Tuple Interpretations for Higher-Order Complexity

Cynthia Kop 24
Department of Software Science, Radboud University Nijmegen, The Netherlands

Deivid Vale 2 &
Department of Software Science, Radboud University Nijmegen, The Netherlands

—— Abstract

We develop a class of algebraic interpretations for many-sorted and higher-order term rewriting
systems that takes type information into account. Specifically, base-type terms are mapped to
tuples of natural numbers and higher-order terms to functions between those tuples. Tuples may
carry information relevant to the type; for instance, a term of type nat may be associated to a
pair (cost, size) representing its evaluation cost and size. This class of interpretations results in a
more fine-grained notion of complexity than runtime or derivational complexity, which makes it
particularly useful to obtain complexity bounds for higher-order rewriting systems.

We show that rewriting systems compatible with tuple interpretations admit finite bounds on
derivation height. Furthermore, we demonstrate how to mechanically construct tuple interpretations
and how to orient 8 and 7 reductions within our technique. Finally, we relate our method to runtime
complexity and prove that specific interpretation shapes imply certain runtime complexity bounds.

2012 ACM Subject Classification Theory of computation — Equational logic and rewriting

Keywords and phrases Complexity, higher-order term rewriting, many-sorted term rewriting, poly-
nomial interpretations, weakly monotonic algebras

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.31

Related Version An extended appendix with full proofs and additional examples is available at [32].
Extended Version: https://arxiv.org/abs/2105.01112

Funding The authors are supported by the NWO TOP project “ICHOR”, NWO 612.001.803/7571
and the NWO VIDI project “CHORPE”, NWO VI.Vidi.193.075.

1 Introduction

Term rewriting systems (TRSs) are a conceptually simple but powerful computational model.
It is simple because computation is modelled straightforwardly by step-by-step applications
of transformation rules. It is powerful in the sense that any algorithm can be expressed in
it (Turing Completeness). These characteristics make TRSs a formalism well-suited as an
abstract analysis language, for instance to study properties of functional programs. We can
then define specific analysis techniques for each property of interest.

One such property is complexity. The study of complexity has long been a topic of
interest in term rewriting [11, 27, 25, 7, 24, 35], as it both holds relations to computational
complexity [3, 11, 12] and resource analysis [6, 13] and is highly challenging. Most commonly
studied are the notions of runtime and derivational complexity, which capture the number of
steps that may be taken when starting with terms of a given size and shape. In essence, this
is a form of resource analysis which abstracts away from the true machine cost of reduction
in a rewriting engine but still has a close relation to it [8, 18, 1, 12].

These notions do not obviously extend to the higher-order setting, however. In higher-
order term rewriting, a term may represent a function; yet, the size of a function does not
tell us much about its behaviour. Rather, properties such as “the function is size-increasing”
may be more relevant. Clearly a more sophisticated complexity notion is needed.

? Cynthia Kop and Deivid Vale;)
37 icensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 31; pp. 31:1-31:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:c.kop@cs.ru.nl
https://www.cs.ru.nl/~cynthiakop
https://orcid.org/0000-0002-6337-2544
mailto:deividvale@cs.ru.nl
https://www.cs.ru.nl/~deividvale
https://orcid.org/0000-0003-1350-3478
https://doi.org/10.4230/LIPIcs.FSCD.2021.31
https://arxiv.org/abs/2105.01112
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2

Tuple Interpretations for Higher-Order Complexity

In this paper we will propose a new method to analyse many-sorted and higher-order
term rewriting systems, which can be used as a foundation to obtain a variety of complexity
results. This method is based on interpretations in a monotonic algebra as also used for
termination analysis [39, 22|, where a term of function type is mapped to a monotonic
function. Unlike [39, 22], we map a term of base type not to an integer, but rather to a vector
of integers describing different values of interest in the term. This will allow us to reason
separately about — for instance — the length of a list and the size of its greatest element, and
to describe the behaviour of a term of function type in a fine-grained way.

This method is also relevant for termination analysis, since we essentially generalise and
extend matriz interpretations [35] to higher-order rewriting. In addition, the technique may
add some power to the arsenal of a complexity or termination analysis tool for first-order term
rewriting; in particular many-sorted term rewriting due to the way we use type information.

A note on terminology. We use the word “complexity” as it is commonly used in term
rewriting: a worst-case measure of the number of steps in a reduction. In this paper we do
not address the question of true resource use or connections to computational complexity. In
particular, we do not address the true cost of beta-reduction. This is left to future work.

Outline of the paper. We will start by recalling the definition of and fixing notation for
many-sorted and higher-order term rewriting (§2). Then, we will define tuple interpretations
for many-sorted first-order rewriting to explore the idea (§3), discuss our primary objective
of higher-order tuple interpretations (§4), and relate our method to runtime complexity (§5).
Finally, we will discuss related work (§6) and end with conclusions and future work (§7).

2 Preliminaries

We assume the reader is familiar with first-order term rewriting and A-calculus. In this
section, we fix notation and discuss the higher-order rewriting format used in the paper.

2.1 First-Order Many-Sorted Rewriting

Many-sorted term rewriting [38] is in principle the same as first-order term rewriting. The
only difference is that we impose a sort system and limit interest to well-sorted terms.

Formally, we assume given a non-empty set of sorts S. A many-sorted signature consists
of a set F of function symbols together with two functions that map each symbol to a
finite sequence of input sorts and an output sort. Fixing a many-sorted signature, we will
denote f :: [t; X -+ X 1] = k if f € F and f has input sorts ¢q, ..., and output sort s.
We also assume given a set X' = |, A, of variables disjoint from F, such that all X, are
pairwise disjoint. The set Ty, (F, X) of many-sorted terms is inductively defined as the set
of expressions s such that s :: k can be derived for some sort x using the clauses:

rukifre X, f(s1,...,8K) ik if f ey X -+ X 1] = k and each s; i1 ¢;

If s :: k, we call k the sort of s. Substitutions, rewrite rules and reduction are defined as usual
in first-order term rewriting, except that substitutions are sort-preserving (each variable is
mapped to a term of the same sort) and both sides of a rule have the same sort. We omit
these definitions, since they are a special case of the higher-order definitions in Section 2.2.

» Example 1. We fix nat and list for the sorts of natural numbers and lists of natural
numbers, respectively; and a signature with the symbols: 0 :: nat (this is shorthand notation
for [] = nat), s :: [nat] = nat, nil :: list, cons :: [nat x list] = list, rev :: [list] = list,

C. Kop and D. Vale

sum :: [list] = nat, append :: [list x list] = list, and @:: [nat X nat] = nat. The rules below
compute well-known functions over lists and numbers. We follow the convention of using

infix notation for cons and @, i.e., cons(z, zs) is written x : xs and @ (z,y) is written x & y.

r®0—z sum(nil) —
x®s(y) = s(zDy) sum(z : zs) %sum(xs) Dz
append(nil, xs) — xs rev(nil) — nil
append(z : xs,ys) — x : append(zs,ys) rev(z : xs) — append(rev(zs), z : nil)

2.2 Higher-Order Rewriting

For higher-order rewriting, we will use algebraic functional systems (AFS), a slightly simplified
form of a higher-order language introduced by Jouannaud and Okada [29]. This choice gives
an easy presentation, as it combines algebraic definitions in a first-order style with a function
mechanism using A-abstractions and term applications.

Given a non-empty set of sorts S, the set ST of simple types (or just types) is given
by: (a) S C ST; (b) if 0,7 € ST then 0 = 7 € ST. Types are denoted by 0,7 and sorts
by ¢, k. A higher-order signature consists of a set F of function symbols together with two
functions that map each symbol to a finite sequence of input types and an output type; fixing
a signature, we denote this type information f :: [o7 X - -+ X 0] = 7. A function symbol is

said to be higher-order if at least one of its input types or its output type is an arrow type.

We also assume given a set X' = |J, g7 Xo of variables disjoint from F (and pairwise
disjoint) so that each X, is countably infinite. The set T(F,X) of terms is inductively
defined as the set of expressions whose type can be derived using the following clauses:

xuo ifxe X, (M.s)no=71 ifreX,andsuT
(st)=7 ifsc:o=7and o f(s1,...,80) 7 iffuforx - Xop] =7
and each s; :: 0;

If s :: 0, we say that o is the type of s. It is easy to see that each term has a unique type.
As in the A-calculus, a variable x is bound in a term if it occurs in the scope of an abstractor
Az.; it is free otherwise. A term is called closed if it has no free variables and ground if it
also has no bound variables. Term equality is modulo a-conversion and bound variables are
renamed if necessary. Application is left-associative and has precedence over abstractions;
for example, Az.stu reads Az.((st)u). A substitution is a finite, type-preserving mapping
v: X = T(F,X), typically denoted [z1 := s1,...,2y := t,]. Its domain {z1,...,2,} is
denoted dom(y). A substitution v is applied to a term s, notation sy, by renaming all bound
variables in s to fresh variables and then replacing each = € dom(v) by 7(z). Formally:

zy = v(x) ifz € dom(y) (st)y = (s7) ()
Ty = x if x ¢ dom(7) f(s1y..ys6)y = f(s17,.-.,8k7)
Ax.s)y = My.(s([x :==yly)) fory fresh

Here, [z := y]y is the substitution that maps x to y and all variables in dom(y) other than x
to y(z). The result of sv is unique modulo a-renaming.

A rewriting rule is a pair of terms £ — r of the same type such that all free variables of r
also occur in ¢. Given a set of rewriting rules R, the rewrite relation induced by R on the
set T'(F, X) is the smallest monotonic relation that is stable under substitution and contains
both all elements of R and fS-reduction. That is, it is inductively generated by:

31:3

FSCD 2021

31:4

Tuple Interpretations for Higher-Order Complexity

(Az.s)t —r slx:=t] Ar.s —gr vt ifs—ogt
by —gr T if¢ »reR su —r tu ifs—pt
f...;8,...) —=r f(...,t,...) ifs—ogt us —r ut ifs—ogt

Note that we do not, by default, include the common n-reduction rule scheme (“Az.s z =g s
if 2 is not a free variable in s”). We avoid this because not all sources consider it, and it is
easy to add by including, for all types o, 7, a rule Ax.F' x — F with F' € X,_., in R.

An algebraic functional system (AFS) is the combination of a set of terms T'(F, X) and a
rewrite relation —x over T(F,X). An AFS is typically given by supplying F and R.

A many-sorted term rewriting system (TRS), as discussed in Section 2.1, is a pair
(Tyo(F,X),—r) where F is a many-sorted signature and —g a rewrite relation over
To(F,X). That is, it is essentially an AFS where we only consider first-order terms.

» Example 2. Following common examples in higher-order rewriting, we will use (as a
running example) the AFS (F,R);,,4, with symbols nil :: list, cons :: [nat x list] = list,
map :: [(nat = nat) x list] = list, foldl :: [(nat = nat = nat) x nat x list] = nat, and rules:

foldI(F, z, nil) — 2 map(F, nil) — nil
foldl(F, z,z : xs) — foldI(F, (F z), xs) map(F,z : zs) = (Fz) : map(F,xs)

2.3 Functions and orderings

An extended well-founded set is a tuple (A, >, >) such that > is a well-founded ordering on
A; > is a quasi-ordering on A; x > y implies z > y; and = > y > z implies > z. Hence, it
is permitted, but not required, that > is the reflexive closure of >.

For sets A, B, the notation A = B denotes the set of functions from A to B. Function
equality is extensional: for f,g € A = B we say f = g iff f(z) = g(z) for all z € A.

If (A,>,>) and (B, >,) are extended well-founded sets, we say that f € A = B is
weakly monotonic if x > y implies f(x) = f(y). In addition, if (A1, >1,>1),..., (An, >n, >n)
are all well-founded sets, we say that f € Ay x---x A,, = B is weakly monotonic if we have
flz1, ... 2n) = f(y1,...,yn) whenever z; >; y; for all 1 < i < n. We say that f is strict in
argument j if z; >; y; (and also x; >; y; for all i) implies f(x1,...,2n) = f(Y1,-- -, Yn)-

We say that f € Ay x--- x A,, = B is strongly monotonic if f is weakly monotonic and
strict in all its arguments (and similar for f € A = B).

3 First-Order tuple interpretation

In this section, we will introduce the concept of tuple interpretations for many-sorted term
rewriting. This is the core methodology which the higher-order theory is built on top of.
This theory also has value by itself as a first-order termination and complexity technique.

It is common in the rewriting literature to use termination proofs to assess the difficulty of
rewriting a term to normal form [7, 27]. The intuition comes from the idea that by ordering
rewriting rules in descending order we gauge the order of magnitude of reduction. The same
principle applies for syntactic [24, 25, 34] and semantic [27, 26, 35] termination proofs.

On the semantic side there is a natural strategy: given an extended well-founded set
A = (A,>,>) find an interpretation from terms to elements of A so that [s] > [t] whenever
s =g t. (This can typically be done by showing that [¢] > [r] for all rules £ — r). This

C. Kop and D. Vale

interpretation holds information about the complexity of (F,R) since the maximum length
of a reduction starting in a term s is bounded by number of > steps that may be done
starting in [s]. If [s] is a natural number, this gives a bound immediately.

In the setting of many-sorted term rewriting, we may formally define this as follows.

» Definition 3. Let S be a set of sorts and F an S-signature. A many-sorted monotonic
algebra A consists of a family of extended well-founded sets (A,,>,,>,).cs together with an
interpretation J which associates to each f :: {11 X -+ X 1x] = K in F a strongly monotonic
function Jr € A,, X --- x A,, = Ax. Let a be a function that maps variables of sort v to
elements of A,. We extend J to a function [-]o that maps terms of sort ¢ to elements of A,,
by letting [x]o = a(x) if x is a variable of sort ¢, and [f(s1,...,86)]a = Tr([$1]as- - - [Sk]a)-
We say that a TRS (F,R) is compatible with A if [{]o > [r]a for all a and all £ —r € R.

We will generally omit the subscript a when it is clear from context, writing [s] instead

of [s]«. In examples, we may write something like [s] = 2 4+ y to mean [s], = a(z) + a(y).

» Theorem 4. If (F,R) is compatible with A then for all a: [s]a > [t]o whenever s —x t.

Proof Sketch. By induction on the size of s using strong monotonicity of each Jt. |
A common notion in the literature on complexity of term rewriting is derivation height:
dhg (t) ;= max{n € N| 3s.t =" s}.

Intuitively, dhg (¢) describes the worst-case number of steps for all possible reductions starting
in ¢. If (F,R) is terminating, then dhg(-) is a total function. If (4,,>,) = (N,>) then we
easily see that dhg (t) < [¢] for any term ¢ : . Hence, [-] can be used to bound the derivation
height function. However, this may give a severe overestimation, as demonstrated below.

» Example 5. Let (F,R),, be the TRS with only a rule a(b(z)) — b(a(z)) and signature
a, b : [string] = string and ¢ : string. We can prove termination by the following interpretation:

[a(z)] =2z [b(z)] =x+1 [e] =0

Indeed, we have [¢] > [r] for the only rule as [a(b(z))] =2*xz+2>2xx+ 1 = [b(a(z))].
Now consider a term t = a”(b"™(€)). Then dhg () = n*m whereas [t] = 2"m; an exponential
difference! Such an overestimation is problematic if we want to use [-] to bound dhg(-).

We could find a tight bound for the system of Example 5 by a reasoning like the following:
for every term s, let #bs(s) be the number of b occurrences in s. For a term ¢, let cost(t)
denote Y {{#bs(s) | a(s) is a subterm of ¢}}. Then, the cost of a term decreases exactly by 1
in each step. As the normal form has cost 0, we find the tight bound cost(a™(b™(€))) = nxm.

This reasoning relies on tracking more than one value. We can formalise this reasoning
using an algebra interpretation (and will do so in Example 8), by choosing the right .4:

» Definition 6. A tuple algebra is an algebra A = (A, J) with A = (A,,>,,>,).es such

that each A, has the form NXU (for an integer K[1] > 1) and we let (ny,...,ngy) >,
(nh, ... npy) if each mg 2 nj, and (ny, ... ngp)) >0 (0, nleq) if additionally ny > .

Intuitively, the first component always indicates “cost”: the number of steps needed to
reduce a term to normal form. This is the component that needs to decrease in each rewrite
step to have [s] > [t] whenever s —x ¢. The remaining components represent some value of
interest for the sort. This could for example be the size of the term (or its normal form), the
length of a list, or following Example 5, the number of occurrences of a specific symbol. For
these components, we only require that they do not increase in a reduction step.

By the definition of >,, and using Theorem 4, we can conclude:

31:5

FSCD 2021

31:6

Tuple Interpretations for Higher-Order Complexity

» Corollary 7. If a TRS (F,R) is compatible with a tuple algebra then it is terminating and
dhg (t) < [t]1, for all terms t. (Here, [t]1 indicates the first component of the tuple [t].)

Using this, we obtain a tight bound on the derivation height of a”(b™(¢)) in Example 5:
» Example 8. The TRS (F,R),, is compatible with the tuple algebra with Asting = N2 and

[a(2)] = (x1 + 22, 22) [b(z)] = (z1,22 +1) [e] = (0,0)

Here, again, subscripts indicate tuple indexing; i.e., (n,m); = n and (n, m)s = m. Note that
for every ground term s we have [s]a = #bs(s). The first component exactly sums #bs(t) for
every subterm ¢ of s which has the form a(t’). We have: [a(b(z))] = (x1 + 22+ 1,22 +1) >nat
(x1 + z2,22 + 1) = [b(a(z))]. The interpretation functions J, and J, are indeed monotonic.
For example, for J,: if >0t y then z1 + 29 > y1 + y2 (since z1 > y; and x2 > ys) and
xg > yo; and if & >, y then x1+29 > y1+y2 and x9 > yo. We have [a™(b™(¢))] = (n*xm, m).

To build strongly monotonic functions we can for instance use the following observation:

» Lemma 9. A function F : NK[1] x ... x NKll — N8 45 strongly monotonic if we can

write F(z', ... a%) = (al 4+ +af + S1(zt, ... ab), Sa(at,.. . a%), ..., Skp(at, ... 2")),
where each S; is a weakly monotonic function in NXI1l 5 ... NKI] — N,
Moreover, a function S : N[l x ... x NKlw] — N s weakly monotonic if it is built

from constants in N, variable components x7 and weakly monotonic functions in N = N.

For the “weakly monotonic functions in N = N” we could for instance use +, * or max.

To determine the length K[¢] of the tuple for a sort ¢, we use a semantic approach, similar
to one used in [19] in the context of functional languages: the elements of the tuple are
values of interest for the sort. The two prominent examples in this paper are the sort nat
of natural numbers — which is constructed from the symbols 0 :: nat and s :: [nat] = nat
— and the sort list of lists of natural numbers — which is constructed using nil :: list and
cons :: [nat x list] = list. For natural numbers, we consider their size, so the number of ss.
For lists, we consider both their length and an upper bound on the size of their elements.
This gives K[nat] = 2 (cost of reducing the term, size of its normal form) and K|list] = 3
(cost of reducing, length of normal form, maximum element size). In the remainder of this
paper, we will use z. as syntactic sugar for x; (the cost component of x), x5 and x| as x9
and z,, as x3.

» Example 10. Consider the TRS defined in Example 1. We start by giving an interpretation
for the type constructors: the symbols 0, nil;s and cons which are used to construct natural
numbers and lists. To be in line with the semantics for the type interpretation, we let:

[0] = {0,0) [s(2)] = (e, 25 + 1)
[nil] = (0,0,0) [: 28] = (xc + TSc, x8 + 1, max(zs, Sm))

This expresses that 0 has no evaluation cost and size 0; analogously, nil has no evaluation
cost and 0 as length and maximum element. The cost of evaluating a term s(t) depends
entirely on the cost of the term’s argument ¢; the size component counts the number of ss.
The cost component for cons similarly sums the costs of its arguments, while the length is
increased by 1, and the maximum element is the maximum between its head and tail.

For the remaining symbols we choose the following interpretations:

[[xEBy]] = <xc+yc+ys+]—7$s+ys>
[sum(as)] = (xsc+ 2% xs + 8 * Sm + 1,28 * TSy)
[rev(zs)] = (wsc+xs + w + 1,28, 8m)
[append(ws, ys)] = (wsc+ysc+as + 1,28 + ysi, max(zsm, Ysm))

C. Kop and D. Vale

Checking compatibility is easily done for the interpretation above, and strong monotonicity
follows by Lemma 9 (as n — % € N = N is weakly monotonic). We see that the cost
of evaluating append is linear in the first list length and independent of the size of the list
elements, while evaluating sum gives a quadratic dependency on length and size combined.

Our tuple interpretations have some similarities with matrix interpretations [21], where
also each term is associated to an n-tuple. In essence, matrix interpretations are tuple
interpretations, for systems with only one sort. However, the shape of the interpretation
functions Jf in matrix interpretations is limited to functions following Lemma 9 where each
S is a linear multivariate polynomial. Hence, our interpretations are a strict generalisation,
which also admits interpretations such as those used for sum, rev and append in Example 10.

For the purpose of termination, tuple interpretations strictly extend the power of both
polynomial interpretations and matrix interpretations already in the first-order case.

» Example 11. A TRS that implements division in [4] shows a limitation of polynomial
interpretations: it contains a rule quot(s(z),s(y)) — s(quot(minus(z,y),s(y))) which cannot
be oriented by any polynomial interpretation, because [minus(z,s(x))] > [s(x)] for any
strongly monotonic polynomial Jminus. Due to the duplication of y, this rule also cannot be
handled by a matrix interpretation. However, we do have a compatible tuple interpretation:

[0] = (0,0 [minus(z,9)] = (xc+yc+ys+1,zs)
[s(x)] = {(xc,xzs+1) [quot(x,y)] = (@c+ s+ Yc+ Ts*yc+ xs *ys + 1, 25)

In practice, in first-order termination or complexity analysis one would not exclusively
use interpretations, but rather a combination of different techniques. In that context, tuple
interpretations may be used as one part of a large toolbox. They are likely to offer a simple
complexity proof in many cases, but they are unlikely to be an essential technique since so
many other methods have already been developed. Indeed, all examples in this section can
be handled with previously established theory. For instance, Example 5 can be handled with
matrix interpretations, while sum and rev may be analysed using ideas from [24] and [35].

However, developing a new technique for first-order termination and traditional complexity
analysis is not our goal. Our method does provide a more fine-grained notion of complexity,
which may consider information such as the length of a list. Moreover, the first-order case is
an important stepping stone towards higher-order analysis, where far fewer methods exist.

4 Higher-order tuple interpretations

In this section, we will extend the ideas from Section 3 to the higher-order setting, and hence
define the core notion of this paper: higher-order tuple interpretations. To do this, we will
build on the notion of strongly monotonic algebras originating in [39].

4.1 Strongly monotonic algebras

In first-order term rewriting, the complexity of a TRS is often measured as runtime or
derivational complexity. Both measures consider initial terms s of a certain shape, and supply
a bound on dhg(s) given the size of s. However, this is not a good approach for higher-order
terms: the behaviour of a term of higher type generally cannot be captured in an integer.

» Example 12. Consider the AFS obtained by combining Examples 1 and 2. The evaluation
cost of a term foldl(F,n,q) depends almost completely on the behaviour of the functional
subterm F', and not only on its evaluation cost. To see this, consider two cases: Fj :=

31:7

FSCD 2021

31:8

Tuple Interpretations for Higher-Order Complexity

ArAy.y @ x, and Fo := Az. Ay.x ® z. For natural numbers n, m, the evaluation cost of both
Fi(n,m) and Fy(n,m) is the same: n + 1. However, the size of the result is different. Hence,
the number of steps needed to compute foldl(F7,n, ¢) for a number n and list g is quadratic
in the size of n and ¢, while the number of steps needed for foldl(F3,n,q) is exponential.

As Example 12 shows, higher-order rewriting is a natural place to separate cost and size.
But more than that, we need to know what a function does with its arguments: whether it
is size-increasing, how long it takes to evaluate them, and more.

This is naturally captured by the notion of (weakly or strongly) monotonic algebras for
higher-order rewriting introduced by v.d. Pol [39]: here, a term of arrow type is interpreted
as a function, which allows the interpretation to retain all relevant information.

Monotonic interpretations were originally defined for a different higher-order rewriting
formalism, which does make some difference in the way abstraction and application is handled.
Weakly monotonic algebras were transposed to AFSs in [22]; however, here we extend the more
natural notion of hereditarily monotonic algebras which v.d. Pol only briefly considered.!

» Definition 13. Let S be a set of sorts and F a higher-order signature. We assume given
for every sort v an extended well-founded set (A,,>,,>,). From this, we define the set of
strongly monotonic functionals, as follows:
For all sorts v: M, := A, and 3J,:=>, and J,:=>,.
For an arrow type o = 7:
Moor :i={F € M, = M, | F is strongly monotoic}
F D7 G iff M, is non-empty and Yz € M,.F(z) 3, G(x), and
F Joor G iff Vo € M, .F(x) 3, G(z).
That is, M,—, contains strongly monotonic functions from M, to M, and both J,-., and
Jy=, do a point-wise comparison. By a straightforward induction on types we have:

» Lemma 14. For all types o, (M, 0y, y) is an extended well-founded set; that is:
Ty is well-founded and 3, is reflexive;
both 1, and 3, are transitive;
for all x,y,z € My, x O, y implies x I, y and x O, y i z implies x 1y, 2.

We will define higher-order strongly monotonic algebras as an extension of Definition 3,
mapping a term of type o to an element of M,. Functional terms f(sy,...,s;) and variables
can be handled as before, but we now also have to deal with application and abstraction.
Application is straightforward: since terms of higher type are mapped to functions, we can
interpret application as function application, i.e., [[s - t]o := [$]a([t]«). However, abstraction
is more difficult. The natural choice would be to view abstraction as defining a function; i.e.,
let [Az.s]o be the function d + [s]q[z:=q)- Unfortunately, this is not necessarily monotonic:
d + [s]ajz:=a) is strongly monotonic only if x occurs freely in s. For example Az.0 would be
mapped to a constant function, which is not in M ;t—nat. Moreover, this definition would
give [(Az.s) - t]o = [s[x := t]]a, so S-steps would not be counted toward the evaluation cost.

We handle both problems by using a choosable function MakeSM, , which takes a
function that may be strongly monotonic or constant, and turns it strongly monotonic.

L n [39], v.d. Pol rejects hereditarily (or: strongly) monotonic algebras because they are not so well-suited
for analysing the HRS format [36] where reasoning is modulo —g: it is impossible to both interpret all
terms of function type to strongly monotonic functions and have [(Az.s) ¢] = [s[z := t]]. In the AFS
format, we do not have the latter requirement. In [22], where the authors considered the AFS format
like we do here (but for interpretations to N rather than to tuples), weakly monotonic algebras were
used because they are a more natural choice in the context of dependency pairs.

C. Kop and D. Vale

» Definition 15. A (o, 7)-monotonicity function MakeSM ; is a strongly monotonic function
in Cpr = My—s,, where the set C, . is defined as My—r U{F € M, = M, | F(x) =
F(y) for all z,y € M,}. (Here, the set Cy ; is ordered by point-wise comparison.)

With this definition, we are ready to define strongly monotonic algebras.

» Definition 16. A strongly monotonic algebra Ay consists of a family (Mg, Joy Do)oesT,
an interpretation function J which associates to each f :: [o1 X --+ X ox] = T in F an element
of Mo =. .=op=r, and a (o, T)-monotonicity function MakeSM -, for each o,7 € ST.

Let o be a function that maps variables of type o to elements of M,. We extend J to a
function [-]« that maps terms of type o to elements of M, as follows:

[*]o = a(z) for variables x [f(s1,.- -y 56)]a = Fr([51]as- - - [Sk]a)
[s-tla = [s]la([t]a) [M.s]a = MakeSM o - (d = [s]afz:=q)) if x 20 and s = T

We can see by induction on s that for s :: o indeed [s], € M,. We say that an AFS (F,R)
is compatible with Ap, if for all valuations a both (1) [¢]o 3 [r]a, for all £ — r € R; and
(2) [(Ax.s)t]a 3 [s[z :=t]]a, for any s :: 0, t :: 7 and x € A

As before, we will typically omit the o subscript and use notation like [s] = F(x + 3) to
denote [s]o = a(F)(a(z) + 3). When types are not relevant, we will denote 1 instead of
specifying J,, and we may write f € M to mean f € M, for some o € ST.

We extend Theorem 4 into the following compatibility result.

» Theorem 17. If (F,R) is compatible with Apq, then for all o, [s]o 3 [t]a when s —x t.

For Definition 13 and Theorem 17, we can choose the well-founded sets (A,, >,, >,) for

each sort, and the functions MakeSM, . for each pair of types, as we desire. A higher-order
tuple algebra is a strongly monotonic algebra where each (4,,>,,>,) follows Definition 6.

» Example 18. Let A,.. = N? and A = N? as before, and assume cons and nil are
interpreted as in Example 10. Consider the rules for map in Example 2. We let:

[map(F,zs)] = ((xzsi + 1) * (F({(xSc, £Sm))c + 1), 81, F(Sc, TSm)s)

This expresses that map does not increase the list length (as the length component is just
x38)), the greatest element of the result is bounded by the value of F' on the greatest element
of xs, and the evaluation cost is mostly expressed by a number of F' steps that is linear in
the length of xs. We will see in Lemma 23 that Jmap is indeed strongly monotonic.

To prove compatibility of the AFS with Axg, we must first see that [¢] 3 [r] for all rules
¢ = r. For the first map rule this is easy: [map(F,nil)] = (F({0,0))c + 1,0, F({0,0))s) Djist
(0,0,0) = [nil]. For the second map rule, we must check that (cost-¢,len-f, max-£) Ty
(cost-r, len-r, max-r); that is, cost-¢ > cost-r and len-¢ > len-r and max-¢ > max-r, where:

cost-f = [map(F,x: xs)]c = (x84 2) * (F({zc + 28, max(zs, £Sm)))c + 1)
cost-r = [F(x):map(F,zs)]c = F({xc,2s))c+ (xsi+ 1) (F({xSc,x8m))c + 1)
len-¢ = [map(F,z: zs)] = zsi+1 = [F(z): map(F,zs)]i = len-r
max-{ = [map(F,z:xs)]m = F({xc+ xSc, max(xs, £Sm)))s

max-r = [F(x): map(F,z8)]m = max(F((xc,Zs))s, F({(XSc,TSm))s)

To see why cost-£ > cost-r, we observe that for all x,xs: (xc+ xsc, max(xs+ Sm)) Jnat both
(e, zs) and (xsc,x8m). Since F € Myatmnat therefore F((xc + xsc, max(zs + ©sm))) nat
both F({x,xs)) and F({(xsc,xsm)). We find max-¢ > max-r by a similar reasoning.

319

FSCD 2021

31:10

Tuple Interpretations for Higher-Order Complexity

4.2 Interpreting abstractions

Example 18 is not complete: we have not yet defined the functions MakeSM, ,, and we
have not shown that [(Az.s) t] 3 [s[z := t]] always holds. To achieve this, we will define
some standard functions to build elements of M. This allows us to easily construct strongly
monotonic functionals, both to build MakeSM, , and to create interpretation functions Js.

» Definition 19. For every type o, we define: 0, € M,; costof, € M, =— N; and
addc, € N x M, = M, by mutual recursion on o as follows.

0, ={0,...,0) Op=r = d — addc,(costof,(d),0,)
costof,({ny,...,nkp))) =1 costof,o . (F') = costof,(F(0,))
addc,(c, (n1,...,ngp)) = (c+n1,n2,...,nkp)) addcy=-(c, F) = d — addc,(c, F'(d))

Here, 0, defines the minimal element of M. The function costof, maps every F to the
cost component of F(0,,,...,0,); hence, if F 1, G we have costof,(F) > costof,(G).
The function addc, pointwise increases an element of M, by adding to the cost component:
if F(z1,...,2m) = (n1,...,ng), then addc(c, F)(z1,...,2m) = (c+n1,n2, ..., ng).

It is easy to see that 0, and addc,(n, X) are in M for all ¢ (by induction on o), and that
costof, and addc, are strict in all their arguments. Various properties of these functions
are detailed in the appendix (Lemmas B.4-B.8). We will particularly use that always
F(addc(n,x)) 3 addc(n, F(z)) (Lemma B.7) and costof (F(x)) > costof(z) (Lemma B.8).

We can use these functions to for instance create candidates for MakeSM , . While many
suitable definitions are possible, we will particularly consider the following;:

» Definition 20. For types 0,7, and F a weakly monotonic function in M, = M, let:

o, . (F) = d — addc,—, (1, F(d)) if Fis in Mo~
7T | d v addey— . (costof, (d) + 1, F(d)) otherwise
Then ®, , is a (o, 7)-monotonicity function. To see this, the most challenging part is
proving that @, (F) 1 @, ,(G) if F 1 G and F € M=, while G is a constant function.
We can prove this using the result that 3 y implies addc(1,z) 3 y for all z,y. We have:

» Lemma 21. If MakeSM . = O, then [(Ax.s)t] 3; [s[x :=1]], forsu T, t 0, z € X,.

Proof Sketch. We expand MakeSM, , to achieve [(Ax.s)t], = addc,(costof,([t]a) +
L [slaj=pp) or [(Az.s)t]o = addc, (1, [s]afz:=[q)). By induction on 7 we prove that
addc,(n, F) 3, F for all n > 1. So either way, [(Az.s)t]o J7 [s]afz:=[q)- Finally, we prove
a substitution lemma, [s]q[z:=[¢.] = [s[* := t]]«, by induction on s. <

In examples in the remainder of this paper, we will assume that MakeSM, , = ®, .. With
these choices we do not only orient the S-rule (and thus satisfy item (2) of the compatibility
conditions), but also the n-reduction rules mentioned in Section 2.2.

» Lemma 22. If MakeSM, . = ®, then for any F € Xy we have: [Ax.F] Dy, [F].

Proof Sketch. Since I’ # x, we have [F|,z:—q) = a(F) for all a and d. Consequently,
[Me.F z] Joor d— adde, (1, F(d)) either way. We are done as: adde, (1, F(d)) O, F(d). <«

C. Kop and D. Vale

4.3 Creating strongly monotonic interpretation functions

We can use Theorem 17 to obtain bounds on the derivation heights of given terms. However,
to achieve this, we must find an interpretation function J, and prove that each J; is in M.
We will now explore ways to construct such strongly monotonic functions. It turns out to
be useful to also consider weakly monotonic functions. In the following, we will write “f is
wm(Ayg, ..., Ag; B)” to mean that f is a weakly monotonic function in A; x --- x Ay, = B.

» Lemma 23. Let z', ... 2" be variables ranging over My, , ..., M, respectively; we shortly

denote this sequence ©. We let ./7; denote the sequence My, , ..., My, . Then:

1. if F(Z) = 2% then F is wm(m;/\/lai), and F is strict in argument i;

2. if F(¥) = xl(Fﬂ), L F (@), 0 =11 = ... =7, = p, and each F; is wm(./\T;;MTj)
then F is wm(Mg; M,) and for all p € {1,...,k}: F is strict in argument p if p =1 or
some I is strict in argument p;

3. if F(Z) = (G1(%), ..., Gk (%)) and each G is wm(m; N) then F is wm(m;ML), and
forallp e {1,... k}: F is strict in argument p if Gy is.

The last result uses functions mapping to N; these can be constructed using the observations:

4. if G(Z) =n for some n € N then G is wm(/T/lﬁ;N);

5. if G(&) =) and 0; =1 € S and 1 < j < K[1], then G is wm(/\T;;N), and G is strict in
argument i if j =1;

6. if G(&) = f(G1(ZD),...,Gn(Z)) and all G; are wm(/\TT;N) and f is wm(N, ..., N;N),
then G is wm(/\/l_—_)g; N), and for all p € {1,...,k}: G is strict in argument p if, for some
Jje{l,...,n}: Gj is strict in arqgument p and f is strict in argument j;

7. if G(¥) = F(Z); and F is wm(m;ML) and 1 < j < K[i] then G is wm(m;N) and if
j =1 then for allp € {1,...,k}: G is strict in argument p if F is.

Proof Sketch. We easily see that in each case, F' or G is in the given function space. To
show weak monotonicity, assume given both & and 7 such that each ' J y*; we then check
for all cases that F'(Z) J F(¥), or G(Z) > G(¥). For the strictness conditions, we assume
that 2P 1 yP and similarly check all cases. |

The reader may recognise items (4-6): these largely correspond to the sufficient conditions
for a weakly monotonic function S in Lemma 9. For the function f in item (6), we could
for instance choose +, * or max, where + is strict in all arguments. However, we can get
beyond Lemma 9 by using the other items; for example, applying variables to each other.

Now, if a function f is wm(My; M) and f is strict in all its arguments, then we easily
see that the function dy — --- — d — f(dy,...,dg) is an element of My, = —0,=r. To
illustrate how this can be used in practice, we show monotonicity of Jmap of Example 18:

» Example 24. Suppose Jmap(F,q) = (F((ge, Gm))c+@+F ({ges gm))cta+1, @y F({ges gm))1)
By (5), the functions (F,q) — g; are wm(Mat=nat, Miist; N) for i € {c,|,m} and moreover,
(F,q) — qc is strict in argument 2. Hence, by (3), (F,q) — (¢c, gm) is wm(M at=nat, Miist;
M) and strict in argument 2. Therefore, by (2), (F,q) — F({(¢c,qm)) is wm(Mat=nat,
Mist; Mpat) and strict in both arguments. Hence, by (7), (F,q¢) = F({gc, gm))c and (F,q) —
F({qc, gm))1 are wm(M at=nat, Miist; N) and the former is strict in both arguments.

Continuing like this, it is not hard to see how we can iteratively prove that (F,q) —
(F(<QC7 Qm>)c +q * F(<QC7 Qm>)c +q+1, q, F(<QCa Qm>)|) is Wm(Mnat=>nat7 Miist; Mlist) and
strict in both arguments, which immediately gives Jmap € M (nat=nat)=list=list-

31:11

FSCD 2021

31:12

Tuple Interpretations for Higher-Order Complexity

In practice, it is usually not needed to write such an elaborate proof: Lemma 23 essentially
tells us that if a function is built exclusively using variables and variable applications,
projections F(Z);, constants, and weakly monotonic operators over the natural numbers,
then that function is weakly monotonic; we only need to check that the cost component
indeed increases if one of the variables 2* is increased.

Unfortunately, while Lemma 23 is useful for rules like the ones for map, it is not enough
to handle functions like foldl, where the same function is repeatedly applied on a term. As
foldl-like functions occur more often in higher-order rewriting, we should also address this.

To handle iteration, we define: for a function Q € A = A and natural number n, let
Q"(a) indicate repeated function application; that is, Q°(a) = a and Q"1 (a) = Q™(Q(a)).

—_ —
» Lemma 25. Suppose F is wm(My, M=) and G is wm(My;N). Suppose that for all
ul € My, ..., uF € Mg, and v € M, we hagF(ul,...,uk,v) J, v. Then the function
(2',... 2F) = F(a!, ..., a")0@") s wm(Mg, Mooy).

With this in hand, we can orient the foldl rules of Example 2.

» Example 26. For F' € M i=nat=nat and x,y € M4, let Helper be defined by:
Helper(F,y,x) = (F(z,y)c, max(xs, F(z,Y)s)).

Then Helper is wm(Mpat=nat=nat; Mhnat; Mnat; Mnat) and strict in its third argument by
Lemma 23(1,2,3,6,7), Hence, Helper is wm(Mpat=nat=nats Mhnat; Mnat=nat). Since, in general,
costofnai(F(x,y)) > costofna(z), we have Helper(F,y,2) Jpa . Using Lemma 25, we
therefore see that the function (F, z,xs) — Helper(F, (xsc, x5m))**(2) is weakly monotonic,
and strict in its second argument. This ensures that the following function is in M.

[foldI(F, z, xs)] = Helper(F, (xsc, xsm))"* ({1 + xSc + 281 + F(Onat, Onat)c + Zc; 2s))

This interpretation function is compatible with the rules for foldl in Example 2. First, we have
[foldI(F, z,ni)] = (1 4+ F(Onat, Onat)c + 2¢; 2s) Tnat {2c, zs) = 2z, which orients the first rule.
For the second, we will use the general property that (**) F'(addc(n,),y) 3 addc(n, F(z,y))
(Lemma B.6). We denote A := (x.+xsc, max (s, £m)) and B := 14+xsc+x 81+ F (Onat, Onat)c+
2. Then we have [foldI(F, z,z : xs)] = Helper(F, A)**Y((B + 2 + 1, z)), which:

Tnat Helper(F, A)*$'(Helper(F, A, (B, zs))) because (B + xc + 1, z5) Jnat (B, 2s)

Jnat Helper(F, A)** (F((B, zs), A)) because Helper(F,n,m) Jnat F(m,n)

Tnat Helper(F, (xsc, xsm))*® (F((B, zs), x)) because A Jpat (xSc, £Sm) and A Ty @
Jnat Helper(F, (xsc, x8m))*® (addcnat (1 + 28c + 281 + F(Onat, Onat)c, F'(2,2))) by (**)
= [foldI(F, (F z x),xs)].

The interpretation in Example 26 may seem too convoluted for practical use: it does not
obviously tell us something like “F' is applied a linear number of times on terms whose size
is bounded by n”. However, its value becomes clear when we plug in specific bounds for F'.

» Example 27. The function sum, defined in Example 1, could alternatively be defined in
terms of foldl: let sum(zs) — foldl(Azy.(z @ y),0,zs). To find an interpretation for this
function, we use the interpretation functions for 0, s, nil, cons and & from Example 10. Then
[Mey.(z @ y)] = dye — (de + ec + es + 3,ds + e5). We easily see that Helper([Azy.(z @
W], (28, Sm), 2) = (2c + TSc + TSm + 3, 25 + TSm). Importantly, the iteration variable z is
used in a very innocent way: although its size is increased, this increase is by the same
number (xsy,) in every iteration step. Moreover, the length of z does not affect the evaluation

C. Kop and D. Vale

cost. Hence, we can choose [sum(zs)] = (5 + xsc + x8) + x5 * (Sc + ZSm + 3), TS| * T8m).
This is close to the interpretation from Example 10 but differs both in a small overhead for
the B-reductions, and because our interpretation of foldl slightly overestimates the true cost.

This approach can be used to obtain bounds for any function that may be defined in
terms of foldl, which includes many first-order functions. For example, with a small change
to the signature of foldl, we could let rev(zs) = foldl(Azy.(y : x), nil, zs); however, this would
necessitate corresponding changes in the interpretation of foldl.

5 Finding complexity bounds

A key notion in complexity analysis of first-order rewriting is runtime complezity. In this
section, we will define a conservative notion of runtime complexity for higher-order term
rewriting, and show how our interpretations can be used to find runtime complexity bounds.

In first-order (and many-sorted) term rewriting, a defined symbol is any function symbol
f such that there is a rule f(¢1,...,¢;) — r in the system; all other symbols are called
constructors. A ground constructor term is a ground term without defined symbols. A basic
term has the form f(sq, ..., sx) with f a defined symbol and sy, ..., s all ground constructor
terms. The runtime complezity of a TRS is then a function ¢ in (N\ {0}) = N that maps
each n to a number ¢(n) so that for every basic term s of size at most n: dhg(s) < p(n).

The comparable notion of derivational complexity considers the derivation height for
arbitrary ground terms of size n, but we will not use that here, since it can often give very
high bounds that are not necessarily representative for realistic use of the system. In practice,
a computation with a TRS would typically start with a main function, which takes data (e.g.,
natural numbers, lists) as input. This is exactly a basic term. Hence, the notion of runtime
complexity roughly captures the worst-case number of steps for a realistic computation.

It is not obvious how this notion translates to the higher-order setting. It may be tempting
to literally apply the definition to an AFS, but a “ground constructor term” (or perhaps
“closed constructor term”) is not a natural concept in higher-order rewriting; it does not
intuitively capture data. Moreover, we would like to create a robust notion which can be
extended to simple functional programming languages, so which is not subject to minor
language difference like whether partial application of function symbols is allowed.

Instead, there are two obvious ways to capture the idea of input in higher-order rewriting:

closed irreducible terms; this includes all ground constructor terms, but also for instance

Az.0 @ x (but not Az.x @ 0, since this can be rewritten following the rules in Example 1);

data: this includes only ground constructor terms with no higher-order subterms.

As we observed in Example 12, the size of a higher-order term does not capture its
behaviour. Hence, a notion of runtime complexity using closed irreducible terms is not
obviously meaningful — and might be closer to derivational complexity due to defined symbols
inside abstractions. Therefore, we here take the conservative choice and consider data.

» Definition 28. In an AFS (F,R), a data constructor s a function symbol c :: [t1 X « -+ X
tk] = to with each v; € S, such that there is no rule of the form c(fy,...,0;) — r. A data
term 4s a term c(dy,...,dy) such that c is a constructor and all d; are also data terms.

In practice, a sort is defined by its data constructors. For example, nat is defined by 0
and s, and list by nil and cons. In typical examples of first- and higher-order term rewriting
systems, rules are defined to exhaustively pattern match on all constructors for a sort.

With this definition, we can conservatively extend the original notion of runtime complexity
to be applicable to both many-sorted and higher-order term rewriting.

31:13

FSCD 2021

31:14

Tuple Interpretations for Higher-Order Complexity

» Definition 29. A basic term is a term of the form f(dy,...,dy) with all d; data terms and
f not a data constructor. We let |d| denote the total number of symbols in a basic term d.

The runtime complexity of an AFS is a function ¢ € (N\ {0}) = N so that for alln
and basic terms d, with |d| < n: dhg(d) < p(n).

Note that if f(dy,...,dg) is a basic term, then f :: [t; X -+ X ¢] = 7 with all ¢; sorts.
Hence, higher-order runtime complexity considers the same (first-order) notion of basic terms
as the first-order case; terms such as map(F, s) or even map(Az.s(x), nil) are not basic. One
might reasonably question whether such a first-order notion is useful when studying the
complexity of higher-order term rewriting. However, we argue that it is: runtime complexity
aims to address the length of computations that begin at a typical starting point. When
performing a full program analysis of an AFS, the computation will still typically start in a
basic term, for instance; the entry-point symbol main applied to some user input dy, ..., dk.

» Example 30. We consider an AFS from the Termination Problem Database, v11.0 [16].

r®0 —r =z rec(0,y, F) —r v
D S(y) —R S(I D y) I’EC(S(I), va) —R F-x- rec(xvya F)
r®y —r rec(y,0, A\n.Am.z & m)

Here, rec :: [nat x nat x (nat = nat = nat)] = nat. The only basic terms have the form
s"(0) @ s™(0) or s"(0) ® s™(0). Using our method, we obtain cubic runtime complexity; to
be precise: O(m? *n). The interpretation functions are found in Appendix A.

To derive runtime complexity for both first- and higher-order rewriting, our approach is
to consider bounds for the functions J;; we only need to consider the first-order symbols f.

» Definition 31. Let P € M, . -, =« be of the form P(z',...,2™) = (P (2!, ..., 2™),
- Pr) (xt,...,2™)). Then P is linearly bounded if each component function P, of P
is upper-bounded by a positive linear polynomial, i.e., there is a constant a € N such that

Pzt ..., 2™) <ax(1+>0", ZJK[Ll k). We say that P is additive if there exists a constant

aENsuch thatZK[”] Pz, 2™ <a+ 3" 1ZJK[L1 33

By this definition, P; is not required to be a linear function, only to be bounded by one.
This means that for instance min(m}, 2% zf) can be used, but xz * ry cannot. It is easily
checked that all the data constructors in this paper have an additive interpretation. For
example, for Jeons: (Tc + x8c) + (21 + 1) + max(xs, £5m) < 1 + xc + x5 + TS + T8 + TSs.

» Lemma 32. Let (F,R) be an AFS or TRS that is compatible with a strongly monotonic

algebra with interpretation function J. Then:

1. if J. is additive for all data constructors c, then there exists a constant b > 0 in N so
that for all data terms s: if |s| < n then [s]; < bxn, for each component [s]; of [s];

2. if Je is linearly bounded for all data constructors c, then there exists a constant b > 0 in
N so that for all data terms s: if |s| < n then [s]; < 2%, for each component [s]; of [s].
By using Lemma 32, we quickly obtain some ways to bound runtime complexity:

» Corollary 33. Let (F,R) be an AFS or TRS that is compatible with a strongly monotonic
algebra with interpretation function J, and let Fo denote its set of data constructors, and
Fp the set of all other symbols f with a signature f :: [t1 X - -+ X ty,] = 7. Then:
if Jr is additive for all f € Fo U Fp, then (F,R) has linear runtime complexity;
if Je is additive for all c € Fo and for all f € Fp, Ji(¥) = (P1(Z),. .., Pu(Z)) where Py
is bounded by a polynomial, then (F,R) has polynomial runtime complexity;
if Jr is linearly bounded for oll f € Fo U Fg, then (F,R) has exponential runtime
complexity.

C. Kop and D. Vale

We could easily use these results as part of an automatic complexity tool — and indeed,
combine them with other methods for complexity analysis. However, this is not truly our goal:
runtime complexity is only a part of the picture, especially in higher-order term rewriting
where we may want to analyse modules that get much more hairy input. Our technique aims
to give more fine-grained information, where we consider the impact of input with certain
properties — like the length of a list or the depth of a tree. For this, the person interested in
the analysis should be the one to decide on the interpretations of the constructors.

With this information given, though, it should be possible to automatically find interpret-
ations for the other functions. The search for the best strategy requires dedicated research,
which we leave to future work; however, we expect Lemmas 23 and 25 to play a large role.
We also note that while the cost component may depend on the other components, the other
components (which represent a kind of size property) typically do not depend on the cost.

6 On Related Work

Rewriting. There are several first-order complexity techniques based on interpretations. For
example, in [11], the consequences of using additive, linear, and polynomial interpretations
to the natural numbers are investigated; and in [26], context-dependent interpretations are
introduced, which map terms to real numbers to obtain tighter bounds. Most closely related
to our approach are matriz interpretations [21, 35], and a technique by the first author for
complexity analysis of conditional term rewriting [31]. In both cases, terms are mapped to
tuples as they are in our approach, although neither considers sort information, and matrix
interpretations use linear interpretation functions. Our technique is a generalisation of both.

Higher-order Rewriting. In higher-order term rewriting (but a formalism without A-
abstraction), Baillot and Dal Lago [10] develop a version of higher-order polynomial interpret-
ations which, like the present work, is based on v.d. Pol’s higher-order interpretations [39].
In similar ways to our Section 5, the authors enforce polynomial bounds on derivational
complexity by imposing restrictions on the shape of interpretations. Their method differs
from ours in various ways, most importantly by mapping terms to N rather than tuples. In
addition, the interpretations are limited to higher-order polynomials. This yields an ordering
with the subterm property (i.e., f(...,s,...) O s), which means that TRSs like Example 11
cannot be handled. Moreover, it is not possible to find a general interpretation for functions
like foldl or rec; the method can only handle instances of foldl with a linear function.
Beyond this, it unfortunately seems that relatively little work has thus far been done
on complexity analysis of higher-order term rewriting. However, complexity of functional
programs is an active field of research with a close relation to higher-order term rewriting.

Functional Programming. There are various techniques to statically analyse resource use
of functional programs. These may be fully automated [5, 9, 42], semi-automated designed to
reason about programmer specified-bounds [45, 15, 23], or even manual techniques, integrated
with type system or program logic semantics [14, 17]. We discuss the most pertinent ones.

An approach using rewriting for full-program analysis is to translate functional programs
to TRSs [6], which can be analysed using first-order complexity techniques. This takes
advantage of the large body of work on first-order complexity, but loses information; the
transformation often yields a system that is harder to analyse than the original.

The research methodology in most studies in functional programming differs significantly
from rewriting techniques. Nevertheless, there are some studies with clear connections to our
approach; in particular our separation of cost and size (and other structural properties). Most

31:15

FSCD 2021

31:16

Tuple Interpretations for Higher-Order Complexity

relevant, in [19] the authors use a similar approach by giving semantics to a complexity-aware
intermediate language allowing arbitrary user-defined notions for size — such as list length or
maximum element size; recurrence relations are then extracted to represent the complexity.
Additionally, most modern complexity analysis is done via enhancements at the type
system level [2, 5, 28, 40, 23, 20]. For example, types may be annotated with a counter,
the heap size or a data type’s size measure. Notably, a line of work on Resource-Aware
ML [28, 37, 30] studies resource use of OCaml programs with methods based on Tarjan’s
amortized analysis [43]. Types are annotated with potentials (a cost measure), and type
inference generates a set of linear constraints which is sent over to an external solver. For
Haskell, Liquid Haskell [41, 44] provides a language to annotate types, which can be used to
prove properties of the program; this was recently extended to include complexity [23]. Unlike
RAML, this approach is not fully automatic: type annotations are checked, not derived.
These works in functional programming have a different purpose from ours: they study
the resource use in a specific language, typically with a fixed evaluation strategy. Our method,
in contrast, allows for arbitrary evaluation, which could be specified to various strategies in
future work. Moreover, most of these works limit interest to full-program analysis. We do
this for runtime complexity, but our method offers more, by providing general interpretations
for individual functions like map or foldl. Similarly, most of these works impose additive type
annotations for the constructors; we do not restrict the constructor interpretations outside
Lemma 32. On the other hand, many do consider (shallow) polymorphism, which we do not.
While in functional programming one considers resource usage [40, 28|, rewriting is
concerned with the number of steps, which can be translated to a form of resource measure if
the true cost of each step is kept low. This is achieved by imposing restrictions on reduction
strategy and term representation [1, 18]. Our approach carries the blessing of being general
and machine independent and the curse of not necessarily being a reasonable cost model.

7 Conclusion and Future Work

In this paper, we have introduced tuple interpretations for many-sorted and higher-order
term rewriting. This includes providing a new definition of strongly monotonic algebras, a
compatibility theorem, a function MakeSM that orients 8- and n-reductions, and several
lemmas to prove monotonicity of interpretation functions. We also show that for certain
restrictions on interpretation functions, we find linear, polynomial or exponential bounds on
runtime complexity (for a simple but natural definition of higher-order runtime complexity).

Our type-based, semantical approach allows us to relate various “size” notions (e.g., list
length, tree depth, term size. etc.) to reduction cost, and thus offers a more fine-grained
analysis than traditional notions like runtime complexity. Most importantly, we can express
the complexity of a higher-order function in terms of the behaviour of its (function) arguments.
In the future, we hope that this could be used towards a truly higher-order complexity notion.

Some further examples and weaknesses. Aside from the three higher-order examples in
this paper, we have successfully applied our method to a variety of higher-order benchmarks in
the Termination Problem Database [16], all with additive interpretations for the constructors.
Two additional examples (filter and deriv) are included in Appendix A.

A clear weakness we discovered was that our method can only handle “plain function-
passing” systems [33]. That is, we typically do not succeed on systems where a variable of
function type occurs inside a subterm of base type, and occurs outside this subterm in the right-
hand side. Examples of such systems are ordrec, which has a rule ordrec(lim(F),z,G, H) —x
H - F - (An.ordrec(F - n,z,G, H)) with lim :: [nat = ord] = ord, and apply, which has a rule
lapply(z, fcons(F, xs)) —r F - lapply(z, zs) with fcons :: [(a = a) X listf] = listf.

C. Kop and D. Vale

Future work. We intend to consider the effect of different evaluation strategies, such as
innermost evaluation, weak-innermost evaluation (where rewriting below an abstraction is

not allowed, as is commonly the case in functional programming) or outermost evaluation.

This extension is likely to be an important step towards another goal: to more closely relate

our complexity notion to a reasonable measure of resource consumption in a rewriting engine.
In addition, we plan to extend first-order complexity techniques like dependency tuples [24],

which may allow us to overcome the weakness described above. Another goal is to enrich our
type system to support a notion of polymorphism and add polymorphic interpretations into

the play. We also aim to develop a tool to automatically find suitable tuple interpretations.

—— References

1

10

11

12

13

14

15

16

17

18

19

B. Accatoli and U. Dal Lago. (leftmost-outermost) beta reduction is invariant, indeed. LMCS,
2016. doi:10.2168/LMCS-12(1:4)2016.

S. Alves, D. Kesner, and D. Ventura. A quantitative understanding of pattern matching. In
Proc. TYPES, LIPIcs, 2020. doi:10.4230/LIPIcs.TYPES.2019.3.

T. Arai and G. Moser. Proofs of termination of rewrite systems for polytime functions. In
Proc. FSTTCS, 2005. doi:10.1007/11590156_4.

T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. TCS, 2000.

do0i:10.1016/S0304-3975(99)00207-8.

M. Avanzini and U. Dal Lago. Automating sized-type inference for complexity analysis. In
Proc. ICFP, 2017. doi:10.1145/3110287.

M. Avanzini, U. Dal Lago, and G. Moser. Analysing the complexity of functional programs:
Higher-order meets first-order. In Proc. ICFP, 2015. doi:10.1145/2784731.2784753.

M. Avanzini and G. Moser. Complexity analysis by rewriting. In Proc. FLOPS, 2008.

d0i:10.1007/978-3-540-78969-7_11.
M. Avanzini and G. Moser. Closing the gap between runtime complexity and polytime
computability. In Proc. RTA, 2010. doi:10.4230/LIPIcs.RTA.2010.33.

Ralph B. Automated higher-order complexity analysis. T'CS, 2004. doi:10.1016/j.tcs.2003.

10.022.

P. Baillot and U. Dal Lago. Higher-order interpretations and program complexity. IC, 2016.

doi:10.1016/j.ic.2015.12.008.

G. Bonfante, A. Cichon, J. Marion, and H. Touzet. Complexity classes and rewrite systems
with polynomial interpretation. In Proc. CSL, 1998. doi:10.1007/10703163_25.

G. Bonfante, J. Marion, and J. Moyen. On lexicographic termination ordering with space
bound certifications. In Proc. PSI, 2001. doi:10.1007/3-540-45575-2_46.

M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Alternating runtime and
size complexity analysis of integer programs. In Proc. TACAS, 2014. doi:10.1007/
978-3-642-54862-8_10.

Q. Carbonneaux, J. Hoffmann, T. Ramananandro, and Z. Shao. End-to-end verification of
stack-space bounds for C programs. SIGPLAN Not., 2014. doi:10.1145/2666356.2594301.

E. Cigek, D. Garg, and U. Acar. Refinement types for incremental computational complexity.

In Proc. ESOP, 2015. doi:10.1007/978-3-662-46669-8_17.

Community. Termination problem database, version 11.0. Directory Higher Order__

Rewriting_ Union_ Beta/Mixed_HO_ 10/, 2019. URL: http://termination-portal.org/
wiki/TPDB.

U. Dal Lago and M. Gaboardi. Linear dependent types and relative completeness. In Proc.
LICS, 2011. doi:10.1109/LICS.2011.22.

U. Dal Lago and S. Martini. Derivational complexity is an invariant cost model. In Proc.
FOPARA, 2010. doi:10.1007/978-3-642-15331-0_7.

N. Danner, D.R. Licata, and R. Ramyaa. Denotational cost semantics for functional languages
with inductive types. In Proc. ICFP, 2015. doi:10.1145/2784731.2784749.

31:17

FSCD 2021

https://doi.org/10.2168/LMCS-12(1:4)2016
https://doi.org/10.4230/LIPIcs.TYPES.2019.3
https://doi.org/10.1007/11590156_4
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1145/3110287
https://doi.org/10.1145/2784731.2784753
https://doi.org/10.1007/978-3-540-78969-7_11
https://doi.org/10.4230/LIPIcs.RTA.2010.33
https://doi.org/10.1016/j.tcs.2003.10.022
https://doi.org/10.1016/j.tcs.2003.10.022
https://doi.org/10.1016/j.ic.2015.12.008
https://doi.org/10.1007/10703163_25
https://doi.org/10.1007/3-540-45575-2_46
https://doi.org/10.1007/978-3-642-54862-8_10
https://doi.org/10.1007/978-3-642-54862-8_10
https://doi.org/10.1145/2666356.2594301
https://doi.org/10.1007/978-3-662-46669-8_17
http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/TPDB
https://doi.org/10.1109/LICS.2011.22
https://doi.org/10.1007/978-3-642-15331-0_7
https://doi.org/10.1145/2784731.2784749

31:18

Tuple Interpretations for Higher-Order Complexity

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43
44

45

A. Das, S. Balzer, J. Hoffman, F. Pfenning, and I. Santurkar. Resource-aware session types
for digital contracts, 2019. arXiv:1902.06056.

J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination
of term rewriting. JAR, 2008. doi:10.1007/11814771_47.

C. Fuhs and C. Kop. Polynomial interpretations for higher-order rewriting. In Proc. RTA,
2012. doi:10.4230/LIPIcs.RTA.2012.176.

M. A. T. Handley, N. Vazou, and G. Hutton. Liquidate your assets: Reasoning about resource
usage in liquid haskell. ACM POPL, 2019. doi:10.1145/3371092.

N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency pair
method. In Proc. IJCAR, 2008. doi:10.1007/978-3-540-71070-7_32.

D. Hofbauer. Termination proofs by multiset path orderings imply primitive recursive derivation
lengths. T'CS, 1992. doi:10.1007/3-540-53162-9_50.

D. Hofbauer. Termination proofs by context-dependent interpretations. In Proc. RTA, 2001.
doi:10.1007/3-540-45127-7_10.

D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations. In Proc.
RTA, 1989. doi:10.1007/3-540-51081-8_107.

J. Hoffmann, K. Aehlig, and M. Hofmann. Resource aware ml. In Proc. CAV, 2012. doi:
10.1007/978-3-642-31424-7_64.

J. Jouannaud and M. Okada. A computation model for executable higher-order algebraic
specification languages. In Proc. LICS, 1991. doi:10.1109/LICS.1991.151659.

D. M. Kahn and J. Hoffmann. Exponential automatic amortized resource analysis. In Proc.
FoSSaCS, 2020. doi:10.1007/978-3-030-45231-5_19.

C. Kop, A. Middeldorp, and T. Sternagel. Complexity of conditional term rewriting. LMCS,
2017. doi:10.23638/LMCS-13(1:6)2017.

C. Kop and D. Vale. Tuple interpretations for higher-order complexity (extended), 2021.
arXiv:2105.01112.

K. Kusakari and M. Sakai. Enhancing dependency pair method using strong computability in
simply-typed term rewriting. AAECC, 2007. doi:10.1007/s00200-007-0046-9.

G. Moser. Derivational complexity of knuth-bendix orders revisited. In Proc. LPAR, 2006.
do0i:10.1007/11916277_6.

G. Moser, A. Schnabl, and J. Waldmann. Complexity analysis of term rewriting based on
matrix and context dependent interpretations. In Proc. FSTTCS, 2008. doi:10.4230/LIPIcs.
FSTTCS.2008.1762.

T. Nipkow. Higher-order critical pairs. In Proc. LICS, 1991. doi:10.1109/LICS.1991.151658.
Y. Niu and J. Hoffmann. Automatic space bound analysis for functional programs with garbage
collection. In Proc. LPAR, 2018. doi:10.29007/xkwx.

E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002. doi:10.1007/
978-1-4757-3661-8.

J.C. van de Pol. Termination of Higher-order Rewrite Systems. PhD thesis, University of
Utrecht, 1996. URL: https://www.cs.au.dk/~jaco/papers/thesis.pdf.

V. Rajani, M. Gaboardi, D. Garg, and J. Hoffmann. A unifying type-theory for higher-order
(amortized) cost analysis. ACM POPL, 2021. doi:10.1145/3434308.

P. M. Rondon, M. Kawaguci, and R. Jhala. Liquid types. SIGPLAN Not., 2008. doi:
10.1145/1379022.1375602.

M. Sinn, F. Zuleger, and H. Veith. A simple and scalable static analysis for bound analysis and
amortized complexity analysis. In Proc. CAV, 2014. doi:10.1007/978-3-319-08867-9_50.
R. E. Tarjan. Amortized computational complexity. ADM, 1985. doi:10.1137/0606031.

N. Vazou, P. M. Rondon, and R. Jhala. Abstract refinement types. In Proc. ESOP, 2013.
doi:10.1007/978-3-642-37036-6_13.

P. Wang, D. Wang, and A. Chlipala. Timl: A functional language for practical complexity
analysis with invariants. ACM POPL, 2017. doi:10.1145/3133903.

http://arxiv.org/abs/1902.06056
https://doi.org/10.1007/11814771_47
https://doi.org/10.4230/LIPIcs.RTA.2012.176
https://doi.org/10.1145/3371092
https://doi.org/10.1007/978-3-540-71070-7_32
https://doi.org/10.1007/3-540-53162-9_50
https://doi.org/10.1007/3-540-45127-7_10
https://doi.org/10.1007/3-540-51081-8_107
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1109/LICS.1991.151659
https://doi.org/10.1007/978-3-030-45231-5_19
https://doi.org/10.23638/LMCS-13(1:6)2017
http://arxiv.org/abs/2105.01112
https://doi.org/10.1007/s00200-007-0046-9
https://doi.org/10.1007/11916277_6
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
https://doi.org/10.1109/LICS.1991.151658
https://doi.org/10.29007/xkwx
https://doi.org/10.1007/978-1-4757-3661-8
https://doi.org/10.1007/978-1-4757-3661-8
https://www.cs.au.dk/~jaco/papers/thesis.pdf
https://doi.org/10.1145/3434308
https://doi.org/10.1145/1379022.1375602
https://doi.org/10.1145/1379022.1375602
https://doi.org/10.1007/978-3-319-08867-9_50
https://doi.org/10.1137/0606031
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/3133903

C. Kop and D. Vale

A Extended examples

Extrec. The system in Example 30 has the following interpretation:

[0] (0,0)
[s(z)] = (2c,zs+1)
[troy] = (Tct+yet+ys+ 1,25 +ys)
[t@y] = (14+ys* (Tc+ye+ s (ys +1)/2 + 3), 25 * ys)

[[rec(x,y,F)]] H6lper(x7F)ms(<1 + T+ Yo+ s+ F(nat, nat)C7ys>)
Helper(x, F) = 2z (F(z,2), max(zs, F(x, 2)s))

Then we always have (*A) Helper(x, F')(z) Jnat 2z because F(x,z)c > 2. which we will
see in Lemma B.8, and clearly max(zs, F/(z,2)s) > 2s. Hence, the monotonicity require-
ments are satisfied. We also clearly have (*B) Helper(z, F)(z) Dnat F(x,2), since clearly
max(zs, F'(z,2)s) > F(x, z)s. For most rules, it is easy to see that [¢] 3 [r]. We only show:
[rec(s(z),y, F)] Dnat [F -« - rec(x,y, F)]:
[rec(s(z),y, F)] = Helper((zc, zs+1), F)** 1 ((1 +zc+ye+ (25 +1) + F(Onat, Onat)c, ¥s)) =
Helper({xzc,xs+ 1), F)(Helper((z¢, zs+ 1), F)*((24 xc+yc +xs + F (Onat, Onat)cs Ys))) Snat
F({xe, x5 + 1), Helper((xc, s + 1), F)™((2 + @c + ye + s + F(Onat, Onat)c; s))) by (*B),
Tnat F({xc, xs), Helper({(xc, xs), F)% ((1+2c+Yyc+xs+F (Onat; Onat)c, ¥s))) by monotonicity,
= F(z, Helper(x, F)*((1 + zc + yc + s + F(Onat, Onat)c, ¥s))) = [F - = - rec(z, y, F)].
[® y] Tnat [rec(y, 0, An.dm.x & m)]:
[Andm.ax @ m] =n— m = (x4 nc + mec + ms + 3, 25 + M)
Helper(y, [An.dm.x @ m]) = m — (xc + yc + mc + ms + 3, s + ms)
For given i, Helper(y, [An.Am.z & m])t(m)s = (Z;:O Xs) + Mg = Ts * i + Mg
Helper(y, [An.Am. x@m]])ys m (3% (et ye+ (wsxi+ms) +3) +me, yskTs+ms) =
(Ys* (T +ye+ms+3) +asxD 37 (1) +mc, YskTs+ms) = (Ys* (Tc+Ye+ms+3) + a5 % (ys
(ys+1 /2)+mc,ys*xs+ms> = < # (Tt Yo+ ms+ % (ys+1)/2+3) +mc, ys x x5 +ms)
Hence, [z @y = (1 + ys * (Tc + ye + Ts * (Ys + 1)/2 + 3), s * Ys) Tnat (Ys * (Tc + Yo + x5 *
(ys +1)/2+3) + 0,25 % ys + 0) = [rec(y, 0, \n.Am.x & m)]

Filter. We show an example from the Termination Problem Database, v11.0.

rand(z) —gr = filter(Fynil) —x nil

rand(s(z)) —x rand(z) filter(Fyz : xs) —g consif(F -z, z, filter(F, zs))
bool(0) —g false consif (true, z,28) —gr x:xs

bool(s(0)) —x true consif (false, z,zs) —g as

We will use the notation ¢ instead of zs to avoid clutter in the proof. We let Mu. = N? and
Miise = N3 as before, and additionally let Mpeolean = N (50 no size components). We let:

[true] = (0) [s(x)] = (xc,xs+1) [bool(z)] = (xzc+1)
[false] = (0) [nil] = (0,0,0) [rand(z)] = 1+ zc+ zs,)
[0] = (0,0) [x:q] = (xc+ge,q + 1, max(zs,qm))
[consif(z,x,q)] = (zc+ xc+ g+ 1,q + 1, max(zs,gm))
[filter(F,q)] = 1+ (@+1)* (24 g+ F((de;qm))c): a1, Gm)

It is easy to see that monotonicity requirements are satisfied. As for orienting the rules, we
show only the second filter rule.

31:19

FSCD 2021

31:20

Tuple Interpretations for Higher-Order Rewriting

[filter(F, 2 : q)] Diist [consif (F - z, z, filter(F, q))]

[filter(F, 2 : q)] = (14 (q14+2)*(24+zc+ g+ F ({xc+qe, max (s, gm)))c), gi+1, max(zs, gm)) =
(3+2c+qc+ F((vet+ge, max(zs, gm)))c+ (@ +1) % (2+ 2 +ge+ F ((Tc+qe, max(xs, gm)))e), @1+
17maX($S7Qm)> iist <2+$c+F(<wmws>)6+(QI+1)*(2+QC+F<<QC>Qm>)c)7QI+1;max(wan»
= (F@)ctzc+(1+(g+1)*2+¢+F({qe, gm))c)) + 1, a1+ 1, max(xs, qm)) = (F(x)c+ 2.+
[filter(F, ¢)]c + 1, [filter(F, ¢)]i + 1, max(xs, [filter(F, q)]m)) = [consif (F - z, z, filter(F, q))].

Deriv. Our final example also comes from the termination problem database.

der(Az.y) —r Az.0 der(Az.sin(z)) —r Az.cos(z)
der(A\z.z) —gr Azl der(Az.cos(z)) —r Az.min(cos(z))
der(Az.plus(F - z,G - x)) —gr Az.plus(der(F) - z,der(G) - 2)
der(Az.times(F - x,G - x)) —r Az.plus(times(der(F) - z,G - z),times(F - z,der(G) - z))
der(Az.In(F - x)) —g Az.div(der(F) -z, F - z2)

With der :: [real = real] = real = real. We let M s = N3 where the first component indicates
cost, and the second and third component roughly indicate the number of plus/times/In
occurrences and the number of times/In occurrences respectively. We will denote x5 for xo,
and x4 for x3. We use the following interpretation:

HO]] = <0a 0, 0> leus(xv y)ﬂ = <$c + Yo, Ts +ys + 1,2, + y*>
[1] = (0,0,0) [times(z,y)] = (Tc+yc,xs+ys+ 1,24 +ys+1)
[cos(z)] = = [In(x)] = (xc,zs+ 1,2+ 1)
[sin(z)] = =z [der(F)] = 2z~
[min(z)] = (z0,0) 1+ F(2)c+ 2% F(2)s + F(2)« * F(2)e,
[div(z,y)] = (zc+¥c,0,0) F(z)s % (F(2)« + 1),

F(z)e (F(2)« + 1))

It is easy to see that monotonicity requirements are satisfied. In addition, all the rules are
oriented by this interpretation. We only show the one for times.

[der(Az.times(F -z, G - x))] Jreal [Az.plus(times(der(F) - z, G - z), times(F - z,der(G) - 2))]
[Az.times(F-z,G-x))] =z — (1+ F(2)c +G(z)c, F(2)s + G(x)s+1, F(2)« + G(x) . +1)
[times(der(F) - 2,G - 2)] = (1 + F(2)c + 2 * F(2)s + F(2)s * F(2)c + G(2)c, F(2)s *
(F(2)e + 1) + G(2)s 1, F(2) % (F(2), + 1) + G(2), + 1)

[times(F - z,der(G) - 2))] = (1 + G(2)c + 2 % G(2)s + G(2)x * G(2)c + F(2)c, G(2)s *
(G(2)x +1) + F(2)s + LG(2)u * (G(2) + 1) + F(2)x + 1)

[der(Ax.times(F - z,G - x))] = z — (1 + cost, size, star), where:

cost = (1P (2)et G(2)e) + 2(F(2)o - G(2)st 1)+ (F(2),+ G (2)u+ 1) (14 F(2)e+ G (2)e):
size = (F(=)s + G(2)s + 1) # (F(2), + G(2), +2);
star = (F(2)« + G(2)x + 1) * (F(2)« + G(2)x + 2).

We have size = F(z)s + G(2)s + 1 + (F(2)s + G(2)s + 1) * (F(2)« + G(2)x« + 1) >

F(2)sG(2)sH 1 F (2)gt (F(2), + 1)+ G(2)gx(Gl2), +1)+151 = (F(2)s5(F(2)o+1)+ G (2)st

D)4+ (G(2)s*x(G(2)x+1)+F(2)s+1) = [plus(times(der(F) -z, G- z), times(F - z, der(G) - 2))]s

The proof that star > [plus(times(der(F) - z,G - z), times(F - z,der(G) - z))] is the same,

just with ¢ replaced by 4.

Finally, cost > F(2)c + G(2)c + 2% F(2)s + 2% G(2)s + 2+ 1 4+ F(2)c + G(2)c + (F(2)x +

G(2))*(F(2)c+G(2)e) = 1+ 14+ F(2)c+ 2% F(2)s + F(2)x % F(2)c + G(2)c + 1+ G(2) + 2%

G(2)s+G(2)x *G(2)c + F(2)c = 1+ [plus(times(der(F) - 2z, G - z), times(F - z,der(G) - 2))]c

C. Kop and D. Vale

B Proof sketches and unstated lemmas

We here present proof sketches for lemmas in the text where they were omitted, as well as
unstated lemmas that for instance support the correctness of our definition. Complete proofs
can be found in the extended appendix [32].

Proof Sketch of Lemma 14. Each individual statement follows by induction on o. <
In the text, we quietly asserted that Definition 16 is well-defined. This follows from:

» Lemma B.1. For all terms s :: 0 and suitable o as described in Definition 16 we have:
[sla € Ms, and for all variables x occurring in the domain of a: d v [s][z.—q) is either a
strongly monotonic function, or a constant function.

Proof Sketch. By induction on the form of s. The second part of the induction hypothesis is
used to prove that [Az.s] € M, as MakeSM must be applied on either a strongly monotonic
or a constant function. <

To prove Theorem 17 we need an AF'S version of the so called Substitution Lemma. We
begin by giving a systematic way of extending a substitution (seen as a morphism between
terms) to a valuation, seen as morphism from terms to elements of A.

» Definition B.2. Given a substitution v = [x1 := $1,...,&, := $p] and a valuation «,
we define a¥ as the valuation such that o (x) = a(z), if ¢ ¢ dom(vy); and a¥(x) = [zY]a,
otherwise.

» Lemma B.3 (Substitution Lemma). For any substitution v and valuation o, [s7]a = [s]a~-
Additionally, if [s] 3o [t] ([s] 3o [t]), then [s7] 3o [17] (7] 3o [t7])-

Proof.

By inspection of Definition B.2 it can be easily
shown by induction on s that the diagram to the
right commutes. As a consequence, if [s], Js [«
[t] for any valuation «, then [s]o» Js [t]ar in

particular. So [s7]a Jo [t]a- T, &) T e Am

The case for J, is analogous. |

T(F,X)

Proof Sketch of Theorem 17. This follows easily by induction on the definition of s =% t,
using the substitution lemma. |

We posit some results regarding the functions 0,, addc, and costof,.

» Lemma B.4. For all types 0: (1) 0, € My; (2) for alln € N and v € M, : addc,(n,x) €
My, (8) costof, is weakly monotonic and strict in its first argument; (4) addc, is weakly
monotonic and strict in both its arguments.

Proof Sketch. All claims follow easily by a mutual induction on o. <

» Lemma B.5. For all types o, for all v € M,: (1) addc,(0,z) = x; (2) for all n,m € N:
addc, (n,addc, (m, x)) = adde, (n+m, x); (3) if n > 0 then adde,(n, z) Jo x; (4) ify € M,
is such that x Ty y then x J, addc(l,y); (5) for all n € N: costof,(addcy(n,r)) =
n + costof,(x).

Proof Sketch. All claims follow easily by induction on o. |

31:21

FSCD 2021

31:22

Tuple Interpretations for Higher-Order Rewriting

» Lemma B.6. For all o,7, F € Myor, © € M,, n € N: F(addc,(n,z)) J,
addc,(n, F(z)).

Proof Sketch. By induction on n, using the various claims in Lemma B.5. |
» Lemma B.7. For all types o and all x € M, : x J, addc,(costof,(z),0,).

Proof Sketch. By induction on o, using Lemmas B.4-B.6. |
» Lemma B.8. For F € M,—.. and v € M, we have: costof.(F(x)) > costof,(x).

Proof. Let n := costof,(z). By Lemma B.7, x J, addc,(costof,(z),0,) = addc, (n,0y).
Hence, by monotonicity of F, F(z) J, F(addc,(n,0,)). By Lemma B.6, this implies that
F(z) 3; addc,(n, F(0,)). Since costof, is strict in its first argument by Lemma B.4(3), we
thus have costof,(F(z)) > costof,(addc,(n, F(0,))), which > n by Lemma B.5(5). <«

We can now prove that Definition 20 indeed defines a (o, 7)-monotonicity function.
» Lemma B.9. Let 0,7 be simple types. Then O, is a (o, T)-monotonicity function.

Proof Sketch. By case analysis and Lemma B.4 we see that ®, » maps Cy » to M, .. To
see that @, . is strongly monotonic we also use a case analysis. If F' and G are both
constant functions or both strongly monotonic, the result follows easily; F' is constant and
G not cannot occur because eventually costof (G)(x) > costof (F)(x); and if F' is strongly
monotonic and G is constant then F(x) 1 addc(costof (), G(x)) because G(x) = G(0) and
F(z) 3 F(addc(costof(z),0)) O addc(costof (z), F'(0)) by Lemmas B.4-B.8. <

Proof of Lemma 21. We have either [(Av.s)-t], = addc, (costofy([t]a) + 1, [s]afz:=[q)) OF
[(Az.s) - t]o = adde, (1, [s]ae:=[¢))- By Lemma B.5(3) we have [(Az.s) - t]o Or [s]afe:=[¢]]
in both cases. By Lemma B.3, [s]a[z:=) = [s[* := b]]o. This completes the proof. <

Proof of Lemma 22. Since F' # z, we have d — [F - 2]4[p:=q) = d + a(F)(d), which
by extensionality is a(F'). Since a(F') is monotonic we have [Ax.F z]o = ®,-(d — [F -

)

2] az=d) = o, (a(F)) = addcy (1, a(F)). By Lemma B.5(3) this Joor o F) = [F]. <«

Proof Sketch of Lemma 25. Let Q(x1,... %) :=y = F(21,...,2;)¢@028)(y). To see
that @ maps to M, _,, so that @ is strongly monotonic. We show that F'(@)™(z) 2 F ()" (y)
whenever x 1 y by a straighforward induction on n, and similar for x J y. To see that @
is weakly monotonic in its first k£ arguments, we show by induction on n that for all n,m
with n > m we have F(u1,...,ux)" Jror F(uy, ..., u))™ if each u; J u}. The result then
follows because G(uz,...,u;) > G(uy,...,u}) by weak monotonicity of G. <

Proof Sketch of Lemma 32. For claim (1), let b be the largest of the constants used for
each constructor; i.e., we have Z{i[f] Pzt .. ,a™) <b+3 0", Zﬁi} ' whenever J(%) =
(Py(Z),..., Pk, (Z)). We prove by induction on the size of a data term s :: k that Z{i{f} [s]: <
a *|s|. Then certainly [s]; < b |s| holds for any component [s];.

For claim (2), let a be the largest of the constants used for each constructor ¢ and
component P;, and let k be the largest value K|[¢| for any sort in the program; let b :=
max(2,a * k). We prove by induction on the size of a data term s that [s]; < 20%Is| In the
proof, we use that n +m < n x m whenever n,m > 2 and 2 *n < 2" if n > 2, and hence:

2k axkxd o 20l < (2xax k) x [, 20 kISl < 20« Qb i, lsil, <

	1 Introduction
	2 Preliminaries
	2.1 First-Order Many-Sorted Rewriting
	2.2 Higher-Order Rewriting
	2.3 Functions and orderings

	3 First-Order tuple interpretation
	4 Higher-order tuple interpretations
	4.1 Strongly monotonic algebras
	4.2 Interpreting abstractions
	4.3 Creating strongly monotonic interpretation functions

	5 Finding complexity bounds
	6 On Related Work
	7 Conclusion and Future Work
	A Extended examples
	B Proof sketches and unstated lemmas

