future work, the authors would like to study whether the ideas
presented in this paper can be adapted to deal with quantum languages [64, 65], where the
interaction between linearity and effects plays a central role. In fact, although we have not
discussed tensor product types (which play a crucial role in a quantum setting), it is not
hard to see that resource transition systems can be extended to deal with such types [17].

1 Each square gives a set-theoretic inclusion. For instance, the leftmost square states that ≃Λ
Tr ⊆ ≃K

Tr.

FSCD 2021

23:16 Resource Transition Systems

6.1 Related Work
This is not the first work on operationally-based notions of program equivalence for linear
calculi. In particular, notions of equivalences have been defined by means of logical relations
by Bierman, Pitts, and Russo [11], of applicative bisimilarity by Bierman [10] and Crole2 [15],
of trace equivalence by Deng and Zhang [27, 26], as well as of a number of possible worlds-
indexed equivalences (e.g. [2, 37]). As already remarked, one of the advantages of resource
transition systems (and their associated trace equivalence) compared, e.g., with logical
relations, is that they they provide a first-order account of program equality.

Among first-order notions of program equivalence, Bierman’s applicative bisimilarity plays
a prominent role. The latter is a lightweight extensional equivalence extending Abramsky’s
applicative bisimilarity [1] to a pure linear λ-calculus with explicit copying. Bierman’s
applicative bisimilarity can be readily extended to calculi with algebraic effects along the
lines of [21], this way obtaining a notion of equivalence invalidating (!-dist). However, such a
notion of bisimilarity stipulates that two programs !e and !f are bisimilar if and only if e

and f are, this way making bisimilarity insensitive to linearity, and thus invalidating (λ-dist)
as well.3

Deng and Zhang’s linear trace equivalence has been designed to study the interaction of
linearity and (both pure and probabilistic) nondeterminism. The latter equivalence, in fact,
validates (λ-dist). However, linear trace equivalence does not deal with (explicit) copying:
even worse, natural extensions of such notions to languages with copying result in equivalences
validating (!-dist). Crubillé and Dal Lago [18] solved that problem by introducing a tuple-
based applicative bisimilarity for a calculus with probabilistic nondeterminism and explicit
copying. Our notion of a resource transition system can be seen as a generalisation of the
Markov chain underlying tuple based applicative bisimilarity to arbitrary algebraic effects.

References
1 Samson Abramsky. The lazy lambda calculus. In D. Turner, editor, Research Topics in

Functional Programming, pages 65–117. Addison Wesley, 1990.
2 Amal Ahmed, Matthew Fluet, and Greg Morrisett. L3: A linear language with locations.

Fundam. Informaticae, 77(4):397–449, 2007.
3 Andrew W. Appel and Daddiv A. McAllester. An indexed model of recursive types for

foundational proof-carrying code. ACM Trans. Program. Lang. Syst., 23(5):657–683, 2001.
4 Robert Atkey. Syntax and semantics of quantitative type theory. In Proc. of LICS 2018, pages

56–65, 2018.
5 Hendrik P. Barendregt. The lambda calculus: its syntax and semantics. Studies in logic and

the foundations of mathematics. North-Holland, 1984.
6 Hendrik P. Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with Types.

Perspectives in logic. Cambridge University Press, 2013.
7 Michael Barr. Relational algebras. Lect. Notes Math., 137:39–55, 1970.
8 Nick Benton and Philip Wadler. Linear logic, monads and the lambda calculus. In Proc. of

LICS 1996, pages 420–431, 1996.
9 Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and

Arnaud Spiwack. Linear haskell: practical linearity in a higher-order polymorphic language.
PACMPL, 2(POPL):5:1–5:29, 2018.

2 Crole’s applicative bisimilarity, however, does not deal with copying.
3 Besides, notice that bisimilarity being sensitive to branching, it naturally invalidates (λ-dist).

U. Dal Lago and F. Gavazzo 23:17

10 Gavin M. Bierman. Program equivalence in a linear functional language. J. Funct. Program.,
10(2):167–190, 2000.

11 Gavin M. Bierman, Andrew M. Pitts, and Claudio V. Russo. Operational properties of lily,
a polymorphic linear lambda calculus with recursion. Electr. Notes Theor. Comput. Sci.,
41(3):70–88, 2000.

12 Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Handle with care:
relational interpretation of algebraic effects and handlers. PACMPL, 2(POPL):8:1–8:30, 2018.

13 Ales Bizjak and Lars Birkedal. Step-indexed logical relations for probability. In Proc. of
FOSSACS 2015, pages 279–294, 2015.

14 Aloïs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. A core quantitative
coeffect calculus. In Proc. of ESOP 2014, pages 351–370, 2014.

15 Roy L. Crole. Completeness of bisimilarity for contextual equivalence in linear theories. Logic
Journal of the IGPL, 9(1):27–51, 2001.

16 Raphaëlle Crubillé and Ugo Dal Lago. On probabilistic applicative bisimulation and call-by-
value lambda-calculi. In Proc. of ESOP 2014, pages 209–228, 2014.

17 Raphaëlle Crubillé and Ugo Dal Lago. Metric reasoning about lambda-terms: The affine case.
In Proc. of LICS 2015, pages 633–644, 2015.

18 Raphaëlle Crubillé and Ugo Dal Lago. Metric reasoning about lambda-terms: The general
case. In Proc. of ESOP 2017, pages 341–367, 2017.

19 Ugo Dal Lago and Francesco Gavazzo. Effectful normal form bisimulation. In Proc. of ESOP
2019, pages 263–292, 2019.

20 Ugo Dal Lago and Francesco Gavazzo. Resource transition systems and full abstraction for
linear higher-order effectful programs (extended version), 2021. arXiv:2106.12849.

21 Ugo Dal Lago, Francesco Gavazzo, and Paul Blain Levy. Effectful applicative bisimilarity:
Monads, relators, and howe’s method. In Proc. of LICS 2017, pages 1–12, 2017.

22 Ugo Dal Lago, Francesco Gavazzo, and Ryo Tanaka. Effectful applicative similarity for
call-by-name lambda calculi. Theor. Comput. Sci., 813:234–247, 2020.

23 Ugo Dal Lago and Martin Hofmann. Bounded linear logic, revisited. In Proc. of TLCA 2009,
pages 80–94, 2009.

24 Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. On coinductive equivalences for
higher-order probabilistic functional programs. In Proc. of POPL 2014, pages 297–308, 2014.

25 Ugo Dal Lago and Margherita Zorzi. Probabilistic operational semantics for the lambda
calculus. RAIRO - Theor. Inf. and Applic., 46(3):413–450, 2012.

26 Yuxin Deng and Yuan Feng. Bisimulations for probabilistic linear lambda calculi. In Proc. of
TASE 2017, pages 1–8, 2017.

27 Yuxin Deng and Yu Zhang. Program equivalence in linear contexts. Theor. Comput. Sci.,
585:71–90, 2015.

28 Jeff Egger, Rasmus Ejlers Møgelberg, and Alex Simpson. Linear-use CPS translations in the
enriched effect calculus. Logical Methods in Computer Science, 8(4), 2012.

29 Marco Gaboardi, Shin-ya Katsumata, Dominic A. Orchard, Flavien Breuvart, and Tarmo
Uustalu. Combining effects and coeffects via grading. In Proc. of ICFP 2016, pages 476–489,
2016.

30 Francesco Gavazzo. Quantitative behavioural reasoning for higher-order effectful programs:
Applicative distances. In Proc. of LICS 2018, pages 452–461, 2018.

31 Francesco Gavazzo. Coinductive Equivalences and Metrics for Higher-order Languages with
Algebraic Effects. PhD thesis, University of Bologna, Italy, 2019. URL: http://amsdottorato.
unibo.it/9075/.

32 Dan R. Ghica and Alex I. Smith. Bounded linear types in a resource semiring. In Proc. of
ESOP 2014, pages 331–350, 2014.

33 J-Y. Girard, A. Scedrov, and P.J. Scott. Bounded linear logic: A modular approach to
polynomial-time computability. Theor. Comput. Sci., 97:1–66, 1992.

34 Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

FSCD 2021

http://arxiv.org/abs/2106.12849
http://amsdottorato.unibo.it/9075/
http://amsdottorato.unibo.it/9075/

23:18 Resource Transition Systems

35 Martin Hyland, Gordon D. Plotkin, and John Power. Combining effects: Sum and tensor.
Theor. Comput. Sci., 357(1-3):70–99, 2006.

36 Patricia Johann, Alex Simpson, and Janis Voigtländer. A generic operational metatheory for
algebraic effects. In Proc. of LICS 2010, pages 209–218. IEEE Computer Society, 2010.

37 Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton. Integrating linear and
dependent types. In Proc. of POPL 2015, pages 17–30, 2015.

38 Alexander Kurz and Jiri Velebil. Relation lifting, a survey. J. Log. Algebr. Meth. Program.,
85(4):475–499, 2016.

39 Ugo Dal Lago and Francesco Gavazzo. On bisimilarity in lambda calculi with continuous
probabilistic choice. In Proc. of MFPS 2019, pages 121–141, 2019.

40 Søren B. Lassen. Bisimulation in untyped lambda calculus: Böhm trees and bisimulation up
to context. Electr. Notes Theor. Comput. Sci., 20:346–374, 1999.

41 Søren B. Lassen. Eager normal form bisimulation. In Proceedings of LICS 2005, pages 345–354,
2005.

42 Paul B. Levy, John Power, and Hayo Thielecke. Modelling environments in call-by-value
programming languages. Inf. Comput., 185(2):182–210, 2003.

43 Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag, 1971.
44 Jean-Marie Madiot, Damien Pous, and Davide Sangiorgi. Bisimulations up-to: Beyond

first-order transition systems. In Proc. of CONCUR 2014, pages 93–108, 2014.
45 Ian A. Mason and Carolyn L. Talcott. Equivalence in functional languages with effects. J.

Funct. Program., 1(3):287–327, 1991.
46 Cristina Matache and Sam Staton. A sound and complete logic for algebraic effects. In Proc.

of FOSSACS 2019, pages 382–399, 2019.
47 Nicholas D. Matsakis and Felix S. Klock II. The rust language. In Proceedings of the 2014

ACM SIGAda annual conference on High integrity language technology, HILT 2014, Portland,
Oregon, USA, October 18-21, 2014, pages 103–104, 2014.

48 Rasmus Ejlers Møgelberg and Sam Staton. Linear usage of state. Logical Methods in Computer
Science, 10(1), 2014.

49 Eugenio Moggi. Computational lambda-calculus and monads. In Proc. of LICS 1989, pages
14–23. IEEE Computer Society, 1989.

50 Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991.
51 J. Morris. Lambda Calculus Models of Programming Languages. PhD thesis, MIT, 1969.
52 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. Quantitative program

reasoning with graded modal types. Proc. ACM Program. Lang., 3(ICFP):110:1–110:30, 2019.
53 Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects: a calculus of context-

dependent computation. In Proc. of ICFP 2014, pages 123–135, 2014.
54 Andrew M. Pitts. Parametric polymorphism and operational equivalence. Mathematical

Structures in Computer Science, 10(3):321–359, 2000.
55 Marinus J. Plasmeijer. CLEAN: a programming environment based on term graph rewriting.

Electr. Notes Theor. Comput. Sci., 2:215–221, 1995.
56 Gordon Plotkin. Lambda-definability and logical relations. Technical Report SAI-RM-4,

School of A.I., University of Edinburgh, 1973.
57 Gordon D. Plotkin and John Power. Adequacy for algebraic effects. In Proc. of FOSSACS

2001, pages 1–24, 2001.
58 Gordon D. Plotkin and John Power. Semantics for algebraic operations. Electr. Notes Theor.

Comput. Sci., 45:332–345, 2001.
59 Gordon D. Plotkin and John Power. Notions of computation determine monads. In Proc. of

FOSSACS 2002, pages 342–356, 2002.
60 Gordon D. Plotkin and John Power. Algebraic operations and generic effects. Applied

Categorical Structures, 11(1):69–94, 2003.
61 John C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP Congress, pages

513–523, 1983.

U. Dal Lago and F. Gavazzo 23:19

62 Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. Environmental bisimulations for
higher-order languages. ACM Trans. Program. Lang. Syst., 33(1):5:1–5:69, 2011.

63 Davide Sangiorgi and Valeria Vignudelli. Environmental bisimulations for probabilistic higher-
order languages. In Proceedings of POPL 2016, pages 595–607, 2016.

64 Peter Selinger and Benoît Valiron. A lambda calculus for quantum computation with classical
control. Mathematical Structures in Computer Science, 16(3):527–552, 2006.

65 Peter Selinger and Benoît Valiron. A linear-non-linear model for a computational call-by-value
lambda calculus (extended abstract). In Proc. of FOSSACS 2008, pages 81–96, 2008.

66 Kurt Sieber. Reasoning about sequential functions via logical relations. In M. P. Fourman,
P. T. Johnstone, and A. M. Pitts, editors, Applications of Categories in Computer Science,
volume 177 of London Mathematical Society Lecture Note Series, pages 258–269. Cambridge
University Press, 1992.

67 Alex Simpson and Niels Voorneveld. Behavioural equivalence via modalities for algebraic
effects. In Proc. of ESOP 2018, pages 300–326, 2018.

68 David N. Turner and Philip Wadler. Operational interpretations of linear logic. Theor. Comput.
Sci., 227(1-2):231–248, 1999.

69 Philip Wadler. Linear types can change the world! In Programming concepts and methods,
1990, page 561, 1990.

70 Philip Wadler. Monads for functional programming. In Advanced Functional Programming,
First International Spring School on Advanced Functional Programming Techniques, Båstad,
Sweden, May 24-30, 1995, Tutorial Text, pages 24–52, 1995.

FSCD 2021

Z
Syntax-Free Developments

Vincent van Oostrom #

Universität Innsbruck, Austria

Abstract
We present the Z-property and instantiate it to various rewrite systems: associativity, positive braids,
self-distributivity, the lambda-calculus, lambda-calculi with explicit substitutions, orthogonal TRSs,
. . . . The Z-property is proven equivalent to Takahashi’s angle property by means of a syntax-free
notion of development. We show that several classical consequences of having developments such as
confluence, normalisation, and recurrence, can be regained in a syntax-free way, and investigate how
the notion corresponds to the classical syntactic notion of development in term rewriting.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases rewrite system, confluence, normalisation, recurrence

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.24

Acknowledgements Patrick Dehornoy introduced me to the main themes presented here, and indeed
this paper was always intended to be a joint one. His work continues to be an inspiration. I want to
thank Bertram Felgenhauer, Julian Nagele, and Christian Sternagel for discussions on their Isabelle
formalisations of the Z-property.

Dedicated to Patrick Dehornoy

1 Introduction

Confluence of rewrite systems is discussed in order-theoretic terms on the first page of [25]. It
expresses the existence of an upper bound1 for pairs of objects having a common lower bound,
in the quasi-order obtained by the reflexive–transitive closure of a rewrite system. Qualifying
confluence proof-methods from this order-theoretic perspective, Newman’s Lemma is seen
to construct the greatest upper bound (the normal form) and the Tait–Martin-Löf (TML)
method [4] the least upper bound [21, 38].2 The Z-property, depicted in Fig. 1 and formally
defined in the preliminaries, introduced here is based on constructing an upper bound for
sets of objects having a common single-step lower bound. The choice of upper bound is
arbitrary but should be monotonic; increasing the single-step lower-bound should increase
the constructed upper bound. In complexity, establishing some upper bound is often much
shorter and simpler than getting a tight upper bound. The choice offered by the Z-property
enables the same for proving confluence, as we illustrate in Sect. 3.

Skolemising the existence of upper bounds gives rise to a function •3 mapping each object
a to the chosen upper bound a• of objects b such that a → b, i.e. having a as single-step
lower bound. Accordingly, we define the many-step rewrite strategy •−→ to rewrite a into
a•. For instance, taking as upper bound of a term t the term t• obtained by a complete
development of the full set of redexes in t, •−→ is known as the Gross–Knuth/full substitution
strategy in the λ-calculus/term rewriting [4, 38]. Based on •, the classical notion of a

1 [25] employs the reverse order, so speaks of existence of lower bounds.
2 Newman leaves studing least upper bounds for later [25, p. 223] but we didn’t find later work by him

on this. TML in fact gives least upper bounds only up to permutation equivalence [21, 38].
3 We will speak of the bullet function with the suggestion •−→ is bullet-fast; cf. Sect. 4.1.

© Vincent van Oostrom;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 24; pp. 24:1–24:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Vincent.van-Oostrom@uibk.ac.at
https://orcid.org/0000-0002-4818-7383
https://doi.org/10.4230/LIPIcs.FSCD.2021.24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Z; Syntax-Free Developments

development [5, 4, 38] can be given a syntax-free definition as a ◦−→ b if a ↠ b ↠ a•; that
is, a develops to b if b is between a and a•; with our notations suggesting that ◦−→ is a
development that is not as full as •−→ is. In Sect. 4 we first show that if the Z-property
holds then several results (on confluence, normalisation, and recurrence) can be obtained
in a syntax-free way, i.e. in terms of •−→ and ◦−→. Next we investigate for term rewrite
systems in how far our syntax-free definition of developments corresponds or can be made to
correspond to the traditional syntactic definition, and show they correspond in the absence
of syntactic accidents.
▶ Remark 1. Thinking of reduction steps and reductions to normal form as small respectively
big step semantics, •−→ can be seen as a medium step semantics; although •−→-steps need not
directly yield a normal form, they are monotonic. This may be suitable in a setting where
for a step a→ b, the semantics of b should be greater than that of a, i.e. approximate better.

2 Preliminaries

We define our key notions for abstract rewriting with which we assume basic familiarity [38].

▶ Definition 2. A rewrite system is a system comprising a set of objects, a set of (rewrite)
steps, and functions src, tgt mapping a step to its source, target object. Two steps are called
co-initial if they have the same sources, co-final if they have the same targets, and composable
if the target of the former is the source of the latter. The corresponding pair of steps is then
called, respectively, a peak, a valley, and consecutive.

▶ Remark 3. We follow [25] in taking steps as first-class citizens of rewrite systems and speak
of a rewrite relation (only) if there is at most one step between any two objects.
We use arrow-like notations to denote rewrite systems and their steps, let a, b, . . . range over
objects, and ϕ, ψ, . . . over steps. Sources and targets naturally extend to peaks, valleys, and
consecutive steps; e.g., the source of a peak is the common source of its steps and its target
is its pair of targets.

a

a•

a

a•

b

b•

Figure 1 Diamond, angle, and Z-property for bullet function •; named after the diagram shapes.

▶ Definition 4. A rewrite system → has the (see Fig. 1):
diamond property if for every peak there is a composable valley;
angle property if there is map • such that b→ a• for every a and step a→ b; and
Z property if there is a map • such that b↠ a• ↠ b• for every a and step a→ b.

where ↠ denotes reduction, finite (possibly empty) composition of steps. A map • is extensive
if a↠ a• for all a, and induces a rewrite system •−→ having the same objects as → and steps
a •−→ a• for all a not in →-normal form.

▶ Remark 5. The diamond and angle properties are relatively standard in rewriting, see
e.g. [38, Def. 1.1.8]; our angle property is the Skolemisation of the triangle property there.
We obtained the Z-property in 2007 by abstracting Dehornoy’s proof-method for showing
confluence of self-distributivity [6] with preliminary results distributed and presented at

V. van Oostrom 24:3

diverse venues, e.g. [7, 31]. It has been introduced both before, for the λ-calculus, in [18,
Ex. 4.1] and after in [16]. In the meantime it has been formalised [9] and applied, e.g. [23, 11].

Two angles make a diamond, but the angle property is stronger than the diamond property.
If the Z-property holds • is monotonic on reductions: if a↠ b then a• ↠ b• (by induction).

▶ Example 6. Less-than < on Z has the diamond but not the angle property for lack of
upper bounds of infinite sets of numbers. Note that the predecessor relation on Z does have
the angle property, despite inducing the same quasi-order as <.

The following simple but key result was the starting point of our investigations on the
Z-property. It hinges on a syntax-free definition of the classical notion of development [4, 38].

▶ Definition 7. For rewrite system → and map • on its objects, the •-development rewrite
system ◦−→ has the objects of → and a step a ◦−→ b for each pair of →-reductions a↠ b↠ a•.

One may think of b as being between a and a• and of ◦−→ as comprising prefixes or left-divisors
of •−→ w.r.t. composition (for sources not in normal form).

▶ Lemma 8. Let → be a rewrite system.
→ has the Z-property iff some →′ such that → ⊆→′ ⊆↠ has the angle property;4

if → has the Z-property for •, then it has the Z-property for some extensive ⋆; and
→ has the Z-property for an extensive • iff some rewrite system→′ such that→ ⊆→′ ⊆↠
has the angle property and a→′ a• for all a.

Proof. We only provide a detailed proof of the first, main, item.
we show both directions taking the same bullet function •.
For the if-direction, assume →′ has the angle property, → ⊆→′ ⊆↠, and suppose a→ b.
Then by → ⊆ →′ and the angle property for a →′ b we have b →′ a•, hence a• →′ b•

by applying the angle property again. Two angles make a Z; using →′ ⊆ ↠ twice, we
conclude to b↠ a• and a• ↠ b•.
For the only–if-direction, assume → has the Z-property. Consider the •-development
rewrite system ◦−→. To show ◦−→ has the angle property, suppose a ◦−→ b. By definition
a↠ b↠ a•. Combining b↠ a• with a• ↠ b•, which follows from a↠ b by monotonicity
of •, yields b ◦−→ a• by definition of ◦−→, showing the angle property. That the first
inclusion in→ ⊆ ◦−→ ⊆↠ holds follows from that a→ b entails b↠ a• by the Z-property
hence by definition a ◦−→ b, and that the second inclusion holds from that a ◦−→ b unfolds
to a↠ b↠ a•.
one checks that defining ⋆ to be • updated to map each object that is not the source of
some step to itself, works; and
one checks the additional conditions on either side in the first item. The if-direction is
trivial since →′ ⊆↠ by assumption. ◀

Adjoining being extensive to the angle property in Fig. 1 gives rise to a triangle, i.e. the
second and third items reconcile both names of the property.

Although the intuition is that •-developments correspond to developments, the former,
by being defined in a syntax-free way, are more liberal (we will look into this in Sect. 4.4) as
shown by:

4 The inclusions are relation inclusions, i.e. concern the rewrite relation underlying the rewrite systems.

FSCD 2021

24:4 Z; Syntax-Free Developments

▶ Example 9. The rewrite system ai → ai+1 mod 4 has the Z-property for the function
• mapping ai to ai+1 mod 4 because → is deterministic. Classically there are only two
developments from a0 namely to itself, the empty development, and to a1. However, because
→ is cyclic there are more •-developments, e.g. a0 ◦−→ a2 (since a0 ↠ a2 ↠ a1 = a•

0).

3 Examples of the Z-property

We present (non-)examples of rewrite systems having the Z-property with a focus on the
diversity of the examples and the similarity of the proofs. We give proofs in as far as they
could serve as blue-prints of proofs of the Z-property for related calculi. We proceed from
abstract to more concrete rewrite systems.

3.1 Abstract
We investigate for some known confluence criteria for (abstract) rewrite systems [3, 38]
whether or not they entail the Z-property. We assume → is a rewrite system. In the previous
section we have already seen a characterisation of the Z-property via the angle property.
That the Z-property holds for deterministic (if a → b and a → c, then a = b) systems by
mapping to the next object was exemplified in Ex. 9.

▶ Lemma 10. If → is deterministic, then it has the Z-property.

In case a rewrite system is terminating mapping to the greatest object works.

▶ Lemma 11. If → is terminating, then → has the Z-property iff → is locally confluent.

Proof. Suppose → is locally confluent and terminating. Let • be the normal form function
mapping each object to its →-normal form, This is well-defined: the normal form exists by
termination and is unique as local confluence entails confluence by Newman’s Lemma. Thus
we conclude to the Z-property since if a → b then b ↠ a• = b•. Vice versa, if → has the
Z-property for • then a• is a common reduct to all b such that a→ b. ◀

Ex. 6 shows there are confluent rewrite systems → that do not have the Z-property but
admit it in that there is a rewrite system →′ presenting the same quasi-order, i.e. ↠ = ↠′,
that does have the Z-property: < does not have the Z-property but admits it as it is the
reflexive–transitive closure of the predecessor relation that does have the Z-property (by
being deterministic).5 By the first item of Lem. 8 a rewrite system admits the Z-property iff
it admits the angle property, using for the only–if-direction that → ⊆ →′ ⊆ ↠ entails →
and →′ present the same quasi-order. But there are confluent rewrite systems not admitting
either.

▶ Example 12. Consider the confluent rewrite system6 given by a → bi → ci → ci+1 for
i ∈ N, and suppose →′ were some presentation of it having the Z-property. Observe that
then a →′ bi for i ∈ N, since there are no objects between a and bi in →, but there is no
common upper bound to all bi in →, so neither there is one in →′.

▶ Remark 13. Bullet functions for the Z-property may be incomparable (comparing their
images bulletwise by ↠), but are preserved under composition allowing arbitrary speed-up.

5 If a rewrite system has the Z-property, then so does its so-called transitive reduction, but not necessarily
the other way around. However note that < admits the Z-property even on R, e.g. by restricting to
pairs of reals having distance at most 1, despite that < then has no transitive reduction.

6 The rewrite system is a variation on the rewrite systems visualised in [12, Fig. 2].

V. van Oostrom 24:5

σ1

w
σ3

σ1 σ1

w
σ2

σ1
σ1

σ2
wσ1

wσ3

wσ1σ3 ≡ wσ3σ1 wσ1 wσ1σ2σ1 ≡ wσ2σ1σ2

wσ2

σ3 σ2

Figure 2 Local confluence diagrams for positive braids.

Figure 3 Isotopic braids, σ3σ5σ1σ4σ3σ3 ≡ σ5σ4σ3σ4σ1σ3, deformable into one another.

3.2 Positive braids
Positive braids have the Z-property [6] or equivalently the angle property [34],[38, Sect. 8.9].

▶ Definition 14. The rewrite system B+ of (positive) braids on ℓ strands has:
as objects braids, words over the Artin generators σi for 1 ≤ i < ℓ, modulo

σiσjσi = σjσiσj if |i− j| = 1 (1)
σiσj = σjσi if |i− j| > 1 (2)

steps w → wσi for any braid w and 1 ≤ i < ℓ.
The equivalence generated by (1) and (2) is denoted by ≡. The rewrite system B+ is locally
confluent as illustrated in Figure 2: any pair of distinct generators σi, σj either is too far
apart (2) like σ1 and σ3 on the left, or too close together (1) like σ1 and σ2 on the right. See
Figure 3 for two words representing the same positive braid on 6 strands. Extending a braid
by a full swap, crossing all strands over another as represented by the Garside word, works,
the intuition being that is the least way to extend all single steps. The proof is short and by
straightforward inductions.

▶ Lemma 15. B+ has the Z-property for the map that suffixes the Garside word.

Proof. The bullet function • suffixing the Garside word is formally defined by w• := wGℓ,
where, starting crossing from the left, the Garside word may be inductively defined by
G0 := ε and if n > 0, then Gn := Gn−̇1σ⟨n,1⟩ with σ⟨i,j⟩ := σi−̇1 . . . σj crossing the ith strand
over i −̇ j strands to its left. The key property of Gℓ is that it is a so-called Garside element
as each generator is both a left and right divisor of it. More specifically, we claim that for all
1 ≤ i < n there exists a braid Gi

n such that (cf. Ex. 16)

σiG
i
n ≡ Gn ≡ Gi

nσn−̇i (3)

From the claim we conclude to the Z-property, since for a step w → wσi then wσi ↠
wσiG

i
n ≡ wGn → wGnσn−̇i ≡ wσiG

i
nσn−̇i ≡ wσiGn.

FSCD 2021

24:6 Z; Syntax-Free Developments

It remains to prove the claim (a well-known fact). The intuition for Gi
n is that it is

the residual of Gn after σi, i.e. what remains to be done of a full swap after swapping
i. Formally, it may be inductively defined by Gn−̇1

n := Gn−̇1σ⟨n,2⟩ and Gi
n := Gi

n−̇1σ⟨n,1⟩
otherwise. Accordingly, we show (3) by induction on n, with trivial base case, and cases on
whether or not i = n −̇ 1:

σiG
i
n = σiG

i
n−̇1σ⟨n,1⟩ σn−̇1G

n−̇1
n = σn−̇1Gn−̇2σ⟨n−̇1,1⟩σ⟨n,2⟩

≡IH Gn−̇1σ⟨n,1⟩ ≡(i) Gn−̇2σ⟨n,1⟩σ⟨n,2⟩
≡IH Gi

n−̇1σn−̇1−̇iσ⟨n,1⟩ ≡(iii) Gn−̇2σ⟨n−̇1,1⟩σ⟨n,1⟩
≡(ii) Gi

n−̇1σ⟨n,1⟩σn−̇i = Gn−̇1σ⟨n,1⟩
= Gi

nσn−̇i = Gn−̇1
n σ1

where (i) follows by (2); σn−̇1 and Gn−̇2 commute, i.e. σn−̇1Gn−̇2 ≡ Gn−̇2σn−̇1, as their
generators are too far apart, (ii) holds since for all i −̇ 1 > k ≥ j:

σkσ⟨i,j⟩ ≡(2) σ⟨i,k+2⟩σkσk+1σkσ⟨k,j⟩
≡(1) σ⟨i,k+2⟩σk+1σkσk+1σ⟨k,j⟩ ≡(2) σ⟨i,j⟩σk+1

and (iii) follows from (ii) by induction on σ⟨n,2⟩. ◀

▶ Example 16. To see that (3) holds for i := 2 and n := 4, we first compute G2
4 := σ1σ2σ3σ2σ1

and G4 := σ1σ2σ1σ3σ2σ1, and then verify σ2σ1σ2σ3σ2σ1 ≡(1) σ1σ2σ1σ3σ2σ1 ≡(2)
σ1σ2σ3σ1σ2σ1 ≡(1) σ1σ2σ3σ2σ1σ2.

3.3 First-order terms
In this section we consider TRSs, i.e. first-order term rewrite systems [3, 38]. We show the
Z-property holds for orthogonal TRSs for the full development and the full superdevelopment
functions, for weakly orthogonal TRSs by the maximal multistep map, for associativity by
an inductive normal form function, and extending that, for self-distributivity by the full
distribution function. Our presentation suggests the commonality between the proofs the
Z-property holds. We assume T is a TRS and →T or simply → to be its underlying rewrite
system on terms t, s, r, Each bullet function • on terms defined below is assumed to be
pointwise extended to vectors of terms t⃗, s⃗, . . . and substitutions σ, τ, We first observe
that as a corollary to Lem. 11 and Huet’s Critical Pair Lemma we immediately have:

▶ Corollary 17. A terminating TRS has the Z-property iff all its critical pairs are joinable.

3.3.1 Orthogonal
We show orthogonal TRSs, i.e. left-linear and non-overlapping, have the Z-property.

▶ Example 18. The classical example of an orthogonal TRS is Combinatory Logic (CL).
It has a binary symbol @ and constants K,S, I and rules, written in full on the left and
applicatively [38, Sect. 3.3.5] on the right (making @ implicit, infix, and associate to the left):

@(I, x) → x Ix → x

@(@(K,x), y) → x Kxy → x

@(@(@(S, x), y), z) → @(@(x, z),@(y, z)) Sxyz → xz(yz)

For orthogonal TRSs mapping a term to the result of contracting all redexes works, the
intuition being again that it is the least way of extending all single steps. This amounts to an
inductive definition of the full substitution or maximal multistep strategy [38, Def. 9.3.18].

V. van Oostrom 24:7

▶ Definition 19. For an orthogonal TRS, full development • is inductively defined by

x• := x

f (⃗t)• := rσ if f (⃗t) is a redex and f (⃗t•) = ℓσ for some rule ℓ→ r and substitution σ

:= f (⃗t•) otherwise

▶ Example 20. In CL (I(Ix))• = x and (IIx)• = Ix contracting II but not the created Ix.

▶ Remark 21. By orthogonality, if for some redex t there is a reduction without head-steps
t↠ ℓτ for lhs of a rule ℓ and substitution τ , then t = ℓσ for some substitution σ such that
σ ↠ τ . Vice versa, if we have such reduction ℓτ ↠ t for some term t, then t = ℓσ and τ ↠ σ.

▶ Lemma 22.
(Extensive) t↠ t• for all terms t;
(Rhs) t(σ•) ↠ (tσ)• for terms t, substitutions σ; t(σ•) = (tσ)• if t is a proper subterm of a
lhs;

(Z) → has the Z-property for the full development function.

Proof.

(Extensive) By induction on t. If t is a variable x, then t• = x and we conclude by
reflexivity of ↠. Otherwise t has shape f (⃗t) and t⃗ ↠ t⃗• by the IH and transitivity, so
f (⃗t) ↠ f(t⃗•). If the third clause applies we immediately conclude. Otherwise, f (⃗t•) = ℓσ

and t• = rσ for symbol f , terms t⃗, rule ℓ→ r and substitution σ, and we append ℓσ → rσ;
(Rhs) We show the first by induction on t. If t is some variable x, then both sides are
equal to σ(x)•. Otherwise, t = f (⃗t) for some symbol f and terms t⃗, and t⃗(σ•) ↠ (⃗tσ)• by
the IH, hence f (⃗t)(σ•) ↠ f((⃗tσ)•). If the third clause applies to f (⃗tσ) then we conclude,
and otherwise we append a corresponding final root step to the reduction. For the second,
note we have the stronger f((⃗tσ)•) = f (⃗t)(σ•) in the induction step, so the second clause
never applies as this is not an instance of a lhs by assumption on t and orthogonality;

(Z) We show for the full-development function •, that s↠ t• ↠ s• for all steps t→ s by
induction on t. The case that t is a single variable being impossible, as variables cannot
be rewritten due to the assumption that lhss of rules are not single variables, assume t
has shape f (⃗t) for symbol f and terms t⃗ and distinguish cases on the clause of •.
Suppose the second clause applies, i.e. f (⃗t•) = ℓτ for some rule ℓ→ r and t• = rτ for
symbol f , terms t⃗, rule ℓ→ r and substitution τ . Distinguish cases on the step t→ s.

If the step is a head step, then it must have shape t = ℓσ → rσ = s for the same
rule ℓ→ r and some substitution σ such that σ• = τ , by Rem. 21 and (Rhs) as
t = f (⃗t) ↠ f (⃗t•) by (Extensive). Then (Z) holds by rσ ↠ rτ = (ℓσ)• = r(σ•) ↠ (rσ)•

using (Extensive) for σ for the first reduction and (Rhs) for the second; and
If the step is not a head step, then s = f(s⃗) for some s⃗ equal to t⃗ except for some
i for which ti → si, for which by the IH si ↠ t•i ↠ s•

i . From that, Rem. 21 and
(Extensive) ℓτ = f (⃗t•) ↠ f(s⃗•) = ℓσ → rσ = s• for some substitution σ with τ ↠ σ.
Using that for the second reduction, and the IH and (Extensive) for the first, (Z) holds
by f(s⃗) ↠ f (⃗t•) = ℓτ → rτ = f (⃗t)• ↠ rσ = s• = f(s⃗)•.

Suppose the third clause applies, so t• = f (⃗t•). Then the step cannot be a head step
(otherwise f (⃗t•) would be a redex) and s = f(s⃗) for some s⃗ equal to t⃗ except for some i
for which ti → si, for which by the IH si ↠ t•i ↠ s•

i . Then (Z) holds by using the IH and
(Extensive) on t⃗ for both reductions in f(s⃗) ↠ f (⃗t•) = f (⃗t)• ↠ f(s⃗•), to which a further
head step must be appended in case the second clause applies to s to yield s•. ◀

FSCD 2021

24:8 Z; Syntax-Free Developments

In the proof of the lemma the condition f (⃗t) is a redex in the second clause of Def. 19 was
never used. Indeed, dropping it preserves the proof. We dub the resulting function the full
superdevelopment function as it relates to the full development function as Aczel’s proof
of confluence [2, 26] relates to the Tait–Martin-Löf proof [4]; see [35] for a discussion. Full
superdevelopments also contract all upward created [17] redexes.

▶ Definition 23. Replacing redex by term in Def. 19 gives the full superdevelopment function.

▶ Lemma 24. → has the Z-property for the full superdevelopment function.

▶ Example 25. Compared to Ex. 20 again (I(Ix))• = x but now (IIx)• = x by also allowing
to contract the upward created redex Ix. That CL has the Z-property is formalised in [9].

For simply typed CL we now already have seen 3 distinct functions witnessing the Z-property,
in order of increasing(ly lax) upperbounds: full-development, full-superdevelopment, and
normal form (Lem. 11 applies as simply typed CL is terminating).

3.3.2 Weakly orthogonal
We show weakly orthogonal TRSs [3, 38], having left-linear rules whose critical peaks
s← t→ r are trivial, i.e. s = r, have the Z-property.

▶ Example 26. The TRS with rules p(s(x))→ x and s(p(x))→ x is weakly orthogonal.

▶ Definition 27. For a weakly orthogonal TRS, the maximal multistep map • is inductively
defined simultaneously with its maximal context max by

x• := x max(x) := □
f (⃗t)• := rσ max(f (⃗t)) := □ if P

:= f (⃗t•) := f(max(t⃗)) otherwise

where P asks f (⃗t) = ℓσ for some substitution σ, rule ℓ→r such that ℓ is a prefix of f(max(t⃗)).

▶ Example 28. For the predecessor–successor TRS of Ex. 26 letting t := p(s(x)) and
s := p(s(p(x))), we have t• = x and max(t) = □, respectively s• = p(x) and max(s) = p(□).

The full development function being ambiguous7 for weakly orthogonal TRSs, is resolved by
the maximal multistep map by adhering to an inside–out strategy. The intuition for max(t)
is that it comprises the context of all maximal redexes selected for contraction by •, and the
intuition for • is that it tries to find any lhs that is contained in that context, i.e. does not
have overlap with any of the already selected redexes in its arguments. As a consequence, in
P the condition ℓ is a prefix of f(max(t⃗)) is always satisfied for TRSs that are orthogonal
and for those the maximal multistep and full development functions coincide.

▶ Lemma 29. → has the Z-property for the maximal multistep function.

Proof. Since the Z-property is equivalent to the angle property, Lem. 8, this follows from
the maximal multistep function having the angle property [38, Thm. 8.8.27], noting Def. 27
is a rephrasing of the notion going under the same name in the proof of that theorem. ◀

7 Different maximal sets of non-overlapping redexes may exist and result in different terms. E.g. the other
redexes overlap the underlined one in p(s(p(s(x)))) hence the latter is maximal, but so are the other 2.

V. van Oostrom 24:9

▶ Remark 30. Proceeding outside–in instead of inside–out, in a naïve way cannot work. It does
not yield a bullet function having the Z-property as exemplified by the TRS with rules c(x)→x,
f(f(x))→ f(x) and g(f(f(f(x))))→ g(f(f(x))). We have t→ s for t := g(f(f(c(f(f(x))))))
and s := g(f(f(f(f(x))))) by contracting the c-redex, but the Z-property (monotonicity) fails
for a naïve outside–in bullet function ⋆, as we do not have t⋆ = g(f(f(x))) ↠ g(f(f(f(x)))) =
s⋆. This can be overcome [8, Lem. 7.10]8, even effectively so [8, Cor. 7.27], by discarding
Takahashi configurations [38, Prop. 9.3.5], [14, Rem. 4.38].

3.3.3 Associativity
From the above one might have the impression that the Z-property only holds for confluent
TRSs that are orthogonal or closely associated to such. This is not the case.

▶ Example 31. The term rewrite system for associativity (to the right) has as single rule:

@(@(x, y), z) → @(x,@(y, z)) xyz → x(yz)

written on the left in standard notation and applicatively (cf. Ex. 18) on the right.

As is well-known associativity is terminating and locally confluent as its one and only critical
pair is joinable. Hence it has the Z-property by Cor. 17. Here we give a direct inductive
definition of the normal form function, cf. Rem. 1, to show that one can proceed similarly to
the (weakly) orthogonal case, and to prepare for the case of self-distributivity below.

▶ Definition 32. We give an inductive definition of the normal form function • depending
on an auxiliary grafting function t⟨r] (we assume grafting binds stronger than the implicit @)

x⟨r] := xr x• := x

(ts)⟨r] := ts⟨r] (ts)• := t•⟨s•]

The idea is that t⟨r] grafts the second argument r to the right tip of the first argument t.

▶ Example 33. (xy)• = x•⟨y•] = xy, so (xyz)• = (xy)⟨z] = x(yz) and (xyzw)• = x(y(zw)).

Note • indeed only has normal forms in its image and these are preserved by grafting. The
second example shows associativity can be viewed as performing an elementary case of
grafting. How grafting and the normal form function interact with rewriting is captured by
the following two lemmata, all of whose items are proven by induction on terms.9

▶ Lemma 34.
(Sequentialisation) ts↠ t⟨s], for all terms t, s;
(Compatible) t⟨s] ↠ t′⟨s′], if t↠ t′ and s↠ s′; and
(Substitution) t⟨s]⟨r] = t⟨s⟨r]], for all terms t, s, r.

▶ Lemma 35.
(Extensive) t↠ t•, for all terms t;
(Rhs) t•(s•r•) ↠ (tsr)•, for all terms t, s, r;
(Z) → has the Z-property for the normal form function •.

8 As shown there, this extends to infinitary rewriting, for non-collapsing TRSs.
9 See Appendix A to check that the proofs of the two lemmata are indeed by straightforward inductions.

FSCD 2021

24:10 Z; Syntax-Free Developments

▶ Remark 36. Def. 32 effectively encodes a normalising strategy. A priori this entails neither
termination of → nor uniqueness of the computed normal form.10 The latter only follows by
the monotonicity part of the Z-property for •. Turning things around, because • maps to
normal forms, (Extensive) and monotonicity would have sufficed to establish the Z-property,
as then t→ s entails s↠ s• = t•, but that would break the analogy with other proofs here.

3.3.4 Self-distributivity
Dehornoy’s proof that self-distributivity has the Z-property [6] fits in the above mould.

▶ Example 37. The self-distributivity TRS has the (applicative) rule xyz→ xz(yz).

Self-distributivity is non-terminating as its lhs can be embedded in its rhs, and is locally
confluent as its one and only critical peak is joinable. Both its equational and rewrite theories
are highly non-trivial; the book [6] is entirely devoted to them and still much more is to say.

▶ Example 38. Self-distributivity has any ACI-operation (e.g., logical ∧ or ∨) as model, as
well as interpreting the binary operation as taking the middle between points in R2. The
Substitution Lemma of the λ-calculus (cf. [32, Thm. 5]) yields an instance of self-distributivity.
Self-distributivity is obtained by “forgetting” the S in the CL rule for S, or alternatively
(and giving more insight) by “enriching” the rhs of the associativity rule with another copy
of z.

▶ Definition 39. We give an inductive definition of the full distribution function • [6,
Def. V.3.7] depending on the uniform distribution t[s] of s over t [6, Def. V.3.4].

x[s] := xs x• := x

(tr)[s] := t[s]r[s] (ts)• := t•[s•]

Uniform distribution grafts the 2nd argument uniformly to all leafs t[s] = t[x1,x2,...:=x1s,x2s,...].
The following key lemmata, obtained by structuring [6, Lem. V.3.6,10–12] in the same way as
was done for associativity above, are again proven by straightforward induction on terms.9

▶ Lemma 40.
(Sequentialisation) ts↠ t[s], for all terms t, s;
(Compatible) t[s] ↠ t′[s′], if t↠ t′ and s↠ s′; and
(Substitution) t[s][r] ↠ t[r][s[r]], for all terms t, s, r.

▶ Lemma 41.
(Extensive) t↠ t•, for all terms t; and
(Z) → has the Z-property for the full distribution function •.

3.4 The lambda-calculus
The λβ-calculus and the λβη-calculus [4] being prime examples of orthogonal respectively
weakly orthogonal higher-order term rewrite systems [20, 27], it is natural that the full
development and full superdevelopment functions for orthogonal TRSs, and the maximal
multistep map for weakly orthogonal TRSs should lift. They do. As the Z-property for the
full development function is known [18]/[16] and for the full superdevelopment function was
formalised [22, 9], we will be satisfied with giving the definitions and proof structure.

10 But in fact it can be shown to do so, by choosing appropriate weights in random descent [33].

V. van Oostrom 24:11

▶ Definition 42. The full development function • is inductively [37, p. 121] defined by:

x• := x

(λx.M)• := λx.M•

(MN)• := M ′[x:=N ′] if MN is a redex and M•N• = (λx.M ′)N ′

:= M•N• otherwise

The full superdevelopment function is obtained by dropping the condition MN is a redex from
the third clause (or replacing it by MN is a term; cf. Def. 19 and the text below Lem. 22).

▶ Example 43. Taking I := λx.x in Ex. 20 gives full (super)developments as for CL.

Assuming α-equivalence, congruence of β-reduction, the Substitution Lemma [4, Lem. 2.1.16],
and compatibility of β-reduction with substitution [4, Sect. 3.1], and coherence of β-reduction
with abstraction, we successively show:

▶ Lemma 44.
(Extensive) M ↠M•, for all λ-terms M ;
(Rhs) M (σ•) ↠ (Mσ)• for λ-terms M , substitutions σ; and
(Z) →β has the Z-property for the full (super)development function •.

▶ Remark 45. It would be interesting to see whether one could have a single formalised
statement and proof for the Z-property for both full developments and full superdevelopments.
▶ Remark 46. Our inside–out definition of the maximal multistep map for weakly orthogonal
TRSs straightforwardly extends to all weakly orthogonal higher-order term rewrite systems,
and the Z-property still holds (in [29] we established the angle property), which immediately
yields the same for the λβη-calculus. Although the outside–in construction on [37, p. 121,
(F8∗)] does yield the Z-property for the λβη-calculus,11 it fails to do so for weakly orthogonal
higher-order term rewrite systems in general; monotonicity fails for the TRS in Rem. 30.
▶ Remark 47. We do not know whether there is a generalisation of the full superdevelopment
function to the λβη-calculus. A problem is illustrated by the following example taken
from [27, Rem. 3.4.24]. We have the co-initial full and non-full superdevelopments:

(λx.(λy.yx)I)z →β (λx.Ix)z →η Iz →β z (λx.(λy.yx)I)z →β (λy.yz)I

but to reduce the target of the latter to that of the former requires two superdevelopments.

▶ Example 48. The λ-calculus with explicit substitutions λσ [1] has the Z-property on
closed terms. This is witnessed by the composition of first the function mapping a term to
its →′-normal form where →′ denotes σ reduction, and next the full development function •
contracting all Beta-redexes (Beta on its own is orthogonal). The proof is given in Fig. 4,
where black ordinary arrows denote Beta-reductions, blue open arrows →′-reductions, t the
→′-normal form of t, and t• the result of subsequently applying the full-development function.
For the result to hold, it suffices that

(Γ) →′ is confluent and terminating [38, Exercise 3.6.3(i)];
(∆) ◦−→ has the triangle property for •; and
(E) single ◦−→-steps commute with →′-reduction [38, Exercise 3.6.3(iii)].

▶ Example 49. We do not know whether Mints’ λ-calculus with restricted η-expansion (such
that no β-redexes are created) has the Z-property. The restriction hampers monotonicity.

11 It coincides with the maximal multistep function since redex-clusters are chains [14, Defs. 4.31,4.47].

FSCD 2021

24:12 Z; Syntax-Free Developments

Γ

t• = s•

t st s

t = s

Γ

t t′

s′t• s•

E

E
∆

∆

s

Figure 4 λσ has the Z-property.

4 Syntax-free developments

We first show in Sects. 4.1–4.3 that several classical rewrite results that are known for the
classical syntactic notion of development12 in term rewriting [38] and the λ-calculus [4] carry
over to our syntax-free notion ◦−→ of •-development (Def. 7) defined for a bullet function •
witnessing the Z-property. The diagrammatic proofs are obtained by pasting with Zs. Next,
we investigate in Sect. 4.4 for the special case of orthogonal TRSs, under what conditions
the syntactic and syntax-free notions of development coincide. Throughout we assume →
has the Z-property for •.

4.1 Hyper-Cofinality
We show •−→ is a best possible many-step strategy for → in that it is hyper-cofinal [38,
Sect. 9.1.1]; in order-theoretic terms: starting from object a and always eventually performing
a •−→-step eventually will yield a result greater than b, for any b greater than a. Observe
first that •−→ is a many-step strategy since if a •−→ a• then by Def. 4 a is not in →-normal
form, so there is some step a→ b from which we conclude to a↠ a• by the Z-property.

▶ Theorem 50. •−→ is hyper-cofinal for →.

Proof. It suffices to show that, for a given step a→ b and maximal [38, below Def. 1.1.13]
reduction γ of →, •−→-steps which always eventually contains a •−→-step, there is another
such reduction δ from b eventually coinciding with it. By maximality, γ either ends in a

c•

a

b a•

c

c•

c•

=ZZZ Z

d

γ1 γ2

δ1

a b

c a• b•

Figure 5 Hyper-cofinality of •−→ (left) and confluence of → (right), by tiling with Zs.

normal form c, or by the assumption (“always eventually”) decomposes into a →-reduction
γ1 : a↠ c, followed by c •−→ c• followed by another such reduction γ2 from c• (see Fig. 5).
Induction on the length of a↠ c and monotonicity of • give a d between c and c• such that
δ1 : b↠ d. If c is a normal form, c = d and we set δ := δ1, else we compose δ from δ1, d↠ c•

and γ2. ◀

12 Developments go all the way back to sequences of contractions on the parts in [5], for the λI-calculus.

V. van Oostrom 24:13

As a consequence [38, Sect. 9.1] •−→ is a hyper-normalising strategy, i.e. if an object reduces to
a normal form then always eventually performing a •−→-step will reach it. For the λ-calculus
•−→ is (weak-)head-normalising, since (weak-)head-normal forms are closed under reduction;

Normalisation of •−→, i.e. of Gross–Knuth-reduction, was already noted in [18, Ex. 4.1].

4.2 Confluence
▶ Lemma 51. → is confluent.

Proof. Confluence can be established in several ways. We present three.
By tiling the plane with Zs as displayed in Fig. 5 (formally by the Strip Lemma and [38,
Prop. 1.1.10]). In Fig. 5 we have high-lighted the Zs for a→ b and a→ c in red and blue;
Via Lem. 8, the angle property for ◦−→ and [38, Prop. 1.1.11]; and
Via Thm. 50, cofinality of •−→ and [38, Thm. 1.2.3(iv)]:13

↞ ·↠ ⊆ ↠ · •←−←− · •−→−→ ·↞ as ↠ ⊆ •−→−→ ·↞ by cofinality of •−→
⊆ ↠ · •−→−→ · •←−←− ·↞ as •−→ is deterministic hence confluent
⊆ ↠ ·↠ ·↞ ·↞ as •−→ is a many-step →-strategy
⊆ ↠ ·↞ by transitivity of ↠ ◀

Since confluence is defined as the diamond property of the induced quasi-order, we have as a
corollary that any rewrite system admitting the Z-property (Sect. 3.1) is confluent.

▶ Remark 52. Choosing an appropriate bullet function (cf. Sect. 1) can lead to remarkably
short proofs of confluence via the Z-property. To wit, the confluence proofs for positive
braids (by full swaps), self-distributivity (by full distribution),14 and for orthogonal TRSs
and the λ-calculus (by full superdevelopments)15 are the shortest ones we know, in the same
informal sense of “shortest” as was used by Takahashi on [37, p. 121] when she stated the
proof of confluence of λβ via the angle property was “perhaps the shortest”. However, the
proof via the Z-property is (a bit) shorter [22].

▶ Remark 53. Takahashi’s confluence proof method [37, Sect. 1] for the λ-calculus can be
viewed as being based on the angle property for developments. Although the Z and angle
properties are equivalent (Lem. 8), her method is slightly more involved, conceptually and
technically, as it involves (inductively) defining both the bullet function and developments
(called ∗ respectively parallel reduction in [37]). Our approach does away with the latter; our
•-developments are derived from • in a syntax-free way; beware though that developments
and •-developments in general differ, cf. Sect. 4.4.

4.3 Recurrence
[36, Proposition 1] characterises the recurrent terms in CL (see Ex. 18) in terms of Gross–
Knuth reduction. We recast this in a syntax-free way for → having the Z-property.

▶ Definition 54. An object a is →-recurrent if a→ b entails b→ a for all b. An object is
recurrent if it is ↠-recurrent.

▶ Proposition 55. If • is extensive, then a is recurrent iff a• ↠ a.

13 This generalises half of Staples’ confluence method [38, Exercise 1.3.9].
14 Confluence of self-distributivity is non-trivial. Currently no tool can prove it automatically; see

problem 126 of http://cops.uibk.ac.at/results/?y=2020-full-run&c=TRS.
15 Full developments involve a useless test for being a redex (Def. 42).

FSCD 2021

http://cops.uibk.ac.at/results/?y=2020-full-run&c=TRS

24:14 Z; Syntax-Free Developments

Proof. For the if-direction we show for all n, for all b, if a→n b then b↠ a, by induction on
n. In the base case a = b and we conclude by reflexivity of ↠. In the induction step, we have
a→n c→ b for some object c, so c↠ a by the IH for a→n c. We conclude by composing
b↠ c•, which holds by the Z-property for c→ b, with c• ↠ a•, which holds by monotonicity
of • for c↠ a, and with a• ↠ a, which holds by assumption, to b↠ a as desired.

For the only–if-direction, we have a↠ a• by the assumption that • is extensive, hence
a• ↠ a by the assumption that a is recurrent, as desired. ◀

▶ Remark 56. This result was used and formalised by Felgenhauer for a study of fixed-point
combinators in CL [10]. E.g., although it is simple to see SII(SII) is recurrent, how to prove
it in a simple way? By Proposition 55 it suffices to show that the result of a Gross–Knuth
step reduces to it, i.e. that I(SII)(I(SII)) ↠ SII(SII), which is simple to check.

4.4 Syntactic developments in orthogonal term rewriting
We investigate for orthogonal TRSs (cf. Sect. 3.3.1) the correspondence between the classical
syntactic definition of a development and the syntax-free definition of •-development (Def. 7)
arising from taking as bullet function • the full development function that maps a term to the
result of contracting all redex-patterns in it (Def. 19). This section is based on permutation
equivalence via residual theory originating with [13], as presented in [38, Chs. 8 and 9]. We
restrict to investigating the, non-trivial, correspondence for orthogonal TRSs hoping it can
serve as a stepping stone for the same for more complex cases such as self-distributivity and
the λ-calculus.

We first expand on the discrepancy between the syntactic and the syntax-free notions
as observed in Ex. 9 (a non-terminating orthogonal TRS). Our first observation is that
•-developments are more encompassing than developments due to what are called syntactic
accidents [17, p. 34], i.e. due to reductions yielding the same result despite not doing the same
work, not being permutation equivalent. We show absence of syntactic accidents suffices.

▶ Example 57. For the erasing TRS with rules a→ b→ c and f(x)→ d, we have f(a)• := d

and there is a •-development from f(a) to f(c), but no such development. For the collapsing
TRS with rules g(x)→ h(x), h(x)→ i(x) and i(x)→ x, we have i(h(g(a)))• := i(h(a)) and
there is a •-development from i(h(g(a))) to i(h(i(a))), but no such development.

▶ Proposition 58. For orthogonal, terminating, non-collapsing, and non-erasing TRSs,
developments and •-developments coincide.

Proof. We claim the assumptions guarantee the absence of syntactical accidents: if γ, δ
are reductions from t to s then they are permutation equivalent γ ≃ δ.16 From the claim
it follows that if γ : t •−→ t• and δ : t ↠ s for some ϵ : s ↠ t•, then γ ≃ δ · ϵ. Therefore,
decomposing δ as δ1 · ϕ · δ2 for some step ϕ : t′ → s′, we have γ/δ1 : t′ ◦−→ s and ϕ ≲ γ/δ1,
which by non-erasingness entails that ϕ is among the redex-patterns in γ/δ1.17 Since this
holds for each step, δ is a development of the set of all redex-patterns in t. The other
implication follows from that every development from t can be completed into a complete
development to t•.

16 We employ the projection equivalence notation ≃ from [38, Def. 8.7.21]. We freely employ results from
that chapter, e.g. that permutation and projection equivalence coincide for orthogonal TRSs.

17 This fails for erasing systems. For instance, the step f(a) → f(s) is not a development of the step
f(a) → c in the TRS with rules a → b and f(x) → c.

V. van Oostrom 24:15

It remains to prove the claim, which we prove by contradiction assuming γ ̸≃ δ. By
residual theory, the peak γ, δ (where both have the same target, say u, by accident) can
be completed by a valley comprising γ′ := δ/γ and δ′ := γ/δ such that γ · γ′ ≃ δ · δ′. At
least one of γ′, δ′ must be non-empty, as otherwise γ, δ would be projection equivalent. But
then the other must be non-empty as well, since otherwise we would have a reduction cycle
on u contradicting the assumed termination. To see that γ′ ̸≃ δ′ note we may assume that
γ, δ are standard, where a reduction is standard [13] if for each step in it the position of
the contracted redex-pattern is in the redex-pattern of the first step after and left–outer of
it [38, Definition 8.5.40]. W.l.o.g. we may assume γ, δ differ in their first steps and at least
one of them contains a head-step, say γ contains head-step ϕ. Then δ doesn’t, as otherwise
their first steps would not differ by [15, Lemma 1]. We conclude γ/δ ̸≃ δ/γ since the former
contains a head-step as projection of a reduction γ containing a head-step over a reduction
δ containing none, and the latter contains no head-step as projection of δ containing none
over another reduction γ using the assumption that rules are non-collapsing. Applying the
construction again, to the peak γ′, δ′ (where both have the same target again by accident)
yields a valley comprising γ′′ := δ′/γ′ and δ′′ := γ′/δ′ such that γ′ · γ′′ ≃ δ′ · δ′′ but γ′′ ̸≃ δ′′.
Repeating arbitrarily often yields an infinite reduction from t, contradicting termination. ◀

The three conditions in Prop. 58 are rather restrictive. We employ labelling [38, Sect. 8.4] to
turn an arbitrary orthogonal term rewrite system into one satisfying them, and recover the
result. We separate this into two phases, first turning a TRS into a non-erasing one by means
of memorising the erased arguments,18 and next lifting to a TRS that is also terminating
and non-collapsing by means of the Hyland–Wadsworth labelling [38, Sect. 8.4.4].

▶ Definition 59. The TRS with memory [T] of a TRS T has
as signature the signature of T extended with a binary symbol [,];
as rules ϱℓ̂ : ℓ̂ → [r, x⃗] for some T -rule ϱ : ℓ → r, where ℓ̂ is such that projecting all
occurrences of [,] in it on their first argument yields ℓ, but these are not at the root, do
not have a variable as first argument, and all have fresh variables (uniquely determined
by their position) as second arguments. Here x⃗ is the list (unique for ℓ̂) of all variables in
ℓ̂ not in r, [t] denotes t, and [t, xy⃗] denotes [t, [x, y⃗]].

▶ Example 60. The TRS with memory for the rules f(a)→ b and f(x)→ b, yields infinitely
many rules f(a)→ b, f([a, x])→ [b, x], f([[a, y], x])→ [b, xy],. . . for the first rule, and the
single rule f(x)→ [b, x] for the second one.

▶ Lemma 61. If T is orthogonal, then [T] is orthogonal and non-erasing. The identity map
induces a rewrite labelling [38, Def. 8.4.5(ii)] of T into [T].

▶ Example 62. Memorising overcomes erasingness. With memory f(a)• := [d, b] for the first
TRS in Ex. 57, so the •-developments from f(a) are the initial prefixes of f(a)→ f(b)→ [d, b]
and f(a)→ [d, a]→ [d, b]. There is now no •-development from f(a) to f(c).
To overcome also non-termination and (as a side-effect) collapsingness, we employ the
Hyland–Wadsworth labelling [17, 4, 19, 38] T ω of a TRS T . The idea of that labelling is
to approximate arbitrary (possibly infinite) T -reductions with arbitrary precision, where
precision is measured via the causal length of reductions. Technically, this is achieved by
labelling edges19 in terms with their creation depth (a natural number) in such a way that
any unlabelled reduction can be lifted to one having some bounded creation depth n, and
such that the corresponding subsystem T n of T ω is terminating and confluent.

18 A technique going back to Nederpelt’s scars [24, p. 90].
19 To make sure that every redex-pattern contains at least one edge, we replace any function symbol f

with a pair f ′–f with f ′ a fresh unary function symbol.

FSCD 2021

24:16 Z; Syntax-Free Developments

▶ Definition 63. The Hyland–Wadsworth (HW) labelling of a TRS T is the TRS T ω

having as signature all natural numbers (labels) and for every f of T both f and a fresh
copy f ′ of it, with all symbols not in T having arity 1;
having as rules ϱℓ̂ : ℓ̂→ (r′)n for every rule ϱ : ℓ→ r, where ℓ̂ is such that between any two
non-labels there is at least one label, n is the maximum value of all labels in ℓ̂ plus one,
and removing all yields ℓ′, where priming and natural-number-labelling are defined by:

x′ := x xn := n(x)
f (⃗t)′ := f ′(f(t⃗′)) g(s⃗)n := n(g(s⃗n))

T n is the restriction of T ω to rules whose lhss have labels < n.

▶ Example 64. We illustrate the saturation process of the HW-labelling on a rule with a
single-function-symbol left-hand side (cf. footnote 19), The Hyland–Wadsworth labelling of
the TRS with rule f(x)→x has the infinitely many rules f ′(0(f(x)))→1(x), f ′(1(f(x)))→2(x),
. . . , f ′(0(0(f(x))))→1(x), f ′(1(0(f(x))))→2(x), f ′(0(1(f(x))))→2(x), Note the original
rule was collapsing, but its HW-labellings are not.

Hyland–Wadsworth labelling preserves orthogonality and is sound in that reductions can be
lifted, however with ever increasing labels so bounding them yields termination.

▶ Lemma 65. T ω and T n are (left/right) linear and/or orthogonal iff T is;
mapping every term t to (t′)0 gives a rewrite labelling of T ; and
the restriction T n of T ω to lhs with labels < n is terminating [19].

▶ Example 66. To see how the HW-labelling avoids syntactical accidents for collapsing rules
consider the reduction f(f(x))→ f(x) for rule f(x)→ x. It lifts differently depending on
which redex-pattern is contracted:

0(f ′(0(f(0(f ′(0(f(0(x)))))))))→ 0(1(0(f ′(0(f(0(x)))))))

0(f ′(0(f(0(f ′(0(f(0(x)))))))))→ 0(f ′(0(f(0(1(0(x)))))))
Along the lines of the proof of Prop. 58 we show all syntactical accidents are avoided. The
lemma expresses an invertibility property (cf. [38, Thm. 8.4.20]): given the target term of a
T ω reduction, the reduction can be reconstructed up to permutation equivalence.

▶ Lemma 67. If γ, δ are co-initial and co-final T ω reductions, then γ ≃ δ.

▶ Theorem 68. Developments and •-developments coincide in [T]ω, if T is orthogonal.

Proof. Since T is orthogonal by assumption, so is [T] by Lemma 61. Therefore, by Lemma 67:
if γ, δ : a ↠ b are [T]ω-reductions then γ ≃ δ. It follows that if γ : t •−→ t• and δ : t ↠ s

for some ϵ : s ↠ t•, then γ ≃ δ · ϵ. Therefore, decomposing δ as δ1 · ϕ · δ2 for some step
ϕ : t′ → s′, we have γ/δ1 : t′ ◦−→ s and ϕ ≲ γ/δ1, which by non-erasingness of [T] hence of
[T]ω entails that ϕ is among the redex-patterns in γ/δ1. Since this holds for each step, δ is a
development of the set of all redex-patterns in t. The other implication follows from that
every development from t can be completed into a complete development to t•. ◀

5 Conclusion

We have presented the Z-property and illustrated its flexibility, showing it applies to various
rewrite systems to yield short proofs for classical results such as confluence and normalisation.
Their proofs are based on a syntax-free version of the classical notion of development. We
hope and expect more results can be factored in this way. We showed it coincides for
orthogonal TRSs with the syntactic notion of development if syntactical accidents are absent
(Prop. 58, Lem. 67) and hope that this invertibility result and its novel proof method extend
to more complex systems, e.g. λ-calculus or self-distributivity.

V. van Oostrom 24:17

References
1 M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. In F.E. Allen, editor,

Conference Record of the Seventeenth Annual ACM Symposium on Principles of Programming
Languages, San Francisco, California, USA, January 1990, pages 31–46. ACM Press, 1990.
doi:10.1145/96709.96712.

2 P. Aczel. A general Church–Rosser theorem, 1978. corrections http://www.ens-lyon.fr/LIP/
REWRITING/MISC/AGRT_corrections.pdf. URL: http://www.ens-lyon.fr/LIP/REWRITING/
MISC/AGeneralChurch-RosserTheorem.pdf.

3 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
4 H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in

Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 2nd revised edition,
1984.

5 A. Church and J.B. Rosser. Some properties of conversion. Transactions of the American
Mathematical Society, 39:472–482, 1936. doi:10.2307/1989762.

6 P. Dehornoy. Braids and Self-Distributivity, volume 192 of Progress in Mathematics. Birkhäuser,
2000.

7 P. Dehornoy and V. van Oostrom. Z; proving confluence by monotonic single-step upper-
bound functions. In Logical Models of Reasoning and Computation (LMRC-08), Moscow,
2008. URL: http://cl-informatik.uibk.ac.at/users/vincent/research/publication/
talk/lmrc060508.pdf.

8 J. Endrullis, C. Grabmayer, D. Hendriks, J.W. Klop, and V. van Oostrom. Infinitary term
rewriting for weakly orthogonal systems: Properties and counterexamples. Logical Methods in
Computer Science, 10(2), 2014. doi:10.2168/LMCS-10(2:7)2014.

9 B. Felgenhauer, J. Nagele, V. van Oostrom, and C. Sternagel. The Z property. Arch. Formal
Proofs, 2016, 2016. URL: https://www.isa-afp.org/entries/Rewriting_Z.shtml.

10 B. Felgenhaurer. Personal communication, 2017.
11 Y. Honda, K. Nakazawa, and K. Fujita. Confluence proofs of lambda-mu-calculi by Z theorem.

Studia Logica, 2021. doi:10.1007/s11225-020-09931-0.
12 G. Huet. Confluent reductions: Abstract properties and applications to term rewriting systems.

J. ACM, 27(4):797–821, 1980. doi:10.1145/322217.322230.
13 G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems, Part I + II. In J.L.

Lassez and G.D. Plotkin, editors, Computational Logic – Essays in Honor of Alan Robinson,
pages 395–443, Cambridge MA, 1991. MIT Press. Update of: Call-by-need computations in
non-ambiguous linear term rewriting systems, 1979.

14 J. Ketema, J.W. Klop, and V. van Oostrom. Vicious circles in rewriting systems. Technical
Report E0427, Centrum voor Wiskunde en Informatica, December 2004. URL: https://ir.
cwi.nl/pub/11022/11022D.pdf.

15 J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Reduction strategies and acyclicity.
In H. Comon-Lundh, C. Kirchner, and H. Kirchner, editors, Rewriting, Computation and
Proof, Essays Dedicated to Jean-Pierre Jouannaud on the Occasion of His 60th Birthday,
volume 4600 of Lecture Notes in Computer Science, pages 89–112. Springer, 2007. doi:
10.1007/978-3-540-73147-4_5.

16 Y. Komori, N. Matsuda, and F. Yamakawa. A simplified proof of the Church–Rosser theorem.
Studia Logica: An International Journal for Symbolic Logic, 102(1):175–183, 2014. doi:
10.1007/s11225-013-9470-y.

17 J.-J. Lévy. Réductions correctes et optimales dans le λ-calcul. Thèse de doctorat d’état,
Université Paris VII, 1978. URL: http://pauillac.inria.fr/~levy/pubs/78phd.pdf.

18 R. Loader. Notes on simply typed lambda calculus. ECS-LFCS- 98-381, Laboratory for
Foundations of Computer Science, The University of Edinburgh, 1998. URL: http://www.
lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/.

19 L. Maranget. La stratégie paresseuse. Thèse de doctorat, Université Paris 7, 1992.

FSCD 2021

https://doi.org/10.1145/96709.96712
http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGRT_corrections.pdf
http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGRT_corrections.pdf
http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGeneralChurch-RosserTheorem.pdf
http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGeneralChurch-RosserTheorem.pdf
https://doi.org/10.2307/1989762
http://cl-informatik.uibk.ac.at/users/vincent/research/publication/talk/lmrc060508.pdf
http://cl-informatik.uibk.ac.at/users/vincent/research/publication/talk/lmrc060508.pdf
https://doi.org/10.2168/LMCS-10(2:7)2014
https://www.isa-afp.org/entries/Rewriting_Z.shtml
https://doi.org/10.1007/s11225-020-09931-0
https://doi.org/10.1145/322217.322230
https://ir.cwi.nl/pub/11022/11022D.pdf
https://ir.cwi.nl/pub/11022/11022D.pdf
https://doi.org/10.1007/978-3-540-73147-4_5
https://doi.org/10.1007/978-3-540-73147-4_5
https://doi.org/10.1007/s11225-013-9470-y
https://doi.org/10.1007/s11225-013-9470-y
http://pauillac.inria.fr/~levy/pubs/78phd.pdf
http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/
http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/

24:18 Z; Syntax-Free Developments

20 R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Theor. Comput.
Sci., 19(1):3–29, 1998. doi:10.1016/S0304-3975(97)00143-6.

21 P.-A. Melliès. Axiomatic rewriting theory VI residual theory revisited. In S. Tison, editor,
Rewriting Techniques and Applications, 13th International Conference, RTA 2002, Copenhagen,
Denmark, July 22–24, 2002, Proceedings, volume 2378 of Lecture Notes in Computer Science,
pages 24–50. Springer, 2002. doi:10.1007/3-540-45610-4_4.

22 J. Nagele, V. van Oostrom, and C Sternagel. A short mechanized proof of the Church–Rosser
theorem by the Z-property for the λβ-calculus in nominal Isabelle. In 5th International Work-
shop on Confluence, IWC 2016, Obergurgl, Austria, September 8–9, 2016, Online Proceedings,
1016. URL: http://www.csl.sri.com/users/tiwari/iwc2016/iwc2016.pdf.

23 K. Nakazawa and K. Fujita. Compositional Z: Confluence proofs for permutative conversion.
Studia Logica: An International Journal for Symbolic Logic, 104(6):1205–1224, 2016. doi:
10.1007/s11225-016-9673-0.

24 R.P. Nederpelt. Strong Normalization in a Typed Lambda Calculus with Lambda Structured
Types. PhD thesis, Technische Hogeschool Eindhoven, June 1973.

25 M.H.A. Newman. On theories with a combinatorial definition of “equivalence”. Annals of
Mathematics, 43:223–243, 1942. doi:10.2307/2269299.

26 T. Nipkow. Orthogonal higher-order rewrite systems are confluent. In M. Bezem and J.F.
Groote, editors, Typed Lambda Calculi and Applications, International Conference on Typed
Lambda Calculi and Applications, TLCA ’93, Utrecht, The Netherlands, March 16-18, 1993,
Proceedings, volume 664 of Lecture Notes in Computer Science, pages 306–317. Springer, 1993.
doi:10.1007/BFb0037114.

27 V. van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD thesis, Vrije
Universiteit, Amsterdam, March 1994. URL: https://research.vu.nl/files/62846778/
complete%20dissertation.pdf.

28 V. van Oostrom. Finite family developments. In H. Comon, editor, Rewriting Techniques
and Applications, 8th International Conference, RTA-97, Sitges, Spain, June 2-5, 1997,
Proceedings, volume 1232 of Lecture Notes in Computer Science, pages 308–322. Springer,
1997. doi:10.1007/3-540-62950-5_80.

29 V. van Oostrom. Reduce to the max, 1999. Unpublished manuscript. URL: http:
//cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/max.pdf.

30 V. van Oostrom. Random descent. In RTA, volume 4533 of Lecture Notes in Computer Science,
pages 314–328. Springer, 2007. doi:10.1007/978-3-540-73449-9_24.

31 V. van Oostrom. Abstract rewriting. In A. Middeldorp, editor, 3rd International School on
Rewriting, ISR 2008, Obergurgl, Austria, July 21–26, 2008, 2008. Z-property in part 2 of the
slides. URL: http://cl-informatik.uibk.ac.at/isr-2008/html/b.4.html.

32 V. van Oostrom. Confluence by decreasing diagrams; converted. In A. Voronkov, editor,
Rewriting Techniques and Applications, 19th International Conference, RTA 2008, Hagenberg,
Austria, July 15-17, 2008, Proceedings, volume 5117 of Lecture Notes in Computer Science,
pages 306–320. Springer, 2008. doi:10.1007/978-3-540-70590-1_21.

33 V. van Oostrom and Y. Toyama. Normalisation by Random Descent. In FSCD, volume 52
of LIPIcs, pages 32:1–32:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.FSCD.2016.32.

34 V. van Oostrom and Y. Venema. Term rewriting systems I and II. In 10th European
Summer School in Logic, Language and Information, ESSLLI 98, Saarbrücken, Germany,
August 17—28, 1998, 2008. Course notes on braids in part I of the course. URL: http:
//cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/braids.pdf.

35 F. van Raamsdonk. Confluence and Normalisation for Higher-Order Rewriting. PhD
thesis, Vrije Universiteit Amsterdam, 1996. URL: https://research.vu.nl/files/62847150/
complete%20dissertation.pdf.

https://doi.org/10.1016/S0304-3975(97)00143-6
https://doi.org/10.1007/3-540-45610-4_4
http://www.csl.sri.com/users/tiwari/iwc2016/iwc2016.pdf
https://doi.org/10.1007/s11225-016-9673-0
https://doi.org/10.1007/s11225-016-9673-0
https://doi.org/10.2307/2269299
https://doi.org/10.1007/BFb0037114
https://research.vu.nl/files/62846778/complete%20dissertation.pdf
https://research.vu.nl/files/62846778/complete%20dissertation.pdf
https://doi.org/10.1007/3-540-62950-5_80
http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/max.pdf
http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/max.pdf
https://doi.org/10.1007/978-3-540-73449-9_24
http://cl-informatik.uibk.ac.at/isr-2008/html/b.4.html
https://doi.org/10.1007/978-3-540-70590-1_21
https://doi.org/10.4230/LIPIcs.FSCD.2016.32
https://doi.org/10.4230/LIPIcs.FSCD.2016.32
http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/braids.pdf
http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/braids.pdf
https://research.vu.nl/files/62847150/complete%20dissertation.pdf
https://research.vu.nl/files/62847150/complete%20dissertation.pdf

V. van Oostrom 24:19

36 R. Statman. There is no hyperrecurrent s,k combinator. Research Report 91-1332, Department
of Mathematics, Carnegie Mellon University, Pittsburg, PA 15213, June 1991. URL: http:
//shelf2.library.cmu.edu/Tech/53922203.pdf.

37 M. Takahashi. Parallel reductions in λ-calculus. Information and Computation, 118:120–127,
1995. doi:10.1006/inco.1995.1057.

38 Terese. Term Rewriting Systems. Cambridge University Press, 2003.

A Proofs omitted from the main text

Proofs of second and third items of Lem. 8.
Assume → has the Z-property for bullet function •. Define ⋆ to be • updated to map
each object that is not the source of some step, to itself.
To see that ⋆ is extensive, we distinguish cases on whether a is the source of some step or
not. If it is, say a→ b, then b↠ a• ↠ b• by the Z-property for •. Hence a↠ a• = a⋆ by
composition and definition of ⋆. If it is not, then a↠ a⋆ = a by reflexivity and definition
of ⋆.
To see that → has the Z-property for ⋆, suppose a→ b. By the Z-property for • and by
definition of ⋆, then b↠ a• = a⋆ ↠ b•. The result follows if, as we claim, b• = b⋆. That
follows by noting that, by definition of ⋆, the only way in which b• = b⋆ could fail to
hold, is if b were not the source of some step. But then the above reduction collapses to
b = a• = a⋆ = b• and we conclude since b = b⋆.
We only check the additional conditions on either side w.r.t. the first item.
For the only–if-direction, suppose → has the Z-property for an extensive •. To show
a ◦−→ a•, distinguish cases on whether there is some →-step from a or not. If there is,
say a → b then by the Z-property, a ↠ b• ↠ a•. If there is no →-step from a, then
extensivity of • entails a = a•. In either case, a ↠ a• ↠ a• by reflexivity of ↠, so
a ◦−→ a• by definition of ◦−→. ◀

Proof of Lem. 34.
(Sequentialisation) The proof is by induction on t. If t is a variable, then ts = t⟨s] and
we conclude by reflexivity. Otherwise, t has shape t1t2 and we conclude using the IH to
ts = t1t2s→ t1(t2s) ↠ t1t2⟨s] = t⟨s] from which the statement follows by transitivity.

(Compatible) We show the stronger fact that single steps in either t or s are preserved, by
induction on t, which suffices by transitivity of ↠. If t is a variable x, then s→ s′ and
t⟨s] = xs→ xs′ = t⟨s′] by compatibility of reduction. If t = t1t2, we distinguish cases on
where the step takes place:

If the step takes place at the root of t, then t = t11t12t2 → t11(t12t2) = t′ and
we conclude by unfolding the definition of right-substitution twice on both sides to
t⟨s] = t11t12t2⟨s]→ t11(t12t2⟨s]) = t′⟨s];
If the step takes place in t1, then t⟨s] = t1t2⟨s]→ t′1t2⟨s] = t′⟨s] by compatibility of
reduction;
If the step takes place in t2, then t⟨s] = t1t2⟨s] → t1t

′
2⟨s] = t′⟨s] by the IH and

compatibility of reduction;
If the step takes place in s, then t⟨s] = t1t2⟨s] → t1t2⟨s′] = t⟨s′] by the IH and
compatibility of reduction.

(Substitution) The statement is shown by induction on t. If t is a variable, say x then
t⟨s]⟨r] = xs⟨r] = t⟨s⟨r]] by unfolding the definition of right-substitution. If t has shape
t1t2, then t⟨s]⟨r] = t1t2⟨s]⟨r] = t1t2⟨s⟨r]] = t⟨s⟨r]] by unfolding the definition of right-
substitution and the IH. ◀

FSCD 2021

http://shelf2.library.cmu.edu/Tech/53922203.pdf
http://shelf2.library.cmu.edu/Tech/53922203.pdf
https://doi.org/10.1006/inco.1995.1057

24:20 Z; Syntax-Free Developments

Proof of Lem. 35.
(Extensive) By induction on t. If t is a variable, then t = t• and we conclude by reflexivity
of ↠. Otherwise t has shape t1t2, and we conclude by (Sequentialisation), the IH twice,
(Compatible), and definition to t1t2 ↠ t1⟨t2] ↠ t•1⟨t•2] = (t1t2)•;

(Rhs) By (Sequentialization) twice and (Substitution) we conclude t•(s•r•) ↠ t•⟨s•⟨r•]] =
t•⟨s•]⟨r•] = (tsr)•;

(Z) As • maps to normal forms, we show a strengthening of the Z-property, s↠ t• = s•,
for all steps t→ s, by induction and cases on t.
If t is a variable, then the statement holds vacuously since the term then does not allow
any step. Otherwise, t has shape t1t2 and we distinguish cases on the position of the step.

If the step takes place at the root, then t = (t11t12)t2 → t11(t12t2) = s, and we
conclude using (extensive), (Rhs), the definition, and (Substitution) to t11(t12t2) ↠
t•11(t•12t

•
2) ↠ (t11t12t2)• = t•11⟨t•12]⟨t•2] = t•11⟨t•12⟨t•2]];

If the step takes place in t1, say t1 → s1, then we conclude using the IH, (Extensive),
(Sequentialisation) and definition to s1t2 ↠ t•1t

•
2 ↠ (t1t2)• = t•1⟨t•2] = s•

1⟨t•2] = (s1t2)•.
If the step takes place in t2 we proceed as in the previous item. ◀

Proof of Lem. 40. Both items can we proven by induction on t or via the alternative
definition of uniform distribution by means of substitution as given in the main text. We
give samples of both:

(Sequentialisation) For variables xs = x[s], and for applications t1t2s → t1s(t2s) ↠
t1[s]t2[s] = (t1t2)[s], as tis↠ ti[s] by the IH;

(Compatible) t[s] = tσ for the substitution σ mapping x to xs, and t′[s′] = t′σ
′ for

σ′ mapping x to xs′. Hence if t ↠ t′ and s ↠ s′ then σ ↠ σ′, hence tσ ↠ t′σ
′ by

compatibility of rewriting with substitution; and
(Substitution) For variables x[s][r] = (xs)[r] = xrs[r] ↠ x[r][s[r]] by Sequentialisa-
tion twice, and for applications (t1t2)[s][r] = t1[s][r]t2[s][r] ↠ t1[r][s[r]]t2[r][s[r]] =
(t1t2)[r][s[r]] by the induction hypothesis twice. ◀

Proof of Lem. 41. The items are proven by induction on t.

(Extensive) For variables x = x•, and for applications ts ↠ t[s] ↠ t•[s•] = (ts)• by
(Sequentialisation) first and then (Compatible) using the IH twice;

(Z) We distinguish cases on whether the step is a head step or not.
Suppose the step is a head step, so has shape tsr → tr(sr). Then tr(sr) ↠ t[r]s[r] =
(ts)[r] ↠ (ts)•[r•] = (tsr)• by (Sequentialisation) and (Extensive), twice. Monotonicity
of • holds by (tsr)• = t•[s•][r•] ↠ t•[r•][s•[r•]] = (tr(sr))• using (Substitution).
If t1t2 → s2s2 because ti → si and t3−̇i = s3−̇i for some i ∈ {1, 2}, then sj ↠
t•j ↠ s•

j for j ∈ {1, 2}, either by the IH, or (Extensive) and reflexivity. Using that,
(Sequentialisation), and (Substitution) s1s2 ↠ s1[s2] ↠ t•1[t•2] = (t1t2)• ↠ s•

1[s•
2] =

(s1s2)•. ◀

Proof of Lem. 61. Orthogonality is preserved since brackets are only inserted between
original function symbols, so overlapping [T]-redex-patterns are mapped to overlapping
T -patterns by projecting brackets on their first arguments. That [T] is non-erasing holds
per construction.20

The second part holds per construction of saturating left-hand sides of rules with memory.
◀

20 if T is orthogonal and right-linear, then [T] is linear, so has random descent [30]: all reductions to a
normal form have the same length.

V. van Oostrom 24:21

Proof of Lem. 65. For the first item first note that its only–if-direction requires n > 0 as
otherwise T n has no rules. Then, all (priming, labelling) operations for obtaining the rules
of T ω from those of T are linear (only unary function symbols are added/removed) and
redex-patterns overlapping in T ω still do so after removing labels and collapsing f ′–f -pairs
to f . T n being a sub-system of T ω the properties are preserved.

The second item holds per construction of the rules with both left- and right-hand sides
being of shape t′ in which labels are inserted, for some t. Note that we also have the structural
properties that reachable terms have at least one label between any two non-labels and
removing all labels yields a term of shape s′ for some s.

Maranget [19] shows termination in the third item is a consequence of RPO, for the
greater–than relation on labels, which is well-founded by the assumption that labels < n .
Instead of basing ourselves on RPO, we can also give a direct inductive proof of termination
in the style of van Daalen [17, 4]. In particular, we specialise the higher-order approach of [28]
to first-order term rewriting. The proof is based on the so-called RHS lemma [28, Lemma 8]21

stating that a term rewrite system is terminating iff rσ is terminating for every rhs r of a rule
and terminating substitution σ. The only–if-direction of the RHS-lemma being trivial, to see
the if-direction holds note that if there were a non-terminating term then there would be
one of minimal size which then would have shape f (⃗t) with all t⃗ terminating by minimality.
Hence an infinite reduction from it would have shape f (⃗t) ↠ f(s⃗) = ℓσ → rσ ↠ . . . for some
rule ℓ→ r, substitution σ, and terms s⃗ such that ti ↠ si for all i. This is impossible as
rσ is terminating by assumption since σ is terminating as it assigns subterms of the s⃗ to
variables22 and each si is terminating as reduct of ti.

To establish the assumption of the RHS lemma for T n we prove the more general
claim23 that (tm)σ is terminating for every m ≤ n, term t over (primed) symbols in T , and
terminating substitution σ. This suffices as per construction of T n rhss of rules have this
shape since labels in lhss are < n.24 The proof of the claim is by induction on the pair (m, t)
ordered by, in lexicographic order, the greater-than-or-equal order and the subterm order,
and by distinguishing cases on the shape of t.

If t is a variable, then (xm)σ := m(xσ) and we conclude by the assumption that σ is
terminating, since the head symbol m is not affected by any step per construction of T ω;
labels occur in lhss only between (possibly primed) T -symbols.
Otherwise t has shape f (⃗t) for some (possibly primed) T -symbol. Since each (tmi)σ is
terminating by the IH, which applies by a decrease in the second component of the pair, a
hypothetical infinite reduction from (tm)σ must then contain a head-step, i.e. have shape

m(f((⃗tm)σ)) ↠ m(f(s⃗)) = m(ℓτ)→ m((rk)τ) ↠ . . .

for some T n rule of shape ℓ→ rk with k the maximum of the labels in ℓ plus one,
substitution τ and r a term over (possibly primed) T -symbols, and terms s⃗ such that
(tmi)σ ↠ si for each i. This is impossible as (rk)τ is terminating by the IH, which applies
by a decrease in the first component of the pair: m < k because (tmi)σ ↠ si guarantees

21 Despite being intuitive and easy to prove the right-hand side lemma is informative: it would already
fail for first-order TRSs if left-hand sides of rules were allowed to be single variables, consider the “rule”
x → x, and for higher-order TRSs it would fail if non-pattern-lhss were allowed [28].

22 Here we use that left-hand sides of term rewrite rules are not single variables.
23 To enable induction on terms; rhss of rules are not closed (as rhss!) under subterms in general.
24 Although terms of T n may contain labels > n, these need not be taken into consideration here. They

have been “filtered-out” already by means of the RHS lemma so to speak, since labels > n do not occur
in the rules of T n.

FSCD 2021

24:22 Z; Syntax-Free Developments

that m is the head symbol of each si, and per construction of T ω the lhs of any rule
applicable to f(s⃗) contains the labels directly below f ; in fact f must be a (unary) primed
symbol having a corresponding unprimed symbol (in T) below it. That τ is terminating
follows from that it assigns subterms of the si to variables, which are reducts of the
(tmi)σ. ◀

Proof of Lem. 67. We proceed as in the proof of Proposition 58, here stressing the similarity
of structure and referring to that proof for details. We show that for all natural numbers n,
for all T n reductions γ, δ : t ↠ s we have γ ≃ δ by induction on t ordered by the union of
← and the sub-term relation, well-founded since T n is terminating. This suffices since any
pair of T ω-reductions is a pair of T n-reductions (take n greater than all labels occurring in
the redex-patterns contracted in γ, δ), and T n-projection equivalence entails T ω-projection
equivalence.

Suppose γ, δ were minimal such that γ ̸≃ δ. By residual theory, the peak γ, δ can be
completed by a valley comprising γ′ := δ/γ and δ′ := γ/δ such that γ · γ′ ≃ δ · δ′. By
assumption, at least one of γ′, δ′ must be non-empty. We may assume that γ, δ are standard,
and by minimality that they don’t have the same first step (one may be empty), and at
least one of them, say w.l.o.g. γ, contains a head step. Since the system is orthogonal, [15,
Lemma 1] yields then that δ does not contain a head step. Hence γ/δ ̸≃ δ/γ since γ/δ
contains a head step as projection of a reduction γ containing a head step over a reduction δ

containing none, and δ/γ contains no head step as projection of δ containing none over another
reduction γ, using that T n-rules are non-collapsing. Their sources being →+-reachable from
t, γ/δ, δ/γ contradicts minimality of γ, δ. ◀

Recursion and Sequentiality in Categories of
Sheaves
Cristina Matache
University of Oxford, UK

Sean Moss
University of Oxford, UK

Sam Staton
University of Oxford, UK

Abstract
We present a fully abstract model of a call-by-value language with higher-order functions, recursion
and natural numbers, as an exponential ideal in a topos. Our model is inspired by the fully abstract
models of O’Hearn, Riecke and Sandholm, and Marz and Streicher. In contrast with semantics based
on cpo’s, we treat recursion as just one feature in a model built by combining a choice of modular
components.

2012 ACM Subject Classification Theory of computation → Denotational semantics; Theory of
computation → Categorical semantics

Keywords and phrases Denotational semantics, Full abstraction, Recursion, Sheaf toposes, CPOs

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.25

Funding Cristina Matache: Research supported by an EPSRC studentship and Balliol College and
Clarendon Fund scholarships.
Sean Moss: Research supported by a Junior Research Fellowship at University College, Oxford.
Sam Staton: Research supported by a Royal Society University Research Fellowship and the ERC
BLAST grant.

1 Introduction

This paper is about building denotational models of programming languages with recursion
by using categories of sheaves. The naive idea of denotational semantics is to interpret every
type A as a set of values JAK, every typing context Γ as a set of environments JΓK, and every
term Γ ⊢ t : A as a partial function JtK : JΓK ⇀ JAK, so that composing terms corresponds to
composing functions. A more general approach says that a “denotational model” is a category
with enough structure, such as a category of sets, so that we regard JΓK and JAK as objects
of that category, and JtK as a morphism. In our work here, we work in various categories of
sheaves, so that JΓK and JAK are sheaves, which is not far from the naive set-theoretic idea
because categories of sheaves are often regarded as models of intuitionistic set theory. As
we will explain, each category of sheaves is captured by a small site, and by combining or
comparing sites we can combine and compare different denotational models of programming
languages.

We illustrate this by combining sites to give a fully abstract model of a call-by-value PCF.
Full abstraction means that two terms t, u are interpreted as equal functions (JtK = JuK) if
and only if they are contextually equivalent. In PCF, which is a simple functional language,
the main challenge for full abstraction is to capture the fact that PCF is sequential, in that
it does not have any primitives for parallelism.

© Cristina Matache, Sean Moss, and Sam Staton;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 25; pp. 25:1–25:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSCD.2021.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Recursion and Sequentiality in Categories of Sheaves

Our model is inspired by earlier models that were not explicitly sheaf-theoretic [36, 39, 46].
Our fully abstract model is built by combining many different sites which include one for
recursion and that happen to include sites that will turn out to give full definability with
truncated natural numbers. Overall, this truncated full definability can be used to prove full
abstraction of the model.

Although the focus of this paper is on a simple PCF-like language, a broader agenda
is to combine this analysis of recursion and sequentiality with recent sheaf-based models
for other phenomena, including concurrency (e.g. [2]), differentiable programming [42, 18],
probabilistic programming [16], quantum programming [27] and homotopy type theory [1].
The broader context, then, is to use sheaf-based constructions as a principled approach to
building sophisticated models of increasingly elaborate languages.

If the reader is familiar with synthetic domain theory, they may regard the contribution of
this paper as an account of full abstraction in that tradition: at a high level we are merging
the sheaf model of [14] with the Kripke model of [36], via [9]. We give a survey of synthetic
domain theory in §8.2.

We now introduce the key ideas of our paper: to consider a general theory of “normal”
models of PCF (§1.1) and then to build a fully abstract one by combining certain sites (§1.2).

1.1 Normal models of PCF
The key general definition of our paper is that of “normal model” (Definition 4.1). This has
three components: a sheaf category; it has a well-behaved notion of partial function; and it
supports recursion. We now discuss these three components. We motivate with the example
of the extended vertical natural numbers: the linear order V = {0 ≤ 1 ≤ · · · ≤ n ≤ . . .∞}.
It is informally an interpretation of the ML datatype datatype v = succ of (unit -> v),
or data V = Succ V in Haskell, and it is widely regarded as a source of recursion (e.g. [6]).

Sheaf categories. We interpret types of the language as sheaves and terms as natural
transformations between them. Following our motivating example, a (concrete) v-set is a
set X together with a given set CX ⊆ [V→ X] of chains with endpoints; these should
be closed under pre-composition with Scott-continuous functions of V and contain all
constant functions. For example, any cpo X can be regarded as a concrete v-set where
the chains are the chains in X with their limits. The concrete v-sets form the (concrete)
sheaves on the one object category V whose morphisms are Scott-continuous functions
V→ V (§5). It is helpful to bear in mind two views of this category, or any category of
sheaves:

The external view is that the sheaves comprise sets with infinitary logical relations (of
arity V). The invariance property has the flavour of a Kripke structure, so they are
similar to Kripke logical relations.
The internal view is that the category of sheaves is a model of intuitionistic set theory,
with a special object V for which all functions V→ V are continuous.

Partial functions with semidecidable domains. Our programming language contains func-
tions that might not terminate, and so programs correspond to partial functions. In-
tuitively, we should only consider partial functions with a semidecidable domain. We
formalize this by requiring that a normal model have a specified sheaf ∆ of “semidecidable
truth values” (§3, Definition 3.1). For example, in concrete v-sets we pick ∆ = {0 ≤ 1}
with C∆ ⊆ [V→ ∆] the characteristic functions of infinite or empty up-sets. In general, a
choice of object ∆ induces a “lifting” monad L. So we can program with partial functions
X → L(Y) using Moggi’s monadic metalanguage [32].

C. Matache, S. Moss, and S. Staton 25:3

Recursion via orthogonality. Among the v-sets, there is a canonical sheaf V, but actually
we can construct an analogous sheaf ω̄ in any sheaf category with a semidecidable
truth object ∆, by taking a limit of a chain (§2.1). We can also define a non-extended
vertical natural numbers sheaf ω by taking a colimit of a chain; in v-sets this is the set
{0 ≤ 1 ≤ . . . } without an endpoint, with chains all the eventually constant ones.
Our language has recursion, and we interpret recursive definitions in a sheaf A by using
Tarski’s fixed point theorem, by building a chain and taking its formal limit. This can be
done in a canonical way when A is complete, which we define in terms of orthogonality.
The conditions says that the morphism Aω̄ → Aω induced by ω ⊆ ω̄ is an isomorphism:
intuitively, every chain has a canonical upper bound (§2.2). We give a recipe for showing
that A is complete for the interpretation of any type (§3.1).

Recall that cpo’s can be regarded as v-sets,. The constructions of product, function cpo,
and lifting are all preserved by the inclusion functor hence the interpretation in v-sets is
equivalent to the usual one in cpo’s. The point is that we can now follow the same kind of
interpretation in any sheaf category with this structure, and we can combine our site V with
other sites, as we now explain.

1.2 Combining sites and full abstraction
In §6, we build a sheaf category that is a normal model for our variant of PCF, that we
show to be fully abstract in Theorem 7.7. Our argument is based on full definability: every
morphism has a syntactic counterpart.

Our construction in §7 is non-syntactic, but by way of motivation we first consider a site
built from the syntax of PCF. First, let us define a syntactic “semidecidable subset” of a
type τ to be a definable function s : τ → unit, i.e. it will either terminate or diverge. Now
we temporarily define a category Syn where the objects are pairs (τ, s) of a type τ and a
semidecidable property. A morphism f : (τ, s)→ (τ ′, s′) is a definable function f : τ → τ ′

such that s =
(
λx. f(x); ()

)
and f =

(
λx. s(x); let y = f(x) in s′(y); y

)
. In other words, the

morphisms of this category should be regarded as total maps on their given domains.
The presheaf category [Synop, Set] nearly satisfies all the requirements of a normal model,

and since the Yoneda embedding Syn → [Synop, Set] is always full and faithful, we almost
have a model with full definability. There are two obstacles which we will explain how to
bypass: the natural numbers are not preserved by the Yoneda embedding, and we would
prefer a non-syntactic model. To resolve these issues we also need machinery for combining
concrete sites.

Natural numbers objects and truncated definability. In a non-trivial sheaf category there
are uncountably many morphisms N → N. This is arguably a good thing, in that we
can reason set-theoretically, but it means that we cannot have full definability because
the syntax is countable. We follow Milner [31] in considering, for each n, a version of
PCF where any natural number > n triggers divergence. For this truncated language, it
is possible to impose a sheaf condition on the site Syn so that the Yoneda embedding
Syn → Sh(Syn) preserves the structure of the language. Now, by combining sites for all
possible n, together with V to include recursion, we end up with sufficient definability.

Non-syntactic models. To avoid using the syntax of PCF in the definition of the model, we
consider a broader semantic class of sites that we can show include ones with truncated full
definability. We assemble this broad class of sites by using a general method (§6.3) based
on a semantic structure for sequentiality called “structural systems of partitions” [30, 46].

FSCD 2021

25:4 Recursion and Sequentiality in Categories of Sheaves

Combining sites and concreteness. PCF satisfies the context lemma, which is to say that
the meaning of a term with free variables can be determined by substituting closed values
for those variables. In a categorical semantics, since the terminal object interprets the
empty context, the context lemma indicates that we are working with categories E that
are concrete in the sense that the hom-functor E(1,−) : E → Set is faithful: in effect, we
are working with a category of sets and functions.
Sheaf categories are not concrete in general. In fact, in future work we intend to use
non-concrete sheaf categories to address non-well-pointed phenomena in semantics [24].
But to model PCF, we need to ensure that when we combine sites we preserve concreteness.
To this end we introduce a notion of sum for concrete sites, and show that it is a way
of building normal models (§6.4). Moreover, as we show, there are structure preserving
functors out of this sum (Proposition 6.12).

In summary, we build our fully abstract model by taking the sum of all the concrete sites
that can be built with structural systems of partitions, together with V for recursion. We
then show that all the definable models arise, and hence obtain the definability property,
from which we can deduce full abstraction.

2 A categorical setting for recursion

Recursion in a programming language is usually interpreted using Tarski’s fixed point theorem
(e.g. [17, §12.5]). Although this is usually phrased in terms of partial orders of some flavour,
in this section we provide a general abstract categorical treatment (Theorem 2.2). We give a
language and its interpretation in §4.

For this section we fix a cartesian closed category C with a pointed strong monad L.
Recall that a cartesian closed category allows us to interpret a terminating typed λ-calculus,
and that a strong monad is a triple (L, {ηX : X → L(X)}X , {>>=X,Y : L(Y)X → L(Y)L(X)})
satisfying associativity and identity laws, which allows us to interpret impure computation.
A pointed monad is one equipped with a natural family of maps ⊥A : 1 → L(A). We will
think of L as a partiality monad, so that morphisms Γ→ L(X) are thought of as programs
that need not terminate. Our main example is the category vSet with its lifting monad LvSet
given in §5, and the category G with LG given in §7 is another. In the meantime, it might
help the reader to think of the category whose objects are posets and whose morphisms are
monotone maps which preserve all suprema of ω-chains that exist, together with the monad
that adds a new element to the bottom of a poset. Then Definition 2.1 below would pick out
as a full subcategory the category of ω-cpo’s and ω-continuous maps.

Many of the ideas in this section and in §3 are well established in synthetic/axiomatic
domain theory. We review the literature in §8.2.

2.1 Vertical natural numbers
In this abstract setting, provided certain limits and colimits exist, we can construct objects
analogous to the linear orders (0 ≤ 1 ≤ 2 ≤ . . .) and (0 ≤ 1 ≤ 2 ≤ · · · ≤ ∞), respectively
called the finite and extended vertical natural numbers. The relationship between these is
crucial for Tarski’s fixed point theorem.

We assume that the following sequential diagram has a limit ω̄:

1 !←− L1 L(!)←−− LL1 LL(!)←−−− . . . (1)

C. Matache, S. Moss, and S. Staton 25:5

We think of this limit as the extended vertical natural numbers. In particular, there is a
morphism succω̄ : ω̄ → ω̄ determined by the cone over diagram (1) with apex ω̄ given by
ω̄ → Ln1 ηLn1−−−→ Ln+11 and ! : ω̄ → 1 = L01. There is another cone with apex 1 given by
1

ηLn−11◦...◦η1−−−−−−−−−→ Ln1 which defines a morphism ∞ : 1→ ω̄. Note that succω̄ ◦∞ =∞.
We also assume that the following diagram has a colimit ω:

1 ⊥1−−→ L1 L(⊥1)−−−−→ LL1 LL(⊥1)−−−−−→ . . . (2)

We think of this colimit as the finite vertical natural numbers. In particular, there is a cocone
over diagram (2) with apex ω given by Ln1 ηLn1−−−→ Ln+11 → ω which defines a morphism
succω : ω → ω. There is a canonical comparison map i : ω → ω̄ which comes from maps
Lm1 Lm(⊥1)−−−−−→ . . .

Ln−1(⊥1)−−−−−−→ Ln1 for m ≤ n and Lm Lm−1(!)−−−−−→ . . .
Ln(!)−−−→ Ln1 for m ≥ n.

It is straightforward to check that i ◦ (succω : ω → ω) = (succω̄ : ω̄ → ω̄) ◦ i.

2.2 Complete objects and fixed points
In the traditional poset-based setting, Tarski’s fixed point theorem requires that every chain
has a least upper bound. This completeness can be expressed in this abstract categorical
setting because a morphism ω → X can be thought of as a chain in X.

Recall that an object X is said to be right-orthogonal to a morphism f : A→ B if every
map A→ X factors uniquely through f . We can then make the following definition:

▶ Definition 2.1. An object X ∈ C is L-complete if it is right-orthogonal to the morphism
idA × i : A× ω → A× ω̄ for every A ∈ C.

For example, in the category of ω-cpo’s and continuous maps, all objects are complete for
the usual lifting monad. From §3 we will work in sheaf categories where one does not expect
this.

The present abstract setting admits the following fixed point theorem. The theorem
is about L-complete objects that are moreover L-algebras (i.e. objects X equipped with a
morphism L(X)→ X satisfying conditions). In the poset setting, L-algebras are just partial
orders with a least element.

▶ Theorem 2.2. Let X ∈ C be an L-algebra and LX an L-complete object. Then for any
map g : Γ×X → X we can construct a fixed point ϕg : Γ→ X such that ϕg(ρ) = g(ρ, ϕg(ρ)).

Given an interpretation for a language in C such that types are L-complete objects, we
can use Theorem 2.2 to interpret fixed points suitable for call-by-value:

▶ Corollary 2.3. Consider objects Γ, A, B in C such that L(LBA) is a L-complete object.
For a morphism M : Γ× LBA × A→ LB we can construct a fixed point recM : Γ→ LBA

such that: recM (ρ)(a) = M(ρ, recM (ρ), a).

Both fixed points ϕg and recM are constructed in Appendix A.1.

3 Partial maps, semidecidability and recursion in toposes

In this section we keep fixed a Grothendieck topos E . (We will not assume deep familiarity
with Grothendieck toposes, but we recall that they are cartesian closed categories with a
particularly well behaved notion of subobject and also well-behaved limits/colimits; these
toposes turn out to be exactly the categories of sheaves on sites, see §6.1.) We suppose
moreover that E comes with a suitable notion of “semidecidable subset”, which is classified
by an object ∆ of E as follows.

FSCD 2021

25:6 Recursion and Sequentiality in Categories of Sheaves

▶ Definition 3.1. For a fixed object ∆ and a fixed monomorphism ⊤ : 1 ↣ ∆, we say a
subobject of A is semidecidable if it is a pullback of ⊤ along some map A→ ∆.

We say that ⊤ : 1 ↣ ∆ is a generic semidecidable subobject if:
for every semidecidable subobject m : A′ ↣ A there is precisely one map ϕ : A→ ∆ such
that m is the pullback of ⊤ along ϕ;
every 0 ↣ A is semidecidable;
semidecidable monomorphisms are closed under composition.

Our notion is almost exactly what was called a “dominance” in [40] and a “partial truth value
object” in [34]. The difference is our requirement that the empty subobjects be semidecidable.

Throughout this section we assume a fixed generic semidecidable subobject ⊤ : 1 ↣ ∆.
It is straightforward to show that semidecidable subobjects are closed under finite meets,
including top subobjects, and stable under pullback. Moreover, all coproduct inclusions are
semidecidable.

A partial map A ⇀ B consists of a semidecidable subobject A′ ↣ A and a map A′ → B.
Partial maps form a category, which can be given directly or described as the Kleisli category
for a certain strong monad L∆, the lifting monad. The unit of this monad assigns to each
object B its partial map classifier B ↣ L∆B, which is characterized by the property that
maps A→ L∆B correspond to partial maps A ⇀ B (the domain of the partial map is given
by pulling back the subobject B ↣ L∆B). It is well-known that this gives a strong monad
on E [34, 5], which is moreover commutative and an “equational lifting monad” in the sense
of [3]. The fact that 0 ↣ 1 is semidecidable means that L∆ has a point ⊥A : 1→ L∆A.

3.1 Recipes for complete objects
We now show that a large amount of recursion comes from the assumption of L∆-completeness
of the generic semidecidable ∆. Since we are working in a Grothendieck topos E , the colimit
ω∆ and limit ω̄∆ arising from the lifting monad L∆ exist and are preserved by products,
as in §2.1. It is useful to consider a slight strengthening of the L∆-completeness condition,
which roughly says that an object is L∆-complete with respect to partial maps.

▶ Definition 3.2. Let O∆ be the class of maps in E which are pullbacks of maps i × idA :
ω∆×A→ ω̄∆×A along semidecidable subobjects of ω̄×A. Write O�

∆ for the class of objects
right orthogonal to every map in O∆.

The following facts are standard and straightforward.
O�

∆ is contained in the class of L∆-complete objects.
O∆ is closed under the operations (−)×idA, under pullback along semidecidable subobjects,
and under colimits in the arrow category of E .
O�

∆ is a reflective subcategory of E , closed under limits, and an exponential ideal.
Every Grothendieck topos E admits a set S which generates E under colimits: if E is a
presheaf topos, one may take S to be the representable presheaves; more generally if E is
a sheaf topos take S to be the sheafiied representables. Then it follows that the class O�

∆
is equivalently the class of objects right orthogonal to a certain small subset of O∆, those
maps of the form i× idA for A ∈ S taken from the generating set.

We summarize the following consequences of the assumption of ∆ being L∆-complete.

▶ Proposition 3.3. Suppose that ∆ is L∆-complete.
∆ is in O�

∆, and for A ∈ E, A ∈ O�
∆ iff L∆A is L∆-complete iff L∆A ∈ O�

∆.
O�

∆ is closed under L∆ and contains 0.
O�

∆ is closed under I-indexed coproducts iff
∑

J 1 ∈ O�
∆ for some set J with |I| ≤ |J |.

C. Matache, S. Moss, and S. Staton 25:7

Proof notes. ∆ being L∆-complete means that there is a bijection between the semidecidable
subobjects of ω∆ × A and ω̄∆ × A for any A. From this, and the fact that ∆ ∼= L∆1, one
deduces the first claim. Closure of O�

∆ under L∆ can be obtained directly, but also follows
from Theorem 3.1 of [8], since L∆ is a special case of a partial product functor. Finally,
note that

∑
J 1 ∈ O�

∆ implies that a J-indexed join of disjoint semidecidable subobjects of
A× ω̄∆ is semidecidable iff the join of their pullbacks to A× ω∆ is semidecidable. ◀

4 A higher-order language with recursion

In this section we introduce the call-by-value calculus PCFv whose models we will study in
the rest of the paper. The calculus is an extension of the simply typed lambda calculus with
binary products and sums and a type nat of natural numbers. PCFv is given as a fine-grained
call-by-value calculus [25], which means there is a syntactic distinction between values and
computations. It includes a construct for defining recursive functions (rec f x. t) which should
be thought of as the recursive definition of a function f , f(x) = t. There is also a construct
for explicitly sequencing computations letx = t in t′.

Types: τ F 0 | 1 | nat | τ + τ | τ × τ | τ → τ

Values: v, wF x | ⋆ | inl v | inr v | (v, v) | zero | succ(v) | λx. t | rec f x. t
Computations: tF return v | case v of {inlx→ t, inr y → t′} | π1v | π2v | v w

| case v of {zero→ t, succ(x)→ t′} | letx = t in t′

There are two typing relations, one for values, ⊢v, and one for computations, ⊢c, defined
as usual. We can define a big-step operational semantics in the usual way, by induction on
types, as a relation ⇓τ between a closed computation and a closed value, both of type τ . The
complete definitions appear in Appendix B. For example:

Γ, x : τ ⊢c t : τ ′

Γ ⊢v λx. t

Γ, f : τ → τ ′, x : τ ⊢c t : τ ′

Γ ⊢v rec f x. t : τ → τ ′
t[(rec f x. t)/f, v/x] ⇓τ ′ w

(rec f x. t) v ⇓τ ′ w

The operational semantics gives the usual notion of contextual equivalence: two computations
t and t′ are contextually equivalent iff, for all contexts C such that C[t] and C[t′] are closed
computations of ground type, C[t] ⇓τ v ⇔ C[t′] ⇓τ v, and similarly for values.

4.1 Denotational semantics
We now outline the framework used for our denotational semantics of PCFv.

▶ Definition 4.1. A normal model of PCFv is a Grothendieck topos E together with a
generic semidecidable subobject 1 ↣ ∆ such that L∆(NE) is a complete object for L∆, where
NE =

∑∞
0 1.

The interpretation of PCFv types in any normal model E is given by J0K = 0, J1K = 1,
JnatK =

∑∞
0 1 = 1 + 1 + . . ., Jτ → τ ′K = JτK⇒ L∆Jτ ′K, Jτ × τ ′K = JτK× Jτ ′K, and Jτ + τ ′K =

JτK + Jτ ′K. The interpretation for values and computations is standard. A value Γ ⊢v v : τ
is interpreted as a morphism JΓK → JτK in E . A computation Γ ⊢c t : τ is a morphism
JΓK → L∆JτK. The term (rec f x. t) can be interpreted with the fixed point constructed
in Corollary 2.3.

Since ∆ ∼= L∆1 (Definition 3.1) is a retract of L∆(NE), the object ∆ in a normal model
is L∆-complete. Hence it follows from Proposition 3.3 and its preceding discussion that all
PCFv types are interpreted as L∆-complete objects in a normal model.

FSCD 2021

25:8 Recursion and Sequentiality in Categories of Sheaves

5 Presheaves on the vertical natural numbers

This section describes the category vSet, an example of a normal model. An object of vSet, or
a v-set, is intuitively a set of points equipped with a abstract collection of limiting ω-chains.
We ask that the chains be closed under the action of a monoid of reindexings.

Let V be the monoid of continuous monotone endomorphisms of the extended vertical
natural numbers {0 ≤ 1 ≤ · · · ≤ n ≤ · · · ≤ ∞}. As such, it is a one-object full subcategory
of the category ωCPO of ω-cpo’s. Recall that the category [Cop, Set] of presheaves on a small
category C is the category with objects contravariant functors F : Cop → Set and morphisms
F → G natural transformations.

▶ Definition 5.1. vSet is the category [Vop, Set] of presheaves on V.

Equivalently, vSet is the category of sets equipped with an action of the monoid V with
equivariant maps. For X ∈ vSet we think of X(V) as a set of “abstract chains”. We write |X| =
vSet(1, X) for the set of global elements, thought of as “points”; note that we can also describe
|X| as the set of x ∈ X(V) such that X(e)(x) = x for all e ∈ V(V,V). Thus each abstract
chain s ∈ X(V) gives an actual chain of points of X: X(c0)(s), X(c1)(s), . . . , X(c∞)(s),
where cn : V→ V is the constant map with value n for n ∈ N ⊔ {∞}.

The category ωCPO embeds fully-faithfully into vSet by mapping an ω-cpo D to the set
of ω-chains in D each equipped with their supremum. V-sets in the image of ωCPO have
several special properties; one of them is that the map X(V) → Set(N ⊔ {∞}, |X|) given
by s 7→ λn.X(cn)(s) is injective. An X ∈ vSet with this property is called a concrete v-set,
or concrete presheaf on V (we recall a generalization of this later in Definition 6.4). For
a concrete v-set X, the abstract chains in X(V) may be identified with a set of functions
|V| = N ⊔ {∞} → |X| containing all constant functions and closed under precomposition
with endomorphisms of V.

The full embedding ωCPO ↪→ vSet was already observed by Fiore and Rosolini [13, 14],
who then considered a category of sheaves on V as a model of Synthetic Domain Theory.
Their sheaf condition is not relevant to our work here. They consider a dominance in their
sheaf category, which we treat as a generic semidecidable subobject in vSet. Let ∆vSet ∈ vSet
be the splitting in vSet of the idempotent r1 : V→ V given by 0 7→ 0 and x 7→ 1 for x ≥ 1.
So ∆vSet(V) can be identified with the set of monotone sequences N→ {0, 1}.

▶ Lemma 5.2. ∆vSet is a generic semidecidable subobject, as in Definition 3.1.

Proof notes. The most difficult part to check is that semidecidable monomorphisms are closed
under composition. Given ϕ : A → ∆vSet classifying m : B ↣ A and given ψ : B → ∆vSet,
first note that ψ admits an extension map ψ′ : A → ∆vSet where, for x ∈ A(V), ψ′(x) is
the greatest element of ∆vSet (in the lexicographic ordering) such that ϕ(ψ′(x)) = (1, 1, . . .)
if it exists and ψ′(x) = (0, 0, . . .) otherwise. Then if ψ is the classifier of n : C ↣ B,
the composite mn : C ↣ A is classified by the map ξ : A → ∆vSet where, for x ∈ A(V),
ξ(x)i = min{ϕ(x)i, ψ

′(x)i}. ◀

Thus vSet admits a strong, pointed lifting monad LvSet, given by partial map classifiers
as in the discussion following Definition 3.1. This lifting monad can be explicitly given
by (LvSetX)(V) = {⊥}+

∑
n∈N(X(V))n so it has a copy of the set X(V) for each n ∈ N.

The action of an endomorphism e on V is:

(LvSetX)(e)(s ∈ (X(V))n) =

⊥ if im(e) ⊆ {0, . . . , n− 1}
X(e′)(s) ∈ (X(V))k if e({0, . . . , k − 1}) ⊆ {0, . . . , n− 1},

e(k) > n− 1, e′(i) = e(k + i)− n

C. Matache, S. Moss, and S. Staton 25:9

and (LvSetX)(e)(⊥) = ⊥. There is a ready intuition for (LvSet X)(e) which is precise when
X is a concrete v-set: an element of (X(V))n is a sequence s of elements from |X|, to which
we add n ⊥’s at the beginning. The action (LvSetX)(e) of an endomorphism e of V is now
just the standard reindexing of sequences by function composition (⊥, . . . ,⊥, s) ◦ e.

We now show that (vSet,∆vSet) satisfies the conditions of a normal model (Definition 4.1)
of PCFv, which means showing that LvSet(NvSet) = LvSet(

∑∞
0 1) is LvSet-complete. It is

straightforward to give the following explicit description of ω and ω̄: for the LvSet lifting
monad on vSet, the limit ω̄ is the representable y(V), and i : ω → ω̄ is the subobject of maps
with bounded image (in particular, eventually constant).

▶ Lemma 5.3. ∆vSet is LvSet-complete.

Proof notes. Firstly, one checks that ∆vSet is orthogonal to i : ω → ω̄, since the maps
into ∆vSet from ω or ω̄ are essentially just the eventually constant binary sequences. Then
consider an extension problem f : ω × A → ∆vSet. Precomposing with the surjection on
points

∐
x∈|A| ω× 1{x} → ω×A, there is a unique extension to a map

∐
x∈|A| ω̄× 1{x}. This

gives a unique candidate extension of f to ω̄ × A. To see that this is a valid morphism in
vSet, one simply checks that it maps (ω̄ ×A)(V) into ∆vSet(V). ◀

▶ Proposition 5.4. LvSet(NvSet) = LvSet(
∑∞

0 1) is LvSet-complete.

Proof notes. One observes that any map ω → LvSet(
∑∞

0 1) or ω̄ → LvSet(
∑∞

0 1) factors
through one of the subobjects LvSet(ιi) : ∆vSet ∼= LvSet 1 ↣ LvSet(

∑∞
0 1), where ιi : 1→

∑∞
0 1

is the i-th coproduct inclusion. ◀

Therefore, (vSet,∆vSet) is a normal model for PCFv. Notice that J0K and J1K are concrete v-
sets. It is a standard fact that concrete presheaves are an exponential ideal, and that products
and coproducts preserve concrete presheaves. Moreover, by straightforward inspection the
lifting monad LvSet preserves concreteness as well. Therefore, the PCFv types are interpreted
as concrete presheaves in vSet. This observation is useful for the proof of the next theorem
(Appendix A.2) because we only need to compare certain morphisms on their underlying
points.

▶ Theorem 5.5. The pair (vSet,∆vSet) gives a sound and adequate model of PCFv.
Soundness: t ⇓τ v =⇒ JtK = ηJτK ◦ JvK ∈ LvSetJτK.
Adequacy: if τ is a ground type, JtK = ηJτK ◦ JvK =⇒ t ⇓τ v.

6 Sheaf conditions for sequentiality

In the previous section we used a simple index category, V, to cut down the interpretation
of PCFv-types in Set to a model with recursion. In this section we discuss the other index
categories and their combinations, which we need for a fully abstract model. The motivation
for the new index categories is that they each encapsulate a “prediction” of the underlying
sets of the interpretations of types and the definable morphisms between them. Roughly
speaking, the relations force each prediction to arise as a full subcategory, including what
turns out to be the correct prediction.

6.1 Sites and sheaves
As the fully abstract model of §7 is given as the topos of sheaves on a site, we recall here
some necessary definitions. The standard reference is [20], but for us all sites will be small.

FSCD 2021

25:10 Recursion and Sequentiality in Categories of Sheaves

A site is a small category C equipped with a coverage J , where a coverage J on C is a set
of covering families (a, {fi | i ∈ I}) where a ∈ C and each fi is a morphism fi : ai → a with
codomain a such that, whenever (a, {fi : ai → a | i ∈ I}) ∈ J and g : b → a is in C, there
exists (b, {hi : bi → b | i ∈ I ′}) ∈ J such that, for all i ∈ I ′, there exists j ∈ I and k : bi → aj

such that fj ◦ k = g ◦ hi.
Given a covering family (a, {fi : ai → a | i ∈ I}) ∈ J and a presheaf F : Cop → Set, a

matching family is a collection (si ∈ F (ai) | i ∈ I) such that for all i, j ∈ I, b ∈ C, g : b→ ai,
and h : b → aj we have F (g)(si) = F (h)(sj). A sheaf on the site (C, J) is a presheaf
F : Cop → Set such that for every covering family (a, {fi : ai → a | i ∈ I}) ∈ J and matching
family (si ∈ F (ai) | i ∈ I) there is a unique element s ∈ F (a) such that F (fi)(s) = si for all
i ∈ I. The element s is called the amalgamation of the matching family (si). The category
of sheaves is denoted Sh(C, J).

The notion of coverage we have given here is a minimal one (see A2.1.9 of [20]). There
can be several coverages on one category C giving rise to the same collection of sheaves. It
is common to add saturation conditions to the coverage J to tighten the correspondence
between coverages and collections of sheaves, and also to assist calculation. The following
two are useful for us.
(M) J contains (a, {1a : a→ a}) for all a ∈ C.
(L) If (a, {fi : ai → a | i ∈ I}) ∈ J and (bi, {gij : bij → ai | j ∈ Ji}) ∈ J for i ∈ I then

(a, {figij : bij → a | i ∈ I, j ∈ Ji}) ∈ J .

▶ Example 6.1. Every small category C admits a “trivial” coverage, where J = ∅ and
for which all presheaves on C are J-sheaves. For us, the trivial coverage on C is given by
J = {(a, {1a : a→ a}) | a ∈ C}, which has the same sheaves (all presheaves) but also satisfies
(M) and (L).

A fundamental fact about Sh(C, J) is that it is a reflective subcategory of [Cop, Set],
i.e. the inclusion functor Sh(C, J) ↪→ [Cop, Set] is full, faithful and possesses a left adjoint,
which is called sheafification. A coverage is subcanonical if all of the representable presheaves
C(−, a) for a ∈ C are sheaves – this means that sheafification leaves representables unchanged
as functors Cop → Set. The trivial coverage is subcanonical, but many useful coverages are
not, and in this latter case the sheafified representables play a role analogous to that of the
representable presheaves. Hence we will sometimes find it useful to write y for the composite
C→ [Cop, Set]→ Sh(C, J) of the Yoneda embedding with sheafification.

6.2 Concrete sites
We restrict our attention to a class of sites that are particularly convenient to work with.
Unlike the saturation conditions (M) and (L), these restrictions on C and J do constrain the
possible categories of sheaves. Recall the following from [7].

▶ Definition 6.2. A concrete site is a site (C, J) with a terminal object ⋆ such that the maps
C(a, b)→ Set(C(⋆, a),C(⋆, b)) are all injective, and

∐
i∈I C(⋆, ai)→ C(⋆, a) is surjective for

every covering family (a, {fi : ai → a | i ∈ I}) ∈ J .

In a concrete site it is convenient to define |c| = C(⋆, c) for c ∈ C and to identify each morphism
c→ d with the induced function |c| → |d|. Thus | − | is a faithful (but not necessarily full)
functor C→ Set. For a presheaf X : Cop → Set, we also write |X| = X(⋆) ∼= Nat(1, X).

A concrete site need not be subcanonical, but we can describe the sheafified representables
as follows. For any set A, the presheaf Set(| − |, A) : Cop → Set is a J-sheaf. Every
representable C(−, c) embeds into the sheaf Set(| − |, |c|) by concreteness and it follows that

C. Matache, S. Moss, and S. Staton 25:11

the sheafification y(c) is the smallest subfunctor of Set(|− |, |c|) containing C(−, c) and closed
under amalgamation. When J satisfies (M) and (L), then y(c) is obtained by closing C(−, c)
under amalgamation in just one step.

▶ Example 6.3. The category V as given Definition 5.1 is not quite a concrete site, since it
lacks a terminal object. However, as is well-known, the idempotent splitting of any small
category has an equivalent presheaf category (see A1.1.19 of [20]). As the idempotent splitting
of V contains a terminal object we are free to add it to V, which we now treat as a concrete
site with the trivial coverage.

A concrete site (C, J) is in particular a site, so it has a category Sh(C, J) of sheaves.
However, in this setting there is an especially useful subcategory.

▶ Definition 6.4. Let (C, J) be a concrete site. A concrete presheaf is a presheaf F : Cop →
Set such that, for every a ∈ C, the map (F (x : ⋆→ a))x∈|a| : F (a)→

∏
x∈|a| |F | is injective.

A concrete sheaf is a concrete presheaf which is also a J-sheaf.

The advantage of working with concrete presheaves is that if Y is a concrete presheaf, and
X is any presheaf, then natural transformations α : X → Y are determined by the function
α⋆ : |X| → |Y |. As Y (a) ⊆ Set(|a|, |Y |), we can think of Y as being the set |Y | together with
an ob(C)-indexed family of relations.

We remark that concrete sheaves form a reflective subcategory, and so are closed under
limits, and an exponential ideal. All representables are concrete presheaves and concrete
presheaves are closed under coproducts. Since every concrete presheaf X embeds into the
concrete sheaf Set(| − |, |X|), every concrete presheaf injects into its sheafification and it
follows that the concrete sheaves are closed under coproducts in sheaves.

6.3 Defining concrete sites via systems of partitions
To help us define sites that we need for full abstraction, we first recall the category SSP of
Marz and Streicher [29, 30, 46].

▶ Definition 6.5. Given a finite set w, a system of partitions Sw is a set containing sets of
disjoint subsets of w, that is, (partial) partitions of w, and satisfying the following axioms:
1. {w}, ∅ ∈ Sw.
2. (Refinement) P, Q ∈ Sw and U ∈ P imply that: (P \{U})∪({U∩V | V ∈ Q}\{∅}) ∈ Sw.
3. U, V ∈ P ∈ Sw implies that (P \ {U, V }) ∪ {U ∪ V } ∈ Sw.

The category SSP has objects pairs (w, Sw) of a finite set w and a system of partitions
Sw for it. A morphism f : (v, Sv) → (w, Sw) is a set function f : v → w such that if
P = {w1, . . . , wn} ∈ Sw, then {f−1(w1), . . . , f−1(wn)}\{∅} ∈ Sv. Composition is given by
composition of functions.

The objects of SSP encode the idea of a finite type w together with a system of computable
partial functions w ⇀ N. It may be helpful to think of these as potentially destructive
measurements or observations on an unknown value of type w. A partial partition P ∈ Sw

stands for an equivalence class of such functions which are undefined on w\
⋃
P , constant

on each U ∈ P , and which take distinct values on the members of distinct partition classes
U, V ∈ P , where the equivalence is modulo a permutation of N. Axioms 1 and 3 correspond
to such functions being closed under post-composition with all partial functions N⇀ N, and
containing all constant functions (including the totally undefined one). Axiom 2 says that
two computable functions w ⇀ N can themselves be sequenced together, say by checking
whether w ⊢c t1 : nat returns 0 and if so returning the outcome of w ⊢c t2 : nat.

FSCD 2021

25:12 Recursion and Sequentiality in Categories of Sheaves

In light of the above, there is a natural notion of “semidecidable subobject” in SSP.
For P ∈ Sw, there is a monomorphism (

⋃
P, Sw ↾P) → (w, Sw), where Sw↾P = {Q ∈

Sw :
⋃
Q ⊆

⋃
P}. We say that any monomorphism isomorphic to one of this form is

semidecidable. The corresponding notion of partial map admits partial map classifiers and
hence a lifting monad. This lifting monad is given by LSSP(w, Sw) having underlying set
w ⊔ {⊥} and SLSSP(w,Sw) = Sw ⊔ {{w ⊔ {⊥}}}. We write SSP⊥ for the Kleisli category of
LSSP, or equivalently the category of partial maps in SSP.

We are interested in faithful functors F : C → SSP⊥. The idea is that C stands for a
system of finite types and definable partial functions between them, while F equips each
finite type with a system of measurements which is compatible with the partial functions in
C. We now construct a topos E with generic semidecidable subobject such that E contains C
as a full subcategory, and in which the observations on the SSP-object F (c) are precisely the
partial maps c ⇀ NE =

∑∞
0 1 in E .

▶ Definition 6.6. For a faithful functor F : C → SSP⊥ the category IC,F is as follows.
Objects: pairs (c, U) where c ∈ C and U =

⋃
P for some P ∈ SF (c) (equivalently U = ∅

or {U} ∈ SF (c) by axiom 3 of SSP); and a distinguished terminal object ⋆.
Morphisms X → Y are certain functions |X| → |Y |, where |(c, U)| = U and | ⋆ | = {∗}.
When X = (c, U) and Y = (d, V), we take those functions f : U → V either constant or
for which there is ϕ : c→ d in C such that F (ϕ) : F (c)→ LSSP(F (d)) has domain U and
F (ϕ)(U) ⊆ V . When either of X,Y is ⋆, take all functions.

The category IC,F serves as “totalization” of F : C → SSP⊥, by adding enough subobjects
that every partial map can be represented by a total one. It is not enough to take presheaves
on IC,F . We need a coverage in order to force the coproduct

∑∞
0 1 to have the correct

elements. We emphasize that this is not merely an artefact arising from the sum types in
PCFv, it is necessitated by a normal model having nat interpreted as the coproduct

∑∞
0 1.

▶ Definition 6.7. Given a faithful functor F : C → SSP⊥, the coverage JC,F has as covers
families of partial identity maps {(c, Ui) → (c, U)}1≤i≤n where P = {U1, . . . , Un} ∈ SF (c)

and
⋃
Ui = U ; and ⋆ is covered only by the identity.

The following proposition is straightforward. The main point to note is that axiom 2 of SSP
is required for the basic coverage axiom. That same axiom is what gives us (L).

▶ Proposition 6.8. (IC,F ,JC,F) is a concrete site, satisfying the (M) and (L) axioms.

In Sh(IC,F , JC,F) we define ∆C,F where ∆C,F (c, U) is the set of subsets U ′ ⊆ U where
(c, U ′) is an object of IC,F , and ∆C,F (⋆) = {∅, | ⋆ |}. The following is straightforward.

▶ Proposition 6.9. ∆C,F is a concrete sheaf and a generic semidecidable subobject in
Sh(IC,F , JC,F). The lifting monad LC,F preserves concrete sheaves.

We have the following explicit description of the lifting monad: (LC,FA)(⋆) = A(⋆) + {⊥}
and (LC,FA)(c, U) =

∐
U ′⊆U A(c, U ′), where the coproduct is taken over all U ′ ⊆ U such

that there exists a partition P ∈ SF (c) such that
⋃
P = U ′ (i.e. (c, U ′) is an object of IC,F).

One should not expect ∆C,F to be LC,F -complete. It is only by summing with V as in the
next section that we obtain a complete generic semidecidable subobject. For this purpose
it is still useful to describe the objects ωC,F and ω̄C,F explicitly. They are both concrete
sheaves, and we can make the identifications ω̄C,F (⋆) ∼= N ⊔ {∞} and ωC,F (⋆) ∼= N. More
generally, for (c, U) ∈ IC,F , elements of ωC,F (c, U) are N-indexed descending sequences of
semidecidable subsets of U . The set ω̄C,F (c, U) consists of the (N⊔{∞})-indexed descending
sequences of semidecidable subsets of U . Note that there is no continuity condition at infinity,
the last subset need only be contained in the intersection of the earlier ones.

C. Matache, S. Moss, and S. Staton 25:13

6.4 Summing concrete sites
The fully abstract model depends on combining many different sites together. Here we
describe this process as an elementary construction for “summing” a small collection of
concrete sites.

▶ Definition 6.10. Let {(Ci, Ji)}i∈I be a (non-empty) family of concrete sites. Then
∑

i Ci

is the category whose objects are
∐

ob(Ci)/ ∼, where ∼ identifies the terminal objects in
each category, and whose morphisms (c ∈ Ci)→ (d ∈ Cj) are those functions |c| → |d| which
are in Ci if i = j and all constant functions if i ̸= j. The coverage

∑
i Ji has precisely the

covers of Ji for c ∈ Ci and ⋆ covered by the identity.

It is straightforward to see that (
∑

i∈I Ci,
∑

i∈I Ji) is a concrete site. It satisfies axioms
(M) and (L) if all the (Ci, Ji) do, but it need not be subcanonical even when the (Ci, Ji)
are. Let us write inj for the inclusion Cj →

∑
i∈I Ci. Recall that there is an adjoint triple

(inj)! ⊣ (inj)∗ ⊣ (inj)∗ where (inj)∗ : [(
∑

i Ci)op, Set]→ [Cop
i , Set] is given by precomposition

with inj and its adjoints are given by left and right Kan extension.

▶ Lemma 6.11. (inj)∗ and (inj)∗ preserve sheaves and the latter is full and faithful; (inj)!
preserves finite limits. A presheaf F ∈ [(

∑
i Ci)op, Set] is a (

∑
i Ji)-sheaf iff (inj)∗F ∈

[Cop
j , Set] is a Jj-sheaf for all j ∈ I. Similarly F is a concrete presheaf iff every (inj)∗F is a

concrete presheaf.

In summary, inj induces a local geometric morphism Sh(
∑

i∈I Ci,
∑

i∈I Ji) → Sh(Cj , Jj)
meaning there is an adjoint triple, which we also write as (inj)! ⊣ (inj)∗ ⊣ (inj)∗, where (inj)∗

is precomposition with inj and (inj)! is given by left Kan extension along inj followed by
sheafification, such that (inj)! preserves finite limits and both (inj)! and (inj)∗ are full and
faithful. Moreover, each (inj)! preserves the respective sheafified representables, and being
a (concrete) sheaf for the summed site can be detected by checking under (inj)∗ for every
j ∈ I. The functors (inj)∗ are jointly faithful and satisfy |(inj)∗Y | ∼= |Y |. If Y is a concrete
presheaf then a function f : |X| → |Y | gives a natural transformation X → Y iff it gives a
natural transformation (inj)∗X → (inj)∗Y for every j ∈ I.

We also make the following straightforward observations about monad-lifting.

▶ Proposition 6.12. Let T be a (strong) monad on Set, and suppose that, for i ∈ I, Ti is a
strong monad on Sh(Ci, Ji) which lifts T through the global sections function Sh(Ci, Ji)→ Set.
1. There is a unique strong monad T̂ on Sh(

∑
i Ci,

∑
i Ji) which lifts each of the Tj through

(inj)∗ : Sh(
∑

i Ci,
∑

i Ji)→ Sh(Cj , Jj).
2. If each Ti is the partial map classifier for a generic semidecidable subobject ∆i in Sh(Ci, Ji),

then there is a generic semidecidable subobject ∆ on Sh(
∑

i Ci, Ji) whose partial map
classifier is T̂.

3. The colimit ωT and limit ω̄T are sent to ωTj
and ω̄Tj

by (inj)∗.

7 A fully abstract model of PCFv

Let IPCFv be the set of all concrete sites of the form (IC,F ,JC,F) where C has countably
many morphisms, together with the site V (as a concrete site with trivial coverage). For
convenience, we continue to write IPCFv = {(Ci, Ji) : i ∈ IPCFv}, and we write ∆i for the
specified generic semidecidable subobject in Sh(Ci, Ji), and Li for its associated lifting monad.

FSCD 2021

25:14 Recursion and Sequentiality in Categories of Sheaves

▶ Definition 7.1. Let (I,J) be the sum of IPCFv (Definition 6.10) and let G = Sh(I,J).

For j ∈ IPCFv , we continue to write (inj)! ⊣ (inj)∗ ⊣ (inj)∗ for the adjoint triple induced by
inj : Cj ↪→

∑
i∈IPCFv

Ci, as in Lemma 6.11. We write y for all sheafified Yoneda embeddings.
We now show that G is a normal model of PCFv, and subsequently a fully abstract

model. The generic semidecidable subobject ∆G is given by ∆G(c) = ∆i(c) for c ∈ Ci, as in
Proposition 6.12. Thus the lifting monad LG is determined by (inj)∗(LG A) ∼= Lj((inj)∗A).
We can describe NG =

∑∞
0 1 explicitly: its set of points is NG(⋆) = N; NG(V) has only

constant sequences in N; and NG(c, U)C,F = {h : U → N | {h−1(k) | k ∈ N} ∈ Sw}. We have
the following (see Appendix A.3 for a proof):

▶ Proposition 7.2. LG(NG) is LG-complete.

Thus G satisfies the conditions of Definition 4.1, so G admits an interpretation of PCFv.
Moreover, it is straightforward to check that LG preserves concrete sheaves and hence by
the discussion in §6.2 the interpretation JσK of each PCFv-type σ is a concrete sheaf. The
statement that the interpretation of PCFv in (G,∆G) is adequate is the same as Theorem 5.5,
and the proof is also essentially the same (see also [45]).

7.1 Partial types
As discussed in the introduction, our strategy for obtaining a fully abstract model is to find
a model where sufficiently many morphisms are definable. We cannot expect all morphisms
to be definable since there are only countably many programs but in a normal model the
interpretation of nat → nat always has uncountably many points. Following [31] we show
definability only for “partial types” – these are finite approximations to the set of points
of each type. As discussed in §6, the site of our sheaf model contains “predictions” of the
extent of each partial type and the system of definable functions between them. In the proof
of full abstraction we will choose the prediction which is actually realized.

We do not need to consider an intrinsic definition of compactness in a normal model of
PCFv, we simply use definable idempotents to define the partial types. The following was
adapted to call-by-value from the call-by-name formulations found in [36, 46].

▶ Definition 7.3. For each type σ and n ∈ N, define a computation x : σ ⊢c ψσ
n : σ by

recursion on σ where ψnat
n is “if x ≤ n then x else diverge”, and ψ0

n = x, ψ1
n = x,

ψσ→τ
n = returnλu. let v = ψσ

n[u/x] in letw = x v inψτ
n[w/x],

ψσ+τ
n = casex of {inl y → ψσ

n[y/x], inr z → ψτ
n[z/x]},

ψσ×τ
n = let y = π1x in let z = π2x in let y′ = ψσ

n[y/x] in let z′ = ψτ
n[z/x] in return (y′, z′).

We write hσ
n : JσK → LGJσK for the denotation of ψσ

n in G. We will say that hσ
n fixes

x ∈ |JσK| if hσ(x) = ηJσK(x).

▶ Proposition 7.4. Each hσ
n is an idempotent Kleisli arrow and fixes finitely many points.

Proof notes. By induction on σ. It is clear hnat
n is idempotent and fixes precisely the

subobject 1 + . . .+ 1 of JnatK given by the first n+ 1 points. For function types, hσ→τ
n acts

on morphisms f : JσK→ LGJτK by f 7→ (hτ
n)† ◦ f† ◦ hσ

n (where (−)† is Kleisli extension). The
other cases are similar. ◀

C. Matache, S. Moss, and S. Staton 25:15

From the above it is clear that we can inductively define a system of subobjects JσKn ↣ JσK,
each with only finitely many points, such that the composite JσKn ↣ JσK→ LGJσK admits
a retraction in the Kleisli category, making JσKn a splitting of the idempotent hσ

n. By
construction, these objects satisfy Jσ → τKn

∼= JσKn ⇒ LGJτKn, Jσ + τKn
∼= JσKn + JτKn, and

Jσ × τKn
∼= JσKn × JτKn. Treating contexts just as product types in the obvious way, we

can think of the partial types JσKn as giving a “truncated” interpretation of PCFv-types.
A computation Γ ⊢c t : σ denotes the morphism JΓKn → LGJσKn given by sequencing
JtK : JΓK→ LGJσK with the appropriate section and retraction.

The next lemma tells us that every type σ is the “supremum” of a chain of partial types.
If we choose a point x of JσK, hσ(n, x) = hσ

n(x) is its level n approximation. The existence of
hσ means these approximations form a chain, and Hσ witnesses that the supremum is x.

▶ Lemma 7.5. The assignment hσ(n, x) = hσ
n(x) defines a morphism hσ : ωG× JσK→ LGJσK

in G, whose unique extension Hσ : ω̄G × JσK→ LGJσK satisfies Hσ(∞, x) = x.

Proof notes. The first claim uses the fact that all types are interpreted as concrete sheaves.
The second claim is proved by induction on σ. For example, when σ = nat, Hnat(−, n)
is eventually constant with value n. For σ → τ , Hσ→τ (−, f) is the sequence with n 7→
Hτ (n,−)† ◦ f† ◦ Hσ(n,−) (where (−)† is Kleisli extension). For each x ∈ |JσK|, this is
the diagonal of the square array m,n 7→ Hτ (m)†(f†(Hσ(n, x))), so one can take the limit
separately in the two indices. ◀

7.2 Definability for partial types in G
We show that, for each n, one of the sites used to obtain G was a correct prediction, and
so our summed site already contains the truncated interpretation of PCFv-types. Let Cn

be the category whose objects are types σ and whose morphisms σ → τ are morphisms
JσKn → LJτKn which arise as the interpretation of a term x : σ ⊢c t : τ . Let Fn : Cn → SSP⊥
map σ to (|JσKn|, Sσ,n) where P ∈ Sσ,n iff P is the collection of non-empty fibres of a map
JσKn → LJnatK which arises as the interpretation of a term x : σ ⊢ t : nat. We treat contexts
Γ as objects of Cn by identifying them with a product type.

Although the global elements of the sheafified representable y((σ, U)Cn,Fn
) are naturally

identified with U , it is not clear that there is a morphism y((σ, U)Cn,Fn
)→ JσKn corresponding

to the inclusion. Nevertheless, since the latter is a concrete sheaf there is an identification of
JσKn((Γ, U)Cn,Fn

) with a subset of the functions U → |JσKn|. Moreover, LG(JσKn)((Γ, U)Cn,Fn
)

can be identified with a subset of the partial functions U ⇀ |JσKn|, whose domain U ′ ⊆ U is
an element of ∆G((Γ, U)), i.e. definable by a computation Γ ⊢c t : 1.

For convenience, let us write inn : ICn,Fn
↪→ I for the inclusion of sites. Recall from

Lemma 6.11 that inn induces an adjoint triple (inn)! ⊣ (inn)∗ ⊣ (inn)∗, where (inn)! preserves
finite limits and representables, and (inn)!, (inn)∗ are full and faithful. The next lemma is
crucial and is proved in Appendix A.3. Note that, in particular, it implies that every point
of JσKn is the interpretation of a closed value.

▶ Lemma 7.6. There is an isomorphism y(σ, |JσKn|)→ (inn)∗JσKn in Sh(ICn,Fn ,JCn,Fn).

▶ Theorem 7.7 (Full abstraction). If two PCFv computations Γ ⊢c t, t′ : σ are contextually
equivalent then JtK = Jt′K, and similarly for values.

Proof notes. The computations t, t′ denote morphisms JΓK→ LGJσK. By an induction on
σ, JtK and Jt′K agree on their restrictions to JΓKn: for the function type σ → τ ones uses
the fact that every point of JσKn is definable and applies the induction hypothesis for τ . It

FSCD 2021

25:16 Recursion and Sequentiality in Categories of Sheaves

follows that JtK† ◦HΓ and Jt′K† ◦HΓ agree on ωG × JΓK (where (−)† is Kleisli extension). But
LGJσK is LG-complete, so they also agree on ω̄G × JΓK. Evaluating at ∞, we get JtK = Jt′K by
Lemma 7.5. The proof for values is similar. ◀

8 Related work and research directions

8.1 Comparison with the model of Riecke-Sandholm
Our fully abstract model of PCFv, G, is heavily inspired by the fully abstract model for
call-by-value FPC of Riecke and Sandholm [39], itself inspired by [36, 43] (see also subsequent
work [29, 30, 46, 22]). Our sites IC,F (Definition 6.6) are close to the “varying arities” of [39];
their index category C [39, §3.4] corresponds to our C, and their “path theory” Sw corresponds
to our SSP structure SF (w).

The objects of our G are in particular V-sets, and if we insist that they are moreover
ω-cpo’s then the Kleisli category of L is almost equivalent to the category RCPO of [39].
Our sheaf condition corresponds to the structure of a “computational relation” from [39].

There are some technical differences: they use directed cpo’s rather than ω-cpo’s, and
they did not require morphisms f : v → w ∈ C to pull back a partition from Sw to a partition
from Sv. But at a higher level, while it is possible that Riecke and Sandholm had sheaves
and monads in mind, those concepts which are central to this paper are not explicit in [39].

8.2 Comparison with work on “Synthetic Domain Theory”
The vision of synthetic domain theory (SDT) is that, by working in an intuitionistic set
theory, we can interpret types as sets and assume that all functions are suitably continuous.
Our work intersects with many of the methods of this theory, even if our motivation is less
philosophical and rather to use sheaf categories to build and relate models. We comment on
several aspects of SDT.
Partiality. Our treatment of partial maps (§3) is based on [40] and our development of

lifting monads on [34, 33]. In recent years the restriction categories of [4, 5] have become
increasingly popular, although these can be related to earlier methods. Our construction
of IC,F is reminiscent of the “splitting” of a restriction category, and our construction of
Sh(IC,F ,JC,F) is reminiscent of the free cocompletion of [26, 15].

Recursion. Our treatment of recursion (§2) perhaps originates in [9, 10] or [28, §5]; more
abstract treatments of the latter were given later [35, 38]. Orthogonality also plays a
central role in the representation theorem of [12]. SDT permits an alternative, more
refined analysis of recursion, based on “replete objects’ [19, 47], which we have not yet
pursued.

Sheaf categories. Much work on SDT has focused on realizability categories, but there
has been substantial work on sheaf models too, beginning from Scott [41], and running
through to the notion of a “Grothendieck model of SDT’ [9] which roughly agrees with
our notion of normal model (Definition 4.1). The early idea of a “Scott topos” was to
take sheaves on a model of the untyped λ-calculus; this is further developed in [40, §7.2]
and [47, §5]. Later work considered the monoid V [14, 13] and a stable version of it
[13, 9], which is a step towards sequentiality. Sheaf constructions are also very relevant
to definability arguments in terminating, typed calculi [11, 21], so it is perhaps surprising
that fully abstract sheaf models of SDT have not been considered previously. Going
beyond PCF, one point is that sheaf categories arguably cannot support a small complete
category, which is useful for impredicative polymorphism [44, Ax. 3], although there are
sheaf models of System F nonetheless [37, Thm. 4.6].

C. Matache, S. Moss, and S. Staton 25:17

8.3 Summary and outlook
We have given a sheaf theoretic model of a call-by-value PCF (§4) which is fully abstract (§7).
Our model uses a categorical framework for partiality (§3) and recursion (§2), and is based
on combining sites for sequentiality (§6) with a site for recursion (§5). The way that sites
for sheaves can be combined and compared plays a crucial role. Looking beyond this work,
we anticipate that in the future it will be informative to use the flexibility of sheaves and
sites to compare and combine the methods for recursion here with recent sheaf methods for
other aspects of programming (e.g. [16, 18, 27, 42]).

Acknowledgements. One personal starting point was recent work on Kripke logical relations
models for full abstraction in languages with effects but without recursion [22, 23]. We are
grateful to the authors for discussions, although we have to leave combining recursion with
other effects for future work. We thank Marcelo Fiore, Mathieu Huot, Hugo Paquet, Philip
Saville, Thomas Streicher, and the anonymous reviewers for helpful feedback.

References
1 Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory in cubical sets. In

Proc. TYPES 2013, 2013.
2 P Borthelle, T Hirschowitz, and A Lafont. A cellular Howe theorem. In Proc. LICS 2020,

2020.
3 Anna Bucalo, Carsten Führmann, and Alex Simpson. An equational notion of lifting monad.

Theoret. Comput. Sci., 294:31–60, 2003.
4 J.R.B. Cockett and Stephen Lack. Restriction categories I: categories of partial maps. The-

oret. Comput. Sci., 270(1):223–259, 2002.
5 J.R.B. Cockett and Stephen Lack. Restriction categories II: partial map classification. The-

oret. Comput. Sci., 294(1):61–102, 2003.
6 Roy L Crole and Andrew M Pitts. New foundations for fixpoint combinators. In Proc. LICS

1990, 1990.
7 Eduardo J. Dubuc. Concrete quasitopoi. In Applications of Sheaves: Proceedings of the

Research Symposium on Applications of Sheaf Theory to Logic, Algebra, and Analysis, Durham,
July 9–21, 1977, pages 239–254. Springer Berlin Heidelberg, 1979.

8 Roy Dyckhoff and Walter Tholen. Exponentiable morphisms, partial products and pullback
complements. J. Pure Appl. Algebra, 49(1-2):103–116, 1987.

9 M Fiore and G Plotkin. An extension of models of axiomatic domain theory to models of
synthetic domain theory. In Proc. CSL 1996, 1997.

10 M. Fiore, G. Plotkin, and J. Power. Complete cuboidal sets in axiomatic domain theory. In
Proc. LICS 1997, pages 268–279, 1997.

11 M. P. Fiore and A. K. Simpson. Lambda definability with sums via Grothendieck logical
relations. In TLCA’99, 1999.

12 Marcelo Fiore. Enrichment and representation theorems for categories of domains and
continuous functions. Available at the author’s website, 1996.

13 Marcelo P Fiore and Giuseppe Rosolini. Two models of synthetic domain theory.
J. Pure Appl. Algebra, 116:151–162, 1997.

14 Marcelo P Fiore and Giuseppe Rosolini. Domains in H. Theoret. Comput. Sci., 264:171–193,
2001.

15 Richard Garner and Daniel Lin. Cocompletion of restriction categories. Theory Appl. Categ.,
35(22):809–844, 2020.

16 C Heunen, O Kammar, S Staton, and H Yang. A convenient category for higher-order
probability theory. In Proc. LICS 2017, 2017.

17 Gérard Huet. Formal Structures in Computation and Deduction. Unpublished, 1986.

FSCD 2021

25:18 Recursion and Sequentiality in Categories of Sheaves

18 M Huot, S Staton, and M Vákár. Correctness of automatic differentiation via diffeologies and
categorical gluing. In Proc. FOSSACS 2020, 2020.

19 J M E Hyland. First steps in synthetic domain theory. In Proc. Category Theory, Como,
Lect. Notes Math., pages 131–156. Springer, 1990.

20 P. T. Johnstone. Sketches of an elephant: a Topos theory compendium. Oxford logic guides.
Oxford Univ. Press, 2002.

21 Achim Jung and Jerzy Tiuryn. A new characterization of lambda definability. In Marc Bezem
and Jan Friso Groote, editors, Proc. TLCA’93, volume 664 of Lecture Notes in Computer
Science, pages 245–257. Springer, 1993. doi:10.1007/BFb0037110.

22 O. Kammar and S. Katsumata. A modern perspective on the O’Hearn-Riecke model. Workshop
on Syntax and Semantics of Low-Level Languages (LOLA), 2019.

23 Ohad Kammar, Shinya Katsumata, and Philip Saville. Full abstraction à la O’Hearn & Riecke
for call-by-value with sums and effects. Manuscript, January 2021.

24 Paul B Levy. Amb breaks well-pointedness, ground amb doesn’t. In Proc. MFPS 2007, 2007.
25 Paul B Levy, J Power, and H Thielecke. Modelling environments in call-by-value programming

languages. Inform. Comput., 185(2):182–210, 2003.
26 Daniel Lin. Presheaves over a join restriction category. Applied Categorical Structures,

27(3):289–310, 2019.
27 B Lindenhovius, M Mislove, and V Zamdzhiev. Mixed linear and non-linear recursive types.

In Proc. ICFP 2019, 2019.
28 John R Longley and Alex K Simpson. A uniform approach to domain theory in realizability

models. Math. Struct. Comput. Sci., 7(5):469–505, 1997.
29 M. Marz. A Fully Abstract Model for Sequential Computation. PhD thesis, Technische

Universität Darmstadt, 2000.
30 Michael Marz. A fully abstract model for sequential computation. Electronic Notes in

Theoretical Computer Science, 35:133–152, 2000. Workshop on Domains IV.
31 Robin Milner. Fully abstract models of typed λ-calculi. Theoret. Comput. Sci., 4(1):1–22,

1977.
32 Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93:55–92, 1991.
33 Philip S. Mulry. Monads and algebras in the semantics of partial data types. Theoretical

Computer Science, 99(1):141–155, 1992.
34 Philip S. Mulry. Partial map classifiers and partial cartesian closed categories. Theoretical

Computer Science, 136(1):109–123, 1994.
35 Jaap van Oosten and Alex K Simpson. Axioms and (counter)examples in synthetic domain

theory. Annals Pure Appl. Logic, 104:233–278, 2000.
36 P. W. O’Hearn and J. G. Riecke. Kripke logical relations and PCF. Inf. Comput., 120(1):107–

116, 1995.
37 A M Pitts. Polymorphism is set theoretic, constructively. In Proc. CTCS 1987, volume 283 of

LNCS. Springer, 1987.
38 Bernhard Reus and Thomas Streicher. General synthetic domain theory – a logical approach.

Math. Struct. Comput. Sci., 9(2):177–223, 1999.
39 J. G. Riecke and A. Sandholm. A relational account of call-by-value sequentiality. Inf. Comput.,

179(2):296–331, 2002.
40 Giuseppe Rosolini. Continuity and effectiveness in topoi. PhD thesis, University of Oxford,

1986.
41 Dana S Scott. Relating theories of the λ-calculus. In To H B Curry: essays in combinatory

logic, lambda calculus and formalisms, pages 403–450. Academic Press, 1980.
42 B Sherman, J Michel, and M Carbin. λs: Computable semantics for differentiable programming

with higher-order functions and datatypes. In Proc. POPL 2021, 2021.
43 K. Sieber. Reasoning about sequential functions via logical relations. In Applications of

Categories in Computer Science: Proceedings of the London Mathematical Society Symposium,
Durham 1991, London Mathematical Society Lecture Note Series, page 258–269. Cambridge
University Press, 1992.

https://doi.org/10.1007/BFb0037110

C. Matache, S. Moss, and S. Staton 25:19

44 Alex Simpson and Giuseppe Rosolini. Using synthetic domain theory to prove operational
properties of a polymorphic programming language based on strictness. Unpublished, 2004.

45 Alex K. Simpson. Computational adequacy in an elementary topos. In Georg Gottlob,
Etienne Grandjean, and Katrin Seyr, editors, Computer Science Logic, pages 323–342, Berlin,
Heidelberg, 1999. Springer Berlin Heidelberg.

46 T. Streicher. Domain-theoretic foundations of functional programming. World Scientific, 2006.
47 Paul Taylor. The fixed point property in synthetic domain theory. In Proc. LICS 1991, 1991.

A Proofs of technical results

A.1 Fixed Points
Let X ∈ C be such that LX is a L-complete object. Then, for any map f : Γ× LX → LX,
we can construct a map ξf : Γ→ LX with f(ρ, ξf (ρ)) = ξf (ρ) as follows.

First define a family of maps apn : Γ× Ln1→ LX as follows: ap0(ρ, ∗) = ⊥X and apn+1
the following composite:

Γ× Ln+11
σΓ,Ln1−−−−→ L(Γ× Ln1) L(π1,apn)−−−−−−→ L(Γ× LX) L(f)−−−→ LLX

µX−−→ LX.

The sequence (apn) defines a map apω : Γ × ω → LX because it forms a cocone for
diagram 2. For this we can show by induction on n that apn+1 ◦ (idΓ × Ln(⊥1)) = apn.

Next we show that

apω ◦ (idΓ × succω) = f ◦ (π1, apω).

The sequence of maps apn+1 ◦(idΓ×ηLn1) forms a cocone with apex LX for diagram 2, whose
comparison arrow is apω ◦ (idΓ × succω). Similarly the sequence f ◦ (π1, apn) forms a cocone
with comparison arrow f ◦ (π1, apω). So it suffices to show apn+1 ◦ (idΓ×ηLn1) = f ◦ (π1, apn)
which is not hard.

Let apω̄ : Γ× ω̄ → LX be the unique extension of apω. Observe that apω̄ ◦ (idΓ× succω̄) =
f ◦ (π1, apω̄) as well. Then let ξf (ρ) = apω̄(ρ,∞), and now

ξf (ρ) = apω̄(ρ,∞) = apω̄(ρ, succω̄(∞)) = f(ρ, apω̄(ρ,∞)) = f(ρ, ξf (ρ))

as required.
Assume, as in Theorem 2.2, that X ∈ C is an L-algebra and LX an L-complete object.

Consider a map g : Γ×X → X. We will construct a fixed point ϕg : Γ→ X for g.
Using the algebra structure of X, (X,α), we can construct a map:

Γ× LX 1×α−−−→ Γ×X g−→ X
η−→ LX.

Then we can use the result from the previous paragraph to get a fixed point ξ : Γ→ LX of
this map. So the candidate fixed point for g will be ϕg = α ◦ ξ. And indeed:

g ◦ (1, α ◦ ξ) = α ◦
(
η ◦ g ◦ (1× α)

)
◦ (1, ξ) because α is an algebra

= α ◦ ξ because ξ is a fixed point.

Assume, as in Corollary 2.3, that L(LBA) is an L-complete object and M : Γ×LBA×A→
LB is a morphism. To construct a fixed point recM : Γ→ LBA for M , notice that LBA is
an algebra for L because L is strong, so we have:

FSCD 2021

25:20 Recursion and Sequentiality in Categories of Sheaves

L(LBA)×A
σA,LBA

−−−−−→ L(LBA ×A) Lev−−→ LLB
µB−−→ LB.

We can curry M to get Γ × LBA → LBA and then construct recM as in the previous
paragraph.

A.2 Adequacy for vSet
▶ Theorem 5.5. The pair (vSet,∆vSet) gives a sound and adequate model of PCFv.

Soundness: t ⇓τ v =⇒ JtK = ηJτK ◦ JvK ∈ LvSetJτK.
Adequacy: if τ is a ground type, JtK = ηJτK ◦ JvK =⇒ t ⇓τ v.

Proof sketch. Soundness is proved easily by induction on the definition of ⇓τ .
Adequacy is proved using the standard method for cpo’s. We define a logical relation

by induction on types that says when a term is approximated by an element of the model:
◁val

τ ⊆ JτK× Valτ and ◁comp
τ ⊆ LvSetJτK× Compτ . For example:

◁val
τ→τ ′ = {(d, v) | ∀a ∈ JτK, w ∈ Valτ . a ◁val

τ w =⇒ (d a) ◁comp
τ ′ (v w)}

◁comp
τ = {(d, t) | if d = ηJτK ◦ d′ then ∃w. t ⇓τ w and d′ ◁val

τ w}.

Then we prove the fundamental property of this logical relation and show it is enough to
obtain adequacy.

The fundamental property is proved by induction on terms. For the rec case we prove
by induction on types that all subobjects of the form {(−) ◁comp

τ ′′ t′′} are closed under sups
of chains. (Here a chain is a map ω → LvSetJτ ′′K, and a chain with a lub is ω̄ → LvSetJτ ′′K.)
This replaces the proof from cpo’s that the logical relation is an admissible subset. ◀

A.3 A fully abstract model of PCFv

▶ Proposition 7.2. LG(NG) is LG-complete.

Proof. Consider an extension problem f : (inj)!y(c) × ωG → LG(NG), where c ∈ Cj , and
consider two cases for j. Firstly, if j is V, then (inj)∗f : y(c) × ωvSet → LvSet(NvSet) has
a unique extension to a map y(c) × ω̄vSet → LvSet(NvSet) in vSet, where the underlying
function on points ϕ : |c| × |ω̄vSet| → |N ∪ {⊥}| is given by taking ϕ(x,∞) to be the
eventual value of ϕ(x, n) as n → ∞. It remains to check that ϕ underlies a natural
transformation (inj)!y(c) × ω̄G → LG(NG) in the sheaf category G. This is so since if
d ∈ Ck with k ̸= j then |d| is finite and thus for any pair (g, h) ∈ ((inj)!(y(c)) × ω̄G)(d)
we have (ϕ ◦ (g, h))(y) = ϕ(g(y),min{N,h(y)}) = f(g(y),min{N,h(y)}) ∈ LvSet(NvSet)(d)
for some N ∈ N not depending on y ∈ |d|. Secondly, if j is of the form (IC,F ,JC,F) for
some faithful functor F : C → SSP⊥, then since |c| is finite f factorizes as a retraction
(inj)!y(c)× ωG ↠ (inj)!y(c)× LG

n 1 for some n followed by a map (inj)!y(c)× LG
n 1→ ∆G .

This gives one possible extension of f to (inj)!y(c)× ω̄G . Since it must also be a morphism
of the underlying v-sets, it is unique. ◀

We will need the following result on preservation of exponentials, which can be extracted
from the proof of Lemma A1.5.8 in [20].

▶ Proposition A.1 (Frobenius reciprocity). Let F : C → D be a functor between cartesian
closed categories with a left adjoint L ⊣ F . Then F preserves a given exponential A⇒ C iff,
for all B ∈ D, C is right-orthogonal to the canonical map L(B × FA)→ LB ×A.

C. Matache, S. Moss, and S. Staton 25:21

▶ Lemma 7.6. There is an isomorphism y(σ, |JσKn|)→ (inn)∗JσKn in Sh(ICn,Fn
,JCn,Fn

).

Proof. First note that (inn)∗ is faithful on maps into concrete sheaves, and while not in
general full, it is bijective on global elements. We proceed by induction on σ. Since J1Kn is a
terminal object and J0Kn is an initial object, both are preserved by (inn)∗ so the claim there
is trivial. Similarly, (inn)∗ preserves sums and y : ICn,Fn

→ Sh(ICn,Fn
, JCn,Fn

) preserves
sums of types, hence the base case of σ = nat and the inductive case σ = σ1 + σ2 both hold.
In the case of the product type σ = σ1 × σ2, we have first to observe that (σ × τ, |Jσ × τK|)
is actually a product in ICn,Fn since all global elements of Jσ1Kn and Jσ2Kn are definable; the
claim then follows since (inn)∗ preserves products.

The interesting case is the function types, since (inn)∗ does not preserve exponentials in
general, but we will show that it does preserve the exponentials Jσ → τKn

∼= JσKn ⇒ LGJτKn.
This will suffice since we now show that y(σ → τ, |Jσ → τKn|) is an exponential. Since
(inn)∗ commutes with the lifting monad, the induction hypothesis implies that (inn)∗ is
full and faithful on maps JσKn → LGJτKn, and hence all points of Jσ → τKn are definable.
Then, for any (Γ, U) ∈ In, each map f : y(Γ, U) × y(σ, |JσKn|) → LCn,Fn

y(τ, |JτKn|) has
an underlying f1 : y(Γ× σ, U × |JσKn|) → LCn,Fn

y(τ, |JτKn|) given by precomposition with
y(Γ× σ, U × |JσKn|)→ y(Γ, U)× y(σ, |JσKn|) and thus is definable. Moreover, every definable
function does give a natural transformation y(Γ, U) × y(σ, |JσKn|) → LCn,Fn

y(τ, |JτKn|),
whence one may deduce that y(σ, |JσKn|)⇒ LCn,Fny(τ, |JτKn|) ∼= y(σ → τ, |Jσ → τKn|).

Now we use Generalized Frobenius reciprocity to show that (inn)∗(JσKn ⇒ LGJτKn) ∼=
(inn)∗(JσKn) ⇒ (inn)∗(LGJτKn). It clearly suffices to restrict attention to those “B” which
are representables y(Γ, U). Since (inn)!(y(Γ, U) × y(σ, |JσKn|)) → (inn)!(y(Γ, U)) × JσKn is
surjective on points, we have the uniqueness part of orthogonality. Now, given a map
(inn)!y(Γ, U) × (inn)!y(σ, |JσKn|) → LGJτKn, by precomposition we get a map (inn)!y(Γ ×
σ, U × |JσKn|) → LGJτKn whence we deduce that the underlying function is definable. We
must show that a definable function is a natural transformation (inn)!(y(Γ, U)) × JσKn →
LGJτKn. It suffices to show the same thing with an unsheafified representable: i.e. to
consider I(−, (Γ, U)Cn,Fn

) × JσKn → LGJτKn. On objects of X ∈ I not in ICn,Fn
, the set

I(X, (Γ, U)Cn,Fn
) × JσKn(X) is indeed mapped into LEJτKn(X) since the left factor of the

latter contains only constant functions. On objects (Γ′, U ′) ∈ ICn,Fn , the same reasoning
applies for constant functions (Γ′, U ′)→ (Γ, U), but for non-constant functions, which are
by construction definable, we use the facts that every function in JσKn(Γ′, U ′) is definable
and that the definable functions are closed under pairing and composition. ◀

B Typing rules and operational semantics for PCFv

In this section we provide the full type system and operational semantics for the PCFv
language. Recall the syntax of PCFv:

Types: τ F 0 | 1 | nat | τ + τ | τ × τ | τ → τ

Values: v, wF x | ⋆ | inl v | inr v | (v, v) | zero | succ(v) | λx. t | rec f x. t
Computations: tF return v | case v of {inlx→ t, inr y → t′} | π1v | π2v | v w

| case v of {zero→ t, succ(x)→ t′} | letx = t in t′

FSCD 2021

25:22 Recursion and Sequentiality in Categories of Sheaves

The typing relation is the least relation closed under the following rules:

Γ, x : τ ⊢v x : τ Γ ⊢v ⋆ : 1
Γ ⊢v v : τ

Γ ⊢v inl v : τ + τ ′
Γ ⊢v v : τ ′

Γ ⊢v inr v : τ + τ ′

Γ ⊢v v : τ Γ ⊢v v′ : τ ′

Γ ⊢v (v, v′) : τ × τ ′ Γ ⊢v zero : nat
Γ ⊢v v : nat

Γ ⊢v succ(v) : nat
Γ, x : τ ⊢c t : τ ′

Γ ⊢v λx. t : τ → τ ′
Γ, f : τ → τ ′, x : τ ⊢c t : τ ′

Γ ⊢v rec f x. t : τ → τ ′
Γ ⊢v v : 0

Γ ⊢c case v of {} : τ
Γ ⊢v v : τ

Γ ⊢c return v : τ
Γ ⊢v v : τ + τ ′ Γ, x : τ ⊢c t : σ Γ, y : τ ′ ⊢c t′ : σ

Γ ⊢c case v of {inlx→ t, inr y → t′} : σ
Γ ⊢v v : τ × τ ′

Γ ⊢c π1v : τ
Γ ⊢v v : τ × τ ′

Γ ⊢c π2v : τ ′
Γ ⊢v v : τ → τ ′ Γ ⊢v w : τ

Γ ⊢c v w : τ ′

Γ ⊢v v : nat Γ ⊢c t : τ Γ, x : nat ⊢c t′ : τ
Γ ⊢c case v of {zero→ t, succ(x)→ t′} : τ

Γ ⊢c t : τ Γ, x : τ ⊢c t : τ ′

Γ ⊢c letx = t in t′ : τ ′

The big-step operational semantics of PCFv is a family of relations, indexed by types,
between closed computations and closed values. It is the least relation closed under the rules
below:

return v ⇓τ v π1(v, v′) ⇓τ v π2(v, v′) ⇓τ v
′

t[v/x] ⇓τ w

case inl v of {inlx→ t, inr y → t′} ⇓τ w

t′[v/x] ⇓τ w

case inr v of {inlx→ t, inr y → t′} ⇓τ w

t[(rec f x. t)/f, v/x] ⇓τ w

(rec f x. t) v ⇓τ w

t[v/x] ⇓τ w

(λx. t) v ⇓τ w

t ⇓τ v t′[v/x] ⇓τ w

letx = t in t′ ⇓τ w

t ⇓τ w

case zero of {zero→ t, succ(x)→ t′} ⇓τ w

t′[v/x] ⇓τ w

case succ(v) of {zero→ t, succ(x)→ t′} ⇓τ w

Polymorphic Automorphisms and the Picard Group
Pieter Hofstra #

Dept. of Mathematics & Statistics, University of Ottawa, Canada

Jason Parker #

Department of Mathematics & Computer Science, Brandon University, Canada

Philip J. Scott1 #

Dept. of Mathematics & Statistics, University of Ottawa, Canada

Abstract
We investigate the concept of definable, or inner, automorphism in the logical setting of partial
Horn theories. The central technical result extends a syntactical characterization of the group of
such automorphisms (called the covariant isotropy group) associated with an algebraic theory to the
wider class of quasi-equational theories. We apply this characterization to prove that the isotropy
group of a strict monoidal category is precisely its Picard group of invertible objects. Furthermore,
we obtain an explicit description of the covariant isotropy group of a presheaf category.

2012 ACM Subject Classification Theory of computation → Categorical semantics; Theory of
computation → Algebraic semantics; Theory of computation → Equational logic and rewriting

Keywords and phrases Partial Horn Theories, Monoidal Categories, Definable Automorphisms,
Polymorphism, Indeterminates, Normal Forms

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.26

Related Version Previous Version: https://arxiv.org/abs/2102.11081

Funding Pieter Hofstra: Research funded by an NSERC Discovery Grant.
Jason Parker : Postdoctoral research funded by NSERC grant of R. Lucyshyn-Wright (Brandon).
Philip J. Scott: Research funded by an NSERC Discovery Grant.

Acknowledgements Pieter Hofstra would like to acknowledge illuminating discussions with Martti
Karvonen and Eugenia Cheng. We would also like to thank the three anonymous referees for their
insightful comments, corrections, and suggestions.

1 Introduction

In algebra, model theory, and computer science, one encounters the notion of definable
automorphism (the nomenclature varies by discipline). In first-order logic for example (see
e.g. [13]), an automorphism α of a model M is called definable (with parameters in M) when
there is a formula φ(x, y) in the ambient language (possibly containing constants from M)
such that for all a, b ∈ M we have

α(a) = b ⇐⇒ M |= φ(a, b).

The case of groups is instructive: for a group M , consider the formula φ(x, y) given as

φ(x, y) : y = c−1xc

for some c ∈ M . This defines an (inner) automorphism of M . Note that in this case the
automorphism is also determined by a term t(x) := c−1xc via a 7→ t(a).

1 corresponding author

© Pieter Hofstra, Jason Parker, and Philip J. Scott;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 26; pp. 26:1–26:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:phofstra@uottawa.ca
mailto:parkerj@brandonu.ca
mailto:philip.scott@uottawa.ca
https://doi.org/10.4230/LIPIcs.FSCD.2021.26
https://arxiv.org/abs/2102.11081
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Polymorphic Automorphisms and the Picard Group

These definable automorphisms have various interesting aspects: first of all, they are in
some sense polymorphic or uniform. This means roughly that the same term t, possibly after
replacing constants from M , can also define an automorphism of another model N . Secondly,
the definable automorphisms can also provide a generalized notion of inner automorphism,
even for theories where it does not make sense to speak of group-theoretic conjugation.
Indeed, Bergman [1, Theorem 1] shows that in the category of groups, the definable group
automorphisms, i.e. the inner automorphisms given by conjugation, can be characterized
purely categorically by the fact that they extend naturally along any homomorphism. That
is: an automorphism α : G ∼−→ G is inner precisely when for any homomorphism m : G → H

there is an extension αm : H ∼−→ H making diagram (a) commute and also making

(a) G

α

��

m // H

αm

��

G
m

// H

(b) H

αm

��

n // K

αnm

��

H
n

// K

diagram (b) commute for any further homomorphism n : H → K, so that in particular
α = αidG

by diagram (a). If α is conjugation by g ∈ G, then αm is conjugation by m(g) ∈ H .
Conversely, given any system of group automorphisms {αm : H ∼−→ H | m : G → H} with
α = αidG

that makes diagrams (a) and (b) commute, Bergman shows that there is a unique
element s ∈ G such that α is given by conjugation with s. Bergman therefore refers to such
a system {αm | m : G → H} as an extended inner automorphism of G.2

In categorical logic, we have a canonical method for studying this phenomenon. To any
category C, we may associate the functor

ZC : C → Grp ; ZC(C) := Aut(π : C/C → C). (1)

Let us unpack this. We have the co-slice category C/C whose objects are maps C → D and
whose arrows are commutative triangles. The projection functor π : C/C → C sends C → D

to D. We then consider the group of natural automorphisms of this projection functor, i.e.
the group of invertible natural transformations α : π ⇒ π. To give such an α is equivalent
to giving, for each object m : C → D of C/C, an automorphism αm : D ∼−→ D, subject to
the naturality condition that for any composable pair m : C → D,n : D → E in C, we have
αnmn = nαm as in diagram (b) above. Thus, in Bergman’s terminology, ZC(C) is the group
of extended inner automorphisms of C. We call ZC the (covariant) isotropy group (functor)
of C. Another useful way of thinking about this group is by noticing that the assignment
C 7→ Aut(C) is generally not functorial, unless C is a groupoid. The isotropy group offers a
remedy: the assignment C 7→ ZC(C) is functorial, as is straightforward to check, and for
each C there is a comparison homomorphism

θC : ZC(C) → Aut(C) ; α 7→ αidC
(2)

that sends an extended inner automorphism α to its component at the identity of C.3 We
can then turn Bergman’s aforementioned result for the category Grp into a definition for an
arbitrary category C, by defining an automorphism f : C ∼−→ C of an object C ∈ C to be
inner just if f is in the image of θC : ZC(C) → Aut(C). Less precisely, the automorphism
f : C ∼−→ C is inner if it can be coherently extended along any arrow out of C.

2 Earlier versions of this result were also proven by Schupp [12] and Pettet [10].
3 P. Freyd [2] studied a somewhat similar notion while modelling Reynolds’ parametricity for parametric

polymorphism. As a special case, his work leads to a monoid of natural endomorphisms of the projection
functor, whereas in our case, we would obtain the subgroup of invertible elements in this monoid.

P. Hofstra, J. Parker, and P. J. Scott 26:3

(For readers familiar with topos theory and/or earlier papers on the subject of isotropy
groups, we point out that in [4, 3] we consider instead the contravariant isotropy groups
Aut(π : C/C → C). Now if T is a suitable logical theory with classifying topos B(T), then (a
restriction of) the contravariant isotropy group of B(T) coincides with the covariant isotropy
group of the category fpTmod of finitely presented T-models. Moreover, calculation of the
latter group generally also yields a description of the covariant isotropy group of the larger
category Tmod of all T-models, which is our focus in the present paper.)

In [6], the case where C is the category of models of an equational theory is analysed.
Among other things, a complete syntactic characterization of covariant isotropy for such a C
is obtained, recovering not only Bergman’s result for C = Grp but also characterizing the
definable automorphisms of other common algebraic structures such as monoids and rings.
In applying the general characterization in specific instances, one typically needs to analyse
the result of adjoining one or more indeterminates to a given model, and this in turn leads
one to consider the word problem for such models.

The present paper, which is based on the PhD research [9] of the second author, is
concerned with the analysis of the notion of isotropy or definable automorphism for (strict)
monoidal categories and related structures. It hardly needs arguing that monoidal categories
play various important roles in mathematics and theoretical computer science, both as
objects of study in their own right, as models of logical theories, and as basic tools for
studying other phenomena. However, we should point out here an observation by Richard
Garner [5, Proposition 3] to the effect that both Cat and Grpd, the categories of small
categories and small groupoids respectively, have trivial covariant isotropy, in the sense
that for any category/groupoid C we have Z(C) = 1, the trivial group. The reason for
this is roughly as follows: when considering an inner automorphism α of a category C in
Cat, it must in particular extend to the categories obtained from C by freely adjoining a
new object or arrow; but these latter categories are just obtained from C via disjoint union,
which then (as Garner shows) easily entails that α can only be the identity on C (and an
identical argument works for Grpd). As such, it is perhaps surprising that the category of
strict monoidal categories has non-trivial isotropy. In fact, and this is the central result of
the present paper, the isotropy group of a strict monoidal category is precisely its Picard
group (its group of ⊗-invertible objects).

Since the theory of strict monoidal categories is not a purely equational theory, we cannot
directly use results from [6]. Instead, we need to work in the setting of quasi-equational
theories. These are multi-sorted theories in which the operations can be partial; equivalently,
they are finite-limit theories. These include the theories of categories, groupoids, strict
monoidal categories, symmetric/braided/balanced monoidal categories, and crossed modules.
They also include what one might call functor theories, which are theories describing functors
from a small category into a category of models. As a special case, one obtains theories
whose categories of models are presheaf categories.4 Our first main contribution of the paper
is then a generalization of the syntactic characterization of isotropy from equational theories
to this wider class of quasi-equational theories.

While we have indicated why the non-trivial isotropy of strict monoidal categories is
perhaps surprising, there is also a sense in which it is to be expected. Indeed, since strict
monoidal categories are monoids internal to Cat, we expect that the isotropy of strict monoidal

4 Not to be confused with the so-called theories of presheaf type, which are theories whose classifying
topos happens to be a presheaf topos.

FSCD 2021

26:4 Polymorphic Automorphisms and the Picard Group

categories is closely related to that of monoids. Since the isotropy of a monoid M is its
subgroup of invertible elements, the conjecture that the isotropy of a strict monoidal category
is its group of invertible objects is not unreasonable. However, it is not at all immediate
that the isotropy of a strict monoidal category should be determined completely by its set of
objects; the recognition that this is the case is the second main contribution of this paper.

A priori, one can try to establish this result in a variety of ways. First of all, it can be
approached purely syntactically, by making careful analysis of the word problem for strict
monoidal categories. However, several aspects of this analysis can also be cast in more
conceptual terms, giving rise to a categorical way of deriving the isotropy of strict monoidal
categories from that of monoids. We thus also include a more categorical viewpoint, which
applies to several other theories of categorical structures, including crossed modules.

2 Quasi-equational theories

We begin by reviewing the relevant notions from categorical logic. For more details concerning
quasi-equational theories and partial Horn logic, we refer to [8]. For a general treatment of
categorical logic, see [11].

▶ Definition 1 (Signatures, Terms, Horn Formulas, Horn Sequents, Quasi-Equational Theories).

A signature Σ is a pair of sets Σ = (ΣSort,ΣFun), where ΣSort is the set of sorts of Σ
and ΣFun is the set of function/operation symbols of Σ. Each element f ∈ ΣFun comes
equipped with a finite tuple of sorts (A1, . . . , An, A), and we write f : A1 × . . .×An → A.

Given a signature Σ, we assume that we have a countably infinite set of variables of each
sort A. Then one can recursively define the set Term(Σ) of terms of Σ in the usual way,
so that each term will have a uniquely defined sort. We write Termc(Σ) for the set of
closed terms of Σ, i.e. terms containing no variables.

Given a signature Σ, one can recursively define the set Horn(Σ) of Horn formulas of Σ in
the usual way, where a Horn formula is a finite conjunction of equations between elements
of Term(Σ). We write ⊤ for the empty conjunction.

A Horn sequent over a signature Σ is an expression of the form φ ⊢x⃗ ψ, where φ,ψ ∈
Horn(Σ) and have variables among x⃗.

A quasi-equational theory T over a signature Σ is a set of Horn sequents over Σ, which
we call the axioms of T.

One can set up a deduction system of partial Horn logic (PHL) for quasi-equational theories,
axiomatizing the notion of a provable sequent φ ⊢x⃗ ψ. Accordingly, for a theory T we have
the notion of a T-provable sequent; moreover, if ⊤ ⊢x⃗ φ is T-provable, then we simply say
that T proves φ, and write T ⊢x⃗ φ.

We refer the reader to [8, Definition 1] for the logical axioms and inference rules of PHL.
The distinguishing feature of this deduction system is that equality of terms is not assumed
to be reflexive, i.e. if t(x⃗) is a term over a given signature, then ⊤ ⊢x⃗ t(x⃗) = t(x⃗) is not a
logical axiom of partial Horn logic, unless t is a variable. In other words, if we abbreviate
the equation t = t by t ↓ (read: t is defined), then unless t is a variable, the sequent ⊤ ⊢x⃗ t ↓
is not a logical axiom of PHL. Furthermore, the logical inference rule of term substitution is
then only formulated for defined terms.

P. Hofstra, J. Parker, and P. J. Scott 26:5

▶ Example 2. We have the following examples of quasi-equational theories:
Every single-sorted algebraic theory is a quasi-equational theory; this includes the usual
algebraic theories of (commutative) monoids, (abelian) groups, (commutative) unital
rings, etc.
The theories of (small) categories, groupoids, categories with a (chosen) terminal object,
categories with (chosen) finite products, categories with (chosen) finite limits, locally
cartesian closed categories, and elementary toposes, can all be axiomatized as quasi-
equational theories over a two-sorted signature (with one sort O for objects and one sort
A for arrows). For details see [8, Example 4 and Section 6]. The theory of (small) strict
monoidal categories can also be axiomatized as a quasi-equational theory (see Section 4
below).
If T is any quasi-equational theory and J is any small category, then one can axiomatize
the functor category TmodJ by a quasi-equational theory TJ ; see [9, Chapter 5].

In the remainder of the paper, by theory we shall mean quasi-equational theory, unless
explicitly stated otherwise.

We now review the set-theoretic semantics of PHL. This follows the standard pattern
of algebraic theories, with the key difference being that function symbols are now only
interpreted as partial functions. We write f : A ⇁ B for a partial function from A to B,
which is by definition a total function f : dom(f) → B for some subset dom(f) ⊆ A. If
Σ is a signature, then a Σ-structure M is a family of sets MC indexed by the sorts C of
Σ, together with interpretations of the function symbols f : A1 × · · · × Ak → A as partial
functions fM : MA1 × · · · × MAk

⇁ MA. By induction on the structure of a term t in
variable context x1 : A1, . . . , xk : Ak, we obtain its interpretation as a partial function
tM : MA1 × · · · × MAk

⇁ MA in a Σ-structure M , while a Horn formula φ(x1, . . . , xk) is
interpreted as a subset φ(x1, . . . , xk)M ⊆ MA1 × . . .×MAk

.
A Σ-structure M satisfies a Horn sequent φ ⊢x⃗ ψ if φ(x1, . . . , xk)M ⊆ ψ(x1, . . . , xk)M .

When T is a theory, then a Σ-structure M is a T-model when it satisfies all the T-axioms,
and hence all the T-provable sequents (by soundness of partial Horn logic).

▶ Definition 3. Let Σ be a signature and M,N Σ-structures. A homomorphism h : M →
N is a family of total functions h = (hA : MA → NA)A:Sort with the property that if
f : A1 × . . . × An → A is any function symbol of Σ and (a1, . . . , an) ∈ dom

(
fM

)
, then

(hA1(a1), . . . , hAn
(an)) ∈ dom

(
fN

)
and hA

(
fM (a1, . . . , an)

)
= fN (hA1(a1), . . . , hAn

(an)).
The homomorphism h reflects definedness if moreover (hA1(a1), . . . , hAn

(an)) ∈ dom
(
fN

)
always implies (a1, . . . , an) ∈ dom

(
fM

)
.

Let us emphasize that the sort components hA : MA → NA of a homomorphism h : M → N

are total functions, rather than partial functions. One could theoretically choose to work
with other notions of homomorphism, but for our purposes we have chosen to use the total
homomorphisms. When working with homomorphisms we often suppress the sort subscripts.
The T-models and their homomorphisms then form a category Tmod, which is complete and
cocomplete.

▶ Definition 4. A morphism of theories ρ : T → S consists of a mapping A 7→ ρ(A) from the
sorts of T to the sorts of S and a mapping f 7→ ρ(f) from the function symbols of T to the
terms of S that preserves both typing and provability.

When ρ : T → S is a morphism of theories, we have an induced functor ρ∗ : Smod → Tmod
by [8, Proposition 28]. This functor ρ∗ sends an S-model M to the T-model ρ∗M with
(ρ∗M)A := Mρ(A) for each sort A of T and fρ∗M := ρ(f)M for each function symbol f of T.

FSCD 2021

26:6 Polymorphic Automorphisms and the Picard Group

In particular, for every sort A of T there is a forgetful functor UA : Tmod → Set sending
a model M to the carrier set MA (induced by the theory morphism from the single-sorted
empty theory to T that sends the unique sort of the former theory to the sort A). Each
such functor also has a left adjoint FA (see e.g. [8, Theorem 29]), giving for a set X the free
T-model FA(X) generated by X: FA ⊣ UA : Set ⇄ Tmod.

▶ Definition 5. For a T-model M , we can form the extension T(M), the diagram theory of
M , adapted from ordinary model theory [13]. It is the extension of T by

A constant a : A and an axiom ⊤ ⊢ a ↓ for every element a ∈ MA (for every sort A).
An axiom ⊤ ⊢ f(a1, . . . , ak) = f(a1, . . . , ak) for every function symbol
f : A1 × · · · × Ak → A and tuple (a1, . . . , ak) ∈ dom

(
fM

)
.

For better readability, we will generally omit the bar notation on constants of M . Clearly
M is a model of T(M), and in fact it is the initial model: T(M)mod ≃ M/Tmod (see [9,
Lemma 2.2.4] for a proof). The obvious theory morphism T → T(M) corresponds to the
forgetful functor M/Tmod → Tmod.

One of the central constructions in the present paper is that of adjoining an indeterminate
to a model. Given a T-model M and a sort A of T, we form a new model M⟨xA⟩ which
is the result of freely adjoining a new element xA of sort A to M . Formally, one can
define M⟨xA⟩ as M + FA(1), where FA(1) is the free T-model on one generator of sort A.
Consequently, homomorphisms M⟨xA⟩ → N are in natural bijective correspondence with
pairs (h, n) consisting of a homomorphism h : M → N and an element n ∈ NA. We will
write T(M, xA) for the theory extending the diagram theory T(M) by a new constant xA : A
and a new axiom ⊤ ⊢ xA ↓. One can then equivalently define the T-model M⟨xA⟩ as the
initial model of T(M, xA). For a sequence of (not necessarily distinct) sorts A1, . . . , Ak, we
will also write T(M, x1, . . . , xk) for the theory extending T(M) by new, pairwise distinct
constants xi : Ai and axioms ⊤ ⊢ xi ↓ for each 1 ≤ i ≤ k.

Finally, we note that for a T-model M , an indeterminate xA of sort A, and an arbitrary
sort B, we have

M⟨xA⟩B = {t ∈ Termc (T(M), xA) | t : B and T(M, xA) ⊢ t ↓} /=, (3)

i.e. the carrier set M⟨xA⟩B of the T-model M⟨xA⟩ at the sort B is the quotient of the set
of provably defined closed terms of sort B, possibly containing xA and constants from M ,
modulo the partial congruence relation of T(M, xA)-provable equality. For more details, see
[9, Remark 2.2.7].

3 Isotropy

We now embark on the syntactic description of the covariant isotropy group of a theory.
First, let us briefly review the simpler situation of a single-sorted equational theory T. That
is, we describe the isotropy group of a T-model M (details are in [6]). The elements of the
model M⟨x⟩ (for x an indeterminate) can be described explicitly as congruence classes of
terms t(x), built from the indeterminate x, constants from M , and the operation symbols of
T. Two such terms are congruent if they are T(M, x)-provably equal. For example, if T is
the theory of monoids and M is a monoid with m1,m2,m3 ∈ M , unit e, and m1m2 = m3,
then the terms t = xm1xm1m2x and xem1exem3x are congruent.

For a set-theoretic T-model M , each congruence class [t] ∈ M⟨x⟩ can be interpreted as a
function tM : M → M , via substitution into the indeterminate x. We thus have a mapping

M⟨x⟩ → [M,M] ; [t] 7→ tM

P. Hofstra, J. Parker, and P. J. Scott 26:7

where [M,M] is the set of functions from M to itself (well-definedness follows from soundness
of the set-theoretic semantics of equational logic). Moreover, this mapping is a homomorphism
of monoids, where the monoid structure on M⟨x⟩ is given by substitution: [t] · [s] := [t[s/x]],
the unit being [x]. We then restrict on both sides to the invertible elements, obtaining a
group homomorphism Inv(M⟨x⟩) → Perm(M) from the group of substitutionally invertible
(congruence classes of) terms to the permutation group of the set M . However, we do not
wish to just consider arbitrary permutations of the set M , but rather automorphisms of the
T-model M ; in fact, we want to consider inner automorphisms, i.e. automorphisms that
extend naturally along any homomorphism M → N . On the level of terms [t] ∈ M⟨x⟩, this
is achieved by the following definition: [t] is said to commute generically with a function
symbol f : An → A (A being the unique sort of T) if

T(M, x1, . . . , xn) ⊢ t[f(x1, . . . , xn)/x] = f(t[x1/x], . . . , t[xn/x]).

We then form the subgroup DefInn(M) of Inv(M⟨x⟩) on those [t] that commute generically
with all function symbols of the theory. This ensures that such a [t] induces an automorphism
of the T-model M and not merely a permutation of its underlying set, thus yielding a
mapping (−)M : DefInn(M) → Aut(M). However, it turns out that such an automorphism
induced by an element of DefInn(M) is also inner. Indeed, given h : M → N , we obtain
a homomorphism h⟨x⟩ : M⟨x⟩ → N⟨x⟩ of the substitution monoids, which restricts to a
group homomorphism DefInn(M) → DefInn(N). It can then be shown that the subgroup
DefInn(M) is isomorphic to the covariant isotropy group of M , where θM : Z(M) → Aut(M)
is the comparison homomorphism (2):

DefInn(M)

(−)M

��

⊆
// Inv(M⟨x⟩)

(−)M

��

Z(M)

∼=
99r

r
r

r
r

θM

// Aut(M)
⊆

// Perm(M)

We now explain how to extend this result to a (multi-sorted) quasi-equational theory T. The
main technical difficulties in this extension involve accommodating multi-sortedness and the
possibility of certain terms not being provably defined. To handle multi-sortedness, we need
to consider, for a T-model M , the model M⟨xA⟩ obtained by adjoining an indeterminate
xA of sort A for any sort A of T. Since substitution corresponds to composition under the
interpretation mapping t 7→ tM , it follows that M⟨xA⟩A carries a monoid structure (recall (3)
for the definition of this set), defined as before in terms of substitution into the indeterminate
xA. We now write

M⟨x̄⟩ :=
∏

A:Sort
M⟨xA⟩A

for the sort-indexed product monoid of these substitution monoids. An element of
M⟨x̄⟩ is therefore a sort-indexed family of congruence classes of terms [sA]A, where
sA ∈ Termc(T(M), xA) is of sort A and T(M, xA) ⊢ sA ↓. Given such a tuple [sA]A,
its interpretation gives us, at each sort A, a total function sM

A : MA → MA (because sA is
provably defined in T(M, xA)), defined via substitution into the indeterminate xA (cf. [9,
Remark 2.2.12]). The central definitions towards characterizing those [sA]A ∈ M⟨x̄⟩ that
induce elements of isotropy for M are then as follows:

▶ Definition 6. Let M be a T-model and [sC]C ∈ M⟨x̄⟩.
If f : A1 × . . .×An → A is a function symbol of Σ, then we say that ([sC])C commutes
generically with f if the Horn sequent

f(x1, . . . , xn) ↓ ⊢ sA[f(x1, . . . , xn)/xA] = f (sA1 [x1/xA1], . . . , sAn
[xn/xAn

])

is provable in T(M, x1, . . . , xn).

FSCD 2021

26:8 Polymorphic Automorphisms and the Picard Group

We say that ([sC])C is invertible if for each sort A there is some
[
s−1

A

]
∈ M⟨xA⟩A with

T(M, xA) ⊢ sA

[
s−1

A /xA

]
= xA = s−1

A [sA/xA].

We say that ([sC])C reflects definedness if for every function symbol f : A1 × . . .×An → A

in Σ with n ≥ 1, the sequent

f (sA1 [x1/xA1], . . . , sAn
[xn/xAn

]) ↓ ⊢ f(x1, . . . , xn) ↓

is provable in T(M, x1, . . . , xn).
The condition that [sC]C commutes generically with the function symbols of T then en-
sures that [sC]C induces not just an endofunction of each carrier set MC but in fact an
endomorphism of the T-model M . Invertibility of [sC]C then ensures that these endomor-
phisms are bijective. However, due to the fact that function symbols are interpreted as
partial maps, a (sortwise) bijective homomorphism is not in general an isomorphism in Tmod:
a bijective homomorphism is an isomorphism precisely when it also reflects definedness (cf.
[9, Lemma 2.2.33]). Thus, the third condition ensures that the inverses

[
s−1

A

]
also induce

endomorphisms.
Let us write DefInn(M) again for the subgroup of the product monoid M⟨x̄⟩ consist-

ing of those elements satisfying the three conditions above. We then have the following
characterization, of which detailed proofs can be found in [9, Theorems 2.2.41, 2.2.53]:

▶ Theorem 7. Let T be a quasi-equational theory. Then for any M ∈ Tmod we have

Z(M) ∼= DefInn(M) =
{

[sC]C ∈ M⟨x̄⟩ [sC]C
is invertible, commutes generically with
all operations, and reflects definedness.

}
.

4 Monoidal categories and the Picard group

With this description of the isotropy group of an arbitrary quasi-equational theory, we now
turn to the specific example of strict monoidal categories. We can axiomatize these using the
following signature Σ (where the first two ingredients comprise the signature for categories):

two sorts O and A (for objects and arrows);
function symbols dom, cod : A → O, id : O → A, and ◦ : A×A → A;
function symbols ⊗O : O ×O → O, ⊗A : A×A → A;
constant symbols IO : O and IA : A.

Whenever reasonable, we omit the subscripts on ⊗ and I. As axioms, we take those for
categories and add (omitting the hypothesis ⊤):

x⊗ y ↓, I ↓,
x⊗ (y ⊗ z) = (x⊗ y) ⊗ z, x⊗ I = x = I ⊗ x,
dom(f ⊗ g) = dom(f) ⊗ dom(g), cod(f ⊗ g) = cod(f) ⊗ cod(g),
f ◦ h ↓ ∧ g ◦ k ↓ ⊢ (f ⊗ g) ◦ (h⊗ k) = (f ◦ h) ⊗ (g ◦ k),
id(x⊗ y) = id(x) ⊗ id(y), id(IO) = IA.

Note that in this fragment of logic, we need to include axioms forcing the tensor products
and unit object to be total operations. Because of strict associativity, we may omit brackets
when dealing with nested expressions involving tensor products. We shall henceforth denote
this theory by T, and write StrMonCat for its category of models, whose objects are small
strict monoidal categories and whose morphisms are strict monoidal functors. Our goal is
now to prove the following:

P. Hofstra, J. Parker, and P. J. Scott 26:9

▶ Theorem 8. The covariant isotropy group Z : StrMonCat → Grp is naturally isomorphic
to the functor Pic : StrMonCat → Grp that sends a strict monoidal category C to its Picard
group Pic(C), i.e. the group of ⊗-invertible elements in the monoid of objects of C.

Because a strict monoidal category is a monoid object in Cat, we have two functors

Ob,Arr : Cat(Mon) = StrMonCat ⇒ Mon.

We shall ultimately prove that the diagram

StrMonCat Ob //

Z
%%❑

❑❑❑
❑❑❑

❑❑❑
Mon

ZMon||②②
②②
②②
②②

Grp

(4)

commutes up to natural isomorphism, showing that the covariant isotropy group of StrMonCat
is completely determined by the covariant isotropy group of Mon. Since we have proved
in [6, Example 4.3] that the latter sends a monoid M to its subgroup of invertible elements,
Theorem 8 then follows.5

4.1 Monoidal categories and indeterminates
In this section we analyse the process of adjoining an indeterminate to a strict monoidal
category. Let us first describe explicitly the result of adjoining an indeterminate to a monoid.

▶ Definition 9. Let M be a monoid, and X a set of symbols disjoint from M .
A word over M⟨X⟩ is formal string of symbols from the alphabet M ∪X.
A word w is in (expanded) normal form when it has the form w ≡ m0x0m1x1 · · ·xn−1mn

for mi ∈ M and xj ∈ X. In other words, w is in expanded normal form if it contains no
two consecutive elements of M , and if every occurrence of some x ∈ X in w is flanked on
both sides by an element of M .

We then have (by taking an arbitrary word, multiplying adjacent elements from M and
inserting the unit of M wherever necessary):

▶ Lemma 10. When M = (M, ·, e) is a monoid, every element w of the monoid M⟨x⟩ has a
canonical representative w = m0xm1x · · · xmn in expanded normal form.

Moreover, the unit of M⟨x⟩ is represented as the word e and multiplication is given by
(m0xm1x · · · xmj) · (m′

0xm′
1x · · · xm′

k) = m0xm1x · · · x(mj ·m′
0)xm′

1 · · · xm′
k.

We now turn to the process of adjoining an indeterminate object xO, i.e. an indeterminate
of sort O, to a strict monoidal category C. In order to determine the objects of C⟨xO⟩, we
note that the functor Ob : StrMonCat → Mon has both adjoints:

StrMonCat Ob
⊥
⊥

// Mon
∆

rr

∇
ll

Here ∆ sends a monoid M to the discrete strict monoidal category on M and ∇ sends M to
the indiscrete strict monoidal category on M . In fact, if E is any category with finite limits,

5 For a general functor F : E → F it is not the case that ZE ∼= ZF ◦ F . In fact, in [3] it is explained that
in general the relationship between ZE and ZF ◦ F takes the form of a span. The commutativity of (4)
may thus be expressed by saying that both legs of the span associated with Ob are isomorphisms.

FSCD 2021

26:10 Polymorphic Automorphisms and the Picard Group

then the forgetful functor Ob : Cat(E) → E has both adjoints (the proof is a completely
straightforward analogue of the argument for E = Set). As such, Ob : StrMonCat → Mon
preserves all limits and colimits. Now by definition C⟨xO⟩ ∼= C + F1, where F1 is the
free strict monoidal category on a single object; moreover, the latter is easily seen to be
isomorphic to ∆(F1), the discrete strict monoidal category on the free monoid F1 on one
generator. We thus have

Ob(C⟨xO⟩) ∼= Ob(C + F1) ∼= Ob(C) + Ob(F1) = Ob(C) + F1 ∼= Ob(C)⟨x⟩.

This shows that the object forgetful functor preserves the process of adjoining an indeterminate
of sort O.6

We now describe the monoid of arrows of C⟨xO⟩. It is not true that Arr : StrMonCat →
Mon preserves arbitrary binary coproducts, but it does preserve the specific binary coproduct
C + F1:

▶ Lemma 11. If C ∈ StrMonCat, then Arr(C⟨xO⟩) ∼= Arr(C)⟨x⟩.

Proof. We sketch a syntactic proof, noting that the result can also be deduced categorically
from the fact that the endofunctor − + F1 : Mon → Mon preserves pullbacks.

An element of Arr(C⟨xO⟩) is a congruence class of terms t built up from the operations
of T, arrows of C, and the term id(xO). One can show by induction that every such term t is
congruent to one of the form t = f1 ⊗ id(xO) ⊗ f2 ⊗ id(xO) ⊗ · · · ⊗ id(xO) ⊗ fn where each fi is
an arrow of C. Thus, the monoid Arr(C⟨xO⟩) is isomorphic, by Lemma 10, to Arr(C)⟨x⟩. ◀

In fact, we may describe the relationship between the functor (−) + F1 adjoining an
indeterminate object to a strict monoidal category and the functor (−) + F1 adjoining an
indeterminate element to a monoid as follows.

▶ Proposition 12. The functor (−) + F1 : Cat(Mon) → Cat(Mon) is naturally isomorphic
to Cat(− + F1).

We thus obtain the following explicit description of the strict monoidal category C⟨xO⟩:

Objects: Words a1xa2x · · · xan where each ai is an object of C.
Morphisms: Words f1xf2x · · · xfn where each fi is an arrow of C.
Domain: dom(f1x · · · xfn) = dom(f1)x · · · xdom(fn).
Codomain: cod(f1x · · · xfn) = cod(f1)x · · · xcod(fn).
Identities: id(a1x · · · xan) = id(a1)x · · · xid(an).
Composition: (f1x · · · xfn) ◦ (g1x · · · xgn) = f1g1x · · · xfngn.
Tensors: (a1x · · · xan) ⊗ (b1x · · · xbm) = a1x · · · x(an ⊗ b1)x · · · xbm.
Tensor units: IO, IA (tensor units of C regarded as one-letter words).

Next, we address the issue of adjoining an indeterminate arrow xA to C. Here we cannot
invoke a simple categorical fact about coproducts, because Arr : StrMonCat → Mon does
not preserve coproducts of the relevant kind (which, to be explicit, is coproducts with the
free strict monoidal category F2, where 2 is the free-living arrow). We are thus forced to
carry out a direct syntactic analysis of the objects and arrows of C⟨xA⟩. Note that these are
generated, under the operations of domain, codomain, identities, composition, and tensor

6 Note that for a functor ρ∗ : Smod → Tmod induced by a theory morphism ρ : T → S it is not in general
the case that ρ∗(M⟨x⟩) ∼= (ρ∗M)⟨x⟩.

P. Hofstra, J. Parker, and P. J. Scott 26:11

product, from the objects and arrows of C, together with the new arrow xA. In particular,
there will be two new objects dom(xA) and cod(xA), and corresponding identity arrows
id(dom(xA)), id(cod(xA)).

▶ Definition 13. Let C ∈ StrMonCat. A closed term t ∈ Termc(C, xA) of sort O is in normal
form when it is of the form t = a1 ⊗ x1 ⊗ · · · ⊗ xk−1 ⊗ ak, where each ai is an object of C
and each xi ∈ {dom(xA), cod(xA)}. A closed term t ∈ Termc(C, xA) of sort A is in normal
form when it is of the form t = f1 ⊗ x1 ⊗ · · · ⊗ xk−1 ⊗ fk, where each fi is an arrow of C and
each xi ∈ {xA, id(dom(xA)), id(cod(xA))}.

We may now describe C⟨xA⟩ in terms of normal forms. It is straightforward to prove,
by directly verifying the universal property, that the category described below is indeed
isomorphic to C⟨xA⟩. Alternatively, one can endow the set {t ∈ Termc(C, xA) | T(C, xA) ⊢ t ↓}
with a rewriting system and show that each term has a unique normal form.

Objects: closed terms of sort O in normal form.
Arrows: closed terms of sort A in normal form.
Domain: dom(f1 ⊗ x1 ⊗ · · · ⊗ xk−1 ⊗ fk) = dom(f1) ⊗ y1 ⊗ · · · ⊗ yk−1 ⊗ dom(fk) where

yi = dom(xA) when xi = xA or xi = id(dom(xA)), and yi = cod(xA) otherwise.
Codomain: cod(f1 ⊗ x1 ⊗ · · · ⊗ xk−1 ⊗ fk) = cod(f1) ⊗ y1 ⊗ · · · ⊗ yk−1 ⊗ cod(fk) where

yi = cod(xA) when xi = xA or xi = id(cod(xA)), and yi = dom(xA) otherwise.
Identities: id(a1 ⊗ x1 ⊗ · · · ⊗ xk−1 ⊗ ak) = id(a1) ⊗ id(x1) ⊗ · · · ⊗ id(xk−1) ⊗ id(ak).
Composition: For t = f1 ⊗ x1 ⊗ · · · ⊗ xk−1 ⊗ fk and s = g1 ⊗ x′

1 ⊗ · · · ⊗ x′
k−1 ⊗ gk with

cod(t) = dom(s), define s ◦ t = (g1f1) ⊗ z1 ⊗ · · · ⊗ · · · ⊗ zk−1 ⊗ (gkfk), where zi is defined
from xi and x′

i in the evident way.
Tensors: (a1 ⊗ x1 ⊗ · · · ⊗ xn−1 ⊗ an) ⊗ (b1 ⊗ y1 ⊗ · · · ⊗ ym−1 ⊗ bm) =
a1 ⊗ x1 ⊗ · · · ⊗ xn−1 ⊗ (an ⊗ b1) ⊗ y1 ⊗ · · · ⊗ ym−1 ⊗ bm.

Tensor units: IO, IA (tensor units of C regarded as one-letter words).

4.2 Isotropy group
We are now in a position to analyse the isotropy group of a strict monoidal category. By
the results of the previous section, we know that an element of isotropy of a strict monoidal
category C may be taken to be of the form (sO, sA), where sO and sA are closed terms in
normal form of sort O and A respectively.

The first observation is that elements of isotropy of the monoid Ob(C) induce elements
of isotropy of C (as we shall see in the next section, this is not specific to strict monoidal
categories.) In what follows, we write Z(C) for the isotropy group of a strict monoidal
category C, and ZMon(M) for the isotropy group of a monoid M (which is the group of
invertible elements of M by [6, Example 4.3]).

▶ Lemma 14. Let C ∈ StrMonCat. When a is an invertible object in the monoid Ob(C) with
inverse b, the pair (a⊗ xO ⊗ b, id(a) ⊗ xA ⊗ id(b)) is an element of Z(C).

Proof. To show that (a ⊗ xO ⊗ b, id(a) ⊗ xA ⊗ id(b)) is an element of isotropy, one can
straightforwardly verify that it is invertible, commutes generically with all operations of T,
and reflects definedness (for details, see [9, Proposition 3.9.35]). However, it is less work to
show directly that given a strict monoidal functor F : C → D, we obtain an automorphism
αF of D as follows. On objects we set αF (d) = Fa ⊗ d ⊗ Fb, while on arrows we set
αF (f) = id(Fa) ⊗ f ⊗ id(Fb). It is routine to check that this defines an automorphism and
that the family αF is natural in F . ◀

FSCD 2021

26:12 Polymorphic Automorphisms and the Picard Group

The above lemma gives us a mapping θC : ZMon(Ob(C)) → Z(C). It is easily verified
that this is in fact a group homomorphism, natural in C.

Next, we define a retraction σ of θ. This is done categorically using the right adjoint
∇ to Ob. Concretely, given an element of isotropy α ∈ Z(C), we define an element
σC(α) ∈ ZMon(Ob(C)) as follows: consider a monoid homomorphism h : Ob(C) → N . This
corresponds by the adjunction Ob ⊣ ∇ to a strict monoidal functor h̃ : C → ∇(N); the
component of α at h̃ is an automorphism of ∇(N), whence Ob (αh̃) is an automorphism of
N (using the fact that Ob ◦ ∇ = 1). This leads to:

▶ Lemma 15. If C ∈ StrMonCat, the map σC : Z(C) → ZMon(Ob(C)) is a group homomor-
phism.

Interpreting this syntactically, we find that if (sO, sA) ∈ Z(C), then sO ∈ ZMon(Ob(C)),
and hence sO = a⊗ xO ⊗ b for an invertible object a with inverse b. We also see that σC is a
retraction of θC, i.e. that σC ◦ θC = 1.

Since θC is a section, it now remains to show that θC is an epimorphism of groups, i.e. is
surjective. So we must show for any element of isotropy (sO, sA) = (a⊗ xO ⊗ b, sA) ∈ Z(C)
(with invertible object a and inverse b) that we have sA = id(a) ⊗ xA ⊗ id(b). To this end, we
first note that since (sO, sA) commutes generically with the operations dom and cod we get

a⊗ dom(xA) ⊗ b = sO[dom(xA)/xO] = dom(sA)

and likewise

a⊗ cod(xA) ⊗ b = sO[cod(xA)/xO] = cod(sA).

Thus, by uniqueness of normal forms, sA must have the form f ⊗ xA ⊗ g for some morphisms
f : a → a and g : b → b of C. So we must now show that f = id(a) and g = id(b), and for
that we use the fact that (sO, sA) commutes generically with id, giving

f ⊗ id(xO) ⊗ g = sA[id(xO)/xA] = id(sO) = id(a⊗ xO ⊗ b) = id(a) ⊗ id(xO) ⊗ id(b).

We now get the desired equalities f = id(a) and g = id(b) by appealing to the uniqueness of
normal forms. This concludes the proof of Theorem 8.

5 Further examples and applications

In this section we briefly explore some further theories of interest, and indicate the extent to
which the analysis of the case of strict monoidal categories can be generalized.

5.1 Internal categories
The analysis of strict monoidal categories reveals that it is profitable, at least for the purposes
of understanding isotropy, to regard strict monoidal categories as internal categories in the
category Mon of monoids. This naturally raises the following question: are there other
algebraic theories T for which the forgetful functor Ob : Cat(Tmod) → Tmod induces an
isomorphism on the level of isotropy groups?

Let us first state which of the ideas from the case of monoids carry over to a general
algebraic theory T. First of all, we still have a string of adjunctions

P. Hofstra, J. Parker, and P. J. Scott 26:13

Cat(Tmod) Ob
⊥
⊥

// Tmod
∆

rr

∇
ll

with Ob ◦ ∇ ∼= 1 ∼= Ob ◦ ∆, since Tmod has finite limits. This allows us to deduce the
existence of a pair of natural comparison homomorphisms

θC : ZT(Ob(C)) → Z(C) ; σC : Z(C) → ZT(Ob(C))

with σ ◦ θ = 1 (here Z denotes the isotropy of Cat(Tmod) and ZT that of Tmod). We thus
have:

▶ Lemma 16. Let T be any algebraic theory and C any internal category in Tmod. Then
ZT(Ob(C)) is a retract of Z(C), naturally in C.

In the case of strict monoidal categories, we were able to prove syntactically that the
embedding-retraction pair (θ, σ) is an isomorphism. The same proof can also be applied
in at least two other cases of interest. Recall that a crossed module (A,G, δ, a) consists of
a pair of groups A,G, a group homomorphism δ : A → G, and a group homomorphism
a : G → Aut(A) from G to the automorphism group of A, making certain diagrams commute.
If XMod denotes the category of crossed modules and their morphisms, then it is also true
that XMod is equivalent to the category Cat(Grp) of internal categories in Grp (cf. e.g. [7,
XII.8]).

▶ Proposition 17. The isotropy group of a crossed module (A,G, δ, a) is isomorphic to G.

Proof. When composing the functor Ob : Cat(Grp) → Grp with the equivalence XMod ∼−→
Cat(Grp), one obtains the forgetful functor which sends a crossed module (A,G, δ, a) to G.
Moreover, the isotropy group of a group G is G itself by [6, Example 4.1]. ◀

▶ Proposition 18. The covariant isotropy group Z : StrSymMonCat → Grp of strict sym-
metric monoidal categories is constant, with value the trivial group.

Proof. The isotropy group of commutative monoids is trivial by [6, Example 4.4]. ◀

We want to emphasize that the preceding proposition is not inconsistent with Theorem 8:
while Theorem 8 asserts that the covariant isotropy group of a strict symmetric monoidal
category C in the category StrMonCat is isomorphic to its Picard group (which may be
non-trivial), the preceding proposition asserts that the covariant isotropy group of C in the
full subcategory StrSymMonCat is trivial. In other words, if A is a full subcategory of B, with
covariant isotropy groups ZA : A → Grp and ZB : B → Grp, then ZA(A) may differ from
ZB(A) for an object A in the full subcategory A.

5.2 Presheaf categories
Using Theorem 7, we can also compute the covariant isotropy of any presheaf category
SetJ for a small category J . We first axiomatize SetJ as the category of models of a
quasi-equational theory.

▶ Definition 19 (Presheaf Theory). Let J be a small category. We define the signature
ΣJ to have one sort Xi for each i ∈ Ob(J) and one function symbol αf : Xi → Xj for each
arrow f : i → j in J .

We define the presheaf theory TJ to be the quasi-equational theory over the signature
ΣJ with the following axioms:

FSCD 2021

26:14 Polymorphic Automorphisms and the Picard Group

⊤ ⊢x:Xi αf (x) ↓ for any f : i → j in J (i.e. each αf is total).
⊤ ⊢x:Xi αidi

(x) = x for every i ∈ Ob(J) (i.e. each αidi
acts as an identity).

⊤ ⊢x:Xi αg(αf (x)) = αg◦f (x) for any composable pair i f−→ j
g−→ k in J .

We will lighten notation and write i instead of Xi and f instead of αf . We write xi for an
indeterminate of sort i. It is completely straightforward to verify that we have an isomorphism
of categories TJ mod ∼= SetJ (for details, see [9, Proposition 5.1.8]). So to compute the
covariant isotropy group ZSetJ : SetJ → Grp of the category SetJ , it is equivalent to compute
the covariant isotropy group ZTJ : TJ mod → Grp of the theory TJ .

According to Theorem 7, we have for a TJ -model (i.e. a functor) F : J → Set that

Z(F) ∼=

{
[si]i ∈

∏
i∈J

F ⟨xi⟩i | [si]i is invertible and commutes gen. with all f : i → j

}
.

Note that since all terms are provably defined in TJ , we can omit the condition that [si]i
reflects definedness. We now require the following preparatory lemma.

▶ Lemma 20. Let M ∈ TJ mod. If f, f ′ : i → j are parallel arrows in J and TJ (M, xi) ⊢
f(xi) = f ′(xi), then f = f ′.

Proof. The assumption TJ (M, xi) ⊢ f(xi) = f ′(xi) implies that for any homomorphism (i.e.
natural transformation) η : M → N in SetJ we have N(f) = N(f ′), since given any a ∈ Ni

there is a homomorphism [η, a] : M⟨xi⟩ → N sending xi to a (cf. also [9, Lemma 3.1.2]). We
now take N : J → Set to be N := M + J (i,−) and η to be the coproduct inclusion. Then
f = f ◦ id(i) = N(f)(id(i)) = N(f ′)(id(i)) = f ′ ◦ id(i) = f ′, as required. ◀

As a consequence of this lemma, we find that any term congruence class [t] ∈ M⟨xi⟩ has
a unique representation as t ≡ a for some a ∈ Mj or t ≡ f(xi) for some f with domain i,
depending on whether the indeterminate xi occurs in t.

Let Aut(IdJ) be the group of natural automorphisms of the identity functor IdJ : J → J
of a small category J , which is sometimes called the center of J . We now have:

▶ Proposition 21. Let J be a small category. For any M ∈ TJ mod we have

Z(M) =
{

([ψi(xi)])i ∈
∏
i∈J

M⟨xi⟩i : ψ ∈ Aut(IdJ)
}
.

Proof. It is straightforward to prove the right-to-left inclusion using the assumption that ψ
is a natural automorphism of IdJ , so let us turn to the less obvious converse inclusion. So
suppose that ([si])i∈J ∈ Z(M) ⊆

∏
i M⟨xi⟩i. By the lemma, as well as the fact that invertible

terms must contain the indeterminate, we may represent si = ψi(xi), where ψi : i → i is a map
in J . We show that ψ := (ψi)i∈J is a natural automorphism of IdJ . First, each ψi : i → i

is an isomorphism: take the inverse ([ti])i of ([si])i, and represent this inverse as χi(xi) for
χi : i → i. Since TJ (M, xi) then proves the equations (ψi ◦χi)(xi) = ψi(χi(xi)) = xi = idi(xi)
and (χi ◦ ψi)(xi) = idi(xi), it follows by Lemma 20 that ψi is the inverse of χi.

To show that ψ is natural, let f : j → k be any arrow in J , and let us show that
ψk ◦ f = f ◦ ψj . We know that ([ψi(xi)])i = [si]i commutes generically with the function
symbol f : Xj → Xk of ΣJ , which implies that TJ (M, xj) ⊢ (ψk ◦ f)(xj) = (f ◦ψj)(xj), from
which we obtain the required ψk ◦ f = f ◦ ψj again by Lemma 20. Thus ψ : IdJ

∼−→ IdJ is
indeed a natural automorphism with ([si])i = ([ψi(xi)])i. ◀

P. Hofstra, J. Parker, and P. J. Scott 26:15

▶ Corollary 22. Let J be a small category. For any functor F : J → Set we have
Z(F) ∼= Aut (IdJ), and hence the covariant isotropy group functor of SetJ is constant on the
automorphism group of IdJ .

Proof. Given ([si])i∈J ∈ Z(F), we know by Proposition 21 that there is some ψ ∈ Aut(IdJ)
with [si]i = [ψi(xi)]i. We now show that this assignment ([si])i 7→ ψ is a well-defined group
isomorphism Z(F) ∼−→ Aut(IdJ). It is well-defined, because if there is also some χ ∈ Aut(IdJ)
with [si]i = [ψi(xi)]i = [χi(xi)]i, then from Lemma 20 we obtain ψ = χ. It is clearly injective,
it is surjective by Proposition 21, and it is readily seen to preserve group multiplication, so
that it is indeed a group isomorphism. ◀

We can now use Corollary 22 to characterize the covariant isotropy groups of certain presheaf
categories of interest.

▶ Proposition 23. If M is a monoid, then the covariant isotropy group Z : SetM → Grp
of the category of M -sets and M -equivariant maps is constant on Inv(Z(M)), the subgroup
of invertible elements of the center of M . In particular, if G is a group, then the covariant
isotropy group Z : SetG → Grp is constant on Z(G).

Proof. The result follows immediately from Corollary 22 and the observation that the
automorphism group of the identity functor on the monoid M , regarded as a one-object
category, is isomorphic to Inv(Z(M)). ◀

▶ Proposition 24. Let J be a rigid category, i.e. a category whose objects have no non-
identity automorphisms (e.g. J could be a preorder or poset). Then the covariant isotropy
group Z : SetJ → Grp is trivial.

We point out that Corollary 22 illustrates an important difference between covariant
isotropy SetJ → Grp and contravariant isotropy

(
SetJ

)op
→ Grp. Indeed, the latter is

generally not constant, but is a representable functor F 7→ SetJ [F,Z] for a suitable presheaf
of groups Z, that is, an internal group object in SetJ . The connection between covariant
and contravariant isotropy is then as follows: the group of global sections of Z is isomorphic
to the group Aut(IdJ):

Γ(Z) = SetJ (1, Z) ∼= Z(F) for F : J → Set.

6 Conclusions and future work

We have shown how a syntactic description of polymorphic automorphisms can be fruitfully
applied to characterize the covariant isotropy of several kinds of structures of relevance
in logic, algebra, and computer science. Most notably, we have shown that the covariant
isotropy group of a strict monoidal category coincides with its Picard group of ⊗-invertible
objects. We have also shown that the covariant isotropy group of a presheaf category SetJ

behaves quite differently from the contravariant one, in that it is the constant group with
value Aut(IdJ).

There are several open questions and possible lines for further inquiry:

1. The generalization from algebraic to quasi-equational theories presented in this paper is
the first step on a path upwards through the various fragments of logic. In particular,
we hope to generalize some of the techniques to determine the isotropy groups of some
geometric theories of interest.

FSCD 2021

26:16 Polymorphic Automorphisms and the Picard Group

2. We have shown how to determine the covariant isotropy groups of presheaf categories,
but we have left open the question of how to determine the isotropy of sheaf toposes.
In particular, it would be of interest to determine the covariant isotropy of the topos of
nominal sets (also known as the Schanuel topos).

3. For a theory T and small category J , there is a theory S = S(T,J) with Smod ∼= TmodJ

(in Section 5.2 we considered the special case where T is the theory of sets). In [9, Chapter
5] the second author has obtained, under mild assumptions on T, a description of the
covariant isotropy group of TJ mod in terms of Aut(IdJ) and the isotropy group of T.

4. We have not yet investigated in detail how isotropy behaves with respect to morphisms of
theories ρ : T → S. We have seen a rather special case in Section 4 with Ob : StrMonCat →
Mon, but the general case is more involved.

5. One possible perspective on the theory of strict monoidal categories is that it is a tensor
product of the theory of categories with that of monoids. This leads to the question of
whether, under suitable hypotheses on the theories T and S, we can describe the isotropy
of the tensor product theory T ⊗ S in terms of that of T and S.

6. One can define, for a 2-category E and object X ∈ E , the 2-group of pseudo-natural
auto-equivalences of X/E → E . This leads to a 2-dimensional version of isotropy, taking
values in 2-groups. It is then possible to show that the 2-isotropy group of a (non-strict)
monoidal category (regarded as an object of the 2-category of monoidal categories and
strong monoidal functors) is the Picard 2-group. This will be presented in forthcoming
work.

References
1 George M. Bergman. An inner automorphism is only an inner automorphism, but an inner

endomorphism can be something strange. Publicacions Matematiques, 56(1):91–126, 2012.
2 Peter J. Freyd. Core algebra revisited. Theor. Comput. Sci., 375(1-3):193–200, 2007. doi:

10.1016/j.tcs.2006.12.033.
3 Jonathon Funk, Pieter Hofstra, and Sakif Khan. Higher isotropy. Theory and Applications of

Categories, 33(20):537–582, 2018.
4 Jonathon Funk, Pieter Hofstra, and Benjamin Steinberg. Isotropy and crossed toposes. Theory

and Applications of Categories, 26(24):660–709, 2012.
5 Richard Garner. Inner automorphisms of groupoids. Preprint, available at arXiv:1907.10378,

2019.
6 Pieter J. W. Hofstra, Jason Parker, and Philip J. Scott. Isotropy of algebraic theories. In Sam

Staton, editor, Proceedings of the Thirty-Fourth Conference on the Mathematical Foundations
of Programming Semantics, MFPS 2018, Dalhousie University, Halifax, Canada, June 6-9,
2018, volume 341 of Electronic Notes in Theoretical Computer Science, pages 201–217. Elsevier,
2018. doi:10.1016/j.entcs.2018.11.010.

7 Saunders Mac Lane. Categories for the working mathematician. Springer, second edition,
1997.

8 Erik Palmgren and Steven J. Vickers. Partial horn logic and cartesian categories. Ann. Pure
Appl. Log., 145(3):314–353, 2007. doi:10.1016/j.apal.2006.10.001.

9 Jason Parker. Isotropy groups of quasi-equational theories. PhD thesis, Université
d’Ottawa/University of Ottawa, 2020. URL: https://ruor.uottawa.ca/handle/10393/
41032.

10 Martin R. Pettet. On inner automorphisms of finite groups. Proceedings of the American
Mathematical Society, 106(1):87–90, May 1989.

11 Andrew M. Pitts. Categorical logic. In Handbook of Logic in Computer Science: Volume 5.
Algebraic and Logical Structures, pages 40–128. Oxford University Press, 2000.

https://doi.org/10.1016/j.tcs.2006.12.033
https://doi.org/10.1016/j.tcs.2006.12.033
https://arxiv.org/abs/1907.10378
https://doi.org/10.1016/j.entcs.2018.11.010
https://doi.org/10.1016/j.apal.2006.10.001
https://ruor.uottawa.ca/handle/10393/41032
https://ruor.uottawa.ca/handle/10393/41032

P. Hofstra, J. Parker, and P. J. Scott 26:17

12 Paul E. Schupp. A characterization of inner automorphisms. Proceedings of the American
Mathematical Society, 101(2):226–228, October 1987.

13 Joseph R. Shoenfield. Mathematical logic. CRC Press, 2018.

FSCD 2021

What’s Decidable About (Atomic) Polymorphism?
Paolo Pistone # Ñ

University of Bologna, Italy

Luca Tranchini # Ñ

Eberhard Karls Universität Tübingen, Germany

Abstract
Due to the undecidability of most type-related properties of System F like type inhabitation or
type checking, restricted polymorphic systems have been widely investigated (the most well-known
being ML-polymorphism). In this paper we investigate System Fat, or atomic System F, a very
weak predicative fragment of System F whose typable terms coincide with the simply typable ones.
We show that the type-checking problem for Fat is decidable and we propose an algorithm which
sheds some new light on the source of undecidability in full System F. Moreover, we investigate free
theorems and contextual equivalence in this fragment, and we show that the latter, unlike in the
simply typed lambda-calculus, is undecidable.

2012 ACM Subject Classification Theory of computation Ñ Type theory; Theory of computation
Ñ Higher order logic

Keywords and phrases Atomic System F, Predicative Polymorphism, ML-Polymorphism, Type-
Checking, Contextual Equivalence, Free Theorems

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.27

Related Version Full Version: https://arxiv.org/abs/2105.00748

Funding Luca Tranchini: DFG TR1112/4-1 “Falsity and Refutation. On the negative side of logic”

1 Introduction

Polymorphism has been a central topic in programming language theory since the late sixties.
Today, most general purpose programming languages employ some kind of polymorphism. At
the same time, under the Curry-Howard correspondence, quantification over types corresponds
to quantification over propositions, that is, to second-order logic. In particular, System
F, the archetypical type system for polymorphism, can be seen as a proof-system for (the
ñ,@-fragment of) second-order intuitionistic logic.

In spite of the numerous applications of polymorphism, practically all interesting type-
related properties of (Curry-style) System F (e.g. type checking, type inhabitation, etc.)
are undecidable, making this language impractical for any reasonable implementation. This
is one of the reasons why a wide literature has investigated more manageable subsystems
of System F. Notably, ML-polymorphism [41, 42, 40] has found much success due to its
decidable type-checking.

Another direction of research was that of investigating predicative subsystems of System F
[32, 33, 34, 6]. In particular, the so-called finitely stratified polymorphism [33] yields a
stratification of System F through a sequence of predicative systems pFnqnPN of growing
expressive power (notably, F0 is the simply typed λ-calculus STλC, and ML-polymorphism
coincides with the rank-1 part of F1). Yet, in spite of such limitations, type checking becomes
undecidable already at level 1 of this hierarchy [18].

Could one tell exactly at which point, in the range from the simply typed λ-calculus and
ML to full System F, the type-related properties of polymorphism become undecidable?

© Paolo Pistone and Luca Tranchini;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 27; pp. 27:1–27:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paolo.pistone2@unibo.it
http://logica.uniroma3.it/pistone/
mailto:luca.tranchini@gmail.com
https://sites.google.com/site/lucatranchini/
https://doi.org/10.4230/LIPIcs.FSCD.2021.27
https://arxiv.org/abs/2105.00748
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 What’s Decidable About (Atomic) Polymorphism?

F0 “ STλC Fat ML F1 F

TI decidable [59] undecidable [52] open undecidable [57] undecidable [37]
TC decidable [25] decidable decidable [40] undecidable [18] undecidable [64]
T decidable [25] decidable decidable [40] undecidable [18] undecidable [64]

CE
(for numerical

functions)
decidable [44] decidable undecidable undecidable undecidable˚

CE
(full) decidable [44] undecidable undecidable undecidable undecidable˚˚

Figure 1 Decidable and undecidable properties of System F and some predicative fragments (in
bold the properties established in the present paper).
˚: easy consequence of Rice’s theorem and the typability of all primitive recursive functions in F
(see also Remark 18).
˚˚: consequence of the undecidability of (CE) for numerical functions.

Atomic Polymorphism. In more recent times Ferreira et al. have undertaken the investiga-
tion of what can be seen as the least expressive predicative fragment of F, System Fat, or
atomic System F [12, 11, 13, 15, 16, 10, 9]. The predicative restriction of Fat is such that
a universally quantified type @X.A can be instantiated solely with an atomic type, i.e. a
type variable. In this way Fat sits in between level 0 (i.e. STλC) and level 1 of the finitely
stratified hierarchy. Actually, Fat can be seen as a type refinement system (in the sense
of [39]) of STλC, since all terms typable in Fat are simply typable (cf. Lemma 7).

In spite of its very limited expressive power, Ferreira et al. have shown that, thanks to
polymorphism, Fat enjoys some proof-theoretic properties that STλC lacks. In particular,
they defined a predicative variant of the usual encoding of sum and product types inside
F, yielding an embedding of intuitionistic propositional logic inside Fat. However, while
propositional logic is decidable, provability in second-order propositional intuitionistic logic,
even with the atomic restriction, is undecidable [56]. This argument (as recently observed
in [52]) can be extended to show that the type inhabitation property, which is decidable for
STλC, is undecidable for Fat.

Contributions

In this paper we investigate the following type-related properties of System Fat:

Type inhabitation (TI): given A, is there t such that $ t : A?
Type-checking (TC): given Γ, A, t, does Γ $ t : A?
Typability (T): given Γ, t, is there A such that Γ $ t : A?
Contextual equivalence (CE): given A, t, u such that $ t, u : A, do Crts and Crus reduce

to the same Boolean, for all context Cr s : A ñ Bool?

In Fig. 1 we sum up what is already known and what is established in this paper (in bold)
about such properties in predicative fragments of System F. Our main results are that in
Fat (TC) and (T) are both decidable, and that (CE) is decidable if one restricts oneself to
numerical functions, and undecidable in the general case.

Several decidability properties of Fat are tight, meaning that they all fail already for F1.
In these cases, our arguments can be used to shed some new insights on the broader question
of understanding where the source of undecidability for such properties in full System F lies.

P. Pistone and L. Tranchini 27:3

Plan of the paper

After recalling the syntax of F and its fragment in Curry-style and Church-style, we address
the properties (TI), (TC), (T) and (CE).

Type Inhabitation. In Section 3 we shortly discuss the undecidability of (TI), by showing
how the argument in [57] for System F applies to Fat too. This argument yields an encoding
inside Fat of an undecidable fragment of first-order intuitionistic logic. We also observe that
Fat is actually equivalent to a first-order system, namely to the ñ,@-fragment 1Monñ,@ of
first-order monadic intuitionistic logic in a language with a unique monadic predicate. To
our knowledge, the undecidability of 1Monñ,@ has not been previously observed (although
some slightly more expressive fragments - e.g. including a primitive disjunction [19] or finitely
many monadic predicates [54] - have been proven undecidable).

Type-Checking and Typability. In Section 4 we consider the type-checking problem. The
undecidability of (TC) for System F was established by Wells in [64], and was later extended
to all predicative systems Fn, for n ą 0 [18]. In all these cases this result was obtained
by reducing an undecidable variant of second-order unification (SOU) to the type-checking
problem. On the other hand, the decidability of (TC) for ML (and F0 “ STλC) is based
on the famous Hindley-Milner algorithm [40], which reduces this problem to first-order
unification (FOU), which is decidable.

The fundamental source of undecidability of SOU is the presence of cyclic dependences
between second order variables, expressed in the simplest case by equations of the form
Xptq “ fpv1, . . . , vk´1, Xpuq, vk`1, . . . , vnq. In fact, acyclic SOU is decidable [36]. When type-
checking polymorphic programs, such cyclic dependencies are generated by self-applications,
i.e. terms of the form λx⃗.xt1 . . . tk´1xtk`1 . . . tn. In fact, in this case the type @X.A assigned
to the variable x must satisfy a cyclic equation of the form

ArX ÞÑ C1s “ B1 ñ . . . ñ Bk´1 ñ ArX ÞÑ C2s ñ Bk`1 ñ . . . ñ Bn

(where C1, C2 are suitable type instantiations of X). By constrast, no term containing a
self-application can be typed in STλC, since cyclic equations cannot be solved by FOU.

Since the terms typable in Fat can also be typed in STλC (cf. Lemma 7), it follows
that self-applications cannot be typed in Fat either. Using this observation, we describe
a type-checking algorithm for Fat which works in two phases: first, it checks (using FOU)
the presence of cyclic dependencies, and returns failure if it detects one; then, if phase 1
succeeds, it applies (a suitable variant of) acyclic SOU to decide type-checking. From the
decidability of (TC), we deduce the decidability of (T) by a standard argument (see [4]).

Contextual Equivalence. Studying the typable terms of Fat might not seem very interesting
from a computational viewpoint, as these terms are already typable in STλC. However,
due to the presence of some form of polymorphism, investigating programs in Fat can
be interesting for equational reasoning, as we do in Sections 5 and 6. In standard type
systems, beyond the standard notions of program equivalence arising from the operational
semantics (i.e. βη-equivalence), there may exist several other congruences arising from either
denotational models or from some notion of contextual equivalence. In STλC, it is well-known
that »βη coincides with the congruence induced by any infinite extensional model [58], as well
as with several notions of contextual equivalence (see [5], [7]). In polymorphic type systems
the picture is rather different, since βη-equivalence is usually weaker than the congruences

FSCD 2021

27:4 What’s Decidable About (Atomic) Polymorphism?

arising from extensional models (see [3, 23]), and also weaker than standard notions of
contextual equivalence. Moreover, while βη-equivalence is decidable, contextual equivalence
is undecidable. Since in many practical situations (see [62, 1]) it is more convenient to reason
up to notions of equivalence stronger than βη-equivalence, several techniques to compute
(approximations of) contextual equivalence have been investigated, e.g. free theorems [63],
parametricity [53], and dinaturality [3].

Our investigation of contextual equivalence starts in Section 5 with an exploration of
equational reasoning in Fat using free theorems. We show that the predicative encodings
of sum and product types of Ferreira et al. produce products and coproducts in Fat in
the categorical sense, provided terms are considered up to (CE) (a fact which is known
to hold in F for the usual, impredicative, encodings [23, 61]). We then investigate (CE)
for typable numerical functions. Using the fact that the primitive recursive functions are
uniquely defined in System F up to (CE), we show that (CE) for the representable numerical
functions is decidable in Fat, and undecidable in ML. Such results rely on the observation
that (CE) becomes undecidable as soon as some super-polynomial function (like bounded
multiplication) becomes representable. From this it can be deduced that (CE) is undecidable
in all fragments Fn, for n ą 0, of the finitely stratified hierarchy as well.

Finally, in Section 6 we establish that (CE) is undecidable also in Fat, by showing that the
type inhabitation problem for a suitable extension of Fat can be reduced to it. This result,
together with the previous ones, shows that there is no hope to get a decidable contextual
equivalence for polymorphic programs through a predicative restriction, and one has rather
to look for other kinds of restrictions (see for instance [49]).

2 Predicative Polymorphism and System Fat

The systems we consider in this paper are all restrictions of usual Church-style and Curry-style
System F. The types are defined in both cases by the grammar

A,B ::“ X | A ñ B | @X.A

starting from a countable set Var2 of type variables X1, X2, The terms of Church-style
System F are defined by the grammar below:

tA, uA ::“ xA | pλxA.tBqAñB | tBñAuB | pΛX.tAq@X.A | pt@X.ACqArC{Xs

For readability, we will often omit type annotations, when these can be guessed from the
context. The terms of Curry-style System F are standard λ-terms, with typing rules defined
as in Fig. 2, where Γ indicates a partial function from term variables to types with a finite
support, and by X R FVpΓq we indicate that X does not occur free in any type in ImpΓq.
We call the type C occurring in pt@X.ACqArC{Xs and in the rule @E in Fig. 2 the witness of
the type instantiation.

We indicate term contexts (i.e. terms with a hole r s) as Cr s, Dr s. Moreover, we let
Cr s : A $ B be a shorthand for x ÞÑ A $ Crxs : B.

System F is impredicative: any type can figure as a witness. In particular, one can
construct “circular” instantiations, in which a term of type @X.A is instantiated with the
same type as witness. A predicative fragment of System F is one in which witnesses are
restricted in such a way to avoid such circular instantiations.

We will focus on three predicative fragments of System F, both in Church- and Curry-style.
The first is System F1, which is the fragment of F in which witnesses are quantifier-free.
The second is System Fat, which is the fragment of F in which witnesses are atomic, that is,

P. Pistone and L. Tranchini 27:5

Γpxq “ A
VarΓ $ x : A

Γ, x ÞÑ A $ t : B
AbsΓ $ λx.t : A ñ B

Γ $ t : A ñ B Γ $ u : A ApplΓ $ tu : B

Γ $ t : B X R FVpΓq
@IΓ $ t : @X.A

Γ $ t : @X.A
@EΓ $ t : ArC{Xs

Figure 2 Typing rules for Curry-style System F.

type variables. The third is system ML [41, 40], which essentially coincides with the rank 1
fragment of F1. For any type A, the rank rpAq is the maximum number of nesting between
ñ and @, and is defined inductively by rpXq “ 0, rpA ñ Bq “ maxtrpAq ` 1, rpBqu and
rp@X1 . . . Xn.Aq “ rpAq ` 1 (where n ą 0 and A does not start with a quantifier). To define
ML (since type-checking is decidable in ML, we limit ourselves to Curry-style) one first has
to enrich the set of λ-terms with the let-constructor, and add a rule

Γ, x ÞÑ A $ t : B Γ $ u : A
letΓ $ let x be u in t : B

ML is the fragment of the resulting system in which typing rules only contain judgements
Γ $ t : A, where rpAq ď 1 and for all B P ImpΓq, rpBq ď 1.

Observe that in F1 one can encode let x be u in t by pλx.tqu, so that the rule above
becomes derivable. This is not possible in ML, due to the rank restriction.

Impredicative and Predicative Encodings. It is well-known that sum and product types
can be encoded inside System F by letting

Ar`B “ @X.pA ñ Xq ñ pB ñ Xq ñ X

ArˆB “ @X.pA ñ B ñ Xq ñ X

where the type variable X is fresh. The encoding of term constructors ιip¨q, x¨, ¨y and term
destructors CaseCp¨, xA.¨, xB .¨q and πip¨q is given (in Church-style) by:

ι1ptq “ ΛX.λfAñX .λgBñX .ft CaseCpt, xA.u, xB .vq “ tCpλxA.uqpλxB .vq

ι2ptq “ ΛX.λfAñX .λgBñX .gt π1ptq “ tAλxA.λyB .x

xt, uy “ ΛX.λfAñBñX .ftu π2ptq “ tBλxA.λyB .y

At the level of provability, the encoding is faithful: a type is inhabited in the extension
of System F with sum and product types iff the encoded type is inhabited in System F.
Moreover, the encoding of r` satisfies the disjunction property: Ar`B is inhabited iff either A
or B are inhabited.

At the level of conversions, the encoding translates β-reduction step for sum and product
types into (finite sequences of) β-reduction steps in F. On the other hand, the η-rules for
sums and products are not translated by the β- and η- rules of System F. Yet, the equivalence
generated by β- and η-rules is preserved by contextual equivalence in System F (more on this
in Section 5).

The encoding of sum and product types is impredicative: the encoding of term destructors
requires witnesses of arbitrary complexity. Notably, given a term t of type Ar`B, the term
CaseA r`Bpt, xA.ι1pxq, xB .ι2pxqq, of type Ar`B, has a circular instantiation of Ar`B.

FSCD 2021

27:6 What’s Decidable About (Atomic) Polymorphism?

In [12], and more recently in [9] some alternative, predicative, encodings were defined
having System Fat as target. The fundamental observation is that the unrestricted @E rule
is derivable from the restricted one for the types of the form Ar`B and ArˆB (the authors
call this phenomenon instantiation overflow). In fact, for any type C of System F one can
define contexts IO`

Cr s : Ar`B $ pA ñ Cq ñ pB ñ Cq ñ C and IOˆ
Cr s : ArˆB $ pA ñ B ñ

Cq ñ C by induction on C:

IO`
X r s “ IOˆ

X r s “ r sX

IO`
C1ñC2

r s “ λfAñC1ñC2 .λgBñC1ñC2 .λyC1 .IO`
C2

r spλzA.fzyqpλzB .gzyq

IOˆ
C1ñC2

r s “ λfAñBñC1ñC2 .λyC1 .IO`
C2

r spλzA.λwB .fzwyq

IO`
@Y.C1 r s “ λfAñ@Y.C1

.λgAñ@Y.C1

.ΛY.IO`
C1 r spλzA.fzY qpλzB .gzY q

IOˆ
@Y.C1 r s “ λfAñBñ@Y.C1

.ΛY.IO`
C1 r spλzA.λwB .fzwY q

One can thus encode the type destructors as for F, but replacing the type application xC in
CaseCpt, xA.u, xB .vq with either IO`

Crxs or IOˆ
Crxs.

At the level of provability, this embedding is faithful when restricted to simple types, i.e. for
the intuitionistic propositional calculus (see [13]): a simple type (possibly containing finite
sums and products) is inhabited iff its encoding is inhabited in Fat. However, faithfulness does
not hold for the extension of Fat with sum and product types (see [47]). In particular, one can
construct types C,D of F such that C r`D is inhabited in Fat while C `D is not inhabited in
the extension of Fat with sums and products. This also implies that the disjunction property
fails for C r`D in Fat, since neither C nor D are inhabited.

Interestingly, at the level of conversions, this encoding is stronger than the usual one: it
translates not only β-reductions, but also the permutative conversions and a restricted form
of η-conversion for sums, into sequences of β and η-reductions of Fat (see [11, 14, 9]).

3 Type Inhabitation

In this section we discuss type inhabitation in the systems Fat and F1. We briefly recall the
undecidability argument for (TI) in System F from [57], and observe that this applies to Fat
(a more detailed reconstruction can be found in [52]).

The argument in [57] (which was later simplified in [8]) is based on an embedding inside
F of an undecidable fragment of first-order logic. We recall the argument in a few more
details, so that it will be clear that the same argument shows the undecidability of type
inhabitation in both Fat and F1.

Let Dyadñ,@ indicate the ñ,@-fragment of intuitionistic first-order logic in a language
with no function symbol and a finite number of at most binary relation symbols. We consider
sequents of the form Γ $ K where Γ consists of three type of assumptions:

i. atomic formulas different from K;
ii. closed formulas of the form @α⃗.pφ1 ñ . . . ñ φn ñ ψq, where φ1, . . . , φn, ψ are atomic

formulas and each variable in ψ occurs in some the φi;
iii. closed formulas of the form @αp@βpppα, βq ñ Kq ñ Kq.

The problem of checking if a sequent Γ $ K as above is deducible in Dyadñ,@ is undecidable
([57], Theorem 8.8.2).

We fix a finite number of distinguished type variables:
for each relation symbol p, three variables p1, p2, p3;
five more variables ♠, ‚, ˝1, ˝2, ‹.

P. Pistone and L. Tranchini 27:7

We let, for any type A, A‚ :“ A ñ ‚, and we define, for all types A,B:

pAB “ pA‚ ñ p1q ñ pB‚ ñ p2q ñ p3

ppA,Bq “ pAB ñ ‹

For any type A, we let UpAq be the set of all types pA‚ ñ piq ñ ˝1, A
‚ ñ ˝2, where

i “ 1, 2. Given a finite list of types A1, . . . , An, we let UpA1, . . . , Anq ñ B be a shorthand
for C1 ñ . . . ñ Ck ñ B, where C1, . . . , Ck are the types in

Ť

i UpAiq.
Each formula φ of Dyadñ,@ is translated into a type φ as follows:

ppαi, αjq “ ppXi, Xjq K “ ♠
φ ñ ψ “ φ ñ ψ

@αi.φ “ @X⃗i.pUpXiq ñ φq

One can easily check the following by induction:

▶ Proposition 1. If φ1, . . . , φn $ φ is provable in Dyadñ,@ and αi1 , . . . , αik
are the vari-

ables that occur in FVpφq but not in FVpφ1, . . . , φnq, then x1 ÞÑ φ1, . . . , xn ÞÑ φn, y⃗ ÞÑ

UpXi1 , . . . , Xik
q $ t : φ holds in Fat for some term t.

The less trivial part is the following:

▶ Theorem 2 ([57], Theorem 11.6.14). For all formulas φ1, . . . , φn satisfying i-iii, if x1 ÞÑ

φ1, . . . , xn ÞÑ φn $ t : ♠ is deducible in System F, then φ1, . . . , φn $ K is provable in
Dyadñ,@.

Since Fat and F1 are both fragments of F, we can freely substitute them for System F in
the statement of Theorem 2. Then, together with Proposition 1 we deduce:

▶ Corollary 3. (TI) is undecidable in both Fat and F1.

▶ Remark 4. Although Fat and F1 are both undecidable, they are not equivalent at the level
of provability. For instance, the type p@X.X ñ Y q ñ pZ ñ Zq ñ Y is inhabited in F1 (by
the term λx@X.XñY .λyZñZ .xpZ ñ Zqy), but not in Fat (as easily seen by a proof-search
argument).

▶ Remark 5. The undecidability of the atomic fragment of (full) second-order intuitionistic
logic has been known since (at least) [56]. However, from this one cannot deduce the
undecidability of Fat, due to the fact that disjunction is not faithfully definable in Fat (see
also [47]).

▶ Remark 6. It is not difficult to see that System Fat is equivalent to a first-order system,
namely to the ñ,@-fragment 1Monñ,@ of monadic first-order intuitionistic logic in the
language with no function symbol and a unique monadic predicate. The equivalence is given
by an obvious bijection between formulas and types given by zppαiq “ Xi, {φ ñ ψ “ pφ ñ pψ

and {@αi.φ “ @Xi.pφ. Hence, a consequence of Corollary 3 is that provability in 1Monñ,@

is undecidable. Provability in extensions of 1Monñ,@ with either finitely many monadic
predicates, or with disjunction, is known to be undecidable [19, 18]. To the best of our
knowledge, the undecidability of 1Monñ,@ has not been observed before.

FSCD 2021

27:8 What’s Decidable About (Atomic) Polymorphism?

4 Typability and Type-checking

In usual implementations of polymorphic type systems the Church-style type discipline is
generally considered inconvenient, due to the heavy amount of type annotations. Instead,
Curry-style languages, for which a compiler can (either completely or partially) reconstruct
type annotations, are generally preferred (two standard examples are the languages ML and
Haskell). This is the reason why type-checking algorithms for polymorphic type systems in
Curry-style (or in some variants of Curry-style with partial type annotations [45]) have been
extensively investigated [24, 26, 64, 18].

However, while ML admits a decidable type checking in Curry-style (a main reason for
its success), type checking has been shown to be undecidable for System F and most of its
variants (including the predicative system F1 [18]), making the Curry-style version of such
systems impractical for implementation.

For the simply typed λ-calculus (and crucially also for ML), the type-checking problem
can be reduced to first-order unification (FOU), that is, to the problem of unifying first-order
terms (in a language with a unique binary function symbol corresponding to ñ). Typically,
an application tu : b will produce a first-order equation of the form at “ au ñ b, where at, au

are variables indicating the type of t and the type of u, respectively. As FOU is decidable,
this suffices to show that type-checking is decidable in this case.

In the case of full polymorphism FOU is not sufficient to solve type-checking. In fact,
already in F1 one can type terms, like e.g. λx.xx, which contain self-applications. Using
FOU, λx.xx yields the unsolvable equation ax “ ax ñ b, so it is not typable in either STλC
or ML. To type-check System F programs one can replace FOU with either semi-unification
[24, 26] or second order unification (SOU) [45, 18]. Here we focus on the latter: in SOU
one tries to unify equations involving terms constructed from first-order variables a, b, c, . . .
as well as second order variables F,G, For instance, the term λx.xx above yields the
equations

Fa “ pFbq ñ G (1)

where @X.FX indicates the type of x, and the variables a, b encode the possible witnesses which
permit to type xx (in Church-style one could indicate this with λx@X.FX .ppxaqFapxbqFbqG, so
that Eq. (1) is precisely what is needed to make the typing correct). A (non-unique) solution
to Eq. (1) is obtained by F ÞÑ λx.x, G ÞÑ Z, a ÞÑ Y ñ Z, b ÞÑ Y .

Unfortunately, SOU is undecidable [22]. Moreover, one can encode restricted (but still
undecidable) variants of SOU in the type checking problem for F1 [18], showing that (TC)
is undecidable for F1. A fundamental ingredient of these undecidability arguments is the
appeal to variable cycles (see the discussion in [36]) like the one in Eq. (1), that is, to
unification problems from which one can deduce equations of the form Fa1 . . . an “ urFs,
that is, equating a second-order variable F with some term containing F itself.

Conversely, acyclic SOU, that is, the problem of unifying SOU problems containing no
variable cycles, is decidable [36]. These observations can be used to show that type-checking
is actually decidable in Fat. In fact, a fundamental property of Fat (and a reason for its
very limited expressive power) is that any term typable in Fat is already typable in the
simply-typed λ-calculus. Indeed, the following is easily checked by induction:

▶ Lemma 7. If Γ $ t : A is derivable in the Curry-style Fat, then |Γ| $ t : |A| is derivable
in the simply typed λ-calculus, where |A| is defined by |X| “ o, |A ñ B| “ |A| ñ |B|,
|@X.A| “ |A|, and |Γ|pxq “ |Γpxq|.

P. Pistone and L. Tranchini 27:9

An immediate consequence of Lemma 7 is that one cannot type λx.xx in Fat and, more
generally, that any λ-term that would give rise to a variable cycle cannot be typed in Fat.
Observe that the converse does not hold: from the fact that |Γ| $ t : |A| holds, one cannot
deduce Γ $ t : A (take for instance t “ x, Γpxq “ X and A “ @X.X).

However, these observations suggest that type checking for Fat can be decided by reasoning
in two phases: to check if Γ $ t : A is derivable in Fat, first check if |Γ| $ t : |A| is derivable
in STλC using FOU; if this first step fails, then the original problem must fail; if the first step
succeeds, then the original type-checking problem for Fat yields an instance of (a suitable
variant of) acyclic SOU, which must be decidable. By reasoning in this way, one can thus
establish:

▶ Theorem 8. (TC) for Curry-style Fat is decidable.

In App. A (and more in detail in [50]) we describe the decision algorithm for type-checking
in Fat, which is based on a variant of second-order unification, that we call Fat-unification.
The fundamental idea is to consider SOU problems in a language with first-order sequence
variables a, b, . . . and two kinds of second-order variables: projection variables α, β, . . .

and second-order variables F,G, The intuition is that a term of the form αa1 . . . an

describes a (skolemized) witness; since the witnesses in Fat are type variables, solving for
α means associating it with either a constant function or a projection. Instead, a term of
the form Fa1 . . . an stands for the application of suitable witnesses a1, . . . , an to some type
F, hence solving for F means associating it with some function λX1 . . . Xn.ApX1, . . . , Xnq,
where ApX1, . . . , Xnq is some type expression parametric on the type variable X1, . . . , Xn.
Hence, for example, checking if Γ $ xy : @Z.Z holds in Fat, where Γpxq “ @X.X ñ X and
Γpyq “ @Y.Y , yields the equations

FX “ X ñ X GY “ Y

FpαZq “ GpβZq ñ HZ HZ “ Z

which admit the solution F ÞÑ λX.X ñ X, G,H ÞÑ λX.X and α, β ÞÑ λX.X. Instead,
checking if Γ $ xy : @Z.Z, where now Γpxq “ @X.X ñ X and Γpyq “ Y , yields the equations

FX “ X ñ X G “ Y

FpαZq “ G ñ HZ HZ “ Z

which have no solution (since one can deduce Z “ HZ “ Y), showing that (TC) fails in this
case (although |Γ| $ xy : |@Z.Z| holds in the simply typed λ-calculus).

From the decidability of (TC) one can deduce the decidability of (T) by a standard
argument: we can reduce (T) to (TC) by showing that a type A such that Γ $ t : A holds
exists iff Γ $ pλxy.yqt : @X.X ñ X holds. In fact, if Γ $ t : A holds in Fat, then from
Γ $ λxy.y : A ñ @X.pX ñ Xq we deduce Γ $ pλxy.yqt : @X.X ñ X. Conversely, from
Γ $ pλxy.yqt : @X.X ñ X, we deduce that there exists a type A such that Γ $ λxy.y : A ñ

pX ñ Xq and Γ $ t : A holds.

▶ Corollary 9. (T) for Curry-style Fat is decidable.

5 Equational Reasoning in System Fat

As a consequence of Lemma 7 from the previous section, all terms which are typable in
Curry-style Fat are simply typable. In other words, Fat can be seen as a type refinement
system for STλC, in the sense of [39]. In particular, as we show below, the numerical
functions which can be typed in Fat are precisely the simply typable ones (i.e. the so-called
extended polynomials [55, 16]).

FSCD 2021

27:10 What’s Decidable About (Atomic) Polymorphism?

For this reason, investigating the typable terms of Fat might seem not very interesting
from a computational viewpoint. However, in this section we show that studying such terms
can be interesting for equational reasoning. In fact, similarly to System F, standard notions
of contextual equivalence for Fat are stronger than βη-equivalence, and one can exploit
well-known techniques, like the free theorems [63], to compute equivalences of Fat-typable
terms (which do not hold when viewing these terms as typed in STλC).

We first recall two standard notions of contextual equivalence:

▶ Notation 10. We let Bool “ @X.X ñ X ñ X and Nat “ @X.pX ñ Xq ñ pX ñ Xq. We
let t “ λxy.x and f “ λxy.y indicate the two normal forms of type Bool, and for all n P N,
we let n “ λfx.pfqnx indicate the n-th Church numeral.

▶ Definition 11 (contextual equivalence). Let F˚ P tFat,ML,F1,Fu. For all closed terms
t, u of type A in F˚, we let

t »F ˚

Bool u : A iff for any context Cr s : A $ Bool in F˚, Crts »βη Crus;
t »F ˚

Nat u : A iff for any context Cr s : A $ Nat in F˚, Crts »βη Crus.

It is easily seen that »F ˚

Bool and »F ˚

Nat are congruences of the terms of F˚. Moreover,
in System F these two congruences coincide, due to the fact that the identity relation
id : Nat ñ Nat ñ Bool is typable. Since this function is also typable in ML, the same holds
for ML and F1. On the other hand, since the identity relation is not simply typable, we can
deduce (see Lemma 16 below) that it is not typable in Fat. For this reason the congruences
»

Fat
Bool and »

Fat
Nat must be treated separately in this case. In what follows we will mostly focus

on the latter, since the former identifies distinct normal forms of type Nat, which is not
convenient for obvious computational reasons.

▶ Remark 12. The typability of the identity relation id implies that any extensional model
of F must be infinite, since for all n P N, the interpretations of n and n ` 1 cannot
coincide. Instead, it is not difficult to construct an extensional model of Fat in which
any type is interpreted by a finite set (to give an idea, let Ck be a collection of sets of
cardinality bounded by a fixed k P N; one can let then JXK P Ck, A ñ B “ JBKJAK and
J@X.AK “

ś

SPCk
JAKrX ÞÑ Ss).

The so-called free theorems are a class of syntactic equations for typable terms which
can be justified by relying on either relational parametricity [53] or dinaturality [3]. We let
t « u : A indicate that t, u have type A in System F, and that the equivalence t » u can be
deduced using β-, η-rules, standard congruence rules (i.e. reflexivity, symmetry, transitivity
and context closure), as well as instances of free theorems for System F.

Free theorems can be used to deduce contextual equivalence of Fat-terms, thanks to the
following:

▶ Lemma 13 (free theorems in Fat). Let t, u be terms of type A in Fat. If t « u : A, where
t, u are seen as terms of System F, then t »

Fat
Nat u : A.

Proof. From t « u : A it follows t »F
Nat u : A, since »F

Nat is the coarsest congruence not
equating normal forms of type Nat. From t »F

Nat u : A we deduce t »
Fat
Nat u : A, since any

context in Fat is a context in F. ◀

We discuss below two applications of free theorems to study (CE) in Fat.

P. Pistone and L. Tranchini 27:11

Categorical Products and Coproducts. As mentioned in Section 2, the usual encoding of
products and coproducts in System F preserves β-equivalence but not η-equivalence. For this
reason, the encodings of ˆ and ` do not form categorical products and coproducts in System
F up to βη-equivalence (more precisely, in the syntactic category in which objects are the
types of System F and arrows are the typable terms up to »βη). Instead, it is well-known
[51, 23, 61] that η-equivalence of ˆ and ` is preserved in System F up to free theorems:
hence ˆ and ` do form categorical products and coproducts in System F up to »F

Nat (more
precisely, in the syntactic category whose arrows are the typable terms up to »F

Nat).
In a similar way, the predicative encodings of ˆ and ` in Fat, although preserving some

restricted case of η-equivalence, still do not form categorical products and coproducts in Fat
up to »βη. We will show that they similarly do form categorical products and coproducts in
Fat up to »

Fat
Nat, as a consequence of the application of free theorems.

For simplicity, we here only consider the case of `. However, our argument scales
straightforwardly to the encoding of all finite polynomial types, i.e. of all types of the form
řk

i“1
śki

j“1 Aij (see the [47] for a more detailed discussion).
The fundamental step is showing that the impredicative and predicative encodings are

equivalent up to free theorems:

▶ Lemma 14. For all types A,B,C and terms x ÞÑ A $ u : C and x ÞÑ B $ v : C, the
equivalence IO`

Cryspλx.uqpλx.vq « CaseCpy, x.u, x.vq : C holds in System F.

Proof. The free theorem associated with the type Ar`B is the schematic equation

CaseEpt1, x.Crt2s, x.Crt3sq « C
”

CaseDpt1, x.t2, x.t3q

ı

(2)

where $ t1 : Ar`B, x ÞÑ A $ t2 : D, x ÞÑ B $ t2 : D and Cr s : D $ E. In fact, this equation
is an instance of the dinaturality condition for the type Ar`B (see [51, 23, 49]).

We argue by induction on C:
if C “ Y , then IO`

Cryspλx.uqpλx.vq “ yY pλx.uqpλx.vq “ CaseCpy, x.u, x.vq;
if C “ C1 ñ C2, then

IO`
Cryspλx.uqpλx.vq “

´

λfgz.IO`
C2

ryspλx.fxzqpλx.gxzq

¯

pλx.uqpλx.vq

[I.H.]
«

´

λfgz.CaseC2 py, x.fxz, x.gxzq

¯

pλx.uqpλx.vq

»β λz.CaseC2 py, x.uz, x.vzq

« λz.
´

CaseCpy, x.u, x.vq

¯

z

»η CaseCpy, x.u, x.vq

where in the penultimate step we applied Eq. (2) with the context Cr s “ r sz : C $ C2.
if C “ @Z.C 1, then

IO`
Cryspλx.uqpλx.vq “

´

λfg.ΛZ.IO`
C1 ryspλx.fxZqpλx.gxZq

¯

pλx.uqpλx.vq

[I.H.]
«

´

λfg.ΛZ.CaseC1 py, x.fxZ, x.gxZq

¯

pλx.uqpλx.vq

»β ΛZ.CaseC1 py, x.uZ, x.vZq

« ΛZ.
´

CaseCpy, x.u, x.vq

¯

Z

»η CaseCpy, x.u, x.vq

where in the penultimate step we applied Eq. (2) with the context Cr s “ r sZ : C $ C 1. ◀

FSCD 2021

27:12 What’s Decidable About (Atomic) Polymorphism?

▶ Proposition 15. Ar`B is a categorical coproduct in Fat up to »
Fat
Nat.

Proof. It suffices to check that the η-rule of the coproduct (see [29]) holds in Fat. By
translating this rule in F one obtains the equation

y « CaseA r`Bpy, x.ι1pxq, x.ι2pxqq : Ar`B

which holds in F up to free theorems (see [51, 23, 61]). Using Lemma 14 we thus deduce
that y « IO`

A r`B
ryspλx.ι1pxqqpλx.ι2pxqq : Ar`B holds in F, and by Lemma 13 we deduce

y »
Fat
Nat IO`

A r`B
ryspλx.ι1pxqqpλx.ι2pxqq : Ar`B. ◀

Numerical Functions. We now consider the representable numerical functions, that is, the
closed typable terms of type Nat ñ . . . ñ Nat ñ Nat. In this case we can strengthen Lemma
7 as follows:

▶ Lemma 16. For any β-normal λ-term t, $ t : Nat ñ . . . ñ Nat ñ Nat holds in Curry-style
Fat iff $ t : |Nat| ñ . . . ñ |Nat| ñ |Nat| holds in STλC.

Proof. One direction follows from Lemma 7. For the converse one, let t (which we can
suppose w.l.o.g. to be of the form λx1 . . . xk.u) be such that $ t : |Nat| ñ . . . ñ |Nat| ñ |Nat|.
By letting NatrXs “ pX ñ Xq ñ pX ñ Xq we deduce that txi ÞÑ NatrXsu $ u : NatrXs

holds in Fat, and thus that txi ÞÑ Natu $ u : NatrXs holds too, from which we conclude
$ u : Nat ñ . . . ñ Nat ñ Nat. ◀

A consequence of Lemma 16 is that the representable numerical functions in Fat are
precisely the extended polynomials, i.e. the smallest class of functions arising from projections,
constant functions, addition, multiplication and the iszero function. Instead, it is well-
known that the predecessor function (which is not an extended polynomial) is typable in
ML [17] and, more generally, the representable functions of ML are included in the class E3
of the Grzegorczyk hierarchy [33].

Still, in both STλC and Fat the same extended polynomial can be represented by
different normal forms. For instance the two normal forms λxyfz.xpyfqz and λxyfz.ypxfqz

(encoding the algorithms n,m ÞÑ m` ¨ ¨ ¨ `m
loooooomoooooon

n times

and n,m ÞÑ n` ¨ ¨ ¨ ` n
looooomooooon

m times

) both represent the

multiplication function.
In System F, one can show that all primitive recursive functions are uniquely defined up

to free theorems, that is, that for any two terms t, u representing the same primitive recursive
function, one can prove t « u (see [48], Section 7.5). Using Lemma 13 we deduce then:

▶ Lemma 17. For all t, u : Nat ñ . . . ñ Nat ñ Nat in F˚ P tFat,ML,F1,Fu, if for all
p1, . . . , pk P N, tp1 . . .pk »βη up1 . . .pk : Nat, then t »F˚

Nat u.

▶ Remark 18. From Lemma 17 and the fact that all primitive recursive functions are typable
in F, one can deduce that »F

Nat for numerical functions is undecidable in F as a consequence
of Rice’s theorem.

The problem EqC of deciding f “ g, where f, g belong to some subclass C of the primitive
recursive functions, is well-investigated. In particular, it is known that:

if C is the class of extended polynomials, then EqC is decidable [38];
if C contains projections, constants, +, ˆ and bounded multiplication, then EqC is
undecidable [31].

From these facts, using Lemma 17, we deduce then:

P. Pistone and L. Tranchini 27:13

▶ Proposition 19.
(i) The problem of deciding »

Fat
Nat over numerical functions in Fat is decidable.

(ii) The problem of deciding »F˚

Nat over numerical functions in F˚ P tML,F1u is undecidable.

Proof. (i) is immediate from Lemma 16 and Lemma 17. To prove (ii) it suffices to show that
the representable functions in ML are closed under bounded multiplication. We show this
fact in detail in [50], App. B. ◀

An immediate corollary is that (CE) is undecidable in both ML and F1.

6 Contextual Equivalence is Undecidable

In this section we show that the congruences »
Fat
Nat and »

Fat
Bool are both undecidable. To do this,

we will reduce the type inhabitation problem for a suitable extension of Fat to contextual
equivalence. We discuss in some detail the undecidability argument for »

Fat
Bool, while the (very

similar) argument for »
Fat
Nat can be found in [50], App. C.

Let F♣
at be the extension of Fat with new a type constant ♣ and a new term constant

‹ : ♣. It is not difficult to see that the undecidability argument for (TI) from Section 3 also
applies to F♣

at.
Let rJ : @X.X ñ X and Id :“ ΛX.λx.x be the unique closed β-normal term of type rJ.
The fundamental idea will be to construct, for each type A of F♣

at, two terms tA, uA of
type pA˚

r`rJq ñ Bool (where A˚ “ Y ñ ArY {♣s, for some fresh Y), such that tA »
Fat
Bool uA

holds in Fat iff A is inhabited in F♣
at.

Let us fix a type A of F♣
at, a variable Y not occurring free in A, and let A˚ “ Y ñ ArY {♣s.

We let uA, vA be the terms below:

uA “ λx.f vA “ λx.IO`
Boolr spλx.tqpλx.fq

First observe that if there exists some term t such that $ t : A holds in F♣
at, then

we can construct a context Kr s : pA˚
r`rJq ñ Bool $ Bool separating uA and vA: let

t˚ “ λy.try{‹s, so that $ t˚ : A˚ and let Kr s “ r spι1pt˚qq. We then have KruAs »β f and
KrvAs »β IO`

Boolrι1pt˚qspλx.tqpλx.fq »βη pλx.tqt˚ »β t.
The difficult part is to show that if A is not provable in F♣

at, then no context Kr s :
pA˚

r`rJq ñ Bool $ Bool can separate uA and vA. We will establish this fact by analyzing all
possible β-normal term contexts of type pA˚

r`rJq ñ Bool $ Bool.
In the following, for a term context Kr s, we let Kr s : A $Γ B be a shorthand for

Γ, x ÞÑ A $ Kr s : B (where we suppose that Γ is not defined on x).
We let G1-G4 be the families of term contexts defined by mutual recursion as shown in

Fig. 3, and typed according to the contexts below

Γ “ tx1 ÞÑ Z1, x1
1 ÞÑ Z1, . . . , xp ÞÑ Zp, x1

p ÞÑ Zpu Θ “ tw1 ÞÑ W1, . . . , wq ÞÑ Wqu

∆ “ ty1 ÞÑ A˚
ñ Y1, . . . , yr ÞÑ A˚

ñ Yru Σ “ tz1 ÞÑ rJ ñ Y1, . . . , zr ÞÑ rJ ñ Yru (3)

for some p, q, r P N and variables Z1, . . . , Zp,W1, . . . ,Wq, Y1, . . . , Yr pairwise distinct and
disjoint from A.

It can be checked that none of these contexts can separate uA and vA (see [50]):

▶ Lemma 20.
1. For all Cr s P G1, CruAs »βη CrvAs.
2. If Dr s P G2, then DruAs »βη DrvAs »βη ziId.
3. If Er s P G3, then EruAs »βη ErvAs.
4. If Fr s P G4, then FruAs »βη FrvAs »βη wi.

FSCD 2021

27:14 What’s Decidable About (Atomic) Polymorphism?

G1 : Cr s ::“ xi | x1
i | Er sZjCr sCr s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ Zj

G2 : Dr s ::“ zipΛW.λw.Fr sq | Er sYiDr sDr s : pA˚
r`rJq ñ Bool $Γ,Θ,∆,Σ Yi

G3 : Er s ::“ t | f | r spΛY.λy.λz.Dr sq : pA˚
r`rJq ñ Bool $Γ,Θ,∆,Σ Bool

G4 : Fr s ::“ w | Er sWiFr sFr s : pA˚
r`rJq ñ Bool $Γ,Θ,∆,Σ Wi

Figure 3 Contexts G1-G4.

The key ingredient is a lemma stating that, when A is not inhabited in F♣
at, the families

of contexts G1-G4 can be used to generate all possible term contexts.

▶ Lemma 21. Let Kr s : pA˚
r`rJq ñ Bool $x1 ÞÑZ,x1

1 ÞÑZ Z be a β-normal term context. If A
is not inhabited in F♣

at, then Kr s P G1.

Proof. We will prove the following claim: either there exists contexts Γ,Θ,∆,Σ as in Eq. (3),
for some p, q, r P N and variables Z1, . . . , Zp,W1, . . . ,Wq, Y1, . . . , Yr pairwise distinct and
disjoint from A, and a context Hr s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ A˚, or Kr s P G1. If the main
claim is true we can deduce the statement of the lemma as follows: suppose Kr s R G1; then
let θ be the substitution sending all variables in Γ,Θ,∆,Σ plus Y onto ♣ and being the
identity on all other variables. Then Hθr s : pp♣ ñ Aqr`rJq ñ Bool $Γθ,Θθ,∆θ,Σθ: ♣ ñ A.
Then we have Γθ,Θθ,∆θ,Σθ $ t : A, where t “ Hθrλx.ts‹ and we can conclude that $ t1 : A
holds, where t1 is obtained from t by substituting the variables in Γ and Θ by ‹ and those in
∆ and Σ by λx.‹.

Let us prove the main claim. Suppose by contradiction that for no Γ,Θ,∆,Σ there exists
a context Hr s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ A˚. We will show by simultaneous induction the
following claims:
1. for all Γ,Θ,∆,Σ as above, if Kr s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ Zi, then Kr s P G1;
2. for all Γ,Θ,∆,Σ as above, if Kr s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ Yi, then Kr s P G2;
3. for all Γ,Θ,∆,Σ as above, if Kr s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ Bool and Kr s is an
elimination context, then Kr s P G3;

4. for all Γ,Θ,∆,Σ as above, if Kr s : pA˚
r`rJq ñ Bool $Γ,Θ,∆,Σ Wi, then Kr s P G4.

The main claim then follows from 1. by taking Γ “ tx ÞÑ Z, x1 ÞÑ Zu and Θ “ ∆ “ Σ “ H.
We argue for each case separately:

1. There exist two possibilities for Kr s:
a. Kr s “ xi (resp. “ x1

i), hence Kr s P G1;
b. Kr s “ K1r sZK1r sK2r s, where K1r s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ Bool and Kir s :
pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ Z, and where K1r s is an elimination context. By the
induction hypothesis then K1r s P G3, Kir s P G1, hence Kr s P G1.

2. There exist three possibilities for Dr s:
a. Kr s “ yiK1r s, where K1r s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ A˚, but this case is excluded by
the hypothesis;

b. Kr s “ zipΛW.λw.K1r sq, where K1r s : pA˚
r`rJq ñ Bool $Γ,ΘYtw ÞÑW u,∆,Σ W and where

W does not occur in Γ,Θ,∆,Σ. By the induction hypothesis then K1r s P G4, hence
Kr s P G2;

c. Kr s “ K1r sYiK1r sK2r s, where K1r s : pA˚
r`rJq ñ Bool $Γ,Θ,∆,Σ Bool, Kir s : pA˚

r`rJq ñ

Bool $Γ,Θ,∆,Σ Yi, and K1r s is an elimination context. By the induction hypothesis this
implies K1r s P G3 and Ki P G2, so we can conclude Kr s P G2.

P. Pistone and L. Tranchini 27:15

3. If Kr s is an elimination context, then it must be Kr s “ xK1r s, where K1r s : pA˚
r`rJq ñ

Bool $ΓYtx1 ÞÑZ1,x2 ÞÑZ2
u,Θ,∆,Σ A˚

r`rJ. Moreover, K1 must be of the form ΛY.λy.λz.K2r s,
where K2r s : pA˚

r`rJq ñ Bool $ΓYtx1 ÞÑZ1,x2 ÞÑZ2
u,Θ,∆Yty ÞÑA˚

ñY u,ΣYtz ÞÑ rJñY u Y , and
where Y is distinct from all variables in Γ Y tx1 ÞÑ Z 1, x2 ÞÑ Z2u,Θ,∆,Σ; then by the
induction hypothesis we deduce K2r s P G2, and thus Kr s P G3.

4. There are two possible cases:
a. Kr s “ wi, hence Kr s P G4;
b. Kr s “ K1r sWiK1K2, where K1r s : pA˚

r`rJq ñ Bool $Γ,Θ,∆,Σ Bool, Kir s : pA˚
r`rJq ñ

Bool $Γ,Θ,∆,Σ Wi and K1r s is an elimination context. By the induction hypothesis this
implies K1r s P G3 and Ki P G4, whence Kr s P G4. ◀

▶ Proposition 22. uA fi
Fat
Bool vA iff A is inhabited in F♣

at.

Proof. We only need to show one side of the statement: suppose A is not inhabited in
F♣

at. Any context Kr s : pA˚
r`rJq ñ Bool $ Bool can be written, up to η-equivalence, as

Kr s “ ΛZ.λx1x2.K1r s, with K1r s : pA˚
r`rJq ñ Bool $x1 ÞÑZ,x2 ÞÑZ Bool. As we can suppose

Kr s to be β-normal, by Lemma 21, it must be K1r s P G1. Hence, by Lemma 20 we deduce
that KruAs »βη KrvAs. ◀

▶ Theorem 23. The congruences »
Fat
Bool and »

Fat
Nat are both undecidable.

7 Conclusion

Related works. The literature on ML-polymorphism, both at theoretical and applicative
level, is vast. Several extensions of ML to account for first-class polymorphism while retaining
a decidable type-checking have been investigated, mostly following two directions: first,
that of considering type systems with explicit type annotations (as the system PolyML [20]);
second, that of encoding first-class polymorphism in a ML-style system by means of coercions
(as in System Fc [60] or in MLF [30]). In the last case, coherently with our discussion of
FOU and SOU, the price to pay to remain decidable is that self-applications of λ-abstracted
variables must come with explicit type annotations. This approach is currently followed in
the design of the Haskell compiler, which supports first-class polymorphism.

Predicative restrictions of System F and their expressive power have been also largely
investigated [32, 33, 6]. For example, the numerical functions representable in Leivant’s finitely
stratified polymorphism are precisely those at the third level of Grzegorczyk’s hierarchy
[33], and transfinitely stratified systems have been shown to represent all primitive recursive
functions [6]. In [34] a system with expressive power comparable to System Fat is shown to
characterize the polytime functions.

Research by Ferreira and her collaborators on System Fat has mostly focused on predicative
translations of intuitionistic logic and their reduction properties [12, 11, 10]. As mentioned
before, these translations rely on the observation that for certain types the unrestricted
@E-rule is admissible in Fat. The characterization of the class of types satisfying this property
is an open problem (a partial characterization is described in [46]).

Another way to obtain interesting subsystems of System F is by restricting the class of
types which can be universally quantified (instead of the admissible witnesses). For instance,
the system in [2] forbids quantifier nestings, while the system in [35] only allows quantification
@X.A when X occurs at depth at most 2 in A (i.e. when X occurs at most twice to the left
of an implication). Interestingly, both systems have the expressive power of Gödel’s System
T (which is not a first-order system).

FSCD 2021

27:16 What’s Decidable About (Atomic) Polymorphism?

Another kind of restrictions on the shape of types have been investigated by the authors
in [49], motivated by ideas from the categorical semantics of polymorphism [3]. The two
resulting fragments Λ2κď0,Λ2κď1 are equivalent, respectively, to the simply typed λ-calculus
with finite sums and products, and to its extension with least and greatest fixpoints (in
particular, (CE) is decidable in Λ2κď0).

Finally, polymorphism in linear type systems has been investigated too. Interestingly,
(TI) [28, 27] and (CE) [43] remain undecidable even in this case.

Future work. The main interest we found in investigating Fat was to shed some new light
on the source of undecidability of type-related properties for full System F. Yet, one might
well ask whether the decidability of type-checking makes Fat a reasonable candidate for
implementations. Admittedly, our decision algorithm, which was only oriented to prove
decidability, is not very practical: checking failure is coNP with respect to the number of type
symbols. Yet, it does not seems unlikely that more optimized algorithms can be developed.

By the way, given that the terms typable in Fat are simply typable, would an implemen-
tation of atomic polymorphism be interesting at all? In contrast with ML, type-checking
atomically polymorphic programs is decidable at any rank. One could thus investigate
extensions of ML with first class atomic polymorphism (realistically, in presence of other
type constructors like e.g. some restricted version of dependent types, see [65]).

A more interesting direction, suggested by our decision algorithm, would be to investigate
systems with full, impredicative, polymorphism, but obeying some condition ensuring acyclic-
ity, so that TC (based on SOU) remains decidable. One would thus retain some advantages
of first-class polymorphism (e.g. the modularity/genericity of programs) while admitting
self-applications only in “ML-style” (or with explicit type annotations, as in MLF [30]). For
instance, a way to ensure acycliclity might be to require that a polymorphic λ-abstracted
variable be used in an affine way, i.e. at most once.

References
1 Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. Theorems for free for free:

parametricity, with and without types. In Proceedings of the ACM on Programming Languages,
volume 1 of ICFP, page Article No. 39, New York, 2017.

2 Thorsten Altenkirch and Thierry Coquand. A finitary subsystem of the polymorphic λ-calculus.
In Samson Abramsky, editor, Typed Lambda Calculi and Applications, pages 22–28, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

3 E.S. Bainbridge, Peter J. Freyd, Andre Scedrov, and Philip J. Scott. Functorial polymorphism.
Theoretical Computer Science, 70:35–64, 1990.

4 Henk Barendregt. Lambda calculi with types. In Handbook of Logic in Computer Science,
pages 117–309. Oxford University Press, 1992.

5 Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda calculus with types. Perspectives
in Logic. Cambridge University Press, 2013.

6 Norman Danner and Daniel Leivant. Stratified polymorphism and primitive recursion. Mathe-
matical Structures in Computer Science, 9(4):507–522, 1999.

7 Kosta Došen and Zoran Petrić. The typed Böhm theorem. Electronic Notes in Theoretical
Computer Science, 50(2):117–129, 2001.

8 Andrej Dudenhefner and Jakob Rehof. A simpler undecidability proof for system F inhabitation.
In TYPES 2018, pages 2:1–2:11, 2018.

9 José Espírito Santo and Gilda Ferreira. A refined interpretation of intuitionistic logic
by means of atomic polymorphism. Studia Logica, 108(3):477–507, 2020. doi:10.1007/
s11225-019-09858-1.

https://doi.org/10.1007/s11225-019-09858-1
https://doi.org/10.1007/s11225-019-09858-1

P. Pistone and L. Tranchini 27:17

10 José Espírito Santo and Gilda Ferreira. The Russell-Prawitz embedding and the atomization
of universal instantiation. Logic Journal of the IGPL, July 2020. jzaa025.

11 Fernando Ferreira and Gilda Ferreira. Commuting conversions vs. the standard conversions of
the "good" connectives. Studia Logica, 92(1):63–84, 2009.

12 Fernando Ferreira and Gilda Ferreira. Atomic polymorphism. Journal of Symbolic Logic,
78(1):260–274, 2013.

13 Fernando Ferreira and Gilda Ferreira. The faithfulness of Fat: a proof-theoretic proof. Studia
Logica, 103(6):1303–1311, 2015.

14 Gilda Ferreira. η-conversions of IPC implemented in atomic F. Logic Journal of the IGPL,
25(2):115–130, June 2016.

15 Gilda Ferreira and Bruno Dinis. Instantiation overflow. Reports on Mathematical Logic,
51:15–33, 2016.

16 Gilda Ferreira and Vasco T Vasconcelos. The computational content of atomic polymorphism.
Logic Journal of the IGPL, 27(5):625–638, December 2018.

17 Steven Fortune, Daniel Leivant, and Michael O’Donnell. The expressiveness of simple and
second-order type structures. Journal of the ACM, 30(1):151–185, 1983.

18 Ken-etsu Fujita and Aleksy Schubert. The undecidability of type related problems in the type-
free style system F with finitely stratified polymorphic types. Information and Computation,
218:69–87, 2012.

19 Dov M. Gabbay. Semantical Investigations in Heyting’s Intuitionistic Logic, volume 148.
Springer Science + Business, Dordrecht, 1981.

20 Jacques Garrigue and Didier Rémy. Extending ml with semi-explicit higher-order polymorphism.
In Martín Abadi and Takayasu Ito, editors, Theoretical Aspects of Computer Software, pages
20–46, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

21 Paola Giannini and Simona Ronchi Della Rocca. Characterization of typings in polymorphic
type discipline. In Proceedings of the 3-th Annual IEEE Symposium on Logic in Computer
Science, pages 61–70, Edinburgh, 1988.

22 Warren D. Goldfarb. The undecidability of the second-order unification problem. Theoretical
Computer Science, 13(2):225–230, 1981.

23 Ryu Hasegawa. Categorical data types in parametric polymorphism. Mathematical Structures
in Computer Science, 4(1):71–109, 2009.

24 Fritz Henglein. Polymorphic type inference and semi-unification. PhD thesis, The State
University of New Jersey, 1989.

25 Roger J. Hindley. The principal type scheme of an object in combinatory logic. Transactions
of the American Mathematical Society, 146:29–60, 1069.

26 Assaf J. Kfoury, Jerzy Tiuryn, and Paweł Urzyczyn. The undecidability of the semi-unification
problem. Information and Computation, 102(1):83–101, 1993.

27 Yves Lafont. The undecidability of second order linear logic without exponentials. The Journal
of Symbolic Logic, 61(02):541–548, 1996. doi:10.2307/2275674.

28 Yves Lafont and Andre Scedrov. The Undecidability of Second Order Multiplicative Linear
Logic. Information and Computation, 125(1):46–51, 1996. doi:10.1006/inco.1996.0019.

29 Joachim Lambek and Philip J. Scott. Introduction to higher order categorical logic. Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 1988.

30 Didier Le Botlan and Didier Rémy. Mlf: Raising ml to the power of system f. In Proc. of the
International Conference on Functional Programming (ICFP ’03), pages 27–38, 2003.

31 R. D. Lee. Decidable classes of recursive equations. PhD thesis, University of Leicester, 1969.
32 Daniel Leivant. Stratified polymorphism. In LICS ’89. Proceedings of the 4th Annual Symposium

on Logic in Computer Science. IEEE, 1989.
33 Daniel Leivant. Finitely stratified polymorphism. Information and Computation, 93(1):93–113,

1991.
34 Daniel Leivant. A foundational delineation of Poly-time. Information and Computation,

110(2):391–420, 1994.

FSCD 2021

https://doi.org/10.2307/2275674
https://doi.org/10.1006/inco.1996.0019

27:18 What’s Decidable About (Atomic) Polymorphism?

35 Daniel Leivant. Peano’s lambda calculus: the functional abstraction implicit in arithmetic.
In Logic, meaning and computation, Essays in Memory of Alonzo Church, volume 305 of
Synthese Library, Studies in Epistemology, Logic, Methodology and Philosophy of Science,
pages 313–329. Springer Netherlands, 2001.

36 Jordi Levy. Decidable and undecidable second-order unification problems. In Tobias Nipkow,
editor, Rewriting Techniques and Applications, pages 47–60, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg.

37 M. H. Löb. Embedding first order predicate logic in fragments of intuitionistic logic. Journal
of Symbolic Logic, 41:705–718, 1976.

38 Jan Małolepszy, Małgorzata Moczurad, and Marek Zaionc. Schwichtenberg-style lambda
definability is undecidable. In Philippe de Groote and J. Roger Hindley, editors, Typed Lambda
Calculi and Applications, pages 267–283, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

39 Paul-André Melliès and Noam Zeilberger. Functors are type refinement systems. In Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15, pages 3–16, New York, NY, USA, 2015. Association for Computing
Machinery.

40 R. Milner and L. Damas. The principal type schemes for functional programs. In Symposium
on Principles of Programming Languages, ACM, 1982.

41 Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Science, 17(3):248–375, 1978.

42 Robin Milner. The standard ml core language. Polymorphism, 2(2), 1985.
43 Le Than Dung Nguyen, Paolo Pistone, Thomas Seiller, and Lorenzo Tortora de Falco. Finite

semantics of polymorphism, complexity and the expressive power of type fixpoints, 2019. URL:
https://hal.archives-ouvertes.fr/hal-01979009.

44 Vincent Padovani. Filtrage d’ordre supérieur. PhD thesis, Université Paris 7, 1996.
45 Frank Pfenning. On the undecidability of partial polymorphic type reconstruction. Fundamenta

Informaticae, 19(1-2):185–199, 1993.
46 Paolo Pistone. Proof nets and the instantiation overflow property, 2018. arXiv:1803.09297.
47 Paolo Pistone and Luca Tranchini. The naturality of natural deduction II. some remarks on

atomic polymorphism, 2020. arXiv:1908.11353.
48 Paolo Pistone and Luca Tranchini. The Yoneda Reduction of Polymorphic Types (extended

version), 2020. arXiv:1907.03481.
49 Paolo Pistone and Luca Tranchini. The Yoneda Reduction of Polymorphic Types. In Christel

Baier and Jean Goubault-Larrecq, editors, 29th EACSL Annual Conference on Computer
Science Logic (CSL 2021), volume 183 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 35:1–35:22, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik.

50 Paolo Pistone and Luca Tranchini. What’s decidable about (atomic) polymorphism?, 2021.
Available at arXiv:2105.00748.

51 Gordon Plotkin and Martin Abadi. A logic for parametric polymorphism. In TLCA ’93,
International Conference on Typed Lambda Calculi and Applications, volume 664 of Lecture
Notes in Computer Science, pages 361–375. Springer Berlin Heidelberg, 1993.

52 M Clarence Protin. Type inhabitation of atomic polymorphism is undecidable. Journal of
Logic and Computation, January 2021. exaa090.

53 John C. Reynolds. Types, abstraction and parametric polymorphism. In R.E.A. Mason, editor,
Information Processing ’83, pages 513–523. North-Holland, 1983.

54 Aleksy Schubert, Paweł Urzyczyn, and Konrad Zdanowski. On the Mints hierarchy in first-order
intuitionistic logic. Logical Methods in Computer Science, 12(4:11):1–25, 2016.

55 Helmut Schwichtenberg. Definierbare funktionen im λ-kalkül mit typen. Archiv für mathema-
tische Logik und Grundlagenforschung, 17(3):113–114, 1975.

56 S. K. Sobolev. The intuitionistic propositional calculus with quantifiers. Mathematical Notes
of the Academy of Sciences of the USSR, 22(528-532), 1977.

https://hal.archives-ouvertes.fr/hal-01979009
http://arxiv.org/abs/1803.09297
http://arxiv.org/abs/1908.11353
http://arxiv.org/abs/1907.03481
https://arxiv.org/abs/2105.00748

P. Pistone and L. Tranchini 27:19

57 Morten Heine Sorensen and Pawel Urzyczyn. Lectures on the Curry-Howard isomorphism,
volume 149 of Studies in logic and the foundations of mathematics. Elsevier Science, 2006.

58 R. Statman. Completeness, invariance and λ-definability. The Journal of Symbolic Logic,
47(1):17–26, 1982.

59 Richard Statman. intuitionistic propositional logic is polynomial-space complete. Theoretical
Computer Science, 9(1):67–72, 1979.

60 Marin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly.
System f with type equality coercions. In TLDI ’07 Proceedings of the 2007 ACM SIGPLAN
Internatinal workshop in Types in languages design and implementation, pages 53–66. ACM
New York, 2007.

61 Luca Tranchini, Paolo Pistone, and Mattia Petrolo. The naturality of natural deduction.
Studia Logica, https://doi.org/10.1007/s11225-017-9772-6, 2017.

62 J. Voigtländer. Proving correctness via free theorems: the caser of the destroy/build-rule. In
Proceedings of the ACM SIGPLAN symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pages 13–20, New York, 2008. ACM press.

63 Philip Wadler. Theorems for free! In Proceedings of the fourth international conference on
functinoal programming languages and computer architecture - FPCA ’89, 1989.

64 J. B. Wells. Typability and type checking in System F are equivalent and undecidable. Annals
of Pure and Applied Logic, 98:111–156, 1998.

65 Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Proceedings
of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’99, pages 214–227, New York, NY, USA, 1999. Association for Computing Machinery.

A Fat-unification

In this section we describe a decidable unification problem, that we call Fat-unification, and
we show that this problem captures type-checking for Fat.

A decidable second-order unification problem. We consider a second-order language
composed of three different sorts of variables: sequence variables a, b, c, . . . , projection
variables αn, βn, γn, . . . and second-order variables Fn,Gn, . . . (where in the last two cases n
indicates the arity of the variable). The language includes expressions of three sorts, noted
x˚y, ˚ and T p˚q; the expressions of each type are defined by the grammars below:

a, b, c ::“ xX1 . . . Xny | a | αna1 . . . an psort x˚yq

ϕ, ψ ::“ X | πlpaq | Fna1 . . . an | Φ ñ Ψ psort ˚q

Φ,Ψ ::“ @a.ϕ psort T p˚qq

A Fat-unification problem is a pair pU,Eq, where U is a set of equations of the form
ϕ “ ψ between expressions of type ˚, and E is a set of constraints of the form pα : aq or
pa : kq, where k P N.

Given a Fat-unification problem pU,Eq, for all projection variable αn occurring in U , let
degpαq indicate the maximum l such that πlpαna1 . . . anq occurs in U .

A substitution for a Fat-unification problem pU,Eq is given by the following data:
for each sequence variable a, a natural number kS

a P N;
for each projection variable αn, a pair pkS

α , Spαqq made of a natural number kS
α ě

degpαq and a sequence Spαq “ xSpαq1, . . . , SpαqkS
α

y, where Spαqi is either of the form
λx1.xn.X or of the form λx1.xn.π

lpxjq, where l is such that, whenever αna1 . . . an

occurs in U , l ď kS
aj

;

FSCD 2021

https://doi.org/10.1007/s11225-017-9772-6

27:20 What’s Decidable About (Atomic) Polymorphism?

for each second-order variable Fn, a function SpFq of the form λρ1.ρn.Apρ1, . . . , ρnq,
where Apρ1, . . . , ρnq is given by the grammar

A,B ::“ X | πlpρiq | A ñ B | @X.A

with i P t1, . . . , nu and l being such that, if Fna1 . . . an occurs in U , then l ď kS
ai

(where
kS
a is k if a “ xX1, . . . , Xky, is kS

a if a “ a, and is kS
α if a “ αra1 . . . ar).

Given a substitution S, we define (1) for any expression a of sort x˚y, a sequence Spaq of
type variables, (2) for any expression ϕ of sort ˚, a type Spϕq, and (3) for any expression Φ
of sort T p˚q, a type SpΦq as follows:

if a “ a, Spaq is an arbitrary sequence of pairwise distinct variables xSpaq1, . . . , Spaqka y

(chosen in such a way that if a ‰ b, Spaq and Spbq are disjoint);
if a “ xX1, . . . , Xry, then Spaq “ xX1, . . . , Xry;
if a “ αna1 . . . an, then Spaq “ xU1, . . . , UkS

α
y where for all i ď kS

α :
if Spαqi “ λx⃗.X, then Ui “ X;
if Spαqi “ λx⃗.πlpxjq, then Ui “ Spajql;

if ϕ “ X, then Spϕq “ X;
if ϕ “ πlpaq, then Spϕq “ Spaql;
if ϕ “ Fa1 . . . an, and SpFq “ λρ⃗.A, then Spϕq “ Arπlpρiq ÞÑ Spaiqls;
if ϕ “ Φ ñ Ψ, then Spϕq “ SpΦq ñ SpΨq;
if Φ “ @a.ϕ, then SpΦq “ @Spaq.Spϕq.

A substitution S for pU,Eq is a unifier of pU,Eq if the following hold:
1. for any equation ϕ “ ψ P U , Spϕq “ Spψq holds;
2. for any constraint of the form α : a P E, kS

a “ kS
α ;

3. for any constraint of the form a : k P E, kS
a “ k.

We let Fat-unification indicate the problem of finding a unifier for a Fat-unification
problem. The rest of this subsection is devoted to establish the following:

▶ Theorem 24. Fat-unification is decidable.

A Fat-unification problem pU,Eq is in normal form if if contains no equation of the form
Φ1 ñ Ψ1 “ Φ2 ñ Ψ2. Any unification problem can be put in normal form by repeatedly
applying the following simplification rule:

U ` tp@a1.ϕ1q Ñ p@b1.ψ1q “ p@a2.ϕ2q Ñ p@b2.ψ2qu
`

U ` tϕ1 “ ϕ2, ψ1 “ ψ2u
˘“

a2 ÞÑ a1, b2 ÞÑ b1
‰

Given a Fat-unification problem in normal form pU,Eq, we say that an equation ϕ “ ψ

can be deduced from U if ϕ “ ψ can be deduced from a finite set of equations in U by applying
standard first-order equality rules. We say that two second-order variables F,G are equivalent
(noted F » G) if an equation of the form Fa1 . . . an “ Gb1 . . . bn can be deduced from U ; we
say that F is connected with G (noted F⇝ G) if an equation of the form Fa1 . . . an “ Φ ñ Ψ,
where U occurs in Φ ñ Ψ, can be deduced from U . We say that pU,Eq has a variable cycle
if there exist variables F1, . . . , Fk such that F1

»
⇝ F2

»
⇝ . . .

»
⇝ Fn

»
⇝ F1 (where F »

⇝ G means
that F is connected with some variable equivalent to G).

▶ Lemma 25. Let pU,Eq be a unification problem in normal form. If pU,Eq has a variable
cycle, then it has no solution.

P. Pistone and L. Tranchini 27:21

Proof. To prove the lemma we show that any unification problem pU,Eq yields a first-
order unification problem U˚ and that any unifier of pU,Eq yields a unifier of U˚. For
the translation, we fix a constant c, and we associate any second-order variable F with a
first-order variable xF; any expression is translated into a first order expression by:

a˚ “ c

Fna1 . . . an “ xF

pΦ ñ Ψq˚ “ Φ˚ ñ Ψ˚

p@a.ϕq˚ “ ϕ˚

We finally let U˚ “ tϕ˚ “ ψ˚ | ϕ “ ψ P Uu. Observe that if F » G in U , then xF “ xG
in U˚, and if F⇝ G in U , then U˚ contains an equation of the form xF “ t ñ u, where xG
occurs in t ñ u. Hence a variable cycle in pU,Eq induces a variable cycle in U˚.

For any substitution S for pU,Eq, we define a first-order substitution S˚ as follows: given
λρ⃗.A we define A˚ by X˚ “ c, pπlpρiqq˚ “ c, pA ñ Bq˚ “ A˚ ñ B˚ and p@X.Aq˚ “ A˚.
We let then S˚pxFq “ SpFq˚.

One can easily check that if S is a unifier for pU,Eq, then S˚ is a unifier of U˚. As
a consequence, if pU,Eq has a variable cycle, so does U˚, and by well-known facts about
first-order unification, U˚ has no unifier, and so neither pU,Eq does. ◀

Let us call a unification problem pU,Eq simple if it contains no expression of the form
Φ ñ Ψ. If pU,Eq has no variable cycle, then it can be reduced to a simple unification problem
by applying the following rules:

U ` tX “ Φ ñ Ψu

tX “ Y u

U ` tπlpaq “ Φ ñ Ψu

tX “ Y u

U ` tFna1
1 . . . a

1
n “ p@c1.ϕ1q ñ p@d1.ψ1q, . . . ,Fnar

1 . . . a
r
n “ p@cr.ϕrq ñ p@dr.ψrqu

U
”

Fna⃗ ÞÑ pFn`1
1 a⃗c ñ Fn`1

2 a⃗dq

ı

`

"

Fn`1
1 a1

1 . . . a
1
nc1 “ ϕ1, . . . ,Fn`1

1 ar
1 . . . a

r
ncr “ ϕr

Fn`1
2 a1

1 . . . a
1
nd1 “ ψ1, . . . ,Fn`1

2 ar
1 . . . a

r
ndr “ ψr

*

Where in the first two rules Y is any type variable distinct from X, and in the last rule we
suppose that U contains no equation of the form Fna1 . . . an “ Φ ñ Ψ. Observe that, by
acycliclity, F cannot occur in either ϕi or ψi. One can argue by induction on the well-founded
preorder »

⇝ that all terms of the form Φ ñ Ψ can be eliminated by applying a finite number
of instances of the rules above.

The last step to ensure decidability is showing (1) that all solutions to a Fat-unification
problem pU,Eq can be generated algorithmically and (2) that one can suppose that, if a
solution exists at all, this can be found within a finite search-space (that is, one in which
only projections πlpaq, with l less than some fixed value K depending on the size of pU,Eq,
occur). Step (2) ensures that, if a solution is not found after a finite search, one can conclude
that no solution exists at all. These are the two ingredients of the proof of the proposition
below, which is shown in detail in [50].

▶ Proposition 26. There is an algorithm that generates all unifiers of a simple unification
problem, if there exists any, and returns failure otherwise.

Type-checking Fat by second-order unification. A type-checking problem is a triple pΓ, t, Aq

where Γ is a term context, t is a λ-term with FV ptq Ď Γ and A is a type. A Fat-solution
of a type-checking problem is a type derivation in Fat of Γ $ t : A. We wish to prove the
following:

FSCD 2021

27:22 What’s Decidable About (Atomic) Polymorphism?

Γpxq “ A A ĺ B
X⃗ R FV pΓq

Γ $ x : @X⃗ : B
Γ, x ÞÑ A $ t : B

X⃗ R FV pΓq
Γ $ λx.t : @X⃗.A ñ B

Γ $ t : A ñ B Γ $ u : A B ĺ C
X⃗ R FV pΓq

Γ $ tu : @X⃗.C

Figure 4 Synthetic typing rules for Curry-style Fat.

▶ Theorem 27. For any type-checking problem pΓ, t, Aq, there exists a Fat-unification problem
VpΓ, t, Aq such that pΓ, t, Aq has a solution in Fat iff VpΓ, t, Aq has a unifier.

The first step is to associate with each term t finite sets of sequence variables, projection
variables and second-order variables as follows (we suppose that no variable occurs both free
and bound in t, and that any bound variable is bound exactly once):

with each variable x in t, we associate two sequence variables ax, bx, a projection variable
α1

x, and two second-order variables F1
x,G1

x;
with each subterm of t of the form uv, we similarly associate two sequence variables
auv, buv, a projection variable α1

uv and two second-order variables F2
uv,G1

uv;
with each subterm of t of the form λx.u, we associate a sequence variable bλx.u, and a
second order variable G1

λx.t.

Given a set of equations U and a sequence variable a not occurring in U , we let Ua be
the set of equations obtained by replacing all terms αna1 . . . an by αn`1a1 . . . ana and all
term Fna1 . . . an by Fn`1a1 . . . ana.

We define a set of equations Uptq, by induction on t as follows:
Upxq is formed by the equation

Fxpαxbxq “ Gxbx

Upλx.tq is formed by Uptqbλx.t plus the equations

Gλx.tbλx.t “ p@ax.Fxaxb⃗bλx.tq ñ @bt.Gtbtbλx.t

Uptuq is formed by Uptqbtu,Upuqbtu plus the equations:

Gtbtbtu “ p@bu.Gububtuq ñ p@atu.Ftuatubtuq

Ftupαtubtuqbtu “ Gtubtu

We let VpΓ, t, Aq “ pUpΓ, t, Aq,EpΓ, t, Aqq, where UpΓ, t, Aq is the union of Uptq and all
equations @ax.Fxax “ Γpxq and @bt.Gtbt “ A. EpΓ, t, Aq is formed by all constraints of
the form pαx : axq and pαtu : btq, as well as all constraints of the form pax : kq, where
Γpxq “ @X1 . . . Xk.C, all constraints of the form pbu : 0q where t contains a subterm of the
form uv, and the constraint pbt, hq, where A “ @X1 . . . Xh.A

1.
To show that solving VpΓ, t, Aq is equivalent to checking if Γ $ t : A, as in [21], we first

define synthetic typing rules for Curry-style Fat as shown in Fig. 4, where A ĺ B holds when
A “ @X1 . . . Xn.A and B “ ArX1 ÞÑ Y1, . . . , Xn ÞÑ Yns.

One can check by induction on t that a synthetic type derivation of Γ $ t : A yields
a unifier of VpΓ, t, Aq. Conversely, we show that from a unifier S for VpΓ, t, Aq we can
construct a synthetic typing derivation of Γ $ t : A. We argue by induction on t:

P. Pistone and L. Tranchini 27:23

if t “ x, then we have Γpxq “ @X1 . . . XN .SpFxqX⃗, where N “ kS
ax

, A “

@Y1 . . . YP .SpGxqY⃗ , where P “ kS
bx

, and moreover, SpFxqpSpαxq1Y⃗ q . . . pSpαxqN Y⃗ q “

SpGxqY⃗ (using the fact that kS
αx

“ kS
ax

“ N). Observe that pSpαxqj Y⃗ q is a variable, and
we deduce then that Γpxq ĺ SpGxqY⃗ ; since we can suppose that Y⃗ does not occur in Γ,
we deduce then that

Γpxq “ @X⃗.SpFxqX⃗ @X⃗.SpFxqX⃗ ĺ SpGxqY⃗
Y⃗ R FV pΓqΓ $ x : A

if t “ λx.u, then we have that A “ @X1 . . . XN .A1 ñ A2, where A1 “

@Y1 . . . YP .SpFxqY⃗ X⃗ and A2 “ @Z1 . . . ZQ.SpGuqZ⃗X⃗, N “ kS
bλx.u

, P “ kS
ax

, Q “ kS
bu

and where we can suppose that the Xi do not occur free in Γ; since Uptq “ Upuqbλx.t we
deduce that S unifies VpΓ Y tx : A1u, u, A2qq. By I.H. we deduce then the existence of a
type derivation of Γ, x : A1 $ u : A2, and since the Xi do not occur in Γ we finally have

[I.H.]
Γ, x : A1 $ u : A2

X⃗ R FV pΓqΓ $ t : A

if t “ uv, then we have that A “ @X1 . . . XN .SpGuvqX⃗,
SpGuqX⃗ “ p@Y1 . . . YP .SpGvqY⃗ X⃗q ñ p@Z1 . . . ZQ.SpFuvqZ⃗X⃗q and that
SpFuvqpSpαuvq1X⃗q . . . pSpαuvqN X⃗qX⃗ “ SpGuvqX⃗, where N “ kS

buv
, P “ kS

bu
and

Q “ kS
auv

, and where we use the fact that kS
bu

“ 0. Moreover, for any choice of the vari-
ables X⃗, we have that S unifies VpΓ, u, p@Y1 . . . YP .SpGvqY⃗ X⃗q ñ @Z1 . . . ZQ.SpFuvqZ⃗X⃗q

and VpΓ, v,@Y1 . . . YP .SpGuqY⃗ X⃗q; by choosing the X⃗ so that they do not occur free in Γ,
using the I.H. and the fact that kS

αuv
“ kS

auv
“ Q, we deduce then

[I.H.]
Γ $ u : p@Y1 . . . YP .SpGqvY⃗ X⃗q ñ p@Z1 . . . ZQ.SpFuvqZ⃗X⃗q

[I.H.]
Γ $ v : @Y1 . . . YP .SpGvqY⃗ X⃗ @Z1 . . . ZQ.SpFuvqZ⃗X⃗ ĺ SpGuvqX⃗

X⃗ R FV pΓqΓ $ t : A

FSCD 2021

Coalgebra Encoding for Efficient Minimization
Hans-Peter Deifel # Ñ

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Stefan Milius # Ñ

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Thorsten Wißmann # Ñ

Radboud University Nijmegen, The Netherlands

Abstract
Recently, we have developed an efficient generic partition refinement algorithm, which computes
behavioural equivalence on a state-based system given as an encoded coalgebra, and implemented
it in the tool CoPaR. Here we extend this to a fully fledged minimization algorithm and tool by
integrating two new aspects: (1) the computation of the transition structure on the minimized state
set, and (2) the computation of the reachable part of the given system. In our generic coalgebraic
setting these two aspects turn out to be surprisingly non-trivial requiring us to extend the previous
theory. In particular, we identify a sufficient condition on encodings of coalgebras, and we show
how to augment the existing interface, which encapsulates computations that are specific for the
coalgebraic type functor, to make the above extensions possible. Both extensions have linear run
time.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Logic and verification

Keywords and phrases Coalgebra, Partition refinement, Transition systems, Minimization

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.28

Related Version Full Version: https://arxiv.org/abs/2102.12842

Funding Hans-Peter Deifel: Supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the
Research and Training Group 2475 “Cybercrime and Forensic Computing” (393541319/GRK2475/1-
2019).
Stefan Milius: Supported by Deutsche Forschungsgemeinschaft (DFG) under project MI 717/5-2.
Thorsten Wißmann: Supported by NWO TOP project 612.001.852.

Acknowledgements We would like to thank the anonymous referees for their comments, which
helped us to improve the presentation.

1 Introduction

The task of minimizing a given finite state-based system has arisen in different contexts
throughout computer science and for various types of systems, such as standard deterministic
automata, tree automata, transition systems, Markov chains, probabilistic or other weighted
systems. In addition to the obvious goal of reducing the mere memory consumption of the
state space, minimization often appears as a subtask of a more complex problem. For instance,
probabilistic model checkers benefit from minimizing the input system before performing the
actual model checking algorithm, as e.g. demonstrated in benchmarking by Katoen et al. [32].

Another example is the graph isomorphism problem. A considerable portion of input
instances can already be decided correctly by performing a step called colour refinement [9],
which amounts to the minimization of a weighted transition system wrt. weighted bisimilarity.

© Hans-Peter Deifel, Stefan Milius, and Thorsten Wißmann;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 28; pp. 28:1–28:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hans-peter.deifel@fau.de
https://www8.cs.fau.de/people/hans-peter-deifel/
https://orcid.org/0000-0002-9542-9664
mailto:stefan.milius@fau.de
http://www.stefan-milius.eu
https://orcid.org/0000-0002-2021-1644
mailto:uni@thorsten.wissmann.de
https://thorsten-wissmann.de
https://orcid.org/0000-0001-8993-6486
https://doi.org/10.4230/LIPIcs.FSCD.2021.28
https://arxiv.org/abs/2102.12842
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Coalgebra Encoding for Efficient Minimization

Minimization algorithms typically perform two steps: first a reachable subset of the state
set of the given system is computed by a standard graph search, and second, in the resulting
reachable system all behaviourally equivalent states are identified. For the latter step one
uses partition refinement or lumping algorithms that start by identifying all states and then
iteratively refine the resulting partition of the state set by looking one step into the transition
structure of the given system. There has been a lot of research on efficient partition refinement
procedures, and the most efficient algorithms for various concrete system types have a run
time in O(m log n), for a system with n states and m transitions, e.g. Hopcroft’s algorithm for
deterministic automata [30] and the algorithm by Paige and Tarjan [36] for transition systems,
even if the number of action labels is not fixed [43]. Partition refinement of probabilistic
systems also underwent a dynamic development [18, 52], and the best algorithms for Markov
chain lumping now match the complexity of the relational Paige-Tarjan algorithm [22,31,44].
For the minimization of more complex system types such as Segala systems [6,26] (combining
probabilities and non-determinism) or weighted tree automata [29], partition refinement
algorithms with a similar quasilinear run time have been designed over the years.

Recently, we have developed a generic partition refinement algorithm [23, 48] and im-
plemented it in the tool CoPaR [19, 51]. This generic algorithm computes the partition
of the state set modulo behavioural equivalence for a wide variety of stated-based system
types, including all the above. This genericity in the system type is achieved by working
with coalgebras for a functor which encapsulates the specific types of transitions of the input
system. More precisely, the algorithm takes as input a syntactic description of a set functor
and an encoding of a coalgebra for that functor and then computes the simple quotient,
i.e. the quotient of the state set modulo behavioural equivalence. The algorithm works
correctly for every zippable set functor (Definition 2.8). It matches, and in some cases even
improves on, the run-time complexity of the best known partition refinement algorithms for
many concrete system types [51, Table 1].

The reasons why this run-time complexity can be stated and proven generically are: first,
the encoding allows us to talk about the number of states and, in particular, the number of
transitions of an input coalgebra. But more importantly, every iterative step of partition
refinement requires only very few system-type specific computations. These computations are
encapsulated in the refinement interface [48], which is then used by the generic algorithm.

An important feature of our coalgebraic algorithm is its modularity: in the tool the user
can freely combine functors with already implemented refinement interfaces by products,
coproducts and functor composition. A refinement interface for the combined functor is
then automatically derived. In this way more structured systems types such as (simple and
general) Segala systems and weighted tree automata can be handled.

In the present paper, we extend our algorithm to a fully fledged minimizer. In previous
work [3] it has been shown that for set functors preserving intersections, every coalgebra
equipped with a point, modelling initial states, has a minimization called the well-pointed
modification. Well-pointedness means that the coalgebra does not have any proper quotients
(i.e. it is simple) nor proper pointed subcoalgebras (i.e. it is reachable), in analogy to minimal
deterministic automata being reachable and observable (see e.g. [5, p. 256]). The well-pointed
modification is obtained by taking the reachable part of the simple quotient of a given
pointed coalgebra [3] (and the more usual reversed order, simple quotient of the reachable
part, is correct for functors preserving inverse images [50, Sec. 7.2]). Our previous work on
coalgebraic minimization algorithms has focused on computing the simple quotient. Here we
extend our algorithm by two missing aspects of minimization and provide their correctness
proofs: the computation of (1) the transition structure of the minimized system, and (2) the
reachable states of an input coalgebra.

H.-P. Deifel, S. Milius, and T. Wißmann 28:3

One may wonder why (1) is a step worth mentioning at all because for many concrete
system types this is trivial, e.g. for deterministic automata where the transitions between
equivalence classes are simply defined by choosing representatives and copying their transitions
from the input automaton. However, for other system types this step is not that obvious,
e.g. for weighted automata where transition weights need to be summed up and transitions
might actually disappear in the minimized system because weights cancel out. We found
that in the generic coalgebraic setting enabling the computation of the (encoding of) the
transition structure of the minimized coalgebra is surprisingly non-trivial, requiring us to
extend the theory behind our algorithm.

In order to be able to perform this computation generically we work with uniform
encodings, which are encodings that satisfy a coherence property (Definition 3.10). We prove
that all encodings used in our previous work are uniform, and that the constructions enabling
modularity of our algorithm preserve uniformity (Prop. 3.12). We also prove that uniform
encodings are subnatural transformations, but the converse does not hold in general. In
addition, we introduce the minimization interface containing the new function merge (to be
implemented together with the refinement interface for each new system type) which takes
care of transitions that change as a result of minimization. We provide merge operations for
all functors with explicitly implemented refinement interfaces (Example 4.4), and show that
for combined system types minimization interfaces can be automatically derived (Prop. 4.11);
similarly as for refinement interfaces. Our main result is that the (encoded) transition
structure of the minimized coalgebra can be correctly computed in linear time (Thm. 4.9).

Concerning extension (2), the computation of reachable states, it is well-known that every
pointed coalgebra has a reachable part (being the smallest subcoalgebra) [3, 49]. Moreover,
for a set functor preserving intersections it coincides with the reachable part of the canonical
graph of the coalgebra [3, Lem. 3.16]. Recently, it was shown that the reachable part of a
pointed coalgebra can be constructed iteratively [49, Thm. 5.20] and that this corresponds to
performing a standard breadth-first search on the canonical graph. The missing ingredient to
turn our previous partition refinement algorithm into a minimizer is to relate the canonical
graph with the encoding of the input coalgebra. We prove that for a functor with a subnatural
encoding, the encoding (considered as a graph) of every coalgebra coincides with its canonical
graph (Theorem 5.6).

Putting everything together, we obtain an algorithm that computes the well-pointed
modification of a given pointed coalgebra. Both additions can be implemented with linear
run time in the size of the input coalgebra and hence do not add to the run-time complexity
of the previous partition refinement algorithm. We have provided such an implementation
with the new version of our tool CoPaR.

All proofs and additional details can be found in the full version [21].

Reachability in Coalgebraic Minimization. There are several works on coalgebraic minimiz-
ation, ranging from abstract constructions to concrete and implemented algorithms [1, 34, 35,
48, 51], that compute the simple quotient [27] of a given coalgebra. These are not concerned
with reachability since coalgebras are not equipped with initial states in general.

In Brzozowski’s automata minimization algorithm [16], reachability is one of the main
ingredients. This is due to the duality of reachability and observability described by Arbib
and Manes [4], and this duality is used twice in the algorithm. Consequently, reachability
also appears as a subtask in the categorical generalizations of Brzozowski’s algorithm [10,14,
15, 35, 38]. These generalizations concern automata processing input words and so do not
cover minimization of (weighted) tree automata. Segala systems are not treated either. Due

FSCD 2021

28:4 Coalgebra Encoding for Efficient Minimization

to the dualization, Brzozowki’s classical algorithm for deterministic automata has doubly
exponential time complexity in the worst case (although it performs well on certain types of
non-deterministic automata, compared to determinization followed by minimization [41]).

2 Background

Our algorithmic framework [48] is defined on the level of coalgebras for set functors, following
the paradigm of universal coalgebra [39]. Coalgebras can model a wide variety of systems.

In the following we recall standard notation for sets and functions as well as basic notions
from the theory of coalgebras. We fix a singleton set 1 = {∗}; for each set X, we have a
unique map ! : X → 1. We denote the disjoint union (coproduct) of sets A, B by A + B

and use inl, inr for the canonical injections into the coproduct, as well as pr1, pr2 for the
projections out of the product. We use the notation ⟨· · ·⟩, respectively [· · ·], for the unique
map induced by the universal property of a product, respectively coproduct. We also fix
two sets 2 = {0, 1} and 3 = {0, 1, 2} and use the former as a set of boolean values with 0
and 1 denoting false and true, respectively. For each subset S of a set X, the characteristic
function χS : X → 2 assigns 1 to elements of S and 0 to elements of X \ S. We denote by
Set the category of all sets and maps. We shall indicate injective and surjective maps by ↣
and ↠, respectively.

Recall that an endofunctor F : Set → Set assigns to each set X a set FX, and to each
map f : X → Y a map Ff : FX → FY , preserving identities and composition, that is we
have F idX = idF X and F (g · f) = Fg · Ff . We denote the composition of maps by · written
infix, as usual. An F -coalgebra is a pair (X, c) that consists of a set X of states and a map
c : X → FX called (transition) structure. A morphism h : (X, c) → (Y, d) of F -coalgebras is
a map h : X → Y preserving the transition structure, i.e. Fh · c = d · h. Two states x, y ∈ X

of a coalgebra (X, c) are behaviourally equivalent if there exists a coalgebra morphism h with
h(x) = h(y).

▶ Example 2.1. Coalgebras and the generic notion for behavioural equivalence instantiate
to a variety of well-known system types and their equivalences:
1. The finite powerset functor Pf maps a set to the set of all its finite subsets and functions

f : X → Y to Pff = f [−] : PfX → PfY taking direct images. Its coalgebras are
finitely branching (unlabelled) transition systems and coalgebraic behavioural equivalence
coincides with Milner and Park’s (strong) bisimilarity.

2. Given a commutative monoid (M, +, 0), the monoid-valued functor M (−) maps a set X

to the set of finitely supported functions from X to M . These are the maps f : X → M ,
such that f(x) = 0 for all except finitely many x ∈ X. Given a map h : X → Y

and a finitely supported function f : X → M , M (h)(f) : M (X) → M (Y) is defined as
M (h)(f)(y) =

∑
x∈X,h(x)=y f(x). Coalgebras for M (−) correspond to finitely branching

weighted transition systems with weights from M . If a coalgebra morphism h : (X, c) →
(Y, d) merges two states s1, s2, then for all transitions x

m1−−→ s1, x
m2−−→ s2 in (X, c)

there must be a transition h(x) m1+m2−−−−−→ h(s1) = h(s2) in (Y, d) and similarly if more
than two states are merged. Coalgebraic behavioural equivalence captures weighted
bisimilarity [33, Prop. 2].
Note that the monoid may have inverses: if s2 = −s1, then the transitions in the above
example cancel each other out, leading to a transition h(x) 0−→ h(s1) with weight 0, which
in fact represents the absence of a transition. This happens for example for the monoid
(R, +, 0) of real numbers. A simple minimization algorithm for real weighted transition

H.-P. Deifel, S. Milius, and T. Wißmann 28:5

(i.e. R(−)-coalgebras) systems is given by Valmari and Franceschinis [44]. These systems
subsume Markov chains which are precisely the coalgebras for the finite probability
distribution functor D, a subfunctor of R(−).

3. Given a signature Σ consisting of operation symbols σ, each with a prescribed natural
number, its arity ar(σ), the polynomial functor FΣ sends each set X to the set of (shallow)
terms over X, specifically to the set

{σ(x1, . . . , xn) | σ ∈ Σ, ar(σ) = n, (x1, . . . , xn) ∈ Xn}.

The action of F on a function f : X → Y is given by

FΣf(σ(x1, . . . , xn)) = σ(f(x1), . . . , f(xn)).

A coalgebra structure c : X → FΣX assigns to a state x ∈ X an expression σ(x1, . . . , xn),
where σ is an output symbol and x1 to xn are the successor states. Two states are
behaviourally equivalent if their tree-unfoldings, obtained by repeatedly applying the
coalgebra structure c, yields the same (infinite) Σ-tree.

4. For a fixed alphabet A, the functor given by FX = 2×XA is a special case of a polynomial
functor over a signature with two symbols of arity |A|. An F -coalgebra c : X → 2 × XA

is the same as a deterministic automaton without an initial state: the structure c assigns
a pair (b, t) to each x ∈ X, where the boolean value b ∈ 2 determines its finality, and
the function t : A → X assigns to each input letter from a ∈ A the successor state of x

under a. Here, behavioural equivalence coincides with language equivalence in the usual
automata theoretic sense.

5. The bag functor B sends a set X to the set of finite multisets over X and functions
f : X → Y to Bf : BX → BY given by Bf({[x1, . . . , x2]}) = {[f(x1), . . . , f(x2)]}, where
we use the multiset braces {[and]} to differentiate from standard set notation; in particular
{[x, x]} ≠ {[x]}. Coalgebras for B are finitely branching transition systems where multiple
transitions between any two states are allowed, or equivalently, weighted transition
systems with positive integers as weights. This follows from the fact that the bag functor
is (naturally isomorphic to) the monoid-valued functor for the monoid (N, +, 0). Hence,
behavioural equivalence coincides with weighted bisimilarity again.
Note that every undirected graph may be considered as a B-coalgebra by turning every
edge into two directed edges with weight 1. Then two states are behaviourally equivalent iff
they are identified by colour refinement, also called the 1-dimensional Weisfeiler-Lehman
algorithm (see e.g. [9, 17,46]).

▶ Example 2.2 (Modularity). New system types can be constructed from existing ones by
functor composition. For example, labelled transition systems (LTSs) are coalgebras for the
functor FX = Pf(A × X), which is the composite of Pf and A × − for a label alphabet A,
and precisely the bisimilar states in an F -coalgebra are behaviourally equivalent. Composing
further, Segala systems (or probabilistic LTSs [26]) are coalgebras for FX = Pf(A × DX),
for which coalgebraic behavioural equivalence instantiates to probabilistic bisimilarity [7].
Another example are weighted tree automata [29] with weights in a commutative monoid M

and input signature Σ; they are coalgebras for the composed functor FX = M (ΣX), for
which behavioural equivalence coincides with backwards bisimilarity [20].

Simple, Reachable, and Well-Pointed Coalgebras. Minimizing a given pointed coalgebra
means to compute its well-pointed modification. We now briefly recall the corresponding
coalgebraic concepts. For a more detailed and well-motivated discussion with examples, see
e.g. [2, Sec. 9].

FSCD 2021

28:6 Coalgebra Encoding for Efficient Minimization

First, a quotient coalgebra of an F -coalgebra (X, c) is represented by a surjective F -
coalgebra morphism, for which we write q : (X, c) ↠ (Y, d), and a subcoalgebra of (X, c) is
represented by an injective F -coalgebra morphism m : (S, s) ↣ (X, c).

A coalgebra (X, c) is called simple if it does not have any proper quotient coalgeb-
ras [27]. That is, every quotient q : (X, c) ↠ (Y, d) is an isomorphism. Equivalently, distinct
states x, y ∈ X are never behaviourally equivalent. Every coalgebra has an (up to isomorph-
ism) unique simple quotient (see e.g. [2, Prop. 9.1.5]).

▶ Example 2.3.
1. A deterministic automaton regarded as a coalgebra for FX = 2 × XA is simple iff it is

observable [5, p. 256], that is, no distinct states accept the same formal language.
2. A finitely branching transition system considered as a Pf-coalgebra is simple, if it has

no pairs of strongly bisimilar but distinct states; in other words if two states x, y are
strongly bisimilar, then x = y.

3. A similar characterization holds for monoid-valued functors (such as the bag functor)
wrt. weighted bisimilarity.

A pointed coalgebra is a coalgebra (X, c) equipped with a point i : 1 → X, equivalently a
distinguished element i ∈ X, modelling an initial state. Morphisms of pointed coalgebras are
the point-preserving coalgebra morphisms, i.e. morphisms h : (X, c, i) → (Y, d, j) satisfying
h · i = j. Quotients and subcoalgebras of pointed coalgebras are defined wrt. these morphisms.
A pointed coalgebra (X, c, i) is called reachable if it has no proper subcoalgebra, that is,
every subcoalgebra m : (S, s, j) ↣ (X, c, i) is an isomorphism. Every pointed coalgebra has a
unique reachable subcoalgebra (see e.g. [2, Prop. 9.2.6]). The notion of reachable coalgebras
corresponds well with graph theoretic reachability in concrete examples. We elaborate on
this a bit more in Section 5.

▶ Example 2.4.
1. A deterministic automaton considered as a pointed coalgebra for FX = 2 × XA (with

the point given by the initial state) is reachable if all of its states are reachable from the
initial state.

2. A pointed Pf-coalgebra is a finitely branching directed graph with a root node. It is
reachable precisely when every node is reachable from the root node.

3. Similarly, for monoid-valued functors such as the bag functor, reachability is precisely
graph theoretic reachability, where a transition weight of 0 means “no edge”.

Finally, a pointed coalgebra (X, c, i) is well-pointed if it is reachable and simple. Every
pointed coalgebra has a well-pointed modification, which is obtained by taking the reachable
part of its simple quotient (see [2, Not. 9.3.4]).

▶ Remark 2.5. For a functor preserving inverse images, one may reverse the two constructions:
the well-pointed modification is the simple quotient of the reachable part of a given pointed
coalgebra [50, Sec. 7.2]. This is the usual order in which minimization of systems is performed
algorithmically. However, for a functor that does not preserve inverse images, quotients of
reachable coalgebras need not be reachable again [50, Ex. 5.3.27], possibly rendering the
usual order incorrect.

Our present paper is concerned with the minimization problem for coalgebras, i.e. the problem
to compute the well-pointed modification of a given pointed coalgebra in terms of its encoding.

▶ Remark 2.6. Recall that a (sub)natural transformation σ from a functor F to a functor G

is a set-indexed family of maps σX : FX → GX such that for every (injective) function
m : X → Y the square below commutes; we also say that σ is (sub)natural in X.

H.-P. Deifel, S. Milius, and T. Wißmann 28:7

From previous results (see [48, Prop. 2.13] and [49, Thm. 4.6]) one obtains the following
sufficient condition for reductions of reachability and simplicity. Given a family of maps
σX : FX → GX, then every F -coalgebra (X, c) yields a G-coalgebra (X, σX · c) and we can
reduce minimization tasks from F -coalgebras to G-coalgebras as follows:

1. Suppose that σ : F → G is sub-cartesian, that is the squares below are pullbacks for every
injective map m : X ↣ Y . Then the reachable part of a pointed F -coalgebra (X, c, i) is
obtained from the reachable part of the G-coalgebra (X, σX · c, i).

FX GX

FY GY

σX

F m Gm

σY

2. Suppose that F is a subfunctor of G, i.e. we have a natural transformation σ with injective
components σX : FX ↣ GX. Then the problem of computing the simple quotient for F -
coalgebras reduces to that for G-coalgebras: the simple quotient of (X, σX · c) yields that
of (X, c).

Consequently, if F is a subfunctor of G via a subcartesian σ, the minimization problem for
F -coalgebras reduces to that for G-coalgebras. For example, the distribution functor D is a
subcartesian subfunctor of R(−). (For details see the full version [21].)

Preliminaries on Bags. The bag functor defined in Example 2.1 plays an important role in
our minimization algorithm, not only as one of many possible system types, but bags are
also used as a data structure. To this end, we use a couple of additional properties of this
functor.
▶ Remark 2.7.
1. Since B can also be regarded as a monoid-valued functor for (N, +, 0), every bag b =

{[x1, . . . , xn]} ∈ BX may be identified with a finitely supported function X → N, assigning
to each x ∈ X its multiplicity in b. We shall often make use of this fact and represent
bags as functions.

2. The set BX itself is a commutative monoid with bag-union as the operation and the
empty bag {[]} as the identity element. In fact, this is the free commutative monoid over X.
It therefore makes sense to consider the monoid-valued functor (BX)(−) for a monoid of
bags. Note that for every pair of sets A, X, the set (BA)(X) of finitely supported functions
from X to BA is isomorphic to B(A × X) as witnessed by the following isomorphism
(where swap, curry and uncurry are the evident canonical bijections):

group =
(
B(A × X) B(swap)−−−−−→ B(X × A) curry−−−→ (BA)(X)), and

ungroup =
(
(BA)(X) uncurry−−−−→ B(X × A) B(swap)−−−−−→ B(A × X)

)
.

Note that since swap is self-inverse and curry, uncurry are mutually inverse, group and
ungroup are mutually inverse, too. In symbols:

group · ungroup = id(BA)(X) , ungroup · group = idB(A×X) . (1)

We often need to filter a bag of tuples B(A × X) by a subset S ⊆ X. To this end we define
the maps filS : B(A × X) → B(A) for sets S ⊆ X and A by

filS(f) =
(
a 7→

∑
x∈S

f(a, x)
)

= {[a | (a, x) ∈ f, x ∈ S]},

where the multiset comprehension is given for intuition.

FSCD 2021

28:8 Coalgebra Encoding for Efficient Minimization

Zippable Functors. One crucial ingredient for the efficiency of the generic partition refine-
ment algorithm [48] is that the coalgebraic type functor is zippable:

▶ Definition 2.8 [48, Def. 5.1]. A set functor F is called zippable if the following maps are
injective for every pair A, B of sets:

F (A + B) ⟨F (A+!),F (!+B)⟩−−−−−−−−−−−−→ F (A + 1) × F (1 + B).

Zippability of a functor allows that partitions are refined incrementally by the algorithm [48,
Prop. 5.18], which in turn is the key for allowing a low run time complexity of the imple-
mentation. For additional visual explanations of zippability, see [48, Fig. 2]. We shall need
this notion in the proof of Proposition 3.3, and later proofs use this result.

It was shown in [48] that all functors in Example 2.1 are zippable. In addition, zippable
functors are closed under products, coproducts and subfunctors. However, they are not
closed under functor composition, e.g. PfPf is not zippable [48, Ex. 5.10].

The Trnková Hull. For purposes of universal coalgebra, we may assume without loss of
generality that set functors preserve injections. Indeed, every set functor preserves nonempty
injections (being the split monomorphisms in Set). As shown by Trnková [42, Prop. II.4
and III.5], for every set functor F there exists an essentially unique set functor F̄ which
coincides with F on nonempty sets and functions, and preserves finite intersections (whence
injections). The functor F̄ is called the Trnková hull of F . Since F and F̄ coincide on
nonempty sets and maps, the categories of coalgebras for F and F̄ are isomorphic.

3 Coalgebra Encodings

In order to make abstract coalgebras tractable for computers and to have a notion of the
size of a coalgebra structure in terms of nodes and edges as for standard transition systems,
our algorithmic framework encodes coalgebras using a graph-like data structure. To this end,
we require functors to be equipped with an encoding as follows.

▶ Definition 3.1. An encoding of a set functor F consists of a set A of labels and a family of
maps ♭X : FX → B(A × X), one for every set X, such that the following map is injective:

FX
⟨F !,♭X ⟩−−−−−−→ F1 × B(A × X).

An encoding of a coalgebra c : X → FX is given by ⟨F !, ♭X⟩ · c : X → F1 × B(A × X).

Intuitively, the encoding ♭X of a functor F specifies how an F -coalgebra should be represented
as a directed graph, and the required injectivity models that different coalgebras have different
representations.
▶ Remark 3.2. Previously [48, Def. 6.1], the map ⟨F !, ♭X⟩ was not explicitly required to
be injective. Instead, a family of maps ♭X : FX → B(A × X) and a refinement interface
for F was assumed. The definition of a refinement interface for F is tailored towards the
computation of behaviourally equivalent states and its details are therefore not relevant for
the present work. All we need here is that the existence of a refinement interface implies the
injectivity condition of Definition 3.1 and consequently, we inherit all examples of encodings
from the previous work:

▶ Proposition 3.3. For every zippable set functor F with a family of maps ♭X : FX →
B(A × X) and a refinement interface, the family ♭X is an encoding for F .

H.-P. Deifel, S. Milius, and T. Wißmann 28:9

▶ Example 3.4. We recall a number of encodings from [48]; the injectivity is clear, and in
fact implied by Proposition 3.3:
1. Our encoding for the finite powerset functor Pf resembles unlabelled transition systems

by taking the singleton set A = 1 as labels. The map ♭X : Pf(X) → B(1 × X) ∼= B(X) is
the obvious inclusion, i.e. ♭X(t)(∗, x) = 1 if x ∈ t and 0 otherwise.

2. The monoid-valued functor M (−) has labels from A = M and ♭X : M (X) → B(M × X) is
given by ♭X(t)(m, x) = 1 if t(x) = m ̸= 0 and 0 otherwise.

3. For a polynomial functor FΣ, we use A = N as the label set and define the maps
♭X : FΣX → B(N × X) by ♭X(σ(x1, . . . , xn)) = {[(1, x1), . . . , (n, xn)]}.
Note that ♭X itself is not injective if Σ has at least two operation symbols with the same
arity. E.g. for DFAs (FΣX = 2 × XA), ♭X only retrieves information about successor
states but disregards the “finality” of states. However, pairing ♭X with F ! : FX → F1
yields an injective map.

4. The bag functor B itself also has A = N as labels and ♭X(t)(n, x) = 1 if t(x) = n and 0
otherwise. This is just the special case of the encoding for a monoid-valued functor for
the monoid (N, +, 0).

The encoding does by no means imply a reduction of the problem of minimizing F -coalgebras
to that of coalgebras for B(A × −) (cf. Remark 2.6). In fact, the notions of behavioural
equivalence for F -coalgebras and coalgebras for B(A × −), can be radically different. If ♭X

is natural in X, then behavioural equivalence wrt. F implies that for B(A × −), but not
necessarily conversely. However, we do not assume naturality of ♭X , and in fact it fails in all
of our examples except one:

▶ Proposition 3.5. The encoding ♭X : FΣX → B(A × X) for the polynomial functor FΣ is a
natural transformation.

▶ Example 3.6. The encoding ♭X : Pf(X) → B(1 × X) ∼= B(X) in Example 3.4 item 1 is not
natural. Indeed, consider the map ! : 2 → 1, for which we have

B(!) · ♭2({0, 1}) = B(!){[0, 1]} = {[∗, ∗]} ̸= {[∗]} = ♭1({∗}) = ♭1 · Pf(!)({0, 1}).

Similar examples show that the encodings in Example 3.4 item 2 (for all non-trivial monoids)
and item 4 are not natural.

An important feature of our algorithm and tool is that all implemented functors can
be combined by products, coproducts and functor composition. That is, the functors
from Example 3.4 are implemented directly, but the algorithm also automatically handles
coalgebras for more complicated combined functors, like those in Example 2.2, e.g. Pf(A×−).
The mechanism that underpins this feature is detailed in previous work [20, 48] and depends
crucially on the ability to form coproducts and products of encodings:

▶ Construction 3.7 [20,48]. Given a family of functors (Fi)i∈I with encodings (♭X,i)i∈I and
(Ai)i∈I , we obtain the following encodings with labels A =

∐
i∈I Ai:

1. for the coproduct functor F =
∐

i∈I Fi we take

♭X :
∐
i∈I

FiX

∐
i∈I

♭X,i

−−−−−−→
∐
i∈I

B(Ai × X) [B(ini ×X)]i∈I−−−−−−−−−→ B
(∐

i∈I

Ai × X
)
.

2. for the product functor F =
∏

i∈I Fi we take

♭X :
∏
i∈I

FiX → B(
∐
i∈I

Ai × X) ♭X(t)(ini(a), x) = ♭i(pri(t))(a, x),

where ini : Ai →
∐

j Aj and pri :
∏

j FjX → FiX denote the canonical coproduct injec-
tions and product projections, respectively.

FSCD 2021

28:10 Coalgebra Encoding for Efficient Minimization

▶ Proposition 3.8. The families ♭X defined in Construction 3.7 yield encodings for the
functors

∏
i∈IFi and

∐
i∈IFi, respectively.

▶ Remark 3.9. Since zippable functors are not closed under composition, modularity cannot
be achieved by simply providing a construction of an encoding for a composed functor (at
least not without giving up on the efficient run-time complexity). Functor composition is
reduced to coproducts making a detour via many-sorted sets. Here is a rough explanation
of how this works. Suppose that F is a finitary set functor, which means that for every
x ∈ FX there exists a finite subset Y ⊆ X and x′ ∈ FY such that x = Fm(x′) for the
inclusion map m : Y ↪→ X. Given a finite coalgebra c : X → FGX, it can be turned into
a 2-sorted coalgebra (c′, d′) : (X, Y) → (FY, GX) as follows: since F is finitary one picks a
finite subset Y of GX such that there exists a map c′ : X → FY with c = Fd′ · c′, where
d′ : Y ↪→ GX is the inclusion map. Then c′ and d′ are combined into one coalgebra on the
disjoint union X + Y as shown below:

X + Y
c′+d′

−−−−−→ FY + GX
[F inr,G inl]−−−−−−−−→ (F + G)(X + Y)

for the coproduct of the functors F and G, where inl : X → X + Y and inr : Y → X + Y are
the two coproduct injections. Full details may be found in [48, Sec. 8].

For the sake of computing the coalgebra structure of the minimized coalgebra, we require
that, intuitively, the labels used for encoding FX are independent of the cardinality of X:

▶ Definition 3.10. An encoding ♭X for a set functor F is called uniform if it fulfils the
following property for every x ∈ X:

FX B(A × X)

B(A)

F2 B(A × 2)

♭X

F χ{x}

fil{x}

♭2 fil{1}

(2)

Intuitively, the condition in Definition 3.10 expresses that in an encoded coalgebra, the
edges (and their labels) to a state x do not change if other states y, z ∈ X \ {x} are identified
by a possible partition on the state space. Diagram (2) expresses the extreme case of such a
partition, particularly the one where all elements of X except for x are identified in a block,
with x being in a separate singleton block.

Fortunately, requiring uniformity does not exclude any of the existing encodings that we
recalled above.

▶ Proposition 3.11. All encodings from Example 3.4 are uniform.

Uniform encodings interact nicely with the modularity constructions:

▶ Proposition 3.12. Uniform encodings are closed under product and coproduct.

That is, given functors (Fi)i∈I with uniform encodings (♭i)i∈I , then the encodings for the
functors

∐
i∈I Fi and

∏
i∈I Fi, as defined in Construction 3.7, are uniform.

Admittedly, the condition in Definition 3.10 is slightly technical. However, we will now
prove that it sits strictly between two standard properties, naturality and subnaturality.

▶ Proposition 3.13.
1. Every natural encoding is uniform.
2. Every uniform encoding is a subnatural transformation.

H.-P. Deifel, S. Milius, and T. Wißmann 28:11

The converses of both of the above implications fail in general. For the converse of 1 we
saw a counterexample in Example 3.6, and for the converse of 2 we have the following
counterexample.

▶ Example 3.14. Consider the following encoding for the functor FX = X × X × X given
by A = 3 + 3 and

♭X : FX → B(A × X)

♭X(x, y, z) =
{

{(inl 0, x), (inl 1, y), (inl 2, z)} if y = z,

{(inr 0, x), (inr 1, y), (inr 2, z)} if y ̸= z.

This encoding is subnatural, since the value of y = z is preserved by injections under F . But
it is not uniform, for if x ̸= y ̸= z, then we have

fil{1}(♭(Fχ{x}(x, y, z))) = fil{1}(♭(1, 0, 0)) = {inl 0} ̸= {inr 0} = fil{x}(♭(x, y, z)).

4 Computing the Simple Quotient

The previous coalgebraic partition refinement algorithm and its tool implementation in
CoPaR compute for a given encoding of a coalgebra (X, c) the state set of its simple
quotient q : (X, c) ↠ (Y, d), that is the partition Y of the set X corresponding to behavioural
equivalence. But the algorithm does not compute the coalgebra structure d of the simple
quotient (and note that it is not given the structure c explicitly, to begin with). Here we will
fill this gap. We are interested in computing the encoding Y

d−→ FY
♭Y−−→ B(A × Y) given the

encoding X
c−→ FX

♭X−−→ B(A × X) of the input coalgebra and the quotient map q : X ↠ Y .
The edge labels in the encoding of the quotient coalgebra relate to the labels in the

encoded input coalgebra in a functor specific way. For example, for weighted transition
systems, the labels are the transition weights, which are added whenever states are identified.
In contrast, for deterministic automata (or when F is a polynomial functor), the labels
(i.e. input symbols) on the transitions remain the same even when states are identified.

Thus, when computing the encoding of the simple quotient, the modification of edge
labels is functor specific. Algorithmically, this is reflected by specifying a new interface
containing one function merge, which is intended to be implemented together with the
refinement interface (Section 3) for every functor of interest. The abstract function merge is
then used in the generic Construction 4.8 in order to compute the encoding of the simple
quotient.

▶ Definition 4.1. A minimization interface for a set functor F equipped with a functor
encoding ♭X : FX → B(A × X) is a function merge : B(A) → B(A) such that the following
diagram commutes for all S ⊆ X:

FX B(A × X) B(A)

F2 B(A × 2) B(A)

♭X

F χS

filS

merge

♭2 fil{1}

(3)

Intuitively, merge expresses what happens on the labels of edges from one state to one
block. It receives the bag of all labels of edges from a particular source state x to a set of
states S that the minimization procedure identified as equivalent. It then computes the
edge labels from x to the merged state S of the minimized coalgebra in a functor specific

FSCD 2021

28:12 Coalgebra Encoding for Efficient Minimization

x 3
7
5

S
merge x S

15

Figure 1 Example application of merge for the monoid-valued functor.

way. Figure 1 depicts this process for a monoid-valued functor (cf. Example 2.1, item 2). In
this example, merge sums up the labels (which are monoid elements), resulting in a correct
transition label to the new merged state.

Before we give formal definitions of merge for the functors of interest, let us show that
there is a close connection between properties of merge and the encoding; this will simplify
the definition of merge later (Example 4.4).

First, if merge receives the bag of labels from a source state to a single target state, then
there is nothing to be merged and thus merge should simply return its input bag. Moreover,
we can even characterize uniform encodings by this property:

▶ Lemma 4.2. Given a minimization interface, the following are equivalent:
1. merge(fil{x}(♭X(t))) = fil{x}(♭X(t)) for all t ∈ FX.
2. ♭X is uniform.
Similarly, the property that merge is always the identity characterizes natural encodings:

▶ Lemma 4.3. For every encoding ♭X : FX → B(A × X), the following are equivalent:
1. The identity on BA is a minimization interface.
2. ♭X is a natural transformation.

▶ Example 4.4.
1. For the finite powerset functor Pf(−), with labels A = 1, we define merge : B1 → B1 by

merge(ℓ)(∗) = min(1, ℓ(∗)).
2. For monoid-valued functors M (−) with A = M , merge is defined as

merge(ℓ) =
{

{[Σℓ]} Σℓ ̸= 0
{[]} otherwise,

where Σ: B(M) → M is defined by Σ{[m1, . . . , mn]} = m1 + · · · + mn.
3. The encoding for the polynomial functor FΣ for a signature Σ is a natural transformation

and hence its minimization interface is given by merge = id (see Lemma 4.3).

▶ Proposition 4.5. All merge maps in Example 4.4 are minimization interfaces and run in
linear time in the size of their input bag.
Having merge defined for the functors of interest, we can now use it to compute the encoding
of the simple quotient.

▶ Assumption 4.6. For the remainder of this section we assume that F1 ̸= ∅.

This is w.l.o.g. since F 1 = ∅ if and only if FX = ∅ for all sets X, for which there is only one
coalgebra (which is therefore its own simple quotient already).

▶ Proposition 4.7. Suppose that the set functor F is equipped with a uniform encoding
♭X : FX → B(A×X) and a minimization interface merge. Then the diagram below commutes
for every map q : X → Y ,

FX B(A × X) B(A × Y) B(A)(Y)

FY B(A × Y) B(A)(Y)

♭X

F q

B(A×q) group

merge(Y)

♭Y ungroup

(4)

H.-P. Deifel, S. Milius, and T. Wißmann 28:13

Note that the dashed arrow is not simply the identity map because ♭X fails to be natural for
most functors of interest (Example 3.6).

Proof (Sketch). One first proves that merge preserves empty bags: merge({[]}) = {[]}. The
commutativity of the desired diagram (4) is proven by extending it by every evaluation map
ev(y) : B(A)(Y) → B(A), y ∈ Y , which form a jointly injective family. The extended diagram
for y ∈ Y is then proven commutative using (2) for y, (3) for S = q−1[y], which is also used
in the form χ{y} · q = χS in addition to two easy properties of ev and fil: fil{y} = ev(y) · group
and fil{y} ·B(A × q) = filS . ◀

▶ Construction 4.8. Given the encoded F -coalgebra (X, ♭X ·c), the quotient q : X ↠ Y , and
a minimization interface for F , we define the map e : Y → B(A × Y) as follows: given an
element y ∈ Y , choose any x ∈ X with q(x) = y and put

e(y) := (ungroup · merge(Y) · group · B(A × q) · ♭X · c)(x),

where the involved types are as follows:

X FX B(A × X) B(A × Y) B(A)(Y)

Y B(A × Y) B(A)(Y)

c

q

♭X B(A×q) group

merge(Y)

e ungroup

(5)

For the well-definedness and the correctness of Construction 4.8, we need to prove
that (5) commutes. Moreover, observe that c is not directly given as input, and that the
structure d : Y → FY of the simple quotient is not computed; only their encodings ♭X · c

and e = ♭Y · d are.

▶ Theorem 4.9. Suppose that q : (X, c) ↠ (Y, d) represents a quotient coalgebra. Then
Construction 4.8 correctly yields the encoding e = ♭Y · d given the encoding ♭X · c and the
partition of X associated to q.

If merge runs in linear time (in its parameter), then Construction 4.8 can be implemented
with linear run time (in the size of the input coalgebra ♭X · c).

In the run time analysis, a bit of care is needed so that the implementation of group has
linear run time; see the full version [21] for details. From Proposition 4.5 we see that for
every functor from Example 2.1, Construction 4.8 can be implemented with linear run time.

4.1 Modularity of Minimization Interfaces
Modularity in the system type is gained by reducing functor composition to products and
coproducts (Remark 3.9). Since we want the construction of the minimized coalgebra
structure to benefit from the same modularity, we need to verify closure under product and
coproduct for the notions required in Proposition 4.7. We have already done so for uniform
encodings (Proposition 3.12); hence it remains to show that minimization interfaces can also
be combined by product and coproduct:

▶ Construction 4.10. Given a family of functors (Fi)i∈I together with uniform encodings
♭i : FiX → B(Ai × X) and minimization interfaces mergei : B(Ai) → B(Ai), we define merge
for the (co)product functors

∏
i∈IFi and

∐
i∈IFi as follows:

merge : B(
∐

i∈IAi) → B(
∐

i∈IAi) merge(t)(ini a) = mergei(filteri(t))(a),

where filteri : B(
∐

j∈I Aj) → B(Ai) is given by filteri(f)(a) = f(ini(a)).

FSCD 2021

28:14 Coalgebra Encoding for Efficient Minimization

Curiously, the definition of merge is the same for products and coproducts, e.g. because the
label sets are the same (see Construction 3.7). However, the correctness proofs turns out to
be quite different. Note that for coproducts, all labels in the image of filS · ♭X are in the same
coproduct component. Thus, filteri never removes elements and acts as a mere type-cast
when the above merge is used in accordance with its specification.

▶ Proposition 4.11. The merge function defined in Construction 4.10 yields a minimization
interface for the functors

∏
i∈IFi and

∐
i∈IFi. It can be implemented with linear run-time if

each mergei is linear in its input.

▶ Corollary 4.12. The class of set functors having a minimization interface contains all
polynomial and all monoid-valued functors and is closed under product and coproduct.

Consequently, Construction 4.8 correctly yields encoded quotient coalgebras for those functors.
Note that all functors from Example 4.4 are contained in this class. Furthermore, functor
composition can be dealt with by using coproducts as explained in Remark 3.9.

5 Reachability

Having quotiented an encoded coalgebra by behavioural equivalence, the remaining task is
to restrict the coalgebra to the states that are actually reachable from a distinguished initial
state. For an intersection preserving set functor, the reachable part of a pointed coalgebra
can be constructed iteratively, and this reduces to standard graph search on the canonical
graph of the coalgebra [49, Cor. 5.26f], which we now recall. Throughout, P denotes the
(full) powerset functor. The following is inspired by Gumm [28, Def. 7.2]:

▶ Definition 5.1. Given a functor F : Set → Set, we define a family of maps τF
X : FX → PX

by τF
X (t) = {x ∈ X | 1 t−→ FX does not factorize through F (X \ {x}) F i−→ FX}, where

i : X \ {x} ↪→ X denotes the inclusion map.

The canonical graph of a coalgebra c : X → FX is the directed graph X
c−→ FX

τF
X−−→ PX.

The nodes are the states of (X, c) and one has an edge from x to y whenever y ∈ τF
X (c(x)).

Note that for a pointed coalgebra (X, c, i) its canonical graph is equipped with the same
point i : 1 → X, that is, the canonical graph is equipped with a root node i(∗) ∈ X. As
we pointed out in Section 2, reachability of the pointed P-coalgebra (X, τF

X · c, i) precisely
means that every x ∈ X is reachable from the root node in the canonical graph.

▶ Example 5.2.
1. For a deterministic automaton considered as a coalgebra for FX = 2 × XA the canonical

graph is precisely its usual underlying state transition graph.
2. For the finite powerset functor Pf , it is easy to see that τPf

X : PfX ↪→ PX is the inclusion
map. Thus, the canonical graph of a Pf -coalgebra (a finitely branching graph) is itself.

3. For the functor B(A × −) the maps τ
B(A×−)
X : B(A × X) → PX act as follows

{[(a1, x1), . . . , (an, xn)]} 7→ {x1, . . . , xn}.

Hence, if we view a coalgebra X → B(A × X) as a finitely-branching graph whose edges
are labelled by pairs of elements of A and N, then the canonical graph is that same graph
but without the edge labels. This holds similarly also for other monoid-valued functors.

H.-P. Deifel, S. Milius, and T. Wißmann 28:15

To perform reachability analysis on encoded coalgebras, we would like that the canonical
graph of a coalgebra and its encoding coincide. This clearly follows when, given a set
functor F with encoding ♭X : FX → B(A × X), the following equation holds for every set X:

τF
X =

(
FX

♭X−−−→ B(A × X)
τ

B(A×−)
X−−−−−−−→ PX

)
. (6)

▶ Assumption 5.3. For the rest of this section we assume that F is an intersection preserving
set functor equipped with a subnatural encoding ♭X : FX → B(A × X).

▶ Remark 5.4. That F preserves intersections is an extremely mild condition for set functors.
All the functors in Example 3.4 preserve intersections. Furthermore, the collection of intersec-
tion preserving set functors is closed under products, coproducts, and functor composition. A
subfunctor σ : F ↣ G of an intersection preserving functor G preserves intersections if σ is a
cartesian natural transformation, that is all naturality squares are pullbacks (cf. Remark 2.6).

Let us note that for every finitary set functor (cf. Remark 3.9) the Trnková hull F̄ (see p. 8)
preserves intersections [2, Cor. 8.1.17].

We are now ready to show the desired equality (6) by point-wise inclusion in either
direction. Under the running Assumption 5.3 it follows that the encoding of a coalgebra can
only mention states that are in the coalgebra’s canonical graph:

▶ Proposition 5.5. For every t ∈ FX we have that τ
B(A×−)
X (♭X(t)) ⊆ τF

X (t).

Proof (Sketch). This is shown by contraposition. If x is not in τF
X (t), then we know that

the map t : 1 → FX factorizes through F (X \ {x}) F i−→ FX (cf. Definition 5.1). Using the
subnaturality square of ♭ for the map i then yields x ̸∈ τ

B(A×−)
X (♭X(t)). ◀

For the converse inclusion, we additionally require that F meets the assumptions of the
partition refinement algorithm:

▶ Theorem 5.6. The canonical graph of a finite coalgebra coincides with that of its encoding.

For every finite set X one proves the equation (6): τF
X = τ

B(A×−)
X · ♭X . It suffices to prove

the reverse of the inclusion in Proposition 5.5 – again by contraposition. This time the
argument is more involved using that the map ⟨F !, ♭X⟩ is injective (Definition 3.1), and that
F preserves intersections. (For details see the full version [21].)

As a consequence of Theorem 5.6, the states in the reachable part of a pointed coalgebra
(X, c, i) are precisely the states reachable from the node i(∗) ∈ X in the (underlying graph
of the) encoding ♭X · c : X → B(A × X), cf. Example 5.23. Thus, given (the encoding of) a
pointed coalgebra (X, c, i), its reachable part can be computed in linear time by a standard
breadth-first search on the encoding viewed as a graph (ignoring the labels).

This holds for all the functors in Example 3.4 and every functor obtained from them by
forming products, coproducts and functor composition.

6 Conclusions and Future Work

We have shown how to extend a generic coalgebraic partition refinement algorithm to a fully
fledged minimization algorithm. Conceptually, this is the step from computing the simple
quotient of a coalgebra to computing the well-pointed modification of a pointed coalgebra. To
achieve this, our extension includes two new aspects: (1) the computation of the transition
structure of the simple quotient given an encoding of the input coalgebra and the partition of
its state space modulo behavioural equivalence, and (2) the computation of the encoding of

FSCD 2021

28:16 Coalgebra Encoding for Efficient Minimization

the reachable part from the encoding of a given pointed coalgebra. Both of these new steps
have also been implemented in the Coalgebraic Partition Refiner CoPaR, together with a new
pretty-printing module that prints out the resulting encoded coalgebra in a functor-specific
human-readable syntax.

There are a number of questions for further work. This mainly concerns broadening the
scope of generic coalgebraic partition refinement algorithms. First, we will further broaden
the range of system types that our algorithm and tool can accommodate, and provide support
for base categories beside the sets as studied in the present work, e.g. nominal sets, which
underlie nominal automata [13,40].

Concerning genericity, there is an orthogonal approach by Ranzato and Tapparo [37],
which is variable in the choice of the notion of process equivalence – however within the realm
of standard labelled transition systems (see also [25]). Similarly, Blom and Orzan [11,12] use
a technique called signature refinement, which handles strong and branching bisimulation as
well as Markov chain lumping (see also [45]).

To overcome the bottleneck on memory consumption that is inherent in partition re-
finement [43,44], symbolic and distributed methods have been employed for many concrete
system types [8, 11, 12, 24, 45, 47]. We will explore in future work whether these methods,
possibly generic in the equivalence notion, can be extended to the coalgebraic generality.

References

1 Jiří Adámek, Filippo Bonchi, Barbara König, Mathias Hülsbusch, Stefan Milius, and Alexandra
Silva. A coalgebraic perspective on minimization and determinization. In Lars Birkedal, editor,
Proc. Foundations of Software Science and Computation Structures (FoSSaCS), volume 7213
of Lecture Notes Comput. Sci., pages 58–73. Springer, 2012.

2 Jiří Adámek, Stefan Milius, and Lawrence S. Moss. Initial algebras, terminal coalgebras, and
the theory of fixed points of functors. draft book, July 2020. URL: https://www8.cs.fau.
de/ext/milius/publications/files/CoalgebraBook.pdf.

3 JiříAdámek, Stefan Milius, Lawrence S. Moss, and Lurdes Sousa. Well-pointed coalgebras.
Log. Methods Comput. Sci., 9(2):1–51, 2014.

4 Michael A. Arbib and Ernest G. Manes. Adjoint machines, state-behaviour machines, and
duality. J. Pure Appl. Algebra, 6:313–344, 1975.

5 Michael A. Arbib and Ernest G. Manes. Algebraic Approaches to Program Semantics. Texts
and Monographs in Computer Science. Springer, 1986.

6 Christel Baier, Bettina Engelen, and Mila Majster-Cederbaum. Deciding bisimilarity and
similarity for probabilistic processes. J. Comput. Syst. Sci., 60:187–231, 2000. doi:10.1006/
jcss.1999.1683.

7 Falk Bartels, Ana Sokolova, and Erik de Vink. A hierarchy of probabilistic system types.
Theoretical Computer Science, 327:3–22, 2004.

8 Damien Bergamini, Nicolas Descoubes, Christophe Joubert, and Radu Mateescu. BISIMU-
LATOR: A modular tool for on-the-fly equivalence checking. In Tools and Algorithms for
the Construction and Analysis of Systems, TACAS 2005, volume 3440 of Lecture Notes in
Comput. Sci., pages 581–585. Springer, 2005. doi:10.1007/b107194.

9 Christoph Berkholz, Paul S. Bonsma, and Martin Grohe. Tight lower and upper bounds for
the complexity of canonical colour refinement. Theory Comput. Syst., 60(4):581–614, 2017.
doi:10.1007/s00224-016-9686-0.

10 Nick Bezhanishvili, Marcello Bonsangue, Helle Hvid Hansen, Dexter Kozen, Clemens Kupke,
Prakash Panangaden, and Alexandra Silva. Minimisation in logical form. Technical report,
Cornell University, May 2020. available at arXiv:2005.11551.

https://www8.cs.fau.de/ext/milius/publications/files/CoalgebraBook.pdf
https://www8.cs.fau.de/ext/milius/publications/files/CoalgebraBook.pdf
https://doi.org/10.1006/jcss.1999.1683
https://doi.org/10.1006/jcss.1999.1683
https://doi.org/10.1007/b107194
https://doi.org/10.1007/s00224-016-9686-0
https://arxiv.org/abs/2005.11551

H.-P. Deifel, S. Milius, and T. Wißmann 28:17

11 Stefan Blom and Simona Orzan. Distributed branching bisimulation reduction of state spaces.
In Parallel and Distributed Model Checking, PDMC 2003, volume 89 of Electron. Notes Theor.
Comput. Sci., pages 99–113. Elsevier, 2003.

12 Stefan Blom and Simona Orzan. A distributed algorithm for strong bisimulation reduction of
state spaces. STTT, 7(1):74–86, 2005. doi:10.1007/s10009-004-0159-4.

13 Mikołaj Bojańczyk, Bartek Klin, and Slawomir Lasota. Automata theory in nominal sets. Log.
Methods Comput. Sci., 10(3), 2014. doi:10.2168/LMCS-10(3:4)2014.

14 Filippo Bonchi, Marcello Bonsangue, Helle Hvid Hansen, Prakash Panangaden, Jan Rutten,
and Alexandra Silva. Algebra-coalgebra duality in Brzozowski’s minimization algorithm. ACM
Trans. Comput. Log., 15(1):3:1–3:29, 2014.

15 Filippo Bonchi, Marcello Bonsangue, Jan Rutten, and Alexandra Silva. Brzozowski’s algorithm
(co)algebraically. In Robert L. Constable and Alexandra Silva, editors, Logic and Program
Semantics, Kozen Festschrift, volume 7230 of Lecture Notes in Comput. Sci., pages 12–23.
Springer, 2012.

16 Janusz A. Brzozowski. Canonical regular expressions and minimal state graphs for definite
events. In J. Fox, editor, Mathematical Theory of Automata, volume 12 of MRI Symposia
Series, pages 529–561. Polytechnic Institute of Brooklyn, Polytechnic Press, 1962.

17 Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identification. Combinatorica, 12(4):389–410, December 1992. doi:
10.1007/bf01305232.

18 Stefano Cattani and Roberto Segala. Decision algorithms for probabilistic bisimulation. In
Concurrency Theory, CONCUR 2002, volume 2421 of Lecture Notes in Comput. Sci., pages
371–385. Springer, 2002. doi:10.1007/3-540-45694-5.

19 CoPaR: The Coalgebraic Partion Refiner, February 2021. Available at https://git8.cs.fau.
de/software/copar.

20 Hans-Peter Deifel, Stefan Milius, Lutz Schröder, and Thorsten Wißmann. Generic partition
refinement and weighted tree automata. In Maurice H. ter Beek, Annabelle McIver, and
José N. Oliveira, editors, Formal Methods – The Next 30 Years, pages 280–297, Cham, October
2019. Springer International Publishing. doi:10.1007/978-3-030-30942-8_18.

21 Hans-Peter Deifel, Stefan Milius, and Thorsten Wißmann. Coalgebra encoding for efficient
minimization. full version with appendix. arXiv:2102.12842.

22 Salem Derisavi, Holger Hermanns, and William Sanders. Optimal state-space lumping
in markov chains. Inf. Process. Lett., 87(6):309–315, 2003. doi:10.1016/S0020-0190(03)
00343-0.

23 Ulrich Dorsch, Stefan Milius, Lutz Schröder, and Thorsten Wißmann. Efficient coalgebraic
partition refinement. In Roland Meyer and Uwe Nestmann, editors, 28th International
Conference on Concurrency Theory (CONCUR 2017), volume 85 of LIPIcs, pages 28:1–28:16.
Schloss Dagstuhl, 2017.

24 Hubert Garavel and Holger Hermanns. On combining functional verification and performance
evaluation using CADP. In Formal Methods Europe, FME 2002, volume 2391 of Lecture Notes
in Comput. Sci., pages 410–429. Springer, 2002. doi:10.1007/3-540-45614-7.

25 Jan Groote, David Jansen, Jeroen Keiren, and Anton Wijs. An O(mlogn) algorithm for
computing stuttering equivalence and branching bisimulation. ACM Trans. Comput. Log.,
18(2):13:1–13:34, 2017. doi:10.1145/3060140.

26 Jan Friso Groote, Jao Rivera Verduzco, and Erik P. de Vink. An efficient algorithm to
determine probabilistic bisimulation. Algorithms, 11(9):131, 2018. doi:10.3390/a11090131.

27 H. Peter Gumm. Thomas Ihringer: Algemeine Algebra. Mit einem Anhang über Universelle
Coalgebra von H. P. Gumm, volume 10 of Berliner Studienreihe zur Mathematik. Heldermann
Verlag, 2003.

28 H. Peter Gumm. From T -coalgebras to filter structures and transition systems. In José Luiz
Fiadeiro, Neil Harman, Markus Roggenbach, and Jan Rutten, editors, Algebra and Coalgebra
in Computer Science, volume 3629 of Lecture Notes in Comput. Sci., pages 194–212. Springer
Berlin Heidelberg, 2005. doi:10.1007/11548133_13.

FSCD 2021

https://doi.org/10.1007/s10009-004-0159-4
https://doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.1007/bf01305232
https://doi.org/10.1007/bf01305232
https://doi.org/10.1007/3-540-45694-5
https://git8.cs.fau.de/software/copar
https://git8.cs.fau.de/software/copar
https://doi.org/10.1007/978-3-030-30942-8_18
http://arxiv.org/abs/2102.12842
https://doi.org/10.1016/S0020-0190(03)00343-0
https://doi.org/10.1016/S0020-0190(03)00343-0
https://doi.org/10.1007/3-540-45614-7
https://doi.org/10.1145/3060140
https://doi.org/10.3390/a11090131
https://doi.org/10.1007/11548133_13

28:18 Coalgebra Encoding for Efficient Minimization

29 Johanna Högberg, Andreas Maletti, and Jonathan May. Backward and forward bisimulation
minimization of tree automata. Theoret. Comput. Sci., 410:3539–3552, 2009.

30 John Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In Theory
of Machines and Computations, pages 189–196. Academic Press, 1971.

31 Dung Huynh and Lu Tian. On some equivalence relations for probabilistic processes. Fund.
Inform., 17:211–234, 1992.

32 Joost-Pieter Katoen, Tim Kemna, Ivan Zapreev, and David Jansen. Bisimulation minimisation
mostly speeds up probabilistic model checking. In Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 2007, volume 4424 of Lecture Notes in Comput. Sci., pages
87–101. Springer, 2007. doi:10.1007/978-3-540-71209-1.

33 Bartek Klin. Structural operational semantics for weighted transition systems. In Jens Palsberg,
editor, Semantics and Algebraic Specification: Essays Dedicated to Peter D. Mosses on the
Occasion of His 60th Birthday, volume 5700 of Lecture Notes in Comput. Sci., pages 121–139.
Springer, 2009.

34 Barbara König and Sebastian Küppers. A generalized partition refinement algorithm, instanti-
ated to language equivalence checking for weighted automata. Soft Comput., 22:1103–1120,
2018.

35 Nick Nick Bezhanishvili, Clemens Kupke, and Prakash Panangaden. Minimization via duality.
In Luke Ong and R. de Queiroz, editors, Proc. WoLLIC, volume 7456 of Lecture Notes in
Comput. Sci. Springer, 2012.

36 Robert Paige and Robert E. Tarjan. Three partition refinement algorithms. SIAM J. Comput.,
16(6):973–989, 1987.

37 Francesco Ranzato and Francesco Tapparo. Generalizing the Paige-Tarjan algorithm by
abstract interpretation. Inf. Comput., 206:620–651, 2008. doi:10.1016/j.ic.2008.01.001.

38 Jurriaan Rot. Coalgebraic minimization of automata by initiality and finality. In Lars Birkedal,
editor, Proc. MFPS, volume 325 of Electron. Notes Theor. Comput. Sci., pages 253–276.
Elsevier, 2016.

39 J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoret. Comput. Sci., 249(1):3–80,
2000. doi:10.1016/S0304-3975(00)00056-6.

40 Lutz Schröder, Dexter Kozen, Stefan Milius, and Thorsten Wißmann. Nominal automata with
name binding. In Foundations of Software Science and Computation Structures, FOSSACS
2017, volume 10203 of Lecture Notes in Comput. Sci., pages 124–142, 2017. doi:10.1007/
978-3-662-54458-7.

41 Deian Tabakov and Moshe Vardi. Experimental evaluation of classical automata constructions.
In G. Sutcliffe and A. Voronkov, editors, Proc. LPAR, volume 3835 of Lecture Notes in
Artificial Intelligence, pages 396–411. Springer, 2005.

42 Věra Trnková. On a descriptive classification of set functors I. Comment. Math. Univ. Carolin.,
12:143–174, 1971.

43 Antti Valmari. Bisimilarity minimization in O(m log n) time. In Applications and Theory of
Petri Nets, PETRI NETS 2009, volume 5606 of Lecture Notes in Comput. Sci., pages 123–142.
Springer, 2009. doi:10.1007/978-3-642-02424-5.

44 Antti Valmari and Giuliana Franceschinis. Simple O(m log n) time Markov chain lumping. In
Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2010, volume
6015 of Lecture Notes in Comput. Sci., pages 38–52. Springer, 2010.

45 Tom van Dijk and Jaco van de Pol. Multi-core symbolic bisimulation minimization.
J. Softw. Tools Technol. Transfer, 20(2):157–177, 2018.

46 Boris Weisfeiler. On Construction and Identification of Graphs. Springer, 1976. doi:10.1007/
bfb0089374.

47 Anton Wijs. Gpu accelerated strong and branching bisimilarity checking. In Christel Baier
and Cesare Tinelli, editors, Proc. Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 9035 of Lecture Notes in Comput. Sci., pages 368–383. Springer,
2015.

https://doi.org/10.1007/978-3-540-71209-1
https://doi.org/10.1016/j.ic.2008.01.001
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1007/978-3-662-54458-7
https://doi.org/10.1007/978-3-662-54458-7
https://doi.org/10.1007/978-3-642-02424-5
https://doi.org/10.1007/bfb0089374
https://doi.org/10.1007/bfb0089374

H.-P. Deifel, S. Milius, and T. Wißmann 28:19

48 Thorsten Wißmann, Ulrich Dorsch, Stefan Milius, and Lutz Schröder. Efficient and modular
coalgebraic partition refinement. Log. Methods. Comput. Sci., 16(1):8:1–8:63, 2020.

49 Thorsten Wißmann, Stefan Milius, Jérémy Dubut, and Shin-ya Katsumata. A coalgebraic
view on reachability. Comment. Math. Univ. Carolin., 60(4), 2019.

50 Thorsten Wißmann. Coalgebraic Semantics and Minimization in Sets and Beyond. Phd thesis,
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2020. URL: https://opus4.kobv.
de/opus4-fau/frontdoor/index/index/docId/14222.

51 Thorsten Wißmann, Hans-Peter Deifel, Stefan Milius, and Lutz Schröder. From generic
partition refinement to weighted tree automata minimization, 2020. accepted for publication
in Formal Aspects of Computing; available online at arXiv:2004.01250. arXiv:2004.01250.

52 Lijun Zhang, Holger Hermanns, Friedrich Eisenbrand, and David Jansen. Flow Faster:
Efficient decision algorithms for probabilistic simulations. Log. Meth. Comput. Sci., 4(4), 2008.
doi:10.2168/LMCS-4(4:6)2008.

FSCD 2021

https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/14222
https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/14222
https://arxiv.org/abs/2004.01250
http://arxiv.org/abs/2004.01250
https://doi.org/10.2168/LMCS-4(4:6)2008

On the Logical Strength of Confluence and
Normalisation for Cyclic Proofs
Anupam Das ! Ï

University of Birmingham, UK

Abstract
In this work we address the logical strength of confluence and normalisation for non-wellfounded
typing derivations, in the tradition of “cyclic proof theory” . We present a circular version CT
of Gödel’ s system T , with the aim of comparing the relative expressivity of the theories CT and
T . We approach this problem by formalising rewriting-theoretic results such as confluence and
normalisation for the underlying “coterm” rewriting system of CT within fragments of second-order
arithmetic.

We establish confluence of CT within the theory RCA0, a conservative extension of primitive
recursive arithmetic and IΣ1. This allows us to recast type structures of hereditarily recursive
operations as “coterm” models of T . We show that these also form models of CT , by formalising a
totality argument for circular typing derivations within suitable fragments of second-order arithmetic.
Relying on well-known proof mining results, we thus obtain an interpretation of CT into T ; in
fact, more precisely, we interpret level-n-CT into level-(n + 1)-T , an optimum result in terms of
abstraction complexity.

A direct consequence of these model-theoretic results is weak normalisation for CT . As further
results, we also show strong normalisation for CT and continuity of functionals computed by its
type 2 coterms.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting; Theory
of computation → Proof theory; Theory of computation → Higher order logic; Theory of computation
→ Lambda calculus

Keywords and phrases confluence, normalisation, system T, circular proofs, reverse mathematics,
type structures

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.29

Related Version This work is based on part of the following preprint, where related results, proofs
and examples may be found.
Extended Version: https://arxiv.org/abs/2012.14421 [12]

Funding This work was supported by a UKRI Future Leaders Fellowship, Structure vs. Invariants
in Proofs, project reference MR/S035540/1.

Acknowledgements I would like to thank Denis Kuperberg, Laureline Pinault and Damien Pous
for several interesting discussions on this and related topics. I am also grateful to the anonymous
reviewers for their helpful feedback and suggestions.

1 Introduction

Cyclic (or circular) proofs have attracted increasing attention in recent years, in settings
including modal fixed point logics [28, 16, 35, 1, 18], predicate logic [8, 9, 7, 6], algebras
[31, 14, 15, 13], arithmetic [33, 5, 11] and type systems [19, 4, 3]. In short, cyclic proofs are
possibly non-wellfounded derivations (“coderivations”) that have only finitely many distinct
subderivations (and so are finitely presentable). That they are meaningful (i.e., sound, total,
terminating, etc.) is usually guaranteed by some ω-regular correctness condition at the level
of their infinite branches.

© Anupam Das;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 29; pp. 29:1–29:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.das@bham.ac.uk
http://www.anupamdas.com/
https://orcid.org/0000-0002-0142-3676
https://doi.org/10.4230/LIPIcs.FSCD.2021.29
https://arxiv.org/abs/2012.14421
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

In this work we investigate the interface between theories of arithmetic and type systems.
These two settings are fundamentally related by means of well-known proof interpretations,
such as the functional and realisability interpretations (see, e.g., [2, 24]). In particular Gödel’s
system T , a simply typed classical quantifier-free theory with recursion and induction, is
capable of interpreting all of Peano Arithmetic, effectively trading off quantifier complexity
for abstraction complexity (i.e. type level).

Inspired by the aforementioned previous work on circular type systems, we present a
circular version, CT , of T , and compare the relative expressivity of (fragments of) the two
theories. More precisely, we show that the restriction of CT to level n (CT n) is interpreted
in the restriction of T to level n + 1 (Tn+1). This result is optimal due to a converse result
in parallel work [12] (that is beyond the scope of the present paper).1

Since non-wellfounded derivations do not directly admit inductive arguments and their
correctness relies on nontrivial infinitary combinatorics, we employ a “proof mining” approach
towards establishing this interpretation. More precisely, we formalise models of CT n within
fragments of (second-order) arithmetic, and rely on the aforementioned proof interpretations
to extract corresponding terms of Tn+1. This builds on analogous aforementioned work in
the arithmetic setting, namely [33, 11], also taking advantage of second-order theories.

Our formalisation requires us to establish a form of confluence for the underlying rewrite
system of CT , which we show holds in one of the weakest second-order theories RCA0,
essentially a form of primitive recursive arithmetic with quantification over sets. Showing
that these structures indeed constitute models of CT requires a formalisation of the totality
argument for circular derivations, with quantifiers relativised to this structure.

A direct consequence of these model-theoretic results is weak normalisation for coterms
of CT . As further results, we also show strong normalisation for CT and continuity of
functionals computed by its type 2 coterms.

Relation to other work. In [26] the authors present a circular version of the underlying type
system of T , using a slightly different type language including a Kleene ∗. In particular, they
show that circular derivations compute, in the standard model, just the primitive recursive
functionals at type 1, i.e. the natural number functions computed by terms of T , also using a
formalisation within second-order theories of arithmetic. We generalise that result in several
ways: (a) we optimise the result with respect to abstraction complexity; (b) we give a logical
correspondence, at the level of theories, not just the standard model; (c) we give bona fide
confluence and normalisation results for the underlying rewrite system on coterms.

This work is based on part of the (unpublished) preprint [12], where related results, proofs
and examples may be found.

Preliminaries. We shall assume some basic familiarity with the underlying technical dis-
ciplines of this work, which are now well-established and form the subjects of multiple
monographs. In particular, these include rewriting theory [37], subsystems of second-order
arithmetic [34, 22], and Gödel’s system T and program extraction [2, 24]. Some familiarity
with higher-order computability [27] and metamathematics [20, 23, 38] is also helpful.

1 It is easy, however, to see that Tn is interpreted in CTn, as we will see in Example 2.5.

A. Das 29:3

ρ⃗, σ, ρ, σ⃗ ⇒ τ
ex

ρ⃗, ρ, σ, σ⃗ ⇒ τ

σ⃗ ⇒ τ
wk

σ⃗, σ ⇒ τ

σ⃗, σ, σ ⇒ τ
cntr

σ⃗, σ ⇒ τ

σ⃗ ⇒ σ σ⃗, σ ⇒ τ
cut

σ⃗ ⇒ τ

id
σ ⇒ σ

σ⃗ ⇒ ρ σ⃗, σ ⇒ τ
L

σ⃗, ρ → σ ⇒ τ

σ⃗, σ ⇒ τ
R

σ⃗ ⇒ σ → τ

0
⇒ N

s
N ⇒ N

σ⃗ ⇒ τ σ⃗, N ⇒ τ
cond

σ⃗, N ⇒ τ

σ⃗ ⇒ τ σ⃗, N, σ ⇒ τ
recτ

σ⃗, N ⇒ τ

Figure 1 Sequent style typing rules for T .

2 A circular version of Gödel’s T

Throughout this work we shall work with theories that are simply or finitely typed. Namely
types, written σ, τ etc., are generated by the following grammar:

σ, τ ::= N | (σ → τ)

A simply typed theory is a multi-sorted (classical) first-order theory, whose sorts are just
the simple types, equipped with application operators ◦σ,σ→τ for each pair σ, σ → τ of
types, as usual. (Typed) terms, written s, t etc., are formed from constants of a simply
typed language under typed application. We simply write t s for the application of a term
t of type σ → τ to a term s of type σ. As usual we may sometimes omit parentheses, e.g.
writing r s t instead of ((r s) t).

In this work, we always assume intensional equality for simply typed theories. Namely
we have binary relation symbols =σ for each type σ, axiomatised by reflexivity, t =σ t, and
the Leibniz property, (s =σ t ∧ φ(s)) ⊃ φ(t), for each formula φ and terms s, t of type σ.

2.1 Sequent calculus presentation of T terms
Sequent calculi give us a way to write typed terms that are more succinct with respect to type
level, and also enjoy elegant proof theoretic properties, e.g. cut-elimination. Importantly, the
induced relations between type occurrences makes it easier to define our correctness criterion
for non-wellfounded derivations later.

▶ Definition 2.1 (Sequent calculus). Sequents are expressions σ⃗ ⇒ τ , where σ⃗ is a list of
types and τ is a type. The typing rules for T are given in Figure 1.

Here, and throughout this subsection, colours of each type occurrence in typing rules may
be ignored for now and will become relevant later in Section 2.2.

Each rule instance (or step) determines a constant of the appropriate type. E.g., a step
ρ⃗ ⇒ ρ σ⃗ ⇒ σ

τ⃗ ⇒ τ
is a constant of type (ρ⃗ → ρ) → (σ⃗ → σ) → τ⃗ → τ .2 In this way, we may

identify each derivation with a term obtained by just repeatedly applying rule instances,
starting from the conclusion, to its subderivations. Note that this “combinatory” approach,
treating rule instances as constants rather than, say, meta-level operations on λ-terms,
ensures that this association of a term to a derivation is continuous. This is important for
our later association of “coterm” to a “coderivation” .

2 Here and elsewhere we freely write, say, ρ⃗ → ρ for ρ1 → · · · → ρn → ρ when ρ⃗ is a list (ρ1, . . . , ρn).

FSCD 2021

29:4 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

id x = x

ex t x⃗ x y y⃗ = t x⃗ y x y⃗

wk t x⃗ x = t x⃗

cntr t x⃗ x = t x⃗ x x

cut s t x⃗ = t x⃗ (s x⃗)
L s t x⃗ y = t x⃗ (y (s x⃗))

R t x⃗ x = t x⃗ x

rec s t x⃗ 0 = s x⃗

rec s t x⃗ sz = t x⃗ z (rec s t x⃗ z)
cond s t x⃗ 0 = s x⃗

cond s t x⃗ sz = t x⃗ z

Figure 2 Equational axiomatisation of T , where z is a variable of type N .

1. ¬ sx = 0
2. sx = sy ⊃ x = y

(Ind) If ⊢ φ(0) and ⊢ φ(x) ⊃ φ(sx) then ⊢ φ(t), for φ quantifier-free.

Figure 3 Number-theoretic axioms for T , where x, y and t are variables/a term of type N .

A term of the form
n︷ ︸︸ ︷

s · · · s 0 is called a numeral, and is more succinctly written just n.

▶ Definition 2.2 (System T). T is the simple type theory over the language given by Figure 1,
axiomatised by the formulas and rules from Figure 2 and Figure 3.

▶ Remark 2.3 (Standard model). We may consider usual Henkin structures for simply typed
theories, called type structures. One particular structure, the “standard” or “full set-
theoretic” model N, is given by the following interpretation:

NN is N and (σ → τ)N is the set of functions σN → τN.
0N := 0 ∈ N and sN(n) := n + 1.
The other constants of T are interpreted by (higher-order) functionals by taking the
equations from Figure 2 as definitions, left-to-right.
Given f ∈ σN and g ∈ (σ → τ)N, g ◦N f ∈ τN is defined as g(f).
For each type σ, we have an extensional equality relation =N

σ :
=N

N is just equality of natural numbers;
for f, g ∈ (σ → τ)N, we have f =N

σ→τ g just if ∀x ∈ σN.f(x) =N
τ g(x).

It is clear, by reduction to induction at the meta-level, that the interpretations of the
constants above are well-defined, and that the axioms of Figure 3 (as well as Figure 2) are
satisfied in N. Thus N constitutes a bona fide model of T .

2.2 “Coderivations” and a correctness condition
Coterms are generated coinductively from constants and variables under typed application.
Formally, we may construe a coterm as a possibly infinite binary tree (of height ≤ ω) where
each leaf (if any) is labelled by a typed variable or constant and each interior node is labelled
by a typed application operation, having type consistent with the types of its children. I.e.,
an interior node with children of types σ and σ → τ , respectively, must have type τ .

Similarly, a coderivation, is a possibly non-wellfounded tree built from the derivation
rules of Figure 1. As for (well-founded) derivations and terms, we treat coderivations as
coterms in the natural way. We say that a coderivation or coterm is regular (or circular)
if it has finitely many distinct sub-coderivations or sub-coterms, respectively. Note that a
regular coderivation or coterm is indeed finitely presentable, e.g. as a finite directed graph,
possibly with cycles, or a finite binary tree with “backpointers”.

A. Das 29:5

Note that the equational theory induced by Figure 2 forms a Kleene-Herbrand-Gödel style
equational specification for regular coterms (cf., e.g., [23]). This allows us to view coterms
as partial recursive functionals in the standard model N of the appropriate type, though a
full exposition is beyond the scope of this paper. Instead we will give a more formal (and,
indeed, formalised) treatment of “regular” coterms and their computational interpretations
in Section 3. We point the reader to the excellent book [27] for further details on models of
(partial) (recursive) function(al)s.

Nonetheless, let us temporarily adopt the notation tN for the partial functional “computed”
by a coterm t in N, and present some examples, at the same time establishing some
foundational results. As before, the reader may safely ignore the colouring of type occurrences
in what follows. That will become meaningful later in the section.

▶ Example 2.4 (Extensional completeness at type 1). For any f : Nk → N, there is a
coderivation t : Nk ⇒ N s.t. tN = f . To demonstrate this, we proceed by induction on k.3
If k = 0 then the numerals clearly suffice. Otherwise, suppose f : N × Nk → N and write fn

for the projection Nk → N by fn(x⃗) = f(n, x⃗). We define the coderivation for f as follows:

f0

N⃗ ⇒ N

f1

N⃗ ⇒ N

f2

N⃗ ⇒ N

...
cond

N, N⃗ ⇒ N
cond

N, N⃗ ⇒ N
cond

N, N⃗ ⇒ N
cond

N, N⃗ ⇒ N

(1)

where the derivations for each fn are obtained by the inductive hypothesis. It is not difficult
to see that the interpretation of this coderivation in the standard model indeed coincides
with f .

Notice that, while we have extensional completeness at type 1, we cannot possibly have
such a result for higher types by a cardinality argument: there are only continuum many
coderivations.

▶ Example 2.5 (Naïve simulation of primitive recursion). Terms of T may be interpreted as
coterms without the rec combinators in a straightforward manner, by the following translation:

σ⃗ ⇒ σ σ⃗, N, σ ⇒ σ
rec

σ⃗, N ⇒ σ
⇝

σ⃗ ⇒ σ

...
cond •

σ⃗, N ⇒ σ σ⃗, N, σ ⇒ σ
cut

σ⃗, N ⇒ σ
cond •

σ⃗, N ⇒ σ

(2)

where the occurrences of • indicate roots of identical coderivations.

3 While we may assume k = 1 WLoG by the availability of sequence (de)coding, the current argument is
both more direct and avoids the use of cuts (on non-numerals).

FSCD 2021

29:6 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

Denoting the RHS of (2) above as rec′, we can check that the two sides of (2) are
equivalent under Figures 2 and 3. Formally, we show rec′ s t x⃗ y = rec s t x⃗ y by induction
on y:

rec′s t x⃗ 0 = cond s (cut (rec′s t) t) x⃗ 0 by definition of rec′ above
= s x⃗ by cond axioms
= rec s t x⃗ 0 by rec axioms

rec′s t x⃗ sy = cond s (cut (rec′s t) t) x⃗ sy by definition of rec′ above
= cut (rec′s t) t x⃗ y by cond axioms
= t x⃗ y (rec′ s t x⃗ y) by cut axiom
= t x⃗ y (rec s t x⃗ y) by inductive hypothesis
= rec s t x⃗ sy by rec axioms

▶ Example 2.6 (Turing completeness). The set of regular coderivations is Turing-complete,4
i.e. {tN | t : Nk ⇒ N regular} includes all partial recursive functions on N. We have already
seen in Example 2.5 that we can encode the primitive recursive functions, so it remains to
simulate minimisation, i.e. the operation µx(fx = 0), for a given function f , returning the
least natural number x s.t. fx = 0 (if it exists). For this, we observe that µx(fx = 0) is
equivalent to H 0 where:

H x = cond (f x) x (H sx) (3)

Note that H is computed by the following coderivation:

f

N ⇒ N

id
N ⇒ N

s
N ⇒ N

...
cut •

N ⇒ N
cut

N ⇒ N
wk

N, N ⇒ N
cond

N, N ⇒ N
cut •

N ⇒ N

(4)

It is intuitive here to think of the blue N standing for x, the red N standing for f(x), and the
purple N standing for sx. Again, the reader may verify that this coderivation indeed satisfies
Equation (3) in the standard model N. Note that we only used the type N above, and no
higher-order types, so Turing-completeness holds already for N -only regular coderivations.

▶ Definition 2.7 (Immediate ancestry). Let t be a (co)derivation. A type occurrence σ1 is
an immediate ancestor5 of a type occurrence σ2 in t if σ1 and σ2 appear in the LHSs
of a premiss and conclusion, respectively, of a rule instance and have the same colour in
the corresponding rule typeset in Figure 1. If σ1 and σ2 are elements of an indicated list,
say σ⃗, we also require that they are at the same position of the list in the premiss and the
conclusion. Note that, if σ1 is an immediate ancestor of σ2, they are necessarily occurrences
of the same type.

4 For a model of program execution, we may simply take the aforementioned Kleene-Herbrand-Gödel
model with equational derivability, cf. [23]. Note that this coincides with derivability by the axioms
thus far presented.

5 This terminology is standard in proof theory, e.g. as in [10].

A. Das 29:7

The notion of immediate ancestor thus defined, being a binary relation, induces a directed
graph whose paths will form the basis of our termination criterion.

▶ Definition 2.8 (Threads and progress). A thread is a maximal path in the graph of
immediate ancestry. A σ-thread is a thread whose elements are occurrences of the type
σ. We say that a N -thread progresses when it is principal for a cond step (i.e. it is the
indicated blue N in the cond rule typeset in Figure 1). A (infinitely) progressing thread is
a N -thread that progresses infinitely often (i.e. it is infinitely often the indicated blue N in
the cond rule typeset in Figure 1.)

A coderivation is progressing if every infinite branch has a progressing thread.

Note that progressing threads do not necessarily begin at the root of a coderivation, they
may begin arbitrarily far into a branch. In this way, the progressing coderivations are closed
under all typing rules. Note also that arbitrary coderivations may be progressing, not only
the regular ones.

▶ Example 2.9 (Extensional completeness at type 1, revisited). Recalling Example 2.4, note
that the infinite branch marked · · · in (1) has a progressing thread along the red Ns. Other
infinite branches, say through f0, f1, etc., will have progressing threads along their infinite
branches by an appropriate inductive hypothesis, though these may progress for the first
time arbitrarily far from the root of (1).

As previously mentioned, we shall focus our attention in this work on the regular
coderivations. Let us take a moment to appreciate some previous (non-)examples of regular
coderivations with respect to the progressing criterion.

▶ Example 2.10 (Primitive recursion and Turing-completeness, revisited). Recalling Ex-
ample 2.5, notice that the RHS of (2) is a progressing coderivation: there is precisely
one infinite branch (that loops on •) and it has a progressing thread on the blue N indicated
there.

Now recalling Example 2.6, notice that the coderivation given for H in (4) is not
progressing: the only infinite branch loops on • and immediate ancestry, as indicated by the
colouring, admits no thread along the •-loop.

One of the most appealing features of the progressing criterion is that it is decidable (for
regular coderivations) by a well-known reduction to unviersality of Büchi automata (see,
e.g., [17] for an exposition for a similar circular system). On the semantic side, we duly have:

▶ Proposition 2.11. If t : σ⃗ ⇒ τ is a progressing coderivation, then tN is a well-defined total
functional in (σ⃗ → τ)N.

Proof sketch. First, observe that each constant (i.e. rule instance) computes a total functional
of corresponding type. Thus, contrapositively, if tN is non-total then so is one of its immediate
sub-coderivations. Continuing this reasoning yields an infinite branch (ti : σ⃗i ⇒ τi)i of
non-total coderivations. Now, by the progressing criterion, there must be a progressing
thread (Ni)i≥k along this branch. Assigning to each occurrence Ni the least natural number
ni on which ti is non-total yields a monotone non-increasing sequence (ni)i≥k that does not
converge (by definition of progressing thread), giving the required contradiction. ◀

2.3 Some fragments and program extraction
Let us write T− for the restriction of T to the language without the rec constants from
Figure 1, and so also without the rec axioms from Figure 2.

FSCD 2021

29:8 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

▶ Definition 2.12 (Circular version of T). The language of CT contains every regular
progressing coderivation of T − as a symbol. We identify “terms” of this language (i.e. finite
applications of regular progressing coderivations, constants and variables) with coterms in the
obvious way, and call them regular progressing coterms. CT itself is axiomatised by the
schemata from Figures 2 and 3, now interpreting the metavariables s, t etc. there as ranging
over (regular progressing) coterms.

The aim of this work is to compare fragments of CT and fragments of T delineated by
type level. Recall that the level of a type σ, written lev(σ) is given by: lev(N) := 0 and
lev(σ → τ) := max(1 + lev(σ), lev(τ)).
▶ Definition 2.13 (Type level restricted fragments of T and CT). Tn is the restriction of T
to the language containing only recursors recσ where lev(σ) ≤ n.

CT n is the restriction of CT to the language containing only coderivations where all
types occurring have level ≤ n. CT n still has symbols for each constant of T−.

Note that this definition of CT n is quite natural, since it is known that Tn derivations (of
level n + 1 functionals) can be put into an analogous form (see, e.g., [12]). For instance, the
coderivation in Equation (4) has level 0 (though it is not an element of CT 0 since it is not
progressing). Note that CT itself is just the union of all CT n, since regular coderivations
have only finitely many type occurrences and so exhibit a maximum type level.

The significance of the fragments Tn, in terms of quantifier-restricted fragments of
arithmetic, was investigated in the seminal work of Parsons [29]. Let us first recall such
fragments in a two-sorted framework.

RCA0 is a second-order6 theory in the language of arithmetic (i.e. with symbols
0, s, +, ×, <). It is axiomatised by an appropriate extension of Robinson’s Q to the second-
order setting, along with comprehension for (provably) ∆0

1 predicates and induction for
Σ0

1 formulas. A comprehensive presentation of RCA0 and related theories can be found in,
e.g., [34, 22].

Writing IΣ0
n for the induction scheme for Σ0

n formulas we have:
▶ Proposition 2.14 ([29]). If RCA0 + IΣ0

n+1 ⊢ ∀x⃗∃yA(x⃗, y), where A is ∆0
0, then there is a

Tn term t with Tn ⊢ A(x⃗, t x⃗).7

Since we use it later, let us note that IΣ0
n is equivalent, over a weak base theory (certainly

RCA0), to induction on Boolean combinations of Σ0
n formulas, cf., e.g., [20]. The theory

ACA0 is obtained from RCA0 by adding comprehension for arithmetical predicates, and is
equivalent, over arithmetical theorems, to the extension of RCA0 by arithmetical induction.

Let us also mention a nontrivial result from previous work that we shall make use of:
▶ Proposition 2.15 ([11]). For any regular progressing coderivation t, RCA0 proves that t is
progressing.
Since progressiveness is, a priori, a Π1

2 property, the above result is not at all immediate
and relies on a formalisation of Büchi automaton theory that is implicit in [25]. Note that
this result is “non-uniform” , in that the quantification over coderivations t takes place at
the meta-level. As noted in [11], the above result cannot be strengthened to a uniform one
unless RCA0 (and so PRA) is inconsistent, by a reduction to Gödel-incompleteness.

6 As for simple type theories, all references to “second” or “higher” order are purely due to convention.
Strictly speaking, these are multi-sorted first-order theories.

7 We assume here some standard encoding of ∆0 formulas into quantifier-free formulas of T0. Alternatively
we could admit bounded quantifiers into the language of T , on which induction is allowed, without
affecting expressivity. We shall gloss over this technicality here.

A. Das 29:9

3 Confluence and models of T

We cannot formalise the standard model N in arithmetic for cardinality reasons, however
there are natural models of partial recursive functionals that can be formalised, namely
the hereditarily recursive operations of finite type (see, e.g., [27]). We shall recast this type
structure using regular coterms, in light of Example 2.6 and Example 2.10.

3.1 Reduction sequences and their logical complexity
▶ Definition 3.1. The reduction relation ⇝ on coterms is defined by orienting all the
equations in Figure 2 left-to-right and taking closure under substitution and contexts. We
write ≈ for the reflexive, symmetric, transitive closure of ⇝, and freely use standard rewriting
theoretic terminology and notations for these relations.

Since coterms are potentially infinite, equality for them is a Π0
1 predicate. Thus, for the

sake of simplicity, we shall henceforth deal with only regular coterms, which are finite so
may be coded by natural numbers. Representing regular coterms as finite directed graphs,
note that equality now reduces to checking bisimilarity, which is provably recursive in RCA0.

In fact, throughout this section, we will only deal with coterms that are finite applications
of regular coderivations, variables and constants (“FARs” for short). We better show that
these are at least closed under reduction. To this end, let us write, for v ∈ {0, 1}∗, tv for the
sub-coterm of t rooted at position v. We have:

▶ Proposition 3.2 (RCA0). If s⇝ t then t is finitely composed of sub-coterms of s:

∃ a finite term r(x1, . . . , xn). ∃⟨v1, . . . , vn⟩. t = r(sv1 , . . . , svn
) (5)

We can take sv1 , . . . , svn to include the coderivations indicated in the contractum of a
reduction, as well as the “comb” of the redex of the reduction in s, i.e. the siblings of all the
nodes in the path leading to the redex. r(x⃗) is now the finite term induced by the contracta
and this comb.

Naturally, this property also holds for ⇝∗ and ≈, by Σ0
1-induction. As a consequence:

▶ Corollary 3.3 (RCA0). If s is a FAR and s⇝ t or s⇝∗ t or s ≈ t, then t is a FAR.

Note, in particular, that ⇝, ⇝∗ and ≈, restricted to FARs, are Σ0
1-relations.

3.2 Confluence of reduction
In order to obtain basic metamathematical properties of the coterm models we later consider,
we need to know that our model of computation is deterministic, so that coterms have unique
interpretations. There are various ways to prove this in arithmetic, but we will approach it
in terms of confluence in rewriting theory.

Throughout this subsection we continue to deal only with FARs, i.e. coterms that are
finite applications of regular coderivations, variables and constants. The main goal of this
subsection is to prove the following:

▶ Theorem 3.4 (Church-Rosser, RCA0). Let t : σ be a FAR. If t0 ⇝∗ t⇝∗ t1 then there is
t′ : σ such that t0 ⇝∗ t′ ⇝∗ t1.

FSCD 2021

29:10 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

To some extent, we follow a standard approach to proving this result. However, since
coterms are infinite (and, moreover, non-wellfounded), we must carry out our argument
without appeal to induction on term structure, as is usual in presentations of arguments due
to Tait and Martin-Löf (cf., e.g., [21]). Instead, we perform an argument by induction on
reduction length, as in, e.g., [30].

▶ Definition 3.5 (Parallel reduction). We define the relation ▷ on FARs as follows:
1. t ▷ t for any FAR t.8
2. For a reduction step r t⃗⇝ r(⃗t), if each ti ▷ t′

i then we have r t⃗ ▷ r(⃗t′).
3. For a reduction step r t⃗ ss ⇝ r(⃗t, s) (i.e. a rec or cond successor step), if each ti ▷ t′

i and
s ▷ s′ then we have r t⃗ ss ▷ r(⃗t′, s′).

4. If s ▷ s′ and t ▷ t′ then s t ▷ s′ t′.

▶ Proposition 3.6 (RCA0). s⇝ t =⇒ s ▷ t and s ▷ t =⇒ s⇝∗ t.

The proof of this result is not difficult, but before giving an argument let us point out a
particular consequence that we will need, obtained by Σ0

1-induction on the length of reduction
sequences:

▶ Corollary 3.7 (RCA0). s⇝∗ t ⇐⇒ s ▷∗ t

Even though it is not necessary to prove the proposition above, we shall first prove the
following useful lemma since we will use it later:

▶ Lemma 3.8 (Substitution, RCA0). Suppose t ▷ t′. If s ▷ s′ then s[t/x] ▷ s′[t′/x], for a
variable x of the same type as t and t′.

Writing, say, d : s ⇝∗ t for the (provably) ∆0
1 predicate “d is a ⇝-derivation from s to t”,

the above result is shown by proving

d : s ▷ s′ =⇒ s[t/x] ▷ s′[t′/x]

by Σ0
1-induction on the structure of the derivation d : s ▷ s′. We crucially use the fact

that we are dealing with FARs for the base case when s′ = s, using a subinduction on the
maximum depth of an x-occurrence in s.

Notice that Proposition 3.6 now follows immediately, by simply instantiating the Lemma
above with s = s′ to deduce context-closure of ▷.

▶ Lemma 3.9 (Diamond property of ▷, RCA0). Suppose t0 ◁ s ▷ t1. Then there is some u

with t0 ▷ u ◁ t1.

Before giving the proof, it will be useful to have the following intermediate result, which
follows by Σ0

1-induction:

▶ Proposition 3.10 (RCA0). Suppose d : r s⃗ ▷ t, and there is no redex in r s⃗ involving r.
There are some t⃗ s.t. t = r t⃗ and, for each i, some di : si ▷ ti for some di < d.

The diamond property, Lemma 3.9, now follows by proving

∃s′. ((d0 : s ▷ t0 and d1 : s ▷ t1) =⇒ (t0 ▷ s′ and t1 ▷ s′))

by Σ0
1-induction on min(|d0|, |d1|). We use Lemma 3.8 for the case when both d0 and d1 end

by clause (2), and we use Proposition 3.10 when d0 ends by clause (2) and d1 ends by clause
(4) or vice-versa.

8 Note that we really do seem to require t ▷ t for arbitrary FARs t, not just variables and constants, since
we cannot finitely derive the former from the latter.

A. Das 29:11

▶ Proposition 3.11 (Weighted CR for ▷, RCA0). If t0 ◁m t ▷n t1 then there is some t′ with
t0 ▷n t′ ◁m t1.

The argument for this follows by proving

(d0 : t ▷m t0 and d1 : t ▷n t1) =⇒ ∃t′(t0 ▷
n t′ and d′

1 : t1 ▷
m t′)

by Σ0
1-induction on m = |d0|. The following corollary is immediate:

▶ Corollary 3.12 (CR for ▷, RCA0). If t0 ◁∗ t ▷∗ t1 then there is t′ s.t. t0 ▷∗ t′ ◁∗ t1.

We may finally conclude the main result of this subsection:

Proof of Theorem 3.4. Suppose t0 ⇝∗ s⇝∗ t1. Then, by Corollary 3.7 we have t0 ◁∗ s ▷∗

t1. By Corollary 3.12 above, we have some s′ with t0 ▷∗ s′ ◁∗ t1, whence t0 ⇝∗ s′ ⇝t1 by
Corollary 3.7 again. ◀

3.3 Hereditarily total coterms under conversion
We are now ready to present a type structure that will allow us to obtain an interpretation
of CT n within Tn+1. The structure that we present in this subsection is essentially the
hereditrarily recursive operations of finite type, but where we adopt FARs under conversion
as the underlying model of computation, cf. Example 2.6 and Example 2.10.

▶ Definition 3.13. We define the following sets of FARs:
HRN := {t : N | ∃n ∈ N. t ≈ n}
HRσ→τ := {t : σ → τ | ∀s ∈ HRσ. t s ∈ HRτ }

We write HRn for the union of all HRσ with lev(σ) ≤ n.

Note that it is immediate from the definition that each HRσ contains only closed FARs
of type σ. Notice that, by the confluence result of the previous subsection, Theorem 3.4, if
t ≈ n then n ∈ N is unique and in fact t⇝∗ n (provably in RCA0). In this way we can view
every element of HRN as computing a unique natural number by means of reduction.

▶ Fact 3.14. HRN is Σ0
1, and if lev(σ) = n > 0 then HRσ is Π0

n+1.

This is obtained by a (meta-level) induction on the type σ. The same induction also yields:

▶ Proposition 3.15 (Closure properties of HR). Fix types σ and τ . RCA0 proves the following:
1. If s ∈ HRσ and t ∈ HRσ→τ then ts ∈ HRτ . (HR closed under application)
2. If t ∈ HRτ and t ≈ t′ then t′ ∈ HRτ . (HR closed under conversion)

Note that provability within RCA0 above is non-uniform in σ and τ , i.e. RCA0 proves the
statements for each particular σ and τ . These properties justify defining the following type
structure:

▶ Definition 3.16 (HR structure). We write HR for the type structure defined as follows:
σHR is HRσ.
rHR is just r for each constant r.

t ◦HR s is just ts.
=HR

σ is ≈σ.

Ultimately we will show that this structure constitutes a model of CT . For this the
following lemma will be key:

▶ Lemma 3.17 (Induction for HR, RCA0). Suppose r(x) and s(x) are FARs. If r(0) ≈ s(0)
and ∀t ∈ HRN .(r(t) ≈ s(t) =⇒ r(st) ≈ s(st)), then ∀t ∈ HRN .r(t) ≈ s(t).

FSCD 2021

29:12 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

This result is essentially “forced” by the definition of HRN , reducing induction in HR to
induction in RCA0. We also rely on the Leibniz property of equality in the structure (i.e. if
s ≈ t and φ(s) then φ(t)), which is facilitated by the symmetry and transitivity of ≈.

Note that the axioms governing the constants are immediate given that our reduction
relation is obtained from them. The remaining number-theoretic axioms follow from conflu-
ence (for ¬s0 ≈ 0, by uniqueness of normal forms) and the fact that no reduction rule has s
at the head (for ss ≈ st implies s ≈ t, requiring a Σ0

1-induction).
Thus to conclude that HR actually constitutes a model of T (or CT) it remains to show

that it interprets each term t of T (or coterm of CT), i.e. that indeed t ∈ HR. For T , this
follows from Tait’s seminal normalisation result [36]:

▶ Proposition 3.18. HR is a model of T .

In fact this result can be formalised non-uniformly in the following sense: for each term t

of type τ with lev(σ) ≤ n, we have RCA0 + IΣ0
n+1 ⊢ HRτ (t). We will see a similar situation

for membership of CT n coderivations in HRn+1 later, but with the quantifier complexity of
induction increased by 1.

4 Interpretation of CT into T

In this section we show that the type structure HR introduced in the previous section indeed
constitutes a model of CT . In fact, we will formalise the membership of CT n coderivations
in HRn+1 within the theory RCA0 + IΣ0

n+2 (non-uniformly), whence we obtain explicit
equivalent terms of Tn+1 by program extraction. Throughout this section we continue to
work only with regular coterms that are finite applications of coderivations, variables and
constants (i.e. FARs).

4.1 Canonical branches of non-total coterms
In this section we give a formalised proof of the totality of CT -coterms. Our approach will be
to import a suitable version of the proof of Proposition 2.11 but relativise all the quantifiers,
there in the standard model, to their respective domains in HR.

First let us note that HR is closed under the typing rules of CT :

▶ Observation 4.1. Consider a rule instance
σ⃗0 ⇒ τ0 · · · σ⃗k ⇒ τk

r
σ⃗ ⇒ τ

for some k < 2. If

ti ∈ HRσ⃗i→τi
for i < k then r t0 · · · tk ∈ HRσ⃗→τ .

This follows by simple inspection of the rules of CT . By contraposition, any coderivation
/∈ HR must induce an infinite branch of coderivations /∈ HR, similarly to the proof of
Proposition 2.11. The next definition formalises a canonical such branch, as induced by an
input on which a coderivation is non-hereditarily-total. We shall present just the definition
of the branch first, and then argue that it is well-defined, for each explicit CT n coderivation,
in RCA0 + IΣ0

n+2.

▶ Definition 4.2 (Branch generated by a non-total input). Let t0 : σ⃗0 ⇒ τ0 be a coderivation
and let s⃗0 ∈ HRσ⃗0 s.t. t0 s⃗0 /∈ HRτ . We define the branch (ti : σ⃗i ⇒ τi)i≥0 and inputs
s⃗i ∈ HRσ⃗i

, generated by t0 and s⃗0 below. Each rule instance is as typeset in Figure 1, with
immediate sub-coderivations t and t′ respectively. Furthermore, we preserve the invariant
ti s⃗i /∈ HRτi throughout the definition.

A. Das 29:13

1. (ti cannot be an initial sequent).
2. Suppose ti ends with wk and s⃗i = (s⃗, s). Then ti+1 := t and s⃗i+1 := s⃗.
3. Suppose ti ends with ex and s⃗i = (r⃗, r, s, s⃗). Then ti+1 := t and s⃗i+1 := (r⃗, s, r, s⃗).
4. Suppose ti ends with cntr and s⃗i = (s⃗, s). Then ti+1 := t and s⃗i+1 := (s⃗, s, s).
5. Suppose ti ends with cut and s⃗i = s⃗. Then if t s⃗ ∈ HRσ then ti+1 := t′ and s⃗i+1 := (s⃗, t s⃗).

Otherwise, ti+1 := t and s⃗i+1 := s⃗.
6. Suppose ti ends with L and s⃗i = (s⃗, s). If t s⃗ ∈ HRρ then ti+1 := t′ and s⃗i+1 := (s⃗, s (t s⃗)).

Otherwise ti+1 := t and s⃗i+1 := s⃗.
7. Suppose ti ends with R and s⃗i = s⃗. Let s be the least9 element of HRσ such that t s⃗ s /∈ HRτ .

We set ti+1 := t and s⃗i+1 := (s⃗, s).
8. Suppose ti ends with cond and s⃗i = (s⃗, r). If r ≈ 0 then ti+1 := t and s⃗i+1 := s⃗.

Otherwise, if r ≈ sn, then ti+1 := t′ and s⃗i+1 := (s⃗, n).

The main result of this subsection is:

▶ Proposition 4.3. Let t0 : σ⃗0 ⇒ τ0 be a fixed coderivation in which all types occurring have
level ≤ n. RCA0 + IΣ0

n+2 proves the following: if s⃗0 ∈ HRσ⃗0 s.t. t0 s⃗0 /∈ HRτ0 then the branch
(ti)i and inputs (s⃗i)i generated by t0 and s0 are ∆0

n+2-well-defined.

Most of the cases follow by the inductive hypothesis and the closure of HR under ≈. Crucially,
for the R case, we must use the Σ0

n+1-minimisation principle, a consequence of IΣ0
n+1 cf. [20],

to find the “least” FAR s satisfying a Σ0
n+1 property. We also use confluence to ensure that

the cond-case is well-defined.

4.2 Progressing coterms are hereditarily total
We are now ready to show that CT -coterms are hereditarily total, i.e. that they belong to HR.
Now that we have formalised the infinite “non-total” branches of the proof of Proposition 2.11,
relativised to the type structure HR, we continue to formalise the remainder of the argument.
First, again by confluence, we have:

▶ Lemma 4.4 (RCA0). Let t0 : σ⃗0 ⇒ τ0 and s⃗0 ∈ HRσ⃗0 be a coderivation and inputs s.t.
t0 s⃗0 /∈ HRτ0 . Furthermore let (ti : σ⃗i ⇒ τi)i and s⃗i ∈ HRσ⃗i

be a branch and inputs generated
by t0 and s⃗0, satisfying Definition 4.2.

Suppose some N -occurrence N i+1 ∈ σ⃗i+1 is an immediate ancestor of some N -occurrence
N i ∈ σ⃗i. Write si ∈ s⃗i for the coterm in HRN corresponding to N i, and similarly si+1 ∈ s⃗i+1
for the coterm si+1 ∈ HRN corresponding to N i+1. If si ≈ ni and si+1 ≈ ni+1, for
ni, ni+1 ∈ N, then:
1. ni ≥ ni+1.
2. If N i is principal for a cond step, then ni > ni+1.

In order to complete our formalisation of the totality argument, we actually have to
use an “arithmetical approximation” of thread progression that nonetheless suffices for our
purposes, similarly to [11]. The reason for this is that, even though non-total branches are
well-defined by Proposition 4.3, we do not a priori have access to them as sets in extensions
of RCA0 by induction principles, and so the lack of progressing threads along them does not
directly contradict the fact that a coderivation is progressing.10

9 Recall that, strictly speaking, we assume all our objects are coded by natural numbers in the ambient
theory (here fragments of second-order arithmetic). Thus we may always find a “least” object satisfying
a property when one exists. Naturally this will correspond to a form of induction in the proof of
well-definedness.

10 Notice that this is not an issue in the presence of arithmetical comprehension, i.e. in ACA0, but in that
case logical complexity of defined sets is not a stable notion: all of arithmetical comprehension reduces
to Π0

1-comprehension.

FSCD 2021

29:14 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

▶ Proposition 4.5 (RCA0). Suppose ti and s⃗i are as in Lemma 4.4. Any N -thread along
(ti)i is not progressing. Moreover, ∀k.∃m. any N -thread from tk progresses ≤ m times.

The main result of this subsection is:

▶ Theorem 4.6. Let t : σ⃗ ⇒ τ be a CT n-coderivation. Then RCA0 + IΣ0
n+2 ⊢ t ∈ HRσ⃗→τ .

As well as using Proposition 4.5, this result relies crucially on the fact that we prove that CT -
coderivations progress in RCA0, Proposition 2.15 (itself from [11], allowing us to “substitute”
the ∆0

n+2-definition of a non-hereditarily-total branch from Definition 4.2 to obtain an
argument using IΣ0

n+2 overall.

▶ Corollary 4.7. HR is a model of CT .

4.3 Interpretation of CTn into Tn+1

We may now realise our model-theoretic results as bona fide interpretations of fragments of
CT into fragments of T . As a word of warning, coterms of CT in this section, when operating
inside T , should formally be understood by their Gödel codes, i.e. in this section T is “one
meta-level higher” than CT . Until now we have been formalising the metatheory of CT
within second-order arithmetic, and so arithmetising its syntax as natural numbers. Since
we will here invoke program extraction from these fragments of arithmetic to fragments of T
to interpret CT , the same coding carries over. At the risk of confusion, we shall suppress
this formality henceforth.

▶ Theorem 4.8. If CT n ⊢ s = t then Tn+1 ⊢ s ≈ t.

The main idea here is that our formalisation of the HR model within arithmetic allows us to
prove the following reflection principle in RCA0 + IΣ0

2:

∀P (if “P is a CT n proof of s = t” then ∃d : s ≈ t)

Since this statement is Π0
2, we may apply program extraction, Proposition 2.14, to indeed

witness the required derivation d within Tn+1, as required.

▶ Corollary 4.9. If t : N⃗ ⇒ N is a progressing coterm of CT n, then there is a Tn+1-term
t : N⃗ → N such that t′N = tN.

5 Further results

In this section we shall give some further rewriting-theoretic results related to the system
CT we have presented.

5.1 Continuity at type 2
It is well-known that the type 2 functionals of T are continuous, in the sense that any type 1
function input is only queried a finite number of times, e.g. [38, 32, 39]. For the case of CT ,
we may actually formalise a variation of the classical argument of [38] within second-order
arithmetic, extending the simulation of CT coterms within T to type 2 functionals. For the
sake of brevity, we shall not refine our exposition by type level in this subsection.

Let us fix a CT coderivation t : σ⃗ ⇒ N s.t. each σi = N1 → · · · → Nki → N , and let
us henceforth work in ACA0, distinguishing second-order variables fi : Nki → N, intuitively
representing the inputs for t. Within CT , introduce new (uninterpreted) constant symbols
f

i
: N1 → · · · → Nki

→ N for each σi, and new reduction steps:

f
i
n1 . . . nki

⇝ fi(n1, . . . , nki
) (6)

A. Das 29:15

Notice that reduction is now still semi-recursive in the oracles f⃗ , i.e.⇝,⇝∗, ≈ are now Σ0
1(f⃗).

To save the effort of reproving our confluence results from Section 3 with these new oracle
symbols, we shall simply henceforth assume a suitable consistency principle:

UNFN : ∀m, n. (m ≈ n ⊃ m = n)

Note that, since this is a true Π0
1 statement (by meta-level reasoning), it carries no computa-

tional content and adding it to ACA0 still admits extraction into T (see, e.g., [24]).11 From
here, we define HRf⃗

σ just as HRσ, but allowing coterms to include the symbols f⃗ . Since each
HRσ is arithmetical in ⇝, we have that each HRf⃗

σ is arithmetical in our extended reduction
relation, so with free second-order variables f⃗ . Note in particular that we have that each
f

i
∈ HRf⃗

σi
, thanks to (6) above. By adapting our approach from Section 4, we may show:

▶ Theorem 5.1 (ACA0 + UNFN). ∀f⃗ . t f⃗ ∈ HRf⃗
N

Expanding out this result we have that ACA0 + UNFN ⊢ ∀f⃗ .∃n. t f⃗ ≈ n. Note that
this yields the required syntactic continuity property: since any ≈-sequence is finite, we
may compute t(f⃗) by querying each fi only finitely many times. From here, by applying a
relativised version of program extraction (see, e.g., [24]), we obtain a strengthening of our
simulation of CT -coterms by T terms to type 2 (stated without refinement to type level):

▶ Corollary 5.2. If t is a level 2 coterm of CT , then there is a T term t′ s.t. t′N = tN.

5.2 A “term model” à la Tait and strong normalisation
It is an immediate consequence of our results that CT -coterms are weakly normalising.
Namely, by an induction on type (using confluence for the base case, at type N), we may
show that each t ∈ HR is weakly normalising. Thus, by Theorem 4.6, we have:

▶ Proposition 5.3. Each closed CT coterm is weakly normalising. Moreover, any CT n

coterm is provably weakly normalising inside RCA0 + IΣ0
n+2.

In this section we will go further and show that CT -coterms are actually strongly
normalising, just like T -terms. For the sake of brevity, we will not formalise our exposition
within arithmetic. We will define a minimal “coterm model” in a similar way to Tait’s
term models of sytem T [36]. This is complementary to our development of HR: while that
structure was an “over-approximation” of the language of CT , the structure we are about to
define is an “under-approximation” , by virtue of its definition. Naturally, the point is to
show that the approximation is, in fact, tight.

▶ Definition 5.4 (Convertibility). We define the following sets of closed CT -coterms:
CN := {t : N | t is strongly normalising}.
Cσ→τ := {t : σ → τ | ∀s ∈ Cσ. ts ∈ Cτ }.

By an induction on type, we establish suitable versions of Proposition 3.15 and the normal-
isation property for C:

▶ Proposition 5.5. We have the following:
1. If t ∈ Cσ→τ and s ∈ Cσ then ts ∈ Cτ . (C closed under application)
2. If t ∈ Cτ and t⇝ t′ then t′ ∈ Cτ . (C closed under reduction)
3. If t ∈ Cτ then t is strongly normalising. (C ⊆ SN)

11 The drawback of this approach is that it does not yield any bona fide interpretation of CT into T ,
which is why we chose to formalise a confluence argument for our main interpretation result.

FSCD 2021

29:16 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

Closure of ⇝ under contexts is required for 2 and 3. Note that the strong normalisation
condition for CN is crucial to justify closure under reduction, (2), at base type N . In contrast,
for HRN we only asked for conversion to a numeral, and so the analogous property of closure
under conversion was a consequence of symmetry.

Let us call a coterm t neutral if, for any s, any redex of ts is either entirely in t or entirely
in s. We also have the following expected characterisation of convertibility by induction on
type:

▶ Lemma 5.6 (Convertibility lemma). Let t be neutral. If ∀t′ ⇝t. t′ ∈ Cτ , then t ∈ Cτ .

As for classical proofs of strong normalisation for T , we must also make use of a sub-induction
on the size of the complete reduction trees of elements of C; recall that they are strongly
normalising, by Proposition 5.5, and so have finite reduction trees by König’s lemma,12 since
there are always only finitely many redexes.

Now we can go on to define a non-converting branch, just like we did for the standard
model N in Proposition 2.11 (non-total branch), and for HR in Definition 4.2 (non-hereditarily-
total branch). As in the latter case, we need to prove well-definedness of such a branch,
cf. Observation 4.1 and Proposition 4.3.

▶ Proposition 5.7 (Preservation of convertibility). Let r⃗ ∈ Cρ⃗ and s⃗ ∈ Cσ⃗. We have:13

If s ∈ Cσ then id s ∈ Cσ.
If r ∈ Cρ, s ∈ Cσ and t r⃗ s r s⃗ ∈ Cτ then ex t r⃗ r s s⃗ ∈ Cτ .
If s ∈ Cσ and t s⃗ ∈ Cτ then wk t s⃗ s ∈ Cτ .
If s ∈ Cσ and t s⃗ s s ∈ Cτ then cntr t s⃗ s ∈ Cτ .
If t0 s⃗ ∈ Cσ and ∀s ∈ Cσ. t1 s⃗ s ∈ Cτ then cut t0 t1 s⃗ ∈ Cτ .
If r ∈ Cρ→σ and t0 s⃗ ∈ Cρ and ∀s ∈ Cσ. t1 s⃗ s ∈ Cτ then L t0 t1 s⃗ r ∈ Cτ .
If ∀s ∈ Cσ. t s⃗ s ∈ Cτ then R t s⃗ ∈ Cσ→τ .
0 ∈ CN .
If s ∈ CN then ss ∈ CN .
If s ∈ CN and t0 s⃗ ∈ Cτ then cond t0 t1 s⃗ 0 ∈ Cτ .
If s ∈ CN and t1 s⃗ s ∈ Cτ then cond t0 t1 s⃗ ss ∈ Cτ .

This is proved by an induction on the reduction trees of s⃗, s, r⃗, r (which, again, are strongly
normalising), in most cases appealing directly to the convertibility lemma above. For the L
case we rely on closure of C under application, cf. Proposition 5.5, and for the R case we
must employ a sub-induction on the reduction tree of an input s ∈ Cσ.

As a consequence of our results in Sections 3 and 4, observe that any s ∈ CN reduces
to a unique numeral. This is because CN contains only CT -coterms, by definition, which
are weakly normalising and confluent. From here we may establish the main result of this
subsection:

▶ Theorem 5.8 (Convertibility for CT). Any CT -coderivation t : σ⃗ ⇒ τ is in Cσ⃗→τ .

The proof constructs a “non-converting” branch similarly to Definition 4.2 (or the proof of
Proposition 2.11). There is one subtlety, however, in the treatment of the cond case, requiring
the uniqueness of normal forms for elements of CN . We obtain the required inputs for the
premiss occurrences of N by an induction on the reduction tree of an input of the conclusion
occurrence.

12 Note that König’s lemma is equivalent to arithmetical comprehension, i.e. ACA0, already over RCA0 (cf.,
e.g., [34]).

13 All rules have type as presented in Figure 1.

A. Das 29:17

Since C is closed under application, Proposition 5.5, we inherit C membership for all
CT -coterms. Since elements of C are strongly normalising, again Proposition 5.5, and since
reduction is confluent, Theorem 3.4, we finally have:

▶ Corollary 5.9 (Strong normalisation for CT). Any closed CT coterm strongly normalises to
a unique normal form.

6 Conclusions

In this work we gave an interpretation of a theory of level n circular derivations (CT n)
into level n + 1 T (Tn+1), by formalising models of CT within fragments of arithmetic
and applying program extraction. This result is optimal by a converse result from parallel
work [12]. In particular, CT n and Tn+1 are equi-consistent. We also showed confluence,
strong normalisation, and continuity at type 2 for CT -coterms.

In future work it would be interesting to establish results on Curry-Howard aspects of
our underlying type systems, establishing forms of cut-elimination and relationships with
infinitary lambda-calculi. Ideas from [4, 15, 3] may prove useful to this effect.

References
1 Bahareh Afshari and Graham E. Leigh. Cut-free completeness for modal mu-calculus. In

32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20–23, 2017, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.
2017.8005088.

2 Jeremy Avigad and Solomon Feferman. Gödel’s functional (“dialectica”) interpretation.
Handbook of Proof Theory, 137:337–405, 1998.

3 David Baelde, Amina Doumane, Denis Kuperberg, and Alexis Saurin. Bouncing threads for
infinitary and circular proofs. CoRR, abs/2005.08257, 2020. arXiv:2005.08257.

4 David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof theory: the multiplicative
additive case. In 25th EACSL Annual Conference on Computer Science Logic, CSL 2016,
August 29–September 1, 2016, Marseille, France, pages 42:1–42:17, 2016. doi:10.4230/LIPIcs.
CSL.2016.42.

5 Stefano Berardi and Makoto Tatsuta. Equivalence of inductive definitions and cyclic proofs
under arithmetic. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20–23, 2017, pages 1–12, 2017. doi:10.1109/LICS.2017.
8005114.

6 James Brotherston, Dino Distefano, and Rasmus Lerchedahl Petersen. Automated cyclic
entailment proofs in separation logic. In CADE-23 – 23rd International Conference on
Automated Deduction, Wroclaw, Poland, July 31–August 5, 2011. Proceedings, pages 131–146,
2011. doi:10.1007/978-3-642-22438-6_12.

7 James Brotherston, Nikos Gorogiannis, and Rasmus L. Petersen. A generic cyclic theorem
prover. In Programming Languages and Systems – 10th Asian Symposium, APLAS 2012,
Kyoto, Japan, December 11–13, 2012. Proceedings, pages 350–367, 2012. doi:10.1007/
978-3-642-35182-2_25.

8 James Brotherston and Alex Simpson. Complete sequent calculi for induction and infinite
descent. In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10–12 July
2007, Wroclaw, Poland, Proceedings, pages 51–62, 2007. doi:10.1109/LICS.2007.16.

9 James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent. J.
Log. Comput., 21(6):1177–1216, 2011. doi:10.1093/logcom/exq052.

10 Samuel R. Buss, editor. Handbook of Proof Theory. Studies in Logic and the Foundations of
Mathematics 137. Elsevier, 1998.

FSCD 2021

https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.1109/LICS.2017.8005088
http://arxiv.org/abs/2005.08257
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.1109/LICS.2017.8005114
https://doi.org/10.1109/LICS.2017.8005114
https://doi.org/10.1007/978-3-642-22438-6_12
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1109/LICS.2007.16
https://doi.org/10.1093/logcom/exq052

29:18 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

11 Anupam Das. On the logical complexity of cyclic arithmetic. Log. Methods Comput. Sci.,
16(1), 2020. doi:10.23638/LMCS-16(1:1)2020.

12 Anupam Das. A circular version of Gödel’s T and its abstraction complexity, 2021. arXiv:
2012.14421.

13 Anupam Das, Amina Doumane, and Damien Pous. Left-handed completeness for kleene
algebra, via cyclic proofs. In Gilles Barthe, Geoff Sutcliffe, and Margus Veanes, editors,
LPAR-22. 22nd International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, Awassa, Ethiopia, 16–21 November 2018, volume 57 of EPiC Series in Computing,
pages 271–289. EasyChair, 2018. URL: https://easychair.org/publications/paper/SDqf.

14 Anupam Das and Damien Pous. A cut-free cyclic proof system for Kleene algebra. In Automated
Reasoning with Analytic Tableaux and Related Methods – 26th International Conference,
TABLEAUX 2017, Brasília, Brazil, September 25–28, 2017, Proceedings, pages 261–277, 2017.
doi:10.1007/978-3-319-66902-1_16.

15 Anupam Das and Damien Pous. Non-wellfounded proof theory for
(kleene+action)(algebras+lattices). In Dan R. Ghica and Achim Jung, editors, 27th
EACSL Annual Conference on Computer Science Logic, CSL 2018, September 4–7, 2018,
Birmingham, UK, volume 119 of LIPIcs, pages 19:1–19:18. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.CSL.2018.19.

16 Christian Dax, Martin Hofmann, and Martin Lange. A proof system for the linear time µ-
calculus. In S. Arun-Kumar and Naveen Garg, editors, FSTTCS 2006: Foundations of Software
Technology and Theoretical Computer Science, 26th International Conference, Kolkata, India,
December 13–15, 2006, Proceedings, volume 4337 of Lecture Notes in Computer Science, pages
273–284. Springer, 2006. doi:10.1007/11944836_26.

17 Christian Dax, Martin Hofmann, and Martin Lange. A proof system for the linear time µ-
calculus. In S. Arun-Kumar and Naveen Garg, editors, FSTTCS 2006: Foundations of Software
Technology and Theoretical Computer Science, 26th International Conference, Kolkata, India,
December 13–15, 2006, Proceedings, volume 4337 of Lecture Notes in Computer Science, pages
273–284. Springer, 2006. doi:10.1007/11944836_26.

18 Amina Doumane. Constructive completeness for the linear-time µ-calculus. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20–23, 2017, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.8005075.

19 Jérôme Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-elimination.
In Computer Science Logic 2013 (CSL 2013), September 2–5, 2013, Torino, Italy, pages
248–262, 2013. doi:10.4230/LIPIcs.CSL.2013.248.

20 Petr Hájek and Pavel Pudlák. Metamathematics of First-Order Arithmetic. Perspectives
in mathematical logic. Springer, 1993. URL: http://www.springer.com/mathematics/book/
978-3-540-63648-9.

21 J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and λ-Calculus.
Cambridge University Press, USA, 1986.

22 Denis R. Hirschfeldt. Slicing the truth: On the computable and reverse mathematics of
combinatorial principles. World Scientific, 2014.

23 S.C. Kleene. Introduction to Metamathematics. Bibliotheca Mathematica. North Holland, 7
edition, 1980.

24 Ulrich Kohlenbach. Applied Proof Theory – Proof Interpretations and their Use in Mathematics.
Springer Monographs in Mathematics. Springer, 2008. doi:10.1007/978-3-540-77533-1.

25 Leszek Aleksander Kolodziejczyk, Henryk Michalewski, Pierre Pradic, and Michal Skrzypczak.
The logical strength of büchi’s decidability theorem. Log. Methods Comput. Sci., 15(2), 2019.
doi:10.23638/LMCS-15(2:16)2019.

26 Denis Kuperberg, Laureline Pinault, and Damien Pous. Cyclic Proofs, System T, and the
Power of Contraction. Proceedings of the ACM on Programming Languages, 2021. doi:
10.1145/3434282.

https://doi.org/10.23638/LMCS-16(1:1)2020
http://arxiv.org/abs/2012.14421
http://arxiv.org/abs/2012.14421
https://easychair.org/publications/paper/SDqf
https://doi.org/10.1007/978-3-319-66902-1_16
https://doi.org/10.4230/LIPIcs.CSL.2018.19
https://doi.org/10.1007/11944836_26
https://doi.org/10.1007/11944836_26
https://doi.org/10.1109/LICS.2017.8005075
https://doi.org/10.4230/LIPIcs.CSL.2013.248
http://www.springer.com/mathematics/book/978-3-540-63648-9
http://www.springer.com/mathematics/book/978-3-540-63648-9
https://doi.org/10.1007/978-3-540-77533-1
https://doi.org/10.23638/LMCS-15(2:16)2019
https://doi.org/10.1145/3434282
https://doi.org/10.1145/3434282

A. Das 29:19

27 John Longley and Dag Normann. Higher-Order Computability. Theory and Applications of
Computability. Springer, 2015. doi:10.1007/978-3-662-47992-6.

28 Damian Niwinski and Igor Walukiewicz. Games for the mu-calculus. Theor. Comput. Sci.,
163(1&2):99–116, 1996. doi:10.1016/0304-3975(95)00136-0.

29 Charles Parsons. On n-quantifier induction. The Journal of Symbolic Logic, 37(3):466–482,
1972.

30 Frank Pfenning. A proof of the church-rosser theorem and its representation in a logical
framework. Technical report, Carnegie-Mellon University, Pittsburgh. Department of Computer
Science., 1992.

31 Luigi Santocanale. A calculus of circular proofs and its categorical semantics. In Mogens Nielsen
and Uffe Engberg, editors, Foundations of Software Science and Computation Structures, 5th
International Conference, FOSSACS 2002. Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2002 Grenoble, France, April 8–12, 2002, Proceedings,
volume 2303 of Lecture Notes in Computer Science, pages 357–371. Springer, 2002. doi:
10.1007/3-540-45931-6_25.

32 B. Scarpellini. A model for barrecursion of higher types. Compositio Mathematica, 23(1):123–
153, 1971. URL: http://eudml.org/doc/89072.

33 Alex Simpson. Cyclic arithmetic is equivalent to Peano arithmetic. In Foundations of
Software Science and Computation Structures – 20th International Conference, FOSSACS
2017, Proceedings, pages 283–300, 2017. doi:10.1007/978-3-662-54458-7_17.

34 Stephen G. Simpson. Subsystems of second order arithmetic, volume 1. Cambridge University
Press, 2009.

35 Thomas Studer. On the proof theory of the modal mu-calculus. Stud Logica, 89(3):343–363,
2008. doi:10.1007/s11225-008-9133-6.

36 William W. Tait. Intensional interpretations of functionals of finite type I. J. Symb. Log.,
32(2):198–212, 1967. doi:10.2307/2271658.

37 Terese. Term rewriting systems, volume 55 of Cambridge tracts in theoretical computer science.
Cambridge University Press, 2003.

38 Anne S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis.
Lecture Notes in Mathematics. Springer, 1 edition, 1973. URL: http://gen.lib.rus.ec/
book/index.php?md5=5E0718442C0178C4B23065E54AC7889C.

39 Chuangjie Xu. A syntactic approach to continuity of T-definable functionals. Logical Methods
in Computer Science, Volume 16, Issue 1, 2020. doi:10.23638/LMCS-16(1:22)2020.

A Further material for Section 4

Proof of Proposition 4.3. Let us write Gen(i, (t0, s⃗0), (ti, s⃗i)) for “ti and s⃗i are the ith

sequent and input tuple generated by t0 and s⃗0”. Notice that the construction of ti and
s⃗i itself is recursive in HRn, t0 and s⃗0, and so Gen is certainly recursion-theoretically
∆0

n+2(t0, s⃗0), by appealing to Fact 3.14. To formally prove that Gen is ∆0
n+2 inside our

theory, it suffices to show determinism:

∀i.∀(ti, s⃗i), (t′
i, s⃗′

i).
(

Gen(i, (t0, s⃗0), (ti, s⃗i)) ∧ Gen(i, (t0, s⃗0), (t′
i, s⃗′

i))
=⇒ ti = t′

i ∧ s⃗i = s⃗′
i

)
Writing Gen syntactically as a Σ0

n+2 formula, the above may be directly proved by Π0
n+2-

induction on i, appealing to the cases of Definition 4.2 above.
It remains to show that the construction is total, i.e. that each (ti, s⃗i) actually exists. In

fact we will simultaneously prove this and the inductive invariant of the construction, so the
formula,

∃(ti, s⃗i).(Gen(i, (t0, s⃗0), (ti, s⃗i)) ∧ ti s⃗i /∈ HRτi
) (7)

FSCD 2021

https://doi.org/10.1007/978-3-662-47992-6
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1007/3-540-45931-6_25
https://doi.org/10.1007/3-540-45931-6_25
http://eudml.org/doc/89072
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1007/s11225-008-9133-6
https://doi.org/10.2307/2271658
http://gen.lib.rus.ec/book/index.php?md5=5E0718442C0178C4B23065E54AC7889C
http://gen.lib.rus.ec/book/index.php?md5=5E0718442C0178C4B23065E54AC7889C
https://doi.org/10.23638/LMCS-16(1:22)2020

29:20 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

by induction on i. Note that, since lev(τi) ≤ n we have that HRτi is Π0
n+1 by Fact 3.14, and

so tis⃗i /∈ HRτi
is Σ0

n+1, whereas Gen(i, (t0, s⃗0), (ti, s⃗i)) is ∆0
n+2 as already mentioned. Thus

the inductive invariant in (7) is indeed Σ0
n+2.

First, to justify (1), let us consider the possible initial sequents:
For the 0 rule: we have 0 ∈ HRN by definition;
For the s rule: if t ∈ HRN , then t ≈ n for some n ∈ N, by definition of HRN , and so also
st ≈ sn, by closure of ≈ under contexts. Hence st ∈ HRN .
For an idσ rule: if s ∈ HRσ then id s ≈ s by id reduction. Hence id s ∈ HRσ.

Now, the base case, for i = 0, follows by the assumption on t0 and s⃗0, so let us assume
that Gen(i, (t0, s⃗0), (ti, s⃗i)) and ti s⃗i /∈ HRτi . We will witness the existential of the inductive
invariant with the coderivation ti+1 and inputs s⃗i+1 as given in Definition 4.2 above (justifying
their existence when necessary), showing ti+1 s⃗i+1 /∈ HRτi+1 . We shall also adopt the same
notation for inputs and types as in Definition 4.2.

For (2), the wk case, we have:

ti s⃗i /∈ HRτ by inductive hypothesis
∴ wk t s⃗ s /∈ HRτi

by definitions
∴ t s⃗ /∈ HRτ by ⇝wk and closure of HRτ under ≈
∴ ti+1 s⃗i+1 /∈ HRτi+1 by definitions

For (3), the ex case, we have:

ti s⃗i /∈ HRτi by inductive hypothesis
∴ ex t r⃗ r s s⃗ /∈ HRτ by definitions
∴ t r⃗ s r s⃗ /∈ HRτ by ⇝ex and ∵ HRτ closed under ≈
∴ ti+1 s⃗i+1 /∈ HRτi+1 by definitions

For (4), the cntr case, we have:

ti s⃗i /∈ HRτi by inductive hypothesis
∴ cntr t s⃗ s /∈ HRτ by definitions
∴ t s⃗ s s /∈ HRτ by ⇝cntr and ∵ HRτ closed under ≈
∴ ti+1 s⃗i+1 /∈ HRτi+1 by definitions

For (5), the cut case, assume without loss of generality that t s⃗ ∈ HRτ . We have:

ti s⃗i /∈ HRτi
by inductive hypothesis

∴ cut t t′s⃗ /∈ HRτ by definitions
∴ t′s⃗ (t s⃗) /∈ HRτ by ⇝cut and ∵ HRτ closed under ≈
∴ ti+1 s⃗i+1 /∈ HRτi+1 by definitions

For (6), the L case, assume without loss of generality that t s⃗ ∈ HRτ , and so also
s (t s⃗) ∈ HRσ by Proposition 3.15. We have:

ti s⃗i /∈ HRτi by inductive hypothesis
∴ L t t′s⃗ s /∈ HRτ by definitions
∴ t′s⃗ (s (t s⃗)) /∈ HRτ by ⇝L and ∵ HRτ closed under ≈
∴ ti+1 s⃗i+1 /∈ HRτi+1 by definitions

A. Das 29:21

For (7), the R case, we have:

ti s⃗i /∈ HRτi
by inductive hypothesis

∴ R t s⃗ /∈ HRσ→τ by definitions
∴ ∃s′ ∈ HRσ. R t s⃗ s′ /∈ HRτ by definition of HRσ→τ

∴ ∃s′ ∈ HRσ. t s⃗ s′ /∈ HRτ by ⇝R and ∵ HRτ closed under ≈
∴ t s⃗ s /∈ HRτ ∵ s is well-defined by Σ0

n+1-minimisation
∴ ti+1 s⃗i+1 /∈ HRτi+1 by definitions

In the penultimate step, note that we have from the inductive hypothesis ∃s(s ∈ HRσ ∧ t s⃗ s /∈
HRτ), where lev(σ) < n and lev(τ) ≤ n. Thus (s ∈ HRσ ∧ t s⃗ s /∈ HRτ) is indeed Σ0

n+1, by
Fact 3.14, and so Σ0

n+1-minimisation applies.
For (8), the cond case, note by the inductive hypothesis we have r ∈ HRN so by definition

of HRN and confluence, we have that r converts to a unique numeral. Thus the two cases
considered by the definition of ti+1 and s⃗i+1 are exhaustive and exclusive, and we consider
each separately.

If r ≈ 0 then we have:

ti s⃗i /∈ HRτi by inductive hypothesis
∴ cond t t′s⃗ r /∈ HRτ by definitions
∴ cond t t′s⃗ 0 /∈ HRτ by assumption and ∵ HRτ closed under ≈
∴ t s⃗ /∈ HRτ by ⇝cond and ∵ HRτ closed under ≈
∴ ti+1 s⃗i+1 /∈ HRτi+1 by definitions

If r ≈ sn then we have:

ti s⃗i /∈ HRτi
by inductive hypothesis

∴ cond t t′s⃗ r /∈ HRτ by definitions
∴ cond t t′s⃗ sn /∈ HRτ by assumption and ∵ HRτ closed under ≈
∴ t′s⃗ n /∈ HRτ by ⇝cond and ∵ HRτ closed under ≈
∴ ti+1 s⃗i+1 /∈ HRτi+1 by definitions

This concludes the proof. ◀

Proof of Proposition 4.5. We shall prove only the “moreover” clause, the former following
a fortiori. First, suppose we have a (finite) N -thread (N i)l

i=k beginning at tk. Let si ∈ s⃗i

be the corresponding input of N i for 1 ≤ i ≤ l, and let each ri ≈ ni, for unique ni ∈ N, by
definition of HRN and confluence. Letting m be the number of times that (N i)l

i=1 progresses,
we may show by induction on l that nl ≤ nk − m, using Lemma 4.4 for the inductive steps.

Now, to prove the “moreover” statement, fix some k and let N⃗k ⊆ σ⃗k exhaust the N

occurrences in σ⃗k. Let r⃗k ⊆ s⃗k be the corresponding inputs, and write n⃗k for the unique
natural numbers such that each rki ≈ nki, by definition of HRN and confluence. We may
now simply set m := max n⃗k, whence no thread from tk may progress more than m times by
the preceding paragraph. ◀

Proof of Theorem 4.6. First, by Proposition 2.15 (from [11]), we have that RCA0 proves
that t is progressing. Consequently RCA0 proves that, for any branch (ti)i, there is some k

s.t. there are arbitrarily often progressing finite threads beginning from tk:14

∃k.∀m. there is a (finite) N -thread from tk progressing > m times (8)

14 The argument for this is similar to that of Proposition 6.2 from [11].

FSCD 2021

29:22 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

Note that this statement is purely arithmetical in (ti)i and so, if (ti)i is ∆0
n+2-well-defined, then

in fact RCA0 + IΣ0
n+2 proves (8), by conservativity over IΣn+2((ti)i) and then substitution

of the ∆n+2-definition of (ti)i.
Now, working inside RCA0 +IΣ0

n+2, suppose for contradiction that s⃗ ∈ HRσ⃗ s.t. t s⃗ /∈ HRτ .
By Proposition 4.3, we can ∆0

n+2-well-define the branch (ti)i generated by t and s⃗. Thus we
indeed have (8), contradicting Proposition 4.5. ◀

Proof sketch of Theorem 4.8. Let us work inside RCA0 + IΣ0
n+2. By Theorem 4.6 we have

that s, t ∈ HRσ, so suppose that CT n ⊢ s = t (which is a Σ0
1 relation). Now, invoking

Lemma 3.17 and by verifying the other axioms for FARs in general, we indeed have that
s ≈ t, by Σ0

1-induction on the CT n proof of s = t.
Now, invoking the extraction theorem, Proposition 2.14, for the above paragraph, we can

extract a Tn+1-term d(·) witnessing the following “reflection” principle:

Tn+1 ⊢ “P is a CT n proof of s = t” ⊃ d(P) : s ≈ t

We may duly substitute a concrete CT n proof P of s = t into the above principle to conclude
that Tn+1 ⊢ s ≈ t, as required. ◀

B Further material for Section 5

Proof sketch of Theorem 5.1. The argument is essentially the same as that for Theorem 4.6.
Assuming otherwise, for contradiction, we may generate a non-hereditarily-total branch just
as in Definition 4.2, and its well-definedness is shown just as in Proposition 4.3. Note that all
induction/minimisation used is in fact arithmetical in ⇝ and HRf⃗

σ, so the branch is indeed
∆0

n+2(f⃗)-well-defined (for n the maximal type level in t).
Since we no longer concern ourselves with the refinement of type levels, the remainder

of the argument is actually simpler than that of Section 4. Instead of dealing with the
arithmetical approximation of progressiveness, we may immediately access the generated
non-total branch as a set, thanks to the availability of arithmetical comprehension in ACA0.
We also have a suitable version of Lemma 4.4 for HRf⃗

N , this time using UNFN instead of
confluence, and so the appropriate contradiction of the well-ordering property of N is readily
obtained. ◀

▶ Observation B.1. If s ∈ CN then s reduces to a unique numeral.

Proof. Since CN contains only CT -coterms, we have as a special case of Theorem 4.6 that
s ≈ n for some n ∈ N. By confluence, we have that n is unique and furthermore s⇝∗ n. ◀

Proof of Theorem 5.8. Suppose for contradiction we have s⃗ ∈ Cσ⃗ such that t s⃗ /∈ Cτ . We
define a branch (ti : σ⃗i ⇒ τi)i of t and inputs s⃗i ∈ Cσ⃗i

s.t. ti s⃗i /∈ Cτi by induction on i just
like in Definition 4.2 (or the proof of Proposition 2.11). The only difference is that we use
Proposition 5.7 above for preservation in C rather than the analogous closure properties for
HR (or N).

There is one subtlety, which is the treatment of the cond case. Suppose we have a regular
progressing coderivation,

t

σ⃗ ⇒ τ

t′

σ⃗, N ⇒ τ
cond

σ⃗, N ⇒ τ

and s⃗i = (s⃗, s) with s⃗ ∈ Cσ⃗, s ∈ CN and cond t t′s⃗ s /∈ Cτ . Since s ∈ CN we have from
Observation B.1 that s reduces to a unique numeral n. We will show that,

A. Das 29:23

if n = 0 then t s⃗ /∈ Cτ ; and,
if n = m + 1 then there is some r ∈ CN reducing to m with t′s⃗ r /∈ Cτ ;

by induction on RedTree(s⃗) + RedTree(s). By the conversion lemma, Lemma 5.6, there must
be a reduction from cond t t′ s⃗ s not reaching Cτ . Let us consider the possible cases:

If s = 0 and cond t t′ s⃗ s ⇝ t s⃗ /∈ Cτ then we are done.
If s = sr and cond t t′ s⃗ s ⇝ t′s⃗ r /∈ Cτ then we are done. (Note that such r must strongly
normalise to m, and so in particular r ∈ CN).
If cond t t′ s⃗ s ⇝ condt t′s⃗′s′ /∈ Cτ , then by the inductive hypothesis either,

n = 0 and t s⃗′ /∈ Cτ , so t s⃗ /∈ Cτ by Proposition 5.5.(2); or,
n = m + 1 and there is some r ∈ CN reducing to m s.t. t′ s⃗′ r /∈ Cτ , so t′s⃗ r /∈ Cτ by
Proposition 5.5.(2).

From here, any progressing thread (N i)i≥k along (ti)i yields a sequence of coterms
(ri ∈ CN)i≥k that, under normalisation, induces an infinitely often descending sequence of
natural numbers, yielding the required contradiction. ◀

FSCD 2021

Abstract Clones for Abstract Syntax
Nathanael Arkor ! Ï

University of Cambridge, UK

Dylan McDermott ! Ï

Reykjavik University, Iceland

Abstract
We give a formal treatment of simple type theories, such as the simply-typed λ-calculus, using
the framework of abstract clones. Abstract clones traditionally describe first-order structures, but
by equipping them with additional algebraic structure, one can further axiomatize second-order,
variable-binding operators. This provides a syntax-independent representation of simple type theories.
We describe multisorted second-order presentations, such as the presentation of the simply-typed
λ-calculus, and their clone-theoretic algebras; free algebras on clones abstractly describe the syntax
of simple type theories quotiented by equations such as β- and η-equality. We give a construction of
free algebras and derive a corresponding induction principle, which facilitates syntax-independent
proofs of properties such as adequacy and normalization for simple type theories. Working only with
clones avoids some of the complexities inherent in presheaf-based frameworks for abstract syntax.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation →
Equational logic and rewriting; Theory of computation → Higher order logic; Theory of computation
→ Proof theory

Keywords and phrases simple type theories, abstract clones, second-order abstract syntax, substitu-
tion, variable binding, presentations, free algebras, induction, logical relations

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.30

Funding Dylan McDermott: Icelandic Research Fund project grant № 196323-053.

1 Introduction

The abstract concept of type theory is crucial in the study of programming languages.
However, while it is generally appreciated that the concrete syntax associated to a type
theory is peripheral to its fundamental structure, conventional techniques for working with
type theories and proving properties thereof are predominantly syntactic. The primary
reason for this incongruity is that, though abstract frameworks for defining and reasoning
about general classes of type theories have been developed (e.g. [14, 13, 5, 12, 21, 2, 3, 19],
there called second-order abstract syntax), the mathematical prerequisites are significant and
often appear unapproachable to those without a firm category theoretic background. This is
regrettable, because these general techniques alleviate much of the rote associated to syntactic
proofs, such as those for adequacy, normalization, and the admissibility of substitution.

It so happens that there exists in the mathematical folklore an approach that is particularly
well-suited to capturing the essential structure of simple type theories and yet requires
essentially no experience with category theory to employ fruitfully: this is the formalism of
abstract clones (often simply called clones) with algebraic structure. The structure of an
abstract clone captures the notion of a context-indexed family of terms, closed under variable
projection and substitution; equipping clones with algebraic structure permits the expression
of variable-binding operators, like the λ-abstraction operator familiar from λ-calculi. It
is known amongst cognoscenti that abstract clones might be employed for this purpose:
for instance, Fiore, Plotkin, and Turi [16] proved that abstract clones are equivalent to
their notion of substitution monoids, which represent families of (unityped) terms with an
associated capture-avoiding substitution operation; later, Fiore and Mahmoud [32, 15] proved

© Nathanael Arkor and Dylan McDermott;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 30; pp. 30:1–30:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:na412@cl.cam.ac.uk
https://www.cl.cam.ac.uk/~na412/
https://orcid.org/0000-0002-4092-7930
mailto:dylanm@ru.is
https://dylanm.org/
https://orcid.org/0000-0002-6705-1449
https://doi.org/10.4230/LIPIcs.FSCD.2021.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Abstract Clones for Abstract Syntax

that abstract clones with algebraic structure are equivalent to the Σ-monoids of Fiore et
al., which extend substitution monoids with second-order (i.e. variable binding) algebraic
structure. In a separate line of inquiry, Hyland [24] uses abstract clones with algebraic
structure to give a modern treatment of the unityped λ-calculus. However, it does not appear
that abstract clones have previously been expressly proposed for the study of simple type
theories (in fact, the definition of a typed abstract clone with algebraic structure is absent
from the literature).

Here, we give an exposition of the use of abstract clones with algebraic structure in
defining simple type theories and proving various of their properties. After setting up the
relevant definitions (Section 2), we describe how simple type theories can be modelled by
algebras of second-order presentations (Section 3). We then show that free algebras exist,
giving an abstract description of the syntax of the type theory (Section 4). We derive
an induction principle [30] that enables abstract reasoning about the syntax (Section 5),
and show that this is powerful enough to prove non-trivial properties of type theories, in
particular using logical relations (Section 6). We also compare the clone-theoretic framework
to other approaches (Section 7). Though we do not expect our treatment to be surprising to
experts familiar with prior categorical developments, it is an important perspective in the
understanding of simple type theories and deserves explication.

Though we occasionally make reference to category theory throughout the paper, know-
ledge of category theory is not necessary to understand the content.

2 Abstract clones and first-order presentations

A typed (or multisorted) abstract clone [36], henceforth simply clone, encapsulates the
structure of terms in simple contexts, closed under variables and substitution. Informally, for
each context x1 : A1, . . . , xn : An and type B, where A1 to An are types (or sorts), a clone X
specifies a set of terms X(A1, . . . , An; B), each element of which is considered a term of type
B in the context x1 : A1, . . . , xn : An. It also specifies terms vari representing the projection
of the variable xi from the context, and functions substΓ;An,...,An;B : X(A1, . . . , An; B) ×
X(Γ; A1) × · · · × X(Γ; An) → X(Γ; B) representing simultaneous substitution:

t ∈ X(A1, . . . , An; B) represents x1 : A1, . . . , xn : An ⊢ t : B

var(A1,...,An)
i ∈ X(A1, . . . , An; Ai) represents x1 : A1, . . . , xn : An ⊢ xi : Ai

substΓ;A1,...,An;B(t, u1, . . . , un) represents Γ ⊢ t{x1 7→ u1, . . . , xn 7→ un} : B

The clone X is required to satisfy laws expressing that (1) substituting variables for themselves
does nothing; (2) applying a substitution to a variable results in the term corresponding to
that variable in the substitution; and (3) substitution is associative.

▶ Notation 1. We fix a set S of types (sorts). We denote by S∗ the free monoid on S, i.e.
lists of elements of S. Conceptually, contexts x1 : A1, . . . , xn : An are given by elements
[A1, . . . , An] ∈ S∗, since variable names carry no information. We write ⋄ ∈ S∗ for the empty
context, and Γ, Ξ for the concatenation of Γ ∈ S∗ and Ξ ∈ S∗. For contexts Γ, ∆ ∈ S∗, where
∆ = [A1, . . . , An], we define X(Γ; ∆) =

∏
i≤n X(Γ; Ai). We call the elements σ ∈ X(Γ; ∆)

substitutions; a substitution is therefore a tuple σ = (σ1, . . . , σn) of terms σi ∈ X(Γ; Ai).

▶ Definition 2. An S-sorted clone X = (X, var, subst) consists of
for each context Γ ∈ S∗ and sort A ∈ S, a set X(Γ; A) of terms;
for each context Γ ∈ S∗, a tuple var(Γ) ∈ X(Γ; Γ) of variables;

N. Arkor and D. McDermott 30:3

for each pair of contexts Γ, ∆ ∈ S∗ and sort A ∈ S, a substitution function substΓ;∆;A :
X(∆; A) × X(Γ; ∆) → X(Γ; A), which we write as t[σ] = substΓ;∆;A(t, σ);

such that

var(A1,...,An)
i [σ] = σi for each σ ∈ X(Γ; A1, . . . , An) and i ≤ n (1)

t[var(Γ)] = t for each t ∈ X(Γ; A) (2)
t[σ′

1[σ], . . . , σ′
m[σ]] = (t[σ′])[σ] for each t ∈ X(Ξ; A), σ′ ∈ X(∆; Ξ), σ ∈ X(Γ; ∆) (3)

A clone homomorphism f : X → X′ consists of a function fΓ;B : X(Γ; B) → X ′(Γ; B) for each
context Γ ∈ S∗ and sort B ∈ S, such that the following hold, where ∆ = [A1, . . . , An] ∈ S∗:

f∆;Ai
(var(∆)

i) = var(∆)
i

′
for each i ≤ n

fΓ;B(t[σ]) = (f∆;B(t))[fΓ;A1(σ1), . . . , fΓ;An
(σn)]′ for each t ∈ X(∆; B), σ ∈ X(Γ; ∆)

We write Clone(S) for the category of S-sorted clones and homomorphisms.

We extend every clone homomorphism f : X → X′ to act on substitutions as follows,
where ∆ = [A1, . . . , An] ∈ S∗:

fΓ;∆ : X(Γ; ∆) → X ′(Γ; ∆) fΓ;∆(σ) = (fΓ;A1(σ1), . . . , fΓ;An
(σn))

▶ Example 3. We denote by VarS the S-sorted clone of variables, whose family of terms is
given by VarS(A1, . . . , An; B) = {i | Ai = B}; whose variables are given by var(Γ)

i = i; and
whose substitution is given by i[σ] = σi. VarS is the initial object in Clone(S): for any
S-sorted clone X, there is a unique homomorphism ▷ : VarS → X given by ▷Γ;B(i) = var(Γ)

i .

▶ Example 4. The terms of any universal algebra [8] form a monosorted clone (i.e. an
S-sorted clone for which S is a singleton {∗}). The sets of terms, along with the variables
and substitution function, exactly match the classical notions. For instance, monoids form a
clone Mon, where Mon(∗, . . . , ∗︸ ︷︷ ︸

n

; ∗) is the free monoid on n elements.

▶ Example 5. Let Ty be the set of sorts freely generated by a base type b ∈ Ty and function
types (A ⇒ B) ∈ Ty for A, B ∈ Ty (precisely, Ty is the free magma on {b}). The terms of
the simply typed λ-calculus (STLC) form a Ty-sorted clone Λ. Consider terms generated by
the following rules:

Γ, x : A, ∆ ⊢ x : A

Γ ⊢ f : A ⇒ B Γ ⊢ a : A

Γ ⊢ app f a : B

Γ, x : A ⊢ t : B

Γ ⊢ λx : A. t : A ⇒ B

(We write app to distinguish application of λ-terms from application of mathematical functions.
We also use named variables for readability, identifying α-equivalent terms.) Capture-avoiding
simultaneous substitution t{xi 7→ ui}i of terms is defined in the usual way by recursion on t:

xj{xi 7→ ui}i = uj (app f a){xi 7→ ui}i = app (f{xi 7→ ui}i) (a{xi 7→ ui}i)
(λx : A. t){xi 7→ ui}i = λy : A. (t{x1 7→ u1, . . . , xn 7→ un, x 7→ y})

The clone Λ has sets of terms Λ(A1, . . . , An; B) = {x1 : A1, . . . , xn : An ⊢ t : B}, variables
var(Γ)

i = xi, and substitution t[σ] = t{xi 7→ σi}i.
There is a related Ty-sorted clone Λβη of STLC terms up to βη-equality, defined by

quotienting the sets of terms associated to Λ by the equivalence relation ≈βη, where Γ ⊢
t ≈βη t′ : A is the congruence relation generated by the following rules:

Γ, x : A ⊢ t : B Γ ⊢ u : A
(β)

Γ ⊢ app (λx : A. t) u ≈βη t{x 7→ u} : B

Γ ⊢ t : A ⇒ B (η)
Γ ⊢ t ≈βη λx : A. app t x : A ⇒ B

FSCD 2021

30:4 Abstract Clones for Abstract Syntax

▶ Remark 6. We shall only consider abstract clones with sets of types. However, as illustrated
by the previous example, the types in a simple type theory often have algebraic structure
themselves. By considering only the underlying set of types, the algebraic structure is
forgotten. This simplifies the development, at the cost of some loss of expressivity. By
specifying a (monosorted) clone of types, rather than a set, one recovers exactly the simple
type theories of Arkor and Fiore [5].

Clone(S) is a cartesian category, permitting us to combine clones pointwise. The terminal
object 1 is the unique clone in which every set of terms is a singleton. The binary product X1×
X2 has sets of terms given by products of sets (X1×X2)(Γ; A) = X1(Γ; A)×X2(Γ; A), variables
var(Γ)

i = (var(Γ)
i , var(Γ)

i), and substitution (t1, t2)[(σ11, σ21), . . . , (σ1n, σ2n)] = (t1[σ1], t2[σ2]).
▶ Remark 7. S-sorted abstract clones form a variety in the sense of universal algebra; this
means that Clone(S) is the category of models for a (multisorted) algebraic theory. Such
categories are well-behaved, and several of the properties we mention throughout the paper
(such as being cartesian) follow abstractly from this observation. We often choose to be more
explicit for ease of comprehension, but make note where this abstract perspective is helpful.

2.1 Substitution and context extension
We briefly consider the structure of substitutions σ in S-sorted clones X, in particular to
define various substitutions that we use below, and to characterize context extension in clones.
If σ ∈ X(Γ; ∆) and σ′ ∈ X(∆; Ξ) are substitutions, then their composition (σ′ ◦σ) ∈ X(Γ; Ξ)
is the substitution (σ′

1[σ], . . . , σ′
m[σ]), where m is the length of Ξ. The three equations in

the definition of a clone (Definition 2) equivalently state (1 & 2) that var is the (left- and
right-) unit for composition (var(∆) ◦ σ = σ = σ ◦ var(Γ)); and (3) that composition is
associative (σ′′ ◦ (σ′ ◦ σ) = (σ′′ ◦ σ′) ◦ σ). In fact, this perspective underlies the connection
between abstract clones and cartesian multicategories (which may be considered categories
whose morphisms have multiple inputs, corresponding to each of the variables in a context):
we elaborate on this connection in Section 7.

We call the substitutions ρ ∈ VarS(Γ; ∆) variable renamings. This is justified by observing
that ρ selects a variable in the context ∆ for each variable in Γ. If t ∈ X(∆; A) is
a term in some clone X, then t[▷ρ] ∈ X(Γ; A) corresponds to the term in which the
variables in t have been renamed according to ρ. A special case of renaming is weakening
wk(Γ)

Ξ = (1, . . . , n) ∈ VarS(Γ, Ξ; Γ). Using weakening and composition, we may define the
lifting of a substitution σ ∈ X(Γ; ∆) to a larger context:

liftΞ(σ) = (σ ◦ (▷wk(Γ)
Ξ), ▷(n + 1, . . . , n + m)) ∈ X(Γ, Ξ; ∆, Ξ)

where n is the length of Γ and m is the length of Ξ.
Context extension induces the following operation on clones. Given an S-sorted clone X

and context Ξ ∈ S∗, we let ⇑ΞX be the S-sorted clone with terms (⇑ΞX)(Γ; A) = X(Γ, Ξ; A),
variables (var(Γ,Ξ)

i)i≤n ∈ X(Γ, Ξ; Γ), and substitution t[σ, ▷(n + 1, . . . , n + m)] ∈ X(Γ, Ξ; A)
for t ∈ X(∆, Ξ; A) and σ ∈ X(Γ, Ξ; ∆), where n is the length of Γ and m is the length
of Ξ. This satisfies a universal property as follows. Weakening forms a homomorphism
weaken(Ξ)

X : X → ⇑ΞX that sends t ∈ X(Γ; A) to t[▷wk(Γ)
Ξ] ∈ X(Γ, Ξ; A). Then, for every

homomorphism g : ⇑ΞX → Y, we obtain a homomorphism g ◦ weaken(Ξ)
X : X → Y and

a substitution g⋄;Ξ(var(Ξ)) ∈ Y (⋄; Ξ). Together, these uniquely determine g: to give a
homomorphism g is just to give a homomorphism X → Y and a closed term σi for each
extra variable from Ξ. (From the perspective of algebraic theories, context extension ⇑ΞX
corresponds to the construction of the polynomial [28] or simple slice category [26] over Ξ.)

N. Arkor and D. McDermott 30:5

▶ Lemma 8. For each clone homomorphism f : X → Y and substitution σ ∈ Y (⋄; Ξ), there
is a unique homomorphism g : ⇑ΞX → Y such that g ◦ weaken(Ξ)

X = f and g⋄;Ξ(var(Ξ)) = σ.
Proof. Suppose g is such a homomorphism. Then, for each t ∈ X(Γ, Ξ; A), we have
gΓ;A(t) = (gΓ,Ξ;A(weaken(Ξ)

X (t)))[var(Γ), (g⋄;Ξ(var(Ξ)))◦▷wk(⋄)
Γ] = (fΓ,Ξ;A(t))[var(Γ), σ◦▷wk(⋄)

Γ],
where the first equality uses preservation of variables and substitution by g, and the second
uses the assumptions on g. Hence, g is unique when it exists. For existence, define
gΓ;A(t) = (fΓ,Ξ;A(t))[var(Γ), σ ◦ ▷wk(⋄)

Γ]. ◀

Substitutions σ ∈ Y (⋄; Ξ) are in natural bijection with homomorphisms ⇑ΞVarS → Y, and
so Lemma 8 equivalently states that ⇑ΞX is the coproduct of X and ⇑ΞVarS . (This contrasts
with presheaf-based frameworks [16, 22], in which context extension is exponentiation.)

2.2 First-order presentations
Clones describe collections of terms closed under variable projection and substitution. We
will frequently be interested in clones equipped with extra structure, so as, for example, to
interpret the operations of a given type theory. Presentations permit the axiomatization of
clones that interpret various operations, subject to sets of axioms; while the algebras for a
given presentation are exactly those clones that satisfy the axiomatization. Later, we will
see how clones may be freely generated from presentations, allowing one to define a clone
simply by specifying its generating operators and axioms.

Our treatment of first-order presentations is the classical notion of presentation for
multisorted universal algebra [9, 17].
▶ Definition 9. An S-sorted first-order signature Σ consists of a set Σ(Γ; B) for each
(Γ; B) ∈ S∗ × S. We call the elements o ∈ Σ(Γ; B) the (Γ; B)-ary operators. Terms over Σ
are generated by the following rules:

Γ, x : A, ∆ ⊢ x : A

Γ ⊢ t1 : A1 · · · Γ ⊢ tn : An (o ∈ Σ(A1, . . . , An; B))
Γ ⊢ o(t1, . . . , tn) : B

An (A1, . . . , An; B)-ary term t over Σ is a term x1 : A1, . . . , xn : An ⊢ t : B, and an (Γ; B)-
ary equation over Σ is a pair (t, u) of (Γ; B)-ary terms. An S-sorted first-order presentation
Σ = (Σ, E) consists of an S-sorted first-order signature Σ and, for each (Γ; B) ∈ S∗ × S, a
set E(Γ; B) of (Γ; B)-ary equations.
▶ Remark 10. Observe that the operators of a signature correspond to terms in the logic
specified below (namely, first-order equational logic). In particular, a (Γ; B)-ary operator o,
where Γ = [A1, . . . , An] ∈ S∗, may be thought of either as a function o : A1, . . . , An → B, or
as a term x1 : A1, . . . , xn : An ⊢ o : B. These perspectives are complementary, and mirror
the practice in categorical logic of representing terms by morphisms.
▶ Definition 11. If Γ ⊢ ui : Ai for i ≤ n and x1 : A1, . . . xn : An ⊢ t : B are terms over
an S-sorted first-order signature Σ, their substitution Γ ⊢ t{x1 7→ u1, . . . , xn 7→ un} : B is
defined by recursion on t in the usual way. The equational logic over an S-sorted first-order
presentation Σ = (Σ, E) consists of the following rules for the congruence of ≈ under
operations and substitution, together with reflexivity, symmetry and transitivity of ≈:

Γ ⊢ t1 ≈ u1 : A1 · · · Γ ⊢ tn ≈ un : An (o ∈ Σ(A1, . . . , An; B))
Γ ⊢ o(t1, . . . , tn) ≈ o(u1, . . . , un) : B

Γ ⊢ t′
1 ≈ u′

1 : A1 · · · Γ ⊢ t′
n ≈ u′

n : An ((t, u) ∈ E(A1, . . . , An; B))
Γ ⊢ t{xi 7→ t′

i}i ≈ u{xi 7→ u′
i}i : B

FSCD 2021

30:6 Abstract Clones for Abstract Syntax

The terms over Σ form a clone TermΣ = (TermΣ, var, subst), where TermΣ(Γ; A) is the set
of ≈-equivalence classes of (Γ; A)-ary terms; the variables are var(Γ)

i = xi; and substitution
is t[σ] = t{xi 7→ σi}i. A clone X is presented by Σ when TermΣ is isomorphic to X in
Clone(S) (that is, when there are homomorphisms TermΣ ⇄ X that are mutually inverse).

▶ Remark 12. A clone may have many different presentations: for instance, the clone Mon
of monoids (Example 4) may be presented by a unit and a binary multiplication operation,
or by an n-ary multiplication operation for each n ∈ N (subject to suitable axioms).

▶ Example 13. Fix a finite set V = {v1, . . . , vk} of values. The Ty-sorted presentation ΣGS
V

of global V -valued state has a (b, . . . , b︸ ︷︷ ︸
k

; b)-ary operator get, a (b; b)-ary operator putvi
for

each i ≤ k, and equations

x : b ⊢ get(putv1(x), . . . , putvk
(x)) ≈ x : b

x1 : b, . . . , xk : b ⊢ putvi
(get(x1, . . . , xk)) ≈ putvi

(xi) : b for each i ≤ k

x : b ⊢ putvi
(putvj

(x)) ≈ putvj
(x) : b for each i, j ≤ k

Informally, the term get(t1, . . . , tn) gets the current value vi of the state and then continues
as ti, while the term putvi

(t) sets the state to vi and then continues as t. (In Example 23
below, we combine this presentation with the STLC to obtain a call-by-name calculus with
global state. In call-by-name calculi, effects occur at base types, so it is only necessary to
axiomatize get and putvi

operators for b ∈ Ty, rather than for all types.) We denote by GSV

the clone TermΣGS
V arising from the presentation ΣGS

V .

3 Second-order presentations

Just as first-order presentations describe algebraic structure, second-order presentations
describe binding algebraic structure [16]. Variable-binding operators are prevalent in type
theory: for instance, the λ-abstraction operator of the STLC, let-in expressions in functional
programming languages, and case-splitting in calculi with sum types. Second-order present-
ations are similar to first-order presentations, except that each operator must describe its
binding structure, i.e. how many variables (and of what types) it binds in each operand.
Hence, while first-order arities have the form (A1, . . . , An; B) ∈ S∗ × S, second-order arities
have the form ((∆1; A1), . . . , (∆n; An); B) ∈ (S∗ × S)∗ × S. Operators of such an arity take
n arguments of types A1, . . . An and produce terms of type B: the length of the context
∆i ∈ S∗ is the number of variables bound by the ith argument; and the argument types are
given by the list ∆i. First-order operators may be expressed as second-order operators that
bind no variables.

▶ Definition 14. An S-sorted second-order signature [16, 13] consists of a set Σ(Ψ; B) for
each (Ψ; B) ∈ (S∗ × S)∗ × S. We call the elements o ∈ Σ(Ψ; B) the (Ψ; B)-ary operators.

▶ Example 15. The Ty-sorted second-order signature ΣΛ of the STLC consists of an
((⋄; A⇒B), (⋄; A); B)-ary operator app and an ((A; B); (A⇒B))-ary operator abs for each
A, B ∈ Ty. Thus each application operator app has two arguments, neither of which bind
variables; and each λ-abstraction operator abs has one argument, which binds one variable.

Just as the axioms of first-order presentations are expressed in first-order equational logic,
the axioms of second-order presentations are expressed in the second-order equational logic
of Fiore and Hur [13]. Second-order equational logic extends the first-order setting with
metavariables [1, 18, 11], which conceptually stand for parameterized placeholders for terms.

N. Arkor and D. McDermott 30:7

Each variable x : A in first-order logic has an associated type A ∈ S; correspondingly, each
metavariable m : (A1, . . . , An; A) has an associated context and type (called second-order
arities in [5]). m may be thought of as a variable parameterized by n terms of types A1
through An; a nullary (n = 0) metavariable behaves like an ordinary variable. There are
several alternative ways to describe second-order equational logic [6], but we follow Fiore
and Hur [13] in associating to each term both a variable context and a metavariable context:
a metavariable context Ψ is a list of context–sort pairs (∆; A) ∈ S∗ × S. The judgment
Ψ | ∆ ⊢ t : A expresses that the term t has sort A in variable context ∆ and metavariable
context Ψ. Below, we write x⃗ for a list x1, . . . , xn of variables, x⃗. t to indicate binding
of the variables x⃗ in t, and write x⃗ : ∆ as an abbreviation of x1 : A1, . . . , xn : An for
∆ = [A1, . . . , An].

▶ Definition 16. Suppose S is a set and Σ is an S-sorted second-order signature. Terms
over Σ are generated by the following rules for variables, metavariables, and operators:

Ψ | Γ, x : A, ∆ ⊢ x : A

Ψ, m : (A1, . . . , An; B), Φ | Γ ⊢ t1 : A1 · · · Ψ, m : (A1, . . . , An; B), Φ | Γ ⊢ tn : An

Ψ, m : (A1, . . . , An; B), Φ | Γ ⊢ m(t1, . . . , tn) : B

Ψ | Γ, x⃗1 : ∆1 ⊢ t1 : A1 · · · Ψ | Γ, x⃗n : ∆n ⊢ tn : An (o ∈ Σ((∆1; A1), . . . , (∆n; An); B))
Ψ | Γ ⊢ o((x⃗1. t1), . . . , (x⃗n. tn)) : B

A ((∆1; A1), . . . , (∆n; An); B)-ary term over Σ is a term m1 : (∆1, A1), . . . , mn : (∆n; An) | ⋄
⊢ t : B, and a (Ψ; B)-ary equation is a pair (t, u) of (Ψ; B)-ary terms. An S-sorted second-
order presentation Σ = (Σ, E) consists of an S-sorted second-order signature Σ and, for each
(Ψ; B) ∈ (S∗ × S)∗ × S, a set E(Ψ; B) of (Ψ; B)-ary equations over Σ.

Multisorted second-order presentations may essentially be taken as a definition of simple
type theory (modulo the subtlety regarding type operators described in Remark 6): just as
the informal notion of algebra was formalized through the framework of universal algebra [8],
so second-order presentations facilitate a precise, formal definition of simple type theory [5].

▶ Example 17. The operators of the signature ΣΛ of the STLC present the following rules:
Ψ | Γ ⊢ f : A ⇒ B Ψ | Γ ⊢ a : A

Ψ | Γ ⊢ app(f, a) : B

Ψ | Γ, x : A ⊢ t : B

Ψ | Γ ⊢ abs(x. t) : A ⇒ B

We can then give, for each A, B ∈ Ty, an ((A; B), (⋄; A); B)-ary equation for β-equality, and
an ((⋄; A⇒B); (A⇒B))-ary equation for η-equality:

m1 : (A; B), m2 : (⋄; A) | ⋄ ⊢ app(abs(x. m1(x)), m2()) ≈ m1(m2()) : B (β)
m : (⋄; A⇒B) | ⋄ ⊢ abs(x. app(m(), x)) ≈ m() : A ⇒ B (η)

The signature ΣΛ together with these equations forms the Ty-sorted second-order presentation
ΣΛβη of the STLC with βη-equality. Note that second-order equations permit the expression
of axiom schemata, as axioms containing metavariables (in both the traditional and precise
sense of the term “metavariable”) [12, 5]. Without second-order equations, one would have
to add β and η equations for each instantiation of the metavariables in the rules above.

▶ Definition 18. If (Ψ | Γ ⊢ ui : Ai)i and Ψ | x1 : A1, . . . , xn : An ⊢ t : B are terms over an
S-sorted second-order signature Σ, then their substitution Ψ | Γ ⊢ t{xi 7→ ui}i : B is defined
by recursion on t:

xj{xi 7→ ui}i = uj m(t1, . . . tm){xi 7→ ui}i = m(t1{xi 7→ ui}i, . . . , tm{xi 7→ ui}i)
o((y⃗1. t1), . . . , o(y⃗k. tk)){xi 7→ ui}i = o((y⃗1. t1{xi 7→ ui}i), . . . , (y⃗k. tk{xi 7→ ui}i))

FSCD 2021

30:8 Abstract Clones for Abstract Syntax

(On the right-hand side of the definition on operators, the terms ti are weakened, and we
omit from the substitution variables that are mapped to themselves.) If instead we have
terms (Ψ | Γ, x⃗i : ∆i ⊢ ui : Ai)i and m1 : (∆1; A1), . . . , mn : (∆n; An) | Γ′ ⊢ t : B then their
metasubstitution Ψ | Γ, Γ′ ⊢ t{mi 7→ (x⃗i. ui)}i : B is defined using ordinary substitution by
recursion on t:

x{mi 7→ (x⃗i. ui)}i = x mj(t1, . . . , tm){mi 7→(x⃗i. ui)}i = uj{xjk 7→ tk{mi 7→(x⃗i. ui)}i}k

o((y⃗1. t1), . . . , (y⃗k. tk)){mi 7→ (x⃗i. ui)}i

= o((y⃗1. t1{mi 7→ (x⃗i. ui)}i), . . . , (y⃗k. tk{mi 7→ (x⃗i. ui)}i))

3.1 Algebras
The algebras for a presentation are the abstract clones interpreting each of the operations of
the signature, subject to the axioms of the presentation. In other words, a presentation is a
specification of structure, while the algebras are the realizations, or models, of that structure.
For instance, in the first-order setting, the algebras for the presentation of monoids form
(set-theoretic) monoids.

▶ Definition 19. An algebra (X, J−K) for an S-sorted second-order signature Σ (called
“presentation clones” in [32]) consists of an S-sorted clone X and, for each context Γ and
((∆1; A1), . . . , (∆n; An); B)-ary operator o, a function JoKΓ :

∏
i X(Γ, ∆i; Ai) → X(Γ; B)

such that, for all substitutions σ ∈ X(Ξ; Γ) and tuples of terms (ti ∈ X(Γ, ∆i; Ai))i,

(JoKΓ(t1, . . . , tn))[σ] = JoKΞ(t1[lift∆1σ], . . . , tn[lift∆n
σ])

A homomorphism f : (X, J−K) → (X′, J−K′) of Σ-algebras is a homomorphism f : X → X′

of clones such that, for all o ∈ Σ((∆1; A1), . . . , (∆n; An); B) and (ti ∈ X(Γ, ∆i; Ai))i,

fΓ;B(JoKΓ(t1, . . . , tn)) = JoK′
Γ(fΓ,∆1;A1t1, . . . , fΓ,∆n;An

tn)

The interpretation of operators in a Σ-algebra (X, J−K) extends to an interpretation JtKΓ :∏
i X(Γ, ∆i; Ai) → X(Γ, Ξ; B) of each term m1 : (∆1; A1), . . . , mn : (∆n; An) | x⃗ : Ξ ⊢ t : B

as follows (where n is the length of Γ):

JxiKΓ(σ) = var(Γ,Ξ)
n+i

Jmi(t1, . . . , tm)KΓ(σ) = σi[var(Γ,Ξ)
1 , . . . , var(Γ,Ξ)

n , Jt1KΓ(σ), . . . , JtmKΓ(σ)]
Jo((x⃗1. t1), . . . , (x⃗m. tm))KΓ(σ) = JoKΓ,Ξ(Jt1KΓ(σ), . . . , JtmKΓ(σ))

▶ Definition 20. An algebra (X, J−K) for a second-order presentation Σ = (Σ, E) is a
Σ-algebra such that, for all equations (t, u) ∈ E(Ψ; A) and contexts Γ, we have JtKΓ = JuKΓ.
We let Σ -Alg be the category of Σ-algebras and all Σ-algebra homomorphisms between them.

▶ Example 21. An algebra for the presentation ΣΛβη of the STLC with βη-equality consists
of a Ty-sorted clone X and functions

JappKΓ : X(Γ; A ⇒ B) × X(Γ; A) → X(Γ; B) JabsKΓ : X(Γ, A; B) → X(Γ; A ⇒ B)

that commute with substitution and satisfy

JappKΓ(JabsKΓ(t), t′) = t[var(Γ), t′] for t ∈ X(Γ, A; B), t′ ∈ X(Γ; A) (β)

JabsKΓ(JappKΓ,A(t[▷wk(Γ)
A], var(Γ,A)

n+1)) = t for t ∈ X(Γ; A⇒B) (η)

N. Arkor and D. McDermott 30:9

For each set Z we have a set-theoretic interpretation of the STLC, which forms a ΣΛβη -
algebra (MZ , MZJ−K) as follows. Define interpretations MZJAK ∈ Set of each sort A ∈ Ty
recursively by setting MZJbK = Z and MZJA ⇒ BK = Set(MZJAK, MZJBK) (where
Set(Y, Y ′) is the set of functions Y → Y ′). We then have a Ty-sorted clone MZ , where the
sets of terms are given by MZ(A1, . . . , An; B) = Set(

∏
i MZJAiK, MZJBK), the variables

by projections var(Γ)
i = πi, and substitution by f [σ] = (ξ 7→ f(σ1(ξ), . . . , σn(ξ))). This

forms a ΣΛβη -algebra, with interpretations of the operators given by function application
and currying. More generally, the interpretation of the STLC in any cartesian-closed
category C with a specified object Z ∈ C forms a ΣΛβη -algebra taking MZ(A1, . . . , An; B) =
C(

∏
i MZJAiK, MZJBK) to be the sets of terms, where MZJbK = Z and MZJA ⇒ BK =

MZJBKMZJAK.

The cartesian structure of Clone(S) lifts to Σ -Alg for every presentation Σ: the clone
1 uniquely forms a Σ-algebra, and the product (X1, J−K1) × (X2, J−K2) is the clone X1 × X2
equipped with interpretations JoKΓ((σ11, σ21), . . . , (σ1n, σ2n)) = (JoK1,Γ(σ1), JoK2,Γ(σ2)).

4 Free algebras

Second-order S-sorted presentations Σ can be viewed as descriptions of simple type theories
for which S is the set of types. In particular, the operators specify the term formers of the type
theory (such as λ-abstraction, or application). From this perspective, the syntax of the type
theory described by Σ is the initial Σ-algebra: there is a unique Σ-algebra homomorphism
from the algebra formed by the syntax to any other algebra, given by induction on terms.
More generally, given the syntax of an existing theory in the form of a clone X, the free
Σ-algebra on X is given by augmenting X by the operators and equations of Σ; or, from
another perspective, augmenting the type theory described by Σ with the operations specified
by X. For example, the free ΣΛβη -algebra on GSV (Example 13) may be seen as the STLC
extended by additional term formers (get and putv1

, . . . , putvk
) representing the side-effects

of global state.

▶ Definition 22. Suppose Σ = (Σ, E) is an S-sorted second-order presentation and X is
an S-sorted clone. A Σ-algebra FΣX equipped with a clone homomorphism ηX : X → FΣX
is the free Σ-algebra on X if, for any other Σ-algebra (Y, J−K) and clone homomorphism
f : X → Y, there is a unique Σ-algebra homomorphism f† : FΣX → (Y, J−K) such that
f† ◦ ηX = f . The initial Σ-algebra is the free Σ-algebra on VarS.

▶ Example 23. Recall the presentation ΣΛβη of the STLC with βη-equality from Example 17.
The initial ΣΛβη -algebra is the clone Λβη of STLC terms up to ≈βη (Example 5), with the
operators app and abs interpreted as

((f, a) 7→ app f a) : Λβη(Γ; A ⇒ B) × Λβη(Γ; A) → Λβη(Γ; B)
(t 7→ λx : A. t) : Λβη(Γ, A; B) → Λβη(Γ; A ⇒ B)

The free ΣΛβη -algebra on the clone GSV of global V -valued state (Example 13) can be
described as follows for V = {v1, . . . , vk}. The underlying Ty-sorted clone is defined in the
same way as Λβη, but with the following additional term formers and equations (omitting
the typing constraints on equations).

Γ ⊢ t1 : b · · · Γ ⊢ tk : b
Γ ⊢ get(t1, . . . , tk) : b
Γ ⊢ t : b (i ≤ k)

Γ ⊢ putvi
(t) : b

get(putv1(t), . . . , putvk
(t)) ≈βη t

putvi
(get(t1, . . . , tk)) ≈βη putvi

(ti) (i ≤ k)
putvi

(putvj
(t)) ≈βη putvj

(t) (i, k ≤ k)

FSCD 2021

30:10 Abstract Clones for Abstract Syntax

Terms

Γ, x : A, ∆ ⊢X x : A

Γ ⊢X t1 : A1 · · · Γ ⊢X tn : An (f ∈ X(A1, . . . , An; B))
Γ ⊢X f(t1, . . . , tn) : B

Γ, x⃗1 : ∆1 ⊢X t1 : A1 · · · Γ, x⃗n : ∆n ⊢X tn : An (o ∈ Σ((∆1; A1), . . . , (∆n; An); B))
Γ ⊢X o((x⃗1. t1), . . . , (x⃗n. tn)) : B

Equations (reflexivity, symmetry, transitivity omitted)

Γ ⊢X t1 ≈ u1 : A1 · · · Γ ⊢X tn ≈ un : An (f ∈ X(A1, . . . , An; B))
Γ ⊢X f(t1, . . . , tn) ≈ f(u1, . . . , un) : B

Γ, x⃗1 : ∆1 ⊢X t1 ≈ u1 : A1 · · · Γ, x⃗n : ∆n ⊢X tn ≈ un : An (o ∈ Σ((∆1; A1), . . . ; B))
Γ ⊢X o((x⃗1. t1), . . . , (x⃗n. tn)) ≈ o((x⃗1. u1), . . . , (x⃗n. un)) : B

Γ, x⃗1:∆1 ⊢X t1 ≈ u1 : A1 · · · Γ, x⃗n:∆n ⊢X tn ≈ un : An ((t′, u′) ∈ E((∆1; A1), . . . ; B))
Γ ⊢X t′{mi 7→ (x⃗i. ti)}i ≈ u′{mi 7→ (x⃗i. ui)}i : B

Γ ⊢X t1 : A1 · · · Γ ⊢X tn : An (i ≤ n)
Γ ⊢X ti ≈ var(A1,...,An)

i (t1, . . . , tn) : B

Γ ⊢X t1 : A1 · · · Γ ⊢X tn : An

Γ ⊢X f(σ1(t1, . . . , tn), . . . , σk(t1, . . . , tn)) ≈ (f [σ])(t1, . . . , tn) : B

(f ∈ X(A′
1, . . . , A′

k; B), σ ∈ X(A1, . . . , An; A′
1, . . . , A′

k))

Figure 1 Construction of the free (Σ, E)-algebra on a clone X = (X, var, subst).

This forms a ΣΛβη -algebra in the same way as Λβη above. The morphism ηGSV
is given by

ηGSV
(get(t1, . . . , tk)) = get(ηGSV

(t1), . . . , ηGSV
(tk)) and ηGSV

(putvi
(t)) = putvi

(ηGSV
(t)).

If Σ′ is a first-order presentation, the free Σ-algebra on TermΣ′
is closed under the operat-

ors of Σ′: each o ∈ Σ′(A1, . . . , An; B) induces a term η(o(x1, . . . , xn)) ∈ FΣX(A1, . . . , An; B)
and hence functions (σ 7→ η(o(x⃗))[σ]) : FΣX(Γ; A1, . . . , An) → FΣX(Γ; B).

We show that free algebras for any signature, and on any clone, exist, by constructing
them explicitly. Existence of these free algebras facilitates the developments in the next
sections. However, note that we do not rely on the explicit description: after this section,
we reason about free algebras solely using the universal property in Definition 22. This is
important, as we wish to reason about type theories independently of their syntax, which
leads to greatly simplified proofs. (It is also possible to prove the existence of free algebras
entirely abstractly using a monadicity theorem and Remark 7, avoiding concrete syntax.)

In universal algebra, free algebras of first-order presentations are constructed in two steps:
by first closing a sort-indexed set X of constants under the operators of the presentation; and
then quotienting the terms by the equations of the presentation. Figure 1 gives the analogous
construction in the second-order setting. First, we construct terms Γ ⊢X t : B from variables,
the terms of the clone f ∈ X(A1, . . . , An; B) (viewed as function symbols), and the operators
of the presentation Σ. Second, we quotient by the equivalence relation ≈ generated by
congruence, the equations of Σ (using metasubstitution), and rules imposing compatibility
with the clone structure of X. The clone FΣX has terms FΣX(Γ; B) = {Γ ⊢X t : B}/ ≈, with
variables and substitution defined in the evident way; the homomorphism ηX : X → FΣX
sends t ∈ X(Γ; B) to x1 : A1, . . . , xn : An ⊢X t(x1, . . . , xn) : B, where Γ = [A1, . . . , An].

N. Arkor and D. McDermott 30:11

▶ Proposition 24. For every S-sorted second-order presentation Σ and S-sorted clone X,
the free Σ-algebra FΣX exists.

The forgetful functor Σ -Alg → Clone(S) therefore has a left adjoint (in fact, it is monadic).

5 Induction over second-order syntax

We now describe how the formalism of abstract clones may be used to prove properties
of simple type theories. To begin, we consider predicates over abstract clones, which are
predicates over the terms of the type theory induced by the clone, closed under the structural
operations of variable projection and substitution. Below, we extend each family of subsets
P (Γ; A) ⊆ Y (Γ; A) to contexts by defining P (Γ; A1, . . . , An) to be the set of all substitutions
σ ∈ Y (Γ; A1, . . . , An) such that σi ∈ P (Γ; Ai) for all i ≤ n.

▶ Definition 25. A predicate P over an S-sorted clone X consists of a subset P (Γ; A) ⊆
X(Γ; A) for each (Γ; A) ∈ S∗ × S such that, for all contexts Γ = [A1, . . . , An] and i ≤ n, we
have var(Γ)

i ∈ P (Γ; Ai), and, for all t ∈ P (∆; B) and σ ∈ P (Γ; ∆), we have t[σ] ∈ P (Γ; B).

Closure under variables and under substitution imply that P forms a clone P whose inclusion
P ↪→ X into X is a clone homomorphism. Predicates over S-sorted clones are equivalently
the subobjects in Clone(S), and are hence closed under arbitrary conjunction, existential
quantification, and quotients of equivalence relations. (This follows from Remark 7, since
varieties are exact categories [7, Theorem 5.11], and all exact categories enjoy these properties.)
They are also closed under context extension: if P is a predicate over X and Ξ is a context,
then ⇑ΞP is a predicate over ⇑ΞX.

We present a meta-theorem for establishing properties of simple type theories.

▶ Theorem 26 (Induction principle for second-order syntax). Suppose that (Y, J−K) is an algebra
for an S-sorted second-order presentation Σ, that f : X → Y is a clone homomorphism from
an S-sorted clone X, and that P is a predicate over Y. If

for all operators o ∈ Σ((∆1; A1), . . . , (∆n; An); B), contexts Γ ∈ S∗, and tuples of terms
(ti ∈ P (Γ, ∆i; Ai))i we have JoKΓ(t1, . . . , tn) ∈ P (Γ; B);
for all terms t ∈ X(Γ; A) we have fΓ;A(t) ∈ P (Γ; A),

then, for all free terms t ∈ (FΣX)(Γ; A), we have f†
Γ;A(t) ∈ P (Γ; A).

Proof. The predicate P is closed under operators, so the interpretations of operators in Y
make P into a Σ-algebra. The image of f is contained in P , so f forms a clone homomorphism
X → P. By the universal property of the free algebra FΣX, we therefore have an algebra
homomorphism FΣX → P. This necessarily sends t ∈ (FΣX)(Γ; A) to f†

Γ;A(t) ∈ P (Γ; A). ◀

We give two corollaries of this induction principle. The first is for proving properties of
closed terms, which take the form of families of subsets P (A) ⊆ Y (⋄; A). Given such a family
P , let P (A1, . . . , An) be the set of all σ ∈ Y (⋄; A1, . . . , An) such that σi ∈ P (Ai) for all i ≤ n,
and define a predicate P ♯ over Y by P ♯(Γ; A) = {t ∈ Y (Γ; A) | ∀σ ∈ P (Γ). t[σ] ∈ P (A)}.
Applying the induction principle above to P ♯ gives us the following.

▶ Corollary 27. Suppose that Σ is an S-sorted second-order presentation, that (Y, J−K) is a
Σ-algebra, and that (P (A) ⊆ Y (⋄; A))A∈S is a family of subsets. For every S-sorted clone X
and clone homomorphism f : X → Y, if

for every operator o ∈ Σ((∆1; A1), . . . , (∆n; An); B) and tuple (ti ∈ P ♯(∆i; Ai))i≤n of
terms, we have JoK⋄(t1, . . . , tn) ∈ P (B);
for every term t ∈ X(Γ; B), we have fΓ;B(t) ∈ P ♯(Γ; B),

then, for every type A ∈ S and free term t ∈ (FΣX)(⋄; A), we have f†
⋄;A(t) ∈ P (A).

FSCD 2021

30:12 Abstract Clones for Abstract Syntax

Proof. P ♯(⋄; A) = P (A), so it suffices to apply Theorem 26 to the predicate P ♯. We therefore
check the two assumptions of that theorem. Closure of P ♯ under f is immediate; and P ♯

is closed under operators because, if (ti ∈ P ♯(Γ, ∆i; Ai))i and σ ∈ P (Γ), then ti[lift∆i
σ] ∈

P ♯(∆i; Ai) for all i ≤ n, so that JoKΓ(t1, . . . , tn)[σ] = JoK⋄(t1[lift∆1σ], . . . , tn[lift∆n
σ]) ∈

P (B). ◀

Families of subsets P (A) ⊆ X(⋄; A) are closed under arbitrary conjunction and disjunction,
complements, and universal and existential quantification. They form a tripos [25, 34],
and hence a model of higher-order logic over Clone(S); the tripos-theoretic methods of
Hofmann [22] carry over in this way to the setting of abstract clones.

The second corollary is for families of subsets P (Γ; A) ⊆ Y (Γ; A) that are not known to
be closed under substitution. (In some cases proving closure under substitution requires
an induction over terms, but induction over terms is what this section is meant to enable.)
Analogously to the construction P ♯ for predicates over closed terms, we define a predicate
P ♭ over Y by P ♭(Γ; A) = {t ∈ Y (Γ; A) | ∀∆, σ ∈ P (∆; Γ). t[σ] ∈ P (∆; A)}.

▶ Corollary 28. Suppose that Σ is an S-sorted second-order presentation, that (Y, J−K) is a
Σ-algebra, and that (P (Γ; A) ⊆ Y (Γ; A))(Γ;A)∈S∗×S is a family of subsets. For every S-sorted
clone X and homomorphism f : X → Y, if

for every context Γ we have var(Γ) ∈ P (Γ; Γ);
for every context Γ, operator o ∈ Σ((∆1; A1), . . . , (∆n; An); B), and tuple of terms
(ti ∈ P ♭(Γ, ∆i; Ai))i we have JoKΓ(t1, . . . , tn) ∈ P ♭(Γ; B);
for every term t ∈ X(Γ; B) we have fΓ;B(t) ∈ P ♭(Γ; B),

then, for every free term t ∈ (FΣX)(Γ; A), we have f†
Γ;A(t) ∈ P (Γ; A).

Proof. We can apply Theorem 26 to P ♭ because it is closed under operators and under f .
Hence f†

Γ;A(t) ∈ P ♭(Γ; A) for each t ∈ (FΣX)(Γ; A), and so var(Γ) ∈ P (Γ; Γ) implies that
f†

Γ;A(t) = (f†
Γ;A(t))[var(Γ)] ∈ P (Γ; A). ◀

The above corollaries are designed to enable logical relations arguments, in which the
fundamental lemma is proven using an induction hypothesis that quantifies over substitutions.
In particular, in Corollary 28 we require P ♭ to be closed under the operators, rather than
P . There is a third corollary that instead requires closure of P under operators (this would
essentially be the principle of induction on Γ ⊢X t : A), but this is less useful for our purposes.

6 Logical relations

We provide two extended examples of proofs using the induction principles of the previous
section, both involving the presentation ΣΛβη of the STLC with βη-equality. The first is
a proof of the adequacy of the set-theoretic model of the STLC, which uses induction on
closed terms; the second is a proof that every STLC term is βη-equal to one in normal form,
using induction on open terms. Both examples are logical relations proofs, the former using
ordinary logical relations and the latter using Kripke relations [27]. Though both properties
are known to hold, these proofs in particular illustrate that our induction principles are
powerful enough to justify logical relations arguments. We include a proof of normalization
for the STLC with global state in Appendix A, as a further motivating example.

N. Arkor and D. McDermott 30:13

6.1 Closed terms and adequacy
We say that a model M of the STLC is adequate when, for all closed terms t and u of the
base type b, if MJtK = MJuK, then t and u are equal up to βη-equality. (In adequate models,
equality of denotations implies observational equivalence for terms of arbitrary types.)

We first show that we can perform logical relations arguments for the STLC using our
induction principle: specifically Corollary 27. Fix a ΣΛβη -algebra (Y, J−K), homomorphism
f : X → Y from some clone X, and a subset P (b) ⊆ Y (⋄; b) of closed terms of base type.
We extend P to a family of subsets P (A) ⊆ Y (⋄; A) in the standard way for logical relations:

P (A ⇒ B) = {t ∈ Y (⋄; A⇒B) | ∀a ∈ P (A). JappK⋄(t, a) ∈ P (B)}

Applying Corollary 27 to P gives us the following:

▶ Lemma 29. If, for every context Γ and term t ∈ X(Γ; B), we have fΓ;B(t) ∈ P ♯(Γ; B),
then, for every free term t ∈ (FΣΛβη X)(⋄; A), we have f†

⋄;A(t) ∈ P (A).

Proof. The only non-trivial assumption of Corollary 27 is closure under operators. Closure
under app is immediate from the definition of the logical relation. Closure under abs holds
because, if t ∈ P ♯(A; B), then, for all a ∈ P (A), we have JappK⋄(JabsK⋄(t), a) = t[a] ∈ P (B)
using the β law, so that JabsK⋄(t) ∈ P (A ⇒ B). ◀

Note that if terms are generated only by λ-abstraction and application then there are
no closed terms of base type. For a more interesting example, we therefore consider the
STLC with booleans (where the base type b is the type of booleans). Consider the Ty-sorted
first-order presentation ΣBool with two (⋄; b)-ary operators true, false, and, for each A ∈ Ty,
a (b, A, A; A)-ary operator ite (“if-then-else”), along with two equations:

y : A, z : A ⊢ ite(true(), y, z) ≈ y : A y : A, z : A ⊢ ite(false(), y, z) ≈ z : A

Let Bool be the Ty-sorted clone that is presented by ΣBool.
Consider the free ΣΛβη -algebra FΣΛβη Bool, and the ΣΛβη -algebra MB (as defined in

Example 21) with B = {tt, ff}. The former should be thought of as containing the terms of the
STLC with booleans (we make this precise below); the latter is the usual model in Set. Both
have clone homomorphisms from Bool: the free algebra has ηBool : Bool → FΣΛβη Bool;
the model MB has the unique g : Bool → MB such that

gΓ;b(true()) = ζ 7→ tt gΓ;b(false()) = ζ 7→ ff

gΓ;A(ite(t1, t2, t3)) = ζ 7→

{
gΓ;A(t2)(ζ) if gΓ;b(t1)(ζ) = tt
gΓ;A(t3)(ζ) if gΓ;b(t1)(ζ) = ff

The algebra homomorphism g† : FΣΛβη Bool → MB gives the interpretation of STLC terms
in the model. Define a subset P (b) ⊆ (FΣΛβη Bool × MB)(⋄; b) = (FΣΛβη Bool)(⋄; b) × B by

P (b) = {(ηBool(true()), tt), (ηBool(false()), ff)}

This extends to a logical relation P by the definition on function types above and, by
a simple proof, satisfies the precondition of Lemma 29, where the clone homomorphism
f is ⟨ηBool, g⟩ : Bool → FΣΛβη Bool × MB. Hence, for all t ∈ (FΣΛβη Bool)(⋄; A), we
have (t, g†

⋄;A(t)) = ⟨ηBool, g⟩†
⋄;A(t) ∈ P (A). When A = b this immediately implies, for all

t, t′ ∈ (FΣΛβη Bool)(⋄; b), that if g†
⋄;b(t) = g†

⋄;b(t′) then t = t′.

FSCD 2021

30:14 Abstract Clones for Abstract Syntax

This last property is seen to be adequacy of the set-theoretic model MB as follows. Let
ΛβηBool be the Ty-sorted clone that is defined in the same way as Λβη (Example 5) but with
additional term formers and equations (omitting the typing constraints on equations):

Γ ⊢ true : b

Γ ⊢ false : b

Γ ⊢ t1 : b Γ ⊢ t2 : A Γ ⊢ t3 : A

Γ ⊢ if t1 then t2 else t3 : A

if true then t2 else t3 ≈βη t2
if false then t2 else t3 ≈βη t3

ΛβηBool forms an ΣΛβη -algebra, and there is a clone homomorphism η : Bool → Λβη

making it into the free ΣΛβη -algebra on Bool. Hence we can apply the method above with
FΣΛβη Bool = ΛβηBool. The algebra homomorphism g† : ΛβηBool → MB sends each term
Γ ⊢ t : A to its interpretation as a function

∏
i MBJΓiK → MBJAK. Adequacy is therefore

exactly the property that g†
⋄;b(t) = g†

⋄;b(t′) implies t = t′.

6.2 Open terms and normalization
As a second example, we show that every term of the STLC is equal (up to βη-equality) to
one in η-long β-normal form (we define these normal forms below). The proof mostly follows
Fiore [10], except that we reason abstractly using the universal property of free algebras via
our induction principle. It makes use of Kripke logical relations (with varying arity), which
were introduced by Jung and Tiuryn [27] to study λ-definability.

We first show that our induction principle enables arguments using Kripke logical relations
over the STLC. Fix a ΣΛβη -algebra (Y, J−K), homomorphism f : X → Y from a clone X,
and a subset P (Γ; b) ⊆ Y (Γ; b) for each Γ. We extend P from the base type b to all types by

P (Γ;A⇒B) = {t∈Y (Γ;A⇒B) | ∀∆,ρ∈VarS(∆;Γ), a∈P (∆;A). JappK∆(t[▷ρ], a) ∈ P (∆;B)}

This is the standard definition of a Kripke logical relation on function types (other than using
all renamings ρ rather than just weakenings, which is inessential). We therefore have a family
of subsets P (Γ; A) ⊆ Y (Γ; A), to which we apply Corollary 28 and obtain the following.

▶ Lemma 30. If the family of subsets P satisfies
for every context Γ we have var(Γ) ∈ P (Γ; Γ);
for every variable renaming ρ ∈ VarS(∆; Γ) and term t ∈ P (Γ; b) we have t[▷ρ] ∈ P (∆; b);
for every term t ∈ X(Γ; B) and substitution σ ∈ P (∆; Γ) we have (fΓ;Bt)[σ] ∈ P (∆; B),

then, for every free term t ∈ (FΣΛβη X)(Γ; A), we have f†
Γ;A(t) ∈ P (Γ; A).

Proof. The only non-trivial assumption of Corollary 28 is closure under operators. For
closure under app, if t ∈ P ♭(Γ; A ⇒ B) and u ∈ P ♭(Γ; A), then, for all σ ∈ P (∆; Γ), we
have (JappKΓ(t, u))[σ] = JappK∆(t[σ], u[σ]), because interpretations of operators commute
with substitution; this is an element of P (∆; B) using t[σ] ∈ P (∆; A ⇒ B) on the identity
variable-renaming. For closure under abs, suppose that t ∈ P ♭(Γ, A; B). The assumption of
the present lemma that P is closed under variable renamings at the base type b extends
to all types A by an easy induction on A. For every σ ∈ P (∆; Γ), ρ ∈ VarS(Ξ; ∆), and
a ∈ P (Ξ; A), we then have that t[(σ ◦▷ρ), a] ∈ P (Ξ; B). Preservation of substitution by JabsK,
and the β law, together imply that JappKΞ((JabsKΓ(t))[σ][▷ρ]) = t[(σ ◦ ▷ρ), a] ∈ P (Ξ; B).
Hence JabsKΓ(t) ∈ P ♭(Γ; A ⇒ B) as required. ◀

We use this to show normalization as follows. Normal forms Γ ⊢n t : A are defined
mutually inductively with the neutral forms Γ ⊢m t : A by the following rules:

Γ, x : A, ∆ ⊢m x : A

Γ ⊢m f : A ⇒ B Γ ⊢n a : A

Γ ⊢m app f a : B

Γ ⊢m t : b
Γ ⊢n t : b

Γ, x : A ⊢n t : B

Γ ⊢n λx : A. t : A ⇒ B

N. Arkor and D. McDermott 30:15

Consider the initial ΣΛβη -algebra, which is the clone Λβη of STLC terms up to ≈βη. We
write Nf(Γ; A) for the subset of STLC terms that are equivalent to a term in normal form
under ≈βη; and likewise write Ne(Γ; A) for neutral forms. We consider both as subsets of
Λβη(Γ; A); both are closed under variable renaming. The family of subsets we consider,
P (Γ; A) ⊆ Λβη(Γ; A), is defined on the base type as P (Γ; b) = Nf(Γ; b), and on other types
by the logical relations definition above. By a simple induction on the sort A, one can
show that Ne(Γ; A) ⊆ P (Γ; A) ⊆ Nf(Γ; A) (e.g. as in [10]). Since variables are neutral, this
tells us in particular that var(Γ) ∈ P (Γ; Γ) for all Γ. It then follows from Lemma 30 that
t = (▷)†(t) ∈ P (Γ; A) ⊆ Nf(Γ; A) for all t ∈ Λβη(Γ; A), and so that every term of the STLC
is βη-equivalent to one in normal form.

7 Comparison to other approaches

While we promote abstract clones as an elementary approach to simple type theories (qua
multisorted second-order abstract syntax), there are several equivalent concepts that have
been used to similar effect. We give a brief overview of the existing literature on the subject
and a comparison with our work; we give references where possible, but unfortunately some
of the relationships here exist only in the mathematical folklore.

Presheaves and substitution monoids

The study of second-order abstract syntax was initiated by Fiore et al. [16, 10], who
represent term structure using presheaf categories. In their setting, one considers functors
T : L(S)op → SetS , where L(S) is the category in which objects are contexts Γ, and
morphisms ρ : ∆ → Γ are variable renamings ρ ∈ VarS(Γ; ∆) (recall Section 2.1). The
S-indexed sets T (Γ) consist of the sorted terms in context Γ; while the functions T (ρ) rename
the variables inside the terms to change their context. Substitution is accounted for by
considering the monoidal structure (•, V) on [L(S)op, SetS], in which T • T ′ represents (for
each context Γ) the simultaneous substitution of each variable in T with a term from T ′,
and V represents the variables in each context. Monoids with respect to this structure are
equipped with variables and substitution operations; they are equivalently abstract clones [16,
Proposition 3.4]. Fiore and Hur [13] define Σ-algebras as monoids in [L(S)op, SetS] equipped
with interpretations of the operators of a presentation Σ satisfying its equations; they are
equivalent to our Σ-algebras. Our setting is therefore equivalent to that of Fiore et al. The
advantage of our approach is that abstract clones require less categorical machinery; for
those comfortable with category theory, this will be less of a concern.

There are some technical differences with previous work. Fiore and Hur [13] show the
existence of the free Σ-algebras on each presheaf T ; in light of our free algebra result, the
construction of the free algebra on T can be factored into two steps: constructing the free
clone X on T by freely adding variables and substitution, and then taking the free Σ-algebra
on the clone X. In our examples above, we begin with a clone that admits substitution,
and hence do not freely add substitution. In a separate treatment, Hofmann [22] gives an
induction principle for the λ-calculus using presheaves, but only considers predicates over
closed terms; we obtain induction for closed terms as a corollary of induction over open terms.

Cartesian multicategories

Each abstract clone X has an identity operation for every sort B, given by the unique variable
projection var([B])

1 ∈ X(B; B), along with admissible operations of exchange, weakening,
and contraction. In this way, the sets of terms X(Γ; A) form the structure of a cartesian

FSCD 2021

30:16 Abstract Clones for Abstract Syntax

multicategory with object set S (intuitively a category whose morphisms may have multiple
inputs, subject to the structural properties of first-order equational logic). Conversely,
every cartesian multicategory gives rise to an abstract clone. Thus, one could carry out the
development of this paper in the context of cartesian multicategories (cf. [5, Section 9]). Clones
are our preferred choice, because the definition of clone (in which projections are the primary
operation) provides a more minimal axiomatisation than that of cartesian multicategory (in
which the structural operations are primary). Note that one-object cartesian multicategories
are usually called cartesian operads, which correspond to monosorted abstract clones.

Algebraic theories

The traditional approach to describing first-order algebraic structure in categorical logic
is through algebraic theories [29]. An algebraic theory is represented by a category with
cartesian products, which permit the multimorphisms of a cartesian multicategory to be
represented by morphisms from a product: for a context [A1, . . . , An], the terms x1 :
A1, . . . , xn : An ⊢ t : B are represented by a hom-set X(A1 × · · · × An, B). The relationship
between cartesian multicategories and algebraic theories is the notion of representability for
cartesian multicategories [33]. Second-order structure in the context of algebraic theories
is captured by second-order algebraic theories [14, 32, 6], which generalize the first-order
setting by introducing exponential objects that represent function types. Every second-order
presentation Σ induces a second-order algebraic theory, the algebras for which are given by
taking coslices over Σ [6].

Monads and relative monads

There is a classical correspondence in category theory between algebraic theories and certain
monads on the category of sets [31], which in turn are equivalent to J-relative monads, for
J the inclusion of finite sets into sets [4]. This has led to a line of investigation in which
monads are used directly for second-order abstract syntax [20, 21, 2, 3, 19]. There are strong
connections between this approach and that of presheaves and substitution monoids: for
a detailed comparison, see the thesis of Zsidó [38]. In particular, the distinction between
abstract clones and J-relative monads is slight, and the results of our development could
equivalently be rephrased as statements about relative monads (cf. [6]).

8 Conclusion

We have shown that the abstract syntax of simple type theories has an elementary treatment
using abstract clones. The framework we describe allows the specification of the terms
and equations of type theories via second-order presentations [13, 14]. Free algebras then
give the syntax along with an accompanying induction principle, which we show enables
abstract proofs of non-trivial properties such as adequacy. We emphasize that abstract
clones axiomatize the syntax only of simple type theories: clones cannot express linear
types, dependent types, or type theories in which variables stand only for certain classes
of term (e.g. polarized type theories [37], and the call-by-value λ-calculus). In some cases,
analogous structures are already known (for instance, symmetric multicategories for linear
type theories [35, 23]); for others, such as dependent type theories, this remains an open
problem.

N. Arkor and D. McDermott 30:17

References
1 Peter Aczel. A general Church–Rosser theorem. Unpublished manuscript, 1978.
2 Benedikt Ahrens. Modules over relative monads for syntax and semantics. Mathematical

Structures in Computer Science, 26(1):3–37, 2016. doi:10.1017/S0960129514000103.
3 Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. Modular spe-

cification of monads through higher-order presentations. In 4th International Conference on
Formal Structures for Computation and Deduction (FSCD 2019), volume 131, pages 1–16.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.FSCD.2019.6.

4 Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need not be endofunctors.
In Foundations of Software Science and Computational Structures, pages 297–311. Springer,
2010. doi:10.1007/978-3-642-12032-9_21.

5 Nathanael Arkor and Marcelo Fiore. Algebraic models of simple type theories: a polynomial
approach. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer
Science, page 88–101. Association for Computing Machinery, 2020. doi:10.1145/3373718.
3394771.

6 Nathanael Arkor and Dylan McDermott. Higher-order algebraic theories. Preprint, 2020.
URL: https://www.cl.cam.ac.uk/~na412/Higher-order%20algebraic%20theories.pdf.

7 Michael Barr. Exact categories. In Exact categories and categories of sheaves, pages 1–120.
Springer, 1971.

8 Garrett Birkhoff. On the structure of abstract algebras. In Mathematical Proceedings of the
Cambridge Philosophical Society, volume 31, pages 433–454. Cambridge University Press, 1935.
doi:10.1017/S0305004100013463.

9 Garrett Birkhoff and John D Lipson. Heterogeneous algebras. Journal of Combinatorial
Theory, 8(1):115–133, 1970. doi:10.1016/S0021-9800(70)80014-X.

10 Marcelo Fiore. Semantic analysis of normalisation by evaluation for typed lambda calculus. In
Proceedings of the 4th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming, pages 26–37. Association for Computing Machinery, 2002. doi:
10.1145/571157.571161.

11 Marcelo Fiore. Second-order and dependently-sorted abstract syntax. In Proceedings of
the 23rd Annual IEEE Symposium on Logic in Computer Science, pages 57–68. IEEE, 2008.
doi:10.1109/LICS.2008.38.

12 Marcelo Fiore and Makoto Hamana. Multiversal polymorphic algebraic theories: syntax,
semantics, translations, and equational logic. In Proceedings of the 28th Annual ACM/IEEE
Symposium on Logic in Computer Science, pages 520–529. IEEE, 2013. doi:10.1109/LICS.
2013.59.

13 Marcelo Fiore and Chung-Kil Hur. Second-order equational logic. In Computer Science Logic,
pages 320–335. Springer, 2010. doi:10.1007/978-3-642-15205-4_26.

14 Marcelo Fiore and Ola Mahmoud. Second-order algebraic theories. In Mathematical Founda-
tions of Computer Science, pages 368–380. Springer, 2010. doi:10.1007/978-3-642-15155-2_
33.

15 Marcelo Fiore and Ola Mahmoud. Functorial semantics of second-order algebraic theories,
2014. arXiv:1401.4697.

16 Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable binding.
In Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158), pages
193–202. IEEE, 1999. doi:10.1109/LICS.1999.782615.

17 Joseph Goguen and José Meseguer. Completeness of many-sorted equational logic. Houston
Journal of Mathematics, 11(3):307–334, 1985.

18 Makoto Hamana. Free σ-monoids: A higher-order syntax with metavariables. In Asian
Symposium on Programming Languages and Systems, pages 348–363. Springer, 2004. doi:
10.1007/978-3-540-30477-7_23.

FSCD 2021

https://doi.org/10.1017/S0960129514000103
https://doi.org/10.4230/LIPIcs.FSCD.2019.6
https://doi.org/10.1007/978-3-642-12032-9_21
https://doi.org/10.1145/3373718.3394771
https://doi.org/10.1145/3373718.3394771
https://www.cl.cam.ac.uk/~na412/Higher-order%20algebraic%20theories.pdf
https://doi.org/10.1017/S0305004100013463
https://doi.org/10.1016/S0021-9800(70)80014-X
https://doi.org/10.1145/571157.571161
https://doi.org/10.1145/571157.571161
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1109/LICS.2013.59
https://doi.org/10.1109/LICS.2013.59
https://doi.org/10.1007/978-3-642-15205-4_26
https://doi.org/10.1007/978-3-642-15155-2_33
https://doi.org/10.1007/978-3-642-15155-2_33
http://arxiv.org/abs/1401.4697
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1007/978-3-540-30477-7_23
https://doi.org/10.1007/978-3-540-30477-7_23

30:18 Abstract Clones for Abstract Syntax

19 André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont. Modules over monads and
operational semantics. In 5th International Conference on Formal Structures for Computation
and Deduction (FSCD 2020), volume 167, pages 12–1. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.FSCD.2020.12.

20 André Hirschowitz and Marco Maggesi. Modules over monads and linearity. In Logic,
Language, Information, and Computation, pages 218–237. Springer, 2007. doi:10.1007/
978-3-540-73445-1_16.

21 André Hirschowitz and Marco Maggesi. Modules over monads and initial semantics. Information
and Computation, 208(5):545–564, 2010. doi:10.1016/j.ic.2009.07.003.

22 Martin Hofmann. Semantical analysis of higher-order abstract syntax. In Proceedings. 14th
Symposium on Logic in Computer Science (Cat. No. PR00158), pages 204–213. IEEE, 1999.
doi:10.1109/LICS.1999.782616.

23 Mathieu Huot. Operads with algebraic structure. MPRI Internship Report, 2016. URL:
http://users.ox.ac.uk/~scro3639/M1_Report.pdf.

24 J.M.E. Hyland. Classical lambda calculus in modern dress. Mathematical Structures in
Computer Science, 27(5):762–781, 2017. doi:10.1017/S0960129515000377.

25 J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts. Tripos theory. In Mathematical Proceedings
of the Cambridge Philosophical Society, volume 88, pages 205–232. Cambridge University Press,
1980. doi:10.1017/S0305004100057534.

26 Bart Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic and the
Foundations of Mathematics. North Holland, 1999.

27 Achim Jung and Jerzy Tiuryn. A new characterization of lambda definability. In Typed
Lambda Calculi and Applications, pages 245–257. Springer, 1993. doi:10.1007/BFb0037110.

28 J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cambridge
University Press, 1988.

29 F. William Lawvere. Functorial semantics of algebraic theories. Proceedings of the National
Academy of Sciences of the United States of America, 50(5):869–872, 1963. doi:10.1073/pnas.
50.5.869.

30 Daniel J. Lehmann and Michael B. Smyth. Algebraic specification of data types: A synthetic
approach. Mathematical systems theory, 14(1):97–139, 1981. doi:10.1007/BF01752392.

31 F.E.J. Linton. An outline of functorial semantics. In Seminar on Triples and Categorical
Homology Theory, pages 7–52. Springer, 1969. doi:10.1007/BFb0083080.

32 Ola Mahmoud. Second-order algebraic theories. Technical Report UCAM-CL-TR-807, Univer-
sity of Cambridge, Computer Laboratory, 2011. doi:10.48456/tr-807.

33 Claudio Pisani. Sequential multicategories. Theory and Applications of Categories, 29(19):496–
541, 2014. URL: http://www.tac.mta.ca/tac/volumes/29/19/29-19abs.html.

34 Andrew M. Pitts. Tripos theory in retrospect. Mathematical structures in computer science,
12(3):265–279, 2002. doi:10.1017/S096012950200364X.

35 Miki Tanaka. Abstract syntax and variable binding for linear binders. In Mathematical Found-
ations of Computer Science, pages 670–679. Springer, 2000. doi:10.1007/3-540-44612-5_62.

36 Walter Taylor. Abstract clone theory. In Algebras and orders, volume 389 of NATO ASI
Series C, pages 507–530. Springer, 1993. doi:10.1007/978-94-017-0697-1_11.

37 Noam Zeilberger. The Logical Basis of Evaluation Order and Pattern-matching. PhD thesis,
Carnegie Mellon University, 2009.

38 Julianna Zsidó. Typed abstract syntax. PhD thesis, Université Nice Sophia Antipolis, 2010.

A Normalization with global state

As a further example of the application of abstract clones to problems motivated by simple
type theories, we prove a normalization result for the STLC with V -valued global state:
concretely, this calculus is given by the free algebra of the second-order presentation ΣΛβη

https://doi.org/10.4230/LIPIcs.FSCD.2020.12
https://doi.org/10.1007/978-3-540-73445-1_16
https://doi.org/10.1007/978-3-540-73445-1_16
https://doi.org/10.1016/j.ic.2009.07.003
https://doi.org/10.1109/LICS.1999.782616
http://users.ox.ac.uk/~scro3639/M1_Report.pdf
https://doi.org/10.1017/S0960129515000377
https://doi.org/10.1017/S0305004100057534
https://doi.org/10.1007/BFb0037110
https://doi.org/10.1073/pnas.50.5.869
https://doi.org/10.1073/pnas.50.5.869
https://doi.org/10.1007/BF01752392
https://doi.org/10.1007/BFb0083080
https://doi.org/10.48456/tr-807
http://www.tac.mta.ca/tac/volumes/29/19/29-19abs.html
https://doi.org/10.1017/S096012950200364X
https://doi.org/10.1007/3-540-44612-5_62
https://doi.org/10.1007/978-94-017-0697-1_11

N. Arkor and D. McDermott 30:19

of the STLC with βη-equality on the clone GSV of V -valued global state, whose syntax is
described in Example 23. The proof is similar to normalization of the STLC without global
state (Section 6.2); in particular, we reuse Lemma 30.

Recall that for V = {v1, . . . , vk}, the free algebra consists of the syntax of the STLC
extended by the additional term formers get and putvi

. Normal and neutral forms are defined
as in Section 6.2, except with

the rule
Γ ⊢m t : b
Γ ⊢n t : b

replaced by
Γ ⊢m t1 : b · · · Γ ⊢m tk : b (w1, . . . , wk ∈ V)

Γ ⊢n get(putw1
(t1), . . . , putwk

(tk)) : b .

Again we write Nf(Γ; A) (respectively Ne(Γ; A)) for the subsets of terms equal to a normal
(respectively neutral) form, and define the logical relation P (Γ; A) on the base type as
P (Γ; b) = Nf(Γ; b), and on other types by the logical relations definition in Section 6.2. Again
we have Ne(Γ; A) ⊆ P (Γ; A) ⊆ Nf(Γ; A) by induction on A; the only difference with the
previous proof is that on base types one has Ne(Γ; b) ⊆ Nf(Γ; b), because for t ∈ Ne(Γ; b) we
have t ≈βη get(putv1(t), . . . , putvk

(t)) ∈ Nf(Γ; b). To prove that every term is equal to one
in normal form up to ≈βη, it suffices to apply Lemma 30 with f the clone homomorphism
ηGSV

: GSV → FΣΛβη GSV . The first two assumptions of the lemma have the same proof as
before. For the third, since GSV is presented by ΣGS

V and clone homomorphisms preserve
variables and substitution, it suffices to show that

for each t1, . . . , tk ∈ P (Γ; b), we have get(t1, . . . , tk) ∈ P (Γ; b);
for each t ∈ P (Γ; b) and i ≤ k, we have putvi

(t) ∈ P (Γ; b).
The first statement holds because if ti = get(putwi1(t′

i1), . . . , putwik
(t′

ik)) then

get(t1, . . . , tk) ≈βη get(putw11(t′
11), . . . , putwkk

(t′
kk)) ∈ Nf(Γ; b) = P (Γ; b)

The second statement holds because if t = get(putw1(t′
1), . . . , putwk

(t′
k)) then

putvi
(t) ≈βη putwi

(t′
i) ≈βη get(putwi

(t′
i), . . . , putwi

(t′
i)) ∈ Nf(Γ; b) = P (Γ; b)

FSCD 2021

Tuple Interpretations for Higher-Order Complexity
Cynthia Kop ! Ï

Department of Software Science, Radboud University Nijmegen, The Netherlands

Deivid Vale ! Ï

Department of Software Science, Radboud University Nijmegen, The Netherlands

Abstract
We develop a class of algebraic interpretations for many-sorted and higher-order term rewriting
systems that takes type information into account. Specifically, base-type terms are mapped to
tuples of natural numbers and higher-order terms to functions between those tuples. Tuples may
carry information relevant to the type; for instance, a term of type nat may be associated to a
pair ⟨cost, size⟩ representing its evaluation cost and size. This class of interpretations results in a
more fine-grained notion of complexity than runtime or derivational complexity, which makes it
particularly useful to obtain complexity bounds for higher-order rewriting systems.

We show that rewriting systems compatible with tuple interpretations admit finite bounds on
derivation height. Furthermore, we demonstrate how to mechanically construct tuple interpretations
and how to orient β and η reductions within our technique. Finally, we relate our method to runtime
complexity and prove that specific interpretation shapes imply certain runtime complexity bounds.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases Complexity, higher-order term rewriting, many-sorted term rewriting, poly-
nomial interpretations, weakly monotonic algebras

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.31

Related Version An extended appendix with full proofs and additional examples is available at [32].
Extended Version: https://arxiv.org/abs/2105.01112

Funding The authors are supported by the NWO TOP project “ICHOR”, NWO 612.001.803/7571
and the NWO VIDI project “CHORPE”, NWO VI.Vidi.193.075.

1 Introduction

Term rewriting systems (TRSs) are a conceptually simple but powerful computational model.
It is simple because computation is modelled straightforwardly by step-by-step applications
of transformation rules. It is powerful in the sense that any algorithm can be expressed in
it (Turing Completeness). These characteristics make TRSs a formalism well-suited as an
abstract analysis language, for instance to study properties of functional programs. We can
then define specific analysis techniques for each property of interest.

One such property is complexity. The study of complexity has long been a topic of
interest in term rewriting [11, 27, 25, 7, 24, 35], as it both holds relations to computational
complexity [3, 11, 12] and resource analysis [6, 13] and is highly challenging. Most commonly
studied are the notions of runtime and derivational complexity, which capture the number of
steps that may be taken when starting with terms of a given size and shape. In essence, this
is a form of resource analysis which abstracts away from the true machine cost of reduction
in a rewriting engine but still has a close relation to it [8, 18, 1, 12].

These notions do not obviously extend to the higher-order setting, however. In higher-
order term rewriting, a term may represent a function; yet, the size of a function does not
tell us much about its behaviour. Rather, properties such as “the function is size-increasing”
may be more relevant. Clearly a more sophisticated complexity notion is needed.

© Cynthia Kop and Deivid Vale;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 31; pp. 31:1–31:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:c.kop@cs.ru.nl
https://www.cs.ru.nl/~cynthiakop
https://orcid.org/0000-0002-6337-2544
mailto:deividvale@cs.ru.nl
https://www.cs.ru.nl/~deividvale
https://orcid.org/0000-0003-1350-3478
https://doi.org/10.4230/LIPIcs.FSCD.2021.31
https://arxiv.org/abs/2105.01112
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Tuple Interpretations for Higher-Order Complexity

In this paper we will propose a new method to analyse many-sorted and higher-order
term rewriting systems, which can be used as a foundation to obtain a variety of complexity
results. This method is based on interpretations in a monotonic algebra as also used for
termination analysis [39, 22], where a term of function type is mapped to a monotonic
function. Unlike [39, 22], we map a term of base type not to an integer, but rather to a vector
of integers describing different values of interest in the term. This will allow us to reason
separately about – for instance – the length of a list and the size of its greatest element, and
to describe the behaviour of a term of function type in a fine-grained way.

This method is also relevant for termination analysis, since we essentially generalise and
extend matrix interpretations [35] to higher-order rewriting. In addition, the technique may
add some power to the arsenal of a complexity or termination analysis tool for first-order term
rewriting; in particular many-sorted term rewriting due to the way we use type information.

A note on terminology. We use the word “complexity” as it is commonly used in term
rewriting: a worst-case measure of the number of steps in a reduction. In this paper we do
not address the question of true resource use or connections to computational complexity. In
particular, we do not address the true cost of beta-reduction. This is left to future work.

Outline of the paper. We will start by recalling the definition of and fixing notation for
many-sorted and higher-order term rewriting (§2). Then, we will define tuple interpretations
for many-sorted first-order rewriting to explore the idea (§3), discuss our primary objective
of higher-order tuple interpretations (§4), and relate our method to runtime complexity (§5).
Finally, we will discuss related work (§6) and end with conclusions and future work (§7).

2 Preliminaries

We assume the reader is familiar with first-order term rewriting and λ-calculus. In this
section, we fix notation and discuss the higher-order rewriting format used in the paper.

2.1 First-Order Many-Sorted Rewriting
Many-sorted term rewriting [38] is in principle the same as first-order term rewriting. The
only difference is that we impose a sort system and limit interest to well-sorted terms.

Formally, we assume given a non-empty set of sorts S. A many-sorted signature consists
of a set F of function symbols together with two functions that map each symbol to a
finite sequence of input sorts and an output sort. Fixing a many-sorted signature, we will
denote f :: [ι1 × · · · × ιk] ⇒ κ if f ∈ F and f has input sorts ι1, . . . , ιk and output sort κ.
We also assume given a set X =

⋃
ι∈S Xι of variables disjoint from F , such that all Xι are

pairwise disjoint. The set Tfo(F , X) of many-sorted terms is inductively defined as the set
of expressions s such that s :: κ can be derived for some sort κ using the clauses:

x :: κ if x ∈ Xκ f(s1, . . . , sk) :: κ if f :: [ι1 × · · · × ιk] ⇒ κ and each si :: ιi

If s :: κ, we call κ the sort of s. Substitutions, rewrite rules and reduction are defined as usual
in first-order term rewriting, except that substitutions are sort-preserving (each variable is
mapped to a term of the same sort) and both sides of a rule have the same sort. We omit
these definitions, since they are a special case of the higher-order definitions in Section 2.2.

▶ Example 1. We fix nat and list for the sorts of natural numbers and lists of natural
numbers, respectively; and a signature with the symbols: 0 :: nat (this is shorthand notation
for [] ⇒ nat), s :: [nat] ⇒ nat, nil :: list, cons :: [nat × list] ⇒ list, rev :: [list] ⇒ list,

C. Kop and D. Vale 31:3

sum :: [list] ⇒ nat, append :: [list × list] ⇒ list, and ⊕:: [nat × nat] ⇒ nat. The rules below
compute well-known functions over lists and numbers. We follow the convention of using
infix notation for cons and ⊕, i.e., cons(x, xs) is written x : xs and ⊕(x, y) is written x ⊕ y.

x ⊕ 0 → x sum(nil) → 0
x ⊕ s(y) → s(x ⊕ y) sum(x : xs) → sum(xs) ⊕ x

append(nil, xs) → xs rev(nil) → nil
append(x : xs, ys) → x : append(xs, ys) rev(x : xs) → append(rev(xs), x : nil)

2.2 Higher-Order Rewriting
For higher-order rewriting, we will use algebraic functional systems (AFS), a slightly simplified
form of a higher-order language introduced by Jouannaud and Okada [29]. This choice gives
an easy presentation, as it combines algebraic definitions in a first-order style with a function
mechanism using λ-abstractions and term applications.

Given a non-empty set of sorts S, the set ST of simple types (or just types) is given
by: (a) S ⊆ ST ; (b) if σ, τ ∈ ST then σ ⇒ τ ∈ ST . Types are denoted by σ, τ and sorts
by ι, κ. A higher-order signature consists of a set F of function symbols together with two
functions that map each symbol to a finite sequence of input types and an output type; fixing
a signature, we denote this type information f :: [σ1 × · · · × σk] ⇒ τ . A function symbol is
said to be higher-order if at least one of its input types or its output type is an arrow type.

We also assume given a set X =
⋃

σ∈ST Xσ of variables disjoint from F (and pairwise
disjoint) so that each Xσ is countably infinite. The set T (F , X) of terms is inductively
defined as the set of expressions whose type can be derived using the following clauses:

x :: σ if x ∈ Xσ (λx.s) :: σ ⇒ τ if x ∈ Xσ and s :: τ

(s t) :: τ if s :: σ ⇒ τ and :: σ f(s1, . . . , sk) :: τ if f :: [σ1 × · · · × σk] ⇒ τ

and each si :: σi

If s :: σ, we say that σ is the type of s. It is easy to see that each term has a unique type.
As in the λ-calculus, a variable x is bound in a term if it occurs in the scope of an abstractor

λx.; it is free otherwise. A term is called closed if it has no free variables and ground if it
also has no bound variables. Term equality is modulo α-conversion and bound variables are
renamed if necessary. Application is left-associative and has precedence over abstractions;
for example, λx.s t u reads λx.((s t) u). A substitution is a finite, type-preserving mapping
γ : X → T (F , X), typically denoted [x1 := s1, . . . , xn := tn]. Its domain {x1, . . . , xn} is
denoted dom(γ). A substitution γ is applied to a term s, notation sγ, by renaming all bound
variables in s to fresh variables and then replacing each x ∈ dom(γ) by γ(x). Formally:

xγ = γ(x) if x ∈ dom(γ) (s t)γ = (sγ) (tγ)
xγ = x if x /∈ dom(γ) f(s1, . . . , sk)γ = f(s1γ, . . . , skγ)

(λx.s)γ = λy.(s([x := y]γ)) for y fresh

Here, [x := y]γ is the substitution that maps x to y and all variables in dom(γ) other than x

to γ(x). The result of sγ is unique modulo α-renaming.
A rewriting rule is a pair of terms ℓ → r of the same type such that all free variables of r

also occur in ℓ. Given a set of rewriting rules R, the rewrite relation induced by R on the
set T (F , X) is the smallest monotonic relation that is stable under substitution and contains
both all elements of R and β-reduction. That is, it is inductively generated by:

FSCD 2021

31:4 Tuple Interpretations for Higher-Order Complexity

(λx.s) t →R s[x := t] λx.s →R λx.t if s →R t

ℓγ →R rγ if ℓ → r ∈ R s u →R t u if s →R t

f(. . . , s, . . .) →R f(. . . , t, . . .) if s →R t u s →R u t if s →R t

Note that we do not, by default, include the common η-reduction rule scheme (“λx.s x →R s

if x is not a free variable in s”). We avoid this because not all sources consider it, and it is
easy to add by including, for all types σ, τ , a rule λx.F x → F with F ∈ Xσ⇒τ in R.

An algebraic functional system (AFS) is the combination of a set of terms T (F , X) and a
rewrite relation →R over T (F , X). An AFS is typically given by supplying F and R.

A many-sorted term rewriting system (TRS), as discussed in Section 2.1, is a pair
(Tfo(F , X), →R) where F is a many-sorted signature and →R a rewrite relation over
Tfo(F , X). That is, it is essentially an AFS where we only consider first-order terms.

▶ Example 2. Following common examples in higher-order rewriting, we will use (as a
running example) the AFS (F , R)fold, with symbols nil :: list, cons :: [nat × list] ⇒ list,
map :: [(nat ⇒ nat) × list] ⇒ list, foldl :: [(nat ⇒ nat ⇒ nat) × nat × list] ⇒ nat, and rules:

foldl(F, z, nil) → z map(F, nil) → nil
foldl(F, z, x : xs) → foldl(F, (F z x), xs) map(F, x : xs) → (F x) : map(F, xs)

2.3 Functions and orderings
An extended well-founded set is a tuple (A, >, ≥) such that > is a well-founded ordering on
A; ≥ is a quasi-ordering on A; x > y implies x ≥ y; and x > y ≥ z implies x > z. Hence, it
is permitted, but not required, that ≥ is the reflexive closure of >.

For sets A, B, the notation A =⇒ B denotes the set of functions from A to B. Function
equality is extensional: for f, g ∈ A =⇒ B we say f = g iff f(x) = g(x) for all x ∈ A.

If (A, >, ≥) and (B, ≻, ⪰) are extended well-founded sets, we say that f ∈ A =⇒ B is
weakly monotonic if x ≥ y implies f(x) ⪰ f(y). In addition, if (A1, >1, ≥1), . . . , (An, >n, ≥n)
are all well-founded sets, we say that f ∈ A1 ×· · ·×An =⇒ B is weakly monotonic if we have
f(x1, . . . , xn) ⪰ f(y1, . . . , yn) whenever xi ≥i yi for all 1 ≤ i ≤ n. We say that f is strict in
argument j if xj >j yj (and also xi ≥i yi for all i) implies f(x1, . . . , xn) ≻ f(y1, . . . , yn).

We say that f ∈ A1 × · · · × An =⇒ B is strongly monotonic if f is weakly monotonic and
strict in all its arguments (and similar for f ∈ A =⇒ B).

3 First-Order tuple interpretation

In this section, we will introduce the concept of tuple interpretations for many-sorted term
rewriting. This is the core methodology which the higher-order theory is built on top of.
This theory also has value by itself as a first-order termination and complexity technique.

It is common in the rewriting literature to use termination proofs to assess the difficulty of
rewriting a term to normal form [7, 27]. The intuition comes from the idea that by ordering
rewriting rules in descending order we gauge the order of magnitude of reduction. The same
principle applies for syntactic [24, 25, 34] and semantic [27, 26, 35] termination proofs.

On the semantic side there is a natural strategy: given an extended well-founded set
A = (A, >, ≥) find an interpretation from terms to elements of A so that JsK > JtK whenever
s →R t. (This can typically be done by showing that JℓK > JrK for all rules ℓ → r). This

C. Kop and D. Vale 31:5

interpretation holds information about the complexity of (F , R) since the maximum length
of a reduction starting in a term s is bounded by number of > steps that may be done
starting in JsK. If JsK is a natural number, this gives a bound immediately.

In the setting of many-sorted term rewriting, we may formally define this as follows.

▶ Definition 3. Let S be a set of sorts and F an S-signature. A many-sorted monotonic
algebra A consists of a family of extended well-founded sets (Aι, >ι, ≥ι)ι∈S together with an
interpretation J which associates to each f :: [ι1 × · · · × ιk] ⇒ κ in F a strongly monotonic
function Jf ∈ Aι1 × · · · × Aιk

=⇒ Aκ. Let α be a function that maps variables of sort ι to
elements of Aι. We extend J to a function J·Kα that maps terms of sort ι to elements of Aι,
by letting JxKα = α(x) if x is a variable of sort ι, and Jf(s1, . . . , sk)Kα = Jf(Js1Kα, . . . , JskKα).
We say that a TRS (F , R) is compatible with A if JℓKα > JrKα for all α and all ℓ → r ∈ R.

We will generally omit the subscript α when it is clear from context, writing JsK instead
of JsKα. In examples, we may write something like JsK = x + y to mean JsKα = α(x) + α(y).

▶ Theorem 4. If (F , R) is compatible with A then for all α: JsKα > JtKα whenever s →R t.

Proof Sketch. By induction on the size of s using strong monotonicity of each Jf . ◀

A common notion in the literature on complexity of term rewriting is derivation height:

dhR(t) := max{n ∈ N | ∃s. t →n s}.

Intuitively, dhR(t) describes the worst-case number of steps for all possible reductions starting
in t. If (F , R) is terminating, then dhR(·) is a total function. If (Aι, >ι) = (N, >) then we
easily see that dhR(t) ≤ JtK for any term t : ι. Hence, J·K can be used to bound the derivation
height function. However, this may give a severe overestimation, as demonstrated below.

▶ Example 5. Let (F , R)ab be the TRS with only a rule a(b(x)) → b(a(x)) and signature
a, b : [string] ⇒ string and ϵ : string. We can prove termination by the following interpretation:

Ja(x)K = 2 ∗ x Jb(x)K = x + 1 JϵK = 0

Indeed, we have JℓK > JrK for the only rule as Ja(b(x))K = 2 ∗ x + 2 > 2 ∗ x + 1 = Jb(a(x))K.
Now consider a term t = an(bm(ϵ)). Then dhR(t) = n∗m whereas JtK = 2nm; an exponential
difference! Such an overestimation is problematic if we want to use J·K to bound dhR(·).

We could find a tight bound for the system of Example 5 by a reasoning like the following:
for every term s, let #bs(s) be the number of b occurrences in s. For a term t, let cost(t)
denote

∑
{{#bs(s) | a(s) is a subterm of t}}. Then, the cost of a term decreases exactly by 1

in each step. As the normal form has cost 0, we find the tight bound cost(an(bm(ϵ))) = n ∗ m.
This reasoning relies on tracking more than one value. We can formalise this reasoning

using an algebra interpretation (and will do so in Example 8), by choosing the right A:

▶ Definition 6. A tuple algebra is an algebra A = (A, J) with A = (Aι, >ι, ≥ι)ι∈S such
that each Aι has the form NK[ι] (for an integer K[ι] ≥ 1) and we let ⟨n1, . . . , nK[ι]⟩ ≥ι

⟨n′
1, . . . , n′

K[ι]⟩ if each ni ≥ n′
i, and ⟨n1, . . . , nK[ι]⟩ >ι ⟨n′

1, . . . , n′
K[ι]⟩ if additionally n1 > n′

1.

Intuitively, the first component always indicates “cost”: the number of steps needed to
reduce a term to normal form. This is the component that needs to decrease in each rewrite
step to have JsK > JtK whenever s →R t. The remaining components represent some value of
interest for the sort. This could for example be the size of the term (or its normal form), the
length of a list, or following Example 5, the number of occurrences of a specific symbol. For
these components, we only require that they do not increase in a reduction step.

By the definition of >ι, and using Theorem 4, we can conclude:

FSCD 2021

31:6 Tuple Interpretations for Higher-Order Complexity

▶ Corollary 7. If a TRS (F , R) is compatible with a tuple algebra then it is terminating and
dhR(t) ≤ JtK1, for all terms t. (Here, JtK1 indicates the first component of the tuple JtK.)

Using this, we obtain a tight bound on the derivation height of an(bm(ϵ)) in Example 5:

▶ Example 8. The TRS (F , R)ab is compatible with the tuple algebra with Astring = N2 and

Ja(x)K = ⟨x1 + x2, x2⟩ Jb(x)K = ⟨x1, x2 + 1⟩ JϵK = ⟨0, 0⟩

Here, again, subscripts indicate tuple indexing; i.e., ⟨n, m⟩1 = n and ⟨n, m⟩2 = m. Note that
for every ground term s we have JsK2 = #bs(s). The first component exactly sums #bs(t) for
every subterm t of s which has the form a(t′). We have: Ja(b(x))K = ⟨x1 + x2 + 1, x2 + 1⟩ >nat
⟨x1 + x2, x2 + 1⟩ = Jb(a(x))K. The interpretation functions Ja and Jb are indeed monotonic.
For example, for Ja: if x >nat y then x1 + x2 > y1 + y2 (since x1 > y1 and x2 ≥ y2) and
x2 ≥ y2; and if x ≥nat y then x1+x2 ≥ y1+y2 and x2 ≥ y2. We have Jan(bm(ϵ))K = (n∗m, m).

To build strongly monotonic functions we can for instance use the following observation:

▶ Lemma 9. A function F : NK[ι1] × · · · × NK[ιk] =⇒ NK[κ] is strongly monotonic if we can
write F (x1, . . . , xk) = ⟨x1

1 + · · · + xk
1 + S1(x1, . . . , xk), S2(x1, . . . , xk), . . . , SK[κ](x1, . . . , xk)⟩,

where each Si is a weakly monotonic function in NK[ι1] × · · · × NK[ιk] =⇒ N.
Moreover, a function S : NK[ι1] × · · · × NK[ιk] =⇒ N is weakly monotonic if it is built

from constants in N, variable components xn
j and weakly monotonic functions in Nn =⇒ N.

For the “weakly monotonic functions in Nn =⇒ N” we could for instance use +, ∗ or max.
To determine the length K[ι] of the tuple for a sort ι, we use a semantic approach, similar

to one used in [19] in the context of functional languages: the elements of the tuple are
values of interest for the sort. The two prominent examples in this paper are the sort nat
of natural numbers – which is constructed from the symbols 0 :: nat and s :: [nat] ⇒ nat
– and the sort list of lists of natural numbers – which is constructed using nil :: list and
cons :: [nat × list] ⇒ list. For natural numbers, we consider their size, so the number of ss.
For lists, we consider both their length and an upper bound on the size of their elements.
This gives K[nat] = 2 (cost of reducing the term, size of its normal form) and K[list] = 3
(cost of reducing, length of normal form, maximum element size). In the remainder of this
paper, we will use xc as syntactic sugar for x1 (the cost component of x), xs and xl as x2
and xm as x3.

▶ Example 10. Consider the TRS defined in Example 1. We start by giving an interpretation
for the type constructors: the symbols 0, nil, s and cons which are used to construct natural
numbers and lists. To be in line with the semantics for the type interpretation, we let:

J0K = ⟨0, 0⟩ Js(x)K = ⟨xc, xs + 1⟩
JnilK = ⟨0, 0, 0⟩ Jx : xsK = ⟨xc + xsc, xsl + 1, max(xs, xsm)⟩

This expresses that 0 has no evaluation cost and size 0; analogously, nil has no evaluation
cost and 0 as length and maximum element. The cost of evaluating a term s(t) depends
entirely on the cost of the term’s argument t; the size component counts the number of ss.
The cost component for cons similarly sums the costs of its arguments, while the length is
increased by 1, and the maximum element is the maximum between its head and tail.

For the remaining symbols we choose the following interpretations:

Jx ⊕ yK = ⟨xc + yc + ys + 1, xs + ys⟩
Jsum(xs)K = ⟨xsc + 2 ∗ xsl + xsl ∗ xsm + 1, xsl ∗ xsm⟩
Jrev(xs)K = ⟨xsc + xsl + xsl∗(xsl+1)

2 + 1, xsl, xsm⟩
Jappend(xs, ys)K = ⟨xsc + ysc + xsl + 1, xsl + ysl, max(xsm, ysm)⟩

C. Kop and D. Vale 31:7

Checking compatibility is easily done for the interpretation above, and strong monotonicity
follows by Lemma 9 (as n 7→ n∗(n+1)

2 ∈ N =⇒ N is weakly monotonic). We see that the cost
of evaluating append is linear in the first list length and independent of the size of the list
elements, while evaluating sum gives a quadratic dependency on length and size combined.

Our tuple interpretations have some similarities with matrix interpretations [21], where
also each term is associated to an n-tuple. In essence, matrix interpretations are tuple
interpretations, for systems with only one sort. However, the shape of the interpretation
functions Jf in matrix interpretations is limited to functions following Lemma 9 where each
S is a linear multivariate polynomial. Hence, our interpretations are a strict generalisation,
which also admits interpretations such as those used for sum, rev and append in Example 10.

For the purpose of termination, tuple interpretations strictly extend the power of both
polynomial interpretations and matrix interpretations already in the first-order case.

▶ Example 11. A TRS that implements division in [4] shows a limitation of polynomial
interpretations: it contains a rule quot(s(x), s(y)) → s(quot(minus(x, y), s(y))) which cannot
be oriented by any polynomial interpretation, because Jminus(x, s(x))K > Js(x)K for any
strongly monotonic polynomial Jminus. Due to the duplication of y, this rule also cannot be
handled by a matrix interpretation. However, we do have a compatible tuple interpretation:

J0K = ⟨0, 0⟩ Jminus(x, y)K = ⟨xc + yc + ys + 1, xs⟩
Js(x)K = ⟨xc, xs + 1⟩ Jquot(x, y)K = ⟨xc + xs + yc + xs ∗ yc + xs ∗ ys + 1, xs⟩

In practice, in first-order termination or complexity analysis one would not exclusively
use interpretations, but rather a combination of different techniques. In that context, tuple
interpretations may be used as one part of a large toolbox. They are likely to offer a simple
complexity proof in many cases, but they are unlikely to be an essential technique since so
many other methods have already been developed. Indeed, all examples in this section can
be handled with previously established theory. For instance, Example 5 can be handled with
matrix interpretations, while sum and rev may be analysed using ideas from [24] and [35].

However, developing a new technique for first-order termination and traditional complexity
analysis is not our goal. Our method does provide a more fine-grained notion of complexity,
which may consider information such as the length of a list. Moreover, the first-order case is
an important stepping stone towards higher-order analysis, where far fewer methods exist.

4 Higher-order tuple interpretations

In this section, we will extend the ideas from Section 3 to the higher-order setting, and hence
define the core notion of this paper: higher-order tuple interpretations. To do this, we will
build on the notion of strongly monotonic algebras originating in [39].

4.1 Strongly monotonic algebras
In first-order term rewriting, the complexity of a TRS is often measured as runtime or
derivational complexity. Both measures consider initial terms s of a certain shape, and supply
a bound on dhR(s) given the size of s. However, this is not a good approach for higher-order
terms: the behaviour of a term of higher type generally cannot be captured in an integer.

▶ Example 12. Consider the AFS obtained by combining Examples 1 and 2. The evaluation
cost of a term foldl(F, n, q) depends almost completely on the behaviour of the functional
subterm F , and not only on its evaluation cost. To see this, consider two cases: F1 :=

FSCD 2021

31:8 Tuple Interpretations for Higher-Order Complexity

λx.λy.y ⊕ x, and F2 := λx.λy.x ⊕ x. For natural numbers n, m, the evaluation cost of both
F1(n, m) and F2(n, m) is the same: n + 1. However, the size of the result is different. Hence,
the number of steps needed to compute foldl(F1, n, q) for a number n and list q is quadratic
in the size of n and q, while the number of steps needed for foldl(F2, n, q) is exponential.

As Example 12 shows, higher-order rewriting is a natural place to separate cost and size.
But more than that, we need to know what a function does with its arguments: whether it
is size-increasing, how long it takes to evaluate them, and more.

This is naturally captured by the notion of (weakly or strongly) monotonic algebras for
higher-order rewriting introduced by v.d. Pol [39]: here, a term of arrow type is interpreted
as a function, which allows the interpretation to retain all relevant information.

Monotonic interpretations were originally defined for a different higher-order rewriting
formalism, which does make some difference in the way abstraction and application is handled.
Weakly monotonic algebras were transposed to AFSs in [22]; however, here we extend the more
natural notion of hereditarily monotonic algebras which v.d. Pol only briefly considered.1

▶ Definition 13. Let S be a set of sorts and F a higher-order signature. We assume given
for every sort ι an extended well-founded set (Aι, >ι, ≥ι). From this, we define the set of
strongly monotonic functionals, as follows:

For all sorts ι: Mι := Aι and ⊐ι := >ι and ⊒ι := ≥ι.
For an arrow type σ ⇒ τ :

Mσ⇒τ := {F ∈ Mσ =⇒ Mτ | F is strongly monotoic}
F ⊐σ⇒τ G iff Mσ is non-empty and ∀x ∈ Mσ.F (x) ⊐τ G(x), and
F ⊒σ⇒τ G iff ∀x ∈ Mσ.F (x) ⊒τ G(x).

That is, Mσ⇒τ contains strongly monotonic functions from Mσ to Mτ and both ⊐σ⇒τ and
⊒σ⇒τ do a point-wise comparison. By a straightforward induction on types we have:

▶ Lemma 14. For all types σ, (Mσ,⊐σ, ⊒σ) is an extended well-founded set; that is:
⊐σ is well-founded and ⊒σ is reflexive;
both ⊐σ and ⊒σ are transitive;
for all x, y, z ∈ Mσ, x ⊐σ y implies x ⊒σ y and x ⊐σ y ⊒σ z implies x ⊐σ z.

We will define higher-order strongly monotonic algebras as an extension of Definition 3,
mapping a term of type σ to an element of Mσ. Functional terms f(s1, . . . , sk) and variables
can be handled as before, but we now also have to deal with application and abstraction.
Application is straightforward: since terms of higher type are mapped to functions, we can
interpret application as function application, i.e., Js · tKα := JsKα(JtKα). However, abstraction
is more difficult. The natural choice would be to view abstraction as defining a function; i.e.,
let Jλx.sKα be the function d 7→ JsKα[x:=d]. Unfortunately, this is not necessarily monotonic:
d 7→ JsKα[x:=d] is strongly monotonic only if x occurs freely in s. For example λx.0 would be
mapped to a constant function, which is not in Mnat⇒nat. Moreover, this definition would
give J(λx.s) · tKα = Js[x := t]Kα, so β-steps would not be counted toward the evaluation cost.

We handle both problems by using a choosable function MakeSM σ,τ , which takes a
function that may be strongly monotonic or constant, and turns it strongly monotonic.

1 In [39], v.d. Pol rejects hereditarily (or: strongly) monotonic algebras because they are not so well-suited
for analysing the HRS format [36] where reasoning is modulo →β : it is impossible to both interpret all
terms of function type to strongly monotonic functions and have J(λx.s) tK = Js[x := t]K. In the AFS
format, we do not have the latter requirement. In [22], where the authors considered the AFS format
like we do here (but for interpretations to N rather than to tuples), weakly monotonic algebras were
used because they are a more natural choice in the context of dependency pairs.

C. Kop and D. Vale 31:9

▶ Definition 15. A (σ, τ)-monotonicity function MakeSM σ,τ is a strongly monotonic function
in Cσ,τ =⇒ Mσ=⇒τ , where the set Cσ,τ is defined as Mσ⇒τ ∪ {F ∈ Mσ =⇒ Mτ | F (x) =
F (y) for all x, y ∈ Mσ}. (Here, the set Cσ,τ is ordered by point-wise comparison.)

With this definition, we are ready to define strongly monotonic algebras.

▶ Definition 16. A strongly monotonic algebra AM consists of a family (Mσ,⊐σ, ⊒σ)σ∈ST ,
an interpretation function J which associates to each f :: [σ1 × · · · × σk] ⇒ τ in F an element
of Mσ1⇒...⇒σk⇒τ , and a (σ, τ)-monotonicity function MakeSM σ,τ , for each σ, τ ∈ ST .

Let α be a function that maps variables of type σ to elements of Mσ. We extend J to a
function J·Kα that maps terms of type σ to elements of Mσ, as follows:

JxKα = α(x) for variables x Jf(s1, . . . , sk)Kα = Jf(Js1Kα, . . . , JskKα)
Js · tKα = JsKα(JtKα) Jλx.sKα = MakeSM σ,τ (d 7→ JsKα[x:=d]) if x :: σ and s :: τ

We can see by induction on s that for s :: σ indeed JsKα ∈ Mσ. We say that an AFS (F , R)
is compatible with AM if for all valuations α both (1) JℓKα ⊐ JrKα, for all ℓ → r ∈ R; and
(2) J(λx.s) tKα ⊐ Js[x := t]Kα, for any s :: σ, t :: τ and x ∈ Xτ .

As before, we will typically omit the α subscript and use notation like JsK = F (x + 3) to
denote JsKα = α(F)(α(x) + 3). When types are not relevant, we will denote ⊐ instead of
specifying ⊐σ, and we may write f ∈ M to mean f ∈ Mσ for some σ ∈ ST .

We extend Theorem 4 into the following compatibility result.

▶ Theorem 17. If (F , R) is compatible with AM, then for all α, JsKα ⊐ JtKα when s →R t.

For Definition 13 and Theorem 17, we can choose the well-founded sets (Aι, >ι, ≥ι) for
each sort, and the functions MakeSM σ,τ for each pair of types, as we desire. A higher-order
tuple algebra is a strongly monotonic algebra where each (Aι, >ι, ≥ι) follows Definition 6.

▶ Example 18. Let Anat = N2 and Alist = N3 as before, and assume cons and nil are
interpreted as in Example 10. Consider the rules for map in Example 2. We let:

Jmap(F, xs)K = ⟨(xsl + 1) ∗ (F (⟨xsc, xsm⟩)c + 1), xsl, F (xsc, xsm)s⟩

This expresses that map does not increase the list length (as the length component is just
xsl), the greatest element of the result is bounded by the value of F on the greatest element
of xs, and the evaluation cost is mostly expressed by a number of F steps that is linear in
the length of xs. We will see in Lemma 23 that Jmap is indeed strongly monotonic.

To prove compatibility of the AFS with AM, we must first see that JℓK ⊐ JrK for all rules
ℓ →R r. For the first map rule this is easy: Jmap(F, nil)K = ⟨F (⟨0, 0⟩)c + 1, 0, F (⟨0, 0⟩)s⟩ ⊐list
⟨0, 0, 0⟩ = JnilK. For the second map rule, we must check that ⟨cost-ℓ, len-ℓ, max-ℓ⟩ ⊐list
⟨cost-r, len-r, max-r⟩; that is, cost-ℓ > cost-r and len-ℓ ≥ len-r and max-ℓ ≥ max-r, where:

cost-ℓ = Jmap(F, x : xs)Kc = (xsl + 2) ∗ (F (⟨xc + xsc, max(xs, xsm)⟩)c + 1)
cost-r = JF (x) : map(F, xs)Kc = F (⟨xc, xs⟩)c + (xsl + 1) ∗ (F (⟨xsc, xsm⟩)c + 1)
len-ℓ = Jmap(F, x : xs)Kl = xsl + 1 = JF (x) : map(F, xs)Kl = len-r
max-ℓ = Jmap(F, x : xs)Km = F (⟨xc + xsc, max(xs, xsm)⟩)s
max-r = JF (x) : map(F, xs)Km = max(F (⟨xc, xs⟩)s, F (⟨xsc, xsm⟩)s)

To see why cost-ℓ > cost-r, we observe that for all x, xs: ⟨xc + xsc, max(xs + xsm)⟩ ⊒nat both
⟨xc, xs⟩ and ⟨xsc, xsm⟩. Since F ∈ Mnat⇒nat therefore F (⟨xc + xsc, max(xs + xsm)⟩) ⊒nat
both F (⟨xc, xs⟩) and F (⟨xsc, xsm⟩). We find max-ℓ ≥ max-r by a similar reasoning.

FSCD 2021

31:10 Tuple Interpretations for Higher-Order Complexity

4.2 Interpreting abstractions

Example 18 is not complete: we have not yet defined the functions MakeSM σ,τ , and we
have not shown that J(λx.s) tK ⊐ Js[x := t]K always holds. To achieve this, we will define
some standard functions to build elements of M. This allows us to easily construct strongly
monotonic functionals, both to build MakeSM σ,τ and to create interpretation functions Jf .

▶ Definition 19. For every type σ, we define: 0σ ∈ Mσ; costofσ ∈ Mσ =⇒ N; and
addcσ ∈ N × Mσ =⇒ Mσ by mutual recursion on σ as follows.

0ι = ⟨0, . . . , 0⟩ 0σ⇒τ = d 7→ addcτ (costofσ(d), 0τ)
costofι(⟨n1, . . . , nK[ι]⟩) = n1 costofσ⇒τ (F) = costofτ (F (0σ))
addcι(c, ⟨n1, . . . , nK[ι]⟩) = ⟨c + n1, n2, . . . , nK[ι]⟩ addcσ⇒τ (c, F) = d 7→ addcτ (c, F (d))

Here, 0σ defines the minimal element of Mσ. The function costofσ maps every F to the
cost component of F (0σ1 , . . . , 0σm

); hence, if F ⊐σ G we have costofσ(F) > costofσ(G).
The function addcσ pointwise increases an element of Mσ by adding to the cost component:
if F (x1, . . . , xm) = ⟨n1, . . . , nk⟩, then addc(c, F)(x1, . . . , xm) = ⟨c + n1, n2, . . . , nk⟩.

It is easy to see that 0σ and addcσ(n, X) are in M for all σ (by induction on σ), and that
costofσ and addcσ are strict in all their arguments. Various properties of these functions
are detailed in the appendix (Lemmas B.4–B.8). We will particularly use that always
F (addc(n, x)) ⊒ addc(n, F (x)) (Lemma B.7) and costof(F (x)) ≥ costof(x) (Lemma B.8).

We can use these functions to for instance create candidates for MakeSM σ,τ . While many
suitable definitions are possible, we will particularly consider the following:

▶ Definition 20. For types σ, τ , and F a weakly monotonic function in Mσ =⇒ Mτ , let:

Φσ,τ (F) =
{

d 7→ addcσ⇒τ (1, F (d)) if F is in Mσ⇒τ

d 7→ addcσ⇒τ (costofσ(d) + 1, F (d)) otherwise

Then Φσ,τ is a (σ, τ)-monotonicity function. To see this, the most challenging part is
proving that Φσ,τ (F) ⊐ Φσ,τ (G) if F ⊐ G and F ∈ Mσ⇒τ while G is a constant function.
We can prove this using the result that x ⊐ y implies addc(1, x) ⊒ y for all x, y. We have:

▶ Lemma 21. If MakeSM σ,τ = Φσ,τ then J(λx.s) tK ⊐τ Js[x := t]K, for s :: τ , t :: σ, x ∈ Xσ.

Proof Sketch. We expand MakeSM σ,τ to achieve J(λx.s) tKα = addcτ (costofσ(JtKα) +
1, JsKα[x:=JtK]) or J(λx.s) tKα = addcτ (1, JsKα[x:=JtK]). By induction on τ we prove that
addcτ (n, F) ⊐τ F for all n ≥ 1. So either way, J(λx.s) tKα ⊐τ JsKα[x:=JtK]. Finally, we prove
a substitution lemma, JsKα[x:=JtKα] = Js[x := t]Kα, by induction on s. ◀

In examples in the remainder of this paper, we will assume that MakeSM σ,τ = Φσ,τ . With
these choices we do not only orient the β-rule (and thus satisfy item (2) of the compatibility
conditions), but also the η-reduction rules mentioned in Section 2.2.

▶ Lemma 22. If MakeSM σ,τ = Φσ,τ then for any F ∈ Xσ⇒τ we have: Jλx.F xK ⊐σ⇒τ JF K.

Proof Sketch. Since F ̸= x, we have JF Kα[x:=d] = α(F) for all α and d. Consequently,
Jλx.F xK ⊒σ⇒τ d 7→ addcτ (1, F (d)) either way. We are done as: addcτ (1, F (d)) ⊐τ F (d). ◀

C. Kop and D. Vale 31:11

4.3 Creating strongly monotonic interpretation functions

We can use Theorem 17 to obtain bounds on the derivation heights of given terms. However,
to achieve this, we must find an interpretation function J, and prove that each Jf is in M.
We will now explore ways to construct such strongly monotonic functions. It turns out to
be useful to also consider weakly monotonic functions. In the following, we will write “f is
wm(A1, . . . , Ak; B)” to mean that f is a weakly monotonic function in A1 × · · · × Ak =⇒ B.

▶ Lemma 23. Let x1, . . . , xk be variables ranging over Mσ1 , . . . , Mσk
respectively; we shortly

denote this sequence x⃗. We let −−→
Mσ denote the sequence Mσ1 , . . . , Mσk

. Then:
1. if F (x⃗) = xi then F is wm(−−→Mσ; Mσi), and F is strict in argument i;
2. if F (x⃗) = xi(F1(x⃗), . . . , Fn(x⃗)), σi = τ1 ⇒ . . . ⇒ τn ⇒ ρ, and each Fj is wm(−−→Mσ; Mτj)

then F is wm(−−→Mσ; Mρ) and for all p ∈ {1, . . . , k}: F is strict in argument p if p = i or
some Fj is strict in argument p;

3. if F (x⃗) = ⟨G1(x⃗), . . . , GK[ι](x⃗)⟩ and each Gj is wm(−−→Mσ;N) then F is wm(−−→Mσ; Mι), and
for all p ∈ {1, . . . , k}: F is strict in argument p if G1 is.

The last result uses functions mapping to N; these can be constructed using the observations:
4. if G(x⃗) = n for some n ∈ N then G is wm(−−→Mσ;N);
5. if G(x⃗) = xi

j and σi = ι ∈ S and 1 ≤ j ≤ K[ι], then G is wm(−−→Mσ;N), and G is strict in
argument i if j = 1;

6. if G(x⃗) = f(G1(x⃗), . . . , Gn(x⃗)) and all Gj are wm(−−→Mσ;N) and f is wm(N, . . . ,N;N),
then G is wm(−−→Mσ;N), and for all p ∈ {1, . . . , k}: G is strict in argument p if, for some
j ∈ {1, . . . , n}: Gj is strict in argument p and f is strict in argument j;

7. if G(x⃗) = F (x⃗)j and F is wm(−−→Mσ; Mι) and 1 ≤ j ≤ K[ι] then G is wm(−−→Mσ;N) and if
j = 1 then for all p ∈ {1, . . . , k}: G is strict in argument p if F is.

Proof Sketch. We easily see that in each case, F or G is in the given function space. To
show weak monotonicity, assume given both x⃗ and y⃗ such that each xi ⊒ yi; we then check
for all cases that F (x⃗) ⊒ F (y⃗), or G(x⃗) ≥ G(y⃗). For the strictness conditions, we assume
that xp ⊐ yp and similarly check all cases. ◀

The reader may recognise items (4–6): these largely correspond to the sufficient conditions
for a weakly monotonic function S in Lemma 9. For the function f in item (6), we could
for instance choose +, ∗ or max, where + is strict in all arguments. However, we can get
beyond Lemma 9 by using the other items; for example, applying variables to each other.

Now, if a function f is wm(−−→Mσ; Mτ) and f is strict in all its arguments, then we easily
see that the function d1 7→ · · · 7→ dk 7→ f(d1, . . . , dk) is an element of Mσ1⇒...⇒σk⇒τ . To
illustrate how this can be used in practice, we show monotonicity of Jmap of Example 18:

▶ Example 24. Suppose Jmap(F, q) = (F (⟨qc, qm⟩)c+ql∗F (⟨qc, qm⟩)c+ql+1 , ql , F (⟨qc, qm⟩)l).
By (5), the functions (F, q) 7→ qi are wm(Mnat⇒nat, Mlist;N) for i ∈ {c, l, m} and moreover,
(F, q) 7→ qc is strict in argument 2. Hence, by (3), (F, q) 7→ ⟨qc, qm⟩ is wm(Mnat⇒nat, Mlist;
Mnat) and strict in argument 2. Therefore, by (2), (F, q) 7→ F (⟨qc, qm⟩) is wm(Mnat⇒nat,

Mlist; Mnat) and strict in both arguments. Hence, by (7), (F, q) 7→ F (⟨qc, qm⟩)c and (F, q) 7→
F (⟨qc, qm⟩)l are wm(Mnat⇒nat, Mlist;N) and the former is strict in both arguments.

Continuing like this, it is not hard to see how we can iteratively prove that (F, q) 7→
(F (⟨qc, qm⟩)c + ql ∗ F (⟨qc, qm⟩)c + ql + 1 , ql , F (⟨qc, qm⟩)l) is wm(Mnat⇒nat, Mlist; Mlist) and
strict in both arguments, which immediately gives Jmap ∈ M(nat⇒nat)⇒list⇒list.

FSCD 2021

31:12 Tuple Interpretations for Higher-Order Complexity

In practice, it is usually not needed to write such an elaborate proof: Lemma 23 essentially
tells us that if a function is built exclusively using variables and variable applications,
projections F (x⃗)j , constants, and weakly monotonic operators over the natural numbers,
then that function is weakly monotonic; we only need to check that the cost component
indeed increases if one of the variables xi is increased.

Unfortunately, while Lemma 23 is useful for rules like the ones for map, it is not enough
to handle functions like foldl, where the same function is repeatedly applied on a term. As
foldl-like functions occur more often in higher-order rewriting, we should also address this.

To handle iteration, we define: for a function Q ∈ A =⇒ A and natural number n, let
Qn(a) indicate repeated function application; that is, Q0(a) = a and Qn+1(a) = Qn(Q(a)).

▶ Lemma 25. Suppose F is wm(−−→Mσ, Mτ⇒τ) and G is wm(−−→Mσ;N). Suppose that for all
u1 ∈ Mσ1 , . . . , uk ∈ Mσk

and v ∈ Mτ we have: F (u1, . . . , uk, v) ⊒τ v. Then the function
(x1, . . . , xk) 7→ F (x1, . . . , xk)G(x1,...,xk) is wm(−−→Mσ, Mτ⇒τ).

With this in hand, we can orient the foldl rules of Example 2.

▶ Example 26. For F ∈ Mnat⇒nat⇒nat and x, y ∈ Mnat, let Helper be defined by:

Helper(F, y, x) = ⟨F (x, y)c, max(xs, F (x, y)s)⟩.

Then Helper is wm(Mnat⇒nat⇒nat, Mnat, Mnat; Mnat) and strict in its third argument by
Lemma 23(1,2,3,6,7), Hence, Helper is wm(Mnat⇒nat⇒nat, Mnat; Mnat⇒nat). Since, in general,
costofnat(F (x, y)) ≥ costofnat(x), we have Helper(F, y, x) ⊒nat x. Using Lemma 25, we
therefore see that the function (F, z, xs) 7→ Helper(F, ⟨xsc, xsm⟩)xsl(z) is weakly monotonic,
and strict in its second argument. This ensures that the following function is in M.

Jfoldl(F, z, xs)K = Helper(F, ⟨xsc, xsm⟩)xsl(⟨1 + xsc + xsl + F (0nat, 0nat)c + zc, zs⟩)

This interpretation function is compatible with the rules for foldl in Example 2. First, we have
Jfoldl(F, z, nil)K = ⟨ 1 + F (0nat, 0nat)c + zc, zs ⟩ ⊐nat ⟨zc, zs⟩ = z, which orients the first rule.
For the second, we will use the general property that (**) F (addc(n, x), y) ⊒ addc(n, F (x, y))
(Lemma B.6). We denote A := ⟨xc+xsc, max(xs, xsm)⟩ and B := 1+xsc+xsl+F (0nat, 0nat)c+
zc. Then we have Jfoldl(F, z, x : xs)K = Helper(F, A)xsl+1(⟨B + xc + 1, zs⟩), which:

⊐nat Helper(F, A)xsl(Helper(F, A, ⟨B, zs⟩)) because ⟨B + xc + 1, zs⟩ ⊐nat ⟨B, zs⟩
⊒nat Helper(F, A)xsl(F (⟨B, zs⟩, A)) because Helper(F, n, m) ⊒nat F (m, n)
⊐nat Helper(F, ⟨xsc, xsm⟩)xsl(F (⟨B, zs⟩, x)) because A ⊒nat ⟨xsc, xsm⟩ and A ⊒nat x

⊒nat Helper(F, ⟨xsc, xsm⟩)xsl(addcnat(1 + xsc + xsl + F (0nat, 0nat)c, F (z, x))) by (**)
= Jfoldl(F, (F z x), xs)K.

The interpretation in Example 26 may seem too convoluted for practical use: it does not
obviously tell us something like “F is applied a linear number of times on terms whose size
is bounded by n”. However, its value becomes clear when we plug in specific bounds for F .

▶ Example 27. The function sum, defined in Example 1, could alternatively be defined in
terms of foldl: let sum(xs) → foldl(λxy.(x ⊕ y), 0, xs). To find an interpretation for this
function, we use the interpretation functions for 0, s, nil, cons and ⊕ from Example 10. Then
Jλxy.(x ⊕ y)K = d, e 7→ (dc + ec + es + 3, ds + es). We easily see that Helper(Jλxy.(x ⊕
y)K, ⟨xsc, xsm⟩, z) = ⟨zc + xsc + xsm + 3, zs + xsm⟩. Importantly, the iteration variable z is
used in a very innocent way: although its size is increased, this increase is by the same
number (xsm) in every iteration step. Moreover, the length of z does not affect the evaluation

C. Kop and D. Vale 31:13

cost. Hence, we can choose Jsum(xs)K = ⟨5 + xsc + xsl + xsl ∗ (xsc + xsm + 3), xsl ∗ xsm⟩.
This is close to the interpretation from Example 10 but differs both in a small overhead for
the β-reductions, and because our interpretation of foldl slightly overestimates the true cost.

This approach can be used to obtain bounds for any function that may be defined in
terms of foldl, which includes many first-order functions. For example, with a small change
to the signature of foldl, we could let rev(xs) = foldl(λxy.(y : x), nil, xs); however, this would
necessitate corresponding changes in the interpretation of foldl.

5 Finding complexity bounds

A key notion in complexity analysis of first-order rewriting is runtime complexity. In this
section, we will define a conservative notion of runtime complexity for higher-order term
rewriting, and show how our interpretations can be used to find runtime complexity bounds.

In first-order (and many-sorted) term rewriting, a defined symbol is any function symbol
f such that there is a rule f(ℓ1, . . . , ℓk) → r in the system; all other symbols are called
constructors. A ground constructor term is a ground term without defined symbols. A basic
term has the form f(s1, . . . , sk) with f a defined symbol and s1, . . . , sk all ground constructor
terms. The runtime complexity of a TRS is then a function φ in (N \ {0}) =⇒ N that maps
each n to a number φ(n) so that for every basic term s of size at most n: dhR(s) ≤ φ(n).

The comparable notion of derivational complexity considers the derivation height for
arbitrary ground terms of size n, but we will not use that here, since it can often give very
high bounds that are not necessarily representative for realistic use of the system. In practice,
a computation with a TRS would typically start with a main function, which takes data (e.g.,
natural numbers, lists) as input. This is exactly a basic term. Hence, the notion of runtime
complexity roughly captures the worst-case number of steps for a realistic computation.

It is not obvious how this notion translates to the higher-order setting. It may be tempting
to literally apply the definition to an AFS, but a “ground constructor term” (or perhaps
“closed constructor term”) is not a natural concept in higher-order rewriting; it does not
intuitively capture data. Moreover, we would like to create a robust notion which can be
extended to simple functional programming languages, so which is not subject to minor
language difference like whether partial application of function symbols is allowed.

Instead, there are two obvious ways to capture the idea of input in higher-order rewriting:
closed irreducible terms; this includes all ground constructor terms, but also for instance
λx.0 ⊕ x (but not λx.x ⊕ 0, since this can be rewritten following the rules in Example 1);
data: this includes only ground constructor terms with no higher-order subterms.

As we observed in Example 12, the size of a higher-order term does not capture its
behaviour. Hence, a notion of runtime complexity using closed irreducible terms is not
obviously meaningful – and might be closer to derivational complexity due to defined symbols
inside abstractions. Therefore, we here take the conservative choice and consider data.

▶ Definition 28. In an AFS (F , R), a data constructor is a function symbol c :: [ι1 × · · · ×
ιk] ⇒ ι0 with each ιi ∈ S, such that there is no rule of the form c(ℓ1, . . . , ℓk) → r. A data
term is a term c(d1, . . . , dk) such that c is a constructor and all di are also data terms.

In practice, a sort is defined by its data constructors. For example, nat is defined by 0
and s, and list by nil and cons. In typical examples of first- and higher-order term rewriting
systems, rules are defined to exhaustively pattern match on all constructors for a sort.

With this definition, we can conservatively extend the original notion of runtime complexity
to be applicable to both many-sorted and higher-order term rewriting.

FSCD 2021

31:14 Tuple Interpretations for Higher-Order Complexity

▶ Definition 29. A basic term is a term of the form f(d1, . . . , dk) with all di data terms and
f not a data constructor. We let |d| denote the total number of symbols in a basic term d.

The runtime complexity of an AFS is a function φ ∈ (N \ {0}) =⇒ N so that for all n

and basic terms d, with |d| ≤ n: dhR(d) ≤ φ(n).

Note that if f(d1, . . . , dk) is a basic term, then f :: [ι1 × · · · × ιk] ⇒ τ with all ιi sorts.
Hence, higher-order runtime complexity considers the same (first-order) notion of basic terms
as the first-order case; terms such as map(F, s) or even map(λx.s(x), nil) are not basic. One
might reasonably question whether such a first-order notion is useful when studying the
complexity of higher-order term rewriting. However, we argue that it is: runtime complexity
aims to address the length of computations that begin at a typical starting point. When
performing a full program analysis of an AFS, the computation will still typically start in a
basic term, for instance; the entry-point symbol main applied to some user input d1, . . . , dk.

▶ Example 30. We consider an AFS from the Termination Problem Database, v11.0 [16].

x ⊕ 0 →R x rec(0, y, F) →R y

x ⊕ s(y) →R s(x ⊕ y) rec(s(x), y, F) →R F · x · rec(x, y, F)
x ⊗ y →R rec(y, 0, λn.λm.x ⊕ m)

Here, rec :: [nat × nat × (nat ⇒ nat ⇒ nat)] ⇒ nat. The only basic terms have the form
sn(0) ⊕ sm(0) or sn(0) ⊗ sm(0). Using our method, we obtain cubic runtime complexity; to
be precise: O(m2 ∗ n). The interpretation functions are found in Appendix A.

To derive runtime complexity for both first- and higher-order rewriting, our approach is
to consider bounds for the functions Jf ; we only need to consider the first-order symbols f.

▶ Definition 31. Let P ∈ Mι1⇒...⇒ιm⇒κ be of the form P (x1, . . . , xm) = ⟨P1(x1, . . . , xm),
. . . , PK[κ](x1, . . . , xm)⟩. Then P is linearly bounded if each component function Pl of P

is upper-bounded by a positive linear polynomial, i.e., there is a constant a ∈ N such that
Pl(x1, . . . , xm) ≤ a∗(1+

∑m
i=1

∑K[ιi]
j=1 xi

j). We say that P is additive if there exists a constant
a ∈ N such that

∑K[κ]
l=1 Pl(x1, . . . , xm) ≤ a +

∑m
i=1

∑K[ιi]
j=1 xi

j.

By this definition, Pl is not required to be a linear function, only to be bounded by one.
This means that for instance min(xi

j , 2 ∗ xa
b) can be used, but xi

j ∗ xa
b cannot. It is easily

checked that all the data constructors in this paper have an additive interpretation. For
example, for Jcons: (xc + xsc) + (xl + 1) + max(xs, xsm) ≤ 1 + xc + xs + xsc + xsl + xss.

▶ Lemma 32. Let (F , R) be an AFS or TRS that is compatible with a strongly monotonic
algebra with interpretation function J. Then:
1. if Jc is additive for all data constructors c, then there exists a constant b > 0 in N so

that for all data terms s: if |s| ≤ n then JsKl ≤ b ∗ n, for each component JsKl of JsK;
2. if Jc is linearly bounded for all data constructors c, then there exists a constant b > 0 in

N so that for all data terms s: if |s| ≤ n then JsKl ≤ 2b∗n, for each component JsKl of JsK.
By using Lemma 32, we quickly obtain some ways to bound runtime complexity:

▶ Corollary 33. Let (F , R) be an AFS or TRS that is compatible with a strongly monotonic
algebra with interpretation function J, and let FC denote its set of data constructors, and
FB the set of all other symbols f with a signature f :: [ι1 × · · · × ιm] ⇒ τ . Then:

if Jf is additive for all f ∈ FC ∪ FB, then (F , R) has linear runtime complexity;
if Jc is additive for all c ∈ FC and for all f ∈ FB, Jf(x⃗) = (P1(x⃗), . . . , Pk(x⃗)) where P1
is bounded by a polynomial, then (F , R) has polynomial runtime complexity;
if Jf is linearly bounded for all f ∈ FC ∪ FB, then (F , R) has exponential runtime
complexity.

C. Kop and D. Vale 31:15

We could easily use these results as part of an automatic complexity tool – and indeed,
combine them with other methods for complexity analysis. However, this is not truly our goal:
runtime complexity is only a part of the picture, especially in higher-order term rewriting
where we may want to analyse modules that get much more hairy input. Our technique aims
to give more fine-grained information, where we consider the impact of input with certain
properties – like the length of a list or the depth of a tree. For this, the person interested in
the analysis should be the one to decide on the interpretations of the constructors.

With this information given, though, it should be possible to automatically find interpret-
ations for the other functions. The search for the best strategy requires dedicated research,
which we leave to future work; however, we expect Lemmas 23 and 25 to play a large role.
We also note that while the cost component may depend on the other components, the other
components (which represent a kind of size property) typically do not depend on the cost.

6 On Related Work

Rewriting. There are several first-order complexity techniques based on interpretations. For
example, in [11], the consequences of using additive, linear, and polynomial interpretations
to the natural numbers are investigated; and in [26], context-dependent interpretations are
introduced, which map terms to real numbers to obtain tighter bounds. Most closely related
to our approach are matrix interpretations [21, 35], and a technique by the first author for
complexity analysis of conditional term rewriting [31]. In both cases, terms are mapped to
tuples as they are in our approach, although neither considers sort information, and matrix
interpretations use linear interpretation functions. Our technique is a generalisation of both.

Higher-order Rewriting. In higher-order term rewriting (but a formalism without λ-
abstraction), Baillot and Dal Lago [10] develop a version of higher-order polynomial interpret-
ations which, like the present work, is based on v.d. Pol’s higher-order interpretations [39].
In similar ways to our Section 5, the authors enforce polynomial bounds on derivational
complexity by imposing restrictions on the shape of interpretations. Their method differs
from ours in various ways, most importantly by mapping terms to N rather than tuples. In
addition, the interpretations are limited to higher-order polynomials. This yields an ordering
with the subterm property (i.e., f(. . . , s, . . .) ⊐ s), which means that TRSs like Example 11
cannot be handled. Moreover, it is not possible to find a general interpretation for functions
like foldl or rec; the method can only handle instances of foldl with a linear function.

Beyond this, it unfortunately seems that relatively little work has thus far been done
on complexity analysis of higher-order term rewriting. However, complexity of functional
programs is an active field of research with a close relation to higher-order term rewriting.

Functional Programming. There are various techniques to statically analyse resource use
of functional programs. These may be fully automated [5, 9, 42], semi-automated designed to
reason about programmer specified-bounds [45, 15, 23], or even manual techniques, integrated
with type system or program logic semantics [14, 17]. We discuss the most pertinent ones.

An approach using rewriting for full-program analysis is to translate functional programs
to TRSs [6], which can be analysed using first-order complexity techniques. This takes
advantage of the large body of work on first-order complexity, but loses information; the
transformation often yields a system that is harder to analyse than the original.

The research methodology in most studies in functional programming differs significantly
from rewriting techniques. Nevertheless, there are some studies with clear connections to our
approach; in particular our separation of cost and size (and other structural properties). Most

FSCD 2021

31:16 Tuple Interpretations for Higher-Order Complexity

relevant, in [19] the authors use a similar approach by giving semantics to a complexity-aware
intermediate language allowing arbitrary user-defined notions for size – such as list length or
maximum element size; recurrence relations are then extracted to represent the complexity.

Additionally, most modern complexity analysis is done via enhancements at the type
system level [2, 5, 28, 40, 23, 20]. For example, types may be annotated with a counter,
the heap size or a data type’s size measure. Notably, a line of work on Resource-Aware
ML [28, 37, 30] studies resource use of OCaml programs with methods based on Tarjan’s
amortized analysis [43]. Types are annotated with potentials (a cost measure), and type
inference generates a set of linear constraints which is sent over to an external solver. For
Haskell, Liquid Haskell [41, 44] provides a language to annotate types, which can be used to
prove properties of the program; this was recently extended to include complexity [23]. Unlike
RAML, this approach is not fully automatic: type annotations are checked, not derived.

These works in functional programming have a different purpose from ours: they study
the resource use in a specific language, typically with a fixed evaluation strategy. Our method,
in contrast, allows for arbitrary evaluation, which could be specified to various strategies in
future work. Moreover, most of these works limit interest to full-program analysis. We do
this for runtime complexity, but our method offers more, by providing general interpretations
for individual functions like map or foldl. Similarly, most of these works impose additive type
annotations for the constructors; we do not restrict the constructor interpretations outside
Lemma 32. On the other hand, many do consider (shallow) polymorphism, which we do not.

While in functional programming one considers resource usage [40, 28], rewriting is
concerned with the number of steps, which can be translated to a form of resource measure if
the true cost of each step is kept low. This is achieved by imposing restrictions on reduction
strategy and term representation [1, 18]. Our approach carries the blessing of being general
and machine independent and the curse of not necessarily being a reasonable cost model.

7 Conclusion and Future Work

In this paper, we have introduced tuple interpretations for many-sorted and higher-order
term rewriting. This includes providing a new definition of strongly monotonic algebras, a
compatibility theorem, a function MakeSM that orients β- and η-reductions, and several
lemmas to prove monotonicity of interpretation functions. We also show that for certain
restrictions on interpretation functions, we find linear, polynomial or exponential bounds on
runtime complexity (for a simple but natural definition of higher-order runtime complexity).

Our type-based, semantical approach allows us to relate various “size” notions (e.g., list
length, tree depth, term size. etc.) to reduction cost, and thus offers a more fine-grained
analysis than traditional notions like runtime complexity. Most importantly, we can express
the complexity of a higher-order function in terms of the behaviour of its (function) arguments.
In the future, we hope that this could be used towards a truly higher-order complexity notion.

Some further examples and weaknesses. Aside from the three higher-order examples in
this paper, we have successfully applied our method to a variety of higher-order benchmarks in
the Termination Problem Database [16], all with additive interpretations for the constructors.
Two additional examples (filter and deriv) are included in Appendix A.

A clear weakness we discovered was that our method can only handle “plain function-
passing” systems [33]. That is, we typically do not succeed on systems where a variable of
function type occurs inside a subterm of base type, and occurs outside this subterm in the right-
hand side. Examples of such systems are ordrec, which has a rule ordrec(lim(F), x, G, H) →R
H · F · (λn.ordrec(F · n, x, G, H)) with lim :: [nat ⇒ ord] ⇒ ord, and apply, which has a rule
lapply(x, fcons(F, xs)) →R F · lapply(x, xs) with fcons :: [(a ⇒ a) × listf] ⇒ listf.

C. Kop and D. Vale 31:17

Future work. We intend to consider the effect of different evaluation strategies, such as
innermost evaluation, weak-innermost evaluation (where rewriting below an abstraction is
not allowed, as is commonly the case in functional programming) or outermost evaluation.
This extension is likely to be an important step towards another goal: to more closely relate
our complexity notion to a reasonable measure of resource consumption in a rewriting engine.

In addition, we plan to extend first-order complexity techniques like dependency tuples [24],
which may allow us to overcome the weakness described above. Another goal is to enrich our
type system to support a notion of polymorphism and add polymorphic interpretations into
the play. We also aim to develop a tool to automatically find suitable tuple interpretations.

References
1 B. Accatoli and U. Dal Lago. (leftmost-outermost) beta reduction is invariant, indeed. LMCS,

2016. doi:10.2168/LMCS-12(1:4)2016.
2 S. Alves, D. Kesner, and D. Ventura. A quantitative understanding of pattern matching. In

Proc. TYPES, LIPIcs, 2020. doi:10.4230/LIPIcs.TYPES.2019.3.
3 T. Arai and G. Moser. Proofs of termination of rewrite systems for polytime functions. In

Proc. FSTTCS, 2005. doi:10.1007/11590156_4.
4 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. TCS, 2000.

doi:10.1016/S0304-3975(99)00207-8.
5 M. Avanzini and U. Dal Lago. Automating sized-type inference for complexity analysis. In

Proc. ICFP, 2017. doi:10.1145/3110287.
6 M. Avanzini, U. Dal Lago, and G. Moser. Analysing the complexity of functional programs:

Higher-order meets first-order. In Proc. ICFP, 2015. doi:10.1145/2784731.2784753.
7 M. Avanzini and G. Moser. Complexity analysis by rewriting. In Proc. FLOPS, 2008.

doi:10.1007/978-3-540-78969-7_11.
8 M. Avanzini and G. Moser. Closing the gap between runtime complexity and polytime

computability. In Proc. RTA, 2010. doi:10.4230/LIPIcs.RTA.2010.33.
9 Ralph B. Automated higher-order complexity analysis. TCS, 2004. doi:10.1016/j.tcs.2003.

10.022.
10 P. Baillot and U. Dal Lago. Higher-order interpretations and program complexity. IC, 2016.

doi:10.1016/j.ic.2015.12.008.
11 G. Bonfante, A. Cichon, J. Marion, and H. Touzet. Complexity classes and rewrite systems

with polynomial interpretation. In Proc. CSL, 1998. doi:10.1007/10703163_25.
12 G. Bonfante, J. Marion, and J. Moyen. On lexicographic termination ordering with space

bound certifications. In Proc. PSI, 2001. doi:10.1007/3-540-45575-2_46.
13 M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Alternating runtime and

size complexity analysis of integer programs. In Proc. TACAS, 2014. doi:10.1007/
978-3-642-54862-8_10.

14 Q. Carbonneaux, J. Hoffmann, T. Ramananandro, and Z. Shao. End-to-end verification of
stack-space bounds for C programs. SIGPLAN Not., 2014. doi:10.1145/2666356.2594301.

15 E. Çiçek, D. Garg, and U. Acar. Refinement types for incremental computational complexity.
In Proc. ESOP, 2015. doi:10.1007/978-3-662-46669-8_17.

16 Community. Termination problem database, version 11.0. Directory Higher_Order_
Rewriting_Union_Beta/Mixed_HO_10/, 2019. URL: http://termination-portal.org/
wiki/TPDB.

17 U. Dal Lago and M. Gaboardi. Linear dependent types and relative completeness. In Proc.
LICS, 2011. doi:10.1109/LICS.2011.22.

18 U. Dal Lago and S. Martini. Derivational complexity is an invariant cost model. In Proc.
FOPARA, 2010. doi:10.1007/978-3-642-15331-0_7.

19 N. Danner, D.R. Licata, and R. Ramyaa. Denotational cost semantics for functional languages
with inductive types. In Proc. ICFP, 2015. doi:10.1145/2784731.2784749.

FSCD 2021

https://doi.org/10.2168/LMCS-12(1:4)2016
https://doi.org/10.4230/LIPIcs.TYPES.2019.3
https://doi.org/10.1007/11590156_4
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1145/3110287
https://doi.org/10.1145/2784731.2784753
https://doi.org/10.1007/978-3-540-78969-7_11
https://doi.org/10.4230/LIPIcs.RTA.2010.33
https://doi.org/10.1016/j.tcs.2003.10.022
https://doi.org/10.1016/j.tcs.2003.10.022
https://doi.org/10.1016/j.ic.2015.12.008
https://doi.org/10.1007/10703163_25
https://doi.org/10.1007/3-540-45575-2_46
https://doi.org/10.1007/978-3-642-54862-8_10
https://doi.org/10.1007/978-3-642-54862-8_10
https://doi.org/10.1145/2666356.2594301
https://doi.org/10.1007/978-3-662-46669-8_17
http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/TPDB
https://doi.org/10.1109/LICS.2011.22
https://doi.org/10.1007/978-3-642-15331-0_7
https://doi.org/10.1145/2784731.2784749

31:18 Tuple Interpretations for Higher-Order Complexity

20 A. Das, S. Balzer, J. Hoffman, F. Pfenning, and I. Santurkar. Resource-aware session types
for digital contracts, 2019. arXiv:1902.06056.

21 J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination
of term rewriting. JAR, 2008. doi:10.1007/11814771_47.

22 C. Fuhs and C. Kop. Polynomial interpretations for higher-order rewriting. In Proc. RTA,
2012. doi:10.4230/LIPIcs.RTA.2012.176.

23 M. A. T. Handley, N. Vazou, and G. Hutton. Liquidate your assets: Reasoning about resource
usage in liquid haskell. ACM POPL, 2019. doi:10.1145/3371092.

24 N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency pair
method. In Proc. IJCAR, 2008. doi:10.1007/978-3-540-71070-7_32.

25 D. Hofbauer. Termination proofs by multiset path orderings imply primitive recursive derivation
lengths. TCS, 1992. doi:10.1007/3-540-53162-9_50.

26 D. Hofbauer. Termination proofs by context-dependent interpretations. In Proc. RTA, 2001.
doi:10.1007/3-540-45127-7_10.

27 D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations. In Proc.
RTA, 1989. doi:10.1007/3-540-51081-8_107.

28 J. Hoffmann, K. Aehlig, and M. Hofmann. Resource aware ml. In Proc. CAV, 2012. doi:
10.1007/978-3-642-31424-7_64.

29 J. Jouannaud and M. Okada. A computation model for executable higher-order algebraic
specification languages. In Proc. LICS, 1991. doi:10.1109/LICS.1991.151659.

30 D. M. Kahn and J. Hoffmann. Exponential automatic amortized resource analysis. In Proc.
FoSSaCS, 2020. doi:10.1007/978-3-030-45231-5_19.

31 C. Kop, A. Middeldorp, and T. Sternagel. Complexity of conditional term rewriting. LMCS,
2017. doi:10.23638/LMCS-13(1:6)2017.

32 C. Kop and D. Vale. Tuple interpretations for higher-order complexity (extended), 2021.
arXiv:2105.01112.

33 K. Kusakari and M. Sakai. Enhancing dependency pair method using strong computability in
simply-typed term rewriting. AAECC, 2007. doi:10.1007/s00200-007-0046-9.

34 G. Moser. Derivational complexity of knuth-bendix orders revisited. In Proc. LPAR, 2006.
doi:10.1007/11916277_6.

35 G. Moser, A. Schnabl, and J. Waldmann. Complexity analysis of term rewriting based on
matrix and context dependent interpretations. In Proc. FSTTCS, 2008. doi:10.4230/LIPIcs.
FSTTCS.2008.1762.

36 T. Nipkow. Higher-order critical pairs. In Proc. LICS, 1991. doi:10.1109/LICS.1991.151658.
37 Y. Niu and J. Hoffmann. Automatic space bound analysis for functional programs with garbage

collection. In Proc. LPAR, 2018. doi:10.29007/xkwx.
38 E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002. doi:10.1007/

978-1-4757-3661-8.
39 J.C. van de Pol. Termination of Higher-order Rewrite Systems. PhD thesis, University of

Utrecht, 1996. URL: https://www.cs.au.dk/~jaco/papers/thesis.pdf.
40 V. Rajani, M. Gaboardi, D. Garg, and J. Hoffmann. A unifying type-theory for higher-order

(amortized) cost analysis. ACM POPL, 2021. doi:10.1145/3434308.
41 P. M. Rondon, M. Kawaguci, and R. Jhala. Liquid types. SIGPLAN Not., 2008. doi:

10.1145/1379022.1375602.
42 M. Sinn, F. Zuleger, and H. Veith. A simple and scalable static analysis for bound analysis and

amortized complexity analysis. In Proc. CAV, 2014. doi:10.1007/978-3-319-08867-9_50.
43 R. E. Tarjan. Amortized computational complexity. ADM, 1985. doi:10.1137/0606031.
44 N. Vazou, P. M. Rondon, and R. Jhala. Abstract refinement types. In Proc. ESOP, 2013.

doi:10.1007/978-3-642-37036-6_13.
45 P. Wang, D. Wang, and A. Chlipala. Timl: A functional language for practical complexity

analysis with invariants. ACM POPL, 2017. doi:10.1145/3133903.

http://arxiv.org/abs/1902.06056
https://doi.org/10.1007/11814771_47
https://doi.org/10.4230/LIPIcs.RTA.2012.176
https://doi.org/10.1145/3371092
https://doi.org/10.1007/978-3-540-71070-7_32
https://doi.org/10.1007/3-540-53162-9_50
https://doi.org/10.1007/3-540-45127-7_10
https://doi.org/10.1007/3-540-51081-8_107
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1109/LICS.1991.151659
https://doi.org/10.1007/978-3-030-45231-5_19
https://doi.org/10.23638/LMCS-13(1:6)2017
http://arxiv.org/abs/2105.01112
https://doi.org/10.1007/s00200-007-0046-9
https://doi.org/10.1007/11916277_6
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
https://doi.org/10.1109/LICS.1991.151658
https://doi.org/10.29007/xkwx
https://doi.org/10.1007/978-1-4757-3661-8
https://doi.org/10.1007/978-1-4757-3661-8
https://www.cs.au.dk/~jaco/papers/thesis.pdf
https://doi.org/10.1145/3434308
https://doi.org/10.1145/1379022.1375602
https://doi.org/10.1145/1379022.1375602
https://doi.org/10.1007/978-3-319-08867-9_50
https://doi.org/10.1137/0606031
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/3133903

C. Kop and D. Vale 31:19

A Extended examples

Extrec. The system in Example 30 has the following interpretation:

J0K = ⟨0, 0⟩
Js(x)K = ⟨xc, xs + 1⟩

Jx ⊕ yK = ⟨xc + yc + ys + 1, xs + ys⟩
Jx ⊗ yK = ⟨1 + ys ∗ (xc + yc + xs ∗ (ys + 1)/2 + 3), xs ∗ ys⟩

Jrec(x, y, F)K = Helper(x, F)xs(⟨1 + xc + yc + xs + F (0nat, 0nat)c, ys⟩)
Helper(x, F) = z 7→ ⟨F (x, z)c, max(zs, F (x, z)s)⟩

Then we always have (*A) Helper(x, F)(z) ⊒nat z because F (x, z)c ≥ zc which we will
see in Lemma B.8, and clearly max(zs, F (x, z)s) ≥ zs. Hence, the monotonicity require-
ments are satisfied. We also clearly have (*B) Helper(x, F)(z) ⊒nat F (x, z), since clearly
max(zs, F (x, z)s) ≥ F (x, z)s. For most rules, it is easy to see that JℓK ⊐ JrK. We only show:

Jrec(s(x), y, F)K ⊐nat JF · x · rec(x, y, F)K:
Jrec(s(x), y, F)K = Helper(⟨xc, xs +1⟩, F)xs+1(⟨1+xc +yc +(xs +1)+F (0nat, 0nat)c, ys⟩) =
Helper(⟨xc, xs +1⟩, F)(Helper(⟨xc, xs +1⟩, F)xs(⟨2+xc +yc +xs +F (0nat, 0nat)c, ys⟩)) ⊒nat
F (⟨xc, xs + 1⟩, Helper(⟨xc, xs + 1⟩, F)xs(⟨2 + xc + yc + xs + F (0nat, 0nat)c, ys⟩)) by (*B),
⊐nat F (⟨xc, xs⟩, Helper(⟨xc, xs⟩, F)xs(⟨1+xc+yc+xs+F (0nat, 0nat)c, ys⟩)) by monotonicity,
= F (x, Helper(x, F)xs(⟨1 + xc + yc + xs + F (0nat, 0nat)c, ys⟩)) = JF · x · rec(x, y, F)K.
Jx ⊗ yK ⊐nat Jrec(y, 0, λn.λm.x ⊕ m)K:

Jλn.λm.x ⊕ mK = n 7→ m 7→ ⟨xc + nc + mc + ms + 3, xs + ms⟩
Helper(y, Jλn.λm.x ⊕ mK) = m 7→ ⟨xc + yc + mc + ms + 3, xs + ms⟩
For given i, Helper(y, Jλn.λm.x ⊕ mK)i(m)s = (

∑i
j=0 xs) + ms = xs ∗ i + ms

Helper(y, Jλn.λm.x⊕mK)ys = m 7→ ⟨
∑ys

i=1(xc+yc+(xs∗i+ms)+3)+mc, ys∗xs+ms⟩ =
⟨ys ∗(xc +yc +ms +3)+xs ∗

∑ys
i=1(i)+mc, ys ∗xs +ms⟩ = ⟨ys ∗(xc +yc +ms +3)+xs ∗(ys ∗

(ys +1)/2)+mc, ys ∗xs +ms⟩ = ⟨ys ∗ (xc +yc +ms +xs ∗ (ys +1)/2+3)+mc, ys ∗xs +ms⟩
Hence, Jx ⊗ yK = ⟨1 + ys ∗ (xc + yc + xs ∗ (ys + 1)/2 + 3), xs ∗ ys⟩ ⊐nat ⟨ys ∗ (xc + yc + xs ∗
(ys + 1)/2 + 3) + 0, xs ∗ ys + 0⟩ = Jrec(y, 0, λn.λm.x ⊕ m)K

Filter. We show an example from the Termination Problem Database, v11.0.

rand(x) →R x filter(F, nil) →R nil
rand(s(x)) →R rand(x) filter(F, x : xs) →R consif(F · x, x, filter(F, xs))

bool(0) →R false consif(true, x, xs) →R x : xs

bool(s(0)) →R true consif(false, x, xs) →R xs

We will use the notation q instead of xs to avoid clutter in the proof. We let Mnat = N2 and
Mlist = N3 as before, and additionally let Mboolean = N (so no size components). We let:

JtrueK = ⟨0⟩ Js(x)K = ⟨xc, xs + 1⟩ Jbool(x)K = ⟨xc + 1⟩
JfalseK = ⟨0⟩ JnilK = ⟨0, 0, 0⟩ Jrand(x)K = ⟨1 + xc + xs, xs⟩

J0K = ⟨0, 0⟩ Jx : qK = ⟨xc + qc, ql + 1, max(xs, qm)⟩
Jconsif(z, x, q)K = ⟨zc + xc + qc + 1, ql + 1, max(xs, qm)⟩

Jfilter(F, q)K = ⟨1 + (ql + 1) ∗ (2 + qc + F (⟨qc, qm⟩)c), ql, qm⟩

It is easy to see that monotonicity requirements are satisfied. As for orienting the rules, we
show only the second filter rule.

FSCD 2021

31:20 Tuple Interpretations for Higher-Order Rewriting

Jfilter(F, x : q)K ⊐list Jconsif(F · x, x, filter(F, q))K
Jfilter(F, x : q)K = ⟨1+(ql+2)∗(2+xc+qc+F (⟨xc+qc, max(xs, qm)⟩)c), ql+1, max(xs, qm)⟩ =
⟨3+xc+qc+F (⟨xc+qc, max(xs, qm)⟩)c+(ql+1)∗(2+xc+qc+F (⟨xc+qc, max(xs, qm)⟩)c), ql+
1, max(xs, qm)⟩ ⊐list ⟨2+xc+F (⟨xc, xs⟩)c+(ql+1)∗(2+qc+F (⟨qc, qm⟩)c), ql+1, max(xs, qm)⟩
= ⟨F (x)c +xc +(1+(ql +1)∗(2+qc +F (⟨qc, qm⟩)c))+1, ql +1, max(xs, qm)⟩ = ⟨F (x)c +xc +
Jfilter(F, q)Kc + 1, Jfilter(F, q)Kl + 1, max(xs, Jfilter(F, q)Km)⟩ = Jconsif(F · x, x, filter(F, q))K.

Deriv. Our final example also comes from the termination problem database.

der(λx.y) →R λz.0 der(λx.sin(x)) →R λz.cos(z)
der(λx.x) →R λz.1 der(λx.cos(x)) →R λz.min(cos(z))

der(λx.plus(F · x, G · x)) →R λz.plus(der(F) · z, der(G) · z)
der(λx.times(F · x, G · x)) →R λz.plus(times(der(F) · z, G · z), times(F · z, der(G) · z))

der(λx.ln(F · x)) →R λz.div(der(F) · z, F · z)

With der :: [real ⇒ real] ⇒ real ⇒ real. We let Mreal = N3 where the first component indicates
cost, and the second and third component roughly indicate the number of plus/times/ln
occurrences and the number of times/ln occurrences respectively. We will denote xs for x2,
and x⋆ for x3. We use the following interpretation:

J0K = ⟨0, 0, 0⟩ Jplus(x, y)K = ⟨xc + yc, xs + ys + 1, x⋆ + y⋆⟩
J1K = ⟨0, 0, 0⟩ Jtimes(x, y)K = ⟨xc + yc, xs + ys + 1, x⋆ + y⋆ + 1⟩

Jcos(x)K = x Jln(x)K = ⟨xc, xs + 1, x⋆ + 1⟩
Jsin(x)K = x Jder(F)K = z 7→ ⟨

Jmin(x)K = ⟨xc, 0, 0⟩ 1 + F (z)c + 2 ∗ F (z)s + F (z)⋆ ∗ F (z)c,

Jdiv(x, y)K = ⟨xc + yc, 0, 0⟩ F (z)s ∗ (F (z)⋆ + 1),
F (z)⋆ ∗ (F (z)⋆ + 1) ⟩

It is easy to see that monotonicity requirements are satisfied. In addition, all the rules are
oriented by this interpretation. We only show the one for times.

Jder(λx.times(F · x, G · x))K ⊐real Jλz.plus(times(der(F) · z, G · z), times(F · z, der(G) · z))K
Jλx.times(F ·x, G ·x))K = x 7→ ⟨1+F (x)c +G(x)c, F (x)s +G(x)s +1, F (x)⋆ +G(x)⋆ +1⟩
Jtimes(der(F) · z, G · z)K = ⟨1 + F (z)c + 2 ∗ F (z)s + F (z)⋆ ∗ F (z)c + G(z)c, F (z)s ∗
(F (z)⋆ + 1) + G(z)s + 1, F (z)⋆ ∗ (F (z)⋆ + 1) + G(z)⋆ + 1⟩
Jtimes(F · z, der(G) · z))K = ⟨1 + G(z)c + 2 ∗ G(z)s + G(z)⋆ ∗ G(z)c + F (z)c, G(z)s ∗
(G(z)⋆ + 1) + F (z)s + 1, G(z)⋆ ∗ (G(z)⋆ + 1) + F (z)⋆ + 1⟩

Jder(λx.times(F · x, G · x))K = z 7→ ⟨1 + cost, size, star⟩, where:
cost = (1+F (z)c+G(z)c)+2∗(F (z)s+G(z)s+1)+(F (z)⋆+G(z)⋆+1)∗(1+F (z)c+G(z)c);
size = (F (z)s + G(z)s + 1) ∗ (F (z)⋆ + G(z)⋆ + 2);
star = (F (z)⋆ + G(z)⋆ + 1) ∗ (F (z)⋆ + G(z)⋆ + 2).

We have size = F (z)s + G(z)s + 1 + (F (z)s + G(z)s + 1) ∗ (F (z)⋆ + G(z)⋆ + 1) ≥
F (z)s+G(z)s+1+F (z)s∗(F (z)⋆+1)+G(z)s∗(G(z)⋆+1)+1∗1 = (F (z)s∗(F (z)⋆+1)+G(z)s+
1)+(G(z)s ∗(G(z)⋆ +1)+F (z)s +1) = Jplus(times(der(F) ·z, G ·z), times(F ·z, der(G) ·z))Ks
The proof that star ≥ Jplus(times(der(F) · z, G · z), times(F · z, der(G) · z))K⋆ is the same,
just with ·s replaced by ·⋆.
Finally, cost > F (z)c + G(z)c + 2 ∗ F (z)s + 2 ∗ G(z)s + 2 + 1 + F (z)c + G(z)c + (F (z)⋆ +
G(z)⋆)∗(F (z)c +G(z)c) = 1+1+F (z)c +2∗F (z)s +F (z)⋆ ∗F (z)c +G(z)c +1+G(z)c +2∗
G(z)s + G(z)⋆ ∗ G(z)c + F (z)c = 1 + Jplus(times(der(F) · z, G · z), times(F · z, der(G) · z))Kc

C. Kop and D. Vale 31:21

B Proof sketches and unstated lemmas

We here present proof sketches for lemmas in the text where they were omitted, as well as
unstated lemmas that for instance support the correctness of our definition. Complete proofs
can be found in the extended appendix [32].

Proof Sketch of Lemma 14. Each individual statement follows by induction on σ. ◀

In the text, we quietly asserted that Definition 16 is well-defined. This follows from:

▶ Lemma B.1. For all terms s :: σ and suitable α as described in Definition 16 we have:
JsKα ∈ Ms, and for all variables x occurring in the domain of α: d 7→ JsK[x:=d] is either a
strongly monotonic function, or a constant function.

Proof Sketch. By induction on the form of s. The second part of the induction hypothesis is
used to prove that Jλx.sK ∈ M, as MakeSM must be applied on either a strongly monotonic
or a constant function. ◀

To prove Theorem 17 we need an AFS version of the so called Substitution Lemma. We
begin by giving a systematic way of extending a substitution (seen as a morphism between
terms) to a valuation, seen as morphism from terms to elements of AM.

▶ Definition B.2. Given a substitution γ = [x1 := s1, . . . , xn := sn] and a valuation α,
we define αγ as the valuation such that αγ(x) = α(x), if x /∈ dom(γ); and αγ(x) = JxγKα,
otherwise.

▶ Lemma B.3 (Substitution Lemma). For any substitution γ and valuation α, JsγKα = JsKαγ .
Additionally, if JsK ⊐σ JtK (JsK ⊒σ JtK), then JsγK ⊐σ JtγK (JsγK ⊒σ JtγK).

Proof.
By inspection of Definition B.2 it can be easily
shown by induction on s that the diagram to the
right commutes. As a consequence, if JsKα ⊐σ

JtK for any valuation α, then JsKαγ ⊐σ JtKαγ in
particular. So JsγKα ⊐σ JtKα.

T (F , X)

T (F , X) AMJ·Kαγ

γ
J·Kα

The case for ⊒σ is analogous. ◀

Proof Sketch of Theorem 17. This follows easily by induction on the definition of s →R t,
using the substitution lemma. ◀

We posit some results regarding the functions 0σ, addcσ and costofσ.

▶ Lemma B.4. For all types σ: (1) 0σ ∈ Mσ; (2) for all n ∈ N and x ∈ Mσ: addcσ(n, x) ∈
Mσ; (3) costofσ is weakly monotonic and strict in its first argument; (4) addcσ is weakly
monotonic and strict in both its arguments.

Proof Sketch. All claims follow easily by a mutual induction on σ. ◀

▶ Lemma B.5. For all types σ, for all x ∈ Mσ: (1) addcσ(0, x) = x; (2) for all n, m ∈ N:
addcσ(n, addcσ(m, x)) = addcσ(n+m, x); (3) if n > 0 then addcσ(n, x) ⊐σ x; (4) if y ∈ Mσ

is such that x ⊐σ y then x ⊒σ addc(1, y); (5) for all n ∈ N: costofσ(addcσ(n, x)) =
n + costofσ(x).

Proof Sketch. All claims follow easily by induction on σ. ◀

FSCD 2021

31:22 Tuple Interpretations for Higher-Order Rewriting

▶ Lemma B.6. For all σ, τ , F ∈ Mσ⇒τ , x ∈ Mσ, n ∈ N: F (addcσ(n, x)) ⊒σ

addcτ (n, F (x)).

Proof Sketch. By induction on n, using the various claims in Lemma B.5. ◀

▶ Lemma B.7. For all types σ and all x ∈ Mσ: x ⊒σ addcσ(costofσ(x), 0σ).

Proof Sketch. By induction on σ, using Lemmas B.4–B.6. ◀

▶ Lemma B.8. For F ∈ Mσ⇒τ and x ∈ Mσ we have: costofτ (F (x)) ≥ costofσ(x).

Proof. Let n := costofσ(x). By Lemma B.7, x ⊒σ addcσ(costofσ(x), 0σ) = addcσ(n, 0σ).
Hence, by monotonicity of F , F (x) ⊒τ F (addcσ(n, 0σ)). By Lemma B.6, this implies that
F (x) ⊒τ addcτ (n, F (0σ)). Since costofτ is strict in its first argument by Lemma B.4(3), we
thus have costofτ (F (x)) ≥ costofσ(addcτ (n, F (0σ))), which ≥ n by Lemma B.5(5). ◀

We can now prove that Definition 20 indeed defines a (σ, τ)-monotonicity function.

▶ Lemma B.9. Let σ, τ be simple types. Then Φσ,τ is a (σ, τ)-monotonicity function.

Proof Sketch. By case analysis and Lemma B.4 we see that Φσ,τ maps Cσ,τ to Mσ,τ . To
see that Φσ,τ is strongly monotonic we also use a case analysis. If F and G are both
constant functions or both strongly monotonic, the result follows easily; F is constant and
G not cannot occur because eventually costof(G)(x) > costof(F)(x); and if F is strongly
monotonic and G is constant then F (x) ⊐ addc(costof(x), G(x)) because G(x) = G(0) and
F (x) ⊒ F (addc(costof(x), 0)) ⊒ addc(costof(x), F (0)) by Lemmas B.4–B.8. ◀

Proof of Lemma 21. We have either J(λx.s) · tKα = addcτ (costofσ(JtKα)+1, JsKα[x:=JtK]) or
J(λx.s) · tKα = addcτ (1, JsKα[x:=JtK]). By Lemma B.5(3) we have J(λx.s) · tKα ⊐τ JsKα[x:=JtK]
in both cases. By Lemma B.3, JsKα[x:=JtK] = Js[x := b]Kα. This completes the proof. ◀

Proof of Lemma 22. Since F ̸= x, we have d 7→ JF · xKα[x:=d] = d 7→ α(F)(d), which
by extensionality is α(F). Since α(F) is monotonic we have Jλx.F xKα = Φσ,τ (d 7→ JF ·
xKαx:=d) = Φσ,τ (α(F)) = addcσ,τ (1, α(F)). By Lemma B.5(3) this ⊐σ⇒τ α(F) = JF K. ◀

Proof Sketch of Lemma 25. Let Q(x1, . . . , xk) := y 7→ F (x1, . . . , xk)G(x1,...,xk)(y). To see
that Q maps to Mτ⇒τ , so that Q is strongly monotonic. We show that F (u⃗)n(x) ⊐ F (u⃗)n(y)
whenever x ⊐ y by a straighforward induction on n, and similar for x ⊒ y. To see that Q

is weakly monotonic in its first k arguments, we show by induction on n that for all n, m

with n ≥ m we have F (u1, . . . , uk)n ⊒τ⇒τ F (u′
1, . . . , u′

k)m if each ui ⊒ u′
i. The result then

follows because G(u1, . . . , uk) ≥ G(u′
1, . . . , u′

k) by weak monotonicity of G. ◀

Proof Sketch of Lemma 32. For claim (1), let b be the largest of the constants used for
each constructor; i.e., we have

∑K[κ]
l=1 Pl(x1, . . . , xm) ≤ b +

∑m
i=1

∑K[ιi]
j=1 xi

j whenever Jc(x⃗) =
⟨P1(x⃗), . . . , PKκ(x⃗)⟩. We prove by induction on the size of a data term s :: κ that

∑K[κ]
l=1 JsKl ≤

a ∗ |s|. Then certainly JsKl ≤ b ∗ |s| holds for any component JsKl.
For claim (2), let a be the largest of the constants used for each constructor c and

component Pl, and let k be the largest value K[ι] for any sort in the program; let b :=
max(2, a ∗ k). We prove by induction on the size of a data term s that JsKl ≤ 2b∗|s|, In the
proof, we use that n + m ≤ n ∗ m whenever n, m ≥ 2 and 2 ∗ n ≤ 2n if n ≥ 2, and hence:
2 ∗ a ∗ k ∗

∑m
i=1 2a∗k∗|si| ≤ (2 ∗ a ∗ k) ∗

∏m
i=1 2a∗k∗|si| ≤ 2b ∗ 2b∗

∑m

i=1
|si|. ◀

Output Without Delay: A π-Calculus Compatible
with Categorical Semantics
Ken Sakayori #

The University of Tokyo, Japan

Takeshi Tsukada
Chiba University, Japan

Abstract
The quest for logical or categorical foundations of the π-calculus (not limited to session-typed
variants) remains an important challenge. A categorical type theory correspondence for a variant of
the i/o-typed π-calculus was recently revealed by Sakayori and Tsukada, but, at the same time, they
exposed that this categorical semantics contradicts with most of the behavioural equivalences. This
paper diagnoses the nature of this problem and attempts to fill the gap between categorical and
operational semantics. We first identify the source of the problem to be the mismatch between the
operational and categorical interpretation of a process called the forwarder. From the operational
viewpoint, a forwarder may add an arbitrary delay when forwarding a message, whereas, from the
categorical viewpoint, a forwarder must not add any delay when forwarding a message. Led by this
observation, we introduce a calculus that can express forwarders that do not introduce delay. More
specifically, the calculus we introduce is a variant of the π-calculus with a new operational semantics
in which output actions are forced to happen as soon as they get unguarded. We show that this
calculus (i) is compatible with the categorical semantics and (ii) can encode the standard π-calculus.

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation
→ Process calculi; Theory of computation → Denotational semantics

Keywords and phrases π-calculus, categorical semantics, linear approximation

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.32

Funding This work was supported by JSPS KAKENHI Grant Numbers JP20J13473 and JP19K20211.

Acknowledgements We would like to thank anonymous referees for useful comments.

1 Introduction

The connection between the π-calculus and logic or categorical type theory has been studied
since the early stages of the development of the π-calculus [1, 3, 2]. Among others, a close
correspondence between a session typed π-calculus and intuitionistic linear logic [6] (and
hence also the relationship to categorical models of linear logic) is well-understood. The
session-typed calculi corresponding linear logic, however, are not quite expressive since they
are race-free and deadlock-free. So it is natural to question whether a similar categorical
foundation can be given to processes not limited to deadlock-free and race-free processes.

A fundamental difficulty in developing a categorical type theory for process calculi in
the presence of race condition has been recently pointed out by Sakayori and Tsukada [19].
They showed that asynchronous π-calculus processes modulo observational equivalence (weak
barbed congruence) do not form a category, under some mild assumptions [19, Theorem 1].1
Hence, the observational equivalence cannot be an instance of an equational theory charac-
terised by a certain categorical structure; this is in contrast to the case of λ-calculus, where
observational equivalence is a βη-theory.

1 The choice of the behavioural equivalence does not matter since their argument also applies to many
other behavioural equivalences, such as must-testing equivalence.

© Ken Sakayori and Takeshi Tsukada;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 32; pp. 32:1–32:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sakayori@kb.is.s.u-tokyo.ac.jp
https://orcid.org/0000-0003-3238-9279
https://orcid.org/0000-0002-2824-8708
https://doi.org/10.4230/LIPIcs.FSCD.2021.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Output Without Delay

Hence, if a process calculus based on the (asynchronous) π-calculus were to have some
categorical foundation, its operational behaviour must be distant from conventional behaviour.

This paper introduces a variant of the π-calculus whose observational equivalence harmon-
ises with categorical semantics. We introduce a novel reduction semantics to the π-calculus
and show that processes modulo weak barbed congruence, defined on top of the new reduction
semantics, form a category; more precisely, they form a compact closed Freyd category [19]
(described below).

Before introducing the operational semantics that we propose, let us explain the problem
of conventional behavioural equivalences in a little more detail.

The problem is about the behaviour of a special process !a(x).b̄⟨x⟩, which is often called a
forwarder or a link. Intuitively this process transfers a message from channel a to channel b̄.
This intuition justifies the following equation

(νa)(P | !a(x).b̄⟨x⟩) = P{b̄/ā}, a, b̄ /∈ fn(P), (1)

which indeed holds for the weak barbed congruence in an asynchronous setting. If we
adopt “parallel composition + hiding” as the notion of composition, i.e. if we regard (νa)(P |
!a(x).b̄⟨x⟩) as a composition of !a(x).b̄⟨x⟩ and P , (1) says that the forwarder is a right-identity.
If processes modulo weak barbed congruence formed a category, a right-identity would be the
identity and in particular a left-identity, as in any other categories. The left-identity law is

(νb)(!a(x).b̄⟨x⟩ | P) = P{a/b}, a, b̄ /∈ fn(P), (2)

but this is invalid with respect to weak barbed congruence.
To see why (2) fails for weak barbed congruence, let us review the conventional behavioural

interpretation of a forwarder !a(x).b̄⟨x⟩: it receives a message from a, possibly waits as long
as it wants or needs, and then sends the message to the receiver. Hence the process
(νb)(!a(x).b̄⟨x⟩ | P) can immediately receive a message from a and keep it until P actually
requires a message from b. On the other hand, P{a/b} do not receive a message from a unless
P{a/b} actually requires it. This difference is significant in the presence of race condition,
and thus (2) fails for weak barbed congruence.

A similar observation on a problem caused by delays introduced by forwarders and a
solution against that problem has been made in the context of game semantics. When
giving a game semantics of a synchronous session typed π-calculus, Castellan and Yoshida [7]
observed that the (traditional) copycat strategy – the game semantic counterpart of the
forwarder process – does not behave as identity due to the delay it introduces. To avoid this
problem, they introduced a copycat strategy that does not introduce any delay and proved
that this “delayless copycat strategy” works as the identity.

Whereas [7] added delayless forwarders as semantic elements that processes cannot
represent, this paper discusses a new operational semantics on processes with respect to
which forwarders are delayless. The main result shows that behavioural equivalences under
the delayless interpretation is in harmony with categorical semantics.

The new operational semantics introduced in this paper is a reduction semantics that
forces output actions to happen as soon as they get unguarded. Under the new operational
semantics, when a forwarder !a(x).b̄⟨x⟩ receives a message m from a, it must immediately
send m to a receiver b. In other words, the following two transitions are atomic

!a(x).b̄⟨x⟩ a(m)−→ !a(x).b̄⟨x⟩ | b̄⟨m⟩ b̄⟨m⟩−→ !a(x).b̄⟨x⟩,

and the process cannot stop at the underlined intermediate step since it has an unguarded
output action. So one-step reduction in our calculus corresponds to multi-step reduction in
the conventional calculus. We may consider that the new behaviour expresses a synchronous
communication since a message m now cannot be kept in a communication medium ā⟨m⟩.

K. Sakayori and T. Tsukada 32:3

In our proposed calculus, processes modulo observational equivalence form a compact
closed Freyd category. This means that not only equations (1) and (2) but also some
equational laws studied for the asynchronous π-calculus are valid under this new operational
behaviour. This is because compact closed Freyd category is a categorical structure that
corresponds to a theory of processes, i.e. a congruence over asynchronous π-processes satisfying
certain equational laws [19]. One of the laws is (2), and the others are laws that frequently
appear in the study of asynchronous π-calculus, such as the replication theorem [17].

We also show that a π-calculus with the standard reduction semantics, can be embedded
into the proposed calculus by using a special constant τ for delay. The translation replaces
each output action ā⟨m⟩ with τ.ā⟨m⟩, making explicit the delay of the output action
in the conventional π-calculus. For instance, the conventional behaviour of a forwarder
!a(x).b̄⟨x⟩ a(m)−→ !a(x).b̄⟨x⟩ | b̄⟨m⟩ is mimicked by !a(x).τ.b̄⟨x⟩ a(m)−→ !a(x).b̄⟨x⟩ | τ.b̄⟨m⟩ in the
new operational semantics.

Technically the new operational semantics is quite complicated since its one-step reduction
is a multi-step reduction with a certain condition in the conventional calculus. To overcome
the difficulty in reasoning about such a complicated calculus, we develop an intersection
type system, or equivalently a system of linear approximations [21, 14], that captures the
behaviour of a process. We think that the system would be of independent technical interest.

Organisation of the paper

Section 2 introduces our calculus and states the main result; the following sections are
devoted to its proof. After reviewing the idea of linear approximations and its correspondence
to reduction sequences in Section 3, we formalise this idea in Section 4. Section 5 defines
an LTS based on linear approximations, and Section 6 shows that barbed congruence has a
categorical model. Section 7 discusses related work and Section 8 concludes the paper.

2 A process calculus with undelayed output

This section (i) introduces a variant of the π-calculus whose barbed congruence can be
captured categorically and (ii) claims the main result of this paper. The syntax of the
calculus is the same as that of the πF -calculus introduced by Sakayori and Tsukada [19], but
the calculus is equipped with a non-standard reduction semantics; we also call this calculus
the πF -calculus.2 The proof of the main result will be given in the following sections.

2.1 Syntax
The πF -calculus is a variant of the polyadic asynchronous π-calculus with i/o-types,3 which
this paper calls sorts in order to avoid confusion with intersection types introduced later.

▶ Definition 1 (Sorts). The set of sorts, ranged over by S and T , is given by

S, T ::= cho[T1, . . . , Tn] | chi[T1, . . . , Tn] (n ≥ 0).

The sort cho[T1, . . . , Tn] (resp. chi[T1, . . . , Tn]) is for channels for sending (resp. receiving)
n arguments of types T1, . . . , Tn. We often write T⃗ for a sequence of sorts T1, . . . , Tn. The
dual T ⊥ of sort T is defined by cho[T⃗]⊥ def= chi[T⃗] and chi[T⃗]⊥ def= cho[T⃗].

2 Although the πF -calculus introduced in this paper and the original πF -calculus [19] have different
reduction semantics it is not that odd to call them with the same name. This is because the reduction
semantics is not essential to establish the correspondence to compact closed Freyd categories; we only
need the “algebraic semantics” to establish the correspondence (cf. Appendix A).

3 Unlike the original i/o-types [17], no names have both input and output capabilities. Names are used
to represent the input/output endpoints of a channel.

FSCD 2021

32:4 Output Without Delay

∆ ⊢ P ∆ ⊢ Q

∆ ⊢ P | Q

∆, x : T, y : T ⊥ ⊢ P

∆ ⊢ (νT xy)P
(x : chi[T⃗]) ∈ ∆ ∆, y⃗ : T⃗ ⊢ P

∆ ⊢ !x(y⃗).P

(x : cho[T⃗]) ∈ ∆ y⃗ : T⃗ ⊆ ∆
∆ ⊢ x⟨y⃗⟩

(τ : chi[]) ∈ ∆ ∆ ⊢ P

∆ ⊢ τ.P ∆ ⊢ 0

Figure 1 Sort assignment rules for processes.

▶ Definition 2 (Processes). The set of processes is defined by

P, Q, R ::= 0 | (P |Q) | (νT xy)P | x⟨y⃗⟩ | !x(y⃗).P | τ.P,

where x and y range over a set of names and y⃗ represents a (possibly empty) sequence of
names. We often elide sort annotations and write (νxy) for (νT xy). The set of free names
of P , written fn(P), and bound names of P written bn(P) are defined as usual.

All the constructs, except for the name restriction, are standard so their meaning should
be clear.4 The name restriction (νT xy)P hides the names x and y of type T and T ⊥ and,
at the same time, establishes a connection between x and y. The input-output connection
is not a priori and communications only happen over bound names connected by ν; this is
different from the standard π-calculi where ā is considered as an output to a.

For a technical reason, we introduce not only structural congruence, but also a notion
called structural precongruence ⇛ (cf. Remark 10). A precongruence is like a congruence,
but it is just reflexive and transitive, not necessarily symmetric. We define ⇛ as the smallest
precongruence relation on processes that satisfies the following rules:

P | 0 ⇚⇛ P P | Q ⇚⇛ Q | P (P | Q) | R ⇚⇛ P | (Q | R)
(νwx)(νyz)P ⇚⇛ (νyz)(νwx)P ((νxy)P) | Q ⇛ (νxy)(P | Q)

where P ⇚⇛ Q means P ⇛ Q and Q ⇛ P , w, x, y, z are distinct in the fourth rule and
x, y /∈ fn(Q) in the fifth rule. Unlike the structural congruence, the restriction of the scope
of (νxy) is not allowed. The structural congruence ≡ is the symmetric closure of ⇛.

The typing rules are rather straightforward. A sort environment, written ∆, is a finite
set of bindings of the form t : T , where t is either a name x or τ , such that the names in ∆
are pairwise distinct. The sort assignment relation ∆ ⊢ P is the least relation closed under
the rules listed in Figure 1.

2.2 Reduction semantics
As mentioned in Section 1, a one-step reduction in our calculus corresponds to a multi-step
reduction in the conventional calculus. So we first introduce the conventional reduction
relation −→ and then define a new reduction relation =⇒ using the conventional reduction.

The standard reduction relation ℓ−→ (ℓ = τ or 0) is defined by the base rules

(νw⃗z⃗)(νāa)(!a(x⃗).P | ā⟨y⃗⟩ | Q) 0−→ (νw⃗z⃗)(νāa)(!a(x⃗).P | P{y⃗/x⃗} | Q)

(νw⃗z⃗)(τ.P | Q) τ−→ (νw⃗z⃗)(P | Q)

4 Another notable characteristic of the πF -calculus is that it does not have non-replicated inputs a(x⃗).P .

K. Sakayori and T. Tsukada 32:5

together with the structural rule which concludes P
ℓ−→ Q from P ⇛ P ′ ℓ−→ Q′ ⇛ Q for some

P ′ and Q′. We write P −→ Q if the label is not important. The following is an example of a
(multi-step) reduction:

(νāa)(ν b̄b)(τ.ā⟨m⟩ | !a(x).b̄⟨x⟩ | !b(y).!c(z).P)
τ−→ (νāa)(ν b̄b)(ā⟨m⟩ | !a(x).b̄⟨x⟩ | !b(y).!c(z).P)
0−→ (νāa)(ν b̄b)(!a(x).b̄⟨x⟩ | b̄⟨m⟩ | !b(y).!c(z).P)
0−→ (νāa)(ν b̄b)(!a(x).b̄⟨x⟩ | !c(z).P{m/y} | !b(y).!c(z).P).

In our calculus, the output action b̄⟨x⟩ in !a(x).b̄⟨x⟩ (resp. ā⟨m⟩ in τ.ā⟨m⟩) must be
performed at the same time as the input action a(x) (resp. τ). Therefore, the above
multi-step reduction should be regarded as a one-step reduction:

(νāa)(ν b̄b)(τ.ā⟨m⟩ | !a(x).b̄⟨x⟩ | !b(y).!c(z).P)
=⇒ (νāa)(ν b̄b)(!a(x).b̄⟨x⟩ | !c(z).P{m/y} | !b(y).!c(z).P).

We formally define =⇒. A process P has an unguarded output action if P ≡ (νw⃗z⃗)(ā⟨x⃗⟩ | Q)
for some Q. A process with an unguarded output action is regarded as an incomplete,
intermediate state that needs to perform further actions to complete an “atomic operation”.
We say that P is settled if P has no unguarded output action. We write P =⇒ Q if P

τ−→(0−→)∗ Q

and Q is settled.
The notion of barbed congruence can be easily adapted to this setting.

▶ Definition 3 (Barbed bisimulation and barbed congruence). Let R be a binary relation on
settled processes. We say that R is a barbed bisimulation if whenever P R Q,
1. P↓τ

ā if and only if Q↓τ
ā

2. P =⇒ P ′ implies Q =⇒ Q′ and P ′ R Q′ for some process Q′

3. Q =⇒ Q′ implies P =⇒ P ′ and P ′ R Q′ for some process P ′,

where P↓τ
ā means that P

τ−→ (0−→)∗ ≡ (νx⃗y⃗)(ā⟨z⃗⟩ | P ′) and ā is a free name of P .
The barbed bisimilarity •∼τ is the largest barbed bisimulation. Processes P and Q are

barbed congruent, written P ≃c
τ Q, if τ.C[P] •∼ τ.C[Q] for all context C. (The additional

τ -prefixing is to ensure that the processes are settled.)

The main result of this paper is that there exists a categorical model that is fully abstract
with respect to ≃c

τ . We use the categorical structure named compact closed Freyd category [19]
to interpret πF -calculus processes. The proof is given in the subsequent sections.

▶ Theorem 4. πF -processes modulo ≃c
τ forms a compact closed Freyd category. Hence there

exists a compact closed Freyd category that is fully abstract with respect to ≃c
τ .

The proof can be easily adapted to prove a similar claim for any other congruence that
subsumes ≃c

τ , such as weak barbed congruence (for =⇒).

2.3 Relationship to the standard semantics
We have introduced two reduction relations to the πF -calculus, namely −→ and =⇒. There
exists an embedding of the πF -calculus with −→ to that with =⇒.

The translation is quite simple: it replaces each output action ā⟨x⃗⟩ with τ.ā⟨x⃗⟩, reflecting
the fact that an output action in the standard semantics can be delayed. Let us write (−)†

for this translation. It preserves the semantics in the following sense.

FSCD 2021

32:6 Output Without Delay

▶ Proposition 5. Suppose ∆ ⊢ P . Then (i) P −→ Q implies (P)† =⇒ (Q)†, (ii) (P)† =⇒ Q′

implies Q′ = (Q)† and P −→ Q for some Q, and (iii) P↓ā iff (P)†↓τ
ā.

From this proposition and the compositionality of (−)†, we obtain the following result.
Let ≃c for the conventional (strong) barbed congruence for πF -processes, defined by replacing
=⇒ with −→ and ↓τ

ā with ↓ā (i.e. existence of a free unguarded output ā) in Definition 3.

▶ Theorem 6. If ∆ ⊢ P , ∆ ⊢ Q and (P)† ≃c
τ (Q)†, then P ≃c Q.

This translation, however, is not fully abstract with respect to barbed congruence. Contexts
that are not in the image of the translation (−)† give additional observational power.

3 Overview

To prove Theorem 4, we appeal to an axiomatic characterisation of compact closed Freyd
category, proved in [19]: πF -processes modulo an equivalence relation R forms a compact
closed Freyd category if and only if R is a congruence satisfying six axioms5, such as (2) and

(νāa)(!a(x⃗).P | C[ā⟨y⃗⟩]) = (νāa)(!a(x⃗).P | C[P{y⃗/x⃗}]), a /∈ fn(P, C), ā /∈bn(C), (3)

where C is a context. Since barbed congruence is a congruence by definition, it suffices to
check that barbed congruence satisfies the axioms.

However, checking the required axioms directly using the definition of =⇒ in Section 2

does not seem tractable. Recall that P =⇒ Q is indeed a reduction sequence P
τ−→ P1

0−→

. . .
0−→ Pn

0−→ Q. The problem is that Pi
0−→ Pi+1 is defined in terms of the structure of Pi,

which may be quite different from that of P . A representation of reduction sequence defined
by structural induction on P , without directly referring to Pi, would be desirable.

We thus utilise the correspondence of (i) reduction sequences, (ii) derivations in an
intersection type system, and (iii) linear approximations [21, 14].

An example of a linear approximation is (a1.τ1.ā2 ∥ a2.⊥) ⊏ !a.τ.ā where the green part is
the linear approximation of the right-hand side. A linear approximation is linear in the sense
that each name is used exactly once and all inputs are non-replicated; it is an approximation
in the sense that some part is discarded (e.g. ⊥ ⊏ τ.ā or ⊥ ⊏!a.τ.ā) and replicated inputs
are replaced by a finite number of its copies (e.g. (a1.τ1.ā2 ∥ a2.⊥) ⊏ !a.τ.ā).6

To see how a linear approximation corresponds to a reduction sequence, let us consider
the following linear approximation:

(ν[⟨ā1, a1⟩⟨ā2, a2⟩⟨ā3, a3⟩])((a1.τ1.(ā2 | ā3) ∥ a2.⊥) | τ2.ā1 | a3.⊥)
⊏ (νāa)(!a.τ.(ā | ā) | τ.ā | !a.τ.b̄).

Because of linearity, a linear approximation is race-free; hence it induces an essentially unique
reduction sequence. For example,

(ν[⟨ā1, a1⟩⟨ā2, a2⟩⟨ā3, a3⟩])((a1.τ1.(ā2 | ā3) ∥ a2.⊥) | τ2.ā1 | a3.⊥) (4)
τ2−→ 0−→ (ν[⟨ā2, a2⟩⟨ā3, a3⟩])(a2.⊥ | τ1.(ā2 | ā3) | a3.⊥)
τ1−→ 0−→ (ν[⟨ā2, a2⟩])(a2.⊥ | (ā2 | ⊥) | ⊥) 0−→ (ν[])(⊥ | (⊥ | ⊥) | ⊥).

5 The axioms can be found in the Appendix A; please refer to [19] for a more detailed description.
6 In the approximation, | represents parallel-composition coming from the original process, whereas p ∥ q

means that p and q originate from the same replicated (sub)process.

K. Sakayori and T. Tsukada 32:7

Importantly a reduction sequence of an approximation canonically induces that of the
approximated process: the reduction sequence corresponding to (4) is

(νāa)(!a.τ.(ā | ā) | τ.ā | !a.τ.b̄) τ−→ 0−→ (νāa)(!a.τ.(ā | ā) | τ.(ā | ā) | !a.τ.b̄) (5)
τ−→ 0−→ (νāa)(!a.τ.(ā | ā) | (ā | τ.b̄) | !a.τ.b̄)
0−→ (νāa)(!a.τ.(ā | ā) | (τ.(ā | ā) | τ.b̄) | !a.τ.b̄).

Via the three-way correspondence mentioned above, this phenomenon can be understood as
Subject Reduction of the intersection type system.

Conversely, given a reduction sequence, we can construct a linear approximation that
represents the reduction sequence. This is a consequence of Subject Expansion, namely, p ⊏ P

and Q −→ P imply q ⊏ Q and q −→ p for some q. The approximation for P1 −→ P2 −→ . . . −→ Pn

is obtained by iteratively applying this lemma to pn ⊏ Pn, where pn is the approximation
that discards everything.

So far, we have discussed a relationship between {Q | P −→∗ Q } and { p | p ⊏ P }.
This relation can be seen as a bisimulation, by appropriately introducing a relation to
{ p | p ⊏ P }. Note that such a relation is not the reduction, since p −→ q changes the subject,
i.e. q ⊏ Q for some Q with P

0−→ Q but not q ⊏ P . Instead, we introduce an “ordering”
over approximations of P . The idea is that a longer reduction sequence corresponds to a
larger approximation. We write p1 ⊴ p2 if p1 is obtained by discarding some (sub)processes
of p2. For example, the second step of (5) corresponds to

(ν[⟨ā1, a1⟩])((a1.⊥) | τ2.ā1 | ⊥) ⊴ (ν[⟨ā1, a1⟩⟨ā3, a3⟩])(a1.τ1.(⊥ | ā3) | τ2.ā1 | a3.⊥),

representing that the third process in (5) is obtained by performing the actions corresponding
to τ1 and ā3.

The bisimilarity gives us a characterisation of the behaviour of a process P in terms of linear
approximations (or intersection type derivations) for P . Then Theorem 4 can be proved by
“proof manipulation”. For example, the proof of the above mentioned axiom (νāa)(!a(x⃗).P |
C[ā⟨y⃗⟩]) = (νāa)(!a(x⃗).P | C[P{y⃗/x⃗}]) resembles to the proof of the substitution lemma in
a typical type system.

4 Linear approximation and execution sequence

We introduce linear processes by which executions of processes can be described.

4.1 Linear processes and intersection types
We start by defining linear processes. Although the definition of linear processes depends
on the definition of intersection types because processes are annotated by types, we defer
defining types for the sake of presentation.

▶ Definition 7 (Linear processes). A linear name is an object of the form xi where x is an
ordinary name and i is a natural number. Similarly, a linear term, denoted by t, is either a
linear name or a constant of the form τi.

Linear processes are defined by the following grammar:

p, q ::= 0 | xi⟨λ1, . . . , λn⟩ | xi(µ1, . . . , µn).p | τi.p

| (p | q) | (p1 ∥ · · · ∥ pn) | (ν[⟨xi1 , yi1⟩ρ1 , . . . , ⟨xin
, yin
⟩ρn

])p
µ ::= ⟨xi1 , . . . , xin⟩ λ ::= ⟨φ1 � xi1 , . . . , φn � xin⟩

FSCD 2021

32:8 Output Without Delay

Here name restriction is annotated with types ρi, and the argument of an output action is
annotated with witnesses of type isomorphisms φi. (The notion of types and type isomorphisms
are introduced below and thus can be ignored for the moment.) In the above definition n may
be 0; for example, (ν[])p and ⟨⟩ are valid process and list, respectively. We require that each
linear term of a linear process appears exactly once.

The informal meanings of the constructs are almost the same as that of the ordinary
processes. The linear processes 0, xi⟨λ1, . . . , λn⟩ and xi(µ1, . . . , µn).p are nil process, output
action and input prefixing, respectively. An important difference from the ordinary process
is that, in linear processes, the output and input take lists of variables as arguments. When
a list of linear names is received each element of a list must be used exactly once. There
are two types of parallel composition p | q and p ∥ q. The former is the conventional parallel
composition and the latter is used when a replicated process is approximated by finite parallel
compositions.7 We use Πipi as a shorthand notation of p1 ∥ · · · ∥ pn and write the nullary
composition of ∥ as ⊥. The approximation relation defined later (Section 4.2) may also help
the readers to understand the intuitive meaning of linear processes.

We also identify processes with “similar structure”. The strong structural congruence,
written p ≡0 q over linear processes is the smallest congruence relation that satisfies:

p ∥ q ≡0 q ∥ p (p ∥ q) ∥ r ≡0 p ∥ (q ∥ r)
(ν[⟨x1, y1⟩, . . . , ⟨xn, yn⟩])p ≡0 (ν[⟨xσ(1), yσ(1)⟩, . . . , ⟨xσ(n), yσ(n)⟩])p,

where σ is a permutation over {1, . . . , n}. Given I = {i1, . . . , in}, we write ν[⟨xi, yi⟩]i∈I for
ν[⟨xi1 , yi1⟩, . . . , ⟨xin , yin⟩] because how the pairs ⟨xij , yij ⟩ are ordered is inessential.

We now define the intersection types. The syntax of raw types and raw (indexed)
intersection types are given by the following grammar:

(Raw types) ρ ::= cho
α[θ1, . . . , θm] | chi

α[θ1, . . . , θn]

(Raw intersection types) θ ::=
∧
i∈I

(i, ρi)

where I ⊆fin Nat and α ranges over the set of levels (A,≤), a universal poset in which
any finite poset can be embedded into. In the above grammar, an intersection

∧
i∈I(i, ρi)

is a map i 7→ ρi from I to types. The intuitive meaning of
∧

i∈I(i, ρi) is the intersection
ρi1 ∧ ρi2 ∧ · · · ∧ ρin

provided that I = {i1 < i2 < · · · < in}.
Levels express timing information, and types are defined as raw types with “appropriate

levels”. Let us write lv(ρ) and lv(θ) for the set of levels that appear in ρ and θ, respectively.
Then types and intersection types are inductively defined as follows: chm

α [θ1, . . . , θn] (m ∈
{i, o}) is a type if θi is an intersection type for all i ∈ {1, . . . , n} and α ≤ γ for all
γ ∈ lv(θ1, . . . , θn) and

∧
i∈I(i, ρi) is an intersection type if ρi is a type for all i ∈ I. Hereafter,

we use the metavariables ρ and θ to range over types and intersection types, respectively.

Notations. We define [n] def= {1, . . . , n} for a natural number n. A special symbol • is
introduced to mean undefined type of sort T ; now an intersection type θ can be also be
represented by a (total) function from Nat to the union of the set of types and {•}. We
write (i1, ρi1) ∧ · · · ∧ (in, ρin

) for the intersection type θ such that dom(θ) = {i1 < · · · < in}

7 (For readers familiar with resource calculi) Although the intuitive meaning of p ∥ q is the parallel
composition of p and q, this process should be thought of as an analogous to the bag in the resource
λ-calculi [5, 10].

K. Sakayori and T. Tsukada 32:9

and θ(ij) = ρij for every j ∈ [n]. We also write ⊤ for the empty intersection, i.e. θ such
that θ(i) = • for all i ∈ Nat. The dual ρ⊥ of type ρ is defined by cho

α[θ⃗]⊥ def= chi
α[θ⃗] and

chi
α[θ⃗]⊥α

def= cho
α[θ⃗]. We also define θ⊥ by θ⊥(i) def= (θ(i))⊥. In what follows, we may often

omit the annotations φ on the outputs because they are not needed as long as we are dealing
with simple examples.

The type chi
α[θ1, . . . , θn] is for a channel that is used to receive n lists, where the i-

th list has type θi and the type cho
α[θ⃗] is for output channels. If the i-th list has type

(i1, ρ1) ∧ · · · ∧ (im, ρm), it means that the j-the element of the list has type ρj . For ex-
ample, ai(⟨x1, x2⟩, ⟨ȳ1⟩).x1().x2().ȳ1⟨⟨⟩⟩ is well-typed if ai has type chi

α[(1, chi
β [])∧ (2, chi

γ []),
(1, cho

γ [⊤])] with α ≤ β ≤ γ. As mentioned, the levels are used to describe the timing of
actions. In the above example, the level γ tells us that the second element of the first
argument, namely x2, and the first element of the second argument, namely ȳ1, must be
used at the same timing. Levels also describe the fact that x1 must be used before x2 and ȳ1
are used.

Although the intersection types are non-commutative in the sense that (0, ρ) ∧ (1, ρ′) ̸=
(0, ρ′) ∧ (1, ρ), we consider that they are isomorphic. Intuitively, this means that we do
not mind much about the order of elements in a list. For example, we consider that
ā0⟨⟨x0, x1⟩⟩ and ā0⟨⟨x1, x0⟩⟩ are almost identical. Without this identification, we face
a technical problem: an approximation of a forwarder a0(⟨y0, y1⟩).b̄0⟨⟨y1, y0⟩⟩ cannot be
seen as an “identity” because (ν[⟨ā0, a0⟩])(a0(⟨y0, y1⟩).b̄0⟨⟨y1, y0⟩⟩ | ā0⟨⟨x0, x1⟩⟩) “reduces
to” b̄0⟨⟨x1, x0⟩⟩. Another possible way to avoid this problem is to use fully commutative
intersection types. We did not use this approach because, in a commutative type system, the
relationship between linear processes and execution sequences becomes less precise.

▶ Definition 8 (Type isomorphism). We write φ : ρ ∼= ρ′ (resp. φ : θ ∼= θ′) to mean that ρ

and ρ′ (resp. θ and θ′) are isomorphic and that φ is the witness of this isomorphism. This
relation is defined by the rules below:8

id• : • ∼= •
φi : θi

∼= θ′
i (for i ∈ [n])

cho
α[φ1, . . . , φn] : cho

α[θ′
1, . . . , θ′

n] ∼= cho
α[θ1, . . . , θn]

φi : θi
∼= θ′

i (for i ∈ [n])
chi

α[φ1, . . . , φn] : chi
α[θ1, . . . , θn] ∼= chi

α[θ′
1, . . . , θ′

n]

σ : Nat
∼=→ Nat φi : ρi

∼= ρ′
σ(i) (for i ∈ Nat)

(σ, (φi)i∈Nat) :
∧

i∈Nat

(i, ρi) ∼=
∧

i∈Nat

(i, ρ′
i)

▶ Remark 9. The reason for annotating arguments of free outputs with φ is quite technical.
The notion of type isomorphism was taken from the rigid intersection type system given
by Tsukada et al. [21], but in their calculus, witnesses do not appear in the syntax. This is
so because all the (raw) terms in their resource calculus are assumed to be in η-long form.
(See [21] for details.)

Similarly, we may remove witnesses of type isomorphisms from our linear calculus if
there is a way to convert a linear process p to an “equivalent” process p′ that does not
contain any free outputs. A possible way to do this is to transform a free output to a “bound

8 Here,
∧

i∈I
(i, ρi) is considered as a total map

∧
i∈Nat(i, ρi) in which ρi

def= • if i /∈ I.

FSCD 2021

32:10 Output Without Delay

φi : θi
∼= θ′

i φi � xi = λi (for i ∈ [n]) α ≤ lv(θ1, . . . , θn)
x1 : θ1 ⊓ · · · ⊓ xn : θn, ā : (i, cho

α[θ′
1, . . . , θ′

n]) ⊢α āi⟨λ1, . . . , λn⟩
(TOut)

Γ, x1 : θ1, . . . , xn : θn ⊢β p idθi
� xi = µi α ≤ β

Γ ⊓ a : (i, chi
β [θ1, . . . , θn]) ⊢α ai(µ1, . . . , µn).p

(TIn)
Γ ⊢β p α ≤ β

Γ ⊓ τ : (i, chi
β []) ⊢α τi.p

(TTau)

Γ1 ⊢α p1 Γ2 ⊢α p2

Γ1 ⊓ Γ2 ⊢α p1 | p2
(TPar)

Γi ⊢α pi (1 ≤ i ≤ n)
Γ1 ⊓ · · · ⊓ Γn ⊢α p1 ∥ · · · ∥ pn

(TRep)

∅ ⊢α 0
(TNil) Γ, ā : θ, a : θ⊥ ⊢α p

Γ ⊢α (ν[⟨āi, ai⟩]i∈dom(θ))p
(TNu)

Figure 2 Typing rules for the intersection type system.

output + forwarder” (cf. [4]). That is to (recursively) transform a free output ā0⟨⟨b̄0⟩⟩ into
(ν[⟨c̄0, c0⟩])(ā0⟨⟨c̄0⟩⟩ | b(µ).c̄0⟨µ⟩). We chose to keep free outputs in the syntax of the linear
process because by doing so, it is easier to see the correspondence between a (non-linear)
process P , which may contain free outputs, and its linear approximation p. Note that we
cannot assume that (non-linear) processes do not contain free outputs because the validity
of the transformation ā⟨b⟩ = (ν c̄c)(ā⟨c̄⟩ | c ↪→ b̄) is not something that is taken for granted
(even if the forwarder does not introduce any delay). Actually, the above translation is an
instance of the rule (2) that we aim to validate in this work.

We define yet another operator θ1 ⊓ θ2 for intersection types which “coalesces” the two
intersection. It is defined by (θ1 ⊓ θ2)(i) def= θ1(i) if i ∈ dom(θ1), (θ1 ⊓ θ2)(i) def= θ2(i) if
i ∈ dom(θ2) and (θ1 ⊓ θ2)(i) def= • otherwise, provided that dom(θ1) ∩ dom(θ2) = ∅.

A type environment, often denoted by Γ, is a finite set of pairs of the form t : θ with
θ ̸= ⊤ such that (t1 : θ1), (t2 : θ2) ∈ Γ implies t1 ̸= t2. For notational convenience, we
may write Γ, x : ⊤ to express Γ, i.e. allow ⊤ to appear in a type environment. We define
dom(Γ) as {t | ∃θ. (t : θ) ∈ Γ} and Γ(t) by Γ(t) def= θ if (t : θ) ∈ Γ and Γ(t) def= ⊤ otherwise.
For type environments Γ1 and Γ2, Γ1 ⊓ Γ2 is defined by pointwise extension of ⊓, that is
Γ1 ⊓ Γ2

def= {(t : θ) | t ∈ dom(Γ1) ∪ dom(Γ2), θ = Γ1(t) ⊓ Γ2(t)} provided that Γ1(t) ⊓ Γ2(t) is
defined for t ∈ dom(Γ1) ∪ dom(Γ2); otherwise Γ1 ⊓ Γ2 is undefined.

We consider judgments of the form Γ ⊢α p and the typing rules are given in Figure 2. We
stipulate that the deduction is allowed only if the result of the ⊓ operation in the conclusion
is defined. The operation φ � x used in the above definition is defined by

(σ, (φi)i∈Nat) � x
def= ⟨φσ−1(i1) � xσ−1(i1), . . . , φσ−1(in) � xσ−1(in)⟩,

where (σ, (φi)i∈Nat) : θ ∼= θ′ and dom(θ′) = {i1 < · · · < in}; similarly idθ � x is also used to
express ⟨xi1 , . . . , xin

⟩ when dom(θ) = {i1 < · · · < in}.
Let us explain how the subscript α of ⊢α is used; the other parts of the typing rule should

be easy to understand. The intuitive meaning of the subscript α of ⊢α is the “current time”.
The typing rule for output actions ensures that the “level of āi” is the “current time”, that is
the rule ensures that the output cannot be delayed. On the other hand, we may delay an
input or a τ action. For example, in the rule (TIn), the “level of ai” can be greater than
α meaning that we can delay the use of ai. The rule (TIn) also says that the “level of ai”
must be equal to the level assigned to Γ, x1 : θ1, . . . , xn : θn ⊢β p. This expresses the fact
that the unguarded outputs in p must be used as soon as ai is used, i.e. there cannot be any
delay between an input and an output.

K. Sakayori and T. Tsukada 32:11

x : {i1, . . . , in} ⊢ ⟨φ1 � xi1 , . . . , φn � xin ⟩ ⊏ x ⊢ 0 ⊏ 0 ⊢ ⊥ ⊏ τ.P

Xj ⊢ λj ⊏ xj (for j ∈ [n])
X1 ⊓ · · · ⊓ Xn ⊓ ā : {i} ⊢ āi⟨λ1, . . . , λn⟩ ⊏ ā⟨x1, . . . , xn⟩

X ⊢ p ⊏ P

X ⊓ τ : {i} ⊢ τi.p ⊏ τ.P

X, x1 : S1, . . . , xn : Sn ⊢ p ⊏ P xj : Sj ⊢ µj ⊏ xj (for j ∈ [n])
X ⊓ a : {i} ⊢ ai(µ1, . . . , µn).p ⊏ a(x1, . . . , xn).P

X1 ⊢ p ⊏ P X1 ⊢ q ⊏ Q

X1 ⊓ X2 ⊢ p | q ⊏ P | Q

Xi ⊢ pi ⊏ P (for i ∈ [n])
X1 ⊓ · · · ⊓ Xn ⊢ p1 ∥ · · · ∥ pn ⊏ !P

X, x : S, y : S ⊢ p ⊏ P S = {i1, . . . , in} ρi ⊏ T (for i ∈ S)
X ⊢ (ν[⟨xi1 , yi1 ⟩ρi1

, . . . , ⟨xin , yin ⟩ρin
])p ⊏ (νT xy)P

Figure 3 Rules for approximation relation. We stipulate that the deduction is allowed only if the
result of the ⊓ operation in the conclusion is defined.

4.2 Approximation
In this subsection we show how sorts are refined by intersection types and processes are
approximated by linear processes.

Given a sort T , the refinement relation ρ ⊏ T (resp. θ ⊏ T), meaning that the type ρ

(resp. the intersection type θ) refines the sort T , is defined by the following rules:

θi ⊏ Ti (i ∈ [n]) m ∈ {i, o}
chm

α [θ1, . . . , θn] ⊏ chm[T1, . . . , Tn]
ρi ⊏ T (i ∈ I ⊆fin Nat)∧

i∈I

(i, ρi) ⊏ T
.

We write Γ ⊏ ∆ if (x : θ) ∈ Γ implies that (x : T) ∈ ∆ for some T and θ ⊏ T .
Next we show how processes are approximated by linear processes.
A term refinement X is a finite set of the form t1 : S1, . . . , tn : Sn such that Si ⊆fin Nat

and i ̸= j implies ti ̸= tj , where each ti is a (non-linear) channel name or the constant τ .
The set Si expresses how many times ti is used in the approximation. Notations X(t) and
X1 ⊓ X2 are defined analogous to Γ(t) and Γ1 ⊓ Γ2. There is a canonical way to obtain
a term refinement from a type environment: given a type environment Γ, we define Γ♮ as
{(t : dom(Γ(t))) | t ∈ dom(Γ)}.

An approximation judgement is of the form X ⊢ p ⊏ P and inference rules for judgments
are given in Figure 3. It should be emphasized that we do not allow ⊥ ⊏ ā⟨x⃗⟩, that is we
ensure that all the output actions are used. Note that we can discard an output action that
is guarded by τ , i.e. ⊥ ⊏ τ.ā⟨x⃗⟩, and this is why the translation (−)† defined in Section 2
allows us to relate the reduction −→ with =⇒.

4.3 Reduction
This subsection defines the reduction relation for linear processes. We also show that every
reduction sequence from P has a representation by a linear process that approximates P .

The reduction relation of linear processes is almost the same as that of processes except
for the fact that we take actions of type isomorphisms to linear processes into account. The
action of φ to linear processes is defined by the rules in Figure 4. It is defined via the
action of type isomorphisms on subject names and operation {φ � y/x}, which substitutes

FSCD 2021

32:12 Output Without Delay

⟨φ1 � xi1 , . . . , φk � (φ′ � xik), . . . , φn � xin ⟩ def= ⟨φ1 � xi1 , . . . , (φk ◦ φ′) � xik , . . . , φn � xin ⟩

(cho[φ] � āi)⟨⟨φ′
i1

� xi1 , . . . , φ′
in

� xin ⟩⟩ def= āi⟨⟨(φi1 ◦ φ′
σ(i1)) � xσ(i1), . . . , (φin ◦ φ′

σ(in)) � xσ(in)⟩⟩

(chi[φ] � ai)(⟨xi1 , . . . , xin ⟩).p def= ai(⟨xi1 , . . . , xin ⟩).p{φσ−1(j) � xσ−1(j)/xj}j∈{i1,...,in}

Figure 4 Action of isomorphisms on linear (monadic) processes where φ = (σ, (φi)) in the last
two equations; the action on polyadic processes is defined similarly.

φ � y to x. The substitution {φ � y/x} works as the standard substitution, except for the
fact the action of φ is performed after the substitution. The witness φ2 ◦ φ1 : ρ1 ∼= ρ3 is the
composition of φ1 : ρ1 ∼= ρ2 and φ2 : ρ2 ∼= ρ3, which is defined as in the case of rigid resource
calculus [21]. (The definition of φ2 ◦ φ1 is not necessary to understand the following content;
see Appendix B.1 for the definition.) For readability, given λ

def= ⟨φ1 � y1, . . . , φn � yn⟩ and
µ

def= ⟨x1, . . . , xn⟩, we write {λ/µ} to denote {φ1 � y1/x1, . . . , φn � yn/xn}.
The structural precongruence ⇛ over linear process is the smallest precongruence relation

that contains ≡0, contains α-equivalence and satisfies:

0 | p ⇚⇛ p p | q ⇚⇛ q | p (p | q) | r ⇚⇛ p | (q | r)
(ν[⟨w⃗, z⃗⟩])(ν[⟨y⃗, z⃗⟩])p ⇚⇛ (ν[⟨y⃗, z⃗⟩])(ν[⟨w⃗, x⃗⟩])p (fn(w⃗, x⃗) ∩ fn(y⃗, z⃗) = ∅)
(ν[⟨x1, y1⟩, . . . , ⟨xn, yn⟩])p | q ⇛ (ν[⟨x1, y1⟩, . . . , ⟨xn, yn⟩])(p | q) (x⃗, y⃗ /∈ fn(q))

where p ⇚⇛ q means p ⇛ q and q ⇛ p. The structural congruence ≡ for linear processes is
defined as symmetric closure of ⇛.

We define the one-step reduction relation over well-typed linear processes by the base rule

(ν ξ⃗)(ν[⟨āj , aj⟩]j∈J)(Πi∈Iai(µi1, . . . , µini
).pi | ām⟨λ1, . . . , λn⟩ | q) 0−→

(ν ξ⃗)(ν[⟨āj , aj⟩]j∈J′)(Πi∈I′ai(µi1, . . . , µini
).pi | pm{λ1/µm1, . . . , λn/µmn} | q)

where (ν ξ⃗) is a sequence of name restrictions, m ∈ I ⊆ J , J ′ = J \ {m} and I ′ = I \ {m},
and the structural rule which concludes p

0−→ q from p ⇛ p′ and p′ 0−→ q. The relation τ−→
is obtained by replacing the base rule of the 0−→ with (ν ξ⃗)(τi.p | q) τ−→ (ν ξ⃗)(p | q).

▶ Remark 10. We use ⇛ instead of ≡ in the definition of reduction because X ⊢ p ⊏ P and
p ≡ q does not ensure the existence of Q such that X ⊢ q ⊏ Q and P ≡ Q. For instance,
if P

def= (νāa)(!a(x).R | τ.ā⟨y⟩) then (ν[])(⊥ | ⊥) approximates P and this linear process is
structurally congruent to (ν[])⊥ | ⊥, but there is no Q such that (ν[])⊥ | ⊥ ⊏ Q and P ≡ Q.

We now show the relationship between execution sequences and linear approximations.
Let us write P

π−→ Q if there exists a sequence P = P0
l1−→ P1

l2−→ · · · ln−→ Pn = Q, where
each li is either 0 or τ , and π = l1l2 . . . ln; p

π−→ q is defined similarly. We write (p π−→ q) ⊏
(P π−→ Q) if there exists p = p0

l1−→ · · · ln−→ pn = q and P = P0
l1−→ · · · ln−→ Pn = Q such

that Xi ⊢ pi ⊏ Pi for some Xi for each i ∈ {0, . . . , n} and π = l1 · · · ln.

▶ Proposition 11. Let τ : chi[] ⊢ P , i.e. let P be a process without any free names.
1. Suppose that Γ ⊢α p and Γ♮ ⊢ p ⊏ P . If p

π−→ q then we have (p π−→ q) ⊏ (P π−→ Q) for
some Q.

2. Assume P
π−→ Q, Γ ⊢α q and Γ♮ ⊢ q ⊏ Q. Then we have (p π−→ q) ⊏ (P π−→ Q) for

some p.

K. Sakayori and T. Tsukada 32:13

5 LTS based on linear approximations

Using the notion of linear processes, we introduce a labelled transition system (LTS) for
processes in the form of a presheaf to describe the behaviour of processes in which outputs
cannot be delayed. Intuitively, the LTS that describes the behaviour of P is given as an
LTS whose states are linear approximations of P and transition relation is the extension
relation ⊴, which we briefly explained in Section 3. This LTS will be presented as a presheaf
following the view that presheaves can be regarded as transition systems [9, 23].

5.1 Extension relation
We now define an ordering p′ ⊴ p over linear processes, which may be read as “p extends p′”.
Giving a larger linear approximation corresponds to extending an execution sequence.

Before we define the extension relation on linear processes, we define the extension relation
over types.

▶ Definition 12. Let A be a set of levels. Restriction of types and intersection types are
inductively defined by:

cho
α[θ1, . . . , θn]↾A

def=
{

cho
α[θ1↾A, . . . , θn↾A] (if α ∈ A)

• (otherwise)
and (θ↾A)(i) def= θ(i)↾A.

where restrictions over input types are defined similar to that of output types. The restriction
of type isomorphisms φ↾A is defined in a similar manner. (See the appendix for details.) We
write ρ′ <: ρ and if ρ′ = ρ↾A for some A ⊆ A and φ′ <: φ if φ′ = φ↾A for some A ⊆ A.

The extension relation on linear processes, written p′ ⊴ p, is inductively defined by the
rules in Figure 5. For example, a1(⟨⟩).⊥ ⊴ a1(⟨x1⟩).τ1.x1⟨⟩ holds and this intuitively means
that !a(x).x⟨⟩ a(x)−−−→ !a(x).x⟨⟩ | x⟨⟩ can be extended to !a(x).x⟨⟩ a(x)−−−→ !a(x).x⟨⟩ | x⟨⟩ x⟨⟩−−→
!a(x).x⟨⟩ | 0 (under the assumption that both of the linear processes approximate !a(x).x⟨⟩).

Extending a linear process does not precisely correspond to extending an execution
sequence: there are cases where an execution sequence cannot be extended even if the
corresponding linear process can be extended. This problem is due to the existence of dead-
locks. For instance, we have (ν[])(ν[])(⊥ | ⊥) ⊴ (ν[⟨ā1, a1⟩])(ν[⟨b̄1, b1⟩])(a1.τ1.b̄1 | b1.τ2.ā1),
but both of the linear processes are not reducible. To exclude linear processes that may
create a deadlock, we introduce the notion of terminable processes:

▶ Definition 13. A linear process p is idle if it has no action (input, output nor τ),
i.e. consisting of 0, ⊥, | and ν[]. A linear process p is terminable if (ν ξ⃗).(p | q) 0−→

∗
r for

some ξ⃗, q and idle r.

Only terminable processes will be used as the states of the LTS.
In case p and p′ correspond to executions that only consists of 0−→ and τ−→ the intuition

that p ⊴ p′ corresponds to “extending execution sequences” can be formalised as follows:

▶ Proposition 14. Let τ : chi[] ⊢ P and let R be a relation between execution sequences
starting from P and well-typed terminable linear approximations of P such that (P π−→ Q) R p

if and only if (p π−→ q) ⊏ (P π−→ Q) for a process q that is typed under the empty environment.
Then if (P π−→ Q) R p

1. Q
π′

−→ Q′ implies that (P π−→ Q
π′

−→ Q′) R p′ and p ⊴ p′ for some p′.
2. if p ⊴ p′ for some terminable well-typed linear process p′ that approximates P , then there

is an execution Q
π′

−→ Q′ such that (P π−→ Q
π′

−→ Q′) R p′.

FSCD 2021

32:14 Output Without Delay

I = {i1 < · · · < im} J = {j1 < · · · < jn} J ⊆ I φ′
i <: φi (for i ∈ J)

⟨φ′
j1

� xj1 , . . . , φ′
jn

� xjn ⟩ ⊴ ⟨φi1
� xi1 , . . . , φim

� xim ⟩

0 ⊴ 0 ⊥ ⊴ τi.p

p ⊴ q

τi.p ⊴ τi.q

J ⊆ I ρ′
i <: ρi (for i ∈ J) p ⊴ q

(ν[⟨āi, ai⟩ρ′
i
]i∈J)q ⊴ (ν[⟨āi, ai⟩ρi]i∈I)p

λ′
j ⊴ λj (for j ∈ [n])

āi⟨λ′
1, . . . , λ′

n⟩ ⊴ āi⟨λ1, . . . , λn⟩
p ⊴ q µ′

j ⊴ µj (for j ∈ [n])
ai(µ′

1, . . . , µ′
n).p ⊴ ai(µ1, . . . , µn).q

⊥ ⊴ ai(µ⃗).q
p′ ⊴ p q′ ⊴ q

p′ | q′ ⊴ p | q

m ≤ n p′
i ⊴ pi p′

i ̸= ⊥ (for i ∈ [m])
p′

1 ∥ · · · ∥ p′
m ⊴ p1 ∥ · · · ∥ pn

Figure 5 Rules for extension relation. Here we identify processes up to ≡0.

5.2 Presheaf semantics
We define the LTS of ∆ ⊢ P as a presheaf JP K : E∆ → Sets. Roughly speaking, the
path category E∆ is a category of type environments that refines ∆ and JP K maps a type
environment Γ to the set of approximations of P that is typed under Γ.

Actually, the objects of the path category are not only type environments, but the pair
of type environments and the “current time”.

▶ Definition 15. We say that (Γ, α) extends (Γ′, α) and write (Γ′, α) <: (Γ, α) if there exists
a witness A ⊆ lv(Γ) ∪ {α} that satisfies (i) dom(Γ′) ⊆ dom(Γ) and Γ′(t) = Γ(t)↾A, for
t ∈ dom(Γ), (ii) α ∈ A and (iii) A is downward-closed: for every β, γ appearing in Γ, β ≤ γ

and γ ∈ A implies β ∈ A.
We define the category of type environments E∆ to be a category whose objects are (Γ, α)
such that Γ ⊏ ∆ and whose morphisms are given by the relation (Γ′, α) <: (Γ, α).

We now define the presheaf JP K. Given ∆ ⊢ P and Γ ⊏ ∆, the set JP K(Γ, α) is defined
by JP K(Γ, α) def= {p | Γ♮ ⊢ p ⊏ P, Γ ⊢α p and p is terminable}. (Here we are identifying linear
processes up to ≡0.)

▶ Proposition 16. Assume that Γ⊢α p, p is terminable and (Γ′, α)<: (Γ, α). Then there is a
unique (up to ≡0) linear process that satisfy q ⊴ p and Γ′ ⊢α q.

By Proposition 16 there is a map JP K(−,−) that maps an extension relation (Γ′, α) <:
(Γ, α) to a function from JP K(Γ, α) to JP K(Γ′, α) that maps p ∈ JP K(Γ, α) to q such that q ⊴ p

and Γ′ ⊢α q. Given Γ ⊢α p, we will write p↾Γ′,α for the process that is uniquely determined
by the above proposition, provided that (Γ′, α) <: (Γ, α).

▶ Theorem 17. Let ∆ ⊢ P . Then JP K(−,−) is a functor from E∆ to Sets.

▶ Example 18. Consider a process P
def= (νāa)(!a(x).τ.z̄⟨⟩ | !a(x).τ.x⟨ȳ⟩ | ā⟨w̄⟩) such that

∆ ⊢ P , where ∆ def= τ : chi[], w̄ : cho[cho[]], ȳ : cho[], z̄ : cho[]. Then we have

JP K(Γ1, α) = {(ν[⟨ā1, a1⟩])(a1(⟨⟩).⊥ | ⊥ | ā1⟨⟨⟩⟩), (ν[⟨ā1, a1⟩])(⊥ | a1(⟨⟩).⊥ | ā1⟨⟨⟩⟩)}
JP K(Γ2, α) = {(ν[⟨ā1, a1⟩])(⊥ | a1(⟨x1⟩).τ1.x1⟨⟨⟩⟩ | ā1⟨⟨w̄1⟩⟩)}
JP K(Γ3, α) = {(ν[⟨ā1, a1⟩])(⊥ | a1(⟨x1⟩).τ1.x1⟨⟨ȳ1⟩⟩ | ā1⟨⟨w̄1⟩⟩)}

K. Sakayori and T. Tsukada 32:15

for Γ1
def= ∅, Γ2

def= τ : (1, chi
β []), w̄ : (1, cho

β [⊤]) and Γ3
def= τ : (1, chi

β []), w̄ : (1, cho
β [(1, cho

γ [])]),
ȳ : (1, cho

γ []) with α < β < γ. Note that (Γ2, α) <: (Γ3, α) because we can take {α, β}
as the witness. We also have (Γ1, α) <: (Γ2, α) since {α} is a witness. The function
JP K((Γ1, α) <: (Γ2, α)) maps the only linear process of JP K(Γ2, α) to the linear process
(ν[⟨a1, ā1⟩])(⊥ | a1(⟨⟩).⊥ | ā⟨⟨⟩⟩).

6 ≃c
τ is a πF -theory

As explained in Section 3, to prove Theorem 4, it suffices to show that (i) ≃c
τ satisfies the

axioms such as (2) and (3), and (ii) that barbed congruence is a congruence relation, which
trivially holds. Instead of directly proving (i), we define a yet another equivalence ∼ and
show that ∼ is a congruence relation that satisfies the axioms and ∼ ⊆ ≃c

τ . These are
relatively easier to show than to directly prove (i).

The equivalence ∼ is defined using the notion of open map bisimulation [12].9 We
write P ∼ Q if and only if JP K and JQK are open map bisimilar, i.e. if there is a span
JP K f←− X

g−→ JQK, where f and g are open maps. A map f : JP K → JQK is called an open
map if for every m : y(Γ1, α1)→ y(Γ, α2), making the square below commute

y(Γ1, α) JP K

y(Γ2, α) JQK

p

m f

q

there is a diagonal map d

y(Γ1, α) JP K

y(Γ2, α) JQK

p

m f

q

d

making the two triangles commute.
Showing that there is an open map f : JP K → JQK is analogous to giving a functional

bisimulation (indexed by (Γ, α)) between JP K(Γ, α) and JQK(Γ, α). The naturality of f means
that f is a simulation because the naturality says f(p)↾Γ1,α = f(p↾Γ1,α). The morphism
f being open ensures that it is not only a simulation, but a bisimulation. The existence
of a diagonal map ensures that if (i) Γ1 ⊢α p and fΓ1,α(p) = q and (ii) Γ2 ⊢α q′ with
(Γ1, α) <: (Γ2, α) and q = q′↾Γ1,α then there is p′ such that fΓ2,α(p′) = q′. In simpler words,
the existence of a diagonal map says that if r(p) = q and “q can be extended as q ⊴ q′” then
“p can be extended accordingly”.

The fact that ∼ satisfies the rules such as (3) (given in Section 3), can be proved by
“proof manipulation”. As explained, to show that P ∼ Q, it suffices to give a functional
bisimulation between JP K(Γ, α) and JQK(Γ, α). As a special case, let us consider the case where
P = (νāa)(!a(x).P | ā⟨y⟩) and Q = (νāa)(!a(x).P | P{y/x}). In this case, a functional
bisimulation f can be defined by f(p) def= q, where p

0−→ q. The proof that this f is a
bisimulation is similar to that of subject reduction/expansion. For example, if f(p) = q and
q ⊴ q′ then it suffices to construct a linear process p′ such that p′ 0−→ q′ (subject to the
condition that p′ is a suitable extension of p) as in the proof of subject expansion. Checking
that ∼ satisfies the other axioms can be done similarly.

We can also show that ∼ is a congruence relation. Checking that ∼ is a congruence is
not that difficult, thanks to the fact that ⊴ is defined according to the structure of a process.
Also note that, unlike in the traditional π-calculus, we do not have any problem with input
prefixing since communication only occurs between names that are explicitly bound by ν in
the πF -calculus. That is, placing a process P into a context C

def= !a(x).[] does not add new
possibilities for interactions among names in P .

9 To be more specific, we define the open-map bisimulation in the setting where yE∆ (the Yoneda
embedding of E∆) is the path category and [Eop

∆ , Sets] is the category of models.

FSCD 2021

32:16 Output Without Delay

The fact that ∼ is a congruence relation implies the following theorem.

▶ Theorem 19. πF -processes modulo ∼ form a compact closed Freyd category.

The main theorem (Theorem 4), which states the existence of a compact closed Freyd
model that is fully abstract with respect to ≃c

τ , is a consequence of the above theorem and
the following lemma:

▶ Lemma 20. If P ∼ Q then P ≃c
τ Q.

This lemma is proved by showing that ∼ implies •∼τ (and using the fact that ∼ is a
congruence), which basically follows from the relation between linear approximations and
=⇒ (Proposition 14). Roughly speaking, to show that P ∼ Q implies P

•∼τ Q it suffices to
show that the following relation is a barbed bisimulation, where R is the relation used in
Proposition 14.

(Pk, Qk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(P = P0 =⇒ P1 =⇒ · · · =⇒ Pk) R pk

(Q = Q0 =⇒ Q1 =⇒ · · · =⇒ Qk) R qk

pk ∼ qk

for some sequences P = P0 =⇒ P1 =⇒ · · · =⇒ Pk and

Q = Q0 =⇒ Q1 =⇒ · · · =⇒ Qk and

some linear approximations pk and qk

Here p ∼ q means that there exists a span of open maps JP K f← X

g→ JQK and an element x

of X(Γ, α) such that fΓ,α(x) = p and gΓ,α(x) = q, i.e. p and q are “bisimilar states”. Strictly
speaking, we cannot directly use Proposition 14 because P and Q have free outputs. However,
the same argument can be applied to the current situation to show the correspondence
between ⊴ and extending a reduction sequence, which concludes the above lemma.

7 Related Work

The notion of presheaf plays a central role in our work, but we are not the first one to use
presheaf to model the π-calculus. Cattani et al. [8] gave a denotational semantics of the
π-calculus within an indexed category of profunctors. The model is fully abstract in the
sense that bisimulation in the model, obtained from open maps, coincides with strong late
bisimulation. Although their work and our work both use presheaf (or profunctor), they are
conceptually different. Our work is motivated by categorical type theory correspondence,
whereas the work by Cattani et al. [8] is motivated by a desire to obtain a systematic and
algebraic understanding of bisimulation. From a technical point of view, the definition of
the path category is significantly different as well. Their path category is indexed by the
category of finite name sets and injective maps so that it can treat fresh names as in the
domain theoretic models of the π-calculus [20, 11]. On the other hand, our path category is
simply the category of type environments of an intersection type system.

A non-idempotent intersection type system for a variant of the π-calculus has also been
introduced by Dal Lago et al. [13]. This intersection type system is also inspired by the notion
of linear approximation. The connection between linear approximations and intersection
types [14] was applied to the encoding of π-calculus to proof-nets to derive the basis of an
intersection type system for a fragment of the local π-calculus [24, 16] called hyperlocalised

K. Sakayori and T. Tsukada 32:17

π-calculus. They showed that the type system obtained this way characterises some “good
behaviour”, such as deadlock-freedom, of hyperlocalised processes. In contrast to our work,
they use intersection types to guarantee that typable processes are “well-behaved”, rather
than to define the “operational semantics” of the calculus.

As briefly explained in the introduction, the delays that forwarders add has also been an
issue in the field of game semantics. In game semantics, forwarders correspond to copycat
strategies and the delay copycat strategies introduce was an obstacle to model synchronous
computations using game semantics. Game models in which a “copycat strategy that does
not introduce any delay” can be expressed were recently introduced by Castellan and Yoshida
to give a fully abstract game semantics of the synchronous session π-calculus [7] and by
Melliès in a framework called template games [15]. Although these work are apparently
different from ours, we believe that they are relevant to our work given that there is a tight
relationship between game semantics and linear approximations [22]; detailed comparisons
are left for future work.

8 Conclusion

We proposed a variant of the π-calculus whose barbed congruence ≃c
τ can be captured

categorically in return for having a non-standard reduction relation =⇒. Technically, to handle
=⇒, we developed a system of linear approximations that captures the behaviour of a process
and developed an LTS based on linear approximations. The standard reduction relation
→ and =⇒ have been related by the translation (−)†, and we showed that (P)† ≃c

τ (Q)†

implies P ≃c Q (≃c is the conventional barbed congruence). Although we fail to achieve
full abstraction, this result is important because it suggests the possibility of using compact
closed Freyd models to reason about conventional π-calculus via the translation, which is
the future direction we aim to pursue.

References
1 Samson Abramsky. Proofs as processes. Theor. Comput. Sci., 135(1):5–9, 1994. doi:

10.1016/0304-3975(94)00103-0.
2 Samson Abramsky, Simon J. Gay, and Rajagopal Nagarajan. Interaction categories and the

foundations of typed concurrent programming. In Proceedings of the NATO Advanced Study
Institute on Deductive Program Design, Marktoberdorf, Germany, pages 35–113, 1996.

3 Gianluigi Bellin and Philip J. Scott. On the π-calculus and linear logic. Theor. Comput. Sci.,
135(1):11–65, 1994. doi:10.1016/0304-3975(94)00104-9.

4 Michele Boreale. On the expressiveness of internal mobility in name-passing calculi. Theor.
Comput. Sci., 195(2):205–226, 1998. doi:10.1016/S0304-3975(97)00220-X.

5 Gérard Boudol. The lambda-calculus with multiplicities (abstract). In Eike Best, editor,
CONCUR ’93, 4th International Conference on Concurrency Theory, Hildesheim, Germany,
August 23-26, 1993, Proceedings, volume 715 of Lecture Notes in Computer Science, pages 1–6.
Springer, 1993. doi:10.1007/3-540-57208-2_1.

6 Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session
types. Mathematical Structures in Computer Science, 26(3):367–423, 2016. doi:10.1017/
S0960129514000218.

7 Simon Castellan and Nobuko Yoshida. Two sides of the same coin: session types and game
semantics: a synchronous side and an asynchronous side. PACMPL, 3(POPL):27:1–27:29,
2019. doi:10.1145/3290340.

FSCD 2021

https://doi.org/10.1016/0304-3975(94)00103-0
https://doi.org/10.1016/0304-3975(94)00103-0
https://doi.org/10.1016/0304-3975(94)00104-9
https://doi.org/10.1016/S0304-3975(97)00220-X
https://doi.org/10.1007/3-540-57208-2_1
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1145/3290340

32:18 Output Without Delay

8 Gian Luca Cattani, Ian Stark, and Glynn Winskel. Presheaf models for the pi-calculus. In
Category Theory and Computer Science, 7th International Conference, CTCS ’97, Santa
Margherita Ligure, Italy, September 4-6, 1997, Proceedings, pages 106–126, 1997. doi:10.
1007/BFb0026984.

9 Gian Luca Cattani and Glynn Winskel. Presheaf models for concurrency. In Computer
Science Logic, 10th International Workshop, CSL ’96, Annual Conference of the EACSL,
Utrecht, The Netherlands, September 21-27, 1996, Selected Papers, pages 58–75, 1996. doi:
10.1007/3-540-63172-0_32.

10 Thomas Ehrhard and Laurent Regnier. Uniformity and the taylor expansion of ordinary lambda-
terms. Theor. Comput. Sci., 403(2-3):347–372, 2008. doi:10.1016/j.tcs.2008.06.001.

11 Marcelo P. Fiore, Eugenio Moggi, and Davide Sangiorgi. A fully abstract model for the
π-calculus. Inf. Comput., 179(1):76–117, 2002. doi:10.1006/inco.2002.2968.

12 André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps. Inf. Comput.,
127(2):164–185, 1996. doi:10.1006/inco.1996.0057.

13 Ugo Dal Lago, Marc de Visme, Damiano Mazza, and Akira Yoshimizu. Intersection types and
runtime errors in the pi-calculus. PACMPL, 3(POPL):7:1–7:29, 2019. doi:10.1145/3290320.

14 Damiano Mazza, Luc Pellissier, and Pierre Vial. Polyadic approximations, fibrations and
intersection types. PACMPL, 2(POPL):6:1–6:28, 2018. doi:10.1145/3158094.

15 Paul-André Melliès. Categorical combinatorics of scheduling and synchronization in game
semantics. PACMPL, 3(POPL):23:1–23:30, 2019. doi:10.1145/3290336.

16 Massimo Merro. Locality in the π-calculus and applications to distributed objects. PhD thesis,
École Nationale Supérieure des Mines de Paris, 2000.

17 Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. Mathem-
atical Structures in Computer Science, 6(5):409–453, 1996. doi:10.1017/S096012950007002X.

18 John Power and Edmund Robinson. Premonoidal categories and notions of computa-
tion. Mathematical Structures in Computer Science, 7(5):453–468, 1997. doi:10.1017/
S0960129597002375.

19 Ken Sakayori and Takeshi Tsukada. A categorical model of an i/o-typed π-calculus. In
Programming Languages and Systems - 28th European Symposium on Programming, ESOP
2019, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, pages 640–667, 2019.
doi:10.1007/978-3-030-17184-1_23.

20 Ian Stark. A fully abstract domain model for the π-calculus. In Proceedings, 11th Annual
IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July
27-30, 1996, pages 36–42, 1996. doi:10.1109/LICS.1996.561301.

21 Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. Generalised species of rigid resource
terms. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,
Reykjavik, Iceland, June 20-23, 2017, pages 1–12, 2017. doi:10.1109/LICS.2017.8005093.

22 Takeshi Tsukada and C.-H. Luke Ong. Plays as resource terms via non-idempotent intersection
types. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 237–246, 2016. doi:10.1145/
2933575.2934553.

23 Glynn Winskel and Mogens Nielsen. Presheaves as transition systems. In Partial Order
Methods in Verification, Proceedings of a DIMACS Workshop, Princeton, New Jersey, USA,
July 24-26, 1996, pages 129–140, 1996. doi:10.1090/dimacs/029/08.

24 Nobuko Yoshida. Minimality and separation results on asynchronous mobile processes –
representability theorems by concurrent combinators. Theor. Comput. Sci., 274(1-2):231–276,
2002. doi:10.1016/S0304-3975(00)00310-8.

https://doi.org/10.1007/BFb0026984
https://doi.org/10.1007/BFb0026984
https://doi.org/10.1007/3-540-63172-0_32
https://doi.org/10.1007/3-540-63172-0_32
https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/10.1006/inco.2002.2968
https://doi.org/10.1006/inco.1996.0057
https://doi.org/10.1145/3290320
https://doi.org/10.1145/3158094
https://doi.org/10.1145/3290336
https://doi.org/10.1017/S096012950007002X
https://doi.org/10.1017/S0960129597002375
https://doi.org/10.1017/S0960129597002375
https://doi.org/10.1007/978-3-030-17184-1_23
https://doi.org/10.1109/LICS.1996.561301
https://doi.org/10.1109/LICS.2017.8005093
https://doi.org/10.1145/2933575.2934553
https://doi.org/10.1145/2933575.2934553
https://doi.org/10.1090/dimacs/029/08
https://doi.org/10.1016/S0304-3975(00)00310-8

K. Sakayori and T. Tsukada 32:19

A Compact closed Freyd category and πF -theory

We briefly review the correspondence between the πF -calculus and compact closed Freyd
category originally proposed in [19] to make this paper self-contained.

▶ Definition 21 (Compact closed Freyd category [19]). A compact closed Freyd category is a
Freyd category [18] J : C → K such that (1) K is compact closed, and (2) J has the (chosen)
right adjoint I ⇒ (−) : K → C.

An equivalence E is a πF -theory if it is closed under the following rules. Each rule has
implicit assumptions that the both sides of the equation are well-sorted processes.

a /∈ fn(P, C) ā /∈ bn(C)
Γ ⊢ (νāa)(!a(x⃗).P | C[ā⟨y⃗⟩]) = (νāa)(!a(x⃗).P | C[P{y⃗/x⃗}])

(E-Beta)

a, ā /∈ fn(P)
Γ ⊢ (νāa)!a(y⃗).P = 0

(E-GC)
ā, a /∈ fn(c̄⟨x⃗⟩)

Γ ⊢ c̄⟨x⃗⟩ = (νāa)(a ↪→ b̄ | c̄⟨x⃗{ā/b̄}⟩)
(E-FOut)

b, ā /∈ fn(P)
Γ ⊢ (νāa)(b ↪→ ā | P) = P{b/a}

(E-Eta)

P ≡ Q

Γ ⊢ P = Q
(E-SCong)

∆ ⊢ P = Q C : Γ/∆-context
Γ ⊢ C[P] = C[Q]

(E-Ctx)

Here a (Γ/∆)-context is a context C such that Γ ⊢ C[P] for every ∆ ⊢ P .
Any set Ax of equations-in-context has the minimum theory Th(Ax) that contains Ax.

We write Ax ▷ ∆ ⊢ P = Q if (∆ ⊢ P = Q) ∈ Th(Ax). It should be noted that the original
paper [19] only considers theory over the empty signature and that the πF -calculus over
the empty signature does not have the constant τ . The calculus defined in this paper is a
πF -calculus defined over the signature with a single constant τ : chi[].

The important property that has been used in the body of this paper is that the term
model Cl(Ax) is a compact closed Freyd category for every set of non-logical axioms Ax [19,
Theorem 3]. Given a set Ax of non-logical axioms, the term model Cl(Ax) is defined as
processes modulo Ax ▷∆ ⊢ P = Q. Objects are list of types and a morphism (of the compact
closed category) from T⃗ to S⃗ is an equivalence class [x⃗ : T⃗ , y⃗ : S⃗⊥ ⊢ P]. The composition of
morphisms is defined by “parallel composition + hiding”. For morphisms P : T⃗ → S⃗ and
Q : S⃗ → U⃗ , i.e. processes such that x⃗ : T⃗ , y⃗ : S⃗⊥ ⊢ P and z⃗ : S⃗, w⃗ : U⃗⊥ ⊢ Q, their composite
is x⃗ : T⃗ , w⃗ : U⃗⊥ ⊢ (νy⃗z⃗)(P |Q). (See [19] for the full definition.)

B Supplementary materials for Section 4

B.1 Groupoid structure of types and type isomorphisms
As expected, the witness of type isomorphisms can be composed so that φ1 : ρ1 ∼= ρ2 and
φ2 : ρ2 ∼= ρ3 implies (φ2 ◦ φ1) : ρ1 ∼= ρ3. Composition of witnesses are defined by:

cho
α[φ′

1, . . . , φ′
n] ◦ cho

α[φ1, . . . , φn] def= cho
α[φ1 ◦ φ′

1, . . . , φn ◦ φ′
n]

chi
α[φ′

1, . . . , φ′
n] ◦ chi

α[φ1, . . . , φn] def= chi
α[φ′

1 ◦ φ1, . . . , φ′
n ◦ φn]

(σ2, (φ′
i)i∈Nat) ◦ (σ1, (φi)i∈Nat) def= (σ2σ1, (φ′

σ1(i) ◦ φi)i∈Nat)

FSCD 2021

32:20 Output Without Delay

Types and type isomorphisms forms a groupoid. That is, we can define the inverse operator
(−)−1 for witnesses of type isomorphisms and show that there is an identity idρ : ρ ∼= ρ for every
type ρ. The inverse operator (−)−1 is defined by (chm

α [φ1, . . . , φn])−1 def= chm
α [φ−1

1 , . . . , φ−1
n]

for m ∈ {i, o} and (σ, (φi)i∈Nat)−1 def= (σ−1, (φ−1
σ−1(i))i∈Nat).

B.2 Subject reduction/expansion and Proposition 11
This section outlines the proof of Proposition 11, which states the correspondence between
execution sequences and linear approximations. The proposition is a consequence of the
subject reduction/expansion lemma. The proof for Proposition 14 (which we omit) is similar;
the only difference is that we also need to take the order ⊴ into account.

As usual, to prove the subject reduction we use a substitution lemma:

▶ Lemma 22 (Substitution Lemma). Suppose that Γ⊓x : (i, ρ) ⊢α p, φ : ρ′ ∼= ρ and Γ⊓y : (j, ρ′)
is defined. Then Γ ⊓ y : (j, ρ′) ⊢α p{φ � yj/xi}.

The proof of this lemma is similar to that of the conventional substitution lemma, except for
the fact that we need to take group actions into account. Similarly, the following lemma can
be proved by induction on the structure of p.

▶ Lemma 23. Let Γ ⊓ x : (i, ρ) ⊢α p, φ : ρ′ ∼= ρ and assume that yj /∈ fn(p). Then
p{φ � yj/xi}{φ−1 � xi/yj} = p

Now the subject reduction/expansion lemmas, and similar lemmas for the τ -reduction
can be stated as follows. We omit the proofs as they can be shown by standard arguments
with the help of Lemma 22 and 23.

▶ Lemma 24 (Subject reduction). Assume that Γ ⊢α p and p
0−→ q. Then we have Γ ⊢α q.

Moreover, if Γ♮ ⊢ p ⊏ P then there exists Q such that Γ♮ ⊢ q ⊏ Q and P
0−→ Q.

▶ Lemma 25. Suppose that Γ ⊓ τ : (i, chi
β []) ⊢α p, β ≤ γ for all γ ∈ lv(Γ) and p

τi−→ q.
Then we have Γ ⊢β q. Moreover, if (♮Γ) ⊓ τ : {i} ⊢ p ⊏ P , then there exists Q such that
Γ♮ ⊢ q ⊏ Q and P

τ−→ Q.

▶ Lemma 26 (Subject expansion). Suppose that P
0−→ P ′, Γ ⊢α p′ and Γ♮ ⊢ p′ ⊏ P ′. Then

there exists p such that Γ ⊢α p, Γ♮ ⊢ p ⊏ P and p
0−→ p′.

▶ Lemma 27. Suppose that P
τ−→ Q, Γ ⊢α q and Γ♮ ⊢ q ⊏ Q. For all i /∈ dom(Γ(τ)), there

exists p and β such that Γ ⊓ τ : (i, chi
β []) ⊢α p, Γ♮ ⊓ τ : {i} ⊢ p ⊏ P and p

τi−→ q.

Now we are ready to prove Proposition 11.

▶ Proposition 11. Let τ : chi[] ⊢ P , i.e. let P be a process without any free names.
1. Suppose that Γ ⊢α p and Γ♮ ⊢ p ⊏ P . If p

π−→ q then we have (p π−→ q) ⊏ (P π−→ Q) for
some Q.

2. Assume P
π−→ Q, Γ ⊢α q and Γ♮ ⊢ q ⊏ Q. Then we have (p π−→ q) ⊏ (P π−→ Q) for

some p.

Proof. (Proof of 1.) Let us write chi
αi

[] for Γ(τ)(i) when i ∈ dom(Γ(τ)). By the assumption
that p

π−→ q, there exists a sequence p = p0
l1−→ · · · ln−→ pn = q. Let τi1 . . . τik

be the
subword of π that is obtained by deleting 0 from π. Without loss of generality, we may
assume that αi1 < · · · < αik

and αik
< α for all α ∈ {αi | i ∈ dom(Γ(τ))} \ {αi1 , . . . , αik

};

K. Sakayori and T. Tsukada 32:21

if not we can always reannotate the levels appearing in Γ and use that type environment
instead of Γ. Now suppose that l1 = τi1 . Then we can apply Lemma 25 to obtain P1 such
that P0

τ−→ P1 and Γ♮
1 ⊢ p1 ⊏ P1, where Γ1 is the type environment that satisfy Γ1 ⊢αi1

p1.
If l1 = 0 we can use Lemma 24 instead. By repeating this argument we obtain a sequence
P = P0

l1−→ · · · ln−→ Pn = Q that can be used to show (p π−→ q) ⊏ (P π−→ Q).
(Proof of 2.) Since P

π−→ Q, we have P = P0
l1−→ · · · ln−→ Pn = Q, where π = l1 . . . ln.

Let us consider the case where ln = τ . In this case we can appeal to Lemma 27 (if
ln = 0 we use Lemma 26). By Lemma 27, we have pn−1 such that (1) pn−1

τ−→ q, (2)
Γ ⊓ τ : (i, chi

β []) ⊢β pn−1 and (3) Γ♮ ⊓ τ : {i} ⊢ pn−1 ⊏ Pn−1, for some index i such that
i /∈ dom(Γ(τ)) and some level β. By repeating the argument we obtain p

π−→ q with the
desired property. ◀

C Supplementary materials for Section 5

C.1 Restriction of types and type isomorphisms
▶ Definition 28 (Complete version of Definition 12).
Let A be a set of levels. Restriction of types and intersection types are inductively defined by:

chm
α [θ1, . . . , θn]↾A

def=
{

chm
α [θ1↾A, . . . , θn↾A] (if α ∈ A)

• (otherwise)

(θ↾A)(i) def= θ(i)↾A,

where m ∈ {i, o}.
Similarly, restriction of type isomorphisms is defined by:

chm
α [φ1, . . . , φn] def=

{
chm

α [φ1↾A, . . . , φn↾A] (if α ∈ A)
id• (otherwise)

(σ, (φi)i∈Nat)↾A
def= (σ, (φi↾A)i∈Nat)

where m ∈ {i, o}. We write ρ′ <: ρ (resp. θ′ <: θ) if ρ′ = ρ↾A (resp. θ′ = θ↾A) for some
A ⊆ A and φ′ <: φ if φ′ = φ↾A for some A ⊆ A.

C.2 Overview for the proof of Theorem 17
Here we briefly explain how to show that JP K(−,−) is a presheaf (Theorem 17). Since
Theorem 17, which says that JP K is a presheaf, is an immediate consequence of Proposition 16,
the main goal of this section is to sketch the proof of Proposition 16:

▶ Proposition 16. Assume that Γ⊢α p, p is terminable and (Γ′, α)<: (Γ, α). Then there is a
unique (up to ≡0) linear process that satisfy q ⊴ p and Γ′ ⊢α q.

The proof of Proposition 16 proceeds by induction on the structure of the derivation of
Γ ⊢α p. The non-trivial case is the case of ν-restriction because it is not clear how the type
annotated to the ν binder should be restricted. To handle this case, we use the following
lemmas, which says that “how the annotated type should be restricted is determined by how
the type environment is restricted”.

▶ Lemma 29. Suppose that Γ ⊢α (ν[⟨āi, ai⟩]i∈dom(θ))p and that (ν[⟨āi, ai⟩]i∈dom(θ))p is
terminable. Then lv(θ) ⊆ lv(Γ) ∪ {α}.

FSCD 2021

32:22 Output Without Delay

▶ Lemma 30. Let (ν[⟨āi, ai⟩]i∈dom(θ))p be a terminable process typed under Γ, i.e. Γ ⊢α

(ν[⟨āi, ai⟩]i∈dom(θ))p. Suppose that (ν[⟨āi, ai⟩]i∈dom(θ′))q ⊴ (ν[⟨āi, ai⟩]i∈dom(θ))p and Γ′ ⊢α

(ν[⟨āi, ai⟩]i∈dom(θ′))q, where Γ′ satisfies Γ′(t)(i) <: Γ(t)(i) for all term t and index i.If there
is a level β such that β ∈ lv(θ) but β /∈ lv(θ′), then there is a term t and an index i such
that β ∈ Γ(t)(i) and β /∈ Γ′(t)(i).

Instead of giving a detailed proof of these lemmas, we look at an example.

▶ Example 31. Let us consider a well typed linear process

τ : (0, chi
β []) ⊢γ (ν[⟨b̄0, b0⟩ρb

])(ν[⟨ā0, a0⟩ρa
])(τ0.ā0⟨⟨b0⟩⟩ | a0(⟨x̄0⟩).x̄0⟨⟨⟩⟩ | b0(⟨⟩))

where ρb = cho
β [] and ρa = cho

α[(0, ρβ)]. The following figure shows the way to point a free
name (or a constant τi) whose type contains the level β ∈ lv(ρb). (In this case we can tell
that the type for τ0 contains β.)

(ν[⟨b̄0, b0⟩])(ν[⟨ā0, a0⟩])(τ0.ā0 ⟨⟨b̄0⟩⟩ | a0 (⟨x̄0⟩).x̄0 ⟨⟨⟩⟩ |b0(⟨⟩))

Let us explain what the pointers mean. A pointer points to a name that must be “executed
at the same time” with the name placed at the source of the pointer. We start from b̄0
because that is the name with type ρb. Since b̄0 is in an object position of an output via
the name ā0 and ā0 is bound, we first look for the name that communicates with ā0, which
is a0 in this case. Because x̄0 is the argument that corresponds to b̄0, the type for x̄0 must
have the level β for its “outermost level”. So now we have another name x̄0 whose type has
β as the “outermost level”, and the link from b̄0 to x̄0 is used to expresses this fact. Now we
look for the place where x̄0 is actually used, this is expressed by the second link. Since x̄0 is
guarded by a0 we now know that a0 must be executed at the same time as x̄0. Because ā0
communicates with a0, we know that ā0 and a0 must be executed simultaneously and thus
we have a pointer from a0 to ā0. The output ā0 is guarded by τ0, so we know that τ0 also
happens at the same time. Because τ0 is a constant we conclude that β appears in the type
environment.

Lemma 29 can be proved by formalising the notion of pointer and generalising the above
procedure.

Lemma 30 can be proved by showing that ⊴ does not create any “dangling pointer”. That
is if q ⊴ p and linear terms tj , ti appearing in p are linked by a pointer, then either tj and
ti both appears in q or tj and ti do not appear in q. This follows from the definition of ⊴
and the way we add pointers. For example, let us consider the case where p is the linear
process depicted above. The only process q such that b̄0 does not appear in q and q ⊴ p is
(ν[])(ν[])(⊥ | ⊥ | ⊥).

With the above lemmas it is straightforward to prove Proposition 16 by induction on
the structure of the derivation of Γ ⊢α p and Theorem 17 follows as a corollary of this
proposition.

	p000-Frontmatter
	Preface
	Committees

	p001-Downen
	1 Introduction
	2 Logic as Dialogues
	2.1 Constructive truth
	2.2 Constructive dialogues
	2.3 The duality of constructive evidence

	3 Computing with Duality
	3.1 Positive burden of proof as data
	3.2 Negative burden of proof as codata
	3.3 The two dual negations
	3.4 Proof by contradiction as control
	3.5 A symmetric system of computation
	3.6 (Co)Data in the wild

	4 Applications of Duality
	4.1 Functions as Codata
	4.1.1 Efficient head reduction
	4.1.2 Effective confluence

	4.2 Loops in Types, Programs, and Proofs
	4.2.1 (Co)Recursion
	4.2.2 (Co)Induction

	4.3 Compilation and Intermediate Languages
	4.3.1 Join points in control flow
	4.3.2 Polarized primitive types
	4.3.3 Static calling conventions

	4.4 Orthogonal Models of Safety
	4.4.1 Orthogonality and intuitionistic negation
	4.4.2 An orthogonal view of types
	4.4.3 Applications of adequacy

	5 Conclusion

	p002-Hirokawa
	1 Introduction
	2 Preliminaries
	3 Reduction Orders Extended by Semantic Labeling
	4 Confluence via Rewrite Strategies
	5 Maximal Completion with Inter-reduction
	6 Conclusion

	p003-Pimentel
	1 Introduction
	2 Focused intuitionistic linear logic
	3 Concurrent Constraint Processes as LL Formulas
	3.1 Constraint system and processes
	3.2 Interpretation and adequacy

	4 LL with multi-modalities
	4.1 Linear logic with subexponentials
	4.2 Richer subexponential signatures
	4.3 Subexponential Quantifiers

	5 Parametric interpretations
	6 Conclusion and future work

	p004-Staton
	p005-Simonsen
	1 Introduction
	2 Preliminaries
	3 Recursively enumerable languages: General monadic systems
	4 Context-sensitive languages: Non-length-increasing rules
	5 Context-Free Languages: (Strongly) cons-free systems
	6 Regular languages: tail recursive cons-free systems
	7 Conclusion and future work

	p006-Statman
	1 Introduction
	2 Church's semigroup
	3 Homomorphisms
	4 SQ universality

	p007-Kerinec
	1 Preliminaries
	1.1 The call-by-value lambda-calculus

	2 A Call-by-Value Relational Model
	2.1 The Type Assignment System M
	2.2 The Approximation Theory of M

	3 Characterizations of Operational Properties
	4 Decidability of the Inhabitation Problem

	p008-DeJong
	1 Introduction
	2 Foundations and Size Matters
	2.1 The Notion of Size
	2.2 Impredicativity and Excluded Middle
	2.3 Size and Univalence
	2.4 Size and Retracts

	3 Large Posets Without Decidable Equality
	3.1 delta_V-complete Posets
	3.2 Nontrivial and Positive Posets
	3.3 Retract Lemmas
	3.4 Reductions to Impredicativity and Excluded Middle
	3.5 Unspecified Nontriviality and Positivity

	4 Maximal Points and Fixed Points
	5 Families and Subsets
	6 Conclusion

	p009-Balabonski
	1 Introduction
	2 The host calculus lambda_{c}
	3 Strong call-by-need calculus lambda_{sn}
	3.1 Reduction in lambda_{sn}
	3.2 Soundness
	3.3 Completeness

	4 Relatively optimal strategies
	4.1 Local normal forms
	4.2 Diamond property
	4.3 Relative optimality

	5 Formalization in Abella
	5.1 Nominal variables and lambda-tree syntax
	5.2 Judgments, contexts, and derivations
	5.3 Functions and relations

	6 Conclusion
	A Formal definitions
	B Formally verified properties
	C Proof of the subformula properties

	p010-Galal
	1 Introduction
	1.1 Quantitative semantics
	1.2 Controlling non-deterministic computation
	1.3 Generalized species of structures
	1.4 Finiteness spaces with profunctors

	2 Relational Finiteness Spaces
	3 Profunctorial Finiteness Spaces
	3.1 Orthogonality on bicategories

	4 Linear Logic Structure
	4.1 Additive structure
	4.2 Star-Autonomous Structure
	4.3 Exponential structure
	4.4 Cartesian closed structure
	4.5 Differential structure

	p011-Saotome
	1 Introduction
	2 Bunched Logic with Inductive Propositions
	2.1 Syntax of BIID0
	2.2 Semantics of BIID0
	2.3 Inference rules of LBIID0 and CLBIID0omega
	2.4 Proofs in LBIID0 and CLBIID0omega

	3 Proof Unrolling
	4 Failure of Cut-Elimination
	5 Conclusion and Future Work

	p012-Cong
	1 Introduction
	2 Control and Prompt
	3 lambda_F: A Calculus of control and prompt
	4 CPS Translation
	4.1 lambda_C: Target Calculus of CPS Translation
	4.2 The CPS Translation

	5 Type System
	5.1 Syntax of Trail Types
	5.2 Typing Judgment
	5.3 Typing Rules
	5.4 Typing Motivating Example

	6 Properties
	7 Related Work
	8 Conclusion and Future Work

	p013-Galmiche
	1 Introduction
	2 Intuitionistic Sentential Calculus with Identity
	3 Beth Semantics for ISCI
	3.1 Completeness of Beth models
	3.2 Regular Beth Models

	4 Labelled Deduction for ISCI
	4.1 A Labelling Algebra
	4.2 The Labelled Sequent Calculus L^{1ec}_{ISCI}
	4.3 Soundness and Completeness of L^{1ec}_{ISCI}

	5 The Labelled Calculus L^{2ec}_{ISCI}
	5.1 Soundness and Completeness
	5.2 Cut Elimination in L^{2ec}_{ISCI}

	6 Liberalizing L^{2e}_{ISCI} and Decidability
	6.1 Validity of the Replacement Law for ISCI
	6.2 Liberalized Soundness
	6.3 Termination and Decidability

	A Appendix
	A.1 Cut Elimination

	p014-Das
	1 Introduction
	2 Preliminaries
	2.1 Linear inferences
	2.2 Trivial inferences
	2.3 Minimality of inferences

	3 New 8-variable {{s},{m}}-independent linear inferences
	3.1 Previous linear inferences
	3.2 The two minimal 8 variable s,m-independent linear inferences
	3.2.1 A refinement of the 3-2-pigeonhole-principle
	3.2.2 A counterexample to a conjecture of Das and Strassburger

	4 A graph-theoretic presentation of linear inferences
	5 Implementation
	5.1 Library
	5.2 Search algorithm

	6 Conclusions
	A Further proofs and examples
	A.1 Recovering an 8 variable inference
	A.2 Validity of Equation 7
	A.3 Validity of Equation 8
	A.4 s,m-independence and s,m-minimality of Equation 7
	A.5 s,m-independence and s,m-minimality of Equation 8

	p015-Kapur
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Congruence Relations
	2.2 Kapur's Congruence Closure Algorithm for Uninterpreted Symbols
	2.3 AC Congruence Closure
	2.4 Flattening and Purification

	3 Congruence Closure with Associative-Commutative (AC) Functions
	3.1 Congruence Closure with a Single AC Symbol
	3.2 Idempotent and/or Nilpotent AC Symbols with Identity
	3.3 Computing Congruence Closure with Multiple AC symbols

	4 Congruence Closure with Uninterpreted and Multiple AC symbols
	5 Examples
	6 A Gröbner Basis Algorithm as an AC Congruence Closure
	7 Conclusion
	A Appendix: Proofs

	p016-Fujii
	1 Introduction
	2 Four Delimited-Control Operators
	3 The Definitional Interpreter
	4 Stack Introduction
	4.1 Defunctionalization
	4.2 Linearizing Continuations
	4.3 Introducing Stacks
	4.4 Delinearizing Continuations
	4.5 Abstract Machine
	4.6 Refunctionalizing Continuations

	5 Deriving a Virtual Machine
	5.1 Combining Arguments
	5.2 Introducing Combinators as Instructions
	5.3 Defunctionalizing Instructions
	5.4 Linearizing Instructions
	5.5 Linearizing Trails

	6 Virtual Machine
	7 Related Work
	8 Conclusion
	A Example Execution

	p017-Blondeau-Patissier
	1 Introduction
	2 Innocent Strategies and Positions
	2.1 Arenas and Constructions
	2.2 Plays and Strategies
	2.3 Visibility and Innocence
	2.4 Positions
	2.5 Links with the Relational Model
	2.6 Main result

	3 Causal Presentation
	3.1 Augmentations
	3.2 From Strategies to Causal Strategies
	3.3 Expansions of Causal Strategies

	4 Positional Injectivity
	4.1 Forks and Characteristic Expansions
	4.2 Bisimulations Across an Isomorphism
	4.3 Compositional Properties of Bisimulations
	4.4 Clones
	4.5 Positional Injectivity

	5 Beyond Total Finite Strategies
	6 Conclusion
	A Positional Injectivity: Proofs from Section 4
	A.1 Compositional Properties of Bisimulations (Section 4.3)
	A.2 Clones (Section 4.4)
	A.3 Positional Injectivity (Section 4.5)

	B Beyond Total Finite Strategies: Proofs from Section 5

	p018-Larchey-Wendling
	1 Introduction
	2 The FRACTRAN seed (files FRACTRAN.v and fractran_utils.v)
	3 From FRACTRAN to two registers alternate Minsky machines
	3.1 Alternate Minsky machines (files MM.v and mma_defs.v)
	3.2 A basic MMA_n n library up to Euclidean division (file mma_utils.v)
	3.3 Compiling regular FRACTRAN programs (file fractran_mma.v)

	4 Minsky machine termination as provability
	4.1 Non-deterministic two counters Minsky machines (file ndMM2.v)
	4.2 From MMA0_2 to MM_{nd} (file MMA2_to_ndMM2_ACCEPT.v)

	5 Undecidability of Sub-Exponential Linear Logic
	5.1 The ILL and IMSELL fragments (files ILL.v and IMSELL.v)
	5.2 Embedding in S-ILL vs. S-IMSELL (file ndMM2_IMSELL.v)
	5.3 Trivial Phase semantics for IMSELL (file imsell.v)
	5.4 The completeness of the reduction (file ndMM2_IMSELL.v)

	6 Related works and Implementation remarks
	A Proof (sketch) of Proposition 17
	B Proof (sketch) of Proposition 18
	C Proof (sketch) of Theorem 21

	p019-Kim
	1 Introduction
	2 Preliminaries
	2.1 Leaf permutative equations and permutation groups

	3 An ordering modulo a set of permutation equations
	4 Completion modulo a set of permutation equations
	5 Ground completion modulo a set of permutation equations
	6 Conclusion

	p020-Blanqui
	1 Introduction
	2 The lambda Pi-calculus modulo theory
	3 The theory {U}
	4 Sub-theories
	4.1 Fragments
	4.2 The fragment theorem

	5 Examples of sub-theories of the theory {U}
	6 Conclusion

	p021-Paulus
	1 Introduction
	2 lambda^{lightning}_{oplus}: A lambda-calculus with Non-Determinism and Failure
	3 spi: A Session-Typed pi-Calculus
	4 The Encoding
	4.1 Encodability Criteria
	4.2 First Step
	4.3 Second Step

	5 Discussion
	A Appendix
	A.1 Omitted Syntactic and Semantic Notations for lambda^{lightning}_{oplus}

	p022-Veltri
	1 Introduction
	2 Type Theory and Cubical Agda
	2.1 Univalence, Path Types, Higher Inductive Types
	2.2 Coinductive Types

	3 The Finite Powerset and Its Final Coalgebra as a Setoid
	3.1 The Setoid of Finite Subsets
	3.2 The Final Coalgebra

	4 The Finite Powerset and Its Final Coalgebra as a Type
	4.1 The Type of Finite Subsets
	4.2 The Final Coalgebra

	5 Analysis of Worrell's Classical Set-Theoretic Construction
	6 Conclusions and Future Work

	p023-DalLago
	1 Introduction
	2 Effects, Linearity, and Program Equivalence
	3 Preliminaries: Monads and Algebraic Effects
	3.1 Algebraic Effects
	3.2 Continuity

	4 A Linear Calculus with Algebraic Effects
	4.1 Syntax
	4.2 Statics
	4.3 Dynamics
	4.4 Observational Equivalence

	5 Resource-Sensitive Semantics and Program Equivalence
	5.1 Auxiliary Notions
	5.2 Full Abstraction of Trace Equivalence

	6 Conclusion and Future Work
	6.1 Related Work

	p024-VanOostrom
	1 Introduction
	2 Preliminaries
	3 Examples of the Z-property
	3.1 Abstract
	3.2 Positive braids
	3.3 First-order terms
	3.3.1 Orthogonal
	3.3.2 Weakly orthogonal
	3.3.3 Associativity
	3.3.4 Self-distributivity

	3.4 The lambda-calculus

	4 Syntax-free developments
	4.1 Hyper-Cofinality
	4.2 Confluence
	4.3 Recurrence
	4.4 Syntactic developments in orthogonal term rewriting

	5 Conclusion
	A Proofs omitted from the main text

	p025-Matache
	1 Introduction
	1.1 Normal models of PCF
	1.2 Combining sites and full abstraction

	2 A categorical setting for recursion
	2.1 Vertical natural numbers
	2.2 Complete objects and fixed points

	3 Partial maps, semidecidability and recursion in toposes
	3.1 Recipes for complete objects

	4 A higher-order language with recursion
	4.1 Denotational semantics

	5 Presheaves on the vertical natural numbers
	6 Sheaf conditions for sequentiality
	6.1 Sites and sheaves
	6.2 Concrete sites
	6.3 Defining concrete sites via systems of partitions
	6.4 Summing concrete sites

	7 A fully abstract model of PCFv
	7.1 Partial types
	7.2 Definability for partial types in G

	8 Related work and research directions
	8.1 Comparison with the model of Riecke-Sandholm
	8.2 Comparison with work on ``Synthetic Domain Theory''
	8.3 Summary and outlook

	A Proofs of technical results
	A.1 Fixed Points
	A.2 Adequacy for vSet
	A.3 A fully abstract model of PCFv

	B Typing rules and operational semantics for PCFv

	p026-Hofstra
	1 Introduction
	2 Quasi-equational theories
	3 Isotropy
	4 Monoidal categories and the Picard group
	4.1 Monoidal categories and indeterminates
	4.2 Isotropy group

	5 Further examples and applications
	5.1 Internal categories
	5.2 Presheaf categories

	6 Conclusions and future work

	p027-Pistone
	1 Introduction
	2 Predicative Polymorphism and System {F_{at}}
	3 Type Inhabitation
	4 Typability and Type-checking
	5 Equational Reasoning in System {F_{at}}
	6 Contextual Equivalence is Undecidable
	7 Conclusion
	A {F_{at}}-unification

	p028-Deifel
	1 Introduction
	2 Background
	3 Coalgebra Encodings
	4 Computing the Simple Quotient
	4.1 Modularity of Minimization Interfaces

	5 Reachability
	6 Conclusions and Future Work

	p029-Das
	1 Introduction
	2 A circular version of Gödel's T
	2.1 Sequent calculus presentation of T terms
	2.2 ``Coderivations'' and a correctness condition
	2.3 Some fragments and program extraction

	3 Confluence and models of T
	3.1 Reduction sequences and their logical complexity
	3.2 Confluence of reduction
	3.3 Hereditarily total coterms under conversion

	4 Interpretation of CT into T
	4.1 Canonical branches of non-total coterms
	4.2 Progressing coterms are hereditarily total
	4.3 Interpretation of C_{#1} n into T_{n+1}

	5 Further results
	5.1 Continuity at type 2
	5.2 A ``term model'' à la Tait and strong normalisation

	6 Conclusions
	A Further material for Section 4
	B Further material for Section 5

	p030-Arkor
	1 Introduction
	2 Abstract clones and first-order presentations
	2.1 Substitution and context extension
	2.2 First-order presentations

	3 Second-order presentations
	3.1 Algebras

	4 Free algebras
	5 Induction over second-order syntax
	6 Logical relations
	6.1 Closed terms and adequacy
	6.2 Open terms and normalization

	7 Comparison to other approaches
	8 Conclusion
	A Normalization with global state

	p031-Kop
	1 Introduction
	2 Preliminaries
	2.1 First-Order Many-Sorted Rewriting
	2.2 Higher-Order Rewriting
	2.3 Functions and orderings

	3 First-Order tuple interpretation
	4 Higher-order tuple interpretations
	4.1 Strongly monotonic algebras
	4.2 Interpreting abstractions
	4.3 Creating strongly monotonic interpretation functions

	5 Finding complexity bounds
	6 On Related Work
	7 Conclusion and Future Work
	A Extended examples
	B Proof sketches and unstated lemmas

	p032-Sakayori
	1 Introduction
	2 A process calculus with undelayed output
	2.1 Syntax
	2.2 Reduction semantics
	2.3 Relationship to the standard semantics

	3 Overview
	4 Linear approximation and execution sequence
	4.1 Linear processes and intersection types
	4.2 Approximation
	4.3 Reduction

	5 LTS based on linear approximations
	5.1 Extension relation
	5.2 Presheaf semantics

	6 Barbed congruence is a piF-theory
	7 Related Work
	8 Conclusion
	A Compact closed Freyd category and piF-theory
	B Supplementary materials for Section 4
	B.1 Groupoid structure of types and type isomorphisms
	B.2 Subject reduction/expansion and Proposition 11

	C Supplementary materials for Section 5
	C.1 Restriction of types and type isomorphisms
	C.2 Overview for the proof of Theorem 17

