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Abstract
Rewriting modulo equations has been researched for several decades but due to the lack of suitable
orderings, there are some limitations to rewriting modulo permutation equations. Given a finite set
of permutation equations E, we present a new RPO-based ordering modulo E using (permutation)
group actions and their associated orbits. It is an E-compatible reduction ordering on terms with
the subterm property and is E-total on ground terms. We also present a completion and ground
completion method for rewriting modulo a finite set of permutation equations E using our ordering
modulo E. We show that our ground completion modulo E always admits a finite ground convergent
(modulo E) rewrite system, which allows us to obtain the decidability of the word problem of ground
theories modulo E.
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1 Introduction

Equations with permutations of variables occur frequently in mathematics and computer
science. An equation is called a permutation equation [1] if it is of the form f(x1, . . . , xn) =
f(xρ(1), . . . , xρ(n)), where ρ is a permutation on [n] (i.e. the set {1, . . . , n}). A suitable
ordering modulo permutation equations in the context of term rewriting has not been
well-studied, although the modulo approach is natural for term rewriting with permutation
equations. (For example, a simple permutation equation, such as f(x, y) ≈ f(y, x), cannot
be oriented into a rewrite rule by well-founded orderings.) If there existed an E-compatible
reduction ordering ≻E for a set of permutation equations E, then it can be used for the
extended rewrite system for R modulo E, denoted by R, E [11,20]. (In this paper, an ordering
modulo E and an E-compatible ordering are used interchangeably.) In particular, such an
ordering ≻E provides a simple termination criterion for R, E, i.e., R, E is terminating if
l ≻E r for all rules l→ r ∈ R [11, 20].

The recursive path ordering (RPO) [3, 11, 24] is one of the most well-known orderings for
term rewriting and equational theorem proving. The main underlying idea of RPO is that,
roughly speaking, two terms are first compared by their top symbols and the collections
of their immediate subterms are recursively compared. Given a total precedence ≻F on a
finite set of function symbols F ,1 the recursive path ordering with status [3, 10, 11, 24, 27] on
T (F ,X ) is defined in such a way that s ≻ x if and only if s ̸= x and x is a variable in s, or
else s = f(s1, . . . , sm) ≻ g(t1, . . . , tn) = t if and only if

1 In this paper, we assume that a set of function symbols F in T (F ,X ) is finite and each function symbol
in F has a fixed (bounded) arity. We also assume that a precedence ≻F on F is total on F .
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19:2 An RPO-Based Ordering Modulo Permutation Equations

(i) si ⪰ t for some i ∈ [m], or
(ii) f ≻F g and s ≻ ti for all i ∈ [n], or
(iii) f = g ∈ Lex (and hence m = n), <s1, . . . , sm> ≻lex <t1, . . . , tm>, and s ≻ ti for all

i ∈ [m], or
(iv) f = g ∈Mul (and hence m = n), and {s1, . . . , sm} ≻mul {t1, . . . , tm},

where Lex (resp. Mul) denotes the set of function symbols with the lexicographic
(resp. multiset) status, and ≻lex (resp. ≻mul) denotes the lexicographic (resp. multiset)
extension of ≻.

In [18, 26–28], RPO is adapted for an AC-compatible (resp. A-compatible) simplification
ordering on terms that is AC-total (resp. A-total) on ground terms, where AC (resp. A)
denotes the associative and commutative (resp. associativity) theory (cf. [23]). (There is
also an RPO-like termination relation for a certain class of equations including associativity
(see [8, 9] for details).) An RPO is also briefly described in Section 6.1 of [24] for an ordering
modulo some simple permutation equations without providing a formal proof.2 To our
knowledge, an E-compatible simplification ordering on terms that is E-total on ground terms
for any finite set of permutation equations E has not been studied in the literature.

Meanwhile, a completion procedure [5, 6, 20,21] for a rewrite system provides a decision
procedure for proving the validity of an equational theorem if the procedure generates a finite
convergent rewrite system. A completion procedure was extended to a completion procedure
modulo a set of equations E [6,16,25] for constructing a rewrite system that admits a unique
normal form w.r.t. the congruence induced by E. In particular, ground completion modulo
E for a ground rewrite systems R provides a decision procedure for the word problem of
ground theories modulo E if it generates a finite convergent (modulo E) rewrite system.

In this paper, we present an RPO-based E-compatible simplification ordering ≻E on
terms that is E-total on ground terms for a finite set of permutation equations E. Then we
adapt the existing completion modulo a congruence approach to our completion modulo E

procedure using the ordering ≻E . We also present our ground completion modulo E and
show that it always admits a finite ground convergent (modulo E) rewrite system for a finite
set of permutation equations E.

2 Preliminaries

We assume that the reader has some familiarity with term rewriting [11,20]. The definitions in
this section can be found in [3–5,11,24,27]. (For general references on RPOs, see Section 2.2
in [24], Section 5.4.2 in [3], Section 4 in [11], and [10].) In this paper, we usually denote
variables by x, y, z, etc., constants by a, b, c, etc., function symbols by f, g, h, etc., and terms
by r, s, t, etc., possibly with subscripts. We denote by [n] the set {1, . . . , n}.

We denote by T (F ,X ) the set of terms over a finite set of function symbols F and a
denumerable set of variables X . An equation is an expression s ≈ t, where s and t are
(first-order) terms built from F and X . A ground term (resp. ground equation) is a term
(resp. an equation) which does not contain any variable.

We write s[u] if u is a subterm of s and denote by s[t]p the term that is obtained from s

by replacing the subterm at position p of s by t.

2 Our approach uses orbits discussed in the next section, which takes polynomial time for finding them [13].
Without using the group-theoretical approach, the problem of finding the corresponding equivalence
classes using permutation equations may take exponential time if one uses traditional equational
reasoning approaches [2].
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An equivalence is a reflexive, transitive, and symmetric binary relation. An equivalence
∼ on terms is a congruence if s ∼ t implies u[s]p ∼ u[t]p for all terms s, t, u and positions p.

An equational theory is a set of equations. We denote by ≈E the least congruence on
T (F ,X ) that is stable under substitutions and contains a set of equations E. If s ≈E t for
two terms s and t, then s and t are E-equivalent.

A (strict) ordering ≻ on terms is an irreflexive and transitive relation on T (F ,X ).
An ordering ≻ on terms is monotonic if s ≻ t implies u[s] ≻ u[t] for all s, t, and non-empty

contexts u. An ordering ≻ on terms is stable under substitutions if s ≻ t implies sσ ≻ tσ for
all s, t, and substitutions σ.

An ordering ≻ on terms is a rewrite ordering if it is monotonic and stable under substitu-
tions. A well-founded rewrite ordering is a reduction ordering.

An ordering ≻ on terms has the subterm property if t[s]p ≻ s for all s, t, and p ̸= λ. (We
denote by λ the top position.) An ordering ≻ on terms is a simplification ordering if it is a
rewrite ordering with the subterm property. (We do not need the deletion property [11] for a
simplification ordering because we assume that each function symbol has a fixed bounded
arity in this paper.)

An ordering ≻ on terms is well-founded if there is no infinite sequence t1 ≻ t2 ≻ · · · .
An ordering ≻ on terms is E-compatible if s′ ≈E s ≻ t ≈E t′ implies s′ ≻ t′ for all s, s′, t

and t′. An ordering ≻ on ground terms is E-total if s ̸≈E t implies s ≻ t or t ≻ s for all
ground terms s and t.

Given a rewrite system R and a set of equations E, the rewrite relation→R,E on T (F ,X )
is defined by s →R,E t if there is a non-variable position p in s, a rewrite rule l → r ∈ R,
and a substitution σ such that s|p≈E lσ and t = s[rσ]p. (In this case, we may also write
s→l→r,σ

R,E t or simply s→l→r
R,E t.) The transitive and reflexive closure of →R,E is denoted by

∗−→R,E . We say that a term t is a R, E-normal form if there is no term t′ such that t→R,E t′.
The rewrite relation →R/E on T (F ,X ) is defined by s →R/E t if there are terms u

and v such that s ≈E u, u →R v, and v ≈E t. We simply say the rewrite relation →R/E

(resp.→R,E) on T (F ,X ) as the rewrite relation R/E (resp. R, E).
The rewrite relation R, E is Church-Rosser modulo E if for all terms s and t with

s
∗←→R∪E t, there are terms u and v such that s

∗−→R,E u
∗←→E v

∗←−R,E t. The rewrite relation
R, E is convergent modulo E if R, E is Church-Rosser modulo E and R/E is well-founded.

The substitution σ is more general modulo E on X than the substitution θ, denoted by
σ ≤X

E θ, if there exists a substitution τ such that xθ≈Exστ for all x ∈ X.
Let s and t be terms, and let V be the set of all variables occurring in s and t. Then s

and t are E-unifiable if there exists a substitution σ, called an E-unifier, such that sσ ≈E tσ.
A set of E-unifiers of s and t is complete, denoted by CSUE(s, t), if for every E-unifier τ

of s and t, there exists a substitution σ ∈ CSUE(s, t) such that σ ≤V
E τ . A complete set of

E-unifiers of s and t is minimal, denoted by µCSUE(s, t), if for all σ and σ′ in CSUE(s, t),
σ ≤V

E σ′ implies σ = σ′.
The multiset extension of ≈E is defined as the smallest relation ≈mul

E on multisets of
terms such that ∅ ≈mul

E ∅ and M ∪ {s} ≈mul
E M ′ ∪ {t} if s ≈E t ∧M ≈mul

E M ′.
Let ≻e be an E-compatible ordering on terms. The lexicographic extension of ≻e

w.r.t. ≈E is the relation ≻lex
e on n-tuples of terms defined by <s1, . . . , sn> ≻lex

e <t1, . . . , tn>

if s1 ≈E t1, . . . , sk−1 ≈E tk−1 and sk ≻e tk for some k ∈ [n]. The multiset extension
of ≻e w.r.t. ≈E is defined as the smallest ordering ≻mul

e on multisets of terms such that
M ∪ {s} ≻mul

e N ∪ {t1, . . . , tn} if M ≈mul
E N and s ≻e ti for all i ∈ [n].

▶ Lemma 1. Let ≻e be an E-compatible ordering on terms.
(i) If ≻e is transitive, then both ≻lex

e and ≻mul
e are transitive.

(ii) If M ′ ≈mul
E M ≻mul

e N ≈mul
E N ′, then M ′ ≻mul

e N ′ for all multisets of terms M, M ′, N

and N ′.
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2.1 Leaf permutative equations and permutation groups
We will mainly use the notations and definitions of leaf permutative equations and permutation
groups given in [2, 15].

An equation of the form s ≈ s′ is leaf permutative [2] if s and s′ are linear terms (i.e. no
variable occurs twice in s and s′) that have the same set of variables and are variants of each
other. (Two terms are variants if they are instances of each other.) A set of leaf permutative
equations {s1 ≈ t1, . . . , sn ≈ tn} is uniform if for all i and j, si and sj are variants.

If C[x1, . . . , xn] ≈ C[xρ(1), . . . , xρ(n)] is a leaf permutative equation for which all variables
are indicated explicitly, then C is the context of this equation. We use variable naming in
such a way that the left-hand side of each equation in a uniform set of leaf permutative
equations has the same name of variables x1, . . . , xk from left to right.

If e := C[x1, . . . , xn] ≈ C[xρ(1), . . . , xρ(n)] is a leaf permutative equation for which all
variables are indicated explicitly, then ρ is the permutation of this equation. We denote by
π[e] the permutation of e. For example, ρ is the permutation of the leaf permutative equation
e′ := f(g(x1, x2), x3) ≈ f(g(x1, x3), x2) (i.e. π[e′] = ρ) with ρ(1) = 1, ρ(2) = 3, and ρ(3) = 2.

Let E be a uniform set of leaf permutative equations. Then Π[E] is defined as Π[E] :=
{π[e] | e ∈ E}. The permutation group generated by Π[E] is denoted by <Π[E]>.

▶ Theorem 2 ([2, Theorem 1.4]). Let E be a set of leaf permutative equations and let e

be a leaf permutative equation such that E ∪ {e} is uniform. Then E |= e if and only if
π[e] ∈ <Π[E]>.

▶ Example 3. Let E = {f(x1, x2, x3, x4) ≈ f(x2, x1, x3, x4), f(x1, x2, x3, x4) ≈ f(x2, x3, x4,

x1)}. Then Π[E] consists of two cycles {(1 2), (1 2 3 4)}. Since the two cycles (1 2) and (1 2 3 4)
generate the symmetric group S4, <Π[E]> is S4. Then f(x1, . . . , x4) ≈E f(xρ(1), . . . , xρ(4))
for any permutation ρ ∈ S4 by Theorem 2.

Let G be a group with the identity element I. A (left) action of G on a set X is a function
G×X → X such that for all x ∈ X and all g1, g2 ∈ G: (i) Ix = x, and (ii) (g1g2)x = g1(g2x).
When such an action is given, we say that G acts (left) on the set X, and X is a G-set.

Let X be a G-set. For xi, xj ∈ X, let xi ∼ xj if and only if there exists some g ∈ G

such that gxi = xj . Then, ∼ is an equivalence relation on X. The equivalence classes on X

determined by ∼ are orbits of G on X.

▶ Example 4. Let E = {f(x1, x2, x3, x4) ≈ f(x2, x1, x3, x4), f(x1, x2, x3, x4) ≈ f(x1, x2, x4,

x3)}. Then Π[E] consists of two cycles {(1 2), (3 4)}. Let <Π[E]> act on the set X =
{x1, x2, x3, x4} by gxi = xg(i) for all g ∈ <Π[E]>. Then the orbits of <Π[E]> on X are
{x1, x2} and {x3, x4}.

3 An ordering modulo a set of permutation equations

An equation of the form f(x1, . . . , xn) ≈ f(xρ(1), . . . , xρ(n)) is a permutation equation [1] if ρ

is a permutation on [n], which is a restricted form of a leaf permutative equation. In this
section, given a set of permutation equations E, we provide an E-compatible simplification
ordering on terms that is E-total on ground terms.

Let E be a finite set of permutation equations, where a permutation equation is a restric-
ted form of a leaf permutative equation. Then E can be uniquely decomposed as

⋃n
i=1 Ei

such that (i) each Ei is a finite set of permutation equations, and (ii) Ej and Ek with j ≠ k

are disjoint such that if sj ≈ tj ∈ Ej and sk ≈ tk ∈ Ek, then sj and sk do not have the same
top symbol (and are not variants of each other). Since we assume that each function symbol
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has a fixed arity, each distinct function symbol occurring in E corresponds to a distinct Ei

in E. We denote by Eq(f) the corresponding equational theory with terms headed by such a
function symbol f . We also denote by FE the set of all function symbols occurring in E and
by Lex the set of all other function symbols in F in T (F ,X ) so that F is split into FE and
Lex, i.e., F = FE ∪ Lex. (For comparison, given a total precedence ≻F on F , if F is simply
F = Lex, then the recursive path ordering ≻ (see the lexicographic path ordering (LPO) [11])
is total on ground terms, but not necessarily E-compatible on ground terms.)

Given t = f(s1, . . . , sn) with f(x1, . . . , xn) ≈ f(xp(1), . . . , xp(n)) ∈ E for some permuta-
tion p on [n], let <Π[Eq(f)]> act on the set X = {x1, . . . , xn} by ρxi = xρ(i) for all
ρ ∈ <Π[Eq(f)]>. We denote each orbit of <Π[Eq(f)]> on X by Ok(f, E). (Here X is
understood from f ∈ FE and E.) By Orbitk(f, t) we denote that each xi in Ok(f, E) is
substituted by si. (Note that S = {s1, . . . , sn} can be a multiset, so we first let <Π[Eq(f)]>
act on the set X = {x1, . . . , xn} instead of a (possibly) multiset S = {s1, . . . , sn}, and
then replace each xi in Ok(f, E) with si in order to obtain Orbitk(f, t).) The number
k in Ok(f, E) is assigned (consecutively starting with 1) in a natural way such that if
ki < kj for Oki

(f, E) and Okj
(f, E), then ri < rj for xri

and xrj
, where xri

(resp. xrj
)

is the variable with the smallest index in Oki
(f, E) (resp. Okj

(f, E)). For example, con-
sider E = {f(x1, x2, x3, x4) ≈ f(x2, x1, x3, x4), f(x1, x2, x3, x4) ≈ f(x1, x2, x4, x3)} (see
Example 4) and t = f(a, b, c, d). Then we have O1(f, E) = {x1, x2}, O2(f, E) = {x3, x4},
Orbit1(f, t) = {a, b}, and Orbit2(f, t) = {c, d}. Note that we only need to compute Ok(f, E)
once using <Π[Eq(f)]>. Then it is easy to obtain Orbitk(f, t) from Ok(f, E) for any term t

headed by f ∈ FE . In the following definition, we assume that a total precedence ≻F on a
finite set of function symbols F is given. We denote by s ⪰E t either s ≻E t or s ≈E t.

▶ Definition 5. Given a finite set of permutation equations E, let s = f(s1, . . . , sm) and
t = g(t1, . . . , tn) be terms in T (F ,X ). Then s ≻E x if and only if x is a variable in s, or
else s ≻E t if and only if

(i) si ⪰E t for some i ∈ [m], or
(ii) f ≻F g and s ≻E ti for all i ∈ [n], or
(iii) f = g ∈ Lex, <s1, . . . , sm>≻lex

E <t1, . . . , tm>, and s ≻E ti for all i ∈ [m], or
(iv) f = g ∈ FE and there is some positive j such that Orbit1(f, s) ≈mul

E Orbit1(g, t), . . . ,

Orbitj−1(f, s) ≈mul
E Orbitj−1(g, t), Orbitj(f, s) ≻mul

E Orbitj(g, t), and s ≻E ti for all
i ∈ [m].

The following lemma directly follows from the definition of Orbitj(f, t) and ≈E .

▶ Lemma 6. Given a finite set of permutation equations E, let s = f(s1, . . . , sn) and
t = f(t1, . . . , tn) be terms in T (F ,X ) with f ∈ FE. Then s ≈E t if and only if
Orbit1(f, s) ≈mul

E Orbit1(f, t), . . . , Orbitk(f, s) ≈mul
E Orbitk(f, t), where k is the number

of orbits of <Π[Eq(f)]> on X = {x1, . . . , xn}.

▶ Example 7. Let E = {f(x1, x2, x3, x4) ≈ f(x2, x1, x3, x4), f(x1, x2, x3, x4) ≈ f(x2, x3, x4,

x1)} (see Example 3) and consider two terms s = f(d, c, b, g(a)) and t = f(a, b, c, d) with
f ≻F g ≻F a ≻F b ≻F c ≻F d. Then E is simply decomposed into E = E1. We have s ≻E t

by Case (iv), since Orbit1(f, s) = {d, c, b, g(a)} ≻mul
E {a, b, c, d} = Orbit1(f, t), s ≻E a,

s ≻E b, s ≻E c, and s ≻E d. It is easy to verify that {d, c, b, g(a)} ≻mul
E {a, b, c, d} since

g(a) ≻E a by Case (i). We leave it to the reader to verify that s ≻E a, s ≻E b, s ≻E c, and
s ≻E d. (This is clear once we have the subterm property of ≻E (see Lemma 13).)

▶ Example 8. Let E = {f(x1, x2, x3, x4) ≈ f(x2, x1, x3, x4), f(x1, x2, x3, x4) ≈ f(x1, x2, x4,

x3)} (see Example 4) and consider two terms s = f(x, a, c, a) and t = f(a, x, b, c) with
f ≻F a ≻F b ≻F c. Then E is simply decomposed into E = E1. We have s ≻E t by

FSCD 2021
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Case (iv), since Orbit1(f, s) = {x, a} ≈mul
E {a, x} = Orbit1(f, t), Orbit2(f, s) = {c, a} ≻mul

E

{b, c} = Orbit2(f, t), s ≻E a, s ≻E x, s ≻E b, and s ≻E c. It is easy to verify that
{c, a} ≻mul

E {b, c} since a ≻E b. We leave it to the reader to verify that s ≻E a, s ≻E x,
s ≻E b, and s ≻E c.

▶ Example 9. Let E = {f(x1, x2) ≈ f(x2, x1), g(x1, x2, x3) ≈ g(x2, x1, x3), g(x1, x2, x3) ≈
g(x1, x3, x2)} and consider two terms s = h(f(a, g(b, a, x)), a) and t = h(f(g(a, x, b), a), b)
with h ≻F f ≻F g ≻F a ≻F b. Then E is decomposed into E1 ∪ E2, where E1 =
{f(x1, x2) ≈ f(x2, x1)} and E2 = {g(x1, x2, x3) ≈ g(x2, x1, x3), g(x1, x2, x3) ≈ g(x1, x3, x2)}.
We have s ≻E t by Case (iii), since f(a, g(b, a, x)) ≈E f(g(a, x, b), a) by Lemma 6, a ≻E b,
s ≻E f(g(a, x, b), a), and s ≻E b. We may verify that s ≻E f(g(a, x, b), a) by Case (i) and
Lemma 6. We leave it to the reader to verify that s ≻E b.

▶ Example 10. Let E = {f(x1, x2) ≈ f(x2, x1), g(x1, x2, x3) ≈ g(x2, x1, x3)} and consider
two terms s = f(c, g(b, a, a)) and t = f(g(a, b, b), c) with f ≻F g ≻F a ≻F b ≻F c. Then E

is decomposed into E1 ∪E2, where E1 = {f(x1, x2) ≈ f(x2, x1)} and E2 = {g(x1, x2, x3) ≈
g(x2, x1, x3)}. We have s ≻E t by Case (iv), since Orbit1(f, s) = {c, g(b, a, a)} ≻mul

E

{g(a, b, b), c} = Orbit1(f, t) by g(b, a, a) ≻E g(a, b, b), s ≻E g(a, b, b), and s ≻E c. We
may verify that g(b, a, a) ≻E g(a, b, b) by Case (iv), since Orbit1(g, g(b, a, a)) = {b, a} ≈mul

E

{a, b} = Orbit1(g, g(a, b, b)), Orbit2(g, g(b, a, a)) = {a} ≻mul
E {b} = Orbit2(g, g(a, b, b)),

g(b, a, a) ≻E a, and g(b, a, a) ≻E b. We leave it to the reader to verify that s ≻E g(a, b, b),
s ≻E c, g(b, a, a) ≻E a, and g(b, a, a) ≻E b.

In the following, we denote by V ars(t) the set of variables occurring in t and by top(t)
the top symbol of t.

▶ Lemma 11. ≻E is E-compatible.

Proof. Let s, s′, t, and t′ be terms with s′ ≈E s ≻E t ≈E t′. We show that s′ ≻E t′. If t is
a variable, then s ̸= t and t ∈ V ars(s). We may infer that t = t′ and s′ is not a variable.
Since s′ is not a variable with V ars(s) = V ars(s′), we have s′ ≠ t′ and t′ ∈ V ars(s′), and
thus s′ ≻E t′. Therefore, we assume that t is not a variable and let s = f(s1, . . . , sm) and
t = g(t1, . . . , tn). We proceed by induction on |s|+ |t|. (Note that we do not need to consider
s′ ≈E s (resp. t ≈E t′) on the top position for the following 1 (resp. 2)).
1. If s ≻E t by Case (i), then we have si ⪰E t for some i ∈ [m]. Then s′ is of the form

s′ = f(s′
1, . . . , s′

m) with sk ≈E s′
ρ(k) for all k ∈ [m] and some (permutation) ρ ∈ Sm.

Since s′
ρ(i) ⪰E t′ for some i ∈ [m] by induction hypothesis, we have s′ ≻E t′ by Case (i).

2. If s ≻E t by Case (ii), then we have f ≻F g and s ≻E ti for all i ∈ [n]. Then t′ is
of the form t′ = g(t′

1, . . . , t′
n) with tk ≈E t′

π(k) for all k ∈ [n] and some π ∈ Sn. Since
top(s′) = f ≻F g = top(t′) and s′ ≻E t′

π(i) for all i ∈ [n] by induction hypothesis, we
have s′ ≻E t′ by Case (ii).

3. If s ≻E t by Case (iii), then we have f = g ∈ Lex, <s1, . . . , sm> ≻lex
E <t1, . . . , tm>, and

s ≻E ti for all i ∈ [m]. Then s′ is of the form s′ = f(s′
1, . . . , s′

m) with sk ≈E s′
k for all

k ∈ [m] and t′ is of the form t′ = g(t′
1, . . . , t′

m) with tk ≈E t′
k for all k ∈ [m]. By induction

hypothesis, we have <s′
1, . . . , s′

m> ≻lex
E <t′

1, . . . , t′
m> and s′ ≻E t′

i for all i ∈ [m], and
thus we have s′ ≻E t′ by Case (iii).

4. If s ≻E t by Case (iv), then we have f = g ∈ FE , and there is some positive j such that
Orbit1(f, s) ≈mul

E Orbit1(g, t), . . . , Orbitj−1(f, s) ≈mul
E Orbitj−1(g, t), Orbitj(f, s) ≻mul

E

Orbitj(g, t), and s ≻E ti for all i ∈ [m]. Then s′ is of the form s′ = f(s′
1, . . . , s′

m)
with sk ≈E s′

ρ(k) for all k ∈ [m] and some ρ ∈ <Π[Eq(f)]> and t′ is of the form t′ =
g(t′

1, . . . , t′
m) with tk ≈E t′

π(k) for all k ∈ [m] and some π ∈ <Π[Eq(g)]>. By the definition
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of ≈mul
E , we have Orbitk(f, s′) ≈mul

E Orbitk(f, s) and Orbitk(g, t) ≈mul
E Orbitk(g, t′) for

all k ∈ [j − 1], which implies that Orbitk(f, s′) ≈mul
E Orbitk(g, t′) for all k ∈ [j − 1].

Furthermore, by induction hypothesis and Lemma 1(ii), we have Orbitj(f, s′) ≻mul
E

Orbitj(g, t′) and s′ ≻E t′
π(i) for all i ∈ [m], and thus we have s′ ≻E t′ by Case (iv).

(We may apply Lemma 1(ii) here because the induction hypothesis implies that ≻E is
E-compatible for all terms r and u with r ≻E u and |r|+ |u| < |s|+ |t|.) ◀

▶ Lemma 12. ≻E is transitive.

Proof. Suppose that r ≻E s and s ≻E t. Then r and s cannot be variables by Definition 5.
Let r = f(r1, . . . , rl) and s = g(s1, . . . , sm). If t is a variable, then t ∈ V ars(s). We leave
it to the reader to verify that t ∈ V ars(r) as well, which shows that r ≻E t. Therefore, we
assume that t is not a variable and let t = h(t1, . . . , tn). We show that r ≻E t by induction
on |r|+ |s|+ |t|.
1. If r ≻E s by Case (i), then ri ⪰E s for some i ∈ [l]. By induction hypothesis and the

E-compatibility of ≻E , we have ri ⪰E t, and thus r ≻E t by Case (i).
2. If s ≻E t by Case (i) and r ≻E s by Case (ii), (iii), or (iv), then we have r ≻E si for all

i ∈ [m] and sj ⪰E t for some j ∈ [m]. It follows that r ≻E sj ⪰E t for some j ∈ [m], and
thus r ≻E t by induction hypothesis and the E-compatibility of ≻E .

3. If r ≻E s and s ≻E t by Case (ii), (iii), or (iv), then f ⪰F h and s ≻E ti for all i ∈ [n].
3.1. If f ≻F h, then we have r ≻E ti for all i ∈ [n] by induction hypothesis, and thus

r ≻E t by Case (ii).
3.2. If f = g = h ∈ Lex with r ≻E s and s ≻E t by Case (iii), then we have

<r1, . . . , rl> ≻lex
E <t1, . . . , tl> and r ≻E ti for all i ∈ [l] by induction hypothesis

and Lemma 1(i) (using the E-compatibility of ≻E), and thus r ≻E t by Case (iii).
3.3. If f = g = h ∈ FE with r ≻E s and s ≻E t by Case (iv), then there is some positive

j such that Orbit1(f, r) ≈mul
E Orbit1(h, t), . . . , Orbitj−1(f, r) ≈mul

E Orbitj−1(h, t),
Orbitj(f, r) ≻mul

E Orbitj(h, t), and r ≻E ti for all i ∈ [l] by induction hypothesis
and Lemma 1(i) and (ii) (using the E-compatibility of ≻E), and thus r ≻E t by
Case (iv). ◀

▶ Lemma 13. ≻E has the subterm property.

Proof. By the transitivity of ≻E , it suffices to show that s = f(. . . t . . .) ≻E t. If t is a
variable, then we have t ∈ V ars(s), and thus s ≻E t. Therefore, we assume that t is not a
variable. Since t ⪰E t, we have s ≻E t by Case (i). ◀

▶ Lemma 14. ≻E is irreflexive.

Proof. Suppose, towards a contradiction, that there exists some t such that t ≻E t. If t is a
variable, then t ≻E t is not possible by Definition 5, which is a contradiction. Therefore, we
assume that t is not a variable and let t = f(t1, . . . , tn). We proceed by induction on |t|.
1. If t ≻E t by Case (i), then ti ⪰E t. On the other hand, we have t ≻E ti by the subterm

property of ≻E . Then by the E-compatibility and transitivity of ≻E , we have ti ≻E ti,
which is a contradiction by induction hypothesis.

2. If t ≻E t by Case (iii) or (iv), then there must exist some i ∈ [n] such that ti ≻E ti,
which is a contradiction by induction hypothesis. (Note that t ≻E t by Case (ii) is not
possible.) ◀

▶ Lemma 15. ≻E is monotonic.
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19:8 An RPO-Based Ordering Modulo Permutation Equations

Proof. Let s ≻E t. We show that r = f(s1, . . . , si−1, s, si+1, . . . , sn) ≻E f(s1, . . . , si−1, t,

si+1, . . . , sn) = u, since the monotonicity of ≻E directly follows from this replace-
ment property of ≻E . By the subterm property of ≻E , we have r ≻E sj for all
j ∈ {1, . . . , i− 1, i + 1, . . . , n}. By the subterm property and transitivity of ≻E , we also have
r ≻E t.

If f ∈ Lex, then r ≻E u by Case (iii) because we have s1 ≈E s1, . . . , si−1 ≈E si−1 and s ≻E t.

If f ∈ FE , then there is some positive j such that s ∈ Orbitj(f, r) and t ∈ Orbitj(f, u)
and all other Orbitk(f, r) and Orbitk(f, u) are the same w.r.t. ≈mul

E . Since Orbitj(f, r) and
Orbitj(f, u) differ by only s and t, we have Orbitj(f, r) ≻mul

E Orbitj(f, u) by the definition
of ≻mul

E , and thus r ≻E u by Case (iv). ◀

▶ Lemma 16. ≻E is stable under substitutions.

Proof. Let s = f(s1, . . . , sm) ≻E t. If t is a variable, then t ∈ V ars(s) and tσ is a strict
subterm of sσ for all substitutions σ. By the subterm property of ≻E , we have sσ ≻E tσ.
Therefore, we assume that t is not a variable and let t = g(t1, . . . , tn). We show that sσ ≻E tσ

for all substitutions σ by induction on |s|+ |t|.
1. If s ≻E t by Case (i), then si ⪰E t for some i ∈ [m]. By induction hypothesis and the

stability under substitutions of ≈E , we have siσ ⪰E tσ, and thus sσ ≻E tσ by Case (i).
2. If s ≻E t by Case (ii), then f ≻F g and s ≻E ti for all i ∈ [n]. Since top(sσ) = f ≻F g =

top(tσ) and sσ ≻E tiσ for all i ∈ [n] by induction hypothesis, we have sσ ≻E tσ by Case
(ii).

3. If s ≻E t by Case (iii), then f = g ∈Lex, <s1, . . . , sm> ≻lex
E <t1, . . . , tm>, and s ≻E ti

for all i ∈ [m]. Then we have top(sσ) = f = g = top(tσ) ∈ Lex, <s1σ, . . . , smσ> ≻lex
E

<t1σ, . . . , tmσ>, and sσ ≻E tiσ for all i ∈ [m] by induction hypothesis and the stability
under substitutions of ≈E . Thus, sσ ≻E tσ by Case (iii).

4. If s ≻E t by Case (iv), then f = g ∈ FE , and there is some positive j such that
Orbit1(f, s) ≈mul

E Orbit1(g, t), . . . , Orbitj−1(f, s) ≈mul
E Orbitj−1(g, t), Orbitj(f, s) ≻mul

E

Orbitj(g, t), and s ≻E ti for all i ∈ [m]. Then we have top(sσ) = f =
g = top(tσ) ∈ FE and there is some positive j such that Orbit1(f, sσ) ≈mul

E

Orbit1(g, tσ), . . . , Orbitj−1(f, sσ) ≈mul
E Orbitj−1(g, tσ), Orbitj(f, sσ) ≻mul

E Orbitj(g, tσ),
and sσ ≻E tiσ for all i ∈ [m] by induction hypothesis and the stability under substitutions
of ≈E . Thus, sσ ≻E tσ by Case (iv). ◀

▶ Lemma 17. ≻E is E-total on ground terms.

Proof. Let s and t be ground terms such that s = f(s1, . . . , sm) and t = g(t1, . . . , tn). We
show that either s ≻E t or t ≻E s or s ≈E t by induction on |s|+ |t|. In the following, for all
s′ and t′ with |s′|+ |t′| < |s|+ |t|, we have either s′ ≻E t′ or t′ ≻E s′ or s′ ≈E t′ by induction
hypothesis.
1. If si ⪰E t for some i ∈ [m], then s ≻E t by Case (i).
2. Otherwise, if t ≻E si for all i ∈ [m], then we consider the following subcases:
2.1. If ti ⪰E s for some i ∈ [n], then t ≻E s by Case (i).
2.2. Otherwise, if s ≻E ti for all i ∈ [n], then we consider the following subcases:
2.2.1. If f ≻F g, then s ≻E t by Case (ii).
2.2.2. If g ≻F f , then t ≻E s by Case (ii).
2.2.3. If f = g (and hence m = n), then we consider the following subcases:
2.2.3.1. If sk ≈E tk for all k ∈ [m], then s ≈E t.
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2.2.3.2. If f = g ∈ Lex and s1 ≈E t1, . . . , sj−1 ≈E tj−1, and sj ≻E tj (resp. tj ≻E sj) for
some j ∈ [m], then s ≻E t (resp. t ≻E s) by Case (iii).

2.2.3.3. If f = g ∈ FE and Orbit1(f, s) ≈mul
E Orbit1(g, t), . . . , Orbitj−1(f, s) ≈mul

E

Orbitj−1(g, t), and Orbitj(f, s) ≻mul
E Orbitj(g, t) (resp. Orbitj(g, t) ≻mul

E Orbitj(f, s))
for some positive j, then s ≻E t (resp. t ≻E s) by Case (iv).

2.2.3.4. If f = g ∈FE and Orbit1(f, s)≈mul
E Orbit1(g, t), . . . , Orbitk(f, s)≈mul

E Orbitk(g, t),
where k is the number of orbits of <Π[Eq(f)]> on X = {x1, . . . , xm}, then s ≈E t.

Thus, we have either s ≻E t or t ≻E s or s ≈E t for each of the above cases by induction
hypothesis. ◀

Lemmas 11–17 now amount to the following theorem.

▶ Theorem 18. Let E be a finite set of permutation equations. Then ≻E is an E-compatible
simplification ordering on terms and is E-total on ground terms.

Since every simplification ordering on terms (i.e. T (F ,X )) is a reduction ordering [3, 24],
we have the following corollary from Theorem 18. (Recall that F is finite in this paper.)

▶ Corollary 19. Let E be a finite set of permutation equations. Then ≻E is an E-compatible
reduction ordering on terms with the subterm property and is E-total on ground terms.

Given a total precedence ≻F on a finite set of function symbols F and two terms s and
t, one can determine whether s ≻rpo t in time O(n2) (measured in n = |s|+ |t|) using the
dynamic programming approach [30, 31], where ≻rpo is the recursive path ordering with
status. Given a finite set of permutation equations E and two terms s and t, one can also
determine whether s ≈E t in time O(n2) (measured in n = |s| + |t|) using an additional
table that can be constructed in polynomial time [1]. In the following theorem, we assume
that this additional table and the orbits Ok(f, E) for each f ∈ FE are given for a (fixed)
finite set of permutation equations E. Note that Ok(f, E) can be computed only once in
polynomial time [13] for each f ∈ FE . Once we have the orbits Ok(f, E), it is easy to see
that every Orbitk(f, t) can be immediately obtained for any term t headed by f ∈ FE . For
the proof of the following theorem, we use the dynamic programming-like technique found in
Section 5 of [17]. Recall that our ordering ≻E assumes a total precedence ≻F on a finite set
of function symbols F .

▶ Theorem 20. Given a finite set of permutation equations E, we can determine whether
s ≻E t for two terms s and t in time O(n4) (measured in n = |s|+ |t|).

Proof. We construct a 2-dimensional array A of size |s| · |t| using a bottom-up approach.
First, we assume that all subterms of s have already been compared to all subterms of t with
the exception of s and t themselves. We also assume that the results are stored and easily
accessible in A in such a way that if si is a subterm of s at position p and tj is a subterm
of t at position q with p ̸= λ or q ̸= λ, then A[p, q] indicates whether si ≈E tj , si ≻E tj ,
tj ≻E si, or si and tj are incomparable.

Now we show that the time required to compare s and t, denoted by TCOMP (s, t), takes
O(n2) time using the above assumptions. We first test whether s ≈E t in O(n2) time. If
s ̸≈E t, then we proceed by case analysis in Definition 5. The straightforward comparisons
of all si with t for Case (i), and s with all ti for Case (ii) in the worst case using the existing
entries of A takes O(n) time. Similarly, it takes O(n) time to compare s and t for Case (iii)
using the existing entries of A. For Case (iv), since we already have the orbits Ok(f, E), it
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takes at most O(n) time to find every Orbitk(f, s) (and Orbitk(g, t) too). Then all si are
compared to all tj in the worst case using the existing entries of A, which takes O(n2) time.
This shows that TCOMP (s, t) takes O(n2) time.

Finally, it remains to sum up all possible TCOMP (si, tj) in a bottom-up way, where si is
a subterm of s and tj is a subterm of t. Since the number of subterms of s (resp. t) is bounded
above by O(|s|) (resp. O(|t|)), we have

∑
TCOMP (si, tj) = O(|s| · |t| ·TCOMP (s, t)), where

TCOMP (s, t) takes O(n2) time. Thus, s ≻E t can be determined in time O(n4). ◀

4 Completion modulo a set of permutation equations

Knuth-Bendix completion [21] (or simply completion) is a technique using equations as
rewrite rules and is used for solving the word problem for a finite set of equations. It is
often parameterized by a reduction ordering to ensure that the resulting rewrite system
terminates. If the procedure succeeds, then it yields a convergent rewrite system, which
allows one to solve the word problem for a given finite set of equations. If the procedure
encounters an unorientable equation w.r.t. a given reduction ordering, then it fails, i.e., the
procedure cannot be continued.

A permutation equation (e.g. a commutativity equation) often cannot be oriented into
a rewrite rule without losing the termination property, which causes the failure of the
completion procedure. Therefore, it is natural to view permutation equations as structural
axioms [5] (defining a congruence on terms) instead of viewing them as simplifiers (defining
a terminating rewrite relation on terms). In this situation, we need to consider completion
modulo E for a finite set of permutation equations E in order to construct a convergent
(modulo E) rewrite system R, where normal forms w.r.t. R are unique up to the congruence
induced by E. Here we are mainly concerned with the rewrite relation R, E instead of
R/E because R/E tends to be less efficient than R, E [5]. We give an adapted version of
completion modulo E in [5, 6, 20] for a finite set of permutation equations E using R, E in
this section. We first give the necessary definitions used in completion modulo E. In the
following, we denote by FPos(t) the set of non-variable positions of t.

▶ Definition 21 ([5, 20]). Let R be a rewrite system and E be a finite set of equations.
1. A proof for t ≈ t′ is a rewrite proof modulo E for R if for some t1 and t′

1, there is a
proof of the form t

∗−→R,E t1
∗←→E t′

1
∗←−R,E t′.

2. A peak is a proof of the form t1 ←R t →R,E t2 and a cliff is a proof of the form
t1 ↔E t→R,E t2 or t1 →R,E t↔E t2.

3. Given two rules s → t and l → r such that V ars(s) ∩ V ars(l) = ∅ and s|p and l are
E-unifiable at position p of FPos(s) with a minimal complete set of E-unifiers Ψ, the
set {u ≈ v |u = s[r]pσ, v = tσ, σ ∈ Ψ} is called a set of E-critical pairs of the rule l→ r

on s→ t at position p of FPos(s).
4. The set of E-critical pairs between the rules in a rewrite system R is denoted by CPE(R).

The set of E-critical pairs of the rules in R on the equations in E is denoted by CPE(R, E),
where an equation s ≈ t ∈ E is considered as a rule s→ t or t→ s.

If R, E is Church-Rosser modulo E, then every peak or cliff (see Definition 21) can be
replaced by a rewrite proof modulo E, where a proof is a rewrite proof modulo E if and only
if it contains no peak or cliff [5,6]. (Note that non-overlap peaks (resp. cliffs) and variable
overlap peaks (resp. cliffs) can always be replaced by rewrite proofs modulo E (see [5,6]).)
Conversely, if R, E is not Church-Rosser modulo E and R/E is terminating, then there is
some peak or cliff which cannot be replaced by a rewrite proof modulo E [5,6]. In completion
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P ∪ {p ≈ q}; R
ORIENT: if p ≻E q.

P ; R ∪ {p→ q}

P ; R
DEDUCE: if p ≈ q ∈ CPE(R).

P ∪ {p ≈ q}; R

P ∪ {p ≈ q}; R
SIMPLIFY: if p→R,E p′.

P ∪ {p′ ≈ q}; R

P ∪ {p ≈ q}; R
DELETE: if p

∗←→E q.
P ; R

P ; R ∪ {l→ r}
COMPOSE: if r →R,E r′.

P ; R ∪ {l→ r′}

P ; R ∪ {l→ r}
COLLAPSE: if l→g→d,σ

R,E l′ for g → d ∈ R and l→ r >>E g → d.
P ∪ {l′ ≈ r}; R

Above, ≻E is our E-compatible reduction ordering on terms and ⊐E denotes a proper
encompassment ordering modulo E, where E is a finite set of permutation equations.

Figure 1 Completion modulo a finite set of permutation equations E.

modulo E (or extended completion [5,6]), CPE(R) is used to eliminate peaks that are proper
overlaps, while either CPE(R, E) or EXTE(R) in the following definition is used to eliminate
cliffs that are proper overlaps (see [5,20]). We denote by −→E the set {s→ t, t→ s | s ≈ t ∈ E}.

▶ Definition 22 ([5, 16]). Let l→ r ∈ R and u→ v ∈
−→
E with V ars(l) ∩ V ars(u) = ∅, such

that some proper non-variable subterm u|p of u is E-unifiable with l. Then u[l]p → u[r]p is
the extended rule of l→ r w.r.t. E. The set of all extended rules in R w.r.t. E is denoted by
EXTE(R).

Observe that if E is a set of permutation equations, then EXTE(R) is the empty set for
any rewrite system R because every proper subterm u|p of u in Definition 22 is a variable.
Therefore, extended completion in [5,6] can be easily adapted for completion modulo a finite
set of permutation equations E without taking EXTE(R) into account. Note that we do not
need to compute CPE(R, E) either because cliffs that are proper overlaps do not occur with
E, which is also the reason why EXTE(R) is empty.

The proper encompassment ordering modulo E [20] is defined in such a way that l ⊐E g

if there is some substitution σ such that l|p
∗←→E gσ with p ̸= λ, or l ≈E gσ and σ is not a

renaming. In Figure 1, >>E is defined as follows: l→ r >>E g → d if l ⊐E g or l and g are
subsumption equivalent (w.r.t. ≈E) and r ≻E d (see Section 18.3 and 18.4 in [20]).

In the remainder of this section, we denote by P a set of equations, R a set of rewrite
rules, E a finite set of permutation equations, and by ≻E our E-compatible simplification
ordering on terms. Now we write P ; R ⊢ P ′; R′ to indicate that P ′; R′ can be obtained from
P ; R by application of an inference rule in Figure 1. A derivation is a sequence of states
P0; R0 ⊢ P1; R1 ⊢ · · · . Let P0; R0 ⊢ P1; R1 ⊢ · · · be a derivation. Then P∞ denotes the set of
persisting equations

⋃
i

⋂
j≥i Pj . Similarly, R∞ denotes the set of persisting rules

⋃
i

⋂
j≥i Rj .

A derivation is said to be fair [7] if any transition rule that is (continuously) enabled is
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P ∪ {p ≈ q}; R
ORIENT: if p ≻E q.

P ; R ∪ {p→ q}

P ∪ {p ≈ q}; R
SIMPLIFY: if p→R,E p′.

P ∪ {p′ ≈ q}; R

P ∪ {p ≈ q}; R
DELETE: if p

∗←→E q.
P ; R

P ; R ∪ {l→ r}
COMPOSE: if r →R,E r′.

P ; R ∪ {l→ r′}

P ; R ∪ {l→ r}
COLLAPSE: if l→g→d

R,E l′ for g → d ∈ R, and if l
∗←→E g, then r ≻E d.

P ∪ {l′ ≈ r}; R

Above, ≻E is our E-compatible total reduction ordering on ground terms with the
subterm property for a finite set of permutation equations E.

Figure 2 Ground completion modulo a finite set of permutation equations E.

applied eventually. If a derivation P0; R0 ⊢ P1; R1 ⊢ · · · is fair and P∞ = ∅ (i.e. non-failing),
then CPE(R∞) is a subset of

⋃
k Pk [5]. Since a finite permutation theory E has a finite

complete unification algorithm [1], and ≻E is E-compatible with the subterm property, the
following theorem is a direct adaptation of Theorem 18.4 in [20] and Theorem 3.21 in [5].

▶ Theorem 23. Let P0; R0 ⊢ P1; R1 ⊢ · · · be a fair derivation such that P0 is a finite set of
equations with R0 = ∅, and P∞ = ∅. Then R∞, E is convergent modulo E.

5 Ground completion modulo a set of permutation equations

It is known that the word problem of ground theories3 modulo E is decidable by using
ground completion modulo E for E = AC, AC ∪U (unit), AC ∪I (idempotent), AG (abelian
group theory), and undecidable for E = A (associativity), AC ∪ D (distributivity), and
G (group theory) (see [22] for details). We show that our ground completion modulo a
finite set of permutation equations E always admits a finite ground convergent (modulo E)
rewrite system, allowing us to provide a decision procedure for the word problem of ground
theories modulo E. In this section, we denote by P a set of ground equations, R a set of
ground rewrite rules, E a finite set of permutation equations, and by ≻E our E-compatible
simplification ordering on terms that is E-total on ground terms.

Note that the DEDUCE inference rule in Figure 1 is no longer needed for our ground
completion modulo E in Figure 2 because the inference steps by DEDUCE can be replaced by
other simplification inference steps, especially by COLLAPSE in Figure 2. Furthermore, an
encompassment ordering modulo E in Figure 1 is also no longer needed for the COLLAPSE
inference rule in Figure 2 for the ground case. We write P ; R ⊢ P ′; R′ to indicate that P ′; R′

can be obtained from P ; R by application of an inference rule in Figure 2.

3 By a ground theory, we mean an equational theory defined by a finite set of ground equations throughout
this paper.
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▶ Lemma 24. If P ; R ⊢ P ′; R′, then the congruence relations ∗←→E∪P ∪R and ∗←→E∪P ′∪R′ on
T (F) are the same.

Proof. We consider each application of an inference rule τ for P ; R ⊢ P ′; R′. If τ is
ORIENT, SIMPLIFY, DELETE, or COMPOSE, then the conclusion can be easily verified.
If τ is COLLAPSE, then let R = R′′ ∪ {l → r}, P ′ = P ∪ {l′ ≈ r}, and R′ = R′′. Since
(P∪R)−(P ′∪R′) = {l→ r}, we need to show that l

∗←→E∪P ′∪R′ r. As l
∗←→E l̂→g→d

R′ l′ ↔P ′ r

for some g → d ∈ R′′, we have l
∗←→E∪P ′∪R′ r. Conversely, since (P ′∪R′)−(P ∪R) = {l′ ≈ r},

we also need to show that l′ ∗←→E∪P ∪R r. As l′ ←g→d
R l̂

∗←→E l →R r for some g → d ∈ R′′,
we have l′ ∗←→E∪P ∪R r. Thus, the conclusion follows. ◀

▶ Definition 25. Let s = s[uσ] ↔ s[vσ] = t be a proof step with the equation (or rule)
u ≈ v ∈ E ∪ P ∪R. The complexity of this proof step is defined as follows:

(i) ({s},⊥, t) if u ≈ v ∈ E

(ii) ({s, t},⊥,⊥) if u ≈ v ∈ P

(iii) ({s}, u, t) if u→ v ∈ R

(iv) ({t}, v, s) if v → u ∈ R

Complexities of proof steps are lexicographically compared by ≻mul
E in the first component,

and ≻E in the second and the third component, where ⊥ is a new constant symbol and
is assumed to be minimal (w.r.t. ≻E). The complexity of a proof is the multiset of the
complexities of its proof steps [5, 7]. The ordering on proofs, denoted by ≻C , is the multiset
extension of the ordering on the complexities of proof steps. Since the multiset/lexicographic
extension of a well-founded ordering is still well-founded and ≻E is well-founded, we may
infer that ≻C is well-founded. By a ground proof in E ∪ P ∪ R of an equation s ≈ t with
s, t ∈ T (F), we mean a sequence of proof steps such that t0 = s, tn = t and for all ti ∈ T (F),
0 < i ≤ n, one of ti−1 ↔E ti, ti−1 ↔P ti, ti−1 →R ti, ti−1 ←R ti holds.

▶ Lemma 26. If P ; R ⊢ P ′; R′, then for any ground proof ρ in E ∪ P ∪ R of an equation
s ≈ t, there is a ground proof ρ′ in E ∪ P ′ ∪R′ of the equation s ≈ t such that ρ ⪰C ρ′.

Proof. We show that each equation in (P ∪R)− (P ′ ∪R′) has a smaller proof (w.r.t. ≻C) in
E ∪ P ′ ∪R′ by considering each case for P ; R ⊢ P ′; R′.

(i) ORIENT: The proof p ↔P q is transformed to the proof p →R′ q. Since
{({p, q},⊥,⊥)} ≻C {({p}, p, q)}, the newer proof p →R′ q is smaller (w.r.t. ≻C) than
the proof p↔P q.

(ii) SIMPLIFY: The proof p↔P q is transformed to the proof p
∗←→E p̂→R′ p′ ↔P ′ q. The

newer proof is smaller (w.r.t. ≻C) because p↔P q with the complexity {({p, q},⊥,⊥)}
is bigger (w.r.t. ≻C) than all proof steps in p

∗←→E p̂, p̂→R′ p′ and p′ ↔P ′ q in the first
component.

(iii) DELETE: The proof p↔P q is transformed to the proof p
∗←→E q. The proof p↔P q

with the complexity {({p, q},⊥,⊥)} is bigger (w.r.t. ≻C) than all proof steps in p
∗←→E q

in the first component.
(iv) COMPOSE: The proof l→R r is transformed to the proof l→R′ r′ ←R′ r̂

∗←→E r. The
newer proof is smaller (w.r.t. ≻C) because l →R r with the complexity {({l}, l, r)} is
bigger (w.r.t. ≻C) than (a) the proof step in l→R′ r′ in the third component, (b) the
proof step r′ ←R′ r̂ in the first component, and (c) all proof steps in r̂

∗←→E r in the
first component.

(v) COLLAPSE: The proof l →R r is transformed to the proof l
∗←→E l̂ →g→d

R′ l′ ↔P ′ r

for some g → d ∈ R′. The newer proof is smaller (w.r.t. ≻C) because l→R r with the
complexity {({l}, l, r)} is bigger (w.r.t. ≻C) than (a) all proof steps in l

∗←→E l̂ in the
second component, (b) the proof step l̂→g→d

R′ l′ in the second (resp. third) component
if l ̸ ∗←→E g (resp. l

∗←→E g), and (c) the proof step l′ ↔P ′ r in the first component. ◀
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Note that if P0; R0 ⊢ P1; R1 ⊢ · · · is a fair derivation, then P∞ = ∅ (i.e. non-failing)
because ≻E is E-total on ground terms.

▶ Theorem 27. Let P0; R0 ⊢ P1; R1 ⊢ · · · be a fair derivation such that P0 is a finite set of
ground equations with R0 = ∅. Then the set of persisting rules R∞ is finite and R∞, E is
ground convergent modulo E.

Proof. Suppose that P0; R0 ⊢ P1; R1 ⊢ · · · is a fair derivation such that P0 is a finite set
of ground equations with R0 = ∅. We first define a simple measure of a state Pk; Rk as
the multiset {{{s, t}} | s ≈ t ∈ Pk} ∪ {{{s}, {t}} | s → t ∈ Rk} (cf. [7]). Two states are
compared by these measures using the threefold multiset extension of ≻E . It is easy to see
that any application of an inference rule for a transition Pk; Rk ⊢ Pk+1; Rk+1 reduces this
measure. Since the multiset extension of a well-founded ordering is still well-founded and ≻E

is well-founded, we may infer that any fair derivation starting from P0; R0 is finite. Therefore,
R∞ is finite with P∞ = ∅. Since l ≻E r for all rules l→ r ∈ R∞, R∞/E is also terminating.

Now it remains to show that R∞, E is ground Church-Rosser modulo E. We show that
all minimal (w.r.t. ≻C) proofs in E ∪R∞ are rewrite proofs modulo E.

Suppose that a proof is a minimal proof but not a rewrite proof modulo E. Then it
should contain either a peak (or a cliff) that is a proper overlap (cf. [5]). (Note that every
peak or cliff that is a non-overlap or a variable overlap can be replaced by a rewrite proof
modulo E (see pp. 47–50 in [5]), which is smaller (w.r.t. ≻C) than the original peak or cliff,
so this is not the case.)

Now consider such a peak t1 ←R∞ t→R∞,E t2 that is a proper overlap. (Since EXTE(R)
is empty, we do not need to consider a cliff that is a proper overlap.) By the Extended
Critical Pair Lemma [6, 16], it can be replaced by a proof t1

∗←→E t′ ↔CPE(R∞) t′′ ∗←→E t2.
Since CPE(R∞) ⊆

⋃
k Pk by fairness of the derivation, there is a ground proof t1

∗←→E t′ ↔Pk

t′′ ∗←→E t2 for some k. We name this proof as ρ. We see that the ground proof ρ in E ∪ Pk is
strictly smaller (w.r.t. ≻C) than the original peak t1 ←R∞ t→R∞,E t2. Since P∞ = ∅, there
is a ground proof ρ′ in E ∪R∞ such that ρ ⪰C ρ′ by Lemma 26. Now we may infer that ρ′ is
strictly smaller (w.r.t. ≻C) than the original peak t1 ←R∞ t→R∞,E t2, which is the required
contradiction. ◀

By Theorem 27, the rewrite system R∞ constructed from a fair derivation P0; R0 ⊢
P1; R1 ⊢ · · · may serve as a decision procedure for the word problem of ground theories P0
modulo E.

▶ Corollary 28. Given a finite set of permutation equations E, the word problem of ground
theories modulo E is decidable.

The following example is a variant of the reachability problem [32] modulo a finite set of
permutation equations E.

▶ Example 29. Consider the following set of permutation equations:
E = {f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) ≈ f(x2, x1, x3, x4, x5, x6, x7, x8, x9, x10),

f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) ≈ f(x2, x3, x4, x5, x1, x6, x7, x8, x9, x10),
f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) ≈ f(x1, x2, x3, x4, x5, x7, x6, x8, x9, x10),
f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) ≈ f(x1, x2, x3, x4, x5, x7, x8, x9, x10, x6)}.

In this example, we may view each variable xi as a vertex in a graph with ten
vertices, where each vertex will be assigned to one of three colors: blue (b), red
(r), and white (w). Therefore, each ground term f(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10)
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with ci = b, r, or w represents a certain coloring of this graph. There is a trans-
ition function with a function symbol g ̸∈ FE , which transforms one coloring to
another coloring of the graph. We assign the precedence as g ≻F f ≻F b ≻F
r ≻F w. We see that

∏
[E] = {(1 2), (1 2 3 4 5), (6 7), (6 7 8 9 10)}, which means that

f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) ≈E f(xρ(1), xρ(2), xρ(3), xρ(4), xρ(5), x6, x7, x8, x9, x10)
for any permutation ρ on the set {1, 2, 3, 4, 5} and f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) ≈E

f(x1, x2, x3, x4, x5, xπ(6), xπ(7), xπ(8), xπ(9), xπ(10)) for any permutation π on the set {6, 7, 8, 9,

10} (see Thereom 2). Therefore, ten vertices are partitioned into two equivalence classes.
We may view them as two components, i.e. {x1, x2, x3, x4, x5} and {x6, x7, x8, x9, x10},
where the order of a coloring does not matter in each component. For example,
f(r, r, b, b, b, w, w, b, b, b) ≈E f(b, b, r, b, r, w, b, b, b, w). We start with the following set of
ground equations:4

1. g(f(b, b, b, b, b, b, b, b, b, b)) ≈ f(r, b, b, b, b, b, b, b, b, b)
2. g(f(b, b, r, b, b, b, b, b, b, b)) ≈ f(r, b, b, b, b, r, b, b, b, b)
3. f(r, b, b, b, b, b, b, b, b, b) ≈ f(w, b, b, b, b, b, b, b, b, b)
4. f(r, b, b, b, b, r, b, b, b, b) ≈ f(w, b, b, b, b, w, b, b, b, b)
5. g(f(w, b, b, b, b, w, b, b, b, b)) ≈ f(w, w, b, b, b, w, w, b, b, b)
6. f(w, w, b, b, b, w, w, b, b, b) ≈ f(r, r, b, b, b, r, r, b, b, b))
7. g(f(r, b, b, b, r, r, b, b, b, r)) ≈ f(r, r, r, r, r, r, r, r, r, r)

The problem is to determine if there is some i such that gi(f(b, b, b, b, b, b, b, b, b, b)) =
f(r, r, r, r, r, r, r, r, r, r), where f(b, b, b, b, b, b, b, b, b, b) is the initial state and f(r, r, r, r, r, r, r,

r, r, r) is the target state. (Here gi(t) denotes that the function symbol g is applied to term
gi−1(t) with g0(t) denoting t.) Now ground completion modulo E works (roughly) as follows:

1(a). g(f(b, b, b, b, b, b, b, b, b, b))→ f(r, b, b, b, b, b, b, b, b, b) ORIENT 1
2(a). g(f(b, b, r, b, b, b, b, b, b, b))→ f(r, b, b, b, b, r, b, b, b, b) ORIENT 2
3(a). f(r, b, b, b, b, b, b, b, b, b)→ f(w, b, b, b, b, b, b, b, b, b) ORIENT 3
1(b). g(f(b, b, b, b, b, b, b, b, b, b))→ f(w, b, b, b, b, b, b, b, b, b) COMPOSE 1(a), 3(a)
2(b). g(f(w, b, b, b, b, b, b, b, b, b)) ≈ f(r, b, b, b, b, r, b, b, b, b) COLLAPSE 2(a), 3(a)
2(c). g(f(w, b, b, b, b, b, b, b, b, b))→ f(r, b, b, b, b, r, b, b, b, b) ORIENT 2(b)
4(a). f(r, b, b, b, b, r, b, b, b, b)→ f(w, b, b, b, b, w, b, b, b, b) ORIENT 4
2(d). g(f(w, b, b, b, b, b, b, b, b, b))→ f(w, b, b, b, b, w, b, b, b, b) COMPOSE 2(c), 4(a)
5(a). g(f(w, b, b, b, b, w, b, b, b, b))→ f(w, w, b, b, b, w, w, b, b, b) ORIENT 5
6(a). f(r, r, b, b, b, r, r, b, b, b))→ f(w, w, b, b, b, w, w, b, b, b) ORIENT 6
7(a). g(f(w, w, b, b, b, w, w, b, b, b)) ≈ f(r, r, r, r, r, r, r, r, r, r) SIMPLIFY 6(a), 7
7(b). g(f(w, w, b, b, b, w, w, b, b, b))→ f(r, r, r, r, r, r, r, r, r, r) ORIENT 7(a)

We eventually obtain the ground convergent (modulo E) rewrite system R∞ (with
P∞ = ∅), which consists of the rewrite rules 1(b), 2(d), 3(a), 4(a), 5(a), 6(a), and 7(b). (It
is easy to see that the remaining rules 1(a), 2(a) and 2(c), and the remaining equations
2(b) and 7(a) are not persistent.) Now we see that g4(f(b, b, b, b, b, b, b, b, b, b)) →R∞,E

g3(f(w, b, b, b, b, b, b, b, b, b))→R∞,E g2(f(w, b, b, b, b, w, b, b, b, b))→R∞,E g(f(w, w, b, b, b, w,

w, b, b, b))→R∞,E f(r, r, r, r, r, r, r, r, r, r). Therefore, we may interpret that f(r, r, r, r, r, r, r,

4 We may consider the additional state transitions using a transformation function with symbol g, or
partition vertices in a different way with a different number of vertices using a different set of permutation
equations.
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r, r, r) is reachable from f(b, b, b, b, b, b, b, b, b, b) by means of iterative applications of the state
transition function with symbol g. Note that if g(f(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10)) is a
normal form w.r.t. R∞, E, then we may also interpret that f(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10)
is a fixed state (or a stable state) and cannot be further transformed to another state by an
application of the state transition function with symbol g.

6 Conclusion

We have presented an RPO-based E-compatible simplification ordering ≻E on terms that is
E-total on ground terms for a finite set of permutation equations E. Since permutation groups
naturally arise in sets of permutation equations, we have used permutation group theory for
≻E , especially permutation group actions and their associated orbits. Our ordering is simple
and can be adapted from the standard RPO widely used for rewrite systems and theorem
proving. Also, the computation of orbits in permutation groups can be done efficiently using
the existing permutation group algorithms [29] and software tools (e.g. GAP [12]). We have
shown that given two terms s and t, we can determine whether s ≻E t in polynomial time.

Our ordering ≻E provides a simple termination criterion for R, E (resp. R/E), that is,
R, E (resp. R/E) is terminating if l ≻E r for all rules l → r ∈ R. We have used ≻E for a
completion and ground completion procedure for R, E. Furthermore, our ground completion
modulo E always terminates with a finite ground convergent (modulo E) rewrite system,
which allows us to provide a decision procedure for the word problem of ground theories
modulo E. (It is also an interesting question whether other ground completion approaches
and formalisms (e.g. the abstract completion of [14]) can be extended for ground completion
modulo E for a finite set of permutation equations E using ≻E .)

Since permutations and combinations are widely used in mathematics and many fields of
science including computer science, developing applications of term rewriting and equational
theorem proving [19] with built-in permutation equations is one of the promising future
directions of the research discussed in this paper. For example, one may consider reachability
problems modulo E and its applications to hardware and software verification using our
ordering and rewriting modulo E approach for a finite set of permutation equations E.
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