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Abstract
The quest for a fully abstract model of the call-by-value λ-calculus remains crucial in programming
language theory, and constitutes an ongoing line of research. While a model enjoying this property
has not been found yet, this interesting problem acts as a powerful motivation for investigating
classes of models, studying the associated theories and capturing operational properties semantically.

We study a relational model presented as a relevant intersection type system, where intersection
is in general non-idempotent, except for an idempotent element that is injected in the system. This
model is adequate, equates many λ-terms that are indeed equivalent in the maximal observational
theory, and satisfies an Approximation Theorem w.r.t. a system of approximants representing finite
pieces of call-by-value Böhm trees. We show that these tools can be used for characterizing the most
significant properties of the calculus – namely valuability, potential valuability and solvability – both
semantically, through the notion of approximants, and logically, by means of the type assignment
system. We mainly focus on the characterizations of solvability, as they constitute an original result.
Finally, we prove the decidability of the inhabitation problem for our type system by exhibiting a
non-deterministic algorithm, which is proven sound, correct and terminating.
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Introduction

Despite the fact that the call-by-value (CbV) λ-calculus has been introduced by Plotkin
several decades ago [22], the problem of finding a denotational model satisfactorily reflecting
its operational semantics is not completely solved, yet. While a plethora of adequate models
has been constructed, e.g., in the Scott continuous and stable semantics [13, 23, 18], none
enjoys completeness and it is therefore fully abstract. Similarly, the theory of program
approximations for the CbV λ-calculus remained for a longtime rather involuted compared
to the one developed in the call-by-name (CbN) setting (see [5, Ch. 14]). As an example, in
[26] the authors show that the continuous model built in [13] does satisfy an Approximation
Theorem, but the considered notion of approximant turns out to be too weak for capturing
any interesting operational property. The main problem one encounters when approximating
CbV reductions is that certain redexes remain stuck along reductions for silly reasons, thus
preventing the creation of other redexes and leading to premature CbV normal forms (see [2]).
A possible solution has been proposed in [10] by introducing permutation reductions that
allow to unblock such redexes without altering fundamental operational properties of the
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7:2 Call-By-Value, Again!

calculus, like the capability of a program of reducing to a value or the notion of solvability
(as shown in [17]). This breakthrough has renewed the interest in the CbV λ-calculus within
the scientific community and led to a wealth of original results [2, 17, 3, 20, 19].

Inspired by the relational semantics of Linear Logic [15] and exploiting Girard’s “boring”
translation of intuitionistic arrow in linear logic, sending A → B into !(A ⊸ B), Ehrhard
introduced a class of relational models for CbV λ-calculus [14]. Like filter models correspond
to intersection type systems under the celebrated Stone duality [1], also relational models can
be nicely presented in a similar fashion [25], except for the fact that the intersection becomes
a non-idempotent operator. Thus, the type α1 ∧· · ·∧αn can be seen as a multiset [α1, . . . , αn].
The advantage of counting the multiplicities is that it allows to expose quantitative properties
of programs, e.g., by extracting a bound to their head reduction sequences [12]. The disad-
vantage of using relational models is that they are extremely poor in terms of representable
theories. In the CbN setting, it is clear from [7] that all non-extensional relational graph
models induce the same theory, and we have reasons to believe that the same holds for the
class of CbV models from [14]. Therefore, in order to obtain different theories, one needs to
substantially modify the construction of the model. Now, in coherent spaces, it is possible
construct CbV models by performing a “lifting” that injects a new point ⋆ (coherent with
all existing points) [18], leading to a solution of the domain equation D ∼= [D →s D] ⊕ {⋆},
where [ · →s · ] denotes the domain of stable functions [6]. Mimicking this construction
in the relational semantics, a new class of relational models for the CbV λ-calculus was
introduced in [20]. The main difference is that, in the associated type assignment systems,
the intersection is still non-idempotent except for an idempotent element [], which is available
at will and can be used to type any value in the empty environment. The authors show that
all models in this class satisfy adequacy, a property they share with Ehrhard’s relational
models, but induce different theories. More precisely, they equate many λ-terms that are
indeed equal in the maximal observational equivalence, whence the induced theory is closer
to full abstraction. A notable example is given by the λ-terms (λx.xx)M and MM that
are observationally indistinguishable – even when M is not a value – but have distinct
interpretations in Ehrhard’s models [16]. Moreover it has been proved that all models in this
class enjoy an Approximation Theorem.

In this paper we study a particular relational model M living in the class of [20], cor-
responding to a relevant intersection type system having countably many atoms and no
additional equivalences among types (in particular, atoms are not equivalent to arrow types).
We show that the model M satisfies an Approximation Theorem with respect to a refined
notion of syntactic approximants, that take permutation rules into account and were success-
fully applied in [19] to introduce a CbV notion of Böhm trees. By exploiting the resource
consciousness of the model, we are able to provide an easy inductive proof of this result
(Theorem 23) and avoid the impredicative techniques based on reducibility candidates that
are needed in the continuous and stable semantics (see, e.g., [4, Ch. 17] or [26, Thm. 11.1.19]).
As a consequence of the Approximation Theorem we derive that the model M equates all
λ-terms having the same CbV Böhm tree. The fact that M is sensitive to the amount of
resources needed by a λ-term during its execution still breaks the full abstraction property
(a counter-example is given in [20]).

Despite the lack of full abstraction, we show that the model M and the associated system
of approximants allow to characterize nicely operational properties like valuability, potential
valuability, and solvability. A λ-term is (potentially) valuable if it reduces to a value (under
suitable substitutions), and solvable if it is capable of generating a completely defined result,
like the identity, when plugged in a suitable context. The notion of solvability, inherited from
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the CbN λ-calculus, is particularly interesting since it identifies the “meaningful” programs. In
CbN, solvability has been characterized operationally (via head reduction), logically (through
typability) and semantically (by building models assigning non-trivial interpretations to
solvable terms exclusively). The model M provides a logical and semantic characterization
of CbV solvability. On the logical side, we show that a λ-term is solvable if and only if it is
typable in M with types that are “proper”, in the sense of Definition 31. On the semantic
side, we prove that all solvables admit approximants having a particular shape. Both the
logical and semantic characterizations are presented in Theorem 36 and, as a consequence, we
obtain that M is not sensible, but semi-sensible. This means that the model is “meaningful”
since it does not equate all unsolvables, but neither equates a solvable to an unsolvable.

Finally, since the model M is presented as an intersection type system, it feels natural to
wonder whether the type inhabitation problem is decidable.

The Inhabitation Problem (IHP): Given any type environment Γ and any type α, is
there a λ-term M having type α in Γ?

Since Urzyczyn’s work [27], it is known that IHP is undecidable for the CbN (idempotent)
intersection type system presented in [11]. Van Bakel subsequently simplified the system
using strict types [29], where intersection is only allowed on the left-hand side of an arrow,
while maintaining the undecidability of inhabitation – even in its “relevant” version where
type environments only contain the consumed premises (Urzyczyn’s proof extends easily [28]).
On the one hand, this shows that the decidability of inhabitation is not strictly connected
with the relevance of the system, on the other hand IHP has been proven decidable for several
non-idempotent intersection type systems [9]. In Section 4, we describe a non-deterministic
algorithm taking an environment Γ and a type α as inputs, and generating as output all
minimal approximants having type α in Γ. First, we show that the algorithm is terminating
(Theorem 46), a result only possible because there are finitely many approximants satisfying
the above criteria. Then we demonstrate the soundness and completeness properties of the
algorithm (Theorem 48), from which the decidability of IHP in this setting follows. Although
our inhabitation algorithm is clearly inspired by [9], the adaptation is non-trivial for two
reasons: the presence in the CbV setting of normal inhabitants having the shape (λx.M)N
of a β-redex, and the presence of an idempotent element in the type assignment system.

Some related works
Despite the existence of several models of the CbV λ-calculus, their theories have rarely been
explored. An exception is [26], where the theory of the model from [13] has been extensively
studied. A semantic characterization of solvability is given, but not completely satisfactory
because of the weak notion of approximation employed. The first logical characterization
of CbV solvability is in [21], through a particular class of (idempotent) intersection types –
it is, in some sense, similar to ours, but it is not based on a semantic model. Two known
attempts at characterizing this notion from an operational point of view are [21, 10], both
based on ad hoc reduction rules that are however unsound for CbV semantics. This suggests
that CbV languages still lack a satisfactory rewriting theory.

1 Preliminaries

For the syntax of λ-calculus we mainly follow Barendregt’s first book [5], for its call-by-value
version [26], and for its extension with permutation rules [10].

FSCD 2021
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1.1 The call-by-value λ-calculus
We consider fixed a countable set V of variables. The set Λ of λ-terms and the set Val of
values are defined inductively via the following grammar (where x ∈ V):

(Λ) M, N ::= MN | V (Val) V, U ::= x | λx.M

Application is represented as juxtaposition. As usual, we assume that it associates to the left
and has higher-precedence than abstraction. Given M ∈ Λ, we shorten λx1.(· · · (λxk.M) · · · )
as λx1 . . . xk.M or even as λx⃗.M . For example, λxyz.xyz stands for λx.(λy.(λz.(xy)z)).
Given N1, . . . , Nn ∈ Λ, we write MN⃗ for MN1 · · · Nn and MN∼k

1 for MN1 · · · N1 (k-times).
The set FV(M) of free variables of M and α-conversion are defined as usual [5, §2.1].

We say that a λ-term M is closed, or a combinator, whenever FV(M) = ∅. We denote by Λo

the set of all combinators. From now on, λ-terms are considered up to α-conversion.
Concerning specific combinators, we fix the following notations (for n ∈ N):

K = λxy.x ∆ = λx.xx, Ω = ∆∆, Pn = λx0 . . . xn.xn,

B = λfgx.f(gx), K⋆ = ZK, Z = λf.(λy.f(λz.yyz))(λy.f(λz.yyz)),

where K is the first projection, ∆ the self-application, Ω the paradigmatic looping combinator,
Pn erases n arguments, B is the composition, K⋆ an ogre and Z a CbV recursion operator.
Notice that P0 = λx0.x0 is the identity, therefore we also use I as an alternative notation.

▶ Definition 1. On Λ, we define the following notions of reduction (for V ∈ Val):

(βv) (λx.M)V → M [V/x], where [V/x] denotes capture-free substitution,
(σ1) (λx.M)NP → (λx.MP )N, with x /∈ FV(P ),
(σ3) V ((λx.M)N) → (λx.V M)N, with x /∈ FV(V ).

We also define (σ) = (σ1) ∪ (σ3) and (v) = (βv) ∪ (σ). Each R ∈ {βv, σ1, σ3, σ, v} induces a
one-step (resp. multi-steps) reduction relation →R (↠R), and a conversion relation =R. We
say that a λ-term M is in R-normal form (R-nf, for short) if there is no N ∈ Λ such that
M →R N . We say that M has an R-nf if M ↠R N for some λ-term N in R-nf.

▶ Fact 2. The set Val is closed under substitutions ϑ : V → Val and v-reductions.

Plotkin’s original formulation of the CbV λ-calculus only considers the βv-reduction [22].
The permutation rules (σ), introduced by Regnier in the CbN setting [24], have been extended
by Carraro and Guerrieri to CbV in [10], where the following properties are shown.

▶ Proposition 3.
(i) The reduction →σ is strongly normalizing. More precisely, there exists a measure

s : Λ → N such that M →σ N entails s(N) < s(M).
(ii) The reduction →v is confluent. In particular, the v-nf of M ∈ Λ (if any) is unique.

▶ Example 4.
(i) Ω →βv Ω, λx.Ω →βv λx.Ω and Ix →βv x, while I(xy) is a v-nf.
(ii) (λy.∆)(xI)∆ is a βv-nf, but (λy.∆)(xI)∆ →σ1 (λy.Ω)(xI) →βv (λy.Ω)(xI) →βv · · ·
(iii) I(∆(xx)) is a βv-nf, but contains a σ3-redex, indeed I(∆(xx)) →σ3 (λz.I(zz))(xx).
(iv) Z is called a recursion operator since ZV =βv V (λx.ZV x), for all V ∈ Val and x fresh.
(v) K⋆ =v K(λy.K⋆y) =v λx0x1.K⋆x1 =v λx0x1x2.K⋆x2 =v · · · =v λx0 . . . xn.K⋆xn.
(vi) For all V⃗ ∈ Val, we have K⋆V⃗ =v K⋆ and PnV1 · · · Vm ↠v Pn−m provided n ≥ m.
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Lambda terms are classified into valuable, potentially valuable, solvable or unsolvable
depending on their behavior and their capability of interaction with the environment.

▶ Definition 5. A λ-term M is called:
(i) valuable if it reduces to a value, namely M ↠v V for some V ∈ Val.
(ii) potentially valuable if there exists a substitution ϑ : V → Val such that Mϑ is valuable.
(iii) solvable if there exist sequences x⃗, V⃗ ∈ Val such that (λx⃗.M)V⃗ ↠v I.
(iv) unsolvable, if it is not solvable.

Notice that the notions of solvability and valuability are both stronger than potential
valuability, but orthogonal with each other. We provide some discriminating examples.

▶ Example 6.
(i) I, ∆, Pn, ∆(II), P1(λx.Ω) are (potentially) valuable and solvable.
(ii) P1x(λx.Ω), xyI∆ and ∆(xy) are not valuable, but potentially valuable and solvable.
(iii) λx.Ω, ZB and K⋆ are valuable, but unsolvable. The term K⋆ is called an ogre because

of its capability of eating any V⃗ while remaining valuable: K⋆V⃗ ↠βv λx.M ∈ Val.
(iv) Ω, Ω(xy), (λy.∆)(xI)∆, IΩ, ZI are not potentially valuable nor solvable. The same

holds for YM , where Y is a CbN fixed point operator and M is a λ-term.
▶ Remark 7. The original definitions of valuability, potential valuability and solvability are
given in terms of βv-reduction (see [22] and [26], respectively). In [10] and [17], it is shown
that all these notions are preserved when considering the extended v-reduction. In particular,
for all λ-terms M , we have that M ↠βv I holds exactly when M ↠v I does.

▶ Property 8. If M = (λx1 . . . xk.P )N1 · · · Nn ↠v I then each Ni is valuable, say Ni ↠v Vi.
Moreover, we must have k ≤ n + 1.

Proof. By the above remark, M ↠v I entails M ↠βv I. Therefore, k > n + 1 would imply
M ↠βv (λx⃗.P )V⃗ ↠βv λxn+1 . . . xk.P ′ ̸=βv I. ◀

For the model theory of CbV λ-calculus, we refer to [26]. Every model S comes equipped
with an interpretation map [[−]] that allows to compute the denotation [[M ]] of M ∈ Λ. We
say that S equates M, N ∈ Λ whenever [[M ]] = [[N ]]. The least requirement for a model S is
that it equates all βv-convertible λ-terms (soundness). A model S is called consistent if it
does not equate all λ-terms; inconsistent if it is not consistent; sensible if it is consistent and
equates all unsolvables; semi-sensible if it does not equate a solvable and an unsolvable.

2 A Call-by-Value Relational Model

We define a particular model M living in the class of relational models introduced in [20]. A
model S in this class can be described as a type assignment system, where finite multisets of
types appear at the left-hand side of an arrow. Such a model S is uniquely identified by a set
A of atomic types and a congruence ≃ on types, respecting the multiset cardinalities. The
model M under consideration corresponds to the relational model having countably many
atoms, and the trivial congruence relation on types (namely, ≃ is the equality =).

2.1 The Type Assignment System M

In order to define the type assignment system M, we need to introduce some basic notions
and notations concerning finite multisets. Given a set A, we represent a finite multiset over
A as an unordered list [α1, . . . , αn], possibly with repetitions, where n ∈ N and each αi ∈ A.

FSCD 2021
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x : [α] ⊢ x : α
(var) Γ, x : σ ⊢ M : α

Γ ⊢ λx.M : σ → α
(lam) Γ0 ⊢ M : σ → α Γ1 ⊢ N : σ

Γ0 + Γ1 ⊢ MN : α
(app)

Γ1 ⊢ M : α1 · · · Γn ⊢ M : αn n > 0∑n
i=1 Γi ⊢ M : [α1, . . . , αn]

(val>0) V ∈ Val
⊢ V : []

(val0)

Figure 1 The inference rules of the type assignment system M. In (lam) we assume x /∈ dom(Γ).

The empty multiset will be denoted by []. We write Mf(A) for the set of all finite multisets
over A. Given σ, τ ∈ Mf(A), we write σ +τ for their multiset union. The operator + extends
to the n-ary case σ1, . . . , σn ∈ Mf(A) in the obvious way, in symbols,

∑n
i=1 σi ∈ Mf(A).

▶ Definition 9. Let us fix a countable set A = {a, b, c, . . . } of constants called atomic types.
(i) The set T of types over A and the set T! of multiset types are defined by (for n ≥ 0):

(T) α, β ::= a | [] | σ → α

(T!) σ, τ, ρ ::= [α1, . . . , αn] with αi ̸= [], for all i (1 ≤ i ≤ n).

The arrow is right associative, i.e., σ1 → · · · → σn → α = (σ1 → (· · · (σn → α) · · · )).
(ii) Type environments are functions Γ : V → T! having a finite domain, which is defined

by dom(Γ) = {x | Γ(x) ̸= []}. The multiset sum is extended to type environments Γ and
∆ pointwisely, namely, by setting (Γ + ∆)(x) = Γ(x) + ∆(x), for all x ∈ V.

(iii) We denote by x1 : σ1, . . . , xn : σn the type environment Γ defined by setting:

Γ(x) =
{

σi, if y = xi for some i ∈ {1, . . . , n},

[], otherwise.

Intuitively, the multiset type [α1, . . . , αn] ∈ T! = Mf(T − {[]}) represents an intersection
type α1 ∧ · · · ∧ αn, where ∧ enjoys associativity and commutativity, but not idempotency
(α ∧ α ̸= α). The empty multiset [] belongs both to T and T!, but with different meanings:
[] ∈ T should be thought of as a special “idempotent” type atom which is available at will;
morally, [] ∈ T! is a multiset only containing an indeterminate amount of atoms [] ∈ T.

▶ Definition 10.
(i) A typing judgement has shape Γ ⊢ M : ξ, where Γ is an environment, M ∈ Λ and

ξ ∈ T ∪ T!. The inference rules of the type system M are given in Figure 1.
(ii) We write Π ▷ Γ ⊢ M : ξ to indicate that Π is a derivation of Γ ⊢ M : ξ. Hereafter,

when writing Γ ⊢ M : ξ, we assume that Π ▷ Γ ⊢ M : ξ holds for some derivation Π.

The rules (var), (lam) and (app) are self-explanatory. In case x /∈ FV(M), the rule (lam)
assigns λx.M the type [] → α in the environment Γ. The rule (val0) can be used to type
every value with [] in the empty environment. The rule (val>0) allows to collect several types
of M into a non-empty multiset type, by adding the corresponding environments together.
The type system is relevant in the sense that Γ ⊢ M : α entails dom(Γ) ⊆ FV(M).

▶ Example 11. The following is a derivation Π in system M (setting Γ = f : [[a, a] → a]):

Γ ⊢ f : [a, a] → a

x : [[] → a] ⊢ x : [] → a ⊢ y : []
x : [[] → a] ⊢ xy : a

x : [[b] → a] ⊢ x : [b] → a y : [b] ⊢ y : b
x : [[b] → a], y : [b] ⊢ xy : a

x : [[] → a, [b] → a], y : [b] ⊢ xy : [a, a]
Γ + x : [[] → a, [b] → a], y : [b] ⊢ f(xy) : a

Other derivable typing judgements are ⊢ I : [a] → a, ⊢ Ix : [] and x : [a] ⊢ (λy.x)x : a.
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Through the rule (val0), it is possible to assign the type [] to a value V without inspecting
its shape and typing its subterms1 – we say that such a V is not fully typed. Similarly, in
a derivation of Γ ⊢ M : α, certain subterms of M might not be fully typed. E.g., in any
derivation of x : [a] ⊢ (λy.x)x : a, the former occurrence of x must be fully typed, while the
latter cannot be. To identify occurrences of a subterm and formalize this intuitive property,
we introduce single-hole contexts. A single-hole context C[] is a λ-term containing exactly
one occurrence of a distinguished algebraic variable [], traditionally called its hole. Given a
single-hole context C[] and N ∈ Λ, we write C[N ] for the λ-term obtained by substituting N

for the occurrence of the hole [] in C[], possibly with capture of free variables. Every such
context C[] uniquely identifies one occurrence of a subterm N of M , as in M = C[N ].

▶ Definition 12. Let M ∈ Λ, and Π ▷ Γ ⊢ M : ξ for some context Γ and ξ ∈ T ∪ T!.
(i) The set fto(Π) of fully typed occurrences of subterms of M in Π is the set of single-hole

contexts defined by structural induction on Π and by cases on its last applied rule:

(var) fto(Π) = {[]}.
(lam) fto(Π) = {[]} ∪ {λx.C[] | C[] ∈ fto(Π′)}, if M = λx.M ′ and Π′ is the premise

of Π.
(app) fto(Π) = {[]} ∪ {(C[])Q | C[] ∈ fto(Π1)} ∪ {P (C[]) | C[] ∈ fto(Π2)}, where

M = PQ and Π1, Π2 are the major and minor premises of Π, respectively.
(val0) fto(Π) = ∅.

(val>0) fto(Π) =
⋂

1≤i≤n fto(Π′
i), where (Π′

i)1≤i≤n are the premises of Π.

(ii) We say that N is a typed subterm occurrence of M in Π if M = C[N ] for C[] ∈ fto(Π).
(iii) On Π, define a measure m(Π) = ⟨app(Π), s(M)⟩ ∈ N2 (lexicographically ordered) where

app(Π) is the number of (app) rules in Π, and
s(M) is the measure from Proposition 3(i), strictly decreasing along (σ) steps.

▶ Remark 13. When the last rule of Π is (val>0), a subterm occurrence is typed if and only
if it is typed in all subjects of the premises. For example, in the derivation Π of Example 11,
the occurrence of y in f(xy) is not fully typed since fto(Π) = {[], [](xy), f([]y)}.

▶ Proposition 14. Let M, N ∈ Λ be such that M →v N , Γ be an environment and α ∈ T.
(i) (Weighted Subject Reduction) If Π ▷ Γ ⊢ M : α then Π′ ▷ Γ ⊢ N : α for some Π′.

Moreover, if the redex occurrence contracted in M is fully typed in Π then m(Π′) < m(Π).
(ii) (Subject Expansion) If Γ ⊢ N : α is derivable, then so is Γ ⊢ M : α.

Proof. By Lemma 4.14 in [20]. ◀

From this proposition, the soundness of the model M follows easily.

▶ Definition 15. The interpretation of a λ-term M in the model M is given by:

[[M ]] = {(Γ, α) | Γ ⊢ M : α}.

We write M |= M = N whenever [[M ]] = [[N ]] holds.

▶ Corollary 16 (Soundness). For M, N ∈ Λ, M =v N entails M |= M = N .

1 This includes the case ⊢ x : [], although x contains itself as a subterm and it is assigned a type. This is
consistent with the fact that (val0) uses the information that x is a value, without looking at its shape.

FSCD 2021



7:8 Call-By-Value, Again!

2.2 The Approximation Theory of M

We now show that the model M is also well-suited to model the theory of program approx-
imation introduced in [19] for defining Call-by-Value Böhm trees. In particular, we provide a
quantitative proof of the Approximation Theorem in the spirit of [7, 9, 20].

▶ Definition 17.
(i) Let Λ⊥ be the set of λ-terms possibly containing occurrences of a constant ⊥, and

Val⊥ = ⊥ ∪ V ∪ {λx.M | M ∈ Λ⊥} ⊆ Λ⊥ the set of extended values.
(ii) The set A of (finite) approximants is inductively defined by the grammar (for n ≥ 0):

(A) A ::= H | R

H ::= ⊥ | x | λx.A | xHA1 · · · An

R ::= (λx.A)(yHA1 · · · An)

Terms of shape H are called head approximants as they remind those used for building
CbN Böhm trees, while approximants of shape R are called redex-like because they look
like a β-redex. Let H (resp. R) be the set of all head (resp. redex-like) approximants.

(iii) Define ⊑⊥ ⊆ Λ2
⊥ as the least order relation compatible with abstraction and application,

and including ⊥ ⊑⊥ V for all V ∈ Val⊥. Given a set X ⊆ Λ⊥, we write ↑ X if its
elements are pairwise compatible, and in this case

⊔
X denotes their least upper bound.

(iv) For M ∈ Λ, define the set A(M) of (finite) approximants of M as follows

A(M) = {A ∈ A | ∃N ∈ Λ . M ↠v N and A ⊑⊥ N}

We say that two λ-terms M, N have the same CbV Böhm tree when A(M) = A(N).

▶ Remark 18.
(i) Although not formally needed, one could extend the v-reduction to terms in Λ⊥ in

the obvious way, and check that all approximants A ∈ A are in v-normal form. The
subterm of shape H in xHA1 · · · An is precisely needed to prevent a σ3-redex.

(ii) The terminology “M and N have the same CbV Böhm tree” is consistent with [19],
where the CbV Böhm tree of a λ-term M is defined as the possibly infinite tree

⊔
A(M).

Indeed, it is easy to check that A(M) = A(N) if and only if their suprema coincide.

▶ Example 19.
(i) A(Ω) = A(Ω(xy)) = A(ZI) = ∅.
(ii) A(∆) = {⊥, λx.x⊥, λx.xx}, A(λx.Ω) = {⊥} and A(K∗) = {λx1 . . . xn.⊥ | n ≥ 0}.
(iii) A(Z) =

⋃
n∈N{λf.f(λz0.f(λz1.f · · · (λzn.f⊥ Zn) · · · Z1)Z0) | ∀i . Zi ∈ {zi, ⊥}} ∪ {⊥}.

(iv) A(ZB) = {⊥, λf0.⊥} ∪ {λf0x0.(· · · (λfn−1xn−1.(λfn.⊥)(fn−1Xn−1)) · · · )(f0X0) |
n > 0, ∀i ∈ {1, . . . , n} . Xi ∈ {xi, ⊥}}.

▶ Definition 20.
(i) The rules in Figure 1 and the interpretation [[−]] in Definition 15 are extended to Λ⊥

in the obvious way. E.g., (val0) becomes ⊢ V : [], for all V ∈ Val⊥.
(ii) We say that a derivation Π ▷Γ ⊢ M : α is in typed v-normal form if, for all C[] ∈ fto(Π),

M = C[N ] entails N is not a v-redex.
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(iii) A derivation Π induces a term MΠ ∈ Λ⊥ defined by induction on Π as follows:

(var) MΠ = x, if Π ▷ Γ ⊢ x : α.
(lam) MΠ = λx.MΠ′ , if Π ▷ Γ ⊢ λx.N : α and Π′ is the premise of Π.
(app) MΠ = MΠ1MΠ2 , where Π1, Π2 are the major and minor premises of Π,

respectively.
(val0) MΠ = ⊥.

(val>0) MΠ =
⊔

{MΠi
| 1 ≤ i ≤ n}, where (Π′

i)1≤i≤n are the premises of Π.

In the case (val>0), notice that ↑{MΠi | 1 ≤ i ≤ n}, whence its supremum is well-defined.
Whenever MΠ ∈ A, we rather call this term AΠ to stress the fact that it is an approximant.

Intuitively, Π ▷ Γ ⊢ M : α is in typed v-nf if no redex occurrence in M is fully typed in Π.

▶ Lemma 21.
(i) For all A ∈ A, there exist α ∈ T and Γ such that Γ ⊢ A : α.
(ii) For all A ∈ A and N ∈ Λ, Γ ⊢ A : α and A ⊑⊥ N entail Γ ⊢ N : α.

Proof. Both items follow by a straightforward induction on the structure of A. ◀

▶ Lemma 22. If Π ▷ Γ ⊢ N : α is in typed v-nf, then MΠ ∈ A(N) and Γ ⊢ MΠ : α.

Proof. Straightforward induction on the structure of Π. ◀

▶ Theorem 23 (Approximation Theorem). Let M ∈ Λ, α ∈ T and Γ be an environment.

Γ ⊢ M : α ⇐⇒ ∃A ∈ A(M) . Γ ⊢ A : α

Proof. (⇒) Assume Γ ⊢ M : α. By weighted subject reduction (Proposition 14(i)), M ↠v N

for some N ∈ Λ such that there exists Π ▷ Γ ⊢ N : α in typed v-nf. Conclude by Lemma 22.
(⇐) Assume Γ ⊢ A : α for some A ∈ A(M). By definition, M ↠v N for some N satisfying

A ⊑⊥ N . By Lemma 21(ii), Γ ⊢ N : α. Conclude by subject expansion (Lemma 14(ii)). ◀

▶ Corollary 24. If M, N ∈ Λ have the same CbV Böhm trees then M |= M = N .

Proof. Assume A(M) = A(N). By applying the Approximation Theorem 23, we get [[M ]] =⋃
A∈A(M)[[A]] =

⋃
A∈A(N)[[A]] = [[N ]]. As a consequence, we conclude M |= M = N . ◀

3 Characterizations of Operational Properties

We now provide two characterizations of the most significant properties of the calculus,
namely valuability, potential valuability and solvability. The former is logical, through the
type assignment system, the latter semantic, through the Approximation Theorem.

▶ Theorem 25 (Characterizations of valuability and potential valuability). Let M ∈ Λ, then:
1. M is valuable ⇐⇒ ⊢ M : [] ⇐⇒ ⊥ ∈ A(M).
2. M is potentially valuable ⇐⇒ ∃Γ, α . Γ ⊢ M : α ⇐⇒ A(M) ̸= ∅.

Proof. See [20] for the logical characterizations, and [19] for the semantic ones. ◀

To characterize solvability, we need a deeper analysis of the structure of the approximants.
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▶ Definition 26. The subsets S, U ⊆ A are defined inductively by the grammars (for n ≥ 0):

(S) S ::= H ′ | R′ (U) U ::= ⊥ | λx.U

H ′ ::= x | λx.S | xHA1 · · · An | (λx.U)(yHA1 · · · An)
R′ ::= (λx.S)(yHA1 · · · An)

Note that {S, U} constitutes a partition of A, namely A = S ∪ U and S ∩ U = ∅.

▶ Example 27.
(i) x, I, xK⊥, I(zz), ∆(zz), K(yI⊥), (λx.(I(yz)))(zy⊥) ∈ S.
(ii) ⊥, λx0 . . . xn.⊥, (λx.⊥)(zz), (λx.⊥)(yII), (λx.(λy.⊥)(wz))(zw) ∈ U .
(iii) Finally, notice that A(Ω), A(ZI), A(λx.Ω), A(K⋆) ⊆ U .

We are going to show that the existence of an approximant A ∈ A(M) of shape S is
enough to ensure the solvability of M . Conversely, when M is unsolvable, A(M) is only
populated by approximants of shape U . We need a couple of technical lemmas.

▶ Lemma 28 (Substitution Lemma). Let M ∈ Λ, A(M) ̸= ∅ and x⃗ = {x1, . . . , xi} ⊇ FV(M).
Then, for all j ≥ 0 large enough and n1, . . . , ni ≥ j, we have

M [Pn1/x1, . . . , Pni/xi] ↠v V, for some V ∈ Val ∩ Λo.

Moreover, if xmHA1 · · · An ∈ A(M) then we can take V = Pℓ, for ℓ = nm − n − 1 ≥ 0.

Proof. If A ∈ A(M), then there is N ∈ Λ such that M ↠v N and A ⊑⊥ N . By Fact 2,
setting ϑ = [Pn1/x1, . . . , Pni

/xi], we have Mϑ ↠v Nϑ ∈ Λo. It suffices to check Nϑ ↠v V .
By structural induction on A.
Case A = xm for some m (1 ≤ m ≤ i). Then N = xm, so Nϑ = Pnm

and we are done.
Case A = λy.A0. Then N = λy.N0 with y /∈ x⃗ (wlog), whence Nϑ = λy.Nϑ

0 ∈ Val.
Case A = ⊥. Since ⊥ ⊑⊥ N entails N ∈ Val, we have either N = xm or N = λy.N0.

Therefore, we proceed as above.
Case A = xmHA1 · · · An for m (1 ≤ m ≤ i). Then A ⊑⊥ N entails N = xmN0 · · · Nn

with H ∈ A(N0) and Ar ∈ A(Nr) for all r (1 ≤ r ≤ n). Assuming j > n, we obtain

Nϑ = PnmNϑ
0 · · · Nϑ

n , by definition of ϑ,

↠v Pnm
V0 · · · Vn, by I.H. (induction hypothesis),

↠βv Pnm−n−1, with nm − n − 1 ≥ 0, since nm ≥ j > n.

Case A = (λy.A0)(xHA1 · · · An) with x ∈ x⃗ and, wlog, y /∈ x⃗. From A ⊑⊥ N , we derive
N = (λy.N0)N1 where A0 ∈ A(N0) and xHA1 · · · An ∈ A(N1). Easy calculations give:

Nϑ = (λy.Nϑ
0 )Nϑ

1 , since y /∈ dom(ϑ), then for some ℓ1 ≥ 0 we get:
↠v (λy.Nϑ

0 )Pℓ1 , as the I.H. on N1 gives Nϑ
1 ↠v Pℓ1 since xHA1 · · · An ∈ A(N1),

→v Nϑ
0 [Pℓ1/y], by (βv),

↠v V, by applying the I.H. to N0 and ϑ ◦ [Pℓ1/y]. ◀

▶ Proposition 29 (Context Lemma). Let M ∈ Λ and {x1, . . . , xi} ⊇ FV(M). If A ∈ A(M)∩S
then, for all j ≥ 0 large enough, there is k ≥ 0 such that for all n1, . . . , ni+k ≥ j we have

M [Pn1/x1, . . . , Pni
/xi]Pni+1 · · · Pni+k

↠v Pℓ, for some ℓ ≥ 0.

Proof. Since A ∈ A(M), there exists N ∈ Λ such that M ↠v N and A ⊑⊥ N . Now, setting
ϑ = [Pn1/x1, . . . , Pni

/xi], we have Mϑ ↠v Nϑ. Proceed by structural induction on A ∈ S.
Case A = x. Take k = 0 and proceed as in the proof of Lemma 28.
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Case A = xHA1 · · · An. Again, take k = 0 and apply Lemma 28.
Case A = λy.S. Then N = λy.N0 with y /∈ x⃗ and S ∈ A(N0). By induction hypothesis,

there is k′ ≥ 0 such that n1, . . . , ni+k′+1 ≥ j entails Nϑ
0 [Pni+1/y]Pni+2 · · · Pni+k′+1 ↠v Pℓ,

for some ℓ ≥ 0. Taking k = k′ + 1, easy calculations give (λy.N0)ϑPni+1 · · · Pni+k
↠v Pℓ.

Case A = (λy.S)(xmHA1 · · · An) with 1 ≤ m ≤ i and, wlog, y /∈ x⃗. From A ⊑⊥ N , we
obtain N = (λy.N0)N1 with S ∈ A(N0), FV(N0) ⊆ {x⃗, y}, and xmHA1 · · · An ∈ A(N1). By
induction hypothesis, for all j′ large enough, there is k′ such that for all h1, . . . , hi+k′+1 ≥ j′

we have N0[Ph1/x1, . . . , Phi/xi, Phi+1/y]Phi+2 · · · Phi+k′+1 ↠v Pℓ, for some ℓ ≥ 0. Therefore,
taking k = k′ + 1, we obtain, for all j ≥ j′ + n + 1 and n1, . . . , ni+k ≥ j, the following:

NϑPni+1 · · · Pni+k
= (λy.Nϑ

0 )Nϑ
1 Pni+1 · · · Pni+k

, as y /∈ dom(ϑ),
↠v (λy.Nϑ

0 )Pnm−n−1Pni+1 · · · Pni+k
, by Lemma 28,

→v Nϑ
0 [Pℓ′/y]Pni+1 · · · Pni+k

, setting ℓ′ = nm − n − 1,

↠v Pℓ, by I.H. since ℓ′ ≥ j′. ◀

▶ Corollary 30. Let M ∈ Λ and A ∈ A(M). If A ∈ S then M is solvable.

Proof. Assume A ∈ A(M)∩S and FV(M) = {x⃗}. By Proposition 29, there are P1, . . . , Pk ∈
Λo such that (λx⃗.M)P⃗ ↠v Pn for some n ≥ 0. By applying the identity n times, we get
(λx⃗.M)P⃗ I∼n ↠v I. We conclude that M is solvable. ◀

▶ Definition 31 (Proper type). A type α is trivial if it has the following shape (for n ≥ 0):

α = σ1 → · · · → σn → []

The type α is called proper if it is not trivial.

▶ Example 32.
(i) Every atom a ∈ A is proper.
(ii) The following types are proper: [] → a, [a] → a, [[] → []] → a and [a, a] → a.
(iii) The following types are trivial: [] → [], [a] → [], [[] → []] → [] and [a, a] → [].

▶ Remark 33. If α ∈ T is proper (resp. trivial), then so is σ → α for all σ ∈ T!.
We show that solvable terms admit proper types in appropriate type environments.

Conversely, unsolvables are either not typable or they only admit trivial types.

▶ Lemma 34. Let M ∈ Λ. If M is solvable then there exist an environment Γ and a proper
type α such that Γ ⊢ M : α is derivable.

Proof. Assume M solvable and let FV(M) = {x1, . . . , xk}. By definition of solvability, there
exist V1, . . . , Vn ∈ Val such that (λx⃗.M)V⃗ ↠v I. Now, for β proper, we have ⊢ I : [β] → β.
By subject expansion (Proposition 14(ii)), there is a derivation Π ▷ ⊢ (λx⃗.M)V⃗ : [β] → β. If
n = k = 0 then M ↠v I and we are done taking Γ = ∅ and α = β. Otherwise, we split into
cases depending on the values of n, k. By Property 8, only the following cases are possible.

Subcase k = n + 1. For some Γ = x1 : σ1, . . . , xk−1 : σk−1, xk : [β], Π must have shape:

Π0
Γ ⊢ M : β

⊢ λx⃗.M : σ1 → · · · → σn → [β] → β
(lam) Π1

⊢ V1 : σ1 · · ·
Πn

⊢ Vn : σn

⊢ (λx⃗.M)V1 · · · Vn : [β] → β
(app)

We found a derivation Π0 ▷ Γ ⊢ M : β, so we conclude because β is proper.
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Case k ≤ n > 0. For some Γ = x1 : σ1, . . . , xk : σk, Π must have the following shape:

Π0
Γ ⊢ M : σk+1 → · · · → σn → [β] → β

⊢ λx⃗.M : σ1 → · · · → σn → [β] → β
(lam) Π1

⊢ V1 : σ1 · · ·
Πn

⊢ Vn : σn

⊢ (λx⃗.M)V1 · · · Vn : [β] → β
(app)

Thus, we can take α = σk+1 → · · · → σn → [β] → β, which is proper by Remark 33. ◀

▶ Lemma 35. For every A ∈ A, we have:
(i) A ∈ S ⇐⇒ ∃Γ, α . Γ ⊢ A : α, with α proper.
(ii) A ∈ U ⇐⇒ ∀Γ, α . Γ ⊢ A : α implies that α is trivial.

Proof. It is enough to show that (⇒) holds for (i) and (ii). The converse implication follows
taking the contrapositive and using the facts that U = A − S and S = A − U , respectively.

(i) By induction on the structure of A ∈ S (following the grammar in Definition 26).
Case A = x. For every a ∈ A, which is a proper type, we have x : [a] ⊢ x : a by (var).
Case A = λx.S. By I.H., there exist Γ, x : σ and a proper type α such that Γ, x : σ ⊢ S : α.

Thus Γ ⊢ λx.S : σ → α is derivable by (lam), where σ → α is a proper type by Remark 33.
Case A = xHA1 · · · An. In this case we can assign A any type β, in the appropriate Γ. By

Lemma 21(i), there are environments Γ0, . . . , Γn and types α0, . . . , αn such that Γ0 ⊢ H : α0
and Γi ⊢ Ai : αi for all i (1 ≤ i ≤ n). Setting Γ =

∑
i Γi + [x : [[α0] → · · · → [αn] → β]], we

get Γ ⊢ xHA1 · · · An : β via (val>0) and (app). We conclude by taking, e.g., β = a ∈ A.
Case A = (λy.S)(xHA1 · · · An). By I.H., there exist Γ0 and a proper type α such that

Γ0 ⊢ S : α. Let Γ0(y) = [α1, . . . , αk] with k ≥ 0, then there are environments Γ1, . . . , Γk such
that Γi ⊢ xHA1 · · · An : αi for all i (1 ≤ i ≤ k), as we have seen above that such term can be
assigned any type. Taking Γ =

∑n
i=0 Γi, we conclude Γ ⊢ A : α where α is proper.

(ii) By induction on the structure of A ∈ U (following the grammar in Definition 26).
Case A = ⊥. The only applicable rule is (val0), namely ⊢ ⊥ : [].
Case A = λx.U . Assume that Γ ⊢ λx.U : σ → α holds, then also Γ, x : σ ⊢ U : α is

derivable. By I.H. the type α is trivial, therefore σ → α is also trivial by Remark 33.
Case A = (λy.U)(xHA1 · · · An). Assume that Γ ⊢ A : α holds, then there exists a

decomposition Γ = Γ0 +Γ1 and a σ ∈ T! such that Γ0, y : σ ⊢ U : α and Γ1 ⊢ xHA1 · · · An : σ.
By applying the I.H. on Γ0, y : σ ⊢ U : α, we conclude that α is trivial. ◀

▶ Theorem 36 (Characterizations of solvability). For M ∈ Λ, the following are equivalent:
1. M is solvable.
2. There exists a proper type α such that Γ ⊢ M : α, for some environment Γ.
3. There exists an approximant A ∈ A(M) ∩ S.

Proof. (1 ⇒ 2) By Lemma 34.
(2 ⇒ 3) By the Approximation Theorem, there exists A ∈ A(M) such that Γ ⊢ M : α.

By Lemma 35(i), we derive A ∈ S.
(3 ⇒ 1) By Corollary 30. ◀

▶ Corollary 37. A λ-term M is unsolvable exactly when A(M) ⊆ U , equivalently, whenever
Γ ⊢ M : α entails that α is a trivial type.

▶ Corollary 38. The model M is not sensible, but semi-sensible.

Proof. The model is not sensible as [[Ω]] = ∅ and [[λx.Ω]] = {[]}, entail M ̸|= Ω = λx.Ω. If
M is solvable and N is unsolvable, by Theorem 36 there exist an environment Γ and a type
α proper such that (Γ, α) ∈ [[M ]] − [[N ]], therefore the model is semi-sensible. ◀
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⊥ ∈ IM(∅; []) (bot!)
Ai ∈ IT(Γi; αi) ↑{Ai}i∈I A =

⊔
i∈I Ai

A ∈ IM(Σi∈IΓi; [αi]i∈I) (sup!)

⊥ ∈ IT(∅; [])
(bot)

A ∈ IT(Γ, x : σ; α)
λx.A ∈ IT(Γ; σ → α)

(abs)
x ∈ IT(x : [α]; α)

(head0)

Aj ∈ IM(Γj ; σj) 0 ≤ j ≤ n A0 ∈ H
xA0 · · · An ∈ IT(

∑n
j=0 Γj + x : [σ0 → · · · → σn → α]; α)

(head>0)

Aj ∈ IM(Γj ;
∑m

i=0 τ i
j) 0 ≤ j ≤ n A0 ∈ H A ∈ IT(Γn+1, x : [αi]0≤i≤m; α)

(λx.A)(yA0 · · · An) ∈ IT(
∑n+1

j=0 Γj + y : [τ i
0 → · · · → τ i

n → αi]0≤i≤m; α)
(redlike)

Figure 2 The inhabitation algorithm for system M. In (redlike), we assume x /∈ FV(yA0 · · · An).

4 Decidability of the Inhabitation Problem

The inhabitation problem for system M requires to determine for every environment Γ and
type α whether there is a λ-term M satisfying Γ ⊢ M : α. To show that this problem is
decidable we describe an algorithm that takes (Γ, α) as input and returns as output the set
of all approximants A satisfying Γ ⊢ A : α as well as the following minimality condition.

▶ Definition 39. Let Γ be an environment and ξ ∈ T ∪ T!. An A ∈ A is minimal for (Γ, ξ) if
Γ ⊢ A : ξ and, for all A′ ∈ A compatible with A (i.e. ↑{A, A′}), Γ ⊢ A′ : ξ entails A ⊑⊥ A′.

Finding the minimal approximants inhabiting (Γ, α) is enough for solving the original
inhabitation problem because Γ ⊢ M : α holds exactly when there is an A ∈ A(M) minimal
for (Γ, α). Following [9, 8], we present the inhabitation algorithm as a deductive system.

▶ Definition 40.
(i) Let Γ be an environment and α ∈ T. The inhabitation algorithm IT(Γ; α) for M

is given in Figure 2, via an auxiliary predicate IM(Γ; σ), for σ ∈ T!. Note that the
condition A0 ∈ H occurring as a premise of the rules (head>0) and (redlike) is decidable
since H is generated by a context-free grammar (Definition 17(ii)).

(ii) A run of the algorithm is a deduction tree built bottom-up by applying the rules in
Figure 2 in such a way that every node is an instance of a rule (as in Example 41).
We say that a run of the algorithm terminates if such a tree is finite. The algorithm
terminates if it needs to execute a finite number of different terminating runs.

It is easy to check that A ∈ IT(Γ; α) (resp. A ∈ IM(Γ; σ)) implies FV(A) ⊆ dom(Γ).
We are going to prove that the inhabitation algorithm is terminating, sound and complete.
Completeness is achieved by exploiting the non-determinism of the algorithm: indeed, when
α = σ → β, the rules (abs), (redlike) and (head−) might be applicable and in (redlike) and
(head>0), the environment Γ can be decomposed in countably many different ways (taking
many Γi = ∅). By collecting all possible runs, we recover all minimal approximants for (Γ, α).

▶ Example 41. The following are examples of possible runs of the algorithm on IT(Γ; α).
(i) Let Γ = y : [[] → a] and α = a. There are two runs:

(bot!)
⊥ ∈ IM(∅; []) ⊥ ∈ H

(head0)
x ∈ IT(x : [a]; a)

(λx.x)(y⊥) ∈ IT(y : [[] → a]; a)
(redlike)

(bot!)
⊥ ∈ IM(∅; []) ⊥ ∈ H
y⊥ ∈ IT(y : [[] → a]; a)

(head>0)
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(ii) Let Γ = y : [[] → []] and α = [a] → a. The only possible run is redlike(abs(head0), bot!)
which constructs the approximant (λx.I)(y⊥).

(iii) Let Γ = ∅ and α = [[a] → a, [a] → a] → [a] → a. Also in this case, the only possible run
is abs(abs(head>0(sup!(head>0(sup!(head0)))))), which constructs λxy.x(xy).

(iv) Let Γ = ∅ and α = [[a] → a] → [a] → a. The run abs(head0) constructs λx.x, while the
run abs(abs(head>0(sup!(head0)))) constructs λxy.xy.

(v) Let Γ = x : [[] → [] → a] and α = a. There are two possible runs: head>0(bot!, bot!),
building x⊥⊥, and redlike(bot!, head0), building (λz.z)(x⊥⊥).

▶ Definition 42. To show that the inhabitation algorithm terminates we define two measures,
#(·) on types, and (·)• on multiset types and type environments, as follows (for a ∈ A, n ≥ 0):

#a = #[] = 1, #(σ → α) = σ• + #α + 3,

[α1, . . . , αn]• =
∑n

i=1 #αi, Γ• =
∑

x∈dom(Γ) Γ(x)•.

Note that #α ≥ 1, while []• = 0. If σ = σ1 + σ2 then σ• = σ•
1 + σ•

2 , thus Γ =
∑

i∈I Γi entails
Γ• =

∑
i∈I Γ•

i . The measure #(·) is extended to judgements IT(−; −) and IM(−; −) by

#(IT(Γ; α)) = Γ• + #α, #(IM(Γ; σ)) = Γ• + σ• + 1.

Given M ∈ Λ⊥, we define inductively the size of its syntax-tree, written tsize(M), by:

tsize(⊥) = tsize(x) = 0, tsize(λx.P ) = tsize(P )+1, tsize(PQ) = tsize(P )+ tsize(Q)+1.

▶ Example 43.
(i) We have #([] → []) = #([] → a) = 4, so (x : [[] → [], [] → a, a])• = 9.

(ii) Since #[[a] → a] = 5, we get #IT(x : [[a] → a]; a) = 6, while #IM(x : [[a] → a]; [a]) = 7.
(iii) tsize((λx.⊥)(x⊥)) = 3, tsize(Pn) = n + 1 and tsize(x⊥∼n) = n, for all n ≥ 0.

▶ Lemma 44. Every run of the inhabitation algorithm terminates.

Proof. We need to show that every run is a finite tree. Since we are considering finite
multisets and all indices range over N, the premises of each rule in Figure 2 are finitely many
(i.e., a run is a finitely branching tree), whence it is enough to show that there is no infinite
path (by König’s Lemma). This follows from the fact that the measure # calculated on each
premise of a rule, is strictly smaller than the measure associated with its conclusion. We
proceed by cases on the rules applied, the cases (bot), (bot!), and (head0) being vacuous.

Cases (abs) and (sup!) follow straightforwardly from Definition 42.
Case (head>0) with premises IM(Γj ; σj), for all j (0 ≤ j ≤ n), and as a conclusion

IT(Γ + x : [σ0 → · · · → σn → α]; α) for Γ =
∑n

j=0 Γj . The measure # applied to the j-th
premise gives Γ•

j + σ•
j + 1; on the conclusion, it gives Γ• + σ•

0 + · · · + σ•
n + 2(#α) + 3(n + 1).

In the worse case, namely n = j = 0 and #α = 1, we still get Γ•
0 + σ•

0 + 1 < Γ•
0 + σ•

0 + 5.
Case (redlike) with premises IM(Γj ;

∑m
i=0 τij), for 0 ≤ j ≤ n, and IT(Γn+1, x :

[αi]0≤i≤m; α), and conclusion IT(Γ + y : [τi0 → · · · → τin → αi]0≤i≤m; α) for Γ =∑n
j=0 Γj + Γn+1. For the measure applied to the conclusion, easy calculations give the

following number K:

K = Γ• + 3(n + 1)(m + 1) +
∑m

i=0(
∑n

j=0 τ•
ij + #αi) + #α

= Γ•
n+1 + 3(n + 1)(m + 1) +

∑n
j=0(Γ•

j +
∑m

i=0(τ•
ij + #αi)) + #α

For the j-th premise we can easily check Γ•
j +

∑m
i=0 τ•

ij + 1 < K. For the remaining one,
we get Γ•

n+1 +
∑m

i=0 #αi + #α. In the worst case, i.e. n = m = 0, Γ• = Γ•
0 + Γ•

1 = Γ•
1 and

τ•
00 = 0, we obtain Γ• + #α0 + #α < Γ• + #α0 + #α + 3. This concludes the proof. ◀
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We show that the size of the approximants generated by IT(Γ; α) is bounded by Γ• + #α.
In fact, the coefficient 3 in the definition of #(σ → α) has been chosen to absorb the size of
the “λx.” and of the outer application in redex-like approximants as (λx.A)(yA0 · · · An).

▶ Lemma 45. For a type environment Γ, α ∈ T, σ ∈ T!, we have:
(i) A ∈ IT(Γ; α) entails tsize(A) ≤ #IT(Γ; α).
(ii) A ∈ IM(Γ; σ) entails tsize(A) < #IM(Γ; σ).

Proof. We prove (i) and (ii) by induction on a run of A ∈ IT(Γ; α) (resp. A ∈ IM(Γ; σ)).
Cases (bot), (bot!) and (head0). Trivial, since tsize(⊥) = tsize(x) = 0 and IM(Γ; α) ≥ 1.
Case (sup!) follows from I.H., because A =

⊔
i∈I Ai implies tsize(A) ≤

∑
i∈I tsize(Ai).

Case (abs) with α = σ → β. By induction hypothesis, we get tsize(A) ≤ Γ• + σ• + #β,
therefore we obtain tsize(λx.A) = tsize(A) + 1 ≤ Γ• + σ• + #β + 3 = #IT(Γ; σ → β).

Case (head>0) with Γ =
∑n

j=0 Γj + x : [σ0 → · · · → σn → α]. By IH, tsize(Aj) ≤ Γ•
j + σ•

j .
So, tsize(xA0 · · · An) =

∑n
j=0 tsize(Aj)+n+1 ≤

∑n
j=0 Γ•

j +σ•
j +2#α+3(n+1) = #IT(Γ; α).

Case (redlike) with Γ =
∑n+1

j=0 Γj + y : [τi0 → · · · → τin → αi]0≤i≤m. By I.H., we have
tsize(Aj) ≤ Γ•

j +
∑m

i=0 τ•
ij for all j (0 ≤ j ≤ n), and tsize(A) ≤ Γ•

n+1 +
∑m

i=0 #αi +#α. Thus,
tsize(yA0 · · · An) =

∑n
j=0 tsize(Aj) + n + 1 ≤

∑n
j=0 Γ•

j +
∑m

i=0(τ•
i0 + · · · + τ•

in) + n + 1 and:

tsize((λx.A)(yA0 · · · An)) = tsize(λx.A) + tsize(yA0 · · · An) + 1
≤ Γ•

n+1 +
∑m

i=0 #αi + #α + tsize(yA0 · · · An) + 2
≤

∑n+1
j=0 Γ•

j +
∑m

i=0(τ•
i0 + · · · + τ•

in + #αi) + #α + n + 3
≤

∑n+1
j=0 Γ•

j +
∑m

i=0(
∑n

j=0 τ•
ij + #αi) + #α + 3(n + 1)(m + 1)

where the last inequation holds since n + 3 ≤ 3(n + 1)(m + 1) for all n, m ≥ 0. ◀

▶ Theorem 46 (Termination). The inhabitation algorithm terminates.

Proof. Fix an input (Γ, α). By Lemma 44, every run A ∈ IT(Γ; α) terminates. The set
{A ∈ A | FV(A) ⊆ dom(Γ) ∧ tsize(A) ≤ Γ• + #α} is finite, because one cannot add variables
or ⊥ without adding applications. By Lemma 45, we get that the number of runs is finite. ◀

To better understand the inhabitation algorithm it is convenient to provide an effective
way of constructing minimal approximants. We have seen in Definition 20(iii) that we are
able to associate an approximant AΠ with every derivation Π in typed v-normal form. This
last condition is always satisfied by derivations Π ▷Γ ⊢ A : α for A ∈ A because approximants
do not contain any occurrence of a v-redex. We now show that the approximants AΠ so
constructed are minimal for (Γ, α) and that all such minimal approximants arise in this way.

▶ Lemma 47. Let Γ be a type environment, α ∈ T and A ∈ A. The following are equivalent:
1. A ∈ IT(Γ; α).
2. A = AΠ for some derivation Π ▷ Γ ⊢ A : α.
3. A is minimal for (Γ, α).

Proof. To perform the induction properly, we prove simultaneously the analogous statement
on σ ∈ T!: A ∈ IM(Γ; σ) ⇐⇒ A = AΠ for some Π ▷ Γ ⊢ A : σ ⇐⇒ A is minimal for (Γ, σ).

(1 ⇒ 2) By induction on a run of A ∈ IT(Γ; α) (resp. A ∈ IM(Γ; σ)).
Cases (bot), (bot!) and (head0) are trivial.
Cases (sup!) and (abs). Easy. Use the I.H. and apply (val>0) and (lam), respectively.

FSCD 2021
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Case (head>0) with Γ =
∑n

j=0 Γj + Γ′ where Γ′ = x : [σ0 → · · · → σn → α] and
A = xA0 · · · An. Let Π′ ▷ Γn+1 ⊢ x : σ0 → · · · → σn → α with AΠ′ = x. By I.H., for every
j(0 ≤ j ≤ n), there is a derivation Πj ▷ Γj ⊢ Aj : σj such that Aj = AΠj

. For Π, take:

Π′ ▷ Γ′ ⊢ x : σ0 → · · · → σn → α Πj ▷ Γj ⊢ Aj : σj 0 ≤ j ≤ n

Γ ⊢ xA0 · · · An : α
(app)

and conclude because AΠ = AΠ′AΠ0 · · · AΠn = xA0 · · · An.
Case (redlike) with Γ =

∑n+1
j=0 Γj + Γ′, where Γ′ = y : [τ i

0 → · · · → τ i
n → αi]0≤i≤m, and

A = (λx.A′)(yA0 · · · An). By I.H., there exists Πn+1 ▷ Γn+1, x : [αi]0≤i≤m ⊢ A′ : α with
A′ = AΠn+1 . Moreover, for each 0 ≤ j ≤ n, there is Πj ▷ Γj ⊢ Aj :

∑m
i=0 τ i

j with Aj = AΠj
.

This holds exactly when there exists a decomposition Γj =
∑m

i=0 Γi
j and Πi

j ▷ Γi
j ⊢ Aj : τ i

j

satisfying Aj =
⊔m

i=0 AΠi
j
, although individually Aj ̸= AΠi

j
might hold. Construct Π as:

Πn+1 ▷
Γn+1, x : [αi]0≤i≤m ⊢ A′ : α

Γn+1 ⊢ λx.A′ : [αi]0≤i≤m → α

y : [τ i
0 → · · · → τ i

n → αi]
⊢ y : τ i

0 → · · · → τ i
n → αi

Πi
0 ▷

Γi
0 ⊢ A0 : τ i

0 · · ·
Πi

n ▷

Γi
n ⊢ An : τ i

n∑n
j=0 Γi

j + y : [τ i
0 → · · · → τ i

n → αi] ⊢ yA0 · · · An : αi∑n
j=0 Γj + Γ′ ⊢ yA0 · · · An : [αi]0≤i≤m

∀i∑n+1
j=0 Γj + Γ′ ⊢ (λx.A′)(yA0 · · · An) : α

It is now easy to check that (λx.A′)(yA0 · · · An) = AΠ, for the derivation Π above.
(2 ⇒ 3) By straightforward induction on Π ▷ Γ ⊢ A : α. In the case (val>0) with premises

(Πi)i∈I , use the fact that AΠ =
⊔

i∈I AΠi
is defined as the least upper bound.

(3 ⇒ 1) By induction on a derivation Π ▷ Γ ⊢ A : α, where A is minimal for (Γ, α). The
only non-trivial case to handle is (app). We split into subcases depending on the shape of A.

Subcase A = xA0 · · · An with A0 ∈ H. Then there is a decomposition Γ =
∑n

j=0 Γj + x :
[σ0 → · · · → σn → α] such that Π has subderivations Πj ▷ Γj ⊢ Aj : σj with Aj minimal for
(Γj , σj). By I.H., Aj ∈ IM(Γj ; σj) from which xA0 · · · An ∈ IT(Γ; α) follows by (head>0).

Subcase A = (λx.A′)(yHA1 · · · An). Then, the derivation Π ▷ Γ ⊢ A : α must have the
shape above (see proof of (1 ⇒ 2), case (redlike)) for some decomposition Γ =

∑n+1
j=0 Γj + Γ′,

where Γ′ = y : [τ i
0 → · · · → τ i

n → αi]0≤i≤m and setting A0 = H ∈ H. Since A is minimal for
(Γ, α) and Γi

j ⊢ Aj : τ i
j for every j (0 ≤ j ≤ n), we must have Aj minimal for (Γj ,

∑m
i=0 τ i

j)
and A′ minimal for ((Γn+1, x : [αi]0≤i≤m), α). By I.H., we obtain Aj ∈ IM(Γj ;

∑m
i=0 τ i

j ) and
A′ ∈ IT((Γn+1, x : [αi]0≤i≤m); α). As A0 ∈ H, we get A ∈ IT(Γ; α) by applying (redlike). ◀

▶ Theorem 48 (Soundness and Completeness).
(i) If A ∈ IT(Γ; α) then, for all M ∈ Λ satisfying A ⊑⊥ M , we have Γ ⊢ M : α.
(ii) If Γ ⊢ M : α then there exists A ∈ IT(Γ; α) such that A ∈ A(M).

Proof. (i) By Lemma 47, we have Γ ⊢ A : α. Since A ⊑⊥ M , we conclude by Lemma 21(ii).
(ii) By the Approximation Theorem, there exists A′ ∈ A(M) satisfying Γ ⊢ A′ : α. Then,

there is an approximant A ↑ A′ which is minimal for (Γ, α). By Lemma 47, we obtain
A ∈ IT(Γ; α) and since A(M) is downward closed (by definition) we conclude A ∈ A(M). ◀

Conclusions

In this paper we have shown that the model M allows to characterize solvability semantically,
but we believe that Theorem 36 extends to all relational models defined in [20] having a
non-empty set of atoms, and whose type equivalence preserves the non-triviality of the types.
The fact that M constitutes a model of CbV λ-calculus has been shown in [20] by exploiting
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the environmental definition à la Hindley-Longo (namely, Definition 10.0.1 in [26]). In future
works, we plan to analyze the categorical construction behind this class of models as they do
not seem to be an instance of any categorical definition proposed so far.
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