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Abstract
The quest for logical or categorical foundations of the π-calculus (not limited to session-typed
variants) remains an important challenge. A categorical type theory correspondence for a variant of
the i/o-typed π-calculus was recently revealed by Sakayori and Tsukada, but, at the same time, they
exposed that this categorical semantics contradicts with most of the behavioural equivalences. This
paper diagnoses the nature of this problem and attempts to fill the gap between categorical and
operational semantics. We first identify the source of the problem to be the mismatch between the
operational and categorical interpretation of a process called the forwarder. From the operational
viewpoint, a forwarder may add an arbitrary delay when forwarding a message, whereas, from the
categorical viewpoint, a forwarder must not add any delay when forwarding a message. Led by this
observation, we introduce a calculus that can express forwarders that do not introduce delay. More
specifically, the calculus we introduce is a variant of the π-calculus with a new operational semantics
in which output actions are forced to happen as soon as they get unguarded. We show that this
calculus (i) is compatible with the categorical semantics and (ii) can encode the standard π-calculus.
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1 Introduction

The connection between the π-calculus and logic or categorical type theory has been studied
since the early stages of the development of the π-calculus [1, 3, 2]. Among others, a close
correspondence between a session typed π-calculus and intuitionistic linear logic [6] (and
hence also the relationship to categorical models of linear logic) is well-understood. The
session-typed calculi corresponding linear logic, however, are not quite expressive since they
are race-free and deadlock-free. So it is natural to question whether a similar categorical
foundation can be given to processes not limited to deadlock-free and race-free processes.

A fundamental difficulty in developing a categorical type theory for process calculi in
the presence of race condition has been recently pointed out by Sakayori and Tsukada [19].
They showed that asynchronous π-calculus processes modulo observational equivalence (weak
barbed congruence) do not form a category, under some mild assumptions [19, Theorem 1].1
Hence, the observational equivalence cannot be an instance of an equational theory charac-
terised by a certain categorical structure; this is in contrast to the case of λ-calculus, where
observational equivalence is a βη-theory.

1 The choice of the behavioural equivalence does not matter since their argument also applies to many
other behavioural equivalences, such as must-testing equivalence.
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32:2 Output Without Delay

Hence, if a process calculus based on the (asynchronous) π-calculus were to have some
categorical foundation, its operational behaviour must be distant from conventional behaviour.

This paper introduces a variant of the π-calculus whose observational equivalence harmon-
ises with categorical semantics. We introduce a novel reduction semantics to the π-calculus
and show that processes modulo weak barbed congruence, defined on top of the new reduction
semantics, form a category; more precisely, they form a compact closed Freyd category [19]
(described below).

Before introducing the operational semantics that we propose, let us explain the problem
of conventional behavioural equivalences in a little more detail.

The problem is about the behaviour of a special process !a(x).b̄⟨x⟩, which is often called a
forwarder or a link. Intuitively this process transfers a message from channel a to channel b̄.
This intuition justifies the following equation

(νa)(P | !a(x).b̄⟨x⟩) = P{b̄/ā}, a, b̄ /∈ fn(P ), (1)

which indeed holds for the weak barbed congruence in an asynchronous setting. If we
adopt “parallel composition + hiding” as the notion of composition, i.e. if we regard (νa)(P |
!a(x).b̄⟨x⟩) as a composition of !a(x).b̄⟨x⟩ and P , (1) says that the forwarder is a right-identity.
If processes modulo weak barbed congruence formed a category, a right-identity would be the
identity and in particular a left-identity, as in any other categories. The left-identity law is

(νb)(!a(x).b̄⟨x⟩ | P ) = P{a/b}, a, b̄ /∈ fn(P ), (2)

but this is invalid with respect to weak barbed congruence.
To see why (2) fails for weak barbed congruence, let us review the conventional behavioural

interpretation of a forwarder !a(x).b̄⟨x⟩: it receives a message from a, possibly waits as long
as it wants or needs, and then sends the message to the receiver. Hence the process
(νb)(!a(x).b̄⟨x⟩ | P ) can immediately receive a message from a and keep it until P actually
requires a message from b. On the other hand, P{a/b} do not receive a message from a unless
P{a/b} actually requires it. This difference is significant in the presence of race condition,
and thus (2) fails for weak barbed congruence.

A similar observation on a problem caused by delays introduced by forwarders and a
solution against that problem has been made in the context of game semantics. When
giving a game semantics of a synchronous session typed π-calculus, Castellan and Yoshida [7]
observed that the (traditional) copycat strategy – the game semantic counterpart of the
forwarder process – does not behave as identity due to the delay it introduces. To avoid this
problem, they introduced a copycat strategy that does not introduce any delay and proved
that this “delayless copycat strategy” works as the identity.

Whereas [7] added delayless forwarders as semantic elements that processes cannot
represent, this paper discusses a new operational semantics on processes with respect to
which forwarders are delayless. The main result shows that behavioural equivalences under
the delayless interpretation is in harmony with categorical semantics.

The new operational semantics introduced in this paper is a reduction semantics that
forces output actions to happen as soon as they get unguarded. Under the new operational
semantics, when a forwarder !a(x).b̄⟨x⟩ receives a message m from a, it must immediately
send m to a receiver b. In other words, the following two transitions are atomic

!a(x).b̄⟨x⟩ a(m)−→ !a(x).b̄⟨x⟩ | b̄⟨m⟩ b̄⟨m⟩−→ !a(x).b̄⟨x⟩,

and the process cannot stop at the underlined intermediate step since it has an unguarded
output action. So one-step reduction in our calculus corresponds to multi-step reduction in
the conventional calculus. We may consider that the new behaviour expresses a synchronous
communication since a message m now cannot be kept in a communication medium ā⟨m⟩.
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In our proposed calculus, processes modulo observational equivalence form a compact
closed Freyd category. This means that not only equations (1) and (2) but also some
equational laws studied for the asynchronous π-calculus are valid under this new operational
behaviour. This is because compact closed Freyd category is a categorical structure that
corresponds to a theory of processes, i.e. a congruence over asynchronous π-processes satisfying
certain equational laws [19]. One of the laws is (2), and the others are laws that frequently
appear in the study of asynchronous π-calculus, such as the replication theorem [17].

We also show that a π-calculus with the standard reduction semantics, can be embedded
into the proposed calculus by using a special constant τ for delay. The translation replaces
each output action ā⟨m⟩ with τ.ā⟨m⟩, making explicit the delay of the output action
in the conventional π-calculus. For instance, the conventional behaviour of a forwarder
!a(x).b̄⟨x⟩ a(m)−→ !a(x).b̄⟨x⟩ | b̄⟨m⟩ is mimicked by !a(x).τ.b̄⟨x⟩ a(m)−→ !a(x).b̄⟨x⟩ | τ.b̄⟨m⟩ in the
new operational semantics.

Technically the new operational semantics is quite complicated since its one-step reduction
is a multi-step reduction with a certain condition in the conventional calculus. To overcome
the difficulty in reasoning about such a complicated calculus, we develop an intersection
type system, or equivalently a system of linear approximations [21, 14], that captures the
behaviour of a process. We think that the system would be of independent technical interest.

Organisation of the paper

Section 2 introduces our calculus and states the main result; the following sections are
devoted to its proof. After reviewing the idea of linear approximations and its correspondence
to reduction sequences in Section 3, we formalise this idea in Section 4. Section 5 defines
an LTS based on linear approximations, and Section 6 shows that barbed congruence has a
categorical model. Section 7 discusses related work and Section 8 concludes the paper.

2 A process calculus with undelayed output

This section (i) introduces a variant of the π-calculus whose barbed congruence can be
captured categorically and (ii) claims the main result of this paper. The syntax of the
calculus is the same as that of the πF -calculus introduced by Sakayori and Tsukada [19], but
the calculus is equipped with a non-standard reduction semantics; we also call this calculus
the πF -calculus.2 The proof of the main result will be given in the following sections.

2.1 Syntax
The πF -calculus is a variant of the polyadic asynchronous π-calculus with i/o-types,3 which
this paper calls sorts in order to avoid confusion with intersection types introduced later.

▶ Definition 1 (Sorts). The set of sorts, ranged over by S and T , is given by

S, T ::= cho[T1, . . . , Tn] | chi[T1, . . . , Tn] (n ≥ 0).

The sort cho[T1, . . . , Tn] (resp. chi[T1, . . . , Tn]) is for channels for sending (resp. receiving)
n arguments of types T1, . . . , Tn. We often write T⃗ for a sequence of sorts T1, . . . , Tn. The
dual T ⊥ of sort T is defined by cho[T⃗ ]⊥ def= chi[T⃗ ] and chi[T⃗ ]⊥ def= cho[T⃗ ].

2 Although the πF -calculus introduced in this paper and the original πF -calculus [19] have different
reduction semantics it is not that odd to call them with the same name. This is because the reduction
semantics is not essential to establish the correspondence to compact closed Freyd categories; we only
need the “algebraic semantics” to establish the correspondence (cf. Appendix A).

3 Unlike the original i/o-types [17], no names have both input and output capabilities. Names are used
to represent the input/output endpoints of a channel.
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32:4 Output Without Delay

∆ ⊢ P ∆ ⊢ Q

∆ ⊢ P | Q

∆, x : T, y : T ⊥ ⊢ P

∆ ⊢ (νT xy)P
(x : chi[T⃗ ]) ∈ ∆ ∆, y⃗ : T⃗ ⊢ P

∆ ⊢ !x(y⃗).P

(x : cho[T⃗ ]) ∈ ∆ y⃗ : T⃗ ⊆ ∆
∆ ⊢ x⟨y⃗⟩

(τ : chi[]) ∈ ∆ ∆ ⊢ P

∆ ⊢ τ.P ∆ ⊢ 0

Figure 1 Sort assignment rules for processes.

▶ Definition 2 (Processes). The set of processes is defined by

P, Q, R ::= 0 | (P |Q) | (νT xy)P | x⟨y⃗⟩ | !x(y⃗).P | τ.P,

where x and y range over a set of names and y⃗ represents a (possibly empty) sequence of
names. We often elide sort annotations and write (νxy) for (νT xy). The set of free names
of P , written fn(P ), and bound names of P written bn(P ) are defined as usual.

All the constructs, except for the name restriction, are standard so their meaning should
be clear.4 The name restriction (νT xy)P hides the names x and y of type T and T ⊥ and,
at the same time, establishes a connection between x and y. The input-output connection
is not a priori and communications only happen over bound names connected by ν; this is
different from the standard π-calculi where ā is considered as an output to a.

For a technical reason, we introduce not only structural congruence, but also a notion
called structural precongruence ⇛ (cf. Remark 10). A precongruence is like a congruence,
but it is just reflexive and transitive, not necessarily symmetric. We define ⇛ as the smallest
precongruence relation on processes that satisfies the following rules:

P | 0 ⇚⇛ P P | Q ⇚⇛ Q | P (P | Q) | R ⇚⇛ P | (Q | R)
(νwx)(νyz)P ⇚⇛ (νyz)(νwx)P ((νxy)P ) | Q ⇛ (νxy)(P | Q)

where P ⇚⇛ Q means P ⇛ Q and Q ⇛ P , w, x, y, z are distinct in the fourth rule and
x, y /∈ fn(Q) in the fifth rule. Unlike the structural congruence, the restriction of the scope
of (νxy) is not allowed. The structural congruence ≡ is the symmetric closure of ⇛.

The typing rules are rather straightforward. A sort environment, written ∆, is a finite
set of bindings of the form t : T , where t is either a name x or τ , such that the names in ∆
are pairwise distinct. The sort assignment relation ∆ ⊢ P is the least relation closed under
the rules listed in Figure 1.

2.2 Reduction semantics
As mentioned in Section 1, a one-step reduction in our calculus corresponds to a multi-step
reduction in the conventional calculus. So we first introduce the conventional reduction
relation −→ and then define a new reduction relation =⇒ using the conventional reduction.

The standard reduction relation ℓ−→ (ℓ = τ or 0) is defined by the base rules

(νw⃗z⃗)(νāa)(!a(x⃗).P | ā⟨y⃗⟩ | Q) 0−→ (νw⃗z⃗)(νāa)(!a(x⃗).P | P{y⃗/x⃗} | Q)

(νw⃗z⃗)(τ.P | Q) τ−→ (νw⃗z⃗)(P | Q)

4 Another notable characteristic of the πF -calculus is that it does not have non-replicated inputs a(x⃗).P .
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together with the structural rule which concludes P
ℓ−→ Q from P ⇛ P ′ ℓ−→ Q′ ⇛ Q for some

P ′ and Q′. We write P −→ Q if the label is not important. The following is an example of a
(multi-step) reduction:

(νāa)(ν b̄b)(τ.ā⟨m⟩ | !a(x).b̄⟨x⟩ | !b(y).!c(z).P )
τ−→ (νāa)(ν b̄b)(ā⟨m⟩ | !a(x).b̄⟨x⟩ | !b(y).!c(z).P )
0−→ (νāa)(ν b̄b)(!a(x).b̄⟨x⟩ | b̄⟨m⟩ | !b(y).!c(z).P )
0−→ (νāa)(ν b̄b)(!a(x).b̄⟨x⟩ | !c(z).P{m/y} | !b(y).!c(z).P ).

In our calculus, the output action b̄⟨x⟩ in !a(x).b̄⟨x⟩ (resp. ā⟨m⟩ in τ.ā⟨m⟩) must be
performed at the same time as the input action a(x) (resp. τ). Therefore, the above
multi-step reduction should be regarded as a one-step reduction:

(νāa)(ν b̄b)(τ.ā⟨m⟩ | !a(x).b̄⟨x⟩ | !b(y).!c(z).P )
=⇒ (νāa)(ν b̄b)(!a(x).b̄⟨x⟩ | !c(z).P{m/y} | !b(y).!c(z).P ).

We formally define =⇒. A process P has an unguarded output action if P ≡ (νw⃗z⃗)(ā⟨x⃗⟩ | Q)
for some Q. A process with an unguarded output action is regarded as an incomplete,
intermediate state that needs to perform further actions to complete an “atomic operation”.
We say that P is settled if P has no unguarded output action. We write P =⇒ Q if P

τ−→( 0−→)∗ Q

and Q is settled.
The notion of barbed congruence can be easily adapted to this setting.

▶ Definition 3 (Barbed bisimulation and barbed congruence). Let R be a binary relation on
settled processes. We say that R is a barbed bisimulation if whenever P R Q,
1. P↓τ

ā if and only if Q↓τ
ā

2. P =⇒ P ′ implies Q =⇒ Q′ and P ′ R Q′ for some process Q′

3. Q =⇒ Q′ implies P =⇒ P ′ and P ′ R Q′ for some process P ′,

where P↓τ
ā means that P

τ−→ ( 0−→)∗ ≡ (νx⃗y⃗)(ā⟨z⃗⟩ | P ′) and ā is a free name of P .
The barbed bisimilarity •∼τ is the largest barbed bisimulation. Processes P and Q are

barbed congruent, written P ≃c
τ Q, if τ.C[P ] •∼ τ.C[Q] for all context C. (The additional

τ -prefixing is to ensure that the processes are settled.)

The main result of this paper is that there exists a categorical model that is fully abstract
with respect to ≃c

τ . We use the categorical structure named compact closed Freyd category [19]
to interpret πF -calculus processes. The proof is given in the subsequent sections.

▶ Theorem 4. πF -processes modulo ≃c
τ forms a compact closed Freyd category. Hence there

exists a compact closed Freyd category that is fully abstract with respect to ≃c
τ .

The proof can be easily adapted to prove a similar claim for any other congruence that
subsumes ≃c

τ , such as weak barbed congruence (for =⇒).

2.3 Relationship to the standard semantics
We have introduced two reduction relations to the πF -calculus, namely −→ and =⇒. There
exists an embedding of the πF -calculus with −→ to that with =⇒.

The translation is quite simple: it replaces each output action ā⟨x⃗⟩ with τ.ā⟨x⃗⟩, reflecting
the fact that an output action in the standard semantics can be delayed. Let us write (−)†

for this translation. It preserves the semantics in the following sense.

FSCD 2021



32:6 Output Without Delay

▶ Proposition 5. Suppose ∆ ⊢ P . Then (i) P −→ Q implies (P )† =⇒ (Q)†, (ii) (P )† =⇒ Q′

implies Q′ = (Q)† and P −→ Q for some Q, and (iii) P↓ā iff (P )†↓τ
ā.

From this proposition and the compositionality of (−)†, we obtain the following result.
Let ≃c for the conventional (strong) barbed congruence for πF -processes, defined by replacing
=⇒ with −→ and ↓τ

ā with ↓ā (i.e. existence of a free unguarded output ā) in Definition 3.

▶ Theorem 6. If ∆ ⊢ P , ∆ ⊢ Q and (P )† ≃c
τ (Q)†, then P ≃c Q.

This translation, however, is not fully abstract with respect to barbed congruence. Contexts
that are not in the image of the translation (−)† give additional observational power.

3 Overview

To prove Theorem 4, we appeal to an axiomatic characterisation of compact closed Freyd
category, proved in [19]: πF -processes modulo an equivalence relation R forms a compact
closed Freyd category if and only if R is a congruence satisfying six axioms5, such as (2) and

(νāa)(!a(x⃗).P | C[ā⟨y⃗⟩]) = (νāa)(!a(x⃗).P | C[P{y⃗/x⃗}]), a /∈ fn(P, C), ā /∈bn(C), (3)

where C is a context. Since barbed congruence is a congruence by definition, it suffices to
check that barbed congruence satisfies the axioms.

However, checking the required axioms directly using the definition of =⇒ in Section 2

does not seem tractable. Recall that P =⇒ Q is indeed a reduction sequence P
τ−→ P1

0−→

. . .
0−→ Pn

0−→ Q. The problem is that Pi
0−→ Pi+1 is defined in terms of the structure of Pi,

which may be quite different from that of P . A representation of reduction sequence defined
by structural induction on P , without directly referring to Pi, would be desirable.

We thus utilise the correspondence of (i) reduction sequences, (ii) derivations in an
intersection type system, and (iii) linear approximations [21, 14].

An example of a linear approximation is (a1.τ1.ā2 ∥ a2.⊥) ⊏ !a.τ.ā where the green part is
the linear approximation of the right-hand side. A linear approximation is linear in the sense
that each name is used exactly once and all inputs are non-replicated; it is an approximation
in the sense that some part is discarded (e.g. ⊥ ⊏ τ.ā or ⊥ ⊏!a.τ.ā) and replicated inputs
are replaced by a finite number of its copies (e.g. (a1.τ1.ā2 ∥ a2.⊥) ⊏ !a.τ.ā).6

To see how a linear approximation corresponds to a reduction sequence, let us consider
the following linear approximation:

(ν[⟨ā1, a1⟩⟨ā2, a2⟩⟨ā3, a3⟩])((a1.τ1.(ā2 | ā3) ∥ a2.⊥) | τ2.ā1 | a3.⊥)
⊏ (νāa)(!a.τ.(ā | ā) | τ.ā | !a.τ.b̄).

Because of linearity, a linear approximation is race-free; hence it induces an essentially unique
reduction sequence. For example,

(ν[⟨ā1, a1⟩⟨ā2, a2⟩⟨ā3, a3⟩])((a1.τ1.(ā2 | ā3) ∥ a2.⊥) | τ2.ā1 | a3.⊥) (4)
τ2−→ 0−→ (ν[⟨ā2, a2⟩⟨ā3, a3⟩])(a2.⊥ | τ1.(ā2 | ā3) | a3.⊥)
τ1−→ 0−→ (ν[⟨ā2, a2⟩])(a2.⊥ | (ā2 | ⊥) | ⊥) 0−→ (ν[])(⊥ | (⊥ | ⊥) | ⊥).

5 The axioms can be found in the Appendix A; please refer to [19] for a more detailed description.
6 In the approximation, | represents parallel-composition coming from the original process, whereas p ∥ q

means that p and q originate from the same replicated (sub)process.
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Importantly a reduction sequence of an approximation canonically induces that of the
approximated process: the reduction sequence corresponding to (4) is

(νāa)(!a.τ.(ā | ā) | τ.ā | !a.τ.b̄) τ−→ 0−→ (νāa)(!a.τ.(ā | ā) | τ.(ā | ā) | !a.τ.b̄) (5)
τ−→ 0−→ (νāa)(!a.τ.(ā | ā) | (ā | τ.b̄) | !a.τ.b̄)
0−→ (νāa)(!a.τ.(ā | ā) | (τ.(ā | ā) | τ.b̄) | !a.τ.b̄).

Via the three-way correspondence mentioned above, this phenomenon can be understood as
Subject Reduction of the intersection type system.

Conversely, given a reduction sequence, we can construct a linear approximation that
represents the reduction sequence. This is a consequence of Subject Expansion, namely, p ⊏ P

and Q −→ P imply q ⊏ Q and q −→ p for some q. The approximation for P1 −→ P2 −→ . . . −→ Pn

is obtained by iteratively applying this lemma to pn ⊏ Pn, where pn is the approximation
that discards everything.

So far, we have discussed a relationship between {Q | P −→∗ Q } and { p | p ⊏ P }.
This relation can be seen as a bisimulation, by appropriately introducing a relation to
{ p | p ⊏ P }. Note that such a relation is not the reduction, since p −→ q changes the subject,
i.e. q ⊏ Q for some Q with P

0−→ Q but not q ⊏ P . Instead, we introduce an “ordering”
over approximations of P . The idea is that a longer reduction sequence corresponds to a
larger approximation. We write p1 ⊴ p2 if p1 is obtained by discarding some (sub)processes
of p2. For example, the second step of (5) corresponds to

(ν[⟨ā1, a1⟩])((a1.⊥) | τ2.ā1 | ⊥) ⊴ (ν[⟨ā1, a1⟩⟨ā3, a3⟩])(a1.τ1.(⊥ | ā3) | τ2.ā1 | a3.⊥),

representing that the third process in (5) is obtained by performing the actions corresponding
to τ1 and ā3.

The bisimilarity gives us a characterisation of the behaviour of a process P in terms of linear
approximations (or intersection type derivations) for P . Then Theorem 4 can be proved by
“proof manipulation”. For example, the proof of the above mentioned axiom (νāa)(!a(x⃗).P |
C[ā⟨y⃗⟩]) = (νāa)(!a(x⃗).P | C[P{y⃗/x⃗}]) resembles to the proof of the substitution lemma in
a typical type system.

4 Linear approximation and execution sequence

We introduce linear processes by which executions of processes can be described.

4.1 Linear processes and intersection types
We start by defining linear processes. Although the definition of linear processes depends
on the definition of intersection types because processes are annotated by types, we defer
defining types for the sake of presentation.

▶ Definition 7 (Linear processes). A linear name is an object of the form xi where x is an
ordinary name and i is a natural number. Similarly, a linear term, denoted by t, is either a
linear name or a constant of the form τi.

Linear processes are defined by the following grammar:

p, q ::= 0 | xi⟨λ1, . . . , λn⟩ | xi(µ1, . . . , µn).p | τi.p

| (p | q) | (p1 ∥ · · · ∥ pn) | (ν[⟨xi1 , yi1⟩ρ1 , . . . , ⟨xin
, yin
⟩ρn

])p
µ ::= ⟨xi1 , . . . , xin⟩ λ ::= ⟨φ1 � xi1 , . . . , φn � xin⟩

FSCD 2021



32:8 Output Without Delay

Here name restriction is annotated with types ρi, and the argument of an output action is
annotated with witnesses of type isomorphisms φi. (The notion of types and type isomorphisms
are introduced below and thus can be ignored for the moment.) In the above definition n may
be 0; for example, (ν[])p and ⟨⟩ are valid process and list, respectively. We require that each
linear term of a linear process appears exactly once.

The informal meanings of the constructs are almost the same as that of the ordinary
processes. The linear processes 0, xi⟨λ1, . . . , λn⟩ and xi(µ1, . . . , µn).p are nil process, output
action and input prefixing, respectively. An important difference from the ordinary process
is that, in linear processes, the output and input take lists of variables as arguments. When
a list of linear names is received each element of a list must be used exactly once. There
are two types of parallel composition p | q and p ∥ q. The former is the conventional parallel
composition and the latter is used when a replicated process is approximated by finite parallel
compositions.7 We use Πipi as a shorthand notation of p1 ∥ · · · ∥ pn and write the nullary
composition of ∥ as ⊥. The approximation relation defined later (Section 4.2) may also help
the readers to understand the intuitive meaning of linear processes.

We also identify processes with “similar structure”. The strong structural congruence,
written p ≡0 q over linear processes is the smallest congruence relation that satisfies:

p ∥ q ≡0 q ∥ p (p ∥ q) ∥ r ≡0 p ∥ (q ∥ r)
(ν[⟨x1, y1⟩, . . . , ⟨xn, yn⟩])p ≡0 (ν[⟨xσ(1), yσ(1)⟩, . . . , ⟨xσ(n), yσ(n)⟩])p,

where σ is a permutation over {1, . . . , n}. Given I = {i1, . . . , in}, we write ν[⟨xi, yi⟩]i∈I for
ν[⟨xi1 , yi1⟩, . . . , ⟨xin , yin⟩] because how the pairs ⟨xij , yij ⟩ are ordered is inessential.

We now define the intersection types. The syntax of raw types and raw (indexed)
intersection types are given by the following grammar:

(Raw types) ρ ::= cho
α[θ1, . . . , θm] | chi

α[θ1, . . . , θn]

(Raw intersection types) θ ::=
∧
i∈I

(i, ρi)

where I ⊆fin Nat and α ranges over the set of levels (A,≤), a universal poset in which
any finite poset can be embedded into. In the above grammar, an intersection

∧
i∈I(i, ρi)

is a map i 7→ ρi from I to types. The intuitive meaning of
∧

i∈I(i, ρi) is the intersection
ρi1 ∧ ρi2 ∧ · · · ∧ ρin

provided that I = {i1 < i2 < · · · < in}.
Levels express timing information, and types are defined as raw types with “appropriate

levels”. Let us write lv(ρ) and lv(θ) for the set of levels that appear in ρ and θ, respectively.
Then types and intersection types are inductively defined as follows: chm

α [θ1, . . . , θn] (m ∈
{i, o}) is a type if θi is an intersection type for all i ∈ {1, . . . , n} and α ≤ γ for all
γ ∈ lv(θ1, . . . , θn) and

∧
i∈I(i, ρi) is an intersection type if ρi is a type for all i ∈ I. Hereafter,

we use the metavariables ρ and θ to range over types and intersection types, respectively.

Notations. We define [n] def= {1, . . . , n} for a natural number n. A special symbol • is
introduced to mean undefined type of sort T ; now an intersection type θ can be also be
represented by a (total) function from Nat to the union of the set of types and {•}. We
write (i1, ρi1) ∧ · · · ∧ (in, ρin

) for the intersection type θ such that dom(θ) = {i1 < · · · < in}

7 (For readers familiar with resource calculi) Although the intuitive meaning of p ∥ q is the parallel
composition of p and q, this process should be thought of as an analogous to the bag in the resource
λ-calculi [5, 10].
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and θ(ij) = ρij for every j ∈ [n]. We also write ⊤ for the empty intersection, i.e. θ such
that θ(i) = • for all i ∈ Nat. The dual ρ⊥ of type ρ is defined by cho

α[θ⃗]⊥ def= chi
α[θ⃗] and

chi
α[θ⃗]⊥α

def= cho
α[θ⃗]. We also define θ⊥ by θ⊥(i) def= (θ(i))⊥. In what follows, we may often

omit the annotations φ on the outputs because they are not needed as long as we are dealing
with simple examples.

The type chi
α[θ1, . . . , θn] is for a channel that is used to receive n lists, where the i-

th list has type θi and the type cho
α[θ⃗] is for output channels. If the i-th list has type

(i1, ρ1) ∧ · · · ∧ (im, ρm), it means that the j-the element of the list has type ρj . For ex-
ample, ai(⟨x1, x2⟩, ⟨ȳ1⟩).x1().x2().ȳ1⟨⟨⟩⟩ is well-typed if ai has type chi

α[(1, chi
β [])∧ (2, chi

γ []),
(1, cho

γ [⊤])] with α ≤ β ≤ γ. As mentioned, the levels are used to describe the timing of
actions. In the above example, the level γ tells us that the second element of the first
argument, namely x2, and the first element of the second argument, namely ȳ1, must be
used at the same timing. Levels also describe the fact that x1 must be used before x2 and ȳ1
are used.

Although the intersection types are non-commutative in the sense that (0, ρ) ∧ (1, ρ′) ̸=
(0, ρ′) ∧ (1, ρ), we consider that they are isomorphic. Intuitively, this means that we do
not mind much about the order of elements in a list. For example, we consider that
ā0⟨⟨x0, x1⟩⟩ and ā0⟨⟨x1, x0⟩⟩ are almost identical. Without this identification, we face
a technical problem: an approximation of a forwarder a0(⟨y0, y1⟩).b̄0⟨⟨y1, y0⟩⟩ cannot be
seen as an “identity” because (ν[⟨ā0, a0⟩])(a0(⟨y0, y1⟩).b̄0⟨⟨y1, y0⟩⟩ | ā0⟨⟨x0, x1⟩⟩) “reduces
to” b̄0⟨⟨x1, x0⟩⟩. Another possible way to avoid this problem is to use fully commutative
intersection types. We did not use this approach because, in a commutative type system, the
relationship between linear processes and execution sequences becomes less precise.

▶ Definition 8 (Type isomorphism). We write φ : ρ ∼= ρ′ (resp. φ : θ ∼= θ′) to mean that ρ

and ρ′ (resp. θ and θ′) are isomorphic and that φ is the witness of this isomorphism. This
relation is defined by the rules below:8

id• : • ∼= •
φi : θi

∼= θ′
i (for i ∈ [n])

cho
α[φ1, . . . , φn] : cho

α[θ′
1, . . . , θ′

n] ∼= cho
α[θ1, . . . , θn]

φi : θi
∼= θ′

i (for i ∈ [n])
chi

α[φ1, . . . , φn] : chi
α[θ1, . . . , θn] ∼= chi

α[θ′
1, . . . , θ′

n]

σ : Nat
∼=→ Nat φi : ρi

∼= ρ′
σ(i) (for i ∈ Nat)

(σ, (φi)i∈Nat) :
∧

i∈Nat

(i, ρi) ∼=
∧

i∈Nat

(i, ρ′
i)

▶ Remark 9. The reason for annotating arguments of free outputs with φ is quite technical.
The notion of type isomorphism was taken from the rigid intersection type system given
by Tsukada et al. [21], but in their calculus, witnesses do not appear in the syntax. This is
so because all the (raw) terms in their resource calculus are assumed to be in η-long form.
(See [21] for details.)

Similarly, we may remove witnesses of type isomorphisms from our linear calculus if
there is a way to convert a linear process p to an “equivalent” process p′ that does not
contain any free outputs. A possible way to do this is to transform a free output to a “bound

8 Here,
∧

i∈I
(i, ρi) is considered as a total map

∧
i∈Nat(i, ρi) in which ρi

def= • if i /∈ I.
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φi : θi
∼= θ′

i φi � xi = λi (for i ∈ [n]) α ≤ lv(θ1, . . . , θn)
x1 : θ1 ⊓ · · · ⊓ xn : θn, ā : (i, cho

α[θ′
1, . . . , θ′

n]) ⊢α āi⟨λ1, . . . , λn⟩
(TOut)

Γ, x1 : θ1, . . . , xn : θn ⊢β p idθi
� xi = µi α ≤ β

Γ ⊓ a : (i, chi
β [θ1, . . . , θn]) ⊢α ai(µ1, . . . , µn).p

(TIn)
Γ ⊢β p α ≤ β

Γ ⊓ τ : (i, chi
β []) ⊢α τi.p

(TTau)

Γ1 ⊢α p1 Γ2 ⊢α p2

Γ1 ⊓ Γ2 ⊢α p1 | p2
(TPar)

Γi ⊢α pi (1 ≤ i ≤ n)
Γ1 ⊓ · · · ⊓ Γn ⊢α p1 ∥ · · · ∥ pn

(TRep)

∅ ⊢α 0
(TNil) Γ, ā : θ, a : θ⊥ ⊢α p

Γ ⊢α (ν[⟨āi, ai⟩]i∈dom(θ))p
(TNu)

Figure 2 Typing rules for the intersection type system.

output + forwarder” (cf. [4]). That is to (recursively) transform a free output ā0⟨⟨b̄0⟩⟩ into
(ν[⟨c̄0, c0⟩])(ā0⟨⟨c̄0⟩⟩ | b(µ).c̄0⟨µ⟩). We chose to keep free outputs in the syntax of the linear
process because by doing so, it is easier to see the correspondence between a (non-linear)
process P , which may contain free outputs, and its linear approximation p. Note that we
cannot assume that (non-linear) processes do not contain free outputs because the validity
of the transformation ā⟨b⟩ = (ν c̄c)(ā⟨c̄⟩ | c ↪→ b̄) is not something that is taken for granted
(even if the forwarder does not introduce any delay). Actually, the above translation is an
instance of the rule (2) that we aim to validate in this work.

We define yet another operator θ1 ⊓ θ2 for intersection types which “coalesces” the two
intersection. It is defined by (θ1 ⊓ θ2)(i) def= θ1(i) if i ∈ dom(θ1), (θ1 ⊓ θ2)(i) def= θ2(i) if
i ∈ dom(θ2) and (θ1 ⊓ θ2)(i) def= • otherwise, provided that dom(θ1) ∩ dom(θ2) = ∅.

A type environment, often denoted by Γ, is a finite set of pairs of the form t : θ with
θ ̸= ⊤ such that (t1 : θ1), (t2 : θ2) ∈ Γ implies t1 ̸= t2. For notational convenience, we
may write Γ, x : ⊤ to express Γ, i.e. allow ⊤ to appear in a type environment. We define
dom(Γ) as {t | ∃θ. (t : θ) ∈ Γ} and Γ(t) by Γ(t) def= θ if (t : θ) ∈ Γ and Γ(t) def= ⊤ otherwise.
For type environments Γ1 and Γ2, Γ1 ⊓ Γ2 is defined by pointwise extension of ⊓, that is
Γ1 ⊓ Γ2

def= {(t : θ) | t ∈ dom(Γ1) ∪ dom(Γ2), θ = Γ1(t) ⊓ Γ2(t)} provided that Γ1(t) ⊓ Γ2(t) is
defined for t ∈ dom(Γ1) ∪ dom(Γ2); otherwise Γ1 ⊓ Γ2 is undefined.

We consider judgments of the form Γ ⊢α p and the typing rules are given in Figure 2. We
stipulate that the deduction is allowed only if the result of the ⊓ operation in the conclusion
is defined. The operation φ � x used in the above definition is defined by

(σ, (φi)i∈Nat) � x
def= ⟨φσ−1(i1) � xσ−1(i1), . . . , φσ−1(in) � xσ−1(in)⟩,

where (σ, (φi)i∈Nat) : θ ∼= θ′ and dom(θ′) = {i1 < · · · < in}; similarly idθ � x is also used to
express ⟨xi1 , . . . , xin

⟩ when dom(θ) = {i1 < · · · < in}.
Let us explain how the subscript α of ⊢α is used; the other parts of the typing rule should

be easy to understand. The intuitive meaning of the subscript α of ⊢α is the “current time”.
The typing rule for output actions ensures that the “level of āi” is the “current time”, that is
the rule ensures that the output cannot be delayed. On the other hand, we may delay an
input or a τ action. For example, in the rule (TIn), the “level of ai” can be greater than
α meaning that we can delay the use of ai. The rule (TIn) also says that the “level of ai”
must be equal to the level assigned to Γ, x1 : θ1, . . . , xn : θn ⊢β p. This expresses the fact
that the unguarded outputs in p must be used as soon as ai is used, i.e. there cannot be any
delay between an input and an output.
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x : {i1, . . . , in} ⊢ ⟨φ1 � xi1 , . . . , φn � xin ⟩ ⊏ x ⊢ 0 ⊏ 0 ⊢ ⊥ ⊏ τ.P

Xj ⊢ λj ⊏ xj (for j ∈ [n])
X1 ⊓ · · · ⊓ Xn ⊓ ā : {i} ⊢ āi⟨λ1, . . . , λn⟩ ⊏ ā⟨x1, . . . , xn⟩

X ⊢ p ⊏ P

X ⊓ τ : {i} ⊢ τi.p ⊏ τ.P

X, x1 : S1, . . . , xn : Sn ⊢ p ⊏ P xj : Sj ⊢ µj ⊏ xj (for j ∈ [n])
X ⊓ a : {i} ⊢ ai(µ1, . . . , µn).p ⊏ a(x1, . . . , xn).P

X1 ⊢ p ⊏ P X1 ⊢ q ⊏ Q

X1 ⊓ X2 ⊢ p | q ⊏ P | Q

Xi ⊢ pi ⊏ P (for i ∈ [n])
X1 ⊓ · · · ⊓ Xn ⊢ p1 ∥ · · · ∥ pn ⊏ !P

X, x : S, y : S ⊢ p ⊏ P S = {i1, . . . , in} ρi ⊏ T (for i ∈ S)
X ⊢ (ν[⟨xi1 , yi1 ⟩ρi1

, . . . , ⟨xin , yin ⟩ρin
])p ⊏ (νT xy)P

Figure 3 Rules for approximation relation. We stipulate that the deduction is allowed only if the
result of the ⊓ operation in the conclusion is defined.

4.2 Approximation
In this subsection we show how sorts are refined by intersection types and processes are
approximated by linear processes.

Given a sort T , the refinement relation ρ ⊏ T (resp. θ ⊏ T ), meaning that the type ρ

(resp. the intersection type θ) refines the sort T , is defined by the following rules:

θi ⊏ Ti (i ∈ [n]) m ∈ {i, o}
chm

α [θ1, . . . , θn] ⊏ chm[T1, . . . , Tn]
ρi ⊏ T (i ∈ I ⊆fin Nat)∧

i∈I

(i, ρi) ⊏ T
.

We write Γ ⊏ ∆ if (x : θ) ∈ Γ implies that (x : T ) ∈ ∆ for some T and θ ⊏ T .
Next we show how processes are approximated by linear processes.
A term refinement X is a finite set of the form t1 : S1, . . . , tn : Sn such that Si ⊆fin Nat

and i ̸= j implies ti ̸= tj , where each ti is a (non-linear) channel name or the constant τ .
The set Si expresses how many times ti is used in the approximation. Notations X(t) and
X1 ⊓ X2 are defined analogous to Γ(t) and Γ1 ⊓ Γ2. There is a canonical way to obtain
a term refinement from a type environment: given a type environment Γ, we define Γ♮ as
{(t : dom(Γ(t))) | t ∈ dom(Γ)}.

An approximation judgement is of the form X ⊢ p ⊏ P and inference rules for judgments
are given in Figure 3. It should be emphasized that we do not allow ⊥ ⊏ ā⟨x⃗⟩, that is we
ensure that all the output actions are used. Note that we can discard an output action that
is guarded by τ , i.e. ⊥ ⊏ τ.ā⟨x⃗⟩, and this is why the translation (−)† defined in Section 2
allows us to relate the reduction −→ with =⇒.

4.3 Reduction
This subsection defines the reduction relation for linear processes. We also show that every
reduction sequence from P has a representation by a linear process that approximates P .

The reduction relation of linear processes is almost the same as that of processes except
for the fact that we take actions of type isomorphisms to linear processes into account. The
action of φ to linear processes is defined by the rules in Figure 4. It is defined via the
action of type isomorphisms on subject names and operation {φ � y/x}, which substitutes

FSCD 2021
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⟨φ1 � xi1 , . . . , φk � (φ′ � xik ), . . . , φn � xin ⟩ def= ⟨φ1 � xi1 , . . . , (φk ◦ φ′) � xik , . . . , φn � xin ⟩

(cho[φ] � āi)⟨⟨φ′
i1

� xi1 , . . . , φ′
in

� xin ⟩⟩ def= āi⟨⟨(φi1 ◦ φ′
σ(i1)) � xσ(i1), . . . , (φin ◦ φ′

σ(in)) � xσ(in)⟩⟩

(chi[φ] � ai)(⟨xi1 , . . . , xin ⟩).p def= ai(⟨xi1 , . . . , xin ⟩).p{φσ−1(j) � xσ−1(j)/xj}j∈{i1,...,in}

Figure 4 Action of isomorphisms on linear (monadic) processes where φ = (σ, (φi)) in the last
two equations; the action on polyadic processes is defined similarly.

φ � y to x. The substitution {φ � y/x} works as the standard substitution, except for the
fact the action of φ is performed after the substitution. The witness φ2 ◦ φ1 : ρ1 ∼= ρ3 is the
composition of φ1 : ρ1 ∼= ρ2 and φ2 : ρ2 ∼= ρ3, which is defined as in the case of rigid resource
calculus [21]. (The definition of φ2 ◦ φ1 is not necessary to understand the following content;
see Appendix B.1 for the definition.) For readability, given λ

def= ⟨φ1 � y1, . . . , φn � yn⟩ and
µ

def= ⟨x1, . . . , xn⟩, we write {λ/µ} to denote {φ1 � y1/x1, . . . , φn � yn/xn}.
The structural precongruence ⇛ over linear process is the smallest precongruence relation

that contains ≡0, contains α-equivalence and satisfies:

0 | p ⇚⇛ p p | q ⇚⇛ q | p (p | q) | r ⇚⇛ p | (q | r)
(ν[⟨w⃗, z⃗⟩])(ν[⟨y⃗, z⃗⟩])p ⇚⇛ (ν[⟨y⃗, z⃗⟩])(ν[⟨w⃗, x⃗⟩])p (fn(w⃗, x⃗) ∩ fn(y⃗, z⃗) = ∅)
(ν[⟨x1, y1⟩, . . . , ⟨xn, yn⟩])p | q ⇛ (ν[⟨x1, y1⟩, . . . , ⟨xn, yn⟩])(p | q) (x⃗, y⃗ /∈ fn(q))

where p ⇚⇛ q means p ⇛ q and q ⇛ p. The structural congruence ≡ for linear processes is
defined as symmetric closure of ⇛.

We define the one-step reduction relation over well-typed linear processes by the base rule

(ν ξ⃗)(ν[⟨āj , aj⟩]j∈J)(Πi∈Iai(µi1, . . . , µini
).pi | ām⟨λ1, . . . , λn⟩ | q) 0−→

(ν ξ⃗)(ν[⟨āj , aj⟩]j∈J′)(Πi∈I′ai(µi1, . . . , µini
).pi | pm{λ1/µm1, . . . , λn/µmn} | q)

where (ν ξ⃗) is a sequence of name restrictions, m ∈ I ⊆ J , J ′ = J \ {m} and I ′ = I \ {m},
and the structural rule which concludes p

0−→ q from p ⇛ p′ and p′ 0−→ q. The relation τ−→
is obtained by replacing the base rule of the 0−→ with (ν ξ⃗)(τi.p | q) τ−→ (ν ξ⃗)(p | q).

▶ Remark 10. We use ⇛ instead of ≡ in the definition of reduction because X ⊢ p ⊏ P and
p ≡ q does not ensure the existence of Q such that X ⊢ q ⊏ Q and P ≡ Q. For instance,
if P

def= (νāa)(!a(x).R | τ.ā⟨y⟩) then (ν[])(⊥ | ⊥) approximates P and this linear process is
structurally congruent to (ν[])⊥ | ⊥, but there is no Q such that (ν[])⊥ | ⊥ ⊏ Q and P ≡ Q.

We now show the relationship between execution sequences and linear approximations.
Let us write P

π−→ Q if there exists a sequence P = P0
l1−→ P1

l2−→ · · · ln−→ Pn = Q, where
each li is either 0 or τ , and π = l1l2 . . . ln; p

π−→ q is defined similarly. We write (p π−→ q) ⊏
(P π−→ Q) if there exists p = p0

l1−→ · · · ln−→ pn = q and P = P0
l1−→ · · · ln−→ Pn = Q such

that Xi ⊢ pi ⊏ Pi for some Xi for each i ∈ {0, . . . , n} and π = l1 · · · ln.

▶ Proposition 11. Let τ : chi[] ⊢ P , i.e. let P be a process without any free names.
1. Suppose that Γ ⊢α p and Γ♮ ⊢ p ⊏ P . If p

π−→ q then we have (p π−→ q) ⊏ (P π−→ Q) for
some Q.

2. Assume P
π−→ Q, Γ ⊢α q and Γ♮ ⊢ q ⊏ Q. Then we have (p π−→ q) ⊏ (P π−→ Q) for

some p.
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5 LTS based on linear approximations

Using the notion of linear processes, we introduce a labelled transition system (LTS) for
processes in the form of a presheaf to describe the behaviour of processes in which outputs
cannot be delayed. Intuitively, the LTS that describes the behaviour of P is given as an
LTS whose states are linear approximations of P and transition relation is the extension
relation ⊴, which we briefly explained in Section 3. This LTS will be presented as a presheaf
following the view that presheaves can be regarded as transition systems [9, 23].

5.1 Extension relation
We now define an ordering p′ ⊴ p over linear processes, which may be read as “p extends p′”.
Giving a larger linear approximation corresponds to extending an execution sequence.

Before we define the extension relation on linear processes, we define the extension relation
over types.

▶ Definition 12. Let A be a set of levels. Restriction of types and intersection types are
inductively defined by:

cho
α[θ1, . . . , θn]↾A

def=
{

cho
α[θ1↾A, . . . , θn↾A] (if α ∈ A)

• (otherwise)
and (θ↾A)(i) def= θ(i)↾A.

where restrictions over input types are defined similar to that of output types. The restriction
of type isomorphisms φ↾A is defined in a similar manner. (See the appendix for details.) We
write ρ′ <: ρ and if ρ′ = ρ↾A for some A ⊆ A and φ′ <: φ if φ′ = φ↾A for some A ⊆ A.

The extension relation on linear processes, written p′ ⊴ p, is inductively defined by the
rules in Figure 5. For example, a1(⟨⟩).⊥ ⊴ a1(⟨x1⟩).τ1.x1⟨⟩ holds and this intuitively means
that !a(x).x⟨⟩ a(x)−−−→ !a(x).x⟨⟩ | x⟨⟩ can be extended to !a(x).x⟨⟩ a(x)−−−→ !a(x).x⟨⟩ | x⟨⟩ x⟨⟩−−→
!a(x).x⟨⟩ | 0 (under the assumption that both of the linear processes approximate !a(x).x⟨⟩).

Extending a linear process does not precisely correspond to extending an execution
sequence: there are cases where an execution sequence cannot be extended even if the
corresponding linear process can be extended. This problem is due to the existence of dead-
locks. For instance, we have (ν[])(ν[])(⊥ | ⊥) ⊴ (ν[⟨ā1, a1⟩])(ν[⟨b̄1, b1⟩])(a1.τ1.b̄1 | b1.τ2.ā1),
but both of the linear processes are not reducible. To exclude linear processes that may
create a deadlock, we introduce the notion of terminable processes:

▶ Definition 13. A linear process p is idle if it has no action (input, output nor τ),
i.e. consisting of 0, ⊥, | and ν[]. A linear process p is terminable if (ν ξ⃗).(p | q) 0−→

∗
r for

some ξ⃗, q and idle r.

Only terminable processes will be used as the states of the LTS.
In case p and p′ correspond to executions that only consists of 0−→ and τ−→ the intuition

that p ⊴ p′ corresponds to “extending execution sequences” can be formalised as follows:

▶ Proposition 14. Let τ : chi[] ⊢ P and let R be a relation between execution sequences
starting from P and well-typed terminable linear approximations of P such that (P π−→ Q) R p

if and only if (p π−→ q) ⊏ (P π−→ Q) for a process q that is typed under the empty environment.
Then if (P π−→ Q) R p

1. Q
π′

−→ Q′ implies that (P π−→ Q
π′

−→ Q′) R p′ and p ⊴ p′ for some p′.
2. if p ⊴ p′ for some terminable well-typed linear process p′ that approximates P , then there

is an execution Q
π′

−→ Q′ such that (P π−→ Q
π′

−→ Q′) R p′.
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I = {i1 < · · · < im} J = {j1 < · · · < jn} J ⊆ I φ′
i <: φi (for i ∈ J)

⟨φ′
j1

� xj1 , . . . , φ′
jn

� xjn ⟩ ⊴ ⟨φi1
� xi1 , . . . , φim

� xim ⟩

0 ⊴ 0 ⊥ ⊴ τi.p

p ⊴ q

τi.p ⊴ τi.q

J ⊆ I ρ′
i <: ρi (for i ∈ J) p ⊴ q

(ν[⟨āi, ai⟩ρ′
i
]i∈J )q ⊴ (ν[⟨āi, ai⟩ρi ]i∈I)p

λ′
j ⊴ λj (for j ∈ [n])

āi⟨λ′
1, . . . , λ′

n⟩ ⊴ āi⟨λ1, . . . , λn⟩
p ⊴ q µ′

j ⊴ µj (for j ∈ [n])
ai(µ′

1, . . . , µ′
n).p ⊴ ai(µ1, . . . , µn).q

⊥ ⊴ ai(µ⃗).q
p′ ⊴ p q′ ⊴ q

p′ | q′ ⊴ p | q

m ≤ n p′
i ⊴ pi p′

i ̸= ⊥ (for i ∈ [m])
p′

1 ∥ · · · ∥ p′
m ⊴ p1 ∥ · · · ∥ pn

Figure 5 Rules for extension relation. Here we identify processes up to ≡0.

5.2 Presheaf semantics
We define the LTS of ∆ ⊢ P as a presheaf JP K : E∆ → Sets. Roughly speaking, the
path category E∆ is a category of type environments that refines ∆ and JP K maps a type
environment Γ to the set of approximations of P that is typed under Γ.

Actually, the objects of the path category are not only type environments, but the pair
of type environments and the “current time”.

▶ Definition 15. We say that (Γ, α) extends (Γ′, α) and write (Γ′, α) <: (Γ, α) if there exists
a witness A ⊆ lv(Γ) ∪ {α} that satisfies (i) dom(Γ′) ⊆ dom(Γ) and Γ′(t) = Γ(t)↾A, for
t ∈ dom(Γ), (ii) α ∈ A and (iii) A is downward-closed: for every β, γ appearing in Γ, β ≤ γ

and γ ∈ A implies β ∈ A.
We define the category of type environments E∆ to be a category whose objects are (Γ, α)
such that Γ ⊏ ∆ and whose morphisms are given by the relation (Γ′, α) <: (Γ, α).

We now define the presheaf JP K. Given ∆ ⊢ P and Γ ⊏ ∆, the set JP K(Γ, α) is defined
by JP K(Γ, α) def= {p | Γ♮ ⊢ p ⊏ P, Γ ⊢α p and p is terminable}. (Here we are identifying linear
processes up to ≡0.)

▶ Proposition 16. Assume that Γ⊢α p, p is terminable and (Γ′, α)<: (Γ, α). Then there is a
unique (up to ≡0) linear process that satisfy q ⊴ p and Γ′ ⊢α q.

By Proposition 16 there is a map JP K(−,−) that maps an extension relation (Γ′, α) <:
(Γ, α) to a function from JP K(Γ, α) to JP K(Γ′, α) that maps p ∈ JP K(Γ, α) to q such that q ⊴ p

and Γ′ ⊢α q. Given Γ ⊢α p, we will write p↾Γ′,α for the process that is uniquely determined
by the above proposition, provided that (Γ′, α) <: (Γ, α).

▶ Theorem 17. Let ∆ ⊢ P . Then JP K(−,−) is a functor from E∆ to Sets.

▶ Example 18. Consider a process P
def= (νāa)(!a(x).τ.z̄⟨⟩ | !a(x).τ.x⟨ȳ⟩ | ā⟨w̄⟩) such that

∆ ⊢ P , where ∆ def= τ : chi[], w̄ : cho[cho[]], ȳ : cho[], z̄ : cho[]. Then we have

JP K(Γ1, α) = {(ν[⟨ā1, a1⟩])(a1(⟨⟩).⊥ | ⊥ | ā1⟨⟨⟩⟩), (ν[⟨ā1, a1⟩])(⊥ | a1(⟨⟩).⊥ | ā1⟨⟨⟩⟩)}
JP K(Γ2, α) = {(ν[⟨ā1, a1⟩])(⊥ | a1(⟨x1⟩).τ1.x1⟨⟨⟩⟩ | ā1⟨⟨w̄1⟩⟩)}
JP K(Γ3, α) = {(ν[⟨ā1, a1⟩])(⊥ | a1(⟨x1⟩).τ1.x1⟨⟨ȳ1⟩⟩ | ā1⟨⟨w̄1⟩⟩)}
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for Γ1
def= ∅, Γ2

def= τ : (1, chi
β []), w̄ : (1, cho

β [⊤]) and Γ3
def= τ : (1, chi

β []), w̄ : (1, cho
β [(1, cho

γ [])]),
ȳ : (1, cho

γ []) with α < β < γ. Note that (Γ2, α) <: (Γ3, α) because we can take {α, β}
as the witness. We also have (Γ1, α) <: (Γ2, α) since {α} is a witness. The function
JP K((Γ1, α) <: (Γ2, α)) maps the only linear process of JP K(Γ2, α) to the linear process
(ν[⟨a1, ā1⟩])(⊥ | a1(⟨⟩).⊥ | ā⟨⟨⟩⟩).

6 ≃c
τ is a πF -theory

As explained in Section 3, to prove Theorem 4, it suffices to show that (i) ≃c
τ satisfies the

axioms such as (2) and (3), and (ii) that barbed congruence is a congruence relation, which
trivially holds. Instead of directly proving (i), we define a yet another equivalence ∼ and
show that ∼ is a congruence relation that satisfies the axioms and ∼ ⊆ ≃c

τ . These are
relatively easier to show than to directly prove (i).

The equivalence ∼ is defined using the notion of open map bisimulation [12].9 We
write P ∼ Q if and only if JP K and JQK are open map bisimilar, i.e. if there is a span
JP K f←− X

g−→ JQK, where f and g are open maps. A map f : JP K → JQK is called an open
map if for every m : y(Γ1, α1)→ y(Γ, α2), making the square below commute

y(Γ1, α) JP K

y(Γ2, α) JQK

p

m f

q

there is a diagonal map d

y(Γ1, α) JP K

y(Γ2, α) JQK

p

m f

q

d

making the two triangles commute.
Showing that there is an open map f : JP K → JQK is analogous to giving a functional

bisimulation (indexed by (Γ, α)) between JP K(Γ, α) and JQK(Γ, α). The naturality of f means
that f is a simulation because the naturality says f(p)↾Γ1,α = f(p↾Γ1,α). The morphism
f being open ensures that it is not only a simulation, but a bisimulation. The existence
of a diagonal map ensures that if (i) Γ1 ⊢α p and fΓ1,α(p) = q and (ii) Γ2 ⊢α q′ with
(Γ1, α) <: (Γ2, α) and q = q′↾Γ1,α then there is p′ such that fΓ2,α(p′) = q′. In simpler words,
the existence of a diagonal map says that if r(p) = q and “q can be extended as q ⊴ q′” then
“p can be extended accordingly”.

The fact that ∼ satisfies the rules such as (3) (given in Section 3), can be proved by
“proof manipulation”. As explained, to show that P ∼ Q, it suffices to give a functional
bisimulation between JP K(Γ, α) and JQK(Γ, α). As a special case, let us consider the case where
P = (νāa)(!a(x).P | ā⟨y⟩) and Q = (νāa)(!a(x).P | P{y/x}). In this case, a functional
bisimulation f can be defined by f(p) def= q, where p

0−→ q. The proof that this f is a
bisimulation is similar to that of subject reduction/expansion. For example, if f(p) = q and
q ⊴ q′ then it suffices to construct a linear process p′ such that p′ 0−→ q′ (subject to the
condition that p′ is a suitable extension of p) as in the proof of subject expansion. Checking
that ∼ satisfies the other axioms can be done similarly.

We can also show that ∼ is a congruence relation. Checking that ∼ is a congruence is
not that difficult, thanks to the fact that ⊴ is defined according to the structure of a process.
Also note that, unlike in the traditional π-calculus, we do not have any problem with input
prefixing since communication only occurs between names that are explicitly bound by ν in
the πF -calculus. That is, placing a process P into a context C

def= !a(x).[ ] does not add new
possibilities for interactions among names in P .

9 To be more specific, we define the open-map bisimulation in the setting where yE∆ (the Yoneda
embedding of E∆) is the path category and [Eop

∆ , Sets] is the category of models.
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The fact that ∼ is a congruence relation implies the following theorem.

▶ Theorem 19. πF -processes modulo ∼ form a compact closed Freyd category.

The main theorem (Theorem 4), which states the existence of a compact closed Freyd
model that is fully abstract with respect to ≃c

τ , is a consequence of the above theorem and
the following lemma:

▶ Lemma 20. If P ∼ Q then P ≃c
τ Q.

This lemma is proved by showing that ∼ implies •∼τ (and using the fact that ∼ is a
congruence), which basically follows from the relation between linear approximations and
=⇒ (Proposition 14). Roughly speaking, to show that P ∼ Q implies P

•∼τ Q it suffices to
show that the following relation is a barbed bisimulation, where R is the relation used in
Proposition 14.

(Pk, Qk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(P = P0 =⇒ P1 =⇒ · · · =⇒ Pk) R pk

(Q = Q0 =⇒ Q1 =⇒ · · · =⇒ Qk) R qk

pk ∼ qk

for some sequences P = P0 =⇒ P1 =⇒ · · · =⇒ Pk and

Q = Q0 =⇒ Q1 =⇒ · · · =⇒ Qk and

some linear approximations pk and qk


Here p ∼ q means that there exists a span of open maps JP K f← X

g→ JQK and an element x

of X(Γ, α) such that fΓ,α(x) = p and gΓ,α(x) = q, i.e. p and q are “bisimilar states”. Strictly
speaking, we cannot directly use Proposition 14 because P and Q have free outputs. However,
the same argument can be applied to the current situation to show the correspondence
between ⊴ and extending a reduction sequence, which concludes the above lemma.

7 Related Work

The notion of presheaf plays a central role in our work, but we are not the first one to use
presheaf to model the π-calculus. Cattani et al. [8] gave a denotational semantics of the
π-calculus within an indexed category of profunctors. The model is fully abstract in the
sense that bisimulation in the model, obtained from open maps, coincides with strong late
bisimulation. Although their work and our work both use presheaf (or profunctor), they are
conceptually different. Our work is motivated by categorical type theory correspondence,
whereas the work by Cattani et al. [8] is motivated by a desire to obtain a systematic and
algebraic understanding of bisimulation. From a technical point of view, the definition of
the path category is significantly different as well. Their path category is indexed by the
category of finite name sets and injective maps so that it can treat fresh names as in the
domain theoretic models of the π-calculus [20, 11]. On the other hand, our path category is
simply the category of type environments of an intersection type system.

A non-idempotent intersection type system for a variant of the π-calculus has also been
introduced by Dal Lago et al. [13]. This intersection type system is also inspired by the notion
of linear approximation. The connection between linear approximations and intersection
types [14] was applied to the encoding of π-calculus to proof-nets to derive the basis of an
intersection type system for a fragment of the local π-calculus [24, 16] called hyperlocalised



K. Sakayori and T. Tsukada 32:17

π-calculus. They showed that the type system obtained this way characterises some “good
behaviour”, such as deadlock-freedom, of hyperlocalised processes. In contrast to our work,
they use intersection types to guarantee that typable processes are “well-behaved”, rather
than to define the “operational semantics” of the calculus.

As briefly explained in the introduction, the delays that forwarders add has also been an
issue in the field of game semantics. In game semantics, forwarders correspond to copycat
strategies and the delay copycat strategies introduce was an obstacle to model synchronous
computations using game semantics. Game models in which a “copycat strategy that does
not introduce any delay” can be expressed were recently introduced by Castellan and Yoshida
to give a fully abstract game semantics of the synchronous session π-calculus [7] and by
Melliès in a framework called template games [15]. Although these work are apparently
different from ours, we believe that they are relevant to our work given that there is a tight
relationship between game semantics and linear approximations [22]; detailed comparisons
are left for future work.

8 Conclusion

We proposed a variant of the π-calculus whose barbed congruence ≃c
τ can be captured

categorically in return for having a non-standard reduction relation =⇒. Technically, to handle
=⇒, we developed a system of linear approximations that captures the behaviour of a process
and developed an LTS based on linear approximations. The standard reduction relation
→ and =⇒ have been related by the translation (−)†, and we showed that (P )† ≃c

τ (Q)†

implies P ≃c Q (≃c is the conventional barbed congruence). Although we fail to achieve
full abstraction, this result is important because it suggests the possibility of using compact
closed Freyd models to reason about conventional π-calculus via the translation, which is
the future direction we aim to pursue.
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A Compact closed Freyd category and πF -theory

We briefly review the correspondence between the πF -calculus and compact closed Freyd
category originally proposed in [19] to make this paper self-contained.

▶ Definition 21 (Compact closed Freyd category [19]). A compact closed Freyd category is a
Freyd category [18] J : C → K such that (1) K is compact closed, and (2) J has the (chosen)
right adjoint I ⇒ (−) : K → C.

An equivalence E is a πF -theory if it is closed under the following rules. Each rule has
implicit assumptions that the both sides of the equation are well-sorted processes.

a /∈ fn(P, C) ā /∈ bn(C)
Γ ⊢ (νāa)(!a(x⃗).P | C[ā⟨y⃗⟩]) = (νāa)(!a(x⃗).P | C[P{y⃗/x⃗}])

(E-Beta)

a, ā /∈ fn(P )
Γ ⊢ (νāa)!a(y⃗).P = 0

(E-GC)
ā, a /∈ fn(c̄⟨x⃗⟩)

Γ ⊢ c̄⟨x⃗⟩ = (νāa)(a ↪→ b̄ | c̄⟨x⃗{ā/b̄}⟩)
(E-FOut)

b, ā /∈ fn(P )
Γ ⊢ (νāa)(b ↪→ ā | P ) = P{b/a}

(E-Eta)

P ≡ Q

Γ ⊢ P = Q
(E-SCong)

∆ ⊢ P = Q C : Γ/∆-context
Γ ⊢ C[P ] = C[Q]

(E-Ctx)

Here a (Γ/∆)-context is a context C such that Γ ⊢ C[P ] for every ∆ ⊢ P .
Any set Ax of equations-in-context has the minimum theory Th(Ax) that contains Ax.

We write Ax ▷ ∆ ⊢ P = Q if (∆ ⊢ P = Q) ∈ Th(Ax). It should be noted that the original
paper [19] only considers theory over the empty signature and that the πF -calculus over
the empty signature does not have the constant τ . The calculus defined in this paper is a
πF -calculus defined over the signature with a single constant τ : chi[].

The important property that has been used in the body of this paper is that the term
model Cl(Ax) is a compact closed Freyd category for every set of non-logical axioms Ax [19,
Theorem 3]. Given a set Ax of non-logical axioms, the term model Cl(Ax) is defined as
processes modulo Ax ▷∆ ⊢ P = Q. Objects are list of types and a morphism (of the compact
closed category) from T⃗ to S⃗ is an equivalence class [x⃗ : T⃗ , y⃗ : S⃗⊥ ⊢ P ]. The composition of
morphisms is defined by “parallel composition + hiding”. For morphisms P : T⃗ → S⃗ and
Q : S⃗ → U⃗ , i.e. processes such that x⃗ : T⃗ , y⃗ : S⃗⊥ ⊢ P and z⃗ : S⃗, w⃗ : U⃗⊥ ⊢ Q, their composite
is x⃗ : T⃗ , w⃗ : U⃗⊥ ⊢ (νy⃗z⃗)(P |Q). (See [19] for the full definition.)

B Supplementary materials for Section 4

B.1 Groupoid structure of types and type isomorphisms
As expected, the witness of type isomorphisms can be composed so that φ1 : ρ1 ∼= ρ2 and
φ2 : ρ2 ∼= ρ3 implies (φ2 ◦ φ1) : ρ1 ∼= ρ3. Composition of witnesses are defined by:

cho
α[φ′

1, . . . , φ′
n] ◦ cho

α[φ1, . . . , φn] def= cho
α[φ1 ◦ φ′

1, . . . , φn ◦ φ′
n]

chi
α[φ′

1, . . . , φ′
n] ◦ chi

α[φ1, . . . , φn] def= chi
α[φ′

1 ◦ φ1, . . . , φ′
n ◦ φn]

(σ2, (φ′
i)i∈Nat) ◦ (σ1, (φi)i∈Nat) def= (σ2σ1, (φ′

σ1(i) ◦ φi)i∈Nat)
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Types and type isomorphisms forms a groupoid. That is, we can define the inverse operator
(−)−1 for witnesses of type isomorphisms and show that there is an identity idρ : ρ ∼= ρ for every
type ρ. The inverse operator (−)−1 is defined by (chm

α [φ1, . . . , φn])−1 def= chm
α [φ−1

1 , . . . , φ−1
n ]

for m ∈ {i, o} and (σ, (φi)i∈Nat)−1 def= (σ−1, (φ−1
σ−1(i))i∈Nat).

B.2 Subject reduction/expansion and Proposition 11
This section outlines the proof of Proposition 11, which states the correspondence between
execution sequences and linear approximations. The proposition is a consequence of the
subject reduction/expansion lemma. The proof for Proposition 14 (which we omit) is similar;
the only difference is that we also need to take the order ⊴ into account.

As usual, to prove the subject reduction we use a substitution lemma:

▶ Lemma 22 (Substitution Lemma). Suppose that Γ⊓x : (i, ρ) ⊢α p, φ : ρ′ ∼= ρ and Γ⊓y : (j, ρ′)
is defined. Then Γ ⊓ y : (j, ρ′) ⊢α p{φ � yj/xi}.

The proof of this lemma is similar to that of the conventional substitution lemma, except for
the fact that we need to take group actions into account. Similarly, the following lemma can
be proved by induction on the structure of p.

▶ Lemma 23. Let Γ ⊓ x : (i, ρ) ⊢α p, φ : ρ′ ∼= ρ and assume that yj /∈ fn(p). Then
p{φ � yj/xi}{φ−1 � xi/yj} = p

Now the subject reduction/expansion lemmas, and similar lemmas for the τ -reduction
can be stated as follows. We omit the proofs as they can be shown by standard arguments
with the help of Lemma 22 and 23.

▶ Lemma 24 (Subject reduction). Assume that Γ ⊢α p and p
0−→ q. Then we have Γ ⊢α q.

Moreover, if Γ♮ ⊢ p ⊏ P then there exists Q such that Γ♮ ⊢ q ⊏ Q and P
0−→ Q.

▶ Lemma 25. Suppose that Γ ⊓ τ : (i, chi
β []) ⊢α p, β ≤ γ for all γ ∈ lv(Γ) and p

τi−→ q.
Then we have Γ ⊢β q. Moreover, if (♮Γ) ⊓ τ : {i} ⊢ p ⊏ P , then there exists Q such that
Γ♮ ⊢ q ⊏ Q and P

τ−→ Q.

▶ Lemma 26 (Subject expansion). Suppose that P
0−→ P ′, Γ ⊢α p′ and Γ♮ ⊢ p′ ⊏ P ′. Then

there exists p such that Γ ⊢α p, Γ♮ ⊢ p ⊏ P and p
0−→ p′.

▶ Lemma 27. Suppose that P
τ−→ Q, Γ ⊢α q and Γ♮ ⊢ q ⊏ Q. For all i /∈ dom(Γ(τ)), there

exists p and β such that Γ ⊓ τ : (i, chi
β []) ⊢α p, Γ♮ ⊓ τ : {i} ⊢ p ⊏ P and p

τi−→ q.

Now we are ready to prove Proposition 11.

▶ Proposition 11. Let τ : chi[] ⊢ P , i.e. let P be a process without any free names.
1. Suppose that Γ ⊢α p and Γ♮ ⊢ p ⊏ P . If p

π−→ q then we have (p π−→ q) ⊏ (P π−→ Q) for
some Q.

2. Assume P
π−→ Q, Γ ⊢α q and Γ♮ ⊢ q ⊏ Q. Then we have (p π−→ q) ⊏ (P π−→ Q) for

some p.

Proof. (Proof of 1.) Let us write chi
αi

[] for Γ(τ)(i) when i ∈ dom(Γ(τ)). By the assumption
that p

π−→ q, there exists a sequence p = p0
l1−→ · · · ln−→ pn = q. Let τi1 . . . τik

be the
subword of π that is obtained by deleting 0 from π. Without loss of generality, we may
assume that αi1 < · · · < αik

and αik
< α for all α ∈ {αi | i ∈ dom(Γ(τ))} \ {αi1 , . . . , αik

};
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if not we can always reannotate the levels appearing in Γ and use that type environment
instead of Γ. Now suppose that l1 = τi1 . Then we can apply Lemma 25 to obtain P1 such
that P0

τ−→ P1 and Γ♮
1 ⊢ p1 ⊏ P1, where Γ1 is the type environment that satisfy Γ1 ⊢αi1

p1.
If l1 = 0 we can use Lemma 24 instead. By repeating this argument we obtain a sequence
P = P0

l1−→ · · · ln−→ Pn = Q that can be used to show (p π−→ q) ⊏ (P π−→ Q).
(Proof of 2.) Since P

π−→ Q, we have P = P0
l1−→ · · · ln−→ Pn = Q, where π = l1 . . . ln.

Let us consider the case where ln = τ . In this case we can appeal to Lemma 27 (if
ln = 0 we use Lemma 26). By Lemma 27, we have pn−1 such that (1) pn−1

τ−→ q, (2)
Γ ⊓ τ : (i, chi

β []) ⊢β pn−1 and (3) Γ♮ ⊓ τ : {i} ⊢ pn−1 ⊏ Pn−1, for some index i such that
i /∈ dom(Γ(τ)) and some level β. By repeating the argument we obtain p

π−→ q with the
desired property. ◀

C Supplementary materials for Section 5

C.1 Restriction of types and type isomorphisms
▶ Definition 28 (Complete version of Definition 12).
Let A be a set of levels. Restriction of types and intersection types are inductively defined by:

chm
α [θ1, . . . , θn]↾A

def=
{

chm
α [θ1↾A, . . . , θn↾A] (if α ∈ A)

• (otherwise)

(θ↾A)(i) def= θ(i)↾A,

where m ∈ {i, o}.
Similarly, restriction of type isomorphisms is defined by:

chm
α [φ1, . . . , φn] def=

{
chm

α [φ1↾A, . . . , φn↾A] (if α ∈ A)
id• (otherwise)

(σ, (φi)i∈Nat)↾A
def= (σ, (φi↾A)i∈Nat)

where m ∈ {i, o}. We write ρ′ <: ρ (resp. θ′ <: θ) if ρ′ = ρ↾A (resp. θ′ = θ↾A) for some
A ⊆ A and φ′ <: φ if φ′ = φ↾A for some A ⊆ A.

C.2 Overview for the proof of Theorem 17
Here we briefly explain how to show that JP K(−,−) is a presheaf (Theorem 17). Since
Theorem 17, which says that JP K is a presheaf, is an immediate consequence of Proposition 16,
the main goal of this section is to sketch the proof of Proposition 16:

▶ Proposition 16. Assume that Γ⊢α p, p is terminable and (Γ′, α)<: (Γ, α). Then there is a
unique (up to ≡0) linear process that satisfy q ⊴ p and Γ′ ⊢α q.

The proof of Proposition 16 proceeds by induction on the structure of the derivation of
Γ ⊢α p. The non-trivial case is the case of ν-restriction because it is not clear how the type
annotated to the ν binder should be restricted. To handle this case, we use the following
lemmas, which says that “how the annotated type should be restricted is determined by how
the type environment is restricted”.

▶ Lemma 29. Suppose that Γ ⊢α (ν[⟨āi, ai⟩]i∈dom(θ))p and that (ν[⟨āi, ai⟩]i∈dom(θ))p is
terminable. Then lv(θ) ⊆ lv(Γ) ∪ {α}.

FSCD 2021
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▶ Lemma 30. Let (ν[⟨āi, ai⟩]i∈dom(θ))p be a terminable process typed under Γ, i.e. Γ ⊢α

(ν[⟨āi, ai⟩]i∈dom(θ))p. Suppose that (ν[⟨āi, ai⟩]i∈dom(θ′))q ⊴ (ν[⟨āi, ai⟩]i∈dom(θ))p and Γ′ ⊢α

(ν[⟨āi, ai⟩]i∈dom(θ′))q, where Γ′ satisfies Γ′(t)(i) <: Γ(t)(i) for all term t and index i.If there
is a level β such that β ∈ lv(θ) but β /∈ lv(θ′), then there is a term t and an index i such
that β ∈ Γ(t)(i) and β /∈ Γ′(t)(i).

Instead of giving a detailed proof of these lemmas, we look at an example.

▶ Example 31. Let us consider a well typed linear process

τ : (0, chi
β []) ⊢γ (ν[⟨b̄0, b0⟩ρb

])(ν[⟨ā0, a0⟩ρa
])(τ0.ā0⟨⟨b0⟩⟩ | a0(⟨x̄0⟩).x̄0⟨⟨⟩⟩ | b0(⟨⟩))

where ρb = cho
β [] and ρa = cho

α[(0, ρβ)]. The following figure shows the way to point a free
name (or a constant τi) whose type contains the level β ∈ lv(ρb). (In this case we can tell
that the type for τ0 contains β.)

(ν[⟨b̄0, b0⟩])(ν[⟨ā0, a0⟩])(τ0.ā0 ⟨⟨b̄0⟩⟩ | a0 (⟨x̄0⟩).x̄0 ⟨⟨⟩⟩ |b0(⟨⟩))

Let us explain what the pointers mean. A pointer points to a name that must be “executed
at the same time” with the name placed at the source of the pointer. We start from b̄0
because that is the name with type ρb. Since b̄0 is in an object position of an output via
the name ā0 and ā0 is bound, we first look for the name that communicates with ā0, which
is a0 in this case. Because x̄0 is the argument that corresponds to b̄0, the type for x̄0 must
have the level β for its “outermost level”. So now we have another name x̄0 whose type has
β as the “outermost level”, and the link from b̄0 to x̄0 is used to expresses this fact. Now we
look for the place where x̄0 is actually used, this is expressed by the second link. Since x̄0 is
guarded by a0 we now know that a0 must be executed at the same time as x̄0. Because ā0
communicates with a0, we know that ā0 and a0 must be executed simultaneously and thus
we have a pointer from a0 to ā0. The output ā0 is guarded by τ0, so we know that τ0 also
happens at the same time. Because τ0 is a constant we conclude that β appears in the type
environment.

Lemma 29 can be proved by formalising the notion of pointer and generalising the above
procedure.

Lemma 30 can be proved by showing that ⊴ does not create any “dangling pointer”. That
is if q ⊴ p and linear terms tj , ti appearing in p are linked by a pointer, then either tj and
ti both appears in q or tj and ti do not appear in q. This follows from the definition of ⊴
and the way we add pointers. For example, let us consider the case where p is the linear
process depicted above. The only process q such that b̄0 does not appear in q and q ⊴ p is
(ν[])(ν[])(⊥ | ⊥ | ⊥).

With the above lemmas it is straightforward to prove Proposition 16 by induction on
the structure of the derivation of Γ ⊢α p and Theorem 17 follows as a corollary of this
proposition.
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