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Abstract
This invited talk will discuss how developments in the Formal Structures for Computation and
Deduction can also suggest new directions for the foundations of probability theory. I plan to focus
on two aspects: abstraction, and laziness. I plan to highlight two challenges: higher-order random
functions, and stochastic memoization.
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Summary

Probabilistic programming is a popular tool for statistics and machine learning. The idea is
to describe a probabilistic model as a program with random choices. The program might be
a simulation of some system, such as a physics model, a model of viral spread, or a model of
electoral behaviour. We can now carry out statistical inference over the system by running a
Monte Carlo simulation – running the simulation 100,000’s of times. The key observation of
probabilistic programming is that we can actually run this same probabilistic program with
different advanced simulation methods, instead of a naive Monte Carlo simulation, such as a
Hamiltonian Monte Carlo simulation or Variational Inference, without changing the program.
See [20] for an overview.

Part of the practical appeal of probabilistic programming is this separation between
probabilistic models and inference algorithms. But this also has a foundational appeal: if
we can understand probabilistic models as programs, then the foundations of probability
and statistics can be discussed in terms of program semantics. This might take the lead
of denotational semantics, by interpreting programs in terms of traditional measure theory
(e.g. [17, 18]). But there is also a chance of new foundational perspectives on probability by
following other semantic methods, such as equational reasoning, rewriting, or categorical
axiomatics (see also [1, 4]).

This programming-based foundation for probability is attractive because there are some
intuitively simple probabilistic scenarios which have an easy programming implementation
but for which a plain measure-theoretic interpretation seems impossible. I now highlight
some issues in abstraction and laziness.

Abstraction. Abstraction is a crucial concept in probability: statistics arise by abstracting
away information. At a higher level, we have argued that de Finetti’s theorem, a fundamental
theorem in probability, can be understood in terms of abstract data types [15], and so too
generalizations [8, 16].
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4:2 Some Formal Structures in Probability

Function types are a key abstraction in programming theory, but are less well understood
in probability. For example, write Pr(X) for the space of probability distributions on X, and
consider the functional

piecewise : Pr(R → R) → Pr(R → R)

which converts a random function to a random piecewise version of it (see Figure 1). It is easy
to define in a few lines of code: piecewise(f) will draw a random partition of the x-axis, draw
random functions from f for each part, and splice them together. But although statistics and
probability make plenty of use of random piecewise linear functions, random piecewise constant
functions, and so on, the piecewise functional itself has no direct interpretation in traditional
measure theory. This has led to some recent semantic developments (e.g. [6, 3, 13, 2, 7, 14]).

Figure 1 Bayesian regression for the data set indicated by black dots. The regression was done
using constant, piecewise constant, linear, and piecewise linear functions respectively. The piecewise
functional was used to program the random piecewise functions.

Laziness. Laziness in programming is a counterpart to the notion of “process” which
is fundamental in probability. This has long been understood [5, 9, 10], and I recently
explored more aspects of laziness in the prototype LazyPPL [19]. For example, a “stick
breaking” process randomly divides the unit interval into an infinite number of parts, each
part representing a different cluster of some data. If this is computed lazily, it always
terminates, because the data is finite (Figure 2(a)).

One outstanding problem is a semantic interpretation of stochastic memoization. In the
non-probabilistic setting, memoization is a program optimization, where we are lazy about
re-evaluating a function at a given argument, by caching or tabling. But in the probabilistic
setting it gives new semantic possibilities. Stochastic memoization is a functional

memoize : (X → Pr(Y )) → Pr(X → Y )
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Figure 2 (a) Stick-breaking: To group the data points (right) into an unknown number of clusters,
we randomly divide the unit interval “stick” into an infinite partition (left), and then assign a
cluster to each data point by randomly picking a number in [0, 1] for each point (lines from the data
points to the stick). In practice, this is done lazily. (b) Lazily building the adjacency matrix of an
uncountable random graph, as a memoized random function [0, 1]2 → bool.
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which converts a family f : X → Pr(Y ) of probability distributions into a distribution on
functions X → Y , by sampling f(x) once for every x. When X is infinite, this is impossible to
do eagerly, but it is no problem lazily. For example, consider a function g : [0, 1]2 → Pr(bool)
where g(x, y) is the Bernoulli distribution (a coin flip); then memoize(g) : Pr([0, 1]2 → bool) is
the random adjacency matrix of a random uncountable graph (Figure 2(b)). More generally, g

is a “graphon” (e.g. [12]). This also generalizes clustering by stick-breaking, because clusters
can be regarded as connected components of graphs.

This memoize functional is easy to implement. It appears in several languages [5, 11, 19],
and is practically useful in random graphs, probabilistic logic [11], clustering [5, §2.1], and
natural language modelling [21]. But there remains a big open problem:

▶ Open problem. To find a denotational model for a language with stochastic memoization.

I will discuss some recent progress on this problem, based on ongoing work with Swaraj
Dash, Younesse Kaddar, Hugo Paquet, and others.
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