
36th Computational Complexity
Conference

CCC 2021, July 20–23, 2021, Toronto, Ontario, Canada
(Virtual Conference)

Edited by

Valentine Kabanets

LIPIcs – Vo l . 200 – CCC 2021 www.dagstuh l .de/ l ip i c s

Editors

Valentine Kabanets
School of Computing Science
Simon Fraser University
Burnaby, BC
Canada
kabanets@cs.sfu.ca

ACM Classification 2012
Theory of computation

ISBN 978-3-95977-193-1

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-193-1.

Publication date
July, 2021

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CCC.2021.0

ISBN 978-3-95977-193-1 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:kabanets@cs.sfu.ca
https://www.dagstuhl.de/dagpub/978-3-95977-193-1
https://www.dagstuhl.de/dagpub/978-3-95977-193-1
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.CCC.2021.0
https://www.dagstuhl.de/dagpub/978-3-95977-193-1
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

CCC 2021

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Valentine Kabanets . 0:ix

Awards
. 0:xi

Conference Organization
. 0:xiii

External Reviewers
. 0:xv

Papers

Rate Amplification and Query-Efficient Distance Amplification for Linear LCC
and LDC

Gil Cohen and Tal Yankovitz . 1:1–1:57

An Improved Protocol for the Exactly-N Problem
Nati Linial and Adi Shraibman . 2:1–2:8

Proof Complexity of Natural Formulas via Communication Arguments
Dmitry Itsykson and Artur Riazanov . 3:1–3:34

A Lower Bound on Determinantal Complexity
Mrinal Kumar and Ben Lee Volk . 4:1–4:12

Optimal Tiling of the Euclidean Space Using Permutation-Symmetric Bodies
Mark Braverman and Dor Minzer . 5:1–5:48

On the Power and Limitations of Branch and Cut
Noah Fleming, Mika Göös, Russell Impagliazzo, Toniann Pitassi, Robert Robere,
Li-Yang Tan, and Avi Wigderson . 6:1–6:30

Separating ABPs and Some Structured Formulas in the Non-Commutative Setting
Prerona Chatterjee . 7:1–7:24

The (Generalized) Orthogonality Dimension of (Generalized) Kneser Graphs:
Bounds and Applications

Alexander Golovnev and Ishay Haviv . 8:1–8:15

Shadows of Newton Polytopes
Pavel Hrubeš and Amir Yehudayoff . 9:1–9:23

Fractional Pseudorandom Generators from Any Fourier Level
Eshan Chattopadhyay, Jason Gaitonde, Chin Ho Lee, Shachar Lovett, and
Abhishek Shetty . 10:1–10:24

Deterministic Identity Testing Paradigms for Bounded Top-Fanin Depth-4 Circuits
Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena . 11:1–11:27

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Robustly Self-Ordered Graphs: Constructions and Applications to
Property Testing

Oded Goldreich and Avi Wigderson . 12:1–12:74

Barriers for Recent Methods in Geodesic Optimization
W. Cole Franks and Philipp Reichenbach . 13:1–13:54

Communication Complexity with Defective Randomness
Marshall Ball, Oded Goldreich, and Tal Malkin . 14:1–14:10

On the Cut Dimension of a Graph
Troy Lee, Tongyang Li, Miklos Santha, and Shengyu Zhang . 15:1–15:35

On p-Group Isomorphism: Search-To-Decision, Counting-To-Decision, and
Nilpotency Class Reductions via Tensors

Joshua A. Grochow and Youming Qiao . 16:1–16:38

Branching Programs with Bounded Repetitions and Flow Formulas
Anastasia Sofronova and Dmitry Sokolov . 17:1–17:25

A Majority Lemma for Randomised Query Complexity
Mika Göös and Gilbert Maystre . 18:1–18:15

Hitting Sets and Reconstruction for Dense Orbits in VPe and ΣΠΣ Circuits
Dori Medini and Amir Shpilka . 19:1–19:27

Variety Evasive Subspace Families
Zeyu Guo . 20:1–20:33

A Lower Bound for Polynomial Calculus with Extension Rule
Yaroslav Alekseev . 21:1–21:18

Error Reduction for Weighted PRGs Against Read Once Branching Programs
Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma 22:1–22:17

A Stress-Free Sum-Of-Squares Lower Bound for Coloring
Pravesh K. Kothari and Peter Manohar . 23:1–23:21

Junta Distance Approximation with Sub-Exponential Queries
Vishnu Iyer, Avishay Tal, and Michael Whitmeyer . 24:1–24:38

Arithmetic Circuit Complexity of Division and Truncation
Pranjal Dutta, Gorav Jindal, Anurag Pandey, and Amit Sinhababu 25:1–25:36

SOS Lower Bound for Exact Planted Clique
Shuo Pang . 26:1–26:63

A Direct Product Theorem for One-Way Quantum Communication
Rahul Jain and Srijita Kundu . 27:1–27:28

Quantum Complexity of Minimum Cut
Simon Apers and Troy Lee . 28:1–28:33

On the Complexity of Evaluating Highest Weight Vectors
Markus Bläser, Julian Dörfler, and Christian Ikenmeyer . 29:1–29:36

On Query-To-Communication Lifting for Adversary Bounds
Anurag Anshu, Shalev Ben-David, and Srijita Kundu . 30:1–30:39

Contents 0:vii

Hardness of Constant-Round Communication Complexity
Shuichi Hirahara, Rahul Ilango, and Bruno Loff . 31:1–31:30

Polynomial Time Algorithms in Invariant Theory for Torus Actions
Peter Bürgisser, M. Levent Doğan, Visu Makam, Michael Walter, and
Avi Wigderson . 32:1–32:30

Pseudodistributions That Beat All Pseudorandom Generators
(Extended Abstract)

Edward Pyne and Salil Vadhan . 33:1–33:15

GSF-Locality Is Not Sufficient For Proximity-Oblivious Testing
Isolde Adler, Noleen Köhler, and Pan Peng . 34:1–34:27

Hardness of KT Characterizes Parallel Cryptography
Hanlin Ren and Rahul Santhanam . 35:1–35:58

On the Pseudo-Deterministic Query Complexity of NP Search Problems
Shafi Goldwasser, Russell Impagliazzo, Toniann Pitassi, and Rahul Santhanam . . . 36:1–36:22

A Simple Proof of a New Set Disjointness with Applications to Data Streams
Akshay Kamath, Eric Price, and David P. Woodruff . 37:1–37:24

Toward Better Depth Lower Bounds: The XOR-KRW Conjecture
Ivan Mihajlin and Alexander Smal . 38:1–38:24

Fourier Growth of Parity Decision Trees
Uma Girish, Avishay Tal, and Kewen Wu . 39:1–39:36

The Power of Negative Reasoning
Susanna F. de Rezende, Massimo Lauria, Jakob Nordström, and
Dmitry Sokolov . 40:1–40:24

Matrix Rigidity Depends on the Target Field
László Babai and Bohdan Kivva . 41:1–41:26

CCC 2021

Preface

The papers in this volume were accepted for presentation at the 36th Computational
Complexity Conference (CCC 2021), held between July 20–22, 2021, in a virtual online
format. CCC 2021 was originally scheduled to be held in Toronto, Canada, but due to
the public health measures related to Covid-19 still in place, the online format was used
instead. The conference is organized by the Computational Complexity Foundation (CCF) in
cooperation with the ACM Special Interest Group on Algorithms and Computation Theory
(SIGACT) and the European Association for Theoretical Computer Science (EATCS).

The call for papers sought original research papers in all areas of computational complexity
theory. Of the 116 submissions, the program committee selected 41 for presentation at the
conference.

The program committee would like to thank everyone involved in the conference, including
all those who submitted papers for consideration as well as the reviewers (listed separately)
for their scientific contributions; the board of trustees of the Computational Complexity
Foundation and especially its president Venkatesan Guruswami, and secretary Ashwin Nayak
for their advice and assistance; Shubhangi Saraf for sharing her knowledge as prior PC chair
for CCC; the Local Arrangements Committee chair Benjamin Rossman; Eric Allender for
the invited talk; Meena Mahajan for her help with the submission server setup and editing of
the proceedings; and Michael Wagner for coordinating the production of these proceedings.

Valentine Kabanets
Program Committee Chair, on behalf of the Program Committee

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Awards

The program committee of the 36th Computational Complexity Conference is very pleased
to present the Best Student Paper Award to Yaroslav Alekseev for his paper

A Lower Bound for Polynomial Calculus with Extension Rule.

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Conference Organization

Program Committee

Arkadev Chattopadhyay, Tata Institute of Fundamental Research Mumbai
Irit Dinur, Weizmann Institute of Science
Yuval Ishai, Technion
Valentine Kabanets (Chair), Simon Fraser University
Swastik Kopparty, Rutgers University
Nutan Limaye, Indian Institute of Technology Bombay
Ryan O’Donnell, Carnegie Mellon University
Igor Carboni Oliveira, University of Warwick
Alexander Razborov, University of Chicago/Steklov Institute
Barna Saha, University of California Berkeley
Emanuele Viola, Northeastern University
Henry Yuen, University of Toronto/Columbia University

Local Arrangements Committee

Aleksandar Nikolov, University of Toronto
Benjamin Rossman (Chair), Duke University
Sushant Sachdeva, University of Toronto
Henry Yuen, University of Toronto/Columbia University

Board of Trustees

Venkatesan Guruswami (President), Carnegie Mellon University
Michal Koucký, Charles University
Shachar Lovett, University of California at San Diego
Meena Mahajan, The Institute of Mathematical Sciences
Pierre McKenzie, Université de Montréal
Ashwin Nayak, University of Waterloo
Rahul Santhanam, Oxford University
Ronen Shaltiel, University of Haifa
Ryan Williams, Massachusetts Institute of Technology

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

External Reviewers

Eric Allender Josh Alman Robert Andrews
Sepehr Assadi Paul Beame Shalev Ben-David
Amey Bhangale Vishwas Bhargava Vijay Bhattiprolu
Markus Bläser Ilario Bonacina Joshua Brody
Peter Buergisser Boris Bukh Marco Carmosino
Bruno Cavalar Amit Chakrabarti Diptarka Chakraborty
Eshan Chattopadhyay Prasad Chaugule Xi Chen
Ashish Chiplunkar Gil Cohen Daniel Dadush
Mina Dalirrooyfard Anindya De Rafael Mendes de Oliveira
Susanna F. de Rezende Ronald de Wolf Holger Dell
Talya Eden Yuval Filmus Noah Fleming
Michael Forbes Cole Franks Bin Fu
Abdul Ghani Sumanta Ghosh Leslie Ann Goldberg
Alexander Golovnev Sivakanth Gopi Joshua Grochow
Tom Gur Rohit Gurjar Shuichi Hirahara
Samuel Hopkins William Hoza Pavel Hrubes
Hsin-Yuan Huang Xuangui Huang Yichen Huang
Christian Ikenmeyer Rahul Ilango Peter Ivanov
Gabor Ivanyos Mark Jerrum C.S. Karthik
Sanjeev Khanna Alexander Knop Pascal Koiran
Antonina Kolokolova Sajin Koroth Robin Kothari
Michal Koucky Mrinal Kumar Dmitriy Kunisky
Chin Ho Lee Tongyang Li Xin Li
Andrea Lincoln Bruno Loff Zhenjian Lu
Joshua Maglione Meena Mahajan Guillaume Malod
Or Meir Ian Mertz Sidhanth Mohanty
Chandra Kanta Mohapatra Jonathan Mosheiff Partha Mukhopadhyay
Sagnik Mukhopadhyay Ashwin Nayak Rafael Oliveira
Shuo Pang Fahad Panolan Fedor Part
Shir Peleg Stephen Piddock Aaron Potechin
Aditya Potukuchi Kevin Pratt Pavel Pudlak
Jaikumar Radhakrishnan Akshay Ramachandran Shravas Rao
Ran Raz Nicolas Resch David Richerby
Robert Robere Dana Ron Noga Ron-Zewi
Chandan Saha Rahul Santhanam Swagato Sanyal
Ramprasad Saptharishi Will Sawin Nitin Saxena
Gil Segev Ronen Shaltiel Suhail Sherif
Alexander Sherstov Igor Shinkar Amir Shpilka
Adi Shraibman Makrand Sinha Amit Sinhababu
Dmitry Sokolov Srikanth Srinivasan Manuel Stoeckl
Xiaoming Sun Xiaorui Sun Avishay Tal
Till Tantau Sébastien Tavenas Anamay Tengse
Raghunath Tewari Samarth Tiwari Iddo Tzameret
Marc Vinyals Ben Lee Volk Ilya Volkovich

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi External Reviewers

Nikhil Vyas S. Matthew Weinberg James Wilson
Jinshan Wu Penghui Yao Yuichi Yoshida
Huacheng Yu Uri Zwick

Rate Amplification and Query-Efficient Distance
Amplification for Linear LCC and LDC
Gil Cohen #

Department of Computer Science, Tel Aviv University, Israel

Tal Yankovitz #

Department of Computer Science, Tel Aviv University, Israel

Abstract
The main contribution of this work is a rate amplification procedure for LCC. Our procedure converts
any q-query linear LCC, having rate ρ and, say, constant distance to an asymptotically good LCC
with qpoly(1/ρ) queries.

Our second contribution is a distance amplification procedure for LDC that converts any linear
LDC with distance δ and, say, constant rate to an asymptotically good LDC. The query complexity
only suffers a multiplicative overhead that is roughly equal to the query complexity of a length
1/δ asymptotically good LDC. This improves upon the poly(1/δ) overhead obtained by the AEL
distance amplification procedure [2, 1].

Our work establishes that the construction of asymptotically good LDC and LCC is reduced,
with a minor overhead in query complexity, to the problem of constructing a vanishing rate linear
LCC and a (rapidly) vanishing distance linear LDC, respectively.

2012 ACM Subject Classification Theory of computation → Error-correcting codes

Keywords and phrases Locally decodable codes, Locally correctable codes

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.1

Funding The research leading to these results has received funding from the ERC starting grant
949499, the Israel Science Foundation grant 1569/18 and from the Azrieli Faculty Fellowship.

1 Introduction

Coding theory addresses the problem of communicating over an imperfect channel. Classically,
the setting is as follows. Alice wishes to communicate a message m to Bob over a channel
that can be tampered by an adversary. How should Alice encode m so that if the amount of
errors is not excessive, Bob would be able to recover m? To this end, error-correcting codes
were first introduced [33]. Recall that a function C : Σk → Σn is an error-correcting code
with distance δ if for every distinct x, y ∈ Σk, dist(C(x), C(y)) ≥ δ, where dist is the relative
Hamming distance.1 The rate of the code C is given by ρ = k/n. Using an error-correcting
code, Alice can encode her message m ∈ Σk and send the resulting codeword C(m). Assuming
the fraction of errors is less than δ/2, Bob can decode m from the received z by finding the
codeword closest to z. When there is more than one possible message length, we consider
a code family, which is a family of functions in which each function is a code, and there is
one code per message length k. A code family is asymptotically good if both the rate and
distance of every code in the family are uniformly bounded below by constants ρ > 0 and
δ > 0, respectively.

1 Note that what we call here distance δ is in many cases referred to as relative distance.

© Gil Cohen and Tal Yankovitz;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 1; pp. 1:1–1:57

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gil@tauex.tau.ac.il
mailto:talyankovitz@mail.tau.ac.il
https://doi.org/10.4230/LIPIcs.CCC.2021.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

1.1 Locally decodable codes and locally correctable codes
Consider the scenario in which Bob is not interested in the entire original message m, but
rather in a specific symbol mi for some i ∈ [k]. A simple, though wasteful solution, is for Bob
to decode the entire message m and ignore all symbols but for mi. However, it is desirable
to compute mi by reading much fewer than n entries of z. Locally decodable codes (LDC)
are a class of error-correcting codes that have this very strong decoding capability. Another
scenario of interest is the one in which Bob needs to know a specific symbol of the codeword
C(m)j for some j ∈ [n], while reading as few symbols as possible. Codes that allow this are
called locally correctable codes (LCC). We turn to give the formal definition.

▶ Definition 1 (Locally decodable codes (LDC)). A code C : Σk → Σn is (q, δ, ε)-locally
decodable if there exists a randomized algorithm D, called a local decoder, that is given
i ∈ [k] as input and an oracle access to z ∈ Σn, and has the following guarantee. For every
i ∈ [k], m ∈ Σk and z ∈ Σn such that dist(C(m), z) ≤ δ it holds that Pr [Dz(i) ̸= mi] ≤ ε.

Moreover, D makes at most q queries to z.

▶ Definition 2 (Locally correctable codes (LCC)). A code C ⊆ Σn is (q, δ, ε)-locally correctable
if there exists a randomized algorithm D, called a local corrector, that is given j ∈ [n] as
input and an oracle access to z ∈ Σn, and has the following guarantee. For every j ∈ [n],
c ∈ C and z ∈ Σn such that dist(c, z) ≤ δ it holds that Pr [Dz(j) ̸= cj] ≤ ε. Moreover, D

makes at most q queries to z.

We place z in the upper script in our notation Dz(i) to stress that the number of symbols
read from z by D is of importance. The parameter q is called the query complexity, and δ is
the local error decoding radius, in the case LDC, and local error correction radius in the case
of LCC. However, we also refer to δ, somewhat inaccurately, as the local distance of the code.
From here on, we do not make any explicit reference to the “global” distance of a code and so
we refer to the local distance simply as the distance. Throughout the paper, we only consider
non-adaptive LDC and LCC, defined next. Informally, these are code in which the local
decoder (or corrector) samples the entries to be read before the querying step takes place.
Our results only hold for non-adaptive LDCs and LCCs. For ease of discussion, throughout
the introduction we ignore the error parameter ε. More precisely, when stating our results,
every LDC or LCC (both in the hypothesis as well as in the LDC or LCC guaranteed by the
theorem) has constant error.

A brief history of LDC and LCC

Locally decodable codes were first explicitly defined by Katz and Trevisan [23]. However, codes
with local guarantees have been used by complexity theorists even before (e.g., [8, 15, 16, 6])
and have been around, implicitly, in the coding theory community almost from the get
going [30]. LDC, LCC, and related notions such as locally testable codes (LTC), were
intensively studied by theoretical computer scientists motivated by PCPs [3, 4, 5, 18],
program checking [10, 29, 32], circuit lower bounds [12], derandomization [6, 35, 36], and
private information retrieval [11] to name a few. LDC and LCC are very related notions.
Clearly, an LCC with a systematic encoding2 is also an LDC and so, in particular, linear
LCC induce LDC. Of note, it is not yet known in which scenarios LCC are strictly stronger
objects compared to LDC.

2 An encoding from messages to codewords is called systematic if the symbols of each message are
embedded in its mapped codeword.

G. Cohen and T. Yankovitz 1:3

An intensive research effort is devoted to the construction of local codes (see the excellent
survey for LDC [39]). Roughly, the literature can be partitioned to two. The first research
path (see e.g., [40, 25, 14, 13] and references therein) has the goal of obtaining LDC or LCC
with a given, small, number of queries, and an effort is made to maximize the rate while
maintaining constant distance. The second research path, which has received much attention
in recent years [27, 20, 22, 26, 19], and is the focus of this paper, insists on asymptotically
good codes and aims at minimizing the number of queries.

It is known [23, 38] that asymptotically good LDC require q = Ω(log n) queries. Whether
this bound is tight is a fundamental, major open problem, regardless of explicitness. The
Reed Muller code is perhaps the earliest non-trivial example of LDC and LCC. It can
achieve query complexity nν for any desired constant ν > 0. However, the rate deteriorates
rapidly as ν → 0. In fact, up until the introduction of multiplicity codes by Kopparty, Saraf
and Yekhanin [27] no (non-trivial) LDC or LCC with rate higher than 1/2 were known.
Guo, Kopparty and Saraf [20] introduced the notion of lifting of codes which gave a second
high-rate LDC and LCC, also algebraic in nature. A combinatorial high-rate construction of
an LCC was obtained by Hemenway, Ostrovsky and Wootters [22] (see also [28]).

Despite this exciting sequence of works which allowed for better rate and introduced
various interesting techniques, the above constructions all have query complexity nΘ(1). The
fact that three very different constructions were stuck at polynomial query complexity raised
the question of whether no(1)-query asymptotically good LDC or LCC exist. This question
was resolved in a seminal work by Kopparty, Meir, Ron-Zewi and Saraf [26] who obtained
LCC with query complexity q = 2Õ(

√
log n) = no(1). To obtain their result, the authors

first observed that by instantiating multiplicity codes [27] in a certain regime of parameters,
one can get the stated query complexity q above albeit at the cost of having vanishing
distance δ = 1/(log n)Θ(1). Then, in order to get codes with constant distance, the authors
invoked a distance amplification procedure due to Alon et al. [2, 1]. Kopparty et al. [26]
showed that the AEL distance amplification procedure, which was originally introduced
in the context of linear-time erasure codes, allows one to convert, in a black-box manner,
an LCC with distance δ and query complexity q to an LCC with constant distance and
query complexity qnew = q · poly(1/δ). This more than sufficed for [26] as, in their setting,
q = (1/δ)ω(1), and so the cost of the distance amplification is negligible. The LCC constructed
in Kopparty et al. [26] are linear and thus yield LDC as well, and in fact in the same work
the state-of-the-art LTC are constructed using the AEL distance amplification procedure.

1.2 Our contribution

Given the pivotal role of the AEL distance amplification procedure in the state-of-the-art
constructions of LDC and LCC (as well as LTC) one is prompt to ask whether the poly(1/δ)
multiplicative cost in query complexity is inherent. If such is the case, when aiming at
poly(log n)-query complexity, a requirement for constant distance can only be relaxed to
distance 1/poly(log n) which, although proved extremely useful [26], might be restrictive for
obtaining better codes.

More generally, the natural question that is raised is to what extent the construction of
asymptotically good LDC/LCC can be reduced to the non-asymptotically good variants as
they, in turn, may admit low query constructions. The main contribution of this work is the
first rate amplification procedure for linear LCC as we elaborate on next (see Section 1.2.1). As
our second contribution, we obtain a significantly improved distance amplification procedure
(see Section 1.2.2).

CCC 2021

1:4 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

1.2.1 Rate amplification
It is unclear to us if rate can be amplified deterministically in general, regardless of locality,
in any meaningful formalization. Puncturing is a coding-theoretic technique that allows
one to obtain better rates. However, it only seems to work when tailored to specific codes
with certain structure or, otherwise, using a randomized encoding. Nonetheless, our main
contribution is a devising a rate amplification procedure for linear non-adaptive LCC. To
the best of our knowledge, all known constructions of LCC are of this kind. Among these
are Reed-Muller codes (and therefore also the Hadamard code) as well as codes obtained by
lifting [20], and Multiplicity codes.

▶ Theorem 3 (Main result). Assume one has a non-adaptive linear (q, δ = Ω(1))-LCC
with block-length n0 having rate ρ = ρ(n0). Then, for every integers ℓ, c ≥ 1 such that
ℓ2 < c < log n0, one can obtain a non-adaptive linear (qnew, δnew)-LCC with block length
n ≈ nℓ

0, having rate ρnew, where

qnew = (cq)poly(ℓ),

δnew = (cq)−poly(ℓ),

ρnew = 1 − (1 − ρ)ℓ − O

(
ℓ2

c

)
.

Theorem 3, when invoked with ℓ ≈ 1/ρ and c ≈ 1/ρ2, and combined with a distance
amplification procedure, yields the following corollary.

▶ Corollary 4. Assume one has a family of constant distance non-adaptive linear LCC with
rate ρ(n) ≥ 1√

log n
and query complexity q(n). Then, for every constant3 α > 0 one can

obtain asymptotically good LCC with rate 1 − α on block length n with query complexity
qnew = (q(n) log n)poly(1/ρ(n)).

1.2.2 Query-efficient distance amplification
The second result of this work is a significantly improved distance amplification procedure
for LDC. Roughly speaking, we are able to reduce the poly(1/δ) multiplicative factor in
query complexity to the query complexity of an asymptotically good LDC on message length
1/δ. More precisely,

▶ Theorem 5 (Query-efficient distance amplification; informal). Assume one has a block-length-
n LDC with distance δ, constant rate, and query complexity q. Assume further one has a
family of asymptotically good LDC where on message length k, the query complexity is qk.
Then, one can obtain asymptotically good LDC with query complexity 4

qnew = q · qO(1/δ) · O(log(1/δ) log n). (1.1)

Note that by using a standard error-correcting code, which has qk = n = Θ(k), Theorem 5
gives back the parameters of the AEL distance amplification procedure. However, one can
do much better. Indeed, by using the state-of-the-art LDC [26] which has qk = 2Õ(

√
log k),

3 The result holds also for sub-constant α, and the assumption is made only for simplicity. See Theorem 46
for the formal, more general, version.

4 If the family of LDC in the hypothesis has sufficiently low error, the query complexity is even smaller
qnew = q · qO(1/δ)qO(log(1/δ)).

G. Cohen and T. Yankovitz 1:5

one get qnew = q · (1/δ)o(1) log n. More generally, Theorem 5 states that the lower the query
complexity of the asymptotically good codes which one starts with is, the more query-efficient
is the distance amplification. This “rich getting richer” type of result opens a path to recursive
constructions as, indeed, several of our applications are based on. We stress that unlike the
AEL distance amplification procedure, ours exploits the local decodability requirement and
so it works for LDC but not for LCC. The only other technique in the literature that we
are aware of that exploits the difference between decodability and correctability, and thus
separates LDC from LCC in terms of techniques is matching vectors based constructions.
We further remark that, for ease of discussion, Theorem 5 is stated without any reference
to explicitness. Indeed, we currently lack satisfactory understanding of LDC in the more
fundamental information-theoretic level. In any case, explicitness does not cost much in
our reduction, and the only change in the theorem’s statement when insisting on explicit
reductions is replacing Equation (1.1) by roughly qnew = q · q(1/δ)1+α log n for any desired
constant α > 0.

We turn to draw several corollaries of Theorem 5, but first set the context. Given the
Katz-Trevisan Ω(log n) lower bound on the query complexity of asymptotically good LDC,
and reassured by [26] that no(1)-query LDC exist, the next natural goal is to try and construct,
or even more fundamentally, prove the existence of LDC with poly-logarithmic (or perhaps
a more modest quasi poly-logarithmic 2poly(log log n)) number of queries. With this goal in
mind, the AEL distance amplification procedure allows one to relax her effort and construct
LDC with distance δ = 1/poly(log n) or slightly lower. Multiplicity codes are indeed a great
example where such a relaxation of the distance requirement allows one to obtain much
better query complexity. Using Theorem 5, we are able to obtain a reduction to LDC having
exponentially lower distance δ = 1/poly(n).

▶ Corollary 6 (Amplifying polynomially-small distance). Let 0 < α < 1 be an arbitrary
constant. Assume there exists a family of LDC with distance δ = n−α, rate 1 − 1/(log n)2,
and query complexity q(n) for block length n. Then, for infinitely many n’s, there exists an
asymptotically good LDC on block-length n with query complexity qnew = q(n)O(log log n).

Corollary 6 implies that for constructing asymptotically good LDC with q = 2poly(log log n)

queries, it suffices to construct LDC with extremely poor distance δ = 1/poly(n) for the
same asymptotic query complexity. In fact, we can even amplify extremely small distance
δ = n−(1−o(1)) assuming the rate is slightly larger. One instantiation is as follows.

▶ Corollary 7. Let c ≥ 1 be any constant. Assume there exists a family of LDC with distance
δ = n−(1− 1

(log log n)c), rate ρ = 1 − 1
(log n)c+2 , and query complexity q(n) for block-length n.

Then, for infinitely many n’s, there exists an asymptotically good LDC on block-length n

having query complexity qnew = q(n)O((log log n)c+1).

A third interesting application of Theorem 5 is when the distance to be amplified is larger
than 1/poly(n), though still very small.

▶ Corollary 8. Let α < 1 be an arbitrary constant. Assume there exists a distance δ =
2−(log n)α LDC having rate 1 − O(1/ log log n), and query complexity q(n) for block-length n.
Then, for infinitely many n’s, there exists an asymptotically good LDC on block length n with
query complexity qnew = q(n)O(log log log n).

We conclude this section by noting that the Katz-Trevisan bound [23] holds also for
sub-constant distance. Quantitatively, the query complexity of constant rate codes with
distance δ is Ω(log(δn/ log n)). Thus, even for distance n−α, the Ω(log n) lower bound holds.

CCC 2021

1:6 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

2 Proof overview

In this section we give a brief and informal overview of the ideas that go into our proofs.

2.1 A characterization of non-adaptive linear LCC

To obtain our rate amplification procedure we lay a characterization of non-adaptive linear
LCC. We remark that a very similar characterization was given by [23] for LDC, who defined
the notion of smooth-codes.

▶ Definition 9 (Smooth locally recoverable sets; simplified version). Let Σ, P be arbitrary sets.
We say that C ⊆ ΣP is (q, τ)-smooth locally recoverable (SLR for short) if there exists a
randomized algorithm Rec, called a recovering procedure, that when given as input p ∈ P and
an oracle access to c ∈ C, outputs Recc(p) = cp by making at most q queries to c. Moreover,
for every c ∈ C and p, r ∈ P (not necessarily distinct),

Pr[Recc(p) queries cr] ≤ τ. (2.1)

We will focus on SLR in which Σ is a field and C is a vector space over Σ. In such case
we say that C is linear. Of course, it is trivial to construct a (1, 1)-SLR. Indeed, simply query
cp and output the result. The challenge is to recover cp without being able to “focus” on
any particular entry. This is captured by Equation (2.1) where τ–the smoothness parameter–
bounds the probability a given entry is allowed to be queried. The formal definition of SLR
(see Definition 21) also allows the recovering procedure to output a special “failure” symbol
⊥ with small probability. For ease of discussion, we ignore this here. We have the following
easy claim showing that SLR yield LCC. As a result, linear SLR induce LDC.

▷ Claim 10. Let C ⊆ ΣP be a (q, τ)-SLR. Then, C is a (q, δ)-LCC with δ = Ω (1/(qτ |P |)).

For the straightforward proof, see Section 4 and, in particular, Claim 22. We also have
the following (less obvious) claim, showing that, assuming linearity and non-adaptiveness,
the other direction also holds, namely, LCC yield SLR.

▷ Claim 11. Let C ⊆ ΣP be a non-adaptive linear (q, δ)-LCC. Then, C is a (linear)
(q, τ)-SLR with τ = q/(δ|P |).

This claim and its proof correspond to Theorem 1 of [23] with the terminology of smooth-
codes. For the more formal statement which also takes into account the error parameter
and field size, see Claim 23. We remark here that for the proof of Claim 23, we construct a
recovering procedure based on the local corrector of the given LCC. However, the key idea is
to consider the distributions this local corrector induces while ignoring how it reconstruct
the symbol after performing the queries.

Note that the lowest sensible value for τ is at about q/|P |. Indeed, this will be the
case if each of the q queries is marginally uniform over P , and assuming nothing about the
correlations between the queries. For such τ , if C is linear then, By Claim 10, it yields an
LCC with δ = Ω(1/q2). The distance can then be amplified to constant using our distance
amplification procedure to yield query complexity q2+o(1) (or using AEL’s procedure to get
poly(q) queries).

G. Cohen and T. Yankovitz 1:7

2.1.1 Dual SLR and their induced SLR
By Claim 10 and Claim 11, every linear SLR is an LCC, and every linear non-adaptive LCC
is a linear SLR. Our rate amplification procedure works for non-adaptive linear SLR, and
thus for any non-adaptive linear LCC. In order to amplify the rate of such an SLR, we show
that the dual of every non-adaptive linear SLR has a certain structure, which we use to
amplify the rate.

Working with dual of codes in the context of LDC or LCC is a very natural approach, and
has been explored previously (e.g., [24, 7]), but to the best of our knowledge, the definition
of dual SLR as given below is new. We start by setting some notation. Let P be a set,
F a finite field, and FP the set of all functions {f : P → F}. Note that FP has a natural
F-vector space structure. We consider the natural inner product ⟨·, ·⟩ : FP × FP → F that is
defined, for f, g ∈ FP , by ⟨f, g⟩ =

∑
p∈P f(p)g(p). For f ∈ FP we denote |f | = |P \ f−1(0)|.

For p ∈ P define Fp = {f ∈ FP | f(p) ̸= 0}.

The following definition captures the structural properties of the dual of an SLR, which
we need for the rate amplification.

▶ Definition 12 (Dual SLR; simplified version). Let P be a set, F a field. Let D = {Dp |
p ∈ P} be a collection of distributions, where for each p ∈ P , supp(Dp) ⊆ Fp. Set S ≜⋃

p∈P supp(Dp). The collection D is said to be a (q, τ, ρ)-dual SLR provided the following
holds:
1. |f | ≤ q for all f ∈ S.

2. For every pair of distinct p, r ∈ P , it holds that

Pr
f∼Dp

[f(r) ̸= 0] ≤ τ.

3. Last, dim Span(S) ≤ (1 − ρ)|P |.

We call q the query complexity of the dual SLR, τ its smoothness and ρ its rate. The linear
subspace S⊥ of FP is called the induced SLR from D. As the name suggests, the induced
SLR S⊥ is indeed an SLR. More precisely, it is a (q − 1, τ) SLR with rate ρ (see Lemma 26).
It is for the class of dual-induced SLR that we are able to devise our rate amplification
procedures. Let p be a prime power. As an example, one can directly show that, say, the
two-dimensional Reed-Muller code over Fp with total-degree p − 2 is an induced SLR from a
(q = p − 1, τ = 1

p+1 , ρ = 1
2 − o(1))-dual SLR. As mentioned, any linear non-adaptive LCC is

a linear SLR, and thus induces a dual SLR.

2.2 Rate amplification for dual-induced SLR
For simplicity, we describe our rate amplification procedure only for ℓ = 2, where ℓ is as
in the notation of Theorem 3. We briefly explain how to handle larger ℓ’s in Section 2.2.3.
Assume D is a (q, τ, ρ)-dual SLR on FP where the rate ρ is the parameter we wish to amplify.
Consider the mapping Φ : (FP)2 → FP 2 that maps a pair of functions f1, f2 ∈ FP to the
function Φ(f1, f2) : P 2 → F given by Φ(f1, f2)(p1, p2) = f1(p1)f2(p2). Note that this is
simply the tensor product.

We now show how to convert our poor-rate dual SLR D to a new dual-SLR with a better
rate. Formally, consider the (q2, τ2, ρ2)-dual SLR D2 = {D2

p | p ∈ P 2}, where for every
p = (p1, p2) ∈ P 2, the distribution D2

p is defined as follows. To sample from D2
p, sample

f1 ∼ Dp1 , f2 ∼ Dp2 independently, and return Φ(f1, f2). That q2 ≤ q2 is straightforward,
and that the new rate ρ2 ≥ 1− (1−ρ)2 can be shown using the bilinearity of Φ (see Claim 30).
As for the smoothness, we prove (see Lemma 32) that for every p, r ∈ P 2,

CCC 2021

1:8 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

Pr [Φ(f1, f2)(r) ̸= 0] ≤ τ∆(p,r), (2.2)

where ∆(p, r) is the non-relative Hamming distance between p and r. In particular, for r ̸= p,
we get the bound τ2 ≤ τ .

Note that as the world is now squared, a bound on the smoothness of merely τ is poor.
However, by Equation (2.2), for most points r ∈ P 2 we in fact have a better bound of τ2.
It is only those points of distance one from p that cause the smoothness from “squaring”
and, as a result, deteriorate the distance of the induced LCC (recall Claim 10). A natural
approach would be to “zero out” the problematic points. To make “zero out” formal, for a
set S ⊆ P 2, let νS : P 2 → F be such that νS(r) = 0 if r ∈ S and νS(r) = 1 otherwise. Now,
instead of Φ(f1, f2) consider the function Φ̂(f1, f2) = Φ(f1, f2) · νL where

L = {r ∈ P 2 | ∆(p, r) = 1 and Φ(f1, f2)(r) ̸= 0}.

By construction, Equation (2.2) implies that the smoothness of dual SLR defined using
Φ̂ is bounded by τ2. Unfortunately, however, we can no longer guarantee anything about the
rate ρ2 which, recall, is the parameter we set out to improve.

Our key idea is to construct carefully chosen functions in addition to those from S2 =
∪psupp(D2

p) which allows us to zero out the problematic points while deteriorating the rate
only slightly. To describe our solution, let R be a partition of P 2, where each part has size
c+1 for some parameter c to be chosen later on. We denote the part, or class, in R containing
an element p ∈ P 2 by [p] and write (p) = [p] \ {p} for the open class of p. For each p ∈ P 2

define the function fp : P 2 → F by fp(r) = 1 if r ∈ [p] and fp(r) = 0 otherwise. We adjoin
all |P |2

c+1 functions LR = {fp | p ∈ P 2} to S2 by considering L2
R = Span(S2) + Span(LR).

That is, our dual-induced SLR is redefined to be (L2
R)⊥ rather than (S2)⊥. This has some

cost in rate, but a manageable one. Indeed, note that dim(L2
R) ≤ (1 − ρ2 + 1

c+1)|P 2|. Thus,
for sufficiently large c, the rate loss incurred by adding the functions in LR can be made
small. The advantage we get by adjoining these functions is that we can now zero out any
point r we wish by using the points in its open class (r). Indeed, for every f ∈ (L2

R)⊥ and
r ∈ P 2 we have f(r) = −

∑
w∈(r) f(w). Note that, on top of the 1

c+1 loss in rate, we expect
to pay a multiplicative c cost in query complexity as |(r)| = c.

To be more precise, for p ∈ P 2, we define a distribution (D2
R)p, which will avoid using the

problematic points given by L above, as follows. To sample a function f ∼ (D2
R)p proceed as

follows:
1. Sample g ∼ D2

p and let L = {r ∈ P 2 | ∆(p, r) = 1 and g(r) ̸= 0}.
2. For every r ∈ L and w ∈ (r) sample hr,w ∼ D2

w.
3. Return

f = gνL +
∑
r∈L

g(r)
∑

w∈(r)

hr,wν{w}

hr,w(w) . (2.3)

Observe that the first summand gνL in Equation (2.3) is the attempt we started with.
However, using the partition R, instead of simply zeroing out L (which prevents us from
arguing about the rate ρ2), for every r ∈ L that was zeroed out, we go over each of the points
w in its open class and add a carefully chosen linear combination of the “freshly” sampled
functions {hr,w ∼ D2

w} to gνL so as to guarantee that f ∈ L2
R (see Claim 41).

There is one technical issue the reader should be aware of. It might not be the case that
f(p) ̸= 0, which is the basic requirement of dual SLR. Indeed, while g(p) ̸= 0 it might be the
case hr,w(p) ̸= 0 for one or more pairs (r, w) as well. As a result, a cancellation may occur,

G. Cohen and T. Yankovitz 1:9

causing f(p) = 0. This is where we make use of the ⊥ symbol in the formal definition of dual
SLR. Before outputting f , we check that this cancellation has not occurred and otherwise
return ⊥.

2.2.1 Axis evasive partitions
The above scheme can be implemented with any partition R. However, not every partition
will enable us to improve the smoothness. Informally, we would like the partition to have
the property that the union of open classes taken over the set of points of distance one from
a given point p, is composed of points that are mostly of distance two from one another.
To make this precise, we note that the set of points of distance one from a given point p is
contained in the union of a horizontal and a vertical line. We refer to such lines, collectively,
as axis-parallel lines. The following definition abstracts what we need from the partition so
to argue about the smoothness.

▶ Definition 13. Let P be a set. A partition R of P 2 is said to be (c, s)-axis evasive if
1. For every p ∈ P 2, |(p)| = c.
2. For every pair of axis-parallel lines ℓ, ℓ′ (possibly equal),∣∣ℓ ∩

⋃
p∈ℓ′

(p)
∣∣ ≤ s.

3. For every p ∈ P 2 and every axis-parallel line ℓ, |[p] ∩ ℓ| ≤ 1.

We show that by using a (c, s)-axis evasive partition, the dual SLR defined above has
smoothness τ2 = O(csqτ2) (see Claim 43). The reader should think of c, s as constants (or
slightly sub-constants) and q ≪ τ−1, and so τ2 ≈ τ2 ≪ τ .

2.2.2 Constructing axis-evasive partitions
Assume |P | = m is an odd prime power, and let c be an even integer such that c + 1 | m + 1.
Under these assumptions, we are able to give an explicit algebraic construction of (c, s)-axis
evasive partitions of P 2 where s = O(c2) (see Section 5.2). Intuitively, as we want to construct
a partition that “breaks” axis-parallel-ness, rotation would be a natural approach. Indeed, for
our construction, we identify P with the finite field Fm and P 2 with Fm2 . For every choice
of α ∈ Fm2 \ Fm, one can identify Fm2 with Fm + αFm. So, informally, Fm and αFm are the
horizontal and vertical axes, respectively. To formalize the intuition of rotation, we take an
element β of order c + 1 in the multiplicative group of Fm2 . Being a cyclic group, and since
c + 1 | m + 1 | m2 − 1, such an element exists. Multiplication by β can, informally, be thought
of as a rotation by a 1

c+1 angle. We take the partition of Fm2 \ {0} according to the cosets
of ⟨β⟩ - the subgroup generated by β (and do not worry much about the origin). We show
that, with this construction, properties (1) and (2) of Definition 13 are satisfied. Property
(3), however, does not and so we need to make a certain modification of the construction to
resolve this. We do not delve into the required alternation of the construction here.

2.2.3 Rate amplification for dimension higher than two
Our basic rate amplification procedure can be easily generalized to any ℓ > 2. On the other
hand, our distance-efficient rate amplification procedure is designed for ℓ = 2. To go from
ℓ = 2 to higher powers, we more or less do the obvious thing, namely, apply the dual SLR
construction iteratively, where in each iteration we square the size of the previously obtained
set. The only technical issue is that the divisibility by c + 1 requirement is not maintained

CCC 2021

1:10 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

throughout the process. Indeed, 2 is the only nontrivial common factor of m + 1 and m2 + 1.
To overcome this, we truncate the resulted set, slightly reducing its size from m2 to a prime
m′ that is divisible by c + 1. The truncation deteriorates the rate and so we would like
m′ ≈ m2. Such prime m′ is guaranteed to exist by the Siegel–Walfisz Theorem [34, 37] that
refines Dirichlet’s theorem on primes in arithmetic progressions.

2.3 Query-efficient distance amplification
The AEL distance amplification procedure was originally based on expander graphs [2, 1].
Kopparty et al. [26] used samplers instead - a point of view that we find fruitful for our needs.
Informally, an (ε, δ)-sampler is a bipartite graph on vertex set L ∪ R with the following
property. For every T ⊆ R, having density µ(T), all but δ-fraction of the left vertices have
µ(T) ± ε fraction of their neighbours in T (see Definition 14). For simplicity, we assume
regularity with left-degree d and right degree D.

Given a code with poor distance δ, AEL amplifies the distance to constant using an
(ε, δ)-sampler where, for the reduction, ε is taken to be constant. The AEL procedure has
a Dd multiplicative cost in query complexity. Prior works used either expander graphs or
“balanced” samplers, namely, samplers with |L| = |R| and D = d. With this choice, the
lowest possible degree is d = Θ(1/(ε2δ)), which in turn yields a Θ((1/δ)2) multiplicative cost
in query complexity.

Our improved distance amplification procedure is based on two simple ideas. Our variant
has a lower cost in query complexity: Instead of a Dd factor, our variant has roughly qDqd

multiplicative cost where, recall, qk is the query complexity of an asymptotically good LDC
on message length k. Our variant also makes use of samplers, and when instantiated with
a balanced sampler, the cost is roughly q2

d = q2
1/δ. Our second idea allows us to essentially

get rid of the square (which is crucial for obtaining our corollaries). It is known that
by working with unbalanced samplers, in which |L| ≫ |R|, one can obtain (ε, δ)-samplers
with a much lower left-degree d = O(log(1/δ)/ε2). We note that, for the original AEL
procedure, working with unbalanced samplers cannot yield a significant improvement. Indeed,
to achieve this saving in left-degree, the ratio |L|/|R| = Ω(1/(δ log(1/δ))) which in turn
implies D = |L|d/|R| = Ω(1/δ). This then only gives a quadratic improvement over AEL.
When instantiated with our variant, unbalanced samplers yield query complexity roughly
q1/δqlog(1/δ).

3 Preliminaries

Notations and conventions

Unless otherwise stated, all logarithms are taken to the base 2. We denote by N the set of
natural numbers (of course, including 0). For an integer c ≥ 1, we let [c] = {1, 2, . . . , c}. For
ease of readability, we avoid the use of floor and ceiling. This does not affect the stated
results. For two strings x, y of equal length over a common alphabet, we denote by dist(x, y)
their relative hamming distance, namely, the fraction of indices on which they disagree. Let
A ≠ ∅ be an ambient (finite) set. For B ⊆ A, we denote by µ(B) the density of B in A,
namely, µ(B) = |B|/|A|.

Let G = (V, E) be an undirected graph with maximal degree D. Assume that the
neighbours of every node v ∈ V are labeled by distinct numbers from 1, . . . , deg(v). We
define the neighbourhood function ΓG : V × [D] → (V × [D]) ∪ {⊥} as follows. For v ∈ V

and i ∈ [deg(v)] we let ΓG(v, i) = (u, j) where u is the i’th neighbour of v and v is the j’th

G. Cohen and T. Yankovitz 1:11

neighbour of u. For i ∈ [D] \ [deg(v)] the function is defined to be ⊥ (though this is only
for the sake of formality. We will never use such input i). If G is clear from context we
sometimes omit it from the subscript. When interested only on the node u as above and
not on j, we make a slight abuse of notation and write Γ(v, i) when referring to u. Last, we
write Γ(v) for the set of all neighbours of v.

3.1 Samplers
Our distance amplification procedure makes use of samplers. These are bipartite graphs with
a certain pseudo-random property. Let G = (L, R, E) be a bipartite graph. We say G is
left-regular if all nodes in L have the same degree.

▶ Definition 14 ([9]). Let 0 < ε, δ < 1. A bipartite graph G = (L, R, E) is an (ε, δ)-sampler
if for every subset T ⊆ R, for all but δ-fraction of vertices v ∈ L it holds that∣∣∣∣ |Γ(v) ∩ T |

|Γ(v)| − µ(T)
∣∣∣∣ ≤ ε.

We will be working with “unbalanced” samplers. These are samplers with |L| ≫ |R|.
The state-of-the-art constructions of these samplers rely on their connection to randomness
seeded extractors. We refer the interested reader to the excellent survey by Goldreich [17]
for more information. When working with samplers, it is rather typical that the bipartite
graph is left-regular, that is, the degree of all vertices in L is the same. A small additional
technical property we need is that the degree of every vertex in R is close to the average
right-degree. We make use of the following theorem which gives (non-explicit) samplers with
near-optimal parameters having the above properties with respect to the degrees. We give a
proof sketch for completeness.

▶ Theorem 15. There exists a universal constant csamp ≥ 1 such that the following holds. For
all integers ℓ, r and all ε > 0, 1/2 > δ > 0 for which ℓ ≥ r

δ log(1/δ) , there exists a left-regular
(ε, δ)-sampler G = ([ℓ], [r], E) with left-degree d = csamp · log(1/δ)/ε2. Moreover, provided that
log r < 1/(δε2), every right vertex has degree in [D/2, 2D] where D = ℓd/r is the average
right degree.

For the proof we need the following well-known lemma.

▶ Lemma 16. For every integers 1 ≤ k ≤ n with k
n = δ ≤ 1

2 it holds that
k∑

i=0

(
n

i

)
≤ 2H(δ)n,

where H(x) = −x log(x) − (1 − x) log(1 − x) is the binary entropy function.

Proof sketch for Theorem 15. The proof is via the probabilistic method, where for every
left vertex we choose d neighbours independently and uniformly at random, and independently
across all left vertices (note that in the above we allow for parallel edges, but if that troubles
the reader, that can be avoided as well in the regime of interest d ≪ r by arguing that the
probability of a right neighbor to be selected more than once is small. In any case, our
distance amplification procedure works just as well with parallel edges). Fix T ⊆ [r]. For
v ∈ [ℓ] let Fv be the indicator random variables that is 1 if and only if ||Γ(v)∩T |/d−µ(T)| > ε.
By the Chernoff bound, Pr[Fv] ≤ e−Ω(ε2d). Fix S ⊆ [ℓ] with |S| = δℓ. The probability that
for all vertices v ∈ S it holds that Fv = 1 is bounded above by e−Ω(ε2d·δℓ). By taking the
union bound over all S and T , we get that except with probability

2r

(
ℓ

δℓ

)
e−Ω(ε2dδℓ) ≤ 2r+H(δ)ℓ−cε2dδℓ, (3.1)

CCC 2021

1:12 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

the sampled graph is an (ε, δ)-sampler. Note that the last inequality follows by Lemma 16,
where c > 0 is some constant. By taking csamp ≥ 5/c, one can verify (using that H(x) ≤
2x log(1/x) for all x ≤ 1/2) that the right hand side in Equation (3.1) is bounded by 1/4.

As for the moreover part, again, by the Chernoff bound, the probability that there exists
a right vertex which has degree outside [D/2, 2D] is bounded above by re−Ω(ℓd/r), and this
is bounded by 1/4 by our choice of parameters and by taking csamp large enough. ◀

We now turn to state the parameters of the explicit construction of samplers that we use.

▶ Theorem 17 ([31, 17]). 5 For every constant ∆ > 0 there exists a constant c = c(∆) ≥ 1
such that the following holds. For all ε > 0, δ > 0 6, there exists an explicit left-regular
(ε, δ)-sampler G = ([ℓ], [r], E). The left-degree of G is d = ((1/ε) log(1/δ))c. Furthermore,
the average right degree D = ℓd/r of G is in [D′, 2D′] where

D′(∆, ε, δ) = d

2 ·
(

2
δ

)∆+1
. (3.2)

3.2 Codes
We make use of “standard” error-correcting codes. In this section we gather some known
results we use.

▶ Theorem 18 (The Gilbert-Varshamov bound). Let Σ be a set of size |Σ| = q. For every
n ∈ N, and 0 ≤ δ ≤ 1 − 1

q there exists a code of block-length n over Σ, with distance at least
δ and rate r ≥ 1 − Hq(δ). Furthermore, if q is a prime power and Σ = Fq, there exists a
linear code over Σ with rate r ≥ 1 − Hq(δ) − g(n), where g(n) = O(1

n).

▶ Lemma 19. There exists a constant β0 > 0 such that the following holds. Let n be an
integer and 1

log n < β < β0 . Let Σ = Fq for q ≥ 2 a prime power. Then, there exists an
explicit linear code of block-length n over Σ with rate 1 − β and relative distance β3.

The existence of these codes follows from a special case of the Zyablov bound [43], but for
completeness we describe a construction which attains the stated parameters. For the proof,
we make use of the following easy claim whose proof is omitted.

▷ Claim 20. For every x ∈ (0, 1/2] and q ≥ 2, Hq(x) ≤ x logq(q3

x).

Proof of Lemma 19. The proof is obtained by taking the code concatenation of two codes,
a Reed-Solomon code and a Gilbert-Varshamov code. Let p be the least prime such that
p ≥ n. Recall that p ≤ 2n. Set CRS to be the Reed-Solomon code over Fp of block length
nRS = (1−β1.1)n

logq p and message length kRS = (1 − β1.1)nRS. So, CRS has rate 1 − β1.1 and
relative distance at least β1.1. Now take CGV to be a linear code of the following parameters.
The message length is kGV = logq p, the block length is 1

1−β1.1 kGV (and therefore the rate is
1 − β1.1), and the relative distance is at least β1.4. We wish to invoke Theorem 18 so as to
prove that such a code exists. To this end, we must verify that 1 − Hq(β1.4) − g(n) ≥ 1 − β1.1.
Indeed, by Claim 20, we have that

5 The sampler in [31] has a mild requirement on ε which we state the theorem without, as it is explained
in [17] how this requirement can be relaxed, by using a more recent extractor.

6 The sampler in [31] has a number of edges z that is a power of two. We state the theorem for a general
z as one can take the subgraph of only part of the left vertices, and get a sampler in which δ is at most
doubled.

G. Cohen and T. Yankovitz 1:13

1 − Hq(β1.4) − g(n) ≥ 1 − β1.4 logq

(
q3

β1.4

)
− g(n) ≥ 1 − β1.1,

where the last inequality holds for all sufficiently small β ≥ 0, and since g(n) = O(1
n) and

β ≥ 1
log n , by assumption.

Note that CGV is not explicit as Theorem 18 only guarantees existence of a code with
the stated parameters. However, as the block-length of CGV is O(log n), such a code can be
found by an exhaustive search on generating matrices, in time 2O((log n)2). To improve on
that, we remark that the code CGV can also be found by going only over a limited family of
generating matrices (see [21]), and this can be done in time poly(n).

Consider the concatenated code CRS ◦ CGV. It has block length nRS · nGV = n, rate
(1−β1.1)2 which is at least 1−β for all small enough β > 0, and relative distance β1.2β1.4 ≥ β3,
completing the proof. ◀

4 Rate amplification for dual-induced SLR

In this section we introduce the notion of smooth locally recoverable sets (SLR) which under
non-adaptive and linearity assumptions is shown to be equivalent to LCC. We consider a
certain class of SLR, to which we call dual-induced SLR. These are SLR that are obtained
by the dual of certain structured sets. The structure of these dual-SLR sets allows us to
devise a rate amplification procedures for them. Informally, dual-SLR are sets of tuples (or
linear spaces of vectors if the alphabet over which we are working is a field) in which every
given entry of a tuple in the set can be recovered using only few queries and in a “smooth”
manner, which is to say that the distribution of every query has high min-entropy.

▶ Definition 21 (Smooth locally recoverable sets (SLR)). Let Σ, P be arbitrary non-empty
sets. We say that C ⊆ ΣP is (q, τ, ε)-smooth locally recoverable (SLR for short) if there
exists a randomized algorithm Rec, called a recovering procedure, that is given as input p ∈ P

and an oracle access to c ∈ C. The recovering procedure outputs either an element of Σ or a
symbol ⊥ which is assumed not to be in Σ. The algorithm Rec has the following properties:

For every (c, p) ∈ C × P , Recc(p) makes at most q queries to c.
For every c ∈ C and p, r ∈ P it holds that

Pr[Recc(p) queries cr] ≤ τ.

For every (c, p) ∈ C × P , the random variable Recc(p) ∈ {cp, ⊥}, and

Pr [Recc(p) =⊥] ≤ ε.

We assume that for every p ∈ P whether Recc(p) =⊥ is independent of c, and that it is never
the case that Recc(p) queries cp. When Σ is a field and C is a linear subspace of ΣP , we say
that C is linear. In this case, the rate of C is defined as dim(C)/|P |. We will mostly consider
non-adaptive SLR. These are SLR in which the joint distribution of queries is independent
of c.

We remark that the notion of SLR is very similar to the notion of smooth-codes of [23]
for LDC. We now have the following easy claim showing that SLR yield LCC and, assuming
linearity, LDC.

▷ Claim 22. Let C ⊆ ΣP be a (q, τ, ε)-SLR. Then, for every ε′ > 0, C is a (q, δ, ε + ε′)-LCC
with δ = ε′/(qτ |P |). As a consequence, if C is also linear then C is a (q, δ, ε + ε′)-LDC.

CCC 2021

1:14 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

Proof. To show that C is an LCC, we devise a local corrector for C. Given an oracle access
to c ∈ ΣP , and p ∈ P as input, the local corrector computes z = Recc(p). If z =⊥ then the
local corrector returns some arbitrary element of Σ, and otherwise return z. To analyze this
local corrector, let c′ ∈ ΣP be such that dist(c, c′) ≤ δ|P |. Denote B = {p ∈ P | cp ̸= c′

p}.
Note that conditioned on Recc(p) ̸=⊥, the local corrector returns cp successfully if all q

queries do not fall into B. The probability that any given query falls into B is bounded
above by τ |B| and so, by the union bound, the probability that some query falls into B is
bounded above by τ |B|q ≤ ε′. This proves that C is a (q, δ, ε + ε′)-LCC. Note that linear
LCC are systematic and so every linear LCC induces an LDC. ◁

In fact, for linear LCCs, the other direction also holds, meaning that such an LCC is an
SLR, as we have in the following claim.

▷ Claim 23. Let C ⊆ FP be a linear non-adaptive (q, δ, ε)-LCC where 1-ε > 1/|F|. Then, C

is a (q, τ, ε′)-SLR with τ = q/(δ|P |) and ε′ = 0.

Before we prove the claim, we need to state the following easy to verify fact.

▶ Fact 24. Let L ⊆ FP be a linear subspace, let p ∈ P , let Q ⊆ P and let x ∈ F|Q|. Then,
one of the following cases must hold.
1. There is at most one α ∈ F for which there exists some v ∈ L satisfying v(Q) = x 7 and

v(p) = α;
2. For every α ∈ F there is an equal number of v ∈ L for which v(Q) = x and v(p) = α.
In particular, either no function (even randomized) of v(Q) can predict v(p) with probability
more than 1/|F|, when v ∈ L is randomly chosen uniformly, or v(Q) always determines v(p).

With that, we now prove Claim 23 8.

Proof for Claim 23. To show that C is an SLR, we devise a recovering procedure Rec for it,
based on the local corrector promised by it being an LCC. Let D 9 be such a local corrector.
For every point p ∈ P , we construct a sequence of disjoint sets Qp

1, . . . , Qp
mp

⊆ P , where
for every i, c(Qp

i) determines c(p) while satisfying |Qp
i | ≤ q, and mp ≥ δ|P |/q. On p ∈ P

and oracle access to c ∈ C, the procedure Recc(p) acts by uniformly choosing i ∈ [mp],
querying c(Qp

i), and using it to deduce and output c(p). The correctness of the result of Rec
is immediate (since Rec always succeeds, ε′ = 0), and indeed the number of queries is no
more than q. Since the sets are disjoint, the probability that a point is queried is no more
than τ = q/(δ|P |). It only remains to show how the assumed sets can be constructed, to
conclude that C is a (q, τ, ε′)-SLR, which we now turn to do.

For every p ∈ P , Qp
1, . . . , Qp

mp
are constructed as follows. Set Qp

0 = ∅. For i = 1, 2, . . .,
set Si = Qp

0 ∪ · · · ∪ Qp
i−1. If |Si| > δ|P |, halt and set mp = i − 1. Otherwise, it holds that for

every c ∈ C, for every modification of the coordinates in Si to some erroneous values, the
decoder D correctly outputs c(p) with probability at least 1 − ε. An equivalent description of
this case is the following: for every c ∈ C and z : Si → F, define cz ∈ FP such that for r /∈ Si,
cz(r) = c(r), and for r ∈ Si, cz(r) = z(r); the decoder D chooses a set of queries Q ⊆ P ,
|Q| ≤ q, according to a distribution and applies a function fQ on cz(Q); with probability at
least 1 − ε, fQ(cz(Q)) = c(p). Since Q is chosen in a manner independent of c and z, one can

7 For a set A = {a1, . . . , a|A|}, v(A) denotes the sequence (v(a1), . . . , v(a|A|)).
8 This proof is inspired by the proof of [23] of their Theorem 1 and by a proof in [41] for a different claim.
9 We make the slight assumption that Dc(p) never directly queries c(p). If however it does, then similarly

C can be shown to be a (q, τ, ε′)-SLR for τ = 1
(δ|P |/q)−1 .

G. Cohen and T. Yankovitz 1:15

verify that this implies that there exists some fixed Q for which when c ∈ C and z : F → Si

are chosen randomly in a uniform manner, with probability at least 1 − ε (this time over the
choice of c and z), fQ(cz(Q)) = c(p). Therefore, we can define another function f ′

Q that only
gets c(Q \ Si), chooses z at random, and outputs fQ(cz(Q)). If c ∈ C is chosen uniformly at
random, f ′

Q(Q \ Si) = c(p) with probability at least 1 − ε > 1/|F |. By Fact 24, this implies
that c(Q \ Si) determines c(p), for every c ∈ C. We therefore set Qp

i = Q \ Si, and proceed to
next i. As this process only halts when |Si| > δ|P |, and for every i |Si| ≤ q(i − 1), we have
that indeed mp ≥ δ|P |/q. Further note that by the choice of each Qp

i , the sets Qp
1, . . . , Qp

mp

are disjoint, as required. ◁

4.1 Dual SLR and their induced SLR
Our construction of SLR sets will be via constructing and analyzing sets which we call
dual SLR sets. The SLR will then be induced from these dual SLR. We start by setting
some notation. Let P be a non-empty finite set and F a finite field. We make use of the
standard notation FP to denote the set of all functions {f : P → F}. Note that FP has a
natural F-vector space structure where addition is point-wise, namely, for every f, g ∈ FP

and a, b ∈ F we have that af + bg ∈ FP is defined by (af + bg)(p) = af(p) + bg(p) for all
p ∈ P . We consider the natural inner product map ⟨·, ·⟩ : FP × FP → F that is defined, for
f, g ∈ FP , by ⟨f, g⟩ =

∑
p∈P f(p)g(p). Given f ∈ FP , we let f⊥ = {g ∈ FP | ⟨f, g⟩ = 0}.

Note that f⊥ is a linear subspace of FP . More generally, given a set S ⊆ FP we define the
linear subspace S⊥ =

⋂
f∈S f⊥. For f ∈ FP we denote |f | = |P \ f−1(0)|.

For the sake of readability, the field F and the set P will be omitted from the notation
that we are about the introduce in this section. Both will be clear from context. For p ∈ P

define Fp = {f ∈ FP | f(p) ̸= 0}. Informally, a dual SLR is a collection of distributions over
FP , one for each point p ∈ P . The distribution Dp, that corresponds to p, outputs a function
g ∈ FP . We think of g as “passing through” p. We also allow Dp to output a special “failed
symbol” ⊥ with some small probability. A dual SLR has the guarantee that g does not pass
through many other points, namely, |g| is bounded, and that the dimension of all functions
that can be sampled, when considering all distributions Dp, p ∈ P , is also bounded. Perhaps
most importantly is the requirement that for every other fixed r ∈ P , the sampled g ∼ Dp is
likely to have the property that g ̸∈ Fr. Formally,

▶ Definition 25 (Dual SLR). Let P be a set, F a field. Let D = {Dp | p ∈ P} be a collection
of distributions, where for each p ∈ P , supp(Dp) ⊆ Fp ∪ {⊥}. Denote S =

⋃
p∈P supp(Dp).

Let L be a linear subspace of FP such that S ⊆ L ∪ {⊥}. The pair (D, L) is said to be a
(q, τ, ε, ρ)-dual SLR on FP provided the following holds:
1. |g| ≤ q for all g ∈ S \ {⊥}.
2. For every pair of distinct p, r ∈ P (not necessarily distinct), it holds that

Pr
g∼Dp

[g(r) ̸= 0 | g ̸=⊥] ≤ τ.

3. For every p ∈ P , Pr [Dp =⊥] ≤ ε.

4. dim(L) ≤ (1 − ρ)|P |.

The linear subspace L⊥ of FP is called the induced SLR from the dual SLR (D, L). The
parameter τ of a dual-SLR is referred to as its smoothness.

Let (D, L) be a dual SLR. We turn to show that, as the name suggests, the induced SLR
L⊥ is indeed an SLR.

CCC 2021

1:16 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

▶ Lemma 26. Let P be a set, F a field, and let (D, L) be (q, τ, ε, ρ)-dual SLR on FP . Then
the induced SLR L⊥ is a (q − 1, τ, ε)-SLR. Furthermore, L⊥ is linear and has rate ρ or larger.

Proof. The moreover part readily follows since L⊥ is a linear subspace of FP and since

dim(L⊥) = |P | − dim(L) ≥ ρ|P |.

We describe a recovering procedure for L⊥, namely, a randomized algorithm that is given an
oracle access to f ∈ L⊥ as well as a point p ∈ P as input. The recovering procedure proceeds
as follows:
1. Sample g ∼ Dp. If g =⊥ return ⊥; Otherwise,
2. Query f on all points Q = {r ∈ P \ {p} | g(r) ̸= 0}.
3. Return

− 1
g(p)

∑
r∈Q

g(r)f(r).

The query complexity of Rec is bounded by q − 1 as |Q| = |g| − 1 ≤ q − 1. The probability
that ⊥ is returned is at most ε by construction. We turn to prove that Recf (p) ∈ {f(p), ⊥}.
By construction, Recf (p) =⊥ if and only if g =⊥. Assume than that g ̸=⊥, hence, g ∈
supp(Dp) ⊆ L. As f ∈ L⊥ we have that 0 = ⟨f, g⟩, and so

0 =
∑
r∈P

g(r)f(r) = g(p)f(p) +
∑
r∈Q

g(r)f(r).

As g ∈ supp(Dp) ⊆ Fp we have g(p) ̸= 0, and so

f(p) = − 1
g(p)

∑
r∈Q

g(r)f(r) = Recf (p).

To conclude the proof, we turn to analyze the smoothness of Rec. First, note that, by
construction, f is never queried on p itself. Consider then any r ∈ P \ {p}. Conditioned on
g ̸=⊥, the function f is queried on r if and only if g(r) ̸= 0. Thus,

Pr [f(r) is queried] = Pr
g∼Dp

[g(r) ̸= 0 | g ̸=⊥] ≤ τ,

and the proof follows. ◀

We now show that the opposite holds as well, that any linear, non-adaptive, SLR induces
a dual-SLR.

▶ Lemma 27. Let P be a set, F a field, and let C ⊆ FP be a linear non-adaptive (q, τ, ε)-SLR
with rate ρ. Then for some set D, (D, C⊥) is a (q + 1, τ, ε, ρ)-dual SLR

Proof. Let Rec be a recovering procedure promised by C being a SLR. Assume that Rec
uses R random bits. For every point p ∈ P , denote by Ep the set of choices of the random
bits r ∈ {0, 1}R for which Recc(p) =⊥ (for any c ∈ C). Note that µ(Ep ⊆ {0, 1}R) ≤ ε.

For any p ∈ P and r ∈ {0, 1}R, r /∈ Ep, denote by Qp,r ⊆ P the set of query locations
which Rec(p) makes when r is the choice of randomness. Define a function fp,r : C → F
such that f(c) is the output of Recc(p) when fixing its randomness to r and note that fp,r(c)
only depends on {c(w) | w ∈ Qp,r}, and that fp,r(c) = c(p). Since C is linear, one can easily
verify that fp,r is a linear map. Therefore, for some up,r ∈ FP , fp,r(c) = ⟨up,r, c⟩ for every
c ∈ C, where up,r(w) = 0 if w /∈ Qp,r. We have that c(p) = ⟨up,r, c⟩ for every c ∈ C. If we
define a function gp,r ∈ FP such that

gp,r(w) =
{

−1, w = p;
up,r(q), w ̸= p,

it follows that gp,r ∈ C⊥. Note that |g{p,r}| ≤ q + 1.

G. Cohen and T. Yankovitz 1:17

For every p ∈ P , define Dp to be the following distribution. To sample from Dp,
draw r ∈ {0, 1}R uniformly at random. If r ∈ Ep, output ⊥; otherwise, output gp,r. Set
D = {Dp | p ∈ P} and L = C⊥. It follows trivially by the definitions that (D, L) is a
(q + 1, τ, ε, ρ)-dual SLR. ◀

4.2 Rate amplification for dual-induced SLR
In this section we describe our first rate amplification procedure for SLR that are induced by
dual SLR. Unlike the previous section, it will be more convenient to explicitly state within
the notation the set P over which we are working as we will be dealing with several such
sets. The field F, however, remains suppressed from the notation as it remains fixed in all
SLR under consideration. We start by defining the following map of functions.

▶ Definition 28. Let P be a set and F a field. For an integer ℓ ≥ 1 we define the map
Φ: (FP)ℓ → FP ℓ as follows. Let g1, . . . , gℓ ∈ FP . The function Φ(g1, . . . , gℓ) : P ℓ → F is
defined by

Φ(g1, . . . , gℓ)(p1, . . . , pℓ) =
ℓ∏

i=1
gi(pi)

for every (p1, . . . , pℓ) ∈ P ℓ.

Observe that Φ is multi-linear. Further, when ℓ = 2 and g1, g2 are viewed as vectors
rather than functions, Φ is the outer product of the vectors.

▶ Definition 29. Let P be a set, F a field. Let LP be a linear subspace of FP . For an integer
ℓ ≥ 1, we define

LP ℓ

= Span {Φ(g1, . . . , gℓ) | g1, . . . , gℓ ∈ LP }.

▷ Claim 30. With the notation of Definition 29,

dim (LP ℓ

) ≤
(
dim (LP)

)ℓ
.

Proof. Let B = {g1, . . . , gb} be a basis for LP , where b = dim(LP). Define

B′ = {Φ(h1, . . . , hℓ) | (h1, . . . , hℓ) ∈ Bℓ}.

Observe that to prove the claim, it suffices to show that for every f1, . . . , fℓ ∈ LP it holds that
Φ(f1, . . . , fℓ) ∈ Span(B′). As f1, . . . , fℓ ∈ LP , for every i ∈ [ℓ] we can write fi =

∑b
j=1 λi,jgj

with λi,j ∈ F. We have that

Φ(f1, . . . , fℓ) = Φ

 b∑
j1=1

λ1,j1gj1 , . . . ,
b∑

jℓ=1
λℓ,jℓ

gjℓ

=

∑
j1...,jℓ∈[b]

(
ℓ∏

t=1
λt,jt

)
· Φ(gj1 , . . . , gjℓ

),

where the last equality follows by the multi-linearity of Φ. ◁

▶ Definition 31. Let P be a set, F a field, and let (DP , LP) be (q, τ, ε, ρ)-dual SLR. Let ℓ ≥ 1
be an integer. For p ∈ P ℓ we define the distribution DP ℓ

p as follows. Write p = (p1, . . . , pℓ).
To sample an element from DP ℓ

p proceed as follows:

CCC 2021

1:18 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

1. Sample g1 ∼ DP
p1

, . . . , gℓ ∼ DP
pℓ

independently.
2. If there exists i ∈ [ℓ] such that gi =⊥, return ⊥; Otherwise
3. Return Φ(g1, . . . , gℓ).

The collection of distributions {DP ℓ

p | p ∈ P ℓ} is denoted by DP ℓ .

We have the following lemma.

▶ Lemma 32. Let P be a set, F a field, and let (DP , LP) be a (q, τ, ε, ρ)-dual SLR. Let ℓ ≥ 1
be an integer and DP ℓ as in Definition 31. Then, for every p, r ∈ P ℓ,

Pr
g∼DP ℓ

p

[g(r) ̸= 0 | g ̸=⊥] ≤ τdist(p,r).

Proof. Write p = (p1, . . . , pℓ), r = (r1, . . . , rℓ). By Definition 31, conditioned on g ̸=⊥ we
have that g = Φ(g1, . . . , gℓ) with gi ∼ DP

pi
for each i ∈ [ℓ] independently. Thus, g(r) ̸= 0 is

the event

Φ(g1, . . . , gℓ)(r1, . . . , rℓ) =
ℓ∏

i=1
gi(ri) ̸= 0.

By the independence of g1, . . . , gℓ, and since we are working over a field F (and so a product
is nonzero if and only if each of the terms is nonzero), we get

Pr
g∼DP ℓ

p

[g(r) ̸= 0 | g ̸=⊥] =
ℓ∏

i=1
Pr

gi∼DP
pi

[gi(ri) ̸= 0 | gi ̸=⊥] . (4.1)

Let T = {i ∈ [ℓ] | pi ̸= ri} . As DP is a (q, τ, ε, ρ)-dual SLR, for each i ∈ T it holds that

Pr
gi∼DP

pi

[gi(ri) ̸= 0 | gi ̸=⊥] ≤ τ.

Substituting to Equation (4.1), we get

Pr
g∼DP ℓ

p

[g(r) ̸= 0 | g ̸=⊥] ≤ τ |T |,

which completes the proof. ◀

▶ Definition 33. Let P be a set, F a field, and let (DP , LP) be a (q, τ, ε, ρ)-dual SLR. For
an integer ℓ ≥ 1 let LP ℓ , DP ℓ be as in Definition 29 and Definition 31, respectively. We
denote the pair (DP ℓ

, LP ℓ) by (DP , LP)ℓ.

▶ Proposition 34. Let P be a set, F a field, and let (DP , LP) be a (q, τ, ε, ρ)-dual SLR.
Then, for every integer ℓ ≥ 1 we have that (DP , LP)ℓ is a (qℓ, τℓ, εℓ, ρℓ)-dual SLR, where

qℓ ≤ qℓ,

τℓ ≤ τ,

εℓ ≤ ℓε,

ρℓ ≥ 1 − (1 − ρ)ℓ.

Proof. First note that for every p ∈ P ℓ, the distribution DP ℓ

p is supported on FP ℓ

p ∪ {⊥}.
Indeed, if we write p = (p1, . . . , pℓ) then, conditioned on g ̸=⊥, we have that g = Φ(g1, . . . , gℓ)
where gi ∈ DP

pi
. Thus,

g(p) = Φ(g1, . . . , gℓ)(p1, . . . , pℓ) =
ℓ∏

i=1
gi(pi) ̸= 0.

G. Cohen and T. Yankovitz 1:19

Moreover, by Definition 29,⋃
p∈P ℓ

supp(DP ℓ

p) ⊆ LP ℓ

∪ {⊥}.

We turn to show that qℓ ≤ qℓ. Let p = (p1, . . . , pℓ) ∈ P ℓ and consider any g ∈ supp(DP ℓ

p).
By Definition 31, if g ̸=⊥ then g = Φ(g1, . . . , gℓ) where gi ∈ supp(DP

pi
) \ {⊥}. Now, for every

r = (r1, . . . , rℓ) ∈ P ℓ we have that

g(r) ̸= 0 ⇐⇒
ℓ∏

i=1
gi(ri) ̸= 0.

Since F is a field, the above is equivalent to gi(ri) ̸= 0 for all i ∈ [ℓ]. Hence there are at most
qℓ points r ∈ P ℓ for which g(r) ̸= 0, and so qℓ ≤ qℓ.

The bound on the smoothness readily follows by Lemma 32. Indeed, consider any pair of
distinct p, r ∈ FP ℓ . We have that dist(p, r) ≥ 1 and so, by Lemma 32,

Pr
g∼DP ℓ

p

[g(r) ̸= 0 | g ̸=⊥] ≤ τdist(p,r) ≤ τ. (4.2)

To bound the probability that ⊥ is returned, note that the event DP ℓ =⊥ holds only if for
some i ∈ [ℓ], gi =⊥. Hence, by the union bound, Pr[DP ℓ

p =⊥] ≤ ℓε. We conclude the proof
by bounding the dimension of LP ℓ . By assumption, dim(LP) ≤ (1 − ρ)|P |. Claim 30 then
implies that

dim (LP ℓ

) ≤
(
dim (LP)

)ℓ ≤ ((1 − ρ)|P |)ℓ = (1 − ρ)ℓ|P ℓ|. ◀

Discussion on the smoothness τℓ = τ

The downside of the rate amplification procedure that was given in this section is that τℓ

does not decrease with ℓ (which is bad as, recall, we wish τ to be small as, by Claim 22,
the distance δ of the resulted LCC is proportional to 1/τ). Indeed, with the notation of
Proposition 34, τℓ = τ . By examining the proof and Lemma 32 one natural idea is to consider
an SLR not over the entire set P ℓ but on some subset of it which is a code with distance,
say, d > 1. This will indeed guarantee that for every two points p, r we have dist(p, r) ≥ d

and so the bound in Equation (4.2) will be τd rather than τ . While natural, this idea fails
to yield better parameters as the rate-loss incurred by using a code (even an MDS) is larger
than the improvement on the rate guaranteed via the rate amplification procedure.

In the next sections we give a more elaborate rate amplification procedure (that is
based on the one that was given in this section) in which τ does decrease with ℓ. Roughly,
τℓ = (q · log |P |)poly(ℓ)τ ℓ, and so there is a slight loss in the smoothness, which the reader
should think as negligible. The query complexity qℓ as well as the rate ρℓ and εℓ are all
slightly worse than those obtained in the above rate amplification procedure and so the two
techniques are incomparable.

4.3 Distance-efficient rate amplification
Let P be a set, and R a partition of P 2. We denote the part containing p by [p]R or [p] when
R is clear from context. We call (p) = [p] \ {p} the open class of p. For a set A ⊆ P 2 we
let (A) = ∪p∈A(p). Given p ∈ P we say that {p} × P ⊆ P 2 is vertical line and P × {p} is
a horizontal line. Horizontal and vertical lines are referred to as axis-parallel lines, and we
denote the set of such lines by

X =
⋃

p∈P

{{p} × P, P × {p}}.

CCC 2021

1:20 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

For a point p = (p1, p2) ∈ P 2 we denote Sp = ({p1} × P) ∪ (P × {p2}) \ {p}. That is, Sp

is the set of points in P 2 of distance exactly 1 from p. Key to our distance-efficient rate
amplification procedure is a partition of the “square” P 2 with certain properties.

▶ Definition 35 (Axis-evasive partitions). Let P be a set. A partition R of P 2 is said to be
(c, s)-axis evasive if
1. For every p ∈ P 2, |(p)| ≤ c.
2. For every ℓ, ℓ′ ∈ X (possibly equal), |ℓ′ ∩ (ℓ)| ≤ s.

3. For every p ∈ P 2 and ℓ ∈ X , |[p] ∩ ℓ| ≤ 1.

In Section 5 we study such partitions. We prove their existence with certain parameters
and give explicit constructions. In this section, however, we work with abstract axis-evasive
partitions and analyze our rate amplification procedure with respect to the parameters c, s

of the axis-evasive partition as well as the number of parts which we typically denote by t.

▷ Claim 36. Let p, p′ ∈ P 2 (possibly equal). Then,

|{r ∈ Sp | (r) ∩ Sp′ ̸= ∅}| ≤ 4s.

Proof. Note that each of Sp, Sp′ is a subset of the union of two axis-parallel lines. Thus, to
prove the claim, it suffices to show that for every ℓ, ℓ′ ∈ X , not necessarily distinct,

|{r ∈ ℓ | (r) ∩ ℓ′ ̸= ∅}| ≤ s.

Let r1, . . . , rt ∈ ℓ be such that (ri) ∩ ℓ′ ̸= ∅. Note that for every distinct i, j ∈ [t] it holds
that ((ri) ∩ ℓ′) ∩ ((rj) ∩ ℓ′) = ∅. Indeed, since R is a partition, if ((ri) ∩ ℓ′) ∩ ((rj) ∩ ℓ′) ̸= ∅
then ri ∈ [rj], but this implies that |ℓ ∩ [rj]| ≥ 2 in contradiction axis evasiveness. Thus,

R =
t⋃

i=1
((ri) ∩ ℓ′)

is a disjoint union of size t. However, R ⊆ (ℓ) ∩ ℓ′, and so t ≤ |R| ≤ |(ℓ) ∩ ℓ′| ≤ s. ◁

▶ Definition 37. Let P be a set, F a field. Let R be a (c, s)-axis evasive partition of P 2. For
every p ∈ P 2 define the function g[p] : P 2 → F as follows:

g[p](r) =
{

1, r ∈ [p];
0, otherwise.

We define LR = {g[p] | p ∈ P 2}.

▶ Definition 38. Let P be a set, F a field. For S ⊆ P define the function νS : P → F by

νS(r) =
{

0, r ∈ S;
1, otherwise.

For ease of readability, when S is a singleton S = {p}, we write νp instead of ν{p}.

With the notations and definitions above, we are ready to start developing our second
rate amplification procedure. We start with the following.

▶ Definition 39. Let P be a set, F a field, and let (DP , LP) be a (q, τ, ε, ρ)-dual SLR. Let
LP 2 be as in Definition 29. Let R be a (c, s)-axis evasive partition of P 2. We define for
every p ∈ P 2 the distribution (DP 2

R)p as follows. To sample u from (DP 2

R)p:

G. Cohen and T. Yankovitz 1:21

1. Sample g ∼ DP 2

p .
2. If g =⊥ return ⊥; Otherwise, denote L = {r ∈ Sp | g(r) ̸= 0} and proceed as follows.
3. For every r ∈ L and w ∈ (r) sample hr,w ∼ DP 2

w .
4. If there exist r ∈ L and w ∈ (r) such that either hr,w =⊥ or hr,w(p) ̸= 0 return ⊥.

Otherwise return

u = gνL +
∑
r∈L

g(r)
∑

w∈(r)

hr,wνw

hr,w(w) . (4.3)

Note that, upon reaching Step (4), u is well-defined as hr,w(w) ̸= 0 for all r ∈ L and w ∈ (r).
We denote the collection of distributions {(DP 2

R)p | p ∈ P 2} by DP 2

R .

We start by analyzing the function u that is given by Equation (4.3) above.

▷ Claim 40. With the notation of Definition 39, if ⊥ is not returned then u ∈ Fp.

Proof. As ⊥ was not returned, for every r ∈ L and w ∈ (r) it holds that hr,w ̸=⊥ and
hr,w(p) = 0. Substituting to Equation (4.3), we get

u(p) = g(p)νL(p) = g(p) ̸= 0,

where the second equality holds as p ̸∈ L and the last inequality follows since g ∈ supp(DP 2

p)\
{⊥}. ◁

▷ Claim 41. With the notation of Definition 39, if ⊥ is not returned then u ∈ LP 2 + LR.

Proof. Take f ∈ (LP 2 + LR)⊥. To prove the claim, it suffices to show that ⟨u, f⟩ = 0. Indeed,
this would imply u ∈ ((LP 2 + LR)⊥)⊥ = LP 2 + LR. As u ̸=⊥ we have that g ̸=⊥. Note that

⟨gνL, f⟩ = ⟨g, f⟩ −
∑
r∈L

g(r)f(r).

Since g ∈ supp(DP 2

p) we get that g ∈ LP 2 . However, f ∈ (LP 2 + LR)⊥ ⊆ (LP 2)⊥, implying
⟨g, f⟩ = 0. Thus,

⟨gνL, f⟩ = −
∑
r∈L

g(r)f(r). (4.4)

Now, fix r ∈ L and w ∈ (r). By Definition 39, as u ̸=⊥ we have that hr,w ̸=⊥ and so
hr,w ∈ LP 2 . However, by the above, f ∈ (LP 2)⊥ and so ⟨hr,w, f⟩ = 0. Thus,

⟨hr,wνw, f⟩ = ⟨hr,w, f⟩ − hr,w(w)f(w) = −hr,w(w)f(w).

Therefore, for every fixed r ∈ L one has that〈 ∑
w∈(r)

hr,wνw

hr,w(w) , f
〉

=
∑

w∈(r)

〈 hr,wνw

hr,w(w) , f
〉

=
∑

w∈(r)

1
hr,w(w) ⟨hr,wνw, f⟩

= −
∑

w∈(r)

f(w). (4.5)

CCC 2021

1:22 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

Now, f ∈ (LP 2 + LR)⊥ ⊆ (LR)⊥ whereas g[r] ∈ LR, and so

0 = ⟨f, g[r]⟩ =
∑

w∈[r]

f(w).

Substituting this to Equation (4.5), we get〈 ∑
w∈(r)

hr,wνw

hr,w(w) , f
〉

= f(r).

Therefore,〈∑
r∈L

g(r)
∑

w∈(r)

hr,wνw

hr,w(w) , f
〉

=
∑
r∈L

g(r)
〈 ∑

w∈(r)

hr,wνw

hr,w(w) , f
〉

=
∑
r∈L

g(r)f(r).

The above equation together with Equation (4.4) yield ⟨u, f⟩ = 0. ◁

▷ Claim 42. With the notation of Definition 39, for every p ∈ P 2,

Pr[(DP 2

R)p =⊥] ≤ 18csqτ2 + 2cqε.

Proof. First, the probability that g =⊥ is bounded by ε. Similarly, the probability that for
any specific r ∈ L and w ∈ (r), hr,w =⊥ is bounded by ε. Thus, by the union bound, and
since |L| ≤ 2q − 1 and |(r)| ≤ c, we have that expect with probability (1 + (2q − 1)c)ε ≤ 2qcε,
the sampling process above will result in u ̸=⊥.

To complete the analysis, we turn to bound the probability that hr,w(p) = 0 for some
r ∈ L and w ∈ (r). Let L = {r1, . . . , r|L|}. While the random variables in L may be
dependent, marginally, it holds that for every i ∈ [|L|] and every fixed r ∈ Sp, Pr[ri = r] ≤ τ .
With this notation, by Definition 39, (DP 2

R)p =⊥ only if there exist i ∈ [|L|] and w ∈ (ri)
such that hri,w(p) ̸= 0.

For a fixed r ∈ Sp define the event Er in which there exists w ∈ (r) such that hr,w(p) ̸= 0,
(when conditioned on hr,w ̸=⊥). Note that this event is with respect to the randomness of
sampling hr = {hr,w | w ∈ (r)} whereas r is fixed. By the union bound,

Pr
hr

[Er] ≤
∑

w∈(r)

Pr
hr,w

[hr,w(p) ̸= 0 | hr,w ̸=⊥].

Observe first that w ̸= p. Indeed, as r ∈ Sp, both r and p are on some common axis-parallel
line ℓ ∈ X . Thus, w = p would imply |[r] ∩ ℓ| ≥ 2 which stands in contradiction to the
definition of axis-evasiveness. Consider w ∈ (r) \ Sp. As w ̸= p we have that dist(w, p) = 2.
By Lemma 32, as hr,w ∼ DP 2

w we have that

Pr
hr,w

[hr,w(p) ̸= 0 | hr,w ̸=⊥] ≤ τ2.

If, on the other hand, w ∈ (r) ∩ Sp then dist(w, p) = 1, and Lemma 32 then implies that

Pr
hr,w

[hr,w(p) ̸= 0 | hr,w ̸=⊥] ≤ τ.

As |(r)| ≤ c we conclude that

Pr
hr

[Er] ≤ cτ2 + τ |(r) ∩ Sp|.

G. Cohen and T. Yankovitz 1:23

Fix i ∈ [|L|] and consider the random variable ri. The above equation, together with
|(ri)| ≤ c, yields

Pr
ri,hri

[Eri
] ≤ Pr

ri,hri

[Eri
| (ri) ∩ Sp = ∅] + Pr

ri,hri

[Eri
| (ri) ∩ Sp ̸= ∅] Pr

ri

[(ri) ∩ Sp ̸= ∅]

≤ cτ2 + (cτ2 + cτ) Pr
ri

[(ri) ∩ Sp ̸= ∅] . (4.6)

Consider now the set B = {r ∈ Sp | (r) ∩ Sp ̸= ∅}. As R is (c, s)-axis evasive, Claim 36
implies that |B| ≤ 4s, and so

Pr
ri

[(ri) ∩ Sp ̸= ∅] = Pr[ri ∈ B] ≤ 4sτ.

Substituting to Equation (4.6), we get Pr [Ei] ≤ 9csτ2. The proof then follows by taking the
union bound over all i ∈ [|L|] as, indeed, |L| = 2q − 1. ◁

▷ Claim 43. With the notation of Definition 39, for every pair of distinct p, r ∈ P 2,

Pr
u∼(DP 2

R
)p

[u(r) ̸= 0 | u ̸=⊥] ≤ 10csqτ2.

Proof. By Equation (4.3), u is a linear combination of the (sampled) functions gνL, {hr,wνw}.
To prove the claim, we will show that, with high probability, all these functions evaluate to
0 at the point r, implying u(r) = 0. We start by bounding Pr[(gνL)(r) ̸= 0]. To this end,
consider two cases. First, if r ∈ P 2 \ Sp then, as L ⊆ Sp, we have that νL(r) = 1 and so in
such case

Pr[(gνL)(r) ̸= 0] = Pr[g(r) ̸= 0] ≤ τ2, (4.7)

where the last inequality follows by Lemma 32 and since dist(r, p) = 2 per our assumption
r ̸∈ Sp and since r ̸= p. If, on the other hand, r ∈ Sp then, by the definition of L,

g(r) ̸= 0 =⇒ r ∈ L =⇒ νL(r) = 0,

and so in this case (gνL)(r) = 0.
Let L = {r1, . . . , r|L|}. Consider a fixed i ∈ [|L|] and denote (ri) = {wi,1, . . . , wi,b}, where

b ≤ c. Fix j ∈ [b]. We turn to bound Pr
[
(hri,wi,j νwi,j)(r) ̸= 0

]
. First note that

Pr
[
(hri,wi,j

νwi,j
)(r) ̸= 0 | (ri) ∩ Sr = ∅

]
≤ τ2. (4.8)

Indeed, conditioned on the event (ri) ∩ Sr = ∅, either wi,j = r or dist(wi,j , r) = 2. In the
first case,

(hri,wi,j
νwi,j

)(r) = hri,r(r)νr(r) = 0.

In the second case, the bound follows by Lemma 32. Second, note that

Pr
[
(hri,wi,j νwi,j)(r) ̸= 0 | (ri) ∩ Sr ̸= ∅

]
≤ τ. (4.9)

Indeed, as before, we may only consider the case r ̸= wi,j and then observe that dist(r, wi,j) = 1
and invoke Lemma 32. Now, let B = {v ∈ Sp | (v) ∩ Sr ̸= ∅}. By Claim 36, and since R is
(c, s)-axis evasive, |B| ≤ 4s. Recall that Pr[ri = v] ≤ τ for every fixed v ∈ Sp, and so

Pr [(ri) ∩ Sr ̸= ∅] = Pr[ri ∈ B] ≤ 4sτ. (4.10)

By Equations (4.8), (4.9), (4.10) we get

Pr
[
(hri,wi,j

νwi,j
)(r) ̸= 0

]
≤ τ2 + 4sτ2 ≤ 5sτ2.

The proof then follows by the union bound over all i ∈ [|L|] and j ∈ [|(wi)|]. ◁

CCC 2021

1:24 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

▶ Definition 44. Let P be a set, F a field, and let (DP , LP) be a (q, τ, ε, ρ)-dual SLR. Let
LP 2 be as in Definition 29. Let R be a (c, s)-axis evasive partition of P 2 and let DP 2

R be as
in Definition 39. We denote by (DP , LP)2

R the pair (DP 2

R , LP 2 + LR).

▶ Proposition 45. Let P be a set, F a field, and let (DP , LP) be a (q, τ, ε, ρ)-dual SLR.
Let R be a (c, s)-axis evasive partition of P 2 that consists of t parts. Then, (DP , LP)2

R is a
(qR, τR, εR, ρR)-dual SLR with

qR ≤ 2cq3

τR ≤ 10csqτ2

εR ≤ 18csqτ2 + 2cqε

ρR ≥ 1 − (1 − ρ)2 − t

|P |2
.

Proof. Claim 40 implies that for every p ∈ P 2, supp((DP 2

R)p) ⊆ Fp ∪ {⊥}. To bound qR,
note that by Equation (4.3),

|u| ≤ |gνL| +
∑
r∈L

∑
w∈(r)

|hr,wνw|

Now, |gνL| ≤ |g| ≤ q2 and |hr,wνw| ≤ |hr,w| ≤ q2. Hence, |u| ≤ q2 + |L|cq2 ≤ 2cq3. The
stated bounds on τR and εR readily follows by Claim 43 and Claim 42, respectively. As for
the rate, we have that

dim(LP 2
+ LR) ≤ dim(LP 2

) + dim(LR)
≤ (1 − ρ)2|P |2 + t,

where the second inequality follows by Proposition 34 and since R consists of t parts, implying
|LR| = t. ◀

4.4 Proofs of Theorem 3 and Corollary 4
With the machinery developed in the previous section, and using in a black-box manner, the
construction of axis-evasive partitions we obtain in Section 5, we are finally ready to prove
Theorem 3 and Corollary 4. We start by giving a more formal statement of Corollary 4.

▶ Theorem 46. There exist universal constants m0, c′ ≥ 1 such that the following holds. Let
P be a set of size m ≥ m0. Let F be a field, and let (DP

in, LP
in) be a (qin, τin, εin, ρin)-dual SLR

over FP . Let 0 < α < 1 be such that

ρin ≥ c′
√

α · log m
log
(

1
α

)
. (4.11)

Then, there exists a (qout, τout, εout, ρout)-dual SLR (DP
out, LP

out) over FPout , with mℓ/2 ≤
|Pout| ≤ mℓ, where

ℓ = Θ
(

1
ρin

log 1
α

)
, (4.12)

having the following parameters:

qout ≤ q
poly(ℓ)
in ,

τout ≤ q
poly(ℓ)
in τ ℓ

in,

εout ≤ q
poly(ℓ)
in (τin + εin),

ρout ≥ 1 − α.

G. Cohen and T. Yankovitz 1:25

A remark regarding the error

Note that there is another implicit constraint on ρin and α that originates from the error.
Indeed, to make the result non-trivial, one must have εout < 1 which, in turn, implies some
bound on ℓ and then, through Equation (4.12), a constraint on ρin and α. However, if that
turns out to be a problem for the regime of parameters one is interested in, the probability
to output ⊥ can be reduced by repetition. Thus, by performing an alternating sequence of
such error (or failure) reductions and rate amplifications, one can resolve this issue. Note
that unlike for LDC, the error reduction has no cost in query complexity, and it certainly
has no effect on the smoothness nor on the rate. It does, however, effects the running-time.

As mentioned above, our proof relies on an explicit axis-evasive partition that we construct
in Section 5. Formally,

▶ Theorem 47. Let P be a set of size q, where q is an odd prime power. Let c be an even
integer such that c + 1 | q + 1, and c ≤ √

q/10. Then, there exists a (c, 4c2)-axis evasive
partition of P 2 with at most 2q2/(c + 1) parts.

Our proof of Theorem 46 is done by applying Proposition 45 several times, iteratively,
where in each iteration we square the size of the set P obtained by the previous iterative step.
Note, however, that Theorem 47 requires the set size |P | to be an odd prime power q with the
property that c+1 | q +1. It is best to choose c the same in all applications of Proposition 45.
However, note that if we start an iteration with a set of size q and so end the iteration with
a set of size q2 then the condition will fail to hold at the beginning of the following iteration.
Indeed if c + 1 | q + 1 then q ≡ −1 (mod c + 1) and so q2 ≡ 1 (mod c + 1). To overcome this
technicality, we do not work with the set obtained by the previous iteration as is. Instead,
we find a prime–not much smaller than q2–that has the desired residue −1 modulo c + 1. To
this end we rely on the Siegel–Walfisz Theorem [34, 37] which refines Dirichlet’s theorem
on primes in arithmetic progressions. The state the Siegel–Walfisz Theorem we set some
notation. For an integer m ≥ 1, we denote Euler’s totient function, that counts the positive
integers up to m that are relatively prime to m, by ϕ(m). For integers n, m, r, we denote
the number of (positive) primes less than or equal to n which are congruent to r modulo m

by π(n; m, r). The Eulerian logarithmic integral is given by

Li(x) =
∫ x

2

dt

ln t
.

▶ Theorem 48 ([34, 37]). For every constant e ≥ 1 there exists a constant c = c(e) such
that the following holds. Let n, m, r be positive integers such that m ≤ (log n)e, and m, r

coprimes. Then,∣∣∣π(n; m, r) − Li(n)
ϕ(m)

∣∣∣ = O
(

n · 2−c
√

log n
)

.

We have the following straightforward corollary.

▶ Corollary 49. For every constant e ≥ 1 there exist constants c = c(e), n0 = n0(e) such
that the following holds. Let m, r be coprime integers, m > 0. Let n ≥ n0 be an integer such
that m ≤ (log n)e. Then, there exists a prime p ∈ [n − ∆, n], where ∆ = cn/ log n, such that
p ≡ r (mod m).

Proof. To prove the corollary, it suffices to show that π(n; m, r) > π(n − ∆; m, r). By
Theorem 48, there exist constants n0, c′ such that for every n ≥ n0,∣∣∣π(n; m, r) − Li(n)

ϕ(m)

∣∣∣ ≤ c′n · 2−c
√

log n.

CCC 2021

1:26 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

Thus, it suffices to show that

Li(n)
ϕ(m) − c′n · 2−c

√
log n >

Li(n − ∆)
ϕ(m) + c′(n − ∆) · 2−c

√
log (n−∆).

As we may assume that ∆ ≤ n/2, it suffices to prove that

Li(n) − Li(n − ∆) ≥ 2c′ϕ(m)n · 2−c
√

log(n/2). (4.13)

It is well-known that

Li(x) = c1 + x

ln x
+ O

(
x

ln2 x

)
,

where c1 =
∫ 2

t=0
dt
ln t is some constant. Therefore,

Li(n) − Li(n − ∆) ≥ ∆
ln(n/2) − c′′n

ln2 n
.

for some constant c′′. By our assumption on ∆ we can choose the parameter c in the definition
of ∆ such that the right hand side is bounded below by n/ ln2 n. The proof then follows by
Equation (4.13) and noting that ϕ(m) ≤ m ≤ (log n)e = o(2−c

√
log (n/2)). ◀

We turn to formally define and analyze the operation of projecting a dual SLR over FP

on a (large) subset of P .

▶ Definition 50. Let P a set and P ′ ⊆ P . Let p′ ∈ P ′ and D be a distribution with
supp(D) ⊆ Fp′ ∪ {⊥}. We define the D|P ′ as follows: To sample from D|P ′ , sample f ∼ D.
If f =⊥, output ⊥; if f ∈ Fp′ , output f |P ′ . We refer to D|P ′ as the distribution D projected
to P ′.

▶ Definition 51. Let P be a set, F a field. Let D = {Dp | p ∈ P} be a collection of
distributions, where for each p ∈ P , supp(Dp) ⊆ Fp ∪ {⊥}. Let P ′ ⊆ P . We define D|P ′ to
be the collection D projected to P ′, that is, D|P ′ = {Dp′ |P ′ | p′ ∈ P ′}.

▶ Definition 52. Let P be a set, F a field and let L be a linear subspace of FP . Let P ′ ⊆ P .
We denote by L|P ′ the linear subspace L projected to P ′, namely, L|P ′ = {f |P ′ | f ∈ L}.

▷ Claim 53. Let P be a set, F a field, (D, L) a (q, τ, ε, ρ)-dual SLR over FP , and let P ′ ⊆ P .
Then, (D|P ′ , LP ′) is a (q, τ, ε, ρ′)-dual SLR over FP ′ , where ρ′ = 1 − |P |

|P ′| (1 − ρ).

Proof. That the smoothness τ , as well as q and ε, all stay the same after projecting the dual
SLR to P ′, follows immediately from the definitions. The assertion regarding the rate of the
induced SLR, ρ′, readily follows as we have that

dim(L|P ′) ≤ dim(L) ≤ (1 − ρ)|P | =
(

1 − (1 − |P |
|P ′|

(1 − ρ))
)

|P ′|. ◁

▷ Claim 54. There exists a universal constant m0 such that the following holds. Let P be a
set of size m ≥ m0. Let F be a field, and let (DP , LP) be a (qin, τin, εin, ρin)-dual SLR over
FP . Let c ≤ log m be an integer. Then, there exists a set P ′ of size

|P ′| ≥
(

1 − O

(
1

log m

))
m2,

G. Cohen and T. Yankovitz 1:27

and a (qout, τout, εout, ρout)-dual SLR (DP ′
, LP ′) over FP ′ , where

qout ≤ 2cq3
in,

τout ≤ 40c3qinτ2
in,

εout ≤ 80c3qin(τ2
in + εin),

ρout ≥ 1 − (1 − ρin)2 − O (1/c) .

Proof. By Corollary 49 applied with n, m, r in the notation of Corollary 49 set to m, c + 1, −1
in the notation of this claim, respectively, there exists some prime p ≤ m such that m − p =
O(m

log m), and c + 1 | p + 1. Take P ′ to be an arbitrary subset of P of size p. By Claim 53,
(D|P ′ , L|P ′) is a (qin, τin, εin, ρ′)-dual SLR on P ′, where

ρ′ = 1 − m

p
(1 − ρin) ≥ ρin − O

(
1

log m

)
.

By Theorem 47 applied to P ′, which observe is indeed applicable as c + 1 | p + 1, there
exists an explicit (c, 4c2)-axis evasive partition R of (P ′)2 with at most t = 2p2/(c + 1)
parts. With that partition, we can now apply Proposition 45 to (D|P ′ , L|P ′) and get that
(D|P ′ , L|P ′)2

R is a (qout, τout, εout, ρout)-dual SLR with the stated parameters. Note that the
assertion regarding the rate follows as c ≤ log m, ◁

The following proposition is a more formal and accurate restatement of Theorem 3.

▶ Proposition 55. There exist universal constants 0 < c′ < 1 and c′′, m′, ℓ′ ≥ 1 such that
the following holds. Let P be a set of size m ≥ m′. Let F be a field, and let (DP , LP) be
a (qin, τin, εin, ρin)-dual SLR over FP . Let ℓ = 2r for an integer r ≥ 1, and assume that
ℓ ≥ ℓ′. Let c be an integer such that c′′ℓ2 ≤ c ≤ c′ log m. Then, there exists a set Pℓ of size
mℓ/2 ≤ |Pℓ| ≤ mℓ, and a (qℓ, τℓ, εℓ, ρℓ)-dual SLR (DPℓ , LPℓ) over FPℓ , where

qℓ ≤ (2cqin)ℓlog 3
,

τℓ = O((c3qin)ℓlog 3
) · τ ℓ

in,

εℓ ≤ O((c4qin)ℓlog 3
) · (τin + εin),

ρℓ ≥ 1 − (1 − ρin)ℓ − O

(
ℓ2

c

)
,

where, recall, the log function is taken base 2.

Proof. We construct a sequence of (qt, τt, εt, ρt)-dual SLR (DPt , LPt) for t = 0, 1, . . . , r =
log ℓ, and show that the last dual-SLR in the sequence has the stated parameters. The first
dual-SLR, (DP0 , LP0), is taken to be the (qin, τin, εin, ρin)-dual SLR (DP , LP) that is given
by the hypothesis of the proposition. After constructing (DPt , LPt), we obtain (DPt+1 , LPt+1)
by applying Claim 54 to (DPt , LPt) with the parameter c taken to be c from the statement
of this proposition. Note that, as required by the claim, c ≤ log m. Note that, by taking
m′ to be a large enough constant, all other dual SLR in the sequence will have |Pt| ≥ m as
well, and so we can apply Claim 54 to them. Denote mt = |Pt|. We begin by bounding mt

from below. Indeed, by Claim 54, and using that 1 − x ≥ e−2x for x ≤ 1/2, we can pick the
constant c′′ such that

mt ≥ e
− c′′

log mt−1 m2
t−1 ≥ e− c′′

log m0 m2
t−1,

CCC 2021

1:28 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

where the last inequality follows as, for a large enough constant m′, the sequence (mt)t is
monotone increasing. We invoke Claim 82 with a = e

c′′
2 log m0 and b = 2 to conclude that

mt ≥ m2t

0 e− c′′2t

log m0 ≥ 1
2m2t

0 ,

where the last inequality follows as t ≤ r = log ℓ and, recall, we take ℓ ≤ c′ log m for a
sufficiently small constant c′ > 0. In particular, mr ≥ mℓ/2 as stated.

By Claim 54, for every t ≥ 1 we have qt ≤ 2cq3
t−1. It is straightforward to prove by that

qt ≤ (2cqin)3t

, (4.14)

which readily implies the assertion regarding the query complexity. We turn to analyze the
rate. Denote βt = 1 − ρt. Claim 54 implies that βt ≤ β2

t−1 + c′′′/c, for some constant c′′′ > 0.
By induction on t, we get that βt ≤ β2t

0 + c′′′4t/c. Indeed, the base case t = 0 is obvious.
Now, by the induction hypothesis,

βt ≤ β2
t−1 + c′′′

c
≤
(

β2t−1

0 + 4t−1 c′′′

c

)2
+ c′′′

c
.

One can easily verify that the right hand side is bounded above by the desired bound
β2t

0 + c′′′4t/c provided that 2tc′′′/c ≤ 1. As t ≤ r and 2r = ℓ, the latter inequality follows
assuming c′′′ℓ ≤ c. As we assume c ≥ c′′ℓ2, it suffices to choose ℓ′ from the statement of the
proposition to be a constant larger than the constant c′′′/c′′. We conclude that,

βr ≤ βℓ
0 + O

(
4r

c

)
= βℓ

0 + O

(
ℓ2

c

)
,

which implies the assertion regarding the rate.
As for the smoothness, by Claim 54, and using Equation (4.14), we have that

τt ≤ 40c3qt−1τ2
t−1 ≤ 40c3 (2cqin)3t−1

τ2
t−1,

from which it is easy to verify that

τt ≤ (40c3)2t

(2cqin)3t

τ2t

0 ,

and the assertion regarding the smoothness readily follows. Last is the error which we leave
to the reader to verify. ◀

We can now easily deduce Theorem 46

Proof of Theorem 46. The proof readily follows from Proposition 55 by taking ℓ as defined
in Equation (4.12), and with c in the notation of Proposition 55 taken to be c = Θ(ℓ2/α).
Note that this choice of parameters satisfies the hypothesis of Proposition 55 as indeed
implied by Equation (4.11) and by taking c′ to be a sufficiently large constant. It is easy
to verify that the rate is 1 − α with our choice of c, ℓ, and the remaining assertions readily
follow by Proposition 55. ◀

G. Cohen and T. Yankovitz 1:29

5 Axis-evasive partitions

The distance-efficient rate amplification procedure that was developed in the previous section
is built on axis-evasive partitions. Note that, by Proposition 45, the number of parts t effects
the rate, c effects the query complexity and both c, s the deterioration of the distance and
error. It is perhaps best to consider the following goal: for a given c we wish to obtain a
(c, s)-axis evasive partition with both s, t as small as possible.

We start this section by proving the existence of axis-evasive partitions with great
parameters. However, our probabilistic proof does not work for every c but rather, it requires
c = Ω(log m), where m = |P |. Unfortunately, for our distance-efficient rate amplification
procedure, we are interested in c < log m (see Proposition 55). Luckily, and perhaps somewhat
surprisingly, our explicit construction, described in Section 5.2, does work for every c albeit
it requires c + 1 | m + 1 to hold.

5.1 Existential proof
As mentioned above, while we do not use the following non-constructive proof for the existence
of axis-evasive sets, as given by the following lemma, we believe the reader might benefit
from reading it still, as it gives an intuition on what is it about axis-evasive partitions which
is random and what requires structure.

▶ Lemma 56. Let P be a set of size m, and let c be an integer such that 50 log m ≤ c ≤
√

m.
Then, there exists a (c, s = c)-axis evasive partition of P 2 with t ≤ 5m2/c parts.

Proof. Let k = 2m2/c. The proof is by a probabilistic argument. We form a partition by
assigning to each point p ∈ P 2 a “color” or, more formally, a number in [k]. The k parts are
then formed by grouping together points with the same color. To this end, for every p ∈ P 2

define a random variable Cp that is uniformly distributed over [k], where {Cp | p ∈ P 2}
are independent. For i ∈ [k] let Ri be the number of random variables Cp for which Cp = i.
Note that Ri is the size of part i, and that E[Ri] = c/2. For every fixed i ∈ [k], by the
Chernoff bound,

Pr [Ri ̸∈ [c/4, c]] ≤ 2e−c/16.

Thus, by the union bound over i ∈ [k] and per our assumption c ≥ 50 log m, we have that
except for probability 1/4, for every i ∈ [k], Ri ∈ [c/4, c].

Now, we would want to claim that this partition satisfies the third condition, meaning
that for every p ∈ P 2 and ℓ ∈ X , |[p] ∩ ℓ| ≤ 1. However, with high probability, this property
in fact does not hold. To fix this, we make a slight modification to the random partition
above so that it does satisfy the requirement. The change, is simply, given a partition -
whenever there is a “collision” on a line ℓ ∈ X , meaning that for some distinct p, r ∈ ℓ,
Cp = Cr, assign new and distinct parts to both p and r. To analyze the number of additional
parts we need, we introduce the following notation. For ℓ ∈ X let

ν(ℓ) = {{p, r} | p, r ∈ ℓ and p ̸= r}.

For v = {p, r} ∈ ν(ℓ) define Iℓ
v to be an indicator for the event that Cp = Cr. With this

notation, the number of collisions is bounded by
∑

ℓ∈X
∑

v∈ν(ℓ) Iℓ
v. It holds that

E

∑
ℓ∈X

∑
v∈ν(ℓ)

Iℓ
v

 = 2m

(
m

2

)
1
k

<
mc

2 .

CCC 2021

1:30 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

Therefore, by Markov’s inequality, with probability at least 1/2, the number of collisions is
less than mc. In such case, we can add at most mc parts to the partition and be guaranteed
that for every p ∈ P 2 and ℓ ∈ X , |[p] ∩ ℓ| ≤ 1. Recall that since, prior to the procedure above,
every part has size at least c/4 the total number of parts is now bounded by

t ≤ mc + m2

c/4 ≤ 5m2

c
,

where the last inequality follows as we assume c ≤
√

m.
To conclude the proof, it suffices to show that, with probability larger than 7/8, it holds

that for every ℓ, ℓ′ ∈ X , |ℓ′ ∩ (ℓ)| ≤ c. Note that it suffices to prove this with respect to
the partition obtained prior to the procedure above since, by introducing new parts of size
one each, one only decrease the intersection size we aim to bound from above. Denote by
Cℓ = {Cp | p ∈ ℓ} ⊆ [k]. We have that

|ℓ ∩ (ℓ′)| =
∣∣ℓ ∩

⋃
p∈ℓ′

(p)
∣∣ ≤ 1 +

∣∣{p ∈ ℓ′ \ ℓ | Cp ∈ Cℓ}
∣∣.

Now, by the union bound,

Pr [Cp ∈ Cℓ] ≤ m

k
= c

2m
.

As {Cp | p ∈ ℓ′} are chosen independently, by the Chernoff bound,

Pr [|{p ∈ ℓ′ \ ℓ | Cp ∈ Cℓ}| ≥ c] ≤ e−c/6 ≤ 1
m3 ,

where for the last inequality was used our assumption c ≥ 50 log m. The proof then follows
by taking the union bound over all ℓ, ℓ′ ∈ X . ◀

5.2 Explicit constructions
In this section we give explicit constructions of axis-evasive partitions (see Definition 35).
Our constructions are based on quadratic field extensions. We identify a set P of size q–a
prime power–with the finite field Fq in an arbitrary manner, namely, by using an arbitrary
bijection which, for ease of readability, we do not make explicit in the notation. We start by
giving some basic background on finite fields.

Let h(x) ∈ Fq[x] be a degree 2 irreducible monic polynomial. It is a well-known fact
that Fq[x]/⟨h(x)⟩ is a field of size q2 which we denote, somewhat less informatively, by Fq2 .
Note that there exists α ∈ Fq2 such that h(α) = 0 (indeed, take α = x + ⟨h(x)⟩). Since h is
irreducible over Fq and has degree 2, we can write every element of Fq2 in the form a + αb,
where a, b ∈ Fq, in a unique manner. That is, we can identify in the set-theoretic level, Fq2

with Fq + αFq. Using this identification, we identify P 2 with Fq2 in the natural way, namely,
a point (a, b) ∈ P 2 is identified with a + αb in Fq2 . Note that, with this identification, the
horizontal lines in P 2 are of the form bα + Fq where b ∈ Fq can be thought of as the fixed
height of the line. Similarly, the vertical lines are given by b + αFq. Given δ ∈ Fq2 \ {0}, we
say that ℓδ = δFq ⊆ Fq2 is the line through the origin with slope δ.

Our construction of exis-evasive partitions is based on an equivalence relation that we
are about to define. The partition is then obtained by considering the respective equivalence
classes. We begin the construction by ignoring the “origin” 0 ∈ Fq2 and work only with
Fq2 \ {0}. Note that this is the set of invertible elements of Fq2 which has a group structure
under the field multiplication. When referring to this multiplicative group we write (Fq2)×.

G. Cohen and T. Yankovitz 1:31

Let β ∈ (Fq2)×. Denote by o(β) the order of β in the multiplicative group (Fq2)×. It
will be convenient to denote c = o(β) − 1. We define an equivalence relation on (Fq2)×,
parameterized by β, as follows: For γ, δ ∈ (Fq2)×

γ ∼ δ ⇐⇒ γδ−1 ∈ ⟨β⟩, (5.1)

where ⟨β⟩ is the subgroup of (Fq2)× that is generated by β. Observe that this is an equivalence
relation. Indeed, the classes are the different cosets, that is, the elements of the quotient
group (Fq2)×/⟨β⟩. For completeness, we quickly prove that this is an equivalence relation:
as 1 ∈ ⟨β⟩, we have that γ ∼ γ. Secondly, if γδ−1 ∈ ⟨β⟩ then δγ−1 ∈ ⟨β−1⟩ = ⟨β⟩ which
establishes symmetry. As for transitivity, if γ ∼ δ and δ ∼ ε then

γε−1 = γ(δ−1δ)ε−1 = (γδ−1)(δε−1) ∈ ⟨β⟩.

One can easily see that the equivalence class of an element γ ∈ (Fq2)× is [γ] = γ⟨β⟩ =
{γ, βγ, . . . , βcγ}. Note further that |[γ]| = c + 1. Indeed, if there are 0 ≤ j < i ≤ c such
that βiγ = βjγ then 0 = (βi − βj)γ = (βi−j − 1)βjγ, which is a contradiction as none of the
factors in the product is zero.

In the following claim we show that, under some conditions on α, β, the second property
of axis-evasiveness is met by the construction above. We mention already here that the third
condition in Definition 35 is not met by the construction as is (regardless of the choice of
α, β), and we will alter it afterwards to meet that property as well.

▷ Claim 57. Assume that ⟨β⟩ ∩ ℓα = ⟨β⟩ ∩ ℓα−1 = ∅ and that ⟨β⟩ ∩ Fq = {1}. Then, for
every ℓ, ℓ′ ∈ X (not necessarily distinct) it holds that

∣∣ℓ′ ∩ (ℓ)
∣∣ ≤ c.

Proof. Recall that (γ) = {βγ, . . . , βcγ}. Thus,

⋃
γ∈ℓ

(γ) =
⋃
γ∈ℓ

c⋃
i=1

{βiγ} =
c⋃

i=1
βiℓ.

Therefore,

ℓ′ ∩ (ℓ) = ℓ′ ∩
⋃
γ∈ℓ

(γ) =
c⋃

i=1

(
ℓ′ ∩ βiℓ

)
. (5.2)

Fix i ∈ [c] and consider two cases. First, if ℓ is vertical, namely, ℓ = b + αFq for some b ∈ Fq,
then βiℓ = βib + αβiFq. Since, by assumption, ⟨β⟩ ∩ Fq = {1} we have that αβiFq ≠ αFq

and so the line βiℓ is not vertical. As, by assumption, ⟨β⟩ ∩ ℓα−1 = ∅, we have that αβi ̸∈ Fq

and so the line βiℓ is not horizontal either.
Second, consider the case that ℓ is horizontal ℓ = bα + Fq for some b ∈ Fq. Then,

βiℓ = bαβi + βiFq. Per our assumption that ⟨β⟩ ∩ ℓα = ∅, we have that βiFq ̸= αFq and so
the line βiℓ is not vertical. As we assume ⟨β⟩ ∩ Fq = {1}, we have that βiFq ̸= Fq, and so
the line βiℓ cannot be horizontal either. To summarize, we have that βiℓ ̸∈ X . However,
ℓ′ ∈ X and so βiℓ and ℓ′ are two distinct lines. As such, the two lines intersect in at most
one point. Equation (5.2) then yield |ℓ′ ∩ (ℓ)| ≤ c. ◁

Informal discussion regarding the third property

As mentioned above, the partition of (Fq2)× as defined above does not have the third property
required for axis-evasiveness. Namely, there are γ ∈ (Fq2)× such that [γ] intersects some
axis-parallel line at more than one point. To get some idea on which equivalence classes

CCC 2021

1:32 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

[γ] are problematic, let us first ask when do γ, βγ are on some common axis-parallel line.
We first observe that two points δ, ε ∈ (Fq2)× are on a common axis-parallel line if and
only if δ − ε ∈ {1, α}Fq. Thus, γ and βγ are on the same axis-parallel line if and only if
γ − βγ = (1 − β)γ ∈ {1, α}Fq. This is equivalent to saying that γ is on one of the two lines
through the origin with slopes 1

1−β , α
1−β .

More generally, [γ] intersects with some axis-parallel line in more than one point if and
only if βiγ − βjγ ∈ {1, α}Fq for some 0 ≤ j < i ≤ c. Equivalently, γ is on a line ℓδ with

δ ∈
{

1
βi − βj

,
α

βi − βj

∣∣∣ 0 ≤ j < i ≤ c

}
. (5.3)

The key observation is that although there are a fair amount of “bad” points γ, they are all
contained in a small number of lines. By “small” here we mean that the number is polynomial
in c and is independent of q. Thus, the hope is that by redefining the partition on these few
problematic lines we will not harm the previous analysis by much. Indeed, no matter how we
alter the partition restricted to these lines, if we make sure none of them is axis-parallel (by
requiring more properties from α, β) then each of these lines intersect an axis-parallel line at
one point. As a result, the bound obtained in Claim 57 will deteriorate proportionally to the
number of lines above.

The only small technical issue is that even if γ ∈ ℓδ for some slope δ as above, it is not
the case that [γ] ⊆ ∪εℓε where ε is taken from the set of slopes given by Equation (5.3). As
we wish to alter the partition defined above, it would be cleaner to have all of the points in
[γ] of a problematic point γ contained in the set of points on which we redefine the partition.
Thus, we “close” the set of slopes given by Equation (5.3) to multiplication by β.

Ending the informal discussion and returning to the formal analysis, we consider the set
of slopes.

∆ =
{

βk

βi − βj
,

αβk

βi − βj

∣∣∣ 0 ≤ j < i ≤ c and 0 ≤ k ≤ c

}
(5.4)

Further define the set of all points in (Fq2)× covered by the lines with slopes from ∆ by

U =
⋃

δ∈∆

ℓδ.

This definition of ∆ indeed fixes the technical caveat discussed above, as the following claim
states.

▷ Claim 58. For every γ ∈ (Fq2)× either [γ] ⊆ U or [γ] ∩ U = ∅.

Proof. If an element ε ∈ U then ε ∈ ℓδ for some δ ∈ ∆. Note that βε ∈ ℓβδ and that βδ ∈ ∆.
Hence, βε ∈ U . Therefore, ε ∈ U =⇒ ε⟨β⟩ ⊆ U . Assume now that [γ] ∩ U ̸= ∅, and take
γβi ∈ U . By the above, γβi⟨β⟩ ⊆ U . The proof then follows as γβi⟨β⟩ = γ⟨β⟩ = [γ]. ◁

Define a new partition of Fq2 (including 0) which agrees with the one that is given by
Equation (5.1) on F×

q2 \ U . By Claim 58, this is well-defined. The new partition, restricted
to U , is done as follows. Let δ0 ∈ ∆ be an arbitrary element. Note that

U = ℓδ0 ∪
⋃

δ∈∆\{δ0}

(ℓδ \ {0})

is a disjoint union. To partition U , we partition ℓδ0 as well as each of ℓδ\{0} where δ ∈ ∆\{δ0}
in an arbitrary way provided it has the least number of parts under the conditions that each
part has size at most c + 1. For ease of readability, we denote by [γ] the class with respect to
the new partition.

G. Cohen and T. Yankovitz 1:33

▷ Claim 59. Assume, on top of the assumptions of Claim 57 that for every δ ∈ ∆, ℓδ ̸∈ X .
Then, the new partition defined above is (c, 4c2)-axis evasive.

Proof. First, observe that by construction, every class intersects any axis-parallel line in at
most one point. Indeed, classes that are outside of U have this property by the definition of
U as can be easily verified (and discussed above). Moreover, by the way we redefined the
partition restricted to U , every class that is a subset of U is also a subset of a line ℓδ for
some δ ∈ ∆. As ℓδ ̸∈ X by hypothesis, we have that the line and, as a result, the class it
contains, intersects any axis-parallel line in at most one point. This establishes the third
property of axis-evasiveness. The second property follows as, by construction, every part has
size at most c + 1.

Moving on to the second property, consider ℓ, ℓ′ ∈ X , not necessarily distinct. As outside
of U the partition is defined as before, Claim 58 yields∣∣∣ℓ′ ∩

⋃
γ∈ℓ\U

(γ)
∣∣∣ ≤ c. (5.5)

Take γ ∈ U ∩ ℓ. Since, by construction (γ) ⊆ ℓδ for some δ ∈ ∆, and since by hypothesis
ℓδ ̸∈ X we have that |ℓ′ ∩ ℓδ| = 1 and (γ) ∩ ℓ′ ⊆ ℓδ ∩ ℓ′.Therefore, |(γ) ∩ ℓ′| ≤ 1. Together
with Equation (5.5) we get that |ℓ′ ∩ (ℓ)| ≤ c + |U ∩ ℓ|. Now, since ℓ ∈ X and every line ℓδ

with slope δ ∈ ∆ is not in X we have that |ℓ ∩ ℓδ| = 1. Thus, |U ∩ ℓ| ≤ |∆| which implies
|ℓ′ ∩ (ℓ)| ≤ c + |∆|.

To conclude the proof, we turn to bound |∆|. It is straightforward to give a bound of
O(c3) though one can optimize the bound a bit. Indeed, with the notation of Equation (5.4),
by multiplying by β− min(j,k), one can rewrite

∆ =
{

1
βi − βj

,
α

βi − βj

∣∣∣ 0 < j < i ≤ c

}⋃{
βj

βi − 1 ,
αβj

βi − 1

∣∣∣ 0 < i ≤ c, 0 ≤ j ≤ c

}
. (5.6)

Thus, |∆| ≤ 3c2, and the proof follows. ◁

We summarize the discussion so far.

▶ Proposition 60. Let Fq be finite field. Let h(x) ∈ Fq[x] be a degree 2 irreducible monic
polynomial, and consider the field Fq[x]/⟨h(x)⟩ which we denote by Fq2 . Let α, β ∈ Fq2 be
two elements satisfying:
1. h(α) = 0,
2. ⟨β⟩ ∩ Fq = {1},
3. c + 1 = o(β) ≤ √

q/10,
4. ⟨β⟩ ∩ ℓα = ⟨β⟩ ∩ ℓα−1 = ∅,
5. (⟨β⟩ − ⟨β⟩) ∩ Fq = {0},
6. (⟨β⟩ − ⟨β⟩) ∩ ℓα = (⟨β⟩ − ⟨β⟩) ∩ ℓα−1 = {0}.

Then, there exists a partition of (Fq)2 that is (c, 4c2)-axis-evasive, where c = o(β) − 1.
The number of parts in the partition is bounded above by 2q2/(c + 1).

To prove Proposition 60 we need the following easy claim.

▷ Claim 61. Let δ ∈ (Fq2)× be such that δ ̸∈ Fq ∪ ℓα then, ℓδ ̸∈ X .

Proof. Write δ = a + αb with a, b ∈ Fq. Then, ℓδ = (a + αb)Fq. Observe that if ℓδ is vertical
then a = 0 and so δ ∈ ℓα. Similarly, if ℓδ is horizontal then b = 0 implying δ ∈ Fq. ◁

CCC 2021

1:34 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

Proof of Proposition 60. To bound the number of parts, recall that in the original partition,
each part has size c + 1. Moreover, in the altered partition we partition each line ℓδ with
slope δ ∈ ∆ (excluding the origin from all but for one of the lines ℓδ0) to parts of size c + 1
each, except for possibly one part. As |∆| ≤ 3c2, the number of parts it bounded by

q2 − 1
c + 1 + |∆|

(
1 + q

c + 1

)
≤ q2 − 1

c + 1 + 6cq ≤ 2q2

c
,

where the last inequality follows by our assumption that o(β) ≤ √
q/10.

To conclude the proof of the proposition, it suffices to show that for every δ ∈ ∆ it holds
that ℓδ ̸∈ X . By Claim 61, it suffices to prove that δ ̸∈ Fq ∪ ℓα = {1, α}Fq. There are
two types of slopes δ ∈ ∆, according to whether they appear in the first or second set in
Equation (5.6). The first kind is of the form

δ = αk

βi − βj
,

with 0 < j < i ≤ c and k ∈ {0, 1}. If δ ∈ {1, α}Fq then δ−1 ∈ {1, α−1}Fq and so
βi − βj ∈ {αk, αk−1}Fq in contradiction to our hypothesis. Consider now the other kind of
slope

δ = αkβj

βi − 1

where 0 < i ≤ c, 0 ≤ j ≤ c and k ∈ {0, 1}. If δ ∈ {1, α}Fq then δ−1 ∈ {1, α−1}Fq and so
(βi − 1)β−j ∈ {αk, αk−1}Fq. Note that (βi − 1)β−j = βi−j − β−j ∈ ⟨β⟩ − ⟨β⟩ and so we
again get a contradiction. ◀

We are now ready to prove Theorem 47. For the sake of readability, we repeat its
statement here.

▶ Theorem 62. Let P be a set of size q, where q is an odd prime power. Let c be an even
integer such that c + 1 | q + 1, and c ≤ √

q/10. Then, there exists a (c, 4c2)-axis evasive
partition of P 2 with at most 2q2/(c + 1) parts.

Proof. As above, we identify P 2 with Fq2 . It is a well-known fact that the multiplicative
group (Fq2)× is cyclic. A basic result in group theory states that a cyclic group has a
(unique) subgroup of every given size which divides the group size. Now, |(Fq2)×| = q2 − 1 =
(q − 1)(q + 1). Thus, as c + 1 | q + 1, there exists a subgroup H of (Fq2)× of size c + 1. The
subgroup H is cyclic, being a subgroup of a cyclic group. Let β be a generator for H. We
first prove that β satisfies those hypothesis of Proposition 60 that do not involve α, namely,
conditions (2) and (5).

▷ Claim 63. (⟨β⟩ − ⟨β⟩) ∩ Fq = {0} and ⟨β⟩ ∩ Fq = {1}.

Proof. Assume towards a contradiction that βi − βj ∈ Fq for some 0 ≤ j < i ≤ c. Since
xq = x for every x ∈ Fq, we get

βi − βj =
(
βi − βj

)q = βiq − βjq,

where the last equality follows since q is divisible by the characteristic of the field. Recall
that o(β) = c + 1 | q + 1 and so βi(q+1) = 1, implying βiq = β−i. Thus,

βi − βj = 1
βi

− 1
βj

= βj − βi

βi+j
.

G. Cohen and T. Yankovitz 1:35

As βi ̸= βj the above equation implies βi+j = −1, and so −1 ∈ H. Since q is odd, the
characteristic of the field Fq2 is odd and so o(−1) = 2. Lagrange’s Theorem then implies
that 2 | |H| = c + 1, which stands in contradiction to c being even.

To prove that ⟨β⟩ ∩ Fq = {1}, take βi with 0 < i ≤ c. If βi ∈ Fq then βiq = βi. On the
other hand, we proved above that βiq = β−i, and so βi = β−i implying β2i = 1. Therefore,
o(β) = c + 1 | 2i, but this is impossible as 0 < i ≤ c and, recall, c is even. ◁

We proceed with the proof of Theorem 47 by finding α ∈ Fq2 that, together with the
already chosen β, satisfies the remaining conditions in the hypothesis of Proposition 60. Since
Fq2 is a quadratic field extension of Fq, every element γ ∈ Fq2 \ Fq has degree 2. That is,
the minimal polynomial hγ of every such γ over Fq is of degree 2 (and can be made monic
by dividing by the leading coefficient, if necessary). Indeed, deg (hγ) cannot equal 1 as this
would imply γ ∈ Fq. On the other hand,

2 = [Fq2 : Fq] = [Fq2 : Fq(γ)][Fq(γ) : Fq] = [Fq2 : Fq(γ)] deg(hγ),

which shows that if deg(hγ) ̸= 1 then deg(hγ) = 2.
Thus, condition (1) in the hypothesis of Proposition 60 holds for every element in Fq2 \Fq.

Hence, to prove that all the remaining conditions in the hypothesis of Proposition 60 hold,
it suffices to prove that there exists α ∈ Fq2 \ Fq which satisfies conditions (4) and (6). To
this end, pick a set of “slopes” ∆′ = {δ1, . . . , δq+1} ⊆ (Fq2)× such that (Fq2)× is the disjoint
union

(Fq2)× =
⋃

δ∈∆′

(ℓδ \ {0}).

For example, ∆′ = {a + α | a ∈ Fq} ∪ {1} will do. For δ ∈ (Fq2)× let

Iδ = |⟨β⟩ ∩ ℓδ| + | (⟨β⟩ − ⟨β⟩) ∩ (ℓδ \ {0})|.

Since the ℓδ \ {0} with δ ∈ ∆′ are disjoint, 0 ̸∈ ⟨β⟩, and since |⟨β⟩| = c + 1 and |⟨β⟩ − ⟨β⟩| ≤
(c + 1)2, we have that

E
δ

[Iδ] ≤ (c + 1)2 + (c + 1)
q + 1 ≤ 2(c + 1)2

q + 1 ,

where δ is sampled uniformly from ∆′. By Markov’s inequality, for at least 3/4 of the
elements δ ∈ ∆′ it holds that

|Iδ| ≤ 8(c + 1)2

q + 1 .

Note that (Fq2)× is also a disjoint union of {ℓδ−1 \ {0} | δ ∈ ∆}. Thus, using the same
argument as above, we get that for at least 1/2 the elements δ ∈ ∆′, both |Iδ| and |Iδ−1 |
are bounded by 8(c + 1)2/(q + 1). But, as c ≤ √

q/10, this bound is strictly smaller than 1,
implying that Ii = Iq+1−i = 0. That is, at least half the elements δ ∈ ∆′ satisfy conditions
(4) and (6). Take α to be any of these elements. To conclude, we found α and β for which
all the conditions in the hypothesis of Proposition 60 are met, and the proof follows. ◀

CCC 2021

1:36 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

6 Query-efficient distance amplification

In this section we construct our query-efficient distance amplification procedure. We start by
giving a somewhat more formal definition of locally decodable codes (compared to Definition 1)
or, more precisely, a more formal definition of their non-adaptive counterparts. Recall that,
informally, these are LDC in which the joint distribution of queries depends solely on the
index one wishes to decode and is independent of the received word. By inspection, it is our
understanding that the AEL distance amplification procedure also requires non-adaptivity.

▶ Definition 64 (Locally decodable codes). Let (C, Q, R) be a tuple of functions

C : Σk
in → Σn

out,

Q : [k] × {0, 1}r → [n]q,

R : [k] × Σq
out × {0, 1}r → Σin.

Define

D : [k] × Σn
out × {0, 1}r → Σin

as follows. For v ∈ [k], y ∈ Σn
out, and s ∈ {0, 1}r, let

Q(v, s) = (u1, . . . , uq),
D(v, y, s) = R(v, yu1 , . . . , yuq

, s).

The tuple (C, Q, R) is called a (q, δ, ε)-locally decodable code (or (q, δ, ε)-LDC for short) if
the following holds. For every v ∈ [k], x ∈ Σk

in, and y ∈ Σn
out for which dist(y, C(x)) ≤ δ, it

holds that

Pr
s∼Ur

[D(v, y, s) = xv] ≥ 1 − ε.

We call the function C the encoding function, Q the querying function, and R the reconstruc-
tion function. The induced function D is called the decoding function. The parameters k, n

are referred to as the message length and the block length, respectively. The sets Σin, Σout
are called the input alphabet and output alphabet, respectively. We will be interested mostly
in locally decodable codes in which Σin = Σout in which case we refer to both as the alphabet
of the code. The parameter r is called the randomness complexity of the LDC. We say the
LDC is explicit if all three functions C, Q, R are polynomial-time computable. Note that then
the decoding function D is also polynomial-time computable.

6.1 The distance amplification procedure
In this section we present our query-efficient distance amplification procedure. We start by
describing the building blocks we use and specify their parameters.

Building blocks

For i = 1, 2 let (Ci, Qi, Ri) be a (qi, δi, εi)-LDC with message length ki and block length
ni over the same alphabet Σ. We denote the rate ki/ni of Ci by ρi.
Let (C3, Q3, R3) be a family of (q3(k3), δ3(k3), ε3(k3))-LDC having rate ρ3(k3) for message
length k3. The code C3 is also over the alphabet Σ. We will always work with functions
q3, δ3, ε3, ρ3 that are monotone. More precisely, q3 and ρ3 are non-decreasing and δ3, ε3

G. Cohen and T. Yankovitz 1:37

are non-increasing. We sometimes write q3, δ3, ε3, ρ3 without mentioning explicitly the
message length, and by that refer to the largest k3 considered in the construction for
q3, δ3 and the smallest k3 when considering ε3, ρ3. In any case, we assume (mostly for
simplicity) that ρ3(k3) ≥ 1/2 for all k3.
Set ℓ = n1/k2. Let G = (L, R, E) be a (δ2/2, δ1)-sampler with |L| = ℓ and |R| = r.
Assume G is left-regular with left-degree d = n2. Assume further that every right-
vertex v of G has degree deg(v) ∈ [D/2, 2D], where D is the average right degree
D = ℓd/r = n1/(rρ2).

How to think of the parameters?

We think of C1 as the code whose distance δ1 we wish to amplify. Typically, the code C2 has
a much shorter message length n2 ≪ n1. In all applications in this paper we take δ2 to be
either constant or slightly sub constant in n1. The code C3 has a larger block length than
C2 and, depending on the application, it has either a somewhat smaller or much smaller
message length than n1. We typically take δ3 ≈ δ2. The rates of all three codes is taken to
be constant and even close to one. Note that we take C3 to be a family of codes, whereas C1
and C2 are codes with predetermined message lengths. The reason is that the sampler G

is not necessarily right-regular, and in the construction, we associate codes from C3 with
the right vertices of G. Recall, though that the ratio of largest to smallest right-degree is
bounded by 4, so that is a minor technicality.

To describe the LDC that is composed of these building blocks, we need to specify the
encoding function, querying function and reconstruction function. We start by describing
the encoding function.

The encoding function
Let n =

∑
v∈R nv where nv is the block length of the code from the family C3 having message

length kv = deg(v). We define the function C : Σk1 → Σn as follows. Let x ∈ Σk1 .
1. Compute y = C1(x) ∈ Σn1 .
2. Partition y to y = y(1) ◦ · · · ◦ y(ℓ) consecutive blocks, each of length k2. Recall that,

indeed, n1 = ℓk2.
3. For every u ∈ [ℓ] compute z(u) = C2(y(u)) ∈ Σn2 .
4. For every v ∈ [r] and j ∈ [deg(v)] let (u, j′) = Γ(v, j) ∈ [ℓ] × [n2]. Define the string

w(v) ∈ Σdeg(v) = Σkv as follows: for j ∈ [deg(v)], (w(v))j = (z(u))j′ .
5. For every v ∈ [r] compute t(v) = C3(w(v)) ∈ Σnv .
6. The output of the encoding function on input x is then defined by C(x) = t(1) ◦ · · · ◦ t(r) ∈

Σn, where as usual we identify R with [r].

By the construction of the encoding function, the message length and block length of the
resulted code are k1 and n, respectively. From here on we denote k = k1.

The querying function
We denote the randomness complexity of C1, C2, C3 by r1, r2, r3, respectively. The randomness
complexity of the resulting querying function will be r = r1+r2+r3, and the query complexity
will be q ≤ q1q2q3, where q3 is taken to be the maximum query complexity taken over all
right vertices. We turn to define the querying function Q : [k] × {0, 1}r → [n]q as follows.
On inputs p ∈ [k], s ∈ {0, 1}r we proceed as follows.

CCC 2021

1:38 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

1. Partition s = s1 ◦ s2 ◦ s3 where |s1| = r1, |s2| = r2, |s3| = r3.
2. Compute (a1, . . . , aq1) = Q1(p, s1) ∈ [n1]q1 .
3. For i = 1, . . . , q1

a. Set ui = ⌈ai/k2⌉ and bi = 1+((ai −1) mod k2). Informally, ui is the “bucket” in which
ai resides and bi is its location within the bucket. Note that we start the counting
from 1 rather than 0, hence the slightly annoying addition and subtraction by 1 in the
definition of bi.

b. Compute (t(i)
1 , . . . , t

(i)
q2) = Q2(bi, s2) ∈ [n2]q2 .

c. For j = 1, . . . , q2

i. Let (v(i,j), t̂
(i)
j) = Γ(ui, t

(i)
j) ∈ [r] × [kv(i,j)].

ii. Compute (e(i,j)
1 , . . . , e

(i,j)
q3) = Q3(t̂(i)

j , s3) ∈ [nv(i,j)]q3 .
iii. As before, we endow the right vertices of the sampler in a fixed (arbitrary) order by

identifying R with [r]. For h = 1, . . . , q3 set c(i,j,h) to be the absolute location of
e

(i,j)
h in the ordering of R. That is, c(i,j,h) = e

(i,j)
h +

∑
v<v(i,j) nv.

4. The result is then given by Q(p, s) = (c(i,j,h))(i,j,h)∈[q1]×[q2]×[q3].

Note that, indeed, the query complexity q of the querying function defined above is at
most q1q2q3 where, recall, q3 = q3(2D). From here on we identify [q] with [q1] × [q2] × [q3].

The reconstruction procedure

We define the reconstruction procedure R : [k] × Σq × {0, 1}r → Σ as follows. On inputs
p ∈ [k], σ = (σ(i,j,h))(i,j,h)∈[q1]×[q2]×[q3] ∈ Σq, and s ∈ {0, 1}r, we proceed as follows.
1. Partition s = s1 ◦ s2 ◦ s3 where |s1| = r1, |s2| = r2, |s3| = r3 as in the querying function.
2. For i = 1, . . . , q1

a. For j = 1, . . . , q2

i. Denote (z1, . . . , zq3) = (σ(i,j,1), . . . , σ(i,j,q3)).
ii. Compute y

(i)
j = R3(t̂(i)

j , z1, . . . , zq3 , s3), where t̂
(i)
j = t̂

(i)
j (p, s) as defined in the

querying function.
b. Set xi = R2(bi, y

(i)
1 , . . . , y

(i)
q2 , s2) where bi = bi(p, s) as defined in the querying function.

3. The output is then given by R(p, σ, s) = R1(p, x1, . . . , xq1 , s1).

6.2 Analysis

In this section we analyze the LDC obtained above. We prove

▶ Proposition 65. With the notation of the previous section, C is a (q, δ, ε)-LDC, where

q ≤ q1q2q3,

δ ≥ δ2δ3

16 ,

ε ≤ ε1 + (ε2 + ε3)n.

Furthermore, C has rate ρ1ρ2ρ3, where ρ1, ρ2 are as defined in the building blocks paragraph,
and per our convention set above, ρ3 = ρ3(D/2).

G. Cohen and T. Yankovitz 1:39

Remark regarding the distance

Note that the distance δ of the resulted code C is independent of δ1, the poor distance
of C1 we set out to amplify. This is the key feature of the AEL distance amplification
procedure (which our variant above, of course, maintains). It is yet another instance of
a general strategy in pseudo-randomness that combines objects in such a way that the
resulted object enjoys the upsides of the different parts and avoid their shortcomings. The
Zig-Zag product is another classic example. But, of course, δ1 has some effect on the resulted
code. The effect δ1 has on the code is via the query complexity. Indeed, as the analysis
will show, the smaller δ1 is (i.e., the weaker the guarantee we have on the distance of C1),
the larger k2 = k2(δ1) and k3 = k3(δ1) must be, with a far stronger effect on k3. More
quantitatively, roughly speaking, by taking a sufficiently good sampler (e.g., the one that
is given by Theorem 15), k2 ≈ poly log(1/δ1) and k3 ≈ poly(1/δ). This, in turn, effects the
query complexities q2 = q2(k2) and q3 = q3(k3).

Proof. That the query complexity is q ≤ q1q2q3 readily follows by the querying function,
where recall that per our convention q3 = q3(2D). To analyze the rate, recall that ρ3 is
a non-decreasing function. Further, our convention dictates that by writing ρ3 without
explicitly mentioning the message length, we refer to ρ3 applied with the smallest message
length taken by the construction, namely, ρ3 = ρ3(D/2). Thus,

n =
∑
v∈R

nv =
∑
v∈R

kv

ρ3(kv) ≤ 1
ρ3

∑
v∈R

kv = ℓn2

ρ3
= n1

ρ2ρ3
.

Recall that k = k1 = ρ1n1 which shows that ρ = k/n ≥ ρ1ρ2ρ3.
We turn to analyze the distance δ and error ε. Let x ∈ Σk and let C̃(x) ∈ Σn be such

that dist(C̃(x), C(x)) ≤ δ. Define the set of “errors”, namely, the disagreements between
C(x) and C̃(x) by

B = {i ∈ [n] | C̃(x)i ̸= C(x)i}.

By assumption, µ(B) ≤ δ. The error set B induces errors “backwards” throughout the
construction. We proceed by analyzing these induced errors. Recall that, in the encoding
function, we defined for each v ∈ [r] an element t(v) = t(v)(x) ∈ Σnv . Partition C̃(x) to r

substrings C̃(x) = t̃(1) ◦ · · · ◦ t̃(r), where t̃(v) has length nv, and define the set

Bt =
{

v ∈ [r] | dist
(

t(v), t̃(v)
)

≥ δ3

}
.

Informally, v ∈ Bt if the adversary has introduced too many errors on the respective block
to allow for correct decoding via D3.

▷ Claim 66. µ(Bt) ≤ 8δ/δ3.

Proof. For v ∈ R let ev = dist(t(v), t̃(v)). We have that
∑

v∈R evnv ≤ δn. On the other hand,∑
v∈R

evnv ≥ δ3
∑

v∈Bt

nv ≥ δ3D|Bt|
2 .

But, per our assumption that ρ3 ≥ 1/2, and since kv ≤ 2D for all v ∈ R,

n =
∑
v∈R

nv ≤ 2
∑
v∈R

kv ≤ 4Dr.

The proof follows by the above three inequalities. ◁

CCC 2021

1:40 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

For convenience we also denote Bw = Bt. Next, we define

Bz = {u ∈ [ℓ] | |Γ(u) ∩ Bw| ≥ δ2n2} . (6.1)

▷ Claim 67. µ(Bz) ≤ δ1.

Proof. By Claim 66 and by our assumption on δ,

µ(Bw) ≤ 8δ

δ3
= δ2

2 .

Recall that G is a (δ2/2, δ1)-sampler. Thus, at most δ1-fraction of the left vertices u ∈ [ℓ]
satisfy µ(Γ(u) ∩ Bw) ≥ µ(Bw) + δ2/2. The proof then follows since µ(Bw) ≤ δ2/2. ◁

Lastly, define

By =
{

a ∈ [n1]
∣∣∣ ⌈ a

k2

⌉
∈ Bz

}
.

For v ∈ [r], b ∈ [kv] we define the function w̃
(v)
b : {0, 1}r3 → Σ as follows: on input

s3 ∈ {0, 1}r3

w̃
(v)
b (s3) = D3(b, t̃(v), s3).

▷ Claim 68. There exists a set E3 ⊆ {0, 1}r3 with µ(E3) ≤ ε3n such that for every
s3 ∈ {0, 1}r3 \ E3, v ∈ [r] \ Bt, and b ∈ [k3] it holds that w̃

(v)
b (s3) = w

(v)
b .

Proof. Fix v ∈ [r] \ Bt. By the definition of Bt, one has that dist
(
t(v), t̃(v)) ≤ δ3. By the

encoding function, t(v) = C3(w(v)). Therefore, for every b ∈ [k3],

Pr
s3∼Ur3

[
D3(b, t̃(v), s3) ̸= w

(v)
b

]
≤ ε3.

The proof then follows by taking the union bound over all v ∈ [r] \ Bt and b ∈ [kv] as indeed∑
kv ≤ n. ◁

For (u, j) ∈ [ℓ] × [n2] we define the function z̃
(u)
j : {0, 1}r3 → Σ as follows. For s3 ∈ {0, 1}r3

we have z̃
(u)
j (s3) = w̃

(v)
j′ (s3), where (v, j′) = Γ(u, j) ∈ [r] × [kv]. Further define the function

z̃(u) : {0, 1}r3 → Σn2 by

z̃(u)(s3) = z̃
(u)
1 (s3) ◦ · · · ◦ z̃(u)

n2
(s3).

▷ Claim 69. For every u ̸∈ Bz and s3 ∈ {0, 1}r3 \ E3 it holds that

dist
(

z̃(u)(s3), z(u)
)

≤ δ2.

Proof. Fix s3 ∈ {0, 1}r3 \ E3 and consider any u ∈ [ℓ] \ Bz. By the encoding function, for
every j ∈ [n2] it holds that z

(u)
j = w

(v)
j′ , where (v, j′) = Γ(u, j). As v ̸∈ Bz, at most δ2n2 of

j ∈ [n2] satisfy v ∈ Bw. For every other j,

z̃
(u)
j = w̃

(v)
j′ (s3) = w

(v)
j′ = z

(u)
j ,

proving the claim. ◁

G. Cohen and T. Yankovitz 1:41

For u ∈ [ℓ], a ∈ [k2] we define the function ỹ
(u)
a : {0, 1}r2 × {0, 1}r3 → Σ as follows. On

(s2, s3) ∈ {0, 1}r2 × {0, 1}r3 ,

ỹ(u)
a (s2, s3) = D2(a, z̃(u)(s3), s2).

▷ Claim 70. There exists a set E2 ⊆ {0, 1}r2 with µ(E2) ≤ ε2n such that for every u ∈ [ℓ]\Bz,
a ∈ [k2], and (s2, s3) ∈ ({0, 1}r2 \ E2) × ({0, 1}r3 \ E3) it holds that ỹ

(u)
a (s2, s3) = y

(u)
a .

Proof. Fix u ∈ [ℓ] \ Bz. By the encoding function z(u) = C2(y(u)). Recall that

ỹ(u)
a (s2, s3) = D2(a, z̃(u)(s3), s2).

As s3 /∈ E3, u /∈ Bz, Claim 69 implies dist(z̃(u)(s3), z(u)) ≤ δ2. Therefore

Pr
s2∼Ur2

[
D2(a, z̃(u)(s3), s2) ̸= y(u)

a

]
≤ ε2.

The proof then follows by taking the union bound over all a ∈ [k2] and u ∈ [ℓ] \ Bz, and
noting that k2ℓ = n1 ≤ n. ◁

▷ Claim 71. For every (s2, s3) ∈ ({0, 1}r2 \ E2) × ({0, 1}r3 \ E3), it holds that

dist(ỹ(s2, s3), y) ≤ δ1,

where ỹ(s2, s3) is the concatenation of the k2-length strings
(
ỹ(u)(s2, s3) | u ∈ [ℓ]

)
.

Proof. Note that by Claim 70, the projection of the two strings ỹ(s2, s3), y to a block
corresponding to u /∈ Bz are in full agreement. The proof then follows by Claim 67. ◁

We now conclude the proof of Proposition 65. Let p ∈ [k], by Claim 71, for every
(s2, s3) ∈ ({0, 1}r2 \ E2) × ({0, 1}r3 \ E3), we have that dist(ỹ(s2, s3), y) ≤ δ1. Since by the
encoding function y = C1(x), it holds

Pr
s1∼Ur1

[D1(p, ỹ(s2, s3), s1) ̸= xp] ≤ ε1.

The proof then follows since µ(E2) ≤ ε2n and µ(E3) ≤ ε3n. ◀

6.2.1 Proof of Theorem 5
In this short section we prove Theorem 5. We focus on the version that is based on non-explicit
samplers, yielding non-explicit reductions. The explicit reduction, which entails a bit more
technical work, is deferred to Section 6.3 and Section 6.6. We choose to focus on the non-
explicit version first because we believe that understanding LDC in the information-theoretic
level is, at present, a deeper and more urgent problem than the question of explicitness. Also,
the parameters are easier to work with. For the information-theoretic version, we make use
of the sampler that is given by Theorem 15. From here on we refer to the constant csamp ≥ 1
that appears in that theorem.

▶ Theorem 72. Let C be a block-length-n (q, δ, 1/5)-LDC over alphabet Σ having a constant
rate. Let C ′ be a family of asymptotically good (q′

n, δ′, 1/5)-LDC, where q′
n is the query

complexity when the code from the family is taken with block length n. Then, there exists an
asymptotically good LDC over Σ, with constant error, having block length Θ(n) and query
complexity

qnew = O
(

q · q′
O(1/δ) log(1/δ) log n

)
. (6.2)

CCC 2021

1:42 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

Proof. Take C1 to be the code C in the hypothesis of the theorem, namely, a code with
block length n1 = n and distance δ1 = δ. Recall that in the distance amplification procedure
from Section 6.1, we make use of a (δ2/2, δ1) sampler G = ([ℓ], [r], E) with ℓ = n1/k2 and
left-degree d = n2. For the proof, we will instantiate the distance amplification procedure
with the sampler that is given by Theorem 15. We take C2 to be an asymptotically good
code over Σ set with block length

n2 = csamp · log (1/δ1)
(δ2/2)2 = O(log(1/δ)),

where δ2 is the (constant) distance of C2, having rate at least 1/2. Note that this choice of
parameters is as required by Theorem 15 from the left degree of the sampler. Clearly, C2
has query complexity O(log(1/δ)) and error ε2 = 0. As for the degree Dv of any given right
vertex v of the sampler, note that the average right degree is

D = ℓd

r
= d

δ log(1/δ) = 4csamp
δ1δ2

2
= Θ

(
1
δ

)
.

Recall that, by Theorem 15, Dv ∈ [D/2, 2D]. For every length in this range, we take a
code from the family C ′ having the required message length. We would like take the family
of codes C3 to be C ′ though we must reduce the error first. Indeed, note that the error ε of
the code obtained by Proposition 65 is ε1 + n(ε2 + ε3). As mentioned in the introduction,
one can reduce the error from 1/5 to 1/(10n) by applying the decoding procedure for c log n

times, where c is some large enough constant, and output the symbol according to plurality.
This has no effect on the rate or distance of C ′, and has a multiplicative O(log n) cost in
query complexity. That is, the query complexity of C3 is O(q′

O(1/δ1) log n). The proof then
readily follows by Proposition 65. ◀

6.2.1.1 Improving the query complexity further given low-error LDC

We remark that, if C ′ has error O(1/n) to begin with, n being the block length of C, then
one can skip the error reduction in the proof of Theorem 72, and get a slightly better query
complexity. Indeed, this will save the log n factor in Equation (6.2). Moreover, observe that
C2 can be taken to be an LDC as well, rather than a standard code, which will reduce its
deterioration on the query complexity from O(log(1/δ)) to q′

O(log(1/δ)). However, for that,
one need the error of C2 to be O(1/n) as well. Assuming one can obtain such low-error LDC
(note that an error of 1/n is at least exponentially-small in the length of C2 since δ > 1/n),
the query complexity can be improved further to

qnew ≤ q · q′
O(1/δ)q

′
O(log(1/δ)).

We conclude this section by instantiating Theorem 72 with C ′ taken to be the state-of-
the-art construction of asymptotically good LDC.

▶ Theorem 73 ([26]). Let Σ be a finite alphabet. Then, there exist constants δ, ρ and an
explicit infinite family of (qk, δ, 1/5)-LDC, k being the message length, having query complexity
qk = 2O(

√
log(k) log log k).

Using it, one gets query complexity

qnew ≤ q log(n) · 2O(
√

log(1/δ)·log log(1/δ)) = q log(n)(1/δ)o(1).

G. Cohen and T. Yankovitz 1:43

6.3 Relaxing the assumption on the sampler G

In the distance amplification procedure described in Section 6.1, the sampler G is assumed to
be a left-regular (δ2/2, δ1)-sampler in which every right degree is in [D/2, 2D]. In order for
the reduction to result in an explicit code, we want to be able to plug in an explicit sampler
in the distance amplification procedure, for which the bounds on the right degree may not
hold. We now describe how a sampler that does not satisfy this assumption can be used even
so. The change to the construction is detailed as follows.

Modified construction

For i = 1, 2, 3 let (Ci, Qi, Ri) be as in Section 6.1. Assume further that δ1 ≤ δ2/8.
Set ℓ = n1/k2. Let G = (L, R, E) be a (δ2/8, δ1)-sampler with |L| = ℓ and |R| = r.
Assume G is left-regular with left-degree d = n2, and denote by D = ℓd

r the average right
degree (the right degrees may be arbitrary).
The encoding function C : Σk1 → Σn is the same as in Section 6.1, but for the following
change: if v ∈ [r] has degree outside [D/2, 2D] then discard it.
The querying function is the same as in Section 6.1, but for the following change: if v(i,j)

is a vertex with degree not in [D/2, 2D], then set (c(i,j,h))h∈[q3] to be an empty tuple.
The reconstruction procedure is the same as in Section 6.1, but for the following change:
if i, j are such that v(i,j) is a vertex with degree not in [D/2, 2D], then set y

(i)
j =⊥ (or, if

one prefers to avoid the use of ⊥, any σ ∈ Σ can be used).
The amendments above have the effect that when encoding the blocks corresponding to
right vertices, that are either too big or too small, the encoding discards such blocks and
their contents, as if they were deleted. The querying function is changed so that whenever
a location in these blocks needs to be queried, that query is skipped. The reconstruction
procedure is accordingly changed so that whenever a location was not queried on the account
of it residing in a block too big or too small, some arbitrary symbol (or ⊥) is passed on
instead. To analyze the altered distance-amplification procedure we start by proving two
simple statements about samplers.

▶ Lemma 74. Let G = ([ℓ], [r], E) be a left-regular (ε, δ)-sampler with average right-degree
D. Assume δ ≤ 1/4. Then, G has at most 3εr right vertices with degree less than D/2.

Proof. Denote by d the left-degree of G. Define A = {v ∈ [r] | deg(v) < D/2}. Since G is an
(ε, δ) sampler, at least (1 − δ) fraction of the left vertices have (at least) (|A|

r − ε)d neighbors
in A. Hence, A has at least (1 − δ)ℓ(|A|

r − ε)d edges entering it. Therefore, it must hold that

(1 − δ)ℓ
(

|A|
r − ε

)
d

|A|
<

D

2 .

As the average right degree is D = ℓd
r , and since by assumption δ ≤ 1/4, we conclude that

the average right-degree of A is at least

(1 − δ)ℓ
(

|A|
r − ε

)
d

|A|
= (1 − δ)D

(
1 − rε

|A|

)
≥ 3D

4

(
1 − rε

|A|

)
.

By the above two equation it follows that |A| < 3εr. ◀

▶ Lemma 75. Let G = ([ℓ], [r], E) be an (ε, δ)-sampler, which is d-left-regular and has
average right-degree D. Assume ε ≥ δ. Then, G has at most 2εr right vertices with degree
larger than 2D.

CCC 2021

1:44 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

Proof. Define B = {v ∈ [r] | deg(v) > 2D}. At least (1 − δ)-fraction of the left vertices have
at least (1 − |B|

r − ε)d neighbors in [r] \ B, so [r] \ B has at least (1 − δ)ℓ(1 − |B|
r − ε)d edges

going into it. We therefore have that

2D|B| + (1 − δ)ℓ
(

1 − |B|
r

− ε

)
d ≤ rD.

As rD = ℓd, it follows that

|B| ≤
(

ε + δ − δε

1 + δ

)
r ≤ 2εr. ◀

We now wish to state the correctness of the changed construction.

▶ Proposition 76. The encoding function C of the modified construction is a (q, δ, ε)-LDC,
where

q ≤ q1q2q3,

δ ≥ δ2δ3

32 ,

ε ≤ ε1 + (ε2 + ε3)n.

Furthermore, C has rate ρ1ρ2ρ3, where ρ1, ρ2 are as defined in the building blocks paragraph,
and per our convention set above, ρ3 = ρ3(D/2).

Proof. That the rate and query complexity are as stated is trivial, since the rate and query
complexity can only be improved by this modification to the construction in which we discard
some of the codeword symbols, and skip some of the queries. We now discuss the distance δ

and error ε. Since the proof is almost identical to the proof of Proposition 65, we only state
how to change the proof above to get a proof for the current proposition. Let

X = {v ∈ R | deg(v) /∈ [D/2, 2D]}

be the set of right vertices with “bad” degrees. Recall that these vertices are ignored by the
modified construction. In particular, n =

∑
v∈R\X nv. The proof of Proposition 65 starts by

defining the set

B = {i ∈ [n] | C̃(x)i ̸= C(x)i},

which is the set of “errors”. It then goes on by defining another set, Bt, which is the set of
“bad” right vertices, for which the adversary has introduced too many errors on the respective
block. This is where we make a slight modification, ignoring the vertices in X. Formally, we
define

Bt =
{

v ∈ R \ X | dist
(

t(v), t̃(v)
)

≥ δ3

}
.

In the following claim we bound the density of Bt with respect to the set R (rather than
with respect to R \ X).

▷ Claim 77. µR(Bt) ≤ 8δ
δ3

.

Proof. The proof is similar to the proof of Claim 66 though it takes into account our
modifications as described above. For v ∈ R \ X let ev = dist(t(v), t̃(v)). We have that∑

v∈R\X evnv ≤ δn. On the other hand,∑
v∈R\X

evnv ≥ δ3
∑

v∈Bt

nv ≥ δ3D|Bt|
2 ,

G. Cohen and T. Yankovitz 1:45

where the last inequality follows as for every v ∈ Bt ⊆ R \ X it holds that deg(v) ≥ D/2.
We also have, per our assumption, that ρ3 ≥ 1/2, and since kv ≤ 2D for all v ∈ R \ X,

n =
∑

v∈R\X

nv ≤ 2
∑

v∈R\X

kv ≤ 4Dr.

The proof follows by the above three inequalities, ◁

As in Proposition 65, we also denote Bw = Bt. The definition of the set Bz is the same
as in the proof of Proposition 65 with the modification that it “treats” the vertices in X as
errors. Formally,

Bz = {u ∈ [ℓ] | |Γ(u) ∩ (Bw ∪ X)| ≥ δ2n2} , (6.3)

▷ Claim 78. µ(Bz) ≤ δ1.

Proof. By Claim 77, µR(Bw) ≤ 8δ
δ3

. Now, G is a (δ2/8, δ1)-sampler. Thus, by Lemma 74 and
Lemma 75 (which are applicable as δ1 ≤ δ2/8 per our assumption), µR(X) ≤ 5δ2

8 . Hence,
the density of Bw ∪ X with respect to R is

µR(Bw ∪ X) ≤ 8δ

δ3
+ 5δ2

8 ≤ 7δ2

8 ,

where the last inequality holds per our assumption δ ≤ δ2δ3/32. Recall that G is a (δ2/8, δ1)-
sampler. Thus, at most δ1-fraction of the left vertices u ∈ [ℓ] satisfy

µΓ(u)(Γ(u) ∩ (Bw ∪ X)) ≥ µR(Bw ∪ X) + δ2

8 ,

and the proof follows. ◁

The rest of the proof is identical to the proof of Proposition 65. ◀

6.4 Reduction to LDC with polynomially-small (and even smaller)
distance

In this section we prove the following corollary of Proposition 65. We then deduce from it
Corollary 6 and Corollary 7 from the introduction.

▶ Corollary 79. There exists a universal constant c′ such that the following holds. Let c ≥ 1
be any constant. Let α : N → (0, 1), β : N → (0, 1) be two monotone non-increasing functions
that satisfy

α(n1.01) ≥ c′β(log n) · log log n. (6.4)

Assume further that α(n) ≤ 0.009 and that β(n) ≤ 0.1 for all n ≥ 1. Assume there exists
a family of (qα(n), n−(1−α(n)),, 1/5)-LDC over alphabet Σ having rate 1 − β(n). Then, for
every sufficiently large n there exists a (q, δ, 1/5)-LDC on block length m ∈ [n, n1.01] 10 over
Σ, where

q = (qα(n) log n)O
(

log log n

α(n1.01)

)
,

ρ = 1 − O

(
β(log n) log log n

α(n1.01)

)
,

δ = β(log n)O
(

log log n

α(n1.01)

)
.

10 The constant 1.01 in the exponent, which determines the density of lengths for which we can construct
the stated codes, can be replaced by any constant strictly larger than 1, and even by 1 + o(1) for a
“sufficiently large” o(1). However, for ease of presentation, we stick with this fixed choice.

CCC 2021

1:46 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

To prove Corollary 79, we prove the following claim. In its statement, we refer to the
constant csamp ≥ 1 that is given by Theorem 15.

▷ Claim 80. Let β2 < 1/2. Assume there exists a (qin, δin, εin)-LDC Cin over alphabet Σ for
every message length kin ∈ [D/2, 2D] where

D = 4csampn1−α(n)

β6
2

, (6.5)

having rate ρin ≥ 1/2. Then, under the hypothesis of Corollary 79, there exists a
(qout, δout, εout)-LDC over Σ with block-length n having rate ρout, where

qout

qin
≤ 4csamp log n

β6
2

· qα(n),

δout

δin
≥ β3

2
16 ,

ρout

ρin
≥ (1 − β2) (1 − β(n)) ,

εout ≤ 1
5 + nεin.

Proof. Let C1 be the LDC from the hypothesis of Corollary 79 taken with block length
n1 = n. Let C2 be a code set with message length k2 = 4csamp log n

β6
2

, over Σ having rate
1 − β2 and distance δ2 = β3

2 . A code with such parameters exists, over any alphabet, by the
Gilbert-Varshamov bound.

Recall that in the distance amplification procedure (Section 6.1), we make use of a
(δ2/2, δ1)-sampler G = ([ℓ], [r], E) with ℓ = n1/k2 and left-degree n2. For the proof of the
claim, we will instantiate the distance amplification procedure with the sampler that is given
by Theorem 15. To be able to use this sampler, we must verify that the left-degree is indeed
large enough with respect to the parameters of the sampler. As, in our case, the left degree
is n2, we need to verify that

n2 ≥ csamp · log (1/δ1)
(δ2/2)2 = 4csamp(1 − α(n)) log n

β6
2

. (6.6)

However,

4csamp(1 − α(n)) log n

β6
2

≤ 4csamp log n

β6
2

= k2,

and so, Equation (6.6) holds.
As for the degree Dv of any given right vertex v of the sampler, we have by Theorem 15

that Dv ∈ [D/2, 2D], where

D = ℓd

r
= 4csampn1−α(n)

β6
2

,

which equals to D as defined in Equation 6.5. Thus, we may use Cin as in the hypothesis of
the claim. We are therefore in a position to apply Proposition 65. The assertions regarding
the query complexity, distance and rate readily follow by Proposition 65. That the error is
bounded as stated readily follows by noting that ε2 = 0. ◁

It will be more convenient to have no error loss in the reduction that is given by Claim 80.
This is easily achievable by amplifying the error of the input code before applying the previous
claim.

G. Cohen and T. Yankovitz 1:47

▶ Corollary 81. Let β2 < 1/2. Assume there exists a (qin, δin, 1/4)-LDC Cin over alphabet
Σ for every message length kin ∈ [D/2, 2D], where D is as in Equation (6.5), having rate
ρin ≥ 1/2. Then, under the hypothesis of Corollary 79, there exists a (qout, δout, 1/4)-LDC
over Σ with block-length n having rate ρout, where

qout

qin
≤ 100csamp log2 n

β6
2

· qα(n),

δout

δin
≥ β3

2
16 ,

ρout

ρin
≥ (1 − β2) (1 − β(n)) .

Proof. Let r be a parameter we set later on. Define the code C ′ to be the code Cin though
with the following decoder. To decode C ′, apply the decoder of Cin for r times and return
the symbol according to plurality. Clearly, the rate and distance remain intact. By a simple
application of the Chernoff bound, one can show that the error of C ′ is 2−Ω(r). The query
complexity of C ′ is then rqin. Thus, by taking r = c log n for a sufficiently large constant c,
we can get a code with error 1/n2. The query complexity is then increased by a multiplicative
O(log n) factor. The proof then follows by applying Claim 80 to C ′. ◀

With Corollary 81 we are ready to prove Corollary 79.

Proof of Corollary 79. The construction of the asserted code is obtained by devising a
sequence of LDC C ′

0, C ′
1, C ′

2, . . . where C ′
0 is taken to be a code over Σ with block length

n0 = 2
(

16csamp
β(log n)6

)8/α(n1.01)
, (6.7)

having rate ρ0 = 1 − β(log n) and distance β(log n)3. A code with such parameters exists,
over any alphabet, by the Gilbert-Varshamov bound. Clearly, as an LDC, this code has error
ε0 = 0 and query complexity n0. For t > 0, the code C ′

t is obtained by applying Corollary 81
with the code C ′

t−1 as Cin in the notations of the corollary and using β2 = β(log n). Denote
the message length and block length of C ′

t by kt and nt, respectively. By construction, for
every integer t ≥ 1 such that nt ≤ n1.01 we have that

kt−1 ≤ 8csampn
1−α(nt)
t

β(log n)6 ≤ 8csampn
1−α(n1.01)
t

β(log n)6 , (6.8)

where we used the fact that α(n) is non-increasing. By Corollary 81,

ρt = kt

nt
≥ (1 − β(log n))2ρt−1,

and so

ρt ≥ (1 − β(log n))2tρ0 = (1 − β(log n))2t+1.

In particular, for every t ≤ 1
4β(log n) we get

ρt ≥ (1 − β(log n))1+ 1
2β(log n) ≥ 1

2 .

CCC 2021

1:48 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

The the last inequality follows since the function (1 − x)1+ 1
2x ≥ 1

2 for all x ≤ 0.1 and, recall,
we assume that the function β is bounded above by 0.1. By Equation (6.8) we have that for
every t ≤ 1

4β(log n) ,

nt−1 ≤ 2kt−1 ≤ 16csampn
1−α(n1.01)
t

β(log n)6 .

Thus,

nt ≥
(

nt−1β(log n)6

16csamp

) 1
1−α(n1.01)

. (6.9)

One can prove the following easy claim by induction.

▷ Claim 82. Let (nt)t∈N be a sequence of positive integers such that nt ≥ (nt−1/a)b for some
a, b > 1. Then, for every t ≥ 1 we have that nt ≥ (n0/ah(b,t))bt , where h(b, t) =

∑t−1
i=0

1
bi .

With the notation of Claim 82, we have

h

(
1

1 − α(n1.01) , t

)
=

t−1∑
i=0

(1 − α(n1.01))i ≤ 1
α(n1.01) .

By applying Claim 82 with a = 16csamp/β(log n)6 and b = 1
1−α(n1.01) we get that for every t

such that nt ≤ n1.01 it holds

nt ≥

 n0(
16csamp

β(log n)6

)1/α(n1.01)

(

1
1−α(n1.01)

)t

≥ 2
(

1
1−α(n1.01)

)t

,

where for the last equality we used our of n0 given in Equation (6.7). We now wish to take
t′ to be the least integer for which the right hand side is larger or equal than n. However, we
must make sure that such t′ exists. Indeed, the above analysis only works for t such that
both nt ≤ n1.01 and t ≤ 1

4β(log n) holds. So, one must verify that there exists a t′ ≤ 1
4β(log n)

for which n ≤ nt′ ≤ n1.01. To see this, recall that k ∈ [D/2, 2D] where D is as given by
Equation (6.5). Hence,

nt−1 ≥ kt−1 ≥ 2csampn
1−α(n)
t

β6
2

≥ n
1−α(n1.01)
t ,

Hence, if nt−1 < n then

nt < n
1

1−α(n1.01) < n1.01,

where the last inequality follows as α(nt) ≤ 0.009. Thus,

t′ = Θ

 log log n

log
(

1
1−α(n1.01)

)
 = Θ

(
log log n

α(n1.01)

)
,

and we can thus see that t′ ≤ 1
4β(log n) per our assumption that is given by Equation (6.4).

G. Cohen and T. Yankovitz 1:49

It is easy to verify that the query complexity qt′ of and distance δt′ of C ′
t′ are

qt′ =
(

log n

β(log n)

)Θ(t′)
,

δt′ = β(log n)Θ(t′).

As for the rate,

ρt′ ≥ (1 − β(log n))Θ(t′) = 1 − O

(
β(log n) log log n

α(n1.01)

)
,

where the last equality follows by Equation (6.4). Finally, the error of C ′
t′ can be reduced

from 1/4 to 1/5 with no asymptotic overhead in query complexity, and so C ′
t′ has all the

asserted properties. ◀

6.4.1 Proofs of Corollary 6 and Corollary 7
In this short section prove Corollary 6 and Corollary 7.

Proof of Corollary 6. With the hypothesis of the corollary, we may apply Corollary 79 with
α(n) and β(n) in the notation of Corollary 79 set to α(n) = min(α, 0.009) and β(n) = 1

log2 n

(and, in fact, taking β(n) = c
log n for sufficiently small constant c > 0 will do as well). Note

that Equation (6.4) holds with this choice. Corollary 79 then yields a (q1, δ1, ε1 = 1/5)-LDC,
where

q1 = (qα(n) · log n)O(log log n)
,

δ1 = 2−O(log log(n) log log log n),

ρ1 = 1 − O

(
1

log log n

)
.

Recall that by the Katz-Trevisan bound [23], constant rate LDC with distance δ have
query complexity Ω(log(δn/ log n)) (see, e.g., [42]). Thus, qα(n) = Ω(log n) and so, in fact,
q1 = qα(n)O(log log n). The resulted code is obtained by amplifying the distance from δ1 to
constant. Indeed, one can invoke, say, the AEL distance amplification procedure. Since
1/δ = o(q1), the proof follows. ◀

Proof of Corollary 7. With the hypothesis of the corollary, we may apply Corollary 79 with
α(n) = 1/(log log n)c and β(n) = 1/(log n)c+2 in the notation of Corollary 79. Note that
Equation (6.4) holds with this choice. Corollary 79 then yields a (q1, δ1, ε1 = 1/5)-LDC,
where

q1 = (qα(n) · log n)O((log log n)c+1)
,

δ1 = 2−O((log log n)c+1·log log log n),

ρ1 = 1 − O

(
1

log log n

)
.

By the Katz-Trevisan bound [23], qα(n) = Ω(log n) and so, in fact, q1 = qα(n)O((log log n)c+1).
The resulted code is obtained by amplifying the distance from δ1 to constant. By invoking
the AEL distance amplification procedure. ◀

CCC 2021

1:50 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

6.5 Proof of Corollary 8
In this section we prove Corollary 8 based on Proposition 65. We start by prove thing
following.

▶ Corollary 83. There exists a constant c ≥ 1 such that the following holds. Let 0 < α < 1
be an arbitrary constant, and β : N → (0, 1) a monotone non-increasing function that satisfy

2− 1
6 (log n)α

≤ β(n) ≤ c

log log n
(6.10)

Assume there exists a family of (qα(n), 2−(log n)α

, 1/5)-LDC over alphabet Σ having rate
1 − β(n). Then, for every sufficiently large n there exists a (q, δ, 1/5)-LDC on block length m

over Σ, for which log m ∈ [log n, (log n)1/(1−α)], and

q = qα(n)O(log log log n),

ρ = 1 − O (β(log n) log log log n) ,

δ = β(log n)O(log log log n).

To prove Corollary 83, we prove the following claim. In its statement we refer to the
constant csamp ≥ 1 that is given by Theorem 15.

▷ Claim 84. Let β2 < 1/2. Assume there exists a (qin, δin, εin)-LDC Cin over alphabet Σ for
every message length kin ∈ [D/2, 2D] where

D = 4csamp2(log n)α

β6
2

, (6.11)

having rate ρin ≥ 1/2. Then, under the hypothesis of Corollary 83, there exists a
(qout, δout, εout)-LDC over Σ with block length n having rate ρout, where

qout

qin
≤ 8csamp(log n)α

β6
2

· qα(n),

δout

δin
≥ β3

2
16 ,

ρout

ρin
≥ (1 − β2) (1 − β(n)) ,

εout ≤ 1
5 + nεin.

Proof. Let C1 be the LDC from the hypothesis of Corollary 83 taken with block length
n1 = n. Let C2 be a code set with message length k2 = 4csamp(log n)α

β6
2

, over Σ having rate
1 − β2 and distance δ2 = β3

2 . A code with such parameters exists, over any alphabet, by the
Gilbert-Varshamov bound.

In the distance amplification procedure (Section 6.1), we make use of a (δ2/2, δ1) sampler
G = ([ℓ], [r], E) with ℓ = n1/k2 and left-degree d = n2. For the proof of the claim, we
will instantiate the distance amplification procedure with the sampler that is given by
Theorem 15, and so we must verify that the left-degree is indeed large enough with respect to
the parameters of the sampler. As, in our case, the left degree is n2, we need to verify that

n2 ≥ csamp · log (1/δ1)
(δ2/2)2 = 4csamp(log n)α

β6
2

, (6.12)

which indeed holds as the right hand side equals k2.

G. Cohen and T. Yankovitz 1:51

As for the degree Dv of any given right vertex v of the sampler, we have by Theorem 15
that Dv ∈ [D/2, 2D], where

D = ℓd

r
= 4csampn1−α(n)

β6
2

,

is as defined in Equation 6.11. Thus, we may use Cin as in the hypothesis of the claim. We
are therefore in a position to apply Proposition 65, and the proof readily follows. ◁

As in the previous section, it will be convenient to have no error loss in the reduction
that is given by Claim 80. This is easily achievable by amplifying the error of the input code
before applying the previous claim. We state the following corollary whose proof is similar
to the proof of Corollary 81 and so we omit it.

▶ Corollary 85. Let β2 < 1/2. Assume there exists a (qin, δin, 1/4)-LDC Cin over alphabet Σ
for every message length kin ∈ [D/2, 2D] where D is as defined in Equation (6.11), having rate
ρin ≥ 1/2. Then, under the hypothesis of Corollary 83, there exists a (qout, δout, 1/4)-LDC
over Σ with block length n having rate ρout, where

qout

qin
≤ log2 n

β6
2

· qα(n),

δout

δin
≥ β3

2
16 ,

ρout

ρin
≥ (1 − β2) (1 − β(n)) .

With Corollary 85 we are ready to prove Corollary 83.

Proof of Corollary 83. The construction of the asserted code starts by devising a sequence
of LDC C ′

0, C ′
1, C ′

2, . . . where C ′
0 is taken to be a code over Σ with block length n0 = log n,

having rate 1 − β(log n) and distance β(log n)3. We obtain such code using Lemma 19.
Clearly, as an LDC, this code has error ε0 = 0 and query complexity n0. For t > 0, the code
C ′

t is obtained by applying Corollary 85 with the code C ′
t−1 as Cin in the notations of the

corollary and using β2 = β(log n). Denote the message length and block length of C ′
t by kt

and nt, respectively. By construction, for every integer t ≥ 1 such that nt ≤ 2(log n)1/(1−α) we
have that

kt−1 ≤ 8csamp2(log nt)α

β6
2

By Corollary 81,

ρt = kt

nt
≥ (1 − β(log n))2ρt−1,

and so

ρt ≥ (1 − β(log n))2tρ0 = (1 − β(log n))2t+1.

In particular, for every t ≤ 1
4β(log n) we get

ρt ≥ (1 − β(log n))1+ 1
2β(log n) ≥ 1

2 .

CCC 2021

1:52 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

The the last inequality follows since the function (1 − x)1+ 1
2x ≥ 1

2 for all x ≤ 0.1. Note that,
indeed, by our assumption on β if follows that for a large enough n, β(n) is bounded above
by 0.1. Therefore,

nt−1 ≤ 2kt−1 ≤ 8csamp2(log nt)α

β6
2

.

Now, per our assumption that is given by Equation (6.10), we have that

β2 = β(log n) ≥ 2− 1
6 (log log n)α

≥ 2− 1
6 (log nt)α

,

where the last inequality follows as n0 = log n. Thus, we get

nt−1 ≤ 8csamp22(log nt)α

≤ 8(log nt)α

.

Thus, log nt ≥
(

log nt−1
3

)1/α

. By Claim 82, we get

log nt ≥
(

log n0

3
1

1−α

) 1
αt

≥ 2
1

αt .

We now take t′ to be the least integer for which the right hand side is larger or equal
than log n. Note that t′ = Θ(log log log n). However, the above analysis only holds only
for t ≤ 1

4β(log n) and so one must verify that t′ ≤ 1
4β(log n) which does indeed hold per our

assumption that is given by Equation (6.10).
By the above, we get that C ′

t′ is a (q′, δ′, 1/4)-LDC having rho ρ′ where

q′ = (qα(n) log n)O(log log log n),

ρ′ = 1 − O (β(log n) log log log n) ,

δ′ = β(log n)O(log log log n).

By [23], qα(n) = Ω(log n) and so, in fact, q′ = qα(n)O(log log log n). The final code is obtained by
amplifying the distance from δ′ to constant. By invoking, say, the AEL distance amplification
procedure. ◀

6.6 Explicit reduction to LDC with polynomially-small distance
In this section we show a result similar to the one proven in Section 6.4, but with an explicit
reduction that yields an explicit code. Throughout this section we assume Σ = Fp for some
prime power p (this is needed for the existence of explicit base codes). We prove the following
corollary of Proposition 76

▶ Corollary 86. Let α > 0 be a constant. Let β : N → (0, 1) be a monotone non-increasing
function that satisfies

1
n

≤ β(n) ≤ log(1/α)
24 log n

. (6.13)

Assume there exists a family of explicit (qα(n), n−α,, 1/5)-LDC over alphabet Σ having rate
1 − β(n) for block-length n. Then, for every sufficiently large n there exists an explicit
(q, δ, 1/5)-LDC on block length poly(n) over Σ, where

q = (qα(n) log n)O(log log n)
,

ρ = 1 − O (β(log n) log log n) ,

δ = β(log n)O(log log n).

G. Cohen and T. Yankovitz 1:53

Note that the distance δ above can then be further amplified to a constant, at the
expense of lowering the rate from 1 − o(1) to some constant, without asymptotic cost in
query complexity. Indeed, in the above corollary, 1/δ = poly(q) per our assumption that
β(log n) ≥ 1/ log n.

To prove Corollary 86, we prove the following claim. In what follows, we refer to c = c(∆)
– the function that appears in the statement of Theorem 17.

▷ Claim 87. There exists a universal constant β0 ≤ 1
2 such that the following holds. Let n

be an integer, and β2 ∈ (1
log n , β0). Assume there exists an explicit (qin, δin, εin)-LDC Cin over

alphabet Σ for every message length kin ∈ [D′/2, 4D′] where D′ = D′(1/
√

α, δ2/8, δ1) is as
defined in Equation (3.2), having rate ρin ≥ 1/2. Then, under the hypothesis of Corollary 86,
there exists an explicit (qout, δout, εout)-LDC over Σ with block-length n having rate ρout,
where

qout

qin
≤ (log n)10c(1/

√
α) · qα(n),

δout

δin
≥ β3

2
16 ,

ρout

ρin
≥ (1 − β2) (1 − β(n)) ,

εout ≤ 1
5 + nεin.

Proof. Let C1 be the LDC from the hypothesis of Corollary 86 taken with block length
n1 = n. Set δ2 = β3

2 . By Theorem 17, invoked with ∆ = 1/
√

α, there exists an explicit
(δ2/8, δ1)-sampler with z = n/(1 − β2) edges. By Theorem 17, G has left-degree

d =
(

8
δ2

log 1
δ1

)c

=
(

8
β3

2
α log n

)c

,

where c = c(∆) = c(1/
√

α) is the constant as defined in Theorem 17. Note that since
β2 ≥ 1/ log n we have that d ≤ (log n)10c. We also have that the average right-degree D is in
[D′, 2D′], where

D′ = d

2 ·
(

2
δ1

)∆+1
≤ n2

√
α,

where the inequality holds for all sufficiently large n.
Let C2 be an explicit code set with message length k2 = (1 − β2)d over Σ having rate

1 − β2 and distance δ2 = β3
2 . An explicit code with such parameters exists, by Lemma 19, as

we can choose β0 to be smaller than the least β for which the lemma holds.
We now want to instantiate the distance amplification procedure with C1, C2, the sampler

G, and the code family Cin as C3. Note that since the right degrees of the sampler G are
not necessarily bounded, we use the relaxed distance amplification of Section 6.3. Recall
that it is a prerequisite of the distance amplification procedure that the sampler has n1/k2
left vertices, and that n2 = d, the degree of the sampler. Both of these hold, as indeed, the
block length of C2 is 1

1−β2
(1 − β2)d = d, and the number of left vertices of the sampler is

z
d = n

d(1−β2) = n1/k2. Further note that the distance amplification procedure requires that
the family C3 contains a code with message length k3 for every k3 ∈ [D/2, 2D], and this is
indeed satisfied by the assumption regarding the message lengths of the code family Cin, of
the hypothesis of the claim.

With C1, C2, G and Cin at hand, we can now apply Proposition 76 of the distance
amplification procedure. The assertions regarding the query complexity, distance and rate
readily follow by Proposition 65. That the error is bounded as stated readily follows by
noting that ε2 = 0. ◁

CCC 2021

1:54 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

As in the previous sections, it will be convenient to have no error loss in the reduction
that is given by Claim 87. This is easily achievable by amplifying the error of the input code
before applying the previous claim. We state the following corollary whose proof is similar
to the proof of Corollary 81 and so we omit it.

▶ Corollary 88. There exists a universal constant β0 ≤ 1
2 for which the following holds.

Let β2 ∈ (1
log n , β0). Assume there exists an explicit (qin, δin, 1/4)-LDC Cin over alphabet Σ

for every message length kin ∈ [D′/2, 4D′] where D′ = D′(1/
√

α, δ2/8, δ1) is as defined in
Equation (3.2), having rate ρin ≥ 1/2. Then, under the hypothesis of Corollary 86, there
exists an explicit (qout, δout, 1/4)-LDC over Σ with block-length n having rate ρout, where

qout

qin
≤ (log n)10c(1/

√
α) · qα(n),

δout

δin
≥ β3

2
16 ,

ρout

ρin
≥ (1 − β2) (1 − β(n)) .

With Corollary 88 we are ready to prove Corollary 86.

Proof of Corollary 86. The construction of the asserted code is obtained by devising a
sequence of LDC C ′

0, C ′
1, C ′

2, . . . where C ′
0 is taken to be a code over Σ with block length

n0 = log n having rate ρ0 = 1 − β(log n) and distance β(log n)3. By Lemma 19 such an
explicit code exists, for every large enough n (the lemma holds for every small enough β,
and indeed by Equation (6.13), β(n) is decreasing). Clearly, as an LDC, this code has error
ε0 = 0 and query complexity n0. For t > 0, the code C ′

t is obtained by applying Corollary 88
with the code C ′

t−1 as Cin in the notations of the corollary and using β2 = β(log n). Note
that per our assumption given by Equation (6.13), this choice satisfies β2 ≥ 1

log n , and for
large enough n, β(n) ≤ β0, and so we can apply the corollary. Denote the message length
and block length of C ′

t by kt and nt, respectively. By construction, for every integer t ≥ 1
we have that

kt−1 ≤ n
2

√
α

t ≤ nα1/4

t , (6.14)

where the last inequality holds for all large enough n. By Corollary 88,

ρt = kt

nt
≥ (1 − β(log n))2ρt−1,

and so

ρt ≥ (1 − β(log n))2tρ0 = (1 − β(log n))2t+1.

In particular, for every t ≤ 1
4β(log n) we get

ρt ≥ (1 − β(log n))1+ 1
2β(log n) ≥ 1

2 .

The last inequality follows since the function (1 − x)1+ 1
2x ≥ 1

2 for all x ≤ 0.1, and for every
large enough n, β(n) ≤ 0.1. By Equation (6.14) we have that for every t ≤ 1

4β(log n) ,

nt−1 ≤ 2kt−1 ≤ 2nα1/4

t ≤ nα1/5

t .

G. Cohen and T. Yankovitz 1:55

Thus,

nt ≥ n
1

αt/5
0 . (6.15)

It follows that by taking t′ = ⌈ 5 log log n
log(1/α) ⌉ we get that nt′ ≥ n. However we need to

verify that this choice satisfies t′ ≤ 1
4β(log n) for the above analysis to hold. Indeed per our

assumption given by Equation (6.13), it holds that 6 log log n
log(1/α) ≤ 1

4β(log n) .
It is easy to verify that the query complexity qt′ of and distance δt′ of C ′

t′ are

qt′ = ((log n)qα(n))Θ(t′)
,

δt′ = β(log n)Θ(t′).

As for the rate,

ρt′ ≥ (1 − β(log n))Θ(t′) = 1 − O (β(log n) log log n) .

Finally, the error of C ′
t′ can be reduced from 1/4 to 1/5 with no asymptotic overhead in

query complexity, and so C ′
t′ has all the asserted properties. ◀

References
1 Noga Alon, Jeff Edmonds, and Michael Luby. Linear time erasure codes with nearly optimal

recovery. In Proceedings of IEEE 36th Annual Foundations of Computer Science, pages 512–519.
IEEE, 1995.

2 Noga Alon and Michael Luby. A linear time erasure-resilient code with nearly optimal recovery.
IEEE Transactions on Information Theory, 42(6):1732–1736, 1996.

3 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. Journal of the ACM (JACM),
45(3):501–555, 1998.

4 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
NP. Journal of the ACM (JACM), 45(1):70–122, 1998.

5 László Babai, Lance Fortnow, Leonid A Levin, and Mario Szegedy. Checking computations in
polylogarithmic time. In Proceedings of the twenty-third annual ACM symposium on Theory
of computing, pages 21–32, 1991.

6 Laszlo Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complexity, 3(4):307–318,
1993.

7 Omer Barkol, Yuval Ishai, and Ronny Roth. Locally decodable codes and their applications.
PhD thesis, Computer Science Department, Technion, 2008.

8 Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle queries. In Annual
Symposium on Theoretical Aspects of Computer Science, pages 37–48. Springer, 1990.

9 Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling. In Proceedings of
the 35th Annual Symposium on Foundations of Computer Science, 1994, pages 276–287. IEEE,
1994.

10 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. In Proceedings of the twenty-second annual ACM symposium on Theory
of computing, pages 73–83, 1990.

11 Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information
retrieval. In Proceedings of IEEE 36th Annual Foundations of Computer Science, pages 41–50.
IEEE, 1995.

12 Zeev Dvir. On matrix rigidity and locally self-correctable codes. computational complexity,
20(2):367–388, 2011.

CCC 2021

1:56 Rate Amplification & Query-Efficient Distance Amplification for Linear LCC & LDC

13 Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes. SIAM Journal
on Computing, 40(4):1154–1178, 2011.

14 Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM Journal on
Computing, 41(6):1694–1703, 2012.

15 Peter Gemmell, Richard Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigderson. Self-
testing/correcting for polynomials and for approximate functions. In STOC, volume 91, pages
32–42. Citeseer, 1991.

16 Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. Information
processing letters, 43(4):169–174, 1992.

17 Oded Goldreich. A sample of samplers: A computational perspective on sampling. In
Studies in Complexity and Cryptography, pages 302–332. Springer, 2011. doi:10.1007/
978-3-642-22670-0_24.

18 Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear length.
Journal of the ACM (JACM), 53(4):558–655, 2006.

19 Sivakanth Gopi, Swastik Kopparty, Rafael Oliveira, Noga Ron-Zewi, and Shubhangi Saraf.
Locally testable and locally correctable codes approaching the gilbert-varshamov bound. IEEE
Transactions on Information Theory, 64(8):5813–5831, 2018.

20 Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lifting.
In Proceedings of the 4th conference on Innovations in Theoretical Computer Science, pages
529–540. ACM, 2013.

21 Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding theory. Draft
available at http://www.cse.buffalo.edu/~atri/courses/coding-theory/book, 2012.

22 Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. Local correctability of expander
codes. Information and Computation, 243:178–190, 2015.

23 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In Proceedings of the thirty-second annual ACM symposium on Theory of
computing, pages 80–86, 2000.

24 Tali Kaufman and Madhu Sudan. Sparse random linear codes are locally decodable and
testable. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07),
pages 590–600. IEEE, 2007.

25 Kiran S Kedlaya and Sergey Yekhanin. Locally decodable codes from nice subsets of finite
fields and prime factors of mersenne numbers. SIAM Journal on Computing, 38(5):1952–1969,
2009.

26 Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally correctable
and locally testable codes with sub-polynomial query complexity. Journal of the ACM (JACM),
64(2):11, 2017.

27 Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with sublinear-time
decoding. Journal of the ACM (JACM), 61(5):28, 2014.

28 Ray Li and Mary Wootters. Lifted multiplicity codes and the disjoint repair group property. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

29 Richard J. Lipton. Efficient checking of computations. In Annual Symposium on Theoretical
Aspects of Computer Science, pages 207–215. Springer, 1990.

30 Irving S Reed. A class of multiple-error-correcting codes and the decoding scheme. Technical
report, Massachusetts inst of tech Lexington Lincoln lab, 1953.

31 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders and extractors. In Electronic Colloquium on Computational
Complexity (ECCC), page 18, 2001. URL: https://eccc.weizmann.ac.il/report/2001/018/.

32 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

https://doi.org/10.1007/978-3-642-22670-0_24
https://doi.org/10.1007/978-3-642-22670-0_24
http://www.cse.buffalo. edu/~atri/courses/coding-theory/book
https://eccc.weizmann.ac.il/report/2001/018/

G. Cohen and T. Yankovitz 1:57

33 C. E. Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile
Computing and Communications Review, 5(1):3–55, 2001. Originally appeared in Bell System
Tech. J. 27:379–423, 623–656, 1948.

34 Carl Siegel. Über die classenzahl quadratischer zahlkörper. Acta Arithmetica, 1(1):83–86,
1935.

35 Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the XOR
lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

36 Luca Trevisan. List-decoding using the XOR lemma. In 44th Annual IEEE Symposium on
Foundations of Computer Science, 2003. Proceedings., pages 126–135. IEEE, 2003.

37 Arnold Walfisz. Zur additiven zahlentheorie. ii. Mathematische Zeitschrift, 40(1):592–607,
1936.

38 David Woodruff. New lower bounds for general locally decodable codes. In Electronic
Colloquium on Computational Complexity (ECCC), volume 14, 2007.

39 S. Yekhanin. Locally decodable codes. In International Computer Science Symposium in
Russia, pages 289–290. Springer, 2011.

40 Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. Journal
of the ACM (JACM), 55(1):1–16, 2008.

41 Kalina Petrova Zeev Dvir. Lecture 1: Introduction. Lecture notes: https://www.cs.
princeton.edu/~zdvir/LDCnotes/LDC1.pdf, year = 2016.

42 Kalina Petrova Zeev Dvir. Lecture 4: Lower bounds for r-query LDCs. Lecture notes:
https://www.cs.princeton.edu/~zdvir/LDCnotes/LDC4.pdf, 2016.

43 Victor Vasilievich Zyablov. An estimate of the complexity of constructing binary linear cascade
codes. Problemy Peredachi Informatsii, 7(1):5–13, 1971.

CCC 2021

https://www.cs.princeton.edu/~zdvir/LDCnotes/LDC1.pdf
https://www.cs.princeton.edu/~zdvir/LDCnotes/LDC1.pdf
https://www.cs.princeton.edu/~zdvir/LDCnotes/LDC4.pdf

An Improved Protocol for the Exactly-N Problem∗

Nati Linial #

Hebrew University of Jerusalem, Israel

Adi Shraibman #

The Academic College of Tel-Aviv-Yaffo, Israel

Abstract
In the 3-players exactly-N problem the players need to decide whether x + y + z = N for inputs
x, y, z and fixed N . This is the first problem considered in the multiplayer Number On the Forehead
(NOF) model. Even though this is such a basic problem, no progress has been made on it throughout
the years. Only recently have explicit protocols been found for the first time, yet no improvement
in complexity has been achieved to date. The present paper offers the first improved protocol
for the exactly-N problem. This improved protocol has also interesting consequences in additive
combinatorics. As we explain below, it yields a higher lower bound on the possible density of
corner-free sets in [N] × [N].

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases Communication complexity, Number-On-the-Forehead, Corner-free sets

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.2

Funding Nati Linial: Supported in part by Grant 659/18 “High dimensional combinatorics” of the
Israel Science Foundation.

Acknowledgements We thank Noga Alon, Aya Bernstine and Alex Samorodnitsky for insightful
discussions.

1 Introduction

The multiplayer Number On the Forehead (NOF) model of communication complexity was
introduced by Chandra, Furst and Lipton [9]. Given a function f : [N]k → {0, 1}, the k

players in this scenario should jointly find out f(x1, . . . , xk). We think of xi as being placed
on player i’s forehead, so that each player sees the whole input bar one argument. Players
communicate by writing bits on a shared blackboard according to an agreed-upon protocol.
This model is intimately connected to several key problems in complexity theory. E.g.,
lower bounds on the size of ACC0 circuits for a natural function in P [23, 12], branching
programs, time-space tradeoffs for Turing machines [13], and proof complexity [5]. In addition,
progress in the NOF model, even for a specific problem and for k = 3, would have profound
implications in graph theory and combinatorics [14, 3].

Much of Chandra, Furst and Lipton’s seminal paper [9] is dedicated to the exactly-N
function f : [N]k → {0, 1}, where f(x1, . . . , xk) = 1 iff

∑
xi = N . They discovered a

connection between the communication complexity of this function and well-known problems
in additive combinatorics and Ramsey theory. They used Ramsey’s theory to prove a
(rather weak) lower bound on the NOF communication complexity of this function. Using
the connection to additive number theory, they showed that a O(

√
log N) protocol exists,

although they have not made this protocol explicit.

∗ Our companion paper “Larger Corner-Free Sets from Better NOF Exactly-N Protocols” presents the
same results, emphasizing the combinatorial perspective.

© Nati Linial and Adi Shraibman;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 2; pp. 2:1–2:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nati@cs.huji.ac.il
mailto:adish@mta.ac.il
https://doi.org/10.4230/LIPIcs.CCC.2021.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 An Improved Protocol for the Exactly-N Problem

There are several reasons why it is highly significant to determine the communication
complexity of the exactly-N function, aside of the very fundamental nature of the problem:

Our poor understanding of this question is manifested by the huge gap between the
upper and lower bounds that we currently have on the communication complexity of this
problem. This gap is double exponential for three players, and is even worse for k > 3
players.
Despite the significance of the NOF model, we still know very little about it. The rich
web of mathematical and computational concepts surrounding the exactly-N function
suggests that it may open the gate to progress in understanding numerous other NOF
functions.
The k-player exactly-N function is a graph function [4]. For most functions in this class
the deterministic and randomized communication complexity differ substantially, but no
explicit function with a significant gap is presently known.
This problem is equivalent to corner theorems in additive combinatorics (e.g., [2]), and is
closely related to other important problems such as constructing Ruzsa-Szemerédi graphs
and the triangle removal lemma [14, 3].

Nevertheless, progress on the complexity of the NOF exactly-N problem has mostly been
made on the additive combinatorics side and includes several breakthrough results such as
Szemerédi’s regularity lemma [21], and its extension to hypergraphs [11, 17, 16]. Translated
back to the realm of NOF communication complexity, these advances bear on lower bounds
in communication complexity, yet there is essentially nothing concerning upper bounds. We
believe that the more promising line of attack is for advances in communication complexity to
shed light on questions in additive combinatorics by exploiting the power of new algorithmic
ideas.

As mentioned, the existence of a protocol for the exactly-N problem has already been
known since [9]. However, this was just an existential statement and no actual protocol was
provided. This lacuna was recently remedied with two protocols [14, 3] of the exact same
complexity as the one whose existence was proven in [9], namely of complexity1

2
√

2
√

log N + o(
√

log N) = 2.828...
√

log N + o(
√

log N). (1)

Here we give the first improved protocol for the exactly-N problem, and prove

▶ Theorem 1. There is an explicit protocol for NOF exactly-N of complexity

2
√

log e
√

log N + o(
√

log N) = 2.4022...
√

log N + o(
√

log N). (2)

Due to the connection between NOF complexity and additive combinatorics, our improved
protocol has interesting implications in that area that we briefly mention now. More details
are given in Section 3. Let ρ3(N) be the largest density of a subset of [N] that contains no
3-term arithmetic progression. As Roth [18] showed, ρ3(N) = o(1). However, we still do not
know the rate at which ρ3(N) tends to 0. The upper bounds have gradually improved over
the years and the current “world record” found in 2020 by Bloom and Sisask [8] is

ρ3(N) ≤ (log N)−1−c for some absolute constant c > 0.

1 All logarithms in this paper are in base 2.
Also, unless otherwise specified, all asymptotic statements are taken with N → ∞.

N. Linial and A. Shraibman 2:3

Much less has happened with the lower bound. Behrend’s construction [6] yields

ρ3(N) ≥ 2−2
√

2
√

log N+o(
√

log N) = 2−2.828...
√

log N+o(
√

log N).

But in the ensuing 75 years, only the little-oh term saw an improvement (Elkin [10]).
A corner in N2 is a triple of points (x, y), (x + δ, y), (x, y + δ) for some δ ̸= 0. Let ρ∠

3 (N)
be the largest density of a subset of [N] × [N] that contains no corner. Ajtai and Szemerédi’s
corner theorem [2] shows that ρ∠

3 (N) = o(1). This readily implies Roth’s theorem that
ρ3(N) = o(1).

The best previously known lower bound on ρ∠
3 (N) again comes from Behrend’s construc-

tion:

ρ∠
3 (N) ≥ 2−2

√
2
√

log N+o(
√

log N) = 2−2.828...
√

log N+o(
√

log N).

Our work gives the first improvement in decades, showing (Theorem 3)

ρ∠
3 (N) ≥ 2−2

√
log e

√
log N+o(

√
log N) = 2−2.4022...

√
log N+o(

√
log N).

2 Proof of Theorem 1

The three players in our protocol are called Px, Py and Pz. The inputs that they get to see
are (y, z), (x, z) and (x, y) respectively.
Here is a similar problem in the realm of vector addition. Given integers q, d > 1, define
g = gq,d(α, β, γ) to be 1 if α+β = γ and 0 otherwise. Here α, β ∈ [q]d, γ ∈ [2q]d and addition
is vector addition in Rd. The following one-round protocol [3] for g is correct because the
inequality ∥2α − γ∥2 + ∥2β − γ∥2 ≥ 2∥α − β∥2 holds always and is an equality iff γ = α + β.

▶ Protocol 1. A protocol for gq,d

1. Pz computes ∥α − β∥2
2, and writes the result on the board.

2. Py writes 1 iff ∥α − β∥2
2 = ∥2α − γ∥2

2.
3. Px writes 1 iff ∥α − β∥2

2 = ∥2β − γ∥2
2.

The cost of this protocol is 2 + log dq2.
The above is an efficient method to decide high-dimensional vector addition, but our

objective is to decide the integer addition relation X + Y + Z = N . We let x = X, y = Y

and z = N − Z, so the relation we need to consider is x + y = z.
Our protocol to decide whether x + y = z builds on the protocol for gq,d. It is the issue of

carry bits in integer addition that makes this decision problem harder. The integers q, d > 1
are chosen so that

2qN > qd ≥ 2N. (3)

the specific choice is made below so as to minimize the cost of the protocol.
We denote by wq the vector that corresponds to the base q representation of the integer w.

As usual, ei is the d-dimensional vector with 1 in the i-th coordinate and zeros elsewhere.
Let C(x, y) ∈ {0, 1}d be the carry vector when x and y are added in base q. The relation
x + y = z among integers is equivalent to the vector relation

xq + yq = ζ,

where the i-th coordinate of ζ is

ζi = zi + q · C(x, y)i − C(x, y)i−1

(Here C(x, y)0 = 0).

CCC 2021

2:4 An Improved Protocol for the Exactly-N Problem

The protocol from [3] now suggests itself: Pz posts C(x, y), and Protocol 1 is used to
decide the relation xq + yq = ζ. This yields again the estimate (1).

The alternative approach that we adopt here considers instead the equivalent vector
relation

xq + η = zq

where

η = (x + y)q − xq.

Concretely, the i-th coordinate of η is:

ηi = yi − q · C(x, y)i + C(x, y)i−1.

In order to run Protocol 1, Pz needs to know η and xq, which he does. The situation with Py

is even simpler, since he needs to know xq and zq which are his inputs. The only difficulty is
with Px who needs to know zq (which he does) and η. The latter is not part of his input and
Pz fills in the missing information for him.

The obvious solution is for Pz to reveal C to Px using d bits of information. However, we
can save communication by exploiting the fact that Px and Pz share some information, i.e.,
they both know y for every y ̸= 0.

By a standard argument in this area which we detail below (Proposition 2), a protocol
that works for typical pairs x, y can be easily modified to work in all cases. So, let us pick x

and y uniformly at random from among the d-digit numbers in base q and think of C, the
vector of carry bits as a random variable on this probability space. The number of bits that
Pz needs to post so that Px gets to know C, and therefore know η, is H(C|y), the entropy of
C given y. The gain is clear, since H(C) ≥ H(C|y).

It remains to estimate H(C|y). Fix some integers s ≥ t ≥ 0, and let X be the random
variable that is a uniformly sampled subset of [s] of cardinality ≥ t. It is easily verified that
H(X) = (1 + os(1)) · s · h(t/s), where h(·) is the univariate entropy function. The entropy of
X is the same also if we sample subsets of [s] of cardinality < t. Let r be an integer in the
range d ≫ r ≫ 1, e.g., r ≈

√
d. For j = 1, . . . , r, let

Sj = {i | qj

r
> yi ≥ q(j − 1)

r
},

where q > yi ≥ 0 is the i-th digit of y. A carry occurs in digit i ∈ Sj only if xi > q(r−j)
r ,

where xi is the i-th digit of x. Then

H(C|y) ≤ (1 + or(1))
r∑

j=1

|Sj |
d

h(j

r
).

Since y is chosen at random, |Sj | ≤ (1 + or(1)) d
r , and so

H(C|y) ≤ (1 + or(1))
r∑

j=1

1
r

h(j

r
).

The limit of this expression as r → ∞ is

λ =
∫ 1

0
h(u)du = log e

2 = 0.721...

N. Linial and A. Shraibman 2:5

It is left to optimize on q and d. The complexity of our protocol is

λd + log dq2 + 2,

where recall that 2qN > qd ≥ 2N . It is not hard to verify that choosing

d =
√

2
λ

log 2N q = 2
√

λ
2 log 2N , (4)

we get a protocol with complexity

2
√

2λ log N + o(
√

log N),

and this is asymptotically optimal in our setting.
To sum up, here is the protocol which proves Theorem 1:

▶ Protocol 2. A protocol for exactly-N , for typical pairs x, y

For d, q as in Equation (4)
1. Pz publishes the vector η = (x + y)q − xq in a way that Px can read.
2. The players run protocol 1 for gq,d on inputs xq, η, zq. That is:

a. Pz writes ∥η − xq∥2
2 on the board

b. Py writes 1 iff ∥η − xq∥2
2 = ∥2xq − zq∥2

2.
c. Px writes 1 iff ∥η − xq∥2

2 = ∥2η − zq∥2
2.

▶ Proposition 2. Let P be an NOF protocol for the exactly-N that works correctly for an
Ω(1)-fraction of the input pairs x, y (and every z) with communication complexity Φ(N).
Then there is an NOF protocol that works for all inputs with communication complexity
Φ(N) + O(log log N).

Proof. Let S ⊆ [N] × [N] be the set of input pairs x, y on which P succeeds. We claim that
there is a collection F of O(log N) vectors ∆ ∈ [N] × [N] such that

∪∆∈F (S + ∆) ⊇ [N] × [N].

In the modified protocol, Pz sees x, y and announces the index of some ∆ = (∆1, ∆2) ∈ F

for which (x − ∆1, y − ∆2) ∈ S. Then the players run Protocol 2 with inputs (x − ∆1, y −
∆2, z − ∆1 − ∆2).

The construction of F uses a standard fact about the set-cover problem. For a family of
finite sets X ⊆ 2Ω we denote by c(X) the least number of members in X whose union is Ω.
Also c∗(X) is the minimum cost of a fractional cover. Namely,

c∗(X) = min
∑
X

ωX, where ωX ≥ 0 for every X ∈ X and
∑
x∈X

ωX ≥ 1 for every x ∈ Ω.

Then

c(X) ≤ log(|Ω|) · c∗(X)

(e.g., Lovász [15]) and actually the greedy algorithm yields a set cover that meets this bound.
In our case Ω = [N] × [N], and

X = {(S + ∆) ∩ ([N] × [N]) | ∆ ∈ [−N, N] × [−N, N]}.

It is easily verified that the weights ωx = 10
N2 constitute a fractional cover, so that c∗(X) ≤ 40

and hence c(X) ≤ 80 log N , as claimed. ◀

CCC 2021

2:6 An Improved Protocol for the Exactly-N Problem

3 Applications in additive combinatorics

In this section we briefly explain the connections and implications in additive combinatorics.
Van der Waerden’s well known theorem [22] states that for every r, k and every large

enough N , if the elements of [N] := {1, . . . , N} are colored by r colors, then there must exist
a length-k monochromatic arithmetic progression. Erdős and Turán introduced the density
version of this theorem. Let ρk(N) be the largest density of a subset of [N] without an
arithmetic progression of length k. Szemerédi’s famous theorem [21] shows that ρk(N) = o(1)
for every k ≥ 3.

Extending van der Waerden’s theorem, Gallai proved that in every finite coloring of Z2

some color contains arbitrarily large monochromatic square subarrays. In search of a density
version of Gallai’s theorem, Erdős and Graham asked about the largest density of a subset of
the integer grid [N] × [N] without a corner, i.e., a triple (x, y), (x + δ, y), (x, y + δ) for some
δ ̸= 0. Denote this quantity by ρ∠

3 (N).
Ajtai and Szemerédi [2] proved the first corners theorem, showing that ρ∠

3 (N) = o(1).
Namely, for every ε > 0 and large enough N , every subset of [N] × [N] of cardinality εN2

must contain a corner. This theorem easily yields that ρ3(N) = o(1), namely, the k = 3
case of Szemerédi’s theorem (a result of Roth [18], proved two decades before Szemerédi’s
theorem). Later on, Solymosi [20] showed how to derive Ajtai and Szemerédi’s corners
Theorem from the Triangle Removal Lemma [19].

The quantitative aspects of all these results: Szemerédi’s theorem, the corner theorem,
and the triangle removal lemma remain unfortunately poorly understood. In particular, we
know very little concerning the lower bounds in these problems. Behrend [6] has famously
constructed a large subset of [N] without a 3-term arithmetic progression. This construction
implies that

ρ3(N) ≥ 2−2
√

2
√

log N+o(
√

log N).

Using similar tools Elkin [10] improved Behrend’s construction. However, his construction
only improves the little-o term. Behrend’s construction also yields the previously best known
lower bounds on ρ∠

3 (N), viz.

ρ∠
3 (N) ≥ 2−2

√
2
√

log N+o(
√

log N) = 2−2.828...
√

log N+o(
√

log N). (5)

As mentioned in the introduction, the NOF communication complexity of f is closely
related to corners theorems. Our Theorem 1 immediately implies,

▶ Theorem 3.

ρ∠
3 (N) ≥ 2−2

√
log e

√
log N+o(

√
log N) = 2−2.4022...

√
log N+o(

√
log N).

There is an explicit corner-free subset of [N] × [N] of size

N2/22
√

log e
√

log N+o(
√

log N).

The derivation of Theorem 3 from Theorem 1 is an easy consequence of the following claim.

▷ Claim 4 ([9], implicit).
1. There is an optimal one-round protocol for the addition problem.
2. Let T = T(x, y) be the message that the Pz sends on inputs (x, y) in a one-round protocol

for the addition problem. Then the set

S(T) = {(x, y) : T(x, y) = T}

is corner-free.

N. Linial and A. Shraibman 2:7

See [9, 7, 1, 14, 3] for more details about the above claim and the relation between commu-
nication complexity and additive combinatorics. The same comments and corollaries above
apply also verbatim to the (6, 3) Theorem (e.g., [19]) and to the quantitative version of the
triangle removal lemma.

4 Discussion

The strong relation between the exactly-N problem in the NOF model and questions in
additive combinatorics has been discovered decades ago, in the seminal paper of Chundra,
Furst and Lipton [9]. However, this subject remains under-developed. We believe that there
is a lot to be done here, and many interesting avenues of research that this study can take.
One obvious candidate for improvement is the addition problem. We conjecture:

▶ Conjecture 5. The NOF communication complexity of exactly-N is o(
√

log N). Possibly
it is much smaller, even as small as (log log N)O(1).

In the realm of additive combinatorics these conjectures translate to:

▶ Conjecture 6.

ρ∠
3 (N) ≥ 2−o(

√
log N).

and possibly even

ρ∠
3 (N) ≥ 2−(log log N)O(1)

.

References
1 A. Ada, A. Chattopadhyay, O. Fawzi, and P. Nguyen. The NOF multiparty communication

complexity of composed functions. computational complexity, 24(3):645–694, 2015.
2 M. Ajtai and E. Szemerédi. Sets of lattice points that form no squares. Stud. Sci. Math.

Hungar, 9(1975):9–11, 1974.
3 N. Alon and A. Shraibman. Number on the forehead protocols yielding dense ruzsa–szemerédi

graphs and hypergraphs. Acta Mathematica Hungarica, 161(2):488–506, 2020.
4 P. Beame, M. David, T. Pitassi, and P. Woelfel. Separating deterministic from randomized nof

multiparty communication complexity. In Proceedings of the 34th International Colloquium On
Automata, Languages and Programming, Lecture Notes in Computer Science. Springer-Verlag,
2007.

5 P. Beame, T. Pitassi, and N. Segerlind. Lower bounds for Lovász-Schrijver systems and
beyond follow from multiparty communication complexity. SIAM Journal on Computing,
37(3):845–869, 2006.

6 F. A. Behrend. On sets of integers which contain no three terms in arithmetical progression.
Proceedings of the National Academy of Sciences, 32(12):331–332, 1946.

7 R. Beigel, W. Gasarch, and J. Glenn. The multiparty communication complexity of Exact-T:
Improved bounds and new problems. In International Symposium on Mathematical Foundations
of Computer Science, pages 146–156. Springer, 2006.

8 T. F. Bloom and O. Sisask. Breaking the logarithmic barrier in Roth’s theorem on arithmetic
progressions. arXiv preprint, 2020. arXiv:2007.03528.

9 A. Chandra, M. Furst, and R. Lipton. Multi-party protocols. In Proceedings of the 15th ACM
Symposium on the Theory of Computing, pages 94–99. ACM, 1983.

10 M. Elkin. An improved construction of progression-free sets. In Proceedings of the twenty-first
annual ACM-SIAM symposium on Discrete Algorithms, pages 886–905. Society for Industrial
and Applied Mathematics, 2010.

CCC 2021

http://arxiv.org/abs/2007.03528

2:8 An Improved Protocol for the Exactly-N Problem

11 W. T. Gowers. Hypergraph regularity and the multidimensional szemerédi theorem. Annals
of Mathematics, pages 897–946, 2007.

12 J. Håstad and M. Goldmann. On the power of small-depth threshold circuits. Computational
Complexity, 1:113–129, 1991.

13 E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.
14 N. Linial, T. Pitassi, and A. Shraibman. On the communication complexity of high-dimensional

permutations. In 10th Innovations in Theoretical Computer Science Conference, ITCS San
Diego, California, USA, volume 124, pages 54:1–54:20, 2019.

15 L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathematics,
13:383–390, 1975.

16 B. Nagle, V. Rödl, and M. Schacht. The counting lemma for regular k-uniform hypergraphs.
Random Structures & Algorithms, 28(2):113–179, 2006.

17 V. Rödl and J. Skokan. Regularity lemma for k-uniform hypergraphs. Random Structures &
Algorithms, 25(1):1–42, 2004.

18 K. F. Roth. On certain sets of integers. Journal of the London Mathematical Society, 1(1):104–
109, 1953.

19 I. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles.
Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai, 18:939–945, 1978.

20 J. Solymosi. Note on a generalization of Roth’s theorem. Discrete and Computational Geometry:
The Goodman-Pollack Festschrift, pages 825–827, 2003.

21 E. Szemerédi. On sets of integers containing no k elements in arithmetic progression. Acta
Arith, 27(199-245):2, 1975.

22 B. L. van der Waerden. Beweis einer Baudetschen Vermutung. Nieuw Arch. Wiskunde,
15:212–216, 1927.

23 A. Yao. On ACC and threshold circuits. In Proceedings of the 31st IEEE Symposium on
Foundations of Computer Science, pages 619–627. IEEE, 1990.

Proof Complexity of Natural Formulas via
Communication Arguments
Dmitry Itsykson #

St. Petersburg Department of Steklov Mathematical Institute of
Russian Academy of Sciences, Russia

Artur Riazanov #

St. Petersburg Department of Steklov Mathematical Institute of
Russian Academy of Sciences, Russia

Abstract
A canonical communication problem Search (φ) is defined for every unsatisfiable CNF φ: an

assignment to the variables of φ is partitioned among the communicating parties, they are to find a
clause of φ falsified by this assignment. Lower bounds on the randomized k-party communication
complexity of Search (φ) in the number-on-forehead (NOF) model imply tree-size lower bounds,
rank lower bounds, and size-space tradeoffs for the formula φ in the semantic proof system Tcc(k, c)
that operates with proof lines that can be computed by k-party randomized communication protocol
using at most c bits of communication [9]. All known lower bounds on Search (φ) (e.g. [1, 9, 13])
are realized on ad-hoc formulas φ (i.e. they were introduced specifically for these lower bounds).
We introduce a new communication complexity approach that allows establishing proof complexity
lower bounds for natural formulas.

First, we demonstrate our approach for two-party communication and apply it to the proof
system Res(⊕) that operates with disjunctions of linear equalities over F2 [14]. Let a formula PMG

encode that a graph G has a perfect matching. If G has an odd number of vertices, then PMG has a
tree-like Res(⊕)-refutation of a polynomial-size [14]. It was unknown whether this is the case for
graphs with an even number of vertices. Using our approach we resolve this question and show a
lower bound 2Ω(n) on size of tree-like Res(⊕)-refutations of PMKn+2,n .

Then we apply our approach for k-party communication complexity in the NOF model and
obtain a Ω

(
1
k

2n/2k−3k/2) lower bound on the randomized k-party communication complexity of
Search

(
BPHPM

2n

)
w.r.t. to some natural partition of the variables, where BPHPM

2n is the bit
pigeonhole principle and M = 2n +2n(1−1/k). In particular, our result implies that the bit pigeonhole
requires exponential tree-like Th(k) proofs, where Th(k) is the semantic proof system operating
with polynomial inequalities of degree at most k and k = O(log1−ϵ n) for some ϵ > 0. We also show
that BPHP2n+1

2n superpolynomially separates tree-like Th(log1−ϵ m) from tree-like Th(log m), where
m is the number of variables in the refuted formula.

2012 ACM Subject Classification Theory of computation → Proof complexity; Theory of computa-
tion → Communication complexity

Keywords and phrases bit pigeonhole principle, disjointness, multiparty communication complexity,
perfect matching, proof complexity, randomized communication complexity, Resolution over linear
equations, tree-like proofs

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.3

Related Version Full Version: https://eccc.weizmann.ac.il/report/2020/184/

Funding The research presented in Sections 3 and 4 is supported by Russian Science Foundation
(project 18-71-10042).

Acknowledgements The authors are grateful to Anastasia Sofronova, Svyatoslav Gryaznov, Danil
Sagunov, Petr Smirnov, Dmitry Sokolov, and Jakob Nordström for fruitful discussions and useful
comments. We also thank the anonymous referees for useful comments and corrections. Dmitry
Itsykson is a Young Russian Mathematics award winner and would like to thank sponsors and jury
of the contest.

© Dmitry Itsykson and Artur Riazanov;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 3; pp. 3:1–3:34

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dmitrits@pdmi.ras.ru
https://orcid.org/0000-0003-2680-4800
mailto:aariazanov@gmail.com
https://doi.org/10.4230/LIPIcs.CCC.2021.3
https://eccc.weizmann.ac.il/report/2020/184/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Proof Complexity of Natural Formulas via Communication Arguments

1 Introduction

Propositional proof complexity studies proof systems that allow proving the unsatisfiability
of Boolean CNF formulas. The main line of research in proof complexity is focused on
refutation size lower bounds for different proof systems. This research activity is motivated
by NP vs coNP question [3] as well as by studying properties of SAT-solvers. This paper
develops the communication complexity approach to proof complexity lower bounds.

1.1 Communication complexity of search problems
In the classical communication settings, several participants collaborate to compute a function
using a broadcast communication channel; each participant knows only a part of the input
and the goal is to compute the function with the minimum number of transmitted bits. In
the case of search problems, participants compute a relation R ⊆ X×Y instead of a function
in the following sense: an input x ∈ X is partitioned among the participants and they have
to find y ∈ Y such that (x, y) ∈ R. Analyzing the communication complexity of search
problems is usually much harder than analyzing the communication complexity of functions.
Unrestricted and monotone circuit depth of a Boolean function can be characterized in terms
of the communication complexity of an appropriate search problem [17].

Every unsatisfiable CNF-formula φ defines a search problem Search (φ): the values of
the variables of φ are partitioned between the parties of the protocol in some way, the
participants are to find a clause of φ that is falsified by the values of the variables. This
problem plays an important role in proof complexity.

One of the promising approaches for obtaining proof complexity lower bounds is the
investigation of dag-like communication protocols [20, 33]. This approach allows proving lower
bounds for proof systems operating with proof lines having small communication complexity
in the appropriate communication model. Every refutation of a formula φ of size S can be
translated to a dag-like communication protocol for Search (φ) of complexity S · C, where C
depends on the upper bound on the communication complexity of proof lines. Thus, lower
bounds on the complexity of dag-like communication protocols imply lower bounds on the size
of refutations. Nontrivial lower bounds on the size of dag-like protocols are currently known
only for two-party deterministic and two-party real communication models. There are two
known approaches for obtaining these lower bounds. The first is based on the correspondence
between dag-like protocols and monotone Boolean/real circuits [20, 33, 11]. The second
approach is lifting from the resolution width [7]. The mentioned lower bounds on dag-like
communication imply lower bounds for Resolution [20], OBDD-based proof systems [21] (via
deterministic protocols), and Cutting Planes [28, 10, 6, 7] (via real protocols).

Proving a superpolynomial lower bound for any of the models of dag-like communication
protocols listed in the left column of Table 1 seems to be a very challenging open question.
Such lower bounds would imply currently unknown superpolynomial lower bounds on the
corresponding proof systems in the right column of the table.

In this paper, we deal with classical (tree-like) communication protocols. A lower bound
on (tree-like) communication complexity of the problem Search (φ) in the model from the
left column of Table 1 implies a lower bound on the size of tree-like refutations of φ in the
corresponding proof system from the right column as well as a lower bound on the size of
dag-like refutation of φ using small space (a size-space tradeoff [9, 12]). The usual strategy
for obtaining lower bounds on the proof size via communication complexity is the following:
by a tree-like refutation of φ of size S (or by a realization of a dag-like refutation of φ in
size S within small space), one constructs a communication protocol for Search (φ) with

D. Itsykson and A. Riazanov 3:3

Table 1 Correspondence between communication models and proof systems.

Communication model Proof systems
Randomized two-
party protocols

Res(⊕) [15]. Proof lines in Res(⊕) are disjunctions of linear
equations over F2.

Real k-party
protocols in
the number-on-
forehead (NOF)
model

Semantic Th(k−1) [1]. Proof lines in Th(k−1) are inequalities of
the form f(x1, x2, . . . , xn) ≥ 0, where f is a polynomial of degree
at most k − 1 with integer coefficients and Boolean variables.

Randomized k-
party protocols in
the NOF model

Semantic Tcc(k, c). Proof lines in Tcc(k, c) are arbitrary predic-
ates that can be computed with k-party randomized communic-
ation cost at most c in the NOF model. Tcc(k, c) for small c
simulates Th(k − 1) and Res (PCk−1). Proof lines in Res (PCd)
[22, 19] are disjunctions of polynomial equalities of the form
p(x1, x2, . . . , xn) = 0, where p is a polynomial over F2 of degree
at most d. Notice that Res (PC1) coincides with Res(⊕).

communication complexity O(logS log logS · c)1 for an arbitrary partition of the variables
of φ between the parties, where c is an upper bound for communication complexity of a
proof line in the proof system in question. One then proceeds to prove a lower bound on the
communication complexity of Search (φ) for some fixed partition of variables between the
parties.

Proving lower bounds for the communication complexity of Search (φ) is not trivial since
a lower bound on Search (φ) in the two-party deterministic communication model implies
a lower bound on the monotone circuit depth for the corresponding monotone Boolean
function [9, 29]. However, in the tree-like case good enough lower bounds are known for
all models listed in the left column of Table 1. We discuss the strongest model, k-party
randomized communication. Typically lower bounds on the communication complexity of
Search (φ) are shown for artificial formulas φ that are constructed as follows: take a standard
formula ψ and replace each of its variables with a function g(y1, y2, . . . , ym) (also known as a
gadget), where y1, y2, . . . , ym are fresh variables; the result of this substitution is denoted
by ψ ◦ g. The variables of every gadget are partitioned among k parties. Beame, Pitassi
and Segerlind [1] have shown a lower bound on the randomized k-party communication
complexity of Search (T (G) ◦ ∧k), where T (G) is an unsatisfiable Tseitin formula based on a
special expander G and ∧k is the conjunction of k variables, and the ith party has the ith
argument of each instance of ∧k written on their forehead.

Huynh and Nordström [12] have introduced a method to obtain a two-party randomized
communication complexity lower bound for a search problem via lifting from search problems
with large critical block sensitivity. Göös and Pitassi [9] have simplified and generalized
this result to multiparty communication complexity and shown that if Search (φ) has large
critical block sensitivity and a gadget g has a versatile property, then Search (φ ◦ g) has large
randomized communication complexity. Although the construction of versatile functions is
somewhat tricky, the proof of the lower bound is much simpler than the proofs from [1, 12].

1 sometimes it can be improved to O (log S · c)

CCC 2021

3:4 Proof Complexity of Natural Formulas via Communication Arguments

There is an established stereotype that lower bounds on the randomized communication
complexity of search problems are rather complicated and the resulting lower bounds for
proof systems hold only for artificial formulas. In this paper, we break this stereotype and
suggest an approach that allows obtaining lower bounds for natural families of formulas by
reduction from randomized communication complexity. Moreover, our proofs are elementary.

In the first part of the paper, we demonstrate our method by proving an exponential lower
bound on the size of tree-like Res(⊕)-refutations of the perfect matching principle, while the
known lower bound techniques for tree-like Res(⊕) do not work for this formula. This lower
bound is based on two-party communication complexity. In the second part of the paper,
we apply our method to k-party communication complexity and prove a lower bound for
communication complexity of Search

(
BPHP2n+2n(1−1/k)

2n

)
, where BPHPM

2n denotes the bit
pigeonhole principle stating that there are M distinct n-bit strings s1, . . . , sM , every string
si for i ∈ [M] is partitioned into k almost equal sequential parts and the jth part of every
string is written on the forehead of the jth party. In particular, the latter result implies that
the bit pigeonhole principle is hard for tree-like Th(k), so it is the first natural hard instance.

1.2 Search problem ⊕kSearch (φ)
To achieve our results we use the parity gadget, one of the simplest and the most natural
gadgets. We then show how to get rid of this gadget using either properties of a proof system
or properties of a family of formulas.

For an unsatisfiable CNF formula φ we define a k-party communication problem
⊕kSearch (φ) (usually denoted as Search (φ) ◦ ⊕k) as follows: for every i ∈ [k], the ith
party has an assignment αi ∈ Fn

2 written on the forehead, where n is the number of variables
of φ. They are to find a clause of φ that is falsified by the assignment

∑k
i=1 αi.

It is easy to see that the communication complexity of Search (φ ◦ ⊕k) is at least the
communication complexity of ⊕kSearch (φ), where ⊕k is the parity of the sum of k bits.
However, the formula φ ◦ ⊕k may have exponential size if φ contains a wide clause.

In Section 3 we observe the following lemma.

▶ Lemma 1. If an unsatisfiable CNF-formula φ has a tree-like Res (PCd) refutation of size
S, then there exists a bounded-error randomized communication protocol for ⊕d+1Search (φ)
that transmits O(d logS) bits.

1.3 Perfect matching principle in tree-like Res(⊕)
One of the most important open questions in proof complexity is obtaining a superpolynomial
lower bound for bounded-depth Frege with parity gates. Res(⊕) is a special case of this system
and there are still no known superpolynomial lower bounds for its dag-like version. The first
exponential lower bounds for tree-like Res(⊕) were proved by Itsykson and Sokolov [14, 15].
Itsykson and Sokolov have shown a lower bound 2Ω(n) on size of tree-like Res(⊕) refutations
of Pigeonhole Principle (PHPm

n) for arbitrary m > n using generalized Prover-Delayer games.
Oparin in [26] has shown a tight upper bound 2O(n) for such refutations. A lower bound
2Ω(n) for functional pigeonhole principle (FPHPm

n) for m = O(n) can be shown using a
connection between the size of tree-like Res(⊕) refutations and the degree of polynomial
calculus refutations (over F2), observed by Garlik and Kolodziejczyk (see Section 7 of [8];
this method is described in details in [27]; an alternative explanation can be found in [19]).
It is also worth mentioning the result of Krajicek (Theorem 18.6.4 from [23]) that formulas
encoding Hall’s theorem about matchings in bipartite graphs require exponential-size tree-like
Res(⊕) refutations.

D. Itsykson and A. Riazanov 3:5

Let PMG for a graph G encode the existence of a perfect matching in G. Itsykson and
Sokolov [14, 15] have shown that for graphs with an odd number of vertices, PMG has a
polynomial-size tree-like Res(⊕) refutation. The question about graphs with an even number
of vertices remained open; we resolve it in this paper.

Let Km,n be the complete bipartite graphs with parts of size m and n respectively. In
Section 4 we prove the following theorem.

▶ Theorem 2. The size of a tree-like Res(⊕) refutation of PMKn+2,n is 2Ω(n).

Notice that since PHPm
n is a weakening of PMKm,n , Oparin’s upper bound for PHPm

n [26]
implies that the obtained lower bound is tight up to a constant in the exponent.

The formula PMKn+2,n (however, in a different encoding) has a constant-degree derivation
in Nullstellensatz over F2 [2]. PMKn+2,n

may be refuted as follows: compute the number of
edges in the matching modulo 4 in two different ways, on the one hand it is n mod 4 and on
the other hand it is (n+ 2) mod 4. This yields a low-degree Nullstellensatz refutation since
the function MOD4 has a representation as a polynomial of degree 3, see Lemma 8.7 of [2]
for details. Thus, Theorem 2 can not be proved via the same reduction to the Polynomial
Calculus degree as it can be done for FPHPm

n .
Since PMKn+2,n has a tree-like Cutting Planes refutation of polynomial size and with

polynomial coefficients, the problem Search
(
PMKn+2,n

)
has communication complexity

O(log n) for any partition and thus can not yield a superpolynomial lower bound on size
of tree-like Res(⊕) refutations. Therefore the methods previously used to establish tree-like
Res(⊕) lower bounds fail for PMKn+2,n

.
To establish this lower bound we employ an idea similar to the one used in [30] to show

monotone circuit depth lower bound for matching.

Proof sketch of Theorem 2. By Lemma 1 it is sufficient to show a lower bound Ω(n) on the
two-party bounded-error randomized communication complexity of ⊕2Search

(
PMKn+2,n

)
.

We show this lower bound via probabilistic reduction from the set disjointness problem.
Recall that in the set disjointness problem DISJn Alice and Bob have strings x, y ∈ {0, 1}n

respectively and they want to verify that there are no i ∈ [n] such that xi = yi = 1. It is
known that two-party bounded-error randomized communication complexity of DISJn is
Ω(n) [16]. Let G0(V,E1) and G1(V,E1) be graphs on the same set of vertices V ; we define
G0 ⊕G1 as a graph on V with edges E1 ⊕ E2, where ⊕ denotes the symmetric difference.

We now describe the reduction from DISJn to ⊕2Search
(
PMKn+2,n

)
. Before starting

the communication, each of the parties constructs two graphs: Alice constructs A(0) and
A(1), Bob constructs B(0) and B(1) that are shown in Figure 1. These four graphs are
bipartite graphs on 8 vertices, 4 vertices in each part and the parts coincide for all the
graphs. These graphs have the following property: for a, b ∈ {0, 1} the graph A(a)⊕ B(b)
is a perfect matching iff at least one of a and b is zero. The graph A(1) ⊕ B(1) has two
connected components, the first component consists of a single vertex from the first part
connected with three vertices from the second part, the second connected component consists
of a single vertex from the second part connected with three vertices from the first part.

For each i ∈ [n] Alice and Bob create new 8 vertices; Alice builds the graph A(xi) on these
vertices and Bob builds the graph B(yi) on these vertices. Thus, Alice and Bob construct
two bipartite graphs GA and GB with 4n vertices in each part such that GA ⊕ GB is a
perfect matching iff DISJn(x, y) = 1. Additionally, Alice and Bob add three vertices to
the first part and one vertex to the second part of GA ⊕ GB connecting the latter with
the three vertices added to the first part. Let us denote the resulting graph by H. Let
H = HA ⊕HB, where HA is known to Alice and HB is known to Bob. An example of the

CCC 2021

3:6 Proof Complexity of Natural Formulas via Communication Arguments

A(0)

A(1)

B(0) B(1)

Figure 1 The graphs A(0), A(1),
B(0), and B(1) and their pairwise
symmetric differences. Only A(1) ⊕
B(1) is not a matching.

Alice

Bob

1 1 0

0 1 1

H

HA

HB

Figure 2 The construction of the graphs HA, HB and H

for x = (0, 1, 1); y = (1, 1, 0).

resulting graphs is shown in Figure 2. Alice and Bob shuffle the vertices in each part of
their graphs according to a permutation generated using public random bits and get graphs
H ′A and H ′B . As a result, in the shuffled graph H ′ = H ′A ⊕H ′B the violation of the perfect
matching principle artificially added by Alice and Bob is indistinguishable from a violation
that appears because of DISJn(x, y) = 0. After that Alice and Bob run the communication
protocol for ⊕2Search

(
PMK4n+3,4n+1

)
. If the protocol returns a clause corresponding to

the artificially added contradiction, Alice and Bob return 1; otherwise, they return 0. By
repeating the whole protocol multiple times one can reduce the error probability. ◀

1.4 Bit pigeonhole principle
1.4.1 Bit pigeonhole principle with ⊕-gadget
In Section 5 we apply our lower bound technique for k-party communication in the number-
on-forehead model. We consider the bit pigeonhole principle BPHPm

2ℓ that encodes in CNF
that there are m pairwise distinct strings from {0, 1}ℓ. This formula is unsatisfiable for
m > 2ℓ.

▶ Theorem 3. Let ℓ and k be natural numbers such that 2 ≤ k ≤ ℓ − 7. Then the
randomized communication complexity of ⊕kSearch

(
BPHP2ℓ+2k

2ℓ

)
in the k-party NOF model

is Ω
(

2ℓ/2

k23k/2

)
. For k = 2 the stronger bound Ω

(
2ℓ
)

holds.

Proof idea. The proof follows the same plan as the communication complexity lower bound
in Theorem 2. In Subsection 5.1 we consider a decision problem Distinctk,ℓ that is similar to
the search problem ⊕kSearch

(
BPHP2ℓ

2ℓ

)
. Let each of k parties have a 2ℓ × ℓ matrix over F2

on the forehead. The goal is to determine whether the rows of the sum of these matrices are
distinct. Recall that the unique disjointness UDISJk,n is the promise version of the k-party
set disjointness: the ith of k parties has a string x(i) from {0, 1}n on the forehead, they are
to verify that there is no j ∈ [n] such that x(i)

j = 1 for all i ∈ [k] under the promise that there
is at most one such index j. We describe a randomized reduction from UDISJk,2ℓ−k+1 to
⊕kSearch

(
BPHP2ℓ

2ℓ

)
and then use the known lower bound on the communication complexity

D. Itsykson and A. Riazanov 3:7

of the former problem [32]. First, we reduce UDISJk,2ℓ−k to the problem Distinctk,ℓ: the
ith of the parties of the UDISJ protocol generates a matrix Di of size 2ℓ × ℓ such that the
matrix

∑k
i=1 Di contains a pair of equal rows iff UDISJk,2ℓ−k evaluates to 0. Moreover, the

matrix
∑k

i=1 Di has additional properties:
each of the 2ℓ−k bits of UDISJ correspond to a block of 2k rows of the matrix

∑k
i=1 Di

such that any two rows from different blocks are distinct;
if the common 1-bit of the inputs of UDISJ has the index j ∈ [2ℓ−k], then the block
corresponding to the bit j contains each of its rows exactly twice (all the other blocks
have distinct rows).

In Subsections 5.2 and 5.3 we adapt this reduction for ⊕kSearch
(

BPHP2ℓ+2k

2ℓ

)
. We add an

additional (fake) block to each of the matrices Di such that the matrix
∑k

i=1 Di has the
following property: every row of this new block appears in it exactly twice and does not
appear anywhere else. Using randomization we make sure that the new artificially added
row collisions from the fake block are indistinguishable from the collisions coming from the
initial (genuine) blocks corresponding to the bits of UDISJ. Finally, if UDISJ evaluates to 1
then all the collisions are artificially added; if UDISJ evaluates to 0, then with a significant
probability the protocol solving ⊕kSearch

(
BPHP2ℓ+2k

2ℓ

)
finds a pair of equal rows coming

from a genuine block. ◀

Theorem 3 and Lemma 1 immediately imply the lower bound exp
(

Ω
(

2ℓ/2

k23k/2

))
on the

size of tree-like Res (PCk−1) refutations of BPHP2ℓ+2k

2ℓ (for k = 2 the stronger lower bound
Ω(2ℓ) holds).

1.4.2 Bit pigeonhole without ⊕-gadget
In Section 6 we present a pretty simple and nice reduction from ⊕kSearch (BPHPm

2n) to
Search

(
BPHPm·2(k−1)n

2kn

)
. Here we describe this reduction for k = 2. For a larger k the

proof is essentially the same. Let us reduce ⊕2Search (BPHPm
2n) to Search

(
BPHP2n·m

22n

)
.

We denote the input of Alice in ⊕2Search (BPHPm
2n) as a1, . . . , am ∈ Fn

2 and the input of
Bob as b1, . . . , bm ∈ Fn

2 . Their goal is to find a clause of BPHPm
2n falsified by the assignment

a1 + b1, . . . , am + bm. Observe that given i ̸= j ∈ [m] such that ai + bi = aj + bj they can
find a falsified clause transmitting additional O(n) bits. For each i ∈ [m], Alice and Bob
generate 2n strings from Fn

2 : Alice generates ai + z for each z ∈ Fn
2 and Bob generates bi + z

for each z ∈ Fn
2 . For each pair of strings ai + z and bi + z their sum coincides with ai + bi.

Alice and Bob run the protocol for Search
(

BPHP2n·m
22n

)
on an input where each line has the

form (ai + z, bi + z) for each i ∈ [m] and z ∈ Fn
2 . Given a falsified clause of BPHP2n·m

22n on
this input they determine the lines (ai + z, bi + z) and (aj + z′, bj + z′) that are equal to each
other. Then ai + bi = aj + bj and i ̸= j since each pair (i, z) ∈ [m]× Fn

2 is used by Alice and
Bob exactly once.

Together with Theorem 3 this yields the following theorem.
▶ Theorem 4. For n ≥ k(k + 7) the randomized k-party communication complexity of
Search

(
BPHP2n+2n+k−⌊n/k⌋

2n

)
is Ω

(1
k 2n/2k−3k/2), where every string of BPHP is partitioned

into k almost equal contiguous parts such that jth party has the jth part of every string on
its forehead. For k = 2 the bound can be improved up to Ω

(
2n/2).

In particular, Theorem 4 implies the lower bound exp
(
2Ω(n/k)) on the size of tree-like

Tcc(k, c) (and Th(k − 1)) refutations of BPHP2n+2n+k−⌊n/k⌋

2n .

CCC 2021

3:8 Proof Complexity of Natural Formulas via Communication Arguments

Hrubes and Pudlák [10] proved a lower bound on the complexity of dag-like two-party
real communication protocols for Search (BPHPm

2ℓ) with the same variable partition, where
m > 2ℓ is arbitrary. Formally their and our results are incomparable. On the one hand, the
result of Hrubes and Pudlák holds for dag-like protocols and arbitrary weak bit pigeonhole
principle, on the other hand, we use a stronger (randomized) model and the statement holds
for the multiparty communication as well.

In addition, we show an upper bound on the communication complexity of
Search (BPHPm

2ℓ). The gap between the upper and the lower bound for k > 2 is quad-
ratic. For k = 2 the bounds coincide up to a logarithmic factor.

▶ Proposition 5. For M > 2n and k ∈ {2, 3, . . . , n} there exists a deterministic NOF
communication protocol for Search

(
BPHPM

2n

)
with variables partitioned as in Theorem 4

transmitting O
(
2⌈n/k⌉ · logM

)
bits.

Our lower bound on the k-party communication complexity of Search (BPHPm
n) is non-

trivial for k ≤ log1−ε n for ε > 0. This lower bound implies a superpolynomial lower bound
on the size of tree-like Th(k)-refutations of BPHPm

n for such k. We show that there exists a
short tree-like Th(log n) refutation:

▶ Proposition 6. For m > 2ℓ there exists a tree-like Th(ℓ) refutation of BPHPm
2ℓ of size

O(m2 · 2ℓ).

Proposition 6 and the result of Hrubes and Pudlák [10] imply that tree-like Th(log n), where
n is the number of variables of the refuted formula can not be simulated by dag-like Th(1).
Theorem 4 and Proposition 6 imply that the bit pigeonhole principle BPHP2ℓ+1

2ℓ separates 2

tree-like Th(log n) from tree-like Th(k) for k ≤ log1−ε n.

1.5 Open questions

1. Is it possible to prove lower bounds on the randomized communication complexity of
⊕2Search (PMG) for constant-degree graphs G? An Ω(n) lower bound would improve the
best known Ω(n/ log n) lower bound on the two-party communication complexity of a
Search (φ) problem, where n is the number of variables.

2. Is it true that our results extend to Res (PCd) over arbitrary finite fields?
3. Is our lower bound for tree-like Th(k) refutation of BPHPm

2n tight? Such upper bound
would imply a superpolynomial separation between tree-like Th(k) and dag-like cutting
planes due to the lower bound by [10] as well as separations between tree-like Th(k) for
different values of k.

4. Can we show a lower bound on the communication complexity of the search problem for
weaker versions of BPHPM

2n , for example with M = 2n+1?

2 The formula BPHP2ℓ+1
2ℓ uses n = (2ℓ + 1)ℓ variables. By Proposition 6, there is a tree-like Th(log n)

refutation of size poly(n). By Theorem 4, the size of any tree-like Th(log1−ϵ n) refutation is at least
exp(exp(Ω(logϵ n))); the latter grows superpolynomially in n.

D. Itsykson and A. Riazanov 3:9

2 Preliminaries

Notations

We use the following notation: [n] = {1, 2, . . . , n}. Let Sn×m denote the set of matrices
of size n ×m with elements from S. We denote by 0n×m the zero matrix of size n ×m
and by 1n×m the matrix of the same size containing only ones. For square matrices
A1, . . . , Ak we denote a diagonal block matrix with blocks A1, . . . , Ak by diag(A1, . . . , Ak).
For x ∈ {0, 1, . . . , 2k−1} we denote a vector (a0, . . . , ak−1) ∈ {0, 1}k such that x =

∑k−1
i=0 ai2i

by bink(x), i.e. (a0, . . . , ak−1) is the reversed binary representation of x. For vectors
v1, . . . , vn from a vector space over a field F we denote their linear span by Span(v1, . . . , vn).We
use coordinate-wise comparison of strings from {0, 1}n, i.e. for x, y ∈ {0, 1}n we write x ≤ y
iff xi ≤ yi for each i ∈ [n]. We denote the set of variables of a CNF-formula φ by Vars(φ).

Communication complexity

We briefly recall some notions of communication complexity. For formal definition and details
we refer to [24].

In the classic two-party randomized communication protocol with public randomness,
Alice and Bob cooperate to compute a relation Q ⊆ X × Y × Z: Alice has an input x ∈ X
and Bob has an input y ∈ Y , their goal is to compute z ∈ Z such that (x, y, z) ∈ Q. We
assume that Alice and Bob have access to an arbitrary large random string of bits that
is common for Alice and Bob. Let for every x ∈ X and y ∈ Y , Rδ

pub(Q, x, y) denote the
minimal number of bits Alice and Bob need to transmit between each other so they both
find a z ∈ Z such that (x, y, z) ∈ Q with probability at least 1− δ taken over the values of
the common random string. And Rδ

pub(Q) := maxx∈X,y∈Y R
δ
pub(Q, x, y).

We also consider multiparty communication protocols in the number on forehead (NOF)
model that extends two-party protocols for an arbitrary number of parties. In this setting
k parties cooperate to compute a relation Q ⊆ X1 × X2 × . . . × Xk × Y . The ith party
has xi ∈ Xi written on their forehead so they know all xj for j ̸= i, their goal is to
compute y ∈ Y such that (x1, x2, . . . , xk, y) ∈ Q. The parties communicate by taking turns
broadcasting messages to all other parties until all parties learn the value of y ∈ Y such that
(x1, . . . , xk, y) ∈ Q. In this model we also assume that all parties have access to a common
random string of bits. Let Rδ

pub(Q, x1, . . . , xk) for x1 ∈ X1, . . . , xk ∈ Xk denote the minimal
total number of bits transmitted until each party learns y ∈ Y such that (x1, . . . , xk, y) ∈ Q
with probability at least 1− δ taken over the set of values of the random string of bits. Also,
let Rδ

pub(Q) := maxx1∈X1,...,xk∈Xk
Rδ

pub(Q, x1, . . . , xk).
Let f be a function from X1 × X2 × . . . × Xk → Y . Then Rδ

pub(f) denotes Rδ
pub(Qf),

where Qf = {(x1, x2, . . . , xk, y) | f(x1, . . . , xk) = y}.
We prove communication complexity lower bounds by reduction from different versions

of the set disjointness problem. DISJk,n is a function {0, 1}kn → {0, 1} such that for every

x1, . . . , xk ∈ {0, 1}n the following holds: DISJk,n(x1, . . . , xk) =
∧n

j=1 ¬

(
k∧

i=1
(xi)j

)
︸ ︷︷ ︸

NAND

.

Let us define the communication promise problem UDISJk,n in the k-party NOF model.
For each i ∈ [k] the string xi is written on the forehead of the ith party, it is guaranteed
that there exists at most one index j ∈ [n] such that for every i ∈ [k], (xi)j = 1. The goal is
to compute DISJk,n(x1, . . . , xk).

CCC 2021

3:10 Proof Complexity of Natural Formulas via Communication Arguments

▶ Theorem 7 ([31, 32]). R1/3
pub(UDISJk,n) = Ω

(√
n

2kk

)
.

For k = 2 we omit the first index: DISJn = DISJ2,n; in this case Theorem 7 may be
improved.

▶ Theorem 8 ([16]). R1/3
pub(DISJn) ≥ R1/3

pub(UDISJ2,n) = Ω(n).

Proof complexity

We consider refutational proof systems for the language of unsatisfiable CNF-formulas
UNSAT. A refutation of φ ∈ UNSAT in a proof system Π is a sequence of Boolean functions
(proof lines) such that each proof line either represents a clause of φ or derived from previous
proof lines in the sequence via some sound inference rules. The last line of the proof is
identically zero function. A proof system Π is defined by a representation of proof lines and
by a set of admissible inference rules. It is required that the inference rules are polynomially
verifiable i.e. there exists an algorithm that checks whether it is legitimate to derive a line
L0 from the lines L1, . . . , Lk.

For example, in the Resolution proof lines are represented by clauses and the only inference
rule is the resolution rule that allows deriving a clause A ∨ B from the clauses A ∨ x and
A ∨ ¬x.

The size of a proof is the total size of all representations of proof lines in the proof. The
length of a proof is the number of proof lines in it.

A tree-like proof is such a proof that every its line can be used as a premise of a rule at
most once. For each proof system, we can also consider its tree-like version where all proofs
are constrained to be tree-like.

We also consider semantic refutational proof systems, where we drop the requirement
for polynomial verification of inference rules i.e. we allow to derive any sound consequence
from the premises. For such systems it is crucial to bound fan-in i.e. the number of the
premises from which each proof line can be derived, otherwise, it would be possible to
derive a contradiction from the clauses of the initial formula immediately. For example, it
is well-known that Resolution is polynomially equivalent to a semantic proof system with
fan-in 2 operating with clauses.

A lower bound on the proof size in a semantic proof system implies a lower bound on the
proof size in its syntactic counterpart because a syntactic proof is always a semantic proof
that operates with the same class of proof lines.

We define semantic Res(⊕) as a semantic proof system with fan-in 2 that operates with
linear clauses. A linear clause is a disjunction of linear equations over F2:

∨k
i=1(fi = ai), where

fi is a linear form over F2 and ai ∈ F2. Notice that an ordinary clause
∨

i∈P xi ∨
∨

j∈N ¬xj

can be represented by the linear clause
∨

i∈P (xi = 1) ∨
∨

j∈N (xj = 0). For definition of
syntactic version of Res(⊕) we refer to [15]; it is also proved there that syntactic and semantic
Res(⊕) are polynomially equivalent.

We define semantic Res (PCd) as a semantic proof system with fan-in 2 that operates with
disjunctions of equations of type f = 0, where f is a degree-d polynomial over F2. Notice
that semantic Res (PC1) is exactly semantic Res(⊕). For the definition of the syntactic
version of Res (PCd) we refer to [19].

Following [1] we define Th(k) as a semantic proof system with fan-in 2 that operates
with polynomial inequalities g ≥ 0, where g is a polynomial of degree at most k with integer
coefficients and Boolean variables. A clause

∨
i∈P xi ∨

∨
j∈N ¬xj can be represented by an

inequality
∑

i∈P xi +
∑

j∈N (1− xj)− 1 ≥ 0.

D. Itsykson and A. Riazanov 3:11

Proof complexity and communication complexity

For an unsatisfiable CNF-formula φ we define the communication problem Search (φ).
Search (φ) is the following problem: given an assignment of the variables of the unsat-
isfiable CNF φ, find a clause that is falsified by this assignment. It is assumed that variables
of φ are somehow partitioned between the parties.

Following the paper [9] we consider a semantic proof system Tcc(k, c) that models many
interesting syntactic and semantic proof systems. The proof lines in Tcc(k, c) can be arbitrary
Boolean functions having the following property: for every proof line C and every partition
of variables of C between k parties, the NOF k-party randomized communication complexity
of C is at most c w.r.t. this partition. We also define a semantic proof system Tcc

os(k, c) that
is a subsystem of Tcc(k, c) with the restriction that a communication protocol for proof lines
must have a one-sided error: if the value of a proof line is zero, then the protocol should
return zero with probability 1.

For example, Tcc(2, 2) simulates Resolution; Tcc(2,O(1)) simulates Res(⊕) [22, 15];
Tcc(k,O(k3 log2 n)), where n is the number of variables in a refuted formula, simulates
Th(k − 1) [9]. In Section 3 we show that Tcc

os(d+ 1,O(1)) simulates Res (PCd) .
The following connection between the communication complexity of Search (φ) and

tree-like proof complexity of φ is known.

▶ Lemma 9 ([1, 9]). If a CNF formula φ has a tree-like Tcc(k, c) refutation of length ℓ

then, over any k-partition of the variables, there is a randomized bounded-error k-party NOF
protocol for Search (φ) with communication cost O(c · log ℓ log log ℓ).

In Section 3 we show that for Tcc
os(k, c) the bound can be improved, see Remark 14.

Basic formulas

A CNF formula PHPm
n encodes the pigeonhole principle; PHPm

n states that it is possible to
put m pigeons into n holes such that every pigeon flies to at least one hole and at most one
pigeon flies to each hole. PHPm

n depends on variables pi,j for i ∈ [m] and j ∈ [n] and pi,j = 1
iff the i-th pigeon flies to the j-th hole. PHPm

n is the conjunction of m(m−1)n
2 hole axioms and

m pigeons axioms. For every i ∈ [m] PHPm
n contains a pigeon axiom (pi,1 ∨ pi,1 ∨ · · · ∨ pi,n).

And for every j ∈ [n] and every k ̸= ℓ ∈ [n], PHPm
n contains a hole axiom (¬pk,j ∨ ¬pℓ,j).

PHPm
n is unsatisfiable iff m > n.

For an undirected graph G(V,E), the formula PMG encodes in CNF that G has a perfect
matching. The formula PMG has |E| variables, each of them corresponds to an edge of G,
xe is the variable corresponding to e ∈ E.

PMG =
∧

v∈V

(∨
e is incident to v

xe

)
∧

∧
e1 ̸=e2 are incident to v

(¬xe1 ∨ ¬xe2)

 .

PMG is unsatisfiable iff G does not have a perfect matching.

▶ Theorem 10 ([26]). Let G be a graph with n vertices, which has no perfect matching. Then
the formula PMG has a tree-like Res(⊕) refutation of size 2O(n).

▶ Proposition 11 ([14]). Let G be a graph with an odd number of vertices. Then the formula
PMG has a tree-like Res(⊕) refutation of size poly(n).

The binary pigeonhole principle BPHPm
2ℓ states that there are m different ℓ-bit binary

strings s1, s2, . . . , sm. BPHPm
2ℓ has mℓ variables corresponding to the bits of si for i ∈ [m].

Then BPHPm
2ℓ =

∧
i̸=j∈[m] si ̸= sj , where the predicate si ̸= sj is encoded as a 2ℓ-CNF formula

CCC 2021

3:12 Proof Complexity of Natural Formulas via Communication Arguments

of size 2ℓ as follows:
∧

α∈{0,1}ℓ(si ≠ α ∨ sj ̸= α); notice that the predicate (si ̸= α ∨ sj ̸= α)
can be represented by a clause with 2ℓ literals. If m > 2ℓ, then the formula BPHPm

2ℓ is
unsatisfiable.

Let φ be a CNF formula with n variables, and g : {0, 1}k → {0, 1} be a Boolean function.
Then φ ◦ g denotes a CNF formula on kn variables that represents φ(g(−→x1), g(−→x2), . . . , g(−→xn)),
where −→xi denotes a vector of k new variables. φ◦g is constructed by applying the substitution
to every clause C of φ and converting the resulting function C ◦ g to CNF in some fixed way.

3 Communication protocols from tree-like Res (PCd) proofs

Let φ be an unsatisfiable CNF formula with n variables. Let us define the communication
problem ⊕kSearch (φ) with k parties as follows. Assume that the ith party has an assignment
αi ∈ {0, 1}n written on the forehead. They aim to find a clause of φ falsified by the assignment∑k

i=1 αi (all sums of boolean vectors are computed modulo 2).

▶ Lemma 1. Let φ be an unsatisfiable CNF formula. If there exists a tree-like Res (PCd)
proof of φ of length m, then R

1/3
pub(⊕d+1Search (φ)) = O(d · logm).

A slightly weaker version of the following lemma was implicitly proved in [15]:

▶ Lemma 12 (see proof of Theorem 3.11 from [15]). Let T be a binary tree with m vertices
such that the ith vertex is labeled with ai ∈ {0, 1} with the hereditary property: for each
inner vertex i with direct descendants c1 and c2, if ai = 1, then ac1 = 1 or ac2 = 1. We also
assume that if r is the root of T , then ar = 1. Assume that we have a one-sided bounded
error oracle access to ai i.e. if we request a value of ai and ai = 0 we get 1 with probability
at most 1

2 and 0 with probability at least 1
2 ; if ai = 1 we get 1 with probability 1. Then there

exists an algorithm A that with probability at least 2
3 returns a leaf ℓ of T with aℓ = 1 and

makes O(logm) oracle queries to a1, . . . , am.

Proof. See Appendix A. ◀

Proof of Lemma 1. Let F1, . . . , Fm be a tree-like Res (PCd)-refutation of φ with the under-
lying tree T , where vertices of T are identified with [m]. Then the leaves of T correspond to
the clauses of φ and m is the root of T .

Let α1, . . . , αd+1 be the assignments written on the foreheads of d + 1 parties. Let
α =

∑d+1
i=1 αi. Let ai = 1 iff α falsifies Fi for i ∈ [m]. Then am = 1 since Fm is identically

false. For any inner node v of T , if av = 1 then for the direct descendants of v, c1 and c2
either ac1 = 1 or ac2 = 1. In the next paragraphs we show that for any i ∈ [m] there exists a
NOF (d+ 1)-party protocol that computes ai given that for each j ∈ [d+ 1] the jth party
has αj written on their forehead such that

the protocol transmits O(d) bits;
the protocol has one-sided bounded error: if ai = 1 then the protocol returns 1 with
probability 1 and if ai = 0 the protocol returns 0 with probability at least 1

2 .
Then we use this protocol to compute ai as an oracle in the algorithm given by Lemma 12
and thus show that there is a NOF (d+ 1)-party protocol computing ⊕d+1Search (φ) with
communication cost O(d logm).

Now we show that for every ℓ ∈ [m], Fℓ(α) can be computed by a (d + 1)-party NOF
protocol with one-sided error using O(d) bits of communication. Let Fℓ =

∨t
j=1(fj = 1),

where f1, . . . , ft are polynomials over F2 of degree at most d. Let z1, . . . , zn be the variables
of φ. Let us introduce new variables y1,1, . . . , y1,n, . . . , yd+1,1, . . . , yd+1,n and assume that for

D. Itsykson and A. Riazanov 3:13

each i ∈ [d+1] the ith party has the value of variables yi,1, yi,2, . . . , yi,n written on the forehead
or in other words αi assigns values of yi,1, yi,2, . . . , yi,n. Let f̄j denote fj after substitution
zℓ := y1,ℓ + y2,ℓ + . . .+ yd+1,ℓ for ℓ ∈ [n]; j ∈ [t]. Since for all j ∈ [t], deg f̄j = deg fj ≤ d, we
can represent f̄j = f̄

(1)
j +. . .+f̄ (d+1)

j such that f̄ (s)
j does not contain variables ys,1, . . . , ys,n for

each s ∈ [d+ 1]. Then the ith party can compute f̄ (i)
1 (α1, . . . , αd+1), . . . , f̄ (i)

t (α1, . . . , αd+1).
Notice that Fℓ = ¬

(∧t
j=1(fj = 0)

)
.

The final step of the protocol exploits the idea used to construct a short randomized com-
munication protocol for equality. Take a random uniformly distributed vector (e1, . . . , et) ∈ Ft

2.

Then all parties compute
∑t

j=1 ejfj(α) =
∑d+1

i=1

t∑
j=1

ej f̄
(i)
j︸ ︷︷ ︸

ith party

with O(d) bits of communication

and the protocol halts.
To bound the error probability we use the following well-known statement:

▶ Proposition 13 (Random subsum principle). For any x ∈ Fk
2 \ {0k},

Pr
y←U(Fk

2)

[
k∑

i=1
yixi = 1

]
= 1

2 .

If Fℓ(α) = 1 then Pr
[∑t

j=1 ejfj(α) ̸= 0
]

= 1
2 by the random subsum principle. If

Fℓ(α) = 0, then Pr
[∑t

j=1 ejfj(α) = 0
]

= 1. ◀

▶ Remark 14. Similarly to the proof of Lemma 1 one can prove that if an unsatisfiable CNF
formula φ has a tree-like Tcc

os(k, c) refutation of length ℓ, then for any k-partition of the
variables, there is a randomized bounded-error k-party NOF protocol for Search (φ) with
communication cost O(c log ℓ). Thus, the bound from Lemma 9 can be slightly improved in
the case of one-sided error.

4 Perfect matching

In this section we prove the following theorem:

▶ Theorem 2. The size of any tree-like semantic Res(⊕) refutation of the formula PMKn+2,n

is 2Ω(n).

By Lemma 1, to prove Theorem 2 it is sufficient to show that
R

1/3
pub

(
⊕2Search

(
PMKn+2,n

))
= Ω(n).

Consider the communication problem ⊕PMm
n that is defined as follows: Alice and Bob

have matrices X and Y over F2 respectively, each of the matrices has size m × n, where
m ̸= n. Their goal is to find an all-zero row or column or two 1-cells in the same row or
column in the matrix X + Y .

▶ Proposition 15. R1/3
pub

(
⊕2Search

(
PMKn+2,n

))
≥ R1/3

pub(⊕PMn+2
n).

Proof. A Boolean matrix of size (n+ 2)× n naturally corresponds to a subset of edges of
Kn+2,n. A falsified clause encoding that a vertex must be covered by a matching corresponds
to an all-zero row or column of the matrix; a falsified clause, encoding that a vertex can not
be covered by a matching twice, corresponds to two ones in the same row or column. ◀

Theorem 2 follows from Proposition 15 and the following theorem.

CCC 2021

3:14 Proof Complexity of Natural Formulas via Communication Arguments

▶ Theorem 16. R1/3
pub(⊕PMn+2

n) = Ω(n).

Proof. We assume that n = 4m+ 1, where m is a non-negative integer. If the theorem is
true for all n with the residue 1 modulo 4, then it also holds for all other n. Indeed, the
protocol for ⊕PMn+3

n+1 can be used for ⊕PMn+2
n by adding to Alice’s matrix an extra column

and a row with exactly one 1-cell on their intersection and to Bob’s matrix an extra column
and a row with all zeros.

Let P0 be a protocol for ⊕PMn+2
n transmitting at most k bits. We are going to ap-

ply P0(X,Y) only to the instances where the matrix X + Y does not contain all-zero
rows or columns. Thus, we assume that with probability at least 2/3 P0 returns a tuple
(r1, c1, r2, c2) ∈ ([n + 2] × [n])2 such that (X + Y)r1,c1 = (X + Y)r2,c2 = 1 and either{
r1 = r2

c1 ̸= c2
or
{
r1 ̸= r2

c1 = c2
. With O(1) bits of communication Alice and Bob can verify

whether the answer of P0 is correct and return ⊥ (failure) if it is not. Also, we can reduce the
failure probability by the repetition of the protocol. Let P be a protocol for ⊕PMn+2

n under
the promise that X + Y does not contain all-zero rows and columns that uses O(k) bits of
communication and returns a correct answer with probability at least 99

100 and ⊥ otherwise.
We are going to construct a protocol for DISJm transmitting O(k) bits, where m = n−1

4 .
Since by Theorem 8 any protocol for DISJm transmits Ω(m) bits, we conclude that k = Ω(m).
Let Alice’s input for DISJm be a1, . . . , am and Bob’s input be b1, . . . , bm.

▶ Lemma 17. There exist matrices A(0), A(1), B(0), B(1) ∈ F4×4
2 such that A(x) +B(y) is

a permutation matrix iff x ∧ y is 0 and

A(1) +B(1) =

0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 . (1)

Proof. We simply present matrices that satisfy the conditions:

A(0) =

0 1 1 0
1 1 0 0
1 0 1 0
0 0 0 0

 ; A(1) =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ;

B(0) =

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 ; B(1) =

0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 . ◀

Notice that Lemma 17 immediately allows to reduce DISJm to the problem of check-
ing whether the sum of Alices and Bobs matrices is a permutation matrix. In order to
achieve that, Alice builds a matrix A = diag(A(a1), . . . , A(am)), Bob builds a matrix
B = diag(B(b1), . . . , B(bm)). It is easy to see that A + B is a permutation matrix iff
DISJm(a, b) = 1.

D. Itsykson and A. Riazanov 3:15

Let us describe the reduction of DISJm to ⊕PMn+2
n . Alice and Bob first construct

matrices X0 and Y0 of the following form:

X0 =

A 0(n−1)×1

01×(n−1) 1
01×(n−1) 1
01×(n−1) 1

 ; Y0 =

B 0(n−1)×1

01×(n−1) 0
01×(n−1) 0
01×(n−1) 0

 ,

then

X0 + Y0 =

A+ B 0(n−1)×1

01×(n−1) 1
01×(n−1) 1
01×(n−1) 1

 ,

where A+B is a permutation matrix iff DISJm(a, b) = 1. Then if P(X0, Y0) returns two cells
that do not belong to the column n we may conclude that DISJm(a, b) = 0. If P(X0, Y0)
returns two cells from the nth column, then the value of DISJm(a, b) can not be uniquely
determined. Notice that for X0 and Y0 constructed as above the protocol always returning
(n+ 1, n, n+ 2, n) solves ⊕PMn+2

n .
If DISJm(a, b) = 0, then the matrix X0 +Y0 contains at least two columns with three ones

and these columns are indistinguishable from each over. To make use of that, we randomly
shuffle rows and columns.

We are going to construct a protocol T for DISJm as follows: Alice and Bob choose
permutations π ∈ Sn, τ ∈ Sn+2 and a matrix ∆ ∈ F(n+2)×n

2 uniformly at random. We
define matrices Xτ,π

0 and Y τ,π
0 from Fn+2×n

2 such that for each i ∈ [n + 2] and j ∈ [n],
(Xτ,π

0)i,j = (X0)τ(i),π(j) and (Y τ,π
0)i,j = (Y0)τ(i),π(j). Alice and Bob run the protocol P for

inputs X = Xτ,π
0 + ∆, Y = Y τ,π

0 + ∆. Notice that X + Y = Xτ,π
0 + Y τ,π

0 , thus X + Y can
be obtained from X0 + Y0 by shuffling rows and columns. If P(X,Y) returns two cells from
the column π(n), Alice and Bob return 1, if P(X,Y) returns two cells from other column or
row, Alice and Bob return 0. If P(X,Y) returns ⊥, then Alice and Bob return ⊥.

First notice that if DISJm(a, b) = 1, then T returns a correct answer or ⊥ with probability
1 (and the probability of ⊥ is at most 1

100), since in that case X + Y has exactly one column
with three 1-cells, each of the other columns and rows contains exactly one 1-cell. Let us fix
a, b ∈ {0, 1}m such that DISJm(a, b) = 0. We denote p := Pr[T (a, b) = 0], we will show that
p ≥ 99

200 . We can then increase this probability to 2/3 by repeating the protocol twice (if
T (a, b) returns 0 at least once, we return 0, if T (a, b) always return ⊥, we return ⊥, otherwise
we return 1).

Let us describe random bits used by the constructed protocol T . First, we use random
bits r to run the protocol P. Second, we use random bits to generate π, τ , and ∆. Since
DISJm(a, b) = 0, we can fix i ∈ [m] such that ai = bi = 1. In that case the submatrix of
X0 + Y0 formed by rows and columns with the indices 4(i− 1) + 1, 4(i− 1) + 2, 4(i− 1) +
3, 4(i− 1) + 4 coincides with the matrix (1). Let us denote by col(j) for j ∈ [n] the set of
all tuples (x, j, y, j) ∈ ([n+ 2]× [n])2.

p = Pr
π,τ,∆,r

[Pr(X,Y) ̸∈ col(π(n))]−
=:p⊥

Pr
π,τ,∆,r

[Pr(X,Y) = ⊥]

= 1− Pr
π,τ,∆,r

[Pr(X,Y) ∈ col(π(n))]− p⊥

= 1−
∑

π0,τ0

Pr
r,∆

[Pr(Xτ0,π0
0 + ∆, Y τ0,π0

0 + ∆) ∈ col(π0(n))] Pr
π,τ

[π = π0, τ = τ0]− p⊥

CCC 2021

3:16 Proof Complexity of Natural Formulas via Communication Arguments

Observe that for fixed π0 and τ0 the random variable (Xτ0,π0
0 +∆, Y τ0,π0

0 +∆) is uniformly
distributed over the pairs of matrices with the sum Xτ0,π0

0 + Y τ0,π0
0 . Let α ∈ Sn be the

transposition swapping n and 4(i − 1) + 1. Let β ∈ Sn+2 be the permutation swapping
n and 4(i − 1) + 2, n + 1 and 4(i − 1) + 3, n + 2 and 4(i − 1) + 3 (i.e. β is a product
of three transpositions). By the construction of α and β, (X0 + Y0) = (Xβ,α

0 + Y β,α
0),

thus (Xτ,π
0 + Y τ,π

0) = (Xτ◦β,π◦α
0 + Y τ◦β,π◦α

0) for every π, τ . Thus the random variable
(Xτ0◦β,π0◦α

0 + ∆, Y τ0◦β,π0◦α
0 + ∆) has the same distribution with (Xτ0,π0

0 + ∆, Y τ0,π0
0 + ∆),

thus we can continue the sequence as follows:

p = 1 −
∑

π0,τ0

Pr
r,∆

[Pr(Xτ0◦β,π0◦α
0 + ∆, Y τ0◦β,π0◦α

0 + ∆) ∈ col(π0(n))] Pr
π,τ

[π = π0, τ = τ0] − p⊥

= 1 −
∑

π0,τ0

Pr
r,∆

[Pr(Xτ0,π0
0 + ∆, Y τ0,π0

0 + ∆) ∈ col(π0 ◦ α−1(n))] Pr
π,τ

[π = π0, τ = τ0] − p⊥

= 1 − Pr
π,τ,∆,r

[Pr(X, Y) ∈ col((π ◦ α−1)(n))] − p⊥

≥ 1 − Pr
π,τ,∆,r

[Pr(X, Y) ̸∈ col(π(n))] − p⊥ = 1 − p − p⊥

Thus, p ≥ 1− p− p⊥ and p ≥ 1−p⊥
2 = 99

200 . ◀

5 Bit pigeonhole principle with parity gadget

In this section, we prove the following theorem.

▶ Theorem 3. Let ℓ and k be natural numbers such that 2 ≤ k ≤ ℓ− 7. Then

R
1/3
pub

(
⊕kSearch

(
BPHP2ℓ+2k

2ℓ

))
= Ω

(
2ℓ/2

k23k/2

)
.

For k = 2 the stronger bound holds: R1/3
pub

(
⊕2Search

(
BPHP2ℓ+4

2ℓ

))
= Ω

(
2ℓ
)
.

We consider a combinatorial analogue of the communication problem ⊕kSearch (BPHPm
2ℓ).

Assume that each of k parties gets m binary strings from {0, 1}ℓ, where m > 2ℓ. The ith
party has numbers ai,1, . . . , ai,m ∈ {0, 1}ℓ on their forehead. Based on these strings we form
the following set of m vectors from Fℓ

2: x1, x2, . . . , xm, where xj =
∑k

i=1 ai,j . The goal of the
parties is to find a pair of different indices t, s ∈ [m] such that xt = xs. We denote this problem
by ⊕kBPHPm

2ℓ . It is straightforward that R1/3
pub (⊕kSearch (BPHPm

2ℓ)) ≥ R
1/3
pub (⊕kBPHPm

2ℓ),
hence it is sufficient to prove a lower bound on R

1/3
pub (⊕kBPHPm

2ℓ).

▶ Theorem 18. Let ℓ and k be natural numbers such that 2 ≤ k ≤ ℓ− 7. Then

R
1/3
pub

(
⊕kBPHP2ℓ+2k

2ℓ

)
= Ω

(
R

1/3
pub

(
UDISJk,2ℓ−k−1

)
− ℓ
)
.

▶ Corollary 19. R1/3
pub

(
⊕kBPHP2ℓ+2k

2ℓ

)
= Ω

(
2ℓ/2

k23k/2

)
. For k = 2 the stronger bound holds:

R
1/3
pub

(
⊕2BPHP2ℓ+4

2ℓ

)
= Ω

(
2ℓ
)
.

Proof of Corollary 19 . Follows from Theorem 18 and Theorem 7; for k = 2 we should apply
Theorem 8. ◀

Theorem 3 immediately follows from Corollary 19.

D. Itsykson and A. Riazanov 3:17

5.1 Warm-up example
We start with the simpler statement that, nonetheless, demonstrates the main idea of
Theorem 18. Consider the following communication problem Distinctk,ℓ: let each of k parties
have a matrix from F2ℓ×ℓ

2 on their forehead. The goal is to determine whether all rows of the
sum of all these matrices are distinct. A version of this problem without the xor-gadget is
referred to as Element Distinctness (ED) in the literature [25].

▶ Proposition 20. R1/3
pub (Distinctk,ℓ) ≥ R1/3

pub

(
UDISJk,2ℓ−k

)
.

Let Sk denote the set of matrices from {0, 1}2k×k with all distinct rows. Let Kk ∈
{0, 1}2k×k be a matrix such that its ith row equals bink(i−1− ((i−1) mod 2)), i.e. the rows
of Kk are bink(0), bink(0), bink(2), bink(2), . . . , bink(2k−1−2), bink(2k−1−2). Notice that
every row of Kk starts with zero and appears exactly twice.

In the proof of Proposition 20 as well as in the proof of Theorem 18 we will use the
following combinatorial lemma that we prove in Subsection 5.4.

▶ Lemma 21. There exist matrices A1(0), A1(1), . . . , Ak(0), Ak(1) ∈ F2k×k
2 such that∑k

i=1 Ai(1) = Kk and for all b1, b2 . . . , bk ∈ {0, 1}, if
∧k

i=1 bi = 0, then
∑k

i=1 Ai(bi) ∈ Sk.

Proof of Proposition 20. Let (xi,1, . . . , xi,2ℓ−k) be an input of the ith party of the problem
UDISJk,2ℓ−k . For all i ∈ [k] we construct a matrix Di of size 2ℓ× ℓ and put it on the forehead
of the ith party. Let Ai(b) for i ∈ [k], b ∈ {0, 1} be matrices of size 2k × k from Lemma 21.
Let Jt for t ∈ [1, . . . , 2ℓ−k] be a matrix of size 2k × (ℓ− k) such that all its rows are equal to
binℓ−k(t− 1).

Let us define

D1 :=

J1 A1(x1,1)
...

...
Jj A1(x1,j)
...

...
J2ℓ−k A1(x1,2ℓ−k)

 ; Di :=

02k×(ℓ−k) Ai(xi,1)
...

...
02k×(ℓ−k) Ai(xi,j)

...
...

02k×(ℓ−k) Ai(xi,2ℓ−k)

 for i ∈ {2, . . . , k}.

By Lemma 21, the matrix D1 +D2 + · · ·+Dk has the following property: for all j ∈ [2ℓ−k],
its submatrix formed by the rows with numbers from [2k · (j − 1) + 1, 2k · j] has two equal
rows if and only if x1,j = x2,j = . . . = xk,j = 1. Thus, the communication complexity of
UDISJk,2ℓ−k is at most the communication complexity of Distinctk,ℓ. ◀

5.2 Proof of Theorem 18
In order to prove Theorem 18 we modify the proof of Proposition 20 in order to reduce
UDISJk,2ℓ−k−1 to ⊕kBPHP2ℓ+2k

2ℓ by adding “fake” rows (such rows do not correspond to the
input of the unique disjointness) to matrices D1, D2, . . . , Dk. We also use some randomization
in order to hide “fake” rows among other rows.

Proof of Theorem 18. Let N > 2ℓ, consider a k-party communication problem ROW ⊕k

BPHPN
2ℓ , where ith party has a matrix Mi ∈ FN×ℓ

2 on their forehead and their goal is to
find the value of a row of M1 + · · · + Mk that appears in this matrix at least twice. The
difference with the problem ⊕kBPHPN

2ℓ is that we are looking for values of a repeated row
rather than numbers of equal rows.

CCC 2021

3:18 Proof Complexity of Natural Formulas via Communication Arguments

▷ Claim 22. If R1/3

(
⊕kBPHPN

2ℓ

)
≤ t, then there exists a communication protocol P for

ROW⊕k BPHPN
2ℓ using O(t+ ℓ) bits of communication such that P either returns the correct

answer or ⊥ (failure) and Pr[P(M1, . . . ,Mk) =⊥] ≤ 1
100 for all input matrices Mi, i ∈ [k].

Proof. P executes a randomized protocol for ⊕kBPHPN
2ℓ and verifies its answer by transferring

additional O(ℓ) bits. The probability of failure can be reduced by repetition. ◁

Let us describe a protocol for the problem UDISJk,2ℓ−k−1 that uses a protocol P for
ROW ⊕k BPHP2ℓ+2k

2ℓ from Claim 22.
Let x1, . . . , xk ∈ {0, 1}2ℓ−k−1 be inputs of the communication problem UDISJk,2ℓ−k−1.

Let xi,j denote the jth bit of xi for i ∈ [k], j ∈ [2ℓ−k − 1]. Let −→x = (x1, x2, . . . , xk).

Important matrices

Let γ be a bijection from [2ℓ−k − 1] ∪ {∗} to {0, 1}ℓ−k, we define k matrices D1(x1, γ) and
D2(x2), D3(x3), . . . , Dk(xk) of size (2ℓ + 2k)× ℓ similar to Proposition 20.

Let Ai(b) for i ∈ [k], b ∈ {0, 1} be matrices of size 2k × k from Lemma 21. Let for every
t ∈ {0, 1}ℓ−k, Jt be a matrix of size 2k × (ℓ− k) such that all its rows are equal to t. Let W
be some fixed matrix from Sk.

We define

D1(x1, γ) :=

Jγ(1) A1(x1,1)
...

...
Jγ(j) A1(x1,j)

...
...

Jγ(2ℓ−k−1) A1(x1,2ℓ−k−1)
Jγ(∗) W

Jγ(∗) W

;

and for i ∈ [k] \ {1}

Di(xi) :=

02k×(ℓ−k) Ai(xi,1)
...

...
02k×(ℓ−k) Ai(xi,j)

...
...

02k×(ℓ−k) Ai(xi,2ℓ−k−1)
02k×(ℓ−k) 02k×k

02k×(ℓ−k) 02k×k

.

Notice that the submatrix of D1(x1, γ) formed by the last 2k+1 rows of the matrix
D1(x1, γ) contains every its row exactly two times.

We define H−→x (γ) := D1(x1, γ) +D2(x2) + · · ·+D(xk). By Lemma 21 the matrix H−→x (γ)
satisfies the following key property w.r.t. (γ,−→x) in the standard basis:

▶ Definition 23. Let M be a matrix from F(2k+2ℓ)×ℓ

2 , γ be a bijection from [2ℓ−k − 1] ∪ {∗}
to {0, 1}ℓ−k and e1, e2, . . . , eℓ be a basis in Fℓ.

We say that M satisfies the key property w.r.t (γ,−→x) in the basis (e1, e2, . . . , eℓ) if the
following properties hold:

D. Itsykson and A. Riazanov 3:19

If s is a row among the last 2k+1 rows of M , then
the first ℓ− k coordinates of s in the basis (e1, e2, . . . , eℓ) are γ(∗)1, . . . γ(∗)ℓ−k;
s appears in M exactly twice.

If s is a row of M among the rows with numbers [2k(i−1) + 1; 2ki] for i ∈ [2ℓ−k−1], then
the first ℓ− k coordinates of s in the basis (e1, e2, . . . , eℓ) are γ(i)1, . . . , γ(i)ℓ−k;
if
∧k

j=1 xi,j = 0, then s appears in M exactly once.
if
∧k

j=1 xi,j = 1, then s appears in M exactly twice and (ℓ− k + 1)th coordinate of s
in the basis (e1, e2, . . . , eℓ) is 0.

Consider an invertible matrix E ∈ Fℓ×ℓ
2 . Let e1, e2, . . . , eℓ be the rows of E. Since E

is invertible, e1, e2, . . . , eℓ form a basis. Let us define C−→x (γ,E) := H(−→x , γ)E. Rows of
C−→x (γ,E) can be viewed as vectors with coordinates in the basis e1, e2, . . . , eℓ corresponding
to the rows of H(−→x , γ). Hence, C−→x (γ,E) satisfies the key property w.r.t. (γ,−→x) in the basis
(e1, e2, . . . , eℓ).

For a bijection γ from [2ℓ−k − 1]∪ {∗} to {0, 1}ℓ−k and an invertible matrix E ∈ Fℓ×ℓ
2 we

define a set Fake(γ,E) ⊆ Fℓ
2 as a set of the last 2k+1 rows of the matrix C−→x (γ,E). Notice

that by the construction this set does not depend on −→x . By the key property rows from
Fake(γ,E) appear exactly twice in C−→x (γ,E).

Random variables

Our protocol uses the following public random variables. In order to distinguish random
variables from their values, we highlight random variables in bold.

γγγ is a random bijection from [2ℓ−k − 1] ∪ {∗} to {0, 1}ℓ−k distributed uniformly among
all such bijections.
EEE is a random invertible matrix from Fℓ×ℓ

2 distributed uniformly among all such matrices.
πππ is a random permutation of the set [2ℓ + 2k] and Mπππ is a permutation matrix of size
(2ℓ + 2k)× (2ℓ + 2k) corresponding to the permutation πππ (i.e. (Mπππ)i,j = 1 ⇐⇒ πππ(i) = j).
∆∆∆1,∆∆∆2, . . . ,∆∆∆k are random matrices from F(2ℓ+2k)×ℓ

2 distributed uniformly on the set of
all matrices ∆1,∆2, . . . ,∆k such that ∆1 + ∆2 + . . .+ ∆k is the zero matrix.

We define random matrices PPP 1,PPP 2, . . . ,PPP k as follows: PPP i = Mπππ ·Di(xi) ·EEE + ∆∆∆i for i ≥ 2
and PPP 1 = Mπππ ·D1(x1, γγγ) ·EEE + ∆∆∆1.

The addition of ∆∆∆i makes PPP i indistinguishable from the random matrix for every i ∈ [k].∑k
i=1PPP i = MπππC−→x (γγγ,EEE) and this matrix is obtained from C−→x (γγγ,EEE) by the permutation

πππ applied to its rows.

Recall that P is the protocol for ROW⊕k BPHP2ℓ+2k

2ℓ from Claim 22. Let N be a constant
to be chosen later. The protocol T solving UDISJk,2ℓ−k−1 is described by Algorithm 1.

Protocol analysis

Let us analyze the protocol T . Since it executes the protocol P a constant number of times,
T transmits O(t+ ℓ) bits. Assume that x1, x2, . . . , xk is a 1-instance of UDISJk,2ℓ+2k . Then
by the key property of C−→x (γγγ,EEE) all repeated rows of

∑k
i=1PPP i are in Fake(γγγ,EEE), hence the

protocol T returns either ⊥ or the correct answer. Since P is executed N times independently,
the probability that Z = {⊥} is at most 1

100N , hence T returns 1 with probability at least
1− 1

100N .
The rest of the proof is devoted to the analysis of the case, where x1, x2, . . . , xk is a

0-instance of UDISJk,2ℓ+2k . This is the most technically involved part of the proof. So it is
a good point to give a large scale overview of the further proof strategy. Our goal

CCC 2021

3:20 Proof Complexity of Natural Formulas via Communication Arguments

Algorithm 1 Protocol T solving UDISJk,2ℓ−k−1.

Input x1, x2, . . . , xk ∈ {0, 1}2ℓ−k−1; xi is written on the forehead of the ith party for every
i ∈ [k].
Z := ∅
loop repeat N times

Sample π ← πππ, E ← EEE, γ ← γγγ,
−→
∆ ←

−→
∆
−→
∆−→∆ ▷ Use fresh public random bits

P1 := Mπ ·D1(x1, γ) · E + ∆1 ▷ Can be computed by parties
2, 3, . . . , k

Pi := Mπ ·Di(xi) · E + ∆i for i ≥ 2 ▷ Can be computed by all parties ex-
cept the ith

z := P(P1, . . . , Pk) ▷ Use fresh random bits for P and as-
sume that Pi is written on the ith
party’s forehead.

Z := Z ∪ {z}
if Z = {⊥} then return ⊥
else if Z \ {⊥} ⊆ Fake(γ,E) then return 1 ▷ Intuitively this step means that most

likely there are no more repeated
rows in C−→x (γ,E) except Fake(γ,E)
and, hence, DISJ(x1, x2, . . . , xk) = 1
by the key property of C−→x (γ,E).

return 0

is to show that if x1, x2, . . . , xk is a 0-instance of UDISJk,2ℓ+2k , then the probability that
P(PPP 1, . . . ,PPP k) returns a value from Fake(γγγ,EEE) is bounded by some constant less than 1.
The random variable P(PPP 1, . . . ,PPP k) depends on random bits used by the protocol P and
on random bits needed for sampling PPP 1, . . . ,PPP k. Let R denote the set of all random strings
used by the protocol P (i.e. we assume that P sample a random string from R and use it as
public randomness) and S denote the set of all random strings used for sampling PPP 1, . . . ,PPP k.
We would like to construct two bijections α and β on the set S such that for every s ∈ S the
following two properties hold.
1. The three values of random variable (PPP 1, . . . ,PPP k) sampled using three strings s, α(s) and

β(s) as a random source, are the same.
2. Let (γ,E), (γα, Eα) and (γβ , Eβ) be values of the random variable (γγγ,EEE) that is sampled

using three strings s, α(s) and β(s) as a random source. Then Fake(γ,E)∩Fake(γα, Eα)∩
Fake(γβ , Eβ) = ∅.

Consider arbitrary strings r ∈ R and s ∈ S. The first property implies that for random
variables sampled using strings (r, s), (r, α(s)) and (r, β(s)) as a random source values of
P(P1P1P1, . . . ,PkPkPk) are the same. The second property implies that for at least one of this cases
this value does not belong to Fake(γγγ,EEE). Then, using that α and β are bijections, we get
Pr[P(P1P1P1, . . . ,PkPkPk) ∈ Fake(γγγ,EEE)] ≤ 2

3 .
Since we have many random variables, it is a tedious task to construct such α and β. In

order to simplify this task we slightly relax the properties. We will define bijections α and β
not on all strings S but only on the part of bits corresponding to sampling of γγγ and EEE. More
precisely we will define two bijections α and β on the set of values of the random variable
(γγγ,EEE). We relax the first property as follows:
1’. For every γ and E the three conditional distributions of the random variable (P1P1P1, . . . ,PkPkPk)

under the following three conditions coincide:

D. Itsykson and A. Riazanov 3:21

a. (γγγ,EEE) = (γ,E),
b. (γγγ,EEE) = α(γ,E) and
c. (γγγ,EEE) = β(γ,E).

Unfortunately, we were not able to construct such bijections on the set of all pairs (γ,E).
Thus we take a set Ξ consisting 1− δ fraction of all values of (γγγ,EEE) and we will claim that
α and β are bijections on Ξ. Such relaxation will weaken the bound of the probability up
to 2

3 + δ. We formalize the requirements to Ξ, α and β in Definition 24. Then we verify in
Claim 25 that these requirements are sufficient to bound Pr[P(P1P1P1, . . . ,PkPkPk) ∈ Fake(γγγ,EEE)].
The construction of Ξ, α and β is given in Subsection 5.3.

▶ Definition 24. Let x1, . . . , xk be a 0-instance of UDISJk,2ℓ−k−1 and 1 > δ ≥ 0 be an
arbitrary constant. Let Ξ be a set consisting of pairs (γ,E), where γ is a bijection from
[2ℓ−k − 1] ∪ {∗} to {0, 1}ℓ−k, E is an invertible matrix from Fℓ×ℓ

2 . Let α and β be bijections
from Ξ to Ξ. We say that (Ξ, α, β) forms a (1− δ)-symmetry randomness space for −→x if the
following conditions hold:

(Largeness) Pr[(γγγ,EEE) ∈ Ξ] ≥ 1− δ.
(Difference) For all (γ,E) ∈ Ξ, Fake(γ,E) ∩ Fake(α(γ,E)) ∩ Fake(β(γ,E)) = ∅.
(Symmetry) For all (γ,E) ∈ Ξ the matrices C−→x (γ,E), C−→x (α(γ,E)) and C−→x (β(γ,E))
differ only by a permutation of rows.

▷ Claim 25. Assume that x1, . . . , xk is a 0-instance of UDISJk,2ℓ−k−1, 1 > δ ≥ 0 is a
constant. Let (Ξ, α, β) form a (1− δ)-symmetry randomness space for −→x

Then

Pr [P (PPP 1,PPP 2, . . . ,PPP k) ∈ Fake(γγγ,EEE)] ≤ 2
3 + δ.

Proof. Let us denote
−→
PPP = (PPP 1,PPP 2, . . . ,PPP k),

−→
∆∆∆ = (∆∆∆1,∆∆∆2, . . . ,∆∆∆k) and −→D(−→x , γ) =

(D1(x1, γ), D2(x2), . . . , Dk(xk)).
−→
PPP = (∆∆∆1 +MπππD1(x1, γγγ)EEE,∆∆∆2 +MπππD2(x2)EEE, . . . ,∆∆∆k +MπππDk(xk)EEE), for brevity we use

the vector notation
−→
PPP =

−→
∆∆∆ +Mπππ(−→D(−→x ,γγγ)EEE).

Let p := Pr
[
P
(−→
PPP
)
∈ Fake(γγγ,EEE)

]
.

p =
∑
γ,E

Pr
[
P
(−→

∆∆∆ + Mπππ

(−→
D(−→x , γ) · E

))
∈ Fake(γ, E)

]
· Pr[γγγ = γ,EEE = E]

(Largeness)
≤

∑
(γ,E)∈Ξ

Pr
[
P
(−→

∆∆∆ + Mπππ ·
(−→

D(−→x , γ) · E
))

∈ Fake(γ, E)
]

· Pr[γγγ = γ,EEE = E] + δ

Notice that for fixed γ,E the random variable
−→
∆∆∆ + Mπππ ·

(−→
D(−→x , γ) · E

)
is distributed

uniformly on the set of tuples (L1, . . . , Lk) of k matrices from F(2ℓ+2k)×ℓ
2 such that

∑k
i=1 Li

differs from C−→x (γ,E) only by a permutation of rows. Let (γα−1 , Eα−1) = α−1(γ,E). By
the symmetry condition, matrices C−→x (γ,E) and C−→x (γα−1 , Eα−1) differ only by permutation
of rows. Thus, for every set A the probability Pr

[
P
(−→

∆∆∆ +Mπππ ·
(−→
D(−→x , γ) · E

))
∈ A

]
=

Pr
[
P
(−→

∆∆∆ +Mπππ ·
(−→
D(−→x , γα−1) · Eα−1

))
∈ A

]
. Hence,

CCC 2021

3:22 Proof Complexity of Natural Formulas via Communication Arguments

p ≤
∑

(γ,E)∈Ξ

Pr
[
P
(−→

∆∆∆ + Mπππ ·
(−→

D(−→x , γα−1) · Eα−1

))
∈ Fake(γ, E)

]
· Pr[γγγ = γ,EEE = E] + δ

=
∑

(γ,E)∈Ξ

Pr
[
P
(−→

∆∆∆ + Mπππ ·
(−→

D(−→x , γ) · E
))

∈ Fake(α(γ, E))
]

· Pr[(γγγ,EEE) = α(γ, E)] + δ

=
∑

(γ,E)∈Ξ

Pr
[
P
(−→

∆∆∆ + Mπππ ·
(−→

D(−→x , γ) · E
))

∈ Fake(α(γ, E))
]

· Pr[(γγγ,EEE) = (γ, E)] + δ

= Pr
[
P
(−→

PPP
)

∈ Fake(α(γγγ,EEE)), (γγγ,EEE) ∈ Ξ
]

+ δ.

Analogously, p ≤ Pr
[
P
(−→
PPP
)
∈ Fake(β(γγγ,EEE)), (γγγ,EEE) ∈ Ξ

]
+ δ. Also the inequality p ≤

Pr
[
P
(−→
PPP
)
∈ Fake(γγγ,EEE), (γγγ,EEE) ∈ Ξ

]
+ δ follows by the largeness condition. Then,

3(1− p) ≥Pr
[
P
(−→
PPP
)
̸∈ Fake(β(γγγ,EEE)) ∨ (γγγ,EEE) ̸∈ Ξ

]
+ Pr

[
P
(−→
PPP
)
̸∈ Fake(α(γγγ,EEE)) ∨ (γγγ,EEE) ̸∈ Ξ

]
+ Pr

[
P
(−→
PPP
)
̸∈ Fake(γγγ,EEE) ∨ (γγγ,EEE) ̸∈ Ξ

]
− 3δ

≥Pr
[
P
(−→
P
)
̸∈ Fake(γγγ,EEE) ∩ Fake(α(γγγ,EEE)) ∩ Fake(β(γγγ,EEE)) ∨ (γγγ,EEE) ̸∈ Ξ

]
− 3δ

=1− 3δ.

The last equality follows by the difference condition. Hence, 3(1−p) ≥ 1− 3δ, thus p ≤ 2
3 + δ.

◁

We prove the following lemma in Subsection 5.3

▶ Lemma 26. Let x1, . . . , xk be a 0-instance of UDISJk,2ℓ−k−1. Then for some δ < 1
3 −

1
100

there exists a (1− δ)-symmetry randomness space for −→x .

Lemma 26 and Claim 25 imply that there is a constant ε > 0 such that

Pr [P (PPP 1,PPP 2, . . . ,PPP k) ̸∈ Fake(γγγ,EEE)] ≥ ε+ 1
100 .

Thus,

Pr [P (PPP 1,PPP 2, . . . ,PPP k) ̸∈ Fake(γγγ,EEE) ∪ {⊥}] ≥ ε.

Then, for N = O
(
log 1

ε

)
, T gives a correct answer for every 0-instance with probability

at least 2
3 . ◀

5.3 Constructions of Ξ, α and β

Proof of Lemma 26. Assume that x1, . . . , xk is a 0-instance UDISJk,2ℓ−k−1. Let i0 ∈
[2ℓ−k − 1] be such that x1,i0 = x2,i0 = . . . = xk,i0 = 1.

Hereinafter γ denotes a bijection from [2ℓ−k−1]∪{∗} to {0, 1}ℓ−k, E denotes an invertible
matrix from Fℓ×ℓ

2 and e1, e2, . . . , eℓ denote rows of E.
Before presenting constructions of Ξ, α, and β we explain how we are going to establish

symmetry and difference properties from Definition 24.
For every s ∈ {0, 1}ℓ−k and b ∈ {0, 1} we introduce the following notation:

R(s, b, E) :=
{

(s, b, z) · E | z ∈ Fk−1
2
}
.

D. Itsykson and A. Riazanov 3:23

Using the key property of the matrix C−→x (γ,E) we can describe rows of C−→x (γ,E) in
terms of R(s, b, E).

▷ Claim 27.
The set of the last 2k+1 rows of C−→x (γ,E) is R(γ(∗), 0, E)∪R(γ(∗), 1, E) and each of this
rows appears exactly twice. Recall that we already denote this set as Fake(γ,E). Hence,
Fake(γ,E) = R(γ(∗), 0, E) ∪R(γ(∗), 1, E).
The set of rows of C−→x (γ,E) with indices from [2k(i− 1) + 1; 2ki] for i ∈ [2ℓ−k−1] \ {i0} is
exactly R(γ(i), 0, E) ∪R(γ(i), 1, E) and every such row appears exactly once.
The set of rows of C−→x (γ,E) with indices from [2k(i0−1)+1; 2ki0] is exactly R(γ(i0), 0, E)
and every such row appears exactly twice.

▷ Claim 28. R(s, b, E) can be represented as a shift of the linear space Span(eℓ−k+2, . . . , eℓ):

R(s, b, E) =

ℓ−k∑
j=1

sjej + b · eℓ−k+1

+ Span(eℓ−k+2, . . . , eℓ).

Proof.

R(s, b, E) =
{

(s, b, z) · E | z ∈ Fk−1
2
}

=
{

(s, b, z) · (e1, e2, . . . , eℓ)T | z ∈ Fk−1
2
}

=
ℓ−k∑
i=j

sjej + b · eℓ−k+1 +
k−1∑
i=1

zieℓ−k+1+i | z ∈ Fk−1
2

 =

ℓ−k∑
j=1

sjej + b · eℓ−k+1

 + Span(eℓ−k+2, . . . , eℓ).

◁

▷ Claim 29. For every s ∈ {0, 1}ℓ−k and b ∈ {0, 1}, |R(s, b, E)| = 2k−1.

Proof. By Claim 28, |R(s, b, E)| =
∣∣∣(∑ℓ−k

j=1 sjej + b · eℓ−k+1

)
+ Span(eℓ−k+2, . . . , eℓ)

∣∣∣ =
|Span(eℓ−k+2, . . . , eℓ)| = 2k−1. ◁

▷ Claim 30. Sets R(s, b, E) for s ∈ {0, 1}ℓ−k and b ∈ {0, 1} are disjoint.

Proof. Consider two vectors u ∈ R(s, b, E) and v ∈ R(s′, b′, E) such that (s, b) ̸= (s′, b′).
Then, by Claim 28, u and v have different coordinates in the basis e1, e2, . . . , eℓ, hence u ̸= v.

◁

▷ Claim 31. Assume that γ, γ′ are bijections from [2ℓ−k − 1] ∪ {∗} to {0, 1}ℓ−k and E and
E′ are invertible matrices from Fℓ×ℓ

2 such that
R(γ(i0), 0, E) ∪ R(γ(∗), 0, E) ∪ R(γ(∗), 1, E) = R(γ′(i0), 0, E′) ∪ R(γ′(∗), 0, E′) ∪
R(γ′(∗), 1, E′);
R(γ(i0), 1, E) = R(γ′(i0), 1, E′).

Then matrices C−→x (γ,E) and C−→x (γ′, E′) differ only by a permutation of rows.

Proof. By Claim 27, rows from R(γ(i0), 1, E) do not appear in C−→x (γ,E), rows from
R(γ(i0), 0, E) ∪R(γ(∗), 0, E) ∪R(γ(∗), 1, E) appear in C−→x (γ,E) exactly twice. The matrix
C−→x (γ,E) has 2ℓ+2k rows. All rows of C−→x (γ,E) that are not in R(γ(i0), 1, E)∪R(γ(∗), 0, E)∪
R(γ(∗), 1, E), by Claim 27, appear in C−→x (γ,E) exactly once.

CCC 2021

3:24 Proof Complexity of Natural Formulas via Communication Arguments

By Claims 29 and 30, |R(γ(i0), 0, E) ∪ R(γ(∗), 0, E) ∪ R(γ(∗), 1, E)| = 3 · 2k−1, hence,
the number of rows of C−→x (γ,E) that are not in R(γ(i0), 1, E) ∪R(γ(∗), 0, E) ∪R(γ(∗), 1, E)
equals 2ℓ − 2k+1. By Claims 29 and 30, the number of ℓ-bit strings not from R(γ(i0), 1, E)∪
R(γ(i0), 0, E) ∪R(γ(∗), 0, E) ∪R(γ(∗), 1, E) is also 2ℓ − 2k+1. Hence, all rows from {0, 1}ℓ \
(R(γ(i0), 0, E)∪R(γ(∗), 0, E)∪ (γ(∗), 1, E)∪R(γ(i0), 1, E)) appear in C−→x (γ,E) exactly once.
Thus, matrices C−→x (γ,E) and C−→x (γ′, E′) have the same set of rows and each row appears
the same number of times in each of these matrices. ◁

For α, β : Ξ→ Ξ we denote α(γ,E) = (γα, Eα) and β(γ,E) = (γβ , Eβ). We are going to
construct α and β such that for all (γ,E) ∈ Ξ the following equalities are satisfied.

R(γ(i0), 1, E) = R(γα(i0), 1, Eα) = R(γβ(i0), 1, Eβ);
R(γ(i0), 0, E) = R(γα(∗), 0, Eα) = R(γβ(∗), 0, Eβ);
R(γ(∗), 1, E) = R(γα(∗), 1, Eα) = R(γβ(i0), 0, Eβ);
R(γ(∗), 0, E) = R(γα(i0), 0, Eα) = R(γβ(∗), 1, Eβ).

(2)

Notice that by Claim 31, equations (2) imply the symmetry property. Equations (2) also
imply the difference property. Indeed,

Fake(γ,E) = R(γ(∗), 1, E) ∪R(γ(∗), 0, E);
Fake(γα, Eα) = R(γα(∗), 1, Eα) ∪R(γα(∗), 0, Eα) = R(γ(∗), 1, E) ∪R(γ(i0), 0, E);
Fake(γβ , Eβ) = R(γβ(∗), 1, Eβ) ∪R(γβ(∗), 0, Eβ) = R(γ(∗), 0, E) ∪R(γ(i0), 0, E).

Hence, by Claim 30, Fake(γ,E) ∩ Fake(γα, Eα) ∩ Fake(γβ , Eβ) = ∅.
In order to complete the proof of the lemma we have to construct Ξ and bijections α, β

from Ξ to Ξ such that
(Largeness) Pr[(γγγ,EEE) ∈ Ξ] > 2

3 + 1
100 ;

and for all (γ,E) ∈ Ξ the equations (2) are satisfied.

Definition of Ξ. A pair (γ,E) is in Ξ iff there exist m,n ∈ [ℓ − k] such that (γ(∗))m =
1, (γ(i0))m = 0 and (γ(∗))n = 0, (γ(i0))n = 1. In other words, γ(∗) and γ(i0) are not
comparable with respect to coordinate-wise comparison.

Notice that γγγ(i0) and γγγ(∗) are distributed uniformly among non-equal elements of
{0, 1}ℓ−k. Let SSS and TTT are two independent random variables distributed uniformly on the
set of all subsets of [ℓ− k]. Then,

Pr [(γγγ,EEE) ∈ Ξ] =1 − Pr [γγγ(i0) ≤ γγγ(∗) ∨ γγγ(∗) ≤ γγγ(i0)] ≥ 1 − 2 Pr [γγγ(i0) ≤ γγγ(∗)]
=1 − 2 Pr [SSS ⊆ TTT | SSS ̸= TTT] ≥ 1 − 2 Pr [SSS ⊆ TTT]

=1 − 2
ℓ−k∏
j=1

(1 − Pr[j ∈ SSS ∧ j ̸∈ TTT]) = 1 − 2
(3

4

)ℓ−k

>
2
3 + 1

100 if ℓ − k ≥ 7.

Hence, the largeness property is satisfied.

Construction of α. Let (γ,E) ∈ Ξ, we define α(γ,E) = (γα, Eα), where Eα is a
matrix with rows defined by vectors (e′1, . . . , e′ℓ) = (e1, . . . , eℓ−k, eℓ−k+1 +

∑ℓ−k
j=1(γ(i0)j +

γ(∗)j)ej , eℓ−k+2, . . . , eℓ), and

γα(i) =

γ(∗) if i = i0

γ(i0) if i = ∗
γ(i) otherwise

.

D. Itsykson and A. Riazanov 3:25

▷ Claim 32. α is a bijection from Ξ→ Ξ.

Proof. Notice that rows of E′ form a basis since
∑ℓ−k

j=1(γ(i0)j +γ(∗)j)ej ∈ Span(e1, . . . , eℓ−k).
The mapping γ 7→ γα is bijective since it just swaps γ(i0) and γ(∗). Since the condition on
γ(i0) and γ(∗) does not change after application of α, we get that α(Ξ) ⊆ Ξ. Notice that∑ℓ−k

j=1(γ(i0)j + γ(∗)j)ej =
∑ℓ−k

j=1(γα(i0)j + γα(∗)j)e′j , hence α(γα, Eα) = (γ,E), hence α is
bijective. ◁

▷ Claim 33. For all (γ,E) ∈ Ξ the following equalities hold
1. R(γα(i0), 1, Eα) = R(γ(i0), 1, E);
2. R(γα(i0), 0, Eα) = R(γ(∗), 0, E);
3. R(γα(∗), 0, Eα) = R(γ(i0), 0, E);
4. R(γα(∗), 1, Eα) = R(γ(∗), 1, E).

Proof. We use Claim 28. Let us denote S := Span(eℓ−k+2, . . . , eℓ) = Span(e′ℓ−k+2, . . . , e
′
ℓ).

1. R(γα(i0), 1, Eα) =
(∑ℓ−k

j=1 γα(i0)je
′
j + e′ℓ−k+1

)
+ S =

(∑ℓ−k
j=1 γ(∗)jej + e′ℓ−k+1

)
+ S =(∑ℓ−k

j=1 γ(i0)jej + eℓ−k+1

)
+ S = R(γ(i0), 1, E);

2. R(γα(i0), 0, Eα) =
(∑ℓ−k

j=1 γα(i0)je
′
j

)
+ S =

(∑ℓ−k
j=1 γ(∗)jej

)
+ S = R(γ(∗), 0, E);

3. R(γα(∗), 0, Eα) =
(∑ℓ−k

j=1 γα(∗)je
′
j

)
+ S =

(∑ℓ−k
j=1 γ(i0)jej

)
+ S = R(γ(i0), 0, E);

4. R(γα(∗), 1, Eα) =
(∑ℓ−k

j=1 γα(∗)je
′
j + e′ℓ−k+1

)
+ S =

(∑ℓ−k
j=1 γ(i0)jej + e′ℓ−k+1

)
+ S =(∑ℓ−k

j=1 γ(∗)jej + eℓ−k+1

)
+ S = R(γ(∗), 1, E). ◁

Construction of β. For (γ,E) ∈ Ξ, we define β(γ,E) = (γβ , Eβ), where γβ = γα and Eβ

is defined below. Let jmin = min{j ∈ [ℓ− k] : (γ(∗))j = 1 ∧ (γ(i0))j = 0}; jmin is correctly
defined since (γ,E) ∈ Ξ. Now we define Eβ = (e′′1 , . . . , e′′ℓ):

e′′j =

ej if j ̸∈ {jmin, ℓ− k + 1}∑ℓ−k

i=1 (γ(∗)i + γ(i0)i)ei if j = ℓ− k + 1
ejmin + eℓ−k+1 if j = jmin

.

▷ Claim 34. β is a bijection from Ξ→ Ξ.

Proof. Let us verify that β is injective. Given γβ we can easily recover γ, hence we can
recover jmin as well. Then

ℓ−k∑
i=1

(γ(i0)i + γ(∗)i)e′′i + e′′ℓ−k+1 =
∑

i∈[ℓ−k]\{jmin}

(γ(i0)i + γ(∗)i)ei +
e′′

jmin︷ ︸︸ ︷
ejmin + eℓ−k+1 +e′′ℓ−k+1

= eℓ−k+1 +
∑

i∈[ℓ−k]\{jmin}

(γ(i0)i + γ(∗)i)ei + ejmin︸ ︷︷ ︸
e′′

ℓ−k+1

+e′′ℓ−k+1 = eℓ−k+1.

Thus, we can uniquely recover eℓ−k+1 and, hence, also recover ejmin = e′′jmin
+ eℓ−k+1; for

j ∈ [ℓ] \ {jmin, ℓ − k + 1}, ej = e′′j . Hence, β is injective. Notice that since we represent
e1, . . . , eℓ as linear combinations of e′′1 , . . . , e′′ℓ , then e′′1 , . . . , e

′′
ℓ is a basis, hence the matrix

Eβ is invertible. Thus, we verify that β(Ξ) ⊆ Ξ and β is injective, hence β is bijective. ◁

CCC 2021

3:26 Proof Complexity of Natural Formulas via Communication Arguments

▷ Claim 35. For all (γ,E) ∈ Ξ the following equalities hold
1. R(γβ(i0), 1, Eβ) = R(γ(i0), 1, E);
2. R(γβ(i0), 0, Eβ) = R(γ(∗), 1, E);
3. R(γβ(∗), 0, Eβ) = R(γ(i0), 0, E);
4. R(γβ(∗), 1, Eβ) = R(γ(∗), 0, E);

Proof. We denote S := Span(eℓ−k+2, . . . , eℓ) = Span(e′′ℓ−k+2, . . . , e
′′
ℓ). Recall that γ(∗)jmin =

1 and γ(i0)jmin = 0.
1. R(γβ(i0), 1, Eβ) =

∑ℓ−k
i=1 γβ(i0)ie

′′
i + e′′ℓ−k+1 +S =

∑ℓ−k
i=1 γ(∗)iei + eℓ−k+1 + e′′ℓ−k+1 +S =∑ℓ−k

i=1 γ(∗)iei + eℓ−k+1 +
∑ℓ−k

i=1 (γ(∗)i + γ(i0)i)ei + S =
∑ℓ−k

i=1 γ(i0)iei + eℓ−k+1 + S =
R(γ(i0), 1, E);

2. R(γβ(i0), 0, Eβ) =
∑ℓ−k

i=1 γβ(i0)ie
′′
i + S =

∑ℓ−k
i=1 γ(∗)iei + eℓ−k+1 + S = R(γ(∗), 1, E);

3. R(γβ(∗), 0, Eβ) =
∑ℓ−k

i=1 γβ(∗)ie
′′
i + S =

∑ℓ−k
i=1 γ(i0)iei + S = R(γ(i0), 0, E);

4. R(γβ(∗), 1, Eβ) =
∑ℓ−k

i=1 γβ(∗)ie
′′
i + e′′ℓ−k+1 + S =

∑ℓ−k
i=1 γ(i0)iei + e′′ℓ−k+1 + S =∑ℓ−k

i=1 γ(∗)iei + S = R(γ(∗), 0, E). ◁

Claims 33 and 35 imply the equations 2. ◀

5.4 Proof of Lemma 21
To prove Lemma 21 it is sufficient to prove the following:

▶ Proposition 36. There exist matrices T1, . . . , Tk ∈ F2k×k
2 , such that

for α1, . . . , αk ∈ {0, 1} the matrix
∑k

i=1 αiTi is zero iff α1 = α2 = . . . = αk = 0, i.e.
T1, . . . , Tk are linearly independent;
For every non-zero matrix M ∈ Span(T1, . . . , Tk), M +Kk ∈ Sk.

Proof of Lemma 21. Let for i ∈ {1, . . . , k − 1}, Ai(0) = Ti and Ai(1) be the zero matrix.
Let Ak(0) = Kk + Tk, Ak(1) = Kk. For each b1, . . . , bk ∈ {0, 1},

∑k
i=1 Ai(bi) =

∑k
i=1(1 −

bi)Ti +Kk. Then
∑k

i=1 Ai(1) = Kk, and if for at least one i ∈ [k], bi ̸= 1, then by the first
condition of Proposition 36,

∑k
i=1(1− bi)Ti differs from zero, thus by the second condition

of Proposition 36,
∑k

i=1 Ai(bi) ∈ Sk. ◀

Proof of Proposition 36. Let us prove the proposition by induction on k. We are going
to prove a stronger statement: namely, we additionally require that for arbitrary non-zero
matrix M ∈ Span(T1, . . . , Tk) the set of even-indexed rows of M + Kk ∈ Sk coincide with
the set of odd-indexed rows of this matrix with all bits flipped.

The base case k = 1. T1 =
(

0
1

)
, and K1 =

(
0
0

)
. It is easy to verify that all conditions

hold.
Induction step from k to k + 1. Notice that Kk+1 =

(
Kk 02k×1
Kk 12k×1

)
. Let T1, . . . Tk

be the matrices from induction hypothesis for k. Then define T ′i =
(
Ti 02k×1
Ti 02k×1

)
for

i ∈ [k] and T ′k+1 =
(

02k×k z0
12k×k z1

)
, where z0 = (0, 1, 0, 1, . . . , 0, 1)T ∈ {0, 1}2k×1, and z1 =

(1, 0, 1, 0 . . . , 1, 0)T ∈ {0, 1}2k×1.
Let us verify that all conditions hold. First we show that the matrices T ′1, T ′2, . . . , T ′k+1

are linearly independent. Matrices T ′1, T ′2, . . . , T ′k are linearly independent since they contain
linearly independent blocks T1, . . . , Tk. The matrix T ′k+1 does not belong to Span(T ′1, . . . , T ′k),
since the last column of T ′k+1 is non-zero, but the last columns of all T ′1, . . . , T ′k are zeros.

D. Itsykson and A. Riazanov 3:27

Let us check that for any non-zero matrix M ∈ Span(T ′1, . . . , T ′k, T ′k+1), the condition
M +Kk+1 ∈ Sk+1 holds and the set of even-indexed rows of M +Kk+1 coincide with the set
of odd-indexed rows of this matrix with all bits flipped. Let us analyze the cases:

1. Let M be a non-zero matrix from Span(T ′1, . . . , T ′k). Then, M has form
(
M ′ 02k×1
M ′ 02k×1

)
,

where M ′ is a non-zero matrix from Span(T1, . . . , Tk), thus M ′ + Kk ∈ Sk. Then

M +Kk+1 =
(
M ′ +Kk 02k×1
M ′ +Kk 12k×1

)
; it follows from the induction hypothesis that all rows

of this matrix are distinct, i.e. M + Kk+1 ∈ Sk+1. In order to verify that the set of
even-indexed rows of this matrix coincide with the set of odd-indexed rows with all
bits flipped, observe that by induction hypothesis the first 2k−1 even-indexed rows of
M +Kk+1 coincide with the last 2k−1 odd-indexed rows of M +Kk+1 with all bits flipped,
and the first 2k−1 odd-indexed rows of M+Kk+1 coincide with the last 2k−1 even-indexed
rows of M +Kk+1 with flipped bits.

2. M = T ′k+1, then M + Kk+1 =
(

Kk z0
12k×k +Kk z0

)
. Let us show that all rows of this

matrix are distinct. The first 2k rows start with 0 and are obtained by appending zeroes
and ones to the rows of Kk in the alternating order. Since for every pair of coinciding
rows of Kk they are adjacent, the first 2k rows are distinct. The last 2k rows start from
one, so they differ from the first 2k rows. The proof that they are distinct is the same as
for the first 2k rows. Observe that the (2i− 1)th row of the matrix M +Kk+1 coincide
with the (2k + 2i)th row of M +Kk+1 with flipped bits, and the (2i)th row of M +Kk+1
coincide with the (2k + 2i− 1)th row of M +Kk+1 with flipped bits for i ∈ [2k].

3. M = R + T ′k+1, where R is a non-zero matrix from Span(T ′1, . . . , T ′k). Let R have

the form
(
R′ 02k×1
R′ 02k×1

)
, where R′ is a non-zero matrix from Span(T1, . . . , Tk). Then

M +Kk+1 = R+ T ′k+1 +Kk+1 =
(

R′ +Kk z0
12k×k +R′ +Kk z0

)
. By the induction hypothesis,

R′ +Kk ∈ Sk and its even-indexed rows coincide with its odd-indexed rows with flipped
bits. Then, all even-indexed rows of M + Kk+1 end with 0, the first 2k−1 of them
are even-indexed rows of R′ + Kk with appended zero, and the last 2k−1 of them are
even-indexed rows of R′+Kk with all bits flipped and appended 0. Then, by the induction
hypothesis, the set of the former rows does not intersect with the set of the latter rows,
therefore they are all distinct. By the same argument, all the rows of M + Kk+1 that
end with 1 are distinct. Thus, M +Kk+1 ∈ Sk+1.
Let us verify that the set of even-indexed rows of this matrix coincide with the set of
odd-indexed rows of this matrix with all bits flipped. Observe that if the ith row of
R′ + Kk coincides with the jth row of R′ + Kk with flipped bits, then the ith row of
M+Kk+1 coincides with its jth row with flipped bits, and the (2k + i)th row of M+Kk+1
coincides with its (2k + j)th row with all bits flipped. The required property follows from
the induction hypothesis. ◀

5.5 Corollaries
▶ Corollary 37. If k + 7 ≤ ℓ, then the size of any semantic Res (PCk−1) tree-like refutation

of BPHP2ℓ+2k

2ℓ is at least 2
Ω
(

2ℓ/2

k23k/2

)
. For k = 2, the size of any tree-like semantic Res(⊕)

refutation of BPHP2ℓ+4
2ℓ is at least 2Ω(2ℓ).

Proof. Follows from Theorem 3 and Lemma 1. ◀

CCC 2021

3:28 Proof Complexity of Natural Formulas via Communication Arguments

▶ Corollary 38. Let 2 ≤ k ≤ ℓ− 7 and S be the minimal size of tree-like refutation of φ =
BPHP2ℓ+2k

2ℓ ◦⊕k in the semantic proof system Tcc(k, c). Then logS log logS ≥ c ·Ω
(

2ℓ/2

k23k/2

)
.

For k = 2, logS log logS ≥ c · Ω
(
2ℓ
)
.

Proof. By Lemma 9, R1/3
pub(Search (φ)) = O

(
log S log log S

c

)
. We also know that

R
1/3
pub

(
Search

(
BPHP2ℓ

2ℓ+2k ◦ ⊕k

))
≥ R1/3

pub

(
⊕kSearch

(
BPHP2ℓ

2ℓ+2k

))
.

Now the statement follows from Theorem 3. ◀

6 Bit pigeonhole principle

6.1 Reduction from BPHP ◦ ⊕k to BPHP
Let T ⊆ X1 ×X2 × · · · ×Xk × Y and S ⊆ Z1 × Z2 × · · · × Zk ×W be two relations. We
say that S is many-one reducible to T if there are k + 1 mappings f1 : X1 → Z1, f2 :
X2 → Z2, . . . , fk : Xk → Zk and g : W → Y such that if (f1(x1), . . . , fk(xk), y) ∈ T then
(x1, . . . , xk, g(y)) ∈ S.

▶ Lemma 39. If S is many-one reducible to T , then Rpub
1/3(S) ≤ Rpub

1/3(T).

Proof. The ith party computes f(xj) for all j ∈ [k] \ {i} and then all parties run the optimal
protocol for T . As soon as all the parties learn an answer y they compute g(y) without
communication. ◀

Recall that BPHPM
2n encodes that there exist M different strings s1, s2, . . . , sM from

{0, 1}n. Let k be a positive integer. Let us define the partition Πk of the variables of
BPHPM

2n into k parts. Let n = ℓk + r where 0 ≤ r < k. For each i ∈ [M] the row si is
partitioned into k parts s = s

(1)
i s

(2)
i · · · s

(k)
i such that |s(t)

i | = ℓ+ 1 if t ≤ r, and |s(t)
i | = ℓ if

t > r. The partition Πk of the variables of BPHPM
2n into k parts is the following: the tth

part consists of the variables s(t)
1 , s

(t)
2 , . . . , s

(t)
M .

We consider a search problem SearchPairM
2n : given the values of the variables of BPHPM

2n ,
that are partitioned according to Πk find a pair of distinct indices i, j ∈ [M], such that the
values of si and sj coincide.

▶ Proposition 40. The relation SearchPairM
2n is many-one reducible to Search

(
BPHPM

2n

)
with variables partitioned according to Πk.

Proof. The proof is straightforward. ◀

▶ Theorem 41. ⊕kBPHPm
2ℓ is many-one reducible to SearchPairm·2(k−1)ℓ

2kℓ .

Proof. Let us denote M = m · 2(k−1)ℓ. Consider a set Z ={
(y1, y2, . . . , yk) ∈ (Fℓ

2)k |
∑

i yi = 0}
}

. It is easy to see that |Z| = 2(k−1)ℓ. Let φ

be a bijection between [M] and Z × [m].
Let for i ∈ [m] and t ∈ [k], x(t)

i denote the ith string of the tth party in the communication
problem ⊕kBPHPm

2ℓ . Let xi := (x(1)
i , . . . , x

(k)
i).

For every t ∈ [k] we define ft as follows: ft

(
x

(t)
1 , . . . , x

(t)
m

)
is a sequence of rows

r
(t)
1 , r

(t)
2 , . . . , r

(t)
M such that for all i ∈ [M], r(t)

i = zt + x
(t)
j , where (z, j) = φ(i) for all

z ∈ Z and j ∈ [m] (recall that z ∈ Z is divided on k parts of equal lengths and zt denotes
the tth part).

Let us construct the function g from the definition of the reduction.
Let q, w ∈ [M] and q ̸= w. Assume that φ(q) = (z, j1) and φ(w) = (z, j2). We define

g(q, w) := (j1, j2).

D. Itsykson and A. Riazanov 3:29

Let us verify that f1, f2, . . . , fk and g define a reduction. Let q, w ∈M be a pair of different
numbers such that the assignment α :=

{
si ← r

(1)
i r

(2)
i . . . r

(k)
i | i ∈ [M]

}
satisfies sq = sw.

Assume that g(q, w) = (j1, j2). We need to verify that j1 ̸= j2 and
∑k

t=1 x
(t)
j1

=
∑k

t=1 x
(t)
j2

.
Notice that under the assignment α the value of sq is xj1 +z and the value of sw is xj2 +y,

where j1, j2 ∈ [m] and z, y ∈ Z such that (z, j1) = φ(q) and (y, j2) = φ(w). If j1 = j2, then
xj1 + z = xj2 + y implies z = y. Since φ is a bijection, we get q = w. Thus, j1 ̸= j2.

For each t ∈ [k], the following equality holds.

zt + x
(t)
j1

= yt + x
(t)
j2

(3)

If we sum up equations (3) for all t ∈ [k] and use that y, z ∈ Z, we get
∑k

t=1 x
(t)
j1

=∑k
t=1 x

(t)
j2

. Hence, (j1, j2) is a correct answer for ⊕kBPHPm
2ℓ . ◀

The following proposition deals with the case, where the number of bits is not divisible
by k.

▶ Proposition 42. Let n = kℓ+ r, where 0 ≤ r < k. Let M > 2kℓ. Then SearchPairM
2kℓ is

many-one reducible to SearchPairM2r

2n .

Proof. Let x1, x2, . . . , xM be the input of SearchPairM
2kℓ , let x(t)

j be the tth part of the row
xj according to the partition Πk. Given this input we construct an input for SearchPairM2r

2n .
Let τ be a bijection between [M]× {0, 1}r and [M2r].

For each i ∈ [M] we construct 2r rows yτ(i,α) one for each α ∈ {0, 1}r. Let Πk partition
a row yτ(i,α) into the following parts: y(1)

τ(i,α)y
(2)
τ(i,α) · · · y

(k)
τ(i,α). Let

y
(t)
τ(i,α) =

{
x

(t)
i if t > r

x
(t)
i αt if 0 ≤ t ≤ r

.

Now we can define the function ft(x(t)
1 , . . . , x

(t)
M) as y(t)

τ(i,α) for each i ∈M and α ∈ {0, 1}r and
t ∈ [k] Observe that for each i ∈ [M] the rows yi,α for α ∈ {0, 1}r are distinct. That allows
us to define the function g as g(τ(i1, α1), τ(i2, α2)) = (i1, i2). All the required properties can
be easily verified. ◀

▶ Theorem 4. Let M = 2n + 2k+n−⌊n/k⌋ and n ≥ k(k + 7). If variables of BPHPM
2n are

partitioned according Πk, then Rpub
1/3

(
Search

(
BPHPM

2n

))
= Ω

(
2n/2k−3k/2

k

)
.

For k = 2 a stronger bound holds: Rpub
1/3

(
Search

(
BPHPM

2n

))
= Ω(2n/2).

Proof. Let ℓ = ⌊n/k⌋ and r = n− ℓk.

Rpub
1/3

(
Search

(
BPHPM

2n

))
= Rpub

1/3

(
Search

(
BPHP(2k+2ℓ)2(k−1)ℓ+r

2n

))
(Proposition 40)

≥ Rpub
1/3

(
SearchPair(2k+2ℓ)2(k−1)ℓ+r

2n

)
(Proposition 42)

≥ Rpub
1/3

(
SearchPair(2k+2ℓ)2(k−1)ℓ

2kℓ

)
(Theorem 41)

≥ Rpub
1/3

(
⊕kBPHP2k+2ℓ

2ℓ

) (Corollary 19)= Ω
(

2ℓ/2−3k/2

k

)
= Ω

(
2n/2k−3k/2

k

)
.

The case of k = 2 can be treated in the same way, the only difference is in the application
of Corollary 19. ◀

CCC 2021

3:30 Proof Complexity of Natural Formulas via Communication Arguments

6.2 Upper bound for communication complexity of Search
(
BPHPm

2n

)
▶ Proposition 5. For M > 2n and k ∈ {2, 3, . . . , n} there exists a deterministic NOF
communication protocol for Search

(
BPHPM

2n

)
w.r.t. Πk transmitting O

(
2⌈n/k⌉ · logM

)
bits.

Proof. The protocol is going to have only two active parties: the second party, which we
call Alice, and the first party, which we call Bob. We are going to use that Alice can see the
variables s(1)

1 , . . . , s
(1)
M and that Bob can see all other variables.

Let us denote s̄(1)
i = s

(2)
i s

(3)
i . . . s

(k)
i ∈ {0, 1}n−⌈n/k⌉ the bits Bob sees in the ith line

for i ∈ [M]. Bob finds a value α ∈ {0, 1}n−⌈n/k⌉ such that the size of the set Sα ={
i ∈ [M] | s̄(1)

i = α
}

is larger than 2⌈n/k⌉. Such α exists since M > 2n. Bob then picks an
arbitrary subset S′ of Sα of size 2⌈n/k⌉ + 1 and sends the description of S′ to Alice using(
2⌈n/k⌉ + 1

)
· ⌈log2 M⌉ bits. Then, by the pigeonhole principle there exists i ̸= j ∈ S′ such

that s(1)
i = s

(1)
j . Alice and Bob then spend O(logM + n) bits transmitting indices i and j

and all the values of the ith and jth lines to each other. Both of them then find the falsified
clause of BPHPM

2n with no communication because it only depends on variables si and sj

and broadcast its description to all of the parties using an additional O(n+ logM) bits. ◀

For k = 2 this upper bound coincides with the lower bound given by Corollary 19 up to
a logarithmic factor. For the larger value of k the upper bound and the lower bound are
polynomially related. This upper bound shows that the dependence on k in the lower bound
is not an artifact of the proof, but a genuine phenomenon.

6.3 Short Th(log n) proof of BPHPm
n

In this section we give a short tree-like Th(log n) refutation of the bit pigeonhole principle
BPHPm

n . This observation is similar to the one of [5] that converts a resolution proof of the
unary encoding of the pigeonhole principle PHPm

n to a proof of BPHPm
n in Res(log n).

Namely we prove the following:

▶ Proposition 43. If there exists a tree-like Th(1)-refutation of PHPm
2ℓ of size S. Then there

exists a tree-like Th(ℓ)-refutation of BPHPm
2ℓ of size O(S).

Proof. Let pi,j for i ∈ [m] and j ∈ [2ℓ] be a variable of PHPm
2ℓ indicating that the ith pigeon

flies to the jth hole. Let si,k for i ∈ [m], k ∈ [ℓ] be a variable of BPHPm
2ℓ indicating the ℓth

bit of the ith string si.
Let Qj(x1, x2, . . . , xℓ) for j ∈ [2k] be a multilinear polynomial over reals such that

for all a1, a2, . . . , aℓ ∈ {0, 1}ℓ, Qj(a1, a2, . . . , aℓ) = 1 if (a1, a2, . . . , aℓ) = binℓ(j − 1) and
Qj(a1, a2, . . . , aℓ) = 0 otherwise. We ma define Qj as follows Qj(x1, . . . , xℓ) =

∏ℓ
k=1(1 −

xk + αℓ) for i ∈ [m], j ∈ [2k], where α = binℓ(j − 1). By the construction deg(Qj) = ℓ.
Let Pi,j = Qj(si,1, si,2, . . . , si,ℓ).
Consider a tree-like Th(1)-refutation of PHPm

2ℓ of size S: f1 ≥ 0, f2 ≥ 0, . . . , fS ≥ 0,
where fi are linear real polynomials over variables pi,j and fS ≥ 0 is unsatisfiable on Boolean
cube. For each of the inequalities on the following conditions hold:
(a) fi ≥ 0 is semantically implied by fj ≥ 0 and fk ≥ 0 on the Boolean cube for j, k < i.
(b) fi is a linear representation of an axiom of PHPm

2ℓ ;
Let Fi be a polynomial obtained of substitution pj,k := Pj,k to fi for all j ∈ [m]; k ∈ [2ℓ].
Consider a sequence of inequalities F1 ≥ 0, . . . , FS ≥ 0. Observe that FS ≥ 0 is unsatisfiable
on the Boolean cube since Pi,j ∈ {0, 1} on the Boolean cube. Let us verify that the sequence
F1 ≥ 0, . . . , FS ≥ 0 may be extended to a correct tree-like Th(ℓ) refutation of BPHPm

2ℓ :

D. Itsykson and A. Riazanov 3:31

(a) If fi ≥ 0 is semantically implied by fj ≥ 0 and fk ≥ 0, then Fi ≥ 0 is also implied by
Fj ≥ 0 and Fk ≥ 0, since Pi,j is Boolean on the Boolean cube.

(b) If fi is a linear representation of a
hole axiom then fi ≥ 0 is equivalent to the function (1 − pa,b) + (1 − pc,b) ≥ 1 on
{0, 1}Vars(PHPm

2ℓ) for a, c ∈ [m], b ∈ [2ℓ]. Thus Fi ≥ 0 is also equivalent to (1− Pa,b) +
(1− Pc,b) ≥ 1 on the Boolean cube. Observe that the restriction of (1− Pa,b) + (1−
Pc,b) ≥ 1 to the Boolean cube coincides with the predicate sa ≠ binℓ(b)∨ sc ̸= binℓ(b)
which is an axiom of BPHPm

2ℓ .
pigeon axiom then fi ≥ 0 is equivalent to

∑2ℓ

j=1 pa,j ≥ 1 on the Boolean cube for some
a ∈ [m]. Thus Fi ≥ 0 is equivalent to

∑2ℓ

j=1 Pa,j ≥ 1 on {0, 1}Vars(BPHPm

2ℓ). Observe
that the latter inequality is identically true, since Pa,j is equivalent to sa = binℓ(j−1),
so for exactly one value of j ∈ [2ℓ], Pa,j = 1. Since Fi ≥ 0 is identically true it can be
semantically derived from two arbitrary axioms of BPHPm

2ℓ .

It is easy to see that the size of the resulting refutation is at most 3S. ◀

▶ Proposition 44 ([4]). For m > n there exists a tree-like Cutting Planes (which is a
subsystem of Th(1)) refutation of PHPm

n of size O(m2n) .

▶ Proposition 6. For m > 2ℓ there exists a tree-like Th(ℓ) refutation of BPHPm
2ℓ of size

O(m2 · 2ℓ).

Proof. Follows from Propositions 43 and 44. ◀

References
1 Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower bounds for Lovász-Schrijver

systems and beyond follow from multiparty communication complexity. SIAM J. Comput.,
37(3):845–869, 2007.

2 Paul Beame and Søren Riis. More on the relative strength of counting principles. In Paul
Beam and Samuel R. Buss, editors, Proof Complexity and Feasible Arithmetics, Proceedings
of a DIMACS Workshop, New Brunswick, New Jersey, USA, April 21-24, 1996, volume 39
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 13–35.
DIMACS/AMS, 1996. doi:10.1090/dimacs/039/02.

3 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

4 William Cook, Collette R. Coullard, and Gy. Turán. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18(1):25–38, 1987.

5 Stefan S. Dantchev, Nicola Galesi, and Barnaby Martin. Resolution and the binary encoding of
combinatorial principles. In Amir Shpilka, editor, 34th Computational Complexity Conference,
CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA, volume 137 of LIPIcs, pages 6:1–6:25.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CCC.2019.6.

6 Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere. Random Θ(log n)-
CNFs are hard for cutting planes. In Chris Umans, editor, 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 109–120. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.19.

7 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower
bounds from resolution. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors,
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pages 902–911. ACM, 2018. doi:10.1145/
3188745.3188838.

CCC 2021

https://doi.org/10.1090/dimacs/039/02
https://doi.org/10.4230/LIPIcs.CCC.2019.6
https://doi.org/10.1109/FOCS.2017.19
https://doi.org/10.1145/3188745.3188838
https://doi.org/10.1145/3188745.3188838

3:32 Proof Complexity of Natural Formulas via Communication Arguments

8 Michal Garlík and Leszek Aleksander Kolodziejczyk. Some subsystems of constant-depth frege
with parity. ACM Trans. Comput. Log., 19(4):29:1–29:34, 2018. doi:10.1145/3243126.

9 Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity.
In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC
’14, page 847–856, New York, NY, USA, 2014. Association for Computing Machinery. doi:
10.1145/2591796.2591838.

10 Pavel Hrubes and Pavel Pudlák. Random formulas, monotone circuits, and interpolation. In
Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 121–131. IEEE Computer Society,
2017. doi:10.1109/FOCS.2017.20.

11 Pavel Hrubes and Pavel Pudlák. A note on monotone real circuits. Inf. Process. Lett.,
131:15–19, 2018. doi:10.1016/j.ipl.2017.11.002.

12 Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: amplifying communica-
tion complexity hardness to time-space trade-offs in proof complexity. In Howard J. Karloff
and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 233–248. ACM, 2012.
doi:10.1145/2213977.2214000.

13 Russell Impagliazzo, Toniann Pitassi, and Alasdair Urquhart. Upper and lower bounds for
tree-like cutting planes proofs. In Proceedings of the Ninth Annual Symposium on Logic in
Computer Science (LICS ’94), Paris, France, July 4-7, 1994, pages 220–228. IEEE Computer
Society, 1994. doi:10.1109/LICS.1994.316069.

14 Dmitry Itsykson and Dmitry Sokolov. Lower bounds for splittings by linear combinations.
In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical
Foundations of Computer Science 2014 - 39th International Symposium, MFCS 2014, Budapest,
Hungary, August 25-29, 2014. Proceedings, Part II, volume 8635 of Lecture Notes in Computer
Science, pages 372–383. Springer, 2014. doi:10.1007/978-3-662-44465-8_32.

15 Dmitry Itsykson and Dmitry Sokolov. Resolution over linear equations modulo two. Annals
of Pure and Applied Logic, 171(1), January 2020. doi:10.1016/j.apal.2019.102722.

16 Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity of
set intersection. SIAM J. Discret. Math., 5(4):545–557, 1992. doi:10.1137/0405044.

17 Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. SIAM J. Discret. Math., 3(2):255–265, 1990. doi:10.1137/0403021.

18 H. Kesten. An introduction to probability theory and its applications, volume i, (william
feller). SIAM Review, 11(1):96–96, 1969. doi:10.1137/1011021.

19 Erfan Khaniki. On proof complexity of resolution over polynomial calculus. Electronic Col-
loquium on Computational Complexity (ECCC), 27:34, 2020. URL: https://eccc.weizmann.
ac.il/report/2020/034.

20 Jan Krajíček. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic. J. Symb. Log., 62(2):457–486, 1997. doi:10.2307/2275541.

21 Jan Krajíček. An exponential lower bound for a constraint propagation proof system based
on ordered binary decision diagrams. J. Symb. Log., 73(1):227–237, 2008. doi:10.2178/jsl/
1208358751.

22 Jan Krajíček. Randomized feasible interpolation and monotone circuits with a local oracle. J.
Mathematical Logic, 18(2):1850012:1–1850012:27, 2018. doi:10.1142/S0219061318500125.

23 Jan Krajíček. Proof complexity, volume 170. Cambridge University Press, 2019.
24 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,

1997.
25 Edward I Nechiporuk. A boolean function. Engl. transl. in Sov. Phys. Dokl., 10:591–593, 1966.
26 Vsevolod Oparin. Tight upper bound on splitting by linear combinations for pigeonhole

principle. In Nadia Creignou and Daniel Le Berre, editors, Theory and Applications of
Satisfiability Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8,
2016, Proceedings, volume 9710 of Lecture Notes in Computer Science, pages 77–84. Springer,
2016. doi:10.1007/978-3-319-40970-2_6.

https://doi.org/10.1145/3243126
https://doi.org/10.1145/2591796.2591838
https://doi.org/10.1145/2591796.2591838
https://doi.org/10.1109/FOCS.2017.20
https://doi.org/10.1016/j.ipl.2017.11.002
https://doi.org/10.1145/2213977.2214000
https://doi.org/10.1109/LICS.1994.316069
https://doi.org/10.1007/978-3-662-44465-8_32
https://doi.org/10.1016/j.apal.2019.102722
https://doi.org/10.1137/0405044
https://doi.org/10.1137/0403021
https://doi.org/10.1137/1011021
https://eccc.weizmann.ac.il/report/2020/034
https://eccc.weizmann.ac.il/report/2020/034
https://doi.org/10.2307/2275541
https://doi.org/10.2178/jsl/1208358751
https://doi.org/10.2178/jsl/1208358751
https://doi.org/10.1142/S0219061318500125
https://doi.org/10.1007/978-3-319-40970-2_6

D. Itsykson and A. Riazanov 3:33

27 Fedor Part and Iddo Tzameret. Resolution with counting: Dag-like lower bounds and
different moduli. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer
Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume
151 of LIPIcs, pages 19:1–19:37. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.ITCS.2020.19.

28 Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computa-
tions. J. Symb. Log., 62(3):981–998, 1997. doi:10.2307/2275583.

29 Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica,
19(3):403–435, 1999. doi:10.1007/s004930050062.

30 Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth. J. ACM,
39(3):736–744, 1992. doi:10.1145/146637.146684.

31 Alexander A. Sherstov. The multiparty communication complexity of set disjointness. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages 525–548,
2012.

32 Alexander A. Sherstov. Communication lower bounds using directional derivatives. J. ACM,
61(6), December 2014. doi:10.1145/2629334.

33 Dmitry Sokolov. Dag-like communication and its applications. In Computer Science -
Theory and Applications - 12th International Computer Science Symposium in Russia, CSR
2017, Kazan, Russia, June 8-12, 2017, Proceedings, pages 294–307, 2017. doi:10.1007/
978-3-319-58747-9_26.

A Proof of Lemma 12

▶ Lemma 12. Let T be a binary tree with m vertices such that the ith vertex is labeled with
ai ∈ {0, 1} with the hereditary property: for each inner vertex i with direct descendants c1
and c2, if ai = 1, then ac1 = 1 or ac2 = 1. We also assume that if r is the root of T , then
ar = 1. Assume that we have a one-sided bounded error oracle access to ai i.e. if we request
a value of ai and ai = 0 we get 1 with probability at most 1

2 and 0 with probability at least 1
2 ;

if ai = 1 we get 1 with probability 1. Then there exists an algorithm A that with probability
at least 2

3 returns a leaf ℓ of T with aℓ = 1 and makes O(logm) oracle queries to a1, . . . , am.

Proof of Lemma 12. For a tree F we denote by |F | the number of nodes in F and for a node
v of F we denote by Subtree(F, v) the subtree of F with root v. Let Oracle(i) be the oracle
function returning the correct value of ai with probability at least 9

10 . We can implement
such a function using the majority vote of a constant number of initial oracle queries. Let
C be a constant; an appropriate value of C we choose later. Consider Algorithm 2 on the
following page.

We claim that at any iteration Ti has the hereditary property. This is the case in the
beginning and if i decreases at some iteration, then the next Ti was considered at an earlier
iteration. Otherwise, the next Ti is either a subtree of the current Ti (in that case the
hereditary property is clearly maintained), or is obtained by removal a subtree with 0-labeled
root (here we use that the oracle has a one-sided error) from the previous Ti (the hereditary
property is also maintained in that case).

We first consider a variant of the algorithm that works infinitely long (i.e., C = +∞)
and compute the expected number of the first iteration such that Ti consists of a single
1-labeled leaf of T . Notice that after the first such iteration the value of Ti stays the same
for all further iterations. We show that that the expected value is at most C logm for some
constant C. Then by running the algorithm for 3C⌈logm⌉ iterations we obtain the required
error probability by Markov’s inequality.

CCC 2021

https://doi.org/10.4230/LIPIcs.ITCS.2020.19
https://doi.org/10.2307/2275583
https://doi.org/10.1007/s004930050062
https://doi.org/10.1145/146637.146684
https://doi.org/10.1145/2629334
https://doi.org/10.1007/978-3-319-58747-9_26
https://doi.org/10.1007/978-3-319-58747-9_26

3:34 Proof Complexity of Natural Formulas via Communication Arguments

Algorithm 2 Search for 1-leaf.

T0 := T ▷ Initialize the tree
i := 0
for j := 1 to 3C⌈log3/2 m⌉ do

r := root of Ti

if Oracle(r) = 0 then
i := max{0, i− 1} ▷ Backtrack since the current tree may not con-

tain a 1-leaf
else if |Ti| ̸= 1 then

v := a centroid node of Ti ▷ i.e. such that |Subtree(Ti, v)| ∈[1
3 |Ti|, 2

3 |Ti|
]

if Oracle(v) = 1 then
Ti+1 := Subtree(Ti, v)

else
Ti+1 := Ti−Subtree(Ti, v) ▷ Ti+1 is obtained from Ti by the deletion of

Subtree(Ti, v)
i := i+ 1

return the only node of Ti, if |Ti| = 1

Let T(j) denote the value of Ti before the start of jth iteration, i(j) denote i at the start
of jth iteration and r(j) denote the root of T(j). Notice that if ar(j) = 1, then for every
j′ > j, T(j′) is a subtree of T(j), since the algorithm never backtracks if the true value of the
roots label is 1. Hence, if ar(j) = ar(j′) = 1 for some j < j′, then i(j) ≤ i(j′).

Let us consider a sequence j1, j2, j3 . . ., where j1 = 0, js = min{j | ar(j) = 1 ∧ j >

js−1 ∧ i(j) > i(js−1)}, if such minimum exists.
Let us consider the iterations from js till js+1 − 1. We consider the random variables

Yjs
, Yjs+1, . . . Yjs+1−1 corresponding to these iterations with the following properties:
If T(j) coincides with T(js), then its root is labeled with 1. Then Yj = −1 if the second
oracle query returns the correct answer and Yj = 1 if the answer it incorrect. Notice that
Pr[Yj = −1] ≥ 9

10 .
If the root of T(j) is labeled with zero, then Yj = −1, if the first oracle query returns
the correct answer (i.e. the algorithm backtracks). Otherwise, if T(j) consists of a single
node Yj = 0. Otherwise, if the root of T(j + 1) is labeled with 0, then Yj = 1. If it is
labeled with 1, then Yj = −∞. Notice that Pr[Yj ≤ −1] ≥ 9

10 .

Notice that, js+1 = js + min{k |
∑js+k−1

j=js
Yj ≤ −1}. In order to estimate the expected

value of js+1− js we consider an auxiliary random variables Xjs
, Xjs+1, . . . , Xjs+1−1, defined

as Xj =
{

1, if Yj ≥ 0
−1, if Yj < 0

. Notice then
∑js+k−1

j=js
Yj ≤

∑js+k−1
j=js

Xj . We can apply the

following fact about random walks in a straight line to the random variables Xj :

▶ Theorem 45 (Section XII.2 of [18]). Let X1, X2, . . . be a sequence of independent random
variables that take value in {−1, 1}. Assume that for all i, Pr[Xi = 1] ≤ 1

10 and Pr[Xi =
−1] ≥ 9

10 . Let M be a random variable that equals the minimal natural number k such that∑k
i=1 Xi = −1. Then the expected value of M is at most C, where C ∈ R is an absolute

constant.

Fact 45 implies that E[js+1 − js] ≤ C. Then E[js] = E[js − js−1 + (js−1 − js−2) +
· · · + (j2 − j1) + (j1 − j0)] ≤ sC. Thus, by Markov’s inequality Pr[js ≤ 3sC] ≥ 2

3 . Since
|Tjs
| ≤

(2
3
)s |Tj0 |, the algorithm that runs for 3C⌈log3/2 m⌉ iterations terminates in a 1-

labeled leaf with probability at least 2
3 . ◀

A Lower Bound on Determinantal Complexity
Mrinal Kumar #

Department of Computer Science and Engineering, IIT Bombay, India

Ben Lee Volk1 #

Department of Computer Science, University of Texas at Austin, TX, USA

Abstract
The determinantal complexity of a polynomial P ∈ F[x1, . . . , xn] over a field F is the dimension of
the smallest matrix M whose entries are affine functions in F[x1, . . . , xn] such that P = Det(M).
We prove that the determinantal complexity of the polynomial

∑n

i=1 xn
i is at least 1.5n − 3.

For every n-variate polynomial of degree d, the determinantal complexity is trivially at least d,
and it is a long standing open problem to prove a lower bound which is super linear in max{n, d}.
Our result is the first lower bound for any explicit polynomial which is bigger by a constant factor
than max{n, d}, and improves upon the prior best bound of n + 1, proved by Alper, Bogart and
Velasco [2] for the same polynomial.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Theory
of computation → Circuit complexity

Keywords and phrases Determinantal Complexity, Algebraic Circuits, Lower Bounds, Singular
Variety

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.4

Related Version Full Version: https://arxiv.org/abs/2009.02452

Acknowledgements Mrinal thanks Ramprasad Saptharishi for various discussions on determinantal
complexity over the years, and in particular for explaining the proof of the result of Mignon and
Ressayre to him.

1 Introduction

1.1 Computing with Determinants
The determinantal complexity of a polynomial f ∈ F[x1, . . . , xn], denoted dc(f), is the minimal
integer m such that there exists an affine map L : Fn → Fm×m such that f(x) = Det(L(x)),
where for every square matrix M , Det(M) denotes the determinant of M .

This notion was first implicitly defined by Valiant [24], and it is tightly related to the VP
vs. VNP problem, the algebraic analog of the P vs. NP problem. The essence of the VP vs.
VNP problem is showing that some explicit polynomials are hard to compute. By defining
natural notions of reductions and completeness, Valiant showed that this problem is in fact
equivalent to showing that, for fields of characteristic different than two, the determinantal
complexity of the permanent polynomial,

Permn(X) =
∑

σ∈Sn

n∏
i=1

xi,σ(i),

doesn’t grow like a polynomial function in n.2

1 A part of this work was done while at the Center for the Mathematics of Information, California Institute
of Technology, USA.

2 Strictly speaking, the VP vs. VNP question is equivalent to showing that the determinantal complexity
of the Permn is at least nω(log n), but we skip over this fine grained detail for now.

© Mrinal Kumar and Ben Lee Volk;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 4; pp. 4:1–4:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mrinalkumar08@gmail.com
mailto:benleevolk@gmail.com
https://doi.org/10.4230/LIPIcs.CCC.2021.4
https://arxiv.org/abs/2009.02452
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 A Lower Bound on Determinantal Complexity

This fact is a consequence of the completeness property of the determinant: Valiant
showed that if f has an algebraic formula of size s, then the determinantal complexity of
f is at most s. This remains true even if f has an algebraic branching program (ABP) of
size s: ABPs are a natural and more powerful model of computation than formulas. We refer
to [22] and [20] for more background on algebraic complexity theory and for proofs of these
statements.

Thus, Valiant also established en passant the non-obvious fact that the determinantal
complexity of every polynomial is finite, and it’s at most roughly

(
n+d

n

)
for every n-variate

polynomial of degree d. Standard counting arguments also show that this estimate is close
to being tight for almost every such polynomial.

The benefit of this reformulation of the VP vs. VNP problem is that it appears to strip
away altogether the notion of “computation”: indeed, this problem can be stated without
even defining a computational model in any standard sense of the word, and thus it can
potentially be proved without having to argue about the topology or structure of every
possible arithmetic computation.

In practice, however, proving lower bounds on determinantal complexity is (unsurprisingly)
difficult. Currently, for n-variate polynomials, there are no known lower bounds which
are super-linear in n (see Subsection 1.2 for more details on previous work). Due to
the completeness property mentioned above, a lower bound of s on the determinantal
complexity of f will imply the same lower bound for algebraic formulas and even algebraic
branching programs. However, super-linear lower bounds for formulas are well-known for
decades [12], and super-linear lower bounds for ABPs were recently established in [7], so there
doesn’t seem to be any major complexity-theoretic barrier for proving such lower bounds for
determinantal complexity: the main obstacle is seemingly lack of techniques for reasoning
about computations using determinants, and hence it is important to study this model and
to develop techniques to understand it and to prove lower bounds, for the permanent as well
as for other explicit polynomials.

Even for the purpose of separating VP and VNP, one need not necessarily prove a lower
bound on the determinantal complexity of the permanent; the same conclusion will hold if the
lower bound on determinantal complexity is shown for any “explicit” polynomial (formally,
in the class VNP, which we don’t define here) in lieu of the permanent.

Before we describe the previous work concerning determinantal complexity, we provide
a brief remark about the notion of a “trivial” lower bound in this context which is worth
remembering when evaluating the previous results (and our result). Unlike most standard
computational models, observe that for an n-variate polynomial of degree d, even a lower
bound of n is non-trivial for determinantal complexity. This is because every coordinate of
the affine map L can depend on all n variables. Nevertheless, since the determinant of an
m × m matrix is a degree m polynomial, and thus Det(L(x)) is a polynomial of degree at
most m for every affine map L, the degree d is a trivial lower bound on the determinantal
complexity of f . Therefore, it is natural to consider polynomial families in which d ≤ n or
alternatively to hope to prove lower bounds stronger than max{n, d}.

1.2 Previous work

The early work on determinantal complexity mostly focused on proving lower bounds for the
permanent. Recall that the n × n permanent, Permn, is a degree n polynomial, so the trivial
lower bound is dc(Permn) ≥ n. Since over characteristic 2 the permanent and determinant
coincide, the results described here hold for characteristic not equal to 2.

M. Kumar and B. L. Volk 4:3

Already in 1913, Szegő [23], answering a question of Pólya [19], showed that there’s no
way to generalize the 2 × 2 identity

Perm
(

x1,1 x1,2
x2,1 x2,2

)
= Det

(
x1,1 x1,2

−x2,1 x2,2

)
by affixing ± signs to an n × n matrix of variables for n ≥ 3.

Marcus and Minc [16] strengthened this result by showing that for every n, dc(Permn) > n.
Subsequent work by von zur Gathen [25], Babai and Seress (see [25]), Cai [5] and Meshulam
[17] obtained the slightly stronger lower bound dc(Permn) ≥

√
2n.

Mignon and Ressayre [18] greatly improved the lower bound by proving dc(Permn) ≥ n2/2,
over the complex numbers. Cai, Chen and Li [6] extended this lower bound to fields of
positive characteristic different than two, and Landsberg, Manivel and Ressayre [15] extended
this result to the border version of determinantal complexity, that is, they showed that the
permanent is not even in the closure of polynomials with determinantal complexity less than
n2/2. Finally, Yabe [26] obtained an improved lower bound of (n − 1)2 + 1 over the real
numbers.

However, while these lower bounds are quadratic in the degree, Permn is a polynomial
with n2 many variables, and notably none of these lower bounds is larger than the number
of variables. In particular, these results don’t even recover a weak form of the n3 formula
lower bound of Kalorkoti for Permn [12].

Landsberg and Ressayre [14] considered determinantal representations that respect certain
symmetries (which they called equivariant determinantal complexity and denoted edc), and
proved that edc(Permn) is exponential in n. It’s unclear how stringent the symmetry
requirement is; Ladnsberg and Ressayre put forward the ambitious conjecture that edc and
dc are polynomially related, which, if true, would imply VP ̸= VNP. To the best of our
knowledge, this conjecture remains open, but it’s worth mentioning that in the context of
regular determinantal complexity, another notion defined and studied by [14], it can be shown
unconditionally that requiring symmetry may result in a super-polynomial blow-up [11].

The question of lower bounds for other explicit polynomial was also considered: Mignon
and Ressayre [18] proved that the determinantal complexity of quadratic polynomials of rank
r is exactly ⌈(r + 1)/2⌉ (this, of course, cannot give a lower bound beyond ⌈(n + 1)/2⌉). Chen,
Kayal and Wigderson [8] observed that the technique of Mignon and Ressayre implies an
n/2 lower bound on the determinantal complexity of the elementary symmetric polynomial
of degree 2,

∑
1≤i<j≤n xixj . Kumar [13] used a different technique to prove a similar lower

bound for the power symmetric polynomials
∑

i xd
i for d ≥ 2 over C.

The last lower bound was improved in a recent work of Alper, Bogart and Velasco [2]:
an immediate corollary of their main theorem is that dc

(∑
i xd

i

)
≥ n + 1, for every d ≥ 2.

Note that this lower bound is (only slightly) larger than the number of variables n, which
is the first lower bound we are aware of with this feature. The results of Alper et al. are
more general, and are stated as a function of the co-dimension of the singular locus of the
polynomial, a notion we use as well (see Section 3). In particular they are able to prove that
dc(Perm3) = 7, but their main statement can’t imply any lower bound stronger than n + 1
for an n-variate polynomial.

1.3 Our result
Our main result is the following theorem.

▶ Theorem 1. For every natural number n ≥ 6, the determinantal complexity of the
polynomial

∑n
i=1 xn

i over the field of complex numbers is at least 1.5n − 3.

CCC 2021

4:4 A Lower Bound on Determinantal Complexity

Although for simplicity we state our results for the complex numbers, all the results in
this paper also hold for algebraically closed fields of positive characteristic p, as long as p

doesn’t divide n. This assumption is not only an artifact of the proof. For example, when
n = pk, and over characteristic p,

pk∑
i=1

xpk

i =

 pk∑
i=1

xi

pk

has determinantal complexity at most n = pk; it is also a polynomial of degree n, so its
determinantal complexity is at least, and hence equals, n.

As discussed in Subsection 1.2, this is the first non-trivial3 lower bound of the form
(1 + ϵ)n, for any ϵ > 0 for any explicit n variate polynomial family, and improves the previous
best bound of n + 1 by Alper, Bogart and Velasco [2] by a constant factor.

This result, of course, is not fully satisfactory. The best upper bound we’re aware of
for dc(

∑n
i=1 xn

i) is O(n2), which follows from converting the natural algebraic formula or
ABP computing this polynomial to a determinantal expression. We suspect that the true
complexity might be Ω(n2) or at the very least ω(n).

Quantitatively, the situation here is somewhat similar to the case of lower bounds on the
rank of 3-dimensional tensors, where the best lower bounds are only a constant factor away
from the trivial lower bound, and proving super-linear lower bounds remains a challenging
open problem (cf. [1, 4, 3, 21], among others).

We now give an outline of the main ideas in our proof.

1.4 Overview of the proof

Let M ∈ F[x1, x2, . . . , xn]m×m matrix of affine functions such that
∑n

i=1 xn
i = Det(M(x)).

Theorem 1 shows a lower bound of 1.5n−3 on m. There are essentially three main ingredients
to the proof of Theorem 1, and we now discuss them in some more detail.

Converting the matrix M into a normal form

Let M0 ∈ Fm×m be the constant part of the matrix M , i.e. M0 = M(0). As a first step of
our proof, we show (in Lemma 5) that without loss of generality, M0 can be assumed to be a
diagonal matrix of rank equal to m − 1. We a say that a matrix M is in normal form if it
has this additional structure.

It is quite easy to observe that the rank of M0 is at most m − 1. However, for technical
reasons, we actually need the lower bound on the rank as well, and this fact is a consequence
of comparing the dimensions (as algebraic varieties) of the singular locus (which is just
the the set of zeroes of a polynomial of multiplicity at least two) of the determinant and
that of the polynomial

∑n
i=1 xn

i . Observations of this nature have been used in the context
of determinantal complexity lower bounds before, and indeed, we crucially rely on a well
known lemma of von zur Gathen (see Lemma 7) for the proof. The details can be found in
Subsection 3.1.

3 This means that the degree of the polynomials is at most the number of variables.

M. Kumar and B. L. Volk 4:5

Determinantal complexity of higher degree polynomial maps
As the key ingredient of our proof, we show that for any matrix M(x) ∈ F[x]m×m where
the entries of M are polynomials of degree at most n − 1 and M is in normal form, if
Det(M(x)) =

∑n
i=1 xn

i , then m ≥ n/2. Moreover, roughly the same lower bound continues
to hold as long as det(M) = (

∑n
i=1 xn

i) (1 + Q) for any polynomial Q, with Q(0) = 0.
Thus, this is a significant generalization of the n/2 lower bound on the standard notion

determinantal complexity (where the entries of M are affine functions) of
∑n

i=1 xn
i as shown

in [13]: this shows that roughly the same lower bound continues to hold even when the entries
of the matrix are arbitrary polynomials of degree as high as n − 1 and the determinant of
the matrix equals an arbitrary multiple of

∑n
i=1 xn

i with a non-zero constant term.
The proof of the lemma relies on the observation that the polynomial

∑n
i=1 xn

i does not
vanish with multiplicity at least two very often. This seemingly simple observation has been
previously used in the context of lower bounds on algebraic branching programs computing
this polynomial [13, 7] in a crucial way. See Subsection 3.2 for further details.

Trading dimension of the matrix for degree
As the final ingredient of our proof, we use a well known property of determinants (Lemma 10)
to show that if there is an m × m matrix M whose entries are affine functions and Det(M) =∑n

i=1 xn
i , then there is an (m − n + 2) × (m − n + 2) matrix N whose entries are polynomials

of degree at most n − 1 and Det(N) = (
∑n

i=1 xn
i)(1 + Q) for a polynomial Q which vanishes

at zero. Moreover, if the matrix M is in normal form, then the matrix N continues to be in
normal form.

Thus, we are in a setup where we can invoke the lower bound in Lemma 11 discussed
earlier and we get that the dimension of N which equals m − n + 2 must be at least n/2 − 1,
thereby implying that m is at least 1.5n − 3. The details of this step can be found in
Subsection 3.3.

2 Preliminaries

In this paper F always denotes an algebraically closed field. We use x to denote a tuple of
n variables x1, . . . , xn, where n is understood from the context (or is otherwise explicitly
mentioned).

We consider polynomial maps M : Fn → Fm×m given by m2 polynomials (Mi,j)i,j∈[m].
The same object can be thought of as a matrix of polynomials M(x) ∈ F[x]m×m and we
use both points of view interchangeably. The degree of M is the maximum degree of its
coordinates, i.e., deg M = maxi,j deg Mi,j .

Each M(x) ∈ F[x]m×m can be uniquely written as M(x) = M ′(x) + M0, where M0 ∈
Fm×m and in all m2 coordinates of M ′, the constant term is zero. We then call M0 the
constant part of the map. A polynomial in which the constant term is zero is called constant
free, and a polynomial map is called constant free if all of its coordinates are constant free,
i.e., in the above decomposition, M0 = 0.

We denote the determinant polynomial by Det. In cases where it is important to emphasize
the dimension of the matrices in question we write it in the subscript, so for example the
m × m determinant polynomial is denoted by Detm.

We assume knowledge of basic concepts in algebraic geometry such as affine varieties
V ⊆ Cn and their dimension, which we denote dim(V). We encourage readers unfamiliar
with those terms to consult the excellent textbook [9].

CCC 2021

4:6 A Lower Bound on Determinantal Complexity

Determinantal Complexity
We now formally define the notion of determinantal complexity, which is the focus of this
paper.

▶ Definition 2 (Determinantal Complexity). The determinantal complexity of a polynomial
P ∈ F[x] is defined as the minimum m ∈ N such that there is a m × m matrix M ∈ F[x]
whose entries are polynomials of degree at most one such that

P = Det(M) .

▶ Remark 3. The above definition naturally generalizes to a family of polynomials in the
following sense. A family {Pn}n∈N of polynomials is said to have determinantal complexity at
most f(n) : N → N if there exists an n0 ∈ N, such that for every n ≥ n0, the determinantal
complexity of Pn is at most f(n).

3 A lower bound on determinantal complexity

This section will be devoted for a proof of Theorem 1. We begin with the following lemma,
which was instrumental in the recent proofs of lower bounds for algebraic formulas and
algebraic branching programs.

▶ Lemma 4 ([7, 13]). Let d ≥ 2 be a natural number. Let P1, P2, . . . , Pt, Q1, . . . , Qt, L ∈ C[x]
be polynomials such that deg(P ′) < d, P1, . . . , Pt, Q1, . . . , Qt have a common zero and

n∑
i=1

xd
i =

t∑
j=1

Pj(x)Qj(x) + P ′ .

Then, t ≥ n/2.

We now show that without loss of generality, the constant part of every polynomial map
M such that

∑n
i=1 xd

i = Detm(M(x)) has a very special form: is it an m×m diagonal matrix
with 0 in the (1, 1) coordinate and 1 in all diagonal entries.

3.1 Reducing the matrix M to a normal form
This claim is not entirely new and very similar statements were proved, for example, in
[18, 2]. For completeness, and since the exact statement we need is slightly more general, we
provide a proof.

▶ Lemma 5. Let d ≥ 2 be a natural number and let M(x) ∈ F[x]m×m be a polynomial map
such that

Detm(M(x)) =
n∑

i=1
xd

i .

Then, there exists a matrix M̃(x) ∈ F[x]m×m with deg(M̃) ≤ deg(M),

Detm(M̃(x)) =
n∑

i=1
xd

i ,

and the constant part of M̃ is a diagonal m × m matrix M̃0 such that (M̃0)1,1 = 0 and
(M̃0)i,i = 1, for 2 ≤ i ≤ m.

M. Kumar and B. L. Volk 4:7

To prove Lemma 5 we require a few preliminaries. We begin with the definition of a
singular locus of a polynomial (or a hypersurface).

▶ Definition 6. Let f ∈ F[x] be a polynomial. The singular locus of f , denoted Sing(f), is
the variety defined by

Sing(f) =
{

a : ∂f

∂xi
(a) = 0, 1 ≤ i ≤ n

}
.

The singular locus of the determinant was studied by von zur Gathen, who proved the
following lemma.

▶ Lemma 7 ([25]). Let F be an algebraically closed field and let Detm denote the m × m

determinant polynomial. Then Sing(Detm) ⊆ Fm×m is precisely the set of matrices of rank
at most m − 2, and dim Sing(Detm) = m2 − 4.

The following is a slight generalization of a lemma of von zur Gathen (cf. also [2]).

▶ Lemma 8. Let f ∈ F[x] be a polynomial, and let M : Fn → Fm×m be a polynomial
map such that f(x) = Detm(M(x)). Suppose further that dim(Sing(f)) < n − 4. Then
Im(M) ∩ Sing(Detm) = ∅. Furthermore, all matrices in Im(M) have rank at least m − 1.

Proof. Let yi,j denote the coordinates of Fm×m and write M = (Mi,j)i,j∈[m]. Using the
chain rule, we compute

∂f

∂xk
=

∑
i,j∈[m]

∂Detm

∂yi,j
(M(x)) · ∂Mi,j

∂xk
(x), k ∈ [n]. (1)

Suppose A ∈ Im(M) ∩ Sing(Detm), and let B be such that A = M(B). By definition of
Sing(Detm), ∂Detm

∂yi,j
(M(B)) = 0 for all i, j ∈ [m], and by (1) we get that B ∈ Sing(f). Thus

M−1(Sing(Detm)) ⊆ Sing(f), and dim(M−1(Sing(Detm))) ≤ dim Sing(f) < n − 4. On the
other hand, using a standard lower bound on the dimension of pre-images of polynomial
maps (see Theorem 17.24 of [10]), if Im(M) and Sing(Detm) aren’t disjoint,

dim(M−1(Sing(Detm))) ≥ n + (m2 − 4) − m2 = n − 4.

This contradiction implies that Im(M) ∩ Sing(Detm) = ∅. The “furthermore” part of the
theorem follows from Lemma 7. ◀

We will also need the following easy fact which shows that
∑n

i=1 xd
i satisfies that assump-

tion of Lemma 8.

▶ Lemma 9 ([13, 7]). For every d ≥ 2, dim(Sing(
∑n

i=1 xd
i)) = 0.

We are now ready to prove Lemma 5.

Proof of Lemma 5. Let f =
∑n

i=1 xd
i and let M : Fn → Fm×m be a polynomial map such

that f(x) = Detm(M(x)), and write M = M ′ + M0 where M0 is the constant part of M .
First, observe that

0 = f(0) = Detm(M(0)) = Detm(M0),

which implies that rank(M0) < m. By Lemma 8 and Lemma 9, we also know that rank(M0) =
rank(M(0)) ≥ m − 1, so rank(M0) = m − 1.

CCC 2021

4:8 A Lower Bound on Determinantal Complexity

By performing Gaussian elimination on the rows and on the columns, we can find two
m × m matrices G1, G2 such that det(Gi) = ±1 for i = 1, 2 and N0 := G1M0G2 is a diagonal
matrix such that (N0)1,1 = 0 and (N0)i,i ̸= 0 for 2 ≤ i ≤ m.

Now define a diagonal m × m matrix ∆ such that ∆i,i = 1/(N0)i,i for 2 ≤ i ≤ m, and

∆1,1 = Det(G1) · Det(G2) ·
m∏

i=2
(N0)i,i.

It readily follows that Det(∆) = Det(G1) ·Det(G2), and that M̃0 := (G1M0G2)∆ is a diagonal
matrix such that (M̃0)1,1 = 0 and (M̃0)i,i = 1 for all 2 ≤ i ≤ m.

Finally, define M̃ = G1MG2∆. We verify that indeed

Det(M̃(x)) = Det(G1) · Det(M(x)) · Det(G2) · Det(∆)
= Det(M(x)) · (Det(G1) · Det(G2))2 = Det(M(x)) = f(x).

We also have that

M̃ = G1(M ′ + M0)G2∆ = G1M ′G2∆ + G1M0G2∆ = G1M ′G2∆ + M̃0.

Since G1, G2, ∆ ∈ Fm×m, it also holds that M̃ ′ := G1M ′G2∆ is a matrix of constant-free
polynomials, and that deg M̃ ≤ deg M . ◀

We will also use the following simple and well known property of the determinant of a
block matrix.

▶ Lemma 10. Let M ∈ Fm×m be a matrix, and let A ∈ Ft×t, B ∈ Ft×m−t, C ∈ Fm−t×t, D ∈
Fm−t×m−t be its submatrices as follows:

M =
(

A B

C D

)
If D is invertible, then

Det(M) = Det(A − BD−1C) · Det(D) .

Proof. Follows directly from the decomposition(
A B

C D

)
=
(

A − BD−1C BD−1

0 Im−t

)
·
(

It 0
C D

)
and the multiplicativity of the determinant. ◀

3.2 Determinantal complexity of higher degree polynomial maps
In the following lemma we prove a lower bound of n/2 on the determinantal complexity in
a more general model than the standard model. This is a generalization with respect to
two properties. First, the entries of the matrix are no longer constrained to be polynomials
of degree at most 1, and can have degree as high as d − 1, while computing the degree d

polynomial
(∑n

i=1 xd
i

)
. Moreover, the determinant of the matrix M does not even have to

compute the candidate hard polynomial
(∑n

i=1 xd
i

)
exactly. It suffices if the determinant is

equal to a polynomial of the form
(∑n

i=1 xd
i

)
· (β + Q) where β is a non-zero field constant

and Q is an arbitrary polynomial (of potentially very high degree!) which is constant free,
i.e. Q(0) = 0.

M. Kumar and B. L. Volk 4:9

▶ Lemma 11. Let d ≥ 2 be a natural number and let M(x) ∈ F[x]m×m such that deg(M) ≤
d − 1, and the constant part of M is a diagonal matrix M0 such that (M0)1,1 = 0 and
(M0)i,i = 1 for 2 ≤ i ≤ m. Suppose that

Det(M) =
(

n∑
i=1

xd
i

)
· (β + Q) ,

where β ∈ F is non-zero and Q is a constant free polynomial. Then m ≥ n/2 − 1.

Proof. Using the Laplace expansion of Det(M) along the first row, we get

Det(M) =
m∑

j=1
(−1)(j+1)M1,j · Det(N1,j) ,

where Ni,j is the submatrix of M obtained by deleting the i-th row and the j-th column.
For every j ∈ [m], j > 1, we claim that Det(N1,j) is a constant free polynomial, i.e.

Det(N1,j)(0) = Det (N1,j(0)) = 0 .

To see this, we observe that for every j ∈ [m] \ {1}, N1,j(0) is a (m − 1) × (m − 1) matrix,
which has at most m − 2 non-zero entries. This follows since M0 has at most m − 1 non-zero
entries and in obtaining N1,j from M , we drop the entry Mj,j , which is one of the (m − 1)
entries of M with a non-zero constant term, and hence one of the (m − 1) non-zero entries
of M0. However, we note that N1,1(0) is the (m − 1) × (m − 1) identity matrix, so the
constant term of Det(N1,1) is 1, and we write Det(N1,1) = 1 + P (x) where P is constant free.
Therefore, we have(

n∑
i=1

xd
i

)
· (β + Q) = Det(M) = M1,1(1 + P) +

m∑
j=2

(−1)(j+1)M1,j · Det(N1,j)

In other words,(
n∑

i=1
xd

i

)
· (β + Q) = Det(M) = M1,1 + M1,1 · P +

m∑
j=2

(−1)(j+1)M1,j · Det(N1,j)

Slightly rearranging (and using β ̸= 0), we get

n∑
i=1

xd
i = 1

β

−

(
n∑

i=1
xd

i

)
· Q + M1,1 + M1,1 · P +

m∑
j=2

(−1)(j+1)M1,j · Det(N1,j)

Since, deg(M1,1) < d and M1,1, P, M1,2, Det(N1,2), . . . , M1,k, Det(N1,k), Q are all constant
free (and hence share a common zero, namely 0), we have from Lemma 4 that m ≥ n/2−1. ◀

3.3 Completing the proof of Theorem 1
We are now ready to complete the proof of Theorem 1.

Proof of Theorem 1. Let M be an m × m matrix with deg(M) ≤ 1 such that

n∑
i=1

xn
i = Det(M) .

CCC 2021

4:10 A Lower Bound on Determinantal Complexity

From Lemma 5, we can assume without loss of generality that the constant part M0 of M is
a diagonal matrix such that (M0)1,1 = 0 and (M0)i,i = 1 for 2 ≤ i ≤ m. In particular, all
the off diagonal entries of M and M1,1 are homogeneous linear forms or zero, and Mj,j ̸= 0
for j > 1.

Observe that for every t ≤ m − 1, the principal minor Dt of M which is obtained by
deleting the first m− t rows and columns of M is invertible over the field of rational functions
F(x). To see this, observe that the matrix Dt(0) is the identity matrix, which implies that
Det(Dt) is a non-zero polynomial. Moreover, since every entry of M has degree at most 1,
and Det(M) has degree n, we know that m ≥ n. So, we conclude that the principal minor
D := D(n−2) of M is invertible over F(x). Thus, if B and C are respectively the submatrices
of M defined as

M =
(

A B

C D

)
then by Lemma 10 we have

Det(M) = Det(A − BD−1C) · Det(D) . (2)

Since D−1 = adj(D)/ det(D), where adj(D) is the adjugate matrix of D, the entries of D−1

can be written as as a ratio of two polynomials, where the numerator has degree at most
n − 3 and the denominator, which is equal to Det(D), has degree at most n − 2. Moreover,
as discussed earlier in the proof, the constant part of D is the identity matrix, so there is a
constant free polynomial R ∈ F[x] such that

Det(D) = 1 + R .

Thus, every entry of the (m − n + 2) × (m − n + 2) matrix A − BD−1C can be written as a
ratio of two polynomials with the numerator being a polynomial of degree at most n − 1 and
the denominator being equal to Det(D) = 1 + R. Therefore, by clearing the denominators
and using (2), we get that

Det(M) · (1 + R)m−n+2 = Det(N) · (1 + R) ,

where N is the matrix with polynomial entries of degree at most n−1 obtained by multiplying
every entry of A − BD−1C by 1 + R. Simplifying further, we get(

n∑
i=1

xn
i

)
· (1 + R)m−n+1 = Det(M) · (1 + R)m−n+1 = Det(N) .

We are almost ready to invoke Lemma 11 to obtain a lower bound on the size of N (and
hence M), but to do that we need to ensure that the constant part of N , N0, is a diagonal
matrix with (N0)1,1 = 0 and (N0)i,i = 1 for 2 ≤ i ≤ m − n + 2. We now verify that this is
indeed the case.

Recall that by the structure of the constant part M0 of M , all the entries of B and C and
the (1, 1) entry of A are constant free, and the constant term of Ai,i is 1 for 2 ≤ i ≤ m−n+2.
Thus, every entry of the matrix BD−1C is a rational function with a constant free numerator,
and hence all the off-diagonal entries in A − BD−1C as well as its (1, 1) entry are rational
functions with a constant free numerator. Moreover, the denominator of all the entries(
A − BD−1C

)
equals Det(D) = 1 + R, for a constant free polynomial R. So, expressing each

entry of A − BD−1C as a quotient of polynomials, the constant term of each numerator on

M. Kumar and B. L. Volk 4:11

the diagonal is 1 except for the (1, 1) entry, which has a constant free numerator. Finally,
observe that eliminating the denominator of the entries of

(
A − BD−1C

)
by multiplying

every entry by (1 + R) gives us the matrix N .
Thus the matrix N satisfies the hypothesis of Lemma 11, and hence (m−n+2) ≥ n/2−1.

This gives us m ≥ 1.5n − 3 and completes the proof of Theorem 1. ◀

References
1 Boris Alexeev, Michael A. Forbes, and Jacob Tsimerman. Tensor rank: Some lower and upper

bounds. In Proceedings of the 26th Annual IEEE Conference on Computational Complexity
(CCC 2011), pages 283–291. IEEE Computer Society, 2011. doi:10.1109/CCC.2011.28.

2 Jarod Alper, Tristram Bogart, and Mauricio Velasco. A lower bound for the determinantal
complexity of a hypersurface. Found. Comput. Math., 17(3):829–836, 2017. doi:10.1007/
s10208-015-9300-x.

3 Markus Bläser. A 5
2 n2-lower bound for the rank of n × n matrix multiplication over arbitrary

fields. In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 1999), pages 45–50, 1999. doi:10.1109/SFFCS.1999.814576.

4 Mark R. Brown and David P. Dobkin. An improved lower bound on polynomial multiplication.
IEEE Trans. Computers, 29(5):337–340, 1980. doi:10.1109/TC.1980.1675583.

5 Jin-Yi Cai. A note on the determinant and permanent problem. Inf. Comput., 84(1):119–127,
1990. doi:10.1016/0890-5401(90)90036-H.

6 Jin-Yi Cai, Xi Chen, and Dong Li. Quadratic lower bound for permanent vs. determinant in
any characteristic. Comput. Complex., 19(1):37–56, 2010. doi:10.1007/s00037-009-0284-2.

7 Prerona Chatterjee, Mrinal Kumar, Adrian She, and Ben Lee Volk. A quadratic lower bound
for algebraic branching programs. CoRR, abs/1911.11793, 2019. arXiv:1911.11793.

8 Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial derivatives in arithmetic complexity.
Foundations and Trends in Theoretical Computer Science, 2011. doi:10.1561/0400000043.

9 David A. Cox, John B. Little, and Donal O’Shea. Ideals, Varieties and Algorithms. Under-
graduate texts in mathematics. Springer, 2007. doi:10.1007/978-0-387-35651-8.

10 Joe Harris. Algebraic geometry, volume 133 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 1995. A first course, Corrected reprint of the 1992 original. doi:10.1007/
978-1-4757-2189-8.

11 Christian Ikenmeyer and J.M. Landsberg. On the complexity of the permanent in various
computational models. Journal of Pure and Applied Algebra, 221(12):2911–2927, 2017. doi:
10.1016/j.jpaa.2017.02.008.

12 Kyriakos Kalorkoti. A Lower Bound for the Formula Size of Rational Functions. SICOMP,
14(3):678–687, 1985. doi:10.1137/0214050.

13 Mrinal Kumar. A quadratic lower bound for homogeneous algebraic branching programs.
Computational Complexity, 28(3):409–435, 2019. doi:10.1007/s00037-019-00186-3.

14 J.M. Landsberg and Nicolas Ressayre. Permanent v. determinant: An exponential lower bound
assuming symmetry and a potential path towards valiant’s conjecture. Differential Geometry
and its Applications, 55:146–166, 2017. doi:10.1016/j.difgeo.2017.03.017.

15 Joseph M. Landsberg, Laurent Manivel, and Nicolas Ressayre. Hypersurfaces with degenerate
duals and the geometric complexity theory program. Comment. Math. Helv., 88(2):469–484,
2013. doi:10.4171/CMH/292.

16 Marvin Marcus and Henryk Minc. On the relation between the determinant and the permanent.
Illinois J. Math., 5(3):376–381, September 1961. doi:10.1215/ijm/1255630882.

17 Roy Meshulam. On two extremal matrix problems. Linear Algebra and its Applica-
tions, 114–115:261–271, 1989. URL: https://www.sciencedirect.com/science/article/
pii/0024379589904655.

CCC 2021

https://doi.org/10.1109/CCC.2011.28
https://doi.org/10.1007/s10208-015-9300-x
https://doi.org/10.1007/s10208-015-9300-x
https://doi.org/10.1109/SFFCS.1999.814576
https://doi.org/10.1109/TC.1980.1675583
https://doi.org/10.1016/0890-5401(90)90036-H
https://doi.org/10.1007/s00037-009-0284-2
http://arxiv.org/abs/1911.11793
https://doi.org/10.1561/0400000043
https://doi.org/10.1007/978-0-387-35651-8
https://doi.org/10.1007/978-1-4757-2189-8
https://doi.org/10.1007/978-1-4757-2189-8
https://doi.org/10.1016/j.jpaa.2017.02.008
https://doi.org/10.1016/j.jpaa.2017.02.008
https://doi.org/10.1137/0214050
https://doi.org/10.1007/s00037-019-00186-3
https://doi.org/10.1016/j.difgeo.2017.03.017
https://doi.org/10.4171/CMH/292
https://doi.org/10.1215/ijm/1255630882
https://www.sciencedirect.com/science/article/pii/0024379589904655
https://www.sciencedirect.com/science/article/pii/0024379589904655

4:12 A Lower Bound on Determinantal Complexity

18 Thierry Mignon and Nicolas Ressayre. A quadratic bound for the determinant and permanent
problem. International Mathematics Research Notes, 2004(79):4241–4253, 2004. Available on
citeseer:10.1.1.106.4910. doi:10.1155/S1073792804142566.

19 George Pólya. Aufgabe 424. Archiv der Mathematik und Physik, 20:271, 1913. URL: http:
//babel.hathitrust.org/cgi/pt?id=mdp.39015085215716;seq=399.

20 Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Github
survey, 2015. URL: https://github.com/dasarpmar/lowerbounds-survey/releases/.

21 Amir Shpilka. Lower bounds for matrix product. In Proceedings of the 42nd Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2001), pages 358–367, 2001. doi:
10.1109/SFCS.2001.959910.

22 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5:207–388, March 2010.
doi:10.1561/0400000039.

23 Gábor Szegő. Lösung zu aufgabe 424. Archiv der Mathematik und Physik, 21:291–292, 1913.
URL: http://hdl.handle.net/2027/uc1.b2958231.

24 Leslie G. Valiant. Completeness Classes in Algebra. In Proceedings of the 11th Annual ACM
Symposium on Theory of Computing (STOC 1979), pages 249–261, 1979. doi:10.1145/
800135.804419.

25 Joachim von zur Gathen. Permanent and determinant. Linear Algebra and its Applications,
96:87–100, 1987. URL: https://core.ac.uk/download/pdf/82095887.pdf.

26 Akihiro Yabe. Bi-polynomial rank and determinantal complexity. CoRR, abs/1504.00151,
2015. arXiv:1504.00151.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.4910
https://doi.org/10.1155/S1073792804142566
http://babel.hathitrust.org/cgi/pt?id=mdp.39015085215716;seq=399
http://babel.hathitrust.org/cgi/pt?id=mdp.39015085215716;seq=399
https://github.com/dasarpmar/lowerbounds-survey/releases/
https://doi.org/10.1109/SFCS.2001.959910
https://doi.org/10.1109/SFCS.2001.959910
https://doi.org/10.1561/0400000039
http://hdl.handle.net/2027/uc1.b2958231
https://doi.org/10.1145/800135.804419
https://doi.org/10.1145/800135.804419
https://core.ac.uk/download/pdf/82095887.pdf
http://arxiv.org/abs/1504.00151

Optimal Tiling of the Euclidean Space Using
Permutation-Symmetric Bodies
Mark Braverman #

Department of Computer Science, Princeton University, NJ, USA

Dor Minzer #

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
What is the least surface area of a permutation-symmetric body B whose Zn translations tile Rn?
Since any such body must have volume 1, the isoperimetric inequality implies that its surface area
must be at least Ω(

√
n). Remarkably, Kindler et al. showed that for general bodies B this is tight,

i.e. that there is a tiling body of Rn whose surface area is O(
√

n).
In theoretical computer science, the tiling problem is intimately related to the study of parallel

repetition theorems (which are an important component in PCPs), and more specifically in the
question of whether a “strong version” of the parallel repetition theorem holds. Raz showed, using
the odd cycle game, that strong parallel repetition fails in general, and subsequently these ideas
were used in order to construct non-trivial tilings of Rn.

In this paper, motivated by the study of a symmetric parallel repetition, we consider the
permutation-symmetric variant of the tiling problem in Rn. We show that any permutation-
symmetric body that tiles Rn must have surface area at least Ω(n/

√
log n), and that this bound is

tight, i.e. that there is a permutation-symmetric tiling body of Rn with surface area O(n/
√

log n).
We also give matching bounds for the value of the symmetric parallel repetition of Raz’s odd cycle
game.

Our result suggests that while strong parallel repetition fails in general, there may be important
special cases where it still applies.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases PCP, Parallel Repetition, Tilings

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.5

Related Version Full Version: https://arxiv.org/abs/2011.04071

Funding Mark Braverman: Research supported in part by the NSF Alan T. Waterman Award,
Grant No. 1933331, a Packard Fellowship in Science and Engineering, and the Simons Collaboration
on Algorithms and Geometry.

1 Introduction

A body D ⊆ Rn is said to be tiling the Euclidean space Rn, if its translations by Zn cover
the entire space and have disjoint interiors. The foam problem asks for the least surface area
a tiling body D can have. The problem had been considered by mathematicians already in
the 19th century [33], and it also appears in chemistry, physics and engineering [30]. More
recently, the problem had received significant attention in the theoretical computer science
community due to its strong relation with the parallel repetition problem [15, 24, 2].

The simplest example for a body that tiles the Euclidean space is the solid cube, D = [0, 1]n,
which has surface area 2n. At first glance, one may expect the solid cube to be the best
example there is, or more modestly that any tiling body would need to have surface area
Ω(n). The main results of [24, 2] show that this initial intuition is completely false, and that
there are far more efficient tiling bodies whose surface area is O(

√
n). This is surprising,

since spheres – which are the minimizers of surface area among all bodies with a given,
© Mark Braverman and Dor Minzer;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 5; pp. 5:1–5:48

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mbraverm@gmail.com
mailto:dminzer@mit.edu
https://doi.org/10.4230/LIPIcs.CCC.2021.5
https://arxiv.org/abs/2011.04071
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 On Symmetric Tilings of Euclidean Space

fixed volume (in this case volume 1), have Θ(
√

n) surface area and seem to be very far from
forming a tiling of Rn. As we will shortly discuss, the existence of such surprising tiling
body is intimately related to the existence of another surprising object – namely non-trivial
strategies for 2-prover-1-round games, repeated in parallel. The main goal of this paper is to
understand the permutation-symmetric variant of the foam problem, which is closely related
to the symmetric variant of parallel repetition.

1.1 2-Prover-1-Round Games and Parallel Repetition
▶ Definition 1. A 2-Prover-1-Round Game G = (L ∪ R, E, Φ, ΣL, ΣR) consists of a bipartite
graph (L ∪ R, E), alphabets ΣL, ΣR, and a constraint Φ(u, v) for every edge (u, v) ∈ E. The
goal is to find assignments AL : L → ΣL, AR : R → ΣR that satify the maximum fraction of
the constraints. A constraint Φ(u, v) is satisfied if (AL(u), AR(v)) ∈ Φ(u, v), where by abuse
of notation, Φ(u, v) ⊆ ΣL × ΣR denotes the subset of label pairs that are deemed satisfactory.

The value of a game, denoted by val(G), is the maximum fraction of constraints that can
be satisfied in G by any pair of assignments AL, AR.

Equivalently, a 2-Prover-1-Round Game can be viewed as a “game” between two provers and
a verifier. The verifier picks a constraint (u, v) at random, asks the “question” u to the left
prover, the “question” v to the right prover, receives “answers” AL(u), AR(v) respectively
from the provers; the verifier accepts if and only if (AL(u), AR(v)) ∈ Φ(u, v). It is easy to
see that in this language, val(G) represents the maximum probability a verifier will accept,
where the maximum is taken over all of the strategies of the provers.

2-Prover-1-Round games play an important role in the study of PCPs and Hardness of
approximation, and in fact an equivalent statement of the seminal PCP Theorem [14, 5, 4]
can be stated in that language. It will be convenient for us to use the notation of gap
problems: for 0 < s < c ⩽ 1, denote by Gap2Prover1Round(c, s) the promise problem in
which the input is a 2-Prover-1-Round game G promised to either satisfy val(G) ⩾ c or
val(G) ⩽ s, and the goal is to distinguish between these two cases. The parameters c and s

are referred to as the completeness and soundness parameters of the problem, respectively.

▶ Theorem 2 (PCP Theorem, [14, 5, 4]). There are k ∈ N, s < 1 for which the problem
Gap2Prover1Round(1, s) is NP-hard on instances with alphabet size at most k.

The PCP Theorem, as stated above, can be used to establish some hardness of approxim-
ation results. However it turns out that to get strong hardness results, one must prove a
variant of the theorem with small soundness, i.e. with s close to 0. One way to do that is by
amplifying hardness using parallel repetition.

The t-fold repetition of a game G, denoted by G⊗t, is the game in which the verifier picks t

independently chosen challenges, (u1, v1), . . . , (ut, vt) and sends them to the provers in a single
bunch, i.e. u⃗ = (u1, . . . , ut) to one prover and v⃗ = (v1, . . . , vt) to the second one. The provers
are supposed to give an answer to each one of their questions, say AL(u⃗) = (a1, . . . , at)
and AR(v⃗) = (b1, . . . , bt), and the verifier accepts with only if (ai, bi) ∈ Φ(ui, vi) for all
i = 1, . . . , t. What is the value of the t-fold repeated game, as a function of val(G) and t?

The idea of parallel repetition was first introduced in [16], wherein it was originally
suggested that val(G⊗t) ≈ val(G)t. Alas, in a later version of that paper it was shown to be
false, leaving the question wide open. Raz [27] was the first to prove that the value of the
repeated game decreases exponentially with t, and with many subsequent works improving
the result [18, 26, 13, 10]. The most relevant version for our purposes is the result of Rao [26],
which makes the following statement. First, we say a game G is a projection game, if all
of the constraints Φ(u, v) can be described by a projection map, i.e. there is a mapping
πu,v : ΣL → ΣR such that Φ(u, v) = { (a, b) | b = ϕu,v(a)}.

M. Braverman and D. Minzer 5:3

▶ Theorem 3. If G is a projection game, and val(G) = 1 − ε, then val(G⊕t) ⩽ (1 − ε2)Ω(t).

Rao’s result seems nearly optimal, in the sense that a-priori, the best bound one can hope
for is that val(G⊕t) ⩽ (1 − ε)Ω(t). Quantitatively speaking, one may think that for all intents
and purposes, Rao’s bound is just as good as the best one can hope for. However, as it turns
out, there is at least one prominent problem where this quadratic gap is what makes the
difference, which we describe next.

The Unique Games Conjecture and the Max-Cut Conjecture

The Unique Games problem is a specific type of projection 2-Prover-1-Round Game, in which
the projection maps ϕu,v are also bijections. The Unique Games Conjecture of Khot [19]
(abbreviated UGC henceforth) asserts that a strong PCP theorem holds for Unique-Games,
and more specifically that for any ε, δ > 0, the problem GapUG(1−ε, δ) is NP-hard, when the
alphabet sizes depend only on ε, δ. This conjecture is now of central importance in complexity
theory, and it is known to imply many, often tight inapproximability results (see [20, 34]
for more details). A prominent example is the result of [21], stating that assuming UGC,
the Goemans-Williamson algorithm [17] for Max-Cut is optimal. In particular, for small
enough ε > 0, if UGC is true, then GapMaxCut(1 − ε, 1 − 2

π

√
ε + O(ε1.5)) is NP-hard. Does

the converse hold? I.e., does the assumption that GapMaxCut(1 − ε, 1 − 2
π

√
ε + O(ε1.5)) is

NP-hard imply UGC? If so, that would be a promising avenue of attack on the Unique-Games
Conjecture.

Noting that Max-Cut is a Unique-Game and that Parallel repetition preserves uniqueness,
one may hope a reduction from GapMaxCut(1−ε, 1− 2

π

√
ε+O(ε1.5)) to GapUniqueGames(1−

ε′, δ) would simply follow by appealing to a parallel repetition theorem, such as Rao’s
result [26]. Alas, the quadratic loss there exactly matches the quadratic gap we have in Max-
Cut, thereby nullifying it completely. This possibility was discussed in [31], who among other
things proposed that perhaps a stronger version of Theorem 3 should hold for Unique-Games,
in which the ε2 is replaced with ε. This conjecture was referred to as the Strong Parallel
Repetition Conjecture, and unfortunately it turns out to be false.

A Strong parallel repetition theorem?

The problem of understanding parallel repetition over a very simple game, called the odd cycle
game and denoted below by Cn, was shown to be closely related to the foam problem [15].
In this game, we have a graph G which is an odd cycle of length n, and the provers try to
convince the verifier that G is a bipartite graph (while it is clearly not). To test the provers,
the verifier picks a vertex u from the cycle uniformly at random, and then picks v as v = u

with probability 1/2, and otherwise v is one of the neighbours of u with equal probability.
The verifier sends u as a question to one prover, and v as a question to the other prover, and
expects to receive a bit from each one b1, b2. The verifier checks that b1 = b2 in case u = v,
or that b1 ̸= b2 in case u ̸= v.

Note that clearly, val(Cn) = 1 − Θ(1/n), and so the Strong Parallel Repetition Conjecture
would predict that the value of the t-fold repeated game is 1 − Θ(t/n) so long as t ⩽ n.
Alas, this turns out to be false. First, in [15], it was shown that non-trivial solutions to the
foam problem imply non-trivial strategies for the t-fold repeated game, and in particular the
existence of a tiling body with surface area o(n) would refute the Strong Parallel Repetition
Conjecture. Subsequently, Raz [28] showed that the value of the t-fold repeated odd-cycle
game is in fact at least 1 − O(

√
t/n) so long as t ⩽ n2, and that Theorem 3 is optimal (i.e.,

the quadratic gap is necessary, even for Unique-Games, and more specifically for Max-Cut).

CCC 2021

5:4 On Symmetric Tilings of Euclidean Space

Subsequent works were able to use these insights to solve the foam problem for the integer
lattice [24, 2] and lead to better understanding of parallel repetition and its variants [6, 8].
From the point of view of UGC, these results were very discouraging since they eliminate
one of the main available venues (perhaps the main one) for the proof of UGC.

Partly due to this issue, the best partial results towards UGC had to take an entirely
different approach [22, 12, 11, 23, 7], and currently can only prove that GapUG(1/2, δ) is
NP-hard for every δ > 0.

1.2 A symmetric variant of Parallel Repetition
One may try to revive the plan for showing the equivalence of UGC and the hardness of
Max-Cut by considering variants of parallel repetition. Ideally, for that approach to work,
one should come up with a variant of parallel repetition, in which (a) the value decreases
exponentially with the number of repetitions, and (b) the operation preserves uniqueness. One
operation that had been considered in the literature, for example, is called fortification [25, 9].
Using this operation, the value of the game indeed decreases exponentially, however this
operation does not preserve uniqueness and therefore is not useful for showing the equivalence
of UGC and the Max-Cut Conjecture.

More relevant to us is the symmetric variant of parallel repetition that had been previously
suggested as a replacement for parallel repetition. In this variant, given a basic game G, the
verifier chooses the challenges (u1, v1), . . . , (ut, vt), and sends the questions to the provers as
unordered tuples, i.e. U = {u1, . . . , ut} and V = {v1, . . . , vt}. The verifier expects to receive
a label for each element in U and each element in V , and checks that they satisfy each one
of the constraints (ui, vi). We denote this game by G⊗symt, and note that it clearly preserves
uniqueness; also, we note that the arguments used to refute the strong Parallel Repetition
Conjecture do not immediately apply to it. While a naive application of this variant can
still be shown to fail in general,1 there is still a hope that it can be used in a more clever
way and establish the equivalence of UGC and the Max-Cut Conjecture. Our work is partly
motivated by seeking such possibilities.

We are thus led to investigate the effect on symmetric repetition on the odd cycle game,
and more specifically the symmetric variant of the foam problem which again is very much
related.

1.3 Our results
In this paper, our main object of study mainly are tilings of Rn using a permutation-symmetric
body.

▶ Definition 4. A set D ⊆ Rn is called permutation-symmetric if for any π ∈ Sn and x ∈ Rn,
it holds that x ∈ D if and only if π(x) ∈ D.

The main question we consider, is what is the least surface area a permutation-symmetric
tiling body can have. Again, one has the trivial example of the solid cube D = [0, 1]n, but
inspired by the non-permutation-symmetric variant of the problem, one may expect there to
be better examples. We first show that while this is possible, the savings are much milder,
and can be at most a multiplicative factor of

√
log n.

1 This can be seen by considering a graph which is the disjoint union of many odd cycles (instead of a
single odd cycle), say M , so that one would get a canonical ordering on most subsets of t vertices from
this graph, so long as t = o(

√
M).

M. Braverman and D. Minzer 5:5

▶ Theorem 5. Any permutation-symmetric tiling body D of volume 1 with piecewise smooth

surface has surface area at least Ω
(

n√
log n

)
.

Besides the quantitative result itself, we believe the argument used in the proof of
Theorem 5 carries with it a lot of intuition regarding the additional challenge that the
permutation-symmetric variant of the foam problem and the parallel repetition posses, and
we hope that this intuition will help us to develop better understanding of symmetric parallel
repetition in general. We remark that our proof actually shows a lower bound on the “noise
sensitivity” parameter of the body, which is known to be smaller than the surface area of the
body.

We complement Theorem 5 with a randomized construction showing that O(
√

log n)
savings are indeed possible.

▶ Theorem 6. There exists a permutation-symmetric tiling body D of volume 1 with piecewise

smooth surface that has surface area O

(
n√
log n

)
.

Our results also imply tight bounds for the value of the t-fold symmetric repetition of the
odd cycle game, which we discuss next.

1.4 Significance of our results for symmetric parallel repetition
Using our techniques, one may give sharp estimates to the value of the t-fold symmetric
repetition of the odd cycle game, as follows.

▶ Theorem 7. There is c > 0, such that for an odd n, if t ⩽ cn
√

log n then val(C⊗symt
n) ⩽

1 − c t

n
√

log t
.

▶ Theorem 8. For all n, t ∈ N it holds that val(C⊗symt
n) ⩾ 1 − O

(
t

n
√

log t

)
.

We remark that a similar connection between the standard foam problem and the value of
the t-fold repeated game is well known. More precisely, in [15] the authors show that (1)
tilings of the Euclidean space with small surface area can be used to derive good strategies
for C⊗t

n , and (2) the Euclidean isoperimetric inequality (which gives a lower bound of Θ(
√

n)
on the surface area of a tiling body) can be used to prove upper bounds on the value of C⊗t

n .
We remark that while (1) above is derived in a black-box way, the converse direction, i.e. (2),
is done in a white-box way. That is, the authors in [15] do not actually use the Euclidean
isoperimetric inequality, but rather convert one of its proofs into an upper bound of the value
of the t-fold repeated odd cycle game.

In contrast to [15], our proof of Theorems 7, 8 follow more direct adaptations of the
proofs of Theorems 5, 6. This is partly because our arguments work from scratch and are
therefore more flexible. We outline these adaptations in Section 5.

We believe that Theorem 7 gives some new life to the possible equivalence between the
Max-Cut Conjecture and UGC. For example, this would follow if such rate of amplification
would hold for all graphs if we allow for a “mild” preprocessing phase first (i.e., preprocessing
that doesn’t change the value of the instance by much). For this reason, we believe it would
be interesting to investigate other graph topologies on which symmetric parallel repetition
performs well, and hope that the techniques developed herein will be useful.

On the flip side, Theorem 8 asserts that even symmetric parallel repetition on the odd
cycle game admits non-trivial strategies. Thus, we cannot hope to use it in order to establish
the equivalence of weaker forms of the Max-Cut Conjecture and UGC. Here, by weaker

CCC 2021

5:6 On Symmetric Tilings of Euclidean Space

forms of the Max-Cut Conjecture, we mean the conjecture that GapMaxCut[1 − ε, 1 − δ(ε)]
is NP-hard for small enough ε, and δ(ε) is a nearly linear function of ε, e.g. δ(ε) = 100ε or
δ(ε) = ε

√
log(1/ε). Given that the best known NP-hardness results for Max-Cut in this

regime are only known for δ = (1 + Ω(1))ε, this means that there is still a significant road
ahead to establish even the weakest version of the Max-Cut Conjecture that may be useful
for UGC.

1.5 Techniques

In this section, we explain some of the intuition and idea that go into the proof of Theorems 5
and 6, focusing mostly on the former.

Let D be a permutation-symmetric tiling body. To prove that the surface area of D is
at least A, it is enough to prove that D is sensitive to noise rate 1/A. I.e., that if we take
a point x from D uniformly at random, and walk along a random Gaussian direction u of
expected length 1/A, then with constant probability we escape D at some point on the line
ℓx,u(t) = x + tu.

We begin by describing an argument showing a worse bound than the one proved in
Theorem 5, which is nevertheless helpful in conveying some of the intuition. To prove that
a random line ℓx,u(t) escapes D with noticeable probability, we argue that for a Gaussian
vector u of appropriate expected length, with constant probability the line ℓx,u will contain
a point in which there are two coordinates differing by a non-zero integer, say y with the
coordinates being i, j. Note that this is enough, since then if we assumed that y ∈ D, then
the point y′ in which the value of coordinates i, j is switched also lies in D (by symmetry),
and then the difference of y and y′ is a non-zero lattice vector, so they must be in different
cells of the tiling. Therefore we conclude that y ̸∈ D.

With this plan in mind, let x = (x1, . . . , xn) be uniformly sampled from D, and consider
the coordinates of x modulo 1, i.e. B = {x1 (mod 1), . . . , xn (mod 1)}, as points in the
one-dimensional torus T. First, it can be shown without much difficulty that they are jointly
distributed as uniform random points on T, hence standard probabilistic tools tell us that
any interval of length 100 log n/n on the torus contains at least two points from B. Now,
regardless of how the body D looks, there would be two coordinates, say i and j, that almost
differ by a non-zero integer, yet appear very close when projected on the torus, i.e. in distance
at most 100 log n/n. In this case, with constant probability the coordinates i, j get even
closer along a random line ℓx,u(t) = x + tu, and provided the length of u is long enough to
cover the distance between xi, xj on the torus (i.e. each coordinate of magnitude Θ(log n/n)),
the line ℓx,u(t) would contain a point as desired.

The above argument can indeed be formalized to yield a lower bound of Ω
(

n
log n

)
on

the surface area of D, but it carries more intuition than just the bound itself. In a sense,
this argument says that if we project x onto the torus, we should be wary of coordinates
whose projections are too close, and make sure that it would only occur if the coordinates
themselves are close (as opposed to almost differing by a non-zero integer). Analyzing the
event that two coordinates meet on the circle while being different is easily seen however
to not yield a better bound than Ω(n/ log n), hence to prove Theorem 5 we must look at a
different event. That being said, the argument does tell us that we should look at pairwise
distances between coordinates of x when projected on the circle, and in particular on pairs
that are “relatively close” and the way they move along a line in a random direction.

It turns out that it is enough to come up with some parameter that behaves differently
on the endpoints of the line, assuming the line does not escape D. This is because that if
the escape probability from D is small, then the distributions of x and x + u are close in

M. Braverman and D. Minzer 5:7

statistical distance, and in particular any parameter should behave roughly the same on x and
on x + u. Indeed, our proof utilizes an energy function (inspired by the previous argument)
that considers the pairwise distances between coordinates of x; the contribution from a pair
of coordinates that are in distance d in the circle is proportional to e−Z·d, where Z ∼ n√

log n
.

We show that with high probability, the energy increases along a random line ℓx,u(t) provided
it does not escape D, while on the other hand, if the escape probability is small, then x and
x + u are close in statistical distance and hence Prx,u [Energy(x + u) > Energy(x)] ≈ 1

2 . This
implies that the escape probability must be constant.

We remark that the above high-level intuition also plays a role in the proof of Theorem 5.
I.e., when constructing a permutation-symmetric tiling body D, all we really need to care
about are the pairwise distances between coordinates, and that we must make sure that
somewhat far coordinates will project to far points on the torus. Indeed, given a point
x ∈ Rn, in order to decide which integer lattice point y ∈ Zn we round x to, we only look at
this pairwise distances of x on the torus. We try to find a point z on the torus that is far
from all the coordinates of x, and do the rounding according to it. One naive attempt would
be to take z that is furthest from all coordinates of x, however this point turns out to be
very noise sensitive and therefore yield a body with large surface area. Instead, we consider
a probability distribution that only puts significant weight on z’s that are somewhat far from
all xi’s, yet is not too concentrated around the maximizers. Coming up and analyzing a
construction along these lines turns out to require considerable technical effort, and we defer
a more elaborate discussion to Section 4

Organization of the paper

In Section 2, we set up basic notations and preliminaries. Section 3 is devoted to the proof
of Theorem 3, and Section 4 is devoted for the proof of Theorem 4. In Section 5 we prove
Theorems 7, 8, and in Section 6 we state some open problems.

2 Preliminaries

Notations

We write X ≲ Y or X = O(Y) to say that there exists an absolute constant C > 0 such
that X ⩽ CY , and similarly write X ≳ Y or X = Ω(Y) to say that there exists an absolute
constant c > 0 such that X ⩾ cY . We write X ≍ Y or X = Θ(Y) to say that Y ≲ X ≲ Y .

We denote random variables by boldface letters such as x and ∆. We denote by N (µ, σ2)
the distribution of a standard Gaussian random variable with mean µ and variance σ2, and
by N (µ⃗, Σ) the distribution of a multi-dimensional Gaussian random variable with means µ⃗

and covariance matrix Σ.
For a measurable set D of finite measure, we denote by a ∈ D or a ∈R D a uniform

sample from D.

2.1 Needles
▶ Definition 9. Let δ > 0, and let a ∈ Rn. A random δ-needle is a line defined as
ℓa,u = {a + tu | t ∈ [0, 1]} where the direction vector u is a chosen as a standard Gaussian
N (0, δIn).

Given a tiling body D, a random δ-needle from D is a random δ-needle ℓa,u where a ∈ D

is chosen uniformly. Random needles are a useful tool to measure the surface area of a D, as
shown in the following two lemmas. First, given a tiling body D and a needle ℓa,u, we may

CCC 2021

5:8 On Symmetric Tilings of Euclidean Space

think of the needle as “wrapping around” around D, i.e. its points are taken modulo D. We
denote this “wrapped around” line by ℓ̃a,u. We will use the following formula from [32]; the
case n = 2 is formula (8.10) therein, and the extension to general n is discussed in page 274.

▶ Lemma 10. There is a constant Cn = Θ(1), such that the following holds. Let S be a
piecewise smooth surface in a tiling body D of volume 1, and let δ > 0. Then

E
a∈D,u∼N (0,δIn)

[∣∣ℓ̃a,u ∩ S
∣∣] = Cn ·

√
δ · area(S).

▶ Lemma 11. Let D be a tiling body of volume 1, and let δ > 0. Then

Pr
a∈D,u∼N (0,δIn)

[ℓa,u ∩ ∂D ̸= ∅] ⩽ Θ(
√

δ)area(∂D).

Proof. Set S = ∂D, and note that whenever ℓa,δu ∩ ∂D ̸= ∅, we have that
∣∣ℓ̃a,δu ∩ S

∣∣ ⩾ 1.
Hence by the previous lemma we get that

Pr
a∈D,u∼N (0,δIn)

[ℓa,u ∩ ∂D ̸= ∅] ⩽ E
a∈D,u∼N (0,δIn)

[∣∣ℓ̃a,u ∩ ∂D
∣∣] ⩽ Θ(

√
δ) · area(∂D). ◀

We will use the above lemma to prove lower bounds on the surface area of a tiling body, by
finding δ such that the probability on the left hand side of Lemma 11 is at least Ω(1); this
would imply that area(∂D) ⩾ Ω(1/

√
δ).

2.2 Basic useful properties of tiling bodies

▶ Lemma 12. Let D ⊆ Rn be a permutation-symmetric body, such that for all z ∈ Zn \ {0}
we have D ∩ (D + z) = ∅, and let x ∈ D. Then for every 1 ⩽ i, j ⩽ n, if xi − xj ∈ Z, then
xi = xj.

Proof. Assume towards contradiction xi − xj is a non-zero integer k, and let Si,j ∈ Sn be
the permutation that maps i to j, j to i and has any r ̸= i, j as a fixed point. Since D is
permutation-symmetric, we have that Si,j(x) ∈ D. Also, we have

x − Si,j(x) = (xi − xj)(ei − ej) = k(ei − ej),

where ei is the ith element in the standard basis. In other words, we get that x = Si,j(x) + z

for non-zero z ∈ Zn, and therefore x ∈ D + z. This contradict the fact that D and D + z are
disjoint. ◀

▶ Lemma 13. Let D be a volume 1 tiling body, and choose a = (a1, . . . , an) ∈ D uniformly
at random. Then the random variable (a1(mod 1), . . . , an(mod 1)) is uniform over [0, 1)n.

Proof. Sample x ∈ [0, 1)n, and take a = x (mod D). Note that the distribution of a is
uniform over D. Indeed, for that we note that the map x → x (mod D) is bijection from
[0, 1)n to D: otherwise, there were x ̸= x′ in [0, 1)n that are equal mod D, and therefore
differ by non-zero lattice point (which is clearly impossible). Now as the distribution of a
(mod 1) is just x, the claim follows. ◀

M. Braverman and D. Minzer 5:9

3 The lower bound: proof of Theorem 5

In this section, we prove the lower bound on the surface area of a permutation-symmetric tiling
body D. Throughout, we will have two parameters: σ, which is magnitude of each coordinates
in the needle we consider (which will be of order

√
log n

n), and an auxiliary parameter Z

(which will be of order n
log n). Let D be a permutation-symmetric tiling body containing

0. We denote by a a random point in D, and by u a Gaussian vector N (0, σ2In). We will
prove that Pra,u [ℓa,u ̸⊆ D] = Ω(1), which by Lemma 11 implies that area(∂D) ⩾ Ω(1/σ).
As σ = Θ(

√
log n/n), this would establish Theorem 5.

Notations

For x, y ∈ R, define

d(x, y) := min
z∈Z,z ̸=0

|(x + z) − y| ∈ [0, 1].

To gain some intuition for the definition of d(x, y), suppose x and y are two entries of a point
a ∈ D. Clearly, if d(x, y) is small, then x, y nearly differ by an integer z ̸= 0, and this says
that the point a is somewhat close to the boundary of D (in the sense that Lemma 12 could
kick in if we move along a direction that decreases this distance).

Our argument will indeed inspect d(ai, aj) for all distinct i, j ∈ [n] and the way they
change along a random direction. A key measure that we will keep track of is the energy of
a point a ∈ D, defined by

Ψ(a) :=
∑
i<j

e−Z·d(ai,aj).

We show that for a ∈R D and u ∼ N (0, σ2In), if ℓa,u ⊆ D with probability close to 1, then
the energy of a increases along the line ℓa,u with high probability, and in particular that
Ψ(a + u) > Ψ(a). We then argue that with high probability, this should be the case for the
point a as well as for a − u, hence Ψ(a + u) > Ψ(a − u) with high probability. This event
however can happen with probability at most 0.5 by symmetry, hence completing the proof.

3.1 Analyzing the energy along a random line
By definition of d(x, y), we either have d(x, y) = (x + z − y) or d(x, y) = −(x + z − y) for
some z ∈ Z \ {0}, and this sign determines whether x, y need to move in different directions
or the same direction for d(x, y) to get smaller. To capture this, we denote

γ(x, y) :=
{

+1 if d(x, y) = x + z − y for some z ∈ Z, z ̸= 0,

−1 otherwise.

Next, we discuss the energy of a configuration, which is the key concept used in the proof.
Let Z be a parameter to be chosen later (of the order n/ log n). As stated earlier, our
goal is to analyze the behaviour of Ψ(a) along a random σ2-needle from a in direction u.
Towards this end, note that we expect (at least if ui, uj are small) that d(ai + ui, aj + uj) =
d(ai, aj) + γ(ai, aj)(uj − uj), hence expect Ψ(a + u) to be close to

Ψ(a, u) :=
∑
i<j

e−Z·(d(ai,aj)+γ(ai,aj)·(ui−uj)).

Indeed, this is the content of the following claim.

CCC 2021

5:10 On Symmetric Tilings of Euclidean Space

▷ Claim 14. Suppose |ui| ⩽ 1/20 for all i, and a + [0, 1] · u ⊂ D, then

|Ψ(a + u) − Ψ(a, u)| ⩽ n2 · e−Z/4.

Proof. We consider the contribution of each pair (i, j) to Ψ(a + u) and Ψ(a, u) separately.
Without loss of generality we may only consider pairs i, j that γ(ai, aj) = 1, and thus
d(ai, aj) = ai − aj + z for some z ∈ Z, z ̸= 0. Let

d = ai − aj + z + (ui − uj) = (ai + ui) − (aj + uj) + z.

First, we argue that d ⩾ 0. Otherwise, since ai − aj + z ⩾ 0 it follows by continuity that
there is λ ∈ [0, 1] such that ai − aj + z + λ(ui − uj) = 0, and hence the point a + λu has
entries that differ by an integer z ̸= 0, and this contradicts Lemma 12 (as a + λu ∈ D). We
now consider two cases:

Case 1: d ∈ [0, 0.5]. In this case, we have d(ai +ui, aj +uj) = d, and thus the contribution
of the pair (i, j) to both sums is the same (e−Z·d).
Case 2: d > 0.5. Since |ui − uj | ⩽ 0.1, it follows that d(ai, aj) = d − (ui − uj) > 0.4,
which implies d(ai + ui, aj + uj) > 0.3. Therefore, the contribution to Ψ(a, u) from i, j is
at most e−0.4·Z and to Ψ(a + u) is at most e−0.3·Z , and in particular (i, j) contributes
(in absolute value) at most e−Z/4 to the difference between the sums.

Taking a sum over all pairs (i, j) concludes the proof. ◁

3.2 Analyzing the expectation and variance of Ψ(a, u)
Next, we consider Ψ(a, u) as a random variable over the choice of u and compute its
expectation and variance. In both computations we will use the well-known fact that
E[e−Z·N(0,c2)] = eZ2c2/2 for all c > 0.

▷ Claim 15. For every a ∈ Rn we have Eu∼N (0,σ2In) [Ψ(a, u)] = Ψ(a) · e(Z·σ)2 .

Proof. By linearity of expectation we have that

E
u∼N (0,σ2In)

[Ψ(a, u)] =
∑
i<j

e−Z·d(ai,aj) · E
u∼N (0,σ2In)

[
e−Z·γ(ai,aj)·(ui−uj)

]
.

Note that the above expectation does not depend on i, j: for every i, j the distribution of
ui − uj is N(0, σ2) − N(0, σ2) ∼ N(0, 2σ2), so it is symmetric around 0 and thus the sign
γ(ai, aj) does not affect the expectation. Hence we have

E
u∼N (0,σ2In)

[Ψ(a, u)] = Ψ(a) · E[eZ·N(0,2σ2)] = Ψ(a) · eZ2σ2
. ◁

Next, we turn our attention into upper bounding the variance of Ψ(a, u), and for that
we first define the notion of good points a ∈ D and prove two preliminary claims. We say a
point a is good if any interval of length (10 log n)/n on the torus contains at least log n and
at most 100 log n coordinates from a(mod 1). Note by Lemma 13, if a is chosen randomly
from D then a (mod 1) is uniform over [0, 1)n and by Chernoff bound is easily shown to be
good with probability > 0.999.

We first show that good points have high energy.

▷ Claim 16. There exists c2 > 0, such that for Z = 0.1 log n
n , if a is good then Ψ(a) > c2 log2 n.

Proof. Partition the torus [0, 1) into m = n/(10 log n) disjoint intervals of length 1/m =
(10 log n)/n each. We say that Ii is unanimous, if there is bi ∈ R (called anchor) such that
(1) bi(mod 1) is the middle of Ii, and (2) for the majority of points aj ∈ Ii, |aj − bi| < 1/m.

We consider two cases:

M. Braverman and D. Minzer 5:11

Case 1: There is an interval Ii that is not unanimous. Note that there are at least log n

coordinates j of a such that aj ∈ Ii. Let j⋆ be such coordinate, and write aj⋆ = zj⋆ + {aj⋆}
where zj⋆ ∈ Z and {aj⋆} is the fractional part of aj⋆ . Consider b = zj⋆ + mi where
mi is the middle of Ii. Then since Ii is not unanimous, b is not an anchor of it and
so there are at least 1

2 log n coordinates of a, say (ak)k∈Ki,j⋆ that mod 1 are in Ii, and
|ak − b| ⩾ 1/m. Writing ak = zk + {ak}, we observe that zk ̸= zj⋆ , since otherwise
|ak − b| = |{ak} − mi| ⩽ 1/(2m). Hence the difference ak − aj⋆ is 10 log n/n close to an
integer zk − zj⋆ ̸= 0, and so d(ak, aj⋆) ⩽ 10 log n/n, and the contribution of Ψ(a) is at least
e−1. Summing we get

Ψ(a) ⩾ 1
2

∑
j⋆:aj⋆ ∈Ii

∑
k∈Ki,j⋆

e−Zd(ak,aj⋆) ⩾
1
2

∑
j:aj∈Ii

e−1 |Ki,j⋆ | ⩾ 1
4e

log2 n.

Case 2: All intervals are unanimous. Let bi be an anchor of Ii. Note that since the
fractional part of two adjacent anchors, i.e. of bi, bi+1, are 1/m apart, we have that either
|bi − bi+1| ⩽ 1/m or |bi − bi+1| ⩾ 1 − 1/m. We claim there exists i for which the latter
condition holds. To see this, assume that for all i = 1, . . . , m − 1 we have that the first
condition holds. Then we have bi = z + i 10 log n

n for some z ∈ Z for all i = 1, . . . , m, and
hence |bm − b1| ⩾ 1 − 1/m (and the condition holds for i = m).

Thus, we fix i such that |bi − bi+1| ⩾ 1 − 1/m, and thus bi − bi+1 = z + α for z ̸= 0
and |α| ⩽ 1/m. Let Ki be the coordinates j of a such that |aj − bi| ⩽ 1/m for j ∈ Ki

and similarly define Ki+1. We have that ar − aj = z + α + (ar − bi+1) + (aj − bi), hence
ar − aj = z + β for |β| ⩽ 3/m for all r ∈ Ki+1, j ∈ Ki. Thus d(ar, aj) ⩽ 3/m, and we get

Ψ(a) ⩾ |Ki| |Ki+1| e−Z·3/m ⩾
1
4e−3 log2 n ◁

Let Ci =
∑

j ̸=i e−Z·d(ai,aj) be the contribution of ai to Ψ(a). Note that Ψ(a) = 1
2

∑
i Ci.

▷ Claim 17. There exists c3 > 0, such that if a is good, then for all i we have Ci <

c3Ψ(a)/ log n.

Proof. Note that d(ai, aj) ⩾ |{ai}−{aj}|. Since any interval of length 10 log n/n on the torus
contains at most 100 log n points of a, we have that the number of j’s such that |{ai} − {aj}|
is between 10 log n/n · k and 10 log n/n · (k + 1) is at most 200 log n (for all k). Therefore,

Ci < 200 log n ·
∞∑

k=0
e−Z·k·(10 log n)/n = 200 log n ·

∞∑
k=0

e−k ⩽ 400 log n.

Using Claim 16, we may bound log n ⩽ 1
c2

Ψ(a)
log n , finishing the proof. ◁

We are now ready to bound the variance of Ψ(a, u).

▷ Claim 18. There exists c1 > 0 such that the following holds. Let Z = n/10 log n, let
a ∈ Rn be good and let u ∼ N (0, σ2In). Then

varu[Ψ(a, u)] ⩽ c1

log n
· (e4(Z·σ)2

− e2(Z·σ)2
) · Ψ(a)2.

CCC 2021

5:12 On Symmetric Tilings of Euclidean Space

Proof. Using Claim 15 to compute the expectation of Ψ(a, u), we have by definition that

varu(Ψ(a, u)) = E
u

∑

i<j

e−Z·d(ai,aj) · (eZ·γ(ai,aj)·(ui−uj) − e(Z·σ)2
)

2

=
∑
i<j

e−2Z·d(ai,aj) · E
u

[(
eZ·γ(ai,aj)·(ui−uj) − e(Z·σ)2

)2
]
+

∑
(i,j,k)

distinct

e−Z·(d(ai,aj)+d(ai,ak))

· E
u

[
(eZ·γ(ai,aj)·(ui−uj) − e(Z·σ)2

)(eZ·γ(ai,ak)·(ui−uk) − e(Z·σ)2
)
]
.

Here, we used that fact that if i, j, k, r are distinct then eZ·γ(ai,aj)·(ui−uj), eZ·γ(ak,ar)·(uk−ur)

are independent with expectation e(Z·σ)2 , hence the contribution of these terms is 0. Com-
puting, we see that

E
u

[(
eZ·γ(ai,aj)·(ui−uj) − e(Z·σ)2

)2
]

= E
[
eZ·N(0,8σ2)

]
− e2(Z·σ)2

= e4(Z·σ)2
− e2(Z·σ)2

,

and

E
u

[
(eZ·γ(ai,aj)·(ui−uj) − e(Z·σ)2

)(eZ·γ(ai,ak)·(ui−uk) − e(Z·σ)2
)
]

= E
[
e(γ(ai,aj)+γ(ai,ak))Z·N(0,σ2)

]
E

[
eZ·N(0,2σ2)

]
− e2(Z·σ)2

⩽ E
[
e2Z·N(0,σ2)

]
E

[
eZ·N(0,2σ2)

]
− e2(Z·σ)2

= e3(Z·σ)2
− e2(Z·σ)2

.

Thus, we get that

varu(Ψ(a, u))

⩽
∑
i<j

e−2Z·d(ai,aj)(e4(Z·σ)2
− e2(Z·σ)2

)

+
∑

(i, j, k) distinct

e−Z·(d(ai,aj)+d(ai,ak))(e3(Z·σ)2
− e2(Z·σ)2

)

⩽ (e4(Z·σ)2
− e2(Z·σ)2

)
∑

i

∑
j ̸=i

e−2Z·d(ai,aj) +
∑

j,k ̸=i

e−Z·(d(ai,aj)+d(ai,ak))

= (e4(Z·σ)2

− e2(Z·σ)2
)
∑

i

∑
j ̸=i

e−2Z·d(ai,aj)

2

= (e4(Z·σ)2
− e2(Z·σ)2

) ·
∑

i

C2
i .

Therefore, using Claim 17 we conclude that

varu(Ψ(a, u)) ⩽ (e4(Z·σ)2
−e2(Z·σ)2

)c3Ψ(a)
log n

·
∑

i

Ci = 2c3

log n
·(e4(Z·σ)2

−e2(Z·σ)2
) ·Ψ(a)2.

Setting c1 := 2c3 completes the proof. ◁

M. Braverman and D. Minzer 5:13

Putting the last two claims together, we have:

▷ Claim 19. Let σ = 104√
c1

√
log n

n and let a ∈ Rn be good. Then

Pr
u

[Ψ(a, u) > Ψ(a) + (Zσ)4

2 Ψ(a)] ⩾ 0.96.

Proof. We upper bound the probability of the complement event. Using Claim 15 (and
et ⩾ 1 + t + t2/2 for t ⩾ 0), we get

E
u

[Ψ(a, u)] ⩾ Ψ(a) ·
(

1 + (Zσ)2 + (Zσ)4

2

)
.

Hence

Pr
u

[
Ψ(a, u) ⩽ Ψ(a) + (Zσ)4

2 Ψ(a)
]
⩽ Pr

u

[∣∣∣∣Ψ(a, u) − E
u′

[Ψ(a, u′)]
∣∣∣∣ ⩾ Ψ(a) · (Zσ)2

]
.

We want to upper bound the probability of the last event using Chebyshev’s inequality.
Since a is good, the conclusion of Claim 18 holds. Since Zσ = o(1), for large enough n we get

varu[Ψ(a, u)] ⩽ c1

log n
· (e4(Z·σ)2

− e2(Z·σ)2
) · Ψ(a)2 ⩽

c1

log n
· Ψ(a)2 · 8(Zσ)2.

Therefore, applying Chebyshev’s inequality we see the probability in question is at most

varu[Ψ(a, u)]
Ψ(a)2 · (Zσ)4 ⩽

c1 · Ψ(a)2 · 8(Zσ)2

(log n) · Ψ(a)2 · (Zσ)4 = 8c1

(log n) · (Zσ)2 = 4c1

102c1
= 0.04. ◁

3.3 Finishing the argument
For each u, denote εu = Pra∈D [ℓa,u ̸⊆ D], ε = Eu∼N (0,σ2In) [εu] = Pra,u [ℓa,u ̸⊆ D].

▷ Claim 20. For each u, DT V [a; a − u] ⩽ εu + ε−u.

Proof. Let K be a Borel set. Note that it is enough to show that (1) if K ⊆ D then 0 ⩽
Pra∈D [a ∈ K] − Pra∈D [a − u ∈ K] ⩽ εu, and (2) if K ⊆ D̄, then −ε−u ⩽ Pra∈D [a ∈ K] −
Pra∈D [a − u ∈ K] ⩽ 0. Indeed, given both (1) and (2), the triangle inequality implies for
any Borel set K ⊆ Rn,∣∣∣∣ Pr

a∈D
[a ∈ K] − Pr

a∈D
[a − u ∈ K]

∣∣∣∣
⩽

∣∣∣∣ Pr
a∈D

[a ∈ K ∩ D] − Pr
a∈D

[a − u ∈ K ∩ D] + Pr
a∈D

[a ∈ K \ D] − Pr
a∈D

[a − u ∈ K \ D]
∣∣∣∣

⩽ εu + ε−u.

To prove (1), note that Pra∈D [a ∈ K] = µ(K) and

Pr
a∈D

[a − u ∈ K] = Pr
a∈D

[a ∈ K + u] = µ((K + u) ∩ D).

This is at most µ(K + u) = µ(K) (hence the expression in (1) is non-negative) and at least
⩾ µ(K + u) − µ((K + u) \ D) = µ(K) − µ(K \ (D − u)). Therefore

0 ⩽ Pr
a∈D

[a ∈ K]− Pr
a∈D

[a − u ∈ K] ⩽ µ(K\(D−u)) ⩽ µ(D\(D−u)) = Pr
a∈D

[a + u ̸∈ D] ⩽ εu.

To prove (2), note that Pra∈D [a ∈ K] = 0 (hence the expression in (2) is non-positive)
and

Pr
a∈D

[a − u ∈ K] ⩽ Pr
a∈D

[a − u ̸∈ D] ⩽ ε−u. ◁

CCC 2021

5:14 On Symmetric Tilings of Euclidean Space

▷ Claim 21. ε ⩾ 0.1.

Proof. Let E1 be the event that a + u[0, 1] ⊆ D, let E2 be the event that Ψ(a) ⩽ 1, let E3 be
the event that |ui| > 1/20 for some i and let E4 be the event that Ψ(a, u) > Ψ(a)+ (Zσ)4

2 Ψ(a).
Finally, let E5 be the event that Ψ(a+u) > Ψ(a) and denote E(a, u) = E1∩(¬E2)∩(¬E3)∩E4.
Note that if the event E holds for a, u, then E5 also holds, since by Claim 14:

Ψ(a + u) ⩾ Ψ(a, u) − n2 · e−Z/4 > Ψ(a) + (Zσ)4

2 Ψ(a) − n2 · e−Z/4 ⩾ Ψ(a).

By Claim 16 the probability of E2 is at most the probability a is bad, hence it is at
most 0.005. By definition, the probability of E1 is 1 − ε. By the union bound and Chernoff
inequality, the probability of E3 is o(1). Thus, by Claim 19 we have

Pr
a,u

[E(a, u)] ⩾ 0.96 − ε − 0.005 − o(1) ⩾ 0.95 − ε. (1)

Fix u. Using Claim 20 we get that

Pr
a

[E(a − u, u)] ⩾ Pr
a

[E(a, u)] − DT V [a; a − u] ⩾ Pr
a

[E(a, u)] − εu − ε−u.

By the union bound, we now conclude that

Pr
a

[E(a − u, u) ∩ E(a, u)] ⩾ 1−Pr
a

[
E(a − u, u)

]
−Pr

a

[
E(a, u)

]
⩾ 2Pr

a
[E(a, u)]−1−εu−ε−u.

Taking expectation over u, we get that

Pr
a,u

[E(a − u, u) ∩ E(a, u)] ⩾ 2Pr
a,u

[E(a, u)] − 1 − 2E
u

[εu] ⩾ 0.9 − 4ε.

Next, when both E(a − u, u) and E(a, u) hold, we have by the previous observation that
E5 holds for both pairs (a − u, u) and (a, u), and so Ψ(a + u) > Ψ(a) = Ψ((a − u) + u) >

Ψ(a − u). Thus, we get that Pra,u [Ψ(a + u) > Ψ(a − u)] ⩾ 0.9 − 4ε. On the other hand, the
probability on the left hand side is at most 0.5; this follows as Pra,u [Ψ(a + u) > Ψ(a − u)] =
Pra,u [Ψ(a − u) > Ψ(a + u)] (since the distributions of u and −u are identical) and their
sum is at most 1. Combining the two inequalities we get that ε ⩾ 0.1. ◁

4 The upper bound: proof of Theorem 6

In this section we prove a matching upper bound on the surface area of a permutation-
symmetric foam by giving a (probabilistic) construction of a permutation-symmetric tiling
body D of surface area O(n/

√
log n). The main technical result proved in this section,

Lemma 23, establishes a weaker statement, and in Section B we show how to deduce
Theorem 6 from it.

4.1 Reduction to constructing a rounding scheme
Suppose S is function mapping (multi-)sets of n points from R/Z, to R/Z. We further
assume that for all (multi-)sets A, it holds that S(A) ̸∈ {0} ∪ A.

Given such S, we may extend it to Rn by S(x1, . . . , xn) := S({{x1}, . . . , {xn}}), where
{xi} is the fractional part of x. We can construct a rounding scheme R : Rn → Zn using S

as follows.

M. Braverman and D. Minzer 5:15

On input x = (x1, . . . , xn), denote z = S(x) and view z as a number in [0, 1).
For each i ∈ [n]:

if {xi} ∈ [0, z), set R(x)i = ⌊xi⌋,
otherwise, {xi} ∈ (z, 1), and set R(x)i = ⌈xi⌉.

First, R is well-defined since z /∈ {0, {x1}, . . . , {xn}}. Next, note that for any t ∈ Zn it holds
that R(x + t) = R(x) + t, thus R induces that the body D = {x | R(x) = 0} is tiling with
respect to the lattice Zn. Last, we note that since for any π ∈ Sn we have that S(π(x)) = S(x),
we also have that R(π(x)) = π(R(x)), and hence D is permutation-symmetric.

In our proof we will define a distribution over mappings S, and we will want to study the
noise sensitivity of the resulting body D using properties of the mappings S. The following
claim gives useful conditions to study noise sensitivity in terms of mapping S.

▷ Claim 22. Let x and x + ∆ two points in Rn. Suppose that
1. S(x) = S(x + ∆) =: z; and
2. for all i, {xi + λ∆i} ̸= z, ∀λ ∈ [0, 1].
Then the points x, x + ∆ fall in the same cell in the tiling induced by D.

Proof. Suppose towards contradiction that the conclusion of the statement does not hold, i.e.
x and x + ∆ belong to different cells in the tiling induced by D. Thus, the rounding function
R when applied on x and on x + ∆ should produce different lattice points, so there is an
i such that R(x)i ̸= R(x + ∆)i. We fix that i and assume without loss of generality that
∆i ⩾ 0 and that xi ∈ [0, 1). We now consider two cases, depending on the range xi falls into:
1. If xi ∈ [0, z), then by definition of R we get that R(x)i = 0, and R(x + ∆)i = 0 unless

xi + ∆i > z, which leads to a contradiction to the second condition (z is on the interval
between xi and xi + ∆i).

2. If xi ∈ (z, 1), then R(x)i = 1, and R(x + ∆)i = 1 unless xi + ∆i > 1 + z, which again
leads to a contradiction to the second condition (1 + z is on the interval between xi and
xi + ∆i). ◀

Our main technical statement is the following lemma.

▶ Lemma 23. There exists a distribution over mappings (Sr⃗)r⃗ (r⃗ is a vector of randomness)
such that for small enough ε > 0, setting σ = ε

√
log n

n we have

E⃗
r

[
Pr

x,∆∼N (0,σ2In)
[Conditions of Claim 22 hold for x and x + ∆]

]
⩾ 1 − O(ε).

Deducing from Theorem 6 from Lemma 23 mostly involves measure-theoretic arguments,
and we defer this deduction to Section B. We will actually need the following slightly
more informative version of Lemma 23 above, using the reduction from mappings to tilings
presented in the beginning of this section, and an inspection of the bodies Dr⃗ our proof gives.

▶ Lemma 24. There exists a distribution over tiling bodies (Dr⃗)r⃗ such that

1. For small enough ε > 0, we have

E⃗
r

[
Pr

x,∆∼N (0,ε2In)
[At least one of the conditions of Claim 22 fail for x and x + ∆]

]
≲

n√
log n

ε.

2. For each r⃗, Dr⃗ is a countable union of semi-algebraic sets (i.e., sets defined by finitely
many polynomial inequalities).

CCC 2021

5:16 On Symmetric Tilings of Euclidean Space

4.2 The construction of Sr⃗

4.2.1 Overview
Before jumping into the technical details, we start with some intuition. Recall that on input x

(a set of n points from R/Z) we must output a number z ∈ R/Z, and our goal is to minimize
the probability so that the conditions of Claim 22 fail on a short needle ℓx,∆. Note that it
would not be beneficial for us to choose z that are close to xi. For example, if we chose z

such that |xi − zi| ⩽ σ, then there is constant probability that the interval {xi + λ∆i}λ∈[0,1]
would contain the point z, i.e. the second condition of Claim 22 would fail.

Thus, a natural candidate for the choice of z would be the maximizer of mini∈[n] |xi − zi|.
It is not hard to see that this minimum is typically of the order log n/n, so intuitively the
second condition of Claim 22 should hold with probability ⩾ 1 − ε. However, such choice for
z would not be very stable: it is typically the case that there are numerous z1, . . . , zr that
nearly achieve this maximum, thus the maximizer among them could change when looking
at x + ∆ (i.e., this event would happen with probability significantly more than ε), leading
to a failure of the first condition of Claim 22.

We must therefore assign each one of the near-maximizer z1, . . . , zr some weight, so that
the weight of each one of them does not significantly change when moving to x + ∆. A
general form of construction of this type is to design a scoring function f : [0, ∞] → [0, 1],
and given an input x to assign the weight w(z) =

∏
i

f(|xi − z|) to each z, and sample z with

probability proportional to w(z).
We remark that this general recipe essentially captures our (natural) attempts so far. On

the one hand, we want f to penalize z if it is very close to xi, hence we want f(t) at least
mildly increasing. On the other hand, if f is very sharply increasing (e.g exponential), then
one runs into the same problems as we had when we thought of picking z that maximizes
mini∈[n] |xi − zi|. We are thus led to consider “mildly increasing” scoring functions f , and
polynomials turn out to be good choice. Indeed, our scoring function f will be “trivial” if
|xi − z| is too small or too large (i.e. it’ll be 0 if |xi − z| ⩽ log n

50n and 1 if |xi − z| ⩾ log n
25n),

and otherwise behaves cubically.

4.2.2 A basic scoring function
Our construction of (Sr⃗)r⃗ uses a non-negative scoring function f with the following properties.

▶ Fact 25. There exists a function f : [0, ∞) → [0, 1] that is twice differentiable with
continuous second derivative with the following properties:
1. f(t) = 0 if t ⩽ 1.
2. f(t) = 1 if t ⩾ 2.
3. f(t) ≍ (t − 1)3 if 1 ⩽ t ⩽ 2.
4. |f ′(t)| ≲ t2 and |f ′′(t)| ≲ t for all t.
Exhibiting function f as in Fact 25 is not hard, and we omit the proof. The function f

defined by f(t) = (t − 1)3 if 1 ⩽ t ⩽ 2 and f(t) = 0 for t ⩽ 1, f(t) = 1 for t ⩾ 2 is almost
enough, except that it is not differentiable at t = 1. One can fix by convolving a smooth
bump function with compact support.

Next, we wish to define the mapping Sr⃗. We view the input x as a multi-set, and the
randomness vector r⃗ as an infinite sequence of (i, h) where i is a uniformly random element
from [m] and h is a uniform real-number from [0, 1].

M. Braverman and D. Minzer 5:17

Set m = n1/3, partition the circle the circle R/Z into m intervals of length 1/m each,
Ij :=

[
j−1
m , j

m

]
, and let zj = j−1/2

m be the middle of Ij . It will be convenient for us to define
gj(t) = f(50n

log n |t − zj |), and subsequently rj(x) :=
∏

y∈Ij∩x

gj(y). There two cases:

4.2.2.1 Case (A): ri(x) ̸= 0 for some i ∈ [m]

In this case, we define a probability distribution pi(x) over the i’s proportionally to the
ri(x)’s, i.e. we define pi(x) := ri(x)∑

i
ri(x)

. We now perform correlated sampling of i ∈ [m]
according to pi(x) using the randomness vector r⃗. More precisely, we go over the randomness
vector r⃗ = (i1, h1), (i2, h2), . . . and find the smallest j such that hj ⩽ pij

(x), in which case
we choose i = ij . We then define Sr⃗(x) = zij .

4.2.2.2 Case (B): ri(x) = 0 for all i ∈ [m]

If 1/2 ̸∈ x, we define Sr⃗(x) = 1/2. Otherwise, we define Sr(x) = z, where z is the first
element from { 1

4n , 3
4n , . . . , 4n−1

4n } that is at least 1
4n -away from all the entries of x.

4.3 Estimating gj on close points
▶ Fact 26. Let j ∈ [m] and xi ∈ [zj − log n

25n − ε0.95, zj + log n
25n + ε0.95] \ [zj − log n

50n , zj + log n
50n],

∆i ∈ R, and denote αi = dist
(

xi, [zj − log n
50n , zj + log n

50n]
)

.

1. If αi ⩾ 2 |∆i|, then |gj(xi + ∆i) − gj(xi)| ≲ |∆i|
αi

gj(xi).
2. In general, |gj(xi + ∆i) − gj(xi)| ≲ n3(α3

i + |∆i|3).

Proof. Using Taylor’s approximation with remainder, there is yi ∈ [xi, xi + ∆i] such that
gj(xi + ∆i) = gj(xi) + g′

j(yi)∆i, hence

|gj(xi + ∆i) − gj(xi)| ≲ |∆i|
∣∣g′

j(yi)
∣∣ ≲ |∆i|

50n

log n
f ′

(
50n

log n
|yi − zj |

)
≲

n

log n
|∆i|

(
50n

log n
|yi − zj | − 1

)2
.

For the second item, since yi ∈ [xi, xi +∆i], we get that
∣∣∣ 50n

log n |yi − zj | − 1
∣∣∣ ⩽ 50n

log n (αi + |∆i|),
and plugging that in yields

|gj(xi + ∆i) − gj(xi)| ≲ n3 |∆i| (α2
i + ∆2

i) ≲ n3(α3
i + |∆i|3),

where the last inequality holds as ab ≲ a3 + b3/2 for all a, b > 0 (Young’s inequality). For the
first item, note that since yi ∈ [xi, xi +∆i] we get that

(
50n
log n |yi − zj | − 1

)
⩾ 50n

log n (αi − |∆i|),
and by the lower bound on αi this is ⩾ 25n

log n αi. Therefore we may continue as

|gj(xi + ∆i) − gj(xi)| ≲
n

log n
|∆i|

(
50n

log n
|yi − zj | − 1

)2
≲

|∆i|
αi

(
50n

log n
|yi − zj | − 1

)3
.

Also, we have that
(

50n
log n |yi − zj | − 1

)
⩽ 50n

log n (αi + |∆i|) ≲ n
log n αi, so

|gj(xi + ∆i) − gj(xi)| ≲
|∆i|
αi

(
n

log n
αi

)3
≲

|∆i|
αi

gj(xi). ◀

CCC 2021

5:18 On Symmetric Tilings of Euclidean Space

4.4 Analysis of the construction
In this section we prove that Lemma 23 holds for the construction of Sr⃗ from the last section,
and for that we show that for small enough ε, the expected probability of the complement
event is O(ε), i.e. that

E⃗
r

[
Pr

x,∆∼N (0,σ2In)
[One of the conditions in Claim 22 fails for x and x + ∆]

]
≲ ε. (2)

We will think of ε as very small (say ε ⩽ 2−n2), and analyze the contribution of x’s from
case (A) and case (B) separately. Case (A) is the main case that occurs often, and case (B)
should be thought of rare.

4.4.1 Analysis of case (B)
First, we show that the probability x (or equivalently x + ∆) falls into Case (B) is at most
n−ω(1). For this, it will be helpful for us to sample x, a multi-set of n uniformly chosen
numbers in [0, 1] in the following equivalent way:

Sample t1, . . . , tm – where ti is the number of i’s such that xi’s that fall into interval Ii.
Sample ti points uniformly from Ii, for each i = 1, . . . , m.

Note that E[ti] = n/m, hence by Chernoff bound Pr[ti ⩾ 2 · n/m] = e−Ω(n/m) = n−ω(1).
Thus, by the union bound we have that

Pr [∀i ti ⩽ 2 · n/m] = 1 − n · n−ω(1) = 1 − n−ω(1).

Next, we condition on ti = ti, and assume that indeed ti < 2 · n/m for all i. Let Ei be the
event that ri(x) = 0. Note that conditioned on ti = ti, the Ei’s are independent and that

Pr[¬Ei| t1, . . . , tm] = Pr
a∈Ii

[
50n

log n
|a − zi| ⩽ 1

]ti

=
(

1 − log n/25n

1/m

)ti

⩾

(
1 − m log n

25n

)2·n/m

⩾ e−4 log n/25 = n−4/25, (3)

where we used the fact that e−δ ⩽ 1 − δ/2 for small enough δ > 0. Therefore,

Pr[E1 ∧ E2 ∧ . . . ∧ Em| t1, . . . , tm] ⩽ (1 − n−4/25)m = (1 − n−4/25)n1/3
= n−ω(1),

as long as the ti’s satisfy the condition ti < 2 · n/m. Therefore, the overall probability of
case (B) is n−ω(1).

Next, we analyze the probability that the conditions of Claim 22 fail given we are in case
(B). Note that if the conditions of Claim 22 fail to hold, then either (I) exactly one of x,
x + ∆ falls under Case (B), or (II) both x and x + ∆ fall under Case (B), but 1/2 ∈ x + λ∆
for some λ ∈ [0, 1]. We’ll bound these cases separately.

4.4.1.1 Case (I)

Assuming x is under Case (B), we know that each of the m intervals of the form Ji :=
[zi − log n

50n , zi + log n
50n] contains at least one point from x. Let xi be that point (if there

are multiple, pick one at random). Then xi is uniformly distributed in Ji. Therefore, the

M. Braverman and D. Minzer 5:19

probability of xi + ∆i is outside Ji, where ∆i ∼ N(0, σ2) and σ2 ⩽ ε2, is O(ε). Given case
(B) occurs with probability ⩽ n−ω(1), we conclude that its contribution to the conditions of
Claim 22 failing is at most

O(mε) · n−ω(1) = O(ε).

4.4.1.2 Case (II)

Fix ∆ = ∆, and consider xj conditioned on being in case (B). If xj is in one of the intervals
Ji, then its distribution is uniform over Ji, in which case we get that the probability 1/2
falls inside the interval [xj , xj + ∆j] is at most m |∆j |. If xj is not in one of the intervals Ji,
then it is distributed uniformly on [0, 1] \ ∪m

i=1Ji, and the probability 1/2 is in [xj , xj + ∆j]
is at most 2 |∆j | ⩽ m |∆j |.

Therefore by the union bound,

Pr
x

[∃j ∈ [n] 1/2 ∈ [xj , xj + ∆j] | case(B), ∆] ⩽ m
n∑

j=1
|∆i|.

Taking expectation over ∆ ∼ N (0, σ2In) and using Cauchy-Schwarz we get that

Pr
x,∆

[∃j ∈ [n] 1/2 ∈ [xj , xj + ∆j] | case(B)] ⩽ mE
∆

 n∑
j=1

|∆i|

⩽ m

√
n

√
E

∆∼N (0,σ2In)
[∥∆∥2

2]

= mnσ.

Therefore, the contribution of this case is upper bounded as

Pr
x,∆

[case(B) ∧ ∃j ∈ [n] 1/2 ∈ [xj , xj + ∆j]] ⩽ Pr
x,∆

[case(B)]mnσ = n−ω(1) · σ = O(ε).

4.4.2 Analysis of case (A)

We now analyze the contribution of x’s that fall into case (A) to the left hand side of (2).

4.4.2.1 Case (A), Condition 2

If x falls under Case (A), then the distance from all xi’s to z = S(x) is at least log n
100n .

Therefore, Condition 2 holds as long as |∆i| < log n
100n for all i. Since for each i we have that

Pr
∆∼N (0,σ2In)

[
|∆i| ⩾

log n

100n

]
= Pr

∆∼N (0,σ2In)

[
∆2

i ⩾
log2 n

1002n2

]
≲

σ2

log2 n/n2
≲ ε2/ log n,

we get by the union bound that

Pr
∆∼N (0,σ2In)

[
∃i |∆i| ⩾

log n

100n

]
≲ nε2/ log n ≲ ε,

for a sufficiently small ε.

CCC 2021

5:20 On Symmetric Tilings of Euclidean Space

4.5 Case (A), Condition 1
This is the main part of the proof. We show that in case (A), the probability that Sr⃗(x) ̸=
Sr⃗(x+∆) is at most O(ε). Note that the procedure describing Sr⃗ in this case is the correlated
sampling procedure of Holenstein [18], where Sr⃗(x) samples i according to the distribution
p(x) = (p1(x), . . . , pm(x)) and Sr⃗(x + ∆) samples i according to the distribution p(x + ∆).
Therefore, the probability they sample different i’s is at most the statistical distance between
the distributions, ∥p(x) − p(x + ∆)∥1. Therefore, we must show that

Ex,x+∆
[
∥p(x) − p(x + ∆)∥1

∣∣case(A)
]

= O(ε). (4)

Before we turn to this task, we upper bound the contribution from several rare cases.

4.5.1 Contribution from some rare cases
First, we show that the case some ∆i is too large contributes at most O(ε) to the LHS of (4).

▷ Claim 27. Pr∆∼N (0,σ2In)
[
|∆i| ⩾ ε0.95/n for some i

]
⩽ ε.

Proof. For each i, we have that

Pr
∆∼N (0,σ2In)

[
|∆i| ⩾ ε0.95/n

]
⩽ 2−Ω((ε0.95/n)2/σ2) = 2−Ω

(
1

ε0.1 log n

)
⩽

ε

n
,

for small enough ε, and the claim follows from the union bound. ◁

From now on, we assume that the ∆i’s are distributed from N(0, σ2)||∆i|<ε0.95/n. In
particular, we can assume that if tj is the number of x’s that fall into interval Ij , these
numbers stay the same under x + ∆. 2 Next, we handle the case in which p(x) is supported
only on a single j. Note that in this case, if p(x + ∆) is also only supported on this single j,
then the contribution of these cases to the LHS of (4) is 0. We show that the contribution
from the other case is O(ε).

▷ Claim 28.

Pr
x,∆

[∃j⋆ such that p(x) is only supported on j⋆, the support of p(x + ∆) is different]

≲ ε.

Proof. In case (B), we have shown that the probability that rj(x) = 0 for all j is n−ω(1), and
the same argument shows that the probability rj(x) = 0 for all but a single j⋆ is still n−ω(1).
Denote this event by E.

Let us condition on the event E, on j⋆ and the number t1, . . . , tm of xi’s that fall into
I1, . . . , Im. Note that for each j ̸= j⋆, since rj(x) = 0 there is i such that xi ∈ Jj

def=
[zj − log n

50n , zj + log n
50n], and we condition on that ij for each j (if there is more than one, we

choose one arbitrarily). Note that the distribution of xij is thus uniform over Jj .

2 Strictly speaking, xi + ∆i may be in a different interval than xi, but in this case it doesn’t affects
the distribution p(x). Indeed, suppose xi is in Ij but xi + ∆i is in Ij+1. Then |xi + ∆i − zj+1| ⩾
|zj+1 − j/m|− |∆i|− |xi − j/m| ⩾ 1/m−2ε0.95/n ⩾ 1/m−ε0.95. Therefore, 50n

log n |xi + ∆i − zj+1| > 2,
and so f(50n

log n |xi + ∆i − zj+1|) = 1.

M. Braverman and D. Minzer 5:21

Now note that if for each j ̸= j⋆ it holds that xij + ∆ij ∈ Jj , then rj(x + ∆) = 0, so the
only contribution to the probability of the event in question comes when xij

+ ∆ij
̸∈ Jj (or

from case (B), which we have already accounted for earlier). Conditioned on ∆ = ∆, the
probability for that is at most

E
(xij

)j ̸=j⋆

 ∑
j ̸=j⋆

1xij
+∆ij

̸∈Jj

 =
∑
j ̸=j⋆

E
xj

[
1xij

+∆ij
̸∈Jj

]
⩽

∑
j ̸=j⋆

|∆j |
log n/(50n) ,

therefore taking expectation over ∆ and using Cauchy-Schwarz we get that

E
∆,(xij

)j ̸=j⋆

 ∑
j ̸=j⋆

1xij
+∆ij

̸∈Jj

 ≲
n

log n

√
m

√ ∑
j ̸=j⋆

E
∆

[
|∆j |2

]
⩽

n

log n

√
m

√
mσ2 ⩽ n2σ.

Therefore, we get that

Pr
x,∆

[p(x) is only supported on j⋆, but the support of p(x + ∆) is different]

⩽ Pr [E]n2σ

⩽ n−ω(1)n2σ

≲ ε. ◁

Let E be the event that the support of p(x) consists of at least two distinct j’s. We condition
on the event E in the subsequent argument. The following claim shows that conditioned on
E, the sum of the rj(x)’s is at least somewhat bounded away from 0. It will only come into
play later in the proof.

▷ Claim 29. Prx

[∑
j

rj(x) ⩽ ε1.6

∣∣∣∣∣ E

]
≲ ε.

Proof. Since we conditioned on E, there are j1 ̸= j2’s such that rj1(x), rj2(x) > 0. We
condition on j1 and j2, and assume without loss of generality that j1 = 1, j2 = 2. We show
that

Pr
x

[
r1(x) < ε1.6 ∧ r2(x) < ε1.6 ∣∣ r1(x), r2(x) > 0

]
≲ ε, (5)

and thus the result would follow.
Let t1 be the number of i’s such that xi ∈ I1, and t2 be the number of i’s such that

xi ∈ I2. Note that t1, t2 ⩽ n. In addition, conditioned on t1 = t1 and t2 = t2, the events
r1(x) < ε1.6 and r2(x) < ε1.6 become independent. Therefore, to prove (5), it suffices to
show for all t1 ⩽ n, t2 ⩽ n,

Pr
x

[
r1(x) < ε1.6 ∣∣ r1(x) > 0, t1 = t1, t2 = t2

]
≲ ε0.5. (6)

Note that one way to sample r1(x)|r1(x) > 0, t1 = t1 is as follows.
Sample points x1, . . . , xt1 uniformly from I1 conditioned on |xi − z1| > log n

50n ;
r1(x) =

∏t1
i=1 g1(xi).

Let Yi be the random variable Yi := g1(xi)−0.32, where xi is sampled as above (we need
0.32 < 1/3). Let E be the event that |xi − z1| ⩾ log n

25n . If E holds, then we get that g1(xi) = 1,

and otherwise g1(xi) ≳
∣∣∣ 50n

log n |xi − z1| − 1
∣∣∣3

, so

E [Yi] ⩽ Pr [E] · 1 + Pr
[
Ē

]
E

[
g1(xi)−0.32 ∣∣ Ē

]
≲ 1 + E

[∣∣∣∣ 50n

log n
|xi − z1| − 1

∣∣∣∣−0.96
∣∣∣∣∣ Ē

]
.

CCC 2021

5:22 On Symmetric Tilings of Euclidean Space

We write the last expectation as an integral, noting that |xi − z1| is distributed uniformly
on

[
log n
50n , log n

25n

]
, hence

E

[∣∣∣∣ 50n

log n
|xi − z1| − 1

∣∣∣∣−0.96
∣∣∣∣∣ Ē

]
≲

n

log n

∫ log n
25n

log n
50n

∣∣∣∣ 50n

log n
t − 1

∣∣∣∣−0.96
dt = 1

50

∫ 1

0
y−0.96dt ≲ 1,

where we made the change of variables y = 50n
log n t − 1. Thus, E[Yi] ≲ 1, and so there is a

constant B such that E[Yi] ⩽ B. Therefore by independence E
[∏t1

i=1 Yi

]
⩽ Bt1 ⩽ Bn, and

so writing r1(x) in terms of the Yi’s and using Markov’s inequality we get that

Pr
x

[
r1(x) < ε1.6 ∣∣ r1(x) > 0, t1 = t1, t2 = t2

]
= Pr

[
t1∏

i=1
Yi > ε−1.6×0.32

]
⩽ Bn · ε0.512

≲ ε0.5. ◁

4.5.2 Analyzing the typical case

To expand out ∥p(x) − p(x + ∆)∥1, we will be using the following claim. The set-up one
should have in mind is that rj = rj(x) and dj = rj(x + ∆) for some x and ∆ that are typical
enough.

▷ Claim 30. Let rj ⩾ 0, dj be real-numbers satisfying |dj | ⩽ rj/2 for all j. Denote T =
∑

rj ,
T ′ =

∑
(rj + dj), and let pj = rj/T and qj = (ri + di)/T ′ be two distributions. Then

∥p − q∥1 ≲
∑

i

|di|
ri

· min(ri, T − ri)
T

. (7)

We defer the proof of Claim 30 to Section A. Morally speaking, it says that

E
x,∆

[∥p(x) − p(x + ∆)∥1] ≲
m∑

j=1
E
x

[
E
∆

[
|rj(x) − rj(x + ∆)|

rj(x) · min(rj(x), T (x) − rj(x))
T (x)

]]
,

(8)

where T (x) =
∑
j

rj(x) (this is only morally because we are assuming that the supports

of pj(x) and pj(x + ∆) are the same, but formally speaking they may be different). In
particular, to be able to handle with that we first must understand the expectation of
|rj(x) − rj(x + ∆)| over ∆.

▷ Claim 31. Let j ∈ [m], x1, . . . , xk ∈ [zj − log n
25n −ε0.95, zj + log n

25n +ε0.95]\[zj − log n
50n , zj + log n

50n],
and let r(x) =

∏c
i=1 gj(xi). Denote αi = dist

(
xi, [zj − log n

50n , zj + log n
50n]

)
. and let ∆i ∼

N(0, σ2)||∆i|<ε0.95 . Then

E
∆

[|r(x + ∆) − r(x)|] ≲ max

ε2.65, r(x) · σ ·

√√√√ c∑
i=1

1
α2

i

 . (9)

M. Braverman and D. Minzer 5:23

Proof. We consider two cases.

4.5.2.1 Case 1: αi ⩽ ε0.9 for some i

In this case, we have

gj(xi) ≲
(

50n

log n
αi

)3
≲ n3ε3·0.9 ≲ ε2.66.

Similarly, we have dist(xi +∆i, [zj − log n
50n , zj + log n

50]) ⩽ αi + |∆i| ⩽ 2αi, so gj(xi +∆i) ≲ ε2.66.
We conclude that r(xi), r(xi + ∆i) ≲ ε2.66, hence the contribution from these cases is at
most ε2.65.

4.5.2.2 Case 2: αi > ε0.9 for all i

In this case, we get that xi + ∆i is also not in the interval [zj − log n
50n , zj + log n

50n], hence
gj(xi + ∆i) ̸= 0, so r(x + ∆) > 0. Since r(x) are defined using products, it would be more
convenient for us to analyze log(r(x + ∆)/r(x)) as opposed to r(x + ∆)/r(x) − 1, and to
justify we can do that we first argue that r(x + ∆)/r(x) = 1 + o(1).

To see that, note that as |∆i| ⩽ ε0.95 ⩽ αi/2, we may use Fact 26 to conclude that

|g(xi + ∆i) − g(xi)| ≲
|∆i|
αi

|g(xi)| ≲ ε0.05 |g(xi)| .

In particular, we get that gj(xi+∆i)
gj(xi) = 1±O(ε0.05), and hence r(x+∆)

r(x) = 1±O(kε0.05). Writing
r(x+∆)

r(x) = 1 + η, we get η is small in absolute value, and hence |log(r(x + ∆)/r(x))| ≳ |η| ≳∣∣∣ r(x+∆)
r(x) − 1

∣∣∣ =
∣∣∣ r(x+∆)−r(x)

r(x)

∣∣∣. I.e.,

E
∆

[
|r(x + ∆) − r(x)|

r(x)

]
≲ E

∆

[∣∣∣∣log
(

r(x + ∆)
r(x)

)∣∣∣∣] = E
∆

[∣∣∣∣∣
k∑

i=1
log gj(xi + ∆i)

gj(xi)

∣∣∣∣∣
]

= E
∆

[∣∣∣∣∣
k∑

i=1
Yi

∣∣∣∣∣
]

, (10)

where we define the random variables Yi = log gj(xi+∆i)
gj(xi) .

Observe that Yi’s are mutually independent, since each Yi only depends on the corres-
ponding ∆i. We wish to upper bound the average and variance of Yi, and to do that it
would be more convenient to analyze Zi = gj(xi+∆i)−gj(xi)

gj(xi) and then relate the two.
Using second order Taylor’s approximation, we have that there is yi ∈ [xi, xi + ∆i] such

that

gj(xi + ∆i) = gj(xi) + g′
j(xi)∆i + 1

2g′′
j (yi)∆2

i ,

hence∣∣∣∣E∆ [Zi]
∣∣∣∣ = 1

gj(xi)

∣∣∣∣E∆
[
g′

j(xi)∆i + 1
2g′′

j (yi)∆2
i

]∣∣∣∣ = 1
2gj(xi)

∣∣∣∣E∆ [
g′′

j (yi)∆2
i

]∣∣∣∣ . (11)

Using properties of f , we have

∣∣g′′
j (yi)

∣∣ =
(

50n

log n

)2
f ′′

(
50n

log n
|yi − zj |

)
≲

(
50n

log n

)2 ∣∣∣∣ 50n

log n
|yi − zj | − 1

∣∣∣∣ .

CCC 2021

5:24 On Symmetric Tilings of Euclidean Space

Since yi ∈ [xi, xi + ∆i], we get that
(

50n
log n |yi − zj | − 1

)
⩾ 50n

log n αi − ε0.95 ⩾ 25n
log n αi, and so

we may continue the previous inequality as

|g′′(yi)| ≲
(

50n

log n

)2
∣∣∣ 50n

log n |yi − zj | − 1
∣∣∣3

(25n
log n αi)2 ≲

1
α2

i

|gj(yi)| ≲
1

α2
i

|gj(xi)| ,

where the last inequality is by Fact 26. Plugging this into (11) we get that∣∣∣∣E∆ [Zi]
∣∣∣∣ ≲ 1

α2
i
E
∆

[
∆2

i

]
= 1

α2
i

σ2.

In a similar fashion, we upper bound the second moment of Zi. Using Fact 26, we get
that |Zi| ⩽ ∆i

αi
, and so E∆

[
Z2

i

]
≲ 1

α2
i
E∆

[
∆2

i

]
= 1

α2
i
σ2.

We can now upper bound the average of Yi as follows. Recall that, |Zi| = o(1) so by
Taylor’s approximation Yi = log(1 + Zi) = Zi − 1

2(1+ξi)2 Z2
i for some ξi ∈ [1, 1 + Zi] and

hence∣∣∣∣E [Yi]
∣∣∣∣ ≲ |E[Zi]| +

∣∣E[Z2
i]|

∣∣ ≲ 1
α2

i

σ2. (12)

This approximation (along with the fact that |Zi| = o(1)) also implies |Yi| ≲ |Zi|, hence

E[Y2
i] ≲ E[Z2

i] ≲ 1
α2

i

σ2. (13)

We can now continue equation (10) to upper bound the LHS there. Denoting µi := E[Yi],
we have

E
∆

[∣∣∣∣∣
k∑

i=1
Yi

∣∣∣∣∣
]
⩽

k∑
i=1

|µi| + E
∆

[∣∣∣∣∣
k∑

i=1
Yi − µi

∣∣∣∣∣
]
⩽

k∑
i=1

|µi| +

√√√√E
∆

[
k∑

i=1
(Yi − µi)2

]
,

where in the last inequality we used Cauchy-Schwarz and the fact that Yi’s are independent.
Using (12) we have that

∑k
i=1 |µi| ≲ σ2 ∑k

i=1
1

α2
i
, and to upper bound the second term we

use (13):

E
∆

[
(Yi − µi)2]

⩽ E
∆

[
Y2

i

]
≲

1
α2

i

σ2.

Together, we get that

E
∆

[∣∣∣∣∣
k∑

i=1
Yi

∣∣∣∣∣
]
≲ σ2

k∑
i=1

1
α2

i

+

√√√√σ2
k∑

i=1

1
α2

i

≲ σ

√√√√ k∑
i=1

1
α2

i

,

where the last inequality holds since σ2 ∑k
i=1

1
α2

i
≲ 1 (as σ2 ≲ ε2 and αi ⩾ ε0.9). ◁

Next, using the previous claim we upper bound the expectation of each summand on the
RHS of (8). The following statement addresses a single term, and should be thought of as
being applied after conditioning on x, ∆ being not-too untypical, and focusing only on xi’s
for which there is a chance that gj(xi + ∆i) ̸= gj(xi).

M. Braverman and D. Minzer 5:25

▷ Claim 32. Let j ∈ [m], k ⩽ n, S ⩾ 0 and let x1, . . . , xk be chosen uniformly at random
from [zj − log n

25n − ε0.95, zj + log n
25n + ε0.95] \ [zj − log n

50n , zj + log n
50n]. Let ∆i ∼ N(0, σ2)||∆i|<ε0.95 .

Then

E
x,∆

[
|rj(x + ∆) − rj(x)|

rj(x) · min(rj(x), S)
rj(x) + S + ε1.6

]
≲ ε1.05 + k

σn

log n
· Pr

x
[rj(x) ⩾ S]

+σ
n

log n

√
kE

x

[
rj(x)

rj(x) + S

]
.

Proof. Upper bounding max(a, b) ⩽ a + b for a, b ⩾ 0, by Claim 31, we have

E
x,∆

[
|rj(x + ∆) − rj(x)|

rj(x) · min(rj(x), S)
rj(x) + S + ε1.6

]

≲ E
x

ε2.65 + rj(x) · σ ·
√∑k

i=1
1

α2
i

rj(x) · min(rj(x), S)
rj(x) + S + ε1.6

≲ ε1.05 + σE

x

√√√√ k∑

i=1

1
α2

i

· min(rj(x), S)
rj(x) + S + ε1.6

,

and it is enough to bound the second term. Note that while we expect that each αi to be of

the order log n/n, convexity works against us and it could still be the case that
k∑

i=1

1
α2

i
could

be large. The point is that in this case, some αi must be close to 0, in which case gj(xi) is
very small – cubically with αi – thereby balancing the 1/α2

i term. The following proposition
formalizes this intuition, and the proof is deferred to Section A

▶ Proposition 33. There is an absolute constant A > 0 such that for any z > 0 and r ⩽ 1
such that rj(x) = r · gj(xi), it holds that

E
xi

[√
z + 1

α2
i

· min(r · gj(xi), S)
r · gj(xi) + S + ε1.6

]

⩽ E
xi

[√
z + A

n2

log2 n
· min(r · gj(xi), S)

r · gj(xi) + S + ε1.6 + A
n

log n
· 1r·gj(xi)⩾S

]
.

Applying Proposition 33 iteratively k times (once for each i, taking r =
∏

i′ ̸=i

gj(xi′) and

the appropriate z), we get that

E
x

√√√√ k∑

i=1

1
α2

i

· min(rj(x), S)
rj(x) + S + ε1.6

⩽ E

x

[√
k · A

n2

log2 n
· min(rj(x), S)

rj(x) + S + ε1.6 + k · A
n

log n
· 1rj(x)⩾S

]
.

The proof is concluded by noting that min(rj(x),S)
rj(x)+S+ε1.6 ⩽ rj(x)

rj(x)+S . ◁

We are now ready to finish the proof of inequality (4).

CCC 2021

5:26 On Symmetric Tilings of Euclidean Space

Proof of inequality (4)
Let E be the event that: (1) the support of p(x) has size at least 2, (2)

∑
j

rj(x) ⩾ ε1.6 and

also for x + ∆, and (3) |∆i| ⩽ ε0.95 for all i ∈ [n]. As we argued in Claims 27, 28, 29 the
contribution (x, ∆) ̸∈ E to the LHS of inequality (4) is ≲ ε, hence it is enough to analyze
the contribution of (x, ∆) ∈ E.

Denote T (x) =
∑

j∈[m]
rj(x).

E
x,∆

[∥p(x) − p(x + ∆)∥11E] = E
x,∆

 ∑
j∈[m]

∣∣∣∣rj(x)
T (x) − rj(x + ∆)

T (x + ∆)

∣∣∣∣ 1E

= E

x,∆

 ∑
j∈[m]

∣∣∣∣rj(x)
T (x) − rj(x + ∆)

T (x + ∆)

∣∣∣∣ 1E1rj(x)⩽ε2.7

︸ ︷︷ ︸

(I)

+ E
x,∆

 ∑
j∈[m]

∣∣∣∣rj(x)
T (x) − rj(x + ∆)

T (x + ∆)

∣∣∣∣ 1E1rj(x)>ε2.7

︸ ︷︷ ︸

(II)

.

First, we show that (I) ≲ ε. As T (x) ⩾ ε1.6 (since E holds) and rj(x) ⩽ ε2.7, we get that
rj(x)/T (x) ⩽ ε1.1, and next we argue that rj(x + ∆)/T (x + ∆) ≲ ε1.05. Fix j and suppose
x1, . . . , xkj

are the xi’s that fall inside Ij . The following easy fact will be helpful.

▶ Fact 34. For all x, ∆ we have rj(x + ∆) =
∑

S⊆[kj]

∏
r∈S

gj(xr)
∏

r ̸∈S

(gj(xr) − gj(xr + ∆r)).

Proof. Write rj(x + ∆) =
kj∏

r=1
gj(xr + ∆r) =

kj∏
r=1

(gj(xr) + (gj(xr + ∆r) − gj(xr))) and

expand out. ◀

Combining Fact 34 and Fact 26, we get that

rj(x + ∆) ⩽
∑

S⊆[kj]

∏
r∈S

gj(xr)
∏
r ̸∈S

|gj(xr) − gj(xr + ∆r)|

⩽
∑

S⊆[kj]

∏
r∈S

gj(xr)B|S|n3|S|
∏
r ̸∈S

(α3
r + |∆r|3)

⩽
∑

S⊆[kj]

∏
r∈S

gj(xr)B|S|n3|S|
∏
r ̸∈S

α3
r

+ 4nB|n|n3n max
r

|∆r|3 .

Consider the right hand side above. For the first term we use α3
r ≲ gj(xr) to get it is at most∑

S⊆[kj]

B′|S|n3|S|rj(xr) ⩽ (B′′)nn3nε2.7 ⩽ ε2.65/2.

For the second term we use |∆r| ⩽ ε0.95 to bound it by ε2.65/2 as well. We thus get
rj(x + ∆) ⩽ ε2.65, and so rj(x + ∆)/T (x + ∆) ⩽ ε1.05. Combined, we get that

(I) ⩽ m(ε1.1 + ε1.05) ≲ ε.

M. Braverman and D. Minzer 5:27

Next, we handle (II). Denote T ′(x) =
∑
j

rj(x)1rj(x)⩾ε2.7 , and note that T ′(x) ⩾ T (x) −

mε2.7 ⩾ (1 − mε1.1)T (x) and similarly for T ′(x + ∆). Thus, we may replace T (x), T (x + ∆)
with T ′(x), T ′(x + ∆) and incur (by the triangle inequality) a loss of at most mε1.1 ≲ ε.
Thus, we want to upper bound

E
x,∆

 ∑
j∈[m]

∣∣∣∣ rj(x)
T ′(x) − rj(x + ∆)

T ′(x + ∆)

∣∣∣∣ 1E1rj(x)>ε2.7

︸ ︷︷ ︸

(III)

≲ ε.

We intend to apply Claim 30 with rj = rj(x) and dj = rj(x+∆)−rj(x) for each x separately,
but for that we first have to argue that |dj | ⩽ rj/2. For each i ∈ [n] there is j such that
xi ∈ Ij , and we denote αi = dist

(
xi, [zj − log n

50n , zj + log n
50n]

)
. Note that

ε2.7 ⩽ rj(x) ⩽ gj(xi) ≲
(

n

log n
αi

)3
,

hence αi ≳ log n
n ε0.9, and for small enough ε we get that αi ⩾ ε0.91 ⩾ 2 |∆i|. Therefore,

Combining Fact 34 and Fact 26 we get

|dj(x)| = |rj(x) − rj(x + ∆)| ⩽
∑

S⊆[kj]
S ̸=[kj]

∏
r∈S

gj(xr)
∏
r ̸∈S

|gj(xr) − gj(xr + ∆r)|

⩽
∑

S⊆[kj]
S ̸=[kj]

B|S|rj(x)
∏
r ̸∈S

|∆i|
αi

.

Bounding |∆i|
αi

⩽ ε0.95/ε0.91 = ε0.04 we get that

|rj(x) − rj(x + ∆)| ⩽ rj(x)ε0.04
∑

S⊆[kj]
S ̸=[kj]

B|S| ⩽ B′nε0.04rj(x) ⩽ rj(x)/2 = rj/2.

Therefore, we may apply Claim 30 and get that

(III) ≲ E
x,∆

 m∑
j=1

|rj(x) − rj(x + ∆)|
rj(x) · min(rj(x), T ′(x))

T ′(x) 1E1rj(x)>ε2.7

≲ E

x,∆

 m∑
j=1

|rj(x) − rj(x + ∆)|
rj(x) · min(rj(x), T ′(x))

T ′(x) + ε1.6 1E1rj(x)>ε2.7

, (14)

where the last inequality holds since T ′(x) ≳ ε1.6. Next, we wish to discard xi that are very
far from their closest center zj . For each j, note that

[
zj − log n

50n , zj + log n
50n

]
is exactly the set

of y’s on which gj(y) = 0, and let Rj ⊆ Ij be Rj =
[
zj − log n

25n − ε0.95, zj + log n
25n + ε0.95

]
\[

zj − log n
50n , zj + log n

50n

]
. Note that for each y ∈ Ij \ Rj , we have that either gj(y) = 0 if

y ∈
[
zj − log n

50n , zj + log n
50n

]
, and otherwise gj(y) = 1. Furthermore, in the latter case we also

have that gj(y + ∆i) = 1 since |∆i| ⩽ ε0.95.

CCC 2021

5:28 On Symmetric Tilings of Euclidean Space

We sample x in the following way. First, sample t1, . . . , tm the number of xi’s in each
interval I1, . . . , Im, then for each j sample kj to be the number of xi’s inside the interval Ij

that fall inside Rj . Finally, for each j ∈ [m] sample kj points uniformly from Rj , tj − kj

uniformly from Ij \ Rj , and let x be the (multi-)set of all the sampled points. We condition
on the tj ’s and kj ’s henceforth in (14). Furthermore, we condition on the identity of the i’s
for which xi ∈ Ij for each j.

Since i’s for which xi ∈ Ij ∈ [zj − log n
25n − ε0.95, zj + log n

25n + ε0.95] do not affect both rj(x)
and rj(x + ∆), we may ignore them and hence take expectation only over i’s such xi ∈ Rj .
Call these y’s. Then from (14) we get

(III) ≲ E
t⃗,k⃗

 E
y,∆

 m∑
j=1

|rj(y) − rj(y + ∆)|
rj(y) · min(rj(y), T ′(y))

T ′(y) + ε1.6

⩽ E

t⃗,k⃗

 m∑
j=1

E
y,∆

[
|rj(y) − rj(y + ∆)|

rj(y) ·
min(rj(y), T ′

−j(y))
rj(y) + T ′

−j(y) + ε1.6

],

where T ′
−j(x) =

∑
j′ ̸=j

rj′(x)1rj′ (x)⩾ε2.7 . Note that conditioned on t⃗ = t⃗, k⃗ = k⃗, the values of

yi’s such that yi ∈ Ij are independent of T ′
−j(y), and they are distributed uniformly over

Rj . Therefore, using Claim 32 we have

(III) ≲ E
t⃗,k⃗

 m∑
j=1

ε1.05 + kj
σn

log n
· Pr

y

[
rj(y) ⩾ T ′

−j(y)
∣∣ t⃗, k⃗

]
+ E

y

[
σ

n

log n

√
kj

rj(y)
T ′(y)

].

⩽ mε1.05 + n2σ
m∑

j=1
Pr
y

[
rj(y) ⩾ T ′

−j(y)
]

+ σ
n

log n
E
t⃗,⃗k

[√
max

j
kj

]
.

Note that if T ′
−j(x) ⩽ rj(x), then

T (x) ⩽ T ′
−j(x) + rj(x) +

∑
j′

rj′(x)1rj′ (x)⩽ε2.7 ⩽ 2rj(x) + m · ε2.7 ⩽ 3,

so we bound the sum on the right hand side by mPrx [T (x) ⩽ 3]. For the expectation, we
use Cauchy-Schwarz and overall we get

(III) ⩽ mε1.05 + n3σPr
x

[T (x) ⩽ 3] + σ
n

log n

√
E

t⃗,k⃗

[
max

j
kj

]
.

The first term is clearly ≲ ε. For the second term, we use Claim 35 below, that asserts that
Prx [T (x) ⩽ 3] ⩽ n−ω(1), hence by the definition of σ the second term is also ≲ ε. For the
third term, note that each kj is a sum of n independent Berounlli random variables with
parameter p ⩽ log n/n, therefore by Chernoff bound

Pr [kj ⩾ 10 log n] ⩽ e− 1
3 92 log n ⩽ n−9.

The union bound now implies that Pr [maxj kj ⩾ 10 log n] ⩽ n−8, and hence

E
t⃗,k⃗

[
max

j
kj

]
⩽ n−8 · n + 10 log n ≲ log n.

Using the definition of σ, we get that the third term is also ≲ ε. Combining all, we get that
(III) ≲ ε, and we are done.

M. Braverman and D. Minzer 5:29

▷ Claim 35.

Pr
x

∑
j

rj(x) ⩽ 3

 < n−ω(1). (15)

Proof. The proof is very similar to the analysis of Case (B) above. In particular, similarly to
inequality (3),

Pr[rj(x) < 1] =
(

1 − 2m log n

25n

)tj

⩾

(
1 − 2m log n

25n

)2·n/m

> e−2 log n/25 = n−2/25,

as long as tj < 2 · n/m (which is the case except with probability n−ω(1). Since m >

n2/25 · nΩ(1), the probability of not having at least three rj(x)’s equal to 1 is n−ω(1). ◁

5 The value of the t-fold symmetric odd cycle game

5.1 The upper bound: Theorem 7
Suppose that n = 2m − 1 and A is a strategy for C

⊗symt
n . We will view A as a symmetric

function over ordered t tuples, i.e. as A : Ct
n → {0, 1}t satisfying A(π(x)) = π(A(x)) for all

permutations π over [t].
We identify Cn =

{
i
n

∣∣ i = 0, 1, . . . , n − 1
}

, consider the lattice L = (Cn + Z)t and define
a rounding map R : L → Zt on it as follows. For x ∈ Ct

n, we define R(x) = A(x) + nx

(mod 2), and then we extend R to L by R(x + z) = R(x) + z for x ∈ Ct
n and z ∈ Zt.

Let D = R−1(0t). The symmetry of A implies that D is permutation-symmetric, and we
also note that D is a tiling of the lattice L.

▶ Definition 36. A random ε-Bernoulli direction, denoted by u ∼ B(ε), is a random variable
distributed on

{
± 1

n , 0
}

, such that for each i ∈ [t] independently, Pr [ui = 0] = 1 − 2ε and
Pr [ui = 1/n] = Pr [ui = −1/n] = ε.

We will mostly be concerned with ε = 1/4, in which case the distribution of x, x + u(mod 1)
where x ∈R Ct

n and u is an independent 1
4 -Bernoulli step, is exactly the distribution of

challenges to the players. Inspecting, we see that players succeed on these challenges if and
only if R(x) = R(x + u), as the following claim shows.

▷ Claim 37. Let x ∈ Ct
n and u ∈

{
± 1

n , 0
}t. Then the players succeed on challenges (x, x + u

(mod 1)) if and only if R(x) = R(x + u).

Proof. Note that x and x + u are either in the same cell of D or in adjacent cells, so to prove
the statement it is enough to show that the players succeed on the challenge if and only if
R(x) = R(x + u) (mod 2).

Write x + u = d + z where d ∈ Ct
n is x + u (mod 1), and z ∈ Zt. Note that

R(x + u) = R(d) + z = A(d) + dn + z (mod 2), R(x) = A(x) + nx (mod 2)

and subtracting the equations we get that

R(x + u) − R(x) = A(d) − A(x) + dn + z − nx (mod 2).

Multiplying the equality x + u = d + z by n and taking modulo 2 we get that nu + nx =
nd + nz = nd + z (mod 2) where the last transition used the fact that n is odd. Thus,
R(x+u)−R(x) = A(d)−A(x)+nu (mod 2). Note that the players succeed on the challenge
if and only if A(x) = A(d) + nu (mod 2), and plugging that in we get that they succeed if
and only if R(x + u) − R(x) = 0 (mod 2), as desired. ◁

CCC 2021

5:30 On Symmetric Tilings of Euclidean Space

Claim 37 implies that the failure probability of the players is

Pr
x∈Ct

n,u∼B(1/4)
[x, x + u are in different cells of D].

Setting y = x (mod D), it is easily seen that the distribution of y is uniform over D, so the
probability of the above event is equal to

η
def= Pr

y∈D,u∼B(1/4)
[y + u ̸∈ D].

The rest of the proof is devoted to lower bounding η. Setting k = M
n
√

log t

t for large constant
M to be determined later, we show:

▶ Lemma 38. η ⩾ Ω(1/k).

Below, we will assume k is an integer, otherwise we may multiply it by a constant factor
close to 1 and make it an integer. We then further assume k is prime, otherwise we may find
a prime in [k, 2k] and replace k by it. Define δ = Prx∈D,u∼B(1/4) [x + ku ̸∈ D] and observe
the following easy relation between δ and η.

▷ Claim 39. δ ⩽ kη.

Proof. By the union bound

δ ⩽
k−1∑
j=0

Pr
x∈D,u

[x + ju ∈ D, x + (j + 1)u ̸∈ D].

Note that for each j, the distribution of y = x + ju (mod D) is uniform over D, the jth
term in the above sum is at most Pry∈D,u [y + u ̸∈ D] = η. ◁

5.1.1 Disjoint Bernoulli steps
We will also consider the situation after making two Bernoulli steps whose support is disjoint,
and for that we make the following definition.

▶ Definition 40. The distribution of two disjoint ε-Bernoulli direction, denoted by (u1,
u2) ∼ DB(ε), is defined as follows. For each i independently, set each one of the following
options with probability ε

2 : (u1
i , u2

i) = (1/n, 0), (u1
i , u2

i) = (−1/n, 0), (u1
i , u2

i) = (0, 1/n),
(u1

i , u2
i) = (0, −1/n); otherwise, set (u1

i , u2
i) = (0, 0).

We note that if (u1, u2) ∼ DB(ε), then u1 + u2 is distributed as B(ε). Therefore:

▷ Claim 41. It holds that:
Prx∈D,u∼B(1/4) [x + ku ̸∈ D] ⩽ 2δ;
Prx∈D,u∼B(1/4) [x + u ̸∈ D] ⩽ 2η.

Proof. We prove the first item, and the second item is proved analogously. To sample
u ∼ B(1/4), we sample (u1, u2) ∼ DB(1/4) and take u = u1 + u2, so by the union bound
the probability in the first item is at most

Pr
x∈D,(u1,u2)∼DB(1/4)

[
x + ku1 ̸∈ D

]
+ Pr

x∈D,(u1,u2)∼DB(1/4)

[
x + ku1 ∈ D, x + ku1 + ku2 ̸∈ D

]
.

The first probability is δ, and we argue that the second probability is at most the first.
Indeed, setting y = x + ku1, this probability is at most the probability that y, y + ku2 are

M. Braverman and D. Minzer 5:31

in different cells of D. Note that this occurs if and only if y (mod D) and y (mod D) + ku2

are in different cells of D; note also that for every fixing of u1, the distribution of y (mod D)
is uniform over D. Thus

Pr
x∈D,(u1,u2)∼DB(1/4)

[
x + ku1 ∈ D, x + ku1 + ku2 ̸∈ D

]
⩽ Pr

y∈D,(u1,u2)∼DB(1/4)

[
y + ku2 ̸∈ D

]
= δ. ◀

▶ Definition 42. Let x ∈ D and u be a direction. We say (x, u) is decent if

Pr
(u1,u2)∼DB(1/4)

[
x + u1 ̸∈ D ∨ x + u2 ̸∈ D ∨ x + ku1 ̸∈ D ∨ x + ku2 ̸∈ D | u1 + u2 = u

]
<

1
32 .

▷ Claim 43. Prx∈RD,u∼B(1/4) [(x, u) is decent] ⩾ 1 − 64(η + δ)

Proof. Denote

p(x, u)
= Pr

(u1,u2)∼DB(1/4)

[
x + u1 ̸∈ D ∨ x + u2 ̸∈ D ∨ x + ku1 ̸∈ D ∨ x + ku2 ̸∈ D | u1 + u2 = u

]
.

Note that

E
x∈RD

u∼B(1/4)

[p(x, u)] = Pr
x∈RD

(u1,u2)∼DB(1/4)

[
x + u1 ̸∈ D ∨ x + u2 ̸∈ D ∨ x + ku1 ̸∈ D ∨ x + ku1 ̸∈ D

]
,

which is at most 2(δ + η) by the union bound. Thus, by Markov’s inequality

Pr
x∈RD,u∼B(1/4)

[(x, u) is not decent] = Pr
x∈RD,u∼B(1/4)

[
p(x, u) ⩾ 1

32

]
⩽ 64(δ + η). ◀

5.1.2 Analyzing the potential function
Our argument closely follows the argument in Section 3, and below we focus on the necessary
adjustments. Set Z = t

10 log t . The definition of the potential function stays as is. We will
have several constants floating around in the proof which are not important for the most
part, however we make the distinction between the constants c1, . . . , c6 that will be absolute
(i.e. not depending on M), and the constants t0(M), t1(M), t2(M) that will depend on M .

The following is a variant of Claim 14, which is the main difference with the argument
from Section 3.

▷ Claim 44. If x, x + u, x − u, x + ku, x − ku ∈ D and both (x, u), (x, −u) are decent, then

|Ψ(x + ku) − Ψ(x, ku)| ⩽ t2 · e−Z/4.

Proof. We consider the contribution of each pair (i, j) to Ψ(x + ku) and Ψ(x, ku) separately.
Without loss of generality we may only consider pairs i, j that γ(xi, xj) = 1, and thus
d(xi, xj) = xi − xj + z for some z ∈ Z, z ̸= 0. Let d = xi − xj + z + k(ui − uj).

▶ Proposition 45. d ⩾ 0.

CCC 2021

5:32 On Symmetric Tilings of Euclidean Space

Proof. Assume otherwise. Since xi −xj +z ⩾ 0 it follows by continuity that there is λ ∈ [0, 1)
such that xi − xj + z + λk(ui − uj) = 0. Note that ui − uj can either be 0, ± 1

n , ± 2
n . If

ui − uj = 0, we get that xi − xj + z = 0, and as x ∈ D this contradicts Lemma 12. Otherwise,
multiplying by n, we get that λkn(ui − uj) is an integer. Note that kn(ui − uj) is either ±k

or ±2k, and as k is prime we get that λ = 1
2 , λ = 1

k or λ = 1
2k , and we analyze each case

separately. If λ = 1
k then we get xi − xj + ui − uj + z = 0, so x + u ∈ D has two coordinates

differing by a non-zero integer, contradicting Lemma 12. We next consider the other two
cases separately, and assume that ui − uj > 0 – otherwise we use −u instead of u in the
argument below.

If λ = 1
2k , then necessarily ui − uj = 2

n and and we get that xi − xj + z + 1
n = 0.

Sample (u1, u2) ∼ DB(1/4) conditioned on u1 + u2 = u. Note that the event that u1
i = 1/n

and u1
j = 0 occurs with probability 1/32. Since (x, u) is decent, we get that x + u1 ∈ D

with probability strictly greater than 31
32 . Thus, the probability that x + u1 ∈ D and

(u1
i , u1

j) = (1/n, 0) is positive, and in this case we get

(x + u1)i − (x + u1)j = xi − xj + 1
n

= −z ̸= 0,

contradicting Lemma 12.
The case that λ = 1

2 is similar. We must have that ui − uj = 2
n , and thus we get

xi − xj + k
n + z = 0. Sample (u1, u2) ∼ DB(1/4) conditioned on u1 + u2 = u. Note that the

event that u1
i = 1/n and u1

j = 0, occurs with probability 1/32. Since (x, u) is decent, we
get that x + ku1 ∈ D with probability strictly greater than 31

32 . Thus, the probability that
x + ku1 ∈ D and (u1

i , u1
j) = (1/n, 0) is positive, and in this case we get

(x + ku1)i − (x + ku1)j = xi − xj + k

n
= −z ̸= 0,

contradicting Lemma 12. ◀

We therefore get that d ⩾ 0, and the rest of the proof is identical to the proof of Claim 14.
◁

▷ Claim 46. There is an absolute constants c1 > 0 and t0(M) > 0, such that if t ⩾ t0 then
for every x ∈ D

Ψ(x) · ec1k2Z2/n2
⩽ E

u∼B(1/4)
[Ψ(x, ku)] ⩽ Ψ(x) · ec−1

1 k2Z2/n2
.

Proof. By linearity of expectation we have

E
u∼B(1/4)

[Ψ(x, ku)] =
∑
i<j

e−Z·d(xi,xj) · E
u∼B(1/4)

[
e−Z·γ(xi,xj)·k(ui−uj)

]
.

Note that the above expectation does not depend on i, j: for every i, j the distribution of
ui−uj is w, where Pr [w = 2/n] = Pr [w = −2/n] = 1

16 , Pr [w = 1/n] = Pr [w = −1/n] = 1
4 ,

Pr [w = 0] = 3
8 . In particular, this distribution is symmetric around 0 and thus the sign

γ(xi, xj) does not affect the expectation. Hence we have

E
u

[Ψ(x, u)] = Ψ(x) · E
w

[ekZ·w] = Ψ(x) · E
w

[
ekZ·w + e−kZ·w

2

]
.

Note that |kZ · w| ⩽ M
n
√

log t

t
t

10 log t
1
n ⩽ 1 for large enough t, so we have that

ec1(kZ·w)2
⩽

ekZ·w + e−kZ·w

2 ⩽ ec−1
1 (kZ·w)2

.

M. Braverman and D. Minzer 5:33

Finally, the expectation of ec(kZ·w)2 is at least ec′k2Z2/n2 and at most ec′′k2Z2/n2 , and the
claim follows. ◁

The proofs of the following several claims are essentially identical to their analogs in
Section 3, and are therefore omitted. We say a point x is good if any interval of length 10 log t

t

on the circle contains at least log t and at most 100 log t coordinates from x (mod 1). By
Chernoff bound, a random x ∈ D is good with probability > 0.999 given t is large enough.

▷ Claim 47. There exists an absolute constant c2 > 0, such that if x is good then
Ψ(x) > c2 log2 t.

Proof. The proof is identical to the proof of Claim 16. ◁

▷ Claim 48. There exists an absolute constant c3 > 0, such that if x is good, then for all i

we have Ci < c3
Ψ(x)
log t .

Proof. The proof is identical to the proof of Claim 17. ◁

▷ Claim 49. There exists an absolute constant c5, c6 > 0 and t1(M) > 0, such that if t ⩾ t1
then for all good x ∈ D we have

varu∼B(1/4)[Ψ(x, u)] ⩽ c5

log t
·
(

ec−1
6

k2Z2
n2 − ec6

k2Z2
n2

)
· Ψ(x)2.

Proof. The proof is a straightforward adaptation of the proof of Claim 18. ◁

Consequently, we have to adjust Claim 19 as follows.

▷ Claim 50. There is an absolute constant M > 0 and t2 > 0 such that if k = M
n
√

log t

t

and t ⩾ t1, then for all good x ∈ D we have

Pr
u∼B(1/4)

[
Ψ(x, u) > Ψ(x) + c2

1
2

k4Z4

n4 Ψ(x)
]
⩾ 0.99.

Proof. Let c1, . . . , c6 be the constants from the previous claims, and choose M =
√

200c5
c2

1c6
.

Then take t0(M), t1(M) from Claims 46 49 and choose t2(M) = max(t0(M), t1(M)). We
upper bound the probability of the complement event. Using Claim 46 (and et ⩾ 1+ t+ t2/2),
we get

E
u∼B(1/4)

[Ψ(x, u)] ⩾ Ψ(x) ·
(

1 + c1
k2Z2

n2 + c2
1
2

k4Z4

n4

)
.

Hence

Pr
u∼B(1/4)

[
Ψ(x, u) ⩽ Ψ(x) + c2

1
2

k4Z4

n4 Ψ(x)
]

⩽ Pr
u∼B(1/4)

[∣∣∣∣Ψ(x, u) − E
u′∼B(1/4)

[Ψ(x, u′)]
∣∣∣∣ ⩾ Ψ(x)c1

k2Z2

n2

]
.

We want to upper bound the probability of the last event using Chebyshev’s inequality. Since
x is good, the conclusion of Claim 49 holds, and so

varu∼B(1/4)[Ψ(x, u)] ⩽ c5

log t

(
ec−1

6
k2Z2

n2 − ec6
k2Z2

n2
)

· Ψ(x)2 ⩽
c5

log t
· 2c−1

6 k2Z2

n2 · Ψ(x)2,

for sufficiently large t. Therefore, applying Chebyshev’s inequality we see the probability in
question is at most

varu∼B(1/4)[Ψ(x, u)]
Ψ(x)2 · c2

1
k4Z4

n4

⩽
c5

log t · 2c−1
6 k2Z2

n2 · Ψ(x)2

Ψ(x)2 · c2
1

k4Z4

n4

= 2c5

c2
1c6

n2

k2Z2 log t
= 2c5

c2
1c6

1
M2 ⩽ 0.01. ◀

CCC 2021

5:34 On Symmetric Tilings of Euclidean Space

5.1.3 Finishing the argument
For each u, denote δu = Prx∈D [x + ku ̸∈ D], and note that δ = Eu [δu].

▷ Claim 51. For each u, DT V [x; x − ku] ⩽ δu + δ−u.

Proof. The proof is a direct conversion of the proof of Claim 20 to the discrete setting,
replacing the notion of “Borel sets” with finite sets. ◁

We can now prove Lemma 38.

Proof of Lemma 38. Take M and t2 from Claim 50. We may assume that t ⩾ t2, otherwise
the lemma just follows from the fact that η ⩾ Ω(1/n), which holds as the value of the t-fold
symmetric repeated game is at most the value of the original game, which is 1 − Θ(1/n).

Take x ∈R D, u ∼ B(1/4). Let E1 be the event that (x, u), (x, −u) are decent, E2 be
the event that Ψ(x) ⩽ c2 log2 t, E3 the event that x + ku, x − ku, x + u, x − u ∈ D, and
let E4 be the event that Ψ(x, u) ⩾ Ψ(x) + c2

1
2

k4Z4

n4 Ψ(x). Finally, let E5 be the event that
Ψ(x + u) > Ψ(x) and denote E(x, u) = E1 ∩ E2 ∩ E3 ∩ E4. Note that if the event E holds
for x, u, then E5 also holds, since by Claim 44:

Ψ(x + u) ⩾ Ψ(x, u) − t2 · e−Z/4 ⩾ Ψ(x) + c2
1
2

k4Z4

n4 Ψ(x) − t2 · e−Z/4 > Ψ(x).

In the last inequality, we used the fact that if E holds, then c2
1
4

k4Z4

n4 Ψ(x) ⩾ Ω(1), and
t2 · e−Z/4 = n2e−t/40 log t = o(1) for large enough t.

By Claim 43, Pr [E1] ⩾ 1 − 128(δ + η). By Claim 47 the probability of E2 is at most the
probability x is bad, hence it is at most 0.005, by Claim 41 Pr [E3] ⩾ 1 − 4(δ + η), and by
Claim 50, Pr [E4] ⩾ 0.99. We thus get

Pr
x,u

[E(x, u)] ⩾ 0.99 − 4(δ + η) − 0.005 − 128(δ + η) ⩾ 0.95 − 132(δ + η). (16)

Fix u. Using Claim 51 we get that

Pr
x

[E(x − u, u)] ⩾ Pr
x

[E(x, u)] − DT V [x; x − u] ⩾ Pr
x

[E(x, u)] − δu − δ−u.

By the union bound, we now conclude that

Pr
x

[E(x − u, u) ∩ E(x, u)] ⩾ 1−Pr
x

[
E(x − u, u)

]
−Pr

x

[
E(x, u)

]
⩾ 2Pr

x
[E(x, u)]−1−δu−δ−u.

Taking expectation over a random step u, we get that

Pr
x,u

[E(x − u, u) ∩ E(x, u)] ⩾ 2Pr
x,u

[E(x, u)] − 1 − 2E
u

[δu] ⩾ 0.9 − 270(δ + η),

where we used (16). Next, when both E(x − u, u) and E(x, u) hold, we have by the previous
observation that E5 holds for both pairs (x − u, u) and (x, u), and so Ψ(x + u) > Ψ(x) =
Ψ((x−u)+u) > Ψ(x−u). Thus, we get that Prx,u [Ψ(x + u) > Ψ(x − u)] ⩾ 0.9−270(δ +η).
On the other hand, the probability on the left hand side is at most 0.5; this follows as
Prx,u [Ψ(x + u) > Ψ(x − u)] = Prx,u [Ψ(x − u) > Ψ(x + u)], and their sum is at most 1.
Combining the two inequalities we get that η + δ ⩾ Ω(1), which using Claim 39 implies that
η = Ω(1/k) as desired. ◀

5.2 The lower bound: proof of Theorem 8
In this section we use the permutation-symmetric body constructed in Theorem 6 in order
to prove Theorem 8.

M. Braverman and D. Minzer 5:35

5.2.1 Tools
We need the following isoperimetric inequality.

▶ Fact 52. For all ε > 0 there is δ > 0 such that the following holds. Let A ⊆ [0, 1]n be a
measurable set such that ε ⩽ vol(A) ⩽ 1 − ε. Then area(A ∩ interior([0, 1]n)) ⩾ δ.

Proof. This is the combination of [29, Theorem 6, Theorem 7] as we explain below. Theorem
7 therein asserts that if A ⊆ [0, 1]n has Lebesgue measure α and surface area S, then there
is a measurable set in Gaussian space B ⊆ Rn with Gaussian measure α and (Gaussian)
surface area at most S. Now [29, Theorem 7] asserts among sets with Gaussian measure
α, the minimizers of surface area are halfspaces of the form Bβ = {z ∈ Rn | z1 ⩽ β} where
β is chosen so that the Gaussian measure of Bβ is α, so S ⩾ surface − area(Bβ), which is
bounded away from 0 if α is bounded away from 0 and 1. ◀

Secondly, we need a slight strengthening of Theorem 6. Recall that in Sections 4 and B
we have constructed a semi-algebraic, bounded tiling body D ⊆ Rt whose surface area is
A = O(t/

√
log t), and for small enough ε we have

Pr
x∈D,∆∼N(0,ε2It)

[x + ∆ ̸∈ D] ≲ Aε.

We note that the argument in Section 4 holds in fact for more general class of ∆ (we only
used the fact it is independent of x, has mean 0 and is sub-Gaussian). Thus, we consider the
distribution ∆ε ∈ {0, ±ε/n}t of Bernoulli steps, namely for each i independently choosing
(∆ε)i as Pr [(∆ε)i = 0] = 1

2 , Pr
[
(∆ε)i = − ε

n

]
= 1

4 , Pr
[
(∆ε)i = ε

n

]
= 1

4 . Thus, running the
argument therein we get:

▶ Lemma 53. The distribution over tiling bodies (Dr⃗)r⃗ from Lemma 24 satisfies, for small
enough ε > 0

E⃗
r

[
Pr

x,∆ε

[At least one of the conditions of Claim 22 fail for x and x + ∆ε]
]
≲ A

ε

n
.

Slightly adapting the argument from Section B, we may ensure that the chosen body D also
has small noise sensitivity for Bernoulli random steps ∆ε for small enough ε,3 but we will
only need this to happen for a specific suitably chosen ε which can be ensured as follows.
Take ε small enough for which Lemma 53 holds, and note that by Markov’s inequality we
get from Lemma 53 that

Pr
r⃗

[
Pr

x,∆ε

[At least one of the conditions of Claim 22 fail for x and x + ∆ε] ⩾ C · A · ε

n

]
⩽

1
4

for an absolute constant C. Thus, from Claim 59 and the union bound we get that there
is r⃗⋆ ∈ ∩k⩾k0Gk such that the above event holds, and the rest of the proof in Section B
shows that D = Dr⃗⋆ has surface area O(A). We summarize this discussion with the following
lemma.

3 The proof is essentially the same, adapting the definition of Gk therein to be

Gk =

r⃗

∣∣∣∣∣∣
Pr x∈Dr⃗

∆∼N(0,4−k·In)
[x, x + ∆ lie in different cells of Sr⃗] ⩽ 4 · A2−k

Prx∈Dr⃗

∆2−k

[x, x + ∆2−k lie in different cells of Sr⃗] ⩽ 4 · A2−k

 .

CCC 2021

5:36 On Symmetric Tilings of Euclidean Space

▶ Lemma 54. For all t, for small enough ε, there is a permutation-symmetric, bounded
tiling body D with surface area A = O(t/

√
log t) such that

Pr
x,∆ε

[At least one of the conditions of Claim 22 fail for x and x + ∆ε] ≲ A · ε

n
.

5.2.2 Decisive boxes

In this section, we use Lemma 54 to devise a symmetric strategy for the players in the t-fold
repeated game. Take small enough ε so such Lemma 54 holds and assume that k

def= 1/ε

is an integer. Let D be the permutation-symmetric tiling body from Lemma 54. It will
be convenient for us to think of challenges to the players as Ct

n =
{

i
n

∣∣ i = 0, 1, . . . , n − 1
}

.

Partition [0, 1)t into the boxes Ba⃗ =
t∏

i=1

[
ai

n , ai

n + 1
n

)
for a⃗ ∈ {0, 1, . . . , n − 1}t; it will be

convenient for us identify a challenge of a player x′ with the box it belongs to, i.e. with Ba⃗

for a⃗ = nx′. Consider the way D further partitions the boxes Ba⃗.

▶ Definition 55. We say a box Ba⃗ is decisive if there exists z ∈ Zn such that µ(Ba⃗∩(D+z)) ⩾
2
3 µ(Ba⃗). Otherwise, we say Ba⃗ is indecisive.

We show that almost all boxes are decisive:

▶ Lemma 56. The number of indecisive boxes is O(Ant−1).

Proof. Define Φ =
∑

z∈Zt

∑
a⃗∈{0,1,...,n−1}t

area(∂(D+z)∩interior(Ba⃗)). By considering the surface

area of D, we will show that Φ ⩽ A, and we will lower bound Φ as a function of the number
of the indecisive boxes, from which we will get the result. Let B be such that D ⊆ [−B, B]t,
and take m large enough.

5.2.2.1 The upper bound

For a⃗ ∈ {0, 1, . . . , mn − 1}t, we define the box Ba⃗ as above, and define

Φm =
∑
z∈Zt

∑
a⃗∈{0,1,...,mn−1}t

area(∂(D + z) ∩ interior(Ba⃗)).

On the one hand, we clearly have that Φm = mtΦ, and we next upper bound Φm. Since
D ⊆ [−B, B]t, we have that

Φm =
∑

z∈{−B,−B+1,...,B+m}t

∑
a⃗∈{0,1,...,mn−1}t

area(∂(D + z) ∩ interior(Ba⃗))

⩽
∑

z∈{−B,−B+1,...,B+m}t

area(∂(D + z))

= (m + 2B + 1)tarea(∂D)
⩽ (m + 2B + 1)tA.

Combining the upper and lower bound we get Φ ⩽
(
1 + 2B+1

m

)t
A, and sending m to infinity

gets that Φ ⩽ A.

M. Braverman and D. Minzer 5:37

5.2.2.2 The lower bound

Interchanging the order of summation, we write

Φ =
∑

a⃗∈{0,1,...,n−1}t

∑
z∈Zt

area(∂(D + z) ∩ interior(Ba⃗)),

and we show that if the box Ba⃗ is indecisive, then the innermost sum is at least Ω(1/nt−1).
Indeed, if Ba⃗ is indecisive, then µ(Ba⃗∩(D+z)) ⩽ 2

3 µ(Ba⃗) for all a⃗. Thus, we may find P ⊆ Zn

such that for H = Ba⃗ ∩
⋃

z∈P (D + z) we have that 1
6 µ(Ba⃗) ⩽ µ(H) ⩽ 5

6 µ(Ba⃗). We now scale
and translate H, i.e. take H ′ = nH − a⃗, so that the above translates to H ′ ⊆ [0, 1]n such
that 1

6 ⩽ µ(H ′) ⩽ 5
6 , and hence by Fact 52 area(∂H ′ ∩ interior([0, 1]n)) ⩾ Ω(1). Removing

the scaling, we get that area(∂H ∩ interior(Ba⃗)) ⩾ Ω(n1−t). Therefore, we get that

Φ ⩾
∑

a⃗∈{0,1,...,n−1}t

Ba⃗ indecisive

Ω(n1−t) = Ω(n1−t · #{indecisive boxes})

Combining the upper and lower bound on Φ, we get that the number of indecisive boxes is
at most O(Ant−1). ◀

Next, we show that if Ba⃗ is a typical decisive box, and ∆1 ∈R {0, ±1/n} is chosen randomly
as above, then Ba⃗+∆1 is very likely to be somewhat decisive, and furthermore with the same
cell of D.

▶ Lemma 57. It holds that

Pr
∆1

a⃗∈{0,1,...,n−1}t

[
∃z ∈ Zn, µ(Ba⃗ ∩ (D + z)) ⩾ 2

3µ(Ba⃗), µ(Ba⃗+n∆1 ∩ (D + z)) >
1
2µ(Ba⃗+n∆1)

]

⩾ 1 − O

(
A

n

)
.

(17)

Proof. Choose a random a⃗, take a random x ∈ Ba⃗, and let y = x (mod D). Note that as
the distribution of x is uniform over [0, 1]n and the distribution of y is uniform over D. Let
E1(a⃗, x, ∆1) be the event that y and y + ∆1 are in different cells of D. Then by the union
bound and the choice of D

Pr
a⃗,x,∆1

[E1] = Pr
a⃗,x,∆ε

[y, y + k∆ε in different cells of D]

⩽
k−1∑
j=0

Pr
y,∆ε

[y + j∆ε, y + (j + 1)∆ε in different cells of D]

=
k−1∑
j=0

Pr
w∈D,∆ε

[w, w + ∆ε in different cells of D]

⩽
k−1∑
j=0

C · A · ε

n
= C

A

n
.

Let E2(a⃗) be the event that Ba⃗ is decisive, and if E2(a⃗) holds let z ∈ Zn be such that
µ(Ba⃗ ∩ (D + z)) ⩾ 2

3 µ(Ba⃗). Then by Lemma 56 Pr [E2(a⃗)] ⩾ 1 − O(A/n). Denote

pa⃗,∆1 = Pr
x,a,∆1

[E1(a⃗, x, ∆1) | a⃗ = a⃗, ∆1 = ∆1].

CCC 2021

5:38 On Symmetric Tilings of Euclidean Space

The expectation of pa⃗,∆1 is the probability of E1(a⃗, x, ∆1), so

Pr
a⃗,∆1

[
E2(a⃗) ∧ pa⃗,∆1 ⩽

1
10

]
⩾ 1 − Pr

a⃗

[
E2(a⃗)

]
− Pr

a⃗,∆1

[
pa⃗,∆1 >

1
10

]
⩾ 1 − O

(
A

n

)
−

Pra⃗,x,∆1 [E1(a⃗, x, ∆1)]
1/10 ,

which is at least 1 − O
(

A
n

)
. To finish the proof, we show that for every a⃗, ∆1 such that

E2(⃗a) holds and pa⃗,∆1 ⩽ 1
10 , we have the the event on the left hand side of (17) holds.

Indeed, fix such a⃗, ∆1. Then there is a unique z ∈ Zn such that µ(Ba⃗ ∩ (D + z)) =
Prx∈Ba⃗

[x ∈ (D + z)] is at least 2
3 µ(Ba⃗). Note that if y, y + ∆1 are in the same cell of D,

then x, x + ∆1 are in the same cell of D, so
µ(Ba⃗+n∆1 ∩ (D + z))

µ(Ba⃗+n∆1) = µ(Ba⃗+n∆1 ∩ (D + z))
µ(Ba⃗)

= Pr
x∈Ba⃗

[x + ∆1 ∈ (D + z)]

⩾ Pr
x∈Ba⃗

[x ∈ (D + z), x + ∆1 ∈ (D + z)]

⩾ Pr
x∈Ba⃗

[x ∈ (D + z) and y, y + ∆1 in the same cell of D]

⩾ Pr
x∈Ba⃗

[y, y + ∆1 in the same cell of D] − Pr
x∈Ba⃗

[x ̸∈ (D + z)]

= 1 − pa⃗,∆1 − Pr
x∈Ba⃗

[x ̸∈ (D + z)]

⩾ 1 − 1
10 − 1

3 >
1
2 . ◀

5.2.3 Proof of Theorem 8
In this section, we prove Theorem 8. For that, we show that the success probability of the
following players’ strategy is at least 1 − O(A/n).
1. On challenge x′ ∈ Ct

n, consider the box that x′ belongs to, i.e. Ba⃗ for a⃗ = nx′.
2. Check if there is z ∈ Zt such that µ(Ba⃗ ∩ (D + z)) > 1

2 µ(Ba⃗), and note that it is unique
if such point exists. If there is no such z, abort. We refer to z as the chosen lattice point
of the player.

3. Output z + nx′ (mod 2).
First, we argue that this strategy is symmetric. Indeed, the effect of permuting the entries of
x′ by π ∈ St is that a, z above also get permuted by π, and therefore the output also gets
permuted by π. Next, we analyze the success probability of this strategy.

Note the following equivalent way of picking challenges (x′, y′): sample uniformly a⃗ ∈
{0, 1, . . . , n − 1}t, set x′ = a⃗/n, sample ∆1 Bernoulli as above and set y′ = x′ + ∆1 (mod 1).
Denote the box of x′ by Ba⃗(x′), and consider the event E defined in Lemma 57. We show
that whenever the event E holds, the players are successful with the above strategy, and as
the probability of E is at least 1 − O(A/n), the proof would be concluded.

Fix a⃗, ∆1 such that E holds, and let z ∈ Zt be the (unique) point such that µ(Ba⃗ ∩
(D + z)) ⩾ 2

3 µ(Ba⃗), µ(Ba⃗+n∆1 ∩ (D + z)) > 1
2 µ(Ba⃗+n∆1). The first condition implies that

the x′-player does not abort and their chosen lattice point is z, and we next show that
the y′-player does not abort as well. Note that the box of y′ is Ba⃗(y′) for a⃗(y′) = a⃗ + n∆1
(mod 1), and write a⃗ + n∆1 = a⃗(y′) + w for w ∈ Zt. Thus,

µ(Ba⃗(y′) ∩ (D + z − w)) = µ(Ba⃗(y′)+w ∩ (D + z)) = µ(Ba⃗+n∆1 ∩ (D + z)) >
1
2µ(Ba⃗+n∆1),

which is equal to 1
2 µ(Ba⃗(y′)), so the y′-player also does not abort and their chosen lattice

point is z − w. We now analyze the answers of the players on each coordinate.

M. Braverman and D. Minzer 5:39

If i is a coordinate such that y′
i ̸= x′

i, then we may write y′
i = x′

i +∆1 +b for b ∈ {−1, 0, 1}
and ∆1 ≠ 0. Then we get that a⃗(y′)i = a⃗i + n(∆1)i + nb, so wi = −nb. Thus, the answer
of the x′-player is zi + nx′

i (mod 2), whereas the answer of the y′-player is

(z−w)i +ny′
i = zi +nb+nx′

i +n∆1 +nb = zi +nx′
i +n∆1 +2nb = zi +nx′

i +1 (mod 2),

where we used 2nb = 0(mod 2), and n∆1 = 1(mod 2) (as ∆1 = ± 1
n). Thus, the players

are consistent on the ith coordinate.
If i is a coordinate such that y′

i = x′
i, then in the above notations we have wi = 0, ∆i = 0

and we get that the answers of the players are the same on the ith coordinate, so they
are consistent on i. ◀

6 Open Problems

In this section, we propose several challenges for further investigation of symmetric parallel
repetition.

Recall from the introduction that on general games a strong parallel repetition theorem
still fails, even for symmetric repetition. A simple example is the union of many disjoint, odd
cycle games. It would be interesting to understand for what instances of Max-Cut one has
that a strong parallel holds with symmetric repetition, motivating the following problem.

▶ Problem 1. For the Max-Cut problem, extend the family of graphs for which symmetric
parallel repetition outperforms standard parallel repetition.

Optimistically, one may hope that if symmetric parallel repetition would work for general
enough class of graphs, then one would be able to reduce any graph to a graph in that
class by mild preprocessing that doesn’t affect the value of the game by much, and only
then perform symmetric repetition. If possible, that would establish the equivalence of the
Max-Cut Conjecture and UGC.

Secondly, there are well-known connections between parallel repetition and notions of
mixing times and eigenvalues of the underlying graph; for example, a strong parallel repetition
theorem is known to hold for expander graphs [31, 3], and more generally for graphs with
low threshold rank [35], i.e. graphs with only constantly many eigenvalues close to 1. We
expect there could be stronger relations between symmetric parallel repetition and higher
order eigenvalues of G⊗symk, the k-fold symmetric tensor product of G.

▶ Problem 2. What is the relation between the performance of the k-fold symmetric parallel
repetition of a given instance of Max-Cut G, and the first k + 1 eigenvalues of G?

Finally, we believe that solving the foam problem for special classes of bodies may be an
interesting geometric question (albeit unrelated to the study of parallel repetition); a very
natural class to study is the class of convex bodies.

References
1 Perfect sets are uncountable. [Online; accessed 15-April-2020]. URL: https://mathcs.org/

analysis/reals/topo/proofs/pfctuncb.html.
2 Noga Alon and Bo’az Klartag. Economical toric spines via cheeger’s inequality. Journal of

Topology and Analysis, 1(02):101–111, 2009.
3 Sanjeev Arora, Subhash Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani, and Nish-

eeth K. Vishnoi. Unique games on expanding constraint graphs are easy: extended abstract.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 21–28, 2008. doi:10.1145/1374376.1374380.

CCC 2021

https://mathcs.org/analysis/reals/topo/proofs/pfctuncb.html
https://mathcs.org/analysis/reals/topo/proofs/pfctuncb.html
https://doi.org/10.1145/1374376.1374380

5:40 On Symmetric Tilings of Euclidean Space

4 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.
doi:10.1145/278298.278306.

5 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
NP. J. ACM, 45(1):70–122, 1998. doi:10.1145/273865.273901.

6 Boaz Barak, Moritz Hardt, Ishay Haviv, Anup Rao, Oded Regev, and David Steurer. Rounding
parallel repetitions of unique games. In 49th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 374–383,
2008. doi:10.1109/FOCS.2008.55.

7 Boaz Barak, Pravesh K. Kothari, and David Steurer. Small-set expansion in shortcode
graph and the 2-to-2 conjecture. In 10th Innovations in Theoretical Computer Science
Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, pages 9:1–9:12,
2019. doi:10.4230/LIPIcs.ITCS.2019.9.

8 Boaz Barak, Anup Rao, Ran Raz, Ricky Rosen, and Ronen Shaltiel. Strong parallel repetition
theorem for free projection games. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, 12th International Workshop, APPROX 2009, and
13th International Workshop, RANDOM 2009, Berkeley, CA, USA, August 21-23, 2009.
Proceedings, pages 352–365, 2009. doi:10.1007/978-3-642-03685-9_27.

9 Amey Bhangale, Ramprasad Saptharishi, Girish Varma, and Rakesh Venkat. On fortification
of projection games. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ,
USA, pages 497–511, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.497.

10 Mark Braverman and Ankit Garg. Small value parallel repetition for general games. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, Portland, OR, USA, June 14-17, 2015, pages 335–340, 2015. doi:10.1145/2746539.
2746565.

11 Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. On non-optimally
expanding sets in grassmann graphs. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 940–951, 2018. doi:10.1145/3188745.3188806.

12 Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. Towards a proof of the
2-to-1 games conjecture? In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 376–389,
2018. doi:10.1145/3188745.3188804.

13 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
624–633, 2014. doi:10.1145/2591796.2591884.

14 Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive
proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292, 1996. doi:
10.1145/226643.226652.

15 Uriel Feige, Guy Kindler, and Ryan O’Donnell. Understanding parallel repetition requires un-
derstanding foams. In Twenty-Second Annual IEEE Conference on Computational Complexity
(CCC’07), pages 179–192. IEEE, 2007.

16 Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-prover interactive
protocols. Theor. Comput. Sci., 134(2):545–557, 1994. doi:10.1016/0304-3975(94)90251-8.

17 Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, 1995. doi:10.1145/227683.227684.

18 Thomas Holenstein. Parallel repetition: Simplification and the no-signaling case. Theory of
Computing, 5(1):141–172, 2009. doi:10.4086/toc.2009.v005a008.

https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
https://doi.org/10.1109/FOCS.2008.55
https://doi.org/10.4230/LIPIcs.ITCS.2019.9
https://doi.org/10.1007/978-3-642-03685-9_27
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.497
https://doi.org/10.1145/2746539.2746565
https://doi.org/10.1145/2746539.2746565
https://doi.org/10.1145/3188745.3188806
https://doi.org/10.1145/3188745.3188804
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/226643.226652
https://doi.org/10.1145/226643.226652
https://doi.org/10.1016/0304-3975(94)90251-8
https://doi.org/10.1145/227683.227684
https://doi.org/10.4086/toc.2009.v005a008

M. Braverman and D. Minzer 5:41

19 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 17th
Annual IEEE Conference on Computational Complexity, Montréal, Québec, Canada, May
21-24, 2002, page 25, 2002. doi:10.1109/CCC.2002.1004334.

20 Subhash Khot. Inapproximability of NP-complete problems, discrete fourier analysis, and
geometry. In Proceedings of the International Congress of Mathematicians 2010, pages 2676–
2697, 2010.

21 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability
results for MAX-CUT and other 2-variable csps? SIAM J. Comput., 37(1):319–357, 2007.
doi:10.1137/S0097539705447372.

22 Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games, and Grassmann
graphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 576–589, 2017. doi:10.1145/
3055399.3055432.

23 Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in grassmann graph have
near-perfect expansion. In 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages 592–601, 2018. doi:10.1109/FOCS.2018.
00062.

24 Guy Kindler, Anup Rao, Ryan O’Donnell, and Avi Wigderson. Spherical cubes: optimal
foams from computational hardness amplification. Commun. ACM, 55(10):90–97, 2012.
doi:10.1145/2347736.2347757.

25 Dana Moshkovitz. Parallel repetition from fortification. In 55th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014,
pages 414–423, 2014. doi:10.1109/FOCS.2014.51.

26 Anup Rao. Parallel repetition in projection games and a concentration bound. SIAM Journal
on Computing, 40(6):1871–1891, 2011.

27 Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998. doi:
10.1137/S0097539795280895.

28 Ran Raz. A counterexample to strong parallel repetition. SIAM Journal on Computing,
40(3):771–777, 2011.

29 Antonio Ros. The isoperimetric problem. Global Theory of Minimal Surfaces. Clay Math.
Proc, vol. 2:175–209, 2005.

30 Jean-François Sadoc and Nicolas Rivier. Foams and emulsions, volume 354. Springer Science
& Business Media, 2013.

31 Shmuel Safra and Oded Schwartz. On parallel-repetition, Unique-Games and Max-Cut, 2007.

32 Luis Antonio Santaló Sors and Luis A Santaló. Integral geometry and geometric probability.
Cambridge university press, 2004.

33 William Thomson. On the division of space with minimum partitional area. Acta Math.,
11:121–134, 1887. doi:10.1007/BF02612322.

34 Luca Trevisan. On Khot’s unique games conjecture. Bull. Amer. Math. Soc. (N.S.), 49(1):91–
111, 2012. doi:10.1090/S0273-0979-2011-01361-1.

35 Madhur Tulsiani, John Wright, and Yuan Zhou. Optimal strong parallel repetition for
projection games on low threshold rank graphs. In International Colloquium on Automata,
Languages, and Programming, pages 1003–1014. Springer, 2014.

CCC 2021

https://doi.org/10.1109/CCC.2002.1004334
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1145/3055399.3055432
https://doi.org/10.1145/3055399.3055432
https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.1145/2347736.2347757
https://doi.org/10.1109/FOCS.2014.51
https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1007/BF02612322
https://doi.org/10.1090/S0273-0979-2011-01361-1

5:42 On Symmetric Tilings of Euclidean Space

A Deferred proofs

A.1 Proof of Claim 30
We split the proof into two cases.

Case 1: ri ⩽ T/2 for all i

In this case, min(ri, T − ri) = ri for all i, and the sum on the RHS of (7) is just (
∑

i |di|)/T .
We have

∥p − q∥1 =
∑

i

∣∣∣∣ri + di

T ′ − ri

T

∣∣∣∣ ⩽ ∑
i

∣∣∣∣ri + di

T
− ri

T

∣∣∣∣ +
∑

i

∣∣∣∣ri + di

T ′ − ri + di

T

∣∣∣∣
=

∑
i

|di|
T

+
∣∣∣∣ 1
T ′ − 1

T

∣∣∣∣ ·
∑

i

(ri + di)

=
∑

i

|di|
T

+
∣∣∣∣1 − T ′

T

∣∣∣∣
=

∑
i

|di|
T

+ 1
T

·

∣∣∣∣∣∑
i

di

∣∣∣∣∣
⩽ 2 ·

∑
i

|di|
T

.

Case 2: one of the ri’s is greater than T/2

Without loss of generality, r1 > T/2. Denote by S :=
∑

i>1 ri = T −r1; S′ :=
∑

i>1(ri +di) =
T ′ − r1 − d1. In this case, the RHS of (7) is given by

|d1| · S

r1 · T
+

∑
i>1

|di|
T

. (18)

We will estimate |p1 − q1| and
∑

i>1 |pi − qi| separately. First, note that T ′ ⩾ T −
∑

j |dj | ⩾
T/2.

For |p1 − q1|, we have

|p1 − q1| =
∣∣∣∣r1

T
− r1 + d1

T ′

∣∣∣∣ =
∣∣∣∣r1 · (S′ − S) + d1 · S

T · T ′

∣∣∣∣ ⩽ 2
∣∣∣∣S′ − S

T

∣∣∣∣ + 2
∣∣∣∣d1 · S

T · r1

∣∣∣∣
⩽

∑
i>1

|di|
T

+ |d1| · S

r1 · T
.

In the third transition, we used the fact that T ′ ⩾ T/2 ⩾ r1/2.
For

∑
i>1 |pi − qi|, by a similar calculation to the first case we have

∑
i>1

|pi − qi| =
∑
i>1

∣∣∣∣ri + di

T ′ − ri

T

∣∣∣∣ ⩽ ∑
i>1

∣∣∣∣ri + di

T
− ri

T

∣∣∣∣ +
∑
i>1

∣∣∣∣ri + di

T ′ − ri + di

T

∣∣∣∣
⩽

∑
i>1

|di|
T

+
∣∣∣∣ 1
T ′ − 1

T

∣∣∣∣ ·
∑
i>1

ri + di

=
∑
i>1

|di|
T

+
∣∣∣∣ 1
T ′ − 1

T

∣∣∣∣ S′,

M. Braverman and D. Minzer 5:43

and it is enough to bound
∣∣ 1

T ′ − 1
T

∣∣ S′ by constant times the expression in (18). We have

∣∣∣∣ 1
T ′ − 1

T

∣∣∣∣ S′ =
∣∣∣∣S′ · (S′ − S) + S′ · d1

T ′T

∣∣∣∣ ⩽ ∣∣∣∣ (S′ + d1) · (S′ − S)
T ′T

∣∣∣∣ +
∣∣∣∣S · d1

T ′T

∣∣∣∣
⩽

∣∣∣∣S′ · (S′ − S)
T ′T

∣∣∣∣ +
∣∣∣∣d1 · (S′ − S)

T ′T

∣∣∣∣ + 2 ·
∣∣∣∣S · d1

T 2

∣∣∣∣ ,

where in the last transition we used T ′ ⩾ T/2 > 0. We bound each term separately. For the
first term, as T ′ ⩾ T/2, |S′| ⩽ 2T (since |di| ⩽ ri) we get∣∣∣∣S′ · (S′ − S)

T ′T

∣∣∣∣ ⩽ 4
∣∣∣∣S′ − S

T

∣∣∣∣ ⩽ 4
∑
i⩾2

|di|
T

.

For the second term, we have |d1| ⩽ r1 ⩽ T , T ′ ⩾ T/2 and so∣∣∣∣d1 · (S′ − S)
T ′T

∣∣∣∣ ⩽ 2 |S′ − S|
T

⩽ 2
∑
i⩾2

|di|
T

.

For the third term, we have, as T ⩾ r1, S·d1
T 2 ⩽ |d1|

r1
S
T .

A.2 Proof of Proposition 33

We will use the fact for points xi in our domain, gj(xi) ≍
(

n
log n αi

)3
. We consider two cases,

based on the values of S and r.

Case 1: Prxi[r · gj(xi) > S] < 1/2

We claim that for a sufficiently large constant A > 0,

E
xi

[√
z + 1

α2
i

· min(r · gj(xi), S)
r · gj(xi) + S + ε1.6

]
︸ ︷︷ ︸

(I)

⩽ E
xi

[√
z + An2/ log2 n · min(r · gj(xi), S)

r · gj(xi) + S + ε1.6

]
︸ ︷︷ ︸

(II)

.

To do that, we compare both sides to Exi

[√
z · min(r·gj(xi),S)

r·gj(xi)+S+ε1.6

]
. For (I), we have

E
xi

[(√
z + 1/α2

i −
√

z

)
· min(r · gj(xi), S)

r · gj(xi) + S + ε1.6

]
≲ E

xi

[
1/α2

i√
z + 1/α2

i

· min(r · gj(xi), S)
r · gj(xi) + S + ε1.6

]
.

Since αi ≲ log n/n always, we may further upper bound this by

≲ E
xi

[
1/α2

i√
z + A/(log n/n)2

· min(r · gj(xi), S)
r · gj(xi) + S + ε1.6

]
≲ E

xi

 1/α2
i√

z + An2/ log2 n
·

r
(

n
log n αi

)3

S + ε1.6

,

where we used min(r · gj(xi), S) ⩽ rgj(xi) and the asymptotic we have for gj . Simplifying
and using Exi

[αi] ≲ log n/n, we get that the last expression is equal to

n2

log2 n

1√
z + An2/ log2 n

· r

S + ε1.6 .

CCC 2021

5:44 On Symmetric Tilings of Euclidean Space

For (II), we have

E
xi

[(√
z + An2/ log2 n −

√
z

)
· min(r · gj(xi), S)

r · gj(xi) + S + ε1.6

]

≳ E
xi

 An2/ log2 n√
z + An2/ log2 n

· min(r · gj(xi), S)
r · gj(xi) + S + ε1.6

.

Restricting to the event E that rgj(xi) ⩽ S (that has probability at least 1/2 by assumption),
we have that the last expression is at least

≳ Exi

 An2/ log2 n√
z + An2/ log2 n

· r · gj(xi)
S + ε1.6

∣∣∣∣∣∣ E

 ≳
An2/ log2 n√

z + An2/ log2 n
· r

S + ε1.6 ,

where the last inequality holds since Eαi
[gj(xi) | E] ≳ 1 (this is true for any event E with

constant probability in our range of interest of xi’s). Combining the bounds for (I), (II), we
see that we may pick large enough A so that

E
xi

[(√
z + 1/α2

i −
√

z

)
· min(r · gj(xi), S)

r · gj(xi) + S + ε1.6

]
⩽ E

xi

[(√
z + An2/ log2 n −

√
z

)
· min(r · gj(xi), S)

r · gj(xi) + S + ε1.6

]
,

and hence (I) ⩽ (II). Let A1 be a large enough value of A so that this holds.

Case 2: Prxi [r · gj(xi) > S] ⩾ 1/2

Using
√

a + b ⩽
√

a +
√

b, we have

E
xi

[√
z + 1

α2
i

· min(r · gj(xi), S)
r · gj(xi) + S + ε1.6

]

⩽ E
xi

[√
z · min(r · gj(xi), S)

r · gj(xi) + S + ε1.6

]
︸ ︷︷ ︸

(III)

+ E
xi

[
1

αi
· min(r · gj(xi), S)

r · gj(xi) + S + ε1.6

]
︸ ︷︷ ︸

(IV)

.

Clearly, (III) ⩽ Exi

[√
z + A n2

log2 n
· min(r·gj(xi),S)

r·gj(xi)+S+ε1.6

]
, and we upper bound (IV). Recall that

gj(xi) ≍
(

n
log n αi

)3
, so

(IV) ≲ E
xi

[
1

αi
· min(r(nαi/ log n)3, S)

B · r(nαi/ log n)3 + S + ε1.6

]
,

for some absolute constant B > 0. Writing the last expression as an integral, we note that
αi is distributed uniformly on the interval [0, log n

50n + ε0.95], so we get

(IV) ≲
(

n

log n

) ∫ log n
25n

0

1
t

min(r(nt/ log n)3, S)
B · r(nt/ log n)3 + S + ε1.6 dt.

We break the range of integration into R1 =
[
0, (S/r)1/3 log n

n

]
, and R2 =

[
(S/r)1/3 log n

n , log n
25n

]
.

On R1 our expression is equal to(
n

log n

)2 ∫ (S
r)1/3 log n

n

0

r(nt/ log n)2

B · r(nt/ log n)3 + S + ε1.6 dt ≲

(
n

log n

)4 ∫ (S
r)1/3 log n

n

0

rt2

S
dt

≲
n

log n
.

M. Braverman and D. Minzer 5:45

On R2 our expression is at most(
n

log n

) ∫ log n
25n

(S
r)1/3 log n

n

1
t

S

B · r(nt/ log n)3 dt ≲
S

r

(
log n

n

)2 ∫ log n
25n

(S
r)1/3 log n

n

1
t4 dt.

Computing the integral, we see it is at most (
(

S
r

)1/3 log n
n)−3, hence the overall expression is

≲ n/ log n, and since E
[
1r·gj(xi)>S

]
⩾ 1/2 we conclude that there is A2 > 0 such that

(IV) ⩽ A2
n

log n
E
xi

[
1r·gj(xi)>S

]
.

The proposition is thus proven for A = max(A1, A2).

B From Noise Sensitivity to Surface Area

Let Dr⃗ be a family of tilings of Rn that are constructed from Lemma 24. I.e., the family Dr⃗

satisfies that the there is A = O(n/
√

log n) such that for sufficiently small ε, we have that

E⃗
r

 Pr
x∈Dr⃗

∆∼N(0,ε2·In)

[x, x + ∆ fall in different cells of the tiling induced by Dr⃗]

 ⩽ Aε.

Let k0 be the first integer such that this condition holds for any 0 < ε ⩽ 2−k0 . Thus, defining
for each k ⩾ k0 the set

Gk =
{

r⃗
∣∣∣ Pr

x∈Dr⃗

∆∼N(0,4−k·In)

[x, x + ∆ lie in different cells of the tiling of Sr⃗] ⩽ 2 · A2−k
}

,

we have by Markov’s inequality that Prr⃗ [r⃗ ∈ Gk] ⩾ 1
2 .

▷ Claim 58. The sets Gk are monotone decreasing, i.e. for each k, Gk+1 ⊆ Gk.

Proof. Fix r⃗ ∈ Gk+1. Let ∆ ∼ N(0, 4−k−1 · In), and note that ∆′ = 2 · ∆ ∼ N(0, 4−k · In).
Thus,

Pr
x∈Dr⃗

∆′∼N(0,4−k·In)

[x, x + ∆′ in different cells]

⩽ Pr
x∈Dr⃗

∆∼N(0,A4−k−1·In)

[x, x + ∆ in different cells]

+ Pr
x∈Dr⃗

∆∼N(0,4−k−1·In)

[x + ∆, x + 2∆ in different cells]. (19)

First, we argue that the second probability on the right hand side is equal to the first one.
To see that, denote y = x + ∆ and observe that the points y, y + ∆ lie in different cells
of the tiling induced by Dr⃗ if and only if the points y (mod Dr⃗), y (mod Dr⃗) + ∆ lie in
different cells. Additionally, note for any fixed ∆, the distribution of y (mod Dr⃗) when we
take x ∈R Dr⃗, is uniform over Dr⃗.

Therefore, the bound we get from (19) is (using the fact that r⃗ ∈ Gk+1)

2 · Pr
x∈Dr⃗

∆∼N(0,4−k−1·In)

[x, x + ∆ in different cells] ⩽ 2 · 2 · A2−(k+1) = 2 · A2−k,

and so r⃗ ∈ Gk. ◁

CCC 2021

5:46 On Symmetric Tilings of Euclidean Space

▷ Claim 59. It holds that Prr⃗

[
r⃗ ∈

⋂
k⩾k0

Gk

]
⩾ 1

2 , and in particular
⋂

k⩾k0
Gk is not empty.

Proof. Define the sequence of functions gm(r⃗) = 1r⃗∈
⋂

k0⩽k⩽m
Gk

, and also g = 1r⃗∈
⋂

k⩾k0
Gk

.
Clearly, on each r⃗, the sequence gm(r⃗) is monotonically decreasing to g(r⃗), and in other
words we have monotone pointwise convergence of the non-negative functions gm to g. Thus,
by the monotone convergence theorem

Pr
r⃗

r⃗ ∈
⋂
k⩾0

Gk

 = E⃗
r

[g(r⃗)] = E⃗
r

[
lim

k→∞
gk(r⃗)

]
= lim

k→∞
E⃗
r

[gk(r⃗)].

By the previous claim, gm = 1Gm , hence Er⃗ [gm(r⃗)] ⩾ 1
2 and in particular the limit above is

at least 1
2 . ◁

Pick r⃗⋆ ∈
⋂

k⩾k0
Gk, ε = 2−k0 and denote D = Dr⃗⋆ for the rest of the proof. Clearly

D induces a tiling of the space Rn, and next we will show that the surface area of D is
O(A) = O(n/

√
log n), as desired.

Towards this end, we will use Lemma 10 that tells us that the surface area of D is a
constant multiple of

1
ε

E
x∈RD

∆∼N(0,ε2In)

[|(x, x + ∆) ∩ ∂D|],

and we first observe that (x, x + ∆) ∩ ∂D is almost surely countable. 4

▷ Claim 60. Let ε > 0 and sample x ∈R D, ∆ ∼ N(0, ε2In). Then with probability 1,
(x, x + ∆) ∩ ∂D is finite or countable.

Proof. Recall that by Lemma 24, D is a countable union of semi-algebraic sets, say B1, B2,
Note that for each semi-algebraic set Bi, the probability that (x, x + ∆) ∩ ∂Bi is infinite is
0, hence by the union bound, with probability 1 all of these sets are finite, in which case
(x, x + ∆) ∩ ∂D is finite or countable. ◁

For a parameter h, a point x ∈ Rn and a direction ∆, we say a point y ∈ (x, x + ∆) is
h-isolated if
1. It holds that y ∈ ∂D.
2. The neighbourhood of radius h around y does not contain x, x + ∆ or any point from ∂D

(besides y).
Define the quantity gm(x, ∆) to be the number of 2−m∥∆∥2-isolated points in the interval
[x, x + ∆].

▷ Claim 61. gm(x, ∆) is an increasing sequence in m, and for any x, ∆ for which Claim 60
holds, we have

lim
m→∞

gm(x, ∆) = |(x, x + ∆) ∩ ∂D| .

Proof. The monotonicity of gm(x, ∆) in m, and gm(x, ∆) ⩽ |(x, x + ∆) ∩ ∂D| are clear. We
set ℓ = gm(x, ∆) and split the rest of the proof according to whether ℓ is finite or not.

4 The diligent reader may note that here, we are only considering intersections of the surface with the
open interval (x, x + ∆) as opposed to the closed interval. This does not make any difference, since
the contribution of the endpoints is proportional to the measure of ∂D. Hence, if the measure of ∂D
is 0 they endpoints contribute 0 to that expectation, and if the measure of ∂D is positive, then the
expectation is infinite either way.

M. Braverman and D. Minzer 5:47

Case 1: ℓ is finite

In this case we argue that gm(x, ∆) = |(x, x + ∆) ∩ ∂D| for large enough m. To see that,
let y1, . . . , yℓ ∈ (x, x + ∆) be all of the intersection points of (x, x + ∆) and ∂D, and take
large enough m so that 2−m∥∆∥2 is smaller than all of the distances ∥yi − yj∥2, ∥yi − x∥2,
∥yi − (x + ∆)∥2 for all i and j.

Case 1: ℓ is infinite

Consider the set S = [x, x+∆]∩∂D, and note that it is a closed. By Claim 60, S is countable,
and we argue that S must have an isolated point. Otherwise, S is a closed set and has no
isolated point, i.e. it s a perfect set, but then it must be uncountable (e.g. see [1]). We thus
conclude that S has an isolated point w1; we may remove it from S, have that the resulting
set is again closed and countable, so we may again find an isolated point. Repeating this
argument, for any v ∈ N we may find a collection of isolated points w1, . . . , wv ∈ S that are
all different from x and x + ∆. As in case 1, we conclude that gm(x, ∆) ⩾ v for large enough
m, and since it holds for any v we conclude that limm→∞ gm(x, ∆) = ∞. ◁

By Lemma 10, we have that the surface area of D is at most a constant multiple of

1
ε

E
x∈RD

∆∼N(0,ε2In)

[|(x, x + ∆) ∩ ∂D|] = 1
ε

E
x∈RD

∆∼N(0,ε2In)

[
lim

m→∞
gm(x, ∆)

]

= lim
m→∞

1
ε

E
x∈RD

∆∼N(0,ε2In)

[gm(x, ∆)].

In the first transition we used Claims 61 and 60, and in the second one we used monotone
convergence. Thus, if we assume that the surface area of D is larger than c ·A for a sufficiently
large absolute constant c, then we get that limm→∞

1
εE x∈RD

∆∼N(0,ε2In)
[gm(x, ∆)] ⩾ 10A. In the

rest of the proof we will reach a contradiction and thereby show that for sufficiently large
absolute constant c, the surface area of D is at most cA, as required.

By properties of limits, we conclude there exists m such that

E
x∈RD

∆∼N(0,ε2In)

[gm(x, ∆)] ⩾ 5Aε, (20)

and we fix this m henceforth.
Take 0 < δ ⩽ 2−m, and consider the following experiment. Take x ∈R D uniformly at

random, ∆ ∼ N(0, ε2In) and take a uniformly random point y ∈R [x, x + ∆]. We consider
the event E in which the points y and y + δ∆ lie in different cells in the tiling induced by D.

▷ Claim 62. For any x, ∆ we have that Pry [E | x, ∆] ⩾ δgm(x, ∆).

Proof. Let ℓ = gm(x, ∆), and let z1, . . . , zℓ be the 2−m∥∆∥2-isolated points on the interval
(x, x + ∆). For each j, let Ij = (zj − δ∆, zj), and note that as δ ⩽ 2−m and the isolation of
the points, we conclude that the intervals Ij are disjoint and contained in (x, x + ∆). Also,
note that if we pick y ∈ Ij , then y and y + δ∆ lie in different cells of the tiling induced by D;
this holds since the interval between them contains exactly one point from ∂D (namely, the
point zj). Therefore,

Pr
y

[E | x, ∆] ⩾
ℓ∑

j=1
Pr
y

[y ∈ Ij | x, ∆] ⩾
ℓ∑

j=1

δ∥∆∥2

∥∆∥2
= δℓ. ◁

CCC 2021

5:48 On Symmetric Tilings of Euclidean Space

▷ Claim 63. Prx,∆,y [E] ⩽ 2Aδε.

Proof. Consider x, ∆, y the random variables in the definition of the event E. Let z = y
(mod D), and note that the points y and y + δ∆ fall in different cells if and only if the points
z and z + δ∆ fall in different cells. Therefore, the probability of E is exactly the probability
that z, z + δ∆ fall in different cells. Further, note that conditioned on ∆, the distribution of
z is uniform over D, so

Pr
∆∼N(0,ε2In)

[z, z + δ∆ lie in different cells of D]

= Pr
∆′∼N(0,δ2ε2In)

[z, z + ∆′ lie in different cells of D],

which is at most 2Aδε by the choice of D and the fact that δε ⩽ ε ⩽ 2−k0 . ◁

Combining the above claims we reach a contradiction:

2Aδε ⩾ Pr
x,∆,y

[E] = E
x,∆

[
Pr
y

[E | x, ∆]
]
⩾ E

x,∆
[δgm(x, ∆)] ⩾ δ · 5Aε,

and contradiction. The first transition is by Claim 62, the second transition is by conditional
probability formula, the third transition is by Claim 63 and the final one is by equation (20).

On the Power and Limitations of Branch and Cut
Noah Fleming # Ñ

University of Toronto, Canada
Simons Institute, Berkeley, CA, USA

Mika Göös # Ñ

EPFL, Lausanne, Switzerland

Russell Impagliazzo # Ñ

University of California, San Diego, CA, USA
Toniann Pitassi # Ñ

University of Toronto, Canada
IAS, Princeton, NJ, USA

Robert Robere # Ñ

McGill University, Montréal, Canada
Li-Yang Tan # Ñ

Standford University, CA, USA

Avi Wigderson # Ñ

IAS, Princeton, NJ, USA

Abstract
The Stabbing Planes proof system [8] was introduced to model the reasoning carried out in practical
mixed integer programming solvers. As a proof system, it is powerful enough to simulate Cutting
Planes and to refute the Tseitin formulas – certain unsatisfiable systems of linear equations mod2 –
which are canonical hard examples for many algebraic proof systems. In a recent (and surprising)
result, Dadush and Tiwari [25] showed that these short refutations of the Tseitin formulas could
be translated into quasi-polynomial size and depth Cutting Planes proofs, refuting a long-standing
conjecture. This translation raises several interesting questions. First, whether all Stabbing Planes
proofs can be efficiently simulated by Cutting Planes. This would allow for the substantial analysis
done on the Cutting Planes system to be lifted to practical mixed integer programming solvers.
Second, whether the quasi-polynomial depth of these proofs is inherent to Cutting Planes.

In this paper we make progress towards answering both of these questions. First, we show
that any Stabbing Planes proof with bounded coefficients (SP∗) can be translated into Cutting
Planes. As a consequence of the known lower bounds for Cutting Planes, this establishes the first
exponential lower bounds on SP∗. Using this translation, we extend the result of Dadush and Tiwari
to show that Cutting Planes has short refutations of any unsatisfiable system of linear equations
over a finite field. Like the Cutting Planes proofs of Dadush and Tiwari, our refutations also incur a
quasi-polynomial blow-up in depth, and we conjecture that this is inherent. As a step towards this
conjecture, we develop a new geometric technique for proving lower bounds on the depth of Cutting
Planes proofs. This allows us to establish the first lower bounds on the depth of Semantic Cutting
Planes proofs of the Tseitin formulas.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases Proof Complexity, Integer Programming, Cutting Planes, Branch and Cut,
Stabbing Planes

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.6

Funding Russell Impagliazzo: Research supported by NSF and the Simons Foundation.
Toniann Pitassi: Research supported by NSERC, NSF Grant No. CCF-1900460 and the IAS school
of mathematics.
Robert Robere: Research supported by the Charles Simonyi Endowment, and indirectly supported
by the National Science Foundation Grant No. CCF-1900460.
Li-Yang Tan: Research supported by NSF grant CCF-192179 and NSF CAREER award CCF-
1942123.
Avi Wigderson: Research partially supported by NSF grant CCF-1900460.

Acknowledgements N.F. would like to thank Albert Atserias for some corrections to an earlier
version of this paper.

© Noah Fleming, Mika Göös, Russell Impagliazzo, Toniann Pitassi,
Robert Robere, Li-Yang Tan, and Avi Wigderson;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 6; pp. 6:1–6:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noahfleming@cs.toronto.edu
https://www.cs.toronto.edu/~noahfleming/
mailto:mika.goos@epfl.ch
https://theory.epfl.ch/mika/
mailto:russell@eng.ucsd.edu
https://cseweb.ucsd.edu/~russell/
mailto:toni@cs.toronto.edu
https://www.cs.toronto.edu/~toni/
mailto:robere@cs.mcgill.ca
https://www.cs.mcgill.ca/~robere/
mailto:liyang@cs.stanford.edu
http://theory.stanford.edu/~liyang/
mailto:avi@ias.edu
https://www.math.ias.edu/avi/home
https://doi.org/10.4230/LIPIcs.CCC.2021.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 On the Power and Limitations of Branch and Cut

1 Introduction

An effective method for analyzing classes of algorithms is to formalize the techniques used
by the class into a formal proof system, and then analyze the formal proof system instead.
By doing this, theorists are able to hide many of the practical details of implementing these
algorithms, while preserving the class of methods that the algorithms can feasibly employ.
Indeed, this approach has been applied to study many different families of algorithms, such
as

Conflict-driven clause-learning algorithms for SAT [41,49,61], which can be formalized
using resolution proofs [27].
Optimization algorithms using semidefinite programming [34, 51], which can often be
formalized using Sums-of-Squares proofs [6, 38].
The classic cutting planes algorithms for integer programming [18,35], which are formalized
by cutting planes proofs [18, 19,23].

In the present work, we continue the study of formal proof systems corresponding to
modern integer programming algorithms. Recall that in the integer programming problem,
we are given a polytope P ⊆ Rn and a vector c ∈ Rn, and our goal is to find a point
x ∈ P ∩ Zn maximizing c · x. The classic approach to solving this problem – pioneered by
Gomory [35] – is to add1 cutting planes to P . A cutting plane for P is any inequality of the
form ax ≤ ⌊b⌋, where a is an integral vector, b is rational, and every point of P is satisfied
by ax ≤ b. By the integrality of a, it follows that cutting planes preserve the integral points
of P , while potentially removing non-integral points from P . The cutting planes algorithms
then proceed by heuristically choosing “good” cutting planes to add to P to try and locate
the integral hull of P as quickly as possible.

As mentioned above, these algorithms can be naturally formalized into a proof system – the
Cutting Planes proof system, denoted CP – as follows [23]. Initially, we are given a polytope
P , presented as a list of integer-linear inequalities {aix ≤ bi}. From these inequalities we
can then deduce new inequalities using two deduction rules:

Linear Combination. From inequalities ax ≤ b, cx ≤ d, deduce any non-negative linear
combination of these two inequalities with integer coefficients.
Division Rule. From an inequality ax ≤ b, if d ∈ Z with d ≥ 0 divides all entries of a

then deduce (a/d)x ≤ ⌊b/d⌋.
A Cutting Planes refutation of P is a proof of the trivially false inequality 1 ≤ 0 from the
inequalities in P ; clearly, such a refutation is possible only if P does not contain any integral
points. While Cutting Planes has grown to be an influential proof system in propositional
proof complexity, the original cutting planes algorithms suffered from numerical instabilities,
as well as difficulties in finding good heuristics for the next cutting planes to add [35].

The modern algorithms in integer programming improve on the classical cutting planes
method by combining them with a second technique, known as branch-and-bound, resulting
in a family of optimization algorithms broadly referred to as branch-and-cut algorithms.
These algorithms search for integer solutions in a polytope P by recursively repeating
the following two procedures: First, P is split into smaller polytopes P1, . . . , Pk such that
P ∩ Zn ⊆

⋃
i∈[k] Pi (i.e. branching). Next, cutting planes deductions are made in order

to further refine the branched polytopes (i.e. cutting). In practice, branching is usually
performed by selecting a variable xi and branching on all possible values of xi; that is,
recursing on P ∩ {xi = t} for each feasible integer value t. More complicated branching

1 Throughout, we will say that a cutting plane, or an inequality is added to a polytope P to mean that it
is added to the set of inequalities defining P .

N. Fleming et al. 6:3

schemes have also been considered, such as branching on the hamming weight of subsets of
variables [31], branching using basis-reduction techniques [1, 2, 45], and more general linear
inequalities [42,47,50].

However, while these branch-and-cut algorithms are much more efficient in practice than
the classical cutting planes methods, they are no longer naturally modelled by Cutting Planes
proofs. So, in order to model these solvers as proof systems, Beame et al. [8] introduced the
Stabbing Planes proof system. Given a polytope P containing no integral points, a Stabbing
Planes refutation of P proceeds as follows. We begin by choosing an integral vector a, an
integer b, and replacing P with the two polytopes P ∩{ax ≤ b− 1} and P ∩{ax ≥ b}. Then,
we recurse on these two polytopes, continuing until all descendant polytopes are empty (that
is, they do not even contain any real solutions). The majority of branching schemes used in
practical branch-and-cut algorithms (including all of the concrete schemes mentioned above)
are examples of this general branching rule.

It is now an interesting question how the two proof systems – Cutting Planes and Stabbing
Planes – are related. By contrasting the two systems we see at least three major differences:

Top-down vs. Bottom-up. Stabbing Planes is a top-down proof system, formed by
performing queries on the polytope and recursing; while Cutting Planes is a bottom-up
proof system, formed by deducing new inequalities from old ones.
Polytopes vs. Halfspaces. Individual “lines” in a Stabbing Planes proof are polytopes,
while individual “lines” in a Cutting Planes proof are halfspaces.
Tree-like vs. DAG-like. The graphs underlying Stabbing Planes proofs are trees, while
the graphs underlying Cutting Planes proofs are general DAGs: intuitively, this means
that Cutting Planes proofs can “re-use” their intermediate steps, while Stabbing Planes
proofs cannot.

When taken together, these facts suggest that Stabbing Planes and Cutting Planes could be
incomparable in power, as polytopes are more expressive than halfspaces, while DAG-like
proofs offer the power of line-reuse. Going against this natural intuition, Beame et al. proved
that Stabbing Planes can actually efficiently simulate Cutting Planes [8] (see Figure 1).
Furthermore, they proved that Stabbing Planes is equivalent to the proof system tree-like
R(CP), denoted treeR(CP), which was introduced by Krajíček [44], and whose relationship to
Cutting Planes was previously unknown.

This leaves the converse problem – of whether Stabbing Planes can also be simulated
by Cutting Planes – as an intriguing open question. Beame et al. conjectured that such a
simulation was impossible, and furthermore that the Tseitin formulas provided a separation
between these systems [8]. For any graph G and any {0, 1}-labelling ℓ of the vertices of G,
the Tseitin formula of (G, ℓ) is the following system of F2-linear equations: for each edge e

we introduce a variable xe, and for each vertex v we have an equation⊕
u:uv∈E

xuv = ℓ(v)

asserting that the sum of the edge variables incident with v must agree with its label
ℓ(v) (note such a system is unsatisfiable as long as

∑
v ℓ(v) is odd). On the one hand,

Beame et al. proved that there are quasi-polynomial size Stabbing Planes refutations of the
Tseitin formulas [8]. On the other hand, Tseitin formulas had long been conjectured to be
exponentially hard for Cutting Planes [23], as they form one of the canonical families of
hard examples for algebraic and semi-algebraic proof systems, including Nullstellensatz [37],
Polynomial Calculus [17], and Sum-of-Squares [38,59].

In a recent breakthrough, the long-standing conjecture that Tseitin was exponentially
hard for Cutting Planes was refuted by Dadush and Tiwari [25], who gave quasi-polynomial
size Cutting Planes refutations of Tseitin instances. Moreover, to prove their result, Dadush

CCC 2021

6:4 On the Power and Limitations of Branch and Cut

and Tiwari showed how to translate the quasipolynomial-size Stabbing Planes refutations
of Tseitin into Cutting Planes refutations. This translation result is interesting for several
reasons. First, it brings up the possibility that Cutting Planes can actually simulate Stabbing
Planes. If possible, such a simulation would allow the significant analysis done on the Cutting
Planes system to be lifted directly to branch-and-cut solvers. In particular, this would
mean that the known exponential-size lower bounds for Cutting Planes refutations would
immediately imply the first exponential lower bounds for these algorithms for arbitrary
branching heuristics. Second, the translation converts shallow Stabbing Planes proofs into
very deep Cutting Planes proofs: the Stabbing Planes refutation of Tseitin has depth O(log2 n)
and quasi-polynomial size, while the Cutting Planes refutation has quasipolynomial size
and depth. This is quite unusual since simulations between proof systems typically preserve
the structure of the proofs, and thus brings up the possibility that the Tseitin formulas
yield a supercritical size/depth tradeoff – formulas with short proofs, requiring superlinear
depth. For contrast: another simulation from the literature which emphatically does not
preserve the structure of proofs is the simulation of bounded-size resolution by bounded-width
resolution by Ben-Sasson and Wigderson [10]. In this setting, it is known that this simulation
is tight [14], and even that there exist formulas refutable in resolution width w requiring
maximal size nΩ(w) [5]. Furthermore, under the additional assumption that the proofs are
tree-like, Razborov [56] proved a supercritical trade-off between width and size.

1.1 Our Results
A New Characterization of Cutting Planes
Our first main result gives a characterization of Cutting Planes proofs as a natural subsystem
of Stabbling Planes that we call Facelike Stabbing Planes. A Stabbing Planes query is
facelike if one of the sets P ∩ {ax ≤ b− 1} or P ∩ {ax ≥ b} is either empty or is a face of the
polytope P , and a Stabbing Planes proof is said to be facelike if it only uses facelike queries.
Our main result is the following theorem.

▶ Theorem 1. The proof systems CP and Facelike SP are polynomially equivalent.

The proof of this theorem is inspired by Dadush and Tiwari’s upper bound for the
Tseitin formulas. Indeed, the key tool underlying both their proof and ours is a lemma due
to Schrijver [60] which allows us to simulate CP refutations of faces of a polytope, when
beginning from P itself.

Using this equivalence we prove the following surprising simulation (see Figure 1), stating
that Stabbing Planes proofs with relatively small coefficients (quasi-polynomially bounded in
magnitude) can be quasi-polynomially simulated by Cutting Planes.

▶ Theorem 2. Let F be any unsatisfiable CNF formula on n variables, and suppose that
there is a SP refutation of F in size s and maximum coefficient size c. Then there is a CP
refutation of F in size s(cn)log s.

In fact, we prove a more general result (Theorem 16) which holds for arbitrary polytopes
P ∈ Rn, rather than only for CNF formulas, which degrades with the diameter of P . This
should be contrasted with the work of Dadush and Tiwari [25], who show that any SP proof
of size s of a polytope with diameter d can be assumed to have coefficients of size (nd)O(n2).

As a second application of Theorem 1, we generalize Dadush and Tiwari upper bound for
Tseitin to show that Cutting Planes can refute any unsatisfiable system of linear equations
over a finite field. This follows by showing that, like Tseitin, we can refute such systems of
linear equations in quasi-polynomial-size Facelike SP.

N. Fleming et al. 6:5

SP = treeR(CP) Semantic CP

CP = Facelike SPSP∗

CP∗

Figure 1 Known relationships between proof systems considered in this paper. A solid black
(red) arrow from proof system P1 to P2 indicates that P2 can polynomially (quasi-polynomially)
simulate P1. A dashed arrow indicates that this simulation cannot be done.

▶ Theorem 3. Let F be the CNF encoding of an unsatisfiable system of m linear equations
over a finite field. There is a CP refutation of F of size |F |O(log m).

This should be contrasted with the work of Filmus, Hrubeš, and Lauria [30], which
gives several unsatisfiable systems of linear equations over R that require exponential size
refutations in Cutting Planes (see Figure 1).

Lower Bounds
An important open problem is to prove superpolynomial size lower bounds for Stabbing Planes
proofs. We make significant progress toward this goal by proving the first superpolynomial
lower bounds on the size of low-weight Stabbing Planes proofs. Let SP∗ denote the family
of Stabbing Planes proofs in which each coefficient has at most quasipolynomial (nlogO(1) n)
magnitude.

▶ Theorem 4. There exists a family of unsatisfiable CNF formulas {Fn} such that any SP∗

refutation of F requires size at least 2nε for constant ε > 0.

Our proof follows in a straightforward manner from Theorem 2 together with known
Cutting Planes lower bounds. We view this as a step toward proving SP lower bounds (with
no restrictions on the weight). Indeed, lower bounds for CP∗ (low-weight Cutting Planes) [15]
were first established, and led to (unrestricted) CP lower bounds [54].

Our second lower bound is a new linear depth lower bound for semantic Cutting Planes
proofs. (In a semantic Cutting Planes proof the deduction rules for CP are replaced by a
simple and much stronger semantic deduction rule).

▶ Theorem 5. For all sufficiently large n there is a graph G on n vertices and a labelling ℓ

such that the Tseitin formula for (G, ℓ) requires Ω(n) depth to refute in Semantic Cutting
Planes.

We note that depth lower bounds for Semantic Cutting Planes have already established
via communication complexity arguments. However, since Tseitin formulas have short
communication protocols, our depth bound for semantic Cutting Planes proofs of Tseitin
is new.

Theorem 5 is established via a new technique for proving lower bounds on the depth of
semantic Cutting Planes proofs. Our technique is inspired by the result of Buresh-Oppenheim
et al. [16], who proved lower bounds on the depth of Cutting Planes refutations of Tseitin
by studying the Chátal rank of the associated polytope P . Letting P (d) be the polytope
composed of all inequalities which can be derived in depth d in Cutting Planes. The Chátal
rank of P is the minimum d such that P (d) = ∅. Thus, in order to establish a depth lower

CCC 2021

6:6 On the Power and Limitations of Branch and Cut

bound of depth d, one would like to show the existence of a point p ∈ P (d). To do so, they
give a sufficient criterion for a point p to be in P (i) in terms of the points in P (i−1). This
criterion relies on a careful analysis of the specific rules of Cutting Planes, and is no longer
sufficient for semantic CP. Instead, we develop an analogous criterion for semantic CP by
using novel geometric argument (Lemma 28) which we believe will be of independent interest.

Our main motivation behind this depth bound is as a step towards proving a supercritical
tradeoff in CP for Tseitin formulas. A supercritical tradeoff for CP, roughly speaking, states
that small size CP proofs must sometimes necessarily be very deep – that is, beyond the trivial
depth upper bound of O(n) [11,56]. (Observe that Dadush and Tiwari’s quasipolynomial-size
CP refutations of Tseitin are quasipolynomially deep; this is preserved by our simulation
of Facelike Stabbing Planes by Cutting Planes in Theorem 1.) Establishing supercritical
tradeoffs is a major challenge, both because hard examples witnessing such a tradeoff are rare,
and because current methods seem to fail beyond the critical regime. In fact, to date the only
supercritical tradeoffs between size and depth for known proof systems are due to Razborov,
under the additional assumption that the proofs have bounded width. Namely, Razborov
exhibited a supercritical size-depth tradeoff for bounded width tree-like resolution [56], and
then extended this result to CP proofs in which each inequality has a bounded number of
distinct variables [57].

How could one prove a supercritical depth lower bound for Cutting Planes? All prior depth
lower bounds for Cutting Planes proceed by either reducing to communication complexity, or
by using so-called protection lemmas (e.g. [16]). Since communication complexity is always
at most n, it will be useless for proving supercritical lower bounds directly. It therefore
stands to reason that we should focus on improving the known lower bounds using protection
lemmas and, indeed, our proof of Theorem 5 is a novel geometric argument which generalizes
the top-down “protection lemma” approach [16] for syntactic CP. At this point in time we
are currently unable to use protection lemma techniques to prove size-depth tradeoffs, so, we
leave this as an open problem.

▶ Conjecture 6. There exists a family of unsatisfiable formulas {Fn} such that Fn has
quasipolynomial-size CP proofs, but any quasipolynomial-size proof requires superlinear depth.

1.2 Related Work

Lower Bounds on SP and treeR(CP)

Several lower bounds on subsystems of SP and treeR(CP) have already been established.
Krajíček [44] proved exponential lower bounds on the size of R(CP) proofs in which both the
width of the clauses and the magnitude of the coefficients of each line in the proof are bounded.
Concretely, let these bounds be w and c respectively. The lower bound that he obtains is
2nΩ(1)

/cw log2 n. Kojevnikov [43] removed the dependence on the coefficient size for treeR(CP)
proofs, obtaining a bound of exp(Ω(

√
n/w log n)). Beame et al. [8] provide a size-preserving

simulation of Stabbing Planes by treeR(CP) which translates a depth d Stabbing Planes
proof into a width d treeR(CP) proof, and therefore this implies lower bounds on the size of
SP proofs of depth o(n/ log n). Beame et al. [8] exhibit a function for which there are no
SP refutations of depth o(n/ log2 n) via a reduction to the communication complexity of the
CNF search problem.

N. Fleming et al. 6:7

Supercritical Tradeoffs

Besides the work of Razborov [56], a number of supercritical tradeoffs have been observed in
proof complexity. Perhaps most relevant for our work, Razborov [57] proved a supercritical
tradeoff for Cutting Planes proofs under the assumption that each inequality has a bounded
number of distinct variables (mimicking the bound on the width of each clause in the
supercritical tradeoff of [56]).

A number of supercritical tradeoffs are also known between proof width and proof space.
Beame et al. [7] and Beck et al. [9] exhibited formulas which admit polynomial size refutations
in Resolution and the Polynomial Calculus respectively, and such that any refutation of
sub-linear space necessitates a superpolynomial blow-up in size. Recently, Berkholz and
Nordström [11] gave a supercritical trade-off between width and space for Resolution.

Depth in Cutting Planes and Stabbing Planes

It is widely known (and easy to prove) that any unsatisfiable family of CNF formulas can be
refuted by exponential size and linear depth Cutting Planes. It is also known that neither
Cutting Planes nor Stabbing Planes can be balanced, in the sense that a depth-d proof can
always be transformed into a size 2O(d) proof [8, 16]. This differentiates both of these proof
systems from more powerful proof systems like Frege, for which it is well-known how to
balance arbitrary proofs [22]. Furthermore, even though both the Tseitin principles and
systems of linear equations in finite fields can be proved in both quasipolynomial-size and
O(log2 n) depth in Facelike SP, the simulation of Facelike SP by CP cannot preserve both
size and depth, as the Tseitin principles are known to require depth Θ(n) to refute in CP [16].

We first recall the known depth lower bound techniques for Cutting Planes, semantic
Cutting Planes, and Stabbing Planes proofs. In all of these proof systems, arguably the
primary method for proving depth lower bounds is by reducing to real communication
complexity [8, 40]; however, communication complexity is always trivially upper bounded by
n, and it is far from clear how to use the assumption on the size of the proof to boost this to
superlinear.

A second class of methods have been developed for syntactic Cutting Planes, which
lower bound rank measures of a polytope, such as the Chvátal rank. In this setting, lower
bounds are typically proven using so-called protection lemmas [16], which seems much more
amenable to applying a small-size assumption on the proof. We also remark that for many
formulas (such as the Tseitin formulas!) it is known how to achieve Ω(n)-depth lower bounds
in Cutting Planes via protection lemmas, while proving even ω(log n) lower bounds via
communication complexity is impossible, due to a known folklore upper bound.

The first lower bound on the Chvátal rank was established by Chvátal et al. [20], who
proved a linear bound for a number of polytopes in [0, 1]n. Much later, Pokutta and
Schulz [53] characterized the polytopes P ⊆ [0, 1] with P ∩ Zn = ∅ which have Chvátal rank
exactly n. However, unlike most other cutting planes procedures, the Chvátal rank is not of
polytopes P ∩ [0, 1]n with P ∩Zn = ∅ is not upper bounded by n. Eisenbrand and Schulz [29]
showed that the Chvátal rank of any polytope P ⊆ [0, 1]n is at most O(n2 log n) and gave
examples where it is Ω(n); a nearly-matching quadratic lower bound was later established
by Rothvoß and Sanita [58]. For CNF formulas, the Chvátal rank is (trivially) at most n.
Buresh-Oppenheim et al. [16] gave the first lower bounds on the Chvátal rank a number of
CNF formulas, including an Ω(n) lower bound for the Tseitin formulas.

The rank of a number of generalizations of Cutting Planes has been studied as well.
However, none of these appear to capture the strength of semantic Cutting Planes. Indeed,
semantic Cutting Planes is able to refute Knapsack in a single cut, and therefore is known

CCC 2021

6:8 On the Power and Limitations of Branch and Cut

not to be polynomially verifiable unless P = NP [30]. Lower bounds on the rank when
using split cuts and mixed integer cuts, instead of CG cuts, was established in [24]. Pokutta
and Schulz [52] obtained Ω(n/ log n) rank lower bounds on the complete tautology (which
includes every clause of width n) for the broad class of admissible cutting planes, which
includes syntactic Cutting Planes, split cuts, and many of the lift-and-project operators.
Bodur et al. [13] studied the relationship between rank and integrality gaps for another broad
generalization of Cutting Planes known as aggregate cuts.

2 Preliminaries

We first recall the definitions of some key proof systems.

Resolution

Fix an unsatisfiable CNF formula F over variables x1, . . . , xn. A Resolution refutation P of
F is a sequence of clauses {Ci}i∈[s] ending in the empty clause Cs = ∅ such that each Ci is
in F or is derived from earlier clauses Cj , Ck with j, k < i using one of the following rules:

Resolution. Ci = (Cj \ {ℓk}) ∪ (Ck \
{

ℓk

}
) where ℓk ∈ Cj , ℓk ∈ Ck is a literal.

Weakening. Ci ⊇ Cj .
The size of the resolution proof is s, the number of clauses. It is useful to visualize the
refutation P as a directed acyclic graph; with this in mind the depth of the proof (denoted
depthRes(P)) is the length of the longest path in the proof DAG. The resolution depth
depthRes(F) of F is the minimal depth of any resolution refutation of F .

Cutting Planes and Semantic Cutting Planes

A Cutting Planes (CP) proof of an inequality cx ≥ d from a system of linear inequalities P

is given by a sequence of inequalities

a1x ≥ b1, a2x ≥ b2, . . . , asx ≥ bs

such that as = c, bs = d, and each inequality aix ≥ bi is either in P or is deduced from
earlier inequalities in the sequence by applying one of the two rules Linear Combination or
Division Rule described at the beginning of Section 1. We will usually be interested in the
case that the list of inequalities P defines a polytope.

An alternative characterization of Cutting Planes uses Chvátal-Gomory cuts (or just
CG cuts) [18, 23]. Let P be a polytope. A hyperplane ax = b is supporting for P if b =
max {ax : x ∈ P}, and if ax = b is a supporting hyperplane then the set P∩{x ∈ Rn : ax = b}
is called a face of P . An inequality ax ≤ b is valid for P if every point of P satisfies the
inequality and ax = b is a supporting hyperplane of P .

▶ Definition 7. Let P ⊆ Rn be a polytope, and let ax ≥ b be any valid inequality for P

such that all coefficients of a are relatively prime integers. The halfspace {x ∈ Rn : ax ≥ ⌈b⌉}
is called a CG cut for P . (We will sometimes abuse notation and refer to the inequality
ax ≥ ⌈b⌉ also as a CG cut.)

If ax ≥ ⌈b⌉ is a CG cut for the polytope P , then we can derive ax ≥ ⌈b⌉ from P in O(n)
steps of Cutting Planes by Farkas Lemma (note that the inequality ax ≥ b is valid for P by
definition, so we can deduce ax ≥ b as a linear combination of the inequalities of P and then
apply the division rule). If P is a polytope and H is a CG cut, then we will write P ⊢ P ∩H ,
and say that P ∩H is derived from P .

N. Fleming et al. 6:9

Given a CNF formula F , we can translate F into a system of linear inequalities in the
following natural way. First, for each variable xi in F add the inequality 0 ≤ xi ≤ 1. If
C =

∨
i∈P xi ∨

∨
i∈N ¬xi is a clause in F , then we add the inequality∑

i∈P

xi +
∑
i∈N

(1− xi) ≥ 1.

It is straightforward to see that the resulting system of inequalities will have no integral
solutions if and only if the original formula F is unsatisfiable. With this translation we
consider Cutting Planes refutations (defined in the introduction) of F to be refutations of
the translation of F to linear inequalities.

The semantic Cutting Planes proof system (denoted sCP or Semantic CP) is a strength-
ening of Cutting Planes proofs to allow any deduction that is sound over Boolean points [15].
Like Cutting Planes, an sCP proof is given by a sequence of halfspaces {aix ≥ ci}i∈[s], but
now we can use the following very powerful semantic deduction rule:

Semantic Deduction. From ajx ≥ cj and akx ≥ ck deduce aix ≥ ci if every {0, 1}
assignment satisfying both ajx ≥ cj and akx ≥ ck also satisfies aix ≥ ci .

Filmus et al. [30] showed that sCP is extremely strong: there are instances for which any
refutation in CP requires exponential size, and yet these instances admit polynomial-size
refutations in semantic sCP.

The size of a Cutting Planes proof is the number of lines (it is known that for unsatisfiable
CNF formulas that this measure is polynomially related to the length of the bit-encoding of
the proof [23]). As with Resolution, it is natural to arrange Cutting Planes proofs into a
proof DAG. With this in mind we analogously define depthCP(F) and depthsCP(F) to be the
smallest depth of any (semantic) Cutting Planes proof of F .

It is known that any system of linear inequalities in the unit cube has CP depth at most
O(n2 log n), and moreover there are examples requiring CP-depth more than n [29]. However
for unsatisfiable CNF formulas, the CP-depth is at most n [12].

Stabbing Planes

Let F be an unsatisfiable system of linear inequalities. A Stabbing Planes (SP) refutation of
F is a directed binary tree, T , where each edge is labelled with a linear integral inequality
satisfying the following consistency conditions:

Internal Nodes. For any internal node u of T , if the right outgoing edge of u is labelled
with ax ≥ b, then the left outgoing edge is labelled with its integer negation ax ≤ b− 1.
Leaves. Each leaf node v of T is labelled with a non-negative linear combination of
inequalities in F with inequalities along the path leading to v that yields 0 ≥ 1.

For an internal node u of T , the pair of inequalities (ax ≤ b− 1, ax ≥ b) is called the query
corresponding to the node. Every node of T has a polytope P associated with it, where P is
the polytope defined by the intersection of the inequalities in F together with the inequalities
labelling the path from the root to this node. We will say that the polytope P corresponds to
this node. The slab corresponding to the query is {x∗ ∈ Rn | b− 1 < ax∗ < b}, which is the
set of points ruled out by this query. The width of the slab is the minimum distance between
ax ≤ b− 1 and ax ≥ b, which is 1/∥a∥2. The size of a refutation is the bit-length needed to
encode a description of the entire proof tree, which, for CNF formulas as well as sufficiently
bounded systems of inequalities, is polynomially equivalent to the number of queries in the
refutation [25]. As well, the depth of the refutation is the depth of the binary tree. The proof
system SP∗ is the subsystem of Stabbing Planes obtained by restricting all coefficients of
the proofs to have magnitude at most quasipolynomial (nlogO(1) n) in the number of input
variables.

CCC 2021

6:10 On the Power and Limitations of Branch and Cut

The Stabbing Planes proof system was introduced by Beame et al. [8] as a generalization
of Cutting Planes that more closely modelled query algorithms and branch-and-bound solvers.
Beame et al. proved that SP is equivalent to the proof system TreeR(CP) introduced by
Krajíček [44] which can be thought of as a generalization of Resolution where the literals are
replaced with integer-linear inequalities.

3 Translating Stabbing Planes into Cutting Planes

3.1 Equivalence of CP with Subsystems of SP
In this section we prove Theorem 1, restated below, which characterizes Cutting Planes as a
non-trivial subsystem of Stabbing Planes.

▶ Theorem 8 (Theorem 1). The proof systems CP and Facelike SP are polynomially equivalent.

We begin by formally defining Facelike SP.

▶ Definition 9. A Stabbing Planes query (ax ≤ b− 1, ax ≥ b) at a node P is facelike if one
of the sets P ∩ {x ∈ Rn : ax ≤ b− 1}, P ∩ {x ∈ Rn : ax ≥ b} is empty or a face of P (see
Figure 2b). An SP refutation is facelike if every query in the refutation is facelike.

Enroute to proving Theorem 1, it will be convenient to introduce the following further
restriction of Facelike Stabbing Planes.

▶ Definition 10. A Stabbing Planes query (ax ≤ b− 1, ax ≥ b) at a node corresponding to a
polytope P is pathlike if at least one of P ∩{x ∈ Rn : ax ≤ b− 1} and P ∩{x ∈ Rn : ax ≥ b}
is empty (see Figure 2a). A Pathlike SP refutation is one in which every query is pathlike.

The name “pathlike” stems from the fact that the underlying graph of a pathlike Stabbing
Planes proof is a path, since at most one child of every node has any children (see Figure
2). In fact, we have already seen (nontrivial) pathlike SP queries under another name:
Chvátal-Gomory cuts.

▶ Lemma 11. Let P be a polytope and let (ax ≤ b − 1, ax ≥ b) be a pathlike Stabbing
Planes query for P . Assume w.l.o.g. that P ∩ {x ∈ Rn : ax ≤ b− 1} = ∅ and that P ∩
{x ∈ Rn : ax ≥ b} ⊊ P . Then ax ≥ b is a CG cut for P .

Proof. Since ax ≥ b is falsified by some point in P , it follows that there exists some 0 < ε < 1
such that ax ≥ b− ε is valid for P – note that ε < 1 since otherwise ax ≤ b− 1 would not
have empty intersection with P . This immediately implies that ax ≥ b is a CG cut for P . ◀

With this observation we can easily prove that Pathlike SP is equivalent to CP. Throughout
the remainder of the section, for readability, we will use the abbreviation P ∩ {ax ≥ b} for
P ∩ {x ∈ Rn : ax ≥ b}, for any polytope P and linear inequality ax ≥ b.

▶ Lemma 12. Pathlike SP is polynomially equivalent to CP.

Proof. First, let a1x ≥ b1, a2x ≥ b2, . . . , asx ≥ bs be a CP refutation of an unsatisfiable
system of linear inequalities Ax ≥ b. Consider the sequence of polytopes P0 = {Ax ≥ b}
and Pi = Pi−1 ∩ {aix ≥ bi}. By inspecting the rules of CP, it can observed that Pi ∩ {aix ≤
bi − 1} = ∅ and thus Pi+1 can be deduced using one pathlike SP query from Pi for all
0 ≤ i ≤ s.

N. Fleming et al. 6:11

ax ≥ bax ≤ b− 1

∅

∅

ax ≤ b− 1 ax ≥ b

P

(a) A Pathlike query. The polytope P ∩ {x ∈ Rn : ax ≤ b − 1} = ∅, and ax ≥ b is a CG cut for P .

ax ≥ bax ≤ b− 1
ax ≤ b− 1 ax ≥ b

P

ax = b− 1
(b) A Facelike query. The polytope P ∩ {x ∈ Rn : ax ≤ b − 1} = P ∩ {x ∈ Rn : ax = b − 1} is a face of P .

Figure 2 Pathlike and Facelike SP queries on a polytope P . On the left are the proofs and on
the right are the corresponding effects on the polytope.

Conversely, let P be any polytope and let (ax ≤ b− 1, ax ≥ b) be any pathlike SP query
to P (so, suppose w.l.o.g. that the halfspace defined by ax ≤ b− 1 has empty intersection
with P). By Lemma 11, ax ≥ b is a CG cut for P , and so can be deduced in Cutting Planes
from the inequalities defining P in length O(n) (cf. Section 2). Applying this to each query
in the Pathlike SP proof yields the theorem. ◀

Next, we show how to simulate Facelike SP proofs by Pathlike SP proofs of comparable size.
The proof of Lemma 14 is inspired by Dadush and Tiwari [25], and will use the following
lemma due to Schrijver [60] (although, we use the form appearing in [23]). Recall that we
write P ⊢ P ′ for polytopes P, P ′ to mean that P ′ can be obtained from P by adding a single
CG cut to P .

▶ Lemma 13 (Lemma 2 in [23]). Let P be a polytope defined by a system of integer linear
inequalities and let F be a face of P . If F ⊢ F ′ then there is a polytope P ′ such that P ⊢ P ′

and P ′ ∩ F ⊆ F ′.

▶ Lemma 14. Facelike SP is polynomially equivalent to Pathlike SP.

Proof. That Facelike SP simulates Pathlike SP follows by the fact that any Pathlike SP
query is a valid query in Facelike SP. For the other direction, consider an SP refutation π of
size t. We describe a recursive algorithm for generating a Pathlike SP proof from π. The
next claim will enable our recursive case.

CCC 2021

6:12 On the Power and Limitations of Branch and Cut

Claim. Let P be a polytope and suppose ax ≥ b is valid for P . Assume that P ∩ {ax = b}
has a Pathlike SP refutation using s queries. Then P ∩ {ax ≥ b + 1} can be derived from P

in Pathlike SP using s + 1 queries.

Proof of Claim. Since ax ≥ b is valid for P it follows that F = P ∩ {ax = b} is a face of P

by definition. Consider the Pathlike SP refutation F0, F1, . . . Fs = ∅, where the ith polytope
Fi for i < s is obtained from Fi−1 by applying a pathlike SP query and proceeding to the
non-empty child. Without loss of generality we may assume that Fi ⊊ Fi−1 for all i, and so
applying Lemma 11 we have that Fi−1 ⊢ Fi for all i. Thus, by applying Lemma 13 repeatedly,
we get a sequence of polytopes P = P0 ⊢ P1 ⊢ · · · ⊢ Ps such that Pi∩F = Pi∩{ax = b} ⊆ Fi.
This means that Ps ∩ {ax = b} ⊆ Fs = ∅, and so (ax ≤ b, ax ≥ b + 1) is Pathlike SP query
for Ps. This means that Ps ⊢ Ps ∩ {ax ≥ b + 1} ⊆ P ∩ {ax ≥ b + 1}. Since any CG cut
can be implemented as a Pathlike SP query the claim follows by applying the s CG cuts as
pathlike queries, followed by the query (ax ≤ b, ax ≥ b + 1). ◀

We generate a Pathlike SP refutation by the following recursive algorithm, which performs
an in-order traversal of π. At each step of the recursion (corresponding to a node in π) we
maintain the current polytope P we are visiting and a Pathlike SP proof Π – initially, P is
the initial polytope and Π = ∅. We maintain the invariant that when we finish the recursive
step at node P , the Pathlike SP refutation Π is a refutation of P . The algorithm is described
next:
1. Let (ax ≤ b− 1, ax ≥ b) be the current query and suppose that ax ≥ b− 1 is valid for P .
2. Recursively refute P ∩{ax ≤ b−1} = P ∩{ax = b− 1}, obtaining a Pathlike SP refutation

Π with t queries.
3. Apply the above Claim to deduce P ∩ {ax ≥ b} from P in t + 1 queries.
4. Refute P ∩ {ax ≥ b} by using the SP refutation for the right child.
Correctness follows immediately from the Claim, and also since the size of the resulting proof
is the same as the size of the SP refutation. ◀

Theorem 1 then follows by combining Lemma 12 with Lemma 14.

3.2 Simulating SP∗ by CP
In this section we prove Theorem 2, restated below for convenience.

▶ Theorem 15 (Theorem 2). Let F be any unsatisfiable CNF formula on n variables, and
suppose that there is a SP refutation of F in size s and maximum coefficient size c. Then
there is a CP refutation of F in size s(cn)log s.

To prove this theorem, we will show that any low coefficient SP proof can be converted
into a Facelike SP proof with only a quasi-polynomial loss. If P is a polytope let d(P) denote
the diameter of P , which is the maximum Euclidean distance between any two points in P .
Theorem 2 follows immediately from the following theorem.

▶ Theorem 16. Let P be a polytope and suppose there is an SP refutation of P with size s

and maximum coefficient size c. Then there is a Facelike SP refutation of P in size

s(c · d(P)
√

n)log s.

Proof. The theorem is by induction on s. Clearly, if s = 1 then the tree is a single leaf and
the theorem is vacuously true.

N. Fleming et al. 6:13

We proceed to the induction step. Let P be the initial polytope and π be the SP proof.
Consider the first query (ax ≤ b, ax ≥ b + 1) made by the proof, and let πL be the SP proof
rooted at the left child (corresponding to ax ≤ b) and let πR be the SP proof rooted at the
right child. Let PL denote the polytope at the left child and PR denote the polytope at
the right child. By induction, let π′

L and π′
R be the Facelike SP refutations for PL and PR

guaranteed by the statement of the theorem.
Suppose w.l.o.g. that |πL| ≤ |π|/2. Let b0 be the largest integer such that ax ≥ b0 is

satisfied for any point in P . The plan is to replace the first query (ax ≤ b, ax ≥ b + 1) with
a sequence of queries q0, q1, . . . , qt−1 such that

For each i, qi = (ax ≤ b0 + i, ax ≥ b0 + i + 1).
The query q0 is the root of the tree and qi is attached to the right child of qi−1 for i ≥ 1.
qt−1 = (ax ≤ b, ax ≥ b + 1).

After doing this replacement, instead of having two child polytopes PL, PR below the top
query, we have t + 1 polytopes P0, P1, . . . , Pt+1 where Pi = P ∩{ax = b0 + i} and Pt+1 = PR.
To finish the construction, for each i ≤ t use the proof π′

L to refute Pi and the proof π′
R to

refute Pt+1.
We need to prove three statements: this new proof is a valid refutation of P , the new

proof is facelike, and that the size bound is satisfied.
First, it is easy to see that this is a valid proof, since for each i ≤ t the polytope Pi ⊆ PL

and Pt+1 ⊆ PR – thus, the refutations π′
L and π′

R can be used to refute the respective
polytopes.

Second, to see that the proof is facelike, first observe that all the queries in the subtrees
π′

L, π′
R are facelike queries by the inductive hypothesis. So, we only need to verify that the

new queries at the top of the proof are facelike queries, which can easily be shown by a quick
induction. First, observe that the query q0 is a facelike query, since b0 was chosen so that
ax ≥ b0 is valid for the polytope P . By induction, the query qi = (ax ≤ b0 +i, ax ≥ b0 +i+1)
is a facelike query since the polytope Pi associated with that query is P ∩ {ax ≥ b0 + i} by
definition. Thus ax ≥ b0 + i is valid for the polytope at the query.

Finally, we need to prove the size upper bound. Let s be the size of the original proof, sL

be the size of πL and sR be the size of πR. Observe that the size of the new proof is given
by the recurrence relation

f(s) = t · f(sL) + f(sR).

where f(1) = 1. Since the queries q0, q1, . . . , qt−1 cover the polytope PL with slabs of width
1/∥a∥2, it follows that

t ≤ d(PL)∥a∥2 ≤ d(P)
√

n∥a∥∞ = d(P)c
√

n

where we have used that the maximum coefficient size in the proof is c. Thus, by induction,
the previous inequality, and the assumption that sL ≤ s/2, we can conclude that the size of
the proof is

f(s) ≤ sL(c · d(P)
√

n)(c · d(PL)
√

n)log sL + sR(c · d(PR)
√

n+)log sR

≤ sL(c · d(P)
√

n)(c · d(P)
√

n)log(s/2) + sR(c · d(P)
√

n)log s

≤ sL(c · d(P)
√

n)log s + sR(c · d(P)
√

n)log s

= s(c · d(P)
√

n)log s. ◀

CCC 2021

6:14 On the Power and Limitations of Branch and Cut

Theorem 2 follows immediately, since for any CNF formula F the encoding of F as a
system of linear inequalities is contained in the n-dimensional cube [0, 1]n, which has diameter√

n. We may also immediately conclude Theorem 4 by applying the known lower bounds on
the size of Cutting Planes proofs [32,33,39,54].

As a consequence of Theorem 2 and the non-automatability of Cutting Planes [36], we
can conclude that SP∗ proofs cannot be found efficiently assuming P ̸= NP.

▶ Corollary 17. SP∗ is not automatable unless P ̸= NP.

This follows by observing that the argument in [36] does not require large coefficients.

4 Refutations of Linear Equations over a Finite Field

In this section we prove Theorem 3. To do so, we will extend the approach used by Beame
et al. [8] to prove quasi-polynomial upper bounds on the Tseitin formulas to work on any
unsatisfiable set of linear equations over any finite field.

If ax = b is a linear equation we say the width of the equation is the number of non-zero
variables occurring in it. Any width-d linear equation over a finite field of size q, denoted
Fq, can be represented by a CNF formula with qd−1 width-d clauses – one ruling out each
falsifying assignment. For a width-d system of m linear equations F over Fq, we will denote
by |F | := mqd−1 the size of the CNF formula encoding F .

▶ Theorem 18. Let F = {f1 = b1, . . . , fm = bm} be a width-d, unsatisfiable set of lin-
ear equations over Fq. There is an SP refutation of (the CNF encoding of) F in size
(mqd)O(log m)qd = |F |O(log m).

First we sketch the idea for F2, i.e., a system of XOR equations. In this case the SP proof
corresponds to a branch decomposition procedure which is commonly used to solve SAT (see
e.g. [3, 26, 28, 46]). View the system F as a hypergraph over n vertices (corresponding to the
variables) and with a d-edge for each equation. Partition the set of hyperedges into two sets
E = E1 ∪ E2 of roughly the same size, and consider the cut of vertices that belong to both
an edge in E1 and in E2. Using the SP rule we branch on all possible values of the sum of
the cut variables in order to isolate E1 and E2. Once we know this sum, we are guaranteed
that either E1 is unsatisfiable or E2 is unsatisfiable depending on the parity of the of the
sum of the cut variables. This allows us to recursively continue on the side of the cut (E1 or
E2) that is unsatisfiable. Since there are n Boolean variables, each cut corresponds to at
most n + 1 possibilities for the sum, and if we maintain that the partition of the hyper edges
defining the cut is balanced, then we will recurse at most O(log m) times. This gives rise to
a tree decomposition of fanout O(n) and height O(log n).

Over a finite field of size q the proof will proceed in much the same way. Instead of
a subgraph, at each step we will maintain a subset of the equations I ⊆ [m] such that
{fi = bi}i∈I must contain a constraint that is violated by the SP queries made so far. We
partition I into two sets I1 and I2 of roughly equal size and query the values a and b

of
∑

i∈I1
fi and

∑
i∈I2

fi. Because F is unsatisfiable, at least one of a −
∑

i∈I1
bi ̸≡ 0 or

b−
∑

i∈I2
bi ̸≡ 0, meaning that that it is unsatisfiable, and we recurse on it.

In the following, we will let z stand for a vector of Fq-valued variables zi. When we discuss
any form f := az where a ∈ Fn

q and z is a vector of n variables zi, we will implicitly associate it
with the linear form

∑
i∈[n] ai(

∑
j∈[log q] xi,j) where xi,j are the log q many Boolean variables

encoding zi in the CNF encoding of F .

N. Fleming et al. 6:15

Proof of Theorem 18. Let F = {f1 = b1, . . . , fm = bm} be a system of unsatisfiable linear
equations over Fq, where each fi = aiz for ai ∈ Fn

q , and bi ∈ Fq. Because F is unsatisfiable,
there exists a Fq linear combination of the equations in F witnessing this; formally, there
exists α ∈ Fn

q such that
∑

i∈[m] αifi ≡ 0 mod q, but
∑

i∈[m] αibi ̸≡ 0 mod q.
Stabbing Planes will implement the following binary search procedure for a violated

equation; we describe the procedure first, and then describe how to implement it in Stabbing
Planes. In each round we maintain a subset I ⊆ [m] and an integer kI representing the value
of

∑
i∈I αifi. Over the algorithm, we maintain the invariant that kI −

∑
i∈I bi ̸≡ 0 mod q,

which implies that there must be a contradiction to F inside of the constraints {fi = bi}i∈I .
Initially, I = [m] and we obtain kI by querying the value of the sum

∑
i∈[m] αifi. If

kI ̸≡ 0 mod q then this contradicts the fact that
∑

i∈I αifi ≡ 0 mod q; thus, the invariant
holds. Next, perform the following algorithm.
1. Choose a balanced partition I = I1 ∪ I2 (so that ||I1| − |I2|| ≤ 1).
2. Query the value of

∑
i∈I1

αifi and
∑

i∈I2
αifi; denote these values by a and b respectively.

3. If a−
∑

i∈I1
αibi ̸≡ 0 mod q then recurse on I1 with kI1 := a. Otherwise, if b−

∑
i∈I2

αibi ̸≡
0 mod q then recurse on I2 with kI2 := b.

4. Otherwise (if a −
∑

i∈I1
αibi ≡ b −

∑
i∈I2

αibi ≡ 0 mod q), then this contradicts the
invariant:

0 ̸≡ kI −
∑
i∈I

αbi =
∑
i∈I

αi(fi − bi)

=
∑
i∈I1

αi(fi − bi) +
∑
i∈I2

αi(fi − bi)

= (a−
∑
i∈I1

αibi) + (b−
∑
i∈I1

αibi) ≡ 0 mod q.

This recursion stops when |I| = 1, at which point we have an immediate contradiction
between kI and the single equation indexed by I.

It remains to implement this algorithm in SP. First, we need to show how to perform
the queries in step 2. Querying the value of any sum

∑
i∈I αifi can be done in a binary tree

with at most q2md leaves, one corresponding to every possible query outcome. Internally,
this tree queries all possible integer values for this sum (e.g. (

∑
i∈I αifi ≤ 0,

∑
i∈I αifi ≥

1), (
∑

i∈I αifi ≤ 1,
∑

i∈I αifi ≥ 2), . . .). For the leaf where we have deduced
∑

i∈[m] αifi ≤ 0
we use the fact that each variable is non-negative to deduce that

∑
i∈[m] αifi ≥ 0 as well.

Note that q2md is an upper bound on this sum because there are m equations, each containing
at most d variables, each taking value at most (q − 1) 2. Thus, step 2 can be completed in
(q2md)2 queries.

Finally, we show how to derive refutations in the following cases: (i) when we deduced
that

∑
i∈[m] αifi ̸≡ 0 mod q at the beginning, (ii) in step 4, (iii) when |I| = 1.

(i) Suppose that we received the value a ̸≡ 0 mod q from querying
∑

i∈[m] αifi. Note that
every variable in

∑
i∈[m] αifi is a multiple of q. Query(∑

i∈[m]

αifi/q ≤ ⌈a/q⌉ − 1,
∑

i∈[m]

αifi/q ≥ ⌈a/q⌉
)

.

At the leaf that deduces
∑

i∈[m] αifi/q ≤ ⌈a/q⌉ − 1, we can derive 0 ≥ 1 as a non-
negative linear combination of this inequality together with

∑
i∈[m] αifi ≥ a. Similarly,

at the other leaf
∑

i∈[m] αifi/q ≥ ⌈a/q⌉ can be combined with
∑

i∈[m] αifi ≤ a to
derive 0 ≥ 1.

2 Note that instead of querying the value of
∑

i∈I
αifi we could have queried

∑
i∈I

αifi (modq) to
decrease the number of leaves to qmd.

CCC 2021

6:16 On the Power and Limitations of Branch and Cut

(ii) Suppose that a −
∑

i∈I1
αibi ≡ b −

∑
i∈I2

αibi ≡ 0 mod q. Then 0 ≥ 1 is derived by
summing

∑
i∈I1

αifi ≥ a,
∑

i∈I2
αifi ≥ b and

∑
i∈I αifi ≤ kI , all of which have already

been deduced.
(iii) When |I| = 1 then we deduced that aIz = kI for kI ̸≡ bI mod q and we would like to

derive a contradiction using the axioms encoding aIz ≡ bI . These axioms are presented
to SP as the linear-inequality encoding of a CNF formula, and while there are no integer
solutions satisfying both these axioms and aIz = kI , there could in fact be rational
solutions. To handle this, we simply force that each of the at most d variables in aIz

takes an integer value by querying the value of each variable one by one. As there are
at most d variables, each taking an integer value between 0 and q − 1, this can be done
in a tree with at most qd many leaves. At each leaf of this tree we deduce 0 ≥ 1 by
a non-negative linear combination with the axioms, the integer-valued variables, and
aIz ≡ bI .

The recursion terminates in at most O(log m) many rounds because the number of equations
under consideration halves every time. Therefore, the size of this refutation is (qmd)O(log m)qd.
Note that by making each query in a balanced tree, this refutation can be carried out in
depth O(log2(mqd)). ◀

Finally, we conclude Theorem 3.

Proof of Theorem 3. Observe that the SP refutation from Theorem 18 is facelike. Indeed,
to perform step 2 we query (

∑
i∈I αifi ≤ t − 1,

∑
i∈I αifi ≥ t) from t = 1, . . . , q2md. For

t = 1, the halfspace
∑

i∈I αifi ≥ 0 is valid for the current polytope because the polytope
belongs to the [0, 1]n cube. For each subsequent query,

∑
i∈I αifi ≥ t− 1 is valid because

the previous query deduced
∑

i∈I αifi ≥ t− 1. Similar arguments show that the remaining
queries are also facelike. Thus, Lemma 14 completes the proof. ◀

We note that the CP refutations that result from Theorem 3 have a very particular
structure: they are extremely long and narrow. Indeed, they have depth nO(log m). We give
a rough sketch of the argument: it is enough to show that most lines Li in the CP refutation
are derived using some previous line Lj with j = O(i). This is because the final line would
have depth proportional to the size of the proof. To see that the CP refutation satisfies this
property, observe that for each node visited in the in-order traversal, the nodes in the right
subproof πR depend on the halfspace labelling the root, which in turn depends on the left
subproof πL.

5 Lower Bound on the Depth of Semantic CP Refutations

Our results from Section 3 suggest an interesting interplay between depth and size of Cutting
Planes proofs. In particular, we note that there is a trivial depth n and exponential size
refutation of any unsatisfiable CNF formula in Cutting Planes; however, it is easy to see that
the Dadush–Tiwari proofs and our own quasipolynomial size CP proofs of Tseitin are also
extremely deep (in particular, they are superlinear). Even in the stronger Semantic CP it is
not clear that the depth of these proofs can be decreased. However, this does not hold for
SP, which has quasi-polynomial size and poly-logarithmic depth refutations. This motivates
Conjecture 6, regarding the existence of a “supercritical” trade-off between size and depth
for Cutting Planes [11,56]. The Tseitin formulas are a natural candidate for resolving this
conjecture.

N. Fleming et al. 6:17

In this section we develop a new method for proving depth lower bounds which we believe
should be more useful for resolving this conjecture. Our method works not only for CP but
also for semantic CP. Using our technique, we establish the first linear lower bounds on the
depth of Semantic CP refutations of the Tseitin formulas.

Lower bounds on the depth of syntactic CP refutations of Tseitin formulas were established
by Buresh-Openheim et al. [16] using a rank-based argument. Our proof is inspired by their
work, and so we describe it next. Briefly, their proof proceeds by considering a sequence of
polytopes P (0) ⊇ . . . ⊇ P (d) where P (i) is the polytope defined by all inequalities that can
be derived in depth i from the axioms in F . The goal is to show that P (d) is not empty. To
do so, they show that a point p ∈ P (i) is also in P (i+1) if for every coordinate j such that
0 < pj < 1, there exists points p(j,0), p(j,1) ∈ P (i) such that p

(j,b)
k = b if k = j and p

(j,b)
k = pk

otherwise. The proof of this fact is syntactic: it relies on the careful analysis of the precise
rules of CP.

When dealing with Semantic CP, we can no longer analyze a finite set of syntactic rules.
Furthermore, it is not difficult to see that the aforementioned criterion for membership
in P (i+1) is no longer sufficient for Semantic CP. We develop an analogous criterion for
Semantic CP given later in this section. As well, we note that the definition of P (i) is not
well-suited to studying the depth of bounded-size CP proofs like those in Conjecture 6 – there
does not appear to be a useful way to limit P (i) to be a polytope derived by a bounded
number of halfspaces. Therefore we develop our criterion in the language of lifting, which is
more amenable to supercritical tradeoffs [11,56].

Through this section we will work with the following top-down definition of Semantic CP.

▶ Definition 19. Let F be an n-variate unsatisfiable CNF formula. An sCP refutation of
F is a directed acyclic graph of fan-out ≤ 2 where each node v is labelled with a halfspace
Hv ⊆ Rn (understood as a set of points satisfying a linear inequality) satisfying the following:
1. Root. There is a unique source node r labelled with the halfspace Hv = Rn (corresponding

to the trivially true inequality 1 ≥ 0).
2. Internal-Nodes. For each non-leaf node u with children v, w, we have

Hu ∩ {0, 1}n ⊆ Hv ∪Hw.

3. Leaves. Each sink node u is labeled with a unique clause C ∈ F such that Hv ∩ {0, 1}n ⊆
C−1(0).

The above definition is obtained by taking a (standard) sCP proof and reversing all inequalities:
now, a line is associated with the set of assignments falsified at that line, instead of the
assignments satisfying the line.

To prove the lower bound we will need to find a long path in the proof. To find this path
we will be taking a root-to-leaf walk down the proof while constructing a partial restriction
ρ ∈ {0, 1, ∗}n on the variables. For a partial restriction ρ, denote by free(ρ) := ρ−1(∗) and
fix(ρ) := [n] \ free(ρ). Let the restriction of H by ρ be the halfspace

H ↾ρ := {x ∈ Rfree(ρ) : ∃α ∈ H, αfix(ρ) = ρfix(ρ), αfree(ρ) = x}.

It is important to note that H ↾ρ is itself a halfspace on the free coordinates of ρ.
One of our key invariants needed in the proof is the following.

▶ Definition 20. A halfspace H ⊆ Rn is good if it contains the all- 1
2 vector, that is,

(1
2)n = (1

2 , 1
2 , . . . , 1

2) ∈ H.

CCC 2021

6:18 On the Power and Limitations of Branch and Cut

We will need two technical lemmas to prove the lower bounds. The first lemma shows
that if a good halfspace H has its boolean points covered by halfspaces H1, H2, then one of
the two covering halfspaces is also good modulo restricting a small set of coordinates.

▶ Lemma 21. Let H ⊆ Rn be any good halfspace, and suppose H ∩ {0, 1}n ⊆ H1 ∪H2 for
halfspaces H1, H2. Then there is a restriction ρ and an i = 1, 2 such that |fix(ρ)| ≤ 2 and
Hi ↾ρ is good.

The second lemma shows that good halfspaces are robust, in the sense that we can restrict
a good halfspace to another good halfspace while also satisfying any mod-2 equation.

▶ Lemma 22. Let n ≥ 2 and H ⊆ Rn be a good halfspace. For any I ⊆ [n] with |I| ≥ 2 and
b ∈ {0, 1}, there is a partial restriction ρ ∈ {0, 1, ∗}n with fix(ρ) = I such that⊕

i∈I

ρ(xi) = b and

H ↾ρ ⊆ Rfree(ρ) is good.

With these two lemmas one can already get an idea of how to construct a long path in
the proof. Suppose we start at the root of the proof; the halfspace is 1 ≥ 0 (which is clearly
good) and the restriction we maintain is ρ = ∗n. We can use the first lemma to move from
the current good halfspace to a good child halfspace while increasing the number of fixed
coordinates by at most 2. However, we have no control over the two coordinates which are
fixed by this move, and so we may fall in danger of falsifying an initial constraint. Roughly
speaking, we will use the second lemma to satisfy constraints that are in danger of being
falsified.

We delay the proofs of these technical lemmas to the end of the section, and first see how
to prove the depth lower bounds.

5.1 Lifting Decision Tree Depth to Semantic CP Depth
As a warm-up, we show how to lift lower bounds on Resolution depth to Semantic CP depth
by composing with a constant-width XOR gadget. If F is a CNF formula then we can create
a new formula by replacing each variable zi with an XOR of 4 new variables xi,1, . . . , xi,4:

zi := XOR4(xi,1, . . . , xi,4) = xi,1 ⊕ · · · ⊕ xi,4.

We call zi the unlifted variable associated with the output of the XOR4 gadget applied to the
i-th block of variables. Formally, let XORn

4 : {0, 1}4n → {0, 1}n be the application of XOR4 to
each 4-bit block of a 4n-bit string. Let F ◦XORn

4 denote the formula obtained by performing
this substitution on F and transforming the result into a CNF formula in the obvious way.

The main result of this section is the following.

▶ Theorem 23. For any unsatisfiable CNF formula F ,

depthsCP(F ◦ XORn
4) ≥ 1

2depthRes(F).

Key to our lower bound will be the following characterization of Resolution depth by
Prover-Adversary games.

▶ Definition 24. The Prover–Adversary game associated with an n-variate formula F is
played between two competing players, Prover and Adversary. The game proceeds in rounds,
where in each round the state of the game is recorded by a partial assignment ρ ∈ {0, 1, ∗}n

to the variables of F .

N. Fleming et al. 6:19

Initially the state is the empty assignment ρ = ∗n. Then, in each round, the Prover
chooses an i ∈ [n] with ρi = ∗, and the Adversary chooses b ∈ {0, 1}. The state is updated by
ρi ← b and play continues. The game ends when the state ρ falsifies an axiom of F .

It is known [55] that depthRes(F) is exactly the smallest d for which there is a Prover
strategy that ends the game in d rounds, regardless of the strategy for the Adversary.

The proof of Theorem 23 will follow by using an optimal Adversary strategy for F to
construct a long path in the Semantic CP proof of F ◦XORn

4 . Crucially, we need to understand
how halfspaces H transform under XORn

4 :

XORn
4 (H) := {z ∈ {0, 1}n : ∃x ∈ H ∩ {0, 1}4n

, XORn
4 (x) = z}.

As we have already stated, we will maintain a partial assignment ρ ∈ {0, 1, ∗}4n on the 4n

lifted variables. However, in order to use the Adversary, we will need to convert ρ to a partial
assignment on the n unlifted variables. To perform this conversion, for any ρ ∈ {0, 1, ∗}4n

define XORn
4 (ρ) ∈ {0, 1, ∗}n as follows: for each block i ∈ [n], define

XORn
4 (ρ)i =

{
XOR4(ρ(xi,1), . . . , ρ(xi,4)) if (i, j) ∈ fix(ρ) for j ∈ [4],
∗ otherwise.

We are now ready to prove Theorem 23. Fix any Semantic CP refutation of F ◦ XORn
4 ,

and suppose that there is a strategy for the Adversary in the Prover-Adversary game of F

certifying that F requires depth d. Throughout the walk, we maintain a partial restriction
ρ ∈ {0, 1, ∗}4n to the lifted variables satisfying the following three invariants with respect to
the current visited halfspace H.

Block Closed. In every block either all variables in the block are fixed or all variables in
the block are free.
Good Halfspace. H ↾ρ is good.
Strategy Consistent. The unlifted assignment XORn

4 (ρ) does not falsify any clause in F .
Initially, we set ρ = ∗4n and the initial halfspace is 1 ≥ 0, so the pair (H, ρ) trivially satisfy
the invariants. Suppose we have reached the halfspace H in our walk and ρ is a restriction
satisfying the invariants. We claim that H cannot be a leaf. To see this, suppose that H

is a leaf, then by definition H ∩ {0, 1}4n ⊆ C−1(0) for some clause C ∈ F ◦ XORn
4 . By the

definition of the lifted formula, this implies that XORn
4 (H) ⊆ D−1(0) for some clause D ∈ F .

Since (H, ρ) satisfy the invariants, the lifted assignment XORn
4 (ρ) does not falsify D, and

so by the block-closed property it follows that there must be a variable zi ∈ D such that
all lifted variables in the block i are free under ρ. But then applying Lemma 22 to the
block of variables {xi,1, xi,2, xi,3, xi,4}, we can extend ρ to a partial assignment ρ′ such that
zi = XOR4(ρ(xi,1), ρ(xi,2), ρ(xi,3), ρ(xi,4)) satisfies D. But H ↾ρ′ is a projection of H ↾ρ and
so this contradicts that XORn

4 (H) violates D.
It remains to show how to take a step down the proof. Suppose that we have taken

t < d/2 steps down the Semantic CP proof, the current node is labelled with a halfspace H,
and the partial assignment ρ satisfies the invariants. If H has only a single child H1, then
H ∩ {0, 1}4n ⊆ H1 ∩ {0, 1}4n and ρ will still satisfy the invariants for H1. Otherwise, if H

has two children H1 and H2 then applying Lemma 21 to the halfspaces H ↾ρ, H1 ↾ρ, H2 ↾ρ

we can find an i ∈ {1, 2} and a restriction τ such that Hi ↾ (ρτ) is good and τ restricts at
most 2 extra coordinates. Let i1, i2 ∈ [n] be the two blocks of variables in which τ restricts
variables, and note that it could be that i1 = i2.

Finally, we must restore our invariants. We do this in the following three step process.

CCC 2021

6:20 On the Power and Limitations of Branch and Cut

Query the Adversary strategy at the state XORn
4 (ρ) on variables zi1 , zi2 and let b1, b2 ∈

{0, 1} be the responses.
For i = i1, i2 let Ii be the set of variables free in the block i, and note that |Ii| ≥ 2. Apply
Lemma 22 to H ↾(ρτ) and Ii to get new restrictions ρi1 , ρi2 so that blocks i1 and i2 both
take values consistent with the Adversary responses b1, b2.
Update ρ← ρτρi1ρi2 .

By Lemma 22 the new restriction ρ satisfies the block-closed and the good halfspace invariants.
At each step we fix at most two blocks of variables, and thus the final invariant is satisfied as
long as t < d/2. This completes the proof.

5.2 Semantic CP Depth Lower Bounds for Unlifted Formulas
Next we show how to prove depth lower bounds directly on unlifted families of F2-linear
equations. The strength of these lower bounds will depend directly on the expansion of the
underlying constraint-variable graph of F .

Throughout this section, let F denote a set of F2-linear equations. In a Semantic CP
proof, we must encode F as a CNF formula, but while proving the lower bound we will
instead work with the underlying system of equations. For a set F of F2-linear equations let
GF := (F ∪ V, E) be the bipartite constraint-variable graph defined as follows. Each vertex
in F corresponds to an equation in F and each vertex in V correspond to variables xi. There
is an edge (Ci, xj) ∈ E if xj occurs in the equation Ci. For a subset of vertices X ⊆ F ∪ V

define the neighbourhood of X in GF as Γ(X) := {v ∈ F ∪ V : ∃u ∈ X, (u, v) ∈ E}.

▶ Definition 25. For a bipartite graph G = (U ∪ V, E) the boundary of a set W ⊆ U is

δ(W) := {v ∈ V : |Γ(v) ∩W | = 1}.

The boundary expansion of a set W ⊆ U is |δ(W)|/|W |. The graph G is a (r, s)-boundary
expander if the boundary expansion of every set W ⊆ U with |W | ≤ r has boundary expansion
at least s.

If F is a system of linear equations then we say that F is an (r, s)-boundary expander if
its constraint graph GF is. The main result of this section is the following theorem, analogous
to Theorem 23.

▶ Theorem 26. For any system of F2-linear equations F that is an (r, s + 3)-boundary
expander,

depthsCP(F) ≥ rs/2.

The proof of this theorem follows the proof of Theorem 23 with some small changes. As
before, we will maintain a partial assignment ρ ∈ {0, 1, ∗}n that will guide us on a root-to-leaf
walk through a given Semantic CP proof; we also require that each halfspace H that we visit
is good relative to our restriction ρ. Now our invariants are (somewhat) simpler: we will only
require that F ↾ρ is a sufficiently good boundary expander.

We first prove an auxiliary lemma that will play the role of Lemma 22 in the proof of
Theorem 26. We note that it follows immediately from Lemma 22 and boundary expansion.

▶ Lemma 27. Suppose F is a system of F2-linear equations that is an (r, s)-boundary
expander for s > 1, and suppose F ′ ⊆ F with |F ′| ≤ r. Let H be a good halfspace. Then
there exists a ρ ∈ {0, 1, ∗}n with fix(ρ) = Γ(F ′) such that

F ′ is satisfied by ρ, and
H ↾ρ is good.

N. Fleming et al. 6:21

Proof. We first use expansion to find, for each constraint Ci ∈ F ′, a pair of variables yi,1, yi,2
that are in Ci’s boundary. To do this, first observe that |δ(F ′)| ≥ s|F ′| > |F ′| by the
definition of boundary expansion. The pigeonhole principle then immediately implies that
there are variables yi,1, yi,2 ∈ δ(F ′) and a constraint Ci ∈ F ′ such that yi,1, yi,2 ∈ Ci. Since
yi,1, yi,2 do not occur in F ′ \{Ci}, it follows that F ′ \{Ci} is still an (r, s)-boundary expander.
So, we update F ′ = F ′ \ {Ci} and repeat the above process.

When the process terminates, we have for each constraint Ci ∈ F ′ a pair of variables
yi,1, yi,2 that occur only in Ci. Write the halfspace H =

∑
i wixi ≥ c, and let I = Γ(F ′) \⋃

i∈I {yi,1, yi,2} be the set of variables occurring in F ′ that were not collected by the above
process. We define a partial restriction ρ with fix(ρ) = I that depends on |I| as follows.

If |I| = 0 then ρ = ∗n.
If I = {xi} then define ρ(xi) = 1 if wi ≥ 0 and ρ(xi) = 0 otherwise, and for all other
variables set ρ(x) = ∗.
If |I| > 2 then apply Lemma 22 to generate a partial restriction ρ with fix(ρ) = I that
sets the XOR of I arbitrarily.

Observe that H ↾ρ is good. The only non-trivial case is when |I| = 1, but, in this case we
observe

(H ↾ρ)((1/2)n−1) = wiρ(xi) +
∑
j ̸=i

wi/2 ≥
∑

i

wi/2 ≥ c,

where we have used that H is good and the definition of ρ.
Next we extend ρ as follows: for each i = 1, 2, . . . , |F ′| apply Lemma 22 to Ii = {yi,1, yi,2}

to generate a partial restriction ρi with fix(ρi) = Ii so that the constraint Ci ↾ρρ1 · · · ρi−1 is
satisfied by ρi. Observe that this is always possible since Ii is in the boundary of Ci. Finally,
we update ρ ← ρρ1 · · · ρ|F ′|. It follows by Lemma 22 that F ′ is satisfied by ρ and H ↾ρ is
good. ◀

We are now ready to prove Theorem 26. Fix any Semantic CP refutation of F and let n be
the number of variables. We take a root-to-leaf walk through the refutation while maintaining
a partial assignment ρ ∈ {0, 1, ∗}n and an integer valued parameter k ≥ 0. Throughout the
walk we maintain the following invariants with respect to the current halfspace H:

Good Expansion. F ↾ρ is a (k, t)-boundary expander with t > 3.
Good Halfspace. H ↾ρ is good.
Consistency. The partial assignment ρ does not falsify any clause of F .

Initially, we set k = r, ρ = ∗n, and t = s + 3, so the invariants are clearly satisfied since
F is an (r, s + 3)-expander. So, suppose that we have reached a halfspace H in our walk, and
let k, ρ be parameters satisfying the invariants. We first observe that if k > 0 then H cannot
be a sink node of the proof. To see this, it is enough to show that H contains a satisfying
assignment for each equation C ∈ F . Because H ↾ ρ is non-empty (since it is good) there
exists a satisfying assignment in H for every equation satisfied by ρ, so, assume that C is not
satisfied by ρ. In this case, since F ↾ρ is a (k, t)-expander for k > 0 we can apply Lemma 27
to {C} and H ↾ρ and obtain a partial restriction τ with fix(τ) = Γ(C) such that τ satisfies
C. It follows that H is not a leaf.

Next, we show how to take a step down the proof while maintaining the invariants. If H

has only a single child H1, then H ⊆ H1 and we can move to H1 without changing ρ or k.
Otherwise, let the children of H be H1 and H2. Applying Lemma 21 to H ↾ρ, H1 ↾ρ, H2 ↾ρ

we get a partial restriction τ and an i ∈ {1, 2} such that Hi ↾ρτ is good and |fix(τ)| ≤ 2. Due
to this latter fact, since F ↾ρ is a (k, t)-expander it follows that F ↾ρτ is a (k, t− 2)-expander
in the worst case. Observe that since t > 3 it follows that F ↾ρτ still satisfies the consistency
invariant. It remains to restore the expansion invariant.

CCC 2021

6:22 On the Power and Limitations of Branch and Cut

To restore the expansion invariant, let W be the largest subset of equations such that
|W | ≤ k and W has boundary expansion at most 3 in F ↾ρτ , and note that W has boundary
expansion at least t − 2 > 1. Applying Lemma 27, we can find a restriction ρ′ such that
W ↾ρτρ′ is satisfied, and H ↾ρτρ′ is a good halfspace. Since W is the largest subset with
expansion at most 3, it follows that F ↾ρτρ′ is now a (k − |W |, t′)-boundary expander with
t′ > 3. Suppose otherwise, then there exists a subset of equations W ′ which has boundary
expansion at most 3 in F ↾ρτρ′. Then W ∪W ′ would have had boundary expansion at most
3 in F ↾ ρτ , contradicting the maximality of W . Now update ρ ← ρτρ′ and k ← k − |W |.
Finally, we halt the walk if k = 0.

We now argue that this path must have had depth at least rs/2 upon halting. Assume
that we have taken t steps down the proof. For each step i ≤ t let Wi be the set of equations
which lost boundary expansion during the ith cleanup step. Note that Wi ∩Wj = ∅ for every
i ≠ j. Let W ∗ = ∪t

i=1Wi, note that |W ∗| = r because at the ith step we decrease k by |Wi|.
Furthermore, at the end of the walk, W ∗ has no neighbours and therefore no boundary in
F ↾ ρ. Before the start of the ith cleanup step, Wi has at most 3|Wi| boundary variables.
Therefore, at most 3|W ∗| = 3r boundary variables were removed during the cleanup step.
Since F started as an (r, s + 3)-boundary expander, it follows that W ∗ had at least r(s + 3)
boundary variables at the start of the walk. But, since all variables have been removed from
the boundary by the end, this means that rs variables must have been removed from the
boundary during the move step. Thus, as each move step sets at most 2 variables, it follows
that t ≥ rs/2 before the process halted.

5.3 Proof of Lemma 21 and Lemma 22
In this section we prove our two key technical lemmas: Lemma 21 and Lemma 22. We begin
by proving Lemma 22 as it is simpler.

Proof of Lemma 22. Let H be represented by
∑

i∈[n] wixi ≥ c and suppose without loss
of generality that c ≥ 0 and that I = {1, . . . , k}. Let the weights of I in H be ordered
|w1| ≥ |w2| ≥ . . . |wk|. Define ρ by setting ρ(xi) = ∗ for i ̸∈ I, for i ≤ k − 1 set ρ(xi) = 1 if
wi ≥ 0 and ρ(xi) = 0 otherwise, and set ρ(xk) so that

⊕
i∈I ρ(xi) = b. Clearly the parity

constraint is satisfied, we show that H ↾ρ is good. This follows by an easy calculation:

(H ↾ρ)((1/2)[n]\I) = wk−1ρ(xk−1) + wkρ(xk) +
∑

i≤k−2
wiρ(xi) +

∑
i≥k+1

wi/2

≥ wk−1/2 + wk/2 +
∑

i≤k−2
wiρ(xi) +

∑
i≥k+1

wi/2

≥
∑
i∈[n]

wi/2 ≥ c

where the first inequality follows by averaging since |wk−1| ≥ |wk|, and the final inequality
follows since H is good. ◀

In the remainder of the section we prove Lemma 21. It will be convenient to work over
{−1, 1}n rather than {0, 1}n, so, we restate it over this set and note that we can move
between these basis by using the bijection v 7→ (1− v)/2.

▶ Lemma 28. Let H ∈ Rn be a halfspace such that 0n ∈ H and suppose that H ∩{−1, 1}n ⊆
H1 ∪H2. Then one of H1 or H2 contains a point y ∈ {−1, 0, 1}n such that y has at most
two coordinates in {−1, 1}.

N. Fleming et al. 6:23

The key ingredient in our proof of Lemma 28 is the following simple topological lemma,
which will allow us to find a well-behaved point lying on a 2-face of the {−1, 1}n cube

▶ Definition 29 (2-face). A 2-face of the n-cube with vertices {−1, 1}n are the 2-dimensional
2-by-2 squares spanned by four vertices of the cube that agree on all but two coordinates. That
is, a two face is a set A ⊆ [−1, 1]n such that there exists ρ ∈ {−1, 1, ∗}n with |free(ρ)| = 2
and A = [−1, 1]n ↾ρ.

▶ Lemma 30. Let w1, w2 ∈ Rn be any pair of non-zero vectors, then we can find a vector
v ∈ Rn orthogonal to w1, w2, such that v lies on a 2-face.

Proof. We will construct the vector v iteratively by rounding one coordinate at a time to a
{−1, 1}-value until v contains exactly n− 2 coordinates fixed to {−1, 1}. At each step, we
will maintain that v ∈ [−1, 1]n and that v is orthogonal to w1 and w2. Therefore when the
process halts v will lie on a 2-face.

Initially, set v = 0n and observe that the invariants are satisfied. Suppose that we have
constructed a vector v that is orthogonal to w1 and w2, all of its coordinates belong to [−1, 1],
and exactly i < n− 2 of its coordinates belong to {−1, 1}; suppose w.l.o.g. that they are the
first i coordinates. We will show how to “booleanize” an additional coordinate of v. Let u be
any non-zero vector that is orthogonal to {w1, w2, e1, . . . , ei}, where ej is the jth standard
basis vector. Begin moving from v in the direction of u and let α > 0 be the smallest value
such that one of the coordinates j > i of v + αu is in {−1, 1}. We verify that the following
properties hold:
1. The first i coordinates of v + αu are in {−1, 1}. This follows because we moved in a

direction that is orthogonal to e1, . . . , ei.
2. v + αu is orthogonal to w1 and w2. Let w be either of the vectors w1 or w2 and observe

that vi+1w = viw + α(uw) = 0, where the final equality follows because w is orthogonal
to vi by induction and to u by assumption.

Finally, set v to be v + αu. ◀

Proof of Lemma 28. Let the children H1 and H2 of H be given by the halfspaces w1x ≥ b1
and w2x ≥ b2 respectively. By Lemma 30 we can find a vector v which is orthogonal to
w1 and w2, and which lies on some 2-face F of the [−1, 1]n cube corresponding to some
restriction ρ ∈ {0, 1, ∗}n. Then, v lies in (at least) one of the four 1-by-1 quadrants of the
2-face, [0, 1]2, [0, 1]× [−1, 0], [−1, 0]× [0, 1], or [−1, 0]2; suppose that v lies in the [−1, 0]× [0, 1]
quadrant of F , the other cases will follow by symmetry (see Figure 3).

v

a− v

(1, 1)

(1,−1)

a = (−1, 1)

(−1,−1)

Figure 3 A 2-face of the n-cube together with a depiction of the booleanizing process.

CCC 2021

6:24 On the Power and Limitations of Branch and Cut

Let a ∈ Rn be the vector corresponding to the (−1, 1) corner of F , i.e., a is ρ extended
by setting the two free bits to −1 and 1. By symmetry and the fact that H is good (and
therefore 0n ∈ H), we can assume that a is contained in H – otherwise, simply exchange
a and v for −a and −v. Since H ∩ {−1, 1}n ⊆ H1 ∪H2 and a ∈ {−1, 1}n, it follows that a

is in one of H1 or H2. Assume that a ∈ H1; that is, w1a ≥ b1. Our goal is to construct a
vector y ∈ H1 that satisfies the statement of the lemma. Consider the following two cases:

(i) If w1(a − v) ≤ 0, then it follows that y := 0n ∈ H1. Indeed, w1y = w1v ≥ w1a ≥ b1,

where first equality follows because w1 and p are orthogonal by assumption, and the
final inequality follows because a ∈ H1.

(ii) Otherwise, we have that w1(a−v) > 0. We construct a point that satisfies the statement
of the lemma as follows. First, note that since a, v ∈ F , it follows that the vector a− v

has at most two non-zero coordinates. Beginning at the origin 0n, move in the direction
a − v until a free coordinate coordinate becomes fixed to −1 or 1; that is, let α > 0
be the minimum value such that α(a − v) has at most one coordinate which is not
{−1, 1}-valued. Since both a and v belong to the same 1× 1 quadrant of the 2-face,
∥a− v∥∞ ≤ 1 and so α ≥ 1. We can then verify that α(a− v) ∈ H1, since

w1α(a− v) = α(w1a)− 0 ≥ w1a ≥ b1,

where we have used the fact that v is orthogonal to w1 and α ≥ 1. Finally, since
α(a − v) ∈ H1 we can round the final non-zero coordinate to −1 or 1; since H1 is a
halfspace one of the two vectors will remain in H1. ◀

5.4 Applications
We now use the theorems from the previous sections to obtain several concrete lower bounds.
First, we give strong depth lower bounds for sCP proofs of Tseitin formulas on expander
graphs.

▶ Theorem 31. There exists a graph G and labelling ℓ : V → {0, 1} such that any sCP
refutation of Tseitin(G, ℓ) requires depth Ω(n).

Proof. A graph G = (V, E) is a γ-vertex expander if

min {|Γ(W)| : W ⊆ V, |W | ≤ |V |/2} ≥ γ|W |,

where Γ(W) is the neighbourhood of W . We claim that if G is a γ-vertex expander then any
Tseitin formula over G is a (n/2, γ)-boundary expander. Fix any subset W of the equations
with |W | ≤ n/2. By the definition of vertex expansion we have that |Γ(W)| ≥ γ|W |, and
since each variable is contained in exactly two constraints, it follows that the boundary of W

in Tseitin(G, ℓ) has size at least |δ(W)| ≥ γ|W |. The result then follows from Theorem 26
and the existence of strong vertex expanders G (e.g. d-regular Ramanujan graphs are at least
d/4-vertex expanders, and exist for all d and n [48]). ◀

Next, we give lower bounds on the depth of Semantic CP refutations of random k-XOR
and random k-CNF formulas for constant k.

▶ Definition 32. Let XOR(m, n, k) be the distribution on random k-XOR formulas obtained
by sampling m equations from the set of all mod 2 linear equations with exactly k variables.

N. Fleming et al. 6:25

▶ Theorem 33. The following holds for Semantic CP :
1. For any k ≥ 6 there exists m = O(n) such that F ∼ XOR(m, n, k) requires refutations of

depth at least Ω(n) with high probability.
2. For any k ≥ 6 there exists m = O(n) such that F ∼ F(m, n, k) requires refutations of

depth at least Ω(n) with high probability.

Proof. We first prove (1) and obtain (2) via a reduction. Fix m = O(n) so that F is
unsatisfiable with high probability. For any constant k, δ and m = O(n), F ∼ XOR(m, n, k)
is an (αn, k − 2− 2δ)-boundary expander for some α > 0 (see e.g. [16, 21]). Thus, setting
k ≥ 6 and ε to be some small constant, the boundary expansion of GF is at least 3. By
Theorem 26, F requires depth Ω(n) to refute in Semantic CP with high probability.

The proof of (2) is via a reduction from F(m, n, k) to XOR(m, n, k). Every k-clause
occurs in the clausal encoding of exactly one k-XOR constraint. It follows that from any
k-CNF formula F we can generate a k-XOR formula whose clausal expansion F ′ contains F

as follows: for each clause C ∈ F , if C contains an even (odd) number of positive literals
then add to F ′ every clause on the variables of C which contains an even (odd) number of
positive literals. The resulting F ′ is the clausal encoding of a set of |F | k-XOR constraints.
As there is a unique k-XOR consistent with the clauses of F , we can define the distribution
XOR(m, n, k) equivalently as follows:
1. Sample F ∼ F(m, n, k),
2. Return the k-XOR F ′ generated from F according to the aforementioned process.
It follows that the complexity of refuting F ∼ F(m, n, k) is at least that of refuting F ′ ∼
XOR(m, n, k) and (2) follows from (1) with the same parameters. ◀

Finally, we use Theorem 26 to extend the integrality gaps from [16] to sCP by essentially
the same argument. For a linear program with constraints given by a system of linear
inequalities Ax ≤ b, the r-round sCP relaxation adds all inequalities that can be derived from
Ax ≤ b by a depth-r sCP proof. We show that the r-round Semantic sCP linear program
relaxation cannot well-approximate the number of satisfying assignments to a random k-SAT
or k-XOR instance.

First we define our LP relaxations. Suppose that F is a k-CNF formula with m clauses
C1, C2, . . . , Cm and n variables x1, x2, . . . , xn. If Ci =

∨
i∈P xi ∨

∨
i∈N xi then let E(Ci) =∑

i∈P xi +
∑

i∈N 1− xi. We consider the following LP relaxation of F :

max
m∑

i=1
yi

subject to E(Ci) ≥ yi ∀i ∈ [m]
0 ≤ xj ≤ 1 ∀j ∈ [n]
0 ≤ yi ≤ 1 ∀i ∈ [m]

If F is a k-XOR formula with m constraints and n variables then we consider the above
LP relaxation obtained by writing F as a k-CNF. Finally, recall that the integrality gap is
the ratio between the optimal integral solution to a linear program and the optimal solution
produced by the LP.

▶ Theorem 34. For any ε > 0 and k ≥ 6,
1. There is κ > 0 and m = O(n) such that for F ∼ XOR(m, n, k) the integrality gap of the

κn-round sCP relaxation of F is at least (2− ε) with high probability.
2. There is κ > 0 and m = O(n) such that for F ∼ F(m, n, k) the integrality gap of the

κn-round sCP relaxation of F is at least 2k/(2k − 1)− ε with high probability.

CCC 2021

6:26 On the Power and Limitations of Branch and Cut

Proof. Let F ∼ XOR(m, n, k) and let Yi be the event that the ith constraint is falsified by a
uniformly random assignment. Let δ := ε/(2− ε), then by a multiplicative Chernoff Bound,
the probability that a uniformly random assignment satisfies at least a 1/(2− ε)-fraction of
F is Pr[

∑
i∈[m] Yi ≥ (1 + δ) m

2] ≤ 2−δm/6. By a union bound, the probability that there exists
an assignment satisfying at least a 1/(2− ε) fraction of F is 2n−δm/6 which is exponentially
small when m ≥ 7n(2− ε)/ε.

On the other hand, consider the partial restriction to the LP relaxation of F that sets
yi = 1 for all i ∈ [m]. Setting m ≥ 7n(2−ε)/ε large enough, by Theorem 33 there some κ > 0
such that with high probability F requires depth κn. Hence, the κn round Semantic CP LP
relaxation is non-empty, and there is a satisfying assignment α ∈ Rn. Thus α ∪ {yi = 1}
satisfies all constraints of max(F).

The second result follows by an analogous argument. ◀

6 Conclusion

We end by discussing some problems left open by this paper. The most obvious of which is a
resolution to Conjecture 6. A related question is whether supercritical size-depth tradeoffs can
be established for monotone circuits? Indeed, current size lower bound techniques [32,33,39,54]
are via reduction to monotone circuit lower bounds. As a first step towards both of these,
can one prove a supercritical size-depth tradeoff for a weaker proof system such as resolution?

The simulation results presented in Section 3 leave open several questions regarding the
relationship between SP and CP. First, the simulation of SP∗ by CP incurs a significant
blowup in the coefficient size due to Shrijver’s lemma. It would be interesting to understand
whether SP∗ can be quasi-polynomially simulated by CP∗; that is, whether this blowup in
the size of the coefficients is necessary.

The most obvious question left open by these simulations is whether CP can polynomially
simulate SP, or even polynomially simulate SP∗. Similarly, what are the relationships of
both SP and CP, to (bounded-coefficient) R(CP), the system which corresponds to dag-like
SP. R(CP) can polynomially simulate DNF resolution, and therefore has polynomial size
proofs of the Clique-Colouring formulas, for cliques of size Ω(

√
n) and colourings of size

o(log2 n) [4]. Quasi-polynomial lower bounds on the size of CP refutations are known for this
range of parameters and this rules out a polynomial simulation by Cutting Planes; however, a
quasi-polynomial simulation may be possible. A potential approach to resolving this question
is to use the added expressibility of R(CP) over DNF resolution to extend the upper bound
on Clique-Colouring to the range of parameters for which superpolynomial CP lower bounds
are known.

References

1 Karen Aardal, Robert E. Bixby, Cor A. J. Hurkens, Arjen K. Lenstra, and Job W. Smeltink.
Market split and basis reduction: Towards a solution of the cornuéjols-dawande instances.
INFORMS J. Comput., 12(3):192–202, 2000. doi:10.1287/ijoc.12.3.192.12635.

2 Karen Aardal and Arjen K. Lenstra. Hard equality constrained integer knapsacks. Math.
Oper. Res., 29(3):724–738, 2004. doi:10.1287/moor.1040.0099.

3 Michael Alekhnovich and Alexander A. Razborov. Satisfiability, branch-width and tseitin
tautologies. In 43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19
November 2002, Vancouver, BC, Canada, Proceedings, pages 593–603. IEEE Computer Society,
2002. doi:10.1109/SFCS.2002.1181983.

https://doi.org/10.1287/ijoc.12.3.192.12635
https://doi.org/10.1287/moor.1040.0099
https://doi.org/10.1109/SFCS.2002.1181983

N. Fleming et al. 6:27

4 Albert Atserias, Maria Luisa Bonet, and Juan Luis Esteban. Lower bounds for the weak
pigeonhole principle and random formulas beyond resolution. Inf. Comput., 176(2):136–152,
2002. doi:10.1006/inco.2002.3114.

5 Albert Atserias, Massimo Lauria, and Jakob Nordström. Narrow proofs may be maximally
long. ACM Trans. Comput. Log., 17(3):19:1–19:30, 2016. doi:10.1145/2898435.

6 Boaz Barak, Fernando G. S. L. Brandão, Aram Wettroth Harrow, Jonathan A. Kelner, David
Steurer, and Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. In
Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New
York, NY, USA, May 19 - 22, 2012, pages 307–326, 2012. doi:10.1145/2213977.2214006.

7 Paul Beame, Christopher Beck, and Russell Impagliazzo. Time-space tradeoffs in resolution:
superpolynomial lower bounds for superlinear space. In Howard J. Karloff and Toniann
Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing Conference,
STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 213–232. ACM, 2012. doi:
10.1145/2213977.2213999.

8 Paul Beame, Noah Fleming, Russell Impagliazzo, Antonina Kolokolova, Denis Pankratov,
Toniann Pitassi, and Robert Robere. Stabbing planes. In 9th Innovations in Theoretical
Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, pages
10:1–10:20, 2018. doi:10.4230/LIPIcs.ITCS.2018.10.

9 Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-off results for polynomial
calculus: extended abstract. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4,
2013, pages 813–822. ACM, 2013. doi:10.1145/2488608.2488711.

10 Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made simple. J.
ACM, 48(2):149–169, 2001. doi:10.1145/375827.375835.

11 Christoph Berkholz and Jakob Nordström. Supercritical space-width trade-offs for resolution.
SIAM J. Comput., 49(1):98–118, 2020. doi:10.1137/16M1109072.

12 Alexander Bockmayr, Friedrich Eisenbrand, Mark E. Hartmann, and Andreas S. Schulz. On
the chvátal rank of polytopes in the 0/1 cube. Discret. Appl. Math., 98(1-2):21–27, 1999.
doi:10.1016/S0166-218X(99)00156-0.

13 Merve Bodur, Alberto Del Pia, Santanu S. Dey, Marco Molinaro, and Sebastian Pokutta.
Aggregation-based cutting-planes for packing and covering integer programs. Math. Program.,
171(1-2):331–359, 2018. doi:10.1007/s10107-017-1192-x.

14 Maria Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs for resolution. Comput.
Complex., 10(4):261–276, 2001. doi:10.1007/s000370100000.

15 Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting planes proofs
with small coefficients. J. Symb. Log., 62(3):708–728, 1997. doi:10.2307/2275569.

16 Joshua Buresh-Oppenheim, Nicola Galesi, Shlomo Hoory, Avner Magen, and Toniann Pitassi.
Rank bounds and integrality gaps for cutting planes procedures. Theory of Computing,
2(4):65–90, 2006. doi:10.4086/toc.2006.v002a004.

17 Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps
between degrees for the polynomial calculus modulo distinct primes. J. Comput. Syst. Sci.,
62(2):267–289, 2001. doi:10.1006/jcss.2000.1726.

18 Vasek Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete
Mathematics, 4(4):305–337, 1973. doi:10.1016/0012-365X(73)90167-2.

19 Vašek Chvátal. Cutting-plane proofs and the stability number of a graph. Inst. für Ökonometrie
und Operations Research, Rhein. Friedrich-Wilhelms-Univ., 1984.

20 Vašek Chvátal, William Cook, and Mark Hartmann. On cutting-plane proofs in combinatorial
optimization. Linear algebra and its applications, 114:455–499, 1989.

21 Vasek Chvátal and Endre Szemerédi. Many hard examples for resolution. J. ACM, 35(4):759–
768, 1988. doi:10.1145/48014.48016.

22 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. J. Symb. Log., 44(1):36–50, 1979. doi:10.2307/2273702.

CCC 2021

https://doi.org/10.1006/inco.2002.3114
https://doi.org/10.1145/2898435
https://doi.org/10.1145/2213977.2214006
https://doi.org/10.1145/2213977.2213999
https://doi.org/10.1145/2213977.2213999
https://doi.org/10.4230/LIPIcs.ITCS.2018.10
https://doi.org/10.1145/2488608.2488711
https://doi.org/10.1145/375827.375835
https://doi.org/10.1137/16M1109072
https://doi.org/10.1016/S0166-218X(99)00156-0
https://doi.org/10.1007/s10107-017-1192-x
https://doi.org/10.1007/s000370100000
https://doi.org/10.2307/2275569
https://doi.org/10.4086/toc.2006.v002a004
https://doi.org/10.1006/jcss.2000.1726
https://doi.org/10.1016/0012-365X(73)90167-2
https://doi.org/10.1145/48014.48016
https://doi.org/10.2307/2273702

6:28 On the Power and Limitations of Branch and Cut

23 William J. Cook, Collette R. Coullard, and György Turán. On the complexity of cutting-
plane proofs. Discrete Applied Mathematics, 18(1):25–38, 1987. doi:10.1016/0166-218X(87)
90039-4.

24 Gérard Cornuéjols and Yanjun Li. On the rank of mixed 0, 1 polyhedra. Math. Program.,
91(2):391–397, 2002. doi:10.1007/s101070100250.

25 Daniel Dadush and Samarth Tiwari. On the complexity of branching proofs. In Shubhangi
Saraf, editor, 35th Computational Complexity Conference, CCC 2020, July 28-31, 2020,
Saarbrücken, Germany (Virtual Conference), volume 169 of LIPIcs, pages 34:1–34:35. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CCC.2020.34.

26 Adnan Darwiche. Recursive conditioning. Artif. Intell., 126(1-2):5–41, 2001. doi:10.1016/
S0004-3702(00)00069-2.

27 Martin Davis and Hilary Putnam. A computing procedure for quantification theory. J. ACM,
7(3):201–215, 1960. doi:10.1145/321033.321034.

28 Rina Dechter. Bucket elimination: A unifying framework for processing hard and soft
constraints. ACM Comput. Surv., 28(4es):61, 1996. doi:10.1145/242224.242302.

29 Friedrich Eisenbrand and Andreas S. Schulz. Bounds on the chvátal rank of polytopes in
the 0/1-cube. In Gérard Cornuéjols, Rainer E. Burkard, and Gerhard J. Woeginger, editors,
Integer Programming and Combinatorial Optimization, 7th International IPCO Conference,
Graz, Austria, June 9-11, 1999, Proceedings, volume 1610 of Lecture Notes in Computer
Science, pages 137–150. Springer, 1999. doi:10.1007/3-540-48777-8_11.

30 Yuval Filmus, Pavel Hrubes, and Massimo Lauria. Semantic versus syntactic cutting planes.
In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium on Theoretical Aspects
of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of
LIPIcs, pages 35:1–35:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.STACS.2016.35.

31 Matteo Fischetti and Andrea Lodi. Local branching. Math. Program., 98(1-3):23–47, 2003.
doi:10.1007/s10107-003-0395-5.

32 Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere. Random Θ(log n)-
CNFs are hard for cutting planes. In 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 109–120,
2017. doi:10.1109/FOCS.2017.19.

33 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower
bounds from resolution. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors,
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pages 902–911. ACM, 2018. doi:10.1145/
3188745.3188838.

34 Michel X. Goemans and David P. Williamson. .879approximationn algorithms for max cut and
max 2sat. In Proceedings of the Twenty-sixth Annual ACM Symposium on Theory of Computing,
STOC ’94, pages 422–431, New York, NY, USA, 1994. ACM. doi:10.1145/195058.195216.

35 Ralph E Gomory. An algorithm for integer solutions to linear programs. Recent advances in
mathematical programming, 64(260-302):14, 1963.

36 Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating cutting planes is
np-hard. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath,
and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 68–77. ACM,
2020. doi:10.1145/3357713.3384248.

37 Dima Grigoriev. Tseitin’s tautologies and lower bounds for nullstellensatz proofs. In 39th
Annual Symposium on Foundations of Computer Science, FOCS ’98, November 8-11, 1998,
Palo Alto, California, USA, pages 648–652. IEEE Computer Society, 1998. doi:10.1109/
SFCS.1998.743515.

38 Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the
parity. Theor. Comput. Sci., 259(1-2):613–622, 2001. doi:10.1016/S0304-3975(00)00157-2.

https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1007/s101070100250
https://doi.org/10.4230/LIPIcs.CCC.2020.34
https://doi.org/10.1016/S0004-3702(00)00069-2
https://doi.org/10.1016/S0004-3702(00)00069-2
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/242224.242302
https://doi.org/10.1007/3-540-48777-8_11
https://doi.org/10.4230/LIPIcs.STACS.2016.35
https://doi.org/10.4230/LIPIcs.STACS.2016.35
https://doi.org/10.1007/s10107-003-0395-5
https://doi.org/10.1109/FOCS.2017.19
https://doi.org/10.1145/3188745.3188838
https://doi.org/10.1145/3188745.3188838
https://doi.org/10.1145/195058.195216
https://doi.org/10.1145/3357713.3384248
https://doi.org/10.1109/SFCS.1998.743515
https://doi.org/10.1109/SFCS.1998.743515
https://doi.org/10.1016/S0304-3975(00)00157-2

N. Fleming et al. 6:29

39 Pavel Hrubes and Pavel Pudlák. Random formulas, monotone circuits, and interpolation. In
Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 121–131. IEEE Computer Society,
2017. doi:10.1109/FOCS.2017.20.

40 Russell Impagliazzo, Toniann Pitassi, and Alasdair Urquhart. Upper and lower bounds for
tree-like cutting planes proofs. In Proceedings of the Ninth Annual Symposium on Logic in
Computer Science (LICS ’94), Paris, France, July 4-7, 1994, pages 220–228. IEEE Computer
Society, 1994. doi:10.1109/LICS.1994.316069.

41 Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-
world SAT instances. In Benjamin Kuipers and Bonnie L. Webber, editors, Proceedings of the
Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Applications
of Artificial Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode
Island, USA, pages 203–208. AAAI Press / The MIT Press, 1997. URL: http://www.aaai.
org/Library/AAAI/1997/aaai97-032.php.

42 Miroslav Karamanov and Gérard Cornuéjols. Branching on general disjunctions. Math.
Program., 128(1-2):403–436, 2011. doi:10.1007/s10107-009-0332-3.

43 Arist Kojevnikov. Improved lower bounds for tree-like resolution over linear inequalities. In
João Marques-Silva and Karem A. Sakallah, editors, Theory and Applications of Satisfiability
Testing - SAT 2007, 10th International Conference, Lisbon, Portugal, May 28-31, 2007,
Proceedings, volume 4501 of Lecture Notes in Computer Science, pages 70–79. Springer, 2007.
doi:10.1007/978-3-540-72788-0_10.

44 Jan Krajícek. Discretely Ordered Modules as a First-Order Extension of the Cutting Planes
Proof System. The Journal of Symbolic Logic, 63(4):1582–1596, 1998.

45 Bala Krishnamoorthy and Gábor Pataki. Column basis reduction and decomposable knapsack
problems. Discret. Optim., 6(3):242–270, 2009. doi:10.1016/j.disopt.2009.01.003.

46 Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. A SAT approach to branchwidth. ACM
Trans. Comput. Log., 20(3):15:1–15:24, 2019. doi:10.1145/3326159.

47 Ashutosh Mahajan and Theodore K Ralphs. Experiments with branching using general
disjunctions. In Operations Research and Cyber-Infrastructure, pages 101–118. Springer, 2009.

48 Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families IV: bipartite
ramanujan graphs of all sizes. SIAM J. Comput., 47(6):2488–2509, 2018. doi:10.1137/
16M106176X.

49 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages 530–535. ACM, 2001.
doi:10.1145/378239.379017.

50 Jonathan H. Owen and Sanjay Mehrotra. Experimental results on using general disjunctions in
branch-and-bound for general-integer linear programs. Comput. Optim. Appl., 20(2):159–170,
2001. doi:10.1023/A:1011207119557.

51 Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization. PhD thesis, California Institute of Technology, 2000.

52 Sebastian Pokutta and Andreas S. Schulz. On the rank of cutting-plane proof systems. In
Friedrich Eisenbrand and F. Bruce Shepherd, editors, Integer Programming and Combinatorial
Optimization, 14th International Conference, IPCO 2010, Lausanne, Switzerland, June 9-11,
2010. Proceedings, volume 6080 of Lecture Notes in Computer Science, pages 450–463. Springer,
2010. doi:10.1007/978-3-642-13036-6_34.

53 Sebastian Pokutta and Andreas S. Schulz. Integer-empty polytopes in the 0/1-cube with
maximal gomory-chvátal rank. Oper. Res. Lett., 39(6):457–460, 2011. doi:10.1016/j.orl.
2011.09.004.

54 Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computa-
tions. J. Symb. Log., 62(3):981–998, 1997. doi:10.2307/2275583.

CCC 2021

https://doi.org/10.1109/FOCS.2017.20
https://doi.org/10.1109/LICS.1994.316069
http://www.aaai.org/Library/AAAI/1997/aaai97-032.php
http://www.aaai.org/Library/AAAI/1997/aaai97-032.php
https://doi.org/10.1007/s10107-009-0332-3
https://doi.org/10.1007/978-3-540-72788-0_10
https://doi.org/10.1016/j.disopt.2009.01.003
https://doi.org/10.1145/3326159
https://doi.org/10.1137/16M106176X
https://doi.org/10.1137/16M106176X
https://doi.org/10.1145/378239.379017
https://doi.org/10.1023/A:1011207119557
https://doi.org/10.1007/978-3-642-13036-6_34
https://doi.org/10.1016/j.orl.2011.09.004
https://doi.org/10.1016/j.orl.2011.09.004
https://doi.org/10.2307/2275583

6:30 On the Power and Limitations of Branch and Cut

55 Pavel Pudlák. Proofs as games. The American Mathematical Monthly, 107(6):541–550, 2000.
doi:10.1080/00029890.2000.12005233.

56 Alexander A. Razborov. A new kind of tradeoffs in propositional proof complexity. J. ACM,
63(2):16:1–16:14, 2016. doi:10.1145/2858790.

57 Alexander A. Razborov. On the width of semialgebraic proofs and algorithms. Math. Oper.
Res., 42(4):1106–1134, 2017. doi:10.1287/moor.2016.0840.

58 Thomas Rothvoß and Laura Sanita. 0/1 polytopes with quadratic chvátal rank. In International
Conference on Integer Programming and Combinatorial Optimization, pages 349–361. Springer,
2013.

59 Grant Schoenebeck. Linear level lasserre lower bounds for certain k-csps. In 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008,
Philadelphia, PA, USA, pages 593–602. IEEE Computer Society, 2008. doi:10.1109/FOCS.
2008.74.

60 A. Schrijver. On cutting planes. In Peter L. Hammer, editor, Combinatorics 79, volume 9 of
Annals of Discrete Mathematics, pages 291–296. Elsevier, 1980. doi:10.1016/S0167-5060(08)
70085-2.

61 João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999. doi:10.1109/12.769433.

https://doi.org/10.1080/00029890.2000.12005233
https://doi.org/10.1145/2858790
https://doi.org/10.1287/moor.2016.0840
https://doi.org/10.1109/FOCS.2008.74
https://doi.org/10.1109/FOCS.2008.74
https://doi.org/10.1016/S0167-5060(08)70085-2
https://doi.org/10.1016/S0167-5060(08)70085-2
https://doi.org/10.1109/12.769433

Separating ABPs and Some Structured Formulas in
the Non-Commutative Setting
Prerona Chatterjee # Ñ

Tata Institute of Fundamental Research, Mumbai, India

Abstract
The motivating question for this work is a long standing open problem, posed by Nisan [20], regarding
the relative powers of algebraic branching programs (ABPs) and formulas in the non-commutative
setting. Even though the general question remains open, we make some progress towards its
resolution. To that effect, we generalise the notion of ordered polynomials in the non-commutative
setting (defined by Hrubeš, Wigderson and Yehudayoff [11]) to define abecedarian polynomials and
models that naturally compute them.

Our main contribution is a possible new approach towards resolving the VFnc vs VBPnc question,
via lower bounds against abecedarian formulas. In particular, we show the following.

There is an explicit n2-variate degree d abecedarian polynomial fn,d(x) such that
fn,d(x) can be computed by an abecedarian ABP of size O(nd);
any abecedarian formula computing fn,log n(x) must have size at least nΩ(log log n).

We also show that a super-polynomial lower bound against abecedarian formulas for flog n,n(x) would
separate the powers of formulas and ABPs in the non-commutative setting.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Non-Commutative Formulas, Lower Bound, Separating ABPs and Formulas

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.7

Funding Research supported by the Department of Atomic Energy, Government of India, under
project number RTI4001.

Acknowledgements We are thankful to Ramprasad Saptharishi, Mrinal Kumar, C. Ramya and
especially Anamay Tengse for the discussions at various stages of this work. We would also like to
thank Ramprasad Saptharishi, Anamay Tengse and Kshitij Gajjar for helping with the presentation
of the paper. Finally, we would like to thank the anonymous reviewers for their valuable comments
that have helped in improving the paper.

1 Introduction

Algebraic Circuit Complexity is the study of multivariate polynomials and their classification
based on how hard it is to compute them, using various computational models. The most
well studied model is that of algebraic circuits. These are directed acyclic graphs that use
algebraic operations like addition and multiplication over some field or ring, to compute
polynomials. When the underlying graph is only allowed to be a tree, the model is that of
algebraic formulas. The central question in this area is whether the class VNP (algebraic
analogue of the class NP) is contained in the class VP (algebraic analogue of the class P).
Valiant [23] has shown that the permanent polynomial is complete for VNP, and therefore
the VP vs VNP question essentially boils down to asking whether the n × n permanent can
be computed by a poly(n)-sized algebraic circuit.

In this paper, we are interested in polynomials that come from the non-commutative poly-
nomial ring F ⟨x1, . . . , xn⟩, where the indeterminates do not commute with each other (that
is, xy ̸= yx for indeterminates x, y). As a consequence, any monomial in a non-commutative

© Prerona Chatterjee;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 7; pp. 7:1–7:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:prerona.ch@gmail.com
https://preronac.bitbucket.io/
https://orcid.org/0000-0003-2643-8142
https://doi.org/10.4230/LIPIcs.CCC.2021.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Separating ABPs and Some Structured Formulas in the Non-Commutative Setting

polynomial f ∈ F ⟨x1, . . . , xn⟩ is essentially a string over the alphabet {x1, . . . , xn}. This is
a natural restriction and there has been a long line of work that studies non-commutative
computation beginning with the seminal work of Nisan [20]1.

It was shown by Hrubeš, Wigderson and Yehudayoff [10] that the non-commutative
permanent polynomial is complete for the class VNPnc (the non-commutative version of
VNP). Later Arvind, Joglekar and Raja [1] gave a natural polynomial that is complete for
the class of n-variate non-commutative polynomials computable by poly(n)-sized circuits
(denoted by VPnc). The question of whether the classes VPnc and VNPnc are different is
the central open problem in the non-commuatative setting. Although the general question
of showing lower bounds against non-commutative circuits remains open, there has been
significant progress in restricted settings [17, 16, 15, 22, 8].

With respect to the general question, Hrubeš, Wigderson and Yehudayoff [11] showed that
a sufficiently strong super-linear lower bound for the classical sum-of-squares problem implies
a separation between VPnc and VNPnc. In another related work, Carmosino, Impagliazzo,
Lovett and Mihajlin [5] showed that proving mildly super-linear lower bounds against
non-commutative circuits would imply exponential lower bounds against the same model.

One motivation for studying non-commutative computation is that it is possibly easier to
prove strong lower bounds in this setting as compared to the usual commutative setting. At
least intuitively, it seems harder to cancel monomials once they have been calculated when
commutativity is not allowed amongst the variables.

For example, the n × n determinant can be computed by an O(n3) algebraic circuit, but
to the best of our knowledge there is no circuit for the non-commutative determinant of
size 2o(n). In fact, it was shown by Arvind and Srinivasan [2] that if the non-commutative
determinant had a poly-sized circuit, then VPnc = VNPnc.

Even though a super-polynomial lower bound is not known for the non-commutative
determinant against circuits, Nisan [20] gave an exponential lower bound on the number of
gates in any formula computing it. In contrast, the best lower bound known against formulas
in the commutative setting is quadratic2 [19, 14, 6].

A point to note about the lower bound given by Nisan however, is that the proof actually
works for a computational model, called Algebraic Branching Programs (or ABPs), that
is believed to be more general than algebraic formulas. In fact, Nisan [20] gave an exact
characterisation for the size of any ABP computing a non-commutative polynomial. As far
as we are aware, any lower bound known against general non-commutative formulas uses this
characterisation and hence is essentially a lower bound against non-commutative ABPs itself.

The motivating question for this work is whether there is a separation between the
powers of ABPs and formulas in the non-commutative setting. Let us denote the class
of non-commutative polynomials over n variables that can be computed by poly(n)-sized
ABPs by VBPnc. Similarly, let VFnc denote the class of non-commutative polynomials over
n variables that can be computed by poly(n)-sized formulas. The question is essentially
whether VBPnc is contained in VFnc or not.

This question had been posed by Nisan [20], and the only work we are aware of that
has made some progress with respect to this question is the one by Lagarde, Limaye and
Srinivasan [15]. They show that certain syntactically restricted non-commutative formulas
(called Unique Parse Tree formulas) cannot compute IMMn,n unless they have size nΩ(log n).

In this paper, we study restrictions of a different kind. From here on, we will only be
talking about non-commutative computation unless specifically mentioned otherwise.

1 Hyafil [13] had considered non-commutative computation before this, but the main result in that paper
is unfortuantely false as shown in [20].

2 For the elementary symmetric polynomial.

P. Chatterjee 7:3

1.1 Abecedarian Polynomials and Models That Compute Them
In [11], Hrubeš et al. have defined the notion of ordered polynomials. A homogeneous
polynomial of degree d is said to be ordered if the set of variables it depends on can be
partitioned into d buckets such that variables occuring in position k only come from the k-th
bucket. We generalise this notion by making the bucket indices position independent. That
is, a variables in position k need not necessarily come from the k-th bucket as long as the
variables appear in non-decreasing order of their bucket indices. We call such polynomials
abecedarian since, in English, an abecedarian word is one in which all of the letters are
arranged in alphabetical order [18].

The difference between ordered polynomials and abecedarian ones can be explained
succintly using the notion of regular expressions from Automata Theory. For a non-
commutative polynomial f ∈ F ⟨x1, . . . , xn⟩, suppose the variables can been partitioned
into buckets {X1, . . . , Xm}. f is said to be ordered with respect to {X1, . . . , Xm} if every
monomial in it is a word that can be generated using the regular expression X1 · · · Xm. Note
that this is equivalent to set-multilinear polynomials in the commutative setting. On the
other hand, f is abecedarian if the monomials in it are words that can be generated using
the regular expression X∗

1 · · · X∗
m. Subsection 2.1 has a formal definition.

“Getting our Hands Dirty” with Abecedarian Polynomials
Before moving ahead, let us take a look at an example of an abecedarian polynomial. Given
a commutative polynomial f ∈ F[x1, . . . , xn], define its non-commutative analogue, f (nc) as
follows.

f and f (nc) look essentially the same, except that variables in every monomial in f (nc)

are arranged in non-decreasing order of their indices.

Then, f (nc) is abecedarian with respect to the partition {Xi : Xi = {xi}}.
Let us also look at a possibly important polynomial that is not abecedarian with respect

to the partition {Xi : Xi = {xi}}. Consider the arc-full rank polynomial, f , which was
constructed by Dvir, Malod, Perifel and Yehudayoff [7] to give a super-polynomial separation
between the powers of formulas and ABPs in the multilinear setting.

We look at f as a non-commutative polynomial, f ′, in the following sense.

Let A be the ABP that computes f and think of A as a non-commutative ABP A′.
Then, f ′ is the polynomial computed by A′.

It is not hard to see that across different monomials in f ′, the order in which variables are
arranged is not consistent. Thus, f ′ is not abecedarian with respect to the given partition.

A final point to note before we move ahead is that a polynomial might be abecedarian
with respect to different partitions3. In fact, even the sizes of the different partitions might
be different. For example, the polynomial

ESYM(ord)
n,d =

∑
1≤i1<...<id≤n

x
(1)
i1

· · · x
(d)
id

is abecedarian with respect to the partition
{

Xk =
{

x
(k)
i : i ∈ [n]

}}
which has size d, as

well as
{

Xi =
{

x
(k)
i : k ∈ [d]

}}
which has size n.

3 Every polynomial f ∈ F ⟨x1, . . . , xn⟩ is abecedarian with respect to the partition {X} for X =
{x1, . . . , xn}.

CCC 2021

7:4 Separating ABPs and Some Structured Formulas in the Non-Commutative Setting

Abecedarian Models of Computation
Hrubeš et al. [11] have defined ordered circuits, a model naturally suited to compute ordered
polynomials. We generalise this notion to define circuits that naturally compute abecedarian
polynomials. We also define abecedarian ABPs and abecedarian formulas similarly.

Suppose f is an abecedarian polynomial with respect to the partition {X1, . . . , Xm}. For
any 1 ≤ a ≤ b ≤ m + 1, f [a, b) is a sub-polynomial of f defined as follows.

For any 1 ≤ a ≤ [m + 1], f [a, a) is the constant term in f .
For 1 ≤ a < b ≤ m + 1, f [a, b) contains only those monomials of f in which the first
variable is from bucket Xa and the last variable is from any of the buckets in the set
{Xa, . . . , Xb−1}.

A circuit is said to be abecedarian if every gate v in it can be labelled by a tuple (a, b)
such that if fv is the polynomial computed at that gate, then fv = fv[a, b). We call a
formula abecedarian if it has a similar syntactic property at every gate. For formal definitions,
see Definition 15 and Definition 17 respectively. On the other hand, an ABP is said to
be abecedarian when every vertex in it can be labelled by a bucket index such that if f is
the polynomial computed between vertices labelled with indices a and b respectively, then
f = f [a, b + 1). Definition 16 is a formal definition.

1.2 Our Main Results
Our main result is a super-polynomial separation between abecedarian formulas and ABPs.

▶ Theorem 1 (Separating Abecedarian Formulas and Abecedarian ABPs). Define

linked_CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id

to be the linked complete homogeneous polynomial over n-variables of degree d. This polyno-
mial is abecedarian with respect to the partition {Xi : i ∈ [n]} if Xi = {xi,j : i ≤ j ≤ n}.

With respect to this partition,
1. linked_CHSYMn,d(x) has an abecedarian ABP of size O(nd);
2. any abecedarian formula computing linked_CHSYMn/2,log n(x) has size nΩ(log log n).

That is, there is a super-polynomial separation between abecedarian formulas and ABPs.

Our second main result shows that in certain settings, formulas computing abecedarian
polynomials can be assumed to be abecedarian without loss of generality.

▶ Theorem 2 (Converting Formulas into Abecedarian Formulas). Let f be an abecedarian
polynomial with respect to a partition of size m, and F be a formula of size s computing f .
If m = O(log s), then there is an abecedarian formula F ′ computing f of size poly(s).

In other words, an nω(1) lower bound against abecedarian formulas computing any poly-
nomial that is abecedarian with respect to a partition of size O(log n), would result in a
super-polynomial lower bound against general non-commutative formulas. These statements
suggest a new approach towards resolving the general VFnc vs VBPnc question.

Connections to the General VFnc vs VBPnc Question
Theorem 1 gives a separation between abecedarian formulas and ABPs. On the other hand,
Theorem 2 shows that if we are given a formula that computes a polynomial that is abecedarian
with respect to a partition of small size, then we can assume that the formula is abecedarian

P. Chatterjee 7:5

without loss of generality. Unfortunately, the partition with respect to which our hard
polynomial from Theorem 1 is abecedarian, is not small in size. Thus, the general question
of whether VBPnc is contained in VFnc or not still remains open. However, there are two
natural questions that arise at this point.
1. Can any formula computing an abecedarian polynomial be converted to an abecedarian

formula without much blow-up in size, irrespective of the size of the partition?
2. Is there a polynomial f which is abecedarian with respect to a partition that has small

size such that f witnesses a separation between abecedarian formulas and ABPs?
Clearly, a positive answer to either of these questions would imply that VBPnc ̸= VFnc. In
particular, a super-polynomial lower bound against abecedarian formulas for a polynomial
very similar to the one we used to show our separation would separate VBPnc and VFnc.

▶ Corollary 3. Let the polynomial linked_CHSYMn,d(x) be as defined in Theorem 1. An
nω(1) lower bound against abecedarian formulas for linked_CHSYMlog n,n(x) would imply a
super-polynomial separation between non-commutative ABPs and formulas.

In fact our proof technique also shows that a super-polynomial lower bound against
homogeneous formulas for our hard polynomial would separate VBPnc and VFnc.

▶ Corollary 4. Let linked_CHSYMn,d(x) be as defined in Theorem 1. An nω(1) lower bound
against homogeneous formulas for linked_CHSYMn,log n(x) would result in a super-polynomial
separation between ABPs and formulas in the non-commutative setting.

1.3 Proof Overview
We now give a proof overview of our main theorems.

Separating Abecedarian Formulas and ABPs
Let us first consider Theorem 1.
A small abecedarian ABP computing linked_CHSYMn,d(x) is essentially the following.

s1

...

...

...
sn

0

· · ·

· · ·

· · ·

· · ·

...
i

...

...

...

k

...
i

...
j

...

k + 1

· · ·

· · ·

· · ·

· · ·

t1

...

...

...
tn

d

xi,i

xi,j

1

1

1

1

For the lower bound, assume that we have been given a small abecedarian formula computing
the polynomial. We then keep modifying this formula till we get a small homogeneous
multilinear formula computing the elementary symmetric polynomial of degree n/2. We then
use the known lower bound against homogeneous multilinear formulas for this polynomial
(shown by Hrubeš and Yehudayoff [12]), to get a contradiction.

Let us spell out the proof in some more detail.

CCC 2021

7:6 Separating ABPs and Some Structured Formulas in the Non-Commutative Setting

Step 1: Suppose we are given an abecedarian formula computing linked_CHSYMn/2,log n(x)
of size O(nϵ log log n). Since the degree of the polynomial being computed is small,
we can assume that there is in fact a homogeneous abecedarian formula computing
linked_CHSYMn/2,log n(x) of size O(nc·ϵ log log n) for some constant c independent of ϵ.

Step 2: Using the homogeneous abecedarian formula from Step 1, we obtain a more struc-
tured homogeneous abecedarian formula, of size O(nc·ϵ log log n), that computes the same
polynomial.

Step 3: We consider the complete homogeneous polynomial over n variables of degree d

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid
,

and show that there is a homogeneous abecedarian formula of size poly(n) that computes
CHSYMn/2,log n(x).

Step 4: If the formula in Step 2 has size s and that in Step 3 has size s′, then we show that
there is a homogeneous abecedarian formula of size (s · s′) computing CHSYMn/2,log2 n(x).

Step 5: Next, we show that Step 4 can be used repeatedly at most O(log n/log log n) times,
to obtain a homogeneous abecedarian formula computing CHSYMn/2,n/2(x) of size
O(nc·ϵ log n).

Step 6: Using the formula obtained in Step 5, we get a homogeneous multilinear formula
computing the elementary symmetric polynomial of degree n/2, of size O(nc·ϵ log n).

Step 7: Finally, we choose ϵ in such a way that Step 6 contradicts the theorem in [12].
The crucial observation that makes this proof work, is that the polynomial we are working
with is structured enough for us to be able to amplify its degree in a systematic way (without
blowing up the size by much). This is the 4th step in the description above.

Apart from that, the entire proof essentially boils down to the fact that when formulas
are computing low degree polynomials, there are some additional tricks available to make
them more structured. A complete proof of Theorem 1 can be found in Section 5.

We now elaborate a little on the first step, since the observations made to prove this
step are quite general and possibly useful in various settings. These statements are known
to be true in the commutative setting and their proofs in the non-commutative setting
are fairly similar to the ones for their commutative counterparts. We state them here
nevertheless, since to the best of our knowledge, they have not been stated formally before
for the non-commutative setting.

Homogenising Abecedarian Formulas computing Low Degree Polynomials

Raz [21] had shown that if there is a formula computing a homogeneous polynomial of low
degree in the commutative world, then it can be assumed without loss of generality that the
formula is homogeneous. We show that this statement is true even in the non-commutative
setting.

▶ Lemma 5 (Homogenising Abecedarian Formulas computing Low Degree Polynomials). Suppose
f is a non-commutative homogeneous polynomial that can be computed by a fan-in 2 formula,
F , of size s, and has degree d = O(log s). Then there is a homogeneous formula F ′ computing
f , that has size poly(s) and whose multiplication gates have fan-in 2. Further, if F was
abecedarian with respect to some partition, then F ′ is also abecedarian with respect to the
same partition.

The only thing that needs to be checked for Raz’s proof to work in this setting is whether
non-commutative formulas, and in particular abecedarian formulas can be depth-reduced to
log-depth. We show that infact they can be.

P. Chatterjee 7:7

Depth Reduction for Abecedarian Formulas

Brent [4] had shown that if there is a formula of size s computing a commutative polynomial f ,
then there is a formula of depth O(log s) and size poly(s) that computes the same polynomial.
A similar statemnt was shown by Hrubeš and Wigderson [9] in the non-commutative setting4.
We show that the statement continues to be true for abecedarian formulas. The proof is
exactly along the same lines as the one by Brent [4].

▶ Lemma 6 (Depth Reduction of Abecedarian Formulas). If there is a fan-in 2 formula F
of size s computing a non-commutative polynomial f , then there is a fan-in 2 formula F ′

of size poly(s) and depth O(log(s)) computing f . Further if F is homogeneous, F ′ is also
homogeneous. Similarly, if F is abecedarian with respect to some partition, then F ′ is also
abecedarian with respect to the same partition.

Converting Formulas into Abecedarian Formulas
Next we go over the proof idea of Theorem 2. In order to prove the statement, we first
convert the given formula F into an abecedarian circuit C, and then unravel C in order to get
an abecedarian formula F ′ computing the same polynomial.

The first step is fairly straightforward. The proof is along the same lines as that for
homogenising circuits, the only difference being that we keep track of bucket indices of the
variables on either ends of the monomials being computed, instead of their degrees.

In the second step, we convert C into a formula F ′. In order to do that, we need to
recompute vertices every time it is reused. Thus, to give an upper bound on the size of F ′,
we need to find an upper bound on the number of distinct paths from any vertex in C to
the root. This analysis is done similarly to the one by Raz [21] in his proof of the fact that
formulas computing low degree polynomials can be homogenised efficiently. The requirement
of the size of the partition being small also arises because of this analysis.

The only additional point that needs to be checked for the proof to go through is that
similar to the commutative setting, non-commutative formulas can be depth reduced as well
(Lemma 6). A complete proof of Theorem 2 can be found in Subsection 4.3.

1.4 Other Results: A Complete View of the Abecedarian World
We now go over some other results that helps in completing the view of the abecedarian world.
As mentioned earlier, Hrubeš et al. [11] had defined ordered circuits, a model naturally
suited to compute ordered polynomials. They had then gone on to show that without loss of
generality, any circuit computing an ordered polynomial can be assumed to be ordered5. We
show that even in the abecedarian setting, such a statement is true.

▶ Observation 7 (Converting Circuits into Abecedarian Circuits). Let f be an abecedarian
polynomial with respect to a Partition of size m, and C be a circuit of size s computing f .
Then there is an abecedarian circuit C′ computing f of size O(m3s).

What this implies is that an nω(1) lower bound against abecedarian circuits for any explicit
polynomial that is abecedarian would result in a super-polynomial lower bound against
general non-commutative circuits. We also show that an analogous statement is true even
for abecedarian ABPs.

4 They in fact showed it for rational functions
5 Theorem 7.1 in [11].

CCC 2021

7:8 Separating ABPs and Some Structured Formulas in the Non-Commutative Setting

▶ Observation 8 (Converting ABPs into Abecedarian ABPs). Suppose f is an abecedarian
polynomial with respect to a partition of size m. If there is an ABP A of size s computing it,
then there is an abecedarian ABP A′ computing it of size O(ms).

Next, we define the natural classes of abecedarian polynomials. Let abc - VPnc denote
the class of abecedarian polynomials that can be computed by poly-sized abecedarian circuits.
Similarly let abc - VBPnc and abc - VFnc denote the classes of abecedarian polynomials that
can be computed by poly-sized abecedarian ABPs and abecedarian formulas respectively. We
first note that the logical inclusions that should hold, do hold.

▶ Observation 9 (The Usual Inclusions). Let abc - VPnc, abc - VBPnc and abc - VFnc denote
the classes of abecedarian polynomials over n variables that can be computed by poly(n) sized
abecedarian circuits, abecedarian ABPs and abecedarian formulas respectively. Then,

abc - VFnc ⊆ abc - VBPnc ⊆ abc - VPnc.

We also observe that if a degree d polynomial has an abecedarian ABP of size s, then it has
an abecedarian formula of size O(slog d) via the usual divide-and-conquer algorithm.

▶ Observation 10 (Converting Abecedarian ABPs into Abecedarian Formulas). Suppose f is
an abecedarian polynomial of degree d. If there is an abecedarian ABP A of size s computing
it, then there is an abecedarian formula F computing f of size O(slog d).

What Theorem 1 essentially shows is that the blow-up observed in Observation 10 is tight.
Finally, it is not hard to see that Nisan’s proof can be modified to give an exponential

separation between abecedarian ABPs and abecedarian circuits.

General Formula Lower Bound from Homogeneous Formula Lower Bound
We end by showing that homogeneous formula lower bounds for the iterated matrix mul-
tiplication polynomial would lead to separating VFnc and VBPnc. This is a corollary of
Lemma 5.

▶ Corollary 11. An nω(1) lower bound against homogeneous formulas computing the n-
variate iterated matrix multiplication polynomial of degree log n, IMMn,log n(x), implies a
super-polynomial separation between ABPs and formulas in the non-commutative setting.

To put the requirement of degree being O(log n) in perspective, note the following.
▶ Remark 12 (Analogous to Remark 5.12 in [15]). The standard divide and conquer approach
for computing the iterated matrix multiplication polynomial IMMn,d yields a (homogeneous)
formula of size nO(log d). It would be quite surprising if this standard algorithm were not
optimal in terms of formula size.

Intuitively, improving on the standard divide and conquer algorithm gets harder as d gets
smaller. This is because any (homogeneous) formula of size no(log d) for computing IMMn,d

can be used in a straightforward manner to recursively obtain (homogeneous) formulas
for IMM

,n,D of size no(logD) for any D > d. The case of smaller d, which seems harder
algorithmically, is thus a natural first candidate for lower bounds.

1.5 Structure of the Paper
We begin, in Section 2, with formal definitions for abecedarian polynomials and naturally
restricted version of circuits, ABPs and formulas that compute them. Then, in Section 3, we
prove some structural statements, namely Lemma 6 and Lemma 5. In Section 4, we prove

P. Chatterjee 7:9

Theorem 2 along with Observation 7 and Observation 8. We then prove our main result
(Theorem 1), that gives a super-polynomial separation between abecedarian formulas and
ABPs, in Section 5. Finally, in Section 6, we prove the remaining statements mentioned.

2 Preliminaries

Let us begin by formally defining abecedarian polynomials and the naturally restricted
versions of circuits, ABPs and formulas that compute them. Throughout the write-up, we
will use [n] to denote the set {1, . . . , n}.

2.1 Abecedarian Polynomials
First, we formally define abecedarian polynomials.

▶ Definition 13 (Abecedarian Polynomials). A polynomial f ∈ F ⟨x1, . . . , xn⟩ of degree d is
said to be abecedarian with respect to a partition {X1, . . . , Xm} for {x1, . . . xn}, if

f = f [∅) +
d∑

k=1

 ∑
1≤i1≤···≤ik≤m

f [Xi1 , . . . , Xik
]

where f [∅) is the constant term in f , and for any k ∈ [d], f [Xi1 , . . . , Xik

] is defined as follows.
For a polynomial f , f [Xi1 , . . . , Xik

] is the homogeneous polynomial of degree k such that for
every monomial α,

coeffα(f [Xi1 , . . . , Xik
]) =

{
coeffα(f) if α = xℓ1 · · · xℓk

with xℓj ∈ Xij for every j ∈ [k]
0 otherwise.

In this case, we say that f is abecedarian with respect to {X1, . . . , Xm}, a partition of size m.

Abecedarian polynomials are essentially generalisations of ordered polynomials (defined
by Hrubeš, Wigderson and Yehudayoff [11]). A homogeneous polynomial, of degree d, is said
to be ordered if the set of variables it depends on can be partitioned into d buckets such that
variables occuring in position k only come from the k-th bucket.

It is easy to see that any ordered polynomial is also abecedarian with respect to the same
partition. This is because position indices are always increasing. For example, consider the
following version of the complete homogeneous symmetric polynomial.

CHSYM(ord)
n,d (x) =

∑
1≤i1≤...≤id≤n

x
(1)
i1

· · · x
(d)
id

.

It is both ordered and abecedarian with respect to the partition
{

Xk =
{

x
(k)
i : i ∈ [n]

}}
.

However, note that there are homogeneous polynomials that are abecedarian but not
ordered. The following version of the same polynomial is an example.

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid

is abecedarian with respect to {Xi : Xi = {xi}}, but is not ordered.
The reason is that for a polynomial to be ordered, the bucket labels have to essentially

be position labels. On the other hand, for a polynomial to be abecedarian with respect
to a partition, the bucket labels can be independent of position. For example, note that
CHSYM(ord)

n,d (x) is abecedarian with respect to the partition
{

Xi =
{

x
(k)
i : k ∈ [d]

}}
along

with the one mentioned earlier.
We now move on to defining algebraic models that naturally compute such polynomials.

CCC 2021

7:10 Separating ABPs and Some Structured Formulas in the Non-Commutative Setting

2.2 Abecedarian Models of Computation

Homogeneous formulas have the property that any vertex can be labelled by a tuple of
position indices (a, b) such that all the monomials being computed at that vertex occur
exactly from position a to position b in the final polynomial that is being computed by it.
Hrubeš et al. [11] defined ordered circuits to be those circuits that have this property.

A circuit computing a degree d polynomial f ∈ F ⟨x1, . . . , xn⟩ is said to be ordered, if
{X1, . . . , Xd} forms a partition of {x1, . . . , xn} such that

every gate v in the circuit is labelled by a tuple of position indices (a, b);
if fv is the polynomial computed at v, then

fv is homogeneous and has degree (b − a + 1);
every monomial in fv is a product of exactly one variable from each of the buckets
Xa, . . . , Xb, multiplied in increasing order of their bucket indices.

We generalise this notion to define circuits that naturally compute abecedarian polynomials.
Before we can do that, we need the notion of sub-polynomials of any abecedarian polynomial.

▶ Definition 14 (Sub-Polynomials of an Abecedarian Polynomial). Suppose f is an abecedarian
polynomial with respect to the partition {X1, . . . , Xm}, and has degree d. For any 1 ≤ a ≤
b ≤ m + 1, f [a, b) is the sub-polynomial of f defined as follows.

For any a ∈ [m + 1], f [a, a) = f [∅) is the constant term in f .
For any 1 ≤ a < b ≤ m + 1,

f [a, b) =
d∑

k=1

 ∑
i1,...,ik∈[m]

a=i1≤···≤ik<b

f [Xi1 , . . . , Xik
]

where f [Xi1 , . . . , Xik

] is as defined in Definition 13.
Further, we say that a polynomial f is of type [a, b) if f = f [a, b).

Let us now formally define abecedarian circuits.

▶ Definition 15 (Abecedarian Circuits). For any a, b ∈ N, let [a, b) denote a set of the form
I = {i : a ≤ i < b}. As a convention, [a, a) denotes the empty set for every a ∈ N.

A multi-output circuit C is said to be abecedarian when
every gate v in C is associated with a set Iv = [a, b);
if fv is the polynomial computed at v, then fv = f [a, b);
if v = v1 + v2, then Iv = Iv1 = Iv2 ;
if v = v1 × v2 with Iv = [a, a), then Iv1 = Iv2 = [a, a)
if v = v1 × v2 with Iv = [a, b) and a < b, then one of the following is true

Iv1 = [a, b) and Iv2 = [b, b);
Iv1 = [a, a) and Iv2 = [a, b);
there exists a ≤ c < b such that Iv1 = [a, c + 1) and Iv2 = [c, b).

The polynomial computed by C is the sum of the polynomials computed at the output gates.

Next, we define abecedarian ABPs and abecedarian formulas as the restricted versions of
ABPs and formulas respectively, that naturally compute abecedarian polynomials.

P. Chatterjee 7:11

2.3 Abecedarian ABPs and Formulas
Homogeneous ABPs have the property that every vertex in it is labelled by a position index
such that, polynomials computed between vertices labelled with indices a and b only contain
monomials between positions a and (b − 1). We define abecedarian ABPs analogously except
that the labels on the vertices are bucket labels instead of position labels. These restricted
ABPs naturally compute abecedarian polynomials.

▶ Definition 16 (Abecedarian ABPs). A multi-input, multi-output ABP A is said to be
abecedarian when

every vertex in it is labelled by a bucket index;
if f is the polynomial computed between vertices labelled with indices a and b respectively,
then f = f [a, b + 1).

The polynomial computed by A is the sum of all the polynomials computed between the various
(input, output) gate pairs.

Similarly, we define abecedarian formulas as analogues of homogeneous formulas, with the
labels again referring to bucket indices instead of position indices.

▶ Definition 17 (Abecedarian Formulas). Let sets of the form [a, b), with a, b ∈ N, be as
defined in Definition 15. Suppose F is a formula computing a polynomial f that is abecedarian
with respect to a partition of size m. Then F is said to be abecedarian if F = F1 + · · · + Fm

for sub-formulas F1, . . . , Fm+1, where for every i ∈ [m + 1]:
F i computes the polynomial f [i, m + 1);
every gate v in F i is associated with a set Iv = [a, b), and in particular, the root node
must be associated with the set [i, m + 1)
if fv is the polynomial computed at v, then fv = fv[a, b);
if v = v1 + v2, then Iv = Iv1 = Iv2 ;
if v = v1 × v2 with Iv = [a, a), then Iv1 = Iv2 = [a, a)
if v = v1 × v2 with Iv = [a, b) and a < b, then one of the following is true

Iv1 = [a, b) and Iv2 = [b, b);
Iv1 = [a, a) and Iv2 = [a, b);
there exists a ≤ c < b such that Iv1 = [a, c + 1) and Iv2 = [c, b).

Further, F is said to be homogeneous if each F i is homogeneous.

With these definitions in mind, we now move to proving some structural statements.

3 Structural Statements

In this section, we prove two structural statements in the non-commutative setting that are
known to be true in the commutative setting. Apart from being crucial to our proofs, they
are possibly interesting observations in their own right.

3.1 Depth Reduction for Non-Commutative Formulas
Brent [4] had shown that if there is a formula of size s computing a commutative polynomial f ,
then there is a formula of depth O(log s) and size poly(s) that computes the same polynomial.
We show that this is also true in the non-commutative setting.

The proof is essentially the same as the one by Brent [4], just analysed carefully. We give
the complete proof for the sake of completeness.

CCC 2021

7:12 Separating ABPs and Some Structured Formulas in the Non-Commutative Setting

▶ Lemma 6 (Depth Reduction of Abecedarian Formulas). If there is a fan-in 2 formula F
of size s computing a non-commutative polynomial f , then there is a fan-in 2 formula F ′

of size poly(s) and depth O(log(s)) computing f . Further if F is homogeneous, F ′ is also
homogeneous. Similarly, if F is abecedarian with respect to some partition, then F ′ is also
abecedarian with respect to the same partition.

Proof. Suppose F is a fan-in 2 formula of size s that computes f . Then, we claim the
following.

▷ Claim 18. Suppose F0 is a formula computing a polynomial f0 and has fan-in 2. Then
the there exist sub-formulas, L, F1, R, F2, of F0 such that

F ′
0 = L · F1 · R + F2 also computes f0;

each of L, F1, R, F2 have size at least (s/3) and at most (2s/3);

if F0 is homogeneous, then so are L, F1, R, F2;

if F0 is abecedarian with respect to some partition, fleft, f1, fright, f2 are polynomials
computed by L, F1, R, F2 respectively and f0 = f0[a, b), then f2 = f2[a, b) and

each of L, F1, R, F2 are abecedarian with respect to the same partition as F0

when a = b, fleft = fleft[a, a) f1 = f1[a, a) fright = fright[a, a);

when a < b, there exist a ≤ i ≤ j ≤ b such that

a = i < j = b =⇒ fleft = fleft[a, i) f1 = f1[i, j) fright = fright[j, b).
a = i = j < b =⇒ fleft = fleft[a, i) f1 = f1[i, j) fright = fright[j, b).
a = i < j < b =⇒ fleft = fleft[a, i) f1 = f1[i, j + 1) fright = fright[j, b).
a < i = j = b =⇒ fleft = fleft[a, i + 1) f1 = f1[i, j) fright = fright[j, b).
a < i = j < b =⇒ fleft = fleft[a, i + 1) f1 = f1[i + 1, j + 1) fright = fright[j, b).
a < i < j = b =⇒ fleft = fleft[a, i + 1) f1 = f1[i, j) fright = fright[j, b).
a < i < j < b =⇒ fleft = fleft[a, i + 1) f1 = f1[i, j + 1) fright = fright[j, b).

Before proving Claim 18, let us complete the proof of Lemma 6 using it.
By the above claim, we have a formula F ′

0 computing f0 that looks like L · F1 · R + F2
where each of L, F1, R, F2 have size at most (2s/3). Further if F is homogeneous, then
so are each of L, F1, R, F2. Hence, F ′

0 is homogeneous. On the other hand, when F0 is
abecedarian, so are L, F1, R, F2. Further, note that F ′

0 is also abecedarian in this case since
fleft, f1, fright, f2 are of the correct type due to Claim 18.

In all the cases, recursively applying this technique, on each of L, F1, R, F2, we get

depth(s) ≤ depth(2s/3) + 3 and size(s) ≤ 4 · size(2s/3) + 3.

Note that in the base case, when s is constant, both size(s) and depth(s) are constants. Thus,

depth(s) = O(log s) and size(s) = poly(s). ◀

Pictorially, once we have Claim 18, we essentially do the following recursively.

P. Chatterjee 7:13

DepthReduce(L) DepthReduce(F1)

× DepthReduce(R)

× DepthReduce(F2)

+

We now complete the proof of Claim 18.

Proof of Claim 18. From the root let us traverse F0 towards the leaves, always choosing the
child that has a larger sub-tree under it, till we find a vertex v such that the associated
sub-tree has size at most (2s/3). Since F0 tree has fan-in 2, we also know that the size of
this sub-tree must be at least (s/3). Let this sub-tree be F1. Additionally, in the case when
F0 is abecedarian, let us assume that v is labelled with [iv, jv).

Let P be the path from v to the root and vadd the addition gate on P which is closest
to v. Also let the set of multiplication gates on P be {v1, . . . , vℓ} for some ℓ ∈ N. Assume,
without loss of generality, that v1 is closest to v and vℓ to the root. Further, for every i ∈ [ℓ],
let Li be sub-formula corresponding to the left child of vi and Ri the one to its right child.
Note that for every i ∈ [ℓ], exactly one of children of vi is a vertex in P . We can then define
L and R as follows.
Step 1: Set L = R = 1.
Step 2: For i from 1 to ℓ,

L =
{

Li × L if the right child of vi is a vertex in P,
L otherwise.

and

R =
{

R if the right child of vi is a vertex in P,
R × Ri otherwise.

Also define F2 to be the formula we get by replacing the vertex v and the sub-tree under it
with 0, and then removing the redundant gates.

Clearly, by construction, F1, L, R and F2 are sub-formulas of F0. Further, F1 is disjoint
from L, R and F2. As a result, since F1 has size at least (s/3) and at most (2s/3), it must
be the case that each of L, R and F2 have size at least (s/3) and at most (2s/3).

Also, it is not hard to see that F ′
0 = L · F1 · R + F2 computes f0. What is left to check is

that when F0 is homogeneous or abecedarian, then L, F1, R, F2 have the additional properties
claimed. The one line proof of this is that each parse-tree6 of F0 is merely restructured in
the above process, without changing its value. We however go over the proof explicitly for
the sake of completeness.

6 For a definition, see for example [15].

CCC 2021

7:14 Separating ABPs and Some Structured Formulas in the Non-Commutative Setting

When F0 is homogeneous, since L, F1, R, F2 are sub-formulas, they are also homogeneous.
On the other hand, suppose F0 is abecedarian and f0 = f0[a, b). Recall that the vertex v was
labelled by [iv, jv). Let us set i = iv and j = jv. Then, by definition, F1 is labelled by [i, j).
Hence, if f1 is the polynomial computed at v, then f1 = f1[i, j). Further, F1 is abecedarian
since it is a sub-formula of F0 and computes an abecedarian polynomial.

Now let us focus on F2. Essentially F2 is got by removing from F0, v and all the
multiplication gates on P between v and vadd along with the sub-trees under them. Thus
F2 is also abecedarian in this case, and if f2 is the polynomial by it, then f2 = f2[a, b).

Finally, note that the left indices of labels on the various vertices of P change only at the
gates at which multiplications to L occur. Further, note that they occur in the correct order
and are of the correct type. Thus, by induction, it is easy to see that the labels on L are
consistent with those on the Lis when the respective multiplications happen. Therefore L is
abecedarian, and fleft = fleft[a, i).

For similar reasons, R is also abecedarian and fright = fright[j, b). This completes the proof.
◁

3.2 Homogenisation
Raz [21] had shown that if there is a formula computing a homogeneous polynomial of low
degree in the commutative world, then it can be assumed without loss of generality that the
formula is homogeneous. We show that his proof also works in the non-commutative setting
because of Lemma 6. A complete proof is given here for the sake of completeness.

▶ Lemma 5 (Homogenising Abecedarian Formulas computing Low Degree Polynomials). Suppose
f is a non-commutative homogeneous polynomial that can be computed by a fan-in 2 formula,
F , of size s, and has degree d = O(log s). Then there is a homogeneous formula F ′ computing
f , that has size poly(s) and whose multiplication gates have fan-in 2. Further, if F was
abecedarian with respect to some partition, then F ′ is also abecedarian with respect to the
same partition.

Proof. We first note that since s is the ABP complexity of f , s′ ≥ s. Further if F has depth
r, then by Lemma 6, we can assume without loss of generality, that r = O(log s′).

In order to construct a homogeneous formula computing f , we first homogenise F to
obtain a circuit C, and then unravel C to make it into a formula F ′.

The first step is done in the usual manner. For every gate v in F , we have d + 1 gates
(v, 0), . . ., (v, d) in C. Intuitively if fv is the polynomial computed at v, then the polynomial
computed at (v, i) is the degree i homogeneous component of fv. These vertices are then
connected as follows.

If v = u1 + u2, then for every i ∈ {0, . . . , d}, (v, i) = (u1, i) + (u2, i).
If v = u1 × u2, then for every i ∈ {0, . . . , d}, (v, i) =

∑i
j=0(u1, j) × (u2, i − j).

So, we now have a homogeneous circuit C that computes f and has size at most O(d2 · s′).
Also, the depth of this circuit is at most twice that of F , and the multiplication gates have
fan-in 2. To convert C into a formula F ′, we have to recompute nodes whenever they have to
be reused. That is, a particular vertex in C has to be duplicated as many times as there are
paths from the vertex to the root. Thus, to upper bound the size of F ′, we need to give an
upper bound on the number of distinct paths from every vertex of C to its root.

Let us arbitrarily choose a vertex (v, i) in C, and consider the path from it to the root.
Suppose the path is (v, i) = (v1, i1) → · · · → (vℓ, iℓ) = (root, d) where ℓ is at most the depth
of C. Now since C comes from a formula, the only reason multiple paths can exist is because

P. Chatterjee 7:15

of the second index, and therefore it is enough to focus on that. Note that it must be the
case that i = i1 ≤ · · · ≤ iℓ = d. Hence, if we define δj = ij+1 − ij for j ∈ [ℓ − 1], then the δjs
are non-negative integers such that δ1 + · · · + δℓ−1 = (d − i). Thus, the number of choices we
have for (i2, . . . , iℓ) such that i = i1 ≤ · · · ≤ iℓ = d, is the same as the number of choices we
have for (δ1, . . . , δℓ−1) such that δ1 + · · · + δℓ−1 = (d − i) ≤ d. This is at most

(
ℓ+d

ℓ

)
. Note

that in this process the fan-in of the gates have not changed, and hence the multiplication
gates in F ′ continue to have fan-in 2. Further, we know that the C has depth 2r and hence
ℓ ≤ 2r. Therefore, the number of paths from (v, i) to the root is at most

(2r+d
2r

)
. Hence, if F ′

is the formula obtained by unravelling C, then size(F ′) ≤ s′ · d2 ·
(2r+d

d

)
. Here r = O(log(s′)),

and s ≤ s′ implying that d = O(log(s)) = O(log(s′)). Thus, size(F ′) ≤ poly(s′).
Finally, assume that F is abecedarian. Then every vertex v is labelled with a tuple of

bucket indices, say (av, bv). In that case, we add the label (av, bv) to the gates {(v, i)}d
i=0 in C

and continue with the proof as is. Note that the final formula that we get, F ′, is abecedarian
and all the other properties that were true in the general case, continue to be true. ◀

4 Converting Computational Models into Abecedarian Ones

In this section we show that, without loss of generality, circuits and ABPs computing
abecedarian polynomials can be assumed to be abecedarian. For formulas however, we can
prove such a statement only in certain cases.

4.1 Circuits
Hrubeš et al. [11] had shown that any circuit computing an ordered polynomial can be
assumed to be ordered without loss of generality.

▶ Theorem 19 (Theorem 7.1 in [11]). Let C be a circuit of size s computing an ordered
polynomial f of degree d. Then, there is an ordered circuit C′ of size O(d3s) that computes f .

We show that the proof of this statement can be generalised to show Observation 7. A
complete proof is given for the sake of completeness.

▶ Observation 7 (Converting Circuits into Abecedarian Circuits). Let f be an abecedarian
polynomial with respect to a Partition of size m, and C be a circuit of size s computing f .
Then there is an abecedarian circuit C′ computing f of size O(m3s).

Proof. Without loss of generality, let us assume that C has fan-in 2.
We prove the given statement by describing how to construct C′ from C. For each gate v

in C, we make O(m2) copies in C′, {(v, [a, b)) : 1 ≤ a ≤ b ≤ m + 1}; and if root is the output
gate in C, then we define the set of output gates in C′ to be {(root, [i, m + 1))}i∈[m+1].

Intuitively, if fv is the polynomial computed at v in C, then the polynomial computed at
(v, [a, b)) is fv[a, b). Thus if f was the polynomial computed at root, then the polynomial
computed by C′ is

∑m+1
i=1 f [i, m + 1) which is indeed f .

We ensure this property at every gate by adding edges as follows.
If v is an input gate labelled by a field element γ,

we set (v, [a, a)) = γ for every a ∈ [m + 1];
we set (v, [a, b)) = 0 for every 1 ≤ a < b ≤ m + 1.

If v is an input gate labelled by a variable xi and xi ∈ Xk,
we set (v, [k, k + 1)) = xi;
we set (v, [a, b)) = 0 for every a ̸= k, b ̸= k + 1.

CCC 2021

7:16 Separating ABPs and Some Structured Formulas in the Non-Commutative Setting

If v = v1 + v2, we set (v, [a, b)) = (v1, [a, b)) + (v2, [a, b)) for every a ≤ b ∈ [m + 1].
If v = v1 × v2, we set (v, [a, a)) = (v1, [a, a)) · (v2, [a, a)) for every a ∈ [m + 1]; and

(v, [a, b)) = (v1, [a, a)) · (v2, [a, b)) + (v1, [a, b)) · (v2, [b, b)) +
b−1∑
c=a

(v1, [a, c + 1)) × (v2, [c, b))

for every 1 ≤ a < b ≤ m + 1.
Finally, for every 1 ≤ a ≤ b ≤ m + 1, we associate the gate (v, [a, b)) in C′ with the set [a, b).

Using induction, one can easily show that the gates in C′ have the claimed properties.
Hence C′ is indeed an abecedarian circuit computing f . Further for every gate v in C, there
are at most O(m3) vertices in C′. Thus the size of C′ is O(m3s). ◀

4.2 Algebraic Branching Programs
Next, we show that a similar statement is true for ABPs as well.

▶ Observation 8 (Converting ABPs into Abecedarian ABPs). Suppose f is an abecedarian
polynomial with respect to a partition of size m. If there is an ABP A of size s computing it,
then there is an abecedarian ABP A′ computing it of size O(ms).

Proof. Let f have degree d and be abecedarian with respect to the buckets {Xi}m
i=1, where

Xi = {xi,j : j ∈ [ni]}. Without loss of generality, we can assume that A is homogeneous7. If
f is not homogeneous, A can be thought of as a collection of homogeneous ABPs {A1, . . . , Ad}
where Ak computes the k-th homogeneous component of f .

We prove the theorem by describing how to construct A′. For each vertex v in A, make
O(m) copies in A′, namely {(v, a) : 0 ≤ a ≤ m}. Intuitively, if g(u,v) is the polynomial
computed between u and v in A, then the polynomial computed between (u, a) and (v, b) in
A′ is g(u,v)[a, b + 1). The way we ensure this property at every vertex is by adding edges in
A′ as follows.

For any two vertices u, v in A, suppose there is an edge between them that is labelled
with

∑
i∈[m]

∑
j∈[ni] γi,jxi,j . Then, for every a, b ∈ [m] with a ≤ b, add an edge from

(u, a) to (v, b) with label
∑b

i=a

(∑
j∈[ni] γi,jxi,j

)
.

Also, associate the bucket index a with the gate (v, a) in A′.
By induction, one can easily show that the gates in A′ have the claimed property. Hence

A′ is indeed an abecedarian ABP computing f . Further, every vertex v in A, there are at
most O(m) vertices in A′. Therefore, the size of A′ is O(ms). ◀

4.3 Formulas
Finally we show that in the case of formulas, we can prove a similar statement only when the
polynomial is abecedarian with respect to a partition of small size. The proof is very similar
to that of Lemma 5.

▶ Theorem 2 (Converting Formulas into Abecedarian Formulas). Let f be an abecedarian
polynomial with respect to a partition of size m, and F be a formula of size s computing f .
If m = O(log s), then there is an abecedarian formula F ′ computing f of size poly(s).

7 Every edge is labelled by a homogeneous form.

P. Chatterjee 7:17

Proof. Let us assume additionally that F has depth r. Now Lemma 6 implies that r = log(s)
without loss of generality. By Observation 7, there is an abecedarian circuit C that computes
f and has size at most s′ = O(s · m3). Further its proof implies that the depth of C is at
most 2r.

To convert C into an abecedarian formula F ′, we have to recompute a node each time it
has to be reused. That is, a particular vertex in C has to be duplicated as many times as
there are paths from the vertex to the root. Thus to upper bound the size of F ′, we need to
give an upper bound on the number of distinct paths from every vertex in C to its root.

Let us arbitrarily choose a vertex (v, [a, b)) in C, and consider the path from it to the
root. Suppose the path is (v, [a, b)) = (v1, [a1, b1)) → · · · → (vℓ, [aℓ, bℓ)) = (root, [i, m + 1))
for some ℓ that is at most the depth of C. Note that it must be the case that

i ≤ aℓ ≤ · · · ≤ a1 ≤ a ≤ b ≤ b1 ≤ bℓ ≤ m + 1.

Let us define δj = aj − aj+1 and δ′
j = bj+1 − bj for j ∈ [ℓ − 1]. Then, the number of

choices we have for (a1, . . . , aℓ) and (b1, . . . , bℓ) such that

i = aℓ ≤ · · · a1 = a ≤ b = b1 ≤ · · · ≤ bℓ = m + 1

is the same as the number of choices we have for (δ1, . . . , δℓ−1, δ′
1, . . . , δ′

ℓ−1) such that

δ1 + · · · + δℓ−1 + δ′
1 + · · · + δ′

ℓ−1 = (m + 1 − (b − a) − i) ≤ m.

This is clearly at most
(2ℓ+m

m

)
.

Further, we know that the C has depth 2r and hence ℓ ≤ 2r. Therefore, the number
of paths from (v, i) to the root is at most

(4r+m
m

)
. Hence if F ′ is the formula obtained by

unravelling C, then size(F ′) ≤ s′ · m2 ·
(4r+m

m

)
. Here s′ = O(m3 · s), r = O(log(s)) and

m = O(log(s)). Thus, size(F ′) ≤ poly(s). ◀

5 Separating Abecedarian ABPs and Abecedarian Formulas

In this section, we prove our main theorem: a super-polynomial separataion between the
powers of abecedarian formulas and ABPs. Before proceeding to the proof however, we first
go over some observations that will help us with the proof.

5.1 Some Simple Observations
The two main polynomials we will be working with are linked_CHSYMn,d and CHSYMn,d.
Let us recall their definitions.

linked_CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id

 ,

is abecedarian with respect to the partition {X1, . . . , Xn} where Xi = {xi,j : j ∈ [n]}, and

CHSYMn,d(x) =
∑

1≤i1≤...≤id≤n

xi1 · · · xid
.

is abecedarian with respect to the partition {Xi : Xi = {xi}}.
We begin with the notion of a linked abecedarian formula computing linked_CHSYMn,d(x).

CCC 2021

7:18 Separating ABPs and Some Structured Formulas in the Non-Commutative Setting

▶ Definition 20. An abecedarian formula computing linked_CHSYMn,d is said to be linked
if at every gate, all the monomials occuring in the polynomial computed at that gate have the
following property.

xij appears right before xi′j′ in the monomial =⇒ j = i′.

The first observation shows that any abecedarian formula computing linked_CHSYMn,d(x)
can be assumed to be linked without loss of generality.

▶ Observation 21. Let F be a homogeneous abecedarian formula of size s that computes
linked_CHSYMn,d(x), and let the multiplication gates of F have fan-in 2. Then there is a
homogeneous linked abecedarian formula F ′ computing the same polynomial of size O(s).

Proof. For any leaf ℓ in F labelled by a variable, say xi,j , suppose P is the path from ℓ to
the root. Consider the set of multiplication gates on P whose left child is part of P , and let v

be the one that is closest to ℓ. Since F is abecedarian, the right child of v must be associated
with a set, say [a, b). If j ̸= a, we set the label of ℓ to zero; otherwise we let it be xi,j .

Note that this operation does not kill any valid monomial. Let F ′ be the formula we get
by performing the above operation on every leaf of F that is labelled by a variable. F ′ is
clearly homogeneous and abecedarian. We show that F ′ is also linked.

Suppose that is not the case. Then there is must be a problematic vertex in F ′. Let v be
such a vertex of minimal height. That is, there is a monomial in the polynomial computed
at v in which, say, xi,j appears right before xi′,j′ but j ̸= i′. Further, the sub-formulas
corresponding to the children of v are linked. Note that v must be a multiplication gate; not
a leaf or an addition gate.

Let fleft and fright be the polynomials computed at the left and right children of v

respectively. Also, let [a, b) be the set associated with the right child of v. Then, it must be
the case that the first variable in any monomial in fright looks like xa,j′ for some j′. Further,
there must be a monomial in fleft in which the last variable looks like xi,j for j ̸= a.

Look at the leaf corresponding to this variable. Let this leaf be ℓ and let P be the path
from ℓ to the root. Since xi,j is the right most variable in fleft, it must be the case that v is
the multiplication gate that is closest to ℓ, whose left child is on P. But then, we should
have set xi,j to zero since j ̸= a. Hence, such a monomial can not appear in fleft.

This shows that F ′ is indeed a homogeneous linked abecedarian formula of size at most
that of F that computes linked_CHSYMn,d(x). ◀

The next observation shows that there is a poly-sized homogeneous abecedarian formula that
computes CHSYMn,log n(x) .

▶ Observation 22. CHSYMn/2,log n(x) can be computed by a homogeneous abecedarian
formula of size poly(n).

Proof. Consider the following polynomial over variables {t, x1, . . . , xn}, where we think of t

as a commuting variable and x1, . . . , xn as non-commuting variables.

fn,d(x) =
n∏

i=1

1 +
d∑

j=1
tj · xj

i

Note that the coefficient of td in fn,d(x) is exactly CHSYMn,d(x). Further, it is not hard to see
that fn/2,log n(x) is abecedarian in terms of x with respect to the partition {Xi : Xi = {xi}},
and that the given expression results in an abecedarian formula of size O(n(log n)2).

P. Chatterjee 7:19

Since t is a commuting variable, we can use the usual interpolation techniques [3], to
get an abecedarian formula computing CHSYMn/2,log n(x) of size O(n log n · n(log n)2) =
O(n2(log n)3) = poly(n). Since the degree of CHSYMn/2,log n(x) is O(log n), by Lemma 5,
there is a homogeneous abecedarian formula computing CHSYMn/2,log n(x) of size poly(n). ◀

Another simple observation is that if we are given a homogeneous abecedarian formula for an
abecedarian polynomial, then we almost immediately have one for its various sub-polynomials.

▶ Observation 23. Suppose there is a homogeneous abecedarian formula F computing a
polynomial f that is abecedarian with respect to a partition of size m. Then, for any
a, b ∈ [m + 1], there is a homogeneous abecedarian formula Fa,b of size s that computes
f [a, b).

Proof. Recall that if F is a homogeneous abecedarian formula computing f , then F is in
fact a set of formulas {F i : F i computes f [i, m + 1)}. Consider the formula Fa and set all
variables that belong to buckets {Xb, . . . , Xm} to zero in Fa. This operation clearly kills
exactly the monomials in f [a, m + 1) that are not in f [a, b). Thus if we call this new formula
Fa,b, then Fa,b is homogeneous, abecedarian and computes f [a, b). ◀

The next observation is extremely crucial, since it allows us to amplify the degree of
CHSYMn,d.

▶ Lemma 24. Suppose there is a homogeneous abecedarian formula computing CHSYMn,d(x)
of size s, and a homogeneous linked abecedarian formula computing linked_CHSYMn,d′(x)
of size s′. Then, there is a homogeneous abecedarian formula computing CHSYMn,(d·d′)(x)
of size (s · s′).

Proof. Let F be the homogeneous abecedarian formula computing CHSYMn,d(x) of size s,
and F ′ be the homogeneous linked abecedarian formula computing linked_CHSYMn,d′(x)
of size s′. We think of the variable xa,b in linked_CHSYMn,d′(x) as a placeholder for the
sub-polynomial CHSYMn,d[a, b + 1)(x)8 of CHSYMn,d(x). Note that there is a bijection
between monomials in CHSYMn,(d·d′)(x) and those in the polynomial we get by substituting
xa,b in linked_CHSYMn,d′(x) with CHSYMn,d[a, b + 1)(x).

By Observation 23, there is homogeneous abecedarian formula Fa,b, of size O(s) computing
CHSYMn,d[a, b + 1)(x) for every a, b ∈ [n+ 1]. Thus, if we replace every leaf of F ′ labelled by
xa,b with Fa,b, then the resulting formula is a homogeneous abecedarian formula computing
CHSYMn,(d·d′)(x) of size (s · s′). ◀

Finally, we observe that if we are given a homogeneous abecedarian formula computing the
polynomial CHSYM(n−d+1),d(x), then we get a homogeneous multilinear formula computing
the non-commutative version of ESYMn,d(x).

▶ Observation 25. Consider the elementary symmetric polynomial

ESYMn,d(x) =
∑

1≤i1<...<id≤n

xi1 · · · xid
.

If there is a homogeneous abecedarian formula computing CHSYM(n−d+1),d(x) of size s, then
there is a homogeneous multilinear formula computing ESYMn,d(x) of size s.

8 Sum of monomials in CHSYMn,d(x) whose first variable is a and last variable is one of {xa, . . . , xb}.

CCC 2021

7:20 Separating ABPs and Some Structured Formulas in the Non-Commutative Setting

Proof. Suppose F is a homogeneous abecedarian formula computing CHSYM(n−d+1),d(x) of
size s. Since F is homogeneous, every leaf labelled by a variable can be associated with a
position index. If a leaf labelled xi has position k associated with it, then replace the label of
that leaf with xi+k−1. Call this formula F ′. Then clearly F ′ is a homogeneous formula of size
s computing ESYMn,d(x). Further note that since F was abecedarian, F ′ is multilinear. ◀

5.2 Proof of the Separation
We now prove Theorem 1. Let us first recall the statement.

▶ Theorem 1 (Separating Abecedarian Formulas and Abecedarian ABPs). Define

linked_CHSYMn,d(x) =
n∑

i0=1

 ∑
i0≤i1≤...≤id≤n

xi0,i1 · xi1,i2 · · · xid−1,id

to be the linked complete homogeneous polynomial over n-variables of degree d. This polyno-
mial is abecedarian with respect to the partition {Xi : i ∈ [n]} if Xi = {xi,j : i ≤ j ≤ n}.

With respect to this partition,
1. linked_CHSYMn,d(x) has an abecedarian ABP of size O(nd);
2. any abecedarian formula computing linked_CHSYMn/2,log n(x) has size nΩ(log log n).

That is, there is a super-polynomial separation between abecedarian formulas and ABPs.

That linked_CHSYMn,d(x) has a small abecedarian ABP is not very hard to see. For
the lower bound, we assume that we have been given an abecedarian formula F , computing
the polynomial linked_CHSYMn,log n(x), of size poly(n). We then keep making changes to
this formula till we get a homogeneous multilinear formula computing ESYMn,n/2(x) of
size poly(n). Finally, we use the following theorem of Hrubeš and Yehudayoff [12] to get a
contradiction.

▶ Theorem 26 (Theorem 1, [12]). Any homogeneous multilinear formula that computes
ESYMn,d(x), for d ≤ n/2, must have size n × dΩ(log d).

Let us now complete the proof of our main theorem.

Proof of Theorem 1. An abecedarian ABP of size O(nd) computing linked_CHSYMn,d(x)
is the following.

s1

...

...

...
sn

0

· · ·

· · ·

· · ·

· · ·

...
i

...

...

...

k − 1

...
i

...
j

...

k

· · ·

· · ·

· · ·

· · ·

t1

...

...

...
tn

d

xi,i

xi,j

The ABP has d + 1 layers, labelled 0 through d, each with n nodes. Between any consecutive
layers k − 1 and k, where 1 ≤ k ≤ d, there is an edge from the i-th node in layer k − 1 to the
j-th node in layer k layer if i ≤ j. The label on this edge is xi,j . All the nodes in the first
layer are start nodes, and all the ones in the last layer are terminal nodes.

P. Chatterjee 7:21

It is easy to check, by induction, that the polynomial computed between sa and the b-th
vertex in layer k computes CHSYMn,k[a, b + 1)(x). Thus the polynomial computed by the
abecedarian ABP constructed above is indeed CHSYMn,d(x), and its size is clearly O(nd).

Let us now move on to proving the lower bound against abecedarian formulas. We
show that there is a fixed constant ϵ0 such that any abecedarian formula that computes the
polynomial linked_CHSYMn/2,log n(x) must have size atleast Ω(nϵ0 log log n). Suppose this is
not the case. Then for every ϵ > 0, there is an abecedarian formula F ′(ϵ) of size O(nϵ log log n)
that computes linked_CHSYMn/2,log n(x) .

Without loss of generality, we can assume that F ′(ϵ) has fan-in 2. Further, by Lemma 6,
we can reduce the depth of F ′(ϵ) to log-depth. That is, we get an abecedarian formula F ′

1(ϵ)
computing linked_CHSYMn/2,log n(x) of depth O(ϵ log n log log n) and size O(nc1ϵ log log n).
Here c1 is a fixed constant independent of ϵ.

Next, since the degree of the polynomial being computed is small, Lemma 5 implies
that F ′

1(ϵ) can in fact be homogenised without much blow-up in size. In other words,
there is a homogeneous abecedarian formula computing linked_CHSYMn/2,log n(x) of size
O(nc1c2ϵ log log n), where c2 is again a fixed constant independent of ϵ. Let this formula be
F ′

2(ϵ).
By Observation 21, we can then use F ′

2(ϵ) to get a homogeneous linked abecedarian
formula F ′

3(ϵ) of size O(nc1c2ϵ log log n) that computes the same polynomial. Further, because
of Observation 22, we know that there is a homogeneous abecedarian formula, say F , of size
poly(n) = O(nc1c2ϵ log log n) that computes CHSYMn/2,log n(x).

With F and F ′
3(ϵ) in hand, we get a homogeneous abecedarian formula CHSYMn/2,log2 n(x)

because of Lemma 24. To get such a formula for CHSYMn/2,n/2(x), we need to use Lemma 24
at most k times where

(log n)k = n

2 =⇒ k = O

(
log n

log log n

)
.

Thus, using Lemma 24 repeatedly at most O(log n/log log n) times, we get that there is a
homogeneous abecedarian formula, F(ϵ), computing CHSYMn/2,n/2(x) of size

O(n(c1c2ϵ log log n)·(log n/log log n)) = O(n(c1c2ϵ log n)).

By Observation 25, we know that F(ϵ) can be used to get a homogeneous multilinear
formula, F1(ϵ), computing ESYMn−1,n/2(x) of size O(n(c1c2ϵ log n)). Finally, Theorem 26
tells us that there is a constant δ such that any homogeneous multilinear formula computing
ESYMn−1,n/2(x) must have size at least nδ·log n. For ϵ = δ/2c1c2, this contradicts the existence
of F1(ϵ) and hence F ′(ϵ). Thus, it must be the case that any abecedarian formula computing
linked_CHSYMn/2,log n(x) has size at least nΩ(log log n). This completes the proof. ◀

6 Proofs of the Remaining Statements

In this section we give proof ideas of the remaining statements mentioned in the introduction.

6.1 Formula Lower Bounds from Structured Formula Lower Bounds
▶ Corollary 3. Let the polynomial linked_CHSYMn,d(x) be as defined in Theorem 1. An
nω(1) lower bound against abecedarian formulas for linked_CHSYMlog n,n(x) would imply a
super-polynomial separation between non-commutative ABPs and formulas.

CCC 2021

7:22 Separating ABPs and Some Structured Formulas in the Non-Commutative Setting

Proof. By Theorem 1, we know that the ABP complexity of linked_CHSYMlog n,n(x) is
poly(n). Therefore any formula computing the polynomial must have size at least nΩ(1).
Further, note that the polynomial is abecedarian with respect to a partition of size O(log n).
Therefore, by Theorem 2, if there is a formula F computing linked_CHSYMlog n,n(x) of size
s, then there is an abecedarian formula computing it of size poly(s). This immediately implies
the given statement. ◀

▶ Corollary 4. Let linked_CHSYMn,d(x) be as defined in Theorem 1. An nω(1) lower bound
against homogeneous formulas for linked_CHSYMn,log n(x) would result in a super-polynomial
separation between ABPs and formulas in the non-commutative setting.

Proof. By Theorem 1, we know that the ABP complexity of linked_CHSYMn,log n is poly(n).
Further, the degree of the polynomial is O(log n). Thus, by Lemma 5, if there is a formula
computing linked_CHSYMn,log n(x) of size s, then there is a homogeneous formula computing
it of size poly(s). This immediately implies the given statement. ◀

▶ Corollary 11. An nω(1) lower bound against homogeneous formulas computing the n-
variate iterated matrix multiplication polynomial of degree log n, IMMn,log n(x), implies a
super-polynomial separation between ABPs and formulas in the non-commutative setting.

Proof. Clearly, the ABP complexity of IMMn,log n(x) is poly(n). Thus, by Lemma 5, if
there is a formula computing IMMn,log n(x) of size s, then there is a homogeneous formula
computing it of size poly(s). This immediately implies the given statement. ◀

6.2 Known Relations in the Non-Commutative Setting that Continue to
Hold with the Abecedarian Restriction

▶ Observation 9 (The Usual Inclusions). Let abc - VPnc, abc - VBPnc and abc - VFnc denote
the classes of abecedarian polynomials over n variables that can be computed by poly(n) sized
abecedarian circuits, abecedarian ABPs and abecedarian formulas respectively. Then,

abc - VFnc ⊆ abc - VBPnc ⊆ abc - VPnc.

Proof. Suppose f ∈ abc - VFnc. Then f is abecedarian, and in particular f ∈ VFnc. But
we know that VFnc ⊆ VBPnc, and so f ∈ VBPnc. By Observation 8, this implies that
f ∈ abc - VBPnc.

Similarly, suppose f ∈ abc - VBPnc. Then f is abecedarian, and f ∈ VBPnc. But
VBPnc ⊆ VPnc, and so f ∈ VPnc. By Observation 7, this implies that f ∈ abc - VPnc. ◀

▶ Observation 10 (Converting Abecedarian ABPs into Abecedarian Formulas). Suppose f is
an abecedarian polynomial of degree d. If there is an abecedarian ABP A of size s computing
it, then there is an abecedarian formula F computing f of size O(slog d).

Proof. The formula we get using the usual divide-and-conquer algorithm has the property
that polynomials computed at any of its gate is a polynomial computed between two vertices
in the ABP. Thus by definition of abecedarian ABPs, the statement follows via the usual
algorithm. ◀

P. Chatterjee 7:23

References
1 V. Arvind, P. S. Joglekar, and S. Raja. Noncommutative valiant’s classes: Structure and

complete problems. ACM Trans. Comput. Theory, 9(1), 2016. doi:10.1145/2956230.
2 Vikraman Arvind and Srikanth Srinivasan. On the hardness of the noncommutative determin-

ant. Comput. Complex., 27(1):1–29, 2018. doi:10.1007/s00037-016-0148-5.
3 Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant number

of registers. SIAM J. Comput., 21(1):54–58, 1992. doi:10.1137/0221006.
4 Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the

ACM, 21(2):201–206, 1974. doi:10.1145/321812.321815.
5 Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan Mihajlin. Hardness

amplification for non-commutative arithmetic circuits. In Rocco A. Servedio, editor, 33rd
Computational Complexity Conference, CCC, volume 102 of LIPIcs, pages 12:1–12:16, 2018.
doi:10.4230/LIPIcs.CCC.2018.12.

6 Prerona Chatterjee, Mrinal Kumar, Adrian She, and Ben Lee Volk. A quadratic lower bound for
algebraic branching programs and formulas. CoRR, 1911.11793v2, 2019. arXiv:1911.11793v2.

7 Zeev Dvir, Guillaume Malod, Sylvain Perifel, and Amir Yehudayoff. Separating multilinear
branching programs and formulas. In Howard J. Karloff and Toniann Pitassi, editors, Proceed-
ings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY,
USA, May 19 - 22, 2012, pages 615–624. ACM, 2012. doi:10.1145/2213977.2214034.

8 Nathanaël Fijalkow, Guillaume Lagarde, Pierre Ohlmann, and Olivier Serre. Lower bounds
for arithmetic circuits via the hankel matrix. In 37th International Symposium on Theoretical
Aspects of Computer Science, STACS, volume 154 of LIPIcs, pages 24:1–24:17, 2020. doi:
10.4230/LIPIcs.STACS.2020.24.

9 Pavel Hrubes and Avi Wigderson. Non-commutative arithmetic circuits with division. Theory
Comput., 11:357–393, 2015. doi:10.4086/toc.2015.v011a014.

10 Pavel Hrubes, Avi Wigderson, and Amir Yehudayoff. Relationless completeness and separations.
In Proceedings of the 25th Annual IEEE Conference on Computational Complexity, CCC,
pages 280–290. IEEE Computer Society, 2010. doi:10.1109/CCC.2010.34.

11 Pavel Hrubeš, Avi Wigderson, and Amir Yehudayoff. Non-commutative circuits
and the sum-of-squares problem. Journal of the American Mathematical Soci-
ety, 24(3):871–898, 2011. URL: https://www.ams.org/journals/jams/2011-24-03/
S0894-0347-2011-00694-2/S0894-0347-2011-00694-2.pdf.

12 Pavel Hrubes and Amir Yehudayoff. Homogeneous formulas and symmetric polynomials.
Comput. Complex., 20(3):559–578, 2011. doi:10.1007/s00037-011-0007-3.

13 L. Hyafil. The power of commutativity. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pages 171–174, 1977. doi:10.1109/SFCS.1977.31.

14 K. Kalorkoti. A lower bound for the formula size of rational functions. SIAM J. Comput.,
14(3):678–687, 1985. doi:10.1137/0214050.

15 Guillaume Lagarde, Nutan Limaye, and Srikanth Srinivasan. Lower bounds and PIT for non-
commutative arithmetic circuits with restricted parse trees. Comput. Complex., 28(3):471–542,
2019. doi:10.1007/s00037-018-0171-9.

16 Guillaume Lagarde, Guillaume Malod, and Sylvain Perifel. Non-commutative computations:
lower bounds and polynomial identity testing. Chic. J. Theor. Comput. Sci., 2019, 2019. URL:
http://cjtcs.cs.uchicago.edu/articles/2019/2/contents.html.

17 Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower bounds for non-commutative
skew circuits. Theory of Computing, 12(1):1–38, 2016. doi:10.4086/toc.2016.v012a012.

18 Merriam and Webster. Definition of abecedarian. Word of the Day at www.merriam-
webster.com, 2019. URL: https://www.merriam-webster.com/word-of-the-day/
abecedarian-2019-03-06.

19 Eduard Ivanovich Nechiporuk. On a boolean function. Dokl. Akad. Nauk SSSR, 169:765–766,
1966. URL: http://mi.mathnet.ru/dan32449.

CCC 2021

https://doi.org/10.1145/2956230
https://doi.org/10.1007/s00037-016-0148-5
https://doi.org/10.1137/0221006
https://doi.org/10.1145/321812.321815
https://doi.org/10.4230/LIPIcs.CCC.2018.12
http://arxiv.org/abs/1911.11793v2
https://doi.org/10.1145/2213977.2214034
https://doi.org/10.4230/LIPIcs.STACS.2020.24
https://doi.org/10.4230/LIPIcs.STACS.2020.24
https://doi.org/10.4086/toc.2015.v011a014
https://doi.org/10.1109/CCC.2010.34
https://www.ams.org/journals/jams/2011-24-03/S0894-0347-2011-00694-2/S0894-0347-2011-00694-2.pdf
https://www.ams.org/journals/jams/2011-24-03/S0894-0347-2011-00694-2/S0894-0347-2011-00694-2.pdf
https://doi.org/10.1007/s00037-011-0007-3
https://doi.org/10.1109/SFCS.1977.31
https://doi.org/10.1137/0214050
https://doi.org/10.1007/s00037-018-0171-9
http://cjtcs.cs.uchicago.edu/articles/2019/2/contents.html
https://doi.org/10.4086/toc.2016.v012a012
https://www.merriam-webster.com/word-of-the-day/abecedarian-2019-03-06
https://www.merriam-webster.com/word-of-the-day/abecedarian-2019-03-06
http://mi.mathnet.ru/dan32449

7:24 Separating ABPs and Some Structured Formulas in the Non-Commutative Setting

20 Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages 410–418.
ACM, 1991. doi:10.1145/103418.103462.

21 Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. J. ACM, 60(6):40:1–40:15,
2013. doi:10.1145/2535928.

22 Ramprasad Saptharishi and Anamay Tengse. Quasipolynomial hitting sets for circuits with
restricted parse trees. In 38th IARCS Annual Conference on Foundations of Software Techno-
logy and Theoretical Computer Science, FSTTCS, volume 122 of LIPIcs, pages 6:1–6:19, 2018.
doi:10.4230/LIPIcs.FSTTCS.2018.6.

23 Leslie G. Valiant. Completeness classes in algebra. In Proceedings of the 11h Annual ACM
Symposium on Theory of Computing, pages 249–261. ACM, 1979. doi:10.1145/800135.
804419.

https://doi.org/10.1145/103418.103462
https://doi.org/10.1145/2535928
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.6
https://doi.org/10.1145/800135.804419
https://doi.org/10.1145/800135.804419

The (Generalized) Orthogonality Dimension of
(Generalized) Kneser Graphs: Bounds and
Applications
Alexander Golovnev
Georgetown University, Washington, DC, USA

Ishay Haviv
School of Computer Science, The Academic College of Tel Aviv-Yaffo, Israel

Abstract
The orthogonality dimension of a graph G = (V, E) over a field F is the smallest integer t for which
there exists an assignment of a vector uv ∈ Ft with ⟨uv, uv⟩ ̸= 0 to every vertex v ∈ V , such that
⟨uv, uv′ ⟩ = 0 whenever v and v′ are adjacent vertices in G. The study of the orthogonality dimension
of graphs is motivated by various applications in information theory and in theoretical computer
science. The contribution of the present work is two-fold.

First, we prove that there exists a constant c such that for every sufficiently large integer t, it is
NP-hard to decide whether the orthogonality dimension of an input graph over R is at most t or
at least 3t/2 − c. At the heart of the proof lies a geometric result, which might be of independent
interest, on a generalization of the orthogonality dimension parameter for the family of Kneser
graphs, analogously to a long-standing conjecture of Stahl (J. Comb. Theo. Ser. B, 1976).

Second, we study the smallest possible orthogonality dimension over finite fields of the complement
of graphs that do not contain certain fixed subgraphs. In particular, we provide an explicit
construction of triangle-free n-vertex graphs whose complement has orthogonality dimension over
the binary field at most n1−δ for some constant δ > 0. Our results involve constructions from the
family of generalized Kneser graphs and they are motivated by the rigidity approach to circuit lower
bounds. We use them to answer a couple of questions raised by Codenotti, Pudlák, and Resta
(Theor. Comput. Sci., 2000), and in particular, to disprove their Odd Alternating Cycle Conjecture
over every finite field.

2012 ACM Subject Classification Mathematics of computing → Graph coloring; Mathematics of
computing → Approximation algorithms; Theory of computation → Circuit complexity

Keywords and phrases Orthogonality dimension, minrank, rigidity, hardness of approximation,
circuit complexity, chromatic number, Kneser graphs

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.8

Related Version Full Version: https://arxiv.org/abs/2002.08580 [19]

Funding Alexander Golovnev: Partially supported by a Rabin Postdoctoral Fellowship.
Ishay Haviv: Research supported in part by the Israel Science Foundation (grant No. 1218/20).

1 Introduction

A t-dimensional orthogonal representation of a graph G = (V, E) over a field F is an assignment
of a vector uv ∈ Ft with ⟨uv, uv⟩ ̸= 0 to every vertex v ∈ V , such that ⟨uv, uv′⟩ = 0 whenever
v and v′ are adjacent vertices in G. The orthogonality dimension of a graph G over F,
denoted by ξ(G,F), is the smallest integer t for which there exists a t-dimensional orthogonal
representation of G over F. The orthogonality dimension parameter is closely related to

© Alexander Golovnev and Ishay Haviv;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 8; pp. 8:1–8:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CCC.2021.8
https://arxiv.org/abs/2002.08580
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 The (Generalized) Orthogonality Dimension of (Generalized) Kneser Graphs

several other well-studied graph parameters. In particular, for every graph G and every field
F, ξ(G,F) is sandwiched between the clique number and the chromatic number of G, that is,
ω(G) ≤ ξ(G,F) ≤ χ(G).1

Orthogonal representations of graphs have been found useful over the years for various
applications in information theory and in theoretical computer science. They were originally
introduced over the real field in a seminal work of Lovász [32], where they were used to define
the influential Lovász ϑ-function. The latter was used in [32] to determine the Shannon
capacity, a notoriously difficult information-theoretic graph parameter, of the cycle on five
vertices, and in the last decades it was successfully applied in algorithmic and combinatorial
results (see, e.g., [28, 17, 3]). The orthogonality dimension of graphs plays an important role
in several areas of computational complexity. Over finite fields, the orthogonality dimension
and its extension due to Haemers [21] to a graph parameter called minrank have attracted a
significant attention in circuit complexity, and more specifically, in the study of Valiant’s
rigidity approach to circuit lower bounds [43] (see, e.g., [11, 37, 20]). Over the complex field,
the orthogonality dimension was used in a characterization of the quantum communication
complexity of promise equality problems [12, 4, 5] and in the study of the quantum chromatic
number [8, 39]. The orthogonality dimension parameter was also investigated in the contexts
of hardness of approximation [36, 29], integrality gaps for linear programming [26, 25], and
algorithms based on semi-definite programming [9, 23].

The present work studies two aspects of the orthogonality dimension of graphs. First,
we prove an NP-hardness result for approximating the orthogonality dimension of graphs
over the real field R. At the heart of the proof lies a geometric result, which might be of
independent interest, on a generalization of the orthogonality dimension parameter for the
family of Kneser graphs, analogously to a long-standing graph-theoretic conjecture due to
Stahl [40]. The second aspect of the orthogonality dimension parameter considered in this
work, motivated by the area of circuit complexity, is that of determining the smallest possible
orthogonality dimension over finite fields of the complement of graphs that do not contain
certain fixed subgraphs. In this context, we prove a new bound on the minrank parameter
over finite fields for the family of generalized Kneser graphs. The bound is used to settle a
couple of questions raised by Codenotti, Pudlák, and Resta in [11] and to disprove their Odd
Alternating Cycle Conjecture over every finite field.

1.1 Our Contribution

1.1.1 The Generalized Orthogonality Dimension of Kneser Graphs
We start by considering the computational hardness of determining the orthogonality dimen-
sion of graphs over the real field R. The challenge of understanding the hardness of this
parameter was posed already in the late eighties by Lovász, Saks, and Schrijver [34] (see
also [33, Chapter 10]), and yet, the problem is far from being well-understood. It is easy to
see that deciding whether an input graph G satisfies ξ(G,R) ≤ t can be solved in polynomial
running-time for t ∈ {1, 2}, and Peeters [36] has shown that it is NP-hard for t ≥ 3. His
result is known to imply that for every t ≥ 6 it is NP-hard to decide whether an input graph
G satisfies ξ(G,R) ≤ t or ξ(G,R) ≥ ⌈4t/3⌉ (see [23]). In the current work, we improve on
the 4/3 multiplicative gap and prove the following.

1 Orthogonal representations of graphs are sometimes defined in the literature as orthogonal representations
of the complement, namely, the definition requires vectors associated with non-adjacent vertices to be
orthogonal. We have decided to use here the other definition, but one may view the notation ξ(G,F) as
standing for ξ(G,F).

A. Golovnev and I. Haviv 8:3

▶ Theorem 1. There exists a constant c such that for every sufficiently large integer t, it is
NP-hard to decide whether an input graph G satisfies ξ(G,R) ≤ t or ξ(G,R) ≥ 3t/2 − c.

It is worth noting that in order to obtain hardness results for the orthogonality dimension
parameter, it is natural to employ known hardness results regarding the closely related
chromatic number of graphs. Indeed, it is easy to verify (see, e.g., [23]) that every graph G

satisfies

log3 χ(G) ≤ ξ(G,R) ≤ χ(G),

hence hardness of deciding whether an input graph G satisfies χ(G) ≤ t1 or χ(G) ≥ t2
immediately implies the hardness of deciding whether it satisfies ξ(G,R) ≤ t1 or ξ(G,R) ≥
log3 t2. In particular, a result of Dinur, Mossel, and Regev [14] on the hardness of the
chromatic number implies that assuming a certain variant of the unique games conjecture,
deciding whether a given graph G satisfies ξ(G,R) ≤ 3 or ξ(G,R) ≥ t is NP-hard for
every t ≥ 4. However, if one is interested in standard NP-hardness for the orthogonality
dimension, the state of the art for the hardness of the chromatic number does not seem to
imply any hardness results, despite some remarkable recent progress [7, 44]. Moreover, most
hardness proofs for the chromatic number crucially use the fact that an upper bound on
the independence number of a graph implies a strong lower bound on its chromatic number
(namely, χ(G) ≥ |V (G)|

α(G)), whereas an analogue of such a statement for the orthogonality
dimension does not hold in general (see, e.g., [23, Proposition 2.2]).

One technique for proving hardness results for the chromatic number that can be applied
for the orthogonality dimension is that of Garey and Johnson [18], who have related hardness
of graph coloring to the multichromatic numbers of Kneser graphs. The kth multichromatic
number of a graph G, denoted by χk(G), is the smallest number of colors needed in order
to assign to every vertex of G a set of k colors so that adjacent vertices are assigned to
disjoint sets. Notice that χ1(G) is simply the standard chromatic number χ(G). The family
of Kneser graphs is defined as follows.

▶ Definition 2 (Kneser Graphs). For integers d ≥ 2s, the Kneser graph K(d, s) is the graph
whose vertices are all the s-subsets of [d] = {1, . . . , d}, where two sets are adjacent if they
are disjoint.

Note that the multichromatic numbers can be defined in terms of Kneser graphs, namely,
χk(G) is the smallest integer d for which there exists a homomorphism from G to K(d, k).

In the seventies, Stahl [40] has made the following conjecture.

▶ Conjecture 3 (Stahl’s Conjecture [40]). For all integers k and d ≥ 2s,

χk(K(d, s)) =
⌈k

s

⌉
· (d − 2s) + 2k.

Stahl’s conjecture has received a significant attention in the literature over the years. Even
very recently, it was related to the well-known recently disproved Hedetniemi’s conjecture [42].
Nevertheless, more than forty years since it was proposed, Stahl’s conjecture is still open.
It is known that the right-hand side in Conjecture 3 forms an upper bound on χk(K(d, s)),
and that this bound is tight up to an additive constant that depends solely on s [10, 41].
The precise statement of the conjecture was confirmed only for a few special cases. This
includes the case of k = 1 proved by Lovász [31], the cases of s ≤ 2, k ≤ s, d = 2s + 1, and k

divisible by s proved by Stahl [40, 41], and the case of s = 3 and k = 4 proved by Garey and
Johnson [18] (extended to s = 3 with any k in [41]). The result of [18] was combined there
with a simple reduction to show that for every t ≥ 6, it is NP-hard to decide whether a given
graph G satisfies χ(G) ≤ t or χ(G) ≥ 2t − 4.

CCC 2021

8:4 The (Generalized) Orthogonality Dimension of (Generalized) Kneser Graphs

The recent work [23] has suggested to borrow the reduction of [18] to prove hardness
results for the orthogonality dimension parameter. This approach requires the following
generalization of orthogonal representations of graphs over the reals.

▶ Definition 4 (Orthogonal Subspace Representation). A t-dimensional orthogonal k-subspace
representation of a graph G = (V, E) is an assignment of a subspace Uv ⊆ Rt with dim(Uv) =
k to every vertex v ∈ V , such that the subspaces Uv and Uv′ are orthogonal whenever v and
v′ are adjacent in G. For a graph G, let ξk(G,R) denote the smallest integer t for which
there exists a t-dimensional orthogonal k-subspace representation of G.2

Note that for k = 1, Definition 4 coincides with the orthogonality dimension over the reals,
and that for every graph G and every k it holds that ξk(G,R) ≤ χk(G).

A combination of the hardness result of Peeters [36] and the reduction of [18] implies the
following.

▶ Proposition 5 ([23, Theorem 1.3]). For every graph F , it is NP-hard to decide whether an
input graph G satisfies ξ(G,R) ≤ ξ3(F,R) or ξ(G,R) ≥ ξ4(F,R).

With Proposition 5 in hand, it is of interest to find graphs F with a large gap between
ξ3(F,R) and ξ4(F,R). In light of Conjecture 3, it is natural to consider the generalized
orthogonality dimension parameters for the family of Kneser graphs. For k = 1, it was shown
in [25] that the standard chromatic number and the standard orthogonality dimension over
R coincide on all Kneser graphs. In addition, a result of Bukh and Cox [6, Proposition 23]
implies that for every d ≥ 2s and every k, ξk(K(d, s),R) ≥ kd/s. This implies that the kth
chromatic number and the kth orthogonality dimension over R coincide on K(d, s) whenever
k is divisible by s.

In this work we initiate a systematic study of the generalized orthogonality dimension
parameters of Kneser graphs, analogously to Conjecture 3. Let us already mention that the
arguments applied in the study of Stahl’s conjecture do not seem to extend to our question.
The main reason is that the proofs in [40, 18, 10, 41] use Hilton-Milner-type theorems to
characterize the possible structures of the independent sets induced by generalized colorings of
Kneser graphs, whereas in our setting, orthogonal subspace representations do not naturally
induce large independent sets and the problem seems to require a more geometric approach.

The first non-trivial case is that of Kneser graphs K(d, s) with s = 2, for which we show
that the generalized orthogonality dimension parameters are equal to the multichromatic
numbers.

▶ Theorem 6. For all integers k ≥ 1 and d ≥ 4, ξk(K(d, 2),R) =
⌈

k
2

⌉
· (d − 4) + 2k.

We proceed by considering a general s ≥ 3 and prove the following lower bound.

▶ Theorem 7. For every integers k ≥ s ≥ 3 there exists c = c(s, k) such that for all integers
d ≥ 2s,

ξk(K(d, s),R) ≥
k − ⌈ k+1

s ⌉ + 1
s − 1 · d − c.

Note that for k = ℓ · s − 1 where ℓ is an integer, the bound provided by Theorem 7 is tight
up to the additive constant c. Indeed, in this case we get that there exists a constant c such
that for all integers d ≥ 2s it holds that

ℓ · d − c ≤ ξℓ·s−1(K(d, s),R) ≤ χℓ·s−1(K(d, s)) ≤ ℓ · d − 2.

2 Over the complex field, the definition is equivalent to the notion of a projective representation from [35,
Definition 6.1].

A. Golovnev and I. Haviv 8:5

Note further that for the special case of k = 4 and s = 3, Theorem 7 implies that there exists
a constant c such that ξ4(K(d, 3),R) ≥ 3d/2 − c for every sufficiently large integer d. This,
combined with Proposition 5 and the fact that ξ3(K(d, 3),R) = d, yields our hardness result
Theorem 1.

It will be interesting to figure out if the bounds given in Theorem 7 can be tightened to
the quantity given in the right-hand side of Conjecture 3, at least up to an additive term
independent of d. In particular, it will be nice to decide whether for all integers d ≥ 6 it
holds that ξ4(K(d, 3),R) = 2d − 4. A positive answer would imply that for every t ≥ 6, it is
NP-hard to decide whether an input graph G satisfies ξ(G) ≤ t or ξ(G) ≥ 2t − 4. We remark,
however, that the approach suggested by Proposition 5 for the hardness of the orthogonality
dimension cannot yield a multiplicative hardness gap larger than 2, as it is easy to see that
every graph F satisfies ξ4(F,R) ≤ ξ(F,R) + ξ3(F,R) ≤ 2 · ξ3(F,R).

1.1.2 The Orthogonality Dimension of Generalized Kneser Graphs
We next consider the orthogonality dimension over finite fields of the complement of graphs
that do not contain some fixed subgraphs. In fact, in this context we consider an extension
of the orthogonality dimension parameter, called minrank, that was introduced by Haemers
in [21] and is defined as follows.

▶ Definition 8 (Minrank). Let G = (V, E) be a directed graph on the vertex set V = [n] and
let F be a field. We say that an n by n matrix M over F represents G if Mi,i ̸= 0 for every
i ∈ V , and Mi,j = 0 for every distinct i, j ∈ V such that (i, j) /∈ E. The minrank of G over
F is defined as

minrkF(G) = min{rankF(M) | M represents G over F}.

The definition is naturally extended to (undirected) graphs by replacing every undirected edge
with two oppositely directed edges.

Note that for every graph G and every field F, minrkF(G) ≤ ξ(G,F).3
We consider here the question of whether there are graphs with no short odd cycles and

yet low minrank over finite fields. This question is motivated by the area of circuit complexity,
and more specifically, by Valiant’s approach to circuit lower bounds [43], as described next.
The rigidity of an n by n matrix M over a field F with respect to a given parameter r is the
smallest number of entries that one has to change in M in order to reduce its rank over F to
below r. Roughly speaking, it was shown in [43] that n by n matrices with large rigidity
for r = ε · n where ε > 0 is a constant can be used to obtain superlinear lower bounds on
the size of logarithmic depth arithmetic circuits computing linear transformations. In 2000,
Codenotti, Pudlák, and Resta [11] have proposed the Odd Alternating Cycle Conjecture,
stated below. By an alternating odd cycle we refer to a directed graph which forms an odd
cycle when the orientation of the edges is ignored, and such that the orientation of the edges
alternates with one exception.

▶ Conjecture 9 (The Odd Alternating Cycle Conjecture [11]). For every field F there exist
ε > 0 and an odd integer ℓ such that every n-vertex directed graph G with minrkF(G) ≤ ε · n

contains an alternating cycle of length ℓ.

3 Indeed, given a t-dimensional orthogonal representation of an n-vertex graph G over a field F, consider
the matrix B ∈ Fn×t whose rows contain the vectors associated with the vertices of G. Then, the n by
n matrix B · BT represents G and has rank at most t over F, hence minrkF(G) ≤ t.

CCC 2021

8:6 The (Generalized) Orthogonality Dimension of (Generalized) Kneser Graphs

It was proved in [11] that Conjecture 9 implies, if true, that certain explicit circulant
matrices have superlinear rigidity. In contrast, for ℓ = 3 it was shown in [11] that there are
n-vertex (undirected) triangle-free graphs G satisfying minrkF(G) ≤ O(n3/4) for every field
F, and it was left open whether the statement of Conjecture 9 may hold for larger values
of ℓ. In the recent work [24] the conjecture was disproved over the real field, but remained
open for finite fields which are of special interest in circuit complexity. For the orthogonality
dimension over the binary field F2, it was shown in [11] that there exist triangle-free n-vertex
graphs G satisfying ξ(G,F2) = n/4 + 2. It was asked there whether every n-vertex graph G

satisfying ξ(G,F2) ≤ n/4 + 1 must contain a triangle.
In the current work we prove a new upper bound on the minrank parameter over finite

fields of generalized Kneser graphs. In these graphs the vertices are all the s-subsets of a
universe [d], where two sets are adjacent if their intersection size is smaller than some integer
m. Note that for m = 1 we get the standard family of Kneser graphs (see Definition 2).
In the proof we modify and extend an argument of [24], which is based on linear spaces of
multivariate polynomials, building on a previous work of Alon [2]. For the precise statement,
see Theorem 18. We turn to describe several applications of our bound.

As a first application, we establish an explicit construction of graphs that do not contain
short odd cycles and yet have low minrank over every finite field.

▶ Theorem 10. For every odd integer ℓ ≥ 3 there exists δ = δ(ℓ) > 0 such that for every
sufficiently large integer n, there exists an n-vertex graph G with no odd cycle of length at
most ℓ such that for every finite field F, minrkF(G) ≤ n1−δ.

Theorem 10 immediately implies that the Odd Alternating Cycle Conjecture is false over
every finite field, even for undirected graphs. This rules out the approach suggested in [11]
for lower bounds on the rigidity of certain circulant matrices and thus falls into the recent
line of non-rigidity results based on the polynomial method (see, e.g., [1, 15, 16]). We note,
however, that the general upper bound of [16] on the rigidity of n × n circulant matrices does
not apply to the setting of parameters considered in [11] (because in [16] the upper bound is
n1+ε for a constant ε > 0, whereas in [11] the rigidity is only claimed to be Ω(n · logε n) for
a constant ε > 0).

We next consider the behavior of the orthogonality dimension over the binary field of
the complement of triangle-free graphs. It is relevant to mention here that in the proof
of Theorem 10, the matrices that imply the stated bound on the minrank are symmetric
(see Remark 20). For the binary field, this can be combined with a matrix decomposition
result due to Lempel [30] to obtain the following theorem, which answers a question of [11]
negatively.

▶ Theorem 11. There exists a constant δ > 0 such that for every sufficiently large integer n

there exists a triangle-free n-vertex graph G such that ξ(G,F2) ≤ n1−δ.

The above result can also be stated in terms of nearly orthogonal systems. For a field F,
a system of vectors in Fm is said to be nearly orthogonal if every vector of the system is not
self-orthogonal and any set of three of them contains an orthogonal pair. For the real field,
it was proved by Rosenfeld [38] that every nearly orthogonal system in Rm has size at most
2m. Theorem 11 shows that the situation is quite different over the binary field. Namely,
it implies that there exists a constant δ > 0 such that for infinitely many integers m there
exists a nearly orthogonal system in Fm

2 of size at least m1+δ.
We finally mention that our bound on the minrank parameter of generalized Kneser

graphs can be used to obtain graphs with a constant vector chromatic number χv (see
Definition 24) whose complement has a polynomially large minrank over every finite field.

A. Golovnev and I. Haviv 8:7

▶ Theorem 12. There exists a constant δ > 0 such that for infinitely many integers n there
exists an n-vertex graph G such that χv(G) ≤ 3 and yet minrkF(G) ≥ nδ for every finite
field F.

The interest in such graphs comes from the semidefinite programming algorithmic approach
applied in [9] for approximating the minrank parameter. As explained in [22], such graphs
imply a limitation on this approach, which is based on the constant vector chromatic number
of the complement of the instances. Theorem 12 improves on [22, Theorem 1.3] where the
bound on the minrank is shown only for sufficiently large finite fields.

1.2 Outline
The rest of the paper is organized as follows. In Section 2, we prove our bounds on the
generalized orthogonality dimension parameters of Kneser graphs (Theorems 6 and 7) and
derive our hardness result (Theorem 1). In Section 3, we prove our bound on the minrank
parameter over finite fields of generalized Kneser graphs and deduce Theorems 10, 11, and 12.

2 The Generalized Orthogonality Dimension of Kneser Graphs

In this section we study the generalized orthogonality dimension parameters of Kneser graphs,
namely, the quantities ξk(K(d, s)) (recall Definitions 2 and 4), and prove Theorems 6 and 7.
We start with a linear algebra lemma that will be useful in our proofs.

2.1 Linear Algebra Lemma
▶ Lemma 13. Let U be a subspace of Rt with dim(U) = ℓ, let W be a finite collection of
subspaces of Rt, and let ℓ′ ≤ ℓ be an integer satisfying dim(U ∩ W) ≤ ℓ′ for every W ∈ W.
Then, there exists a subspace U ′ of U with dim(U ′) = ℓ − ℓ′ such that dim(U ′ ∩ W) = 0 for
every W ∈ W.

Intuitively, given a subspace U and a collection W as in the lemma, a “random-like”
subspace U ′ of U with dimension ℓ − ℓ′ is expected to have a trivial intersection with each of
the subspaces of W , and thus to satisfy the assertion of the lemma. The formal proof can be
found in [19].

2.2 The case s = 2
We turn to prove Theorem 6 which determines the generalized orthogonality dimension
parameters of Kneser graphs K(d, s) for s = 2.

Proof of Theorem 6. Fix an integer k ≥ 1. For the upper bound, recall that for all integers
d ≥ 4 we have

ξk(K(d, 2),R) ≤ χk(K(d, 2)) =
⌈k

2

⌉
· (d − 4) + 2k.

For the lower bound, we consider the induced subgraph of K(d, 2), denoted by K−(d, 2),
obtained from K(d, 2) by removing one of its vertices, say, the vertex {1, 2}. We turn to
prove that for all integers d ≥ 4 it holds that

ξk(K−(d, 2),R) ≥
⌈k

2

⌉
· (d − 4) + 2k, (1)

CCC 2021

8:8 The (Generalized) Orthogonality Dimension of (Generalized) Kneser Graphs

which immediately implies the required lower bound on ξk(K(d, 2),R) as well. To this end,
we apply an induction on d. For d = 4, the graph K(d, 2) is a perfect matching on 6 vertices,
hence its subgraph K−(d, 2) clearly contains an edge. Since every orthogonal k-subspace
representation of this graph assigns to the vertices of this edge orthogonal k-subspaces it
follows that ξk(K−(4, 2),R) ≥ 2k, as desired. Now, fix some d > 4. Assuming that (1) holds
for d − 1, we turn to prove it for d.

Recall that the vertex set V of K−(d, 2) consists of all the 2-subsets of [d] except {1, 2}.
Let (UA)A∈V be a t-dimensional orthogonal k-subspace representation of K−(d, 2). We
proceed by considering the following two cases.

Assume first that there exists some i ≥ 4 for which

dim(U{1,3} ∩ U{1,i}) ≥
⌈k

2

⌉
. (2)

In this case, consider the induced subgraph of K−(d, 2) on the vertex set V ′ obtained from
V by removing the vertex {3, i} and all the vertices that include the element 1. Notice
that this subgraph is isomorphic to K−(d − 1, 2) and that every vertex of V ′ is disjoint
from either {1, 3} or from {1, i} (or both). This implies that the restriction (UA)A∈V ′ of
the given assignment to the vertices of V ′ forms an orthogonal k-subspace representation
of K−(d − 1, 2), all of whose subspaces lie in the subspace of Rt that is orthogonal to
U = U{1,3} ∩ U{1,i}. By applying an orthogonal linear transformation from this subspace to
Rt−dim(U), we obtain that

ξk(K−(d − 1, 2),R) ≤ t − dim(U) ≤ t −
⌈k

2

⌉
,

where in the second inequality we have used (2). Using the induction hypothesis, this implies
that

t ≥ ξk(K−(d − 1, 2),R) +
⌈k

2

⌉
≥

⌈k

2

⌉
· (d − 5) + 2k +

⌈k

2

⌉
=

⌈k

2

⌉
· (d − 4) + 2k,

and we are done.
We are left with the case where for every i ≥ 4 it holds that dim(U{1,3} ∩U{1,i}) ≤

⌈
k
2

⌉
−1.

Apply Lemma 13 to the k-subspace U{1,3} and the collection {U{1,i} | 4 ≤ i ≤ d}. It follows
that there exists a subspace U of U{1,3} with dim(U) = k − (⌈ k

2 ⌉ − 1) ≥ ⌈ k
2 ⌉ such that for

every i ≥ 4 it holds that dim(U ∩ U{1,i}) = 0. Consider the induced subgraph of K−(d, 2)
on the vertex set V ′ obtained from V by removing the vertex {2, 3} and all the vertices that
include the element 1. As before, this subgraph is isomorphic to the graph K−(d − 1, 2).

We define an orthogonal k-subspace representation of this graph as follows. Let B be a
set in V ′. If 3 /∈ B we define ŨB = UB. Otherwise we have B = {3, i} for some i ≥ 4, and
we let Ũ{3,i} be the projection of U{1,i} to the subspace of Rt that is orthogonal to U . Note
that the fact that dim(U ∩ U{1,i}) = 0 guarantees that dim(Ũ{3,i}) = dim(U{1,i}) = k.

To prove that the assignment (ŨB)B∈V ′ forms an orthogonal k-subspace representation
of the graph, let B1 and B2 be disjoint sets in V ′. If 3 /∈ B1 ∪ B2 then we have ŨB1 = UB1

and ŨB2 = UB2 , so it is clear that ŨB1 and ŨB2 are orthogonal. Otherwise, assume without
loss of generality that B1 = {3, i} for some i ≥ 4 and that 3 /∈ B2. In this case we have
ŨB2 = UB2 , and since B2 is disjoint from B1 it is also disjoint from {1, i} and from {1, 3},
hence ŨB2 is orthogonal to both U{1,i} and U{1,3} as well as to the projection ŨB1 of U{1,i}

to the subspace orthogonal to U ⊆ U{1,3}. We get that ŨB1 and ŨB2 are orthogonal, as
required.

Finally, observe that all the subspaces ŨB lie in the subspace of Rt that is orthogonal to U .
Indeed, for sets B with 3 ∈ B this follows from the definition of ŨB , and for the other sets this
holds because they are disjoint from {1, 3}. By applying an orthogonal linear transformation

A. Golovnev and I. Haviv 8:9

from this subspace to Rt−dim(U), we obtain that ξk(K−(d − 1, 2),R) ≤ t − dim(U) ≤ t −
⌈

k
2

⌉
,

and as in the previous case, by the induction hypothesis it follows that t ≥ ⌈ k
2 ⌉ · (d − 4) + 2k,

completing the proof. ◀

2.3 General s

We now prove Theorem 7 which provides a lower bound on the generalized orthogonality
dimension parameters of Kneser graphs K(d, s) for s ≥ 3.

Proof of Theorem 7. Fix integers k ≥ s ≥ 3 and denote m = ⌈ k+1
s ⌉. Let d0 = d0(s, k) be a

sufficiently large integer to be determined later. We apply an induction on d. To do so, we
define c = c(s, k) to be sufficiently large, say, c = k−m+1

s−1 · (d0 + s − 2), so that the statement
of the theorem trivially holds for all integers d ≤ d0 + s − 2, and turn to prove the statement
for d ≥ d0 assuming that it holds for d − (s − 1).

Let (UA)A∈V be a t-dimensional orthogonal k-subspace representation of K(d, s). We
start with some notation. For an s-subset A of [d], an element i ∈ A, and an s-subset B

of [d] satisfying A ∩ B = {i}, we let GA,i(B) denote the collection that consists of the set
B and all the sets obtained from B by replacing i with some element from A \ {i}. Note
that |GA,i(B)| = s. We say that a vertex A of K(d, s) is good (with respect to the given
orthogonal subspace representation) if there exists an i ∈ A such that for every vertex B

satisfying A ∩ B = {i} it holds that dim(UA ∩ UC) ≤ m − 1 for some C ∈ GA,i(B).
Assume first that there exists a good vertex A in K(d, s) associated with an element i ∈ A.

Applying Lemma 13, we get that there exists a (k − m + 1)-subspace U of UA such that for
every vertex B satisfying A ∩ B = {i} it holds that dim(U ∩ UC) = 0 for some C ∈ GA,i(B).
We define an orthogonal k-subspace representation of the graph K(d − (s − 1), s) on the
ground set [d] \ (A \ {i}) as follows. Let B be an s-subset of [d] \ (A \ {i}). If i /∈ B we
define ŨB = UB . Otherwise, we have A ∩ B = {i}, and we let ŨB be the projection of UC to
the subspace of Rt orthogonal to U , where C ∈ GA,i(B) is a set satisfying dim(U ∩ UC) = 0.
Note that this condition guarantees that dim(ŨB) = dim(UC) = k.

We claim that the subspaces ŨB form an orthogonal k-subspace representation of the
graph K(d − (s − 1), s). To see this, let B1 and B2 be disjoint s-subsets of [d] \ (A \ {i}).
If i /∈ B1 ∪ B2 then we have ŨB1 = UB1 and ŨB2 = UB2 , so it is clear that ŨB1 and ŨB2

are orthogonal. Otherwise, assume without loss of generality that i ∈ B1 and i /∈ B2. In
this case, ŨB2 = UB2 , and ŨB1 is the projection of UC to the subspace of Rt orthogonal to
U for some C ∈ GA,i(B1). Since B2 is disjoint from A, it follows that the subspace ŨB2 is
orthogonal to UA as well as to its subspace U . It also follows that B2 is disjoint from every
set in GA,i(B1), hence the subspace ŨB2 is orthogonal to UC . We get that ŨB2 is orthogonal
to ŨB1 , as required.

Now, observe that the above orthogonal k-subspace representation of K(d − (s − 1), s)
lies in the subspace of Rt that is orthogonal to the (k − m + 1)-subspace U . Indeed, for
sets B with i ∈ B this follows from the definition of ŨB, and for the other sets this holds
because they are disjoint from A. By applying an orthogonal linear transformation from this
subspace to Rt−dim(U), it follows that

ξk(K(d − (s − 1), s),R) ≤ t − dim(U) = t − (k − m + 1).

Using the induction hypothesis, this implies that

t ≥ k − m + 1
s − 1 · (d − (s − 1)) − c + (k − m + 1) = k − m + 1

s − 1 · d − c,

and we are done.

CCC 2021

8:10 The (Generalized) Orthogonality Dimension of (Generalized) Kneser Graphs

We are left with the case where no vertex of K(d, s) is good, for which we need the
following lemma. Its proof can be found in [19].

▶ Lemma 14. If a vertex A of K(d, s) is not good then there exists a nonzero vector uA ∈ UA

such that the number of vertices D of K(d, s) for which UD is not orthogonal to uA is at
most

(2s−1
2

)
·
(

d−2
s−2

)
.

We finally show how Lemma 14 completes the proof of the theorem. Assume that no
vertex of K(d, s) is good, and consider the following process: We start with the entire vertex
set of K(d, s), and in every iteration we choose an arbitrary vertex A associated with its
nonzero vector uA ∈ UA from Lemma 14 and eliminate all vertices whose subspaces are
not orthogonal to uA. The nonzero vectors associated with the chosen vertices are clearly
pairwise orthogonal, and their number, just like the number of iterations in the process, is at
least (

d
s

)(2s−1
2

)
·
(

d−2
s−2

) ≥ k − m + 1
s − 1 · d − c,

where the inequality holds for every d ≥ d0 assuming that d0 = d0(s, k) is sufficiently large
(because the left-hand side of the inequality is quadratic in d whereas the right-hand side is
linear in d). However, the size of the obtained orthogonal set cannot exceed the dimension t,
hence

t ≥ k − m + 1
s − 1 · d − c,

and we are done. ◀

As immediate corollaries of Theorem 7, we obtain the following.

▶ Corollary 15. For every integers s ≥ 3 and ℓ ≥ 2 there exists c = c(s, ℓ) such that for all
integers d ≥ 2s,

ξℓ·s−1(K(d, s),R) ≥ ℓ · d − c.

As mentioned before, the bound given in Corollary 15 is tight up to the additive constant c.

▶ Corollary 16. There exists a constant c such that for all integers d ≥ 6, ξ4(K(d, 3),R) ≥
3d/2 − c.

Equipped with Corollary 16, we are ready to deduce Theorem 1.

Proof of Theorem 1. Let t be a sufficiently large integer. Recall that a result of [6] implies
that ξ3(K(t, 3),R) = t, whereas Corollary 16 implies that ξ4(K(t, 3),R) ≥ 3t/2 − c for an
absolute constant c. Applying Proposition 5 with F = K(t, 3), it follows that it is NP-hard to
decide whether an input graph G satisfies ξ(G,R) ≤ t or ξ(G,R) ≥ 3t/2 − c, as desired. ◀

3 The Minrank of Generalized Kneser Graphs

In this section we consider a generalization of the family of Kneser graphs, defined as follows.

▶ Definition 17 (Generalized Kneser Graphs). For integers m ≤ s ≤ d, the generalized Kneser
graph K<(d, s, m) is the graph whose vertices are all the s-subsets of [d], where two sets
A, B are adjacent if |A ∩ B| < m.

A. Golovnev and I. Haviv 8:11

For this family of graphs, we prove the following upper bound on the minrank parameter
over finite fields (recall Definition 8).

▶ Theorem 18. For all integers m ≤ s ≤ d and for every finite field F,

minrkF(K<(d, s, m)) ≤
s−m∑
i=0

(
d

i

)
.

Moreover, the bound on the minrank can be achieved by a symmetric matrix.

As in the previous section, we start with a simple linear algebra lemma, whose proof can
be found in [19].

▶ Lemma 19. For a graph G on the vertex set [n], let M ∈ Zn×n be an integer matrix such
that Mi,i = 1 for every i ∈ [n], and Mi,j = 0 for every distinct non-adjacent vertices i and j

in G. Then, for every finite field F, minrkF(G) ≤ rankR(M).

Proof of Theorem 18. Consider the polynomial q ∈ R[x] defined by

q(x) =
(

x − m

s − m

)
= 1

(s − m)! · (x − m)(x − (m + 1)) · · · (x − (s − 1)).

Notice that q is an integer-valued polynomial of degree s − m. Let f : {0, 1}d × {0, 1}d → R
be the function defined by

f(x, y) = q
(d∑

i=1
xiyi

)
for every x, y ∈ {0, 1}d. Expanding f as a linear combination of monomials, the relation
z2 = z for z ∈ {0, 1} implies that one can reduce to 1 the exponent of each variable occuring
in a monomial. It follows that f can be represented as a multilinear polynomial in the 2d

variables of x and y. By combining terms involving the same monomial in the variables of x,
one can write f as

f(x, y) =
R∑

i=1
gi(x)hi(y)

for an integer R and functions gi, hi : {0, 1}d → R, i ∈ [R], such that the gi’s are distinct
multilinear monomials of total degree at most s − m in d variables. It follows that R ≤∑s−m

i=0
(

d
i

)
.

Now, let M1 and M2 be the 2d × R matrices whose rows are indexed by {0, 1}d and whose
columns are indexed by [R], defined by (M1)x,i = gi(x) and (M2)x,i = hi(x). Then, the
rank over R of the matrix M = M1 · MT

2 is at most R and for every x, y ∈ {0, 1}d it holds
that Mx,y = f(x, y). By the definition of f the matrix M is symmetric, and since q is an
integer-valued polynomial, all of its entries are integer.

Finally, let V be the vertex set of K<(d, s, m), that is, the collection of all s-subsets of
[d], and identify every vertex A ∈ V with an indicator vector cA ∈ {0, 1}d in the natural way.
Observe that for every A, B ∈ V we have

McA,cB
= f(cA, cB) = q(|A ∩ B|).

Hence, for every A ∈ V we have |A| = s and thus McA,cA
= q(s) = 1, whereas for every

distinct non-adjacent A, B ∈ V we have m ≤ |A∩B| ≤ s−1 and thus McA,cB
= q(|A∩B|) = 0.

Since the restriction of M to V × V is symmetric and has rank at most R over the reals,
Lemma 19 implies that minrkF(K<(d, s, m)) ≤ R for every finite field F and that the bound
can be achieved by a symmetric matrix, as desired. ◀

CCC 2021

8:12 The (Generalized) Orthogonality Dimension of (Generalized) Kneser Graphs

▶ Remark 20. Theorem 18 guarantees that the bound on the minrank can be achieved by a
symmetric matrix. This will be crucial for one of our applications, namely, for a construction
of triangle-free graphs whose complement has low orthogonality dimension over the binary
field F2 (see Section 3.1.2). We remark, however, that for undirected graphs and for fields
of characteristic different from 2, attaining the bound on the minrank by a symmetric
matrix can be achieved easily with a factor of 2 worse bound on the minrank. Indeed, if a
matrix M represents a graph G over a field F of characteristic different from 2 and satisfies
rankF(M) = r then the matrix M + MT also represents G and has rank at most 2r over F.
This argument does not hold over fields of characteristic 2, since in this case the diagonal
entries of M + MT are all zeros.

3.1 Applications
We gather below several applications of Theorem 18.

3.1.1 The Odd Alternating Cycle Conjecture over Finite Fields
We turn to disprove Conjecture 9 over every finite field. We will use the simple fact that
generalized Kneser graphs do not contain short odd cycles, as stated below (see, e.g., [13, 24]).

▶ Lemma 21. Let ℓ ≥ 3 be an odd integer. For every even integer d and an integer m ≤ d
2ℓ ,

the graph K<(d, d
2 , m) contains no odd cycle of length at most ℓ.

We prove the following theorem, confirming Theorem 10.

▶ Theorem 22. For every odd integer ℓ ≥ 3 there exists δ = δ(ℓ) > 0 such that for every
sufficiently large integer n, there exists an n-vertex graph G with no odd cycle of length at
most ℓ such that for every finite field F,

minrkF(G) ≤ n1−δ.

Moreover, the bound on the minrank can be achieved by a symmetric matrix.

Proof. Fix an odd integer ℓ ≥ 3. For an integer d divisible by 2ℓ, consider the graph
G = K<(d, d

2 , m) where m = d
2ℓ . By Lemma 21, G contains no odd cycle of length at most ℓ.

As for the minrank parameter, Theorem 18 implies that for every finite field F,

minrkF(G) ≤
d/2−m∑

i=0

(
d

i

)
≤ 2H(1

2 − m
d)·d = 2H(1

2 − 1
2ℓ)·d,

where H stands for the binary entropy function. Since G has |V | =
(

d
d/2

)
= 2(1−o(1))·d

vertices, for any δ > 0 such that H(1
2 − 1

2ℓ) < 1 − δ we have minrkF(G) ≤ |V |1−δ for every
sufficiently large integer d. The proof is completed by considering, for every sufficiently large
integer n, some n-vertex subgraph of the graph defined above, where d is the smallest integer
divisible by 2ℓ such that n ≤

(
d

d/2
)
. ◀

3.1.2 Triangle-free Graphs and the Orthogonality Dimension over the
Binary Field

We turn to prove Theorem 11. Its proof adopts the following special case of a result due to
Lempel [30].

A. Golovnev and I. Haviv 8:13

▶ Lemma 23 ([30]). Let M by an n by n symmetric matrix over the binary field F2 with at
least one nonzero diagonal entry and rank r. Then, there exists an n by r matrix B over F2
satisfying M = B · BT .

Proof of Theorem 11. Apply Theorem 22 with ℓ = 3 to obtain some δ > 0 such that for
every sufficiently large integer n, there exist a triangle-free n-vertex graph G and an n

by n symmetric matrix M over F2 of rank r = rankF2(M) ≤ n1−δ that represents G. By
Lemma 23, there exists an n by r matrix B over F2 satisfying M = B · BT . By assigning
the ith row of B to the ith vertex of G we get an r-dimensional orthogonal representation of
G over F2, hence ξ(G,F2) ≤ r ≤ n1−δ. ◀

3.1.3 The Vector Chromatic Number vs. Minrank
The vector chromatic number of graphs, introduced by Karger, Motwani, and Sudan in [27],
is defined as follows.

▶ Definition 24 (Vector Chromatic Number). For a graph G = (V, E) the vector chromatic
number of G, denoted by χv(G), is the minimal real value of κ > 1 such that there exists an
assignment of a unit vector wv to every vertex v ∈ V satisfying the inequality ⟨wv, wv′⟩ ≤
− 1

κ−1 whenever v and v′ are adjacent in G.

To prove Theorem 12, we need the following simple fact that relates the minrank of a
graph to the minrank of its complement (see, e.g., [36, Remark 2.2]).

▶ Fact 25. For every field F and an n-vertex graph G, minrkF(G) · minrkF(G) ≥ n.

Proof of Theorem 12. For an integer d divisible by 8, consider the graph G = K<(d, d
2 , m)

where m = d
8 . We first claim that χv(G) ≤ 3. To see this, assign to every vertex A of G,

representing a d
2 -subset of [d], the unit vector wA ∈ Rd defined by (wA)i = 1√

d
if i ∈ A and

(wA)i = − 1√
d

otherwise. Observe that every two distinct vertices A and B that are adjacent
in G satisfy |A ∩ B| < d

8 and thus |A △ B| > 3d
4 , implying that ⟨wA, wB⟩ = d−2·|A△B|

d < − 1
2 .

This implies that χv(G) ≤ 3, as claimed. As for the minrank parameter, Theorem 18 implies
that for every finite field F,

minrkF(G) ≤
d/2−m∑

i=0

(
d

i

)
≤ 2H(1

2 − m
d)·d = 2H(3/8)·d,

where H stands for the binary entropy function. Since G has n =
(

d
d/2

)
= 2(1−o(1))·d vertices,

for any δ < 1 − H(3/8) we have minrkF(G) ≤ n1−δ assuming that d is sufficiently large. By
Fact 25, this implies that minrkF(G) ≥ nδ, and we are done. ◀

References
1 Josh Alman and R. Ryan Williams. Probabilistic rank and matrix rigidity. In Proceedings of

the 49th Annual ACM Symposium on Theory of Computing (STOC’17), pages 641–652, 2017.
2 Noga Alon. The Shannon capacity of a union. Combinatorica, 18(3):301–310, 1998.
3 Noga Alon and Nabil Kahale. Approximating the independence number via the ϑ-function.

Math. Program., 80:253–264, 1998.
4 Jop Briët, Harry Buhrman, Debbie Leung, Teresa Piovesan, and Florian Speelman. Round

elimination in exact communication complexity. In Proceedings of the 10th Conference on the
Theory of Quantum Computation, Communication and Cryptography (TQC’15), volume 44 of
LIPIcs, pages 206–225, 2015.

CCC 2021

8:14 The (Generalized) Orthogonality Dimension of (Generalized) Kneser Graphs

5 Jop Briët and Jeroen Zuiddam. On the orthogonal rank of Cayley graphs and impossibility of
quantum round elimination. Quantum Information & Computation, 17(1&2):106–116, 2017.

6 Boris Bukh and Christopher Cox. On a fractional version of Haemers’ bound. IEEE Trans.
Inform. Theory, 65(6):3340–3348, 2019.

7 Jakub Bulín, Andrei A. Krokhin, and Jakub Opršal. Algebraic approach to promise constraint
satisfaction. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing
(STOC’19), pages 602–613, 2019.

8 Peter J. Cameron, Ashley Montanaro, Michael W. Newman, Simone Severini, and Andreas J.
Winter. On the quantum chromatic number of a graph. Electr. J. Comb., 14(1), 2007.

9 Eden Chlamtáč and Ishay Haviv. Linear index coding via semidefinite programming. Combin-
atorics, Probability & Computing, 23(2):223–247, 2014. Preliminary version in SODA’12.

10 Vasek Chvátal, Michael R. Garey, and David S. Johnson. Two results concerning multicoloring.
Annals of Discrete Math., 2:151–154, 1978.

11 Bruno Codenotti, Pavel Pudlák, and Giovanni Resta. Some structural properties of low-rank
matrices related to computational complexity. Theor. Comput. Sci., 235(1):89–107, 2000.
Preliminary version in ECCC’97.

12 Ronald de Wolf. Quantum Computing and Communication Complexity. PhD thesis, Uni-
versiteit van Amsterdam, 2001.

13 Tristan Denley. The odd girth of the generalised Kneser graph. Eur. J. Comb., 18(6):607–611,
1997.

14 Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate coloring.
SIAM J. Comput., 39(3):843–873, 2009. Preliminary version in STOC’06.

15 Zeev Dvir and Benjamin L. Edelman. Matrix rigidity and the Croot-Lev-Pach lemma. Theory
of Computing, 15(1):1–7, 2019.

16 Zeev Dvir and Allen Liu. Fourier and circulant matrices are not rigid. In 34th Computational
Complexity Conference (CCC’19), pages 17:1–17:23, 2019.

17 Uriel Feige. Randomized graph products, chromatic numbers, and the Lovász ϑ-function.
Combinatorica, 17(1):79–90, 1997. Preliminary version in STOC’95.

18 Michael R. Garey and David S. Johnson. The complexity of near-optimal graph coloring. J.
ACM, 23(1):43–49, 1976.

19 Alexander Golovnev and Ishay Haviv. The (generalized) orthogonality dimension of (general-
ized) Kneser graphs: Bounds and applications. arXiv, 2020. arXiv:2002.08580.

20 Alexander Golovnev, Oded Regev, and Omri Weinstein. The minrank of random graphs.
IEEE Trans. Inform. Theory, 64(11):6990–6995, 2018. Preliminary version in RANDOM’17.

21 Willem H. Haemers. On some problems of Lovász concerning the Shannon capacity of a graph.
IEEE Trans. Inform. Theory, 25(2):231–232, 1979.

22 Ishay Haviv. On minrank and the Lovász theta function. In International Conference on
Approximation Algorithms for Combinatorial Optimization Problems (APPROX’18), pages
13:1–13:15, 2018.

23 Ishay Haviv. Approximating the orthogonality dimension of graphs and hypergraphs. In
44th International Symposium on Mathematical Foundations of Computer Science (MFCS’19),
pages 39:1–39:15, 2019.

24 Ishay Haviv. On minrank and forbidden subgraphs. ACM Transactions on Computation
Theory (TOCT), 11(4):20, 2019. Preliminary version in RANDOM’18.

25 Ishay Haviv. Topological bounds on the dimension of orthogonal representations of graphs.
Eur. J. Comb., 81:84–97, 2019.

26 Sihuang Hu, Itzhak Tamo, and Ofer Shayevitz. A bound on the Shannon capacity via a linear
programming variation. SIAM J. Discrete Math., 32(3):2229–2241, 2018. Preliminary version
in ISIT’17.

27 David R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by
semidefinite programming. J. ACM, 45(2):246–265, 1998. Preliminary version in FOCS’94.

28 Donald E. Knuth. The sandwich theorem. Electr. J. Comb., 1(A1):1–48, 1994.

http://arxiv.org/abs/2002.08580

A. Golovnev and I. Haviv 8:15

29 Michael Langberg and Alexander Sprintson. On the hardness of approximating the network
coding capacity. IEEE Trans. Inform. Theory, 57(2):1008–1014, 2011. Preliminary version in
ISIT’08.

30 Abraham Lempel. Matrix factorization over GF (2) and trace-orthogonal bases of GF (2n).
SIAM J. Comput., 4(2):175–186, 1975.

31 László Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Comb. Theory, Ser.
A, 25(3):319–324, 1978.

32 László Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(1):1–7,
1979.

33 László Lovász. Graphs and Geometry, volume 65. Colloquium Publications, 2019.
34 László Lovász, Michael Saks, and Alexander Schrijver. Orthogonal representations and

connectivity of graphs. Linear Algebra and its Applications, 114/115:439–454, 1989. Special
Issue Dedicated to Alan J. Hoffman.

35 Laura Mančinska and David E Roberson. Quantum homomorphisms. Journal of Combinatorial
Theory, Series B, 118:228–267, 2016.

36 René Peeters. Orthogonal representations over finite fields and the chromatic number of graphs.
Combinatorica, 16(3):417–431, 1996.

37 Søren Riis. Information flows, graphs and their guessing numbers. Electr. J. Comb., 14(1),
2007.

38 Moshe Rosenfeld. Almost orthogonal lines in Ed. DIMACS Series in Discrete Math., 4:489–492,
1991.

39 Giannicola Scarpa and Simone Severini. Kochen-Specker sets and the rank-1 quantum
chromatic number. IEEE Trans. Inform. Theory, 58(4):2524–2529, 2012.

40 Saul Stahl. n-tuple colorings and associated graphs. J. Comb. Theory, Ser. B, 20(2):185–203,
1976.

41 Saul Stahl. The multichromatic numbers of some Kneser graphs. Discrete Mathematics,
185(1-3):287–291, 1998.

42 Claude Tardif and Xuding Zhu. A note on Hedetniemi’s conjecture, Stahl’s conjecture and
the Poljak-Rödl function. Electr. J. Comb., 26(4):P4.32, 2019.

43 Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In 6th International
Symposium on Mathematical Foundations of Computer Science (MFCS’77), pages 162–176,
1977.

44 Marcin Wrochna and Stanislav Živný. Improved hardness for H-colourings of G-colourable
graphs. In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’20), pages 1426–1435, 2020.

CCC 2021

Shadows of Newton Polytopes
Pavel Hrubeš #

Institute of Mathematics, The Czech Academy of Sciences, Prague, Czech Republic

Amir Yehudayoff #

Department of Mathematics, Technion-IIT, Haifa, Israel

Abstract
We define the shadow complexity of a polytope P as the maximum number of vertices in a linear
projection of P to the plane. We describe connections to algebraic complexity and to parametrized
optimization. We also provide several basic examples and constructions, and develop tools for
bounding shadow complexity.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Newton polytope, Monotone arithmetic circuit

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.9

Funding Pavel Hrubeš : Supported by the GACR grant 19-27871X.

Acknowledgements We thank Michael Forbes for pointing out the connection between shadow
complexity and Conjecture 47.

1 Introduction

A polytope is the convex hull of a finite set of points in Euclidean space. Equivalently, it is
a compact set that is defined by finitely many linear inequalities. Polytopes are central in
convex geometry and linear optimization algorithms.

Our goal is to understand

how many vertices can a shadow of a polytope have?

A shadow of a polytope P ⊆ Rn is a set of the form L(P), where L : Rn → R2 is a linear
map. The shadows of P are two-dimensional polygons, and hence typically much simpler
than P . The shadow complexity of P is

σ(P) = max
L

|vert(L(P))|,

where L is a linear map and vert(Q) is the vertex set of the polytope Q.
The shadow problem is interesting already in three-dimensional space. Moser’s shadow

problem asks about the shadow complexity of three-dimensional polytopes [35]. Specifically,
the question is what is the minimum of σ(P) over all three dimensional polytopes P with
n vertices. The solution is Θ(log n/ log log n); see [9, 33]. In other words, every n-vertex
polytope in R3 has a projection to R2 with at least Ω(log n/ log log n) vertices, and there are
polytopes where this is tight. The latter is quite surprising; in such a polytope, most vertices
must disappear when projected to the plane.

Our main motivation comes from algebraic complexity theory. This is the study of
computations of polynomials over a field. The connection between between polynomials and
polytopes is via the notion of Newton polytope. Let F be a field. For a list of variables x =
(x1, . . . , xn) and α ∈ Nn, let xα be the monomial

∏n
i=1 xαi

i . A polynomial f ∈ F[x1, . . . , xn]
is a formal sum of the form

∑
α∈Nn aαxα where supp(f) := {α ∈ Nn : aα ̸= 0} is finite. The

Newton polytope of f is

Newt(f) := conv(supp(f)) ,

where conv(·) denotes the convex hull.
© Pavel Hrubeš and Amir Yehudayoff;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 9; pp. 9:1–9:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pahrubes@gmail.com
mailto:amir.yehudayoff@gmail.com
https://doi.org/10.4230/LIPIcs.CCC.2021.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Shadows of Newton Polytopes

Koiran et al. [30] made a bold conjecture relating the complexity of Newt(f) with the
computational complexity of f . The τ -conjecture for Newton polygons asserts, roughly
speaking, that if a bi-variate polynomial f is easy to compute then Newt(f) has a small
number of vertices. This conjecture has serious consequences. It implies that the permanent
polynomial requires arithmetic circuit of exponential size. This is a central and long-standing
open problem in algebraic complexity.

The Newton polytope of the permanent polynomial is the the Birkhoff polytope DSn ⊆
Rn×n; namely, the set of n × n doubly stochastic matrices. The vertices of DSn are all n × n

permutation matrices. This perspective leads us to the following question.

▶ Problem 1. What is σ(DSn)?

The Birkhoff polytope has the curious property that it is both the Newton polytope of
the determinant and of the permanent polynomial. This creates friction in the context of the
τ -conjecture. Determinant is easy to compute whereas permanent is largely believed to be
hard. More specifically, it can be shown that the τ -conjecture implies σ(DSn) ≤ 2O(

√
n log2 n).

Proving that σ(DSn) = 2Ω(n) refutes this τ -conjecture.1
Any non-trivial connection between the arithmetic complexity of f and some geometric

complexity measure of Newt(f), such as shadow complexity, will be an exciting development.
We exhibit such a connection in the case of monotone computations. A monotone

arithmetic circuit uses the operations +, × and only non-negative numbers so that no
cancellations can occur in the course of a computation (for definitions see Section 5). They
have been considered in the seminal papers of Valiant [45] and of Jerrum and Snir [23], and
many others including a less known line of research by Kasim-Zade, Kuznetsev, Gashkov and
Sergeev [26, 32, 17, 18]. We show that shadow complexity allows to prove hardness results
for monotone computation.

▶ Theorem 1. Every monotone formula computing f contains at least σ(Newt(f)) leaves.

What we are really interested in is understanding algebraic circuits, not formulas. We show
that in some cases shadow complexity allows to lower bound monotone circuit complexity. A
polynomial f is transparent if |supp(f)| = σ(Newt(f)). In other words, there is a linear map
L : Rn → R2 which maps supp(f) to distinct convexly independent points in R2.

▶ Theorem 2. If f is transparent then every monotone circuit computing f has size at least
Ω(σ(Newt(f))).

Theorem 2 can be used to explicitly find a monotone multilinear polynomial in n variables
which requires an arithmetic circuit of size Ω(2n/3); see Corollary 40. This surpasses the
classical bounds from [45, 23] which are of the form 2Ω(n1/2), and matches the bounds
from [26, 18] and [39] up to the constant in the exponent. The combinatorial essence of our
argument resembles the arguments of Gashkov and Sergeev [18].
▶ Remark 3. The transparency assumption is unavoidable. There exists a bivariate polynomial
f with a monotone circuit of size O(n) such that Newt(f) has 2n vertices (see Theorem 30).

Shadow complexity has an algorithmic perspective as well. A polytope naturally defines
a linear optimization problem Φ(w) = maxx∈P ⟨x, w⟩, where ⟨x, w⟩ is the standard inner
product. The maximizers of this optimization problem are vertices of P . The Birkhoff

1 This observation came from Michael Forbes in a private conversation.

P. Hrubeš and A. Yehudayoff 9:3

polytope, e.g., corresponds to the maximum weight bipartite perfect matching problem.
Some additional examples of linear optimization problems include the shortest path problem
or the maximum cut problem.

In parametrized complexity, one considers weights that come from a one dimensional
space w(t) = w0 + tw1 parametrized by t ∈ R. The map t 7→ Φ(w(t)) is a convex and
piecewise linear function. A natural complexity measure for such a map is the number
β(P, w(t)) of the breakpoints in Φ(w(t)). The parametrized complexity of P now becomes

β(P) = max
w0,w1

β(P, w(t)).

The quantity β(P) has been studied by Carstensen [7, 8], Mulmuley and Shah [36, 37],
and many others. Carstensen [8] and later [37] showed that the shortest path problem in an
n-vertex graph can have 2Ω(log2 n) breakpoints, and that the maximum cut problem can have
2Ω(n) breakpoints. In Section 3.4, we give an example of a polytope that corresponds to a
linear optimization problem on n variables with 2Ω(n) breakpoints; the previous constructions
gave only 2Ω(

√
n) breakpoints.

We observe a fundamental connection between shadow complexity and parameterized
complexity.

▶ Theorem 4. If |vert(P)| > 1 then σ(P)
2 ≤ β(P) ≤ σ(P) − 1.

This means that results from parametrized complexity translate to the language of
shadows, and vice versa. Carstensen’s lower bound for example implies that

σ(DSn) ≥ 2Ω(log2 n).

This is the best lower bound on σ(DSn) we are aware of. The best upper bound we know
is σ(DSn) ≤ 2O(n). This is not entirely obvious and we shall explain this later on (see
Proposition 23).

The connection between shadow and parametrized complexities leads to interesting
conclusions. The idea, in a nutshell, is that if optimization over P is easy then β(P) is low.
For example, if we can optimize over P by a greedy algorithm then β(P) is at most quadratic.
We do not want to dive into the theory of greedy algorithms, or a formal definition for
that matter. Edmonds and Rado [12, 15] proved that if R ⊆ {0, 1}n is a matroid then the
optimization problem over R can be solved by a greedy algorithm. Many generalizations of
this theorem have been considered (see [46] and references within).

For our purposes, the following simple definition is sufficient. Let P ⊆ Rn be a
polytope and w ∈ Rn. We denote by OptP (w) the set of vertices v of P such that
⟨v, w⟩ = maxx∈P ⟨x, w⟩. Given w, w′ ∈ Rn, we say that they are order-equivalent if for
every i, j ∈ [n], we have wi ≤ wj iff w′

i ≤ w′
j . The polytope P is greedy-like, if for every

order-equivalent w and w′, we have OptP (w) = OptP (w′). In other words, P is greedy-like
if for every weight function w, where the maximum for w is achieved on P depends only on
the order induced by w.

▶ Lemma 5. If P ⊆ Rn is a greedy-like polytope then β(P) ≤
(

n
2
)

and σ(P) ≤ n(n − 1).

A more general link was established by Mulmuley [36]. He considers a model of com-
putation called PRAM model without bit operations intended to solve decision problems or
optimization problems. This model allows to use basic arithmetic operations such as +, ×
as well as =, ≤, but does not allow access to the individual bits of the inputs. Mulmuley
showed2 that a fast parallel algorithm for optimizing over P gives a small β(P). This leads
to several interesting lower bounds in this model.

2 There is a technical issue of bit-lengths which we avoid.

CCC 2021

9:4 Shadows of Newton Polytopes

The above can be further linked to our discussion concerning monotone arithmetic circuits.
A monotone arithmetic formula can be interpreted as a computation over the semiring
(R, min, +, ∞, 0) which solves the optimization problem over Newt(f); see Section 5.1 for
more details. This a particular instance of the PRAM model.

Are there general non trivial bounds on shadow complexity? Let Mσ(n) be the maximum
σ(P) over all polytopes P ⊆ Rn with vertices in {0, 1}n. In [31], Kortenkamp et al. have
shown the following:

▶ Proposition 6 ([31]). There exist constants 0 < c1 < c2 < 1 such that for every n

sufficiently large 2c1n ≤ Mσ(n) ≤ 2c2n.

An explicit construction yields c1 ≥ 1/3; see Remark 20.

1.1 Why the plane?

Why do we study projections of polytopes to two dimensions?
First, our results rely on the fact that in two dimensions Minkowski sum (defined in

Section 2.3) is well-behaved with respect to the number of vertices. In R2, we have
|vert(P + Q)| ≤ |vert(P)| + |vert(Q)|. Already in R3, only the trivial upper bound |vert(P +
Q)| ≤ |vert(P)| · |vert(Q)| holds.

Second, there exists a polytope in R3 with k vertices such that every projection to R2 has
only O(log k/ log log k) vertices. Hence it may happen that a polytope in Rn has exponentially
many vertices when projected to R3 but only polynomially many when projected to R2.

That said, there are non-trivial upper bounds on the number of vertices of P1 + · · · + Pr

in Rd if r is large. For the sake of simplicity, we discuss the case of d = 3. It follows from
a result of Gritzman and Sturmfels [19] that, given polytopes P1, . . . , Pr with n1, . . . , nr

vertices in R3,

|vert(P1 + · · · + Pr)| ≤ O((n1 + · · · + nr)2) .

This beats the trivial bound n1n2n3 already for r = 3. The improved bound could be used to
derive non-trivial bounds on monotone computations of a bounded depth (see Remark 51).

1.2 Extension complexity

As a final remark, we briefly discuss a different possible connection between polytopes and
algebraic complexity. The extension complexity of P , denoted xc(P), as the smallest r

such that P is a linear projection of a polytope Q ⊆ Rm where Q can be defined using r

inequalities and an arbitrary number of equalities; see [47, 40, 13] and references within. It
is related to communication complexity and algorithms (see, e.g., [38]).

We observe that, like shadow complexity, extension complexity also allows to prove
lower bounds on monotone computation. Namely, if f has monotone formula of size s then
xc(Newt(f)) ≤ O(s). This uses simple properties of extension complexity together with a
result of Balas [2].

Extension complexity, however, can not yield general lower bounds in the non-monotone
setting. There exists a polynomial with a polynomial size arithmetic circuit, but whose
Newton polytope has an exponential extension complexity. See Section 5.4 for more details.

P. Hrubeš and A. Yehudayoff 9:5

2 Tools

We start by presenting several tools for bounding shadow complexity, including some ele-
mentary facts about Newton polytopes.

2.1 Parametrized complexity
Some of the bounds on shadow complexity we describe come from the algorithmic viewpoint.
So, we first prove the connection between shadow complexity and parametrized complexity.

Proof of Theorem 4. It is convenient to argue about

B∗(P, w(t)) := β(P, w(t)) + 1,

which counts to the number of pieces of Φ(w(t)). Given w(t) = w0 + tw1, define L : Rn → R2

by

L(x) = (⟨w0, x⟩ , ⟨w1, x⟩).

Because ⟨w(t), x⟩ = ⟨(1, t), L(x)⟩, we see that

max
x∈P

⟨x, w(t)⟩ = max
y∈L(P)

⟨y, (1, t)⟩ .

Since the maximum is always achieved at a vertex of L(P), we obtain B∗(P, w(t)) ≤ σ(P).
To prove the other inequality, we first show that B∗(Q) ≥ k/2 + 1 for every polytope

Q in R2 with k ≥ 2 vertices. Take non-parallel w0, w1 ∈ R2 so that ⟨v, w1⟩ are distinct for
distinct vertices v of Q. Let w(t) = w0 + tw1 and w̄(t) = −w0 + tw1. Each vertex v of Q can
be separated from the other vertices by a hyperplane (in two dimensions, a line), and a small
perturbation of the hyperplane is still separating. Hence, there exists a non-empty open
interval I such that either maxx∈Q ⟨x, w(t)⟩ or maxx∈Q ⟨x, w̄(t)⟩ is achieved at x = v on t ∈ I.
(And v is the only such vertex.) Let v1 be the vertex for which ⟨x, w1⟩ is the largest, and v2
the one where it is smallest. When t → ∞, both maxx∈Q ⟨x, w(t)⟩ and maxx∈Q ⟨x, w̄(t)⟩ is
achieved at v1; similarly for v2 and t → −∞. It follows that B∗(Q, w(t))+B∗(Q, w̄(t)) ≥ k+2
and so B∗(Q) ≥ k/2 + 1.

Now, given P ⊆ Rn, let L : Rn → R2 be a linear map so that L(P) has σ(P) vertices.
By the above, there exists w(t) in R2 so that maxx∈L(P) ⟨x, w(t)⟩ has at least σ(P)/2
breakpoints. Maximizing ⟨x, w(t)⟩ on L(P) is equivalent to maximizing some w′(t) on P and
so β(P) ≥ σ(P)/2. ◀

2.2 Greedy polytopes
Our goal here is to prove that σ(P) is small whenever P is greedy-like (Lemma 5).

Proof of Lemma 5. Let w(t) be a line in Rn. For a given t, the weight vector w(t) defines
a preorder on [n] by i ≤t j iff w(t)i ≤ w(t)j . Since P is greedy-like, every breakpoint of
Φ(w(t)) = maxx∈P ⟨x, w(t)⟩ occurs at a time where the order ≤t changes. Hence there exist
i ̸= j such that the linear function w(t)i − w(t)j changes sign. There are

(
n
2
)

pairs, and a
linear function can change sign at most once. So, Φ(w(t)) has at most

(
n
2
)

breakpoints. This
means β(P) ≤

(
n
2
)

and σ(P) ≤ n(n − 1). ◀

We further show that the definition of greedy-like can be relaxed to weights for which the
maximum is achieved at a unique vertex. This weaker notion can be easier to verify, as in
the case of Kruskal’s algorithm mentioned in Proposition 17.

CCC 2021

9:6 Shadows of Newton Polytopes

▶ Lemma 7. Let P ⊆ Rn be a polytope. Assume that for every order-equivalent w, w′ ∈ Rn,
the equality OptP (w) = OptP (w′) holds whenever |OptP (w)| = 1. Then P is greedy-like.

Proof. Let P be as in the assumption. Assume that w, w′ ∈ Rn are order-equivalent with
|OptP (w)| ≥ 1. We want to show that OptP (w) = OptP (w′). Given v ∈ OptP (w), we can
find z ∈ Rn such that OptP (z) = {v}. Hence for every ϵ > 0 we have OptP (w + ϵz) = {v}.
For ϵ > 0 small enough, we also have that w + ϵz and w′ + ϵz are order-equivalent. It follows
that v ∈ OptP (w′ + ϵz). Letting ϵ tend to zero, we can conclude v ∈ OptP (w′).

We have shown OptP (w) ⊆ OptP (w′). By symmetry, we also have OptP (w) = OptP (w′).
◀

2.3 Operations on polytopes
Given A, B ⊆ Rn, their Minkowski sum is defined as

A + B := {a + b : a ∈ A, b ∈ B}.

If P and Q are polytopes then P + Q is also a polytope. In two-dimensions, Minkowski sum
has nice properties. Let P be a polytope in R2 with vertices v1, . . . , vk where k > 1. We can
assume they are ordered so that P lies in the left closed half plane determined by the line
going from vi to vi+1 for i < k, and similarly for vk and v1. Let E(P) be the collection of unit
vectors in the direction of these k edges. That is, vectors of the form (vi+1 − vi)/∥vi+1 − vi∥
for i < k, and (v1 − vk)/∥v1 − vk∥. If |vert(P)| ≤ 1 then E(P) := ∅.

▶ Lemma 8. Let P1, . . . , Pr be non-empty polytopes in R2. Then E(P1 + · · · + Pr) =⋃r
i=1 E(Pi). Consequently, |vert(P1 + · · ·+Pr)| ≤

∑r
i=1 |vert(Pi)|. The latter holds for empty

Pi’s as well.

The lemma is folklore. It can be inferred from Chapter 13.3 in [11], and we give only an
outline of proof.

Proof sketch of Lemma 8. Given a non-empty polytope P and w ∈ R2, let P w := {x ∈ P :
⟨x, w⟩ = maxz∈P ⟨z, w⟩} be the set of extreme of points of P in the direction w. It is either a
vertex or an edge of P . For a pair of polytopes we have (P1 + P2)w = P w

1 + P w
2 . Every edge

of P1 yields an edge of P1 + P2 with the same direction. Conversely, every edge of P1 + P2
comes from one of P1 or P2. ◀

The second operation we use is

A ⊔ B := conv(A ∪ B).

If P and Q are polytopes then P ⊔ Q is also a polytope.

▶ Lemma 9. Let L : Rn → Rm be a linear map. Given polytopes P, Q ⊆ Rn, L(P + Q) =
L(P) + L(Q) and L(P ⊔ Q) = L(P) ⊔ L(Q).

Proof. The first equality holds by linearity. The second one can be proved by

L(P ⊔ Q) = L(conv(P ∪ Q)) = conv(L(P ∪ Q))
= conv(L(P) ∪ L(Q)) = L(P) ⊔ L(Q) . ◀

We next relate the shadow complexity of P with the shadow complexity of its faces. A
face of a polytope P is the intersection of P with a hyperplane H such that P is completely
contained in one of the two closed halfspaces determined by H. We stipulate that both ∅
and P are faces of P .

P. Hrubeš and A. Yehudayoff 9:7

▶ Lemma 10. Let F be a face of a polytope P . Then β(F) ≤ β(P) and σ(F) ≤ 2σ(P).

For example, this implies β(DSn1) ≤ β(DSn2) whenever n1 ≤ n2. This reflects the fact
that finding a maximum perfect matching is harder for larger graphs.

Proof. Without loss of generality, assume that P ⊂ Rn is contained in the halfspace
{x ∈ Rn : x1 ≥ 0} and that F ̸∈ {∅, P} is the intersection with the hyperplane x1 = 0.

Let w(t) be a line in Rn so that β(F, w(t)) = β(F) = k with w(t)1 = 0. Let t1 < t2 be
such that the breakpoints of maxx∈F ⟨x, w(t)⟩ are contained in the open interval (t1, t2). Let
V := vert(P) \ vert(F). Define

µF := min
x∈F,t∈[t1,t2]

⟨x, w(t)⟩

and

µP := max
v∈V,t∈[t1,t2]

⟨v, w(t)⟩ .

Take λ ∈ R sufficiently small so that for every v ∈ V , we have λv1 + µP < µF . Define w̄(t)
by changing the first coordinate of w(t) to λ + 0 · t. This means that

max
x∈F

⟨x, w(t)⟩ = max
x∈P

⟨x, w̄(t)⟩

holds on [t1, t2]. So, β(P, w̄(t)) = k and β(P) ≥ β(F).
If |vert(F)| ≤ 2, then σ(F) ≤ 2σ(P) holds trivially. Otherwise, σ(F) ≤ 2σ(P) follows

from Theorem 4. ◀

2.4 Laurent polynomials
It is convenient to work with Laurent polynomials instead of polynomials. In a Laurent
polynomial, variables are allowed to have negative integer exponents. The notions of supp(f)
and Newton polytope of f are defined in the obvious manner. A Laurent polynomial over R
is monotone, if all of its coefficients are non-negative.

▶ Lemma 11. Let f, g be Laurent polynomials over F.
(i) Then Newt(fg) = Newt(f) + Newt(g).
(ii) Newt(f + g) = Newt(f) ⊔ Newt(g), provided F = R and both f and g are monotone.

Proof. Part (i) can be found in [16] for polynomials; it extends to Laurent polynomials. Part
(ii) is straightforward to verify. ◀

An application is that the shadow complexity of Newt(g) is at least the shadow complexity
of any of its factors.

▶ Lemma 12. Let g be a non-zero polynomial (over an arbitrary field). If f divides g then
σ(Newt(f)) ≤ σ(Newt(g)).

Proof. Let L be such that L(Newt(f)) ⊆ R2 has σ(Newt(f)) vertices. By the assumption,
we have g = fh for some non-zero polynomial h and so Newt(g) = Newt(f) + Newt(h)
by Lemma 11. By Lemma 9, we have L(Newt(g)) = L(Newt(f)) + L(Newt(h)) and so
|vert(L(Newt(g)))| ≥ |vert(L(Newt(f)))| by Lemma 8. ◀

CCC 2021

9:8 Shadows of Newton Polytopes

3 Examples

We now describe some examples, and analyze the shadow complexity of several natural
polytopes. We start with polytopes with small σ, continue with polytopes with large σ, and
then discuss our favorites, the ones where we do not yet know.

3.1 The hypercube
Optimizing over the discrete cube {0, 1}n ⊂ Rn leads to the polytope Qn = [0, 1]n. The solid
cube Qn has 2n vertices, but its shadow complexity is small.

▶ Proposition 13. σ(Qn) = 2n and β(Qn) = n.

The proposition shows that the factor of two in Theorem 4 is necessary. The lower bound
on σ also follows from a more general theorem of Klee [27].

Proof. Let ℓi ⊆ Rn be the line segment joining the origin and the i-th unit vector for i ∈ [n].
The solid cube Qn is the Minkowski sum of ℓ1, . . . , ℓn. Given L : Rn → R2, the image L(Qn)
is the Minkowski sum of L(ℓ1), . . . , L(ℓn) by Lemma 9. Since |vert(L(ℓi))| ≤ 2, Lemma 8
gives that |vert(L(Qn))| ≤ 2n. The bound σ(Qn) ≥ 2n is achieved by the same lemma. It is
enough to take L so that L(ℓi) are not parallel to get |vert(L(Qn))| = 2n.

The above and Theorem 4 imply that β(Qn) ≥ n. It remains to prove β(Qn) ≤ n. For
every w ∈ Rn, the maximum maxx∈Qn

⟨x, w⟩ equals the sum of the positive entries in w, or
zero if all entries are non-positive. A breakpoint of maxx∈Qn ⟨x, w(t)⟩ can therefore occur
only when some coordinate of w(t) changes sign. A linear function can change sign at most
once and there are n linear functions. ◀

▶ Remark 14. The solid cube Qn is not greedy-like as defined above. This is because in the
optimization algorithm, we must distinguish which entries are non-negative. Shifting all
coordinates of w by λ does not change their order but may change where the maximum is
achieved.

3.2 Permutahedra
Given z = (z1, . . . , zn) ∈ Rn, let

P (z) := conv{(zπ(1), . . . , zπ(n)) : π ∈ Sn},

where Sn is the family of permutations of [n]. The permutahedron is usually defined using
the point z = (0, 1, . . . , n − 1). However, we do not insist z to have distinct coordinates.
Setting z to be a zero-one vector with k ones, P (z) becomes the convex hull of Boolean
vectors of Hamming weight k. For every z, the polytope P (z) is a linear projection of DSn.
The polytope P (z) typically has n! vertices, but its shadow complexity is always small.

▶ Proposition 15. For every z ∈ Rn, σ(P (z)) ≤ n(n − 1). The bound is attained for
z = (0, 1, . . . , n − 1).

Proof. Let z := (0, 1, . . . , n − 1). Let ei ∈ Rn be the i-th unit vector. Let ℓi,j be the line
segment joining ei and ej for i ≠ j. We claim that the polytope P (z) can be written as the
following Mikowski sum

P (z) =
⊕
i<j

ℓi,j . (1)

P. Hrubeš and A. Yehudayoff 9:9

Indeed, let X be the n × n matrix such that Xi,j = x
zj

i . Observe that

P (z) = Newt(det(X)) .

The matrix X is a Vandermonde matrix whose determinant, over any field, factorizes as
det(X) =

∏
i<j(xj − xi). Lemma 11 implies (1).

Now, given L : Rn → R2, we thus have L(P (z)) =
⊕

i<j L(ℓi,j). By Lemma 8, if
we choose L so that the lines L(ℓi,j) are non-parallel, the number of vertices of L(P) is
2 ·

(
n
2
)

= n(n − 1).
The general upper bound is an application of Lemma 5. We claim that P (z) is greedy-like.

Permuting the entries of z does not changes σ. So, we can assume that z1 ≤ z2 ≤ . . . zn.
Given w ∈ Rn,

max
x∈P (z)

⟨x, w⟩ = max
π∈Sn

⟨z, wπ⟩ ,

where wπ := (wπ(1), . . . , wπ(n)). The maximum is achieved iff wπ(1) ≤ wπ(2) · · · ≤ wπ(n).
This means that Optw(P (z)) = Optw′(P (z)) whenever w and w′ are order-equivalent. ◀

▶ Remark 16. Here we provide an additional algebraic proof. Consider z = (z1, . . . , zn) with
zi = 2i−1. The matrix X defined by Xi,j = x

zj

i is a Moore matrix [34]. Over F = GF (2),
the polynomial det(X(z)) factorizes as

det(X(z)) =
∏

A⊆[n]

∑
i∈A

xi .

The number of factors is exponential but we can still get a quadratic upper bound. We have
P (z) =

⊕
A⊆[n] RA where RA = conv{ei : i ∈ A}. Given a projection L : Rn → R2, we have

L(P (z)) =
⊕

A⊆[n] L(RA). The polytopes L(RA) contain at most
(

n
2
)

non-parallel edges and
hence L(P (z)) has again at most n(n − 1) vertices.

3.3 Spanning trees

Every α ∈ {0, 1}(n
2) can be interpreted as the incidence vector of an undirected graph on n

vertices. Namely, αi,j = 1, if i, j are adjacent, and αi,j = 0 otherwise. The polytope TREEn

is defined as the convex hull of spanning trees of the complete n-vertex graph.

▶ Proposition 17. σ(TREEn) ≤ n4.

Proof. By Lemma 5, it is enough to show that P = TREEn is greedy-like. Indeed, Kruskal’s
algorithm for finding a minimum weight spanning tree takes into account only the ordering
of weights on the edges. That is, if w, w′ are order-equivalent and OptP (w) is a singleton
then OptP (w) = OptP (w′). Hence TREEn is greedy-like by Lemma 7. . ◀

▶ Remark 18. This is interesting when contrasted with algebraic complexity. Consider the
unique polynomial Treen with zero-one coefficients so that Newt(Treen) = TREEn. It is a
homogeneous multilinear polynomial of degree n − 1. Proposition 17 shows that the shadow
complexity of its Newton polytope is polynomial. On the other hand, Jerrum and Snir
showed that Treen requires exponential monotone arithmetic circuit [23]. They also pointed
out that it has a non-monotone circuit of polynomial size. More surprisingly, Treen has a
monotone circuit with division of polynomial size [14].

CCC 2021

9:10 Shadows of Newton Polytopes

3.4 Cliques
The correlation polytope CORn ⊆ Rn×n is the convex hull of all symmetric rank-one Boolean
matrices:

CORn = conv{bbt : b ∈ {0, 1}n} .

▶ Proposition 19. σ(CORn) = 2n.

Proof. Let ei,j be the n × n matrix whose (i, j) entry is one and every other entry is zero.
The vertices of CORn are of the form vA =

∑
i,j∈A ei,j with A ⊆ [n]. Define

L(ei,j) :=
{

(2i, 22i) i = j,

(0, 2i+j) i ̸= j,

and extend it linearly to Rn×n. Setting nA :=
∑

i∈A 2i, this guarantees

L(vA) = (
∑
i∈A

2i,
∑

i,j∈A

2i+j) = (nA, n2
A).

These 2n points are convexly independent. ◀

▶ Remark 20. The polytope CORn lives in dimension N = n2, and so σ(COR) = 2
√

N . The
polytope ARTn ⊆ R3n, which we define next, has truly exponential shadow complexity. It is
defined as the convex hull of{

(a0, . . . , an−1, b0, . . . , b2n−1) ∈ {0, 1}3n :
2n−1∑
i=0

bi2i =
(n−1∑

i=0
ai2i

)2}
.

In words, b is the binary representation of the square of the number represented by a. It
follows that σ(ARTn) = 2n.
▶ Remark 21. The polynomial that corresponds to CORn is

Cliquen =
∑

A⊆[n]

∏
i,j∈A

xi,j .

It has n2 variables and Newt(Cliquen) = CORn. We can interpret the polynomial as counting
cliques of all sizes in a directed graph with loops, hence the name.

3.5 More graph-based polytopes
Consider a layered directed graph Gn as follows. The vertex-set of Gn is partitioned into
layers V0, . . . Vn. The first and the last layer consist of a single vertex s and t. Every other
layer has n vertices. The edges are all pairs from Vi × Vi+1 directed from layer i to i + 1.
Overall, Gn has n(n − 1) + 2 vertices and N := (n − 2)n2 + 2n edges. Let CONNn ⊆ RN

be the convex hull of incidence vectors of directed paths from s to t in Gn. The following
proposition can be found in [8, 37], where the results are stated in terms of the parametrized
complexity β, which is equivalent to the shadow complexity by Theorem 4.

▶ Proposition 22. σ(CONNn) = 2Θ(log2 n).

We now deduce the best bound we are aware of for the Birkhoff polytope.

▶ Proposition 23. 2Ω(log2 n) ≤ σ(DSn) ≤ 2O(n).

P. Hrubeš and A. Yehudayoff 9:11

Proof. As pointed by Mulmuley and Shah in [37], the lower bound for CONNn translates to
DSn. For the upper bound, we claim that

σ(DS2n) ≤ 2
(

2n

n

)
σ(DSn) . (2)

By induction, this indeed implies σ(DSn) ≤ 2O(n).
Let us prove (2). Given A ⊆ [2n] with |A| = n, let ΠA be the set of permutation matrices

which, when viewed as a permutation on [2n], map {1, . . . , n} to A. The set of all 2n × 2n

permutation matrices is the union of all ΠA with |A| = n. Hence,

DS2n = conv
(⋃

A: |A|=n

ΠA

)
.

We can view conv(ΠA) as the Minkowski sum of two copies of DSn embedded into R2n×2n.
Given L : R2n×2n → R2 this gives, by Lemma 8, |vert(L(conv(Π(A))))| ≤ 2|vert(L(DSn))|.
The bound in (2) follows. ◀

▶ Remark 24. The upper bound on DSn is more exactly of the form 2(2−o(1))n. In the proof,
we implicitly construct a monotone arithmetic formula for permn of this size. This matches
the lower bound from [43]. Curiously, permn has a monotone circuit of size O(n2n) [23] and
a (non-monotone) formula of size O(n22n) [42].
▶ Remark 25. Let Matn := (X0 · X1 · · · Xn)1,1, where X0, . . . , Xn are n × n matrices whose
entries are distinct variables. Then Newt(Matn) = CONNn.
▶ Remark 26. The perfect matching polytope MATCHn is the the convex hull of incidence
vectors of perfect matchings in the complete (non-bipartite) graph on 2n vertices. A similar
argument to the proof of Proposition 23 gives

σ(DSn) ≤ σ(MATCHn) ≤
(

2n

n

)
σ(DSn) ≤ 2O(n) .

4 Projections

We now discuss some connection between algebraic projections of polynomials and linear
projections of Newton polytopes. The results here shall also be used later on.

A high power projection (h.p.-projection for short) is a homomorphism

π : F[x1, . . . , xn] → F[y1, . . . , ym, y−1
1 , . . . y−1

m]

such that π(xi) = aiy
αi for every xi, where ai ∈ F and αi ∈ Zm, and for every f ∈

F[x1, . . . , xn],

π(f(x1, . . . , xn)) = f(π(x1), . . . , π(xn)).

The constants ai are called the coefficients of π and αi its exponents. If F = R and π has
non-negative coefficients, then π is called monotone.

An h.p.-projection π induces a linear map Lπ : Rn → Rm by setting Lπ(ei) = αi and
extending it linearly to Rn. It follows that supp(π(f)) ⊆ Lπ(supp(f)). The inclusion may be
strict, as some monomials of f can cancel out in the projection. If no cancellations occur,
we indeed have Newt(π(f)) = Lπ(Newt(f)). This is satisfied, e.g., if f is monotone and the
coefficients of π are positive, or if the coefficients are algebraically independent.

CCC 2021

9:12 Shadows of Newton Polytopes

In the other direction, take L : Rn → Rm a linear map defined by m × n matrix with
integer coefficients. Consider a h.p.-projection πL of the form π(xi) = aix

L(ei)
i . If we choose

the coefficients ai to be sufficiently independent, we again obtain L(Newt(f)) = Newt(πL(f)).
The following we do not really need, but it puts things into perspective. A similar fact

has been noted by Grochow [20].

▶ Proposition 27. Let f be a monotone polynomial. Assume that a Laurent polynomial
g is a monotone h.p.-projection of f . Then Newt(g) is a linear projection of some face of
Newt(f). Hence σ(Newt(g)) ≤ 2σ(Newt(f)).

Proof. Assume g = π(f) with π an h.p.-projection. Let A ⊆ [n] be the set of i ∈ [n]
with ai = 0. Let f∗ be the polynomial obtained by substituting 0 for xi for every i ∈ A.
The polytope Newt(f∗) is a face of Newt(f). Indeed, since f has non-negative exponents,
Newt(f∗) = Newt(f) ∩ H where H is the hyperplane defined by

∑
i∈A zi = 0, and Newt(f)

lies in the halfspace
∑

i∈A zi ≥ 0.
We can now write π(f) = π∗(f∗) where π∗ has positive coefficients. This means that

supp(π(f)) = Lπ∗(supp(f∗)) and hence Newt(π(f)) = Lπ∗(Newt(f∗)). The bound on σ

follows from Lemma 10 ◀

The following we do need:

▶ Lemma 28. Let f be a polynomial over an infinite field F. Assume that σ(Newt(f)) = k.
Then there exists a bivariate Laurent polynomial g ∈ F(y1, y2, y−1

1 , y−1
2) which is an h.p.-

projection of f so that Newt(g) has k vertices. Moreover, if f is a homogeneous polynomial
then g is a polynomial. If F = R, then the coefficients in the projection can be assumed
positive.

Proof. Let L(z) = Az with A ∈ R2×n be a linear map so that

|vert(L(Newt(f)))| = k.

We can assume that the entries of A are rational, because a small perturbation of A cannot
decrease |vert(L(Newt(f)))|. Now, we can assume that the entries of A are integers, because
we can multiply A by a suitable integer.

Moreover, when f is homogeneous of degree d, increasing all entries of A by λ corresponds
to shifting L(Newt(f)) by (λd, λd), which does not change the number of vertices. Hence, in
this case, A can be taken with non-negative integer entries.

Let us now consider a h.p.-projection π with π(xi) = aiy
L(ei). It follows that supp(π(f)) ⊆

L(supp(f)). Now, we claim that we can choose the coefficients ai so that equality holds.
This can be seen as follows. Given α ∈ supp(f), the coefficient of yL(α) in π(f) is a non-zero
polynomial hα in the coefficients of π. Hence, if F is infinite, there exist non-zero coefficients
for which hα is non zero for every α ∈ supp(f). If F = R, they can be taken positive. ◀

▶ Remark 29. We emphasize the difference between linear projections of polytopes and
algebraic projections of polynomials. Since the permanent polynomial is VNP-complete,
Cliquen from Remark 21 is a projection (in the common sense) of permm with m polynomial
in n. However, Newt(Cliquen) is not a linear projection of Newt(permm), neither of any of its
faces, unless m is exponentially large [20]. The idea is that DSm has O(m2) facets whereas
Newt(Cliquen) is not a projection of any polytope with few facets. It follows that Cliquen is
not a monotone projection of permm.

P. Hrubeš and A. Yehudayoff 9:13

5 Monotone computation

As the standard model of computation of polynomials we take the arithmetic circuit model.
It is a (finite) directed acyclic graph whose every node has in-degree zero or two. Nodes of
in-degree zero (input nodes) are labelled with a constant or a variable. Nodes of in-degree
two are labelled with operations + or ×. Every node of the circuit computes a polynomial
in F in the natural way. As the size of the circuit, we take the number of nodes. A circuit
is called a formula if its underlying graph is a tree. For more background and motivation,
see [44] and references within.

Our focus is mainly on monotone computation. A polynomial over R is monotone if all
of its coefficients are non-negative. Similarly, a monotone arithmetic circuit can use only
non-negative constants.

5.1 Optimization problems
We start with a somewhat surprising connection between monotone computation and Newton
polytopes. A monotone circuit over R computing f can be interpreted as a computation
over the semi-ring M = (R ∪ {∞}, min, +, ∞, 0). That is, replace “+” by “min”, replace “×”
by “+”, replace “0” by “∞”, and replace every positive constant “a” by “0”. A circuit with
operations from M has also been called a tropical circuit [24]. The resulting circuit computes
the function f∗ : Rn → R which turns out to be precisely

f∗(w) = min
x∈Newt(f)

⟨x, w⟩ .

For example, any monotone circuit for the permanent polynomial can also be viewed as a
tropical circuit for the minimum weight perfect matching in a bipartite graph. Computations
over general semi-rings have been considered in [23, 24], where the reader can find more
details.

5.2 Shadows and monotone computations
We explore some connections between the structure of the Newton polytope of f and monotone
arithmetic computations. We prove that shadow complexity allows to prove lower bounds on
monotone complexity (Theorems 1 and 2). We also show that in general Theorem 1 does not
hold for circuits instead of formulas and so the assumption of transparency in Theorem 2
cannot be removed.

▶ Theorem 30. For every n, there exists a monotone bivariate polynomial fn such that fn

has a monotone arithmetic circuit of size O(n) and Newt(f) has 2n vertices.

Theorem 30 is proved in Section 8. The construction is reminiscent of that in [3] of a
univariate polynomial with circuit of size s and 2Ω(s) real roots (cf. Chapter 12 of [6]). A
weaker bound can also be deduced as follows:
▶ Remark 31. Recall the polynomial Matn from Remark 25. Then Matn has a monotone
circuit of size O(n4) whereas σ(Newt(Matn)) = 2Ω(log2 n).

▶ Remark 32. When a monotone arithmetic formula is interpreted as a tropical formula (cf.
Section 5.1), it becomes an instance of parallel computation in the PRAM model without bit
operations of Mulmuley [36]. Hence Theorem 1 can be seen as special case3 of Theorem 3.3
from [36].

3 This is not a “black box” reduction. Mulmuley’s result has an additional parameter representing bit
size of the input, whereas we have no such thing.

CCC 2021

9:14 Shadows of Newton Polytopes

5.3 Monotone formulas
Here we show that shadow complexity allows to lower bound monotone formula complexity.

A high powered circuit (h.p.-circuit for short) is an arithmetic circuit in which every input
node is labelled by a term axk1

1 · · · xkn
n with a ∈ F and k1, . . . , kn ∈ Z. The size of the circuit

is the number of its nodes.
In other words, we have given the circuit a power to compute every term axα at a unit

cost. This is especially important in the case of h.p.-formula. An arithmetic formula of size
s can compute a polynomial of degree at most s, whereas there is no such restriction in an
h.p.-formula. Furthermore, we have allowed the variables to have negative exponents and
hence an h.p.-circuit computes a Laurent polynomial instead of a polynomial. But this is
only a cosmetic detail.

▶ Theorem 33. Let f be a monotone bivariate Laurent polynomial such that Newt(f) has k

vertices. Then every monotone h.p.-formula computing f has at least k leaves.

Proof. Straightforward induction using Lemma 11 and 8. ◀

We can now prove that every monotone formula computing f contains at least σ(Newt(f))
leaves.

Proof of Theorem 1. By Lemma 28 there exists a bivariate g which is a monotone h.p.-
projection of f so that Newt(g) has k vertices. The projection also transforms a monotone
formula for f to a monotone h.p.-formula for g. ◀

5.4 Lower bounds from extension complexity
As mentioned in Section 1.2, one can obtain monotone formula lower bounds also from
extensions complexity of Newton polytopes. The main ingredient is the following lemma.

▶ Lemma 34. For polytopes P, Q ⊆ Rn we have

xc(P + Q) ≤ xc(P) + xc(Q) and xc(P ⊔ Q) ≤ xc(P) + xc(Q) + 2.

Proof. The first inequality is rather obvious. The second follows from a theorem of Balas [2],
see also [10]. ◀

The lower bound is now proved by a straightforward induction.

▶ Theorem 35. Assume that f has a monotone formula of size s. Then xc(Newt(f)) ≤ O(s).

▶ Remark 36. The Pfaffian Pfn is the polynomial so that Pf2
n = det(X), where X is the

2n × 2n antisymmetric matrix with Xi,i = 0 and Xi,j = −Xj,i = xi,j if i < j. The Pfaffian
has an arithmetic circuit of size polynomial in n, and a formula of size 2O(log2 n); see [45].
The Newton polytope Newt(Pfn) is the perfect matching polytope MATCHn, as described in
Remark 26. By a result of Rothvoss [41], MATCHn has extension complexity 2Ω(n).

5.5 Monotone circuits
We move to proving the circuit lower bound stated in Theorem 2. We first observe that
Minkowski sum typically can not avoid convex independence.

▶ Lemma 37. Let A, B ⊆ R2 be non-empty sets such that A + B is a convexly independent
set with |A| ≥ |B|. Then either |A| ≤ 2 or |B| ≤ 1.

P. Hrubeš and A. Yehudayoff 9:15

Proof. For the sake of contradiction, assume that A + B is convexly independent, |A| ≥ 3
and |B| ≥ 2. By Lemma 8, the convex hull of A + B has at most |A| + |B| vertices. By the
size assumption, there exist a1 ≠ a2 ∈ A and b1 ≠ b2 ∈ B with a1 + b1 = a2 + b2. The point
a1 + b1 is the average of a1 + b2 and a2 + b1 and it is distinct from them, a contradiction. ◀

▶ Theorem 38. Let f be a monotone bivariate Laurent polynomial such that supp(f) is
convexly independent and |supp(f)| = k. Then f requires monotone h.p.-circuit with k/4
gates.

Theorem 38 implies Theorem 2 via Lemma 28.

Proof. The lower bound is proved using the following “progress” measure. Given A ⊆ R2

and ϵ ∈ {0, 1}, let Aϵ := A if ϵ = 1 and Aϵ := ∅ if ϵ = 0. Given v ∈ R2, let v + A := {v} + A.
Let A be a finite set of finite subsets of R2. For functions ϵ : A → {0, 1} and v : A → R2, let

Aϵ,v =
⋃

A∈A
(v(A) + A)ϵ(A).

Let

µ(A) = max
ϵ,v

{|Aϵ,v| : Aϵ,v is convexly independent}.

▷ Claim. Let A′ = A ∪ {B} and A1, A2 ∈ A. Then

µ(A′) ≤µ(A) + |B| , (3)
µ(A′) ≤µ(A) + 2 , if B = u + A1 for some u ∈ R2 , (4)
µ(A′) ≤µ(A) + 4 , if B = A1 ∪ A2 , (5)
µ(A′) ≤µ(A) + 4 , if B = A1 + A2 . (6)

Proof of Claim. Inequality (3) is straightforward.
To prove (4), suppose that ϵ, v are such that A′

ϵ,v is convexly independent. Suppose
ϵ(A1) = ϵ(B) = 1 and v(A1) + A1 ̸= v(B) + B; otherwise we have |A′

ϵ,v| ≤ µ(A). Then
(v(A1) + A1) ∪ (v(B) + B) = {v(A1), v(B) + u} + A1 is convexly independent. Since
|{v(A1), v(B) + u}| = 2, by Lemma 37, A1 has size at most 2. This means µ(A′) ≤ µ(A) + 2
by (3).

For (5), observe that µ(A′) ≤ µ(A ∪ {u1 + A1, u2 + A2}) whenever u1, u2 ̸= 0 are distinct
and apply (4) twice.

Finally, we prove (6). If B = A1 + A2 is not convexly dependent, it contributes nothing
to µ. Assume that B is convexly independent and |A1| ≥ |A2| > 0. By Lemma 37, either
|A1 + A2| ≤ 4 or |A2| = 1. In the former case, µ(A′) ≤ µ(A) + 4 by (3). In the latter,
A2 = {u} for some u and A′ = A ∪ {u + A1} and we can apply (4). ◁

Let us call a h.p.-circuit transparent, if every gate in the circuit computes a polynomial
with convexly independent support. Given a circuit Ψ and a node u, let supp(u) be the
support of the Laurent polynomial computed by u. Let AΨ be the set {supp(u) : u ∈ Ψ}.

Using the Claim, we can show that whenever a transparent and monotone Ψ has s gates
then µ(AΨ) ≤ 4s. The proof is by induction. The induction base s = 1 trivially holds. It
remains to verify the induction step. Let u be an output gate of Ψ. If u is also an input gate,
apply (3). If u = u1 + u2 then supp(u) = supp(u1) ∪ supp(u2) and (5) completes the proof.
If u = u1 × u2 then supp(u) = supp(u1) + supp(u2) and (6) completes the proof.

CCC 2021

9:16 Shadows of Newton Polytopes

Finally, consider a monotone circuit Ψ for f of minimal size s. No gate in the circuit
computes the zero polynomial (unless f itself the zero polynomial). The circuit is transparent
because a monotone computation does not cancel monomials unless multiplying by zero,
and because +, × can not “undo” convex dependence. This means that µ(AΨ) ≤ 4s.
On the other hand, since supp(f) consists of k convexly independent points, we have
µ(AΨ) ≥ |supp(f)| = k. ◀

Other illustrative consequences are the following:

▶ Corollary 39.
∑n

k=0 xkyk2 requires monotone h.p.-arithmetic circuit of size Ω(n).

Recall the Cliquen polynomial from Remark 21 and the polytope ARTn from Remark 20.
Let Artn be the unique polynomial with zero-one coefficients so that Newt(Artn) = ARTn.

▶ Corollary 40. Both Cliquen and Artn require monotone arithmetic circuits of size Ω(2n).

Proof. Proposition 19 and Remark 20 show that Cliquen and Artn are transparent with
shadow complexity 2n. ◀

5.6 Generalizations
The results of this section can be strengthened in several ways. First, one could extend the
notion of monotone computation to any field. A monotone circuit would be such that for
every sum gate f1 + f2, no monomial can vanish4: supp(f1 + f2) = supp(f1) ∪ supp(f2). Then
Theorem 1 goes through.

Second, one may consider circuits with high-power gates. This would be an arithmetic
circuit which, apart from the +, × gates, can use also unary gates of the form ()k which
raises its input to a power of k ∈ N. A similar notion has appeared in the context of additive
complexity of a polynomial and counting real roots of univariate polynomials (see Section 12.3
of [6] and references within). Our lower bounds hold also in this setting. This is because
Newt(fk) with k > 0 is merely a scaling of Newt(f).

Finally, our results extend to other semi-rings as well. For definitions of polynomials
over semi-rings and their computations see, e.g., [23, 24]. Let B = ({0, 1}, ∨, ∧, 0, 1) be the
Boolean semi-ring.

▶ Proposition 41. Theorems 1 and 2 hold also over B.

Proof. Given a circuit over B computing f , we can interpret it as a computation over R by
replacing ∧ by × and replacing ∨ by +. The circuit then computes a polynomial f∗ over R
with supp(f∗) = supp(f). Since the two theorems take into account only supp(f∗), they hold
over B as well. ◀

6 Divisions

The model of monotone circuits can be extended to include division gates. We may allow the
circuit to use an extra gate computing f/g. A monotone circuit with divisions can compute
a non-monotone polynomial; e.g., x2 − x + 1 = x3+1

x+1 .
Monotone circuits with divisions were extensively studied by Fomin et al. [14]. They

proved, among other nice things, a separation between monotone circuits and monotone
circuits with division. The Spanning Tree polynomial (see Section 3.3) has a polynomial size

4 Monomials can however vanish on a product as in (x + y)(x − y) = x2 − y2.

P. Hrubeš and A. Yehudayoff 9:17

monotone circuit with divisions but requires an exponential size monotone circuit by [23].
This is in sharp contrast with the result of Strassen that division gates cannot help in the
general arithmetic setting5.

Super-polynomial lower bounds on monotone circuits with division computing a monotone
polynomial f are not known. In [14], strong lower bounds were given for a non-monotone f .
The non-monotonicity, however, is more than a subtlety. Their proof hinges on the fact that
(x − 1)2 + 2−2n+1 can be written as f/g with f, g monotone, whereas they require degrees 22n .

This question can be phrased more generally. If f can be computed by a monotone circuit
with divisions of size s then we can find non-zero h and g with monotone circuit size O(s)
such that fh = g. In other words, f divides g.

▶ Problem 2. Find an explicit monotone fn (with polynomially many variables and of a
polynomial degree) such that g requires superpolynomial monotone circuit whenever g ̸= 0
and fn divides g.

A seminal result of Kaltofen [25], see also [5], states the following: if f of degree d can be
computed by a circuit of size s, we can compute each factor of f by a (non-monotone) circuit
of size polynomial in s and d. We believe that in fact d can be replaced by the degree of the
factor. This means that in the non-monotone setting, Problem 2 is equivalent to proving
lower bound on fn.

Shadow complexity gives a partial solution to Problem 2.

▶ Theorem 42. Let f be a (not necessarily monotone) real polynomial such that σ(Newt(f)) =
k. Assume that g ̸= 0 is a monotone polynomial such that f divides g. Then every monotone
formula computing g contains at least k leaves.

Proof. Lemma 12 gives σ(Newt(g)) ≥ σ(Newt(f)), and we can apply Theorem 1. ◀

Shadow complexity also provides lower bounds on monotone circuit complexity provided
the degree is not too large. This is another partial solution to Problem 2.

▶ Proposition 43. Let f be either Cliquen or Artn. Let g ̸= 0 be a monotone polynomial
such that f divides g.
1. g requires monotone formula with 2n leaves.
2. If g has degree d ≤ 2o(n

1
2), then g requires monotone circuit of size 2Ω(n

1
2).

3. If g = αf with α a monomial of an arbitrary degree, then g requires monotone arithmetic
circuit of size Ω(2n).

Proof. 1 follows from Theorem 42 and the fact that f is transparent (see Proposition 19
and Remark 20). Similarly, Newt(αf) is merely a shift of Newt(f) and hence it remains
transparent, which gives 3.

For 2 we use a result of Hyafil [22]: If g has a monotone circuit of size s, then it has a
monotone formula of size 2O(log s log d+log2 d). Part 1 completes the proof. ◀

The degree assumption in 2 is rather artificial. A monotone circuit with divisions can
result in g with an exponential degree, as is the case in the circuit from [14] computing
the spanning tree polynomial. Nevertheless, this yields lower bounds at least for monotone
formulas with division.

5 This holds for polynomials of low degree; the spanning tree polynomial indeed has this property.

CCC 2021

9:18 Shadows of Newton Polytopes

▶ Theorem 44. The polynomials Cliquen and Artn require monotone formula with division
of size 2Ω(n).

Proof. Brent’s [4] argument that formulas with division can be balanced implies that if f has
monotone formula with divisions of size s, then f = g/h where both g and h have monotone
formulas of size polynomial in s. Proposition 43 part 1 completes the proof ◀

▶ Remark 45. Transparency is fragile. If f is transparent then f2 is not necessarily so. In fact,
if f is monotone then f2 is never transparent unless |supp(f)| ≤ 1. Hence, the techniques
from Proposition 43 do not give anything when g = fm and m is exponentially large.
▶ Remark 46. A different partial solution to Problem 2 can be inferred from monotone
Boolean lower bounds. Let Cliquek,n be the polynomial

∑
A

∏
i,j∈A xi,j , where A ranges

over k-element subsets of [n]. For k := ⌊(n/ log n)2/3/4⌋, and for every m, the polynomial
(Cliquek,n)m requires a monotone arithmetic circuit of size 2nΩ(1) .

Indeed, a monotone arithmetic can be interpreted as a monotone Boolean circuit (cf.
Section 5.1). Hence, a monotone arithmetic circuit for (Cliquek,n)m translates to a monotone
Boolean circuit deciding whether a graph has a k-clique. This requires an exponential circuit
by a result of Alon and Boppana [1].

7 τ -Conjecture for Newton polygons

Koiran et al. made the following conjecture [30].

▶ Conjecture 47 ([30]). Let F be a field. Let f ∈ F[x1, x2] be a bivariate polynomial which
can be written as

f =
p∑

i=1

q∏
j=1

fi,j , where |supp(fi,j)| ≤ r , (7)

then Newt(f) has at most O((pqr)c) vertices (for some absolute constant c).

The authors of [30] have shown that Conjecture 47 implies VP ̸=VNP over the field in
question. The conjecture is related to a similar conjecture by Koiran from [28] about the
number of real roots of univariate polynomials. In [21], it was shown that the conjecture
from [28] in fact implies Conjecture 47. Theorem 33 validates the conjecture in the monotone
setting:
▶ Remark 48. Let f be as in (7) with fij monotone. Then Newt(f) has at most pqr vertices.

The conjecture can be used to upper-bound the shadow complexity.

▶ Proposition 49. Let F be an infinite field. Assume Conjecture 47 holds over F. Assume that
a polynomial f of degree d has an arithmetic circuit of size s. Then σ(Newt(f)) ≤ sO(

√
d log d).

Proof. First, observe that if Conjecture 47 is true, it is also true when f and fij in (7) are
allowed to be Laurent polynomials.

Now, if f has a circuit of size s, then f has a depth-four circuit of size sO(
√

d log d); see [29]
and references within. This means that we can write

f =
p∑

i=1

q∏
j=1

fi,j , where |supp(fi,j)| ≤ r ,

with pqr ≤ sO(
√

d log d).

P. Hrubeš and A. Yehudayoff 9:19

Suppose that σ(Newt(f)) = k. By Lemma 28, there is a h.p.-projection π so that
the Newton polytope of the bivariate Laurent polynomial π(f) has k vertices. Hence
π(f) =

∑p
i=1

∏q
j=1 π(fi,j). Since |supp(π(fi,j))| ≤ r, Conjecture 47 implies k ≤ O((pqr)c)

and hence k ≤ sO(
√

d log d). ◀

This gives quantitative bounds for some specific polytopes, mainly the Birkhoff polytope
and the Matching polytope from Remark 26:

▶ Corollary 50. Assume that Conjecture 47 holds over some infinite field. Then both σ(DSn)
and σ(MATCHn) are at most 2O(

√
n log2 n).

Proof. DSn is the Newton polytope of the determinant polynomial which has an arithmetic
circuit of size s = nO(1). For MATCHn, the same holds by Remark 36. ◀

We do not know whether these conclusions hold or not. Another implication of Conjecture
47 is that σ(Qk,n) ≤ nO(1), where Qk,n is the convex hull of vectors in {0, 1}n of Hamming
weight k. It follows from Proposition 15 that this is actually true: σ(Qk,n) ≤ n2.
▶ Remark 51. Results of Gritzman and Sturmfels [19] (cf. Section 1.1) imply the following
monotone three-dimensional version. Let f be as in (7), where fij ∈ R[x1, x2, x3] are
monotone. Then Newt(f) ⊆ R3 has at most O(p(qr)2) vertices.

8 An easy polynomial with many vertices

Here we construct a bivariate polynomial with a monotone arithmetic circuit of linear size,
but whose Newton polytope has exponentially many vertices. This proves Theorem 30.

We use the following notation. Given (a, b) ∈ R2,

(a, b) · P := {(ax, by) : (x, y) ∈ P}.

Given a ∈ R,

aP := (a, a) · P.

▶ Observation 52. For a bivariate polynomial f(x, y),

Newt(f(xa, yb)) = (a, b)Newt(f(x, y)) and Newt(fa) = aNewt(f).

The building block of the polynomial are the following two polytopes. Let Pn be the
polytope with vertices {(k, k2) : 0 ≤ k ≤ n − 1}. Let Qn be the polytope with vertices
{(k, k2 + k) : 0 ≤ k ≤ n − 1}. These polytopes can be constructed inductively as follows.

▶ Lemma 53. For every n ≥ 1,

P2n = (2, 4) · Pn ⊔ ((1, 1) + (2, 4) · Qn)) (8)
Q2n = (1, 2) · (Pn + Qn) ⊔ {(2n − 1, 2n(2n − 1))} . (9)

Proof.
Part (8). Let 0 ≤ k ≤ 2n − 1. If k = 2r is even then r ≤ n − 1 and

(k, k2) = (2, 4)(r, r2)

with (r, r2) a vertex of Pn. If k = 2r + 1 is odd then r ≤ n − 1 and

(k, k2) = (2r + 1, 4r2 + 4r + 1) = (1, 1) + (2, 4) · (r, r2 + r) ,

CCC 2021

9:20 Shadows of Newton Polytopes

where (r, r2 + r) is a vertex of Qn. This shows the containment ⊆ in (8). The other direction
holds since Pn ⊔ Qn can have at most 2n vertices.

Part (9). We first describe the vertices of (1, 2)(Pn + Qn). We claim that

vert((1, 2)(Pn+Qn)) = {v0, v1, . . . , v2n−2, u}, (10)
where vk := (k, k2 + k), u := (n − 1, 2n(n − 1)).

Given 0 ≤ k ≤ 2n − 2, let us show that vk is a vertex of (1, 2)(Pn + Qn). If k = 2r is even,
we have r ≤ n − 1 and

(k, k2 + k) = (2r, 4r2 + 2r) = (1, 2)(r, r2) + (1, 2)(r, r2 + r).

If k = 2r + 1 is odd, we have r ≤ n − 2 and

(k, k2 + k) = (2r + 1, 4r2 + 6r + 2) = (1, 2)(r + 1, (r + 1)2) + (1, 2)(r, r2 + r).

This means that vk ∈ (1, 2)(Pn + Qn). Now, every (z1, z2) ∈ (1, 2)(Pn + Qn) satisfies
z2 ≥ z2

1 + z1, because

2r2
1 + 2(r2

2 + r2) − (r1 + r2)2 − (r1 + r2) = (r1 − r2)2 − (r1 − r2) ≥ 0.

Since vk lies on the curve z2 = z2
1 + z1, and the curve is strictly convex, vk cannot be

convex combination of other points in (1, 2)(Pn + Qn). So, vk is indeed a vertex. To show
that u is a vertex, note that both (1, 2)Pn and (1, 2)Qn are contained in the halfplane
{(z1, z2) ∈ R2 : z2 ≤ 2nz1}. On the boundary z2 = 2nz1, (1, 2)Qn has vertices (0, 0) and u,
and (1, 2)Pn only the vertex (0, 0). This implies u is a vertex of (1, 2)(Pn + Qn). This proves
the containment ⊆ in (10). Equality holds since Pn + Qn can have at most 2n vertices.

To infer (9) from (10), note that u lies on the line connecting the origin and v2n−1 =
(2n − 1, 2n(2n − 1)). ◀

Proof of Theorem 30. Inductively define a sequence of bivariate polynomials. The base
case is

p0 = 1 and q0 = 1.

The inductive step is

pn+1 = pn(x2, y4)2 + xN yN qn(x2, y4)2

and

qn+1 = pn(x2, y4)qn(x2, y4) + xN(N−1)yN2(N−1)

where N = 2n+1.
We claim that for every n ≥ 0,

Newt(pn) = 2nP2n and Newt(qn) = 2nQ2n . (11)

For n = 0, this follows from Newt(p0) = Newt(q0) = {(0, 0)} = P1 = Q1. The induction step
uses Lemma 11 and Observation 52. Assume that (11) holds for a given n ≥ 0. Then

Newt(pn(x2, y4)) = 2n(2, 4)P2n and Newt(qn(x2, y4)) = 2n(2, 4)Q2n .

P. Hrubeš and A. Yehudayoff 9:21

Using (8),

Newt(pn+1) =2 · 2n(2, 4)P2n ⊔ ((N, N) + 2 · 2n(2, 4)Q2n))
=2n+1((2, 4)P2n ⊔ ((1, 1) + (2, 4)Q2n)))
=2n+1P2n+1 .

Similarly, part (9) gives

Newt(qn+1) =2n(2, 4)(P2n + Q2n) ⊔ {(N(N − 1), N2(N − 1))}
=2n+1 ((1, 2)(P2n + Q2n) ⊔ {(N − 1, N(N − 1))})
=2n+1Q2n+1 .

This proves (11).
To compute pn, qn, first construct a circuit of size O(n) that simultaneously computes

xM , xM(M−1), yM , yM2(M−1) for every M = 2m with m ≤ n. Now, construct a circuit for
pn and qn inductively. Given a circuit for pn and qn, we can construct a new one computing
pn+1, qn+1 by introducing a constant number of extra gates. ◀

9 Open problems

We conclude with the main open problems of this paper.

▶ Open Problem 1. Is σ(DSn) or σ(MATCHn) exponential in n?

▶ Open Problem 2. Is Conjecture 47 true? If not, is it true when f in (7) is required to
have convexly independent support?

▶ Open Problem 3. Find an explicit monotone fn (with polynomially many variables and
of a polynomial degree) such that g requires superpolynomial monotone arithmetic circuit
whenever g ̸= 0 and fn divides g.

References
1 Noga Alon and Ravi B. Boppana. The monotone circuit complexity of boolean functions.

Combinatorica, 7(1):1–22, 1987.
2 E. Balas. Disjunctive programming: properties of the convex hull of feasible points. Discrete

Applied Mathematics, 89:3–44, 1998.
3 A. Borodin and S. Cook. On the number of additions needed to cumpute specific polynomial.

SIAM J. Comput., 5:146–157, 1976.
4 R. P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM, 21:201–206,

1974.
5 P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory, volume 7 of

Algorithms and Computation in Mathematics. Springer, 2000.
6 P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory, volume 315 of

A series of comprehensive studies in mathematics. Springer, 1997.
7 P. Carstensen. Complexity of some parametric integer and network programming problems.

Math. Programming, 26:64–75, 1983.
8 P. Carstensen. The complexity of some problems in parametric linear and combinatorial

programming. PhD thesis, Univ. of Michigan, 1983.
9 B. Chazelle, H. Edelsbrunner, and L. J. Guibas. The complexity of cutting complexes. Discrete

Comput Geom, 4:139–181, 1989.

CCC 2021

9:22 Shadows of Newton Polytopes

10 M. Confronti, M. D. Summa, and Y. Faenza. Balas formulation for the union of polytopes is
optimal. Math. Programming, 180:311–326, 2020.

11 M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer, 2 edition, 2000.

12 J. Edmonds. Matroids and the greedy algorithm. Math. Programming 1, pages 127–136, 1971.
13 Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald de Wolf.

Linear vs. semidefinite extended formulations: Exponential separation and strong lower bounds.
CoRR, abs/1111.0837, arXiv:1111.0837, 2011.

14 S. Fomin, D. Grigoriev, and G. Koshevoy. Subtraction-free complexity, cluster transformations,
and spanning trees. Found Comput Math, 16:1–31, 2016.

15 D. Gale. Optimal assignments in an ordered set: an application of matroid theory. J. Combin.
Theory 4, pages 1073–1082, 1968.

16 S. Gao. Absolute irreducibility of polynomials via newton polytopes. Journal of Algebra,
237(2):501–520, 2001.

17 S.B. Gashkov. The complexity of monotone computations of polynomials. Mosc. Univ. Math.
Bull., 42(5):1–8, 1987.

18 S.B. Gashkov and I.S. Sergeev. A method for deriving lower bounds for the complexity of
monotone arithmetic circuits computing real polynomials. Sbornik: Mathematics, 203(10):33–
70.

19 P. Gritzmann and B. Sturmfels. Minkowski addition of polytopes: Computational complexity
and applications to Gröbner bases. SIAM J. Disc. Math., 6(2), 1993.

20 J. A. Grochow. Monotone projection lower bounds from extended formulation lower bounds.
Theory of Computing, 13:1–15, 2017.

21 P. Hrubeš. On the distribution of runners on a circle. European Journal of Combinatorics, 89,
2020.

22 L. Hyafil. On the parallel evaluation of multivariate polynomials. SIAM J. Comput., 8(2):120–
123, 1979.

23 M. Jerrum and M. Snir. Some exact complexity results for straight-line computations over
semirings. Journal of the ACM, 1982.

24 S. Jukna. Lower bounds for tropical circuits and dynamic programs. Theory of Computing
Systems, 57:160–194, 2015.

25 E. Kaltofen. Uniform closure properties of p-computable functions. In STOC, pages 330–337,
1987.

26 O. M. Kasim-Zade. Arithmetic complexity of monotone polynomials. In Theoretical Problems
in Cybernetics. Abstracts of lectures. Saratov State University Publishing House, Saratov, 1986.

27 V. Klee. On a conjecture of Lindenstrauss. Israel Journal of Mathematics, 1:1–4, 1963.
28 P. Koiran. Shallow circuits with high-powered inputs. In Symposium on Innovations in

Computer Science. Tsingua University Press, Beijing, 2011.
29 P. Koiran. Arithmetic circuits: the chasm at depth four gets wider. Theoretical Computer

Science, 448:56–65, 2012.
30 P. Koiran, N. Portier, S. Tavenas, and S. Thomassé. A τ -conjecture for Newton polygons.

Foundations of computational mathematics, 15(1):187–197, 2015.
31 U. H. Kortenkamp, J. Richter-Gebert, A. Sarangajan, and G. M. Ziegler. Extremal properties

of 0/1-polytopes. Discrete and Computational Geometry, 17:439–448, 1997.
32 S. E. Kuznetsov. Monotone computations of polynomials without zero chains. In VII All-Union

Conference on Problems in Theoretical Cybernetics, pages 108–109. Irkutsk, 1985.
33 J. G. Lagarias, Y. Luo, and A. Padrol. Moser’s shadow problem. ArXiv, arXiv:1310.4345,

2013.
34 E. H. Moore. A two-fold generalization of fermat’s theorem. Bull. Amer. Math. Soc., 2(7):189–

199, 1896.
35 L. Moser. Poorly formulated unsolved problems in combinatorial geometry. In mimeographed

notes. (East Lansing conference), 1966.

https://arxiv.org/abs/1111.0837
https://arxiv.org/abs/1310.4345

P. Hrubeš and A. Yehudayoff 9:23

36 K. Mulmuley. Lower bounds in a parallel model without bit operations. SIAM J. Comput.,
28(4):1460–1509, 1999.

37 K. Mulmuley and P. Shah. A lower bound for the shortest path problem. Journal of Computer
and System Sciences, 62(2):253–267, 2001.

38 A. Rao and A. Yehudayoff. Communication Complexity: And Applications. Cambridge
University Press. doi:10.1017/9781108671644

39 R. Raz and A. Yehudayoff. Multilinear formulas, maximal-partition discrepancy and mixed-
sources extractors. J. Comput. Syst. Sci. 77(1), pages 167–190, 2011.

40 Thomas Rothvoß. Some 0/1 polytopes need exponential size extended formulations. CoRR,
abs/1105.0036, arXiv:1105.0036, 2011.

41 Thomas Rothvoß. The matching polytope has exponential extension complexity the matching
polytope has exponential extension complexity. J. ACM, 2017.

42 H. J. Ryser. Combinatorial Mathematics. Mathematical Association of America, 1963.
43 E. Shamir and M. Snir. On the depth complexity of formulas. Journal Theory of Computing

Systems, 13(1):301–322, 1979.
44 A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open

questions. Foundations and Trends in Theoretical Computer Science, 5(3-4), 2010.
45 L. G. Valiant. Negation can be exponentially powerful. Theoretical Computer Science,

12:303–314, 1980.
46 A. Vince. A framework for the greedy algorithm. Discrete Applied Mathematics 121, pages

247–260, 2002.
47 Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs.

Journal of Computer and System Sciences, 43(3):441–466, 1991.

CCC 2021

https://doi.org/10.1017/9781108671644
https://arxiv.org/abs/1105.0036

Fractional Pseudorandom Generators from Any
Fourier Level
Eshan Chattopadhyay #

Department of Computer Science, Cornell University, Ithaca, NY, USA

Jason Gaitonde #

Department of Computer Science, Cornell University, Ithaca, NY, USA

Chin Ho Lee #

Department of Computer Science, Columbia University, New York City, NY, USA

Shachar Lovett #

Department of Computer Science, University of California, San Diego, CA, USA

Abhishek Shetty #

Department of Computer Science, University of California, Berkeley, CA, USA

Abstract

We prove new results on the polarizing random walk framework introduced in recent works of
Chattopadhyay et al. [4, 6] that exploit L1 Fourier tail bounds for classes of Boolean functions to
construct pseudorandom generators (PRGs). We show that given a bound on the k-th level of the
Fourier spectrum, one can construct a PRG with a seed length whose quality scales with k. This
interpolates previous works, which either require Fourier bounds on all levels [4], or have polynomial
dependence on the error parameter in the seed length [6], and thus answers an open question in [6].
As an example, we show that for polynomial error, Fourier bounds on the first O(log n) levels is
sufficient to recover the seed length in [4], which requires bounds on the entire tail.

We obtain our results by an alternate analysis of fractional PRGs using Taylor’s theorem
and bounding the degree-k Lagrange remainder term using multilinearity and random restrictions.
Interestingly, our analysis relies only on the level-k unsigned Fourier sum, which is potentially a much
smaller quantity than the L1 notion in previous works. By generalizing a connection established
in [5], we give a new reduction from constructing PRGs to proving correlation bounds. Finally, using
these improvements we show how to obtain a PRG for F2 polynomials with seed length close to the
state-of-the-art construction due to Viola [26].

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases Derandomization, pseudorandomness, pseudorandom generators, Fourier
analysis

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.10

Funding Eshan Chattopadhyay: Supported by NSF grant CCF-1849899 and NSF CAREER award
2045576.
Jason Gaitonde: Supported by NSF grant CCF-1408673 and AFOSR grant FA9550-19-1-0183.
Chin Ho Lee: Supported by the Croucher Foundation and the Simons Collaboration on Algorithms
and Geometry.
Shachar Lovett: Supprted by NSF grants CCF-2006443 and DMS-1953928.
Abhishek Shetty: Supported by a JP Morgan Chase Faculty Fellowship.

Acknowledgements We thank the anonymous reviewers for their helpful comments and suggestions.

© Eshan Chattopadhyay, Jason Gaitonde, Chin Ho Lee, Shachar Lovett,
and Abhishek Shetty;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 10; pp. 10:1–10:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eshanc@cornell.edu
mailto:jsg355@cornell.edu
mailto:c.h.lee@columbia.edu
mailto:slovett@cs.ucsd.edu
mailto:shetty@berkeley.edu
https://doi.org/10.4230/LIPIcs.CCC.2021.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Fractional Pseudorandom Generators from Any Fourier Level

1 Introduction

A central pursuit in complexity theory is to understand the need of randomness in efficient
computation. Indeed there are important conjectures (such as P = BPP) in complexity
theory which state that one can completely remove the use of randomness without losing
much in efficiency. While we are quite far from proving such results, a rich line of work has
focused on derandomizing simpler models of computation (see [25] for a survey of prior work
on derandomization). A key tool for proving such derandomization results is through the
notion of a pseudorandom generator defined as follows.

▶ Definition 1. Let F be a class of n-variate Boolean functions. A pseudorandom generator
(PRG) for F with error ε > 0 is a random variable X ∈ {−1, 1}n such that for all f ∈ F ,∣∣EX[f(X)] − EUn

[f(Un)]
∣∣ ≤ ε,

where Un is the uniform distribution on {−1, 1}n. We also say that X fools F with error ε.
If X = G(Us) for some explicit function G : {−1, 1}s → {−1, 1}n, then X has seed length s.

There is a long line of research on explicit constructions of PRGs for various classes of
Boolean functions in the literature and it is well beyond our scope to survey prior work
here. We focus on a recent line of works initiated by Chattopadhyay et al. [4, 6] that
provide a framework for constructing pseudorandom generators for any Boolean function
classes that exhibit Fourier tail bounds (we will define and discuss this in more details in
the next subsection; see Section 2.1 for a brief introduction to Fourier analysis of Boolean
functions). This provides a unified PRG for several well-studied function classes such as
small-depth circuits, low-sensitivity functions, and read-once branching programs that exhibit
such Fourier tails.

We now briefly discuss this new framework, and then in Section 1.2 we present our new
results, which significantly generalize this approach.

1.1 The Polarizing Random Walk Framework
The polarizing random walk framework was introduced by Chattopadhyay, Hatami, Hosseini,
and Lovett [4]. The authors showed that for any class of n-variate Boolean functions that
is closed under restrictions, one can flexibly construct pseudorandom generators via the
following local-to-global principle: it suffices to construct fractional pseudorandom generators
(fractional PRGs), a notion that generalizes PRGs to allow the random variable X (in
Definition 1) to be supported on the solid cube [−1, 1]n instead of {−1, 1}n, while still
requiring that X fools (the multilinear extension) of each Boolean function in the class.
Ideally, the variance of each coordinate of X should be as large as possible. Towards this,
we define a fractional PRG X to be p-noticeable if the variance in each of its coordinates is
least p (See Definition 13 for a formal definition of a fractional PRG).

To obtain a genuine pseudorandom generator from a fractional PRG, the authors give
a random walk gadget that composes together independent copies of the fractional PRG
in a random walk that polarizes X quickly to take values from the Boolean hypercube
{−1, 1}n. The analysis for how the error accumulates in this process relies on interpreting
the intermediate points of X in this random walk as an average of random restrictions of
the original Boolean function. As the fractional PRG locally fools the class by definition,
this analysis shows that the random walk does not incur much additional error at each
intermediate step and the rapid polarization shows that it does not take too many steps.
Taken together, these two facts imply that the final random variable (supported on {−1, 1}n)
successfully fools the class.

E. Chattopadhyay, J. Gaitonde, C. H. Lee, S. Lovett, and A. Shetty 10:3

Through this construction, the design of pseudorandom generators reduces to the easier
task of designing fractional pseudorandom generators. It is easier as such random variables
need not be Boolean-valued. The authors further construct such fractional pseudorandom
generators for any class of functions satisfying Fourier tail bounds, that is, every function
in the class is such that the L1 Fourier mass at each level 1 ≤ k ≤ n is at most bk for
some fixed b ≥ 1. For error ε, their fractional pseudorandom generators have seed length
O(log log n + log(1/ε)) and variance Θ(b−2) in each coordinate. Combining this fractional
pseudorandom generator with their random walk gadget yields a pseudorandom generator
with seed length b2 · polylog(n/ε) for any class with such Fourier tail bounds.

As a result, if one can show that a function class admits nontrivial Fourier tail bounds (and
is closed under restriction), then the construction in [4] immediately implies a pseudorandom
generator for this class. Some examples of Boolean functions that exhibit such tail bounds
include AC0 circuits with the parameter b = poly(log n) [13, 23], constant width read-once
branching programs with b = poly(log n) [7], s-sensitive functions with b = O(s) [11, 10], and
product tests [12]. Using these tail bounds, [4] immediately gave PRGs for these function
classes. It was also conjectured in [4] that the class of n-variate degree-d polynomials over
F2 satisfy such tail bounds. We discuss this in more detail in Section 1.2.

A natural question is whether the complete control on the entire Fourier tail of a class is
necessary to obtain a PRG in this framework. In the subsequent work by Chattopadhyay,
Hatami, Lovett, and Tal [6], the authors show how to construct fractional pseudorandom
generators using different pseudorandom primitives whose seed length depends on just the
second Fourier level of the class. They construct their fractional PRGs by derandomizing the
celebrated work of Raz and Tal [18], which establishes an oracle separation of BQP and PH.
Raz and Tal show that classes of multilinear functions with small level-two Fourier mass
cannot significantly distinguish between a suitable variant of the Forrelation distribution and
the uniform distribution.1 However, this construction incurs exponentially worse dependence
on the error parameter in each fractional step to sample sufficiently good approximations to
Gaussian random variables. The final seed length given by this construction has the form
O((b2/ε)2+o(1)polylog(n)), where b2 is the level-two Fourier mass of the class. This yields
exponentially worse dependence on the error compared to the generator of [4], as well as
quadratically worse dependence on the level-two mass (though without assumptions on the
rest of the Fourier levels).

1.2 Our Contribution
In this paper, we address several open questions in this framework by leveraging a novel
connection between polarizing random walk and the classical theory of polynomial approxim-
ation. Given these prior works, a very natural question (also explicitly asked in [6]) is whether
it is possible to interpolate between these previous constructions by assuming Fourier bounds
on an intermediate level. Concretely, can this framework still succeed if one has Fourier
control at just level k? If the class further has such Fourier bounds up to and including
level k, can one interpolate between the seed lengths of [4] and [6]? Given Fourier bounds
from level 1 up to level k, what range of error ε > 0 can the resulting PRG tolerate while
maintaining polylogarithmic dependence on 1/ε in the seed length (or equivalently, given a
desired error ε > 0, how many levels of Fourier bounds are sufficient to ensure that the seed
length remains polylogarithmic in 1/ε)?

1 It turns out that this fact can be interpreted via Itô’s Lemma, which shows that the local behavior of a
smooth function of Brownian motion is essentially determined by the first two derivatives [28].

CCC 2021

10:4 Fractional Pseudorandom Generators from Any Fourier Level

Moreover, it was previously not known whether L1 control of Fourier tails is really
necessary for this framework to yield effective PRGs, or whether weaker Fourier quantities
would suffice. To this end, define

L1,k(f) ≜
∑

S⊆[n]:|S|=k

|f̂(S)|

to be the level-k L1 Fourier mass of f , and

Mk(f) ≜ max
x∈[−1,1]n

∣∣∣∣ ∑
S⊆[n]:|S|=k

f̂(S)xS

∣∣∣∣ = max
x∈{−1,1}n

∣∣∣∣ ∑
S⊆[n]:|S|=k

f̂(S)xS

∣∣∣∣.
to be the level-k absolute Fourier sum of f . For a function class F , we define L1,k(F) and
Mk(F) as the maximum of L1,k(f) and Mk(f) taken over f ∈ F . The recent work by
Chattopadhyay, Hatami, Hosseini, Lovett, and Zuckerman [5] considers the weaker quantity
of the level-two unsigned Fourier sum, defined as the absolute value of the sum of the Fourier
coefficients rather than the sum of their absolute values that is considered in [4, 6]. The
authors show that the problem of bounding the level-two unsigned Fourier sum corresponds
to the problem of bounding the covariance of the function class and the XOR of shifted
majority functions. For a class that is closed under negations of the variables, the level-two
unsigned Fourier sum is precisely the quantity M2(F). In particular, using this connection to
this weaker object, the authors explicitly ask whether bounding the weaker Fourier quantity
M2(F) (or more generally, Mk(F)) yields pseudorandom generators.

In this work, we positively resolve all of these questions. To do so, we establish novel
connections between the polarizing random walk framework and the classical theory of
polynomial approximations of Boolean functions. We show that the seed length of a
fractional PRG for a given class of functions F is intimately connected to the uniform error
of low-degree approximations of functions on subcubes of the form [−c, c]n for some c < 1.

Our main technical result provides an upper bound on this quantity in terms of Mk(F) for
every function f in a class F that is closed under restrictions. For any multilinear polynomial
f : {−1, 1}n → R, define f≥k to be component of f with monomials of degree at least k.
Then our main result asserts the following bound:

▶ Theorem 2. Let f ∈ F with F closed under restrictions. Then for all c ∈ (0, 1), we have

max
x∈[−c,c]n

|f≥k(x)| ≤
(

c

1 − c

)k

Mk(F).

For intuition, recall that by Parseval’s identity in Fourier analysis the low-degree Fourier
expansion of any Boolean function f is provably the best ℓ2-approximator on {−1, 1}n.
Conversely, from elementary analysis, one can show that the best uniform (i.e. ℓ∞) low-
degree approximators of f converge, coefficient-by-coefficient, to the low-degree expansion of
f as the domain converges to 0. Our main result shows that one can strongly quantify the
ℓ∞ error of the low-degree approximator of Boolean functions on subcubes so long as c is
not too close to 1 (compare this bound to when f has degree exactly k).

We complement this result with a corresponding lower bound on the best attainable
uniform error for any low-degree approximation on these subcubes that will be comparable
for sufficiently small values of c (see Theorem 23). These results combined together imply
that the low-order expansion of a Boolean function is a reasonable uniform approximation
for small domains. Note that the properties of low-degree approximations on subcubes with
c ≪ 1 can be quite different than for c = 1; for instance the PARITY function on n bits is
well-known to be inapproximable on {−1, 1}n to constant error unless the approximating
polynomial has degree Ω(n), but is trivially approximable for any c bounded away from 1.

E. Chattopadhyay, J. Gaitonde, C. H. Lee, S. Lovett, and A. Shetty 10:5

From this main result, we can positively resolve the above open questions in the polarizing
random walk framework as a nearly immediate corollary. To do so, we provide a new analysis
of the fractional pseudorandom generator of [4] that views fractional pseudorandom generators
as fooling a low-degree part of a function on [−c, c]n for some c < 1, where the high-degree
part has small ℓ∞ norm on [−c, c]n. Recall that the seed length of the final generator depends
on the variance of the constituent fractional generator; the connection to the above result
is that for a given error ε, the largest subcube on which the above approximation holds
can be lower-bounded using just the weaker Mk(F) quantity. Leveraging this insight, our
main result in the polarizing random walk framework is the following analysis of a fractional
pseudorandom generator:

▶ Theorem 3. Let F be any class of n-variate Boolean functions that is closed under
restrictions. Suppose Mk(F) ≤ bk for some b ≥ 1 and k ≥ 1. Then for any ε > 0, there
exists an explicit Ω(ε2/k/b2)-noticeable fractional PRG for F with error ε and seed length
O(k · log n).2

Further, if it holds that L1,i(F) ≤ bi for all 1 ≤ i < k, then the seed length can be
improved to O(log log n + log k + log(1/ε)).

Using the fractional pseudorandom generator from Theorem 3, we obtain the following
consequences almost immediately from the random walk gadget of [4] (see Theorem 14):
1. Pseudorandom Generators from Fourier Bounds at Level k: From our fractional

pseudorandom generator, we show that the random walk framework yields nontrivial
pseudorandom generators assuming Fourier bounds just at level k of the associated class,
with improvements if we assume bounds from level 1 up to level k. The informal statement
is the following:
▶ Theorem 4. Let F be any class of n-variate Boolean functions that is closed under
restrictions. Suppose that F satisfies Mk(F) ≤ bk for some b ≥ 1 and k ≥ 3. Then
there exists an explicit pseudorandom generator for F for error ε with seed length k ·
b2+4/(k−2)polylog(n/ε)/ε2/(k−2). The seed length can be improved if L1,i(F) ≤ bi for all
levels i ≤ k.
See Theorem 27 for the precise statement. One immediate consequence is that if one has
a non-trivial bound on M3(F), then the seed length of our PRG has the same dependence
on the error ε as the one in [6]. Further, given M4(F) ≤ b4, one obtains better seed length
than [6]; in particular it has quadratically better dependence on 1/ε in the seed length
(as well as polylogarithmic factors in n/ε). More generally, given an appropriate Fourier
bound of bk on just some level k ≤ polylog(n), one obtains a pseudorandom generator
with error ε with seed length O(b2+4/(k−2)polylog(n/ε)/ε2/(k−2)).
We note that the fractional PRG from Theorem 3 cannot be converted into a PRG for
k = 1, 2. Informally, this is because of the following reason: the number of steps one
needs to take in the random walk gadget of [4] (with each step using an independent copy
of the fractional PRG) scales roughly with the variance of the fractional PRG, and the
error adds up in each step. As is clear from Theorem 3, for the variance of the fractional
PRG to scale sublinearly with the error, one requires k > 2. See Remark 28 for more
discussion.

2 We remark that at this level of generality, this linear dependence on k is essentially necessary. Indeed,
any Boolean function on n-variables has L1 level-n mass at most 1, but one cannot hope to generically
fool all Boolean functions simultaneously without using n bits.

CCC 2021

10:6 Fractional Pseudorandom Generators from Any Fourier Level

2. Pseudorandom Generators with Polylogarithmic Error Dependence from Up-
to-level-k Bounds: A simple corollary of our fractional pseudorandom generator is that
one can recover the polylogarithmic dependence on 1/ε from [4] if ε ≥ b · log n · 2−O(k)

and we have Fourier bounds up to level k.
▶ Corollary 5. Let F be any class of n-variate Boolean functions that is closed under
restrictions. Suppose that for some level k ≥ 3 and b ≥ 1, we have Mk(F) ≤ bk and
L1,i(F) ≤ bi for i < k. Then, for any ε ≥ b · log n · 2−O(k), there exists an explicit
pseudorandom generator for F with error ε and seed length O(b2polylog(n/ε)).
This actually subsumes the analysis of [4] without requiring anything on the full Fourier
tail, and addresses an open question of [6] asking how many levels of Fourier bounds one
needs control of to regain polylogarithmic dependence on ε. In particular, if one requires
error ε = 1/poly(n), then it suffices to have Fourier bounds up to level Θ(log n) to get
the same dependence.

We view this work as a proof of concept that it is indeed possible to interpolate between the
two extremes of [4, 6] in the polarizing random walk framework and obtain better results using
weakened Fourier assumptions. We prove Theorem 3 in Section 4, from which Theorem 4
and Corollary 5 follow without much difficulty using the existing random walk gadget of [4].

Note that for some Boolean classes of great interest such as the class of low-degree
F2-polynomials, Fourier tail bounds as required by [4] are not yet known and thus Theorem 3
allows us to leverage potentially much weaker bounds proved in [4] to construct a PRG with
polylogarithmic dependence on n/ε in the seed length (see Theorem 6). This almost matches
the best known PRG due to Viola [26]. In particular, we show the following:

▶ Theorem 6. Let F be the class of degree-d polynomials over F2 on n variables. Then there
exists an explicit pseudorandom generator for F with error ε and seed length 2O(d)polylog(n/ε).

We present the proof of Theorem 6 in Section 5. While this result does not quite match
the current state-of-the-art PRG for this class due to Viola [26] (and therefore fails to give
anything nontrivial for d = Ω(log n)), we view this as a conceptual contribution that the
random walk framework can yield an explicit pseudorandom generator with seed length
that is polylogarithmic in n/ε, which was not known from previous works [4, 6]. As we
discuss below, the results in [4, 6] do not give a PRG for the class of F2-polynomials with
polylogarithmic error dependence using known Fourier tail bounds.

As a concrete application of this approach which would dramatically improve the state-
of-the-art PRGs for F2-polynomials, both [4] and [6] conjecture Fourier bounds on the L1
mass of the class of degree-d F2 polynomials. The former conjectures that this class satisfies
a tail bound of the form ck

d for some constant cd at all levels 1 ≤ k ≤ n (so as to apply
their approach), while the latter conjectures just that the level-two L1 mass is O(d2). While
neither conjecture seems close to being resolved, our work shows that one can instead prove
bounds for the smaller quantities Mk(F) for any k ≥ 3. If one could prove such bounds
of the form (poly(d, log n))k for some level k = Ω(1), or even more optimistically, for some
k = Ω(log n), this would immediately imply a breakthrough pseudorandom generator for
AC0[⊕] using the results of Razborov [19] and Smolensky [21, 22] (see the discussion in [6]).

To our knowledge, our application of Mk(F) bounds is new to the pseudorandomness
literature. There are several advantages to proving Mk(F) bounds over L1,k(F) bounds. For
one, from the definition we clearly have Mk(F) ≤ L1,k(F) for any class F . This improvement
alone potentially gives smaller seed length for any class. From an analytical perspective,
we believe that the quantity Mk(F) is easier to estimate. Specifically, for a class F that is
closed under negation of input variables, Mk(F) is precisely an unsigned Fourier sum and

E. Chattopadhyay, J. Gaitonde, C. H. Lee, S. Lovett, and A. Shetty 10:7

can be bounded via the recent connections established by Chattopadhyay et al. [5], which
reduces M2(F) bounds to proving correlation bounds against certain resilient functions. We
straightforwardly generalize their reduction to Mk(F) bounds in Section 6.

1.3 Overview of Our Approach
To prove Theorem 2, we rely on Taylor’s theorem, as well as multilinearity and the random
restriction trick of [4]. Recall that Taylor’s theorem, when applied to a sufficiently smooth
function h : [−1, 1] → R, asserts that the Taylor expansion at 0 can be expressed in terms
of its first (k − 1)-th order derivatives at 0 along with a Lagrange error term that depends
on its k-th order derivatives at some intermediate point in our domain. In doing so, the
higher-order components of the function “collapse” down to the k-th order term. While
Taylor’s theorem has been extensively applied in the construction of pseudorandom generators,
often in tandem with invariance principles, we somewhat counterintuitively apply it to the
multilinear expansion of the Boolean functions themselves.

To apply Taylor’s theorem here, we consider one-dimensional restrictions of (the multilinear
extension) of a Boolean function f : {−1, 1}n → {−1, 1}. While the full Taylor expansion
of a polynomial is trivially the same polynomial, the Lagrange error term eliminates the
dependence on the high order Fourier coefficients (corresponding to the terms of degree > k).
Moreover, the low-order terms of the Taylor expansion of f at 0 are precisely the original
low-degree part of its Fourier expansion. However, the Lagrange error term requires the
derivatives to be evaluated at a point away from 0. While the derivatives of f at a nonzero
point are related to the biased Fourier coefficients of f , it is not clear how to estimate these
quantities. To overcome this difficulty, recall that we are interested in bounds on |f≥k(x)| for
x ∈ {−c, c}n where c < 1. In Lemma 22, we show that by “recentering” x using the random
restriction technique of [4], we can write the error term as an average of the k-th order
derivatives at 0 of some random restrictions of our original function f , up to a multiplicative
factor depending on c.3 We can then apply multilinearity to bound these error terms using
Mk(F) to obtain Theorem 17.

While Theorem 17 shows that the low-order Taylor expansion of a Boolean function is a
decent uniform approximator on subcubes [−c, c]n for some sufficiently small c that depends
on the class F , it is natural to wonder if one can obtain a better low-order approximation.
Using our upper bound along with Chebyshev polynomials on the univariate restrictions, we
give a lower bound showing that no low-order approximator can give significantly smaller
error over [−c, c]n for any c less than some quantity depending on the ratio Mk(F)/Mk+1(F)
for some k. This quantifies the intuition that the low-degree Fourier expansion is a near
optimal uniform approximator of f over small enough neighborhoods of 0. These arguments
are formally carried out in Section 3.

To prove our results in the polarizing random walk framework, we rely on an alternate,
simple analysis of fractional pseudorandom generators. The original analysis in [4] assumes
control of L1,k(F) at all levels of the Fourier spectrum. We now explain how these assumptions
can be weakened using Theorem 17. Consider a candidate fractional PRG X ∈ [−1, 1]n. We
first decompose the multilinear (Fourier) expansion of f ∈ F in the same manner as [4]:

∣∣EX[f(X)] − EU[f(U)]
∣∣ ≤

k−1∑
i=1

∑
S⊆[n]:|S|=i

∣∣f̂(S)
∣∣∣∣EX[XS]

∣∣
︸ ︷︷ ︸

low-order terms

+
∣∣EX[f≥k(X)]

∣∣
︸ ︷︷ ︸
high-order term

. (1)

3 We note that similar ideas for the k = 1 case also appeared in [1] (attributed to Avishay Tal).

CCC 2021

10:8 Fractional Pseudorandom Generators from Any Fourier Level

[4] requires bounding L1,ℓ(F) for all ℓ ≥ k to give a uniform bound on the high-order term.
Using Theorem 17, we can obtain small error in the high-order term so long as we choose
X ∈ [−c, c]n for sufficiently small c depending on ε and Mk(F). To handle the low-order
terms, we consider two cases: if we further have L1,ℓ(F) bounds for ℓ < k, then we may choose
X to be a scaled (k − 1)-wise δ-biased distribution to nearly fool each of the low-order terms
as in [4]. Otherwise, we may choose X to be a scaled (k − 1)-wise independent distribution
to incur zero error from the low-order terms. Note that the latter pseudorandom primitives
are more expensive in terms of seed length. Finally, to obtain pseudorandom generators, we
then simply apply the random walk gadget of [4] to our fractional PRGs as a blackbox. We
refer the reader to Section 4 for formal proofs of the ideas in this section.

We immediately leverage this newfound flexibility to construct new pseudorandom gener-
ators for F2-polynomials of degree d = O(log n). We do this using known L1,k(F) bounds
derived in [4]. Previously these bounds were not sufficient to give PRGs with polylogarithmic
error dependence as their analysis of fractional PRGs either required control of the entire
Fourier tail or could not leverage higher Fourier levels, but they can be employed here due
to our more flexible analysis. This result is given in Section 5. Finally, we show how Mk(F)
bounds can be obtained using correlation bounds with shifted majority functions in Section 6.
This is done by straightforwardly generalizing the analysis of [5], which shows how such
correlation bounds can be used to bound the bulk of the terms in the definition of Mk(F).

1.4 Other Related Work

To our knowledge, our use of Mk(F) bounds is new to the derandomization literature. As
mentioned earlier, the stronger and better-known L1,k(F) notion has been extensively studied
in recent years. In addition to derandomization, a recent line of work [24, 3, 20] has used
L1,k bounds for decision trees to obtain an optimal separation of quantum and classical
query complexity. Among these works, the work of Bansal and Sinha [3] generalizes the
results of Raz and Tal [18] by considering a k-generalization of their Forrelation distribution
and bounding the distinguishing advantage of any function with small L1,ℓ bounds for
ℓ = 1, . . . , k. Much as how the results of Chattopadhyay et al. [6] derandomize the result of
Raz and Tal, we believe that their construction can be derandomized for pseudorandomness
purposes, but appears to give significantly worse seed length, nor obtains bounds in terms
of Mk(F). A related work by Girish, Raz, and Zhan [9] establishes a similar result with a
different generalization of the Forrelation distribution, but we do not know how to use their
construction for pseudorandom generators.

The relationship between Mk(F) and L1,k(F) has been of intense study in the mathematics
literature due to renewed interest in Bohnenblust–Hille inequalities (see, for instance, the
breakthrough work of Defant, Frerick, Ortega-Cerdà, Ounaïes, and Seip [8]). The optimal
constant Cn,k satisfying L1,k(f) ≤ Cn,kMk(f) for any polynomial f : Cn → C is known as the
Sidon constant. It is known that Cn,k is, up to small exponential factors in k, proportional
to roughly n

k−1
2 , and its tightness is witnessed by a random function with high probability.

The quantity Mk(F) also has applications in other areas in theoretical computer science,
such as quantum information theory (see for instance the survey of Montanaro [14]) and
Boolean function analysis [2].

Subsequent to our work, Viola [27] observed that Mk(F) bounds imply correlation bounds
between F and an explicit function.

E. Chattopadhyay, J. Gaitonde, C. H. Lee, S. Lovett, and A. Shetty 10:9

2 Preliminaries

As in [4] and [6], we study PRGs for classes F of n-variate Boolean functions that are closed
under restriction (that is, fixing any subset of the input variables of a function in the class
yields a function that remains in the class).

2.1 Fourier Analysis
We briefly recall basic Fourier analysis: any Boolean function f : {−1, 1}n → {−1, 1} admits
a unique multilinear expansion, also known as the Fourier expansion, given by

f(x) =
∑

S⊆[n]

f̂(S)xS , (2)

where we write xS ≜
∏

i∈S xi. The Fourier coefficient f̂(S) is given by

f̂(S) = EX∼{−1,1}n [f(X)XS].

For more on Fourier analysis of Boolean functions, see the excellent book by O’Donnell [16].
One may thus extend the domain of f to [−1, 1]n, where f(x) for arbitrary x is evaluated
according to the expression in Equation (2). Note that in this case, f(0) = f̂(∅) = EUn

[f(Un)].
One of the main parameters of interest from the Fourier expansion for this framework is the
following:

▶ Definition 7. The level-k mass of a Boolean function f is

L1,k(f) ≜
∑

S⊆[n]:|S|=k

|f̂(S)|,

and the level-k mass of a class F is L1,k(F) ≜ maxf∈F L1,k(f).

In this work, we will show how to construct PRGs whose seed length depends on the
following, smaller quantity:

▶ Definition 8. For any multilinear polynomial f : Rn → R given by f(x) =
∑

S⊆[n] f̂(S)xS,
define the level-k part by

fk(x) ≜
∑

S⊆[n]:|S|=k

f̂(S)xS ,

and further define f<k(x) ≜
∑k−1

i=0 fi(x) and f≥k(x) ≜
∑n

i=k fi(x). Then we define the
level-k absolute Fourier sum of f by

Mk(f) ≜ max
x∈[−1,1]n

∣∣∣∣ ∑
S⊆[n]:|S|=k

f̂(S)xS

∣∣∣∣ = max
x∈{−1,1}n

∣∣∣∣ ∑
S⊆[n]:|S|=k

f̂(S)xS

∣∣∣∣
and analogously define Mk(F) ≜ maxf∈F Mk(f) for a class F .

Note that the equality arises by multilinearity, and clearly we have Mk(f) ≤ L1,k(f) by
the triangle inequality. Without loss of generality, we may further assume that our class is
closed under flipping the image, i.e. we may suppose that f ∈ F if and only if −f ∈ F ; this
transformation does not change either L1,k(f) or Mk(f), and therefore the same bound on
the class still holds when completing it to include all such functions. If this is the case, we
get the more striking identity:

CCC 2021

10:10 Fractional Pseudorandom Generators from Any Fourier Level

▶ Lemma 9. Suppose that F is closed under negation of variables and that f ∈ F implies
−f ∈ F . Then

Mk(F) = max
f∈F

∑
S⊆[n]:|S|=k

f̂(S) = max
f∈F

fk (1) .

To see why this holds, simply note that if (f, z) ∈ F × {−1, 1}n is a maximizer in the
definition of Mk(F) (where we may now assume that the sign is positive), then by replacing
the function f(x) with g(x) = f(x ◦ z), where ◦ denotes componentwise multiplication, we
have

Mk(F) =

∣∣∣∣∣ ∑
S⊆[n]:|S|=k

f̂(S)zS

∣∣∣∣∣ =
∑

S⊆[n]:|S|=k

ĝ(S) = max
h∈F

∑
S⊆[n]:|S|=k

ĥ(S).

In particular, it suffices to bound the unsigned level-k Fourier sum of such a class.
Lastly, we require the following notion:

▶ Definition 10. Let F be a class of n-variate multilinear polynomials that is closed under
restrictions. Define conv(F) as the convex closure of F ,

conv(F) ≜

∑
f∈F

λf f

∣∣∣∣ ∑
f∈F

λf = 1, λf ≥ 0 ∀f ∈ F

 .

We briefly note the following two elementary facts: first, by the assumption that F is closed
under restrictions, the same is true of conv(F). The second is the following simple claim:

▶ Lemma 11. For any class F of Boolean functions, Mk(F) = Mk(conv(F)).

Proof. One direction is obvious: as F ⊆ convF , clearly Mk(F) ≤ Mk(conv(F)). In the
other direction, let g =

∑
f∈F λf f be an arbitrary element of conv(F), where λf ≥ 0 and∑

f∈F λf = 1. Then

Mk(g) = max
x∈{−1,1}n

∣∣∣∣∣ ∑
S⊆[n]:|S|=k

ĝ(S)xS

∣∣∣∣∣
= max

x∈{−1,1}n

∣∣∣∣∣ ∑
S⊆[n]:|S|=k

(∑
f∈F

λf f̂(S)
)

xS

∣∣∣∣∣
≤
∑
f∈F

λf max
x∈{−1,1}n

∣∣∣∣∣ ∑
S⊆[n]:|S|=k

f̂(S)xS

∣∣∣∣∣
≤ max

f∈F
Mk(f).

The reverse inequality immediately follows. ◀

2.2 (Fractional) Pseudorandom Generators
We now recall the (well-known) definition of a pseudorandom generator, as well as the
generalization of a fractional pseudorandom generator as introduced by [4]:

▶ Definition 12. Let F be a class of n-variate Boolean functions. Then a pseudorandom
generator (PRG) for F with error ε > 0 is a random variable X ∈ {−1, 1}n such that for all
f ∈ F ,

|EX[f(X)] − EUn
[f(Un)]| ≤ ε,

where Un is the uniform distribution on {−1, 1}n. If X = G(Us) for some explicit function
G : {−1, 1}s → {−1, 1}n, then X has seed length s.

E. Chattopadhyay, J. Gaitonde, C. H. Lee, S. Lovett, and A. Shetty 10:11

▶ Definition 13. A fractional pseudorandom generator (fractional PRG) for F with error
ε > 0 is a random variable X ∈ [−1, 1]n such that for all f ∈ F (identifying f with its
multilinear expansion)

|EX[f(X)] − f(0)| ≤ ε,

where the definition of seed length is the same. A fractional PRG is p-noticeable if for each
i ∈ [n], E[X2

i] ≥ p.

We now state the main results of [4] and [6] that show how to construct PRGs from
suitably combining noticeable fractional PRGs. This is done by the following amplification
theorem, which roughly composes fractional random variables into a random walk inside the
Boolean hypercube:

▶ Theorem 14. Suppose F is class of n-variate Boolean functions that is closed under
restrictions, and that X is an explicit p-noticeable fractional PRG with error ε and seed
length s. Then there exists an explicit PRG for F with seed length O(s log(n/ε)/p) and error
O(ε log(n/ε)/p).

Using this result, [4] proved the following theorem that exploits strong L1 control of each
Fourier level:

▶ Theorem 15. Let F be any class of n-variate Boolean functions that is closed under
restrictions. Suppose that L1,k(F) ≤ bk for some b ≥ 1 and all 1 ≤ k ≤ n. Then for any
ε > 0, there exists an explicit PRG for F with error ε and seed length b2 · polylog(n/ε).

This is achieved by constructing a fractional PRG that is a scaled version of a log(1/ε)-
wise nearly unbiased distribution. As we will be analyzing a similar fractional PRG, we defer
the details to next section. To lessen the requisite assumptions on the Fourier spectrum,
Chattopadhyay et al. [6] derandomize a construction of Raz and Tal [18] to prove the
following result that requires only level-two control, albeit at a cost of exponentially worse
dependence on the error ε, and quadratically worse dependence on the level-two mass:

▶ Theorem 16. Let F be any class of n-variate Boolean functions that is closed under
restrictions. Suppose that L1,2(F) ≤ b2 for some b ≥ 1. Then for any ε > 0, there exists an
explicit PRG for F with error ε and seed length O((b2/ε)2+o(1)polylog(n)).

3 Low-Degree Polynomial Approximations on Subcubes

Throughout this section, we assume that F is a class of n-variate Boolean functions closed
under restrictions. As mentioned above, the main result from which we derive our improve-
ments in constructing pseudorandom generators is essentially a statement about low-degree
polynomial approximations on subcubes [−c, c]n for c < 1. We remark that this setting is
equivalent to approximating noisy versions Tcf on [−1, 1]n, where Tρ is the ρ-noise operator.
This is because for any y ∈ [−c, c]n, we can write y = cx for some x ∈ [−1, 1]n and

f(y) = f(cx) =
∑

S⊆[n]

f̂(S)(cx)S =
∑

S⊆[n]

c|S|f̂(S)xS = Tcf(x).

In general, given any k ≤ n, c ≥ 0, and any f ∈ F , let εc,k(f) be defined by

εc,k(f) ≜ inf
g:deg(g)<k

max
x∈[−c,c]n

|f(x) − g(x)|, (3)

CCC 2021

10:12 Fractional Pseudorandom Generators from Any Fourier Level

and extend the definition to function classes by

εc,k(F) ≜ max
f∈F

εc,k(f).

Now, given ε > 0, k ≤ n, and the class F , define ck(F , ε) by

ck(ε, F) ≜ max{c ≥ 0 : εc,k(F) ≤ ε}.

In words, ck(ε, F) measures how small a hypercube we must take to ensure that for every
function in our class, there exists a degree-(k − 1) approximating polynomial that agrees
with f up to a uniform ε error on the subcube [−c, c]n; by multilinearity, it actually suffices
that this holds at the extreme points {−c, c}n. Note that Equation (3) can be formulated as
a linear program and its optimal solution is the best low-degree ℓ∞-approximation to f .

The main technical claim in this section is that we bound ck (ε, F) in terms of Mk(F).
Specifically, we show that for any class F that is closed under restrictions, truncating the
Fourier expansion of a function f ∈ F to its first (k −1) levels serves as a good approximation
to f on a sufficiently small hypercube around the origin.

▶ Theorem 17. Let f ∈ F that is closed under restrictions. Then for all c ∈ (0, 1), we have

max
x∈[−c,c]n

|f≥k(x)| ≤
(

c

1 − c

)k

Mk(F).

In particular, it follows that

εc,k(F) ≤
(

c

1 − c

)k

Mk(F).

From Theorem 17, one immediately obtains a lower bound on ck(ε, F):

▶ Corollary 18. For any class F that is closed under restrictions, and any ε > 0 and k ≤ n,

ck(ε, F) = Ω
((

ε

Mk(F)

)1/k
)

Proof. Observe that by setting c = Ω
((

ε
Mk(F)

)1/k
)

in Theorem 17, the right side is

bounded by ε. Because f≥k = f − f<k and f<k has degree strictly less than k, it follows
immediately from the definition of ck(ε, F) that ck(ε, F) is at least c. ◀

We now return to the proof of Theorem 17. To prove this result, we require the following
intermediate claims. The first simply shows that we may always bound the contribution of
the level-k part of any function in F by simply rescaling the argument:

▶ Lemma 19. Let f ∈ conv(F). Then, for all c ∈ (0, 1) and x ∈ [−c, c]n, we have

|fk(x)| ≤ ckMk(F).

Proof. Observe that c−1x ∈ [−1, 1]n by assumption, and by homogeneity of fk as a polyno-
mial, we have

|fk(x)| = ck|fk(c−1x)| ≤ ckMk(conv(F)) = ckMk(F). ◀

E. Chattopadhyay, J. Gaitonde, C. H. Lee, S. Lovett, and A. Shetty 10:13

The next simple yet powerful claim shows that one can “recenter” functions in F and they
remain in conv(F) (and therefore, enjoy the same Fourier bounds). This random restriction
technique is a key tool in [4].

▶ Lemma 20. Let f ∈ conv(F), a ∈ [−1, 1]n and b ∈ [0, 1] such that |ai| + bi ≤ 1 for all
i ∈ [n]. Define f̃ by f̃(x) = f(a + b ◦ x), where ◦ denotes componentwise multiplication.
Then, f̃ ∈ conv(F).

Proof. Given a and b, define a distribution Di on Zi = {−1, 1, xi} where xi is treated as
formal variable, such that Eyi∼Di

[yi] = ai + bixi; note that this is possibly by the assumption
that |ai| + bi ≤ 1. Let D =

∏
i Di be the product distribution of the Di. For any z ∈

∏
i Zi,

define fz(x) as the function obtained by setting xi = zi for each i; in particular, each variable
gets set to ±1 or remains a formal variable. By our assumption on the closure of F , we clearly
have fz ∈ F for any z. By multilinearity and independence of the product distribution, we
have f(a + b ◦ x) = Ez∼D[fz(x)]. Thus f̃ ∈ conv(F). ◀

As mentioned before, our approach will be to bound the higher-order terms of the Fourier
expansion at the fractional points of the fractional PRG via the error term that arises in
Taylor’s theorem. Denote by h(k) the k-th derivative of any Ck function h : R → R. We then
have the following claim:

▶ Lemma 21. Let f : Rn → R be multilinear and let x ∈ Rn. Define g : R → R by
g(t) = f(tx). Then,

g(k)(0) = k! · fk(x).

Proof. From the definition, it follows that

g(t) =
∑

S⊆[n]

t|S|f̂(S)xS .

Differentiating g with respect to t, we get

g(k)(t) =
∑

S⊆[n]:|S|≥k

(k−1∏
i=0

(|S| − i)
)

t|S|−kf̂(S)xS .

Setting t = 0 eliminates all of the monomials with |S| > k, giving us the required bound. ◀

The last intermediate result we require connects the function defined in the previous part
with our assumed Fourier bounds:

▶ Lemma 22. Let f ∈ conv(F), c ∈ (0, 1) and x ∈ [−c, c]n. Define g as in Lemma 21.
Then,

max
s∈[0,1]

∣∣g(k)(s)
∣∣ ≤

(
c

1 − c

)k

· k! · Mk(F)

Proof. Fix s ∈ [0, 1] and let λ = 1−c ∈ [0, 1]. Define the auxiliary function f̃(y) = f(sx+λy).
Writing a = sx and b = (λ, . . . , λ), we clearly have s|xi|+λ ≤ 1, so we may apply Lemma 20 to
see that f̃ ∈ conv(F). Now writing g̃(t) = f̃(tx) = f(sx + λtx), we also have g̃(t) = g(s + tλ).
By the chain rule, differentiating both sides k times and then setting t = 0, we have

λkg(k)(s) = g̃(k)(0).

CCC 2021

10:14 Fractional Pseudorandom Generators from Any Fourier Level

On the other hand, by Lemma 21, we have g̃(k)(0) = k! · f̃k(x), and as f̃ ∈ conv(F) by
Lemma 20, we conclude using Lemma 19 that

∣∣g(k)(s)
∣∣ =

∣∣∣∣ g̃(k)(0)
λk

∣∣∣∣ ≤
(

c

1 − c

)k

· k! · Mk(F). ◀

With these intermediate claims taken care of, we may now put them together to obtain
Theorem 17.

Proof of Theorem 17. The second statement follows immediately from the first by setting
g = f<k for any given f , and noticing that f − g = f≥k. Therefore, we focus on the first
statement.

Let f ∈ F , x ∈ [−c, c]n and define g(t) = f(tx). Then, by Taylor expanding g about
t = 0 and evaluating g at t = 1, we have

g(1) =
∑
i<k

g(i)(0)
i! + Rk, (4)

where Rk is the error term and is given in Lagrange form by

Rk = g(k)(s)
k!

for some s ∈ (0, 1). By Lemma 21, we easily see that the first term in the right hand side of
Equation (4) is precisely f<k(x), and as g(1) = f(x), we clearly then must have Rk = f≥k(x).
Therefore, by Lemma 22, we obtain

|f≥k(x)| =
∣∣∣∣g(k)(s)

k!

∣∣∣∣ ≤
(

c

1 − c

)k

Mk(F),

as desired. ◀

3.1 Lower Bounds via Chebyshev Polynomials
In this subsection, we show that our bounds on the uniform error of any low-degree polynomial
approximator are essentially tight for a reasonable range of c < 1. Recall that Theorem 17
shows that the low-degree Fourier expansion is an excellent approximator to the original
function for c small enough; we now show that this bound cannot be significantly improved
for a reasonable range of c using any approximator. Our main result of this section is the
following converse:

▶ Theorem 23. Let F be any class of n-variate multilinear functions that are closed under
restrictions. Then for any c ≤ min

(
1
3 , 3−k Mk(F)

Mk+1(F)

)
, we have

εc,k(F) ≥
(c

2

)k

Mk(F).

Recall that on the interval [−1, 1], the Chebyshev polynomials give the minimum ℓ∞
norm among all polynomials with same leading coefficient in magnitude:

▶ Fact 24 (Theorem 1.5.4 of [17]). If a polynomial f : R → R is monic of degree n,
then maxx∈[−1,1] |f(x)| ≥ 2−n+1, with equality if and only if f = Tn, the normalized n-th
Chebyshev polynomial.

E. Chattopadhyay, J. Gaitonde, C. H. Lee, S. Lovett, and A. Shetty 10:15

Proof of Theorem 23. Let (f, x) attain the maximum in the definition of Mk(F), namely

Mk(F) =

∣∣∣∣∣∣
∑

S⊆[n]:|S|=k

f̂(S)xS

∣∣∣∣∣∣ .
First, note that the claim is trivial if every function in F is of degree at most k, because
then f≥k is a homogeneous polynomial of degree k and this lower bound is trivial. Under
this assumption, Mk+1(F) > 0. Fix c ∈ (0, 1) and let p : [−1, 1]n → R be any multilinear
polynomial of degree strictly less than k. Define the univariate function g : [−1, 1] → R by

g(t) = f(tcx) − p(tcx).

By taking the Fourier expansion of f , it is easy to see that the coefficient of tℓ for ℓ ≥ k is
precisely

cℓ
∑

S⊆[n]:|S|=ℓ

f̂(S)xS ,

so that the coefficient of tk is equal to ckMk(F) in magnitude. We then have

sup
z∈[−c,c]n

|f(z) − p(z)| ≥ max
z∈[−cx,cx]

|f(z) − p(z)|

= sup
t∈[−1,1]

|g(t)|

≥ sup
t∈[−1,1]

|g≤k(t)| − sup
t∈[−1,1]

|g≥k+1(t)|.

By Fact 24, the first term is at least ckMk(F)/2k−1. On the other hand, the second term
can be bounded using Theorem 17 by

sup
t∈[−1,1]

|g≥k+1(t)| ≤
(

c

1 − c

)k+1
Mk+1(F).

Therefore, we obtain

sup
z∈[−c,c]n

|f(z) − p(z)| ≥ 2
(c

2

)k

Mk(F) −
(

c

1 − c

)k+1
Mk+1(F).

It is straightforward to verify that for c ≤ min
(

1/3, 3−k Mk(F)
Mk+1(F)

)
, the second term is

bounded by half of the first. Because p was an arbitrary low-degree multilinear polynomial,
the claim follows. ◀

4 From Polynomial Approximations to PRGs

4.1 From Polynomial Approximations to Fractional PRGs
From Theorem 17, we now show how the construction of fractional PRGs from level-k bounds
reduces to efficient polynomial approximation on “large” subcubes.

▶ Theorem 25. Let F be closed under restrictions. Then there exists a fractional PRG for
F with error ε and seed length O(k log n) that is (ck(ε/2, F))2-noticeable. In particular, if
Mk(F) = bk, there exists such a fractional PRG that is Ω

(
ε2/k

b2

)
-noticeable with seed length

O(k log n).

CCC 2021

10:16 Fractional Pseudorandom Generators from Any Fourier Level

Proof. The second statement follows immediately from the first using Corollary 18, so we
focus on the first statement.

Fix f ∈ F , ε > 0, and let X be a (k − 1)-wise independent random variable over {−1, 1}n

such that |Xi| = c ≤ 1/2 for all i ∈ [n] for some c > 0 we specify momentarily. It is well-
known that X can be sampled efficiently with seed length O(k log n) [25]. By definition of
c := ck(ε/2, F), there exists a degree-(k − 1) multilinear polynomial f̃ which ε-approximates
f on the subcube [−c, c]n, i.e.

max
y∈[−c,c]n

∣∣f(y) − f̃(y)
∣∣ ≤ ε/2. (5)

Then we have, via the Fourier expansion of f ,∣∣EX[f(X)] − f(0)
∣∣ ≤ ε

2 +
∣∣∣EX[f(X)] − f̃(0)

∣∣∣
= ε

2 +
∣∣∣EX

[
f(X) − f̃(X)

]∣∣∣
≤ ε

2 + EX

[∣∣f(X) − f̃(X)
∣∣]

≤ ε.

The first inequality applies Equation (5) at the point x = 0, and the second uses the fact
that X is (k − 1)-wise independent and f̃ has degree at most k − 1. The final inequality
holds because of (5) and the fact that X ∈ [−c, c]n. Therefore, X satisfies the definition
of a fractional PRG. Note that by construction, X is c2-noticeable since it takes values in
{−c, c}n. ◀

Although it does not fit so neatly in this approximation framework, one can essentially
recover the improved seed length of [4] (which we recall assumes L1,i(F) bounds for i =
1, . . . , n) if one further has L1,i(F) bounds just up to level k − 1:

▶ Theorem 26. Let F be closed under restrictions, and suppose that Mk(F) ≤ bk for some
b ≥ 1, k ≥ 2. If it further holds that L1,i(F) ≤ bi for all 1 ≤ i < k, then there exists a
Θ(ε2/k/b2)-noticeable fractional pseudorandom generator for F with error ε and seed length
O(log log n + log k + log(1/ε)).

Proof. Fix f ∈ F , and let X be a random variable such that |Xi| = c for all i ∈ [n] for some
c > 0 we specify momentarily. Then we have, via the Fourier expansion of f ,

∣∣EX[f(X)] − f(0)
∣∣ =

∣∣∣∣∣EX

[∑
S⊆[n]:1≤|S|≤k−1

f̂(S)XS

]∣∣∣∣∣+
∣∣EX[f≥k(X)]

∣∣.
We first deal with the second term on the right hand side. By Theorem 17 we have

∣∣EX[f≥k(X)]
∣∣ ≤

(
c

1 − c

)k

Mk(F).

By assumption, Mk(F) ≤ bk for some b ≥ 1; therefore, by taking c = Θ(ε1/k/b), this term
is at most ε/2. To deal with the first term, we take the same approach as [4]. Under the
assumption L1,i(F) ≤ bi for all i < k, one may apply their analysis by letting X = c · Y′,
where Y′ is an (k − 1)-wise (ε/2)-biased independent random variable over {−1, 1}n. It is
clear that X is c2 = Θ(ε2/k/b2)-noticeable. Moreover, exactly as in [4], we have∣∣∣∣∣EX

[∑
S⊆[n]:1≤|S|≤k−1

f̂(S)XS

]∣∣∣∣∣ ≤
k−1∑
i=1

ci
∑

S⊆[n]:|S|=i

∣∣f̂(S)
∣∣∣∣E[Y

′S]
∣∣ ≤ (ε/2)

k−1∑
i=1

(bc)i ≤ ε/2,

E. Chattopadhyay, J. Gaitonde, C. H. Lee, S. Lovett, and A. Shetty 10:17

because by our choice of c we have bc ≤ 1/2. By standard constructions, Y′ can be efficiently
sampled with seed length O(log log n + log k + log(1/ε)) [15]. Combining these two errors
proves the theorem. ◀

4.2 From Fractional PRGs to PRGs
Using Theorem 25 and Theorem 26 in tandem with Theorem 14, it is fairly immediate to
obtain PRGs that rely only on a bound on some k-th Fourier level. Similarly, bounds on
levels up to k can be leveraged to get an improved seed length.

▶ Theorem 27 (Theorem 4, restated). Let F be any class of n-variate Boolean functions that
is closed under restrictions. Suppose that Mk(F) ≤ bk for some b ≥ 1 and k ≥ 3. Then for
any ε > 0, there exists an explicit PRG for F with error ε with seed length

O

(
b2+ 4

k−2 · k log n · log1+ 2
k−2 (n/ε)

ε
2

k−2

)
.

If it further holds that L1,i(F) ≤ bi for all 1 ≤ i < k, then the seed length can be improved to

O

(
b2+ 4

k−2 · (log log n + log k + log(b/ε)) · log1+ 2
k−2 (n/ε)

ε
2

k−2

)
.

Proof. By Theorem 14, given an explicit p-noticeable fractional PRG for F with error δ and
seed length s, one immediately obtains an explicit PRG for F with error O(δ log(n/δ)/p)
and seed length O(s log(n/δ)/p).

For the first statement, by our assumption and using the fractional PRG guaranteed
by Theorem 25, for any δ > 0, we immediately obtain an explicit PRG for F with error
O(b2δ1−2/k log(n/δ)) and seed length O(b2k log(n) log(n/δ)/δ2/k). To get the error below ε,
we set

δ = Θ
((

ε

b2 log(n/ε)

) k
k−2
)

(the astute reader may notice we implicitly use b ≤ n here). This yields a PRG with error ε

and seed length

O

(
b2+ 4

k−2 · k log n · log1+ 2
k−2 (n/ε)

ε
2

k−2

)
.

The second statement follows in an identical manner from the improved seed length given in
the second part of Theorem 26 in the case that one has control on the L1 Fourier mass on
the lower levels. ◀

Corollary 5 is now an immediate consequence of Theorem 27; for any desired ε > b · log(n) ·
2−O(k), one can simply apply Theorem 27 using level k = Θ(log(b log(n)/ε)) to obtain a
PRG for F with error at most ε with seed length

O(b2 · log(b log(n)/ε) · log(n/ε)).

Note that for error ε = 1/poly(n), one needs bounds only up to level Θ(log n) (again, using
the fact that b ≤ n). This also partially answers an open question of [6], which asks how
many levels of Fourier bounds suffice to recover polylogarithmic dependence in 1/ε.

CCC 2021

10:18 Fractional Pseudorandom Generators from Any Fourier Level

▶ Remark 28. Note that this Taylor’s theorem approach does not yield anything nontrivial
given bounds just on the second level, unlike the fractional PRG in [6]. This is actually a
necessary byproduct of combining this approach with the random walk gadget of [4]. Given
only level-two bounds, this approach attempts to use j-wise independence for j < k = 2 and
smallness to deal with errors on the high degree terms (k ≥ 2). However, the trivial random
variable that is ±1 with equal probability is trivially 1-wise independent, as each component
is a uniform random bit, albeit completely correlated. No matter how we scale them, one can
show that composing arbitrarily many independent copies of this random variable via the
random walk gadget must necessarily polarize to ±1 at termination, which clearly cannot
fool any nontrivial functions.

5 Low-degree Polynomials over F2

Our analysis recovers all the existing applications of [4] (among them, AC0 circuits, low-
sensitivity functions, and read-once branching programs); indeed, all the classes considered
there satisfy L1 Fourier bounds on the entire tail. To our knowledge, our new analysis does
not immediately improve the seed lengths obtained there, though it shows that (i) the seed
lengths there can potentially be improved using stronger bounds on Mk, and (ii) the PRGs
there would still have fooled those classes had these Fourier bounds been known only up to
some level k.

However, the generality afforded to us by this new analysis allows us to obtain a new
PRG for low-degree polynomials over F2, which addresses an open question of [4] by showing
that this framework can handle this class. Indeed, let F be the set of n-variate, degree-d
polynomials over F2. As a preliminary step towards deriving Fourier tail bounds that would
imply a nontrivial PRG for this class using their framework, [4] proves the following Fourier
bounds:

▶ Proposition 29 (Theorem 6.1 of [4]). Let p : Fn
2 → F2 be a degree-d polynomial, and let

f(x) = (−1)p(x). Then L1,k(f) ≤ (k · 23d)k.

Note that this result cannot be applied to their original analysis, for they require a nontrivial
bound at all levels, while this bound is trivial for k = Ω(

√
n) and any d. While Theorem 16

can yield a nontrivial PRG by just applying the level-two bound, the dependence on 1/ε is at
least quadratic.4 However, using our new, more flexible analysis, one can obtain a nontrivial
PRG with polylogarithmic dependence on the error parameter. Our formal result is the
following:

▶ Theorem 30. Let F be the class of degree-d polynomials over F2 on n variables. Then
there exists an explicit pseudorandom generator for F with error ε and seed length

2O(d) · log3(log(n)/ε) · log(n/ε).

Proof. Fix ε > 0 and let k = Θ(log(log(n)/ε)). By Proposition 29, we have that for all
j ≤ k,

L1,j(F) ≤ Θ
(
log(log(n)/ε) · 23d

)j
.

4 By applying this Fourier bound at level-two, one can use the fractional PRG of [6] to obtain seed
length 2O(d)polylog(n)/ε2+o(1) using the random walks framework. This gives exponentially worse error
dependence compared to our approach.

E. Chattopadhyay, J. Gaitonde, C. H. Lee, S. Lovett, and A. Shetty 10:19

By setting b = Θ(log(log(n)/ε) · 23d), we may apply Theorem 27 for F and error ε. Note
that ε−Θ(1/ log(1/ε)) = O(1), so plugging in this value of b, we immediately obtain the desired
pseudorandom generator. ◀

For comparison, the best known construction by Viola [26], obtained by summing d independ-
ent copies of a sufficiently good small-bias space, attains seed length d·log n+O(d·2d log(1/ε)),
which for constant ε and d is within a constant factor of the optimal seed length. The gener-
ator implied by our analysis recovers this polylogarithmic dependence in n/ε, although with
slightly worse dependence on log n and polynomially worse dependence in log(1/ε). Neither
generator can handle superlogarithmic degree. While this result clearly falls short of the
state-of-the-art, we emphasize that this generator is conceptually distinct from the existing
constructions, and yet belongs to this generic random walk framework.

Our analysis allows us to exploit known Fourier bounds that are too weak for the existing
analyses to obtain polylogarithmic error dependence. In particular, to get a nontrivial
pseudorandom generator for polynomials of superlogarithmic degree with nontrivial seed
length, our work shows that the following weaker conjecture would suffice to break the
logarithmic degree barrier and still achieve polylogarithmic (in n) seed length for ε =
1/poly(n):

▶ Conjecture 31. Let F be the class of degree-d polynomials over F2 on n variables. Then

Mk(F) ≤ (poly(k, log n) · 2o(d))k

for k ≤ O(log n).

In fact, we observe that to break the logarithmic degree barrier, it actually suffices that this
holds just at level k = 3, though with poor dependence on ε. Note that this is a significantly
weaker conjecture than positing that the same bounds hold for L1,k(F). Moreover, as we
explain in the next section, Mk(F) can be controlled using correlation bounds, which are
much better studied than L1 Fourier bounds.

6 Bounds on Mk(F) via Correlation with Shifted Majorities

As we have seen, our new analysis lets one construct PRGs from the weaker quantity Mk(F).
In this section, we extend the argument of Chattopadhyay, Hatami, Hosseini, Lovett, and
Zuckerman [5] to show how bounds on Mk(F) follow from covariance bounds with certain
resilient functions (in particular, shifted majorities). In their paper, they deal with the case
of k = 2; we rather straightforwardly generalize this argument, but stress that the approach
is the same as in Section 6 of their paper. To that end, for convenience and consistency with
their argument, we adopt their conventions and requisite definitions just for this section.
We will now consider Boolean functions written as f : {0, 1}n → {0, 1}. Translating to this
notation, for any such Boolean function f , let e(f)(x) ≜ (−1)f(x). Then, letting F = e(f),
we now have F̂ (S) = Ex[F (x)e(

∑
i∈S xi)].

▶ Definition 32. The covariance between f and g, where f, g are Boolean is

cov(f, g) ≜
∣∣E[e(f(x))e(g(x))] − E[e(f(x))]E[e(g(x))]

∣∣.
The covariance between a function f and a class G is defined as cov(f, G) ≜ maxg∈G cov(f, g).

CCC 2021

10:20 Fractional Pseudorandom Generators from Any Fourier Level

For any x ∈ {0, 1}n, we write |x| for its Hamming weight, i.e.
∑n

i=1 xi. For any
a ∈ {0, 1, . . . , n}, [5] defines Maja by

Maja(x) ≜
{

1 if |x| > a

0 otherwise,

as well as the following associated functions for any θ ∈ [n/2]:

Thrθ(x) ≜
{

(−1)Majn/2(x) if
∣∣|x| − n/2

∣∣ > θ

0 otherwise.

We now prove the following lemma relating Mk(F) with covariance bounds against the
k-XORs of these functions:

▶ Lemma 33 (Lemma 6.1 of [5], adapted). Let F be any family of (kn)-variate Boolean
functions that is closed under relabeling and negation of input variables. Suppose that for
any a1, . . . , ak such that |ai − n/2| = O(

√
kn log n) for all i ∈ [k], and all f ∈ F , we have

for some t ≥ 1

cov
(
f, ⊕k

i=1Majai

)
≤

(√
t

n

)k

,

where ⊕ denotes the XOR function. Then,

Mk(F) ≤ O
(√

tk log n
)k

.

To prove this lemma, [5] uses the following sequence of claims.

▶ Fact 34 (Claim 6.2 in [5]). For any f ∈ F , let F (x1, . . . , xk) = e(f(x1, . . . , xk)). Under
the hypotheses of Lemma 33, for any 1 ≤ a1, . . . , ak ≤ O(

√
kn log n),∣∣∣∣Ex1,...,xk

[(
F (x1, . . . , xk) − E[F]

) k∏
i=1

Thrai
(xi)

]∣∣∣∣ ≤

(√
t

n

)k

.

▶ Fact 35 (Claim 6.3 of [5]). For any x ∈ {0, 1}n,
∑n

i=1 e(xi) = 2
∑

1≤a≤n/2 Thra(x).

▶ Fact 36 (Claim 6.4 of [5], adapted). For any Boolean function f : {0, 1}kn → {0, 1}, there
exists a k-equipartition of [kn] into disjoint sets S1, . . . , Sk such that∣∣∣∣ ∑

S⊆[kn]:|S|=k

f̂(S)
∣∣∣∣ ≤ Ck

∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣

for some absolute constant C > 0.

As this fact is not quite identical to that in [5], we give an argument here:

Proof. We use the probabilistic method: let P be the set of k-equipartitions of [kn]. Let
T ⊆ [kn] of size k be arbitrary; without loss of generality, suppose T = [k]. Consider a
uniformly random k-equipartition P = S1 ⊔ · · · ⊔ Sk ∈ P. The probability that each i ∈ T

belongs to a distinct Sj is easily seen to be

k−1∏
i=1

(k − i) · n

kn − i
≥ (k − 1)! nk−1

(kn)k−1 = (k − 1)!
kk−1 = e−O(k),

E. Chattopadhyay, J. Gaitonde, C. H. Lee, S. Lovett, and A. Shetty 10:21

where the last equality uses Stirling’s approximation. By symmetry, let α ∈ N be the number
of k-equipartitions that any arbitrary subset T is in. Then we have

α

∣∣∣∣ ∑
S⊆[kn]:|S|=k

f̂(S)
∣∣∣∣ =

∣∣∣∣ ∑
P ∈P

∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣

≤
∑
P ∈P

∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣

≤ |P| max
P ∈P

∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣. ◀

The first line follows from simple counting, while the second is the triangle inequality.
Rearranging, we deduce that (writing T as a generic subset of size k)∣∣∣∣ ∑

S⊆[kn]:|S|=k

f̂(S)
∣∣∣∣ ≤ |P|

α
max
P ∈P

∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣

= Pr
P ∼P

(T ∈ P)−1 max
P ∈P

∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣

≤ eO(k) max
P ∈P

∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣.

The last fact that is needed can be deduced from the Chernoff bound:

▶ Fact 37 (Claim 6.5 of [5], adapted). For any a ≥ Ω(
√

kn log n), E[|Thra|] ≤ O(1/nk).

With these facts, we can now prove Lemma 33 in an entirely analogous fashion to [5]:

Proof of Lemma 33. Fix f ∈ F , and again write F (x1, . . . , xk) = e(f(x1, . . . , xk)). Let
F ′ = F − E[F]. Let Uj = {i : (j − 1)n + 1 ≤ i ≤ jn}. Then, possibly after relabelling
variables, we have by Fact 36 that∣∣∣∣ ∑

S⊆[kn]:|S|=k

f̂(S)
∣∣∣∣ ≤ Ck

∣∣∣∣ ∑
ij∈Uj ,∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣,

so we may turn to bounding this latter term. We have∣∣∣ ∑
ij ∈Uj ,∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣ =
∣∣∣ ∑

ij ∈Uj ,∀j∈[k]

E
[

F
′(x1, . . . , xk)

k∏
j=1

e
(

(xj)ij

)]∣∣∣
=
∣∣∣E[F ′(x1, . . . , xk)

k∏
j=1

(∑
ij ∈Uj

e
(

(xj)ij

))]∣∣∣
≤ 2k

∑
1≤ai≤n/2,∀i∈[k]

∣∣∣E[F ′(x1, . . . , xk)
k∏

i=1

Thrai
(xi)
]∣∣∣

≤ 2k

(∑
1≤ai≤O(

√
kn log n),∀i∈[k]

∣∣∣E[F ′(x1, . . . , xk)
k∏

i=1

Thrai
(xi)
]∣∣∣+ O(1)

)

≤ 2k · O
(√

kn log n
)k

·

(√
t

n

)k

= O
(√

tk log n
)k

.

CCC 2021

10:22 Fractional Pseudorandom Generators from Any Fourier Level

The first inequality follows from Fact 35, the second from Fact 37, and the last from Fact 34.
Because we assumed that F is closed under negations of input variables and f ∈ F was
arbitrary, we obtain the desired claim from Lemma 9 after absorbing the constant C above
into the implicit constant in this bound. ◀

7 Discussion and Open Questions

In this work, we have given a nearly complete interpolation between the previous PRGs
obtained in the polarizing random walk framework by exploiting level-k bounds on the
class of functions, thus answering an open question from [6]. We do so by exploiting an
alternate Fourier analysis via Taylor’s theorem and utilizing multilinearity and random
restrictions. This new analysis enables us to construct PRGs from bounds on the potentially
much smaller and better-understood Fourier quantity Mk(F), for any k ≥ 3. By generalizing
the connection established in [5], this reduces the problem of constructing PRGs in this
framework to proving correlation bounds. Further, we show how to get a PRG with an
improved seed length if we have bounds on L1,i(F), for all i ≤ k, where k ≥ 3. A natural
open question along these lines is to obtain the improved seed length using bounds on Mi(F)
(instead of L1,i(F)) for all i ≤ k. Another natural question is to construct a PRG using
bounds on just M2 (recall that [6] gives such a construction using bounds on L1,2(F) and
our analysis only gives a non-trivial PRG from bounds on Mk(F) when k ≥ 3).

Finally, exploiting known level-k bounds for F2 polynomials, our approach shows that the
polarizing random walk framework can yield pseudorandom generators for the class of F2
polynomials that is competitive with the state of the art. As mentioned, we hope this paper
gives evidence that stronger Fourier control (perhaps via proving the required correlation
bounds) can give better PRGs using this framework, and can also handle classes that were
previously not known to be possible. In particular, we emphasize that proving Conjecture 31
even for the case of k = 3 will lead to PRGs for F2-polynomials with degree ω(log n), a
longstanding problem in complexity theory.

References

1 Rohit Agrawal. Coin theorems and the Fourier expansion. Chicago Journal of Theoretical
Computer Science, 2020(4), August 2020.

2 Srinivasan Arunachalam, Sourav Chakraborty, Michal Koucký, Nitin Saurabh, and Ronald
de Wolf. Improved bounds on Fourier entropy and min-entropy. In Christophe Paul and
Markus Bläser, editors, 37th International Symposium on Theoretical Aspects of Computer
Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages
45:1–45:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
STACS.2020.45.

3 Nikhil Bansal and Makrand Sinha. k-forrelation optimally separates quantum and classical
query complexity. CoRR, abs/2008.07003, 2020. arXiv:2008.07003.

4 Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudorandom
generators from polarizing random walks. Theory of Computing, 15(10):1–26, 2019. doi:
10.4086/toc.2019.v015a010.

5 Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett, and David Zuckerman.
XOR lemmas for resilient functions against polynomials. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2020, page 234–246, New York,
NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3357713.3384242.

https://doi.org/10.4230/LIPIcs.STACS.2020.45
https://doi.org/10.4230/LIPIcs.STACS.2020.45
http://arxiv.org/abs/2008.07003
https://doi.org/10.4086/toc.2019.v015a010
https://doi.org/10.4086/toc.2019.v015a010
https://doi.org/10.1145/3357713.3384242

E. Chattopadhyay, J. Gaitonde, C. H. Lee, S. Lovett, and A. Shetty 10:23

6 Eshan Chattopadhyay, Pooya Hatami, Shachar Lovett, and Avishay Tal. Pseudorandom
Generators from the Second Fourier Level and Applications to AC0 with Parity Gates. In
Avrim Blum, editor, 10th Innovations in Theoretical Computer Science Conference (ITCS
2019), volume 124 of Leibniz International Proceedings in Informatics (LIPIcs), pages 22:1–
22:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.ITCS.2019.22.

7 Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. Improved pseudoran-
domness for unordered branching programs through local monotonicity. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018, pages 363–375, 2018. doi:10.1145/3188745.3188800.

8 Andreas Defant, Leonhard Frerick, Joaquim Ortega-Cerdà, Myriam Ounaïes, and Kristian
Seip. The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive.
Annals of mathematics, pages 485–497, 2011.

9 Uma Girish, Ran Raz, and Wei Zhan. Lower bounds for XOR of forrelations. CoRR,
abs/2007.03631, 2020. arXiv:2007.03631.

10 Parikshit Gopalan, Rocco A. Servedio, Avishay Tal, and Avi Wigderson. Degree and sensitivity:
tails of two distributions, 2016. arXiv:1604.07432.

11 Parikshit Gopalan, Rocco A. Servedio, and Avi Wigderson. Degree and sensitivity: Tails of
two distributions. In Ran Raz, editor, 31st Conference on Computational Complexity, CCC
2016, May 29 to June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages 13:1–13:23. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CCC.2016.13.

12 Chin Ho Lee. Fourier bounds and pseudorandom generators for product tests. In Amir
Shpilka, editor, 34th Computational Complexity Conference, CCC 2019, July 18-20, 2019, New
Brunswick, NJ, USA, volume 137 of LIPIcs, pages 7:1–7:25. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.CCC.2019.7.

13 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform,
and learnability. In 30th Annual Symposium on Foundations of Computer Science, pages
574–579. IEEE, 1989.

14 Ashley Montanaro. Some applications of hypercontractive inequalities in quantum information
theory. Journal of Mathematical Physics, 53(12):122206, 2012.

15 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. In Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 213–223. ACM,
1990. doi:10.1145/100216.100244.

16 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. doi:
10.1017/CBO9781139814782.

17 Qazi Ibadu Rahman and Gerhard Schmeisser. Analytic theory of polynomials, volume 26
of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford
University Press, Oxford, 2002.

18 Ran Raz and Avishay Tal. Oracle separation of BQP and PH. In Moses Charikar and Edith
Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 13–23. ACM, 2019.
doi:10.1145/3313276.3316315.

19 Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical notes of the Academy of Sciences of the USSR,
41(4):333–338, April 1987. doi:10.1007/BF01137685.

20 Alexander A. Sherstov, Andrey A. Storozhenko, and Pei Wu. An optimal separation of
randomized and quantum query complexity. Electron. Colloquium Comput. Complex., 27:128,
2020. URL: https://eccc.weizmann.ac.il/report/2020/128.

21 Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC ’87, page 77–82, New York, NY, USA, 1987. Association for Computing Machinery.
doi:10.1145/28395.28404.

CCC 2021

https://doi.org/10.4230/LIPIcs.ITCS.2019.22
https://doi.org/10.4230/LIPIcs.ITCS.2019.22
https://doi.org/10.1145/3188745.3188800
http://arxiv.org/abs/2007.03631
http://arxiv.org/abs/1604.07432
https://doi.org/10.4230/LIPIcs.CCC.2016.13
https://doi.org/10.4230/LIPIcs.CCC.2019.7
https://doi.org/10.1145/100216.100244
https://doi.org/10.1017/CBO9781139814782
https://doi.org/10.1017/CBO9781139814782
https://doi.org/10.1145/3313276.3316315
https://doi.org/10.1007/BF01137685
https://eccc.weizmann.ac.il/report/2020/128
https://doi.org/10.1145/28395.28404

10:24 Fractional Pseudorandom Generators from Any Fourier Level

22 Roman Smolensky. On representations by low-degree polynomials. In Proceedings of the 1993
IEEE 34th Annual Foundations of Computer Science, SFCS ’93, page 130–138, USA, 1993.
IEEE Computer Society. doi:10.1109/SFCS.1993.366874.

23 Avishay Tal. Tight bounds on the Fourier spectrum of AC0. In Ryan O’Donnell, editor, 32nd
Computational Complexity Conference, CCC 2017, July 6-9, 2017, Riga, Latvia, volume 79
of LIPIcs, pages 15:1–15:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.CCC.2017.15.

24 Avishay Tal. Towards optimal separations between quantum and randomized query complexities.
Electron. Colloquium Comput. Complex., 26:179, 2019. URL: https://eccc.weizmann.ac.
il/report/2019/179.

25 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,
7(1–3):1–336, 2012.

26 Emanuele Viola. The sum of d small-bias generators fools polynomials of degree d. Computa-
tional Complexity, 18(2):209–217, 2009. doi:10.1007/s00037-009-0273-5.

27 Emanuele Viola. Fourier conjectures, correlation bounds, and majority. Electron. Colloquium
Comput. Complex., 27:175, 2020. URL: https://eccc.weizmann.ac.il/report/2020/175.

28 Xinyu Wu. A stochastic calculus approach to the oracle separation of BQP and PH. CoRR,
abs/2007.02431, 2020. arXiv:2007.02431.

https://doi.org/10.1109/SFCS.1993.366874
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://eccc.weizmann.ac.il/report/2019/179
https://eccc.weizmann.ac.il/report/2019/179
https://doi.org/10.1007/s00037-009-0273-5
https://eccc.weizmann.ac.il/report/2020/175
http://arxiv.org/abs/2007.02431

Deterministic Identity Testing Paradigms for
Bounded Top-Fanin Depth-4 Circuits
Pranjal Dutta # Ñ

Chennai Mathematical Institute, India
Department of Computer Science & Engineering, IIT Kanpur, India

Prateek Dwivedi # Ñ

Department of Computer Science & Engineering, IIT Kanpur, India

Nitin Saxena # Ñ

Department of Computer Science & Engineering, IIT Kanpur, India

Abstract
Polynomial Identity Testing (PIT) is a fundamental computational problem. The famous depth-4
reduction (Agrawal & Vinay, FOCS’08) has made PIT for depth-4 circuits, an enticing pursuit.
The largely open special-cases of sum-product-of-sum-of-univariates (Σ[k]ΠΣ∧) and sum-product-
of-constant-degree-polynomials (Σ[k]ΠΣΠ[δ]), for constants k, δ, have been a source of many great
ideas in the last two decades. For eg. depth-3 ideas (Dvir & Shpilka, STOC’05; Kayal & Saxena,
CCC’06; Saxena & Seshadhri, FOCS’10, STOC’11); depth-4 ideas (Beecken,Mittmann & Saxena,
ICALP’11; Saha,Saxena & Saptharishi, Comput.Compl.’13; Forbes, FOCS’15; Kumar & Saraf,
CCC’16); geometric Sylvester-Gallai ideas (Kayal & Saraf, FOCS’09; Shpilka, STOC’19; Peleg &
Shpilka, CCC’20, STOC’21). We solve two of the basic underlying open problems in this work.

We give the first polynomial-time PIT for Σ[k]ΠΣ∧. Further, we give the first quasipolynomial
time blackbox PIT for both Σ[k]ΠΣ∧ and Σ[k]ΠΣΠ[δ]. No subexponential time algorithm was known
prior to this work (even if k = δ = 3). A key technical ingredient in all the three algorithms is how
the logarithmic derivative, and its power-series, modify the top Π-gate to ∧.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Polynomial identity testing, hitting set, depth-4 circuits

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.11

Funding Pranjal Dutta: Google Ph. D. Fellowship
Nitin Saxena: DST (DST/SJF/MSA-01/2013-14) and N. Rama Rao Chair

Acknowledgements Pranjal thanks CSE, IIT Kanpur for the hospitality.

1 Introduction: PIT & beyond

Algebraic circuits are natural algebraic analog of boolean circuits, with the logical oper-
ations being replaced by + and × operations over the underlying field. The study of
algebraic circuits comprise the large study of algebraic complexity, mainly pioneered (and
formalized) by Valiant [87]. A central problem in algebraic complexity is an algorithmic
design problem, known as Polynomial Identity Testing (PIT): given an algebraic circuit C
over a field F and input variables x1, . . . , xn, determine whether C computes the identic-
ally zero polynomial. PIT has found numerous applications and connections to other
algorithmic problems. Among the examples are algorithms for finding perfect matchings
in graphs [59, 62, 24], primality testing [4], polynomial factoring [52, 19], polynomial equi-
valence [21], reconstruction algorithms [48, 83, 44] and the existence of algebraic natural
proofs [16, 53]. Moreover, efficient design of PIT algorithms is intrinsically connected to
proving strong lower bounds [39, 1, 42, 23, 29, 17, 20]. Interestingly, PIT also emerges in

© Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 11; pp. 11:1–11:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pranjal@cmi.ac.in
https://sites.google.com/view/pduttashomepage
https://orcid.org/0000-0001-9137-9025
mailto:pdwivedi@cse.iitk.ac.in
https://www.prateekdwivedi.in/
https://orcid.org/0000-0002-0572-3721
mailto:nitin@cse.iitk.ac.in
https://cse.iitk.ac.in/users/nitin/
https://orcid.org/0000-0001-6931-898X
https://doi.org/10.4230/LIPIcs.CCC.2021.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Bounded Depth-4 Identity Testing Paradigms

many fundamental results in complexity theory such as IP = PSPACE [82, 60], the PCP
theorem [10, 11], and the overarching Geometric Complexity Theory (GCT) program towards
P ̸= NP [64, 63, 32, 41].

There are broadly two settings in which the PIT question can be framed. In the whitebox
setup, we are allowed to look inside the wirings of the circuit, while in the blackbox setting we
can only evaluate the circuit at some points from the given domain. There is a very simple
randomized algorithm for this problem - evaluate the polynomial at a random point from a
large enough domain. With very high probability, a nonzero polynomial will have a nonzero
evaluation; this is famously known as the Polynomial Identity Lemma [66, 18, 89, 81]. It has
been a long standing open question to derandomize this algorithm.

For many years, blackbox identity tests were only known for depth-2 circuits (equivalently
sparse polynomials) [13, 49]. In a surprising result, Agrawal and Vinay [7] showed that a
complete derandomization of blackbox identity testing for just depth-4 algebraic circuits
(ΣΠΣΠ) already implies a near complete derandomization for the general PIT problem.
More recent depth reduction results [50, 36], and the bootstrapping phenomenon [2, 55, 34, 9]
show that even PIT for very restricted classes of depth-4 circuits (even depth-3) would have
very interesting consequences for PIT of general circuits. These results make the identity
testing regime for depth-4 circuits, a very meaningful pursuit.

Three PITs in one-shot. Following the same spirit, here we solve three important (and
open) PIT questions. We give the first deterministic polynomial-time whitebox PIT algorithm
for the bounded sum-of-product-of-sum-of-univariates circuits (Σ[k]ΠΣ∧) [71, Open Prob. 2];
polynomials computed by these circuits are of the form Σi∈[k]Πj (gij1(x1) + · · · + gijn(xn))
(Theorem 1). In fact, we also design the first quasipolynomial-time blackbox PIT algorithm
for the same model (Theorem 2a). To the best of our knowledge, no subexponential time
algorithm was known prior to this work. A similar technique also gives a quasipolynomial-
time blackbox PIT algorithm for the bounded top and bottom fanin circuits Σ[k]ΠΣΠ[δ]

(where k and δ are constants), see Theorem 2b. These circuits compute polynomials of the
form Σi∈[k]Πjgij(x), where deg(gij) ≤ δ. Even δ = 2 was a challenging open problem [56,
Open Prob. 2].

Prior works on the related models. In the last two decades, there has been a surge of results
on identity testing for restricted classes of bounded depth algebraic circuits (eg. “locally”
bounded independence, bounded read/occur, bounded variables). There have been numerous
results on PIT for depth-3 circuits with bounded top fanin (known as Σ[k]ΠΣ-circuits). Divir
and Shpilka [22] gave the first quasipolynomial-time deterministic whitebox algorithm for
k = O(1), using rank based methods, which finally lead Karnin and Shpilka [45] to design
algorithm of same complexity in the blackbox setting. Kayal and Saxena [47] gave the first
polynomial-time algorithm of the same. Later, a series of works in [78, 79, 80, 5] generalized
the model and gave nO(k)-time algorithm when the algebraic rank of the product polynomials
are bounded.

There has also been some progress on PIT for restricted classes of depth-4 circuits. A
quasipolynomial-time blackbox PIT algorithm for multilinear Σ[k]ΠΣΠ-circuits was designed
in [43], which was further improved to a nO(k2)-time deterministic algorithm in [74]. A
quasipolynomial blackbox PIT was given in [12, 56] when algebraic rank of the irreducible
factors in each multiplication gate as well as the bottom fanin are bounded. Further interesting
restrictions like sum of product of fewer variables, and more structural restrictions have been
exploited, see [28, 6, 25, 61, 57]. Some progress has also been made for bounded top-fanin and
bottom-fanin depth-4 circuits via incidence geometry [35, 84, 68]. In fact, very recently, [69]
gave a polynomial-time blackbox PIT for Σ[3]ΠΣΠ[2]-circuits.

P. Dutta, P. Dwivedi, and N. Saxena 11:3

Why were the problems open? As mentioned above, people have studied depth-4 PIT only
with extra restrictions, mostly due to the limited applicability of the existing techniques: they
were tailor-made for the specific models and do not generalize. Eg. the previous methods
handle δ = 1 (i.e. linear polynomials at the bottom) or k = 2 (via factoring, [71]). While
k = 2 to 3, or δ = 1 to 2 (i.e. “linear” to “quadratic”) already demands a qualitatively
different approach.

Whitebox Σ[k]ΠΣ∧ model generalizes the famous bounded-top-fanin-depth-3 Σ[k]ΠΣ
of [47]; but their Chinese Remaindering (CR) method, loses applicability and thus fails to
solve even a slightly more general model. The blackbox setting involved similar “certifying
path” ideas [79] which could be thought of as general CR. It comes up with an ideal I such that
f ̸= 0 mod I and finally preserves it under a constant-variate linear map. The preservation
gets harder (for both Σ[k]ΠΣ∧ and Σ[k]ΠΣΠ[δ]) due to the increased non-linearity of the
ideal I generators. Intuitively, larger δ, via ideal-based routes, brings us to the Gröbner
basis method (which is doubly-exponential-time in n) [88]. We know that ideals even with
3-generators (analogously k = 4) already capture the whole ideal-membership problem [73].

The algebraic-geometric approach to Σ[k]ΠΣΠ[δ] has been explored in [12, 35, 61, 33].
The families which satisfy a certain Sylvester–Gallai configuration (called SG-circuits) is
the harder case which is conjectured to have constant transcendence degree [35, Conj. 1].
Non-SG circuits is the case where the nonzeroness-certifying-path question reduces to radical-
ideal non-membership questions [30]. This is really a variety question where one could use
algebraic-geometry tools to design a poly-time blackbox PIT. In fact, very recently, Guo [33]
gave a sδk -time PIT by constructing explicit variety evasive subspace families. Unfortunately,
this is not the case in the ideal non-membership; this scenario makes it much harder to solve
Σ[k]ΠΣΠ[δ]. From this viewpoint, radical-ideal-membership explains well why the intuitive
Σ[k]ΠΣ methods do not extend to Σ[k]ΠΣΠ[δ].

Interestingly, Forbes [25] found a quasipolynomial-time PIT for Σ∧ΣΠ[δ] using shifted-
partial derivative techniques; but it naively fails when one replaces the ∧-gate by Π (the
“measure” becomes too large). The “duality trick” [75] completely solves whitebox PIT for
Σ∧Σ∧, by transforming it to a read-once oblivious ABP (ROABP); but it is inapplicable to
our models with the top Π-gate (due to large waring rank and ROABP-width). A priori,
our models are incomparable to ROABP, and thus, the famous PIT algorithms for ROABP
[28, 27, 37] are not expected to help either.

Similarly, a naive application of the “Jacobian” + “certifying path” technique [5] fails
for our models because it is difficult to come up with a faithful map (for constant-variate
reduction). Kumar and Saraf [56] crucially used that the computed polynomial has low
individual degree (such that [23] can be invoked), while in [57] they exploits the low algebraic
rank of the polynomials computed below the top Π-gate. Neither of them hold, in general,
for our models. Very recently, Peleg and Shpilka [69] gave a poly-time blackbox PIT
for Σ[3]ΠΣΠ[2], via incidence geometry (eg. Edelstein-Kelly theorem involving “quadratic”
polynomials), by solving [35, Conj. 1] for k = 3, δ = 2. The method seems very strenuous to
generalize even to “cubic” polynomials (δ = 3 = k).

PIT for other models. Blackbox PIT algorithms for many restricted models are known.
Egs. ROABP related models [70, 40, 3, 37, 38, 27, 8], log-variate circuits [26, 14], certain
non-commutative models [31, 58]. We refer to [85, 76, 64, 77, 54, 72] for detailed surveys on
PIT and related topics.

CCC 2021

11:4 Bounded Depth-4 Identity Testing Paradigms

1.1 Our results: An analytic detour to three PITs
Though some attempts have been made to solve PIT for Σ[k]ΠΣ∧, no subexponential time
PIT for k ≥ 3 even in the whitebox settings is known, see [71, Open Prob. 2]. Our first result
exactly addresses this problem and designs a polynomial-time algorithm (Algorithm 1). The
technique (we call it DiDI-paradigm, Sec. 1.2) used is very analytic (& “non-ideal” based).
Throughout the paper, we will work with F = Q, though all the results hold for field of large
characteristic.

▶ Theorem 1 (Whitebox ΣΠΣ∧ PIT). There is a deterministic, whitebox sO(k 7k)-time PIT
algorithm for Σ[k]ΠΣ∧ circuits of size s, over F[x]. (See Algorithm 1.)

▶ Remark.
1. Case k ≤ 2 can be solved by invoking [71, Thm.5.2]; but k ≥ 3 was open.
2. Our technique necessarily blows up the exponent exponentially in k. In particular, it

would be interesting to design a subexponential time algorithm when k = Θ(log s).
3. It is not clear if the current technique gives PIT for Σ[k]ΠΣ∧[2] circuits, i.e. sum of

bivariate polynomials computed and fed into the top product gate.

Next, we go to the blackbox setting and address two models of interest, namely – Σ[k]ΠΣ∧
and Σ[k]ΠΣΠ[δ], where k, δ are constants. The prior best algorithms were exponential-time
in s. Our work builds on previous ideas for unbounded top fanin – (1) Jacobian [5], (2) the
known blackbox PIT for Σ ∧Σ∧ and Σ ∧ ΣΠ[δ] [37, 25] – maneuvering with an analytic
approach, via power-series, which unexpectedly reduces the top Π-gate to a ∧-gate.

▶ Theorem 2 (Blackbox PIT for depth-4).
(a) There is a deterministic sO(k log log s)-time blackbox PIT algorithm for Σ[k]ΠΣ∧ circuits

of size s, over F[x].
(b) There is a sO(δ2 k log s)-time blackbox PIT algorithm for Σ[k]ΠΣΠ[δ] circuits of size s,

over F[x].

▶ Remark.
1. Thm. 2 has a better dependence on k, but worse on s, than Thm. 1. Our results are

quasipoly-time even up to k, δ = poly(log s).
2. Thm. 2a is better than Thm. 2b, because Σ∧Σ∧ has a faster algorithm than Σ∧ΣΠ[δ].
3. Even for Σ[3]ΠΣ∧ and Σ[3]ΠΣΠ[3] models, we leave the poly-time blackbox question open.

1.2 Proof ideas: A technical synopsis
In this section, we overview the proof of Theorems 1-2. Both the proofs are analytic, i.e. they
use logarithmic derivative, and its power-series expansion; greatly transforming the respective
models. The first proof is inductive, while the second is a one-shot proof. We remark
that in both the cases, we essentially reduce to the well-known “wedge” models, that have
unbounded top fanin, yet for which PITs are known. This reduction is unforeseeable and
quite “power”ful.

The analytic tool that we use, appears in algebra (and complexity theory) through the
formal power series ring R[[x1, . . . , xn]] (in short R[[x]]), see [65, 86, 19]. The advantages of
the ring R[[x]] are many. They usually emerge because of the inverse: (1 − x1)−1 =

∑
i≥0 xi

1,
which does not make sense in R[x], but valid in R[[x]]. Other analytic tools used are inspired
from Wronskian (aka linear dependence) [51, Thm.7] [46], jacobian (aka algebraic dependence)
[12, 5, 67], and logarithmic derivative operator dlog z1

(f) = (∂z1 f)/f .

P. Dutta, P. Dwivedi, and N. Saxena 11:5

Moreover, we will be working with the division operator (eg. R(z1), over a certain ring R).
The divisions do not come for “free” – they require invertibility with respect to z1 throughout
(again landing us in R[[z1]], see Lem. 18). We define class C/D := {f/g | f ∈ C, D ∋ g ≠ 0},
for circuit classes C, D, (similarly C · D denotes the class taking respective products).

The DiDI-technique [Idea of Theorem 1]. The proof of Thm. 1 is recursive and uses a novel
technique that we introduce in this work, called DiDI (Di= Divide, D=Derive, I=Induct).
We illustrate it in k = 3, which generalizes to any k.

Before going into the technicalities, we want to convey that k = 3 is perhaps the first
non-trivial case-study. While k = 1 is the simplest case (follows directly using sparse-PIT
hitting set [49]), k = 2 invokes a strong irreducibility property [71, Thm. 5.2]; and neither of
them work for k ≥ 3.

The case k = 3 asks to check whether T1 + T2 + T3
?= 0, where Ti ∈ ΠΣ∧ of deg < d. We

apply a homomorphism Φ : F[x] −→ F[x, z1, z2] such that xi 7→ z1 · xi + Ψ(xi) where Ψ is
another homomorphism. The map Ψ : F[x] −→ F[z2] is a sparse-PIT map s.t. Ψ(Ti) ̸= 0
for non-zero Ti, using [49], which ensures that the degree of z2 is polynomially bounded
(Theorem 11). Think of the variable z1 as a degree-counter which also helps later to derive
(the second “D” of DiDI). Observe that Φ is a nonzeroness preserving 1-1 map:

T1 + T2 + T3 ̸= 0 ⇐⇒ Φ(T1) + Φ(T2) + Φ(T3) ̸= 0.

Denote R := F(z2)[z1]/⟨zd
1⟩. We divide (first “D” of DiDI), by Φ(T3), and derive, wrt z1, to

conclude that T1 + T2 + T3 = f over F[x] implies

∂z1

(
Φ(T1)
Φ(T3)

)
+ ∂z1

(
Φ(T2)
Φ(T3)

)
= ∂z1

(
Φ(f)
Φ(T3)

)
over R(x) .

Denote T̃1 := ∂z1(Φ(T1)/Φ(T3)) and T̃2 := ∂z1(Φ(T2)/Φ(T3)). Moreover, ∂z1(Φ(f)/Φ(T3)) =
0, over R(x), if and only if either (1) Φ(f)/Φ(T3) is z1-free, in which case it is an ele-
ment of F(z2), this can be easily argued by substituting z1 = 0 in the map Φ; or (2)
valz1(∂z1(Φ(f)/Φ(T3))) ≥ d, which is a contradiction since it implies valz1(Φ(f)) ≥ d + 1.
Here, valz1(·) denotes the valuation i.e. the maximum power of z1 dividing it (which easily
extends to fractions via valz1(p/q) := valz1(p) − valz1(q)). Whenever we talk about val, think
of working over F(z2, x)(z1); which is a ring notion that helps us computationally, and we
track the degree of z. This discussion summarizes a crucial fact:

T1 + T2 + T3 ̸= 0 ⇐⇒ T̃1 + T̃2 ̸= 0 over R(x), or Φ(f)
Φ(T3)

∣∣∣∣
z1=0

∈ F(z2)\{0} .

We remark that the z1 = 0 substitution is a natural condition as the derivation forgets the
(mod z1)-part. At the core, the idea is really “primal”: if a polynomial g(x) ̸= 0, then either
its derivative g′(x) ̸= 0, or its constant-term g(0) ̸= 0 (note: g(0) = g mod x).

Note that, the z1 = 0 substitution part is easy by poly-degree restriction on z2. If it is
already ̸= 0, we are done, otherwise we need to check T̃1 + T̃2 ≠ 0. Rewrite T̃i as Φ(Ti)/Φ(T3) ·
dlogz1

(Φ(Ti)/Φ(T3)), where dlog denotes the logarithmic-derivative, i.e. dlogz1
(·) = ∂z1(·)/(·).

Convert top Π to ∧: version 1. The map Ψ ensures that Φ(T3) is a unit over R. A
calculation shows that the action dlog(Σ∧) is in Σ ∧ /Σ∧ ∈ Σ∧Σ∧, over R[x] (Claim 4). This
crucially uses the inverse identity:

1
1 − a · z1

= 1 + a · z1 + . . . + ad−1 · zd−1
1 over R[x], (1)

CCC 2021

11:6 Bounded Depth-4 Identity Testing Paradigms

for a ∈ R[x]. Since, dlog is additive over a product (Sec. 2), the action puts dlog(ΠΣ∧ /ΠΣ∧)
in
∑

dlog(Σ∧), so in Σ∧Σ∧. Thus, both T̃1 and T̃2 are of the bloated form (ΠΣ∧/ΠΣ∧)·(Σ∧Σ∧),
over R(x).

Invertibility. The crucial point is that the ΠΣ∧-circuits are still invertible over R[x] as:
dlog newly introduces only Σ∧Σ∧ , while the ΠΣ∧-parts get multiplied by the ΠΣ∧ within
Ti’s, which are invertible by Ψ. Thus, such (ΠΣ∧)|z1=0 ∈ F(z2)\{0}; which will be useful
later.

Bloated k = 2 model. Is the newly “reduced” model similar to k = 2 base-case? It is a
more general expression (ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧) + (ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧). Let T̃1 + T̃2 =: f1,
over R(x). We know that f1 ̸= 0 (by hypothesis). We again apply “Divide and Derive” of
DiDI; here we divide with the T̃i where valz1 is minimal. Wlog, valz1(T̃2) =: v, is the minimal
valuation. Of course, 0 ≤ v < d (strict because of Ψ). Let us define R′ := F(z2)[z1]/⟨zd−v−1

1 ⟩.
Then, (T̃1/T̃2) + 1 = f1/T̃2 over R′(x). This is well-defined as the division is being done
by the minimum valuation (Lemma 18); thus after derivation, the modulus goes from zd

1
to zd−v−1

1 which is well-defined over R′(x). However, if we derive: ∂z1(f1/T̃2) =: f2 may
become = 0 over R′(x). That could happen if and only if:
1. Either, f1/T̃2 is z1-free; in that case

f1

T̃2

∣∣∣∣
z1=0

=
(

T̃1

T̃2
+ 1
)∣∣∣∣

z1=0
∈ F(z2) · Σ∧Σ∧

Σ∧Σ∧
+ 1.

This is easy to test using Σ ∧Σ∧ whitebox PIT (Lemma 19) (we keep track of the
circuit-size respectively the degree of z2 and ensure them polynomially bounded),

2. Or, valz1(f2) ≥ d−v−1 =⇒ ∂z1(f1/T̃2) = zd−v−1
1 ·p, for some p ∈ R′(x) s.t. valz1(p) ≥ 0;

this further implies p ∈ F(z2, x)[[z1]] (Lemma 18). Thus valz1(f1/T̃2) ≥ d−v =⇒ f1 = 0,
over R(x), a contradiction.

Thus, we check the easy condition (1). If the z1 = 0 substitution outputs 0, we need
to check whether other monomials of z1 in f2 survive. This suffices to conclude f ̸= 0.
Thankfully f2 = ∂z1(T̃1/T̃2) is now a (ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧) circuit over R′(x).
This is the same analysis as above that converts top Π to ∧. Except, we may not be able to
remove Σ∧Σ∧ from the denominator; so we work with this fractional bloated model. (Note:
the reciprocal may not be in the polynomial ring R′[x], but only in the ring R′(x).)

Finally, identity testing of (ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧), over R′(x) is easy: (1) Σ∧Σ∧
is closed under coefficient extraction with respect to z1 (Lemma 14), (2) whitebox identity
testing is in P for both ΠΣ∧ (Theorem 11) and Σ∧Σ∧ (convert it to an ROABP using [75]
and invoke [70], see Lemma 19), (3) the degree of z1, z2 respectively circuit-size remain
polynomially bounded.

For general induction, our bloated model is Σ[k](ΠΣ ∧ /ΠΣ∧) · (Σ ∧Σ∧ /Σ ∧Σ∧) 1.
More work shows that it is closed under DiDI-technique. This is primarily what makes our
polynomial-time algorithm possible. For details, refer to Section 3.1 and Algorithm 1

Jacobian hits again [Idea of Theorem 2]. Suppose we want to test T1 + . . . + Tk
?= 0,

where Ti ∈ ΠΣΠ[δ] (respec. ΠΣ∧). We associate a famous polynomial – the Jacobian
J(T1, . . . , Tr) (see Sec. 2). It captures the algebraic independence of T1, . . . , Tr assuming
this to be a transcendence basis of the Ti’s (see Fact 23). If we could find an r-variate

1 This is a special case of Σ[k]ΠΣ ∧ Σ∧ circuits; which is really depth-6.

P. Dutta, P. Dwivedi, and N. Saxena 11:7

linear map Φ, that keeps T1, . . . , Tr algebraically independent, then Φ(T1), . . . , Φ(Tr) are
again algebraically independent and it can be shown that for any C: C(T1, . . . , Tk) = 0 ⇐⇒
C(Φ(T1), . . . , Φ(Tk)) = 0 (Fact 22). Such a map is called “faithful” [5].

The overall idea is to find an explicit homomorphism Ψ : F[x] −→ F[x, z1, z2], and then fix
x by a hitting-set H ′ to get a composed map Ψ′ s.t. rkF(x)Jx(T) = rkF(z)Ψ′(Jx(T)) [here J
is the jacobian matrix and T = (T1, . . . , Tr)]. Next, extend this map to Φ : F[x] −→ F[z, y, t]
s.t. xi 7→ (

∑k
j=1 yjtij) + Ψ′(xi), which is faithful. The construction of the map Ψ′ is crucial.

We efficiently construct it by reducing Ψ(Jxr
(T)) to Σ∧ΣΠ[δ] (respec. Σ∧Σ∧) circuits,

which have quasipoly size hitting sets [25] (respec. Lemma 19).
Jacobian works. A priori, Jacobian is a difficult determinant to work with, and so is

finding a faithful Φ. However, for the special models (in this paper) we are able to design
Φ, mainly because of two reasons – (1) Jacobian being defined via partial derivatives, has a
nice “linearizing effect” on the top Π-gates (that are only r ≤ k many), (2) Jacobian under a
homomorphism Ψ has a nice expression (think of this as a generalized dlog-expression):

Ψ(Jxr
(T)) = Ψ(T1 · · · Tr) ·

∑
g1∈L(T1),...,gr∈L(Tr)

Ψ(Jxk
(g1, . . . , gr))

Ψ(g1 . . . gr) . (see Eqn. 6)

Here, L(Ti) denotes the multiset of sparse polynomials that constitutes Ti. We show: each
1/Ψ(·) has a “small” Σ∧ΣΠ[δ]-circuit (respec. Σ∧Σ∧). The last point requires invertibility.
Define, Ψ : xi 7→ z1xi + Ψ1(xi), where Ψ1(·) is a sparse-PIT map s.t. Ψ1 : F[x] −→ F[z2]
s.t. Ψ1(Ti) ̸= 0. Under the Ψ, Ti is a unit over ring R := F(z2)[z1]/⟨zD

1 ⟩, where D is
polynomially bounded. The idea behind the map is similar to that of Thm. 1. Next, we
sketch why Ψ(Jxr

(T)) has a Σ∧ΣΠ[δ] circuit (respec. Σ∧Σ∧) of size sO(k) over R[x].

Convert top Π to ∧: version 2. The critical point is to show that 1/Ψ(g1 · · · gk), over
R[x], where gi ∈ ΣΠ[δ] (respec. Σ∧) has sO(k) size Σ∧ΣΠ[δ] (respec. Σ∧Σ∧) circuit (see
Lem. 10): this again follows from the inverse identity Equation 1. We keep track of the
degree of z throughout, which eventually is bounded by sO(k). Thus, the H ′ can be efficiently
constructed from the hitting set of the respective models (of quasipolynomial size), see
Thm. 27 and 19. The map Φ ultimately provides a hitting set for T1 + . . . + Tk , as we
reduce to a PIT of a polynomial over “few” (roughly equal to k) variables, yielding a QP-time
algorithm.

It is important to note that there was no power series in [5]; this really empowers the
jacobian technique as it now manifests new reduced models, for which a hitting-set is known.
This technique is also inherently map-based. So, it requires a hitting-set and fails to give a
poly-time whitebox PIT for the respective models. For the detailed proof, see Section 3.2.

2 Preliminaries

Before proving the results, we describe some of the assumptions and notations used throughout
the paper. x denotes (x1, . . . , xn). [n] denotes {1, . . . , n}.

Logarithmic derivative. Over a ring R and a variable y, the logarithmic derivative dlogy :
R[y] → R(y) is defined as dlogy(f) := ∂y f/f ; here ∂y denotes the partial derivative with
respect to variable y. One important property of dlog is that it is additive over a product as

dlogy(f · g) = ∂y(f · g)
f · g

= (f · ∂yg + g · ∂yf)
f · g

= dlogy(f) + dlogy(g).

We refer this effect as linearization of product.

CCC 2021

11:8 Bounded Depth-4 Identity Testing Paradigms

Circuit size. Sparsity sp(·) refers to the number of nonzero monomials. In this paper, it
is a parameter of the circuit size. In particular, size(g1 · · · gs) =

∑
i∈[s] (sp(gi) + deg(gi)),

for gi ∈ Σ∧ (respec. ΣΠ[δ]). In whitebox settings, we also include the bit-complexity of the
circuit (i.e. bit complexity of the constants used in the wires) in the size parameter. Some of
the complexity parameters of a circuit are depth (number of layers), syntactic degree (the
maximum degree polynomial computed by any node), fanin (maximum number of inputs to
a node).

Hitting set. A set of points H ⊆ Fn is called a hitting-set for a class C of n-variate
polynomials if for any nonzero polynomial f ∈ C, there exists a point in H where f evaluates
to a nonzero value. A T (n)-time hitting-set would mean that the hitting-set can be generated
in time T (n), for input size n.

Valuation. Valuation is a map valy : R[y] → Z≥0, over a ring R, such that valy(·) is defined
to be the maximum power of y dividing the element. It can be easily extended to fraction
field R(y), by defining valy(p/q) := valy(p) − valy(q); where it can be negative.

Field. We denote the underlying field as F and assume that it is of characteristic 0. All our
results hold for other fields (eg. Qp,Fp) of large characteristic (see Remarks in Section 3.1–3.2).

Jacobian. The Jacobian of a set of polynomials f = {f1, . . . , fm} in F[x] is defined to be the
matrix Jx(f) :=

(
∂xj

(fi)
)

m×n
. Let S ⊆ x = {x1, . . . , xn} and |S| = m. Then, polynomial

JS(f) denotes the minor (i.e. determinant of the submatrix) of Jx(f), formed by the columns
corresponding to the variables in S. For its useful properties, see Appendix C.

3 Proof of the main theorems

This section proves Theorems 1-2. The proofs are self contained and we assume for the sake
of simplicity that the underlying field F has characteristic 0. When this is not the case, we
discuss the corresponding required characteristic as remarks after the respective proofs.

3.1 Proof of Theorem 1
As seen in Section 1.2, we will induct over the bloated model which naturally generalizes
ΣΠΣ∧ circuits and works ideally under the DiDI-techniques. Formally, we define it below.

▶ Definition 3. We call a circuit C ∈ Gen(k, s), over R(x), for any ring R, with parameter k

and size-s, if C ∈ Σ[k](ΠΣ∧ /ΠΣ∧) ·(Σ∧Σ∧ /Σ∧Σ∧). It computes f ∈ R(x), if f =
∑k

i=1 Ti,
where
1. Ti =: (Ui/Vi) · (Pi/Qi), for Ui, Vi ∈ ΠΣ∧, and Pi, Qi ∈ Σ∧Σ∧,
2. size(Ti) = size(Ui) + size(Vi) + size(Pi) + size(Qi), and size(f) =

∑
i∈[k] size(Ti).

Eg. Size-s Σ[k]ΠΣ∧-circuit ∈ Gen(k, s). We will design a recursive algorithm.

Proof of Theorem 1. Begin with Ti,0 := Ti and f0 := f where Ti,0 ∈ ΠΣ∧;
∑

i Ti,0 = f0,
and f0 has size ≤ s. Assume deg(f) < d ≤ s; we keep the parameter d separately, to
help optimize the complexity later. In every recursive call we work with Gen(·, ·) circuits.
As the input case, define Ui,0 := Ti,0 and Vi,0 := Pi,0 := Qi,0 := 1. Further define a 1-1
homomorphism Φ : F[x] −→ F[x, z1, z2] such that xi 7→ z1·xi+Ψ(xi). Here, Ψ : F[x] −→ F[z2]
is a sparse-PIT map [49] s.t. Ψ(Ui,0) ̸= 0, ∀i ∈ [k] (Theorem 11). Invertibility implies that

P. Dutta, P. Dwivedi, and N. Saxena 11:9

f0 = 0 ⇐⇒ Φ(f0) = 0. Further, the degree bound of z2 on Φ(Ti,0) is poly(s). The algorithm
is recursive, and first reduces the identity testing from top-fanin k to k − 1. Note: k = 1 is
trivial.

0-th step. Efficient reduction from k to k − 1. By assumption,
∑k

i=1 Ti,0 = f0 and
Tk,0 ̸= 0. Apply Φ both sides. Then divide and derive:∑

i∈[k]

Ti,0 = f0 ⇐⇒
∑
i∈[k]

Φ(Ti,0) = Φ(f0)

⇐⇒
∑

i∈[k−1]

Φ(Ti,0)
Φ(Tk,0) + 1 = Φ(f0)

Φ(Tk,0)

=⇒
∑

i∈[k−1]

∂z1

(
Φ(Ti,0)
Φ(Tk,0)

)
= ∂z1

(
Φ(f0)

Φ(Tk,0)

)

⇐⇒
k−1∑
i=1

Φ(Ti,0)
Φ(Tk,0) · dlog

(
Φ(Ti,0)
Φ(Tk,0)

)
= ∂z1

(
Φ(f0)

Φ(Tk,0)

)
. (2)

Define the following:
R1 := F(z2)[z1]/⟨zd

1⟩. Note that, Eqn.(2) holds over R1(x).

T̃i,1 := Φ(Ti,0)/Φ(Tk,0) · dlog(Φ(Ti,0)/Φ(Tk,0)), ∀ i ∈ [k − 1].

f1 := ∂z1(Φ(f0)/Φ(Tk,0)), over R1(x).

Definability of Ti,1 and f1. It is easy to see that these are well-defined terms. Here, we
emphasize that we do not exactly compute/store T̃i,1 as a fraction where the degree in z1
is < d; instead it is computed/stored as an element in F(z2)(z1, x), where z1 is a formal
variable. Formally, we compute Ti,1 ∈ F(z2)(z1, x), such that T̃i,1 = Ti,1, over R1(x). We
keep track of the degree of z1 and z2 in Ti,1. Thus,

∑
i∈[k−1] Ti,1 = f1, over R1(x).

The “iff” condition. Equality in Eqn. (2) over R1(x) is one-sided; however we want
a ⇐⇒ condition to efficiently reduce the identity testing. Note that f1 ̸= 0 implies
valz1(f1) < d =: d1. By assumption, Φ(Tk,0) is invertible over R1(x). Further, f1 = 0, over
R1(x), implies –

1. Either, Φ(f0)/Φ(Tk,0) is z1-free. This implies Φ(f0)/Φ(Tk,0) ∈ F(z2)(x), which further
implies it is in F(z2), because of the map Φ (z1-free implies x-free, by substituting z1 = 0).
Also, note that f0, Tk,0 ̸= 0 implies Φ(f0)/Φ(Tk,0) is a nonzero element in F(z2). Thus, it
suffices to check whether Φ(f0)|z1=0 = Ψ(f0) is non-zero or not. Further, the degree of z2
in Ψ(f0) is polynomially bounded.

2. Or, ∂z1(Φ(f0)/Φ(Tk,0)) = zd1
1 · p where p ∈ F(z2)(z1, x) s.t. valz1(p) ≥ 0. By simple

power series expansion, one can conclude that p ∈ F(z2, x)[[z1]] (Lemma 18). Hence,
Φ(f0)/Φ(Tk,0) = zd1+1

1 · q where q ∈ F (z2, x)[[z1]], i.e.

Φ(f0)/Φ(Tk,0) ∈ ⟨zd1+1
1 ⟩F(z2,x)[[z1]] =⇒ valz1(Φ(f0)) ≥ d + 1,

a contradiction.

CCC 2021

11:10 Bounded Depth-4 Identity Testing Paradigms

Conversely, it is obvious that f0 = 0 implies f1 = 0. Thus, we have proved the following∑
i∈[k]

Ti,0 ̸= 0 over F[x] ⇐⇒
∑

i∈[k−1]

Ti,1 ̸= 0 over R1(x), or , 0 ̸= Φ(f0)|z1=0 ∈ F(z2) .

Eventually, we show that Ti,1 ∈ (ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧), over R1(x), with polynomial
blowup in size (Claim 4). So, the above circuit is in Gen(k − 1, ·), over R1(x), which we
recurse on to finally give the identity testing. The 1-th step is a bit more tricky:

Induction step. Assume that we are in the j-th step (j ≥ 1). Our induction hypothesis
assumes –

1.
∑

i∈[k−j] Ti,j = fj , over Rj(x), where Rj := F(z2)[z1]/⟨zdj

1 ⟩, and Ti,j ̸= 0.
2. Here, Ti,j =: (Ui,j/Vi,j) · (Pi,j/Qi,j), where Ui,j , Vi,j ∈ ΠΣ∧, and Pi,j , Qi,j ∈ Σ∧Σ∧, each

in Rj [x]. Think of them being computed as F(z2)(z1, x), with the degrees being tracked.
Wlog, assume that valz1(Tk−j,j) is the minimal among all Ti,j ’s.

3. valz1(Ti,j) ≥ 0, ∀i ∈ [k − j]. Moreover, Ui,j |z1=0 ∈ F(z2)\{0} (similarly Vi,j).
4. f ̸= 0, over F[x] ⇐⇒ fj ̸= 0, over Rj(x), or,

∨j−1
i=0 ((fi/Tk−i,i)|z1=0 ̸= 0, overF(z2)(x)).

We follow the 0-th step, without applying any further homomorphism. Note that the
“or condition” in the last hypothesis is similar to the j = 0 case except that there is no Φ:
this is because Φ(f0)|z1=0 ̸= 0 ⇐⇒ Φ(f0/Tk,0)|z1=0 ̸= 0. This condition just separates the
derivative from the constant-term (as pointed in Section 1.2).

Let valz1(Pi,j/Qi,j) =: vi,j , for i ∈ [k − j]. Note that

min
i

valz1(Ti,j) = min
i

valz1(Pi,j/Qi,j) = vk−j,j

since valz1(Ui,j) = valz1(Vi,j) = 0 (else we reorder). We remark that 0 ≤ vi,j < dj for all i’s
in j-th step; upper-bound is strict, since otherwise Ti,j = 0 over Rj(x).

Min val computation is easy. Finding this min val is easy, as we can compute valz1(Pi,j)
and valz1(Qi,j), ∀i ∈ [k − j]. To compute val, note that coefze

1
(Pi,j) and coefze

1
(Qi,j) are

in Σ ∧Σ∧ as well, over F (z2)[x] (Lemma 14). We can keep track of z1 degree and thus
interpolate to find the minimum e < dj such that it is ̸= 0 (implying it to be the respective
val).

Efficient reduction from k − j to k − j − 1. Similar to the 0-th step, we divide and derive:∑
i∈[k−j]

Ti,j = fj ⇐⇒
∑

i∈[k−j−1]

Ti,j/Tk−j,j + 1 = fj/Tk−j,j

=⇒
∑

i∈[k−j−1]

∂z1(Ti,j/Tk−j,j) = ∂z1(fj/Tk−j,j)

⇐⇒
k−j−1∑

i=1
Ti,j/Tk−j,j · dlog(Ti,j/Tk−j,j) = ∂z1(fj/Tk−j,j) (3)

Define the following:
Rj+1 := F(z2)[z1]/⟨zdj+1

1 ⟩, where dj+1 := dj − vk−j,j − 1.

T̃i,j+1 := Ti,j/Tk−j,j · dlog(Ti,j/Tk−j,j), ∀ i ∈ [k − j − 1].

fj+1 := ∂z1(fj/Tk−j,j), over Rj+1(x).

P. Dutta, P. Dwivedi, and N. Saxena 11:11

Definability of Ti,j+1 and fj+1. By the minimal valuation assumption, it follows that
val(fj) ≥ vk−j,j , and thus T̃i,j+1 and fj+1 are all well-defined over Rj+1(x). Note that,
Eqn. (3) holds over Rj+1(x) as dj+1 < dj (because, whatever identity holds true modz

dj

1
must hold modz

dj+1
1 as well). Hence, we must have

∑k−j−1
i=1 T̃i,j+1 = fj+1, over Rj+1(x)

[proving induction hypothesis (1)].
Similarly, we emphasize on the fact that we do not exactly compute T̃i,j+1 mod z

dj+1
1 ; in-

stead it is computed as a fraction in F(z2)(z1, x), with formal z1. Formally, we compute/store
Ti,j+1 ∈ F(z2)(z1, x), such that T̃i,j+1 = Ti,j+1, over Rj+1(x). We keep track of the degree
of z1 and z2 in Ti,j+1. Also, by definition, valz1(Ti,j+1) ≥ 0 (as we divide by the min val)
[proving induction hypothesis (3), first part]. Of course, we have

∑
i∈[k−j−1] Ti,j+1 = fj+1,

over Rj+1(x).

The “iff” condition. The above Eqn. (3) pioneers to reduce from k − j-summands to
k − j −1. But we want a ⇐⇒ condition to efficiently reduce the identity testing. If fj+1 ̸= 0,
then valz1(fj+1) < dj+1. Further, fj+1 = 0, over Rj+1(x) implies–
1. Either, fj/Tk−j,j is z1-free. This implies it is in F(z2)(x). Now, if indeed f0 ̸= 0, then the

computed Ti,j as well as fj must be non-zero over F(z2)(z1, x), by induction hypothesis
(as they are non-zero over Rj(x)). However,(

Ti,j

Tk−j,j

) ∣∣∣∣
z1=0

=
(

Ui,j · Vk−j,j

Uk−j,j · Vi,j

) ∣∣∣∣
z1=0

·
(

Pi,j · Qk−j,j

Pk−j,j · Qi,j

) ∣∣∣∣
z1=0

∈ F(z2) ·
(

Σ∧Σ∧
Σ∧Σ∧

)
.

Thus,

fj

Tk−j,j
∈
∑

F(z2) ·
(

Σ∧Σ∧
Σ∧Σ∧

)
∈
(

Σ∧Σ∧
Σ∧Σ∧

)
.

Here we crucially use that Σ∧Σ∧ is closed under multiplication (Lemma 16). We show that
the degree of z2 (in denominator and numerator) in each Ti,j/Tk,j is poly-bounded. Thus,
this identity testing can be done in poly-time (Lemma 19). For, detailed time-complexity
and calculations, see Claim 4 and its subsequent paragraph.

2. Or, ∂z1(fj/Tk−j,j) = z
dj+1
1 · p, where p ∈ F(z2)(z1, x) s.t. valz1(p) ≥ 0. By a simple power

series expansion, one concludes that p ∈ F(z2, x)[[z1]] (Lemma 18). Hence, one concludes
that

fj

Tk−j,j
∈
〈

z
dj+1+1
1

〉
F(z2,x)[[z1]]

=⇒ valz1(fj) ≥ dj ,

i.e. fj = 0, over Rj(x).
Conversely, fj = 0, over Rj(x), implies

valz1(fj) ≥ dj =⇒ valz1

(
∂z1

(
fj

Tk−j,j

))
≥ dj − vk−j,j − 1 =⇒ fj+1 = 0, over Rj+1(x).

Thus, we have proved that
∑

i∈[k−j] Ti,j ̸= 0 over Rj(x) iff

∑
i∈[k−j−1]

Ti,j+1 ̸= 0 over Rj+1(x) , or , 0 ̸=
(

fj

Tk−j,j

) ∣∣∣∣
z1=0

∈ F(z2)(x) .

Therefore induction hypothesis (4) holds. All we need to show is hypothesis (2) and second
part of (3). This part is involved in the size-analysis and dlog-computation, discussed below.

CCC 2021

11:12 Bounded Depth-4 Identity Testing Paradigms

Invertibility of ΠΣ∧-circuits. Before going into the size analysis, we want to remark that
the dlog compuation plays a crucial role here. The action dlog(Σ∧Σ∧) ∈ Σ∧Σ∧ /Σ∧Σ∧ , is of
poly-size (Lemma 17). What is the action on ΠΣ∧? dlog distributes the product additively,
so it suffices to work with dlog(Σ∧); and we show that dlog(Σ∧) ∈ Σ ∧Σ∧ of poly-size.
Assuming these, we simplify

Ti,j

Tk−j,j
= Ui,j · Vk−j,j

Vi,j · Uk−j,j
· Pi,j · Qk−j,j

Qi,j · Pk−j,j
,

and its dlog. Thus, using Eq. (3), Ui,(j+1) grows to Ui,j · Vk−j,j (and similarly Vi,(j+1)). This
also means: Ui,(j+1)|z1=0 ∈ F(z2) \ {0} (proving hypothesis (3), second part).

Size analysis. We will show that Ti,j+1 ∈ (ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧), over Rj+1(x),
with only polynomial blowup in size. Let size(Ti,j) ≤ sj , for i ∈ [k − j], and j ∈ [k]. Note
that, by assumption, s0 ≤ s.

▷ Claim 4 (Final size). T1,k−1 ∈ (ΠΣ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧) of size sO(k7k), over Rk−1(x).

Proof. Steps j = 0 and j > 0 are slightly different because of the Φ. However the main idea
of using power-series is the same which eventually shows that dlog(Σ∧) ∈ Σ∧Σ∧ .

We first deal with j = 0. Let A − z1 · B = Φ(g) ∈ Σ∧, for some A ∈ F(z2) and B ∈ R1[x].
Note that A ̸= 0 because of the map Ψ. Further, size(B) ≤ O(d · size(g)), as a single
monomial of the form xe can produce d + 1-many monomials. Over R1(x),

dlog(Φ(g)) = − ∂z1(B · z1)
A(1 − B

A · z1)
= −∂z1(B · z1)

A
·

d1−1∑
i=0

(
B

A

)i

· zi
1 . (4)

Bi has a trivial ∧Σ∧-circuit of size O(d · size(g)). Also, ∂z1(B · z1) has a Σ∧-circuit of size at
most O(d ·size(g)). Using waring identity (Lemma 15), we get that each ∂z1(B ·z1) ·(B/A)i ·zi

1
has size O(i · d · size(g)), over R1(x). Summing over i ∈ [d1 − 1], the overall size is at most
O(d2

1 · d · size(g)) = O(d3 · size(g)), as d0 = d1 = d.
For the j-th step, we emphasize that the degree could be larger than d. Assume that

syntactic degree of denominator and numerator of Ti,j (each in F[x, z]) are bounded by Dj

(it is not dj as seen above; this is to save on the trouble of mod-computation at each step).
Of course, D0 < d ≤ s.

For j > 0, the above summation in Equation 4 is over Rj(x). However the degree could
be Dj (possibly more than dj) of the corresponding A and B. Thus, the overall size after
the power-series expansion would be O(D2

j · d · size(g)).
Using Lemma 17, we can show that dlog(Pi,j) ∈ Σ∧Σ∧ /Σ∧Σ∧ (similarly for Qi,j), of

size O(D2
j · sj). Also dlog(Ui,j · Vk−j,j) ∈

∑
dlog(Σ∧), i.e. sum of action of dlog on Σ∧

(since dlog linearizes product); and it can be computed by the above formulation. Thus,
dlog(Ti,j/Tk−j,j) is a sum of 4-many Σ∧Σ∧ /Σ∧Σ∧ of size at most O(D2

j sj) and 1-many
Σ∧Σ∧ of size O(D2

j djsj) (from the above power-series computation) [Note: we summed up
the Σ∧Σ∧-expressions from dlog(Σ∧) together]. Additionally the syntactic degree of each
denominator and numerator (of the Σ∧Σ∧ /Σ∧Σ∧) is O(Dj). We rewrite the 4 expressions
(each of Σ∧Σ∧ /Σ∧Σ∧) and express it as a single Σ∧Σ∧ /Σ∧Σ∧ using waring identity
(Lemma 16), with the size blowup of O(D12

j s4
j); here the syntatic degree blowsup to O(Dj).

Finally we add the remaining Σ∧Σ∧ circuit (of size O(D3
j sj) and degree O(dDj)) to get

O(s5
jD16

j d). To bound this, we need to understand the degree bound Dj .

P. Dutta, P. Dwivedi, and N. Saxena 11:13

Finally we need to multiply Ti,j/Tk−j,j ∈ (ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧) where each
Σ∧Σ∧ is a product of two Σ∧Σ∧ expression of size sj and syntactic degree Dj ; clubbed
together owing a blowup of O(Dj · s2

j). Hence multiplying it with Σ∧Σ∧ /Σ∧Σ∧ expression
obtained from dlog computation above gives size blowup of sj+1 = s7 · D

O(1)
j · d.

Computing Ti,j/Tk−j,j increases the syntactic degree “slowly”; which is much less than
the size blowup. As mentioned before, the deg-blowup in dlog-computation is O(dDj) and
in the clearing of four expressions, it is just O(Dj). Thus, Dj+1 = O(dDj) =⇒ Dj = dO(j).

The recursion on the size is sj+1 = s7
j · dO(j). Using d ≤ s we deduce, sj = (sd)O(j·7j). In

particular, sk−1, size after k −1 steps is sO(k·7k). This computation quantitatively establishes
induction hypothesis (2). ◁

Final time complexity. The above proof actually shows that T1,k−1 has a “bloated” circuit
of size sO(k·7k) over Rk−1(x); and that the degree bound on z2 and z1 (over F(z2)[z1, x],
keeping denominator and numerator “in place”) is Dk−1 = dO(k). We note that whitebox
PIT for both ΠΣ∧ and Σ∧Σ∧ is in poly-time (using Thm. 11 & Lem. 19 respectively), and
the proof above is constructive: we calculate Ui,j+1 (and other terms) from Ui,j explicitly.
Thus, this part can be done in sO(k7k) time.

What remains is to test the z1 = 0-part of induction hypothesis (4); it could short-circuit
the recursion much before j = k − 1. As we mentioned before, in this case, we need to do a
PIT on Σ∧Σ∧ only. At the j-th step, when we substitute z1 = 0, the size of each Ti,j can be at
most sj (by definition). We need to do PIT on a simpler model:

∑[k−j] F(z2)·(Σ∧Σ∧/Σ∧Σ∧).
We can clear out and express this as a single Σ∧Σ∧ /Σ∧Σ∧ expression; with a size blowup
of s

O(k−j)
j ≤ (sd)O(j(k−j)7j). Further, use the fact that maxj∈[k−1] j(k − j)7j = (k − 1)7k−1

(see Lemma 20). The degree bound on z2 remains as before. Finally, use Lemma 19 for the
base-case whitebox PIT. Thus, the final time complexity is sO(k·7k).

Here we also remark that in z1 = 0 substitution Σ∧Σ∧ /Σ∧Σ∧ may be undefined. However,
we keep track of z1 degree of numerator and denominator, which will be polynomially bounded
as seen in the discussion above. We can easily interpolate and cancel the z1 power to make
it work.

Bit complexity. It is routine to show that the bit-complexity is really what we claim.
Initially, the given circuit has bit-complexity s. The main blowup happens due to the
dlog-computation which is a poly-size blowup. We also remark that while using Lemma 16
(using Lemma 15), we may need to go to a field extension of at most sO(k) (because of the ε(i)
and correspondingly the constants γε(2),...,ε(k), but they still are sO(k)-bits). Also, Theorem
11 and Lemma 19 computations blowup bit-complexity polynomially. This concludes the
proof. ◀

▶ Remark.
1. The above method does not give whitebox PIT (in poly-time) for Σ[k]ΠΣΠ[δ], as we donot

know poly-time whitebox PIT for Σ∧ΣΠ[δ]. However, the above methods do show that
whitebox-PIT for Σ[k]ΠΣΠ[δ] polynomially reduces to whitebox-PIT for Σ∧ΣΠ[δ].

2. DiDI-technique can be used to give whitebox PIT for the general bloated model Gen(k, s).
3. The above proof works when the characteristic is ≥ d. This is because the nonzeroness

remains preserved after derivation wrt z1.

CCC 2021

11:14 Bounded Depth-4 Identity Testing Paradigms

3.2 Proof of Theorem 2
Here we prove Theorem 2b only. The proof technique of part (a) has analogous calculations
(using bottom Σ∧ instead of ΣΠ[δ]); see Appendix D. The main idea is to use the Jacobian [5].
In fact, it solves a more general model than Σ[k]ΠΣΠ[δ].

Transcendence basis. Polynomials T1, . . . , Tm are called algebraically dependent if there
exists a nonzero annihilator A s.t. A(T1, . . . , Tm) = 0. Transcendence degree is the size of
the largest subset S ⊆ {T1, . . . , Tm} that is algebraically independent. Then S is called a
transcendence basis.

▶ Problem 5. Let {Ti | i ∈ [m]} be ΠΣΠ[δ] circuits of (syntactic) degree at most d and size
s. Let the transcendence degree of Ti’s, trdegF(T1, . . . , Tm) = k ≪ s. Further, C(x1, . . . , xm)
be a circuit of (size + deg) < s′. Design a blackbox-PIT algorithm for C(T1, . . . , Tm).

Trivially, Σ[k]ΠΣΠ[δ] is a very special case of the above setting. Let T := {T1, . . . , Tm}.
Let T k := {T1, . . . , Tk} be a transcendence basis. For Ti =

∏
j gij , we denote the set

L(Ti) := {gij | j}.
We want to find an explicit homomorphism Ψ : F[x] → F[x, z1, z2] s.t. Ψ(Jx(T)) is of a

“nice” form. In the image we fix x suitably, to get a composed map Ψ′ : F[x] −→ F[z1, z2]
s.t. rkF(x)Jx(T) = rkF(z)Ψ′(Jx(T)). Then, we can extend this map to Φ : F[x] −→ F[z, y, t]
s.t. xi 7→ (

∑k
j=1 yjtij) + Ψ′(xi), which is faithful [5, Lemma 2.7]; see Lemma 24. We show

that the map Φ can be efficiently constructed using a scaling and shifting map (Ψ) which is
eventually fixed by the hitting set (H ′ defining Ψ′) of a Σ∧ΣΠ[δ] circuit. Overall, Φ(f) is a
k + 3-variate polynomial for which a trivial hitting set exists.

Wlog, Jx(T) is full rank with respect to the variable set xk = (x1, . . . , xk). Thus,
by assumption, Jxk

(T k) ̸= 0 (for notation, see Section 2). We want to construct a Ψ
s.t. Ψ(Jxk

(T k)) has an “easier” PIT. We have the following identity [5, Eqn. 3.1], from the
linearity of the determinant, and the simple observation that ∂x(Ti) = Ti ·

(∑
j ∂x(gij)/gij

)
,

where Ti =
∏

j gij :

Jxk
(T k) =

∑
g1∈L(T1),...,gk∈L(Tk)

(
T1 . . . Tk

g1 . . . gk

)
· Jxk

(g1, . . . , gk) . (5)

The homomorphism Ψ. Define Ψ : F[x] → F[x, z1, z2] as xi 7→ z1 · xi + Ψ1(xi), where
Ψ1 : F[x] −→ F[z2], is a sparse-PIT map. The importance of Ψ1 is to ensure that Ψ1(g) ̸= 0,
∀g ∈

⋃
i L(Ti). As deg(g) ≤ δ, sp(g) ≤

(
n+δ

δ

)
, . Thus, [49] (Theorem 11) gives the upper

bound:

degz2(Ψ(g)) ≤ δ ·
((

n + δ

δ

)
· n · log δ

)2
=: D1.

Denote the ring R[x] where R := F(z2)[z1]/⟨zD
1 ⟩, and D := k · (d − 1) + 1. Being 1-1, Ψ is

clearly a non-zero preserving map. Moreover,

▷ Claim 6. Jxk
(T k) = 0 ⇐⇒ Ψ(Jxk

(T k)) = 0, over R[x].

Proof. As deg(Ti) ≤ d, each entry of the matrix can be of degree at most d − 1; therefore
deg(Jxk

(T k)) ≤ k(d − 1) = D − 1. Thus, degz1(Ψ(Jxk
(T k))) < D. Hence, the conclusion.

◁

P. Dutta, P. Dwivedi, and N. Saxena 11:15

Eqn. (5) implies that

Ψ(Jxk
(T k)) = Ψ(T1 · · · Tk) ·

∑
g1∈L(T1),...,gk∈L(Tk)

Ψ(Jxk
(g1, . . . , gk))

Ψ(g1 . . . gk) . (6)

As Ti has product fanin s, the top-fanin in the sum in Eqn. (6) can be at most sk. Then
define,

F̃ :=
∑

g1∈L(T1),...,gk∈L(Tk)

Ψ(Jxk
(g1, . . . , gk))

Ψ(g1 . . . gk) , over R[x]. (7)

Well-definability of F̃ . Note that,

Ψ(gi) ≡ Ψ1(gi) mod z1 ̸= 0 =⇒ 1/Ψ(g1 · · · gk) ∈ F(z2)[[x, z1]].

Thus, RHS is an element in F(z2)[[x, z1]] and taking mod zD
1 it is in R[x]. We remark that

instead of minimally reducing mod zD
1 , we will work with an F ∈ F(z2)[z1, x] such that

F = F̃ over R[x]. Further, we ensure that the degree of z is polynomially bounded.

▷ Claim 7. Over R[x], Ψ(Jxk
(T k)) = 0 ⇐⇒ F = 0.

Proof sketch. This follows from the invertibility of Ψ(T1 · · · Tk) in R[x]. ◁

The hitting set H ′. By Jxk
(T k) ̸= 0, and Claims 6-7, we have F ̸= 0 over R[x]. We

want to find H ′ ⊆ Fn, s.t. Ψ(Jxk
(T k))|x=α ̸= 0, for some α ∈ H ′ (which will ensure the

rank-preservation). Towards this, we will show (below) that F has sO(δk)-size Σ∧ΣΠ[δ]-circuit
over R[x]. Next, Theorem 27 provides the hitting set H ′ in time sO(δ2k log s).

▷ Claim 8 (Main size bound). F ∈ R[x] has Σ∧ΣΠ[δ]-circuit of size (s3δ)O(k).

The proof studies the two parts of Eqn. (7) –
1. The numerator Ψ(Jxk

(g1, . . . , gk)) has O(3δ2kk!ks)-size Σ∧ΣΠ[δ−1]-circuit (see Lemma
9), and

2. 1/Ψ(g1 · · · gk), for gi ∈ L(Ti) has (s3δ)O(k)-size Σ ∧ ΣΠ[δ]-circuit; both over R[x] (see
Lemma 10).

▶ Lemma 9 (Numerator size). Ψ(Jxk
(g1, . . . , gk)) ∈ Σ∧ΣΠ[δ−1] of size O(3δ 2kk k!s) =: s2.

Proof sketch. One can show that Jxk
(g1, . . . , gk) ∈ Σ[k!]Π[k]ΣΠ[δ−1] of size O(k!ks), where

gi ∈ L(Ti) (Claim 25): this basically follows from the determinant expansion which has fanin k!
and the degree at the bottom is ≤ δ−1 because of the derivative. Moreover, for a g ∈ ΣΠ[δ−1],
we have Ψ(g) ∈ ΣΠ[δ−1] of size at most 3δ · size(g), over R[x] (Claim 26): this follows from the
fact that xe (where |e|0 ≤ δ), after shift, can produce at most

∏
(ei+1) ≤ eδ many monomials

(for large n). Combining these, one concludes Ψ(Jxk
(g1, . . . , gk)) ∈ Σ[k!]Π[k]ΣΠ[δ−1], of size

O(3δ k!ks). We convert the Π-gate to ∧ gate using waring identity (Lemma 15) which
blowsup the size by a multiple of 2k−1. Thus, Ψ(Jxk

(g1, . . . , gk)) ∈ Σ ∧ ΣΠ[δ−1] of size
O(3δ 2kk k!s). ◀

By power series expansion of expressions like 1/(1 − a · z1), one can conclude that 1/Ψ(g)
has a small Σ∧ΣΠ[δ]-circuit, which would further imply the same for 1/Ψ(g1 · · · gk) (see
below).

CCC 2021

11:16 Bounded Depth-4 Identity Testing Paradigms

▶ Lemma 10 (Denominator size). Let gi ∈ L(Ti). Then, 1/Ψ(g1 · · · gk) can be computed by a
Σ∧ΣΠ[δ]-circuit of size s1 := (s3δ)O(k), over R[x].

Proof. Let g ∈ L(Ti) for some i. Assume, Ψ(g) = A − z1 · B, for some A ∈ F[z2] and
B ∈ R[x] of degree δ, with size(B) ≤ 3δ · s, from Claim 26. Note that, over R[x],

1
Ψ(g) = 1

A(1 − B
A · z1)

= 1
A

·
D−1∑
i=0

(
B

A

)i

· zi
1 . (8)

As, size(Bi) has a trivial ∧ΣΠ[δ]-circuit (over R[x]) of size ≤ 3δ · s + i; summing over
i ∈ [D − 1], the overall size is at most D · 3δ · s + O(D2). As D < k · d, we conclude that
1/Ψ(g) has Σ∧ΣΠ[δ] of size poly(s · k · d3δ), over R[x]. Multiplying k-many such products
directly gives an upper bound of (s · 3δ)O(k), using Lemma 16 (basically, waring identity). ◀

Proof of Claim 8. Combining Lemmas 9-10, observe that Ψ(Jxk
(g1, . . . , gk))/Ψ(g1 · · · gk)

has Σ ∧ ΣΠ[δ]-circuit of size at most (s1 · s2)2 = (s · 3δ)O(k), over R[x], using Lemma 16.
Summing up at most sk many terms (by defn. of F), the size still remains (s · 3δ)O(k). ◀

Degree bound. As, syntactic degree of Ti are bounded by d, and Ψ maintain degx = degz1 ,
we must have degz1

(Ψ(Jxk
(g1, . . . , gk)) = degx(Jxk

(g1, . . . , gk)) ≤ D − 1. Similarly, by
assumption degz2

(Ψ(g)) ≤ D1 := poly(nδ), and thus degz2
(Ψ(Jxk

(g1, . . . , gk)) ≤ D1 · k. Note
that, Lemma 9 actually works over F[x, z] and thus there is no additional degree-blow up
(in z). However, there is some degree blowup in Lemma 10, due to Eqn. (8).

Note that Eqn. (8) shows that over R[x],

1
Ψ(g) =

(
1

AD

)
·

(
D−1∑
i=0

AD−1−izi
1 · Bi

)
=: p(x, z)

q(z2) ,

where q(z2) = AD. We think of p ∈ F[x, z] and q ∈ F[z2]. It follows that degz2(q) ≤
D1 · D. Also, degz1

(Ψ(g)) ≤ δ implies degz1
(p) ≤ degz1

((B z1)D−1) ≤ δ · (D − 1). Since,
degz2(Ψ(g)) ≤ D1, by assumption, degz2(p) ≤ maxi degz2(AD−1−i · Bi) ≤ D1 · (D − 1).

Finally, denote 1/Ψ(g1 · · · gk) =: Pg1,...,gk
/Qg1,...,gk

, over R[x]. This is just multiplying
k-many (p/q)’s; implying a degree blowup by a multiple of k. In particular,

degz1(P(·)) ≤ δ · k · (D − 1),

degz2
(P(·)) ≤ D1 · (D − 1) · k, and

degz2(Q(·)) ≤ D1 · D · k.
Thus, in Eqn. (7), summing up sk-many terms gives an expression (over R[x]):

F =
∑

g1∈L(T1),...,gk∈L(Tk)

Ψ(Jxk
(g1, . . . , gk)) ·

(
Pg1,...,gk

Qg1,...,gk

)
=: P (x, z)

Q(z2) .

Verify that Q ∈ F[z2] is of degree at most sk · D1 · D · k = sO(k) · poly(nδ) (since k, d < s).
A similar bound also holds for degz2

(P). The degree of z1 also remains bounded by

max
gi∈L(Ti),i∈[k]

degz1
(Pg1,...,gk

) + δk ≤ poly(s).

Using the degree bounds, we finally have P ∈ F[x, z] as a Σ∧ΣΠ[δ]-circuit (over F(z)) of
size nO(δ) (s3δ)O(k) = 3O(δk)sO(k+δ) =: s3.

P. Dutta, P. Dwivedi, and N. Saxena 11:17

We want to construct a set H ′ ⊆ Fn such that the action P (H ′, z) ̸= 0. Using [25]
(Theorem 27), we conclude that it has sO(δ log s3) = sO(δ2k log s) size hitting set which is
constructible in a similar time. Hence, the construction of Φ follows, making Φ(f) a k + 3
variate polynomial. Finally, by the obvious degree bounds of y, z, t from the definition of Φ,
we get the blackbox PIT algorithm with time-complexity sO(δ2k log s); finishing Theorem 2b.

We could also give the final hitting set for the general problem.

Solution to Problem 5. We know that C(T1, . . . , Tm) = 0 ⇐⇒ E := Φ(C(T1, . . . , Tm)) = 0.
Since, H ′ can be constructed in sO(δ2 k log s)-time, it is trivial to find hitting set for E|H′

(which is just a k + 3-variate polynomial with the aformentioned degree bounds). The final
hitting set for E can be constructed in s′O(k) · sO(δ2 k log s)-time. ◀

▶ Remark.
1. As Jacobian Criterion (Fact 23) holds when the characteristic is > d trdeg, it is easy to

conclude that our theorem holds for all fields of char > dk.

2. The above proof gives an efficient reduction from blackbox PIT for Σ[k]ΠΣΠ[δ] circuits to
Σ∧ΣΠ[δ] circuits. In particular, a poly-time hitting set for Σ∧ΣΠ[δ] circuits would put
PIT for Σ[k]ΠΣΠ[δ] in P.

3. Also, DiDI-technique (of Theorem 1) directly gives a blackbox algorithm, but the com-
plexity is exponentially worse (in terms of k in the exponent) for its recursive blowups.

4 Conclusion

This work introduces the powerful DiDI-technique and solves three open problems in PIT for
depth-4 circuits, namely Σ[k]ΠΣΠ[δ] (blackbox) and Σ[k]ΠΣ∧ (both whitebox and blackbox).
Here are some immediate questions of interest which require rigorous investigation.
1. Can the exponent in Theorem 1 be improved to O(k)? Currently, it is exponential in k.
2. Can we improve Theorem 2b to sO(log log s) (like in Theorem 2a)?
3. Can we design a polynomial-time PIT for Σ[k]ΠΣΠ[δ]?
4. Design a poly-time PIT for Σ∧ΣΠ[δ] circuits (i.e. unbounded top-fanin)?
5. Can we solve PIT for Σ[k]ΠΣ∧[2] in subexponential-time?
6. Can we design a subexponential-time PIT for rational functions of the form Σ (1/Σ ∧ Σ)

or Σ (1/ΣΠ) (for unbounded top-fanin)?

References
1 Manindra Agrawal. Proving lower bounds via pseudo-random generators. In International

Conference on Foundations of Software Technology and Theoretical Computer Science, pages
92–105. Springer, 2005. doi:10.1007/11590156_6.

2 Manindra Agrawal, Sumanta Ghosh, and Nitin Saxena. Bootstrapping variables in al-
gebraic circuits. Proceedings of the National Academy of Sciences, 116(17):8107–8118,
2019. Preliminary version in Symposium on Theory of Computing, 2018 (STOC’18).
doi:10.1073/pnas.1901272116.

3 Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets for ROABP
and sum of set-multilinear circuits. SIAM Journal on Computing, 44(3):669–697, 2015.
doi:10.1137/140975103.

CCC 2021

https://doi.org/10.1007/11590156_6
https://doi.org/10.1073/pnas.1901272116
https://doi.org/10.1137/140975103

11:18 Bounded Depth-4 Identity Testing Paradigms

4 Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of mathematics,
pages 781–793, 2004. URL: https://annals.math.princeton.edu/2004/160-2/p12.

5 Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. Jacobian hits
circuits: Hitting sets, lower bounds for depth-D occur-k formulas and depth-3 transcendence
degree-k circuits. SIAM Journal on Computing, 45(4):1533–1562, 2016. Preliminary version
in 44th Symposium on Theory of Computing, 2018 (STOC’12). doi:10.1137/130910725.

6 Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial hitting-set for set-
depth-∆ formulas. In Proceedings of the 45th Annual ACM symposium on Theory of computing
(STOC’13), pages 321–330, 2013. doi:10.1145/2488608.2488649.

7 Manindra Agrawal and V Vinay. Arithmetic Circuits: A Chasm at Depth Four. In Foundations
of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE Symposium on, pages 67–75.
IEEE, 2008. URL: https://ieeexplore.ieee.org/document/4690941.

8 Matthew Anderson, Michael A Forbes, Ramprasad Saptharishi, Amir Shpilka, and Ben Lee
Volk. Identity testing and lower bounds for read-k oblivious algebraic branching programs.
ACM Transactions on Computation Theory (TOCT), 10(1):1–30, 2018. Preliminary version in
the IEEE 31st Computational Complexity Conference (CCC’16). doi:10.1145/3170709.

9 Robert Andrews. Algebraic Hardness Versus Randomness in Low Characteristic. In 35th
Computational Complexity Conference (CCC 2020), volume 169 of LIPIcs, pages 37:1–37:32.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CCC.2020.37.

10 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. Journal of the ACM (JACM),
45(3):501–555, 1998. doi:10.1145/278298.278306.

11 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
NP. Journal of the ACM (JACM), 45(1):70–122, 1998. Preliminary version in 33rd Annual
Symposium on Foundations of Computer Science (FOCS’92). doi:10.1145/273865.273901.

12 Malte Beecken, Johannes Mittmann, and Nitin Saxena. Algebraic independence and blackbox
identity testing. Information and Computation, 222:2–19, 2013. Preliminary version in 38th

International Colloquium on Automata, Languages and Programming (ICALP’11). URL:
https://www.sciencedirect.com/science/article/pii/S0890540112001435.

13 Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate
polynomial interpolation. In Proceedings of the 20th Annual ACM symposium on Theory of
computing (STOC’88), pages 301–309, 1988. doi:10.1145/62212.62241.

14 Pranav Bisht and Nitin Saxena. Poly-time blackbox identity testing for sum of log-variate
constant-width ROABPs. Computational Complexity, 2021. URL: https://cse.iitk.ac.in/
users/nitin/papers/constWidth-log-var.pdf.

15 Enrico Carlini, Maria Virginia Catalisano, and Anthony V. Geramita. The solution to the
Waring problem for monomials and the sum of coprime monomials. Journal of Algebra,
370:5–14, 2012. doi:10.1016/j.jalgebra.2012.07.028.

16 Prerona Chatterjee, Mrinal Kumar, C Ramya, Ramprasad Saptharishi, and Anamay Tengse.
On the Existence of Algebraically Natural Proofs. In IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS’20), 2020. URL: https://eccc.weizmann.ac.il/
report/2020/063/.

17 Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Hardness vs randomness for bounded
depth arithmetic circuits. In 33rd Computational Complexity Conference (CCC’18). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.CCC.2018.13.

18 Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic program testing.
Information Processing Letters, 7(4):193–195, 1978. URL: https://www.sciencedirect.com/
science/article/abs/pii/0020019078900674.

19 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu. Discovering the roots: Uniform closure
results for algebraic classes under factoring. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC’18), pages 1152–1165, 2018. doi:10.1145/
3188745.3188760.

https://annals.math.princeton.edu/2004/160-2/p12
https://doi.org/10.1137/130910725
https://doi.org/10.1145/2488608.2488649
https://ieeexplore.ieee.org/document/4690941
https://doi.org/10.1145/3170709
https://doi.org/10.4230/LIPIcs.CCC.2020.37
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
https://www.sciencedirect.com/science/article/pii/S0890540112001435
https://doi.org/10.1145/62212.62241
https://cse.iitk.ac.in/users/nitin/papers/constWidth-log-var.pdf
https://cse.iitk.ac.in/users/nitin/papers/constWidth-log-var.pdf
https://doi.org/10.1016/j.jalgebra.2012.07.028
https://eccc.weizmann.ac.il/report/2020/063/
https://eccc.weizmann.ac.il/report/2020/063/
https://doi.org/10.4230/LIPIcs.CCC.2018.13
https://www.sciencedirect.com/science/article/abs/pii/0020019078900674
https://www.sciencedirect.com/science/article/abs/pii/0020019078900674
https://doi.org/10.1145/3188745.3188760
https://doi.org/10.1145/3188745.3188760

P. Dutta, P. Dwivedi, and N. Saxena 11:19

20 Pranjal Dutta, Nitin Saxena, and Thomas Thierauf. A Largish Sum-Of-Squares Implies
Circuit Hardness and Derandomization. In 12th Innovations in Theoretical Computer Science
Conference (ITCS 2021), volume 185 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 23:1–23:21. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.ITCS.2021.23.

21 Zeev Dvir, Rafael Mendes De Oliveira, and Amir Shpilka. Testing equivalence of polynomials
under shifts. In International Colloquium on Automata, Languages, and Programming, pages
417–428. Springer, 2014. doi:10.1007/978-3-662-43948-7_35.

22 Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and polynomial
identity testing for depth 3 circuits. SIAM Journal on Computing, 36(5):1404–1434, 2007.
doi:10.1137/05063605X.

23 Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness tradeoffs for bounded
depth arithmetic circuits. SIAM Journal on Computing, 39(4):1279–1293, 2010. Preliminary
version in Proceedings of the 40th Annual ACM symposium on Theory of computing (STOC’08).
doi:10.1137/080735850.

24 Stephen Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in quasi-
NC. SIAM Journal on Computing, 62(3):109–115, 2019. Preliminary version in Proceedings
of the 48th Annual ACM symposium on Theory of Computing (STOC’16). URL: https:
//epubs.siam.org/doi/abs/10.1137/16M1097870?journalCode=smjcat.

25 Michael A Forbes. Deterministic divisibility testing via shifted partial derivatives. In Proceedings
of the 56th Annual Symposium on Foundations of Computer Science (FOCS’15), pages 451–465.
IEEE, 2015. URL: https://ieeexplore.ieee.org/document/7354409/.

26 Michael A Forbes, Sumanta Ghosh, and Nitin Saxena. Towards blackbox identity testing
of log-variate circuits. In 45th International Colloquium on Automata, Languages, and
Programming (ICALP’18). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. doi:
10.4230/LIPIcs.ICALP.2018.54.

27 Michael A Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for multilinear
read-once algebraic branching programs, in any order. In Proceedings of the 46th Annual ACM
symposium on Theory of computing (STOC’14), pages 867–875, 2014. doi:10.1145/2591796.
2591816.

28 Michael A Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In 54th Annual Sym-
posium on Foundations of Computer Science (FOCS’13), pages 243–252, 2013. URL:
https://ieeexplore.ieee.org/document/6686160/.

29 Michael A Forbes, Amir Shpilka, and Ben Lee Volk. Succinct hitting sets and barriers to
proving lower bounds for algebraic circuits. Theory of Computing, 14:1–45, 2018. Preliminary
version in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
(STOC’19). URL: https://theoryofcomputing.org/articles/v014a018/.

30 Abhibhav Garg and Nitin Saxena. Special-case algorithms for blackbox radical membership,
Nullstellensatz and transcendence degree. In Proceedings of the 45th International Symposium
on Symbolic and Algebraic Computation, pages 186–193, 2020.

31 Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. A deterministic polynomial
time algorithm for non-commutative rational identity testing. In 57th Annual Symposium
on Foundations of Computer Science (FOCS’16), pages 109–117. IEEE, 2016. URL: https:
//ieeexplore.ieee.org/document/7782923.

32 Joshua A Grochow. Unifying known lower bounds via geometric complexity theory. Computa-
tional Complexity, 24(2):393–475, 2015. Preliminary version in the IEEE 29th Computational
Complexity Conference (CCC’14). doi:10.1007/s00037-015-0103-x.

33 Zeyu Guo. Variety Evasive Subspace Families. In 36th Computational Complexity Conference
(CCC 2021). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://zeyuguo.
bitbucket.io/papers/chow.pdf.

CCC 2021

https://doi.org/10.4230/LIPIcs.ITCS.2021.23
https://doi.org/10.4230/LIPIcs.ITCS.2021.23
https://doi.org/10.1007/978-3-662-43948-7_35
https://doi.org/10.1137/05063605X
https://doi.org/10.1137/080735850
https://epubs.siam.org/doi/abs/10.1137/16M1097870?journalCode=smjcat
https://epubs.siam.org/doi/abs/10.1137/16M1097870?journalCode=smjcat
https://ieeexplore.ieee.org/document/7354409/
https://doi.org/10.4230/LIPIcs.ICALP.2018.54
https://doi.org/10.4230/LIPIcs.ICALP.2018.54
https://doi.org/10.1145/2591796.2591816
https://doi.org/10.1145/2591796.2591816
https://ieeexplore.ieee.org/document/6686160/
https://theoryofcomputing.org/articles/v014a018/
https://ieeexplore.ieee.org/document/7782923
https://ieeexplore.ieee.org/document/7782923
https://doi.org/10.1007/s00037-015-0103-x
https://zeyuguo.bitbucket.io/papers/chow.pdf
https://zeyuguo.bitbucket.io/papers/chow.pdf

11:20 Bounded Depth-4 Identity Testing Paradigms

34 Zeyu Guo, Mrinal Kumar, Ramprasad Saptharishi, and Noam Solomon. Derandomization
from Algebraic Hardness: Treading the Borders. In 60th IEEE Annual Symposium on
Foundations of Computer Science (FOCS’19), pages 147–157. IEEE Computer Society, 2019.
URL: https://ieeexplore.ieee.org/document/8948610/.

35 Ankit Gupta. Algebraic Geometric Techniques for Depth-4 PIT & Sylvester-Gallai Conjectures
for Varieties. In Electronic Colloquium on Computational Complexity (ECCC), volume 21,
page 130, 2014. URL: https://eccc.weizmann.ac.il/report/2014/130/.

36 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic circuits:
A chasm at depth three. SIAM Journal on Computing, 45(3):1064–1079, 2016. 54th Annual
Symposium on Foundations of Computer Science (FOCS’13). doi:10.1137/140957123.

37 Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity Testing for Constant-Width, and
Any-Order, Read-Once Oblivious Arithmetic Branching Programs. Theory of Computing,
13(2):1–21, 2017. Preliminary version in the 31st Computational Complexity Conference
(CCC’16). doi:10.4086/toc.2017.v013a002.

38 Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic identity
testing for sum of read-once oblivious arithmetic branching programs. Computational Com-
plexity, 26(4):835–880, 2017. Preliminary version in the IEEE 30th Computational Complexity
Conference (CCC’15). doi:10.1007/s00037-016-0141-z.

39 Joos Heintz and Claus-Peter Schnorr. Testing polynomials which are easy to compute. In
Proceedings of the 12th annual ACM symposium on Theory of computing (STOC’80), pages
262–272, 1980. doi:10.1145/800141.804674.

40 Maurice Jansen, Youming Qiao, and Jayalal Sarma. Deterministic Black-Box Identity Testing
π-Ordered Algebraic Branching Programs. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2010, volume 8 of LIPIcs,
pages 296–307. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010. doi:10.4230/LIPIcs.
FSTTCS.2010.296.

41 A Grochow Joshua, D Mulmuley Ketan, and Qiao Youming. Boundaries of VP and VNP.
In 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016,
July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 34:1–34:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.34.

42 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. Preliminary
version in the Proceedings of the 35th Annual ACM symposium on Theory of computing
(STOC’03). doi:10.1007/s00037-004-0182-6.

43 Zohar S Karnin, Partha Mukhopadhyay, Amir Shpilka, and Ilya Volkovich. Deterministic
identity testing of depth-4 multilinear circuits with bounded top fan-in. SIAM Journal on
Computing, 42(6):2114–2131, 2013. Preliminary version in the Proceedings of the 42nd ACM
symposium on Theory of computing (STOC’10). doi:10.1137/110824516?af=R.

44 Zohar S Karnin and Amir Shpilka. Reconstruction of generalized depth-3 arithmetic circuits
with bounded top fan-in. In 24th Annual IEEE Conference on Computational Complexity
(CCC’09), pages 274–285. IEEE, 2009. URL: https://ieeexplore.ieee.org/document/
5231339.

45 Zohar S Karnin and Amir Shpilka. Black box polynomial identity testing of generalized depth-3
arithmetic circuits with bounded top fan-in. Combinatorica, 31(3):333, 2011. Preliminary
version in the 23rd Annual IEEE Conference on Computational Complexity (CCC’08). doi:
10.1007/s00493-011-2537-3.

46 Neeraj Kayal, Pascal Koiran, Timothée Pecatte, and Chandan Saha. Lower bounds for sums of
powers of low degree univariates. In International Colloquium on Automata, Languages, and
Programming (ICALP’15), pages 810–821. Springer, 2015. doi:10.1007/978-3-662-47672-7_
66.

https://ieeexplore.ieee.org/document/8948610/
https://eccc.weizmann.ac.il/report/2014/130/
https://doi.org/10.1137/140957123
https://doi.org/10.4086/toc.2017.v013a002
https://doi.org/10.1007/s00037-016-0141-z
https://doi.org/10.1145/800141.804674
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.296
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.296
https://doi.org/10.4230/LIPIcs.ICALP.2016.34
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1137/110824516?af=R
https://ieeexplore.ieee.org/document/5231339
https://ieeexplore.ieee.org/document/5231339
https://doi.org/10.1007/s00493-011-2537-3
https://doi.org/10.1007/s00493-011-2537-3
https://doi.org/10.1007/978-3-662-47672-7_66
https://doi.org/10.1007/978-3-662-47672-7_66

P. Dutta, P. Dwivedi, and N. Saxena 11:21

47 Neeraj Kayal and Nitin Saxena. Polynomial identity testing for depth 3 circuits. Computational
Complexity, 16(2):115–138, 2007. Preliminary version in the 21st Computational Complexity
Conference (CCC’06). doi:10.1007/s00037-007-0226-9.

48 Adam Klivans and Amir Shpilka. Learning restricted models of arithmetic circuits. Theory of
computing, 2(1):185–206, 2006. Preliminary version in the 16th Annual Conference on Learning
Theory (COLT’03). URL: https://theoryofcomputing.org/articles/v002a010/.

49 Adam R Klivans and Daniel Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings of the 33rd Annual ACM symposium on Theory of computing
(STOC’01), pages 216–223, 2001. doi:10.1145/380752.380801.

50 Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theoretical Computer
Science, 448:56–65, 2012. URL: https://www.sciencedirect.com/science/article/pii/
S0304397512003131.

51 Pascal Koiran, Natacha Portier, and Sébastien Tavenas. A Wronskian approach to the
real τ -conjecture. Journal of Symbolic Computation, 68:195–214, 2015. URL: https://www.
sciencedirect.com/science/article/pii/S0747717114001047.

52 Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial identity
testing and deterministic multivariate polynomial factorization. In IEEE 29th Conference on
Computational Complexity (CCC’14), pages 169–180. IEEE, 2014. URL: https://ieeexplore.
ieee.org/document/6875486.

53 Mrinal Kumar, C Ramya, Ramprasad Saptharishi, and Anamay Tengse. If VNP is hard, then
so are equations for it. Preprint avilable at arXiv:2012.07056, 2020.

54 Mrinal Kumar and Ramprasad Saptharishi. Hardness-randomness tradeoffs for algebraic
computation. Bulletin of EATCS, 3(129), 2019. URL: https://mrinalkr.bitbucket.io/
papers/hardness-randomness-survey.pdf.

55 Mrinal Kumar, Ramprasad Saptharishi, and Anamay Tengse. Near-optimal Bootstrapping of
Hitting Sets for Algebraic Circuits. In Proceedings of the 30th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 639–646, 2019. doi:10.5555/3310435.3310475.

56 Mrinal Kumar and Shubhangi Saraf. Sums of Products of Polynomials in Few Variables: Lower
Bounds and Polynomial Identity Testing. In 31st Conference on Computational Complexity,
CCC 2016, volume 50 of LIPIcs, pages 35:1–35:29. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPIcs.CCC.2016.35.

57 Mrinal Kumar and Shubhangi Saraf. Arithmetic Circuits with Locally Low Algebraic Rank.
Theory Comput., 13(1):1–33, 2017. Preliminary version in the 31st Conference on Computational
Complexity (CCC’16). URL: http://www.theoryofcomputing.org/articles/v013a006/.

58 Guillaume Lagarde, Guillaume Malod, and Sylvain Perifel. Non-commutative computations:
lower bounds and polynomial identity testing. Chic. J. Theor. Comput. Sci., 2:1–19, 2019.
URL: http://cjtcs.cs.uchicago.edu/articles/2019/2/cj19-02.pdf.

59 László Lovász. On determinants, matchings, and random algorithms. In Fundamentals of
Computation Theory (FCT’79), volume 79, pages 565–574, 1979. URL: http://www.math.
uwaterloo.ca/~harvey/W11/1979-Lovasz-OnDeterminantsMatchingsAndRandomAlgs.pdf.

60 Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. Journal of the ACM (JACM), 39(4):859–868, 1992. doi:10.1145/
146585.146605.

61 Partha Mukhopadhyay. Depth-4 identity testing and Noether’s normalization lemma. In
International Computer Science Symposium in Russia (CSR’16), pages 309–323. Springer,
2016. doi:10.1007/978-3-319-34171-2_22.

62 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Comb., 7(1):105–113, 1987. Preliminary version in the Proceedings of the 19th

Annual ACM symposium on Theory of Computing (STOC’87). doi:10.1007/BF02579206.
63 Ketan D Mulmuley. Geometric complexity theory V: Equivalence between blackbox deran-

domization of polynomial identity testing and derandomization of Noether’s normalization
lemma. In IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS’12),
pages 629–638. IEEE, 2012. arXiv:1209.5993.

CCC 2021

https://doi.org/10.1007/s00037-007-0226-9
https://theoryofcomputing.org/articles/v002a010/
https://doi.org/10.1145/380752.380801
https://www.sciencedirect.com/science/article/pii/S0304397512003131
https://www.sciencedirect.com/science/article/pii/S0304397512003131
https://www.sciencedirect.com/science/article/pii/S0747717114001047
https://www.sciencedirect.com/science/article/pii/S0747717114001047
https://ieeexplore.ieee.org/document/6875486
https://ieeexplore.ieee.org/document/6875486
https://arxiv.org/abs/2012.07056
https://mrinalkr.bitbucket.io/papers/hardness-randomness-survey.pdf
https://mrinalkr.bitbucket.io/papers/hardness-randomness-survey.pdf
https://doi.org/10.5555/3310435.3310475
https://doi.org/10.4230/LIPIcs.CCC.2016.35
http://www.theoryofcomputing.org/articles/v013a006/
http://cjtcs.cs.uchicago.edu/articles/2019/2/cj19-02.pdf
http://www.math.uwaterloo.ca/~harvey/W11/1979-Lovasz-OnDeterminantsMatchingsAndRandomAlgs.pdf
http://www.math.uwaterloo.ca/~harvey/W11/1979-Lovasz-OnDeterminantsMatchingsAndRandomAlgs.pdf
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1007/978-3-319-34171-2_22
https://doi.org/10.1007/BF02579206
http://arxiv.org/abs/1209.5993

11:22 Bounded Depth-4 Identity Testing Paradigms

64 Ketan D Mulmuley. The GCT program toward the P vs. NP problem. Communications of
the ACM, 55(6):98–107, 2012. doi:10.1145/2184319.2184341.

65 Ivan Niven. Formal power series. The American Mathematical Monthly, 76(8):871–889, 1969.
URL: http://www.jstor.org/stable/2317940.

66 Øystein Ore. Über höhere kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15, 1922.
67 Anurag Pandey, Nitin Saxena, and Amit Sinhababu. Algebraic independence over pos-

itive characteristic: New criterion and applications to locally low-algebraic-rank circuits.
Computational Complexity, 27(4):617–670, 2018. Preliminary version in the 41st Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS’16). doi:
10.1007/s00037-018-0167-5.

68 Shir Peleg and Amir Shpilka. A generalized Sylvester-Gallai type theorem for quadratic
polynomials. In 35th Computational Complexity Conference (CCC’20). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2020. doi:10.4230/LIPIcs.CCC.2020.8.

69 Shir Peleg and Amir Shpilka. Polynomial time deterministic identity testing algorithm for∑[3]∏∑∏[2] circuits via Edelstein-Kelly type theorem for quadratic polynomials. In 53rd

Annual ACM symposium on Theory of computing (STOC’21), 2021. arXiv:2006.08263.
70 Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative mod-

els. Computational Complexity, 14(1):1–19, 2005. Preliminary version in the 19th IEEE Annual
Conference on Computational Complexity (CCC’04). doi:10.1007/s00037-005-0188-8.

71 Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. A case of depth-3 identity
testing, sparse factorization and duality. Computational Complexity, 22(1):39–69, 2013.
doi:10.1007/s00037-012-0054-4.

72 Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Github
survey, 2019. URL: https://github.com/dasarpmar/lowerbounds-survey/releases.

73 Ramprasad Saptharishi. Private communication, 2019.
74 Shubhangi Saraf and Ilya Volkovich. Black-box identity testing of depth-4 multilinear circuits.

Combinatorica, 38(5):1205–1238, 2018. Preliminary version in the Proceedings of the 43rd An-
nual ACM symposium on Theory of computing (STOC’11). doi:10.1007/s00493-016-3460-4.

75 Nitin Saxena. Diagonal circuit identity testing and lower bounds. In International Colloquium
on Automata, Languages, and Programming (ICALP’08), pages 60–71. Springer, 2008. doi:
10.1007/978-3-540-70575-8_6.

76 Nitin Saxena. Progress on Polynomial Identity Testing. Bulletin of the EATCS, 99:49–79,
2009. URL: https://www.cse.iitk.ac.in/users/nitin/papers/pit-survey09.pdf.

77 Nitin Saxena. Progress on polynomial identity testing-II. In Perspectives in Computational
Complexity, pages 131–146. Springer, 2014. doi:10.1007/978-3-319-05446-9_7.

78 Nitin Saxena and Comandur Seshadhri. An almost optimal rank bound for depth-3 identities.
SIAM journal on computing, 40(1):200–224, 2011. Preliminary version in the 24th IEEE
Conference on Computational Complexity (CCC’09). doi:10.1137/090770679.

79 Nitin Saxena and Comandur Seshadhri. Blackbox identity testing for bounded top-fanin
depth-3 circuits: The field doesn’t matter. SIAM Journal on Computing, 41(5):1285–1298,
2012. Preliminary version in the 43rd Annual ACM symposium on Theory of computing
(STOC’11). doi:10.1137/10848232.

80 Nitin Saxena and Comandur Seshadhri. From Sylvester-Gallai configurations to rank bounds:
Improved blackbox identity test for depth-3 circuits. Journal of the ACM (JACM), 60(5):1–33,
2013. Preliminary version in the 51st Annual IEEE Symposium on Foundations of Computer
Science (FOCS’10). doi:10.1145/2528403.

81 Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM (JACM), 27(4):701–717, 1980. doi:10.1145/322217.322225.

82 Adi Shamir. IP= PSPACE. Journal of the ACM (JACM), 39(4):869–877, 1992. doi:
10.1145/146585.146609.

83 Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication gates.
SIAM Journal on Computing, 38(6):2130–2161, 2009. Preliminary version in the Proceedings
of the 39th Annual ACM symposium on Theory of Computing (STOC 2007). doi:10.1137/
070694879.

https://doi.org/10.1145/2184319.2184341
http://www.jstor.org/stable/2317940
https://doi.org/10.1007/s00037-018-0167-5
https://doi.org/10.1007/s00037-018-0167-5
https://doi.org/10.4230/LIPIcs.CCC.2020.8
http://arxiv.org/abs/2006.08263
https://doi.org/10.1007/s00037-005-0188-8
https://doi.org/10.1007/s00037-012-0054-4
https://github.com/dasarpmar/lowerbounds-survey/releases
https://doi.org/10.1007/s00493-016-3460-4
https://doi.org/10.1007/978-3-540-70575-8_6
https://doi.org/10.1007/978-3-540-70575-8_6
https://www.cse.iitk.ac.in/users/nitin/papers/pit-survey09.pdf
https://doi.org/10.1007/978-3-319-05446-9_7
https://doi.org/10.1137/090770679
https://doi.org/10.1137/10848232
https://doi.org/10.1145/2528403
https://doi.org/10.1145/322217.322225
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1137/070694879
https://doi.org/10.1137/070694879

P. Dutta, P. Dwivedi, and N. Saxena 11:23

84 Amir Shpilka. Sylvester-Gallai type theorems for quadratic polynomials. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing (STOC’19), pages 1203–1214,
2019. doi:10.1145/3313276.3316341.

85 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Now Publishers Inc, 2010. URL: https://www.cs.tau.ac.il/~shpilka/
publications/SY10.pdf.

86 Amit Kumar Sinhababu. Power series in complexity: Algebraic Dependence, Factor Conjecture
and Hitting Set for Closure of VP. PhD thesis, PhD thesis, Indian Institute of Technology
Kanpur, 2019. URL: https://www.cse.iitk.ac.in/users/nitin/theses/sinhababu-2019.
pdf.

87 Leslie G Valiant. Completeness classes in algebra. In Proceedings of the 11th Annual ACM
symposium on Theory of computing (STOC’79), pages 249–261, 1979. doi:10.1145/800135.
804419.

88 Wolmer Vasconcelos. Computational methods in commutative algebra and algebraic geometry,
volume 2. Springer Science & Business Media, 2004. URL: https://www.springer.com/gp/
book/9783540213116.

89 Richard Zippel. Probabilistic Algorithms for Sparse Polynomials. In Proceedings of the
International Symposium on Symbolic and Algebraic Computation, EUROSAM ’79, pages
216–226, 1979. doi:10.1007/3-540-09519-5_73.

A Basic tools from algebraic complexity

There have been a lot of work on sparse-PIT, for details see [13, 49] and references therein.
Eventually, there is a poly-time hitting set, for a proof see [76, Thm. 2.1]

▶ Theorem 11 ([49]). Let p(x) ∈ F[x] with individual degree at most d and sparsity at most
m. Then, there exists 1 ≤ r ≤ (mn log d)2, such that p(y, yd, . . . , ydn−1) ̸= 0, mod yr − 1.

An ABP is a layered directed acyclic graph with q+1 many layers of vertices {V0, . . . , Vq}
and a source a and a sink b such that all the edges in the graph only go from a to V0, Vi−1
to Vi for any i ∈ [q], and Vq to b. The edges have univariate polynomials as their weights.
The ABP is said to compute the polynomial

f(x) =
∑

p∈paths(a,b)

∏
e∈p

W (e) ,

where W (e) is the weight of the edge e. The ABP has width-w if |Vi| ≤ w, ∀i ∈ {0, . . . , q}.
Formally, it computes polynomials of the form AT (

∏
i∈[q] Di)B, where A, B ∈ Fw×1[x], and

Di ∈ Fw×w[x], where entries are univariate polynomials.

▶ Definition 12 (Read-once oblivious ABP (ROABP)). An ABP is called a read-once oblivious
ABP (ROABP) if the edge weights are univariate polynomials in distinct variables across
layers. Formally, there is a permutation π on the set [q] such that the entries in the i-th matrix
Di are univariate polynomials over the variable xπ(i), i.e., they come from the polynomial
ring F[xπ(i)].

A polynomial f(x) is said to be computed by width-w ROABPs in any order, if for every
permutation σ of the variables, there exists a width-w ROABP in the variable order s that
computes the polynomial f(x). There have been quite a few results on blackbox PIT for
ROABPs [28, 27, 37] and the current best known algorithm works in quasipolynomial time.

▶ Theorem 13 ([37]). For n-variate, individual-degree-d polynomials computed by width-w
ROABPs in any order, a hitting set of size (ndw)O(log log w) can be constructed.

CCC 2021

https://doi.org/10.1145/3313276.3316341
https://www.cs.tau.ac.il/~shpilka/publications/SY10.pdf
https://www.cs.tau.ac.il/~shpilka/publications/SY10.pdf
https://www.cse.iitk.ac.in/users/nitin/theses/sinhababu-2019.pdf
https://www.cse.iitk.ac.in/users/nitin/theses/sinhababu-2019.pdf
https://doi.org/10.1145/800135.804419
https://doi.org/10.1145/800135.804419
https://www.springer.com/gp/book/9783540213116
https://www.springer.com/gp/book/9783540213116
https://doi.org/10.1007/3-540-09519-5_73

11:24 Bounded Depth-4 Identity Testing Paradigms

B Details for Section 3.1

Here is an important lemma which shows that coefficient of ye of a polynomial f(x, y) ∈ F[x, y],
computed by a Σ∧Σ∧ circuit, can be computed by a small Σ∧Σ∧ circuit.

▶ Lemma 14 (Coefficient extraction). Let f(x, y) ∈ F[y][x] be computed by a Σ∧Σ∧ circuit
of size s and degree d. Then, coefye(f) ∈ F[x] can be computed by a small Σ∧Σ∧ circuit of
size O(sd), over F[x].

Proof sketch. Let, f =
∑

i αi · gei
i . Of course, ei ≤ s and degy(f) ≤ d. Thus, write

f =
∑d

i=0 fi · yi, where fi ∈ F[x]. We can interpolate on d + 1-many distinct points y ∈ F
and conclude that fi has a Σ∧Σ∧ circuit of size at most O(sd). ◀

The next identity gives us a way to write a product of a few powers as a sum of powers,
using simple interpolation. For a more algebraic proof, see [15, Proposition 4.3].

▶ Lemma 15 (Waring Identity for a monomial). Let M = xb1
1 · · · xbk

k , where 1 ≤ b1 ≤ . . . ≤ bk,
and roots of unity Z(i) := {z ∈ C : zbi+1 = 1}. Then,

M =
∑

ε(i)∈Z(i):i=2,··· ,k

γε(2),...,ε(k) · (x1 + ε(2)x2 + . . . + ε(k)xk)d
,

where d := deg(M) = b1 + . . . + bk, and γε(2),...,ε(k) are scalars (rk(M) :=
∏k

i=2 (bi + 1)
many).

▶ Remark. We actually need not work with F = C. We can go to a small extension (at most
dk), for a monomial of degree d, to make sure that ε(i) exists.

The next lemma shows that Σ∧Σ∧ is closed under multiplication.

▶ Lemma 16. Let fi(x, y) ∈ F[y][x], of syntactic degree ≤ di, be computed by a Σ∧Σ∧ circuit
of size si, for i ∈ [k] (wrt x). Then, f1 · · · fk has Σ∧Σ∧ circuit of size O((d2 + 1) · · · (dk +
1) · s1 · · · sk).

Proof. Let fi =
∑

j f
eij

ij ; by assumption eij ≤ di (by assumption). Using Lemma 15,
f

e1j1
1j1

· · · f
ekjk

kjk
has size at most (d2 + 1) · · · (dk + 1) ·

(∑
i∈[k] size(fiji

)
)

, for indices j1, . . . , jk.
Summing up for all s1 · · · sk many products (atmost) gives the upper bound. ◀

The next lemma shows that Σ∧Σ∧ is closed under differentiation.

▶ Lemma 17 (Differentiation). Let f(x, y) ∈ F[y][x] be computed by a Σ∧Σ∧ circuit of size
s and degree d. Then, ∂y(f) can be computed by a small Σ∧Σ∧ circuit of size O(sd2), over
F[y][x].

Proof sketch. Lemma 14 shows that each fe has O(sd) size circuit where f =
∑

e fe ye.
Doing this for each e ∈ [0, d] gives a blowup of O(sd2). ◀

The next lemma shows that non-negative valuation corresponds to a power-series.

▶ Lemma 18 (Valuation). Consider a polynomial f ∈ F(x, y) such that valy(f) ≥ 0. Then,
f ∈ F(x)[[y]]

⋂
F(x, y).

P. Dutta, P. Dwivedi, and N. Saxena 11:25

Proof sketch. Let f = g/h, where g, h ∈ F[x, y]. Now, valy(f) ≥ 0, implies valy(g) ≥ valy(h).
Let valy(g) = d1 and valy(h) = d2, where d1 ≥ d2 ≥ 0. Write g = yd1 · g̃ and h = yd2 · h̃.
Write, h̃ = h0 + h1 y + h2 y2 + . . . + hd yd, for some d. Note that h0 ̸= 0. Thus,

f = yd1−d2 · g̃/(h0 + h1 y + . . . + hd yd)
= yd1−d2 · (g̃/h0) · (1 + (h1/h0) y + . . . + (hd/h0) yd)−1 ∈ F(x)[[y]] .

The last conclusion follows by the inverse identity in the power-series ring. ◀

Using duality trick [75] and PIT results from [70, 37], one can design efficient PIT algorithm
for Σ∧Σ∧ circuits:

▶ Lemma 19 (PIT for Σ∧Σ∧-circuits). Let P ∈ Σ∧Σ∧ of size s. Then, there exists a poly(s)
(respec. sO(log log s)) time whitebox (respec. blackbox) PIT for the same.

Proof sketch. We show that any g(x)e = (g1(x1) + . . . + gn(xn))e, where deg(gi) ≤ s can
be written as

∑
j hj1(x1) · · · hjn(xn), for some hjℓ ∈ F[xℓ] of degree at most es. Define,

G := (y + g1) · · · (y + gn) − yn. In its e-th power, notice that the leading-coefficient is
coefye(n−1)(Ge) = ge. So, interpolate on e(n − 1) + 1 many points (y = βi ∈ F) to get

coefye(n−1)(Ge) =
e(n−1)+1∑

i=1
αi Ge(βi) .

Now, expand Ge(βi) = ((βi+g1) · · · (βi+gn)−βn
i)e, by binomial expansion (without expanding

the inner n-fold product). The top-fanin can be atmost s · (e + 1) · (e(n − 1) + 1) = O(se2n).
The individual degrees of the intermediate univariates can be at most es. Thus, it can be
computed by an ROABP (of any order) of size at most O(s2e3n).

Now, if f =
∑

j∈[s] f
ej

j is computed by a Σ∧Σ∧ circuit of size s, then clearly, f can also
be computed by an ROABP (of any order) of size at most O(s6). So, the whitebox PIT
follows from [70], while the blackbox PIT follows from Theorem 13. ◀

For the time-complexity bound, we need optimization of the following function:

▶ Lemma 20. Let k ∈ N, and h(x) := x(k − x)7x. Then, maxi∈[k−1] h(i) = h(k − 1).

Proof sketch. Differentiate to get h′(x) = (k − x)7x − x7x + x(k − x)(log 7)7x = 7x ·

[x2(− log 7) + x(k log 7 − 2) + k]. It vanishes at x =
(

k
2 − 1

log 7

)
+
√(

k
2 − 1

log 7

)2
− k

log 7 .
Thus, h is maximized at the integer x = k − 1. ◀

C Details for Section 3.2

▶ Definition 21 (Faithful hom). Φ : F[x] −→ F[y] is faithful for T if trdegF(T) =
trdegF(Φ(T)).

The following fact about faithful maps is from [5, Thm. 2.4].

▶ Fact 22 (Faithful is useful). For any C ∈ F[y1, . . . , ym], C(T) = 0 ⇐⇒ C(Φ(T)) = 0.

Here is an important criterion about the jacobian matrix which basically shows that it
preserves algabraic independence.

▶ Fact 23 (Jacobian criterion). Let f ⊂ F[x] be a finite set of polynomials of degree at most
d, and trdegF(f) ≤ r. If char(F) = 0, or char(F) > dr, then trdegF(f) = rkF(x)Jx(f).

CCC 2021

11:26 Bounded Depth-4 Identity Testing Paradigms

The following lemma (& the proof) is similar to [5, Lem. 2.7]. It is a recipe to “drastically”
reduce variables, if trdeg is small.

▶ Lemma 24 (Recipe for faithful maps). Let T ∈ F[x] be be a finite set of polynomials of
degree at most d and trdegF(T) ≤ r, and char(F)=0 or > dr. Let Ψ′ : F[x] −→ F[z1, z2] such
that rkF(x)Jx(T) = rkF(z)Ψ′(Jx(T)).

Then, the map Φ : F[x] −→ F[z, t, y], such that xi 7→ (
∑

j yjtij) + Ψ′(xi), is a faithful
homomorphism for T .

C.1 Technical Details for Theorem 2b
▷ Claim 25. Let gi ∈ L(Ti), where Ti ∈ ΠΣΠ[δ] of size atmost s, then Jxk

(g1, . . . , gk) ∈
Σ[k!]Π[k]ΣΠ[δ−1] of size O(k! ks).

Proof sketch. Each entry of the matrix has degree at most δ − 1. Trivial expansion gives k!
top-fanin where each product (of fanin k) has size

∑
i size(gi). As, size(Ti) ≤ s, trivially

each size(gi) ≤ s. Therefore, the total size is k! ·
∑

i size(gi) = O(k! ks). ◁

▷ Claim 26. Let g ∈ ΣΠδ, then Ψ(g) ∈ ΣΠδ of size 3δ · size(g) (for n ≫ δ).

Proof sketch. Each monomial xe of degree δ, can produce
∏

i(ei + 1) ≤ ((
∑

i ei + n)/n)n ≤
(δ/n + 1)n-many monomials, by AM-GM inequality as

∑
i ei ≤ δ. As δ/n → 0, we have

(1 + δ/n)n → eδ. As e < 3, the upper bound follows. ◁

[25, Prop. 4.18] gave the first nontrivial PIT for Σ∧ΣΠ[δ] circuits:

▶ Theorem 27 ([25]). There is a poly(n, d, δ log s)-explicit hitting set of size (nd)O(δ log s) for
the class of n-variate, degree-(≤ d) polynomials f(x), computed by Σ∧ΣΠ[δ]-circuit of size s.

D Proof sketch of Theorem 2a: Similar to Section 3.2

Similar to Theorem 2b, we generalize this theorem and prove for a much bigger class of
polynomials.

▶ Problem 28. Let {Ti | i ∈ [m]} be ΠΣ∧ circuits of (syntactic) degree at most d and size s.
Let the transcendence degree of Ti’s, trdegF(T1, . . . , Tm) =: k ≪ s. Further, C(x1, . . . , xm)
be a circuit of size + degree < s′. Design a blackbox-PIT algorithm for C(T1, . . . , Tm).

It is trivial to see that Σ[k]ΠΣ∧ is a very special case of the above settings. We will
use the same idea (& notation) as in Theorem 2b, using the Jacobian technique. The main
idea is to come up with Φ map, and correspondingly the hitting set H ′. If g ∈ L(Ti), then
size(g) ≤ O(dn). We also note that D1, which is an upper bound on degz2

Ψ(g) is poly(n, d)
(Lemma 11). The D (and hence R[x]) remains as before. Claims 6-7 hold similarly. We will
construct the hitting set H ′ by showing that F has a small Σ∧Σ∧ circuit over R[x].

Note that, Claim 25 remains the same for Σ ∧Σ∧ (implying the same size blowup).
However, Claim 26, the size blowup is O(d size(g)), because each monomial xe can only
produce d + 1 many monomials. Therefore, similar to Lemma 10, one can show that
Ψ(Jxk

(g1, . . . , gk)) ∈ Σ ∧Σ∧ , of size O(2kk!kds). Similarly, the size in Lemma 9 can be
replaced by sO(k). Therefore, we get (similar to Claim 8):

▷ Claim 29. F ∈ R[x] has Σ∧Σ∧ -circuit of size sO(k).

P. Dutta, P. Dwivedi, and N. Saxena 11:27

Next, the degree bound also remains the same (except the parameter D1 which is now
poly(nd)). Following the same footsteps, it is not hard to see that the degree bound of z2
on P and Q, where F = P (x, z)/Q(z2), is sO(k)poly(nd), while degree bound on z1 remains
poly(ksd). Therefore, P ∈ F[x, z] has Σ∧Σ∧ -circuit of size sO(k).

We want to construct a set H ′ ⊆ Fn such that the action P (H ′, z) ̸= 0. By Theorem 19,
we conclude that it has sO(k log log s) size hitting set which is constructible in a similar time.
Hence, the construction of map Φ and the theorem follows (from z-degree bound).

Solution to Problem 28. We know that C(T1, . . . , Tm) = 0 ⇐⇒ E := Φ(C(T1, . . . , Tm)) =
0. Since, H ′ can be constructed in sO(k log log s) time, it is trivial to find hitting set for E|H′

(which is just a k + 3-variate polynomial with the aforementioned degree bounds). The final
hitting set for E can be constructed in s′O(k) · sO(k log log s) time. ◀

E Algorithm for Theorem 1

The whitebox PIT for Theorem 1, that is discussed in Section 3.1, appears (below) as
Algorithm 1.

Algorithm 1 Whitebox PIT Algorithm for Σ[k]ΠΣ∧-circuits.

Input : f = T1 + . . . + Tk ∈ Σ[k]ΠΣ∧, a whitebox circuit of size s over F[x].
Output : 0, if f ≡ 0, and 1, if it is non-zero.

1 Let Ψ : F[x] −→ F[z2], be a sparse-PIT map, using [49] (Theorem 11). Apply it on f and check
whether Ψ(f) ?= 0. If non-zero, output 1 otherwise, apply Φ : xi 7→ z1 · xi + Ψ(xi) on f . Check∑

i∈[k−1] ∂z1 (Φ(Ti)/Φ(Tk)) ?= 0 mod zd1
1 (d1 := s) as follows:

2 Consider each Ti,1 := ∂z1 (Φ(Ti)/Φ(Tk)) over R1(x), where R1 := F(z2)[z1]/⟨zd1
1 ⟩. Use dlog

computation (Claim 4), to write each Ti,1 in a “bloated” form as
(ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧).

3 for j ← 1 to k − 1 do
4 Reduce the top-fanin at each step using “Divide & Derive” technique. Assume that at j-th

step, we have to check the identity:∑
i∈[k−j] Ti,j

?= 0 over Rj(x), where Rj := F(z2)[z1]/⟨zdj

1 ⟩ , each Ti,j has a
(ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧) representation and therein each ΠΣ∧|z1=0 ∈ F(z2) \ {0}.
1. Compute vk−j,j := mini valz1 (Ti,j); by reordering it is for i = k − j. To compute vk−j,j ,

use coefficient extraction (Lemma 14) and Σ∧Σ∧ -circuit PIT (Lemma 19).

2. “Divide” by Tk−j,j and check whether
(∑

i∈[k−j−1] (Ti,j/Tk−j,j) + 1
) ∣∣∣∣

z1=0

?= 0. Note:

this expression is in (Σ∧Σ∧ /Σ∧Σ∧). Use – (1) ΠΣ∧|z1=0 ∈ F(z2), and (2) closure of
Σ∧Σ∧ under multiplication. Finally, do PIT on this by Lemma 19.

3. If it is non-zero, output 1, otherwise “Derive” wrt z1 and “Induct” on(∑
i∈[k−j−1] ∂z1 (Ti,j/Tk−j,j)

)
?= 0, over Rj+1(x) where Rj+1 := F(z2)[z1]/⟨zdj −vk−j,j −1

1 ⟩.

4. Again using dlog (Claim 4), show that Ti,j+1 := ∂z1 (Ti,j/Tk−j,j) has small
(ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧)-circuit over Rj+1(x). So call the algorithm on∑

i∈[k−j−1] Ti,j+1
?= 0.

j ← j + 1.
5 end
6 At the end, j = k− 1. Do PIT (Lemma 19) on the single (ΠΣ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧) circuit,

over Rk−1(x). If it is zero, output 0 otherwise output 1.

Words of caution: Throughout the algorithm there are intermediate expressions to be
stored compactly. Think of them as “special” circuits in x, but over the function-field F(z).
Keep track of their degrees wrt z1, z2; and that of the sizes of their fractions represented in
“bloated” circuit form.

CCC 2021

Robustly Self-Ordered Graphs: Constructions and
Applications to Property Testing
Oded Goldreich #

Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel

Avi Wigderson #

School of Mathematics, Institute for Advanced Study, Princeton, USA

Abstract
A graph G is called self-ordered (a.k.a asymmetric) if the identity permutation is its only automorph-
ism. Equivalently, there is a unique isomorphism from G to any graph that is isomorphic to G. We
say that G = (V, E) is robustly self-ordered if the size of the symmetric difference between E and the
edge-set of the graph obtained by permuting V using any permutation π : V → V is proportional to
the number of non-fixed-points of π. In this work, we initiate the study of the structure, construction
and utility of robustly self-ordered graphs.

We show that robustly self-ordered bounded-degree graphs exist (in abundance), and that they
can be constructed efficiently, in a strong sense. Specifically, given the index of a vertex in such a
graph, it is possible to find all its neighbors in polynomial-time (i.e., in time that is poly-logarithmic
in the size of the graph).

We provide two very different constructions, in tools and structure. The first, a direct construction,
is based on proving a sufficient condition for robust self-ordering, which requires that an auxiliary
graph is expanding. The second construction is iterative, boosting the property of robust self-ordering
from smaller to larger graphs. Structuraly, the first construction always yields expanding graphs,
while the second construction may produce graphs that have many tiny (sub-logarithmic) connected
components.

We also consider graphs of unbounded degree, seeking correspondingly unbounded robustness
parameters. We again demonstrate that such graphs (of linear degree) exist (in abundance), and
that they can be constructed efficiently, in a strong sense. This turns out to require very different
tools. Specifically, we show that the construction of such graphs reduces to the construction of
non-malleable two-source extractors (with very weak parameters but with some additional natural
features).

We demonstrate that robustly self-ordered bounded-degree graphs are useful towards obtaining
lower bounds on the query complexity of testing graph properties both in the bounded-degree and
the dense graph models. Indeed, their robustness offers efficient, local and distance preserving
reductions from testing problems on ordered structures (like sequences) to the unordered (effectively
unlabeled) graphs. One of the results that we obtain, via such a reduction, is a subexponential
separation between the query complexities of testing and tolerant testing of graph properties in the
bounded-degree graph model.

2012 ACM Subject Classification Theory of computation → Generating random combinatorial
structures

Keywords and phrases Asymmetric graphs, expanders, testing graph properties, two-source extract-
ors, non-malleable extractors, coding theory, tolerant testing, random graphs

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.12

Funding Oded Goldreich: Partially supported by an ISF grant number (Nr. 1146/18).
Avi Wigderson: Partially supported by NSF grant CCF-1900460.

Acknowledgements We are grateful to Eshan Chattopadhyay for discussions regarding non-malleable
two-source extractors, and to Dana Ron for discussions regarding tolerant testing. We are deeply
indebted to Jyun-Jie Liao for pointing out an error in the proof of [23, Lem. 9.7].

© Oded Goldreich and Avi Wigderson;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 12; pp. 12:1–12:74

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oded.goldreich@weizmann.ac.il
https://orcid.org/0000-0002-4329-135X
mailto:avi@ias.ed
https://orcid.org/0000-0002-1539-1417
https://doi.org/10.4230/LIPIcs.CCC.2021.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Robustly Self-Ordered Graphs

1 Introduction

For a (labeled) graph G = (V, E), and a bijection ϕ : V → V ′, we denote by ϕ(G) the graph
G′ = (V ′, E′) such that E′ = {{ϕ(u), ϕ(v)} : {u, v}∈E}, and say that G′ is isomorphic to G.
The set of automorphisms of the graph G = (V, E), denoted aut(G), is the set of permutations
that preserve the graph G; that is, π ∈ aut(G) if and only if π(G) = G. We say that a
graph is asymmetric (equiv., self-ordered) if its set of automorphisms is a singleton, which
consists of the trivial automorphism (i.e., the identity permutation). We actually prefer the
term self-ordered, because we take the perspective that is offered by the following equivalent
definition.

▶ Definition 1.1 (self-ordered (a.k.a asymmetric) graphs). The graph G = ([n], E) is self-
ordered if for every graph G′ = (V ′, E′) that is isomorphic to G there exists a unique bijection
ϕ : V ′ → [n] such that ϕ(G′) = G.

In other words, given an isomorphic copy G′ = (V ′, E′) of a fixed graph G = ([n], E), there
is a unique bijection ϕ : V ′ → [n] that orders the vertices of G′ such that the resulting graph
(i.e., ϕ(G′)) is identical to G. Indeed, if G′ = G, then this unique bijection is the identity
permutation.1

In this work, we consider a feature, which we call robust self-ordering, that is a quantitative
version self-ordering. Loosely speaking, a graph G = ([n], E) is robustly self-ordered if, for
every permutation π : [n]→ [n], the size of the symmetric difference between G and π(G) is
proportional to the number of non-fixed-points under π; that is, |E△{{π(u), π(v)} :{u, v}∈
E}| is proportional to |{i∈ [n] :π(i) ̸= i}|. (In contrast, self-ordering only means that the size
of the symmetric difference is positive if the number of non-fixed-points is positive.)

▶ Definition 1.2 (robustly self-ordered graphs). A graph G = (V, E) is said to be γ-robustly
self-ordered if for every permutation π : V → V it holds that∣∣E△{{π(u), π(v)} :{u, v}∈E}

∣∣ ≥ γ · |{i ∈ [n] :π(i) ̸= i}|, (1)

where △ denotes the symmetric differece operation. An infinite family of graphs {Gn =
([n], En)}n∈N (such that each Gn has maximum degree d) is called robustly self-ordered if
there exists a constant γ > 0, called the robustness parameter, such that for every n the graph
Gn is γ-robustly self-ordered.

Note that |En△{{π(u), π(v)} : {u, v} ∈En}| ≤ 2d · |{i ∈ [n] : π(i) ̸= i}| always holds (for
families of maximum degree d). The term “robust” is inspired by the property testing literature
(cf. [31]), where it indicates that some “parametrized violation” is reflected proportionally in
some “detection parameter”.

The second part of Definition 1.2 is tailored for bounded-degree graphs, which will be
our focus in Section 2–6. Nevertheless, in Sections 7–10 we consider graphs of unbounded
degree and unbounded robustness parameters. In this case, for a function ρ : N→ R, we say
that an infinite family of graphs {Gn = ([n], En)}n∈N is ρ-robustly self-ordered if for every n

the graph Gn is ρ(n)-robustly self-ordered. Naturally, in this case, the graphs must have
Ω(ρ(n) · n) edges.2 In Sections 7–9 we consider the case of ρ(n) = Ω(n).

1 Naturally, we are interested in efficient algorithms that find this unique ordering, whenever it exists;
such algorithms are known when the degree of the graph is bounded [29].

2 Actually, all but at most one vertex must have degree at least ρ(n)/2.

O. Goldreich and A. Wigderson 12:3

1.1 Robustly self-ordered bounded-degree graphs

The first part of this paper (i.e., Section 2–6) focuses on the study of robustly self-ordered
bounded-degree graphs.

1.1.1 Our main results and motivation

We show that robustly self-ordered (n-vertex) graphs of bounded-degree not only exist (for
all n ∈ N), but can be efficiently constructed in a strong (or local) sense. Specifically, we
prove the following result.

▶ Theorem 1.3 (constructing robustly self-ordered bounded-degree graphs). For all sufficiently
large d ∈ N, there exist an infinite family of d-regular robustly self-ordered graphs {Gn}n∈N
and a polynomial-time algorithm that, given n ∈ N and a vertex v ∈ [n] in the n-vertex graph
Gn, finds all neighbors of v (in Gn).

We stress that the algorithm runs in time that is polynomial in the description of the
vertex; that is, the algorithm runs in time that is polylogarithmic in the size of the graph.
Theorem 1.3 holds both for graphs that consists of connected components of logarithmic size
and for “strongly connected” graphs (i.e., expanders).

Recall that given an isomorphic copy G′ of such a graph Gn, the original graph Gn (i.e.,
along with its unique ordering) can be found in polynomial-time [29]. Furthermore, we show
that the pre-image of each vertex of G′ in the graph Gn (i.e., its index in the aforementioned
ordering) can be found in time that is polylogarithmic in the size of the graph (see discussion
in Section 4.4, culminating in Theorem 4.7).3

We present two proofs of Theorem 1.3. Loosely speaking, the first proof reduces to proving
that a 2d-regular n-vertex graph representing the action of d permutations on [n] is robustly
self-ordered if the n(n− 1)-vertex graph representing the action of these permutations on
vertex-pairs is an expander. The graphs constructed in this proof are expanders, whereas the
graphs constructed via by the second proof can be either expanders or consist of connected
components of logarithmic size. More importantly, the graphs constructed in the second
proof are couple with local self-ordering and local reversed self-ordering algorithms (see
Section 4.4). The second proof proceeds in three steps, starting from the mere existence
of robustly self-ordered bounded-degree ℓ-vertex graphs, which yields a construction that
runs in poly(ℓℓ)-time. Next, a poly(n)-time construction of n-vertex graphs is obtained by
using the former graphs as small subgraphs (of o(log n)-size). Lastly, strong (a.k.a local)
constructability is obtained in an analogous manner. For more details, see Section 1.1.2.

We demonstrate that robustly self-ordered bounded-degree graphs are useful towards
obtaining lower bounds on the query complexity of testing graph properties in the bounded-
degree graph model. Specifically, we use these graphs as a key ingredient in a general
methodology of transporting lower bounds regarding testing binary strings to lower bounds
regarding testing graph properties in the bounded-degree graph model. In particular, using
the methodology, we prove the following two results.

3 The algorithm asserted above is said to perform local self-ordering of G′ according to Gn. For ϕ(G′) = Gn,
given a vertex v in G′, this algorithm returns ϕ(v) in poly(log n)-time. In contrast, a local reversed
self-ordering algorithm is given a vertex i ∈ [n] of Gn and returns ϕ−1(i). The second algorithm is also
presented in Section 4.4 (see Theorem 4.9).

CCC 2021

12:4 Robustly Self-Ordered Graphs

1. A subexponential separation between the complexities of testing and tolerant testing of
graph properties in the bounded-degree graph model; that is, for some constant c > 0, the
query complexity of tolerant testing is at least exp(qc), where q is the query complexity
of standard testing.
This result, which appears as Theorem 5.5, is obtained by transporting an analogous
result that was known for testing binary strings [15].

2. A linear query complexity lower bound for testing an efficiently recognizable graph
property in the bounded-degree graph model, where the lower bound holds even if the
tested graph is restricted to consist of connected components of logarithmic size (see
Theorem 5.2).
As discussed in Section 5, an analogous result was known in the general case (i.e., without
the restriction on the size of the connected components), and we consider it interesting
that the result holds also in the special case of graphs with small connected components.

To get a feeling of why robustly self-ordered graphs are relevant to such transportation, recall
that strings are ordered objects, whereas graphs properties are effectively sets of unlabeled
graphs, which are unordered objects. Hence, we need to make the graphs (in the property)
ordered, and furthermore make this ordering robust in the very sense that is reflected in
Definition 1.2. Furthermore, local self-ordering algorithms are used for transporting lower
bounds (and local reversed self-ordering algorithms are used for transporting upper bounds).
We comment that the theme of reducing ordered structures to unordered structures occur
often in the theory of computation and in logic, and is often coupled with analogous of query
complexity.

Lastly, in Section 6, we prove that random 2d-regular graphs are robustly self-ordered;
see Theorem 6.1. This extends work in probabilistic graph theory, which proves a similar
result for the weaker notion of self-ordering [5, 4].

1.1.2 Techniques
As stated above, we present two different constructions that establish Theorem 1.3: A direct
construction and a three-step construction. Both constructions utilize a variant of the notion
of robust self-ordering that refers to edge-colored graphs, which we review first.

1.1.2.1 The edge-coloring methodology

At several different points, we found it useful to start by demonstrating the robust self-
ordering feature in a relaxed model in which edges are assigned a constant number of colors,
and the symmetric difference between graphs accounts also for edges that have different
colors in the two graphs (see Definition 2.1). This allows us to analyze different sets of edges
separately.

For example, we actually analyze the direct construction in the edge-colored model,
since this allows for identifying each of the underlying permutations with a different color.
Another example, which arises in the three-step construction, occurs when we super-impose a
robustly self-ordered graph with an expander graph in order to make the robustly self-ordered
graph expanding (as needed for the second and third step of the aforementioned three-step
construction). In this case, assigning the edges of each of the two graphs a different color,
allows for easily retaining the robust self-ordering feature (of the first graph).

We obtain robustly self-ordered graphs (in the original sense) by replacing all edges that
are assigned a specific color with copies of a constant-sized (asymmetric) gadget, where
different (and in fact non-isomorphic) gadgets are used for different edge colors. The soundness
of this transformation is proved in Theorem 2.4.

O. Goldreich and A. Wigderson 12:5

1.1.2.2 The direct construction

For any d permutations, π1, ..., πd : [n] → [n], we consider the Schreier graph (see [25,
Sec. 11.1.2]) defined by the action of these permutation on [n]; that is, the edge-set of
this graph is {{v, πi(v)} : v∈ [n] & i∈ [d]}. Loosely speaking, we prove that this 2d-regular
n-vertex graph is robustly self-ordered if another Schreier graph is an expander. The second
Schreier graph represents the action of the same permutations on pairs of vertices (in
[n]); that is, this graph consisting of the vertex-set {(u, v) : u, v ∈ [n]} and the edge-set
{{(u, v), (πi(u), πi(v))} :u, v∈ [n] & i∈ [d]}.4

The argument is actually made with respect to edge-colored directed graphs (i.e., the
edge-set of the first graph is {(v, πi(v)) : v ∈ [n] & i ∈ [d]} and the directed edge (v, πi(v))
is assigned the color i). Hence, we also present a transformation of robustly self-ordered
edge-colored directed graphs to analogous undirected graphs. Specifically, we replace the
directed edge (u, v) colored j by a 2-path with a designated auxiliary vertex au,v,j , while
coloring the edge {u, au,v,j} by 2j − 1 and the edge {au,v,j , v} by 2j.

We comment that permutations satisfying the foregoing condition can be efficiently
constructed; for example, any set of expanding generators for SL2(p) (e.g., the one used
by [28]) yield such permutations on [n] ≡ {(1, i) : i ∈ GF(p)}∪{(0, 1)} (see Proposition 3.3).5

1.1.2.3 The three-step construction

Our alternative construction of robustly self-ordered (bounded-degree) n-vertex graphs
proceeds in three steps.
1. First, we prove the existence of bounded-degree n-vertex graphs that are robustly self-

ordered (see Theorem 4.1), while observing that this yields a exp(O(n log n))-time al-
gorithm for constructing them.

2. Next (see Theorem 4.2), we use the latter algorithm to construct robustly self-ordered
n-vertex bounded-degree graphs that consist of 2ℓ-sized connected components, where
ℓ = O(log n)

log log n ; these connected components are far from being isomorphic to one another,
and are constructed using robustly self-ordered ℓ-vertex graphs as a building block.
This yields an algorithm that constructs the n-vertex graph in poly(n)-time, since
exp(O(ℓ log ℓ)) = poly(n).

3. Lastly, we derive Theorem 1.3 (restated as Theorem 4.5) by repeating the same strategy
as in Step 2, but using the construction of Theorem 4.2 for the construction of the small
connected components (and setting ℓ = O(log n)). This yields an algorithm that finds the
neighbors of a vertex in the n-vertex graph in poly(log n)-time, since poly(ℓ) = poly(log n).

The foregoing description of Steps 2 and 3 yields graphs that consists of small connected
components. We obtain analogous results for “strongly connected” graphs (i.e., expanders)
by superimposing these graphs with expander graphs (while distinguishing the two types
of edges by using colors (see the foregoing discussion)). In fact, it is essential to perform
this transformation (on the result of Step 2) before taking Step 3; the transformation itself
appears in the proof of Theorem 2.6.

4 Equivalently, we consider only pairs of distinct vertices; that is, the vertex-set {(u, v) :u, v ∈ [n] & u≠v}.
5 In this case, the primary Schreier graph represents the natural action of the group on the 1-dimensional

subspaces of GF(p)2.

CCC 2021

12:6 Robustly Self-Ordered Graphs

1.1.2.4 Using large collections of pairwise far apart permutations

One ingredient in the foregoing three-step construction is the use of a single ℓ-vertex
robustly self-ordered (bounded-degree) graph towards obtaining a large collection of 2ℓ-vertex
(bounded-degree) graphs such that every two graphs are far from being isomorphic to one
another, where “large” means exp(Ω(ℓ log ℓ)) in one case (i.e., in the proof of Theorem 4.2)
and exp(Ω(ℓ)) in another case (i.e., in the proof of Theorem 4.5). Essentially, this is done by
constructing a large collection of permutations of [ℓ] that are pairwise far-apart, and letting
the ith graph consists of two copies of the ℓ-vertex graph that are matched according to the
ith permutation (see the aforementioned proofs). (Actually, we use two robustly self-ordered
ℓ-vertex graphs that are far from being isomorphic (e.g., have different degree).)

A collection of L = exp(Ω(ℓ log ℓ)) pairwise far-apart permutations over [ℓ] can be
constructed in poly(L)-time by selecting the permutations one by one, while relying on the
existence of a permutation that augments the current sequence (while preserving the distance
condition, see the proof of Theorem 4.2). A collection of L = exp(Ω(ℓ)) pairwise far-apart
permutations over [ℓ] can be locally constructed such that the ith permutation is constructed
in poly(ℓ)-time by using sequences of disjoint transpositions determined via a good error
correcting code (see the proof of Theorem 4.5).

The foregoing discussion begs the challenge of obtaining a construction of a collection of
L = exp(Ω(ℓ log ℓ)) permutations over [ℓ] that are pairwise far-apart along with a polynomial-
time algorithm that, on input i ∈ [L], returns a description of the ith permutation (i.e.,
the algorithm should run in poly(log L)-time). We meet this challenge in [21]. Note that
such a collection constitutes a an asymptotically good code over the alphabet [ℓ], where the
permutations are the codewords (being far-apart corresponds to constant relative distance
and log L = Ω(log(ℓ!)) corresponds to constant rate).

1.1.2.5 On the failure of some natural approaches

We mention that natural candidates for robustly self-ordered bounded-degree graphs fail.
In particular, there exist expander graphs that are not robustly self-ordered. In fact, any
Cayley graph is symmetric (i.e., has non-trivial automorphisms).6

In light of the above, it is interesting that expansion can serve as a sufficient condition for
robust self-ordering (as explained in the foregoing review of the direct construction); recall,
however, that this works for Schreier graphs, and expansion needs to hold for the action on
vertex-pairs.

1.1.2.6 On optimization

We made no attempt to minimize the degree bound and maximize the robustness parameter.
Note that we can obtain 3-regular robustly self-ordered graphs by applying degree reduction;
that is, given a d-regular graph, we replace each vertex by a d-cycle and use each of these
vertices to “hook” one original edge. To facilitate the analysis, we may use one color for the
edges of the d-cycles and another color for the other (i.e., original) edges.7 Hence, the issue
at hand is actually one of maximizing the robustness parameter of the resulting 3-regular
graphs.

6 Specifically, multiplying the vertex labels (say, on the right) by any non-zero group element yields a
non-trivial automorphism (assuming that edges are defined by multiplying with a generator on the left).
Such automorphisms cannot be constructed in general for Schreier graphs, and some Schreier graphs
have no automorphisms (e.g., the ones we construct here).

7 Needless to say, we later replace all colored edges by copies of adequate constant-sized gadgets.

O. Goldreich and A. Wigderson 12:7

1.1.2.7 Caveat (tedious)

Whenever we assert a d-regular n-vertex graph, we assume that the trivial conditions hold;
specifically, we assume that n > d and that nd is even (or, alternatively, allow for one
exceptional vertex of degree d− 1).

1.2 Robustly self-ordered dense graphs
In the second part of this paper (i.e., Sections 7–10) we consider graphs of unbounded degree,
seeking correspondingly unbounded robustness parameters. In particular, we are interested
in n-vertex graphs that are Ω(n)-robustly self-ordered, which means that they must have
Ω(n2) edges.

The construction of Ω(n)-robustly self-ordered graphs offers yet another alternative
approach towards the construction of bounded-degree graphs that are Ω(1)-robustly self-
ordered. Specifically, we show that n-vertex graphs that are Ω(n)-robustly self-ordered can
be efficiently transformed into O(n2)-vertex bounded-degree graphs that are Ω(1)-robustly
self-ordered; see Proposition 7.2, which is essentially proved by the “degree reduction via
expanders” technique, while using a different color for the expanders’ edges, and then using
gadgets to replace colored edges (see Theorem 2.4).

1.2.1 Our main results
It is quite easy to show that random n-vertex graphs are Ω(n)-robustly self-ordered (see
Proposition 7.1); in fact, the proof is easier than the proof of the analogous result for
bounded-degree graphs (Theorem 6.1). Unfortunately, constructing n-vertex graphs that
are Ω(n)-robustly self-ordered seems to be no easier constructing robustly self-ordered
bounded-degree graphs. In particular, it seems to require completely different techniques
and tools.

▶ Theorem 1.4 (constructing Ω(n)-robustly self-ordered graphs). There exist an infinite family
of dense Ω(n)-robustly self-ordered graphs {Gn}n∈N and a polynomial-time algorithm that,
given n ∈ N and a pair of vertices u, v ∈ [n] in the n-vertex graph Gn, determines whether
or not u is adjacent to v in Gn.

Unlike in the case of bounded-degree graphs, in general, we cannot rely on an efficient
isomorphism test for finding the original ordering of Gn, when given an isomorphic copy of
it. However, we can obtain dense Ω(n)-robustly self-ordered graphs for which this ordering
can be found efficiently (see Theorem 8.10).

Our proof of Theorem 1.4 is by a reduction to the construction of non-malleable two-source
extractors, where a suitable construction of the latter was provided by Chattopadhyay, Goyal,
and Li [7]. We actually present two different reductions (Theorems 8.3 and 8.7), one simpler
than the other but yielding a less efficient construction when combined with the known
constructions of extractors. We mention that the first reduction (Theorem 8.3) is partially
reversible (see Proposition 8.5, which reverses a special case captured in Remark 8.4).

We show that Ω(n)-robustly self-ordered n-vertex graphs can be used to transport lower
bounds regarding testing binary strings to lower bounds regarding testing graph properties
in the dense graph model. This general methodology, presented in Section 9, is analogous to
the methodology for the bounded-degree graph model, which is presented in Section 5.

We mention that in a follow-up work [22], we employed this methodology in order to
resolve several open problems regarding the relation between adaptive and non-adaptive
testers in the dense graph model. In particular, we proved that there exist graph properties

CCC 2021

12:8 Robustly Self-Ordered Graphs

for which any non-adaptive tester must have query complexity that is almost quadratic in
the query complexity of the best general (i.e., adaptive) tester, whereas it has been known for
a couple of decades that the query complexity of non-adaptive testers is at most quadratic in
the query complexity of adaptive testers.

The case of intermediate degree bounds

Lastly, in Section 10, we consider n-vertex graphs of degree bound d(n), for every d : N→ N
such that d(n) ∈ [Ω(1), n]. Indeed, the bounded-degree case (studied in Section 2–6) and the
dense graph case (studied in Sections 7–9) are special cases (which correspond to d(n) = O(1)
and d(n) = n). Using results from these two special cases, we show how to construct
Ω(d(n))-robustly self-ordered n-vertex graphs of maximum degree d(n), for all d : N→ N.

1.2.2 Techniques
As evident from the foregoing description, we reduce the construction of Ω(n)-robustly
self-ordered n-vertex graphs to the construction of non-malleable two-source extractors.

Non-malleable two-source extractors were introduced in [8], as a variant on seeded (one-
source) non-malleable extractors, which were introduced in [12]. Loosely speaking, we say that
nmE : {0, 1}ℓ×{0, 1}ℓ → {0, 1}m is a non-malleable two-source extractor for a class of sources
C if for every two independent sources in C, denoted X ands Y , and for every two functions
f, g : {0, 1}ℓ → {0, 1}ℓ that have no fixed-point it holds that (nmE(X, Y), nmE(f(X), g(Y))) is
close to (Um, nmE(f(X), g(Y)), where Um denotes the uniform distribution over {0, 1}m. We
show that a non-malleable two-source extractor for the class of ℓ-bit sources of min-entropy
ℓ−O(1), with a single output bit (i.e., m = 1) and constant error, suffices for constructing
Ω(n)-robustly self-ordered n-vertex graphs. Recall that constructions with much stronger
parameters (e.g., min-entropy ℓ − ℓΩ(1), negligible error, and m = ℓΩ(1)) were provided
by Chattopadhyay, Goyal, and Li [7, Thm. 1]. (These constructions are quite complex.
Interestingly, we are not aware of a simpler way of obtaining the weaker parameters that we
need.)

Actually, we show two reductions of the construction of Ω(n)-robustly self-ordered n-
vertex graphs to the construction of non-malleable two-source extractors. In both cases
we use extractors that operate on pairs of sources of length ℓ = log2 n − O(1) that have
min-entropy k = ℓ − O(1), hereafter called (ℓ, k)-sources. The extractor is used to define
a bipartite graph with 2ℓ vertices on each side, and a clique is placed on the vertices of
one side so that a permutation that maps vertices from one side to the other side yields a
proportional symmetric difference (between the original graph and the resulting graph).

The first reduction, presented in Theorem 8.3, requires the extractor to be quasi-orthogonal,
which means that the residual functions obtained by any two different fixings of one of the
extractor’s two arguments are almost unbiased and uncorrelated. Using the fact that non-
malleable two-source extractors for (ℓ, k)-sources can we made quasi-orthogonal in exp(ℓ)-time,
we obtain an explicit construction of Ω(n)-robustly self-ordered n-vertex graphs (i.e., the
n-vertex graph is constructed in poly(n)-time).

The second reduction, presented in Theorem 8.7, yields a strongly explicit construction
as asserted in Theorem 1.4 (i.e., the adjacency predicate of the n-vertex graph is computable
in poly(log n)-time). This reduction uses an arbitrary non-malleable two-source extractor,
and shifts the quasi-orthogonality condition to two auxiliary bipartite graphs.

Both reductions are based on the observation that if the number of non-fixed-points (of
the permutation) is very large, then the non-malleability condition implies a large symmetric
difference (between the original graph and the resulting graph). This holds as long as there

O. Goldreich and A. Wigderson 12:9

are at least Ω(2ℓ) non-fixed-points on each of the two sides of the corresponding bipartite
graph (which corresponds to the extractor). The complementary case is handled by the
quasi-orthogonality condition, and this is where the two reductions differ.

The simpler case, presented in the first construction (i.e., Theorem 8.3), is that the
extractor itself is quasi-orthogonal. In this case we consider the non-fixed-points on the
side that has more of them. The quasi-orthogonality condition gives us a contribution of
approximately 0.5 ·2ℓ units per each non-fixed-point, whereas the upper-bound on the number
of non-fixed-points on the other side implies that most of these contributions actually count
in the symmetric difference (between the original graph and the resulting graph).

In the second construction (i.e., Theorem 8.7), we augment the foregoing 2ℓ-by-2ℓ bipartite
graph, which is now determined by any non-malleable extractor, with an additional 4·2ℓ-vertex
clique that is connected to the two original 2ℓ-vertex sets by a bipartite graph that is merely
quasi-orthogonal. The analysis is analogous to the one used in the proof of Theorem 8.3, but
is slightly more complex because we are dealing with a slightly more complex graph.

Errata regarding the original posting

We retract the claims made in our initial posting [23] regarding the construction of non-
malleable two-source extractors (which are quasi-orthogonal) as well as the claims about the
construction of relocation-detecting codes (see Theorems 1.5 and 1.6 in the original version).8
The source of trouble is a fundamental flaw in the proof of [23, Lem. 9.7], which may as well
be wrong.

1.3 Perspective
Asymmetric graphs were famously studied by Erdos and Renyi [14], who considered the
(absolute) distance of asymmetric graphs from being symmetric (i.e., the number of edges
that should be removed or added to a graph to make it symmetric), calling this quantity the
degree of asymmetry. They studied the extremal question of determining the largest possible
degree of asymmetry of n-vertex graphs (as a function of n). We avoided the term “robust
asymmetry” because it could be confused with the degree of asymmetry, which is a very
different notion. In particular, the degree of asymmetry cannot exceed twice the degree of
the graph (e.g., by disconnecting two vertices), whereas our focus is on robustly self-ordered
graphs of bounded-degree.

We mention that Bollobas proved that, for every constant d ≥ 3, almost all d-regular
graphs are asymmetric [5, 4]. This result was extended to varying d ∈ [3, n − 4] by Kim,
Sudakov, and Vu [26]. We also mention that their proof of [26, Thm. 3.1] implies that a
random n-vertex Erdos–Renyi graph with edge probability p is 2p(1 − p)n-robustly self-
ordered.

1.4 Roadmaps
This work consists of two parts. The first part (Sections 2–6) refers to bounded-degree graphs,
and the second part (Sections 7–10) refers to dense graphs. These parts are practically
independent of one another, except that Theorem 10.3 builds upon Section 6. Even when
focusing on one of these two parts, its contents may attract attention from diverse perspectives.
Each such perspective may benefit from a different roadmap.

8 In [23] quasi-orthogonality is called niceness; we prefer the current term, which is less generic.

CCC 2021

12:10 Robustly Self-Ordered Graphs

Efficient combinatorial constructions

As mentioned above, in the regime of bounded-degree graphs we present two different
constructions that establish Theorem 1.3. Both constructions make use of the edge-colored
model and the transformations presented in Section 2. The direct construction is presented in
Section 3, and the three-step construction appears in Section 4. The three-step construction is
augmented by local self-ordering and local reversed self-ordering algorithms (see Section 4.4).9
In the regime of dense graphs, Sections 7 and 8 refer to the constructability of a couple of
combinatorial objects; see roadmap “for the dense case” below.

Potential applications to property testing

In Section 5 we demonstrate applications of Theorem 1.3 to proving lower bounds (on the
query complexity) for the bounded-degree graph testing model. Specifically, we present
a methodology of transporting bounds regarding testing properties of strings to bounds
regarding testing properties of bounded-degree graphs. The specific applications presented in
Section 5 rely on Section 4. For the first application (Theorem 5.2) the construction presented
in Section 4.2 suffices; for the second application (i.e., Theorem 5.5, which establishes a
separation between testing and tolerant testing in the bounded-degree graph model), the
local computation tasks studied in Section 4.4 are needed. An analogous methodology for
the dense graph testing model is presented in Section 9.

Properties of random graphs

As stated above, it turns out that random O(1)-regular graphs are robustly self-ordered.
This result is presented in Section 6, and this section can be read independently of any other
section. (In addition, Section 7 presents a proof that random (dense) n-vertex graphs are
O(n)-robustly self-ordered.)

The dense case and non-malleable two-source extractors

The regime of dense graphs is studied in Sections 7–9, where the construction of such graphs
is undertaken in Section 8. In Section 7, we show that Ω(n)-robustly self-ordered n-vertex
graphs provide yet another way of obtaining Ω(1)-robustly self-ordered bounded-degree graphs.
In Section 8, we reduce the construction of O(n)-robustly self-ordered n-vertex graphs to the
construction of non-malleable two-source extractors. As outlined in Section 1.2.2, we actually
present two different reductions, where a key issue is the quasi-orthogonality condition.

Lastly, in Section 10, for every d : N → N such that d(n) ∈ [Ω(1), n], we show how to
construct n-vertex graphs of maximum degree d(n) that are Ω(d(n))-robustly self-ordered.
Some of the results and techniques presented in this section are also relevant to the setting
of bounded-degree graphs.

9 For a locally constructable Gn and G′ = ϕ−1(Gn), a local self-ordering algorithm is given a vertex v in
G′, and returns ϕ(v). In contrast, a local reversed self-ordering algorithm is given a vertex i ∈ [n] of Gn

and returns ϕ−1(i). Both algorithms run in poly(log n)-time.

12:11

Part I

The Case of Bounded-Degree Graphs
As stated in Section 1.1.2, a notion of robust self-ordering of edge-colored graphs plays a
pivotal role in our study of robustly self-ordered bounded-degree graphs. This notion as
well as a transformation from it to the uncolored version (of Definition 1.2) is presented in
Section 2.

In Section 3, we present a direct construction of O(1)-regular robustly self-ordered
edge-colored graphs; applying the foregoing transformation, this provides our first proof of
Theorem 1.3. Our second proof of Theorem 1.3 is presented in Section 4, and consists of a
three-step process (as outlined in Section 1.1.2). Sections 3 and 4 can be read independently
of one another, but both rely on Section 2.

In Section 5 we demonstrate the applicability of robustly self-ordered bounded-degree
graphs to property testing; specifically, to proving lower bounds (on the query complexity)
for the bounded-degree graph testing model. For these applications, the global notion of
constructability, established in Section 4.2, suffices. This construction should be preferred over
the direct construction presented in Section 3, because it yields graphs with small connected
components. More importantly, the subexponential separation between the complexities of
testing and tolerant testing of graph properties (i.e., Theorem 5.5) relies on the construction
of Section 4 and specifically on the local computation tasks studied in Section 4.4.

Lastly, in Section 6, we prove that random O(1)-regular graphs are robustly self-ordered.
This section may be read independently of any other section.

2 The Edge-Colored Variant

Many of our arguments are easier to make in a model of (bounded-degree) graphs in which
edges are colored (by a bounded number of colors), and where one counts the number of
mismatches between colored edges. Namely, an edge that appears in one (edge-colored)
graph contributes to the count if it either does not appear in the other (edge-colored) graph
or appears in it under a different color. Hence, we define a notion of robust self-ordering for
edge-colored graphs. We shall then transform robustly self-ordered edge-colored graphs to
robustly self-ordered ordinary (uncolored) graphs, while preserving the degree, the asymptotic
number of vertices, and other features such as expansion and degree-regularity. Specifically,
the transformation consists of replacing the colored edges by copies of different connected,
asymmetric (constant-sized) gadgets such that different colors are reflected by different
gadgets.

We start by providing the definition of the edge-colored model. Actually, for greater
flexibility, we will consider multi-graphs; that is, graphs with possible parallel edges and
self-loops. Hence, we shall consider multi-graphs G = (V, E) coupled with an edge-coloring
function χ :E→N, where E is a multi-set containing both pairs of vertices and singletons
(representing self-loops). Actually, it will be more convenient to represent self-loops as
2-element multi-sets containing two copies of the same vertex.

▶ Definition 2.1 (robust self-ordering of edge-colored multi-graphs). Let G = (V, E) be a
multi-graph with colored edges, where χ :E→N denotes this coloring, and let Ei denote the
multi-set of edges colored i (i.e., Ei = {e∈E : χ(e) = i}). We say that (G, χ) is γ-robustly
self-ordered if for every permutation µ : V → V it holds that∑

i∈N

∣∣∣Ei △{{µ(u), µ(v)} :{u, v}∈Ei}
∣∣∣ ≥ γ · |{i∈V :µ(i) ̸= i}|, (2)

CCC 2021

12:12

where A△B denotes the symmetric difference between the multi-sets A and B; that is A△B

contains t occurrences of e if the absolute difference between the number of occurrences of e

in A and B equals t.

(Definition 1.2 is obtained as a special case when the multi-graph is actually a graph and all
edges are assigned the same color.)

We stress that whenever we consider “edge-colored graphs” we actually refer to edge-
colored multi-graphs (i.e., we explicitly allow parallel edges and self-loops).10 In contrast,
whenever we consider (uncolored) graph, we refer to simple graphs (with no parallel edges
and no self-loops).

Our transformation of robustly self-ordered edge-colored multi-graphs to robustly self-
ordered ordinary graphs depends on the number of colors used by the multi-graph. In
particular, γ-robustness of edge-colored multi-graph that uses c colors gets translated to
(γ/f(c))-robustness of the resulting graph, where f : N → N is an unbounded function.
Hence, we focus on coloring functions that use a constant number of colors, denoted c. That
is, fixing a constant c ∈ N, we shall consider multi-graphs G = (V, E) coupled with an
edge-coloring function χ :E→ [c].

2.1 Transformation to standard (uncolored) version
As a preliminary step for the transformation, we add self-loops to all vertices and make sure
that parallel edges are assigned different colors. The self-loops make it easy to distinguish
the original vertices from auxiliary vertices that are parts of gadgets introduced in the
main transformation. Different colors assigned to parallel edges are essential to the mere
asymmetry of the resulting graph, since we are going to replace edges of the same color by
copies of the same gadget.

▶ Construction 2.2 (preliminary step towards Construction 2.3). For a fixed d ≥ 3, given a
multi-graph G = (V, E) of maximum degree d and an edge-coloring function χ :E→ [c], we
define a multi-graph G = (V, E′) and an edge-coloring function χ′ :E′→ [d · c + 1] as follows.
1. For every pair of vertices u and v that are connected by few parallel edges, denoted

e
(1)
u,v, ..., e

(d′)
u,v , we change the color of e

(i)
u,v to χ′(e(i)

u,v)← (i− 1) · d + χ(e(i)
u,v). This includes

also the case u = v.
2. We augment the multi-graph with self-loops colored d · c + 1; that is, E′ is the multi-set

E ∪ {ev : v∈V }, where ev is a self-loop added to v, and χ′(ev) = dc + 1.
(Other edges e∈E maintain their color; that is, them χ′(e) = χ(e) holds).

(For simplicity, we re-color all parallel edges, save the first one, rather than re-coloring
only parallel edges of the same color.) Note that refining the coloring may only increase
the robustness parameter of a multi-graph. Clearly, G′ preserves many features of G. In
particular, it preserves γ-robust self-ordering, expansion, degree-regularity, and the number
of vertices.

10 We comment that a seemingly more appealing definition can be used for edge-colored (simple) graphs.
Specifically, in that case (i.e., E ⊆

(
V
2

)
), we can extend χ :E →N to non-edges by defining χ({u, v}) = 0

if {u, v} ̸∈ E, and say that (G, χ) is γ-robustly self-ordered if for every permutation µ : V → V it holds
that∣∣∣∣{{u, v} ∈

(
V

2

)
: χ({µ(u), µ(v)}) ̸=χ({u, v})

}∣∣∣∣ ≥ γ · |{i∈V : µ(i) ̸= i}|.

12:13

As stated above, our transformation of edge-colored multi-graphs to ordinary graphs
uses gadgets, which are constant-size graphs. Specifically, when handling a multi-graph of
maximum degree d with edges that are colored by c colors, we shall use c different connected
and asymmetric graphs. Furthermore, in order to maintain d-regularity, we shall use d-regular
graphs as gadgets; and in order to have better control on the number of vertices in the
resulting graph, each of these gadgets will contain k = k(d, c) vertices. The existence of such
(d-regular) asymmetric (and connected) graphs is well-known, let alone that it is known that
a random d-regular k-vertex graph is asymmetric (for any constant d ≥ 3) [5, 4].

We stress that the different gadgets are each connected and asymmetric, and it follows
that they are not isomorphic to one another. We designate in each gadget an edge {p, q},
called the designated edge, such that omitting this edge does not disconnect the gadget.
The endpoint of this edge will be used to connect two vertices of the original multi-graph.
Specifically, we replace each edge {u, v} (of the original multi-graph) that is colored i by a
copy of the ith gadget, while omitting one its designated edge {p, q} and connecting u to p

and v to q. The construction is spelled out below.
We say that a (non-simple) multi-graph G = (V, E) coupled with an edge-coloring χ is

eligible if each of its vertices contains a self-loop, and parallel edges are assigned different
colors. Recall that eligible comes almost for free (by applying Construction 2.2). We shall
apply the following construction only to eligible edge-colored multi-graphs.

▶ Construction 2.3 (the main transformation). For a fixed d ≥ 3 and c, let k = k(d, c)
and G1, ..., Gk be different asymmetric and connected d-regular graphs over the vertex-set
[k]. Given a multi-graph G = (V, E) of maximum degree d and an edge-coloring function
χ :E→ [c], we construct a graph G′ = (V ′, E′) as follows.

Suppose that the multi-set E has size m. Then, for each j ∈ [m], if the jth edge of E

connects vertices u and v, and is colored i, then we replace it by a copy of Gi, while
omitting its designated edge and connecting one of its endpoints to u and the other to
v.
Specifically, assuming that V = [n] and recalling that j is the index of the edge (colored
i) that connects u and v, let Gu,v

i be an isomorphic copy of Gi that uses the vertex
set {n + (j − 1) · k + i : i∈ [k]}. Let {p, q} be the designated edge in Gu,v

i , and Ĝu,v
i be

the graph that results from Gu,v
i by omitting {p, q}. Then, we replace the edge {u, v}

by Ĝu,v
i , and add the edges {u, p} and {v, q}.

Hence, V ′ = [n + m · k] and E′ consists of the edges of all Ĝu,v
i ’s as well as the edges

connecting the endpoint of the corresponding designated edges to the corresponding vertices u

and v.

We stress that, although G may have parallel edges and self-loops, the graph G′ has neither
parallel edges nor self-loops. Also note that G′ preserve various properties of G such as
degree-regularity, number of connected components, and expansion (up to a constant factor).

Showing that the resulting graph G′ = (V ′, E′) is robustly self-ordered relies on a
correspondence between the colored edges of G = (V, E) and the gadgets in G′. For starters,
suppose that the permutation µ′ : V ′ → V ′ maps V to V (i.e., µ′(V) = V), and gadgets to the
corresponding gadgets; that is, if µ′ maps the vertex-pair (u, v) ∈ V 2 to (µ′(u), µ′(v)) ∈ V 2,
then µ′ maps the vertices in the possible gadget that connects u and v to the vertices in
the gadget that connects µ′(u) and µ′(v). In such a case, letting µ be the restriction of µ′

to V , a difference of D colored edges between G and µ(G) translates to a difference of at
least D edges between G′ and µ′(G′), due to the difference between the gadgets that replace

CCC 2021

12:14

the corresponding edges of G′, whereas the number of non-fixed-point vertices in µ′ is k

times larger than the number of non-fixed-point vertices in µ, which is at most D/γ (by the
γ-robust self-ordering of G). Hence, in this case we have

|G′△µ′(G′)|
|{v ∈ V ′ : µ′(v) ̸=v}|

= D

k · |{v ∈ V : µ(v) ̸=v}|
≥ D

k ·D/γ

which equals γ/k. However, in general, µ′ needs not satisfy the foregoing condition. Nev-
ertheless, if µ′ splits some gadget or maps some gadget in a manner that is inconsistent
with the vertices of V connected by it, then this gadget contributes at least one unit to the
difference between G′ and µ′(G′), whereas the number of non-fixed-point vertices in this
gadget is at most k. Lastly, if µ′ maps vertices of a gadget to other vertices in the same
gadget, then we get a contribution of at least one unit due to the asymmetry of the gadget.
The foregoing is made rigorous in the proof of the following theorem.

▶ Theorem 2.4 (from edge-colored robustness to standard robustness). For constant d ≥ 3 and
c, suppose that the multi-graph G = (V, E) coupled with χ :E→ [c] is eligible and γ-robustly
self-ordered. Then, the graph G′ = (V ′, E′) resulting from Construction 2.3 is (γ/3k)-robustly
self-ordered, where k = k(d, c) is the number of vertices in a gadget (as determined above).

Proof. As a warm-up, let us verify that G′ is asymmetric. We first observe that the vertices
of G are uniquely identified (in G′), since they are the only vertices that are incident at
copies of the gadget that replaces the self-loops.11 Hence, any automorphism of G′ must map
V to V . Consequently, for any i, such an automorphism µ′ must map each copy of Gi to a
copy of Gi, which induces a unique coloring of the edges of G. By the “colored asymmetry”
of G, this implies that µ′ maps each v ∈ V to itself, and consequently each copy of Gi must
be mapped (by µ′) to itself. Finally, using the asymmetry of the Gi’s, it follows that each
vertex of each copy of Gi is mapped to itself.

We now turn to proving that G′ is actually robustly self-ordered. Considering an arbitrary
permutation µ′ : V ′ → V ′, we lower-bound the distance between G′ and µ′(G′) as a function
of the number of non-fixed-points under µ′ (i.e., of v ∈ V ′ such that µ′(v′) ̸= v′). We do so by
considering the contribution of each non-fixed-point to the distance between G′ and µ′(G′).
We first recall the fact that the vertices of V (resp., of gadgets) are uniquely identified in
µ′(G′) by virtue of the gadgets that replace self-loops (see the foregoing warm-up).

Case 1: Vertices of some copy of Gi that are not mapped by µ′ to a single copy of Gi; that
is, vertices in some Gu,v

i that are not mapped by µ′ to some Gu′,v′

i .
(This includes the case of vertices w′ and w′′ of some Gu,v

i such that µ′(w′) is in Gu′,v′

i′

and µ′(w′′) is in Gu′′,v′′

i′′ , but (i′, u′, v′) ̸= (i′′, u′′, v′′). It also includes the case of a copy
of Gi that is mapped by µ′ to a copy of Gj for j ̸= i, and the case that a vertex w in
some Gu,v

i that is mapped by µ′ to a vertex in V .)
The set of vertices Su,v

i of each such copy (i.e., Gu,v
i) contribute at least one unit to the

difference between G′ and µ′(G′), since µ′(Su,v
i) induces a copy of Ĝi in µ(G′) but not in

G′, where here we also use the fact that the Ĝi’s are connected (and not isomorphic (for
the case of i′ = i′′ ≠ i)). Note that the total contribution of all vertices of the current
case equals at least the number of gadgets in which they reside. Hence, if the current
case contains n1 vertices, then their contribution to the distance between G′ and µ′(G′)
is at least n1/k.

11 Note that this gadget cannot appear as part of any other gadget, since all gadgets have the same number
of vertices.

12:15

Ditto for vertices that do not belong to a single copy of Gi and are mapped by µ′ to a
single copy of Gi. (This also includes v ∈ V being mapped to some copy of some Gi.)

Case 2: Vertices of some copy of Gi that are mapped by µ′ to a single copy of Gi, while not
preserving their indices inside Gi.
(This refers to vertices of some Gu,v

i that are mapped by µ to vertices of Gu′,v′

i , where
(u′, v′) may but need not equal (u, v), such that for some j ∈ [k] the jth vertex of Gu,v

i is
not mapped by µ to the jth vertex of Gu′,v′

i .)12

By the fact that Gi is asymmetric, it follows that each such copy contributes at least one
unit to the difference between G′ and µ′(G′), and so (again) the total contribution of all
these vertices is proportional to their number; that is, if the number of vertices in this
case is n2, then their contribution is at least n2/k.

Case 3: Vertices v ∈ V such that µ′(v) ̸= v (equiv., µ′(v) ∈ V \ {v}).
(This is the main case, where we use the hypothesis that the edge-colored G is robustly
self-ordered.
By the hypothesis that the edge-colored G is robustly self-ordered, it follows that such
vertices contribute proportionally to the difference between the colored versions of the
multi-graphs G and µ(G), where µ is the restriction of µ′ to V . Specifically, the number
of tuples ({u, v}, i) such that {u, v} is colored i in exactly one of these multi-graph
(i.e., either in G or in µ(G) but not in both) is at least γ · |{v ∈ V : µ(v) ̸= v}|.
Assume, without loss of generality that χ({u, v}) = i but either {µ−1(u), µ−1(v)} ̸∈ E or
χ({µ−1(u), µ−1(v)}) = j ≠ i. Either way, it follows that some vertices that do not belong
to a copy of Gi are mapped by µ′ to Gu,v

i , which means that Case 1 applies for each such
a tuple. Hence, if the number of vertices in the current case is n3, then n1 ≥ γ · n3, and
we get a contribution of at least γ · n3/k via Case 1.

Case 4: Vertices of some copy of Gi that are mapped by µ′ to a different copy of Gi.
This refers to the case that µ′ maps Gu,v

i to Gu′,v′

i such that (u′, v′) ̸= (u, v), which
corresponds to mapping the gadget to a gadget connecting a different pair of vertices
(but by an edge of the same color).
For u, v, u′, v′ and i as above, if µ′(u) = u′ and µ′(v) = v′, then a gadget that connects u

and v in G′ is mapped to a gadget that does not connects them in µ′(G′) (but rather
connects the vertices u′ and v′, whereas either u′ ̸= u or v′ ̸= v). So we get a contribution
of at least one unit to the difference between G′ and µ′(G′) (i.e., the gadget-edge incident at
either u or v), whereas the number of vertices in this gadget is k. Hence, the contribution
is proportional to the number of non-fixed-points of the current type. Otherwise (i.e.,
(µ′(u), µ′(v)) ̸= (u′, v′)), we get a vertex as in Case 3, and get a proportional contribution
again.

Hence, the contribution of each of these cases to the difference between G′ and µ′(G′) is
proportional to the number of vertices involved. Specifically, if there are ni vertices in Case i,
then we get a contribution-count of at least γ ·

∑
i∈[4] ni/k, where some of these contributions

were possibly counted thrice. The claim follows. ◀

▶ Remark 2.5 (fitting any desired number of vertices). Assuming that the hypothesis of
Theorem 2.4 can be met for any sufficiently large n ∈ S ⊆ N, Construction 2.3 yields robustly
self-ordered n′-vertex graphs for any n′ ∈ {k · n : n∈S}. To obtain such graphs also for n′

that is not a multiple of k, we may use two gadgets with a different number of vertices for
replacing at least one of the sets of colored edges.

12 Recall that Gu,v
i and Gu′,v′

i are both copies of the k-vertex graph Gi, which is an asymmetric graph,
and so the notion of the jth vertex in them is well-defined. Formally, the jth vertex of Gu,v

i is ϕ−1(j)
such that ϕ is the (unique) bijection satisfying ϕ(Gu,v

i) = Gi.

CCC 2021

12:16

2.2 Application: Making the graph regular and expanding
We view the edge-colored model as an intermediate locus in a two-step methodology for
constructing robustly self-ordered graphs of bounded-degree. First, one constructs edge-
colored multi-graphs that are robustly self-ordered in the sense of Definition 2.1, and then
converts them to ordinary robustly self-ordered graphs (in the sense of Definition 1.2), by
using Construction 2.3 (while relying on Theorem 2.4).

We demonstrate the useful of this methodology by showing that it yields a simple way of
making robustly self-ordered graphs be also expanding as well as regular, while maintaining
a bounded degree. We just augment the original graph by super-imposing an expander (on
the same vertex set), while using one color for the edges of the original graph and another
color for the edges of the expander. Note that we do not have to worry about the possibility
of creating parallel edges (since they are assigned different colors). The same method applies
in order to make the graph regular. We combine both transformations in the following result,
which we shall use in the sequel.

▶ Theorem 2.6 (making the graph regular and expanding). For constant d ≥ 3 and γ, there
exists an efficient algorithm that given a γ-robustly self-ordered graph G = (V, E) of maximum
degree d, returns a (d + O(1))-regular multi-graph coupled with a 2-coloring of its edges such
that the edge-colored graph is γ-robustly self-ordered (in the sense of Definition 2.1).

The same idea can be applied to edge-colored multi-graphs; in this case, we use one color
more than given. We could have avoided the creation of parallel edges with the same color by
using more colors, but preferred to relegate this task to Construction 2.2, while recalling that
it preserves both the expansion and the degree-regularity. Either way, applying Theorem 2.4
to the resulting edge-colored multi-graph, we obtain robustly self-ordered (uncolored) graphs.

Proof. For any d′′ ≥ d+d′, given a graph G = (V, E) of maximum degree d that is γ-robustly
self-ordered and a d′-regular expander graph G′ = (V, E′), we construct the desired d′′-regular
multi-graph G′′ by super-imposing the two graphs on the same vertex set, while assigning the
edges of each of these graphs a different color. In addition, we add edges to make the graph
regular, and color them using the same color as used for the expander.13 Details follow.

We superimpose G and G′ (i.e., create a multi-graph (V, E ∪ E′)), while coloring the
edges of G (resp., G′) with color 1 (resp., color 2).
Note that this may create parallel edges, but with different colors.
Let dv ≤ d + d′ denote the degree of vertex v in the resulting multi-graph. Then, we add
edges to this multi-graph so that each vertex has degree d′′. These edges will also be
colored 2.
(Here, unless we are a bit careful, we may introduce parallel edges that are assigned the
same color. This can be avoided by using more colors for these added edges, but in light
of Construction 2.2 (which does essentially the same) there is no reason to worry about
this aspect.)

(Recall that the resulting edge-colored multi-graph is denoted G′′.)

13 We assume for simplicity that |V ′| is even. Alternatively, assuming that G contains no isolated vertex,
we first augment it with an isolated vertex and apply the transformation on the resulting graph. Yet
another alternative is to consider only even d′′.

12:17

The crucial observation is that, since the edges of G are given a distinct color in G′′, the
added edges do not harm the robust self-ordering feature of G. Hence, for any permutation
µ : V → V , any vertex-pair that contributes to the symmetric difference between G and
µ(G), also contributes to an inequality between colored edges of G′′ and µ(G′′) (by virtue of
the edges colored 1). ◀

2.3 Local computability of the transformations
In this subsection, we merely point out that the transformation presented in Constructions 2.2
and 2.3 as well as the one underlying the proof of Theorem 2.6 preserve efficient local
computability (e.g., one can determine the neighborhood of a vertex in the resulting multi-
graph by making a polylogarithmic number of neighbor-queries to the original multi-graph).
Actually, this holds provided that we augment the (local) representation of graphs, in a
natural manner.

Recall that the standard representation of bounded-degree graphs is by their incidence
functions. Specifically, a graph G = ([n], E) of maximum degree d is represented by the
incident function g : [n]× [d]→ [n] ∪ {0} such that g(v, i) = u ∈ [n] if u is the ith neighbor of
v, and g(v, i) = 0 if v has less than i neighbors. This does not allow us to determined the
identity of the jth edge in G, nor even to determine the number of edges in G, by making a
polylogarithmic number of queries to g. Nevertheless, efficient local computability is preserved
if we use the following local representation (presented for edge-colored multi-graphs).

▶ Definition 2.7 (local representation). For d, c ∈ N, a local representation of a multi-graph
G = ([n], E) of maximum degree d that is coupled with a coloring χ :E→ [c] is provided by
the following three functions:
1. An incidence function g1 : [n]× [d]→ N ∪ {0} such that g1(v, i) = j ∈ N if j is the index

of the ith edge that incident at vertex v, and g1(v, i) = 0 if v has less than i incident
edges.

2. An edge enumeration function g2 : N→ ([n]2 × [c]) ∪ {0} such that g2(j) = (u, v, χ(ej) if
the jth edge, denoted ej, connects the vertices u and v, and g2(j) = 0 if the multi-graph
has less than j edges.

3. An vertex enumeration (by degree) function g3 : [d] → ([n] → [n]) ∪ {0} such that
g3(i, j) = v ∈ [n] if v is the ith vertex of degree j in the multi-graph, and g3(i, j) = 0 if
the multi-graph has less than j vertices of degree i.

Needless to say, the function g3 is redundant in the case that we are guaranteed that the
multi-graph is regular. One may augment the above representation by providing also the
total number of edges, but this number can be determined by binary search.

▶ Theorem 2.8 (the foregoing transformations preserve local computability). The local repres-
entation of the multi-graph that result from Construction 2.2 can be computed by making a
polylogarithmic number of queries to the given multi-graph. The same holds for Construc-
tion 2.3 and for the transformation underlying the proof of Theorem 2.6.

Proof. For Construction 2.2, we mostly need to enumerate all parallel edges that connect u

and v. This can be done easily by querying the incidence function on (u, 1), ..., (u, d) and
querying the edge enumeration function on the non-zero answers. (In addition, when adding
a self-loop on vertex v ∈ [n], we need to determine the degree of v as well as the number
of edges in the multi-graph (in order to know how to index the self-loop in the incidence
and edge enumeration functions, respectively). For Construction 2.3, we merely need to
determine the color of the jth edge and its index in the incidence list of each of its endpoints
(in order to replace it by edges that lead to the gadget).

CCC 2021

12:18

For the transformation underlying the proof of Theorem 2.6, adding edges to make the
multi-graph regular requires determining the index of a vertex in the list of all vertices of the
same degree (in order to properly index the added edges). Here is where we use the vertex
enumeration (by degree) function. (We also need to select a fixed procedure for transforming
an sorted n-long sequence (d1, ..., dn) ∈ [d′′] into an all-d′′ sequence by making pairs of
increments; that is, given j ∈ [D] such that D = (d′′n−

∑
i∈[n] di)/2, we should determine a

pair (uj , vj) such that for every i ∈ [n] it holds that di + |{j : uj = i}|+ |{j : vj = i}| = d′′.) ◀

3 The Direct Construction

We shall make use of the edge-colored variant presented in Section 2, while relying on the fact
that robustly self-ordered colored multi-graphs can be efficiently transformed into robustly
self-ordered (uncolored) graphs. Actually, it will be easier to present the construction as a
directed edge-colored multi-graph. Hence, we first define a variant of robust self-ordering
for directed edge-colored multi-graph (see Definition 3.1), then show how to construct such
multi-graphs (see Section 3.2), and finally show how to transform the directed variant into
an undirected one (see Section 3.1).

The construction is based on d permutations, denoted π1, ..., πd : [n]→ [n], and consists
of the directed edge-colored multi-graph that is naturally defined by them. Specifically, for
every v ∈ [n] and i ∈ [d], this multi-graph contains a directed edge, denoted (v, πi(v), that
goes from vertex v to vertex πi(v), and is colored i.

We prove that a sufficient condition for this edge-colored directed multi-graph, denoted
G1, to be robustly self-ordered is that a related multi-graph is an expander. Specifically,
we refer to the multi-graph G2 = (V2, E2) that represents the actions of the permutation of
pairs of vertices of G1; that is, V2 = {(u, v)∈ [n]2 : u ̸=v} and E2 = {{(u, v), (πi(u), πi(v))} :
(u, v)∈V2 & i∈ [d]}.

The foregoing requires extending the notion of robustly self-ordered (edge-colored) multi-
graphs to the directed case. The extension is straightforward and is spelled-out next, for
sake of good order.

▶ Definition 3.1 (robust self-ordering of edge-colored directed multi-graphs). Let G = (V, E)
be a directed multi-graph with colored edges, where χ :E→N denotes this coloring, and let
Ei denote the multi-set of edges colored i. We say that (G, χ) is γ-robustly self-ordered if for
every permutation µ : V → V it holds that∑

i∈N

∣∣∣Ei △{(µ(u), µ(v)) : (u, v)∈Ei}
∣∣∣ ≥ γ · |{i∈V :µ(i) ̸= i}|, (3)

where A△B denotes the symmetric difference between the multi-sets A and B (as in Defini-
tion 2.1).

(The only difference between Definition 3.1 and Definition 2.1 is that (3) refers to the directed
edges of the directed multi-graph, whereas (2) refers to the undirected edges of the undirected
multi-graph.)

In Section 3.1 we present a construction of a directed edge-colored O(1)-regular multi-
graph that is Ω(1)-robustly self-ordered. We shall actually present a sufficient condition and
a specific instantiation that satisfies it. In Section 3.2 we show how to transform any directed
edge-colored multi-graph into an undirected one while preserving all relevant features; that
is, bounded robustness, bounded degree, regularity, expansion, and local computability.

12:19

3.1 A sufficient condition for robust self-ordering of directed colored
graphs

For any d permutations, π1, ..., πd : [n]→ [n], we consider two multi-graphs.
1. The primary multi-graph (of π1, ..., πd) is a directed multi-graph, denoted G1 = ([n], E1),

such that E1 = {(v, πi(v)) : v∈ [n] & i∈ [d]}. This directed multi-graph is coupled with
an edge-coloring in which the directed edge from v to πi(v) is colored i.

2. The secondary multi-graph (of π1, ..., πd) is an undirected multi-graph, denoted G2 =
(V2, E2), such that V2 = {(u, v)∈ [n]2 : u ̸=v} and E2 = {{(u, v), (πi(u), πi(v))} : (u, v)∈
V2 & i∈ [d]}.

We note that each of these multi-graphs is a Schreier graph that correspond to the action of
the permutation π1, ..., πd on the corresponding vertex sets (i.e., [n] and V2, respectively).
For a wider perspective see the (paragraph at the) end of this subsection.

We now state the main result of this section, which asserts that the primary multi-graph
G1 is robustly self-ordered if the secondary multi-graph G2 is an expander. We use the
combinatorial definition of expansion: A multi-graph G = (V, E) is γ-expanding if, for every
subset S of size at most |V |/2, there are at least γ · |S| vertices in V \ S that neighbor some
vertex in S.

▶ Theorem 3.2 (expansion of G2 implies robust self-ordering of G1). For any d ≥ 2 permuta-
tions, π1, ..., πd : [n]→ [n], if the secondary multi-graph G2 of π1, ..., πd is γ-expanding, then
the primary directed multi-graph G1 of π1, ..., πd coupled with the foregoing edge-coloring is
γ-robustly self-ordered. Furthermore, G1 (or rather the undirected multi-graph underlying
G1) is min(0.25, γ/3)-expanding.

Proof. Let µ : [n]→ [n] be an arbitrary permutation, and let T = {v∈ [n] : µ(v) ̸=v} be its set
of non-fixed-points. Then, the size of the symmetric difference between G1 and µ(G1) equals
2 ·

∑
i∈[d] |Di| such that v ∈ Di if (µ(v), µ(πi(v))) is either not an edge in G1 or is not colored i

in it, whereas (v, πi(v)) is an edge colored i in G1. Note that if (µ(v), µ(πi(v))) is not an
i-colored edge in G1, then πi(µ(v)) ̸= µ(πi(v)). Hence, Di = {v∈ [n] : µ(πi(v)) ̸= πi(µ(v))}.

The key observation (proved next) is that if v ∈ T \Di, then (πi(v), πi(µ(v)) ∈ T2, where
T2 = {(v, µ(v)) : v∈T} represents the sets of replacements performed by µ. This fact implies
that if

∑
i∈[d] |Di| is small in comparison to |T |, then the set T2 (which is a set of vertices in

G2) does not expand much, in contradiction to the hypothesis. Details follow.

▶ Observation 3.2.1 (key observation). For T, Di and T2 as defined above, if v ∈ T \Di,
then (πi(v), πi(µ(v)) ∈ T2.

Recall that v ∈ T implies (v, µ(v)) ∈ T2. Observation 3.2.1 asserts that if (in addition to
v ∈ T) it holds that v ̸∈ Di, then (πi(v), πi(µ(v)) is also in T2. This means that the edges
colored i incident at {(πi(v), πi(µ(v))) : v∈T \Di} do not contribute to the expansion of the
set T2 in G2.

Proof. Since v ̸∈ Di we have πi(µ(v)) = µ(πi(v)), and µ(πi(v)) ̸= πi(v) follows, because
otherwise πi(µ(v)) = πi(v), which implies µ(v) = v in contradiction to v ∈ T . However,
µ(πi(v)) ̸= πi(v) means that πi(v) ∈ T , and (πi(v), πi(µ(v))) = (πi(v), µ(πi(v))) ∈ T2 follows.

◁

CCC 2021

12:20

Conclusion. Recall that Observation 3.2.1 implies that {(πi(v), πi(µ(v))) : v∈T \Di} ⊆ T2,
whereas

⋃
i∈[d]{(πi(v), πi(µ(v))) : v ∈ T} is the neighborhood of T2 in the multi-graph G2

(since {(πi(v), πi(µ(v))) : i∈ [d]} the neighbor-set of (v, µ(v)) in G2). Using the γ-expansion
of G2 (and |T2| ≤ n < |V2|/2), it follows that

∑
i∈[d] |Di| ≥ γ · |T |. The main claim follows.

The expansion of G1 is shown by relating sets of vertices of G1 to the corresponding sets of
pairs in G2. Specifically, for and S ⊂ [n] of size at most n/2, we consider the set T = {(u, v)∈
V2 : u, v∈S}, which has size |S| · (|S| − 1) ≤ n

2 · (
n
2 − 1) < |V2|

2 . Letting T ′ denote the set of
neighbors of T in G2, and |S′| denote the set of neighbors of S in G1, we have |T ′ \T | ≥ γ · |T |,
on the one hand (by expansion of G2), and |T ′ \ T | ≤ 2 · |S| · |S′ \ S|+ |S′ \ S| · (|S′ \ S| − 1)
on the other hand. This implies |S′ \ S| ≥ (γ/3) · |S| (unless |S| < 5, which can be handled
by using |S′ \ S| ≥ 1). ◀

Primary and secondary multi-graphs based on SL2(p)

Recall that SL2(p) is the group of 2-by-2 matrices over GF(p) that have determinant 1.
There are several different explicit constructions of constant-size expanding generating sets
for SL2(p), namely making the associated Cayley graph an expander (see, e.g., [28], [27,
Thm. 4.4.2(i)], and [6]). We use any such generating set to define a directed (edge-colored)
multi-graph G1 on p + 1 vertices, and show that the associated multi-graph on pairs, G2, is
an expander.

▶ Proposition 3.3 (expanding generators for SL2(p) yield an expanding secondary multi-graph).
For any prime p > 2, let V = {(1, i)⊤ : i ∈ GF(p)} ∪ {(0, 1)⊤}, and M1, ..., Md ∈ SL2(p).
For every i ∈ [d], define πi : V → V such that πi(u) = v if v ∈ V is a non-zero multiple of
Miu. Then:
1. Each πi is a bijection.
2. If the Cayley multi-graph C = C(SL2(p), {M1, ..., Md}) = (SL2(p), {{M, MiM} : M ∈

SL2(p) & i ∈ [d]}) is an expander, then the (Schreier) multi-graph G2 with vertex-set
P = {(v, v′) : v∈V & v′∈V \ {v}} and edge-set {{(v, v′), (πi(v), πi(v′))} : (v, v′)∈P} is
an expander.

Part 1 implies that these permutations yield a primary directed edge-colored multi-graph
on the vertex-set V , whereas Part 2 asserts that the corresponding secondary graph is an
expander (if the corresponding Cayley graph is expanding). Note that |V | = p + 1 and
|P | = (p + 1)p, whereas |SL2(p)| = p3 − p = (p− 1) · |P |.

Proof. Part 1 follows by observing that for every M ∈ SL2(p) and every vector v ∈ GF(p)2

and scalar α ∈ GF(p) it holds that Mαv = αMv. Consequently, if for some non-zero
α, α′ ∈ GF(p) it holds that αMv = α′Mv′, then Mv = Mα′′v′ for α′′ = α′/α, which implies
v = α′′v′ (since M is invertible). (Hence, πi(v) = πi(v′), for v, v′ ∈ V , implies v = v′.)

Part 2 follows by observing that the vertices of G2 correspond to equivalence classes of
the vertices of C that are preserved by SL2(p), where A, B ∈ SL2(p) are equivalent if the
columns of A are non-zero multiples of the corresponding columns of B. That is, we consider
an equivalence relation, denoted ≡, such that for A = [A1|A2] and B = [B1|B2] in SL2(p)
it holds that A ≡ B if Ai = αiBi for both i ∈ {1, 2}, where α1, α2 ∈ [p − 1] (and, in fact,
α2 = 1/α1).14 By saying that these equivalence classes are preserved by SL2(p), we mean
that, for every A, B, M ∈ SL2(p), if A ≡ B, then MA ≡ MB. Hence, the (combinatorial)

14 Recall that det(A) = 1 = det(B), whereas det([α1B1|α2B2]) = α1α2 ·det(B). Note that each equivalence
class contains a single element of P .

12:21

expansion of G2 follows from the expansion of C, because the neighbors of a vertex-set S ⊆ P

in G2 are the vertices of G2 that are equivalent to T ′ such that T ′ is the set of vertices of
CC(t) that neighbor (in CC(t)) vertices that are equivalent to vertices in S.15 ◀

A simple construction

Combining Theorem 3.2 with Proposition 3.3, while using a simple pair of expanding
generators (which does not yield a Ramanujan graph), we get

▶ Corollary 3.4 (a simple robustly self-ordered primary multi-graph). For any prime p > 2, let
V = {(1, i)⊤ : i ∈ GF(p)} ∪ {(0, 1)⊤}, and consider the matrices

M1
def=

(
1 1
0 1

)
and M2

def=
(

0 1
−1 0

)
(4)

Then, for π1 and π2 defined as in Proposition 3.3, the corresponding primary (directed
edge-colored) multi-graph is robustly self-ordered.

This follows from the fact that the corresponding Cayley graph C(SL2(p), {M1, M2}) is an
expander [27, Thm. 4.4.2(i)].

Perspective

The foregoing construction using the group SL2(p) is a special case of a much more general
family of constructions, and the elements of the proof of Proposition 3.3 follow an established
theory (explained, e.g., in [25, Sec. 11.1.2]), which we briefly describe.

Let H be any finite group, and S an expanding generating set of H (i.e., the Cayley graph
C(H, S) is an expander). Assume that H acts on a finite set V (i.e., each h ∈ H is associated
with a permutation on V , and h′h(v) = h′(h(v)) for every h, h′ ∈ H and v ∈ V). Then, the
primary (directed edge-colored) multi-graph G1 on vertices V can be constructed from the
permutations defined by members of S. The secondary multi-graph G2 is naturally defined
by the action of S on pairs of elements in V . Finally, the expansion of C(H, S) implies that
every connected component of G2 is an expander.16 Thus, whenever this (Schreier) graph G2
is connected (as it is in Proposition 3.3), one may conclude that G1 is a directed edge-colored
robustly self-ordered multi-graph.

3.2 From the directed variant to the undirected one
In this section we show how to transform directed (edge-colored) multi-graphs, of the type
constructed in Section 3.1, into undirected ones, while preserving all relevant features (i.e.,
bounded robustness, bounded degree, regularity, expansion, and local computability). The
transformation is extremely simple and natural: We replace the directed edge (u, v) colored
j by a 2-path with a designated auxiliary vertex au,v,j , while coloring the edge {u, au,v,j}
by 2j − 1 and the edge {au,v,j , v} by 2j. Evidently, this colored 2-path encodes the direction
of the original edge (as well as the original color).

15 Specifically, let S have density at most half in P , and let T be the set of vertices of C that are equivalent
to S. Note that |T | = (p − 1) · |S|, since each equivalence class contains a single element of P . By the
foregoing, the set of neighbors of T in C, denoted T ′, is a collection of equivalence classes of vertices of
G2, and |T ′ \ T | = Ω(|T |) by the expansion of C. It follows that the set of neighbors of S in G2, denoted
S′, is the set of vertices that are equivalent to T ′, which implies that |S′ \ S| = |T ′\T |

p−1 = Ω(|S|).
16 Indeed, this was easy to demonstrate directly in the case of Proposition 3.3.

CCC 2021

12:22

Note that the foregoing transformation works well provided that there are no parallel
edges that are colored with the same color, a condition which is satisfied by the construction
presented in Section 3.1. Furthermore, since the latter construction has no vertices of (in+out)
degree less that 2d ≥ 4, there is no need to mark the original vertices by self-loops. Hence, a
preliminary step akin to Construction 2.2 in unnecessary here, although it can be performed
in general.

▶ Proposition 3.5 (from directed robust self-ordering to undirected robust self-ordering). For
constants d ≥ 3 and c, let G = (V, E) be a directed multi-graph in which each vertex has
between three and d incident edges (in both directions), and that G is coupled with an
edge-coloring function χ : E→ [c] such that no parallel edges (in same the direction) are
assigned the same color. Letting Ei = {e∈E : χ(e) = i} denote the set of edges colored i in
G, consider the undirected multi-graph G′ = (V ′, E′) such that V ′ = V ∪ {au,v,i : (u, v)∈Ei}
and E′ =

⋃
j∈[2c] E′

j where

E′
2i−1 = {{u, au,v,i} : (u, v)∈Ei},
E′

2i = {{au,v,i, v} : (u, v)∈Ei},

and the edge-coloring function χ′ : E′→ [2c] that assigns the edges of E′
j the color j (i.e.,

χ′(e) = j for every e ∈ E′
j). Then, if (G, χ) is γ-robustly self-ordered (in the sense of

Definition 3.1), then (G′, χ′) is (γ/2)-robustly self-ordered (in the sense of Definition 2.1).

We comment that the transformation of (G, χ) to (G′, χ′) preserves bounded robustness,
bounded degree, regularity, expansion, and local computability (cf. Theorem 2.8).

Proof. The proof is analogous to the proof of Theorem 2.4, but it is much simpler because
the gadgets used in the current transformation (i.e., the auxiliary vertices au,v,i) are much
simpler.

Considering an arbitrary permutation µ′ : V ′ → V ′, we lower-bound the distance between
G′ and µ′(G′) as a function of the number of non-fixed-points under µ′. We do so by
considering the contribution of each non-fixed-point to the distance between G′ and µ′(G′).
We first recall the fact that the vertices of V (resp., the auxiliary vertices) are uniquely
identified in µ′(G′) by virtue of the their degree, since each vertex of V has degree at least
three (in G′) whereas the auxiliary vertices have degree 2.
Case 1: Auxiliary vertices of the form au,v,i that are not mapped by µ′ to auxiliary vertices

of the form au′,v′,i; that is, µ′(au,v,i) ∈ (V ∪
⋃

j ̸=i{au′,v′,j : (u′, v′)∈E}).
Each such vertex au,v,i contributes at least one unit to the difference between G′ and
µ′(G′), since the two edges incident at au,v,i (in G′) are colored 2i− 1 and 2i respectively,
whereas µ(au,v,i) has either more than two edges (in G′) or its two edges are colored 2j−1
and 2j, respectively, where for j ̸= i. Hence, if the current case contains n1 vertices, then
their contribution to the distance between G′ and µ′(G′) is at least n1.
Ditto for vertices of V that are mapped by µ′ to an auxiliary vertex.

Case 2: Vertices v ∈ V such that µ′(v) ∈ V \ {v}.
By the hypothesis that the edge-colored directed G is robustly self-ordered, it follows that
such vertices contribute proportionally to the difference between the colored versions of
the directed multi-graphs G and µ(G), where µ is the restriction of µ′ to V . Specifically,
the number of tuples ((u, v), i) such that (u, v) is colored i in exactly one of these multi-
graph (i.e., either in G or in µ(G) but not in both) is at least γ · |{v ∈V : µ(v) ̸= v}|.
Assume, without loss of generality that (u, v) ∈ Ei but either (µ−1(u), µ−1(v)) ̸∈ E or
(µ−1(u), µ−1(v)) ∈ Ej for j ̸= i. Either way, it follows that a vertex not in {au′,v′,i :

12:23

(u′, v′)∈Ei} is mapped by µ′ to au,v,i, which means that Case 1 applies for each such a
tuple. Hence, if the number of vertices in the current case is n2, then n1 ≥ γ · n2, and we
get a contribution of at least γ · n2 via Case 1.

Case 3: Auxiliary vertices of the form au,v,i that are mapped by µ′ to auxiliary vertices of
the form au′,v′,i for (u′v′) ̸= (u, v); that is, µ′(au,v,i) ∈ {au′,v′,i : (u′, v′)∈Ei \ {(u, v)}}.
For u, v, u′, v′ and i as above, if µ′(u) = u′ and µ′(v) = v′, then an auxiliary vertex that
connects u and v in G′ is mapped to an auxiliary vertex that does not connects them in
µ′(G′) (but rather connects the vertices u′ and v′, whereas either u′ ̸= u or v′ ̸= v). So
we get a contribution of at least one unit to the difference between G′ and µ′(G′) (i.e.,
the edge incident at either u or v). Hence, the contribution is proportional to the number
of non-fixed-points of the current type. Otherwise (i.e., (µ′(u), µ′(v)) ̸= (u′, v′)), we get a
vertex as in either Case 1 or Case 2, and get a proportional contribution again.

Hence, the contribution of each of these cases to the difference between G′ and µ′(G′) is
proportional to the number of vertices involved. Specifically, if there are ni vertices in Case i,
then we get a contribution-count of at least γ ·

∑
i∈[3] n1, where some of these contributions

were possibly counted twice. The claim follows. ◀

4 The Three-Step Construction

In this section we present a different construction of bounded-degree graphs that are robustly
self-ordered. It uses totally different techniques than the ones utilized in the construction
presented in Section 3. Furthermore, the current construction offers the flexibility of obtaining
either graphs that have small connected components (i.e., of logarithmic size) or graphs that
are highly connected (i.e., are expanders). Actually, one can obtain anything in-between (i.e.,
n-vertex graphs that consist of s(n)-sized connected components that are each an expander,
for any s(n) = Ω((log n)/ log log n)). We mention that robustly self-ordered bounded-degree
graphs with small connected components are used in the proof of Theorem 5.2.

As stated in Section 1.1.2, the current construction proceeds in three steps. First, in
Section 4.1, we prove the existence of robustly self-ordered bounded-degree graphs, and
observe that such ℓ-vertex graphs can actually be found in poly(ℓ!)-time [sic]. Next, setting
ℓ = Ω((log n)/ log log n), we use these graphs as part of 2ℓ-vertex connected components in
an n-vertex (robustly self-ordered bounded-degree) graph that is constructed in poly(n)-time
(see Section 4.2). Lastly, in Section 4.3, we repeat this strategy using the graphs constructed
in Section 4.2, and obtain exponentially larger graphs that are locally constructible.

In addition, in Section 4.4, we show that the foregoing graphs can be locally self-ordered.
That is, given a vertex v in any graph G′ = (V ′, E′) that is isomorphic to the foregoing
n-vertex graph and oracle access to the incidence function of G′, we can find the vertex to
which this unique isomorphism maps v in poly(log n))-time.

4.1 Existence

As stated above, we start with establishing the mere existence of bounded-degree graphs
that are robustly self-ordered.

▶ Theorem 4.1 (robustly self-ordered graphs exist). For any sufficiently large constant d,
there exists a family {Gn}n∈N of robustly self-ordered d-regular graphs. Furthermore, these
graphs are expanders.

CCC 2021

12:24

Actually, it turns out that random d-regular graphs are robustly self-ordered; see Theorem 6.1.
Either way, given the existence of such n-vertex graphs, they can actually be found in poly(n!)-
time, by an exhaustive search. Specifically, for each of the possible ndn/2 graphs, we check
the robust self-ordering condition by checking all n!−1 relevant permutation. (The expansion
condition can be checked similarly, by trying all (0.5 + o(1)) · 2n relevant subsets of [n].)

The proof of Theorem 4.1 utilizes a simpler probabilistic argument than the one used in
the proof of Theorem 6.1. This argument (captured by Claim 4.1.1) refers to the auxiliary
model of edge-colored multi-graphs (see Definition 2.1) and is combined with a transformation
of this model to the original model of uncolored graphs (provided in Construction 2.3 and
analyzed in Theorem 2.4). Indeed, the relative simplicity of Claim 4.1.1 is mainly due to
using the edge-colored model (see digest at the end of Section 6).

Proof. To facilitate the proof, we present the construction while referring to the edge-colored
model presented in Section 2. We shall then apply Theorem 2.4 and obtain a result for the
original model (of uncolored simple graphs).

For m = n/O(1), we shall consider 2m-vertex multi-graphs that consists of two m-vertex
cycles, using a different color for the edges of each cycle, that are connected by d′ = O(1)
random perfect matching, which are also each assigned a different color. (Hence, we use 2+d′

colors in total.) We shall show that (w.h.p.) a random multi-graph constructed in this way
is robustly self-ordered (in the colored sense). (Note that parallel edges, if they exist, will
be assigned different colors.) Specifically, we consider a generic 2m-vertex multi-graph that
is determined by d′ perfect matchings of [m] with {m + 1, ..., 2m}. Denoting this sequence
of perfect matchings by M = (M1, ..., Md′), we consider the (edge-colored) multi-graph
GM ([2m], EM) given by

EM = C1 ∪ C2 ∪
⋃

j∈[d′]

Mj

where C1 = {{i, i + 1} : i ∈ [m− 1]} ∪ {{m, 1}}
and C2 = {{m + i, m + i + 1} : i ∈ [m− 1]} ∪ {{2m, m + 1}}

and a coloring χ in which the edges of Cj are colored j and the edges of Mj are colored
j + 2. (That is, for i ∈ {1, 2}, the set Ci forms a cycle of the form ((i− 1)m + 1, (i− 1)m +
2, ..., (i − 1)m + m, (i − 1)m + 1) and its edges are colored i.) Note that the d′ + 1 edges
incident at each vertex are assigned d′ + 1 different colors.

▷ Claim 4.1.1 (w.h.p., GM is robustly self-ordered). For some constant γ > 0, with high
probability over the choice of M , the edge-colored multi-graph GM is γ-robustly self-ordered.
Furthermore, it is also an expander.

Proof. Consider an arbitrary permutation µ : [2m]→ [2m], and let t = |{i∈ [2m] :µ(i) ̸= i}|.
We shall show that, with probability 1−exp(−Ω(dt log m)) over the choice of M , the difference
between the colored versions of GM and µ(GM) is Ω(t). Towards this end, we consider two
cases.
Case 1: |{i ∈ [m] : µ(i) ̸∈ [m]}| > t/4. Equivalently, |{i ∈ [2m] : ⌈µ(i)/m⌉ ̸= ⌈i/m⌉}| > t/2.

The vertices in the set {i ∈ [m] : µ(i) ̸∈ [m]} are mapped from the first cycle to the second
cycle, and so rather than having two incident edges that are colored 1 they have two
incident edges colored 2. Hence, each such vertex contributes two units to the difference
(between the colored versions of GM and µ(GM)), and the total contribution is greater
than 2 · (t/4) · 2, where the first factor of 2 accounts also for vertices that are mapped
from C2 to C1.

12:25

Case 2: |{i ∈ [m] : µ(i) ̸∈ [m]}| ≤ t/4. Equivalently, |{i ∈ [2m] : ⌈µ(i)/m⌉ ̸= ⌈i/m⌉}| ≤ t/2.
We focus on the non-fixed-points of µ that stay on their original cycle (i.e., those not
considered in Case 1). Let A

def= {i ∈ [m] : µ(i) ̸= i ∧ µ(i) ∈ [m]} and B
def= {i ∈

{m+1,, 2m} : µ(i) ̸= i∧µ(i)∈{m+1, ..., 2m}}. By the case hypothesis, |A|+ |B| ≥ t/2,
and we may assume (without loss of generality) that |A| ≥ t/4. As a warm-up, we first
show that each element of A contributes a non-zero number of units to the difference
(between the colored versions of GM and µ(GM)) with probability 1−O(1/m)d′ , over the
choice of M .
To see this, let πj : [m]→ {m + 1, ..., 2m} be the mapping used in the jth matching; that
is, Mj = {{i, πj(i)} : i∈ [m]}, which means that πj(i) is the jth match of i in GM (i.e.,
the vertex matched to i by Mj). Then, we consider the event that for some j ∈ [d′], the
jth match of i ∈ [m] in µ(GM) is different from the jth match of i in GM , and note that
when this event occurs i contributes to the difference (between the colored versions of
GM and µ(GM)). Note that x is the jth match of i in µ(GM) if and only if µ−1(x) is
the jth match of µ−1(i) in GM , which holds if and only if µ−1(x) = πj(µ−1(i)) (equiv.,
x = µ(πj(µ−1(i)))). Hence, i ∈ [m] contributes to the difference if and only if for some j

it holds that πj(i) ̸= µ(πj(µ−1(i))), because πj(i) ̸= µ(πj(µ−1(i))) means that the edge
{i, πj(i)} is colored j + 2 in GM but is not colored j + 2 in µ(GM) (since a different edge
incident at i in µ(GM) is colored j + 2). Letting π = (π1, ..., πd′), the probability of the
complementary event (i.e., i does not contribute to the difference) is given by

Prπ

[
(∀j∈ [d′]) πj(i) = µ(πj(µ−1(i)))

]
=

∏
j∈[d′]

Prπj

[
πj(i) = µ(πj(µ−1(i)))

]
≤ (m− 1)−d′

,

where the inequality uses the hypothesis that µ(i) ̸= i and i, µ(i) ∈ [m]; specifically,
fixing the value of πj(µ−1(i)), leaves πj(i) uniformly distributed in S

def= {m + 1, ..., 2m} \
{πj(µ−1(i))}, which means that Prπj [πj(i)=µ(v)|v = πj(µ−1(i))] ≤ 1/|S| (where equality
holds if µ(v) ∈ S).
The same argument generalises to any set I ⊆ A such that I ∩ µ(I) = ∅. In such a case,
letting I = {i1, ..., it′}, we get

Prπ

[
(∀i∈I)(∀j∈ [d′]) πj(i) = µ(πj(µ−1(i)))

]
=

∏
k∈[t′]

∏
j∈[d′]

Prπj

[
πj(ik) = µ(πj(µ−1(ik)))

∣∣(∀k′∈ [k − 1]) πj(ik′) = µ(πj(µ−1(ik′)))
]

≤ (m− 2t′ + 1)−t′d′
,

where the inequality uses the hypothesis that I∩µ(I) = ∅; specifically, for each k ∈ [t′], we
use the fact that ik ̸∈ {i1, ..., ik−1, µ−1(i1), ..., µ−1(ik)}. Hence, fixing the values of πj(ik′)
for all k′ ∈ [k−1] and the values of πj(µ−1(ik′)) for all k′ ∈ [k], and denoting these values
by u1, ..., uk−1 and v1, ..., vk respectively, leaves πj(ik) uniformly distributed in S

def= {m +
1, ..., 2m}\{u1, ..., uk−1, v1, ..., vk}, which means that Prπj

[πj(i)=µ(vk)|foreging fixing] ≤
1/|S| (where equality holds if µ(vk) ∈ S).
Recalling that |A| ≥ t/4 and t ≤ 2m, we upper-bound the probability (over the choice of
M) that A contains a t/8-subset A′ such that (∀i∈A′)(∀j∈ [d′]) πj(i) = µ(πj(µ−1(i))),
by taking a union bound over all possible A′ and using for each such A′ a subset I ⊂ A′

such that I ∩ µ(I) = ∅. (So we actually take a union bound over the I’s and derive a
conclusion regarding the t/8-subsets A′.) Observing that |I| ≥ |A′|/2 ≥ t/16, we conclude
that, with probability at most

(
t

t/16
)
· (m/2)d′·t/16 = exp(−Ω(d′t log m)) over the choice

of M , the set A contains no t/8-subset A′ as above. This means that, with probability at
most exp(−Ω(d′t log m)), less than t/8 of the indices i ∈ A contribute a non-zero number
of units to the difference (between the colored versions of GM and µ(GM)).

CCC 2021

12:26

Hence, we have shown that, for every permutations µ : [2m]→ [2m], the probability (over
the choice of M) that the size of the symmetric difference between the colored versions of
GM and µ(GM) is smaller than t/8 is exp(−Ω(d′t log m)), where t is the number of non-fixed-
points of µ. Letting γ = 1/8 and taking a union bound over all (non-trivial) permutations
µ : [2m] → [2m], we conclude that the probability, over the choice of M , that GM is not
γ-robustly self-ordered is at most∑

t∈[2m]

(
2m

t

)
· exp(−Ω(d′t log m)) =

∑
t∈[2m]

exp(−Ω((d′ −O(1)) · t log m))

= exp(−Ω((d′ −O(1)) · log m)),

and the claim follows (for any sufficiently large d′), while observing that, with very high
probability, these multi-graphs are expanders. ◁

Back to the non-colored version. We now convert the edge-colored multi-graphs G = GM

that are γ-robustly self-ordered into standard graphs G′ that are robustly self-ordered in the
original sense. This is done by using Construction 2.3 (while relying on Theorem 2.4). Recall
that this transformation also preserves expansion. Actually, before invoking Construction 2.3,
we augment the multi-graph G by adding a self-loop to each vertex, and color all these
self-loops using a special color. Combining Claim 4.1.1 and Theorem 2.4, the current theorem
follows. ◀

4.2 Constructions
Having established the existence of bounded-degree graphs that are robustly self-ordered,
we now turn to actually construct them. We shall use the fact that the proof of existence
yields a construction that runs in time that is polynomial in the number of possible graphs.
Specifically, for ℓ = O(log n)

log log n , we shall construct ℓ-vertex graphs in poly(ℓℓ)-time and use them
in our construction of n-vertex graphs, while noting that poly(ℓℓ) = poly(n).

▶ Theorem 4.2 (constructing robustly self-ordered graphs). For any sufficiently large constant
d, there exists an efficiently constructable family {Gn}n∈N of robustly self-ordered graphs of
maximum degree d. That is, there exists a polynomial-time algorithm that on input 1n outputs
the n-vertex graph Gn = ([n], En). Furthermore, Gn consists of connected components of size
O(log n)
log log n = o(log n).

Note that the connected components of Gn cannot be any smaller (than O(log n)
log log n). This is the

case because an asymmetric n-vertex bounded-degree graph, let alone a robustly self-ordered
one, cannot have connected components of size o(log n)

log log n (because the number of t-vertex
graphs of bounded-degree is tO(t)).

Proof. The proof proceeds in two steps. We first use the existence of ℓ-vertex (d′-regular)
expander graphs that are robustly self-ordered towards constructing a sequence of m =
exp(Ω(ℓ log ℓ)) bounded-degree 2ℓ-vertex graphs that are robustly self-ordered, expanding,
and far from being isomorphic to one another. We construct this sequence of 2ℓ-vertex graphs
in poly(m)-time, using the fact that (ℓ!)O(1) = poly(m). In the second step, we show that the

12:27

(m · 2ℓ)-vertex graph that consists of these 2ℓ-vertex graphs (as its connected components) is
robustly self-ordered. Note that this graph is constructed in time that is polynomial in its
size, since its size is Ω(m), whereas it is constructed in poly(m)-time.17

Given a generic n, let ℓ = O(log n)
log log n , which implies that ℓℓ = poly(n). By Theorem 4.1,

for all sufficiently large d′, there exist ℓ-vertex d′-regular expander graphs that are robustly
self-ordered (with respect to the robustness parameter c′). Furthermore, we can find such a
graph, denoted G′

ℓ, in time poly(ℓℓ) = poly(n), by scanning all ℓ-vertex d′-regular graphs and
checking both the expansion and the robustness (w.r.t parameter c′) conditions for each of
them. Actually, for d′′ = d′ + 1, we shall also find an ℓ-vertex d′′-regular expander, denoted
G′′

ℓ , that is robustly self-ordered.

The construction of Gn. Using G′
ℓ and G′′

ℓ , we construct an n-vertex robustly self-ordered
graph, denoted Gn, that consists of n/2ℓ connected components that are pairwise far from
being isomorphic to one another. This is done by picking m = n/2ℓ permutations, denoted
π1, ..., πm : [ℓ]→ [ℓ], that are pairwise far-apart and constructing 2ℓ-vertex graphs such that
the ith such graph consist of a copy of G′

ℓ and a copy of G′′
ℓ that are connected by a matching

as determined by the permutation πi. Specifically, for G′
ℓ = ([ℓ], E′

ℓ) and G′′
ℓ = ([ℓ], E′′

ℓ), the
ith connected component is isomorphic to a graph with the vertex set [2ℓ] and the edge set

E′
ℓ ∪ {{ℓ + u, ℓ + v} : {u, v} ∈ E′′

ℓ } ∪ {{v, ℓ + πi(v)} : v∈ [ℓ]}. (5)

(The first two sets correspond to the copies of G′
ℓ and G′′

ℓ , and the third set corresponds to
the matching between these copies. Note that the vertices in [ℓ] have degree d′ + 1, whereas
vertices in {ℓ + 1, ..., 2ℓ} have degree d′′ + 1 ̸= d′ + 1.)

To see that this construction can be carried out in poly(n)-time, we need to show that
the sequence of m pairwise far-apart permutations can be determined in poly(n)-time, let
alone that such a sequence exists. This is the case, because we can pick the permutation
sequentially (one after the other) by scanning the symmetric group on [ℓ] and relying on the
fact that for (i < n and) any fixed sequence of permutations π1, ..., πi−1 : [ℓ]→ [ℓ] it holds
that a random permutation πi is far-apart from each of the fixed i− 1 permutations; that is,
Prπi [|{v ∈ [ℓ] : πi(v) ̸= πj(v)}| = Ω(ℓ)] = 1− o(1/n) for every j ∈ [i− 1].18

Towards proving that Gn is robustly self-ordered. We now prove that the resulting graph
Gn, which consists of these m connected components, is c-robustly self-ordered, where c is a
universal constant (which is independent of the generic n). For starters, let’s verify that Gn

is self-ordered. We first note that any automorphism of Gn must map the verifices of copies
of G′

ℓ (resp., G′′
ℓ) to vertices of copies of G′

ℓ (resp., G′′
ℓ), since these are the only vertices of

degree d′ + 1. The connectivity of these copies implies that the automorophism must map
each connected component to some connected component, which determines the m connected

17 We mention that a slightly different construction can be based on the fact that random ℓ-vertex (d′-
regular) graphs are robustly self-ordered expanders (see Theorem 6.1). In this alternative construction
we find a sequence of m such graphs that are pairwise far from being isomorphic to one another. As
further detailed in Remark 6.2, the analysis of the alternative construction is somewhat easier than
the analysis of the construction presented below, but we need the current construction for the proof of
Theorem 4.5.

18 Specifically, for some ℓ′ = Ω(ℓ), we upper-bound Prπ [|{v ∈ [ℓ] : π(v) = v)}| ≥ ℓ − ℓ′], where π : [ℓ] → [ℓ]
is a random permutation. We do so by observing that the number of permutations that have at least
ℓ − ℓ′ fixed-points is at most

(
ℓ
ℓ′

)
· (ℓ′!) = ℓ!

(ℓ−ℓ′)! , whereas (ℓ − ℓ′)! = exp(Ω(ℓ log ℓ)) = ω(n) for any ℓ′

such that ℓ − ℓ′ = Ω(ℓ).

CCC 2021

12:28

components. The self-ordered feature of G′
ℓ and G′′

ℓ determines a unique ordering on each
copy, whereas the fact the permutations (i.e., πi’s) are different imposes that each connected
component is mapped to itself (i.e., the order of the connected components is preserved).
Hence, the automorphism must be trivial (and it follows that Gn is self-ordered).

An analogous argument establishes the robust self-ordering of Gn, where we use the
hypothesis that G′

ℓ and G′′
ℓ are expanders (rather than merely connected), the choice of the

πi’s as being far-apart (rather than merely different), and the robust self-ordering of G′
ℓ and

G′′
ℓ (rather than their mere self-ordering) in order to establish the robust self-ordering of

Gn. Considering an arbitrary permutation µ : [n]→ [n], these stronger features are used to
establish a lower bound on the size of the symmetric difference between Gn and µ(Gn) as
follows:

The fact that G′
ℓ is an expander implies that if µ splits the vertices of a copy of G′

ℓ such
that ℓ′ vertices are mapped to copies that are different than the other ℓ− ℓ′ ≥ ℓ′ vertices,
then this contributes Ω(ℓ′) units to the difference between Gn and µ(Gn). Ditto for G′′

ℓ ,
whereas mapping a copy of G′

ℓ to a copy of G′′
ℓ contributes Ω(ℓ) units (per the difference

in the degrees).
The robust self-ordering of G′

ℓ and G′′
ℓ implies that if µ changes the index of vertices

inside a component, then this yields a proportional difference between Gn and µ(Gn).
The distance between the πi’s (along with the aforementioned robustness) implies that if
µ changes the indices of the connected components, then each such change contributes
Ω(ℓ) units to the difference between Gn and µ(Gn).

The actual implementation of this sketch requires a careful accounting of the various contri-
butions. As a first step in this direction we provide a more explicit description of Gn. We
denote the set of vertices of the copy of G′

ℓ (resp., G′′
ℓ) in the ith connected component of

Gn by Fi = {2(i− 1)ℓ + j : j ∈ [ℓ]} (resp., Si = {2(i− 1)ℓ + ℓ + j : j ∈ [ℓ]}). Recall that Fi

and Si are connected by the edge-set

{{2(i− 1)ℓ + j, 2(i− 1)ℓ + ℓ + πi(j)} : j∈ [ℓ]} (6)

whereas the subgraph of Gn induced by Fi (resp., Si) has the edge-set {{2(i− 1)ℓ + u, 2(i−
1) + v} : {u, v}∈E′

ℓ} (resp., {{2(i− 1)ℓ + ℓ + u, 2(i− 1) + ℓ + v} : {u, v}∈E′′
ℓ }). In addition,

let F =
⋃

i∈[m] Fi (resp., S =
⋃

i∈[m] Si).

The actual proof (that Gn is robustly self-ordered). Considering an arbitrary permutation
µ : [n]→ [n], we lower-bound the distance (i.e., size of the symmetric difference) between
Gn and µ(Gn) as a function of the number of non-fixed-points under µ (i.e., the number of
v ∈ [n] such that µ(v) ̸= v). We do so by considering the (average) contribution of every
non-fixed-point to the distance between Gn and µ(Gn) (i.e., number of pairs of vertices that
form an edge in one graph but not in the other). We may include the same contribution
in few of the following (seven) cases, but this only means that we are double-counting the
contribution by a constant factor.

Case 1: Vertices v ∈ F such that µ−1(v) ∈ S. Ditto for v ∈ S such that µ−1(v) ∈ F .
Each such vertex contributes at least one unit to the distance (between Gn and µ(G)) by
virtue of v having degree d′ + 1 in Gn and strictly higher degree in µ(Gn), since vertices
in F have degree d′ + 1 (in Gn) whereas vertices in S have higher degree (in Gn).19

19 Note that v neighbors u in µ(Gn) if and only if µ−1(v) neighbors µ−1(u) in Gn.

12:29

In light of Case 1, we may focus on vertices whose “type” is preserved by µ−1. Actually, it
will be more convenient to consider the set of vertices whose “type” is preserved by µ; that
is, the set {v∈F :µ(v)∈F} ∪ {v∈S :µ(v)∈S}. Next, for each i ∈ [m], we define µ′(i) to be
the index of the connected component that takes the plurality of µ(Fi); that is, µ′(i) def= j if
|{v ∈ Fi : µ(v) ∈ Fj}| ≥ |{v ∈ Fi : µ(v) ∈ Fk}| for all k ∈ [m] (breaking ties arbitrarily).
Case 2: Vertices v ∈ Fi such that µ(v) ∈ F \ Fµ′(i).

For starters, suppose that |{v∈Fi :µ(v)∈Fµ′(i)}| ≥ ℓ/2; that is, a majority of the vertices
of Fi are mapped by µ to Fµ′(i). In this case, by the expansion of G′

ℓ, we get a contribution
that is proportional to the size of the set F ′

i
def= {v∈Fi :µ(v) ̸∈Fµ′(i)}, because there are

Ω(|F ′
i |) edges betwen F ′

i and the rest of Fi but there are no edges between F ′
i and Fi \F ′

i

in µ(Gn). In the general case, we have to be more careful since expansion is guaranteed
only for sets that have size at most ℓ/2. In such a case we use an adequate subset of F ′

i .
Details follow.
Let J ⊆ [m] \ {µ′(i)} be maximal such that

∑
j∈J |{v∈Fi :µ(v)∈Fj}| ≤ ℓ/2, and note

that F ′
i

def=
⋃

j∈J{v∈Fi :µ(v)∈Fj} occupies at least one third of {v∈Fi :µ(v)∈F \Fµ′(i)}.
Recall that the subgraph of Gn induced by Fi is an expander, and consider the edges in
Gn that cross the cut between F ′

i and the rest of Fi. Then, this cut has Ω(|F ′
i |) edges in

Gn, but there are no edges between F ′
i and Fi \F ′

i in µ(Gn), because µ−1(F ′
i) ⊆

⋃
j∈J Fj

and µ−1(Fi \ F ′
i) ⊆

⋃
j∈[m]\J Fj are not connected in Gn. Hence, the total contribution

of the vertices in {v ∈Fi : µ(v)∈F \ Fµ′(i)} to the distance (between Gn and µ(G)) is
Ω(|F ′

i |), which is proportional to their number (i.e., is Ω(|{v∈Fi :µ(v)∈F \ Fµ′(i)}|)).
Defining µ′′(i) in an analogous manner with respect to µ(Si), we get an analogous contribution
by the expander induced by Si. Specifically, for each i ∈ [m], we define µ′′(i) to be the
index of the connected component that takes the plurality of µ(Si); that is, µ′′(i) def= j if
|{v∈Si :µ(v)∈Sj}| ≥ |{v∈Si :µ(v)∈Sk}| for all k ∈ [m] (breaking ties arbitrarily).
Case 3: Vertices v ∈ Si such that µ(v) ∈ S \ Sµ′′(i).

Here we get a contribution of Ω(|{v ∈ Si : µ(v) ∈ S \ Sµ′′(i)}|), where the analysis is
analogous to Case 2.

Recall that if v ∈ Fi then it holds that v = 2(i− 1)ℓ + j for some j ∈ [ℓ], and that (in Gn)
vertex v has a unique neighbor in S, which is 2(i− 1)ℓ + ℓ + πi(j) ∈ Si. It will be convinient
to denote this neighbor by ϕi(v); that is, for v ∈ Fi such that v = 2(i − 1)ℓ + j, we have
ϕi(v) = 2(i− 1)ℓ + ℓ + πi(j) ∈ Si. The next two cases refer to vertices that are mapped by µ

according to the plurality vote (e.g., v ∈ Fi is mapped to µ(v) ∈ Fµ′(i)), but their match is
not mapped accordingly (i.e., ϕi(v) ∈ Si is not mapped to Sµ′(i)).
Case 4: Vertices v ∈ Fi such that µ(v) ∈ Fµ′(i) but µ(ϕi(v)) ̸∈ Sµ′(i).

(Note that the condition v ∈ Fi and µ(v) ∈ Fπ′(i) means that vertex v is not covered in
Case 2. If µ′′(i) = µ′(i), then µ(ϕi(v)) ̸∈ Sµ′(i) means that v is covered in Case 3, since
ϕi(v) ∈ Si. Hence, the current case is of interest only when µ′′(i) ̸= µ′(i). In particular,
it is of interest when referring to vertices in the ith connected component of Gn that
reside in the copies of G′

ℓ and G′′
ℓ and are mapped according to the plurality votes of

these copies, whereas these two plurality votes are inconsistent.)
We focus on the case that a vast majority of the vertices in both Fi and Si are mapped
according to the plurality votes (i.e., µ′(i) and µ′′(i)), since the complementary cases are
covered by Cases 2 and 3, respectively. Specifically, if either |{v∈Fi :µ(v)∈ [n]\Fµ′(i)}| >
ℓ/3 or |{u∈Si :µ(u)∈ [n] \ Sµ′′(i)}| > ℓ/3, then we get a contribution of Ω(ℓ) either by
Cases 1&2 or by Cases 1&3. Otherwise, it follows that

|{v∈Fi :µ(v)∈Fµ′(i) ∧ µ(ϕi(v))∈Sµ′′(i)}| ≥ ℓ− 2 · ℓ/3

CCC 2021

12:30

which implies that, if µ′(i) ̸= µ′′(i), then the ith connected component of Gn contributes
ℓ/3 units to the difference (between Gn and µ(Gn)), since v and ϕi(v) are connected in
Gn, but µ(v) ∈ Fµ′(i) and µ(ϕi(v)) ∈ Sµ′′(i) reside in different connected components of
µ(Gn). (That is, the contribution is due to vertices v of Fi that are mapped by µ to
Fµ′(i), while the corresponding vertices ϕi(v) of Si (which are connected to them in Gn)
are mapped by µ to Sµ′′(i) ⊂ S \ Sµ′(i), whereas Fµ′(i) and Sµ′′(i) are not connected in
Gn, assuming µ′(i) ̸= µ′′(i).)
To conclude: The contribution of the vertices of Case 4 (to the difference between Gn and
µ(Gn)) is proportional to the number of these vertices (where this contribution might
have been counted already in Cases 1, 2 and 3).

Case 5: Vertices v ∈ Fi such that µ(v) ̸∈ Fµ′′(i) but µ(ϕi(v)) ∈ Sµ′′(i).
(Equiv., vertices v ∈ Si such that µ(v) ∈ Sµ′′(i) but µ(ϕ−1

i (v)) ̸∈ Fµ′′(i).)
Analogously to Case 4, the contribution of these vertices is proportional to their number.
(Analogously, this augments Case 2 only in case µ′′(i) ̸= µ′(i).)

In light of Cases 2–5, we may focus on indices i ∈ [m] such that µ′(i) = µ′′(i) and on vertices
in ith connected component that are mapped by µ to the µ′(i)th connected component (and
the same ”type” per Case 1). The following case refers to such vertices that do not maintain
their position in this connected component.
Case 6: Vertices v =2(i− 1)ℓ + j ∈ Fi such that µ(v) ∈ Fµ′(i) \ {2(µ′(i)− 1)ℓ + j}.

Ditto for v =2(i− 1)ℓ + ℓ + j ∈ Si such that µ(v) ∈ Sµ′′(i) \ {2(µ′′(i)− 1)ℓ + ℓ + j}.
(This case refers to vertices in Fi that are mapped to Fµ′(i) but do not maintain their
index in the relevant copy of G′

ℓ; indeed, v =2(i− 1)ℓ + j is the jth vertex of Fi, but it is
mapped by µ to the kth vertex of Fµ′(i) (i.e., µ(v)=2(µ′(i)− 1)ℓ + k) such that k ̸= j.)
Fixing i, let C

def= {v =2(i− 1)ℓ + j ∈ Fi : µ(v) ∈ Fµ′(i) \ {2(µ′(i)− 1)ℓ + j}} denote the
set of vertices considered in this case, and D = {v ∈ Fi : µ(v) ̸∈ Fµ′(i)} denote the set
of vertices that we are going to discount for. As a warm-up, consider first the case that
D = ∅. In this case, by the robust self-ordering of G′

ℓ, the contribution of the vertices in
C to the difference between Gn and µ(Gn) is Ω(|C|).
In the general case (i.e., where D may not be empty), we get a contribution of Ω(|C|)−
d′ · |D|, where the second term compensates for the fact that the vertices of D were
moved outside of this copy of G′

ℓ and replaced by different vertices that may have different
incidences. Letting c′ be the constant hidden in the Ω-notation, we get a contribution of
at least c′ · |D| − d′ · |D|, which is at least c′ · |C|/2 if |D| ≤ c′ · |C|/2d′. On the other
hand, if |D| > c′ · |C|/2d′, then we get a contribution of Ω(|D|) = Ω(|C|) by Cases 1–2.
Hence, in both sub-cases we have a contribution of Ω(|C|) to the difference between Gn

and µ(Gn).
The same analysis applies to {v =2(i−1)ℓ+ℓ+j ∈ Si : µ(v) ∈ Sµ′′(i)\{2(µ′′(i)−1)ℓ+ℓ+j}},
where we use the robust self-ordering of G′′

ℓ and Cases 1&3.
Lastly, we consider vertices that do not fall into any of the prior cases. Such vertices
maintain their type, are mapped with the plurality vote of their connected component,
which is consistent among its two parts (i.e., µ′ and µ′′), and maintain their position in that
component. Hence, the hypothesis that they are not fixed-points of µ can only be attributed
to the fact that these vertices are mapped to a connected component with a different index.
Case 7: Vertices v ∈ Fi such that both µ(v) ∈ Fµ′(i) \ Fi and µ(ϕi(v)) ∈ Sµ′′(i) \ Si hold.

(We may assume that µ′(i) ̸= i and µ′′(i) ̸= i, since otherwise this set is empty. We may
also assume that µ′(i) = µ′′(i), since the complementary case was covered by Cases 4
and 5. Hence, we focus on pairs of vertices that are matched in the ith connected
component of Gn and are mapped by µ to the kth component of Gn such that k ̸= i.)

12:31

For every i ̸= k, let ∆i,k = {j ∈ [ℓ] : πi(j) ̸= πk(j)} be the sets on which πi and πk differ.
(Note that if for every v = 2(i − 1)ℓ + j ∈ Fi it holds that µ(v) = 2(k − 1)ℓ + j and
µ(ϕi(v)) = 2(k − 1)ℓ + πi(j) (equiv., µ(2(i− 1)ℓ + ℓ + πi(j)) = 2(k − 1)ℓ + πi(j)), then
we get a contribution of |∆i,k| to the difference between Gn and µ(Gn).)
Fixing i, let D = D1 ∪D2 such that

D1 = {v ∈ Fi : µ(v) ̸∈ Fµ′(i) ∨ µ(v + ℓ) ̸∈ Sµ′′(i)}

D2 =
{

v =2(i− 1)ℓ + j ∈ Fi : µ(v) ∈ Fµ′(i) \ {2(µ′(i)− 1)ℓ + j}
∨ µ(ϕi(v)) ∈ Sµ′′(i) \ {2(µ′′(i)− 1)ℓ + ℓ + πi(j)}

}
(Recall that ϕi(2(i− 1)ℓ + j) = 2(i− 1)ℓ + ℓ + πi(j). The set D1 accounts for the vertices
covered in Cases 2&3, whereas D2 accounts for the vertices covered in (the two sub-cases
of) Case 6.)
As a warm-up, consider first the case that D = ∅. In this case, assuming µ′(i) = µ′′(i) ̸= i,
we get a contribution of |∆i,µ′(i)| = Ω(ℓ) (to the difference between Gn and µ(Gn)). This
contribution is due to the difference in the edges that match Fµ′(i) and Sµ′(i) in Gn and
the edges that match Fi and Si in Gn, where |∆i,µ′(i)| = Ω(ℓ) is due to the fact that the
permutations (i.e., πk’s) are far-apart. The hypothesis D1 = ∅ means that all vertices of
Fi (resp., of Si) are mapped to Fµ′(i) (resp., to Sµ′′(i) = Sµ′(i)), whereas D2 = ∅ means
that these vertices preserves their order within the two parts of the connected component.
The general case (i.e., where D may not be empty) requires a bit more care. Suppose that
the πk’s are γ-apart; that is, |∆k′,k| > γ · ℓ for every k′ ̸= k. We focus on the case that
a vast majority of the vertices in both Fi and Si are mapped according to the plurality
votes (i.e., µ′(i) and µ′′(i)), since the complementary cases are covered by Cases 2 and 3,
respectively. Specifically, if |D1| > γℓ/3, then we get a contribution of Ω(ℓ) by either
Case 2 or Case 3. Likewise, if |D2| > γℓ/3, then we get a contribution of Ω(ℓ) by Case 6.
So, assuming µ′(i) ̸= i, we are left with the case that

|{v =2(i− 1)ℓ + j ∈ Fi \D : j ∈ ∆i,µ′(i)}| ≥ γℓ− 2γℓ/3.

In this case, assuming µ′(i) = µ′′(i), we get a contribution of at least γℓ/3 to the
difference between Gn and µ(Gn). This contribution is due to the difference in the edges
that match Fµ′(i) and Sµ′(i) in Gn and the edges that match Fi and Si in Gn, where
edges that have an endpoint (or its ϕi-mate) in D were discarded. Specifically, letting
k = µ′(i) = µ′′(i) ̸= i, the pair (v, w) = (2(i − 1)ℓ + j, 2(i − 1)ℓ + ℓ + πi(j)) ∈ Fi × Si

contributes to the difference if j ∈ ∆i,k and both µ(v) = 2(k − 1)ℓ + j ∈ Fk and
µ(w) = 2(k − 1)ℓ + ℓ + πi(j) ∈ Sk hold (i.e., v ̸∈ D1 and v, ϕ−1

i (w) ̸∈ D2).20 Indeed, in
this case {v, w} is an edge in Gn but {v, w} is not an edge in µ−1(Gn). (Hence, if the
number of vertices of this case is Ω(|{u ∈ [n] : µ(u) ̸= u}|), then the difference between
Gn and µ−1(Gn) is Ω(|{u ∈ [n] : µ(u) ̸= u}|), and the same holds with respect to the
difference between µ(Gn) and Gn.)

Combining all these cases, we get a total contribution that is proportional to |{v ∈ [n] :
µ(v) ̸= v}|, where we might have counted the same contribution in several different cases.
Since the number of cases is a constant, the theorem follows. ◀

Digest: Using large collections of pairwise far apart permutations

The construction presented in the proof of Theorem 4.2 utilizes a collection of (ℓ!)Ω(1)

permutations over [ℓ] that are pairwise far-apart (i.e., every two permutations differ on
Ω(ℓ) inputs). Such a collection is constructed in Õ(ℓ!)-time by an iterative exhaustive

20 Recall that ϕ−1
i (w) = ϕ−1((2(i − 1)ℓ + ℓ + πi(j))) = 2(i − 1)ℓ + j = v.

CCC 2021

12:32

search, where the permutations are selected iteratively such that in each iteration we find a
permutation that is far from permutations that were included in previous iterations. We
mention that in Section 4.3 we shall use a collection of exp(Ω(ℓ)) such permutations that
is locally computable (i.e., given the index of a permutation we find its explicit description
in polynomial time). We also mention that, in follow-up work [21], we provided a locally
computable collection of (ℓ!)Ω(1) that are pairwise far-apart.

Digest: Combining two robustly self-ordered graphs

One ingredient in the proof of Theorem 4.2 is forming connected components that consist
of two robustly self-ordered graphs that have different vertex degrees and are connected by
a bounded-degree bipartite graph. Implicit in the proof is the fact that such the resulting
graph is robustly self-ordered graph.

▷ Claim 4.3 (combining two Ω(1)-robustly self-ordered graphs). For i ∈ {1, 2} and constant
γ > 0, let Gi = (Vi, Ei) be an γ-robustly self-ordered graph, and consider a graph G =
(V1 ∪ V2, E1 ∪ E2 ∪ E) of maximum degree d such that E contain edges with a single vertex
in each Vi; that is, G consists of G1 and G2 and an arbitrary bipartite graph that connects
them. If the maximun degree in G of each vertex in V1 is strictly smaller than the minimum
degree of each vertex in V2, then G is γ/(2d + 3)-robustly self-ordered.

Proof Sketch. For an arbitrary permutation µ : V → V , let T denote the set of its non-fixed-
points, and consider the following two cases.
Case 1: More than t = γ′ ·|T | vertices are mapped by µ from G1 to G2, where γ′ = γ/(2d+3).

In this case, we get a contribution of at least one unit per each such vertex, due to the
difference in the degrees between V1 and V2.

Case 2: at most t vertices are mapped by µ from G1 to G2.
In this case, letting Ti denote the set of non-fixed vertices in Gi that are mapped by µ

to Gi, we get a contribution of at least
∑

i=1,2(γ · |Ti| − d · t) units, where the negative
term is due to possible change in the incidence with vertices in T \ Ti. Hence, the total
contribution in this case is at least γ · (|T | − 2t)− 2d · t = γ′ · |T |.

The claim follows. ◁

Regaining regularity and expansion

While Theorem 4.2 achieves our main objective, it useful towards some applications (see,
e.g., the proof of Theorem 4.5) to obtain this objective with graphs that are both regular
and expanding. This is achieved by applying Theorem 2.6. Hence, we have.

▶ Theorem 4.4 (Theorem 4.2, revised). For any sufficiently large constant d, there exists an
efficiently constructable family {Gn}n∈N of robustly self-ordered d-regular expander graphs.
That is, there exists a polynomial-time algorithm that on input 1n outputs the n-vertex
graph Gn.

4.3 Strong (i.e., local) constructions
While Theorem 4.4 provides an efficient construction of robustly self-ordered d-regular
expander graphs, we seek a stronger notion of constructability. Specifically, rather than
requiring that the graph be constructed in time that is polynomial in its size, we require that
the neighbors of any given vertex can be found in time that is polynomial in the vertex’s
name (i.e., time that is polylogarithmic in the size of the graph). We call such graphs locally
constructable (and comment that the term “strongly explicit” is often used in the literature).

12:33

▶ Theorem 4.5 (locally constructing robustly self-ordered graphs). For any sufficiently large
constant d, there exists a locally constructable family {Gn = ([n], En)}n∈N of robustly self-
ordered d-regular graphs. That is, there exists a polynomial-time algorithm that on input n

and v ∈ [n] outputs the list of neighbours of vertex v in Gn. Furthermore, the graphs are
either expanders or consist of connected components of logarithmic size.

(Indeed, this establishes Theorem 1.3.) We comment that using the result of [21], we can
also get connected components of sub-logarithmic size, as in Theorem 4.2.21

Proof. We employ the idea that underlies the proof of Theorem 4.2, while starting with an
efficiently constructable family of robustly self-ordered graphs (as provided by Theorem 4.4)
rather than with the mere existence of a family of such graphs (equiv., with ℓ-vertex graphs
that can be constructed in poly(ℓ!)-time). We use a slightly larger setting of ℓ, which allows
us to use a collection of exp(Ω(ℓ)) pairwise-far-apart permutations (rather than a collection
of exp(Ω(ℓ log ℓ)) such permutations). Lastly, we apply the same transformation as in the
proof of Theorem 4.4 (so to regain regularity and expansion). Details follow.

Given a generic n, let ℓ = O(log n), which implies that exp(ℓ) = poly(n). By Theorem 4.4,
for all sufficiently large d′, we can construct ℓ-vertex d′-regular expander graphs that are
robustly self-ordered (with respect to the robustness parameter c) in poly(ℓ)-time. Again,
we shall use two such graphs: a d′-regular graph, denoted G′

ℓ = ([ℓ], E′
ℓ), and a d′′-regular

graph, denoted G′′
ℓ = ([ℓ], E′′

ℓ), where d′′ = d′ + 1.
Using G′

ℓ and G′′
ℓ , we construct an n-vertex robustly self-ordered graph, denoted Gn, that

consists of n/2ℓ connected components that are pairwise far from being isomorphic to one
another. This is done by picking m = n/2ℓ permutations, denoted π1, ..., πm : [ℓ]→ [ℓ], that
are pairwise far-apart, and constructing 2ℓ-vertex graphs such that the ith such graph consist
of a copy of G′

ℓ and a copy of G′′
ℓ that are connected by a matching as determined by the

permutation πi. (as detailed in (7)).
Using the fact that m < 2ℓ (rather that m = exp(Θ(ℓ log ℓ))), we can construct each of

these permutations in poly(ℓ)-time by using sequences of disjoint traspositions determined
via a good error correcting code. Specifically, for k = log2 m < log2 n, we use an error
correcting code C : {0, 1}k → {0, 1}ℓ of constant rate (i.e., ℓ = O(k)) and linear distance
(i.e., the codewords are Ω(ℓ) bits apart from each other), and let πi(2j − 1) = 2j − 1 + C(i)j

and πi(2j) = 2j − C(i)j , where i ∈ [m] = [2k] ≡ {0, 1}k and j ∈ [ℓ/2]. (That is, the ith

permutation switches the pair (2j − 1, 2j) ∈ [ℓ]2 if and only if the jth bit in the ith codeword
is 1, where C(i) is considered the ith codeword.)

Like in the proof of Theorem 4.2, the ith connected component of Gn is isomorphic to a
graph with the vertex set [2ℓ] and the edge set

E′
ℓ ∪ {{ℓ + u, ℓ + v} : {u, v} ∈ E′′

ℓ } ∪ {{v, ℓ + πi(v)} : v∈ [ℓ]}. (7)

The key observation is that, for every i ∈ [m] and j ∈ [ℓ], the neighborhood of the jth (resp.,
(ℓ + j)th) vertex in the ith connected component of the n-vertex graph Gn is determined by
G′

ℓ and πi(j) (resp., by G′′
ℓ and π−1

i (j)), which means that it can be found in poly(ℓ)-time.
This implies local constructability, since ℓ = O(log n).

21 Specifically, the result of [21] provides a construction of a collection of L = exp(Ω(ℓ log ℓ)) permutations
over [ℓ] that are pairwise far-apart along with a polynomial-time algorithm that, on input i ∈ [L],
returns a description of the ith permutation (i.e., the algorithm should run in poly(log L)-time). Using
this algorithm, we can afford to set ℓ = O(log n)

log log n as in Theorem 4.2.

CCC 2021

12:34

The fact that Gn is robustly self-ordered was already established in the proof of The-
orem 4.2, which is oblivious of the permutations used as long as any pair of permutations
disagrees on Ω(ℓ) points. Lastly, we may obtain regularity and expansion by applying
Theorem 2.6. ◀

4.4 Local self-ordering
Recall that by Definition 1.1 a graph G = ([n], E) is called self-ordered if for every graph
G′ = (V ′, E′) that is isomorphic to G there exists a unique bijection ϕ : V ′ → [n] such that
ϕ(G′) = G. One reason for our preferring the term “self-ordered” over the classical term
“asymmetric” is that we envision being given such an isomorphic copy G′ = (V ′, E′) and
asked to find its unique isomorphism to G, which may be viewed as ordering the vertices
of G′ according to (their name in) G. The task of finding this unique isomorphism will be
called self-ordering G′ according to G or self-ordering G′ (when G is clear from the context).

Evidently, the task of self-ordering a given graph G′ according to a self-ordered graph G

that can be efficiently constructed reduces to testing isomorphism. When the graphs have
bounded-degree the latter task can be performed in polynomial-time [29]. These are general
facts that do apply also to the robustly self-ordered graph Gn constructed in the proof of
Theorem 4.5. However, in light of the fact that the graph Gn is locally constructable, we can
hope for more. Specifically, it is natural to ask if we can perform self-ordering of a graph G′

that is isomorphic to Gn in a local manner; that is, given a vertex in G′ (and oracle access to
the incidence function of G′), can we find the corresponding vertex in Gn in poly(log n)-time?
Let us define this notion formally.

▶ Definition 4.6 (locally self-ordering a self-ordered graph). We say that a self-ordered graph
G = ([n], E) is locally self-ordered if there exists a polynomial-time algorithm that, given a
vertex v in any graph G′ = (V ′, E′) that is isomorphic to G and oracle access to the incidence
function of G′, finds ϕ(v) ∈ [n] for the unique bijection ϕ : V ′ → [n] such that ϕ(G′) = G

(i.e., the unique isomorphism of G′ to G).

Indeed, the isomorphism ϕ orders the vertices of G′ in accordance with the original (or
target) graph G. We stress that the foregoing algorithm works in time that is polynomial in
the description of a vertex (i.e., poly(log n))-time), which is polylogarithmic in the size of
the graph (i.e., n). We show that such algorithms exist for the graphs constructed in the
proof of Theorem 4.5.

▶ Theorem 4.7 (locally self-ordering the graphs of Theorem 4.5). For any sufficiently large
constant d, there exists a locally constructable family {Gn = ([n], En)}n∈N of robustly self-
ordered d-regular graphs that are locally self-ordered. Furthermore, the graphs are either
expanders or consist of connected components of logarithmic size.

As in Theorem 4.5, we can obtain connected components of sub-logarithmic size by using [21].

Proof. We first consider the version that yields n-vertex graphs that consist of connected
components of logarithmic size. The basic idea is that it we can afford reconstructing the
connected component in which the input vertex reside, and this allows us both to determine
the index of the vertex in this connected component as well as the index of the component
in the graph. Specifically, on input a vertex v in a graph G′ that is isomorphic to Gn, we
proceed as follows.

12:35

1. Using queries to the incidence function of G′, we explore and retrieve the entire 2ℓ-vertex
connected component in which v resides, where ℓ = log2 n.
Recall that this connected component consists of (copies of) two ℓ-vertex regular graphs,
denoted G′

ℓ and G′′
ℓ , that are connected by a matching. Furthermore, these graphs have

different degrees and are each (robustly) self-ordered.
2. Relying on the different degrees, we identify the foregoing partition of this 2ℓ-vertex

component into two ℓ-vertex (self-ordered) graphs, denoted Av and Bv, where Av (resp.,
Bv) is isomorphic to G′

ℓ (resp., G′′
ℓ).

3. Relying on the self-ordering of G′
ℓ (resp., G′′

ℓ), we order the vertices of Av (resp., G′′
v).

This is done by constructing G′
ℓ (resp., G′′

ℓ), and using an isomorphism tester. The order
of the vertices in Av and Bv also determines the permutation that defines the matching
between the two graphs.

4. Relying on the correspondence between the permutations used in the construction and
codewords of a good error-correcting code, we decode the relevant codeword (i.e., this
is decoding without error). This yields the index of the permutation in the collection,
which equals the index of the connected component.

Note that this refers to the basic construction that was presented in the proof of Theorem 4.5,
before it was transformed to a regular graph and to an expander. Recall that both trans-
formations are performed by augmenting the graph with auxiliary edges that are assigned a
different color than the original edges, and that edges with different colors are later replaced
by copies of different (constant-size) gadgets. These transformations do not hinder the local
self-ordering procedure described above, since it may identify the original graph (and ignore
the gadgets that replace other edges). The claim follows. ◀

Local reversed self-ordering

While local self-ordering a (self-ordered) graph seems the natural local version of self-ordering
the graph, an alternative notion called local reversed self-ordering will be defined and studied
next (and used in Section 5). Both notions refer to a self-ordered graph, denoted G = ([n], E),
and to an isomorphic copy of it, denoted G′ = (V ′, E′); that is, G = ϕ(G′) for a (unique)
bijection ϕ : V ′ → [n]. While local self-ordering is the task of finding the index of a given
vertex of G′ according to G (i.e., given v ∈ V ′, find ϕ(v) ∈ [n]), local reversed self-ordering
is the task of finding the vertex of G′ that has a given index in G (i.e., given i ∈ [n], find
ϕ−1(i) ∈ V ′). In both cases, the graph G is locally constructible and we are given oracle
access to the incidence function of G′. In addition, in the reversed task, we assume that
the algorithm is given an arbitrary vertex in G′, since otherwise there is no hope to hit any
element of V ′.22

▶ Definition 4.8 (locally reversed self-ordering). We say that a self-ordered graph G = ([n], E)
is locally reversed self-ordered if there exists a polynomial-time algorithm that, given i ∈ [n]
and oracle access to the incidence function of a graph G′ = (V ′, E′) that is isomorphic to G

and an arbitrary vertex s ∈ V ′, finds ϕ−1(i) ∈ V ′ for the unique bijection ϕ : V ′ → [n] such
that ϕ(G′) = G (i.e., the unique isomorphism of G′ to G).

We stress that the foregoing algorithm works in time that is polynomial in the description of
a vertex (i.e., poly(log n))-time), which is polylogarithmic in the size of the graph (i.e., n).
We show that such algorithms exist for variants of the graphs constructed in the proof of
Theorem 4.5. In fact, we show a more general result that refers to any graph that is locally
self-ordered and for which short paths can be locally found between any given pair of vertices.

22 Needless to say, this is not needed in case V ′ = [n], which is the case that is used in Section 5.

CCC 2021

12:36

▶ Theorem 4.9 (sufficient conditions for locally reversed self-ordering of graphs). Suppose that
{Gn = ([n], En)}n∈N is a family of bounded degree graphs that is locally self-ordered. Further
suppose that given v, u ∈ [n], one can find in polynomial-time a path from u to v in Gn.
Then, {Gn = ([n], En)}n∈N is locally reversed self-ordered.

We mention that a family of robustly self-ordered graphs that is locally self-ordered can
be transformed into one that also supports locally finding short paths. This is done by
superimposing the graphs of this family with graphs that supports locally finding short paths,
while using different colors for the edges of the two graphs and later replacing these colored
edges by gadgets (as done in Section 2.1). We also mention that applying degree reduction
to the hyper-cube (i.e., replacing the original vertices with simple cycles) yields a graph that
supports locally finding short paths.23

Proof. On input i ∈ [n] and s ∈ V ′, and oracle access to the incidence function of a graph
G′ = (V ′, E′) that is isomorphic to Gn, we proceeds as follows.
1. Using the local self-ordering algorithm, we find i0 = ϕ(s), where ϕ : V ′ → [n] is the

unique bijection satisfying ϕ(G′) = G.
2. Using the path-finding algorithm for G, we find a poly(log n)-long path from i0 to i in G.

Let ℓ denote the length of the path, and denote its intermediate vertices by i1, ..., iℓ−1;
that is, the full path is i0, i1, ..., iℓ−1, iℓ = i.

3. For j = 1, ..., ℓ, we find vj
def= ϕ−1(ij) as follows. First, using queries to the incidence

function of G′, we find all neighbors (in G′) of vj−1, where v0
def= s (and, indeed,

v0 = ϕ−1(i0)). Next, using the local self-ordering algorithm, we find the indices of all
these vertices in G; that is, for every vertex w that neighbors vj−1, we find ϕ(w). Last,
we set vj to be the neighbor that has index ij in G; that is, vj satisfies ϕ(vj) = ij .

Hence, vℓ is the desired vertex; that is, vℓ satisfies ϕ(vℓ) = iℓ = i.
Assuming that the local self-ordering algorithm has query complexity q(n), that the paths

found in G have length at most ℓ(n), and that d is the degree bound, the query complexity
of our reversed self-ordering algorithm is (1 + ℓ(n) · d) · (q(n) + 1), where we count both
our direct queries to the incidence function of G and the queries performed by the local
self-ordering algorithm. Similar considerations apply to its time complexity. ◀

▶ Corollary 4.10 (a version of Theorem 4.7 supporting local reversed self-ordering). For any
sufficiently large constant d, there exists a locally constructable family {Gn = ([n], En)}n∈N
of robustly self-ordered graphs of maximum degree d that are both locally self-ordered and
locally reversed self-ordered.

The corollary follows by combining Theorem 4.7 with Theorem 4.9, while using the augment-
ation outlined following the statement of Theorem 4.9. We mention that Corollary 4.10 will
be used in Section 5.

23 For any ℓ ∈ N, the resulting graph consists of the vertex-set {⟨x, i⟩ : x ∈ {0, 1}ℓ & i∈ [ℓ]} and edges
that connect ⟨x, i⟩ to ⟨x ⊕ 0i−110ℓ−i, i⟩ and to ⟨x, i + 1⟩, where ℓ + 1 stands for 1. For simplicity of
exposition, we also add self-loops on all vertices. Then, given ⟨x, i⟩ and ⟨y, j⟩, we can combine the
2ℓ-path that goes from ⟨x, i⟩ to ⟨y, i⟩ with the |j − i|-path that goes from ⟨y, i⟩ to ⟨y, j⟩, where the odd
steps on the first path move from ⟨z, k⟩ to ⟨z ⊕ 0i−110ℓ−i, k⟩ (or stay in place) and the even steps (on
this path) move from ⟨z, k⟩ to ⟨z, k + 1⟩.

12:37

5 Application to Testing Bounded-Degree Graph Properties

Our interest in efficiently constructable bounded-degree graphs that are robustly self-ordered
was triggered by an application to property testing. Specifically, we observed that such
constructions can be used for proving a linear lower bound on the query complexity of testing
an efficiently recognizable graph property in the bounded-degree graph model.

It is well known that 3-Colorability has such a lower bound [3], but this set is NP-
complete. On the other hand, linear lower bounds on the query complexity of testing
efficiently recognizable properties of functions (equiv., sequences) are well known (see [18,
Sec. 10.2.3]). So the idea was to transport the latter lower bounds from the domain of
functions to the domain of bounded-degree graphs, and this is where efficient constructions of
robustly self-ordered bounded-degree graphs come into play. (We mention that an alternative
way of obtaining the desired lower bound was outlined in [17, Sec. 1], see details below.)

More generally, the foregoing transportation demonstrates a general methodology of
transporting lower bounds that refer to testing binary strings to lower bounds regarding
testing graph properties in the bounded-degree graph model. The point is that strings are
ordered objects, whereas graphs properties are effectively sets of unlabeled graphs, which
are unordered objects. Hence, we need to make the graphs (in the property) ordered, and
furthermore make this ordering robust in the very sense that is reflected in Definition 1.2.
Essentially, we provide a reduction of testing a property of strings to testing a (related)
property of graphs.

We apply this methodology to obtain a subexponential separation between the complexities
of testing and tolerant testing of graph properties in the bounded-degree graph model. This
result is obtained by transporting an analogous result that was known for testing binary
strings [15]. In addition to using a reduction from tolerantly testing a property of strings
to tolerantly testing a property of graphs, this trasportation also uses a reduction in the
opposite direction, which relies on the local computation features asserted in Corollary 4.10.

Organization of this section

We start with a brief review of the bounded-degree graph model for testing graph properties.
Next, we prove the aforementioned linear lower bound on the query complexity of testing an
efficiently recognizable property, and later we abstract the reduction that underlies this proof.
Observing that this reduction applies also to tolerant testing, and presenting a reduction in
the opposite direction, we derive the aforementioned separation between testing and tolerant
testing.

Background

Property testing refers to algorithms of sublinear query complexity for approximate decision;
that is, given oracle access to an object, these algorithms (called testers) distinguish objects
that have a predetermined property from objects that are far from the property. Different
models of property testing arise from different query access and different distance measures.

In the last couple of decades, the area of property testing has attracted significant
attention (see, e.g., [16]). Much of this attention was devoted to testing graph properties
in a variety of models including the dense graph model [18], and the bounded-degree graph
model [20] (surveyed in [16, Chap. 8] and [16, Chap. 9], resp.). In this section, we refer to
the bounded-degree graph model, in which graphs are represented by their incidence function
and distances are measured as the ratio of the number of differing incidences to the maximal
number of edges.

CCC 2021

12:38

Specifically, for a degree bound d ∈ N, we represent a graph G = ([n], E) of maximum
degree d by the incidence function g : [n]× [d]→ [n] ∪ {0} such that g(v, i) indicates the ith

neighbor of v (where g(v, i) = 0 indicates that v has less than i neighbors). The distance
between the graphs G = ([n], E) and G′ = ([n], E′) is defined as the size of the symmetric
difference between E and E′ over dn/2.

A tester for a property Π is given oracle access to the tested object, where here oracle
access to a graph means oracle access to its incidence function. In addition, such a tester is
given a size parameter n (i.e., the number of vertices in the graph), and a proximity parameter,
denoted ϵ > 0. Tolerant testers, introduced in [30] (and briefly surveyed in [16, Sec. 12.1]),
are given an additional parameter, η < ϵ, which is called the tolerance parameter.

▶ Definition 5.1 (testing and tolerant testing graph properties in the bounded-degree graph
model). For a fixed degree bound d, a tester for a graph property Π is a probabilistic oracle
machine that, on input parameters n and ϵ, and oracle access to an n-vertex graph G = ([n], E)
of maximum degree d, outputs a binary verdict that satisfies the following two conditions.
1. If G ∈ Π, then the tester accepts with probability at least 2/3.
2. If G is ϵ-far from Π, then the tester accepts with probability at most 1/3, where G is ϵ-far

from Π if for every n-vertex graph G′ = ([n], E′) ∈ Π of maximum degree d it holds that
the size of the symmetric difference between E and E′ has cardinality that is greater than
ϵ · dn/2.

A tolerant tester is also given a tolerance parameter η, and is required to accept with probability
at least 2/3 any graph that is η-close to Π (i.e., not η-far from Π).24

We stress that a graph property is defined as a property that is preserved under isomorphism;
that is, if G = ([n], E) is in the graph property Π, then all its isomorphic copies are in the
property (i.e., π(G) ∈ Π for every permutation π : [n] → [n]). The fact that we deal with
graph properties (rather than with properties of functions) is the source of the difficulty (of
transporting results from the domain of functions to the domain of graphs) and the reason
that robust self-ordering is relevant.25

The query complexity of a tester for Π is a function (of the parameters d, n and ϵ) that
represents the number of queries made by the tester on the worst-case n-vertex graph of
maximum degree d, when given the proximity parameter ϵ. Fixing d, we typically ignore its
effect on the complexity (equiv., treat d as a hidden constant). Also, when stating that the
query complexity is Ω(q(n)), we mean that this bound holds for all sufficiently small ϵ > 0;
that is, there exists a constant ϵ0 > 0 such that distinguishing between n-vertex graphs in Π
and n-vertex graphs that are ϵ0-far from Π requires Ω(q(n)) queries.

Our first result

With the foregoing preliminaries in place, we state the first result of this section, which is
proved using Theorem 4.2.

▶ Theorem 5.2 (linear query complexity lower bound for testing an efficiently recognizable graph
property in the bounded-degree graph model). For any sufficiently large constant d, there
exists an efficiently recognizable graph property Π such that testing Π in the bounded-degree
graph model (with degree bound d) has query complexity Ω(n). Furthermore, each n-vertex
graph in Π consists of connected components of size o(log n).

24 Of course, a tolerant tester is also required to reject with probability at least 2/3 any graph that is ϵ-far
from Π.

25 As noted in Section 1.1.1, this is a special case of the general phenomenon pivoted at the difference
between ordered and unordered structures, which arises in many contexts (in complexity and logic).

12:39

The main part of the theorem was known before: As observed in [17, Sec. 1], there exists
graph properties that are recognizable in polynomial-time and yet are extremely hard to test
in the bounded-degree graph model. This follows from the fact that the local reduction from
testing 3LIN (mod 2) to testing 3-Colorability used by Bogdanov, Obata, and Trevisan [3] is
invertible in polynomial-time (which is a common feature of reductions used in the context
of NP-completeness proofs).26 Indeed, their reduction actually demonstrates that the set
of (3-colorable) graphs that are obtained by applying this reduction to satisfiable 3LIN
(mod 2) instances is hard to test (i.e., requires linear query complexity in the bounded-degree
graph model).27 We note that the resulting property contains only connected graphs, which
means that Theorem 5.2 has some added value: The fact that it applies to graphs with tiny
connected components is interesting, since testing properties of such graphs may seem easy
(or at least not extremely hard) at first thought.

Proof. Our starting point is a property Φ of (binary) strings (equiv., Boolean functions)
that is recognizable in polynomial-time but has a linear query complexity lower bound (see,
e.g., [19, Sec. 7]). This refers to a model in which one makes queries to bits of the tested
string, and the distance between strings is the (relative) Hamming distance. Such lower
bounds were transported to the dense graph model in [18, 10.2.3] (see also [19]), but – to
the best of own knowledge – no such transportation were performed before in the context of
the bounded-degree graph model. Using robustly self-ordered graphs of bounded degree, we
present such a transportation.

▷ Construction 5.2.1 (from properties of strings to properties of bounded-degree graphs).
Suppose that {Gn = ([n], En)}n∈N is a family of robustly self-ordered graphs of maximum
degree d− 2.

For every n ∈ N and s ∈ {0, 1}n, we define the graph G′
s = ([3n], E′

s) such that

E′
s = En ∪ {{i, n + i}, {i, 2n + i} : i ∈ [n]} ∪ {{n + i, 2n + i} : i ∈ [n] ∧ si = 1} (8)

That is, G′
s consists of a copy of Gn augmented by 2n vertices such that vertex i ∈ [n]

forms a triangle with n + i and 2n + i is si = 1, and forms a wedge with n + i and 2n + i

otherwise.
For a set of strings Φ, we define Π =

⋃
n∈N Πn as the set of all graphs that are isomorphic

to some graph G′
s such that s ∈ Φ; that is,

Πn = {π(G′
s) : s ∈ (Φ ∩ {0, 1}n) ∧ π ∈ Sym3n} (9)

where Sym3n denote the set of all permutations over [3n].
We may assume, without loss of generality, that Gn has no isolated vertices. Hence, given a
graph of the form π(G′

s), the vertices of Gn are easily identifiable as having degree at least
three (since vertices outside Gn have degree at most two). The foregoing construction yields
a local reduction of Φ to Π, where locality means that each query to G′

s can be answered by
making a constant number of queries to s, and the (standard) validity of the reduction is
based on the fact that Gn is asymmetric.28

26 Of course, 3LIN (i.e., the satisfiability of linear equations (with three variables each) over GF(2)) is easily
solvable in polynomial-time. Nevertheless, Bogdanov et al. [3] use a reduction of 3LIN to 3-Colorability
(via 3SAT) that originates in the theory of NP-completeness in order to reduce between the testing
problems.

27 Like almost all reductions of this type, the analysis of the reduction actually refers to the promise
problem induced by the image of the reduction (i.e., the image of both the yes- and no-instances).

28 Standard validity means that s ∈ Φ if and only if G′
s ∈ Π. Evidently, s ∈ Φ is mapped to G′

s ∈ Π; the
asymmetry of Gn is used to show that s ̸∈ Φ is mapped to G′

s ̸∈ Π, since G′
s can not be isomorphic to

any graph G′
w such that w ̸= s. This, by itself, does not mean that if s is far from Φ then G′

s is far
from Π.

CCC 2021

12:40

In order to be useful towards proving lower bounds on the query complexity of testing
Π, we need to show that the foregoing reduction is “distance preserving” (i.e., strings that
are far from Φ are transformed into graphs that are far from Π). The hypothesis that Gn is
robustly self-ordered is pivotal to showing that if the string s is far from Φ, then the graph
G′

s is far from Π.

▷ Claim 5.2.2 (preserving distances). If s ∈ {0, 1}n is ϵ-far from Φ, then the 3n-vertex graph
G′

s (as defined in Construction 5.2.1) is Ω(ϵ)-far from Π.

Proof. We prove the contrapositive. Suppose that G′
s is δ-close to Π. Then, for some r ∈ Φ

and a permutation π : [3n]→ [3n], it holds that G′
s is δ-close to π(G′

r). (The possible use
of a non-trivial permutation arises from the fact that Π is closed under isomorphism.) If
π(i) = i for every i ∈ [n], then s must be (3dδ/2)-close to r, where d is the degree bound
(of the model), since si = 1 (resp., ri = 1) if and only if i forms a triangle with n + i and
2n + i in G′

s (resp., in π(G′
r) = G′

r).29 Unfortunately, the foregoing condition (i.e., π(i) = i

for every i ∈ [n]) need not hold in general.
In general, the hypothesis that π(G′

r) is δ-close to G′
s implies that π maps at most 3δdn/2

vertices of [n] to {n + 1, ..., 3n}. This is the case since each vertex of [n] has degree at least
three in G′

r, whereas the other vertices have degree at most two in G′
s (or in any other graph

G′
s′). Hence, if t = |{i∈ [n] : π(i)∈{n + 1, ..., 3n}|, then π(G′

r) and G′
s differ on at least t

edges, whereas the hypothesis is that the difference is at most δ · 3dn/2.
Turning to the vertices i ∈ [n] that π maps to [n] \ {i}, we upper-bound their number

by O(δd2n), since the difference between π(G′
r) and G′

s is at most δ · 3dn/2, whereas the
hypothesis that Gn is c-robustly self-ordered implies that the difference between π(G′

r) and
G′

s (or any other graph G′
w) is at least

∆ = c · |{i∈ [n] :π(i) ̸= i}| − d · |{i∈ [n] :π(i) ̸∈ [n]}|.

(Compare Case 6 in the proof of Theorem 4.2.)30

Letting I = {i ∈ [n] : π(i) = i}|, observe that D
def= |{i ∈ I : ri ̸= si}| ≤ 3δdn/2, since

ri ≠ si implies that, for every i ∈ I, the subgraph induced by {i, n + i, 2n + 1} is different
in π(G′

r) and G′
s (i.e., it is a triangle in one graph and contains two edges in the other),

whereas by the hypothesis π(G′
r) and G′

s differ on at most δ · 3dn/2 edges. Recalling that
|I| = n−O(δd2n), it follows that |{i ∈ [n] : ri ̸= si}| ≤ (n− |I|) + D = O(δd2n). Recalling
that d is a constant, we infer that s is O(δ)-close to r ∈ Φ, and the claims follows. ◁

Conclusion. Starting with Theorem 4.2 (i.e., an efficient construction of robustly self-ordered
graphs of bounded degree), using Construction 5.2.1, and applying Claim 5.2.2, the theorem
follows. Specifically, we need to verify the following facts.

29 Hence, G′
s is δ-close to G′

r implies that |{i∈ [n] :si ̸= ri}| ≤ δ · 3dn/2, which means that s is 3δdn/2
n -close

to r.
30 Hence, ∆ ≤ δ · 3dn/2 implies that

|{i ∈ [n] : π(i) ̸= i}| = ∆ + d · |{i ∈ [n] : π(i) ̸∈ [n]}|
c

≤ 3δdn/2 + d · 3δdn/2
c

which is O(δd2n).

12:41

The set Π is polynomial-time recognizable.
Given an 3n-vertex graph G′, an adequate algorithm first tries to identify and order the
vertices of the corresponding graph Gn, which means that it finds s ∈ {0, 1}n such that
G′ is isomorphic to G′

s (or determines that no such s exists). (Note that once the vertices
of Gn are identified, their unique ordering, whenever it exists, can be found in polynomial
time by running an isomorphism tester on the subgraph induced by them (while relying
on the fact that the degree of the graph is bounded [29]).) Having found s, the algorithm
accepts if and only if s ∈ Φn, where Φ is polynomial-time recognizable by our starting
hypothesis.
Testing Π requires linear query complexity.
This is shown by reducing testing Φ to testing Π, while recalling that testing Φ requires
linear query complexity. Given (proximity parameter ϵ and) oracle access to a string
s ∈ {0, 1}n, we invoke the tester for Π (with proximity parameter Ω(ϵ)) while emulating
oracle access to G′

s in a straightforward manner (i.e., each query to G′
s is answered by

making at most one query to s). Recall that s ∈ Φ implies G′
s ∈ Π, whereas by Claim 5.2.2

if s is ϵ-far from Φ then G′
s is Ω(ϵ)-far from Π.

This completes the proof, since the n-vertex graphs of Theorem 4.2 have connected components
of size o(log n). ◀

Digest: Reducing testing properties of strings to testing graph properties

We wish to highlight the fact that the proof of Theorem 5.2 is based on a general reduction
of testing any property Φ of strings to testing a corresponding (bounded-degree) graph
property Π. This reduction is described in Construction 5.2.1 and its validity is proved in
Claim 5.2.2. Recall that, for any n, the graph property Π consists of 3n-vertex graphs (of
bounded-degree) that encode the different n-bit long strings in Φ. This reduction is local
and preserves distances:
Locality: Each string s ∈ {0, 1}n is encoded by a graph G′

s such that each query to G′
s can

be answered by making at most one query to s.
Preserving distances: If s ∈ Φ then G′

s ∈ Π, whereas if s is ϵ-far from Φ then G′
s is Ω(ϵ)-far

from Π.
Recall that G′

s consists of a fixed robustly self-ordered n-vertex graph Gn augmented by (n
two-vertex) gadgets that encode s. Let us spell out the effect of this reduction.

▶ Corollary 5.3 (implicit in the proof of Theorem 5.2). For Φ and Π as in Construction 5.2.1,
let QΦ and QΠ denote the query complexities of testing Φ and Π, respectively. Then,
QΦ(n, ϵ) ≤ QΠ(3n, Ω(ϵ)). Likewise, letting Q′

Φ (resp., Q′
Π) denote the query complexity of

tolerantly testing Φ (resp., Π), it holds that Q′
Φ(n, η, ϵ) ≤ Q′

Π(3n, η/3, Ω(ϵ)).

The tolerant testing part requires an additional justification. Specifically, we observe that
strings s that are η-close to Φ yield graphs G′

s that are η/3-close to Π. This is the case
because, if the n-bit long strings s and r differ on k bits, then the 3n-vertex graphs G′

s and
G′

r differ on k vertex pairs. In preparation to proving the separation between the complexities
of testing and tolerant testing, we show a reduction in the opposite direction. This reduction
holds provided that the robustly self-ordered graphs used in the definition of Π are locally
reversed self-ordered (see Definition 4.8).

CCC 2021

12:42

▶ Proposition 5.4 (reducing testing Π to testing Φ). Suppose that the graphs used in Construc-
tion 5.2.1 are locally self-ordered and locally reversed self-ordered, and let Φ, Π and QΦ, QΠ
be as in Corollary 5.3. Then, QΠ(3n, ϵ) ≤ poly(log n) · (QΦ(n, 2ϵ) + O(1/ϵ)). Furthermore,
one-sided error probability is preserved.31

Recall that the hypothesis can be met by using Corollary 4.10.

Proof. Given oracle access to a graph G′ = ([3n], E′), we first test that G′ is isomorphic
to G′

s, for some s ∈ {0, 1}n, and then invoke the tester for Φ while providing it with oracle
access to s. Specifically, when the latter tester queries the bit i, we use the local reversed
self-order algorithm in order to locate the ith vertex of Gn in G′, and then determine the bit
si accordingly. Details follow.

Let V denote the set of vertices of the graph G′ = ([3n], E′) that have degree greater
than 2 and neighbor two vertices that have degree at most 2 and neighbor each other if
they have degree 2. Evidently, the vertices of V are easy to identify by querying G′ for their
neighbors and their neighbors’ neighbors. Furthermore, |V | ≤ n, since each vertex in V

has two neighbors that are not connected to any other vertex in V , and equality holds in
case G′ ∈ Π. We try to find a (“pivot”) vertex p ∈ V by picking an arbitrary vertex in G′

and checking it and its neighbors. If none of these is in V , then we reject. Otherwise, we
continue; we shall be using p as an auxiliary input in all (future) invocations of the local
reversed self-ordering algorithm, denoted A.

Using the foregoing algorithm A and the pivot p ∈ V , we define A′(i) = A(p, i) if
A(p, i) ∈ V and invoking the local self-ordering algorithm on input A(p, i) yields i. Otherwise
A′(i) is undefined. Hence, evaluating A′ amounts to evaluating A as well as evaluating the
local self-ordering algorithm. Letting I ′ ⊆ [n] denote the set of “indices” (i.e., vertices of Gn)
on which A′ is defined, we note that A′ is a bijection from I ′ to V ′ def= {A′(i) : i ∈ I ′}, and
that I ′ = [n] if G′ ∈ Π. Hence, our first test is testing whether I ′ = [n], which is done by
selecting at random O(1/ϵ) elements of [n], and rejecting if A′ is undefined on any of them.
Otherwise, we proceed, while assuming that |I ′| ≥ (1− 0.1ϵ) · n.

Next, we test whether the subgraph of Gn induced by I ′ is isomorphic to the subgraph
of G′ induced by V ′, where the isomorphism is provided by A′ (which maps I ′ to V ′).
This can be done by sampling O(1/ϵ) vertices of Gn and comparing their neighbors to the
neighbors of the corresponding vertices in G′, which are found by A′. Specifically, for every
sampled vertex i ∈ [n], we determine its set of neighbors Si in Gn, obtain both A′(i) and
A′(Si) = {A′(j) :j∈Si}, which are supposedly the corresponding vertices in G′, and check
whether A′(Si) is the set of neighbors of A′(i) in G′. We reject if A′ is undefined on any of
these vertices (i.e., on sampled vertices or their neighbors in Gn). Needless to say, we also
reject if any of the foregoing neighborhood checks fails.

Assuming that we did not reject so far, we may assume that G′ is ϵ/2-close to being
isomorphic to some G′

s, where the isomorphism is consistent with the inverse of A′. At this
point, we invoke the tester for Φ, denoted T , in order to test whether s ∈ Φ. This is done by
providing T with oracle access to s as follows. When T makes a query i ∈ [n], we determine
A′(i), and use our query access to G′ in order to determine the two neighbors of A′(i) that
have degree at most 2. If this fails, we reject. Otherwise, we answer 1 if and only if these
two neighbors are connected in G′.

31 A tester is said to have one-sided error probability if it always accepts objects that have the property.

12:43

To summarize, we employ three tests to G′: An initial test of the size I ′ (which also
includes finding a pivot p ∈ V), an isomorphism test between the subgraph of G′ induced by
I ′ and the subgraph of Gn induced by V ′, and an emulation of the testing of Φ. (In all tests,
if we encounter an index in [n] \ I ′, we suspend the execution and reject.) For simplicity and
without loss of generality, we may assume that T is correct with high (constant) probability.

Note that if G′ ∈ Π, then it holds that G′ = π(G′
s) for some s ∈ Φ and some permutation

π ∈ Sym3n. In this case, it holds that |I ′| = n and we always find a pivot p ∈ V . Furthermore,
A′ equals the restriction of π to [n], the isomorphism test always succeeds, and the emulation
of oracle access to s is perfect. Hence, we accept with high probability (or always, if T has
one-sided error probability).

On the other hand, suppose that G′ is ϵ-far from Π. If either |I ′| < (1− 0.1ϵ) · n or the
subgraph of G′ induced by V ′ is 0.1ϵ-far from A′(GI′), where GI′ denotes the subgraph of
Gn induced by I ′, then we reject with high probability due to one of the first two tests.
Otherwise, letting π be an arbitrary bijection of [3n] to [3n] that extends A′, it follows that
for some s ∈ {0, 1}n the graph G′ is 0.2ϵ-close to π(G′

s), since we may obtain π(G′
s) from

G′ by modifying the neighborhood of 0.1n vertices in I ′ as well as of the vertices in [n] \ I ′.
Furthermore, for every i ∈ [n] on which A′ is defined, it holds that si = 1 if and only if the
two neighbors of A′(i) that have degree at most 2 are connected. By the hypothesis regarding
G′, the string s must be 2.4ϵ-far from Φ, and A′(i) = π(i) whenever A′ is defined on i ∈ [n].
It follows that either the emulation of T was abruptly terminated (leading to rejection) or
the answers provided to T are according to s. Hence, we reject with high probability. ◀

Separating tolerant testing from testing

Using Corollary 5.3 and Proposition 5.4, we transport the separation of tolerant testing from
testing, which has been established in [15], from the domain of testing strings to the domain
of testing graph properties in the bounded-degree graph model.

▶ Theorem 5.5 (in the bounded-degree graph model, tolerant testing is harder than testing).
For any sufficiently large constant d and any constant c ∈ (0, 1), there exists a graph
property Π such that testing Π in the bounded-degree graph model (with degree bound d) has
query complexity O(poly(log n)/ϵ), but tolerantly testing Π has query complexity Ω(nΩ(1−c)),
provided that the tolerance parameter is not smaller than n−c. Furthermore, Π is efficiently
recognizable.

Proof. A small variant on the proof of [15, Thm. 1.3] yields an efficiently recognizable set
of strings Φ that is testable in O(1/ϵ) queries but tolerantly testing it requires Ω(nΩ(1−c))
queries.32 Using Construction 5.2.1 with graphs that are locally self-ordered and locally
reversed self-ordered (as provided by Corollary 4.10), we obtain the desired graph property Π.
By Corollary 5.3 tolerantly testing Π requires Ω(nΩ(1)) queries, whereas by Proposition 5.4
(non-tolerant) testing Π has query complexity poly(log n) ·O(1/ϵ). The claim follows. ◀

32 Basically, the construction of [15] consists of repeating some m-bit long string poly(m) times and
augmenting it with a PCP of Proximity (PCPP) [2, 11] of membership in some polynomial-time
recognizable set that is hard to test. Essentially, the PCPP helps the tester, but it may be totally useless
(when corrupted) in the tolerant testing setting. While [15] lets the PCPP occupy an o(1/ log log n)
fraction of the final n-bit string, we let it occupy just a n−c fraction (and use m = nΩ(1−c)). This
requires using a different PCPP than the one used in [15]; e.g., using a strong PCPP with linear
detection probability [10, Def. 2.2] will do, and such a PCPP is available [10, Thm. 3.3].

CCC 2021

12:44

Digest: Tightly reducing testing properties of strings to testing graph properties

In continuation to (the main part of) Corollary 5.3, we highlight the fact that Construc-
tion 5.2.1 not only reduces testing the string property Φ to testing the graph property Π, but
rather does so in a rather tight manner. Specifically, for Φ, Π and QΦ, QΠ as in Corollary 5.3,
it holds that QΦ(n, ϵ) and QΠ(Θ(n), Θ(ϵ)) agree up to a poly(log n) factor. In other words,
for any property of strings Φ, there exists a property of bounded-degree graphs Π such that
the (query and time) complexity of testing Φ is reflected in the (query and time) complexity
of testing Π, where our notion of reflection allows for a polylogarithmic slackness. Recall
that the transformation of strings in Φ to graphs in Π is (strongly/locally) efficient.

6 Random Regular Graphs are Robustly Self-Ordered

While Theorem 4.1 only asserts the existence of robustly self-ordered d-regular graphs, we
next show that almost all d-regular graphs are robustly self-ordered. This extends work in
probabilistic graph theory, which proves a similar result for the weaker notion of self-ordered
(a.k.a asymmetric) graphs [5, 4].

▶ Theorem 6.1 (random d-regular graphs are robustly self-ordered). For any sufficiently
large constant d, a random 2d-regular n-vertex graph is robustly self-ordered with probability
1− o(1).

Recall that, with very high probability, these graphs are expanders. We mention that
the proof of Theorem 4.1 actually established that n-vertex graphs drawn from a weird
distribution (which has min-entropy Ω(n)) are robustly self-ordered with probability 1− o(1).
However, this is established by using the edge-coloring variant, and requires employing the
transformation presented in Section 2.1. In contrast, the following proof works directly with
the original (uncolored) variant, and is completely self-contained.

Proof. The proof is quite similar to the proof Claim 4.1.1, but it faces complications that
were avoided in the prior proof by using edge-colors and implicitly directed edges. Specifically,
for candidate permutations π1, ..., πd : [n] → [n] (to be used in the construction) and all
(non-trivial) permutations µ : [n] → [n], the proof of Claim 4.1.1 considered events of the
form (∀j ∈ [d]) πj(i) = µ(πj(µ−1(i))), whereas here we shall consider events of the form
{πb

j(i) : j∈ [d] & b∈{±1}} = {µ(πb
j(µ−1(i))) : j∈ [d] & b∈{±1}}. These multi-set equalities

will be reduced to equalities among sequences by considering all possible ordering of these
multi-sets. This amounts to taking a union bound over all possible ordering and results in a
more complicated analysis (due to the π−1

j ’s) and much more cumbersome notation.
To facilitate the proof, we use the standard methodology (cf. [13, Apdx. 2]) of first proving

the result in the random permutation model, then transporting it to the configuration model
(by using a general result of [24]), and finally conditioning on the event that the generated
graph is simple (which occurs with positive constant probability). Indeed, both models
generate multi-graphs that are not necessarily simple graphs (i.e., these multi-graphs may
have self-loops and parallel edges). We also use the fact that the simple graphs that are
generated by the configuration model (for degree d′) are uniformly distributed among all
d′-regular graphs.

Recall that in the random permutation model a 2d-regular n-vertex multi-graph is generated
by selecting uniformly and independently d permutations π1, ..., πd : [n]→ [n]. The multi-
graph, denoted G(π1,...,πd), consists of the edge multi-set

⋃
j∈[d]{{i, πj(i)} : i ∈ [n]}, where the

2jth (resp., (2j−1)st) neighbor of vertex i is πj(i) (resp., π−1
j (i)). Note that this multi-graph

12:45

may have self-loops (due to πj(i) = i), which contributed two units to the degree of a vertex,
as well as parallel edges (due to πj(i) = πk(i) for j ≠ k and πj(i) = π−1

k (i) for any j, k).
We denote the jth neighbor of vertex i by gj(i); that is, gj(i) = πj/2(i) if j is even, and
gj(i) = π−1

(j+1)/2(i) otherwise.
Consider an arbitrary permutation µ : [n] → [n], and let T = {i∈ [n] : µ(i) ̸= i} be its

set of non-fixed-point. We shall show that, with probability 1− exp(−Ω(d · |T | · log n)) over
the choice of π = (π1, ..., πd), the size of the symmetric difference between Gπ and µ(Gπ) is
Ω(|T |). Note that this difference is (half) the sum over i ∈ [n] of the size of the symmetric
difference between the multi-set of neighbors of vertex i in Gπ and the multi-set of neighbors
of vertex i in µ(Gπ). We refer to the latter difference by the phrase the contribution of vertex
i to the difference between Gπ and µ(Gπ).

As a warm-up, we first show that each element of T contributes a non-zero number of
units to the difference (between Gπ and µ(Gπ)) with probability 1−O(poly(d)/n)d/3 over
the choice of π. Consider the event that for some j, k ∈ [2d], the jth neighbor of i ∈ [n]
in µ(Gπ) is different from the kth neighbor of i in Gπ. Note that x is the jth neighbor of
i in µ(Gπ) if and only if µ−1(x) is the kth neighbor of µ−1(i) in Gπ, which holds if and
only if µ−1(x) = gk(µ−1(i)) (equiv., x = µ(gk(µ−1(i)))). Recalling that i ∈ T contributes to
the difference (between Gπ and µ(Gπ)) if the multi-sets of its neighbors in Gπ and µ(Gπ)
differ, it follows that i ∈ T contributes to the difference if and only if for every permutation
σ : [2d]→ [2d] there exists j ∈ [2d] such that gj(i) ̸= µ(gσ(j)(µ−1(i))). Thus, the probability
of the complementary event (i.e., i does not contribute to the difference) is given by

Prπ

[
∃σ∈Sym2d (∀j∈ [2d]) gj(i) = µ(gσ(j)(µ−1(i)))

]
= (2d)! · max

σ∈Sym2d

{
Prπ

[
(∀j∈ [2d]) gj(i) = µ(gσ(j)(µ−1(i)))

]}
. (10)

Fixing σ that maximizes the probability, and denoting it σi, consider any Ji ⊆ [d] such
that for the j’s in Ji the multi-sets {j, ⌈σi(2j)/2⌉}’s are disjoint (i.e., {j, ⌈σi(2j)/2⌉} ∩
{k, ⌈σi(2k)/2⌉} = ∅ for any j ̸= k ∈ Ji). Note that we may select Ji such that |Ji| ≥ d/3,
since taking j to Ji only rules out taking (to Ji) any k such that ⌈σi(2k)/2⌉ = v

def= ⌈σi(2j)/2⌉
(equiv., k such that σi(2k) ∈ {2v − 1, 2v}). Using this proerty of Ji, we prove –

▷ Claim 6.1.1 (warm-up). 33 (10) is upper-bounded by (2d)2d · (2/n)|Ji|.

Proof. We upper-bound (10) by

(2d)! ·max
σ

{
Prπ

[
(∀j∈Ji) g2j(i) = µ(gσ(2j)(µ−1(i)))

]}
= (2d)! ·

∏
j∈Ji

Prπj ,π⌈σi(2j)/2⌉

[
g2j(i) = µ(gσi(2j)(µ−1(i)))

]
(11)

where the equality uses the disjointness of the multi-sets {j, ⌈σi(2j)/2⌉} for the j’s in Ji.
Next, we upper-bound (11) by

(2d)! ·
∏
j∈Ji

Prπj ,π⌈σi(2j)/2⌉

[
πj(i) = µ(π(−1)σi(2j) mod 2

⌈σi(2j)/2⌉ (µ−1(i)))
]

< (2d)2d · (2/n)|Ji|, (12)

where Prπj ,πj [·] stands for Prπj [·] and π1 stands for π, while the inequality is justified by
considering the following three cases (w.r.t each j ∈ Ji).

33 One may obtain a better bound of O(d/n)2d by analyzing (10) directly, by considering all the 2d
events and accounting for their small dependency. On the other hand, we can obtain higher robustness
parameter by considering smaller sets Ji’s (say of size d/4), which suffice for counting vertices that
contribute (say) d/4 units to the difference between Gπ and µ(Gπ).

CCC 2021

12:46

1. If k
def= ⌈σi(2j)/2⌉ ̸= j, then, letting b = (−1)σi(2j) mod 2, the corresponding factor in the

l.h.s of (12) is

Prπj ,πk

[
πj(i) = µ(πb

k(µ−1(i)))
]

which equals 1/n by fixing πk, letting v = µ(πb
k(µ−1(i))), and using Prπj

[πj(i)=v] = 1/n.
2. If σi(2j) = 2j, then the corresponding factor in the l.h.s of (12) is

Prπj

[
πj(i) = µ(πj(µ−1(i)))

]
which is at most 1/(n− 1) since µ(i) ̸= i; specifically, fixing the value of πj(µ−1(i)), and
denoting this value by v, leaves πj(i) uniformly distributed in [n] \ {v}, which means that
Prπj [πj(i)=µ(v)|v = πj(µ−1(i))] ≤ 1/(n− 1) (where equality holds if µ(v) ̸= v).

3. If σi(2j) = 2j − 1, then the corresponding factor in the l.h.s of (12) is

Prπj

[
πj(i) = µ(π−1

j (µ−1(i)))
]

which is less than 2/n. In this case, we consider two sub-cases depending on whether or
not πj(i) = µ−1(i), while noting that the first case occurs with probability 1/n whereas
Prπj

[πj(i) = µ(π−1
j (µ−1(i)))|πj(i) ̸= µ−1(i)] ≤ 1/(n− 1).

Hence, each of the factors in the l.h.s of (12) is upper-bounded by 2/n, and the claim follows.
◁

The general case. The same argument generalizes to a set I ⊆ T such that I ∩ µ(I) = ∅.
In such a case we get

Prπ

[
(∀i∈I) (∃σi∈Sym2d) (∀j∈ [2d]) gj(i) = µ(gσi(j)(µ−1(i)))

]
= (2d)!|I| · max

σ1,...,σn

{
Prπ

[
(∀i∈I) (∀j∈ [2d]) gj(i) = µ(gσi(j)(µ−1(i)))

]}
(13)

▷ Claim 6.1.2 (actual analysis). (13) is upper-bounded by

(2d)2d·|I| · (2/(n− 2(|I| − 1)))|I|·d/3. (14)

Proof. For every i ∈ I = {i1, ..., im}, we fixed a set Ji of size at least d/3 such that the
multi-sets {j, ⌈σi(2j)/2⌉}’s are disjoint, and upper-bound (13) by

(2d)!m ·
∏

k∈[m]

∏
j∈Jik

Prπ1,...,π2d

[
g2j(ik) = µ(gσik

(2j)(µ−1(ik))) |Ej,k(π1,, π2d)
]

= (2d)!m ·
∏

k∈[m]

∏
j∈Jik

Prπ1,...,π2d

[
πj(ik) = µ(π

σ′′
ik

(2j)
σ′

ik
(2j)(µ

−1(ik))) |Ej,k(π1,, π2d)
]
(15)

where σ′
i(2j) def= ⌈σi(2j)/2⌉, and σ′′

i (2j) def= (−1)σi(2j) mod 2, whereas Ej,k(π1, ..., π2d) is
an event that depends only on the value of πj and π

σ′′
ik

(2j)
σ′

ik
(2j) on the points i1, ..., ik−1 and

µ−1(i1), ..., µ−1(ik−1), respectively. Specifically, Ej,k(π1, ..., π2d) is the event

(∀k′∈ [k − 1]) g2j(ik′) = µ(gσi
k′(2j)(µ−1(ik′)))

which can be written as

(∀k′∈ [k − 1]) πj(ik′) = µ(π
σ′′

i
k′(2j)

σ′
i
k′

(2j)(µ
−1(ik′))).

12:47

Now, when analyzing the foregoing conditional probability in (15), we consider two cases. If
j ̸= σ′

ik
(2j), then we fix the value of each of these two permutations (i.e., πj and πσ′

ik
(2j))

on the corresponding k − 1 points that occur in the condition Ej,k, and the value of these
permutations on the kth points (i.e., ik and µ−1(ik)) is restricted accordingly (i.e., to the
remaining n− (k − 1) values). Otherwise (i.e., j = σ′

ik
(2j)), we fix the value of πj on these

2(k − 1) points. Hence, the argument in the warm-up analysis applies with n replaces by
either n− (k − 1) or n− 2(k − 1). It follows that (15) is upper-bounded by

(2d)!m ·
∏

k∈[m]

(2/(2− 2(m− 1)))|Jik
|.

Using |Jik
| ≥ d/3 for every k ∈ [m], the claim follows. ◁

Recall that (14) refers to a fixed set I ⊆ T such that I ∩ µ(I) = ∅, and that it constitutes
an upper bound on the probability (over the choice of π) that, for each i ∈ I there exists a
permutation σi : [2d]→ [2d] such that gj(i) = µ(gσi(j)(µ−1(i))) holds for all j ∈ [2d]. This
upper bound (i.e., (2d)2d·|I| · (2/(n− 2(|I| − 1)))|I|·d/3) simplifies to (2d)2d·|I| · (6/n)|I|·d/3,
provided that |I| ≤ n/3.

Recalling that t
def= |T | ∈ [n], we shall upper-bound the probability (over the choice of

π) that T contains a ⌈t/2⌉-subset T ′ such that for each i ∈ T ′ there exists a permutation
σi : [2d]→ [2d] such that gj(i) = µ(gσi(j)(µ−1(i))) holds for all j ∈ [2d]. We do so by taking
a union bound over all ⌈t/6⌉-subsets I such that I ∩µ(I) = ∅ and for each i ∈ I there exists a
permutation σi : [2d]→ [2d] such that gj(i) = µ(gσi(j)(µ−1(i))) holds for all j ∈ [2d]. (Note
that such a ⌈t/6⌉-subset I exists in each ⌈t/2⌉-subset T ′, and that ⌈t/6⌉ < n/3.) Using the
aforementioned simplified form of (14), we conclude that, with probability at most(

t

⌈t/6⌉

)
· (2d)2d·⌈t/6⌉ · (6/n)⌈t/6⌉·d/3 < 2t · (6 · (2d)6/n)⌈t/6⌉·d/3 = exp(−Ω(dt log n))

over the choice of π, the set T contains no ⌈t/6⌉-subset I as above. This means that, with
probability at most exp(−Ω(dt log n)), less than t/2 of the indices i ∈ T contribute a non-zero
number of units to the difference (between Gπ and µ(Gπ)).

Letting c′ = 1/2 and considering all (non-trivial) permutations µ : [n]→ [n], we conclude
that the probability, over the choice of π, that Gπ is not c′-robustly self-ordered is at most∑

t∈[n]

(
n

t

)
· exp(−Ω(dt log n)) =

∑
t∈[n]

exp(−Ω((d−O(1)) · t log n))

= exp(−Ω((d−O(1)) · log n)),

and the claim follows for the permutation model (and for any sufficiently large d).
As stated upfront, using the general result of [24, Thm. 1.3], we infer that a uniformly

distributed 2d-regular n-vertex multi-graph fails to be c′-robustly self-ordered with probability
o(1). Lastly, recalling that such a 2d-regular multi-graph is actually a simple graph with
probability exp(−((2d)2 − 1)/4), the theorem follows. ◀

Digest

The proof of Theorem 6.1 is quite similar to the proof Claim 4.1.1, but it faces two com-
plications that were avoided in the prior proof (by using edge-colors and implicitly directed
edges). Most importantly, the current proof has to handle equality between multi-sets instead
of equality between sequences. This is done by considering all possible ordering of these

CCC 2021

12:48

multi-sets, which amounts to taking a union bound over all possible ordering and results
in more complicated analysis and notation. (Specifically, see the introduction of σi’s and
Ji’s and the three cases analyzed in the warm-up.) In addition, since edges are defined
by permutations over the vertex-set rather than by perfect matching, we have to consider
both the forward and backward direction of each permutation, which results in further
complicating the analysis and the notation. (Specifically, see the introduction of σ′

i’s and
σ′′

i ’s and the three cases analyzed in the warm-up.)

An alternative proof of Theorem 4.2

We mention that combining an extension of Theorem 6.1 with some of the ideas underlying
the proof of Theorem 4.2 yields an alternative proof of Theorem 4.2 (i.e., an alternative
construction of robustly self-ordered bounded-degree graphs).
▶ Remark 6.2 (an alternative construction of d-regular robustly self-ordered graphs). On input
1n, we set ℓ = O(log n)

log log n , and proceeds in three steps.
1. Extending the proof of Theorem 6.1, we show that for all sufficiently large constant d, for

any set G of t = t(ℓ) < n = ℓΩ(ℓ) (2d-regular) ℓ-vertex graphs, with probability 1− o(1),
a random 2d-regular ℓ-vertex graph is both robustly self-ordered and far from being
isomorphic to any graph in G. Note that, with probability 1− o(1), such a graph is also
expanding.
Here two ℓ-vertex graphs are said to be far apart if they disagree on Ω(ℓ) vertex-pairs.
The proof of Theorem 6.1 is extended by considering, for a random graph, the event that
it is either not robustly self-ordered or is not far from an isomorphic copy of one of the t

(fixed) graphs. The later event (i.e., being close to isomorphic to one of these graphs)
occurs with probability o(t/n).

2. Relying on Step 1, we find a sequence of n/ℓ robustly self-ordered 2d-regular ℓ-vertex
graphs that are expanding and pairwise far from being isomorphic to one another.
This is done by iteratively finding robustly self-ordered 2d-regular ℓ-vertex expanding
graphs that are far from being isomorphic to all prior ones, where scanning all possible
graphs and checking the condition can be done in time n · ℓdℓ/2 · (ℓ!) = poly(n).

3. Using the sequence of n/ℓ graphs found in Step 2, we consider the n-vertex graph that
consists of these ℓ-vertex graphs as its connected components, and use parts of the proof
of Theorem 4.2 to show that this graph is robustly self-ordered. Specifically, we only need
to consider cases that are analogous to Cases 2, 6 and 7. The treatment of the analogous
cases is slightly simpler than in the proof of Theorem 4.2, since the graphs are somewhat
simpler.

Note that the resulting graphs are not locally constructable.

12:49

Part II

The Case of Dense Graphs
Recall that when considering graphs of unbounded degree, we ask whether we can obtain
unbounded robustness parameters. In particular, we are interested in n-vertex graphs that
are Ω(n)-robustly self-ordered, which means that they must have Ω(n2) edges.

In Section 7 we prove the existence of Ω(n)-robustly self-ordered n-vertex graphs, and show
that they imply Ω(1)-robustly self-ordered bounded-degree O(n2)-vertex graphs. In Section 8,
we reduce the construction of the former (dense) n-vertex graphs to the construction of
non-malleable two-source extractors (with very mild parameters). We actually show two
reductions: The first reduction (presented in Section 8.1) requires the extractors to have
an additional natural feature, called quasi-orthogonality, and yields a construction of such
n-vertex graphs that runs in poly(n)-time. The second reduction (presented in Section 8.2)
does not make this requirement, and yields an algorithm that computes the adjacency
predicate of such n-vertex graphs in poly(log n)-time.

In Section 9 we demonstrate the applicability of Ω(n)-robustly self-ordered n-vertex
graphs to property testing; specifically, to proving lower bounds (on the query complexity)
for the dense graph testing model. Lastly, in Section 10, we consider the construction of
Ω(d(n))-robustly self-ordered n-vertex graphs of maximum degree d(n), for every d : N→ N
such that d(n) ∈ [Ω(1), n].

7 Existence and Transformation to Bounded-Degree Graphs

It seems easier to prove that random n-vertex graphs are Ω(n)-robustly self-ordered (see
Proposition 7.1) than to prove that random bounded-degree graphs are Ω(1)-robustly self-
ordered (or even just prove that such bounded-degree graphs exist). In contrast, it seems
harder to construct Ω(n)-robustly self-ordered n-vertex graphs than to construct Ω(1)-robustly
self-ordered bounded-degree graphs. In particular, we show that Ω(n)-robustly self-ordered
n-vertex graphs can be easily transformed into O(n2)-vertex bounded-degree graphs that
are Ω(1)-robustly self-ordered (see Proposition 7.2). We stress that the construction of
robustly self-ordered bounded-degree graphs that is obtained by combining the foregoing
transformation with Theorem 1.4 is entirely different from the constructions presented in the
first part of the paper.

Random graphs are robustly self-ordered

We first show that, with very high probability, a random n-vertex graph Gn = ([n], En),
where En is a uniformly distributed subset of

([n]
2

)
, is Ω(n)-robustly self-ordered.

▶ Proposition 7.1 (robustness analysis of a random graph). A random n-vertex graph Gn =
([n], En) is Ω(n)-robustly self-ordered with probability 1− exp(−Ω(n)).

As stated above, the following proof is significantly easier than the proof provided for the
bounded-degree analogue (i.e., Theorem 6.1).

Proof. For each (non-trivial) permutation µ : [n]→ [n], letting T
def= {i∈ [n] :µ(i) ̸= i} denote

its (non-empty) set of non-fixed-points, we show that, with probability 1− exp(−Ω(n · |T |)),
the size of the symmetric different between a random n-vertex graph Gn = ([n], En) and
µ(Gn) is Ω(n · |T |).

CCC 2021

12:50

For every u, v ∈ [n] such that u < v, let χu,v = χµ
u,v(Gn) represent the event that the pair

(µ(u), µ(v)) contributes to the symmetric difference between Gn and µ(Gn); that is, χu,v = 1
if exactly one of the edges {µ(u), µ(v)} and {u, v} is in Gn, since {u, v} is an edge of Gn if
and only if {µ(u), µ(v)} is an edge of µ(Gn). We shall prove that

PrGn

 ∑
u<v∈[n]

χµ
u,v(Gn) <

n · |T |
20

 = exp(−Ω(n · |T |)). (16)

We prove (16) by using a ⌈|T |/3⌉-subset I ⊆ T such that I∩µ(I) = ∅. Let T ′ = T \(I∪µ−1(I)),
which implies T ′ ∩ I = ∅ and µ(T ′) ∩ I = ∅. Let J = ([n] \ T) ∪ T ′, and note that
|J | = n − |T | + (|T | − 2 · ⌈|T |/3⌉) ≥ n − (2|T |/3) − 2 ≥ (n/3) − 2. Observe that, for
every (u, v) ∈ J × I, it holds that u ̸= v and Pr[χu,v = 1] = 1/2, where the equality
is due to {u, v} ≠ {µ(u), µ(v)}, which holds since (u, v) ∈ J × I but µ(u), µ(v) ∈ [n] \ I.
Furthermore, the events the correspond to the pairs in J×I are independent, because the sets
{{u, v} : (u, v)∈J × I} and {{µ(u), µ(v)} : (u, v)∈J × I} are disjoint; that is, (u, v) ∈ J × I

implies (µ(u), µ(v)) ∈ ([n] \ I)× ([n] \ I). Hence (using n ≤ 3(|J |+ 2) and |T | ≤ 3|I| (as well
as 3(|J |+ 2) · 3|I| < 9.9 · |J | · |I|)), the l.h.s. of (16) is upper-bounded by

PrGn

 ∑
(u,v)∈J×I

χµ
u,v(Gn) <

3(|J | + 2) · 3|I|
20

 ≤ PrGn

 ∑
(u,v)∈J×I

χµ
u,v(Gn) <

0.99 · |J | · |I|
2

= exp(−Ω(|J | · |I|))

which is exp(−Ω(n · |T |)). Having established (16), the claim follows by a union bound
(over all non-trivial permutations µ : [n]→ [n]); specifically, denoting the set of non-trivial
permutations by Pn, we upper-bound the probability that Gn is not n

20 -robust by∑
µ∈Pn

PrGn [µ violates the condition in (16)]

≤
∑
t∈[n]

(
n

t

)
· (t!) · exp(−Ω(n · t))

< n ·max
t∈[n]
{nt · exp(−Ω(n · t))}

= exp(−Ω(n))

where t represents the size of the set of non-fixed-points (w.r.t µ). ◀

Obtaining bounded-degree robustly self-ordered graphs

We next show how to transform Ω(n)-robustly self-ordered n-vertex graphs to O(n2)-vertex
bounded-degree graphs that are Ω(1)-robustly self-ordered. Essentially, we show that the
standard “degree reduction via expanders” technique works (when using a different color
for the expanders’ edges, and then using gadgets to replace colored edges). Specifically, we
replace each vertex in Gn = ([n], En) by an (n− 1)-vertex expander graph and connect each
of these vertices to at most one vertex in a different expander, while coloring the edges of
the expanders with 1, and coloring the other edges by 2. Actually, the vertex v is replaced
by the vertex-set Cv = {⟨v, u⟩ : u∈ [n] \ {v}} and in addition to the edges of the expander,
colored 1, we connect each vertex ⟨v, u⟩ ∈ Cv to the vertex ⟨u, v⟩ ∈ Cu and color this edge 2 if

12:51

{u, v} ∈ En and 0 otherwise.34 This yields an n · (n− 1)-vertex O(1)-regular graph, denoted
G′

n, coupled with an edge-coloring, denoted χ′, which uses three colors. Using the hypothesis
that Gn is Ω(n)-robustly self-ordered, we prove that (G′

n, χ′) is Ω(1)-robustly self-ordered
(in the colored sense).

▶ Proposition 7.2 (robustness analysis of the degree reduction). If Gn is Ω(n)-robustly
self-ordered, then (G′

n, χ′) is Ω(1)-robustly self-ordered (in the colored sense of Definition 2.1).

Using Theorem 2.4 (after adding self-loops), we obtain a O(1)-regular O(n2)-vertex graph
that is Ω(1)-robustly self-ordered (in the standard sense).

Proof. Denoting the vertex-set of G′
n by V =

⋃
v∈[n] Cv, we consider an arbitrary (non-

trivial) permutation µ′ : V → V , and the corresponding set of non-fixed-points T ′. Intuitively,
if µ′ maps vertices of Cv to several Cw’s, then we get a proportional contribution to the
difference between G′

n and µ′(G′
n) by the (1-colored) edges of the expander. Otherwise, µ′

induces a permutation µ over the vertices of Gn, and we get a corresponding contribution
via the (2-colored) edges of Gn. Lastly, non-identity mapping inside the individual Cv’s are
charged using the (0-colored and 2-colored) edges that connect different Cv’s. Details follow.

For a permutation µ′ : V → V as above, let µ : [n]→ [n] be a permutation that maximizes
the (average over v ∈ [n] of the) number of vertices in Cv that are mapped by µ′ to vertices
in Cµ(v); that is, for every permutation ν : [n]→ [n], it holds that∣∣{⟨v, u⟩∈V : µ′(⟨v, u⟩) ∈ Cµ(v)

}∣∣ ≥ ∣∣{⟨v, u⟩∈V : µ′(⟨v, u⟩) ∈ Cν(v)
}∣∣ . (17)

We consider the following three cases.

Case 1:
∑

v∈[n] |Bv| = Ω(|T ′|), where Bv
def= {⟨v, u⟩∈Cv : µ′(⟨v, u⟩) ̸∈ Cµ(v)}.

(This refers to the case that many vertices are mapped by µ′ to an expander that is
different from the one designated by µ, which represents the best possible mapping of
whole expanders.)
Letting Cv,w

def= {⟨v, u⟩ : µ′(⟨v, u⟩) ∈ Cw}, we first observe that for every v it holds
that maxw ̸=µ(v){|Cv,w|} ≤ 2

3 · (n− 1), because otherwise we reach a contradiction to the
maximality of µ by defining ν(v) = w and ν(µ−1(w)) = µ(v), where w is the element
obtaining the maximum, and ν(x) = µ(x) otherwise.
Next, observe that there exists Wv ⊆ [n] \ {µ(v)} such that B′

v =
⋃

w∈Wv
Cv,w satisfies

both |B′
v| ≤ 2

3 · (n − 1) and |B′
v| ≥ |Bv|/3. Now, consider the sets B′

v and Cv \ B′
v:

On the one hand, in µ′(G′
n) there are Ω(|B′

v|) 1-colored edges connecting µ′(B′
v) and

µ′(Cv \ B′
v), due to the subgraph of µ′(G′

n) induced by µ′(Cv) which equals subgraph
of G′

n induced by Cv (which, in turn, is an expander). On the other hand, in G′
n there

are no 1-colored edges between µ′(B′
v) and µ′(Cv \B′

v), since µ′(B′
v) ⊆

⋃
w∈Wv

Cw and
µ′(Cv \B′

v) ⊆
⋃

w∈[n]\Wv
Cw.

We conclude that, in this case, the difference between G′
n and µ′(Gn) is

∑
v Ω(|B′

v|) =∑
v Ω(|Bv|) = Ω(|T ′|).

Case 2:
∑

v∈[n]:µ(v)̸=v |C ′
v| = Ω(|T ′|), where C ′

v
def= {⟨v, u⟩∈Cv : µ′(⟨v, u⟩) ∈ Cµ(v)}.

(This refers to the case that many vertices are mapped by µ′ to an expander that is
designated by µ, but this expander is not the one in which they reside (i.e., µ has many
non-fixed-points).)

34 This is equivalent to first converting Gn into a n-vertex clique while coloring an edge 2 if and only if it
is in En.

CCC 2021

12:52

Letting γ > 0 be a constant such that Gn is γ · n-robustly self-ordered, we may assume
that

∑
v∈[n]:µ(v)̸=v |C ′

v| ≥ (1− 0.5 · γ) ·
∑

v∈[n]:µ(v) ̸=v |Cv|, since otherwise we are done by
Case 1.
By the γn-robust self-ordering of Gn, the difference between Gn and µ(Gn) is at least
∆ def= γn · |{v ∈ [n] : µ(v) ̸= v}|. Assuming, for a moment, that µ′(Cv) = Cv for every v

such that µ(v) ̸= v, the difference between G′
n and µ′(G′

n) is ∆, where the difference is
due to edges colored 2 (i.e., the edges inherited from Gn). This amount is prorotional to
the number of vertices in the current case, since

∆ = γn

n− 1 ·
∑

v:µ(v)̸=v

|Cv| > γ ·
∑

v:µ(v) ̸=v

|Cv|.

In general, µ′(Cv) = Cv may not hold for some v, and in this case we may loss the
contribution of the 2-colored edges incident at vertices in

⋃
v∈[n]:µ(v) ̸=v(Cv \C ′

v). Recalling
that (by our hypothesis) the size of this set is at most 0.5 · γ ·

∑
v:µ(v)̸=v |Cv|, we are left

with a contribution of at least 0.5γ ·
∑

v:µ(v)̸=v |C ′
v|.

We conclude that, in this case, the difference between G′
n and µ′(Gn) is

Ω(
∑

v:µ(v)̸=v |C ′
v|) = Ω(|T ′|).

Case 3:
∑

v∈[n] |C ′′
v | = Ω(|T ′|), where C ′′

v
def= {⟨v, u⟩∈Cv : µ′(⟨v, u⟩) ∈ Cv \ {⟨v, u⟩}}.

(This refers to the case that many vertices are mapped by µ′ to a different vertex in the
same expander in which they reside.)35

(This case would have been easy to handle if the expanders used on the Cv’s were robustly
self-ordered. Needless to say, we want to avoid such an assumption. Instead, we rely on
the fact that in G′

n different vertices in Cv are connected to different Cu’s.)
We may assume that

∑
v∈[n] |C ′′

v | ≥ 2 ·
∑

v∈[n] |{⟨v, u⟩ ∈ Cv : µ′(⟨v, u⟩) ̸∈ Cv}|, since
otherwise we are done by either Case 1 or Case 2. Now, consider a generic ⟨v, u⟩ ∈ C ′′

v ,
and let w ̸= u be such that µ′(⟨v, u⟩) = ⟨v, w⟩. Then, in µ′(G′

n) an edge colored either 0
or 2 connects ⟨v, w⟩ = µ′(⟨v, u⟩) to µ′(⟨u, v⟩), since ⟨v, u⟩ and ⟨u, v⟩ are so connected in
G′

n, whereas in G′
n an (even-colored) edge connects ⟨v, w⟩ to ⟨w, v⟩ ∈ Cw. We consider

two sub-cases.
If µ′(⟨u, v⟩) ∈ Cu, then ⟨v, w⟩ contributes to the difference between µ′(G′

n) and G′
n,

because in µ′(G′
n) vertex ⟨v, w⟩ is connected (by its even-colored edge) to a vertex in

Cu whereas in G′
n vertex ⟨v, w⟩ is connected (by its even-colored edge) to a vertex in

Cw.
(Recall that w is uniquely determined by ⟨v, u⟩ ∈ C ′′

n , since µ′(⟨v, u⟩) = ⟨v, w⟩, and so
this contribution can be charged to ⟨v, u⟩.)
If µ′(⟨u, v⟩) ̸∈ Cu, then ⟨u, v⟩ contributes to the set

⋃
x∈[n]{⟨x, y⟩ ∈Cx : µ′(⟨x, y⟩) ̸∈

Cx}, which (by the hypothesis) has size at most 0.5 ·
∑

v∈[n] |C ′′
v |

Hence, at least half of
⋃

v∈[n] C ′′
v appears in the first sub-case, which implies that, in this

case, the difference between G′
n and µ′(Gn) is at least 1

2 ·
∑

v∈[n] |C ′′
v | = Ω(|T ′|).

Hence, the difference between G′
n and µ′(Gn) is Ω(|T ′|). ◀

35 Note that if ⟨v, u⟩ ∈ Cv is not mapped by µ′ to Cv, then either µ′(⟨v, u⟩) ̸∈ Cµ(v) holds (i.e., Case 1)
or µ′(⟨v, u⟩) ∈ Cµ(v) such that µ(v) ̸= v (i.e., Case 2). Hence, if ⟨u, v⟩ ∈ T ′ is not counted in Cases 1
and 2, then it must be counted in Case 3.

12:53

8 Relation to Non-Malleable Two-Source Extractors

For n = 2ℓ, we reduce the construction of Ω(n)-robustly self-ordered (dense) n-vertex graphs
to the construction of non-malleable two-source extractors for (ℓ, ℓ−O(1))-sources. Recall that
a random variable X is called an (ℓ, k)-source if X is distributed over [2ℓ] and has min-entropy
at least k (i.e., Pr[X = i] ≤ 2−k for every i ∈ [2ℓ]).36 A function E : [2ℓ]× [2ℓ]→ {0, 1}m is
called a (standard) two-source (k, ϵ)-extractor if, for every two independent (ℓ, k)-sources X

and Y , it holds that E(X, Y) is ϵ-close to the uniform distribution over {0, 1}m, denoted Um.
Our notion of a non-malleable two-source extractor, presented next, is a restricted case of
the notions considered in [8, 7].37

▶ Definition 8.1 (non-malleable two-source extractors). A function nmE : [2ℓ]× [2ℓ]→ {0, 1}m

is called a non-malleable two-source (k, ϵ)-extractor if, for every two independent (ℓ, k)-sources
X and Y , and for every two functions f, g : [2ℓ]→ [2ℓ] that have no fixed-point (i.e., f(z) ̸= z

and g(z) ̸= z for every z ∈ [2ℓ]), it holds that (nmE(X, Y), nmE(f(X), g(Y))) is ϵ-close to
(Um, nmE(f(X), g(Y)); that is,

1
2 ·

∑
α,β

∣∣Pr[(nmE(X, Y), nmE(f(X), g(Y)))=(α, β)] − 2−m · Pr[nmE(f(X), g(Y))=β]
∣∣ ≤ ϵ. (18)

The parameter ϵ is called the error of the extractor.

We shall be interested in the special case in which f and g are permutations. In this case, the
foregoing condition (i.e., (18)) can be replaced by requiring that (nmE(X, Y), nmE(f(X), g(Y)))
is 2ϵ-close to the uniform distribution over {0, 1}m+m.38 Furthermore, we shall focus on
non-malleable two-source (k, ϵ)-extractors that output a single bit (i.e., m = 1), and in this
case non-triviality mandates ϵ < 0.5. In general, we view ϵ as a constant, but view ℓ and k

as varying (or generic) parameters, and focus on the case of k = ℓ−O(1).
Recall that constructions of non-malleable two-source (k, ϵ)-extractors with much better

parameters are known [7, Thm. 1]. In particular, these constructions support k = ℓ− ℓΩ(1),
negligible error (i.e., ϵ = exp(−ℓΩ(1))), and m = ℓΩ(1). We stress that, as is the norm in the
context of randomness extraction, the extracting function is computable in polynomial-time
(i.e., in poly(ℓ)-time).

We shall show that any non-malleable two-source (ℓ−O(1), 0.49)-extractor (for sources
over [2ℓ]) yields Ω(2ℓ)-robustly self-ordered O(2ℓ)-vertex graphs. Actually, we shall show two
such constructions: The first construction runs in poly(2ℓ)-time, and the second construction
provides strong constructability (a.k.a local computability) as claimed in Theorem 1.4.
Both constructions use a similar underlying logic, which is more transparent in the first
construction.

8.1 The first construction
For the first construction, we need the extractor to satisfy the following natural (and
quite minimal) requirement, which we call quasi-orthogonality. We say that an extractor
nmE : [2ℓ]× [2ℓ]→ {0, 1} is quasi-orthogonal (with error ϵ) if the following conditions hold:

36 Indeed, for the sake of simplicity (of our arguments), we do not require that ℓ ∈ N, but rather only that
2ℓ ∈ N; consequently, we consider distributions over [2ℓ] rather than over {0, 1}ℓ.

37 In particular, in [8, 7] it is only required that one of the two functions f, g : [2ℓ] → [2ℓ] has no fixed-points.
There seems to be no concrete reason to prefer one of these three variants over the others. We mention
that Definition 8.1 is strictly weaker than the definition of [8] (even in its simplified form [7, Def. 1.3];
see Appendix).

38 In this case, f(X) and g(Y) have min-entropy at least k, which implies that nmE(f(X), g(Y)) is ϵ-close
to the uniform distribution over {0, 1}m.

CCC 2021

12:54

1. The residual function obtained from nmE by any fixing of one of its two arguments is almost
unbiased: For every x ∈ [2ℓ] and every σ ∈ {0, 1} it holds that |{y∈ [2ℓ] : nmE(x, y)=σ}| ≤
(0.5 + ϵ) · 2ℓ; ditto for every y ∈ [2ℓ] and the corresponding set {x∈ [2ℓ] : nmE(x, y)=σ]}.

2. The residual functions obtained from nmE by any two different fixings of one of its two
arguments are almost uncorrelated: For every {x, x′} ∈

([2ℓ]
2

)
it holds that |{y ∈ [2ℓ] :

nmE(x, y) ̸=nmE(x′, y)}| ≥ (0.5−ϵ)·2ℓ; ditto for every {y, y′} ∈
([2ℓ]

2
)

and the corresponding
set {x∈ [2ℓ] : nmE(x, y) ̸=nmE(x, y′)]}.

As shown in Proposition 8.2, any non-malleable two-source (k, ϵ)-extractor can be transformed
(in poly(2ℓ)-time) into a quasi-orthogonal one at a small degradation in the parameters (i.e.,
ϵ increases by an additive term of O(2−(ℓ−k)) and 2ℓ decreases by an additive term of O(2k)).
Note that poly(2ℓ)-time is acceptable when one aims at constructing O(2ℓ)-vertex graphs;
however, aiming at strong/local constructability (as in Theorem 1.4), we shall avoid such a
transformation in the second construction (presented in Section 8.2).

▶ Proposition 8.2 (transforming non-malleable two-source extractors into ones that are
quasi-orthogonal). For every k ≤ ℓ − 3, there exists a poly(2ℓ)-time transformation that
given a non-malleable two-source (k, ϵ)-extractor nmE : [2ℓ] × [2ℓ] → {0, 1}, returns a non-
malleable two-source (k, ϵ′)-extractor nmE : [n′]× [n′]→ {0, 1} such that n′ ≥ 2ℓ −O(2k) and
nmE′ is quasi-orthogonal with error ϵ′ = ϵ + O(2k/n′).

Proof. Essentially, nmE′ is obtained from nmE by simply discarding inputs that violate the
quasi-orthogonality conditions. Letting n = 2ℓ, first note that the number of x’s that violate
the first condition is at most 2k+1, because otherwise we obtain a contradiction to the
hypothesis that nmE is a two-source (k, ϵ)-extractor (by letting X be uniform on the x’s that
satisfy |{y∈ [n] : nmE(x, y)=σ}| > (0.5 + ϵ) · n for either σ = 0 or σ = 1, and Y be uniform
on {0, 1}n). Next, consider the residual (k, ϵ)-extractor nmE1 : [n1] × [n1] → {0, 1}, where
n1 ≥ n− 2k+1, obtained by omitting the exceptional x’s. Note that nmE1 satisfies the first
quasi-orthogonality condition with respect to the first argument with error ϵ. Doing the same
for the second argument yields a residual (k, ϵ)-extractor nmE2 : [n2]× [n2]→ {0, 1}, where
n2 ≥ n1−2k+1 and nmE2 satisfies the first quasi-orthogonality condition (for both arguments)
with error ϵ + 2k+1

n1
. Likewise, we claim that there are at most 2k disjoint pairs {x, x′}’s

that violate the second condition (i.e., |{y∈ [n2] : nmE2(x, y) ̸=nmE2(x′, y)}| ≥ (0.5− ϵ) · n2),
because otherwise we obtain a contradiction to the hypothesis that nmE2 is a non-malleable
two-source (k, ϵ)-extractor (by using a function that maps each such x to its matched x′).
And, again, we consider a residual extractor obtained by omitting the exceptional pairs.
Doing the same for the y’s, we obtained the desired extractor. ◀

Recall that non-malleable two-source extractors with much stronger parameters than we
need (i.e., min-entropy ℓ− ℓΩ(1), negligible error, and ℓΩ(1) bits of output), were constructed
in [7, Thm. 1], but these extractors are not quasi-orthogonal. Employing Proposition 8.2, we
obtain a quasi-orthogonal non-malleable two-source (ℓ− 4, 0.1)-extractor that can be used in
the construction of Theorem 8.3. Essentially, the construction consists of a bipartite graph,
with 2ℓ vertices on each side, such that the edges between the two sides are determined by
the extractor. In addition, we add a clique on one of the two sides so that the two sides are
(robustly) distinguishable (see Fugure 1). We stress that the resulting 2ℓ+1-vertex graph is
Ω(2ℓ)-robustly self-ordered as long as the non-malleable extractor is quasi-orthogonal and
works for very mild parameters; that is, we only require error that is bounded away from 1/2
with respect to min-entropy ℓ−O(1).

12:55

Figure 1 Illustrating the construction of Theorem 8.3.

▶ Theorem 8.3 (using a quasi-orthogonal non-malleable two-source extractor to obtain a
Ω(2ℓ)-robustly self-ordered O(2ℓ)-vertex graph). For a constant ϵ ∈ (0, 0.5) varying ℓ ≥ k

such that k ≤ ℓ − 2 + log2(0.5 − ϵ) = ℓ − O(1), suppose that nmE : [2ℓ] × [2ℓ] → {0, 1}
is a quasi-orthogonal (with error ϵ) non-malleable two-source (k, ϵ)-extractor. Then, the
2ℓ+1-vertex graph G = (V1 ∪ V0, E) such that Vσ = {⟨σ, i⟩ : i∈ [2ℓ]} and

E = {{⟨1, i⟩, ⟨0, j⟩} :nmE(i, j)=1} ∪
(

V1

2

)
(19)

is Ω(|V1 ∪V0|)-robustly self-ordered. Furthermore, the claim holds even if the non-malleability
condition (i.e., (18)) holds only for permutations f and g.

Indeed, the first set of edges, denoted E′, corresponds to a bipartite graph between V1 and
V0 that is determined by nmE, and the second set corresponds to a 2ℓ-vertex clique. Note
that the extraction parameters are extremely weak; that is, the min-entropy may be very
high (i.e., k = ℓ−O(1)), the error may be an arbitrary non-trivial constant (i.e., ϵ < 1/2),
and we only extract one bit (i.e., m = 1).

Proof. Let V = V1 ∪ V0, and consider an arbitrary (non-trivial) permutation µ : V → V .
Intuitively, if µ maps a vertex of V1 to V0, then the difference in degrees of vertices in the
two sets (caused by the clique edges) contributes at least ((2ℓ − 1)− 2ϵ · 2ℓ)/2 units to the
symmetric difference between G and µ(G), where here we use the first quasi-orthogonality
condition. On the other hand, if µ maps ⟨1, i⟩ ∈ V1 to V1 \ {⟨1, i⟩}, then the difference in
the neighborhoods caused by the bipartite graph contributes at least (0.5− ϵ) · 2ℓ/2 units
to the symmetric difference between G and µ(G). To prove this, we distinguish between
the case that µ has relatively few non-fixed-points (in either V0 or V1), which is analyzed
using the second quasi-orthogonality condition, and the case that µ has relatively many
non-fixed-points (in both V0 and V1), which is analyzed using the non-malleability condition.
Details follow.

Let T = {v∈V : µ(v) ̸= v} denote the set of non-fixed-points of µ. Then, we consider
two types of vertices: Those that belong to the set T ′ =

⋃
σ∈{0,1}{v∈Vσ :µ(v) ̸∈ Vσ} ⊆ T

and those that belong to T \ T ′. The threshold for distinguishing these cases is set to
K = (0.5− ϵ) · 2ℓ−2 = Ω(|V |).

CCC 2021

12:56

Case 1: |T ′| ≥ K.
(This refers to the case that many vertices are mapped by µ to the opposite side of the
bipartite graph (V, E′), where “many” means Ω(|V |).)
Each vertex in T ′ contributes (1− 2ϵ) · 2ℓ − 1 units to the symmetric difference between
G and µ(G), because the degree of each vertex in V1 is at least (2ℓ − 1) + (0.5− ϵ) · 2ℓ,
whereas the degree of each vertex in V0 is at most (0.5 + ϵ) · 2ℓ, where we use the first
quasi-orthogonality condition, which implies that the number of bipartite edges incident
at each vertex is at least (0.5− ϵ) · 2ℓ and at most (0.5 + ϵ) · 2ℓ.
Hence, the symmetric difference between G and µ(G) is at least ((1− 2ϵ) · 2ℓ − 1) · |T ′| =
Ω(|V |) · |T ′|, since 2ℓ = Ω(|V |). Using the case’s hypothesis, we have |T ′| = Ω(|V |) =
Ω(|T |), which means that in this case the difference between G and µ(G) is Ω(|V |) · |T |.
We stress that the difference between G and µ(G) is at least Ω(|V |) · |T ′| also if the case
hypothesis does not hold.

Case 2: |T ′| < K.
(This refers to the case that few vertices are mapped by µ to the opposite side of the
bipartite graph (V, E′), where “few” means less than K ≤ |V |/20 (assuming ϵ ≤ 0.1).)
For every σ ∈ {0, 1}, let V ′

σ = Vσ ∩ µ(Vσ) and Tσ = V ′
σ ∩ T . Indeed, (T ′, T0, T1) is a

three-way partition of T . Note that the size of the symmetric difference between G and
µ(G) is lower-bounded by

|{(v, u) ∈ V ′
1 × V ′

0 : nmE(µ(v), µ(u)) ̸= nmE(v, u)}| , (20)

since, for any (v, u) ∈ V ′
1 × V ′

0 , it holds that µ(v) neighbors µ(u) in G if and only if
nmE(µ(v), µ(u)) = 1, whereas µ(v) neighbors µ(u) in µ(G) if and only if v neighbors u in
G which holds if and only if nmE(v, u) = 1.
We consider two sub-cases according to whether or not min(|T0|, |T1|) is relatively large.
The threshold for distinguishing these sub-cases is also set to K = (0.5− ϵ) · 2ℓ−2; note
that K = Ω(|V |) and K ≥ 2k.
Case 2.1: min(|T0|, |T1|) < K.

In this case we shall use the (second condition of) quasi-orthogonality of nmE.
Suppose, without loss of generality, that |T0| ≤ |T1|, which implies |T0| < K. Then,
the contribution of each vertex v ∈ T1 to (20) equals
|{u ∈ V ′

0 : nmE(µ(v), µ(u)) ̸= nmE(v, u)}|
≥ |{u ∈ V ′

0 : nmE(µ(v), u) ̸= nmE(v, u)}| − |T0|
≥ |{u ∈ V0 : nmE(µ(v), u) ̸= nmE(v, u)}| − |T ′| − |T0|
≥ (0.5− ϵ) · 2ℓ − 2 ·K
= (0.5− ϵ) · 2ℓ−1

where the first inequality uses µ(u) = u for u ∈ V ′
0 \ T0, the second inequality uses

|V ′
0 | ≥ |V0| − |T ′|, the third inequality uses µ(v) ̸= v along with the (second condition

of) quasi-orthogonality of nmE (and the hypotheses regarding |T ′| and |T0|), and the
equality is due to K = (0.5− ϵ) · 2ℓ−2.
Hence, in this case, the total contribution to (20) is (0.5 − ϵ) · 2ℓ−1 · |T1|, which is
Ω(|V |) · (|T | − |T ′|), since |T1| ≥ (|T | − |T ′|)/2.

Case 2.2: min(|T0|, |T1|) ≥ K.
In this case we shall use the non-malleable feature of nmE.
Specifically, for each σ ∈ {0, 1}, let µσ denote the restriction of µ to Tσ. Essentially,
using K ≥ 2k, the non-malleability condition of the (k, ϵ)-extractor nmE implies

|{(i, j) ∈ T0 × T1 : nmE(i, j) ̸= nmE(µ0(i), µ1(j))}| ≥ (0.5− ϵ) · |T0| · |T1|.

12:57

This can be seen by letting X and Y be uniform over T0 and T1, respectively, and
combining the fact that Pr[nmE(µ0(X), µ1(Y)) ̸= U1] = 0.5 with the non-malleability
condition (while noting that µ0 : T0 → µ(T0) and µ1 : T1 → µ(T1) have no fixed-
points).39

Hence, in this case, the total contribution to (20) is (0.5 − ϵ) · |T0| · |T1| = Ω(|V |) ·
(|T | − |T ′|), where we use min(|T0|, |T1|) = Ω(|V |).

Hence, in both sub-cases, the difference between G and µ(G) is Ω(|V |) · (|T | − |T ′|).

Recall that (by the last comment at Case 1) the difference between G and µ(G) is Ω(|V |) · |T ′|.
Combining this lower-bound with the conclusion of Case 2, the difference between G and
µ(G) is Ω(|V |) · |T |. ◀

Digest

Note that the quasi-orthogonality of nmE was used in Cases 1 and 2.1, whereas the non-
malleability of nmE (w.r.t derangements) was used in Case 2.2. In particular, Case 1 only
uses the first condition of quasi-orthogonality, and does so in order to infer that the degrees
of all vertices in the bipartite graph are approximately equal. In Case 2.1 the second quasi-
orthogonality condition is used in order to assert that the neighborhoods of two different
vertices in Vσ are significantly different. This is useful only when the number of non-fixed-
points in V1−σ is relatively small. When the number of non-fixed-points is large but no
vertex is mapped to the other side (i.e., T ′ = ∅), we only use Case 2.2, which does not refer
to quasi-orthogonality at all. Hence, we have the following –
▶ Remark 8.4 (a special case of Theorem 8.3). For bipartite graphs G = (V, E) such that
V = V0 ∪ V1 and E ⊆ V0 × V1, we consider the special case of robust self-ordering that refers
only to permutations µ : V → V that are derangements that preserve the bipartition of V

(i.e., µ has no fixed-points and µ(V0) = V0).40 In this case, assuming (only) that nmE is a
non-malleable two-source (ℓ, ϵ)-extractor (i.e., the case of k = ℓ), implies that, for any such µ,
the size of the symmetric difference between G and µ(G) is (0.5± ϵ) · |V0| · |V1|. In particular,
the quasi-orthogonality condition is not necessary, the proof of Theorem 8.3 simplifies, since
T ′ = ∅ and Tσ = Vσ = V ′

σ hold, and the size of the symmetric difference between G and µ(G)
equal the quantity in (20).
Interestingly, the special case of Theorem 8.3 asserted in Remark 8.4 can be reversed in the
sense that a bipartite graph that is robustly self-ordered in the foregoing restricted sense is
actually a non-malleable two-source (ℓ, 0.5− Ω(1))-extractor.

▶ Proposition 8.5 (a reversal of the special case of Theorem 8.3 (i.e., of Remark 8.4)). Let
G = (V0 ∪V1, E) be a bipartite graph such that |V0| = |V1| and E ⊆ V0×V1. Let V = V0 ∪V1,
and suppose that for every derangement µ : V → V such that µ(V0) = V0 it holds that
the size of the symmetric difference between G and µ(G) is (0.5 ± ϵ) · |V0| · |V1|. Then,
F : V0 × V1 → {0, 1} such that F (x, y) = 1 if and only if {x, y} ∈ E is a non-malleable
two-source (ℓ, ϵ +

√
2ϵ + o(1))-extractor.

Needless to say, the claim holds also if G is augmented by complete graph on the vertex-set
V1. Note that we lose a

√
2ϵ + o(1) term in the reversal.

39 Formally, we should extend µ0 and µ1 to (arbitrary) derangements f and g, respectively. (Note
that we may assume, w.l.o.g., that |Tσ ∪ µ(Tσ)| ≤ |Vσ| − 2.) Lastly, note that (18) implies that
Pr[nmE(X, Y) ̸= nmE(f(X), g(Y))] ≥ Pr[U1 ̸= nmE(f(X), g(Y))] − ϵ = 0.5 − ϵ.

40 That is, the requirement regarding the symmetric difference between G and µ(G) is made only for
permutations µ that have no fixed-points and satisfy µ(V0) = V0.

CCC 2021

12:58

Proof. Let (f, g) and (X, Y) be as in Definition 8.1, and note that in this case X and Y are
independent distributions that are each uniformly distributed on [2ℓ]. Define µ : V → V such
that µ(z) = f(z) if z ∈ V0 and µ(z) = g(z) otherwise, and note that µ is a derangement that
preserves the partition of V . Recall that (µ(x), µ(y)) contributes to the symmetric difference
between G and µ(G) if and only if F (µ(x), µ(y)) ̸= F (x, y), since µ(x) is connected to µ(y)
in µ(G) if and only if x is connected to y in G. Hence, by the hypothesis, we have

Pr[F (X, Y) ̸= F (µ(X), µ(Y))] = 0.5± ϵ. (21)

Letting pµ
σ,τ

def= Pr[(F (X, Y), F (µ(X), µ(Y))) = (σ, τ)], we have pµ
0,1 + pµ

1,0 = 0.5 ± ϵ, and
using the fact that (X, Y) and (µ(X), µ(Y)) are identically distributed we have pµ

1,0 = pµ
0,1

(since pµ
1,1 + pµ

1,0 = pµ
1,1 + pµ

0,1). Hence, pµ
0,1 = 0.25± 0.5ϵ. Lastly, we show that pµ

1,1 + pµ
1,0 =

0.5±
√

ϵ/2 + o(1), and conclude that pµ
1,1 = 0.25± (0.5ϵ +

√
ϵ/2 + o(1)); it follows that F is

a non-malleable (two-source) (ℓ, ϵ +
√

2ϵ + o(1))-extractor.
To show that pµ

1,1 + pµ
1,0 = 0.5 ±

√
ϵ/2 + o(1), we first note that p

def= pµ
1,1 + pµ

1,0 =
Pr[F (X, Y)=1] is actually oblivious of µ. Hence, by considering a random derangement µ

that preserves V0 (i.e., µ(V0) = V0), we observe that, with overwhelmingly high probability
(over the choice of µ), it holds that {(x, y) ∈ V0 × V1 : F (x, y) ̸= F (µ(x), µ(y))} has size
(2p(1−p)±o(1))·|V0|·|V1|. Confronting this with (21), we infer that p = 0.5±(

√
ϵ/2+o(1)). ◀

Corollary

Combining Theorem 8.3 with the non-malleable two-source extractors of [7, Thm. 1], while
using Proposition 8.2, we obtain an efficient construction of Ω(n)-robustly self-ordered graphs
(alas not a strongly explicit (aka locally computable) one).

▶ Theorem 8.6 (constructing Ω(n)-robustly self-ordered n-vertex graphs). There exist an
algorithm that, on input n, works in poly(n)-time and outputs an explicit description of an
Ω(n)-robustly self-ordered O(n)-vertex graph. Furthermore, each vertex in this graph has
degree at least 0.24 · n and at most 0.76 · n.

The degree bounds follow by observing that the vertices in the graph described in Theorem 8.3
have degree at least (0.5− ϵ) · n/2 and at most (1.5 + ϵ) · n/2, whereas [7, Thm. 1] provides
for ϵ = o(1).

8.2 The second construction
Combining Theorem 8.3 with the non-malleable two-source extractors of [7, Thm. 1], while
using Proposition 8.2, we obtained an efficient construction of Ω(n)-robustly self-ordered
n-vertex graphs (see Theorem 8.6). However, this construction is not locally computable (as
postulated in Theorem 1.4), because the non-malleable two-source extractors of [7, Thm. 1]
are not quasi-orthogonal and the transformation of Proposition 8.2 runs in time that is
polynomial in the size of the resulting graph.

To avoid the foregoing transformation and prove Theorem 1.4, we employ a variant on
the construction presented in Theorem 8.3. Rather than connecting two sets of vertices
using a bipartite graph that corresponds to a quasi-orthogonal non-malleable two-source
extractor, we connect three sets of vertices such that one pair of vertex-sets is connected by
a (not necessarily quasi-orthogonal) non-malleable two-source extractor, whereas the other
two pairs are connected by bipartite graphs that are merely quasi-orthogonal. In analogy to

12:59

the definition of a quasi-orthogonal (two-source) extractor, we say that a bipartite graph on
the vertex-set X ∪ Y is quasi-orthogonal (with error ϵ) if the following two conditions hold
regarding its adjacency predicate B : X × Y → {0, 1}:
1. The degree of each vertex is approximately half the number of the vertices on the other

side: For each x ∈ X (resp., y ∈ Y), it holds that |{y∈Y :B(x, y)=1}| = (0.5± ϵ) · |Y |
(resp., |{x∈X :B(x, y)=1}| = (0.5± ϵ) · |X|).

2. Each pair of vertices on one side neighbors approximately a quarter of the vertices on the
other side: For every x ̸= x′ ∈ X, it holds that |{y∈Y :B(x, y) ̸=B(x′, y)}| = (0.5±ϵ) · |Y |.
Similarly, for y ̸= y′ ∈ Y .

We note that the inner-product (mod 2) extractor [9], denoted E2 : {0, 1}ℓ×{0, 1}ℓ → {0, 1},
corresponds to a quasi-orthogonal bipartite graph for the case X = Y = {0, 1}ℓ \ {0ℓ}. We
will however need quasi-orthogonal bipartite graphs with different-sized sides, which can
be obtained by a simple variant. Specifically, for the case of X = {0, 1}ℓ \ {0ℓ} and Y =
{0, 1}ℓ+2 \ {0ℓ+2}, we use the function B(x, y) = E2(G(x), y), where G : {0, 1}ℓ → {0, 1}ℓ+2

is a small-bias generator that satisfies G(x) ̸= 0ℓ+2 and G(x) ̸= G(x′) for every x ̸= 0ℓ and
x′ ̸= x (see Proposition 8.8, and note that G(a, b, c, d) = (a, b, c, d, E2(a, b), E2(c, d)) will do).
We stress that the foregoing construction is strongly explicit (i.e., locally computable).

We shall also assume that the (bipartite graph corresponding to the) non-malleable
extractor nmE : [2ℓ − 1] × [2ℓ − 1] → {0, 1} has linear degrees in the sense that for every x

it holds that |{y ∈ [2ℓ − 1] : nmE(x, y) = 1}| ≥ ϵ′ · 2ℓ for some constant ϵ′ > 0. This can be
enforced by starting with an arbitrary non-malleable two-source (k, ϵ′)-extractor (e.g., the
one of [7, Thm. 1]) and resetting pairs in m = ϵ′ · 2ℓ fixed perfect matchings to 1 (i.e., for
each (x, y) in one of these matching, we reset nmE(x, y)← 1).41 This increases the error of
the extractor by an additive term of m/2k = 2ℓ−k · ϵ′, which we can afford (e.g., ϵ′ = 0.01
and k = ℓ− 4, yields extraction error ϵ < 0.2). We stress that this transformation preserves
polynomial-time computability of the extracting function.

▶ Theorem 8.7 (using a non-malleable two-source extractor with linear degrees to obtain a
Ω(2ℓ)-robustly self-ordered O(2ℓ)-vertex graph). For any constants ϵ, ϵ′ ∈ (0, 0.5) and varying
k ≤ ℓ− 4, where ℓ ∈ N, suppose that nmE : [2ℓ − 1]× [2ℓ − 1]→ {0, 1} is a non-malleable two-
source (k, ϵ)-extractor such that for every x it holds that |{y∈ [2ℓ− 1] :nmE(x, y)=1}| > ϵ′ · 2ℓ.
Further suppose that B : [2ℓ − 1]× [2ℓ+2 − 1]→ {0, 1} is quasi-orthogonal with error 0.1 · ϵ′.
Then, the (6 · 2ℓ − 3)-vertex graph G = (V0 ∪ V1 ∪ V2, E) such that Vσ = {⟨σ, i⟩ : i∈ [2ℓσ − 1]},
where ℓ0 = ℓ1 = ℓ and ℓ2 = ℓ + 2, and

E = {{⟨1, i⟩, ⟨0, j⟩} :nmE(i, j)=1} ∪ {{⟨σ, i⟩, ⟨2, j⟩} :B(i, j)=1, σ ∈ {0, 1}} ∪
(

V1

2

)
∪

(
V2

2

)
(22)

is Ω(|V |)-robustly self-ordered, where V = V0 ∪ V1 ∪ V2. Furthermore, each vertex in this
graph has degree at least 0.3 · |V | and at most 0.9 · |V |.

Using the foregoing ingredients (including the non-malleable extractor of [7, Thm. 1]),
Theorem 1.4 follows (see also Remark 8.9). Looking at (22), note that the first set of edges
corresponds to a bipartite graph between V1 and V0 that is determined by nmE, the second
set corresponds the bipartite graphs between Vσ (for σ ∈ {0, 1}) and V2 that are determined
by B, and the other two sets correspond to cliques on V1 and on V2. (See Figure 2.)

41 For example, we may use the matchings {(z, z + i) : z ∈ [2ℓ −1]} for i ∈ [m], where addition is mod 2ℓ −1.
In addition, starting from an extractor that is defined over ℓ-bit strings, we may omit one of these
strings (and obtain an extractor defined over [2ℓ − 1]).

CCC 2021

12:60

Figure 2 Illustrating the construction of Theorem 8.7.

Proof. Recall that V = V0 ∪ V1 ∪ V2, and consider an arbitrary (non-trivial) permutation
µ : V → V . Intuitively, if µ maps a vertex of V0 (or V1) to V2, then the difference in degrees
of vertices in the two sets (caused by the |V2|-clique edges) contributes Ω(|V |) units to the
symmetric difference between G and µ(G), where here we use the first quasi-orthogonality
condition of B. A similar argument, which uses the V1-clique edges and relies on the linear
degrees of nmE, applies to a vertex of Vσ mapped to V1−σ for any σ ∈ {0, 1}. On the other
hand, if for some σ ∈ {0, 1, 2} the bijection µ maps ⟨σ, i⟩ ∈ Vσ to Vσ \ {⟨σ, i⟩}, then the
difference in the neighborhoods caused by one of the two relevant bipartite graphs contributes
Ω(|V |) units to the symmetric difference between G and µ(G). Here, we distinguishes between
the case that µ has relatively few non-fixed-points in either V0 or V1, which is analyzed
using the second quasi-orthogonality condition of B, and the case that µ has relatively many
non-fixed-points in both V0 and V1, which is analyzed using the non-malleability condition of
nmE. Indeed, the structure of the proof is similar to the one of Theorem 8.3, but the details
are different in many aspects, and so we provide them below.

Let T = {v∈V : µ(v) ̸= v} denote the set of non-fixed-points of µ. Then, we consider
two types of vertices: Those that belong to the set T ′ =

⋃
σ∈{0,1,2}{v∈Vσ :µ(v) ̸∈ Vσ} ⊆ T

and those that belong to T \ T ′. The threshold for distinguishing these cases is set to
K = (0.5 − 0.1 · ϵ′) · |V0|/4 = Ω(|V |).42 Recall that ϵ denotes the extraction error of nmE,
whereas ϵ′ is the fractional degree bound associated with its linear degrees feature, and 0.1 · ϵ′

is the quasi-orthogonality error of B.
Case 1: |T ′| ≥ K.

(This refers to the case that many vertices are mapped by µ to a different part of the
three-way partition (V0, V1, V2) of V , where “many” means Ω(|V |).)
Each vertex in T ′ contributes Ω(|V |) units to the symmetric difference between G and
µ(G), because of the differences in the degrees of vertices in the three parts. Specifically:

42 The threshold is set depending on the quasi-orthogonality error of B. In the proof of Theorem 8.3, the
threshold was set depending on the quasi-orthogonality error of nmE (which equaled its extraction error).

12:61

Vertices in V2 have degree at least (|V2| − 1) + (0.5 − 0.1ϵ′) · (|V0| + |V1|) > (5 −
0.2ϵ′) · |V0| − O(1), where the first term is due to the clique edges and the second
term is due to the bipartite graphs connecting V2 to V0 and V1 (and relies on the first
quasi-orthogonality condition of B).
Vertices in V0 have degree at most |V1|+ (0.5 + 0.1ϵ′) · |V2| < (3 + 0.4ϵ′) · |V0|+ O(1),
where the first term is due to the edges (determined by nmE) connecting V0 to V1 and
the second term is due to the bipartite graph connecting V0 to V2.
Vertices in V1 have degree at least (|V1| − 1) + ϵ′ · |V0|+ (0.5− 0.1ϵ′) · |V2| > (3 + 0.6ϵ′) ·
|V0| − O(1) and at most (|V1| − 1) + |V0| + (0.5 + 0.1ϵ′) · |V2| < (4 + 0.4ϵ′) · |V0|. In
both cases, the first term is due to clique edges, the second term is due to the edges
connecting V1 to V0 (as determined by nmE), and the third term is due to the edges
connecting V1 to V2 (as determined by B). The crucial fact is that the linear degrees
of nmE provides a non-trivial lower bound (of ϵ′ · |V0|) on the second term.

Hence, the difference in the degrees of vertices in the different parts is at least 0.2ϵ′ ·
|V0| −O(1), where the minimum is due to the difference between the degrees of vertices
in V1 and the degrees of vertices in V0.
It follows that the symmetric difference between G and µ(G) is at least (0.2ϵ′ · |V0| −
O(1)) · |T ′| = Ω(|V |) · |T ′|, since |V0| = Ω(|V |) and ϵ′ = Ω(1). Using the case’s hypothesis,
we have |T ′| = Ω(|V |) = Ω(|T |), which means that in this case the difference between G

and µ(G) is Ω(|V |) · |T |.
We stress that the difference between G and µ(G) is at least Ω(|V |) · |T ′| also if the case
hypothesis does not hold.

Case 2: |T ′| < K.
(This refers to the case that few vertices are mapped by µ to a different part of the
three-way partition (V0, V1, V2) of V .)
For every σ ∈ {0, 1, 2}, let V ′

σ = Vσ ∩ µ(Vσ) and Tσ = V ′
σ ∩ T . Indeed, (T ′, T0, T1, T2) is a

four-way partition of T . Note that the size of the symmetric difference between G and
µ(G) is lower-bounded by

|{(v, u) ∈ V ′
1 × V ′

0 : nmE(µ(v), µ(u)) ̸= nmE(v, u)}|
+ |{(v, u) ∈ V ′

1 × V ′
2 : B(µ(v), µ(u)) ̸= B(v, u)}|

+ |{(v, u) ∈ V ′
0 × V ′

2 : B(µ(v), µ(u)) ̸= B(v, u)}| ,
(23)

since, for any (v, u) ∈ V ′
1 × V ′

0 , it holds that µ(v) neighbors µ(u) in G if and only if
nmE(µ(v), µ(u)) = 1, whereas µ(v) neighbors µ(u) in µ(G) if and only if v neighbors u in
G which holds if and only if nmE(v, u) = 1. Ditto for the other two cases.
We consider two sub-cases according to whether or not min(|T0|, |T1|) is relatively large.
The threshold for distinguishing these sub-cases is also set to K = (0.5− 0.1 · ϵ′) · |V0|/4;
note that K = Ω(|V |) and K > 0.1 · |V0| > 2ℓ−4 ≥ 2k.

Case 2.1: min(|T0|, |T1|) < K.
In this case we shall use the quasi-orthogonality of B.
Suppose, without loss of generality, that |T0| ≤ |T1|, which implies |T0| < K.
Depending on the relative sizes of T1 and T2, we shall use either the quasi-orthogonal
bipartite graph between V1 and V2 or the quasi-orthogonal bipartite graph between V2
and V0.

CCC 2021

12:62

1. On the one hand, if |T1| > |T2|, then we consider the quasi-orthogonal bipartite
graph between V1 and V2. The contribution of each vertex v ∈ T1 to (23) equals
|{u ∈ V ′

2 : B(µ(v), µ(u)) ̸= B(v, u)}|
≥ |{u ∈ V ′

2 : B(µ(v), u) ̸= B(v, u)}| − |T2|
> |{u ∈ V2 : B(µ(v), u) ̸= B(v, u)}| − |T ′| − |T1|
≥ (0.5− 0.1 · ϵ′) · |V2| −K − |V0|
> 0.6 · |V0|

where the first inequality uses µ(u) = u for u ∈ V ′
2 \ T2, the second inequality

uses |V ′
0 | ≥ |V0| − |T ′| and the hypothesis |T2| < |T1|, the third inequality uses

µ(v) ̸= v along with the (second condition of) quasi-orthogonality of B (and
the hypotheses |T ′| < K and the fact that |T1| ≤ |V1| = |V0|), and the fourth
inequality uses ϵ′ < 0.5 and |V2| > 4 · |V0|. So the total contribution in this
sub-case is |T1| · Ω(|V |) ≥ (|T | − |T ′|) · Ω(|V |), since |T1| ≥ max(|T0|, |T2|) and
|T0|+ |T1|+ |T2| = |T | − |T ′|.

2. On the other hand, if |T1| ≤ |T2|, then we consider the quasi-orthogonal bipartite
graph between V2 and V0. The contribution of each vertex v ∈ T2 to (23) equals
|{u ∈ V ′

0 : B(µ(u), µ(v)) ̸= B(u, v)}|
≥ |{u ∈ V ′

0 : B(u, µ(v)) ̸= B(u, v)}| − |T0|
≥ |{u ∈ V0 : B(u, µ(v)) ̸= B(u, v)}| − |T ′| − |T0|
≥ (0.5− 0.1 · ϵ′) · |V0| − 2 ·K
= (0.5− 0.1 · ϵ′) · |V0|/2

where the first inequality uses µ(u) = u for u ∈ V ′
0 \ T0, the second inequality

uses |V ′
0 | ≥ |V0| − |T ′|, the third inequality uses µ(v) ̸= v along with the (second

condition of) quasi-orthogonality of B (and the hypotheses regarding |T ′| and |T0|),
and the equality is due to K = (0.5− 0.1 · ϵ′) · |V0|/4. So the total contribution in
this sub-case is |T2| · Ω(|V |) ≥ (|T | − |T ′|) · Ω(|V |), since |T2| ≥ |T1| ≥ |T0|.

Hence, the total contribution (of Case 2.1) to (23) is Ω(|V |) · (|T | − |T ′|).
Case 2.2: min(|T0|, |T1|) ≥ K.

In this case we shall use the non-malleable feature of nmE.
Specifically, for each σ ∈ {0, 1}, let µσ denote the restriction of µ to Tσ. Essentially,
using K ≥ 2k, the non-malleability condition of the (k, ϵ)-extractor nmE implies

|{(i, j) ∈ T0 × T1 : nmE(i, j) ̸= nmE(µ0(i), µ1(j))}| ≥ (0.5− ϵ) · |T0| · |T1|.

This can be seen by letting X and Y be uniform over T0 and T1, respectively, and
combining the fact that Pr[nmE(µ0(X), µ1(Y)) ̸= U1] = 0.5 with the non-malleability
condition (while noting that µ0 : T0 → µ(T0) and µ1 : T1 → µ(T1) have no fixed-
points).43

Hence, in this case, the total contribution to (23) is (0.5 − ϵ) · |T0| · |T1| = Ω(|V |2),
where we use min(|T0|, |T1|) = Ω(|V |).

Hence, in both sub-cases, the difference between G and µ(G) is Ω(|V |) · (|T | − |T ′|).

43 Formally, we should extend µ0 and µ1 to (arbitrary) derangements f and g, respectively. (Note
that we may assume, w.l.o.g., that |Tσ ∪ µ(Tσ)| ≤ |Vσ| − 2.) Lastly, note that (18) implies that
Pr[nmE(X, Y) ̸= nmE(f(X), g(Y))] ≥ Pr[U1 ̸= nmE(f(X), g(Y))] − ϵ = 0.5 − ϵ.

12:63

Recall that (by the last comment at Case 1) the difference between G and µ(G) is Ω(|V |) · |T ′|.
Combining this lower-bound with the conclusion of Case 2, the difference between G and
µ(G) is Ω(|V |) · |T |. As for the degree bounds, note that each vertex has degree at most
(|V2|−1)+(0.5−0.1ϵ′) · (|V0|+ |V1|) = (5+0.2ϵ′) · |V0|+O(1), and at least (0.5−0.1ϵ′) · |V2| <
(2 − 0.4ϵ′) · |V0| − O(1), where maximum (resp., minimum) is obtained by vertices in V2
(resp., V0). ◀

Digest

Compared to the construction used in Theorem 8.3, the construction in Theorem 8.7 decouples
the non-malleable feature from the quasi-orthogonality feature, using non-malleable extractors
for connecting one pair of vertex-sets and quasi-orthogonal functions to connect the other
two pairs. The current analysis is slightly more complex because it has to handle the fact
that these features hold for different pairs. Specifically, the quasi-orthogonality of B is used
in Cases 1 and 2.1, whereas the non-malleability of nmE is used in Case 2.2. In particular,
Case 1 only uses the first condition of quasi-orthogonality, and does so in order to infer
that the degrees of all vertices in the bipartite graph determined by B are approximately
equal. In Case 2.1 the second quasi-orthogonality condition is used in order to assert that
the neighborhoods of two different vertices in Vσ (for every σ ∈ {0, 1, 2}) are significantly
different. This is useful only when the number of non-fixed-points in the other side of the
graph B is relatively small.

In light of the key role that quasi-orthogonal unbalanced bipartite graphs play in The-
orem 8.7 and given their natural appeal, it feel adequate to provide a general construction of
these graphs, which generalizes the construction outlined before Theorem 8.7 (for the case of
ℓ′ = ℓ + 2).

▶ Proposition 8.8 (quasi-orthogonal unbalanced bipartite graphs). For Sℓ
def= {0, 1}ℓ \ {0ℓ} let

G : Sℓ → Sℓ′ be small-bias generator with bias ϵ such that G(s) ̸= G(s′) for every s ≠ s′, and
let E2 denote the inner-product mod 2 function. Then, the bipartite graph described by the
adjacency predicate B : Sℓ×Sℓ′ → {0, 1} such that B(x, y) = E2(G(x), y) is quasi-orthogonal
with error ϵ.

(Note that the hypothesis implies ϵ > 1/|Sℓ′ |. The definition of quasi-orthogonal bipartite
graphs appears before Theorem 8.7.)

Proof Sketch. Our starting point is the fact that E2 : Sℓ′ × Sℓ′ → {0, 1} is quasi-orthogonal
with error 1/|Sℓ′ |. The quasi-orthogonality feature of the first argument of B follows as a
special case of the corresponding feature of E2. Turning to fixings of the second argument of
E2 and letting X be uniform over Sℓ, we observe that, for every y ∈ Sℓ′ , the bit B(G(X), y)
is a linear combination of the bits of G(X), and hence Pr[B(G(X), y)=1] = 0.5± ϵ. Similarly,
for y ̸= y′, it holds that B(G(X), y)⊕B(G(X), y′) = B(G(X), y ⊕ y′) is linear combination
of the bits of G(X). ◀

▶ Remark 8.9 (obtaining Ω(n)-robustly self-ordered n-vertex graphs, for every n). Theorem 8.7
provides a construction of Ω(n)-robustly self-ordered n-vertex graphs, for every n of the form
6 · 2ℓ − 3, where ℓ ∈ N. A construction for every n ∈ N can be obtained by using a few minor
modifications.

Rather than using |V2| = 2ℓ+2 − 1 = 4 · (|V0|+ 1)− 3, we may use |V2| = n− 2 · |V0| such
that |V0| = Ω(n). Specifically, we still use |V0| = 2ℓ − 1, for ℓ = log2 n−Θ(1), along with
|V2| ∈ [4 · |V0|, 10 · |V0|]. Doing so requires decreasing the quasi-orthogonality error of B

to 0.04ϵ′ so that 0.04ϵ′ · |V2| ≤ 0.4 · |V0| still holds.

CCC 2021

12:64

More importantly, we need a construction of a quasi-orthogonal bipartite graph with
an adjacency predicate B : [2ℓ − 1] × [n′] → {0, 1} such that n′ = n − 2 · (2ℓ − 1) ≥
2n/3. The solution is to associated [n′] with an easily enumerable small-bias space
S ⊆ {0, 1}ℓ+4 \ {0ℓ+4} and use B(x, y) = E2(G(x), y), where E2 and G are as in
Proposition 8.8. Specifically, for t = log2 log2 ℓ and D = ⌈n′ · 2t/2ℓ+4⌉, we let S contain
the n′ lexicographically first strings in S′ × {0, 1}ℓ+4−t, where S′ is a small-bias sample
space of size D over {0, 1}t that is found by exhaustive search.44

8.3 Obtaining efficient self-ordering
We say that a self-ordered graph G = ([n], E) is efficiently self-ordered if there exists a
polynomial-time algorithm that, given any graph G′ = (V ′, E′) that is isomorphic to G, finds
the unique bijection ϕ : V ′ → [n] such that ϕ(G′) = G (i.e., the unique isomorphism of G′

and G). Indeed, this isomorphism orders the vertices of G′ in accordance with the original
(or target) graph G.

Recall that in the case of bounded-degree graphs, we relied on the existence of a polynomial-
time isomorphism test (see [29]) for efficiently self-ordering the robustly self-ordered graphs
that we constructed. We cannot do so in the dense graph case, since a general polynomial-
time isomorphism test is not known (see [1]). Instead, we augment the construction asserted
in Theorem 1.4 so to obtain dense Ω(n)-robustly self-ordered graphs that are efficiently
self-ordered.45

▶ Theorem 8.10 (strengthening Theorem 1.4). There exist an infinite family of dense Ω(n)-
robustly self-ordered graphs {Gn}n∈N and a polynomial-time algorithm that, given n ∈ N and
a pair of vertices u, v ∈ [n] in the n-vertex graph Gn, determines whether or not u is adjacent
to v in Gn. Furthermore, these graphs are efficiently self-ordered, and the degrees of vertices
in Gn reside in [0.06n, 0.73n].

Proof. Our starting point is the construction of m-vertex graphs that are Ω(m)-robustly
self-ordered (see Theorem 1.4, which uses Theorem 8.7). Recall that the vertices in these
graphs have degree that ranges between 0.3 ·m and 0.9 ·m (see Theorem 8.7).

The idea is to use two such graphs, G1 and G2, one with m vertices and the other
with 4 · m vertices, where m = n/5, and connect them in a way that assists finding the
ordering of vertices in each of these two graphs. Specifically, we designate a set, denoted S1, of
s

def= 2
√

log2 n vertices in G1 = ([m], E1), and a set, denoted S2, of ℓ
def=

(
s
2
)
∈ [log2 n, 2 log2 n]

vertices in G2 = ({m + 1, ..., 5m}, E2), and use them as follows:
Connect each vertex in S2 to two different vertices in S1, while noting that each vertex
in S1 is connected to 2ℓ/s = o(ℓ) vertices of S2.
Connect each vertex in R1

def= [m] \ S1 to a different set of neighbors in S2 such that each
vertex in R1 has at least ℓ/2 neighbors in S2.

44 Note that for every z = (z′, z′′) ∈ {0, 1}ℓ+4 \ {0ℓ+4} and Y = (Y ′, Y ′′) that is uniformly distributed
over S such that |z′| = |Y ′| = t it holds that

E[(−1)E2(z,Y)] = E[(−1)E2(z′,Y ′)] · E[(−1)E2(z′′,Y ′′)]

where the absolute value of each of the factors is o(1) if the corresponding fixed string (i.e., z′ or z′′)
is non-zero. Specifically, note that Y ′ (resp., Y ′′) is o(1)-close to being uniformly distributed over S′

(resp., {0, 1}ℓ+4−t).
45 Unlike in the bounded degree case (see Section 4.4), we do not know how to construct Ω(n)-robustly

self-ordered graphs that support local self-ordering. We mention that Ω(n)-robustly self-ordered graphs
with information-theoretically local self-ordering do exist [22].

12:65

Figure 3 The construction of Theorem 8.10.

Connect each vertex in R2
def= {m + 1, ..., 5m} \ S2 to a different set of neighbors in R1

such that each vertex in R2 has two neighbors in R1 and each vertex in R1 has at most
eight neighbors in R2.

(See Figure 3.) Denote the resulting graph by G = ([n], E), and note that the vertices of
G1 have degree at most 0.9 ·m + ℓ, whereas the vertices of G2 have degree at least 0.3 · 4m.
Given an isomorphic copy of the G, we can find the unique isomorphism (i.e., its ordering)
as follows:
1. Identify the vertices that belong to G1 by virtue of their lower degree.
2. Identify the set S1 as the set of vertices that belong to G1 and have 2ℓ/s = o(ℓ) neighbors

in G2.
(Recall that each vertex in R1 has at least ℓ/2 neighbors in S2.)

3. Identify the set S2 as the set of vertices that belong to G2 and have (two) neighbors in
S1.

4. For each possible ordering of S1, order the vertices of S2 by their neighborhood in S1,
and order the vertices of R1 according to their neighborhood in S2.
If the resulting ordering (of S1 ∪ R1) yields an isomorphism to G1, them continue.
Otherwise, try the next ordering of S1.

5. Order the vertices of R2 according to their neighborhood in R1.
Note that by the asymmetry of G1, there exists a unique ordering of its vertices, and a
unique ordering of S1 that fits it and leads the procedure to successful termination. One
the other hand, the number of possible ordering of S1 is s! = no(1), which means that the
procedure is efficient.

It is left to show that the graph G is Ω(n)-robustly self-ordered. Let γ ∈ (0, 1] be a constant
such that that G1 (resp., G2) is γ ·m-robustly self-ordered (resp., γ ·4m-robustly self-ordered).
Then, fixing an arbitrary permutation µ : [n]→ [n], and letting T = {v ∈ [n] : µ(v) ̸= v}, we
consider the following cases.
Case 1: |{v ∈ [m] : µ(v) ∈ [m]}| > γ · |T |/10.

In this case, we get a contribution of at least Ω(m · |T |) units to the symmetric difference
between G and µ(G), because of the difference in degree between vertices in [m] and
outside [m]. (Recall that the former have degree at most 0.9 ·m + ℓ < m, whereas the
latter have degree at least 0.3 · 4m = 1.2 ·m.)

Case 2: t
def= |{v ∈ [m] : µ(v) ∈ [m]}| ≤ γ · |T |/10.

In this case, at least (1− 0.1γ) · |T | vertices in T are mapped by µ to the side in which
they belong (i.e., each of these vertices v satisfies v ∈ [m] if and only if µ(v) ∈ [m]).
Let T1

def= {v ∈ T ∩ [m] : µ(v) ∈ [m]} and T2
def= {v ∈ T \ [m] : µ(v) ̸∈ [m]}. Then, the

CCC 2021

12:66

vertices in T1 contribute at least |T1| · γ ·m − t ·m units to the symmetric difference
between G and µ(G), where the negative term is due to possible change in the incidence
with vertices that did not maintain their side. Similarly, the vertices in T2 contribute
at least |T2| · γ · 4m− t · 4m units to the symmetric difference. Hence, it total, we get a
contribution of at least (|T | − 2t) · γ ·m− t · 5m = Ω(m · |T |).

The claims follows.46 ◀

Digest

The n-vertex graph constructed in the proof of Theorem 8.10 is proved to be Ω(n)-robustly
self-ordered by implicitly using the following claim.

▷ Claim 8.11 (combining two Ω(n)-robustly self-ordered graphs). For i ∈ {1, 2}, let Gi =
(Vi, Ei) be an Ω(n)-robustly self-ordered graph, and consider a graph G = (V1∪V2, E1∪E2∪E)
such that E contain edges with a single vertex in each Vi; that is, G consists of G1 and G2
and an arbitrary bipartite graph that connects them. If the maximun degree in G of each
vertex in V1 is smaller by an Ω(n) term from the minimum degree of each vertex in V2, then
G is Ω(n)-robustly self-ordered.

Indeed, Claim 8.11 is analogous to Claim 4.3 (which refers to bounded-degree graphs). We
also comment that Ω(n)-robustly self-ordered graph maintain this feature also when o(n)
edges are added (and/or removed) from the incidence of each vertex.

9 Application to Testing Dense Graph Properties

In Section 5, we demonstrated the applicability of robustly self-ordered bounded-degree
graphs to the study of testing graph properties in the bounded-degree graph model. In the
current section, we provide a corresponding demonstration for the regime of dense graphs.
Hence, we refer to testing graph properties in the dense graph model, which was introduced
in [18] and is surveyed in [16, Chap. 8]. In this model, graphs are represented by their
adjacency predicate, and distances are measured as the ratio of the number of differing
incidences to the maximal number of edges.

Background

We represent a graph G = ([n], E), by the adjacency predicate g : [n] × [n] → {0, 1} such
that g(u, v) = 1 if and only if {u, v} ∈ E, and oracle access to a graph means oracle access
to its adjacency predicate (equiv., adjacency matrix). The distance between the graphs
G = ([n], E) and G′ = ([n], E′) is defined as the fraction of entries (in the adjacency matrix)
on which the two graphs disagree.

▶ Definition 9.1 (testing graph properties in the dense graph model). A tester for a graph
property Π is a probabilistic oracle machine that, on input parameters n and ϵ, and oracle
access to an n-vertex graph G = ([n], E) outputs a binary verdict that satisfies the following
two conditions.
1. If G ∈ Π, then the tester accepts with probability at least 2/3.
2. If G is ϵ-far from Π, then the tester accepts with probability at most 1/3, where G is ϵ-far

from Π if for every n-vertex graph G′ = ([n], E′) ∈ Π the adjacency matrices of G and G′

disagree on at least ϵ · n2 entries.

46 Note that the degree of each vertex in G1 is at least 0.3m = 0.06n, whereas the degree of each vertex in
G2 is at most 0.9 · 4m + s < 0.73n.

12:67

The query complexity of a tester for Π is a function (of the parameters n and ϵ) that represents
the number of queries made by the tester on the worst-case n-vertex graph, when given the
proximity parameter ϵ.

Our result

We present a general reduction of testing any property Φ of (bit) strings to testing a
corresponding graph property Π. Loosely speaking, n-bit long strings will be encoded as part
of an O(

√
n)-vertex graph, which is constructed using Ω(

√
n)-robustly self-ordered Θ(

√
n)-

vertex graphs. This reduction is described in Construction 9.2 and its validity is proved in
Lemma 9.3. Denoting the query complexities of Φ and Π by QΦ and QΠ, respectively, we
get QΦ(n, ϵ) ≤ QΠ(O(n1/2), Ω(ϵ)). Thus, lower bounds on the query complexity of testing Φ,
which is a property of “ordered objects” (i.e., bit strings), imply lower bounds on the query
complexity of testing Π, which is a property of “unordered objects” (i.e., graphs).

Our starting point is the construction of m-vertex graphs that are Ω(m)-robustly self-
ordered. Actually, wishing Π to preserve the computational complexity of Φ, we use a
construction of graphs that are efficiently self-ordered, as provided by Theorem 8.10. Recall
that the vertices in these graphs have degree that ranges between 0.06 ·m and 0.73 ·m.

The idea is to use two such graphs, G1 and G2, one with m vertices and the other with
49 ·m vertices, where m =

√
n, and encode an n-bit string in the connection between them.

Specifically, we view the latter string as a m-by-m matrix, denoted (si,j)i,j∈[m], and connect
the ith vertex of G1 to the jth vertex of G2 if and only if si,j = 1.

▶ Construction 9.2 (from properties of strings to properties of dense graphs). Suppose that
{Gm = ([m], Em)}m∈N is a family of Ω(m)-robustly self-ordered graphs. For every n ∈ N, we
let m =

√
n, and proceed as follows.

For every s ∈ {0, 1}n views as (si,j)i,j∈[m] ∈ {0, 1}m×m, we define the graph G′
s =

([50m], E′
s) such that

E′
s = Em ∪ {{m + i, m + j} : {i, j} ∈ E49m} ∪ {{i, m + j} : i, j ∈ [m] ∧ si,j = 1} (24)

That is, G′
s consists of a copy of Gm and a copy of G49m that are connected by a bipartite

graph that is determined by s.
For a set of strings Φ, we define Π =

⋃
n∈N Πn as the set of all graphs that are isomorphic

to some graph G′
s such that s ∈ Φ; that is,

Πn = {π(G′
s) : s ∈ (Φ ∩ {0, 1}n) ∧ π ∈ Sym50m} (25)

where Sym50m denote the set of all permutations over [50m].
Note that, given a graph of the form π(G′

s), the vertices of Gm are easily identifiable (as
having degree at most 0.73m + m < 1.8m).47 The foregoing construction yields a local
reduction of Φ to Π, where locality means that each query to G′

s can be answered by making
a constant number of queries to s. The (standard) validity of the reduction (i.e., s ∈ Φ if
and only if G′

s ∈ Π) is based on the fact that Gm and G49m are asymmetric.
In order to be useful towards proving lower bounds on the query complexity of testing Π,

we need to show that the foregoing reduction is “distance preserving” (i.e., strings that are
far from Φ are transformed into graphs that are far from Π). The hypothesis that Gm and
G49m are Ω(m)-robustly self-ordered is pivotal to showing that if the string s is far from Φ,
then the graph G′

s is far from Π.

47 In contrast, the vertices of G49m have degree at least 0.06 · 49m > 2.9m.

CCC 2021

12:68

▶ Lemma 9.3 (preserving distances). If s ∈ {0, 1}n is ϵ-far from Φ, then the 50m-vertex
graph G′

s (as defined in Construction 9.2) is Ω(ϵ)-far from Π.

Proof. We prove the contrapositive. Suppose that G′
s is δ-close to Π. Then, for some r ∈ Φ

and a permutation π : [50m] → [50m], it holds that G′
s is δ-close to π(G′

r), which means
that these two graphs differ on at most δ · (50m)2 vertex pairs. If π(i) = i for every i ∈ [2m],
then s must be O(δ)-close to r, since si,j = 1 (resp., ri,j = 1) if and only if i is connected to
m + j in G′

s (resp., in π(G′
r) = G′

r).48 Unfortunately, the foregoing condition (i.e., π(i) = i

for every i ∈ [2m]) need not hold in general.
In general, the hypothesis that π(G′

r) is δ-close to G′
s implies that π maps at most O(δm)

vertices of [m] to {m + 1, ..., 2m}, and maps to [m] at most O(δm) vertices that are outside
it. This is the case because each vertex of [m] has degree smaller than 0.73m + m < 1.8m,
whereas the other vertices have degree at least 0.06 · 49m > 2.9m.

Turning to the vertices i ∈ [m] that π maps to [m] \ {i}, we upper-bound their number
by O(δm), since the difference between π(G′

r) and G′
s is at most δ · (50m)2, whereas the

hypothesis that Gm is c ·m-robustly self-ordered implies that the difference between π(G′
r)

and G′
s (or any other graph G′

w) is at least

∆ = c ·m · |{i∈ [m] :π(i) ̸= i}| −m · |{i∈ [m] :π(i) ̸∈ [n]}|.

(Hence, |{i ∈ [m] : π(i) ̸= i}| ≤ ∆+m·O(δm)
cm = O(δm).) The same considerations apply to

the vertices i ∈ {m + 1, ..., 2m} that π maps to {m + 1, ..., 2m} \ {i}; their number is also
upper-bounded by O(δm).

For every k ∈ {1, 2}, letting Ik = {i∈ [m] :π((k − 1) ·m + i)=(k − 1) ·m + i}, observe
that D

def= |{(i, j) ∈ I0 × I1 : ri,j ̸= si,j}| ≤ δ · (50m)2, since ri,j ̸= si,j implies that π(G′
r)

and G′
s differ on the vertex-pair (i, m + j). Recalling that m− |Ik| = O(δm), it follows that

|{(i, j) ∈ [m] : ri,j ̸= si,j}| ≤ ((m− |I1|)− (m− |I2|)) ·m + D = O(δm2).

Hence, s is O(δ)-close to r ∈ Φ, and the claims follows. ◀

10 The Case of Intermediate Degree Bounds

While Section 2–6 study bounded-degree graphs and Sections 7–9 study dense graphs (i.e.,
constant edge density), in this section we shall consider graphs of intermediate degree bounds.
That is, for every d : N → N such that d(n) ∈ [Ω(1), n], we consider n-vertex graphs of
degree bound d(n). In this case, the best robustness we can hope for is Ω(d(n)), and we shall
actually achieve it for all functions d.

▶ Theorem 10.1 (robustly self-ordered graphs for intermediate degree bounds). For every d :
N→ N such that d(n) is computable in poly(n)-time, there exists an efficiently constructable
family of graphs {Gn}n∈N such that Gn has maximal degree d(n) and is Ω(d(n))-robustly
self-ordered.

We prove Theorem 10.1 in three parts, each covering a different regime of degree-bounds (i.e.,
d(n)’s). Most of the range (i.e., d(n) = Ω(log n)0.5) is covered by Theorem 10.2, whereas
Theorem 10.3 handles small degree-bounds (i.e., d(n) = O(log n)0.499) and Theorem 10.5

48 Hence, G′
s is δ-close to G′

r implies that |{i, j ∈ [n] : si,j ≠ ri,j}| ≤ δ · (50m)2, which means that s is
(50m)2δ

n -close to r. (Recall that m =
√

n.)

12:69

handles the degree-bounds that are in-between. One ingredient in the proof of Theorem 10.5
is a transformation of graphs that makes them expanding, while preserving their degree and
robustness parameters up to a constant factor. This transformation, which is a special case
of Theorem 10.4, is of independent interest.

▶ Theorem 10.2 (robustly self-ordered graphs for large degree bounds). For every d : N →
N such that d(n) ≥ O(

√
log n) is computable in poly(n)-time, there exists an efficiently

constructable family of graphs {Gn}n∈N such that Gn has maximal degree d(n) and is Ω(d(n))-
robustly self-ordered.

The graphs will consist of connected components of size d(n), and in this case d(n) = Ω(
√

log n)
is necessary, since these components must be different.

Proof Sketch. We combine ideas from Construction 9.2 with elements of the proof of
Theorem 4.2. Specifically, as in Construction 9.2, we shall use constructions of m-vertex and
9m-vertex graphs that are Ω(m)-robustly self-ordered, but here we set m = d(n)/10 and use
n/d(n) different d(n)-vertex graphs that are based on the foregoing two graphs. As in the
proof of Theorem 4.2, these (10m-vertex) graphs will be far from being isomorphic to one
another and will form the connected components of the final n-vertex graph.

Our starting point is the construction of m-vertex graphs that are Ω(m)-robustly self-
ordered. Specifically, we may use Theorem 8.6 and note that in this case the vertices in these
m-vertex graph have degree that ranges between 0.24 ·m and 0.76 ·m. Furthermore, these
graphs have extremely high conductance; that is, in each of these graphs, the number of
edges crossing each cut (in the graph) is at least Ω(m) times the number of vertices in the
smaller side (of the cut).

The idea is to use two such graphs, G1 and G2, one with m
def= 0.1 · d(n) vertices and the

other with 0.9 ·d(n) = 9 ·m vertices, and connect them in various ways as done in Section 4.2.
Specifically, using an error correcting code with constant rate and constant relative distance
and weight, denoted C : [2k] → {0, 1}m2 , we obtain a collection of 2k ≥ n/d(n) strongly
connected d(n)-vertex graphs such that the ith graph consists of copies of G1 and G2 that
are connected according to the codeword C(i); more specifically, we use the codeword C(i)
(viewed as an m-by-m matrix) in order to determine the connections between the vertices of
G1 and the first 0.1 · d(n) vertices of G2. The final n-vertex graph, denoted G, consists of
n/d(n) connected components that are the first n/d(n) graphs in this collection.49

The analysis adapts the analysis of the construction presented in the proof of Theorem 4.2.
Towards this analysis, we let G

(i)
j denote the ith copy of Gj ; that is, the copy of Gj that is

part of the ith connected component of G. Hence, for each i ∈ [n/d(n)], the ith connected
component of G is isomorphic to a graph that consists of copies of G1 = ([m], E1) and
G2 = ({m + 1, ..., 10m}, E2) such that for every u, v ∈ [m] the vertex u (of G

(i)
1) is connected

to the vertex m + v (of G
(i)
2) if and only if C(i)u,v = 1. Loosely speaking, considering an

arbitrary permutation µ : [n]→ [n], we proceed as follows.50

The discrepancy between the degrees of vertices in copies of G1 and G2 (i.e., degree
smaller than 0.76m + m versus degree at least 0.24 · 9m) implies that each vertex that
resides in a copy of G1 and is mapped by µ to a copy of G2 yields a contribution of
Ω(d(n)) units to the symmetric difference between G and µ(G).

49 Note that we used 2k ≥ n/d(n) and m2 = O(k), where m = 0.1 · d(n) >
√

k. This setting allows for
handling any d(n) ≥ O(

√
log n).

50 These cases are analogous to the cases treated in the proof of Theorem 4.2, with the difference that we
merged Cases 2&3 (resp., Cases 4&5) into our second (resp., third) case.

CCC 2021

12:70

Let µ′(i) (resp., µ′′(i)) denote the index of the connected component to which µ maps
a plurality of the vertices that reside in G

(i)
1 (resp., of G

(i)
2). Then, the extremely high

conductance of G1 (resp., G2) implies that the vertices that resides in G
(i)
1 (resp., of G

(i)
2)

and are mapped by µ to a connected component different from µ′(i) (resp., µ′′(i)) yields
an average contribution of Ω(d(n)) units per each of these vertices.
The lower bound on the number of edges between G

(i)
1 and G

(i)
2 implies that every i such

that µ′(i) ̸= µ′′(i) yields a contribution of Ω(d(n)2) units, where we assume that few
vertices fell to the previous case (i.e., are mapped by µ in disagreement with the relevant
plurality vote). (Analogously to the proof of Theorem 4.2, each of these few exceptional
vertices reduces the contribution by at most d(n) units.)
The Ω(d(n))-robust self-ordering of G1 (resp., G2) implies that each vertex that reside
in G

(i)
1 (resp., of G

(i)
2) and is mapped by µ to a different location in G

(µ′(i)
1 (resp., in

G
(µ′′(i)
2) yields a contribution of Ω(d(n)) units. Again, this assumes that few vertices fell

to the penultimate case, whereas each of these few vertices reduces the contribution by
one unit (per each vertex in the current case).
The distance between the codewords of C implies that every i such that µ′(i) = µ′′(i) ̸= i

yields a contribution of Ω(d(n)2), where we assume that few vertices fell to the previous
cases.

As in the proof of Theorem 4.2, there may be a double counting across the different cases,
but this only means that we overestimate the contribution by a constant factor. Overall the
size of the symmetric difference is Ω(d(n)) times the number of non-fixed-points of µ. ◀

Handling smaller degree bounds

Theorem 10.2 is applicable only for degree bounds that are at least O(log n)0.5. A different
construction allows handling degree bounds up to O(log n)0.499, which leaves a small gap
(which we shall close in Theorem 10.5).

▶ Theorem 10.3 (robustly self-ordered graphs for small degree bounds). For every every
constant ϵ > 0, and every d : N → N such that d(n) ∈ [Ω(1), (log n)0.5−ϵ] is computable in
poly(n)-time, there exists an efficiently constructable family of graphs {Gn}n∈N such that
Gn has maximal degree d(n) and is Ω(d(n))-robustly self-ordered.

In this case, the graphs will consist of connected components of size Θ(log n)
d(n)·log log n > d(n).

Proof Sketch. Setting m(n) def= Θ(log n)
d(n)·log log n > d(n) · (log n)ϵ, we proceed in three steps.

1. We first tighten the proof of Theorem 6.1 such that it establishes that, with probability
at least 1 − exp(−Ω(d(n) · log m(n)) = 1 − o(1), a d(n)-regular m(n)-vertex multi-
graph generated by the random permutation model is Ω(d(n))-robustly self-ordered and
expanding. The fact that the proof extends to a varying degree bound is implicit in the
proof of Theorem 6.1, and the higher robustness is obtained by using smaller sets Ji’s
(see Footnote 33).
Then, we extend the argument (as done in Step 1 of Remark 6.2) and show that, for
any set G of t < n multi-graphs (which is each d(n)-regular and has m(n) vertices), with
probability at least 1 − t · exp(−Ω(d(n) · log m(n)) = 1 − o(1), a random d(n)-regular
m(n)-vertex multi-graph (as generated above) is both Ω(d(n))-robustly self-ordered and
expanding and far from being isomorphic to any multi-graph in G. Here two d(n)-regular
m(n)-vertex multi-graphs are said to be far apart if they disagree on Ω(d(n) · m(n))
vertex-pairs. (Note that the probability that such a random multi-graph is close to being

12:71

isomorphic to a fixed multi-graph is at most exp(−Ω(d(n) · m(n) log(m(n)/d(n)))) =
o(1/n2), where the last inequality is due to the setting of m(n).)51

Note that this multi-graph may have parallel edges and self-loops, but their number can
be upper-bounded with high probability. Specifically, for t = 1/ϵ, with probability at
least 1−O(d(n)t/m(n)t−1), no vertex has t (or more) self-loops and no vertex is incident
to t + 1 (or more) parallel edges. Hence, omitting all self-loops and all parallel edges
leaves us with a simple graph that is both Ω(d(n))-robustly self-ordered (and expanding)
and far from being isomorphic to any graph in G.

2. Next, using Step 1, we show that one can construct in poly(n)-time a collection of n/m(n)
graphs such that each graph is d(n)-regular, has m(n) vertices, is Ω(d(n))-robustly self-
ordered and expanding, and the graphs are pairwise far from being isomorphic to one
another.
As in Step 2 of Remark 6.2, this is done by iteratively finding robustly self-ordered
d(n)-regular m(n)-vertex expanding graphs that are far from being isomorphic to all prior
ones, while relying on the fact that m(n)d(n)·m(n) = poly(n) (by the setting of m(n)).

3. Lastly, we use the graphs constructed in Step 2 as connected components of an n-vertex
graph, and obtain the desired graph.

Note that we have used m(n) > (log n)ϵ · d(n) and d(n) ·m(n) · log m(n) = Θ(log n), which
is possible if (and only if) d(n) ≤ (log n)0.5−Θ(ϵ). ◀

Obtaining strongly connected graphs

The graphs constructed in the proofs of Theorems 10.2 and 10.3 consists of many small
connected components; specifically, we obtain n-vertex graphs of maximum degree d(n) with
connected components of size max(O(d(n)), o(log n)) that are Ω(d(n))-robustly self-ordered.
We point out that the latter graphs can be transformed into ones with asymptotically maximal
expansion (under any reasonable definition of this term), while preserving their maximal
degree and robustness parameter (up to a constant factor). This is a consequence of the
following general transformation.

▶ Theorem 10.4 (the effect of super-imposing two graphs). For every d, d′ : N → N and
ρ : N → R, let G and G′ be n-vertex graphs such that G is ρ(n)-robustly self-ordered and
has maximum degree d(n), and G′ has maximum degree d(n). Then, the graph obtained by
super-imposing G and G′ is (ρ(n) − d′(n))-robustly self-ordered and has maximum degree
d(n) + d′(n).

Note that Theorem 10.4 is not applicable to the constructions of bounded-degree graphs
obtained in the first part of this paper, because their robustness parameter was a constant
smaller than 1. (This is due mostly to Construction 2.3, but also occurs in the proof of
Theorem 4.2.)52 A typical application of Theorem 10.4 may use d′(n) = ρ(n)/2 ≥ 3. (Recall
that ρ(n) ≤ d(n) always holds.)

51 For starters, the probability that an edge that appears in the fixed multi-graph appears in the random
graph is d(n)/m(n). Intuitively, these events are sufficiently independent so to prove the claim; for
example, we may consider the neighborhoods of the first m(n)/2 vertices in the random graph, and an
iterative process in which they are determined at random conditioned on all prior choices.

52 In contrast, the construction of Theorem 10.3, which builds upon the proof of Theorem 6.1, does yield
Ω(d)-robustly self-ordered graphs of maximum degree d, for sufficiently large constant d.

CCC 2021

12:72

Proof. Fixing any permutation µ of the vertex set, note that the contribution of each
non-fixed-point of µ to the symmetric difference between G∪G′ and µ(G∪G′) may decrease
by at most d′(n) units due to G′. ◀

Closing the gap between Theorems 10.2 and 10.3

Recall that these theorems left few bounding functions untreated; essentially, these were
functions d : N→ N such that d(n) ∈ [(log n)0.499, O(log n)0.5]. We close this gap now.

▶ Theorem 10.5 (robustly self-ordered graphs for the remaining degree bounds). For every
d : N→ N such that d(n) ∈ [(log n)1/3, (log n)2/3] is computable in poly(n)-time, there exists
an efficiently constructable family of graphs {Gn}n∈N such that Gn has maximal degree d(n)
and is Ω(d(n))-robustly self-ordered.

In this case, the graphs will consist of connected components of size 2 log n.

Proof Sketch. We apply the proof strategy of Theorem 10.2, while using the graphs obtained
by combining Theorems 10.2 and 10.4. Specifically, setting ℓ = log n, while noting that
d(n) ≥ ℓ1/3 ≫ O(log ℓ)1/2, we use the construction of ℓ-vertex Ω(d(n))-robustly self-ordered
graphs of degree at most d(n)/2 that are expanding, which is obtained by combining the
latter two results. Furthermore, we shall use the fact that these graphs have degree at
least d(n)/200, and will also use the same construction with degree bound d(n)/300. Using
these two graphs, we shall construct n/2ℓ different ℓ-vertex graphs that are far from being
isomorphic to one another, and these will form the connected components of the final n-vertex
graph.

Our starting point is the construction of ℓ-vertex graphs that, for some constant γ ∈ (0, 1),
are γ · d(n)-robustly self-ordered and have maximum degree d(n)/4 and minimum degree
d(n)/100. Such graphs are obtained by Theorem 10.2, while setting m = d(n)/40. Using
Theorem 10.4 (with d′(n) = γ · d(n)/4), we transform these graphs to ones of maximum
degree d(n)/2 and asymptotically maximal conductance (i.e., in each of these graphs, the
number of edges crossing each cut (in the graph) is at least Ω(d(n)) times the number of
vertices in the smaller side (of the cut)). We denote the resulting graph G1, and apply the
same process while setting m = d(n)/600 so to obtain a graph of maximum degree d(n)/300,
denoted G2.

Next, we connect G1 and G2 in various ways so to obtain n/2ℓ graphs that are far
from being isomorphic to one another. This is done by a small variation on the proof of
Theorem 10.2. Specifically, we fix d(n)/2 disjoint perfect matchings between the vertices of G1
and the vertices G2, and use the error correcting code to determine which of these ℓ ·d(n)/2 =
ω(log n) edges to include in the code. More specifically, using an error correcting code with
constant rate and constant relative distance and weight, denoted C : [2k] → {0, 1}ℓ·d(n)/2,
we obtain a collection of n/2ℓ < 2k strongly connected 2ℓ-vertex graphs such that the ith

graph consists of copies of G1 and G2 that are connected according to the codeword C(i);
that is, the (r, c)th bit of the codeword C(i) (viewed as an d(n)/2-by-ℓ matrix) determines
whether the cth edge of the rth matching is included in the ith graph. The final n-vertex
graph, denoted G, consists of these n/2ℓ graphs as its connected components.

The analysis is almost identical to the analysis provided in the proof of Theorem 10.2,
since the key facts used there hold here too (although the construction is somewhat different).
The key facts are that the degrees of vertices in G1 and G2 differ in Ω(d(n)) units, that
the relative conductance of the connected components is Ω(d(n)), that G1 and G2 are both
Ω(d(n))-robustly self-ordered, and that the bipartite graphs (used in the different connected
components) are far away from one another. ◀

12:73

References
1 L. Babai. Graph isomorphism in quasipolynomial time. In 48th ACM Symposium on the

Theory of Computing, pages 684–697, 2016.
2 E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust pcps of proximity,

shorter pcps, and applications to coding. SIAM Journal on Computing, 36 (4):889–974, 2006.
3 A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for testing 3-colorability in bounded-

degree graphs. In 43rd IEEE Symposium on Foundations of Computer Science, pages 93–102,
2002.

4 B. Bollobas. The asymptotic number of unlabelled regular graphs. J. Lond. Math. Soc.,
26:201–206, 1982.

5 B. Bollobas. Distinguishing vertices of random graphs. North-Holland Mathematics Studies,
62:33–49, 1982.

6 J. Bourgain and A. Gamburd. Uniform expansion bounds for cayley graphs of SL2(fp). Annals
of Mathematics,, pages 625–642, 2008.

7 E. Chattopadhyay, V. Goyal, and X. Li. Non-malleable extractors and codes, with their many
tampered extensions. In 48th STOC, pages 285–298, 2016.

8 M. Cheraghchi and V. Guruswami. Non-malleable coding against bit-wise and split-state
tampering. In 11th TCC, pages 440–464, 2014.

9 B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic
communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

10 I. Dinur, O. Goldreich, and T. Gur. Every set in p is strongly testable under a suitable
encoding. In 10th ITCS, pages 30:1–30:17, 2019.

11 I. Dinur and O. Reingold. Assignment-testers: Towards a combinatorial proof of the pcp-
theorem. SIAM Journal on Computing, 36(4):975–1024, 2006.

12 Y. Dodis and D. Wichs. Non-malleable extractors and symmetric key cryptography from weak
secrets. In 41st STOC, pages 601–610, 2009.

13 D. Ellis. Lecture 13: The expansion of random regular graphs. Lecture notes, Algebraic
Methods in Combinatorics, 2011.

14 P. Erdos and A. Renyi. Asymmetric graphs. Acta Mathematica Hungarica, 14(3):295–315,
1963.

15 E. Fischer and L. Fortnow. Tolerant versus intolerant testing for boolean properties. Theory
of Computing, 2(9):173–183, 2006.

16 O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.
17 O. Goldreich. On testing hamiltonicity in the bounded degree graph model. ECCC, TR19-109,

2020.
18 O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and

approximation. Journal of the ACM, pages 653–750, 1998.
19 O. Goldreich, M. Krivelevich, I. Newman, and E. Rozenberg. Hierarchy theorems for property

testing. Computational Complexity, 21(1):129–192, 2012.
20 O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica, 32(2):302–

343, 2002.
21 O. Goldreich and A. Wigderson. Constructing large families of pairwise far permutations:

Good permutation codes based on the shuffle-exchange network. ECCC, TR20-192, 2020.
22 O. Goldreich and A. Wigderson. Non-adaptive vs adaptive queries in the dense graph testing

model. ECCC, TR20-160, 2020.
23 O. Goldreich and A. Wigderson. Robustly self-ordered graphs: Constructions and applications

to property testing. ECCC, TR20-149, 2020.
24 C.S. Greenhill, S. Janson, J.H. Kim, and N.C. Wormald. Permutation pseudographs and

contiguity. Combinatorics, Probability and Computing, 11:273–298, 2002.
25 S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bulletin

(New Series) of the American Mathematical Society, 43(4):439–561, 2006.

CCC 2021

12:74

26 J.H. Kim, B. Sudakov, and V.H. Vu. On the asymmetry of random regular graphs and random
graphs. Random Structures & Algorithms, 21(3-4):216–224, 2002.

27 A. Lubotzky. Discrete groups, expanding graphs and invariant measures. Progress in mathem-
atics, 125, 1994.

28 A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8:261–277, 1988.
29 E.M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.

Journal of Computer and System Science, 25(1):42–65, 1982.
30 M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance approximation.

Journal of Computer and System Science, 72(6):1012–1042, 2006.
31 R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to

program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

Appendix: On Definitions of Non-Malleable Two-Source Extractor

Recall that Definition 8.1 differs from [7, Def. 1.3] only in the scope of the “tampering
functions” f and g. Whereas Definition 8.1 requires both f and g to have no fixed-point,
in [7, Def. 1.3] it is only required that either f or g has no fixed-point. In both cases, the
extraction condition is captured by (18) and is applied to the eligible functions f and g (and
to random variables X and Y of sufficiently high min-entropy).

We show that Definition 8.1 is strictly weaker than [7, Def. 1.3]. To see this, let
E : {0, 1}n−1 × {0, 1}n → {0, 1}m be a non-malleable extractor under [7, Def. 1.3] (say, for
constant error and constant deficiency). Actually, we will only use the hypothesis that (18)
holds for f and g such that g has no fixed-point (i.e., we make no requirement of f). Now,
let E′(bx′, y) = E(x′, y), where b ∈ {0, 1}.
1. Clearly, E′ violates (18) for g(y) = y and f(bx′) = bx′, where b = 1 − b, since

E′(f(bx′), g(y)) = E(x′, y) = E′(bx′, y). Hence, E′ does not satisfy [7, Def. 1.3].
2. To see that E′ satisfies Definition 8.1, consider any f and g that have no fixed-points,

and distributions X = (B, X ′) and Y of low deficiency. Define a random process F :
{0, 1}n−1 → {0, 1}n such that F (x′) = f(bx′), where b is selected according to the residual
distribution of B conditioned on X ′ = x′ (i.e., Pr[F (x′) = z] = Pr[f(X) = z|X ′ = x′]).
Then, letting f ′(x) (resp., F ′(x′)) be the (n− 1)-bit suffix of f(x) (resp., of F (x′)), we
have

(E′(X, Y), E′(f(X), g(Y))) = (E(X ′, Y), E(f ′(BX ′), g(Y)))
= (E(X ′, Y), E(F ′(X ′), g(Y))),

which is close to (Um, E(F ′(X ′), g(Y))), by the hypothesis regrading E (since
g has no fixed-point), while also using a convexity argument (for F ′). Using
(Um, E(F ′(X ′), g(Y))) = (Um, E′(F (X ′), g(Y))) = (Um, E′(f(X), g(Y))), we conclude
that (E′(X, Y), E′(f(X), g(Y))) is close to (Um, E′(f(X), g(Y))).

Barriers for Recent Methods in Geodesic
Optimization
W. Cole Franks #

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

Philipp Reichenbach #

Institut für Mathematik, Technische Universität Berlin, Germany

Abstract
We study a class of optimization problems including matrix scaling, matrix balancing, multidi-
mensional array scaling, operator scaling, and tensor scaling that arise frequently in theory and in
practice. Some of these problems, such as matrix and array scaling, are convex in the Euclidean
sense, but others such as operator scaling and tensor scaling are geodesically convex on a different
Riemannian manifold. Trust region methods, which include box-constrained Newton’s method, are
known to produce high precision solutions very quickly for matrix scaling and matrix balancing
(Cohen et. al., FOCS 2017, Allen-Zhu et. al. FOCS 2017), and result in polynomial time algorithms
for some geodesically convex problems like operator scaling (Garg et. al. STOC 2018, Bürgisser et.
al. FOCS 2019). One is led to ask whether these guarantees also hold for multidimensional array
scaling and tensor scaling.

We show that this is not the case by exhibiting instances with exponential diameter bound:
we construct polynomial-size instances of 3-dimensional array scaling and 3-tensor scaling whose
approximate solutions all have doubly exponential condition number. Moreover, we study convex-
geometric notions of complexity known as margin and gap, which are used to bound the running
times of all existing optimization algorithms for such problems. We show that margin and gap
are exponentially small for several problems including array scaling, tensor scaling and polynomial
scaling. Our results suggest that it is impossible to prove polynomial running time bounds for tensor
scaling based on diameter bounds alone. Therefore, our work motivates the search for analogues of
more sophisticated algorithms, such as interior point methods, for geodesically convex optimization
that do not rely on polynomial diameter bounds.

2012 ACM Subject Classification Theory of computation Ñ Algebraic complexity theory; Theory
of computation Ñ Continuous optimization; Mathematics of computing Ñ Combinatorics

Keywords and phrases Geodesically Convex Optimization, Weight Margin, Moment Polytope,
Diameter Bounds, Tensor Scaling, Matrix Scaling

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.13

Related Version Long Version: https://arxiv.org/abs/2102.06652

Funding Philipp Reichenbach: acknowledges funding by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement
no. 787840).

Acknowledgements The authors thank Jason Altschuler, Peter Bürgisser, Visu Makam, Adam
Sawicki and Michael Walter for helpful discussions. Furthermore, the authors thank the anonymous
referees for helpful comments and suggestions.

1 Introduction

We study a class of optimization problems ubiquitous in theoretical computer science,
machine learning, quantum information theory and statistics. The programs we consider are
continuous optimization problems over matrix groups. More precisely, they can be posed
as Euclidean norm minimization over the closure of a group orbit. The programs span two
historically distinct contexts: In one context, the optimization problems are convex, and in
the other they are not convex but rather geodesically convex on a suitable manifold.

© W. Cole Franks and Philipp Reichenbach;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 13; pp. 13:1–13:54

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:franks@mit.edu
https://orcid.org/0000-0001-5722-1515
mailto:reichenbach@tu-berlin.de
https://orcid.org/0000-0002-5722-5505
https://doi.org/10.4230/LIPIcs.CCC.2021.13
https://arxiv.org/abs/2102.06652
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Barriers in Geodesic Optimization

The commutative setting, in which the underlying group is Abelian, captures matrix scaling,
matrix balancing and array scaling, which arise in scientific computing and optimal transport
[17, 46]. Such problems fall into the framework of unconstrained geometric programming.
Though these problems are convex, there are at least two reasons to study them further.
Firstly, they are of such practical importance that speed matters. Naïvely applying powerful
algorithms like ellipsoid and interior point methods can be impractically slow. Hence, it is
important to understand when faster methods can succeed. Matrix scaling and balancing,
in particular, have enjoyed some success stories - there are fast algorithms to obtain high
precision solutions [16, 3], and there are more general upper bounds [14]. Secondly, the
algorithms developed for the commutative setting are candidates for generalization to our
second setting, which takes place in the less well-understood arena of geodesically convex
optimization.

The second context, which we call the noncommutative setting, arises when the underlying
group is non-Abelian. The noncommutative setting captures problems like operator and
tensor scaling [25, 13], the quantum marginal problem [11] and statistical estimators such as
Tyler’s M estimator [23] and maximum likelihood estimates for matrix and tensor normal
models [6]. Deciding whether the value of the optimization problem is zero or not is equivalent
to deciding a central polynomial identity testing (P.I.T.) problem in invariant theory known
as the null cone problem. It is hoped that efficient optimization algorithms will result in
efficient algorithms for the null-cone problem. One approach to complexity lower bounds,
geometric complexity theory, suggests that these P.I.T. problems should be in P [43, 26],
and the optimization approach has resulted in polynomial time algorithms in some cases
[25, 2]. The optimization problems that arise in the noncommutative setting are not convex
in the Euclidean sense, but rather geodesically convex, a notion of convexity on a Riemannian
manifold. Currently, the only implementable algorithms for geodesically convex optimization
are analogues of gradient descent and trust region methods [1, 53, 2]. There are, as of yet,
no efficiently implementable geodesically convex counterparts to the interior point or cutting
plane methods.

In both the commutative and noncommutative settings, algorithms are typically analysed
using two quantities. One is diameter, or how far approximate minimizers can be from the
origin. The other is a geometric measure of well-conditionedness known as margin (or gap in
the noncommutative case), which has several variants in the literature and appears in two
primary ways. Firstly, the smaller the margin, the higher the degree of precision required to
decide if the value of the optimization problem is zero or not [12, 30]. Secondly, the larger
the margin, the smaller the diameter [48, 50, 12, 14]. In this paper we show the following:

i) In the commutative setting, and in particular for array scaling, approximate minimizers
for the functions we study can have doubly exponential condition number. That is, the
problems have exponential diameter. As a consequence, popular classes of algorithms
such as gradient descent and trust region methods cannot produce high-precision solutions
in polynomial time in general. This result applies in the noncommutative setting as
well, which provides evidence that even cutting plane methods are unlikely to produce
high-precision solutions in polynomial time. This shows it is necessary to develop
powerful methods like the interior point method in the geodesically convex setting.

ii) In the commutative and noncommutative settings, we study the margin and gap,
respectively, which appear in running time bounds for all existing algorithms. We
prove that these measures can be exponentially small in the input size for several
problems including array scaling and tensor scaling. In the commutative case, this gives

W. C. Franks and P. Reichenbach 13:3

evidence that existing algorithms for array scaling do not run in near-linear time. In
the noncommutative case, our results show that margin-based analyses like [12] cannot
prove polynomial time guarantees for deciding the null cone problem for tensor scaling
using trust region methods.

We use the remainder of the introduction to describe both settings in more detail, state
our main results precisely, and discuss previous work. For both the commutative and
noncommutative settings, we proceed in the following order. We start with an introduction
and motivation of the setting, continue with diameter bounds and afterwards treat bounds
on the margin and gap, respectively. We end each setting with a short discussion of the main
proof techniques.

1.1 The commutative setting: matrix scaling and its relatives
Matrix scaling and array scaling

Consider the matrix scaling problem: given a nonnegative matrix A, find nonnegative diagonal
matrices X, Y such that XAY is doubly stochastic (i.e. has row and column sums equal to
one). The matrices, if they exist, can be found by the exceedingly simple and fast alternating
minimization method known as Sinkhorn’s algorithm. It is frequently used in practice, e.g.
for quickly approximating the solution to optimal transport problems [17].

Like all other algorithms for matrix scaling, Sinkhorn’s algorithm is typically analyzed
through optimization. One finds that X and Y are ediagpxq, ediagpyq, where x, y P Rn are
solutions to the following optimization problem:

inf
x,yPRn

ÿ

Aijexi`yj ´x̄´ȳ (1)

for z̄ :“ 1
n

ř

zi (c.f. [35]). Moreover, the infimum is greater than zero if and only if A is
approximately scalable, i.e. the row and column sums of XAY can be made arbitrarily close
to one for X, Y nonnegative, diagonal.

More generally, given a finite set Ω Ď Rm and a nonnegative function p : Ω Ñ Rě0, define
the capacity [30] as the value of the unconstrained geometric program

capppq :“ inf
xPRm

fppxq :“ inf
xPRm

ÿ

ωPΩ
pωeω¨x. (2)

The capacity is positive if and only if zero is in the Newton polytope convpsupp pq. Matrix
scaling arises when m “ 2n and Ω “ tpεi, εjq : i, j P rnsu for εk :“ ek ´ 1

n1n, where ek P Rn

is the kth canonical unit vector and 1n P Rn denotes the all-ones vector. In this case
Equation (2) reduces to precisely Equation (1), and }∇ log fppxq} measures the deviation of
p from doubly stochastic.

Matrix balancing, in which we instead wish to find a scaling for which the ith row and
column sum match, arises when m “ n and Ω “ tei ´ ej : i ‰ j P rnsu. When m “ 3n and
Ω “ tpεi, εj , εkq : i, j, k P rnsu we obtain the 3-dimensional array scaling problem. In analogy
to matrix scaling, in array scaling one has an array p of numbers in pRn

ě0qb3 and seeks positive
vectors X, Y, Z P Rn

ě0 so that the array q with entries qijk “ pijkXiYjZk is tristochastic. That
is, the sum over every slice is equal to one, i.e.

ř

j,k qi0,j,k “
ř

i,k qi,j0,k “
ř

i,j qi,j,k0 “ 1 for
all i0, j0, k0 P rns. If it is possible to satisfy these equations to arbitrary precision we say p

is approximately scalable. As for matrix scaling, p is approximately scalable if and only if
capppq ą 0. In the same manner, we obtain d-dimensional array scaling for m “ dn and

Ω “ Ωn,d :“
␣

εi : i P rns
(d

Ď
`

Rn
˘d

. (3)

CCC 2021

13:4 Barriers in Geodesic Optimization

We can think of subsets of Ωn,d as d-uniform, d-partite hypergraphs. Up to an additive shift
by ´ 1

n1nd, the elements of Ωn,d are indicator vectors of the edges in such hypergraphs. For
d “ 2, the matrix p is scalable if and only if the bipartite graph corresponding to supp p

contains a perfect matching, but this is not the case for d ě 3 (indeed, d-partite hypergraph
matching is NP-hard).

Algorithms for array scaling

Array scaling serves the same role for speeding up multimarginal transport as matrix scaling
for optimal transport, and yet again there is a simple and fast alternating minimization
algorithm that produces ε-tristochastic scalings in time Op1{ε2q [5, 39]. Moreover, algorithms
to approximate the capacity arise in varied settings including radial isotropic position [33],
entropy maximization [50], and approximate counting [7].

It is natural to ask if there are high-precision algorithms for array scaling with logp1{εq

dependence on the error and linear or mild dependence on the number of nonzero entries. For
matrix scaling and matrix balancing, several works have shown that trust regions and interior
point methods can obtain such guarantees [16, 3]. Our work is concerned with whether the
performance of such algorithms carries over to array scaling and the computation of the
capacity in general.

1.1.1 Diameter lower bounds
Guarantees for many iterative algorithms in convex optimization require diameter bounds, or
bounds on the distance R from the starting point to an ε-approximate solution. Trust region
methods, also called box-constrained Newton’s method, are iterative algorithms that, at each
step, move to the best solution within a typically small distance D of the previous solution.
By their nature, trust region methods take at least R{D steps to produce an ε-approximate
solution. Gradient descent for Lipschitz functions also depends quadratically on a diameter
bound, and cutting plane methods typically use diameter bounds to control the volume of a
starting region.

Known diameter upper and lower bounds

For matrix scaling and matrix balancing, it has been shown in [16] that one may take
R “ Opn logpwA{εqq, where wA is the ratio between the sum of the entries of the matrix and
the least nonzero entry. For 3-dimensional array scaling, the best upper bound of which we
are aware is R “ Opn3{226n logp1{εqq, which follows from the general upper bound of [50] on
diameter bounds for unconstrained geometric programming. There is also a diameter bound
for array scaling in the multimarginal transport context that is polynomial in the input size
assuming the tensor has no nonzero entries [39].

Regarding diameter lower bounds, in the context of computing maximum entropy distri-
butions it was shown that there is some bounded set Ω Ă Zm in a polypmq size ball such that
there are no ε-approximate minimizers of norm polypm, log 1{εq for fp as in Equation (2) [50].

Main theorem

Where do the polynomial diameter bounds for matrix scaling (i.e. 2-dimensional array
scaling) transition to the superpolynomial diameter bounds for general Ω? We show that this
transition takes place in the next simplest problem, the 3-dimensional array scaling problem.

W. C. Franks and P. Reichenbach 13:5

▶ Theorem 1.1. There is an absolute constant C ą 0 and an array pijk P pRn
ě0qb3 with

Opnq nonzero entries, each of bit-complexity Opnq, that satisfies the following property. For
all 0 ă ε ď expp´Cn2 log nq and px, y, zq P R3n, if

fppx, y, zq ď capppq ` ε

then ∥px, y, zq∥2 “ Ω
`

2n{3 logp1{εq
˘

.

To emphasize that the difficulties do not lie in an additive vs multiplicative approximation,
we remark that our array p has unit sum and capppq “ 1{2. By a simple duplication trick,
the same bound holds for d-dimensional array scaling with d ě 3; see Corollary 3.7.

Implications of Theorem 1.1 and relation to the literature

Theorem 1.1 shows that trust region methods for array scaling with polynomial step size
cannot provide high-precision solutions in polypn, logp1{εqq time for d ě 3. Moreover, gradient
descent on the Lipschitz convex function log fp has a bounded step size, and so also cannot
provide high precision solutions in polynomial time.

In [50, Section 2.1] the authors ask whether there is Ω whose elements are Boolean (up
to an additive shift) with a superpolynomial diameter lower bound. As subsets of Ωn,d are
automatically of this form, we answer their open problem in the affirmative. Our lower
bound on log R is tight up to constant factors by the diameter upper bound from [50]
mentioned above; moreover the logarithmic dependence on ε is best possible. Determining
the correct constant in the exponent is an interesting open direction. We believe that that
the requirement that ε is very small is an artifact of our specific construction and proof
strategy, and thus can probably be relaxed significantly.

Lastly, we remark that [14] bounds the diameter for fp by a polynomial in the facet gap,
i.e. the minimum distance between an element of supp p and an affine hull of a facet of the
Newton polytope. The construction in Theorem 1.1 has exponentially small facet gap; see
Corollary 3.6.

1.1.2 Margins: the geometry of scaling problems
Many computational aspects of the capacity rely on the convex geometry of the finite set
Ω Ď Rm. Consider the following quantity, which we call the margin of Ω. The margin is the
minimum positive distance from a convex hull of a subset of Ω to the origin. Formally,

▶ Definition 1.2 (Margin). For a finite set Ω Ď Rm, define the margin γpΩq by

γpΩq :“ min
␣

dist
`

0, convpSq
˘

| S Ď Ω, 0 R convpSq
(

.

We point out that for all considered capacity problems in this paper, the margin is actually
the weight margin (c.f. [12] and our Definition 4.3) of a certain group representation. For
example, the margin for array scaling is the weight margin for tensor scaling. We now discuss
how the margin enters in decision problems and diameter bounds.

Margin as a precision parameter for the decision problem

To illustrate how the margin enters the decision problem of whether capppq ą 0, consider
matrix scaling. To certify that the capacity of a matrix is nonzero, we compute ε-doubly
stochastic scalings for some ε smaller than the distance to doubly stochastic attained by any
matrix that is not approximately scalable. This turns out to be precisely γpΩn,2q. More

CCC 2021

13:6 Barriers in Geodesic Optimization

generally, it is a classical fact that for p with support contained in Ω, the gradient ∇ log fppxq

can take any value in the Newton polytope of p. Thus, capppq ą 0 if and only if there is
some x with }∇ log fppxq} ď γpΩq.

For matrix scaling and matrix balancing, it is known that γpΩq is on the order of n´3{2,
despite the exponential number of subsets S Ď Ω! This luck can be attributed to the
extraordinary geometry of Ω in these cases, whose elements form the rows of a totally
unimodular matrix (up to a shift). On the other hand, for d-dimensional array scaling for
n “ 2, the margin γpΩ2,dq is on the order of the margin of the d-dimensional hypercube
t˘1ud, which satisfies γ

`

t˘1ud
˘

“ d´ d
2 p1`op1qq by [4]. However, between the extreme cases

Ωn,2 (matrix scaling) and Ω2,d (the hypercube), very little is known.

Margin and related quantities for diameter bounds

In addition to their role in the decision problem, margins and related quantities can be
used to prove diameter bounds for Equation (2). The work [12] proves the diameter bound
polypγpΩq´1, logp1{εqq. In [50] it is shown that the diameter is polynomial in the logarithm
of the minimum nonzero pω and a quantity called the unary facet complexity. The latter is
defined as the maximal length of an integer normal vector of a face of the Newton polytope
convpsupp pq. In the case of d-dimensional arrays, one can use Cramer’s rule to crudely
bound the unary facet complexity by pd ` 1qdn. In the case when 0 is in the relative interior
of the Newton polytope, [48] has shown that there is a minimizer with Euclidean norm
Oplog | supp p|{ηq, where η is the distance from 0 to the boundary of the Newton polytope.
The diameter bounds in [48, 50] were used to design ellipsoid methods that are tractable
even for | supp p| very large, and in [14] they were used to bound the running time of interior
point methods.

Main theorem

One is led to ask if the margin remains large for array scaling when d ě 3. We show that
this is not the case. In fact, the margin becomes exponentially small in nd for d ě 3. What
follows is stated in more detail later in Theorem 2.1.

▶ Theorem 1.3. Let d ě 3 and n ě 2. Let Ωn,d “ tεi : i P rnsud Ď pRnqd, where εj :“
ej ´ 1

n1n. There exists a constant C ą 0, independent of n and d, such that γpΩn,dq ď 2´Cnd.

That is, there are d-dimensional arrays p P pRn
ě0qbd such that the d-tuple of marginals of

p is at distance at most 2´Cnd from 1
n p1n, . . . ,1nq, yet the support of p does not admit an

array with uniform marginals, i.e. capppq “ 0. We note that the support of the array p we
construct has Opndq elements.

Implications of Theorem 1.3 and relation to the literature

We remark that the construction yields a tensor whose Newton polytope has a facet exponen-
tially close to the origin. Therefore, the bound proved in [14] on the number of iterations for
interior point methods on 3-tensors is Ωpk3{2 ` k1{2 logp1{εqq for tensors with Opkq nonzero
entries.

Theorem 1.3 aligns with existing results showing that the d ą 2 array case is more complex
than the matrix case. Indeed, it is known that the polytope of arrays with uniform marginals,
known as the d-index axial assignment polytope, has many more vertices when d ě 3 and that
the vertices can have exponential entries [40]. In contrast, for d “ 2 this polytope (known
as the Birkhoff-von Neumann polytope) has integral vertices by the Birkhoff-von Neumann
theorem.

W. C. Franks and P. Reichenbach 13:7

The exponential rate of decay in Theorem 1.3 is tight up to log factors: [12, Theorem 6.10
Item 3] shows that the margin for d-dimensional array scaling is at least pn

?
dq´dn´1. It is in-

teresting to ask whether the true bound is 2´Θpndq as in our upper bound or 2´Θpndplog n`log dqq

as in the lower bound. [4] shows that the latter is correct in the case n “ 2.

1.1.3 Proof techniques for the commutative setting

We first discuss the techniques for proving our margin bounds. Theorem 1.3 is proven by
explicit construction of witness sets Γn,d Ď Ωn,d :“ tεi : i P rnsud, i.e. 0 R convpΓn,dq but
zero is exponentially close to convpΓn,dq. This is done by using that

ř

i n´1εi is the unique
way to express zero as a convex combination of the εi, compare Lemma 2.2, and by heavily
exploiting the combinatorics of Ωn,d. For example, in the case d “ 3 and n ě 3 the key
combinatorial idea builds on a construction by Kravtsov in [38]. Kravtsov’s motivation is to
characterize the non-integer vertices of the 3-index axial assignment polytope. He explicitly
constructs a certain non-integer vertex with maximal support [38, Theorem 1 with k “ 0]
which has an exponentially small entry.

By definition of the 3-index axial assignment polytope, the support of this vertex corre-
sponds to a subset S Ď Ωn,3 with 0 P convpSq. Removing the element of S corresponding to
the small entry in Kravtsov’s vertex yields our witness set Γn,3 with a convex hull very close
to zero. In fact, the whole idea generalizes (in a technical way) whenever d “ 6r ´ 3, r ě 1
and n ě 3, see section 2.3. For n “ 2 and d ě 3, the bound follows from the existing work
[4], as mentioned before. While the construction in that work via t´1, 1u matrices yields
a stronger bound, we provide a different construction of t´1, 1u matrices1, which has the
additional property of freeness. The latter will prove useful when we adapt Theorem 1.3 to
the noncommutative case.

We now discuss the proof of the diameter lower bound, Theorem 1.1. The high level
idea is as follows. We first construct a subset Ω0 Ď Ωn,3 with 0 P convpΩ0q such that there
is another element ω P Ωn,3 exponentially close to convpΩ0q, much like our construction of
the witness set for small margin discussed above. We then choose an appropriate array p

supported on Ω0 Y ω. This suggests that the only approximate minimizers of fp have a
very large component in the direction x from ω to convpΩ0q, because as y P Rm tends to a
minimizer of fp the term ey¨ω should vanish compared to the others. This reasoning requires
that y is approximately a multiple of x; to enforce this we also ensure that zero is far into
the relative interior of convpΩ0q.

The structure of this argument bears some similarity to that in [50], which uses the
construction of [4]. The main difference is that the set Ωn,3 in the 3-dimensional array scaling
problem consists of vectors of very specific structure: up to an additive shift of ´ 1

n13n, they
are Boolean vectors in R3n with exactly one nonzero entry among indices in the intervals
r1, ns, rn ` 1, 2ns, r2n ` 1, 3ns. Thus, our construction of Ω0 must consist of vectors of this
special form and not simply bounded integral vectors as in [50]. This is the main additional
technical contribution of our construction.

1 The p´1, 1q matrices from our construction are obtained by replacing all two’s in the entries of A2r (6)
with ´1.

CCC 2021

13:8 Barriers in Geodesic Optimization

1.2 The noncommutative setting
In the noncommutative setting, we consider a group G acting on Cm.2 The optimization
problem we investigate is given by the capacity of a vector v P Cm (c.f. [12]):

cappvq :“ inf
gPG

fvpgq :“ inf
gPG

}g ¨ v}2. (4)

For the majority of this paper we work with the tensor scaling action, in which G “ SLpn,Cqd,
the group of d-tuples of complex matrices with determinant one, acts on v P pCnqbd by
pg1, . . . , gdq ¨ v “ pg1 b ¨ ¨ ¨ b gdqv. The corresponding representation is always denoted by
πn,d. Sometimes we also consider the operator scaling action, in which SLpnq2 acts on
v P pCnqb2 b Ck by pg1, g2q ¨ v “ pg1 b g2 b Ikqv.

Though Equation (4) looks quite different from Equation (2), one can show that restricting
Equation (4) to a certain Abelian subgroup of G (a torus) and making a change of variables
yields an instance of Equation (2) (c.f. [12]). For example, restricting the tensor scaling
action to the diagonal matrices in G amounts precisely to the array scaling problem from
the previous subsection. Likewise, restricting to diagonal matrices in the operator scaling
action yields an instance of matrix scaling.

Relation to null cone problem and Geometric Complexity Theory

We study Equation (4) because it is deeply connected to invariant theory through a well-
known connection between group orbits and invariant polynomials: zero is in the closure of
an orbit of a vector v if and only if every non-constant homogeneous G-invariant polynomial
vanishes on v, i.e. if v is in the null-cone. Null-cone membership is a well-studied polynomial
identity testing (P.I.T.) problem. One approach to complexity lower bounds, geometric
complexity theory, suggests that null-cone membership should be in P [43, 26].

Solving Equation (4) directly allows one to study the null-cone problem through opti-
mization: one notes that cappvq “ 0 if and only if v is in the null cone. In fact, Equation (4)
is a geodesically convex optimization problem over a certain Riemannian manifold. Algebraic
and optimization-based algorithms have, independently and nearly concurrently, resulted in
polynomial time algorithms for nearly the same set of P.I.T. problems arising in invariant
theory [22, 43, 25, 34, 20, 2], including the null-cone problem for the operator scaling and
simultaneous conjugation action. However, neither approach has succeeded in solving the
null-cone problem for the 3-tensor action. Recent degree lower bounds for invariant polyno-
mials for the 3-tensor action pose significant challenges for the algebraic approach [21]. It is
natural to ask whether the optimization approach can overcome these challenges.

Algorithms for computing the capacity

A nonzero tensor w “ g ¨ v attains the capacity when w has all quantum marginals equal
to In{n. The quantum marginals of a tensor w, analogous to the sums along slices of an
array, are the three n ˆ n matrices M1M :

1 , M :
2 , M3M :

3 for the n ˆ n2 matrices M1, M2, M3
known as flattenings of w{}w}. For operator scaling, the capacity is attained when the first
two quantum marginals are In{n. To compute the capacity, existing algorithms attempt to
find g such that the quantum marginals of g ¨ v are all close to In{n. There are alternating
minimization algorithms that can attain distance ε in time polypn, 1{εq [25, 13], and for the

2 Technically we require that G is a reductive group over C which acts rationally on Cm. All the group
actions in this paper satisfy this assumption.

W. C. Franks and P. Reichenbach 13:9

operator scaling this is possible in polypn, logp1{εqq time [2]. However, for 3-tensor scaling,
running time polyp1{εq is not sufficient to efficiently decide null-cone membership, and the
only algorithms with logp1{εq dependence on ε have an exponential dependence on n [12].

To explain the increased complexity, we discuss a noncommutative analogue of the Newton
polytope known as the moment polytope, denoted ∆Gpvq. In particular, 0 R ∆Gpvq if and
only if v is in the null-cone (i.e. cappvq “ 0).3 For tensor scaling, the moment polytope
is the set of tuples of spectra of the quantum marginals as w ranges over G ¨ v, shifted by
´ 1

n p1n,1n,1nq. The gap of the action of G, i.e. the minimum positive distance from 0 to a
moment polytope ∆Gpvq, is a noncommutative generalization of the margin. Whereas the
operator scaling and simultaneous conjugation actions have polynomially large gaps, we show
that the gap for the tensor scaling action is exponentially small. Scaling algorithms amount
to outer ε-approximation algorithms for ∆Gpvq, which is why polyp1{εq-time algorithms do
not suffice to decide null-cone membership. Like for the margin, the smaller gap corresponds
to a larger diameter, which is why so far no algorithm has had running time polypn, logp1{εqq.

1.2.1 Diameter lower bound for noncommutative scaling
Here we describe how diameter bounds cause the state-of-the-art algorithms to be slow for the
tensor scaling action. We begin by discussing geodesically convex optimization. In general
Equation (4) is not convex, but rather geodesically convex. That is, G can be viewed as a
manifold in such a way that the function g ÞÑ }g ¨ v}2 is convex along “geodesics” of the form
γptq “ etHg for H Hermitian. The manifold we consider is not exactly G but rather a quotient
P of it; we will make this more precise later in Section 4.5. For G “ SLpnqd, the manifold P

is the set of tuples of positive-definite matrices with determinant one. P is equipped with
the geometry on positive-definite matrices known in statistics as the Fisher-Rao metric, and
studied in depth in e.g. [9]. Though we do not need many details of this geometry here,
one can think of the distance between g, h P G as a bound on the logarithms of the singular
values of g´1h. In particular, the geodesic “ball” of radius R about the identity in G is the
intersection of G with the set tU exppAq : A Hermitian, }A}F ď R, U unitaryu. Note that
the ball of radius

?
nR includes all elements of G whose singular values are in re´R, eRs. 4

The existing algorithms to compute Equation (4) adapt simple first order methods, such
as gradient descent, and second order methods, such as trust regions, to the geodesically
convex setting [53, 2, 12]. As in the commutative case, to run in polynomial time such
algorithms require that an ε-approximate solution is contained in a geodesic ball of radius
polypnd, logp1{εqq. However, for 3-tensors we have the following diameter lower bound.

▶ Theorem 1.4 (Noncommutative diameter lower bound). There is a constant C ą 0 such
that the following holds. For all ε ď expp´Cn2 log nq, there is a tensor v “ vpεq P pCnqb3

with Opnq nonzero entries of bit complexity Oplog n ` logp1{εqq, and a geodesic ball B “ Bpεq

of radius Ω
`

2n{3 logp1{εq
˘

about the identity in SLpnq3, such that

inf
gPB

}g ¨ v}2 ě cappvq ` ε.

To emphasize that the difficulties are not caused by requiring additive approximation, we
remark that the vector v satisfies 1{4 ď cappvq ď 1 and 1{2 ď }v} ď 1. A duplication trick
analogous to Corollary 3.7 yields the same diameter bound for d ě 3, but for the action of G

simultaneously on a tuple of tensors rather than on a single one. See Corollary 4.24.

3 Moment polytope membership is an interesting problem in and of itself; for d “ 3, for generic v P pCn
q

b3,
∆Gpvq is the Kronecker polytope arising in representation theory and quantum information theory.
Deciding membership in this polytope is known to be in NP X coNP but not known to be in P [10].

4 We define exponentials, Hermitian-ness, and Frobenius norm on tuples by treating them as block
diagonal matrices.

CCC 2021

13:10 Barriers in Geodesic Optimization

Implications of Theorem 1.4 and relation to the literature

Theorem 1.4 shows that trust region methods with constant step size cannot ε-approximate
the capacity in polypn, 1{εq time for 3-tensors. It also shows that cutting plane methods are
unlikely to do so. Cutting plane methods, such as ellipsoid, require an exponential bound
on the volume of a known region containing an approximate optimizer. This is the case
for Rusciano’s non-constructive query upper bound for cutting plane methods on manifolds
of non-positive curvature [47], which is essentially tight [32]5. The volume of a ball in the
manifold we consider grows exponentially in the radius (see Section 4.5), so this query bound
will be exponential. Regarding tightness, the best upper bound known to the authors for
the diameter bound in the noncommutative case is Opnp

?
3nq1`3n logp1{εqq, which can be

deduced from the diameter and margin bounds [12, Proposition 5.6, Theorem 6.10]. This
matches our lower bound up to logarithmic factors in the exponent. As with Theorem 1.1,
Theorem 1.4 holds only values of ε that are very small (though still of polynomial bit-
complexity). It would be very interesting to prove a version of Theorem 1.1 for ε larger than
the gap, which is expp´Opnqq. This would imply that trust region methods cannot solve the
null-cone problem for the 3-tensor action in polynomial time.

1.2.2 Gaps: the geometry of noncommutative scaling problems
In analogy to the commutative case, one typically attempts to certify cappvq ą 0, i.e.
0 P ∆Gpvq, by finding a tensor g ¨ v such that all the quantum marginals are close to 1

n In.
In order to certify cappvq ą 0 their distance to 1

n pIn, In, . . . , Inq must be at most a certain
quantity, which we call the gap.

▶ Definition 1.5 (Gap). The gap6 for the d-tensor scaling problem is

γGpπn,dq :“ min
␣

dist
`

0, ∆Gpvq
˘

| v P pCnqbd, v ‰ 0, 0 R ∆Gpvq
(

.

If the gap is exponentially small, high-precision algorithms will be necessary to decide if
cappvq ą 0. In operator scaling, the gap is known to be Ωpn´3{2q [29], which explains why
we do not need high-precision algorithms for the decision problem in that case. In addition
to its role in the decision problem, the inverse of the gap7 is used to control the diameter
bound [12]! In that sense, the presence of a small gap can explain both the need for high
precision algorithms and the slowness of existing high-precision algorithms. We show that,
indeed, the tensor scaling action has an exponentially small gap for d ě 3.

▶ Theorem 1.6. There is a constant C ą 0 such that for all d ě 3 and n ě 2, there are
non-zero tensors v P pCnqbd such that 0 R ∆Gpvq but distp0, ∆Gpvqq ď 2´Cdn. That is, the
gap for d-tensor scaling satisfies

γGpπn,dq ď 2´Cdn.

A detailed statement on bounds for the gap can be found in Theorem 4.11, and we show
in Appendix C how to fill in the missing values of n, d to obtain Theorem 1.6. Since the
gap is larger than the margin (c.f. Proposition 4.6), Theorem 1.6 is at least as tight as
Theorem 1.3, i.e. the exponent Cnd is tight up to an Oplog n ` log dq factor.

5 [32] applies to the hyperbolic plane, which is a totally geodesic submanifold of the manifold P we
consider.

6 This notion can be defined similarly for any rational representation π of a reductive group G, see
Definition 4.3. This definition of the gap is already described in [12].

7 actually, a smaller quantity known as weight margin

W. C. Franks and P. Reichenbach 13:11

Interestingly, for local dimension n “ 2 [42, Main result] shows that distp0, ∆Gpvqq2 for
some moment polytope ∆Gpvq S 0 tends for d Ñ 8 to the Gamma distribution Γp1{2, 2dq,
where 2d is the rate parameter. Therefore, the witnesses of the exponential behaviour in
Theorem 4.11(a) are quite rare. Moreover, the authors numerically found several tensors
of format pC2qbd with distp0, ∆Gpvqq at most expp´dq; Theorem 1.6 confirms that this
exponential behavior is the case for all n and d.

Margin and gap results for other group actions
In addition to the tensor scaling action, we also consider some other actions of groups G

of interest in computational invariant theory. The first is the action of the special linear
group on the space of homogeneous d-forms Crx1, . . . , xnsd, in which G “ SLpnq acts by
g ¨ ppxq “ ppg´1xq for p P Crx1, . . . , xnsd. Homogeneous d-forms were among the objects
studied earliest in computational invariant theory, and much of the theory was developed to
catalogue invariants of the SLpnq action on forms [52]. Still, deciding null-cone membership
for d “ 3 seems challenging. After extending the definition of the gap to other group actions
in Section 4, we explain the difficulty by showing that the gap for this action is also inverse
exponential in n as soon as d ě 3, see Theorem 4.17. This shows that the diameter bound in
[12] becomes exponentially large in n.

The other group action we consider is the action of SLpnqd on quivers with d vertices.
A quiver is a directed multigraph, and a quiver representation is a labelling of the vertex
set Q0 of the quiver with finite-dimensional vector spaces and the edge set Q1 with a linear
map from the vector space at the tail of the edge to the vector space at the head of the edge.
Given a quiver representation A with vertices labeled by Cnx for x P Q0 and edges e : x Ñ y

labeled with matrices Ae, the group G “
ś

xPQ0
SLpnxq acts on A by pg ¨ Aqe “ gyAg´1

x .
Quiver representations include the operator scaling action, and an action used to bound the
Brascamp-Lieb constant in analysis. In Section 4.6 we show that the (weight) margin can
become exponentially small as the number of vertices grows. For this, we exhibit a quiver
with d ´ 1 arrows, d vertices of dimension n and weight margin Opn´dq, see Theorem 4.25.
This bound shows that the diameter bound computed in [12] can become exponentially
large in d. Furthermore, when allowing n copies of each arrow in the constructed quiver, i.e.
npd ´ 1q arrows in total, we can ensure the same bound for the gap, Theorem 4.25.

1.2.3 Proof technique in the noncommutative case: Freeness
Regarding the idea of the proof, we may transfer both the diameter lower bound and the
gap upper bound to the commutative case by virtue of the tensors we construct having free
support.

A tensor has free support if any two distinct pd ´ 1q-dimensional slices of the tensor have
disjoint support. This condition ensures that, even after being acted on by any diagonal group
elements, the tensor’s quantum marginals are all diagonal. This allows us to restrict to the
action of the diagonal matrices and thereby reduce to the commutative (array scaling) case.
Thus, we may obtain the same bounds on the tensor gap as for the array margin. However,
this requires additional care to ensure freeness of our constructions. This is why we cannot
naïvely use the construction of [4] for d-tensors with n “ 2. Regarding the noncommutative
diameter bound, we show that for tensors with free support the diameter bound matches
that of the commutative problem obtained by restricting to the diagonal. To do this, we
project the group elements to the set of diagonal elements, and use the properties of spaces
of non-positive curvature to show that this projection moves the point nearer to the origin
and decreases the function value.

CCC 2021

13:12 Barriers in Geodesic Optimization

The idea and the concept of freeness generalize to rational representations of reductive
groups [24].8 The key statement is given in full generality in Proposition 4.8. This proposition
is needed to prove bounds on the gap for the action on homogeneous polynomials and for
the action on quivers. Interestingly, in [21] the concept of freeness is used in a similar way9

to prove exponential lower bounds on the degree of invariants for actions on cubic forms
and 3-tensors. There, free is called uncramped and it is used crucially to prove closedness of
certain orbits.

Freeness also played a role in the numerical results by Sawicki and Maciążek, which were
obtained by applying the algorithm of [41] to several free tensors of local dimension two.

1.3 Organization of the paper
We begin with the commutative case, which is split into the study of the margin in Section 2
and diameter bounds in Section 3. Then we move to the noncommutative case in Section 4.
The appendix contains some representation-theoretic background and proofs of technical
lemmas, as well as a glossary of notation.

2 The geometry of commutative scaling problems

The purpose of this section is to show the following theorem on the margin of d-dimensional
array scaling. Recall that the latter arises for Ωn,d :“ tεi : i P rnsud Ď pRnqd.

▶ Theorem 2.1 (Margin for array scaling). The margin of Ωn,d Ď pRnqd is bounded as follows.
(a) If n “ 2 and d ě 3, then γ pΩ2,dq ď 2´ d

2 `1.

(b) If n ě 3 and d “ 3, then γpΩn,3q ď 2´n`1.
(c) If n ě 3 and d “ 6r ´ 3 for some integer r ě 2, then

γpΩn,dq ď

?
6

pn ´ 1q
?

r
2´rpn´1q`1 ď 2´rpn´1q`1 “ 2´

pd`3qpn´1q

6 `1.

By “padding” the tensors appropriately, one sees that a bound for γpΩn,dq also applies to
γpΩn,d`1q (see Proposition C.1). Combining this result with Theorem 2.1 above implies
Theorem 1.3 from the introduction. The next three subsections each prove one of the parts of
Theorem 2.1; the construction for part (a) with n “ 2 is slightly different and the construction
for part (c), d ą 3 builds on the one for part (b), d “ 3.

To prove the results, we will frequently use the following simple lemma. Recall that an
affine linear combination of v1, . . . , vk P Rm is λ1v1 ` ¨ ¨ ¨ ` λkvk for λi ě 0,

řk
i“1 λi “ 1.

The affine hull AffpSq of a set S Ă Rm is the set of all affine linear combinations of finite
subsets of S, or equivalently the affine space (i.e. translate of a subspace) of lowest dimension
containing S.

▶ Lemma 2.2. In Rn we have
n
ÿ

i“1

1
n

εi “ 0n (5)

and this is the only affine linear combination of ε1, . . . , εn giving zero.

8 This concept is also implicitly contained in [49, Lemma 7.1] and can at least be traced back to [18] as
strong orthogonality.

9 Indeed, [21, Theorem 6.5] is used to show the vanishing of the moment map at a vector. First, freeness
is used as in Proposition 4.8 to ensure that one can restrict to the moment map for the maximal torus.
Second, condition (2) of [21, Theorem 6.5] just states that the moment map for the torus action vanishes
at the vector.

W. C. Franks and P. Reichenbach 13:13

A4 “

¨

˚

˚

˝

˚ ˚

˚

˚ ˚

˚ ˚

˚ ˚

˛

‹

‹

‚

, A6 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

˚ ˚

˚

˚ ˚ ˚ ˚

˚ ˚

˚ ˚

˚ ˚

˚ ˚ ˚

˚ ˚

˛

‹

‹

‹

‹

‹

‹

‹

‚

Figure 1 The positions of the ones in A4 and A6 are marked by ˚ in the following figure and the
cells are colored according to whether they belong to A2, B1, B2 or B3.

Proof. One calculates directly that
ř

i
1
n εi “ 0n. To show uniqueness of this affine com-

bination, we note that the vectors e2, . . . , en,1n are linearly independent. Thus, ε2, . . . , εn

are linearly independent. On the other hand, ε1, . . . , εn are linearly dependent. Therefore
tpλ1, . . . , λnq P Rn |

ř

i λi εi “ 0nu is a one-dimensional subspace of Rn, which yields the
uniqueness of the affine linear combination. ◀

2.1 Local dimension two: the hypercube
In this subsection we prove part (a) of Theorem 2.1 by showing that the margin of Ω2,d is
exponentially small in d. This follows from [4], but we present a new construction which has
the additional property of freeness, which we discuss later in Section 4. Recall that

Ω2,d “
␣

pεi1 , . . . , εid
q | i1, . . . , id P r2s

(

Ď
`

R2˘d
.

In the following we construct a subset of Ω2,d, which witnesses the exponentially small
margin. For this, we construct a matrix with entries in r2s, and each row of the matrix
will correspond to an element of Ω2,d. For example, the row p1, 2, 2q would correspond to
pε1, ε2, ε2q P Ω2,3. To do so, we begin with the matrices

A2 :“
ˆ

1 1
2 1

˙

, B1 :“
ˆ

1 1
2 2

˙

, B2 :“
ˆ

1 2
2 2

˙

, B3 :“
ˆ

2 1
1 1

˙

,

and define recursively

A2r`2 :“

¨

˚

˚

˚

˝

B1

A2r

...

B1
B2 ¨ ¨ ¨ B2 B3

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

A2 B1 ¨ ¨ ¨ B1

B2 B3
. . .

...
...

. . .
. . . B1

B2 ¨ ¨ ¨ B2 B3

˛

‹

‹

‹

‹

‚

(6)

for r ě 1. Figure 1 is supplied as a visualization aid.
We remark that the entry of A2r at position pi, jq is independent of r and denote it by

api, jq. We set for r ě 1

Γ2,2r :“
␣`

εapi,1q, εapi,2q, . . . , εapi,2rq

˘

| i P r2rs
(

Ď Ωpπ2,2rq Ď
`

R2˘2r
,

Γ2,2r`1 :“
␣`

εapi,1q, εapi,2q, . . . , εapi,2rq, εχpiq

˘

| i P r2rs
(

Ď Ωpπ2,2r`1q Ď
`

R2˘2r`1
,

where χ : N Ñ t1, 2u, i ÞÑ i mod 2. That is, Γ2,2r is the subset of Ω2,2r induced by the rows
of A2r and Γ2,2r`1 is obtained by alternatingly appending ε1 or ε2 to the 2r-many elements
of Γ2,2r.

CCC 2021

13:14 Barriers in Geodesic Optimization

▶ Lemma 2.3. For r ě 1 it holds that 0 R AffpΓ2,2rq and 0 R AffpΓ2,2r`1q.

Proof. By construction, 0 P AffpΓ2,2r`1q implies 0 P AffpΓ2,2rq, so it suffices to prove
0 R AffpΓ2,2rq. We proceed by induction on r ě 1. For r “ 1, it is clear that 0 R AffpΓ2,2q Ď

R2 ˆ tε1u. Now assume that 0 R AffpΓ2,2rq. For the sake of contradiction, let

2r`2
ÿ

i“1
λi

`

εapi,1q, εapi,2q, . . . , εapi,2r`2q

˘

“ 0 P
`

R2˘2r`2 (7)

be an affine linear combination of Γ2,2r`2. Then equation (7) gives in each of the p2r`2q-many
R2-components the affine linear combination 2´1pε1 ` ε2q “ 0, by Lemma 2.2. Considering
the scalar factor of ε1 in the first, the penultimate and the last R2-component respectively,
we conclude

r`1
ÿ

j“1
λ2j´1

loooomoooon

first

“
1
2 “ λ2r`2 `

r
ÿ

j“1
λ2j´1

loooooooooomoooooooooon

penultimate

“
1
2 “ λ2r`2 `

r`1
ÿ

j“1
λ2j´1

loooooooooomoooooooooon

last

by construction of A2r`2. Hence, λ2r`2 “ 0 using the first and last component. Furthermore,
the first and penultimate column give λ2r`1 “ λ2r`2 “ 0. Therefore, the first 2r-many
components in Equation (7) show 0 P AffpΓ2,2rq, which contradicts our induction hypothesis.

◀

▶ Lemma 2.4. For r ě 1 it holds that distp0, convpΓ2,2rqq ď 2´r` 1
2 and

distp0, convpΓ2,2r`1qq ď 2´r` 1
2 .

Proof. We first prove the inequality for convpΓ2,2rq. For i P r2rs let ωi :“
`

εapi,1q, . . . , εapi,2rq

˘

P
`

R2˘2r be the weight in Γ2,2r that corresponds to the ith row of
A2r. Consider the convex combination

px1, . . . , x2rq :“ 2´rpω2r´1 ` ω2rq `

r´1
ÿ

l“1
2´l´1pω2l´1 ` ω2lq P

`

R2˘2r
. (8)

Note that xi P R2. We will argue that px1, . . . , x2rq “ 2´r`1p02, . . . , 02, ε1q. Since x is a
convex combination of the elements in Γ2,2r, the statement then follows from }ε1} “

?
2´1.

We consider A2r like in its construction (6) as a r ˆ r block matrix with block entries
being 2 ˆ 2 matrices. For m P rrs the two weights ω2m´1 and ω2m correspond to the mth

block row of A2r and have the same scalar factor in (8). Hence, whenever for i P r2rs the ith

column of the mth block row of A2k contains exactly one entry equal to one (and so the other
entry equals two), then the contribution of ω2m´1 and ω2m to xi cancels due to ε1 ` ε2 “ 02.
In particular, in (8) all contributions of block entries equal to B1 cancel. Therefore the last
column of A2r gives

x2r “ 2´rpε1 ` ε1q “ 2´r`1ε1.

Furthermore, x1 “ x3 “ . . . “ x2r´1 “ 02 using that also the first columns of A2, of B2 and
of B3 contain exactly one entry equal to one. For r “ 1 we are done. If r ě 2, then reading
off the second column of A2r, we find

x2 “ 2´2pε1 ` ε1q
loooooomoooooon

first block row

` 2´rpε2 ` ε2q
loooooomoooooon

last block row

`

r´1
ÿ

l“2
2´l´1pε2 ` ε2q
looooooomooooooon

middle rows

“ 2´1pε1 ` ε2q “ 02.

W. C. Franks and P. Reichenbach 13:15

Analogously, as B1 does not contribute we compute for j “ 2, 3, . . . , r ´ 1 that

x2j “ 2´j´1pε1 ` ε1q
loooooooomoooooooon

jth block row

` 2´rpε2 ` ε2q
loooooomoooooon

last block row

`

r´1
ÿ

l“j`1
2´l´1pε2 ` ε2q
looooooomooooooon

in between rows

“ 2´jpε1 ` ε2q “ 02,

because the second columns of B2 and B3 are, respectively, p2, 2qT and p1, 1qT . This proves
the inequality in the case Γ2,2r.

By construction, for Γ2,2r`1 the same convex combination works, because the last R2-
component does not contribute as the entries of the weights alternate between ε1 and ε2. ◀

Finally, Lemma 2.3 and Lemma 2.4 together yield Theorem 2.1(a), noting that for odd
d “ 2r ` 1 one has ´r ` 1{2 “ ´pd{2q ` 1.

2.2 3-tensors
The main goal of this section is to show that the margin of Ωn,3 is exponentially small in n,
i.e. to show Theorem 2.1(b). To do so, we set

Wn :“
n
ď

s“2
tps, 1, sq, ps, s, 1q, ps ´ 1, s, squ Ď rns ˆ rns ˆ rns (9)

and consider the corresponding subset

Γn,3 :“
␣

pεi, εj , εkq | pi, j, kq P Wn

(

Ď Ωn,3. (10)

The key combinatorial idea, which is presented in the following lemma, is due to [38,
Theorem 1 with k “ 0].10 According to [38] the special case k “ 0 is already contained in
[37, Theorem 9].

▶ Lemma 2.5. Let n ě 3. For pi, j, kq P rns3z
`

Wn Y tp1, 1, 1qu
˘

set λi,j,k :“ 0. Moreover,
define

λ1,1,1 :“ 2´n`1, λ1,2,2 :“ 1 ´ 2´n`1, λn,1,n “ λn,n,1 :“ 2´1

and for s “ 2, 3, . . . , n ´ 1

λs,1,s “ λs,s,1 :“ 2´n`s´1, λs,s`1,s`1 :“ 1 ´ 2´n`s .

Then the following equations hold:
˜

@i P rns :
n
ÿ

j,k“1

λi,j,k “ 1
¸

,

˜

@j P rns :
n
ÿ

i,k“1

λi,j,k “ 1
¸

,

˜

@k P rns :
n
ÿ

i,j“1

λi,j,k “ 1
¸

. (11)

In particular,
ř

i,j,k λi,j,k “ n.

Proof. This is [38, Theorem 1 with k “ 0]. Alternatively, the statement can be checked by
straightforward computation. ◀

10 In [38] Kravtsov extensively studies so-called complete r-noninteger vertices (r-CNVs) of the three-index
axial assignment polytope. For k P t0, 1, . . . , n ´ 2u, [38, Theorem 1] states explicitly a p3n ´ 2 ´ kq-CNV,
among these we use the p3n ´ 2q-CNV (i.e. k “ 0). Moreover, [38, Theorem 2] states that such r-CNVs
of the three-index axial assignment polytope actually only occur for r P t2n, 2n ` 1, . . . , 3n ´ 2u, and
the later theorems in [38] fully characterize the r-CNVs and study their combinatorial properties.

CCC 2021

13:16 Barriers in Geodesic Optimization

▶ Example 2.6. To visualize Lemma 2.5 it is helpful to consider the slices Λi given by
pΛiqj,k “ λi,j,k. For n “ 4 one has

Λ1 “
1
8

¨

˚

˚

˝

1 0 0 0
0 7 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‚

, Λ2 “
1
8

¨

˚

˚

˝

0 1 0 0
1 0 0 0
0 0 6 0
0 0 0 0

˛

‹

‹

‚

,

Λ3 “
1
8

¨

˚

˚

˝

0 0 2 0
0 0 0 0
2 0 0 0
0 0 0 4

˛

‹

‹

‚

, Λ4 “
1
8

¨

˚

˚

˝

0 0 0 4
0 0 0 0
0 0 0 0
4 0 0 0

˛

‹

‹

‚

.

For n “ 5 one has

Λ1 “
1
16

¨

˚

˚

˚

˚

˝

1 0 0 0 0
0 15 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

˛

‹

‹

‹

‹

‚

, Λ2 “
1
16

¨

˚

˚

˚

˚

˝

0 1 0 0 0
1 0 0 0 0
0 0 14 0 0
0 0 0 0 0
0 0 0 0 0

˛

‹

‹

‹

‹

‚

,

Λ3 “
1
16

¨

˚

˚

˚

˚

˝

0 0 2 0 0
0 0 0 0 0
2 0 0 0 0
0 0 0 12 0
0 0 0 0 0

˛

‹

‹

‹

‹

‚

, Λ4 “
1
16

¨

˚

˚

˚

˚

˝

0 0 0 4 0
0 0 0 0 0
0 0 0 0 0
4 0 0 0 0
0 0 0 0 8

˛

‹

‹

‹

‹

‚

, Λ5 “
1
16

¨

˚

˚

˚

˚

˝

0 0 0 0 8
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
8 0 0 0 0

˛

‹

‹

‹

‹

‚

.

▶ Lemma 2.7. For n ě 3, it holds that dist
`

0, convpΓn,3q
˘

ď 2´n`1.

Proof. Define λi,j,k ě 0 for all i, j, k P rns as in Lemma 2.5. Note that
řn

i“1 εi “ 0; thus
Lemma 2.5 implies

ÿ

i,j,k

λi,j,kpεi, εj , εkq “ 03n , equivalently ´ 2´n`1
pε1, ε1, ε1q “

ÿ

pi,j,kqPWn

λi,j,kpεi, εj , εkq.

Normalizing the latter equation we obtain

x :“ ´
1

c 2n´1 pε1, ε1, ε1q P convpΓn,3q, where c :“
ÿ

pi,j,kqPWn

λi,j,k “ n ´ 2´n`1 ě
?

3.

Finally, ∥ε1∥2 ď 1 implies ∥x∥ ď c´12´n`1?
3 ď 2´n`1. ◀

To finish the proof of Theorem 2.1(b) we are left to show 0 R convpΓn,3q. We actually
prove the stronger statement 0 R AffpΓn,3q.

▶ Lemma 2.8. The zero vector is not contained in the affine hull of Γn,3.

Proof. For a proof by contradiction we assume 0 P AffpΓn,3q. Then there exist as, bs, cs P R
for s “ 2, 3, . . . , n such that

ř

s as ` bs ` cs “ 1 and
n
ÿ

s“2

`

aspεs, ε1, εsq ` bspεs, εs, ε1q ` cspεs´1, εs, εsq
˘

“ p0n, 0n, 0nq P pRnq3.

In each of the three Rn-components we obtain 0n as an affine linear combination of ε1, . . . , εn.
Applying Lemma 2.2 to the coefficient of εs´1 in the first component, respectively to the
coefficient of εs in the second and third component yields

as´1 ` bs´1 ` cs “
1
n

for s “ 2, 3, . . . , n (12)

respectively bs ` cs “ as ` cs “
1
n

for s “ 2, 3, . . . , n (13)

W. C. Franks and P. Reichenbach 13:17

where we necessarily set a1 “ b1 :“ 0. Equation (12) for s “ 2 is c2 “ n´1 and hence
a2 “ b2 “ 0 by (13) for s “ 2. But now (12) for s “ 3 gives c3 “ n´1 and we can proceed
inductively to conclude cs “ n´1 and as “ bs “ 0 for all s “ 2, 3, . . . , n. This gives the
contradiction 1 “

řn
s“2pas ` bs ` csq “ n´1

n , so we must have 0 R AffpΓn,3q. Another
contradiction arises when one applies Lemma 2.2 to the coefficient εn in the first component,
which yields an ` bn “ n´1. ◀

2.3 d-tensors
In this subsection we show that the margin of Ωn,d is inverse exponential in nd for n, d ě 3,
proving part pcq of Theorem 2.1.

Let us give some intuition for our construction. The main idea is to recycle the construction
from the previous subsection for some multiple of n, i.e. considering Wrn for r ě 2. Thereby,
the main challenge is to ensure that the constructed subset of Ωn,d does not contain zero in
its convex hull. We can try to extend the elements of Ωn,3 to elements of Ωn,d. One natural
idea is duplicate each component d{3 times, i.e. when d “ 6 the vector pεi, εj , εkq P Ωn,3
becomes pεi, εi, εj , εj , εk, εkq P Ωn,6. However, we need a subset of Ωn,d with rn many
elements to imitate the construction from the previous subsection. We still extend the
elements of Ωn,3 in this way, but will additionally “shift” and “twist” by some functions
σ1, . . . , σ2r´1 : rrns Ñ rns, so that the elements of our set will look like

´

εσ1piq, . . . , εσd{3piq, εσ1pjq, . . . , εσd{3pjq, εσ1pkq, . . . , εσd{3pkq

¯

for d{3 “ 2r ´ 1 and pi, j, kq in Wrn. We now set about choosing the functions σk. For this,
let n ě 3 and fix a natural number r ě 2. It is convenient to use an adjusted modulo n

function mod1 n that takes values in rns, i.e. instead of zero it outputs n. For i P rrs we
consider

σi : rrns Ñ rns, j ÞÑ

R

j ` pi ´ 1q

r

V

mod1 n

σr`i :“ σ1 ˝ pr ´ i ` 1 r ` 1q : rrns Ñ rns

where pr ´ i ` 1 r ` 1q denotes the corresponding transposition in the symmetric group of
rrns.11 We only need the first 2r ´ 1 of these functions and combine them to obtain

σ : rrns Ñ rns2r´1, j ÞÑ
`

σ1pjq, σ2pjq, . . . , σ2r´1pjq
˘

.

▶ Example 2.9. For r “ 3 the functions σ1, σ2, . . . , σ6 are sketched by the following table.

j 1 2 3 4 5 6 ¨ ¨ ¨ 3n ´ 5 3n ´ 4 3n ´ 3 3n ´ 2 3n ´ 1 3n

σ1 1 1 1 2 2 2 ¨ ¨ ¨ n ´ 1 n ´ 1 n ´ 1 n n n

σ2 1 1 2 2 2 3 ¨ ¨ ¨ n ´ 1 n ´ 1 n n n 1
σ3 1 2 2 2 3 3 ¨ ¨ ¨ n ´ 1 n n n 1 1
σ4 1 1 2 1 2 2 ¨ ¨ ¨ n ´ 1 n ´ 1 n ´ 1 n n n

σ5 1 2 1 1 2 2 ¨ ¨ ¨ n ´ 1 n ´ 1 n ´ 1 n n n

σ6 2 1 1 1 2 2 ¨ ¨ ¨ n ´ 1 n ´ 1 n ´ 1 n n n

For r “ 3 and n “ 5 the functions σ1, σ2, . . . , σ6 are given by the following table.

11 We stress that we always take σ1 (and not σi) to define σr`i.

CCC 2021

13:18 Barriers in Geodesic Optimization

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
σ2 1 1 2 2 2 3 3 3 4 4 4 5 5 5 1
σ3 1 2 2 2 3 3 3 4 4 4 5 5 5 1 1
σ4 1 1 2 1 2 2 3 3 3 4 4 4 5 5 5
σ5 1 2 1 1 2 2 3 3 3 4 4 4 5 5 5
σ6 2 1 1 1 2 2 3 3 3 4 4 4 5 5 5

▶ Remark 2.10. By construction, each element of rns is attained exactly r-times by σk,
k P r2r ´ 1s. Moreover, the definition of σ1, . . . , σr yields that σ is injective.

For i, j, k P rrns we introduce the short-hand

εσpiq :“
`

εσ1piq, εσ2piq, . . . , εσ2r´1piq

˘

P pRnq
2r´1

εσpiq,σpjq,σpkq :“
`

εσ1piq, . . . , εσ2r´1piq, εσ1pjq, . . . , εσ2r´1pjq, εσ1pkq, . . . , εσ2r´1pkq

˘

P pRnq
6r´3

and we set12

Jr :“
␣

ps, 1, sq, ps, s, 1q | s “ 2, 3, . . . , r
(

Ď Z3.

In the following we show that the convex hull of the set

Γn,6r´3 “
␣

εσpiq,σpjq,σpkq | pi, j, kq P WrnzJr

(

Ď Ωn,6r´3 Ď

´

`

Rn
˘2r´1

¯3

does not contain the zero vector, but is very close to it.

▶ Lemma 2.11. For n ě 3 and r ě 2 it holds that 0 R Aff pΓn,6r´3q.

Below we give the proof in the special case r “ 3, in which all main ideas of the
general proof become apparent and visible. The proof for the general statement is given in
Appendix D and certainly looks technical at a first encounter. Therefore, we strongly suggest
that the reader first reads the proof for r “ 3 below.

Proof of Lemma 2.11 for r “ 3. For the sake of contradiction assume that 0 P AffpΓn,15q.
Then there are coefficients as, bs, cs P R, where 2 ď s ď 3n, such that a2 “ a3 “ b2 “ b3 “ 0,
ř

spas ` bs ` csq “ 1 and

3n
ÿ

s“2

`

as εσpsq,σp1q,σpsq ` bs εσpsq,σpsq,σp1q ` cs εσps´1q,σpsq,σpsq

˘

“ 0 P pRnq15. (14)

The bulk of our work will consist of proving the equations

b2 ` c2 “ b3 ` c3 “ . . . “ b3n ` c3n (15)
a2 ` c2 “ a3 ` c3 “ . . . “ a3n ` c3n. (16)

12 One could suggest to consider the set tεσpiq,σpjq,σpkq | pi, j, kq P Wrnu, but this still won’t ensure that
zero is not in the convex hull. The intuition behind is, that Γn,3 from the last section is “nearly at
the limit”, i.e. 0 R convpΓn,3q but 0 P convpΓn,3 Y tpε1, ε1, ε1quq. Now the function σ “introduces
2r ´ 2 additional linear relations” as εσpiq P p1

K
n q

2r´1, since the orthogonal complement 1K
n Ď Rn has

codimension one while p1
K
n q

2r´1
Ď pRn

q
2r´1 has codimension 2r ´ 1. Thus, it is reasonable to remove

2r ´ 2 many elements from Wrn.

W. C. Franks and P. Reichenbach 13:19

From here we will derive a contradiction. We now set about proving Equations (15) and (16).
Rewrite the left-hand-side of Equation (14) as the collection for k P r5s of the following affine
linear combinations of ε1, . . . , εn in Rn:

3n
ÿ

s“2

`

as εσkpsq ` bs εσkpsq ` cs εσkps´1q

˘

“ 0 (17)

3n
ÿ

s“2

`

as εσkp1q ` bs εσkpsq ` cs εσkpsq

˘

“ 0 (18)

3n
ÿ

s“2

`

as εσkpsq ` bs εσkp1q ` cs εσkpsq

˘

“ 0. (19)

If we expand each expression as an affine linear combination of the εl, then by Lemma 2.2
the coefficient of εl must be n´1 for all l P rns. Translating this for equation (17) with k “ 2,
l “ 2, . . . , n and using Example 2.9 we obtain

pam´3 ` am´2 ` am´1q ` pbm´3 ` bm´2 ` bm´1q ` pcm´2 ` cm´1 ` cmq “
1
n

(20)

for m “ 6, 9, 12, . . . , 3n. A similar calculation for k “ 1, 3 and l “ 2, . . . , n shows Equation (20)
holds for all 5 ď m ď 3n ` 1, where we set c3n`1 :“ 0.

Similarly for Equation (18) with l “ 2, . . . , n and k “ 1, 2, 3 we obtain for 4 ď m ď 3n

that

pbm´2 ` cm´2q ` pbm´1 ` cm´1q ` pbm ` cmq “
1
n

(21)

and the same equations with “b” replaced by “a” when considering Equation (19).
In the following we prove Equation (15). Subtracting (21) from (21) with values of m

differing by one, we deduce that

b2 ` c2 “ b5 ` c5 “ . . . “ b3n´1 ` c3n´1

b3 ` c3 “ b6 ` c6 “ . . . “ b3n ` c3n,

and b4 ` c4 “ b7 ` c7 “ . . . “ b3n´2 ` c3n´2.

Next we deduce Equation (15) by showing b2 ` c2 “ b3 ` c3 “ b4 ` c4.
To do so, we apply Lemma 2.2 to (18) for the coefficient of ε2 using Example 2.9, which

yields for k “ 4, 5 the equations

pb3 ` c3q ` pb5 ` c5q ` pb6 ` c6q “
1
n

(22)

pb2 ` c2q ` pb5 ` c5q ` pb6 ` c6q “
1
n

(23)

respectively. Subtracting the two shows b2 ` c2 “ b3 ` c3, and we have b3 ` c3 “ b4 ` c4
via subtracting (22) from (21) for m “ 6. This completes the proof of Equation (15); using
Equation (19) we similarly deduce Equation (16).

To get a contradiction we show that as “ bs “ cs “ 0 for all s “ 2, 3, . . . , 3n. For this,
we set a :“

ř

s as and b :“
ř

s bs, and recall that we have defined a2 “ a3 “ b2 “ b3 “ 0.
This time we use Lemma 2.2 applied to the coefficient of ε1 in (17), in (18) and in (19)
respectively for k “ 1 to get

c2 ` c3 ` c4 “
1
n

, a ` c2 ` c3 “
1
n

and b ` c2 ` c3 “
1
n

(24)

CCC 2021

13:20 Barriers in Geodesic Optimization

respectively. We deduce from these three equations that a “ b “ c4. Furthermore, b2 “ b3 “ 0
shows that (21) for m “ 4 is b4 ` pc2 ` c3 ` c4q “ n´1. Subtracting from the latter the
left-hand equation in (24) yields b4 “ 0. Similarly, a4 “ 0 follows from a2 “ a3 “ 0 and the
analogous equation of (21) with a’s replaced by b’s.

Now, (20) for m “ 5 simplifies to c3 ` c4 ` c5 “ n´1. Thus, c2 “ c5 with (24) and
therefore a5 “ b5 “ 0 by (15), (16) and a2 “ b2 “ 0. This simplifies (20) for m “ 6 to
c4 ` c5 ` c6 “ n´1. Hence, c3 “ c6 as we also have c3 ` c4 ` c5 “ n´1 and we get via
(15) and (16) that a6 “ b6 “ 0. The latter in turn shows that (20) for m “ 7 becomes
c5 ` c6 ` c7 “ n´1, so c4 “ c7 and a7 “ b7 “ 0 by, again, (15) and (16).

It should have become apparent that we can proceed inductively in the same manner
with (20) for m “ 5, . . . , 3n ` 1; thereby using (15) and (16) to deduce as “ bs “ 0 for all
s “ 2, 3, . . . , 3n. In particular, a “ b “ c4 “ 0. Finally, Equation (15) implies c4 “ cs for all
s “ 2, 3, . . . , 3n, which gives the desired contradiction. ◀

We finish the proof of part pcq of Theorem 2.1 by showing the following Lemma.
▶ Lemma 2.12. Let n ě 3 and r ě 2. Then

dist
`

0, convpΓn,6r´3q
˘

ď

?
6

pn ´ 1q
?

r
2´rpn´1q`1 ď 2´rpn´1q`1.

Proof. We set N :“ rn and for i, j, k P rN s we set λi,j,k as in Lemma 2.5 applied for the
dimension N . Then Equation (11) of Lemma 2.5 yields

N
ÿ

i,j,k“1
λi,j,k

`

εσpiq, εσpjq, εσpkq

˘

“

N
ÿ

i,j,k“1
λi,j,k

`

εσpiq, 0, 0
˘

`

N
ÿ

i,j,k“1
λi,j,k

`

0, εσpjq, 0
˘

`

N
ÿ

i,j,k“1
λi,j,k

`

0, 0, εσpkq

˘

“

N
ÿ

i“1

`

εσpiq, 0, 0
˘

`

N
ÿ

j“1

`

0, εσpjq, 0
˘

`

N
ÿ

k“1

`

0, 0, εσpkq

˘

“

N
ÿ

i“1
εσpiq,σpiq,σpiq “ 0 P pRnq

6r´3
,

where we used in the last step equation (5) and Remark 2.10, i.e. that each element of rns is
attained exactly r-many times by all σk : rrns Ñ rns, k P r2r ´ 1s. Because WN contains the
support of λ apart from the element p1, 1, 1q, we have

ÿ

pi,j,kqPWN zJr

λi,j,k εσpiq,σpjq,σpkq (25)

“ ´λ1,1,1 εσp1q,σp1q,σp1q ´
ÿ

pi,j,kqPJr

λi,j,k εσpiq,σpjq,σpkq “: x P pRnq
6r´3

, (26)

which is an element in the positive cone of Γn,6r´3 “ tεσpiq,σpjq,σpkq | pi, j, kq P WN zJru.
Normalizing the latter equation with

c :“
ÿ

pi,j,kqPWN zJr

λi,j,k “

N
ÿ

i,j,k“1
λi,j,k ´

¨

˝λ1,1,1 `
ÿ

pi,j,kqPJr

λi,j,k

˛

‚ě N ´ 1

shows c´1x P convpΓn,6r´3q. To bound the norm of c´1x we compute

λ1,1,1 `
ÿ

pi,j,kqPJr

λi,j,k “ 2´N`1 `

r
ÿ

s“2
pλs,1,s ` λs,s,1q

“ 2´N`1 `

r
ÿ

s“2

`

2´N`s´1 ` 2´N`s´1˘ “

r
ÿ

s“1
2´N`s ă 2´N`r`1.

W. C. Franks and P. Reichenbach 13:21

Finally, using }εi1,i2,...,i6r´3 } ď
?

6r ´ 3 for any i1, i2, . . . , i6r´3 P rns together with the
triangle inequality on Equation (26) implies

}c´1x} ď

?
6r ´ 3

N ´ 1 2´N`r`1 ď

?
6

pn ´ 1q
?

r
2´N`r`1 ď 2´N`r`1 “ 2´rpn´1q`1,

where we used n ě 3 and r ě 2 for
?

6 ď pn ´ 1q
?

r. ◀

2.4 Polynomial scaling
A simple example of Equation (2) is the minimization of an n-variate homogeneous polynomial
of degree d with nonnegative coefficients over the set x1, . . . , xn ą 0,

ś

xi “ 1, as studied
in [30]. In this case the sets convpSq for S Ď Ω are Newton polytopes of homogeneous
polynomials, and the minimum of a polynomial is bounded below if and only if the Newton
polytope contains d

n1n. If the polynomials are hyperbolic of degree n, as in [30], their Newton
polytope either contains 1n or is at least 1{

?
n away from it. However, we show that for

general homogeneous polynomials the margin can get exponentially small in n even for d “ 3.
Minimizing a degree d homogeneous polynomial

ř

αPZn
ě0

pαxα with nonnegative coefficients
over the set x1, . . . , xn ą 0,

ś

xi “ 1 is the same as computing Equation (2) for

Ω1 :“
"

´α `
d

n
1n

ˇ

ˇ

ˇ

ˇ

α P pZě0qn with |α| “ d

*

. (27)

If n “ dm for some integer m ě 1, then we have ´Ωm,d Ď Ω1. Therefore, Theorem 2.1(b)
and (c) and the padding from Appendix C directly yield the following.

▶ Corollary 2.13 (Margin for Polynomial scaling). Fix some d ě 3 and assume n “ dm for
some m ě 3. Let Ω1 be as in Equation (27). Then

γpΩ1q ď γpΩm,dq ď 2´m`1 “ 2´ n
d `1.

and for d ě 9 we even have

γpΩ1q ď γpΩm,dq ď 2´

Y

pm´1qpd`3q

6

]

`1
« 2´ n

6 .

Thus, for fixed d ě 3 and n Ñ 8 the margin of Ω1 can be exponentially small in n. In
terms of polynomials, this states that the Newton polytope of a degree d ě 3 homogeneous
polynomial can be exponentially close to the origin without containing it.

3 Diameter bounds in the commutative case

In this section we describe an array such that all approximate scalings are very ill conditioned,
proving Theorem 1.1. Let us define the diameter bound.

▶ Definition 3.1. Let ε Ñ 0 and f : Rm Ñ R. The diameter bound Df pεq is defined as the
infimum over R ą 0 such that

inf
}x}ďR

fpxq ď ε ` inf
xPRm

fpxq.

Thus, Theorem 1.1 is equivalent to the statement that Df pεq “ Ωp2n{3 logp1{εq for ε ď

e´Cn2 log n. We now give a proof outline for Theorem 1.1.

CCC 2021

13:22 Barriers in Geodesic Optimization

3.1 Proof outline

The high-level intuition applies not only to array scaling but to the capacity in general.
Recall that the array scaling capacity is

inf
xPR3n

ÿ

ωPΩ
pωeω¨x

for Ω “ Ωn,3 “ tei ´ 1
n1n : i P rnsu Ď R3n. We build both the support Ω1 Ď Ωn,3 and the

entries p in the following way. We construct a set Ω0 Ď Ωn,3, another element ω P Ωn,3, and
an array q with the following properties.

1. The set Ω0 Ď Ωn,3 should be the support of a tristochastic array q.

2. The affine hull of Ω0, should have codimension one13 in R3n.

3. The origin is in the relative interior of convpΩ0q. Note that the origin is already in
convpΩ0q by the tristochasticity of q.

4. The vector ω P Ωn,3 should be at a very small, but positive, distance η from AffpΩ0q.
Note that this already implies that the facet gap of Ω0 Y ω is small.

Finally, we define the entries of p by p|Ω0 “ 1
2 q, pω “ 1

2 , and pω “ 0 elsewhere. Assuming we
have found p according to this process, we now give intuition for the diameter bound.

Let v be the projection of ω to the orthogonal complement of AffpΩ0q. Intuitively, the
capacity is only approximately attained by vectors very far in the ´v direction. Indeed, first
note that capppq “ 1{2, because cappqq “ 1 by tristochasticity, capppq ě 1

2 cappqq “ 1
2 , and

fpp´tv{}v}q “ 1
2 ` e´ηt so fpp´tv{}v}q tends to 1

2 . However, fpp´tv{}v}q tends to 1
2 slowly

if η is small. Indeed, fpp´tv{}v}q ď 1
2 p1 ` εq only if t ě 1

η logp1{εq.
To conclude rigorously that the capacity is only approached by vectors very far in the

´v direction, we must rule out directions with nonzero components in AffpΩ0q. For this, we
must use the assumption that 0 is rather deep in the relative interior of convpΩ0q. If this is
the case, then any ε-approximate minimizer must have a bounded component in AffpΩ0q, for
otherwise the contribution to fp from the elements of Ω0 alone will be larger than 1

2 ` ε.
The remainder of the section will be concerned with the construction of a subset Ω0, an

array q, and an element ω with these properties.

3.2 The construction

We construct the subset Ω0 from a directed graph D on rns, which we will determine later.
If i, j is an edge in D, then Ω0 includes the elements pεi, εi, εjq as well as the three cyclic
permutations of it. That is,

Ω0 “ tpεj , εi, εiq, pεi, εj , εiq, pεi, εi, εjq : ij P EpDqu.

We now describe the graph, as seen in Figure 2.

13 This will not quite apply in our setting, because AffpΩn,3q is not full-dimensional. Instead, AffpΩ0q will
be codimension one in AffpΩn,3q.

W. C. Franks and P. Reichenbach 13:23

wl´1

wl

r

u1

ul´1

ul´2

ul

v1

vl´1

vl´2

vl

w1

wl´1

wl´2

wl´3

wl

2
`

1

2
´

12

2 `
p´

1
2
q
l´

1

2 `
p´ 1

2 q l´1

2
`

p´
1 2
ql´

2

2 ´
1
2

2 ` 1

2 ´ 1
2

2 ` 1

2 ´
1

2

2 `
1

2
´

1 2

Figure 2 The graph Dl from Definition 3.2 with the edge labels proportional to the edge labeling
q in Item 1 of Lemma 3.3 (the constant factor 1{6n is omitted for readability). We have also omitted
the directions, which are all towards the root r.

▶ Definition 3.2. The graph Dl “ pW, Eq is a directed tree with l ` 1 levels, where the root
is on the 0th level and the leaves are on the lth level. The tree is constructed as follows.

All the edges are directed towards the root and are between adjacent levels.
The root has three children, and on the l ´ 1 levels below the root every node has one
child.
Additionally, one of the vertices on level l ´ 2 has an additional child which has its own
child.

Explicitly, the vertices W and edges E are given by

W “ tui, vi, wi : i P rlsu Y tw0 :“ u0 :“ v0 :“ r, w̄l´1, w̄lu.

E “ tuiui´1, vivi´1, wiwi´1 : i P rlsu Y tw̄l´1wl´2, w̄lw̄l´1u.

Note that Dl has 3pl ` 1q vertices so we set n “ 3pl ` 1q. Thus Dl has 3l ` 2 edges and
so |Ω0| “ 3p3l ` 2q “ 3n ´ 3. It is helpful to construct the matrix M whose set of rows is
Ω0. To make the matrix sparser, first replace εi by ei by restricting the minimization to the

CCC 2021

13:24 Barriers in Geodesic Optimization

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0
A I . . . 0

0
. . .

. . .
...

...
. . .

. . . I

0 . . . 0 A

0 0
0
...
...

I

0 0
A I . . . 0

0
. . .

. . .
...

...
. . .

. . . I

0 . . . 0 A

0
0
...
...

I

0 0 0
A I . . . 0

0
. . .

. . .
...

...
. . .

. . . I

0 . . . 0 A

0
...
...

I

A I

0 A

0 0 0 0 0 . . .

0 0 I . . .

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Figure 3 The matrix M written in the reordered basis described before Lemma 3.3. From the left,
the five groups of columns correspond to the w1s, the u1s, the v1s, the w1s, and r among the vertices
of Dl. As such the dimensions of the five column groups, from left, are 3 ¨2, 3pl´1q, 3pl´1q, 3pl´1q, 3,
and the dimensions of the four groups of rows from top are 3pl ´ 1q, 3pl ´ 1q, 3pl ´ 1q, 3 ¨ 2. A is as in
Equation (28) and I is the 3 ˆ 3 identity matrix.

v
q1 q2

Figure 4 If v is a vertex of Dl with edges weighted q1 and q2 incident to it, then the column v, i

of M for i P r3s sums to q1 ` 2q2. That is, the incoming edge contributes its weight and the outgoing
edge contributes twice its weight.

subspace
ř

xi “
ř

yi “
ř

zi “ 0, which is without loss of generality. We define Ω1
0 Ď R3n

to be Ω0 but with each pεi, εj , εkq replaced by pei, ej , ekq; define Ω1
n,3 similarly and define

ppei,ej ,ekq :“ ppεi,εj ,εkq. Then

inf
xPR3n

ÿ

ωPΩn,3

pωepεi,εj ,εkq¨x “ inf
x,y,zPRn

ř

xi“
ř

yi“
ř

zi“0

ÿ

ωPΩ1
n,3

pωepei,ej ,ekq¨px,y,zq.

Moreover, when we write the matrix M , it is easier to write the vector px, y, zq in the order
px1, y1, z1, x2, y2, z2, . . . q instead of the order px1, . . . , xn, y1, . . . , yn, z1, . . . , znq. With this
ordering, the matrix M with rows in Ω1

0 is a block matrix M with blocks of size 3, with
n ´ 1 block rows, and with n block columns. Each block row corresponds to an edge in the
directed graph Dl “ pW, Eq on n “ 3pl ` 1q vertices. If e P E is an edge from i Ñ j, then
the eth row of M has the matrix

W. C. Franks and P. Reichenbach 13:25

A “

»

–

0 1 1
1 0 1
1 1 0

fi

fl (28)

in the ith block entry and

I “

»

–

1 0 0
0 1 0
0 0 1

fi

fl

in the jth block entry and zeroes elsewhere. See Figure 3 for a portrayal of the whole
matrix M .

The first three properties for Ω0 in the proof plan translate to the following three claims
about M . The first relates to the tristochasticity of q, the second to the codimension of
AffpΩ1

0q in the subspace p1K
n q3, and the third to the depth of the point 1

n13n in convpΩ1
0q.

▶ Lemma 3.3. Let n “ 3pl ` 1q.
1. The probability distribution q on E ˆ r3s defined pfor i P r3sq by

for j P rls, qujuj´1,i “ qvjvj´1,i “
1

6n

´

2 ` p´2q´pl´jq
¯

for j P rl ´ 2s, qwjwj´1,i “
1

6n

´

2 ` p´2q´pl´j´1q
¯

qwl´1wl´2,i “ qw̄l´1w̄l´2,i “
1
2qwlwl´1,i “

1
2qw̄lw̄l´1,i “

1
6n

ˆ

3
2

˙

on the rows of M has expectation 1
n13n. That is, if the rows of M are scaled by the values

of q, each column sums to 1{n. Note that the entries of q are Θp 1
n q. Ignoring the index i

in quv,i allows us to view q as a labeling of the edges of the graph Dl; see Figures 2 and 4.
2. ker M “ spanpΩ1

0qK is spanned by the 2 dimensional space S Ď RW ˆr3s given by

S “ ts : spv, 1q “ α, spv, 2q “ β, spv, 3q “ γ for all v P W, α ` β ` γ “ 0u

and the function f P RW ˆr3s which for all i P r3s assigns

fpuj , iq “ fpvj , iq “ fpwj , iq “ p´2q´j for j P rls Y t0u

and fpw̄l´k, iq “ fpwl´k, iq for k P t0, 1u. (29)

Note that f P p1K
n q3 Ď SK. Thus we have the orthogonal decomposition spanpΩ1

0qK “

S ‘ span f.

3. Apart from the three zero singular values, all singular values of M are Ωp1{nq.

Given the lemma, let us prove that the diameter bound holds according to the proof
outline at the beginning of the section.

Proof of Theorem 1.1. We first show the claim for n of the form n “ 3pl ` 1q; the bound
follows for 3pl ` 1q ă n ă 3pl ` 2q by applying Proposition 3.5 with t “ 3pl ` 1q, using that
the array we construct has capacity 1{2 and t{n ě 2{3.

We now show the diameter lower bound for n “ 3pl ` 1q. It is enough to exhibit a
constant C ą 0, and a probability distribution p on Ω1

n,3 “ tei : i P rnsu3 such that for for
all N ě Cn2 log n and all x, y, z P 1K

n ,
ÿ

ωPΩ1
n,d

pωeω¨px,y,zq ď e´N ` inf
x1,y1,z1P1K

n

ÿ

ωPΩ1
n,d

pωeω¨px,y,zq

CCC 2021

13:26 Barriers in Geodesic Optimization

only if }px, y, zq}2 “ Ωp2n{3Nq. Note that the space p1K
n q3 over which we are infimizing is a

subspace of SK where S is as in Lemma 3.3, and that Ω1
n,d Ď SK. The proof will follow the

outline in Section 3.1; namely, we will consider a subset Ω1
0 Ď Ω1

n,d and an element ω1 P Ω1
n,d

very close to, but outside of, AffpΩ1
0q.

Consider the set Ω1
0 Ď Ω1

n,d of rows of M in Lemma 3.3 and the probability distribution
q on Ω1

0 from Lemma 3.3. Let ω1 “ peul
, evl

, ewl
q for the vertices ul, vl, wl P Dl. Let

Ω “ Ω1
0 Y tω1u, and define the probability distribution p on Ω by pω1 “ 1

2 and pω “ 1
2 qω for

ω P Ω1
0. Recall from Lemma 3.3 the orthogonal decomposition spanpΩ1

0qK “ S ‘ span f . As
R3n “ spanpΩ1

0q‘spanpΩ1
0qK, we have the orthogonal decomposition SK “ spanpΩ1

0q‘span f .
Observe that ω1 R spanpΩ1

0q, because by Lemma 3.3 we have spanpΩ1
0qK “ ker M “ S `span f

and clearly f ¨ ω1 ‰ 0.
By Item 1 of Lemma 3.3 we have

ř

ωPΩ1
0

qωω “ 1
n p1n,1n,1nq and thus cappqq “ 1.

Therefore, ω1 R spanpΩ1
0q implies that the infimum is 1{2 for this choice of Ω and p. We

claim that the infimum can only be approximately attained by h P p1K
n q3 with a very

large component in the one-dimensional space span f “ spanpΩ1
0qK X p1K

n q3. As in the
proof outline, we must bound the components in spanpΩ1

0q of the approximate minimizer
h. For h P p1K

n q3 write h “ h0 ` af and ω1 “ ω0 ` bf where h0, ω0 P span Ω1
0. Note that

|b| “
|f ¨ω1

|

}f}2 “ Op2´lq “ Op2´n{3q and that h0 P p1K
n q3, because h and f are. Suppose

ÿ

ωPΩ
pωeω¨h ď

1
2e´N `

1
2 .

Equivalently,
ÿ

ωPΩ1
0

qωeω¨h0 ` eh0¨ω0`ab∥f∥2
ď e´N ` 1. (30)

Suppose }h0} is bounded by L. If eh0¨ω0`ab∥f∥2
ď e´N , then |ab| “ ΩpN ´ Lq. In particular,

}h} ě }af} “ |ab|}f}{|b| “ ΩppN ´ Lq2n{3q because of the previous bounds on |ab|, |b|, and
the fact that }f} “ Θp1q. It remains to prove a bound L for }h0}. We will do this by showing
that if }h0} were too large, then the first term of the left-hand side of Equation (30) would
be too large. This amounts to 1

n13n being in the relative interior of convpΩ1
0q, but will be

proved using lower bounds on the singular values of M .
Let α denote the least nonzero singular value of M ; by Item 3 of Lemma 3.3 α “ Ωp1{nq.

As h0 P spanpΩ1
0q “ rowspanpMq, we have }Mh0} ě α}h0} by the singular value bound. We

claim that there is some ω P Ω1
0 satisfying ω ¨ h0 “ Ωpα}h0}{nq. To prove this, first note that

the
ř

ωPΩ1
0

qωω ¨ h0 “ 1
n p1n,1n,1nq ¨ h0 “ 0 because h0 P p1K

n q3. Moreover, by Lemma 3.3
we have qω “ Θp1{nq. The claim follows from Lemma 3.4 below applied to the sequence
pω ¨ h0 : ω P Ω1

0q.

Because qω “ Θp 1
n q, we must have that ω ¨ h0 “ Oplog nq for all w P Ω1

0. Else, the
contribution from the term qωeω¨h0 alone is larger than 1, in which case x cannot be an
e´N -approximate minimizer. Finally, }h0} “ Opnplog nq{αq “ Opn2 log nq, and so we may
take L “ Opn2 log nq and N ě 2L. ◀

In the above proof, we used the following simple lemma.

▶ Lemma 3.4. Let 0 ă β ă γ. Suppose z P Rm is such that
řm

i“1 qizi “ 0 for qi P pβ{m, γ{mq.
Then there exists i P rms such that zi ě

β
2γm }z}2.

Proof. Because
ř

qizi “ 0,
ÿ

i:ziă0
qi|zi| “

ÿ

i:ziě0
qizi,

W. C. Franks and P. Reichenbach 13:27

and
ÿ

i:ziă0
qi|zi| `

ÿ

i:ziě0
qizi ě pβ{mq}z}1 ě pβ{mq}z}2.

Thus
ř

i:ziě0 qi|zi| ě
β

2m }z}2, so there is some i such that qizi ą 1
m

β
2m }z}2. Thus zi ą

β
2γm }z}2. ◀

To show that our diameter lower bound holds for all values of n, we need the following
proposition, which is proved in Appendix E. The idea is to prove diameter bounds for larger
arrays from diameter bounds for smaller ones by embedding the smaller array in a “corner”
of the larger array.

▶ Proposition 3.5. Suppose 1 ď t ď n. Let p be a d-dimensional array in pRt
ě0qbd with

unit sum; in particular capppq ď 1. Let q be the d-dimensional array in pRn
ě0qbd array such

that qi1,...,id
“ t

n pi1,...,id
for i1, . . . , id P rts, qiii “ 1{n for t ` 1 ď i ď n, and qi1,...,id

“ 0
otherwise. For ε ď 1 ´ capppq,

Dfq
pεq ě Dfp

ˆ

p1 ´ capppqqε

1 ´ capppqt{n

˙

.

In particular, the norm of any ε-approximate minimizer of fq is at least the norm of some
` 1´capppq

1´capppqt{n

˘

ε-approximate minimizer of fp.

As a corollary of the proof of Theorem 1.1, we have a bound on the facet gap of [14].
The facet gap of a finite set Ω is defined to be the least distance of an element of Ω to the
affine hull of a facet of convpΩq. We have shown that the distance between AffpΩ1

0q and ω1 is
Op2´lq, or Op2´n{3q.

▶ Corollary 3.6 (Facet gap of array scaling). There is a subset Ω1 Ď Ωn,3 with facet gap
Op2´n{3q.

Analogously to what is done for the margin in Proposition C.1, we may also embed
this array inside a larger array to obtain a diameter bound for d ě 3. For d ě 3, take
qpi, j, k, l, l, . . . , lq “ 1

n pijk for all i, j, k, l P rns. Then for px1, . . . , xdq P p1K
n qd we have

fqpx1, . . . , xdq “
1
n

fppx1, x2, x3q

n
ÿ

l“1
e
řd

j“4pxj ql .

For fixed x1, x2, x3, by Jensen’s inequality fq is minimized when xj “ 0n for j ě 4 and takes
value fppx1, x2, x3q, and thus fq has the same diameter bound as fp.

▶ Corollary 3.7 (Diameter bound for d ě 3). There is an absolute constant C ą 0 such
that the following holds. For all d ě 3, there is a family of arrays q P pRn

ě0qbd with Opn2q

nonzero entries, each of bit-complexity Opnq, that satisfies the following property. For all
0 ă ε ď expp´Cn2 log nq and x P Rdn, if

fqpxq ď capppq ` ε

then ∥x∥2 “ Ω
`

2n{3 logp1{εq
˘

.

CCC 2021

13:28 Barriers in Geodesic Optimization

3.3 Proof of the properties of the construction
We now prove Lemma 3.3.

Proof of Lemma 3.3. It is first helpful to change basis on each copy of R3 so that the A

blocks are diagonalized. Let U P Matp3q be an orthogonal matrix such that

U :AU “

»

–

2 0 0
0 ´1 0
0 0 ´1

fi

fl .

This is possible because 2, ´1, ´1 are the eigenvalues of the symmetric matrix A. In particular,
the first column of U is p1, 1, 1q{

?
3, and the second two columns span the space of vectors

with sum zero. Then M 1 “ pU‘nq:MU‘n is of the form P ‘ L ‘ L where Pe,v “ M 1
pe,1q,pv,1q

for e, v P E ˆ V and Le,v “ M 1
pe,2q,pv,2q

. Note that L is the edge-vertex incidence matrix of
the directed graph Dl, the row corresponding to the edge pu, vq of Dl has a ´1 in the column
indexed by the vertex u and a `1 in the column indexed by v. Moreover, P is the matrix
obtained from L by replacing every ´1 entry by a 2.

To prove Item 2, observe that ker M is pU‘nq ker M 1 “ pU‘nq ker P ‘ ker L ‘ ker L.
Because Dl is connected, ker L “ span1n. As the second two columns of U span the
subspace of R3 of vectors with sum 0, the two-dimensional space S is given by pU‘nq0 ‘

span1n ‘ span1n “ pU‘nq0 ‘ ker L ‘ ker L. We next reason for ker P , the other summand
of the orthogonal decomposition of ker M 1. The graph Dl is a connected tree, so ker P is
one dimensional. This is because every choice of gpw0q P R determines a unique function
g : V Ñ R in ker P . We claim that the function gpvq “ fpv, 1q for f as in Equation (29) is in
ker P , and hence spans it. To check this, one must check that for every edge pv, wq P E we
have 2gpvq ` gpwq “ 0. It is instructive to look at Figure 2. Observe that this property holds
for the edges uk,k´1 if the sequence gpukq obeys the recurrence relation gpuk´1q “ ´2gpukq

for k P rls, which is indeed true by the definition of f . Checking the condition for v and w is
similar. As the first column of U is proportional to 13, pU‘nq ker P ‘ 0 ‘ 0 is spanned by
the function f . This proves Item 2.

To show Item 3, it is enough to argue that the singular values of P, L, L obey the desired
bound. For L this follows straightforwardly from the fact that L is an incidence matrix of a
connected, directed tree and so is totally unimodular with linearly independent rows. The
singular value bound follows by Lemma 3.8. Rather than arguing spectrally for P , we make
an ad-hoc argument using the structure of Dl. We first show that }xtP }8 “ Ωp}x}8q for all
x P Rn´1, which suffices because }xtP }2 ě }xtP }8 and }x}8 ě 1?

n
}x}2.

Let x P Rn´1zt0u and e be an edge in Dl such that |xpeq| “ }x}8. If e “ uiui´1 for
i P rls, then |xtP puiq| ě }x}8 because either i ă l in which case

|xtP puiq| “ |2xpuiui´1q ` xpui`1uiq| ě 2}x}8 ´ |xpui`1uiq| ě }x}8

or i “ l and so |xtP puiq| “ |2xpeq| “ 2}x}8. The same argument applies to all other edges
except e “ wl´2wl´3. In the latter case we are done if xtP pwl´2q ě 1{3}x}8. Otherwise
we necessarily have |xpwl´1wl´2q| ` |xpw̄l´1wl´2q| ě 5{3}x}8, since xtP pwl´2q “ 2xpeq `

xpwl´1wl´2q ` xpw̄l´1wl´2q. It follows that |xpwl´1wl´2q| ě 5{3}x}8 ´ |xpw̄l´1wl´2q| ě

5{3}x}8 ´ }x}8 ě 2{3}x}8. As |xtP pwl´1q| “ 2xpwl´1wl´2q ` xpwlwl´1q, we have

|xtP pwl´1q| ě 2|xpwl´1wl´2q| ´ |xpwlwl´1q| ě
4
3}x}8 ´ }x}8 ě

1
3}x}8.

In any case, there is some value of xtP with absolute value greater or equal 1{3}x}8.

W. C. Franks and P. Reichenbach 13:29

Finally, for Item 1 we note that the probability distribution q on the rows of M has
expectation equal to the all 1{n function if and only if the probability distribution q1

defined by q1
e “ 3qe,1 on the rows of P has expectation equal to the all 3{n function on

the vertices of Dl. Recall that P is obtained from the edge-vertex incidence matrix of Dl

by replacing every ´1 with a 2. Thus the expectation of the rows under q1 at a vertex v

is
ř

w:pw,vqPDl
q1

pw,vq
`
ř

w:pv,wqPDl
2q1

pv,wq
; see Figure 4. We now check that this is equal to

3{n for each vertex of Dl; it is helpful to look at Figure 2. The leaves ul, vl, wl, and wl

all have outdegree one and indegree zero, and q1 takes the value 3 ¨ 3{6n “ 3{2n on the
outgoing edges. The expectation under q1 thus takes value 3{n on these vertices. On vertices
of indegree one and outdegree one, q1 takes the value 1

2n

`

2 ` p´2q´k
˘

on the incoming
edge and 1

2n

`

2 ` p´2q´pk`1q
˘

on the outgoing edge. Thus the expectation takes the value
1

2n

`

2 ` p´2q´k
˘

` 1
2n

`

4 ´ p´2q´k
˘

“ 3{n. The remaining vertices to check, those of total
degree three, are r and wl´2. For r, which has only incoming edges, the expectation under q1

is 2 ¨ 1
2n

`

2 ` p´2q´pl´1q
˘

` 1
2n

`

2 ` p´2q´pl´2q
˘

, which is again 3{n. For w the expectation
is 2 ¨ 1

2n

`

2 ´ 1
2
˘

` 2 ¨ 1
2n

`

2 ´ 1
2
˘

“ 3{n. This completes the proof. ◀

▶ Lemma 3.8. If A is an n ˆ k totally unimodular matrix with linearly independent columns,
then the eigenvalues of AT A are all at least 1{n2.

Proof. First note that k ď n by the linear independence of the columns of A. The least
eigenvalue of AT A is minxPRkzt0upxT AT Axq{}x}2 “ minxPRkzt0u }Ax}2{}x}2, so it suffices to
show that for all x P Rk, Ax has norm at least }x}{n. Indeed, if Ax “ y, then there is some
invertible k ˆ k submatrix A1 of A and k ˆ 1 submatrix y1 of y such that A1x “ y1. By
Cramer’s rule and unimodularity of A1 we have that, for i P rks,

xi “
detpBiq

detpA1q
“ ˘ detpBiq

where Bi is simply the matrix that one obtains by replacing the ith column of A1 with the
vector y1. By performing the Laplace expansion with respect to the ith column, and by
unimodularity of the minors, we have that xi ď }y}1, and so }x}2 ď

?
k}y}1 ď n}Ax}2 (using

k ď n). ◀

4 The noncommutative case

In this section we extend the results from the commutative to the noncommutative case. For
this, we recall in the first subsection necessary concepts such as moment maps and moment
polytopes, and we define the weight margin and the gap of a representation. The second
subsection introduces the key concept of a free subset of weights, see [24]. This concept dates
at least back to [18, Proposition 1.2], where it is called strong orthogonality. Freeness will be
used to transfer results from the commutative to the noncommutative case.14 The latter is
done in the following three subsections, where we prove bounds on the tensor gap, on the gap
for homogeneous polynomials and on the diameter for the natural SLpnq3 action on 3-tensors.
Finally, we show a bound for the weight margin of certain quiver representations. This
provides an example, where the constructed set of weights is not free, compare Remark 4.28.
Still, after adding enough arrows to the considered quiver, we are able to ensure the same
bound for the gap.

14 Actually all presented concepts in the first two subsections work in the very general setting of reductive
groups and their rational representations. For the sake of clarity and concreteness we stick to the special
case needed in this paper, i.e. the reductive group SLpnq

d :“ SLpnq ˆ ¨ ¨ ¨ ˆ SLpnq with d ě 1 many
copies of SLpnq.

CCC 2021

13:30 Barriers in Geodesic Optimization

4.1 Moment maps and moment polytopes
In the following we introduce the null-cone problem and its dual characterization via moment
maps and moment polytopes. This allows us to rigorously introduce the weight margin and
the gap of a rational representation. Thereby we establish precise meaning and interpretation
of our results regarding these two notions (in view of the null-cone problem). We stick to the
notation of [12], where the gap (implicitly) and the weight margin have been introduced. A
reader unfamiliar with representation theory is referred to Appendix B.

Let G “ SLpnqd, K “ SUpnqd, T “ STpnqd and TK “ K X T be matrix Lie subgroups of
GLpdnq via block-diagonal embedding. Then we can think of their Lie algebras LiepGq etc. as
being block diagonally embedded into Cdnˆdn. For a rational representation π : G Ñ GLpV q

we write g ¨ v :“ πpgqv for the induced action, where g P G and v P V . Moreover, we denote
the set of weights of π by Ωpπq Ď i LiepTKq and the induced representation on Lie algebras
by Π: LiepGq Ñ EndpV q. We remark that we usually identify i LiepTKq – p1K

n qd Ď pRnqd,
where 1K

n denotes the orthogonal complement of the all-ones vector 1n in Rn.
The orbit of v P V is G ¨ v :“ tg ¨ v | g P Gu and we denote its closure15 by G ¨ v. A vector

v is called G-unstable, if 0 P G ¨ v, and otherwise v is G-semistable. Equivalently, a vector
v P V is G-unstable if and only if its capacity

capGpvq :“ inf
gPG

}g ¨ v}2

equals zero. The G-unstable vectors form an affine subvariety of V - the null-cone (with
respect to G). Orbit, stability, and capacity can also be defined for T by replacing G by T
in the definitions.

As discussed in Section 1.2, the null-cone problem has many applications in different
fields of computer science, mathematics and physics.

Next, we introduce the moment map. Given a rational representation π : G Ñ GLpV q

there exists an Hermitian inner product x¨, ¨y on V , by convention linear in the second
argument, such that xk ¨ v, k ¨ wy “ xv, wy holds for all k P K and all v, w P V .16

▶ Definition 4.1. For v P V zt0u we define µGpvq P i LiepKq as the unique element of the
real vector space i LiepKq, which satisfies for all A P i LiepKq

tr
`

µGpvqA
˘

“
xv, ΠpAqvy

xv, vy
.

This defines the moment map µG : V zt0u Ñ i LiepTq of G. Replacing G by T and K by TK

we derive the moment map µT : V zt0u Ñ i LiepTKq of T.

The maps µG and µT are indeed moment maps in the sense of symplectic geometry;
namely for the induced action of K and, respectively, TK on the projective space PpV q.
Recall i LiepKq Ď Cdnˆdn so we can consider }µGpvq}F and }µTpvq}F .

An important application of these moment maps is due to the Kempf-Ness theorem [36],
which provides a duality for the null-cone membership problem:

capGpvq “ 0 ô 0 ă inf
gPG

}µGpg ¨ vq}F “ min
0‰wPG¨v

}µGpwq}F (31)

and similarly for T, replacing G by T in the above equation. The two moment maps are
related as follows.

15 The Euclidean- and the Zariski-closure of G ¨ v coincide.
16 In our concrete representations later on this will be the standard inner product.

W. C. Franks and P. Reichenbach 13:31

▶ Proposition 4.2. Let p : i LiepKq Ñ i LiepTKq be the orthogonal projection. Then µT “

p ˝ µG and ∥µTpvq∥F ď ∥µGpvq∥F for all v P V zt0u.

Proof. Since i LiepTKq Ď i LiepKq the definition of the moment maps gives trrµTpvqHs “

trrµGpvqHs for all H P i LiepTKq. But µTpvq P i LiepTKq is the unique element with this
property, hence ppµGpvqq “ µTpvq. The inequality ∥µTpvq∥F ď ∥µGpvq∥F follows directly
from the first part. ◀

Now, we explain how the moment maps induce certain polytopes, which can also be
used to express the duality in (31). Moreover, the combinatorics of these polytopes captures
the important complexity measures (weight) margin and gap. Indeed, one of our main
contributions is to analyze parts of this combinatorics, thereby deducing complexity barriers
for certain computational problems.

Since the action of T via π is completely determined by the weight space decomposition
V “

À

ωPΩpπq Vω of V , one can compute µTpvq in terms of this decomposition. For this,
write v “

ř

ω vω with vω P Vω and define the support of v with respect to π as

supppvq :“ tω P Ωpπq | vω ‰ 0u.

Using that distinct weight spaces are orthogonal, one computes

µTpvq “
ÿ

ω

xvω, vωy

xv, vy
ω,

which is a convex combination of the weights in supppvq. Noting that supppvq “ supppt ¨ vq

for t P T also µTpt ¨ vq P ∆Tpvq :“ convtω | ω P supppvqu. In fact,

∆Tpvq “ tµTpt ¨ vq | t P Tu “
␣

µTpwq | w P T ¨v, w ‰ 0
(

Ď i LiepTKq

and ∆Tpvq is called the weight polytope of v.
It is an astonishing result that for fixed v P V zt0u, the set tµGpg ¨ vq : g P Gu gives rise to

a polytope as follows. Let spec : Hermpnq Ñ Rn be the function sending a Hermitian matrix
to its eigenvalues in decreasing order. Recalling that i LiepKq Ď Hermpnqd is block-diagonally
embedded in Cdnˆdn, we set

s : i LiepKq Ñ pRnq
d

, diagpA1, . . . , Adq ÞÑ
`

specpA1q, . . . , specpAdq
˘

.

Then for v P V zt0u the set

∆Gpvq :“
␣

s
`

µGpwq
˘

| w P G ¨ v, w ‰ 0
(

is a rational convex polytope, see e.g. [28] or [45, Appendix] by Mumford. We call ∆Gpvq

the moment polytope of v. Noting that }A}F “ } specpAq}2 for any A P Hermpnq we have
}µGpvq}F “ }spµGpvqq}2 for all v P V zt0u. Thus, we can formulate the duality from (31) also
as follows:

capGpvq “ 0 ô dist
`

0, ∆Gpvq
˘

ą 0 ô 0 R ∆Gpvq,

and similarly for T. This motivates the following two definitions.

CCC 2021

13:32 Barriers in Geodesic Optimization

▶ Definition 4.3. Let π : G Ñ GLpV q be a rational representation. We define the gap of π

as17

γGpπq :“ min
␣

∥µGpvq∥F | v ‰ 0 is G-unstable
(

“ min
␣

dist
`

0, ∆Gpvq
˘

| v ‰ 0 is G-unstable
(

,

and the weight margin of π as

γTpπq :“ min
␣

∥µTpvq∥F | v ‰ 0 is T -unstable
(

“ min
␣

dist
`

0, ∆Tpvq
˘

| v ‰ 0 is T -unstable
(

.

Equivalently, γTpπq is the margin of the set of weights Ωpπq, i.e. γTpπq “ γpΩpπqq.

Thus, the gap γGpπq is the largest constant C ą 0 with the following property: If
}µGpvq}F ă C for some vector v P V , then v is G-semistable. The same statement holds
for the weight margin γTpπq replacing G by T. Therefore, these notions capture how small
µGpg ¨ vq (respectively µTpt ¨ vq) must be to certify null-cone non-membership. The next
remark connects the gap to the classical notion of instability due to Mumford [44].

▶ Remark 4.4. The gap is twice the minimum value of all positive instabilities. In-
deed, let Mpvq denote the instability of a non-zero vector v, see e.g. [45, eq. (9)]. Then
distp0, ∆Gpvqq ě 2Mpvq and [45, Theorem 6.1] implies

γGpπq “ inft2Mpvq : v ‰ 0, v is G-unstableu.

▶ Example 4.5. Recall the tensor scaling action, in which the group G “ SLpnqd acts on
pCnqbd via the representation

πn,d : SLpnqd Ñ GL
`

pCnqbd
˘

, pg1, . . . , gdq ÞÑ g1 b ¨ ¨ ¨ b gd .

Similar computations to those in Example B.2 show that the set of weights of πn,d is

Ωpπn,dq “ Ωn,d “
␣

εi | i P rns
(d

Ď pRnqd.

Therefore, the weight margin γTpπn,dq is the margin γpΩn,dq for the array scaling problem
from Theorem 1.3 and Theorem 2.1. Moreover, the moment map µG for πn,d can be computed
in terms of the quantum marginals as described in the introduction, i.e. γGpπn,dq is indeed
the tensor gap.

The weight margin and the gap satisfy the following inequality.

▶ Proposition 4.6. It holds that γTpπq ď γGpπq.

Proof. Let v ‰ 0 be G-unstable. Then there exists k P K such that k ¨ v is T-unstable; see
[51, Theorem 3.25]. By Proposition 4.2 we obtain

∥µGpvq∥F “ ∥µGpk ¨ vq∥F ě ∥µTpk ¨ vq∥F ě γTpπq

where we used in the first equality that µGpk ¨ vq “ kµGpvqk:. Therefore γGpπq ě γTpπq. ◀

This inequality motivates the next subsection.

17 Gap and weight margin are well-defined, i.e. the minimum is attained. Indeed, the moment maps give
rise to continuous maps on PpV q and the non-zero G-unstable (respectively non-zero T-unstable) vectors
form a projective subvariety of PpV q; in particular they form a compact set.

W. C. Franks and P. Reichenbach 13:33

4.2 Free sets of weights
Proposition 4.6 from the preceding subsection shows us that an upper bound for the weight
margin γTpπq need not necessarily apply to the gap γGpπq. Still, many of our bounds in the
commutative case (weight margin and diameter) transfer to the noncommutative case (gap
and diameter). We use crucially the notion of a free subset of weights (or [24]). Freeness is
also known as strong orthogonality [18].

▶ Definition 4.7. Let π : G Ñ GLpV q be a rational representation with set of weights Ωpπq.
A subset Γ Ď Ωpπq is called free if no two distinct elements of Γ differ by a root of G. In

other words, Γ X pΓ ` αq “ H holds for all roots α of G.
Furthermore, a vector v P V zt0u is called free if its support supppvq Ď Ωpπq is free.

We transfer the results from the commutative to the noncommutative case with the
upcoming Proposition 4.8. It is known that for vectors v with free support one has µGpvq “

µTpvq. This appears implicitly in [49, Lemma 7.1] and [24, Proposition 2.2], but we prove it
below for completeness. We thank Visu Makam for pointing out to us that this equality still
holds under a weaker condition on v, when the representation decomposes into orthogonal
subrepresentations. This can be used to turn our weight margin upper bound for quivers into
a gap upper bound (Theorem 4.25). This weaker condition also appears in [21, Theorem 6.5].

▶ Proposition 4.8. Let π : G Ñ GLpV q be a rational representation and suppose V “
Àk

i“1 Vi

is an orthogonal decomposition into G-subrepresentations with respect to the K-invariant
inner product, that is used to define µT and µG. Let v “ pv1, . . . , vkq P V zt0u, vi P Vi be
such that all supports Γi :“ supppviq Ď Ωpπq are free. Then for all t P T it holds that
µGpt ¨ vq P i LiepTKq and µGpt ¨ vq “ µTpt ¨ vq.

If additionally 0 R ∆Tpvq “ convpΓq, where Γ “
Ť

i Γi, then the upper bound
distp0, convpΓqq for the weight margin γTpπq also applies to the gap, i.e. γGpπq ď

distp0, convpΓqq.

Proof. The action of T preserves the supports Γi, and in particular preserves their freeness.
Hence, it suffices to show µGpvq P i LiepTKq, which immediately yields µGpvq “ µTpvq by
Proposition 4.2. Moreover, the orthogonality with respect to the K-invariant inner product
shows µGpvq “ H1 ‘ ¨ ¨ ¨ ‘ Hk, where Hi “ µ

piq

G pviq is given by the moment map µ
piq

G of the
G-module Vi if vi ‰ 0 and otherwise Hi “ 0. The latter holds similarly for µT.

Therefore, we may assume k “ 1, i.e. v ‰ 0 has free support Γ. We write v “
ř

ωPΓ vω for
vω P Vω. Then, for any root α of G and all A P i LiepKq X LiepGqα we have ΠpAqvω “ 0 by
Γ X pΓ ` αq “ H (i.e., freeness) and Proposition B.4. Thus, ΠpAqv “ 0 and tr

`

µGpvqA
˘

“ 0
for all roots α and all A P i LiepKq X LiepGqα. With the root space decomposition LiepGq “

LiepTq ‘
À

α LiepGqα (see also Example B.3) we conclude µGpvq P i LiepTKq. The first
statement is proven.

For the second claim we note that indeed
Ť

i Γi “ supppvq. If additionally 0 R convpΓq “

∆Tpvq, then v is T-unstable. In particular, v is G-unstable and thus

γGpπq ď dist
`

0, ∆Gpvq
˘

.

On the other hand, we have

dist
`

0, ∆Gpvq
˘

“ inf
gPG

}µGpg ¨ vq}F ď inf
tPT

}µGpt ¨ vq}F
p˚q
“ dist

`

0, convpΓq
˘

,

where we used µGpt ¨vq “ µTpt ¨vq in p˚q. We conclude by combining the two inequalities. ◀

CCC 2021

13:34 Barriers in Geodesic Optimization

▶ Remark 4.9. It is well-known that any rational representation π : G Ñ GLpV q can be
decomposed into G-irreducible subrepresentations that are pairwise orthogonal with respect
to the fixed K-invariant inner product. Proposition 4.8 shows that ensuring freeness on the
irreducible subrepresentations suffices.

We end the section with an interesting connection between the weight margin and the
gap.

▶ Proposition 4.10. Let π : G Ñ GLpV q be a rational representation and denote its m-fold
direct sum by πm.
1. The weight margin satisfies γTpπq “ γTpπmq for all m ě 1.
2. The gap satisfies γGpπmq ě γGpπm`1q for all m ě 1.
3. There exists some m ď dimpV q such that γGpπmq “ γTpπmq “ γTpπq.

Proof. We note that πm is given by the action g ¨ pv1, . . . , vmq “ pg ¨ v1, . . . , g ¨ vmq on
V m. Furthermore, the K-invariant inner product x¨, ¨y of V induces naturally a K-invariant
product on V m by

xpv1, . . . , vmq, pw1, . . . , wmqyV m :“
m
ÿ

i“1
xvi, wiy.

For the first claim just note that the weight space decomposition for πm is V m “
À

ωPΩpπq V m
ω and hence Ωpπmq “ Ωpπq.

For the second claim, let pv1, . . . , vmq P V mzt0u be G-unstable such that
}µGpv1, . . . , vmq}F “ γGpπmq. Then pv1, . . . , vm, 0q P V m`1zt0u is G-unstable as well, so
}µGpv1, . . . , vm, 0q}F ě γGpπm`1q. Moreover, under the inner product x¨, ¨yV m`1 the first m

copies of V are orthogonal to the last copy. Thus, µGpv1, . . . , vm, 0q is the 2ˆ2 block-diagonal
matrix diagpµGpv1, . . . , vmq, 0q and hence }µGpv1, . . . , vm, 0q}F “ }µGpv1, . . . , vmq}F “

γGpπmq.
Finally, let Γ “ tω1, . . . , ωmu Ď Ωpπq be such that 0 R convpΓq and distp0, convpΓqq “

γTpπq. We have m ď |Ωpπq| ď dimpV q by the weight space decomposition V “
À

ωPΩpπq Vω.
Now, for each ωi P Γ fix some weight vector vi P Vωi

zt0u. Then v :“ pv1, . . . , vmq P V m

satisfies the assumptions of Proposition 4.8, because Γi “ tωiu is free and the distinct copies
of V are orthogonal under x¨, ¨yV m . Thus, we obtain

γGpπmq ď dist
`

0, convpΓq
˘

“ γTpπq “ γTpπmq,

but on the other hand γGpπmq ě γTpπmq by Proposition 4.6. ◀

4.3 Freeness for tensors
We recall from Example 4.5 that πn,d denotes the natural representation of G “ SLpnqd

on pCnqbd and that the weight margin γTpπn,dq is the margin γpΩn,dq for the array scaling
problem from Theorem 1.3 and Theorem 2.1. The purpose of this subsection is to prove the
bounds for γTpπn,dq from Theorem 2.1 also for the gap γGpπn,dq.

▶ Theorem 4.11. Let πn,d be the representation induced by the natural action of G :“ SLpnqd

on pCnqbd. Then the weight margin γTpπn,dq and the gap γGpπn,dq can be bounded as follows:
(a) If n “ 2 and d ě 3, then γTpπ2,dq ď γGpπ2,dq ď 2´ d

2 `1.

(b) If n ě 3 and d “ 3, then γTpπn,3q ď γGpπn,3q ď 2´n`1.
(c) If n ě 3 and d “ 6r ´ 3 for some integer r ě 2, then

γTpπn,dq ď γGpπn,dq ď

?
6

pn ´ 1q
?

r
2´rpn´1q`1 ď 2´rpn´1q`1 “ 2´

pd`3qpn´1q

6 `1.

W. C. Franks and P. Reichenbach 13:35

Though the above theorem only applies to certain d, we can “pad” the tensors to obtain
similar results for all d ě 3. This is because bounds for γGpπn,dq via free subsets of weights
also hold for γGpπn,d`2q and γGpπn,d`3q, see Proposition C.1. The missing case n ě 3 and
d “ 4 is treated in Proposition C.2. Therefore, we can conclude Theorem 1.6 from the above
Theorem 4.11.

Our main method for transfering the bounds from the commutative case (Theorem 2.1) to
the noncommutative case is to use the concept of freeness in conjunction with Proposition 4.8.
The following definition will be convenient for proving freeness of tensors.

▶ Definition 4.12 (Free sets). A set M Ď rnsd is called free, if i “ pi1, . . . , idq, j “

pj1, . . . , jdq P M with i ‰ j always implies |til ‰ jl | l “ 1, . . . , du| ě 2.

▶ Proposition 4.13. Let M Ď rnsd and denote the induced subset of weights by

ΓM :“ tpεi1 , . . . , εid
q | pi1, . . . , idq P Mu Ď pRnqd.

Then M is a free set if and only if the set of weights ΓM Ď Ωpπn,dq is free as in Definition 4.7.

Proof. We recall that ΓM is free if and only if no two distinct elements of ΓM differ by a
root of G “ SLpnqd, see Definition 4.7. Furthermore, remember that the roots of G are

pei ´ ej , 0n, . . . , 0nq, p0n, ei ´ ej , 0n, . . . , 0nq, , p0n, . . . , 0n, ei ´ ejq P pRnq
d

for i, j P rns with i ‰ j; see also Example B.3. Now, if M Ď rnsd is not free, then there exist
i “ pi1, . . . , idq, j “ pj1, . . . , jdq P M with i ‰ j such that they exactly differ one component.
Without loss of generality we assume i1 ‰ j1 and il “ jl for l “ 2, . . . , n. But then

pεi1 , . . . , εid
q “ pεj1 , . . . , εjd

q ` pei1 ´ ej1 , 0n, . . . , 0nq,

and hence ΓM is not free. Clearly, the argument can be inverted to show that if ΓM is not
free, then M is not free. ◀

The above proposition shows how the equality µGpt ¨ vq “ µTpt ¨ vq of Proposition 4.8 can
be verified directly for tensors. For tensors, the moment map components are the quantum
marginals, and the equality µGpt ¨ vq “ µTpt ¨ vq simply says that the quantum marginals
are diagonal. Each off-diagonal entry of a quantum marginal is the inner product between
distinct d ´ 1-dimensional slices of a tensor, and if the support of the tensor is free then the
supports of such slices are entirely disjoint - thus the quantum marginals are diagonal.

In the following two Propositions we show, that the subsets of weights, which witness
the upper bounds for the (weight) margin in Theorem 2.1, are all free. Thereby, we will
implicitly use Proposition 4.13.

▶ Proposition 4.14. For r ě 2 the rows of A2r form a free subset of r2s2r, i.e. Γ2,2r is free.
Moreover, for r ě 1 the set of weights Γ2,2r`1 is free.

Proof. Clearly, Γ2,3 “ tε1,1,1, ε2,1,2u is free. Recall the constructions of Γ2,2r and Γ2,2r`1
from Section 2.1. If Γ2,2r is free, then Γ2,2r`1 is clearly also free. Thus, we are left to prove
the former.

Consider A2r as defined in Equation (6). We must show that distinct rows of A2r differ
in at least two entries for all r ě 2. The claim is proven by induction on r ě 3. For r “ 3,
we verify the claim by inspection of A6. Let ai be the ith row of A6; its definition is recalled
in the left-hand table below. The right-hand table lists for each pair ai, aj with i ă j two
distinct entries in which ai and aj differ, which shows the claim for r “ 3.

CCC 2021

13:36 Barriers in Geodesic Optimization

entry 1 2 3 4 5 6
a1 1 1 1 1 1 1
a2 2 1 2 2 2 2
a3 1 2 2 1 1 1
a4 2 2 1 1 2 2
a5 1 2 1 2 2 1
a6 2 2 2 2 1 1

a2 a3 a4 a5 a6

a1 1,3 2,3 1, 2 2,4 1,2
a2 1,2 2,3 1,2 5,6
a3 1,3 3,4 1, 4
a4 1,4 3,4
a5 1,3

In fact, the table also proves the claim for r “ 2, since a1, . . . , a4 already pairwise differ in at
least two of the first four entries.

Now assume that the claim holds for some fixed r ě 3. Let ai, aj be distinct rows of
A2r`2; we will show they differ in at least two entries. If 1 ď i ă j ď 2r, then by our
inductive hypothesis there is nothing to prove because the first 2r rows of A2r`2 contain A2r

as a submatrix.
To complete the proof, it is enough to show that the 4 ˆ p2r ` 2q submatrix formed

by restricting to the mth block row, m P rrs, and the last block row of A2r`2 satisfies the
hypothesis, i.e. any two distinct rows of this submatrix differ in at least two entries. This is
the case as restricting to its 1st, mth and last block columns yields a 4 ˆ 6 submatrix of A6
if m ‰ 1, namely

ˆ

B2 B3 B1
B2 B2 B3

˙

,

and a 4 ˆ 4 submatrix equal to A4 if m “ 1. ◀

▶ Proposition 4.15. For n ě 3 the set Wn Ď rns3 is free, i.e. Γn,3 Ď Ωpπn,3q is free.
Furthermore, for n ě 3 and r ě 2 the set of weights Γn,6r´3 Ď Ωpπn,6r´3q is free.

Proof. We remind the reader that

Wn “
␣

ps, 1, sq, ps, s, 1q, ps ´ 1, s, sq | s “ 2, 3, . . . , n
(

.

Let x “ px1, x2, x3q, y “ py1, y2, y3q P Wn be such that x ‰ y. We prove by a distinction of
cases that x and y differ in at least two entries. First, we assume x1 “ y1. Then a :“ x1 “ y1 ě

2, otherwise x “ p1, 2, 2q “ y contradicts x ‰ y. Thus x, y P tpa, 1, aq, pa, a, 1q, pa, a`1, a`1qu

and we conclude that x and y differ in at least two entries as x ‰ y. Second, we assume
x1 ‰ y1. There is nothing to show if x2 ‰ y2, so we additionally assume b :“ x2 “ y2. If
b “ 1, then we are done by x “ px1, 1, x1q and y “ py1, 1, y1q. On the other hand, b ě 2
yields x, y P tpb, b, 1q, pb ´ 1, b, bqu and as x ‰ y they differ in the first and third entry. This
proves the first statement.

For the second claim, recall that

Γn,6r´3 “ tεσpiq,σpjq,σpkq | pi, j, kq P WrnzJru,

where σ : rrns Ñ rns2r´1 is injective, compare Remark 2.10. By the first part Wrn is free
and so is its subset WrnzJr. Hence Γn,6r´3 is free as σ is injective. ◀

We are now ready to deduce Theorem 4.11.

Proof of Theorem 4.11. Recall that all the bounds in Theorem 4.11 hold for the weight
margin γTpπq by Theorem 2.1. This was proven by exhibiting witness sets Γn,d Ď Ωpπn,dq

such that 0 R convpΓn,dq, which gives the bound γTpπn,dq ď distp0, convpΓn,dqq. But if Γn,d

is free, then we even have

γGpπn,dq ď dist
`

0, convpΓn,dq
˘

W. C. Franks and P. Reichenbach 13:37

by Proposition 4.8. By Proposition 4.14 the witness sets Γ2,3 and Γ2,2r, Γ2,2r`1, r ě 2 for
Theorem 2.1(a) are free, which proves Theorem 4.11(a). Similarly, we conclude parts (b) and
(c) with Proposition 4.15, which shows that for n ě 3 and r ě 2 the witness sets Γn,3 and
Γn,6r´3 are free. ◀

4.4 Freeness for homogeneous polynomials
In the following we transfer the result from d-tensors to the natural SLpnq action on homoge-
neous d-forms in n variables. This representation is given by

ϱn,d : SLpnq Ñ GL
`

Crx1, . . . , xnsd

˘

, g ÞÑ
`

ppxq ÞÑ ppg´1xq
˘

.

Each monomial xα “ xα1
1 ¨ ¨ ¨ xαn

n , given by a multi-index α “ pα1, . . . , αnq P pZě0qn with
|α| :“

ř

i αi “ d, is a weight vector for ϱn,d with weight ´α ` d
n1n. Therefore

Ωpϱn,dq “

"

´α `
d

n
1n

ˇ

ˇ

ˇ

ˇ

α P pZě0qn with |α| “ d

*

,

i.e. Ωpϱn,dq “ Ω1 from Equation (27) and the bounds from Corollary 2.13 apply to
γSTpnqpϱn,dq “ γpΩ1q. If n “ dm for some integer m ě 1, then we have ´Ωpπm,dq Ď Ωpϱn,dq.

▶ Proposition 4.16. Let n “ dm for some integer m ě 1. If Γ Ď Ωpπm,dq is free, then
´Γ Ď Ωpϱn,dq is free.

Proof. We prove the statement by contraposition. Assume that ´Γ Ď Ωpϱn,dq is not free.
Then there exists a root α “ ei ´ ej P Rn of SLpnq, where i, j P rns with i ‰ j, and two
distinct weights ω, ω1 P ´Γ such that ω “ ω1 ` ei ´ ej , equivalently ´ω “ ´ω1 ´ ei ` ej . The
latter equation enforces ´α to be of the form

p0m, . . . , 0m, ek ´ el, 0m, . . . , 0mq P pRmq
d

– Rn for some k, l P rms with k ‰ l,

because ´ω, ´ω1 P Ωpπm,dq. Thus, ´α is a root of SLpmqd and hence Γ Ď Ωpπm,dq is not
free. ◀

As a consequence of the preceding Proposition we obtain bounds for the gap γSLpnqpϱn,dq.

▶ Theorem 4.17 (Gap for Polynomial scaling). Let d ě 3 and let n “ dm for some integer
m ě 2. Then there exists a constant C ą 0, independent of n and d such that

γSLpnqpϱn,dq ď 2´Cdm “ 2´Cn.

More concretely, for d “ 3 and m ě 3 it holds that

γSLpnqpϱn,dq ď dist
`

0, Γm,3
˘

ď 2´m`1 “ 2´ n
3 `1,

and if m ě 3 and d “ 6r ´ 3 for some r ě 2, we have

γSLpnqpϱn,dq ď dist
`

0, Γm,6r´3
˘

ď 2´rpm´1q`1 “ 2´
pd`3qpm´1q

6 `1 « 2´ n
6 .

Proof. We recall that Theorem 1.6 was proven by padding the results from Theorem 4.11.
Thus, for each m ě 2 and d ě 3 the bound γSLpmqd pπm,dq ď 2´Cmd from Theorem 1.6 is
witnessed by a free set of weights Γm,d Ď Ωpπm,dq, i.e. 0 ă distp0, convpΓm,dqq ď 2´Cdm.
But then 0 R convp´Γm,dq and ´Γm,d Ď Ωpϱn,dq is free by Proposition 4.16. Therefore,
Proposition 4.8 yields

γSLpnqpϱn,dq ď dist
`

0, convp´Γm,dq
˘

“ dist
`

0, convpΓm,dq
˘

ď 2´Cdm.

Similarly, we get the other bounds by using freeness of Γm,3 and, respectively, Γm,6r´3
(see Proposition 4.15) combined with the distance bounds Lemma 2.7 and Lemma 2.12,
respectively. ◀

CCC 2021

13:38 Barriers in Geodesic Optimization

4.5 Freeness and diameter bound
In this section we show that the diameter lower bound of Theorem 1.1 generalizes to diameter
bounds for the capacity Equation (4) over the noncommutative group G “ SLpnqd. Many
algorithms for computing the capacity have resorted to geodesically convex optimization -
G can be viewed as a manifold on which g ÞÑ }g ¨ v}2 is geodesically convex. The distance
between an element of g and the identity in this geometry is closely related to the condition
number of the matrix g. The diameter bound question is the following: given an input v and
ε ą 0, how large a ball in G about the identity must we optimize over to find an approximate
minimizer g P G such that }g ¨ v}2 ´ cappvq ď ε? In other words, how well-conditioned can
we expect approximate minimizers to Equation (4) to be? This matters because all the
algorithms we know start at the origin and take small steps in the manifold, and if all the
high-precision solutions are far from the origin then such algorithms cannot reach any of
them quickly.

Before tackling this question we must make our notions of distance more precise. The
manifold we use is actually not G but rather the manifold P of Hermitian, positive-definite
matrices in G. Indeed, we can write

inf
gPG

}g ¨ v}2 “ inf
gPG

xv, g:g ¨ vy “ inf
xPP

xv, x ¨ vy.

Thus we may instead optimize the function fv : g ÞÑ xv, g ¨ vy over P . The manifold P is a
prototypical example of a Hadamard manifold, a complete, simply connected Riemannian
manifold of non-positive sectional curvature [8]. For us, G “ SLpnqd for some d, and so P

is just the set of d-tuples of positive-definite matrices of determinant 1. Even for d “ 1,
P contains a totally geodesic submanifold isometric to the hyperbolic plane; as such the
volumes of balls grow exponentially in their radius.18 The function fv : g ÞÑ }g ¨ v}2 is convex
along geodesics in this manifold [12]19. The geodesics through a point X P P are given by
γptq “

?
XeHt

?
X for Hermitian H . The Riemannian gradient ∇ log fvpgq of log fv at g P P

is given by the moment map µGpg ¨ vq. The geodesic ball of radius R in P about the identity
is given by

BR :“ teA : A traceless, Hermitian, }A}F ď Ru Ď P.

In a slight abuse of notation, we define the geodesic ball in G (rather than P) to be KBR,
as in the introduction. The values taken by fv over B2R are the same as the values taken by
g ÞÑ }g ¨ v}2 on KBR. We now define diameter bounds.

▶ Definition 4.18. The diameter bound Df pεq for a function f on P and a real number
ε ą 0 is defined as the infimum over R ą 0 such that

inf
gPBR

fpgq ď ε ` inf
gPP

fpgq.

We will show that the diameter bound for the norm-squared function can grow faster than
polypn, logp1{εqq for d “ 3. Firstly, we need to review how diameter bounds for tensors in
pRn

ě0qd like that in Theorem 1.1 relate to diameter bounds for tensors in pCbnqd over SLpnqd

18 The volume of a ball can be computed exactly [27], but the very crude bound of volume ΩpeΘprq´Opn log nq
q

for the geodesic ball of radius r can be proved elementarily. The manifold PDpnq X SLpnq contains the
hyperbolic plane as a totally geodesic submanifold, in which the ball of radius r has area eΘprq [15].
This shows the ball of radius r in PDpnq X SLpnq contains ΩpeΘprq

q balls of radius 1, which themselves
have volume at least e´Opn log nq by comparison with the Euclidean ball.

19 This was implicitly shown much earlier in [36].

W. C. Franks and P. Reichenbach 13:39

and STpnqd. Infimizing fvpgq over the subset P X STpnqd Ď P , or the tuples of positive-
definite diagonal matrices within SLpnqd, results in a program of the form Equation (2). For
d “ 3, for example,

inf
gPP XSTpnq3

xv, g ¨ vy “ capppq “ inf
xPpRnq3

ÿ

ωPΩn,3

pωeω¨x “ inf
xPp1K

n q3

ÿ

ωPΩn,3

pωeω¨x (32)

where Ωn,3 “ tpεi, εj , εkq : i, j, k P rnsu and ppεi,εj ,εkq “ |vijk|2. The correspondence is
exactly g “ ediagpxq for x P p1K

n q3, which implies the following.

▶ Lemma 4.19. For all ε ą 0, the diameter bound Df pεq for the function fv : g ÞÑ xv, g ¨ vy

on STpnq3 is equal to the diameter bound Dhpεq of the function fp where pijk “ |vijk|2, or

fp : pRnq3 Ñ R, x ÞÑ
ÿ

i,j,kPrns

|vijk|2epεi,εj ,εkq¨x.

Of course, there’s nothing special about d “ 3 here, and the lemma generalizes straight-
forwardly to other d. For instance, applying Lemma 4.19 for d “ 2 shows that restricting
operator scaling to diagonal matrices yields an instance of matrix scaling. We have shown
how diameter bounds over STpnqd relate to those over pRnqd. Now we complete the chain
by showing how to relate diameter bounds over SLpnqd to those over STpnqd. We will show
that tensors with free support (defined in Definition 4.12) have the same diameter bound
over SLpnqd as they do over STpnqd, which by Theorem 1.1 and Lemma 4.19 we have shown
can be superpolynomial. We then show that the construction from Section 3.2 is free.

▶ Theorem 4.20. Let G denote SLpnqd, and let T denote STpnqd. Suppose µTpt¨vq “ µGpt¨vq

for all t P T (which holds if v has free support). Then for any R ą 0 we have

inf
gPBR

fvpgq “ inf
gPT XBR

fvpgq,

where BR denotes the geodesic ball of radius R about the identity in G.

Proof. Define B :“ BR and recall that P denotes the positive-definite matrices in G. Let
f : P Ñ R be given by f : g Ñ xv, g ¨vy. Clearly infgPB fpgq ď infgPT XB fpgq. We must show
the converse inequality. Let g˚ :“ arg mingPB fpgq. Recall that P is a Hadamard manifold.
Define T` to be T XP . Let πg˚ denote the projection of g˚ to T`, that is, the closest point
in T` to g˚. As T` is a geodesically convex set, projections to T` are unique and distances
decrease under the projection [8, Theorem 2.1.12]. Thus, πg˚ P B. If we can show that
fpπg˚q ď fpg˚q then the proof is complete.

Let g˚ “ expπg˚ pxq for some x in the tangent space Tπg˚P to P at πg˚. That is,
γ : r0, 1s Ñ P, t ÞÑ expπg˚ ptxq is the geodesic between πg˚ and g˚. Then, in the local inner
product x¨, ¨yπg˚ at πg˚, x is orthogonal to the tangent space Tπg˚ T` Ď Tπg˚P of T` at
πg˚, because πg˚ is a local minimum of the geodesically convex function dpg˚, ¨q2 on T` and
x is proportional to the gradient of dpg˚, ¨q2 at πg˚.

The function f is geodesically convex, and its gradient ∇fpπg˚q is proportional to the
moment map µGpπg˚ ¨vq. By the assumption that µTpt¨vq “ µGpt¨vq for all t P T, µGpπg˚ ¨vq

is in i LiepTKq, which is precisely the tangent space of T` at πg˚. Thus

fpg˚q “ fpexpπg˚ pxqq ě fpπg˚q ` xx, ∇fpπg˚qyπg˚ “ fpπg˚q,

which completes the proof. ◀

▶ Lemma 4.21. The support of the tensor p from Theorem 1.1 is free.

CCC 2021

13:40 Barriers in Geodesic Optimization

Proof. Recall that a tensor in pCnqb3 is free if and only if the supports of distinct rows of its
weight matrix intersect in at most one element. The construction in Proposition 3.5 preserves
freeness, so we can consider the case n “ 3pl ` 1q treated in the proof of Theorem 1.1. Recall
that, in this case, the support of p is Ω1

0 Y ω1 where Ω1
0 is the rows of a matrix M defined

from the directed graph Dl. Each row in the matrix M corresponds to some edge Dl. Let us
first verify that Ω1

0 is free. Assuming the rows correspond to the same edge, they can be
verified to have intersection in at most one element, because the nonzero entries of the three
rows corresponding to an edge are contained in a 3 ˆ 6 submatrix with the following form:

“

A I
‰

“

»

–

0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

fi

fl

Here the cells containing 1 are colored for readability. Now consider the case that the
rows belong to two different edges. If the two edges share no vertices, then clearly the
corresponding edges do not intersect. Because the graph is a directed tree, edges may only
share a vertex which is the sink of at least one of the edges. If the vertex is a sink for both
edges, then the nonzero entries in the 6 rows belonging to either edge (after permutation)
take the form

„

0 A I

A 0 I

ȷ

“

»

—

—

—

—

—

—

—

–

0 0 0 0 1 1 1 0 0
0 0 0 1 0 1 0 1 0
0 0 0 1 1 0 0 0 1
0 1 1 0 0 0 1 0 0
1 0 1 0 0 0 0 1 0
1 1 0 0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

If the shared vertex is a sink for only one edge, then the rows are

„

0 A I

A I 0

ȷ

“

»

—

—

—

—

—

—

—

–

0 0 0 0 1 1 1 0 0
0 0 0 1 0 1 0 1 0
0 0 0 1 1 0 0 0 1
0 1 1 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
1 1 0 0 0 1 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

In all these cases it can be verified that supports of distinct rows intersect in at most one
element. Lastly, we need to make sure that the intersection of the support of ω1 with the
support of any element of Ω1

0 is at most one. Recall that ω1 is defined to have entry one in
each block corresponding to the leaves ul, vl, wl in Dl. However, there are no edges between
the leaves, so the support of no row can intersect that of ω1 in more than one element. ◀

We are now nearly ready to prove Theorem 1.4. We would simply use the array p from
the proof of Theorem 1.1, but setting |vijk|2 “ pijk would not be solvable over the rationals.
Therefore we must round ?

pijk, which requires some additional technical lemmas proven in
Appendix E.

▶ Lemma 4.22 (Rounding and diameter bounds). Let p, q : Ω Ñ Rě0 be positive functions on
a finite set Ω Ď Rm. Suppose there is a set B such that

inf
xPB

fppxq ě p1 ` εq cap p,

and let M “ maxt1{qω, 1{pω : ω P Ωu. Then

inf
xPB

fqpxq ě pp1 ` εqp1 ´ M}p ´ q}8q ´ M}p ´ q}1q cap q.

W. C. Franks and P. Reichenbach 13:41

▶ Lemma 4.23 (Rounding and capacity). Let Ω Ď Rm be finite and let p, q : Ω Ñ Rě0 be
positive functions on Ω. Let M0 “ maxωPΩ 1{qω. Then

log cap q ě log cap p ´ M0}p ´ q}8.

Proof of Theorem 1.4. First recall that the values taken by g ÞÑ }g ¨ v}2 on the geodesic
ball KBR in G are the same as the values taken by fv : g ÞÑ xv, g ¨ vy on B2R in P . Thus it is
enough to show that f :“ fv has diameter bound Df pεq “ Ωp2n{3 logp1{εqq for ε ď e´Cn2 log n.

We will apply Lemma 4.22 with p as in the proof of Theorem 1.1 and qijk “ |vijk|2, with
vijk chosen so that v has the same support as p and pijk ´ δ ă |vijk|2 ď pijk for δ small.
Because v is free, by Theorem 4.20 the diameter bound for fv is the same as the diameter
bound for fv over STpnq3. By Lemma 4.19, this is the same as the diameter bound for fq.
It remains to show that Dfq pεq “ Ωp2n{3 logp1{εqq . We will do this by relating Dfq pεq to
Dfp

pεq; in particular we will show Dfq
pΩpεqq ě Dfp

pεq.

Let R “ Dfp
pεq. We have infxPpRnq3,}x}ďR fppxq ě capppq ` ε “ p1 ` 2εq capppq, recalling

that capppq “ 1{2. By Lemma 4.22,

inf
xPpRnq3,}x}ďR

fqpxq ě pp1 ` 2εqp1 ´ M}p ´ q}8q ´ M}p ´ q}1q cappqq.

As cap q ď 1{2, if M}p ´ q}8 ď M}p ´ q}1 ď cε for c a small enough constant, then we
have pp1 ` 2εqp1 ´ M}p ´ q}8q ´ M}p ´ q}1q cap q “ cap q ` Ωpεq, so

inf
xPpRnq3,}x}ďR

fqpxq ě cap q ` Ωpεq.

Thus Dfq pΩpεqq ě Dfp pεq assuming M}p ´ q}1 ď cε. To ensure that this constraint is
satisfied, choose v of bit complexity Oplog n ` logp1{εqq such that }p ´ q}1 “ c

n ε. Because
pijk “ Ωp1{nq for i, j, k in the support of p by construction, we have qijk “ Ωp1{nq for i, j, k

in the support of q and hence M “ Opnq. Thus M}p ´ q}1 ď cε. Applying Lemma 4.23
together with our assumptions about the size of p ´ q and the fact that cappqq “ cappvq

implies the final claim that cappvq ě 1{4 and that 1 ě }v} ě 1{2. ◀

Finally, we remark that the same diameter bound holds for d ě 3 for tuples of tensors. We
note that if v P pCnqb3 has free support, then so does the tensor v b el b . . . b el Ă pCnqbd

for d ě 3. By Proposition 4.8, the tuple w P ppCnqbdqn given by

wl “
1
n

v b el b . . . b el for l P rns

has µT pt ¨ vq “ µGpt ¨ vq for all t P STpnqd. The commutative problem obtained by restricting
to SLpnqd as in Lemma 4.19 is precisely fq as in Corollary 3.7. As in the proof of Theorem 1.4,
by Theorem 4.20, Lemma 4.19 and Corollary 3.7, we have the following.

▶ Corollary 4.24. There is a constant C ą 0 such that the following holds for all d ě 3.
For all ε ď expp´Cn2 log nq, there is a tuple of tensors w “ wpεq P ppCnqbdqn with Opn2q

nonzero entries of bit complexity Oplog n ` logp1{εqq, and a geodesic ball B “ Bpεq of radius
Ω
`

2n{3 logp1{εq
˘

about the identity in SLpnqd, such that

inf
gPB

}g ¨ w}2 ě cappvq ` ε.

Moreover, it holds that 1{4 ď cappwq ď 1 and 1{2 ď }w} ď 1.

CCC 2021

13:42 Barriers in Geodesic Optimization

4.6 A bound on weight margin and gap for quivers
For d ě 2 let Qd be the quiver

1 2 3 d ´ 2 d ´ 1 d if d even

1 2 3 d ´ 2 d ´ 1 d if d odd.

and let Q
pkq

d be the quiver one obtains from Qd by adding k ´ 1 additional copies of each
arrow in Qd. As before, let G “ SLpnqd and T “ STpnqd. Then G acts on the quiver Qd with
dimension vector pn, . . . , nq as described in the introduction. We denote the corresponding
representation by πd. Note that the action of G on Q

pkq

d with dimension vector pn, . . . , nq is
given by πk

d . In this subsection we prove a bound on the weight margin of πd and on the
gap of πn

d . The bound on γGpπn
d q is thanks to the refinement of freeness in Proposition 4.8

pointed out by Visu Makam.

▶ Theorem 4.25. Let n, d ě 2 and denote the natural action of G “ SLpnqd on the quiver
Qd with dimension vector pn, . . . , nq by πd : SLpnqd Ñ GLpVdq, where Vd “ pCnˆnq

d´1. The
representation πn

d corresponds to the G-action on the quiver Q
pnq

d with dimension vector
pn, . . . , nq. It holds that

γTpπdq ď pn ´ 1q´d`1 and γGpπn
d q ď pn ´ 1q´d`1.

▶ Remark 4.26. Before proving the theorem, we point out a few consequences.
1. Theorem 4.25 shows that γTpπdq´1 and γGpπn

d q´1 are not polynomially bounded with
respect to dim Vd “ pd ´ 1qn2 and dim SLpnqd “ dpn2 ´ 1q. Instead we see for fixed
n and d Ñ 8 an exponential behaviour in the number of vertices d. Thus, our bound
shows that the exponential behaviour in d cannot be avoided in general lower bounds
for quiver actions like [12, Theorem 6.21 Item 4]. The latter applied to πd shows
γTpπdq ě n´d2

´p3{2qdpdn ` 1q´d.
2. The proof of Theorem 4.25 below shows that for the bound on the gap it is enough to

consider the quiver Q
pn´1q

d with an additional nth arrow from d to d ´ 1.
3. The ideas presented below can be adjusted to prove similar bounds for other dimension

vectors. For example, one can show that the gap for the SL-action on Q
p2q

d with dimension
vector p1, 3, 3, . . . , 3, 2q is inverse exponential in d. This aligns with an algebraic barrier
for this action; the invariants that cut out the null cone for this action have exponential
degree [19, Proposition 1.5].

4. The quiver Qd is of finite representation type and has no oriented cycles. Therefore,
the null-cone membership problem for πd can be solved in polynomial-time by algebraic
algorithms.20 This means Qd is an example where the weight margin is very small but
there still exist efficient algorithms. Can the existence of efficient algorithms still be
explained by a large gap in this case? This leads to the following interesting open question.

▶ Problem 4.27. Is the gap γGpπdq inverse polynomial in n and d?

A positive answer would provide an interesting example, since in this case the weight
margin of πd would be significantly smaller than the gap of πd.

We now introduce several lemmas needed to prove Theorem 4.25. Note that the set of
weights of πd viewed as a subset of pRnqd is

!

`

p´1q
dεi, p´1q

d´1εj , 0, . . . , 0
˘

,
`

0, p´1q
d´1εi, p´1q

d´2εj , 0, . . . , 0
˘

, . . . ,
`

0, . . . , 0, εi, ´εj

˘

| i, j P rns

)

.

20 Personal communication with Visu Makam. There does not seem to be an explicit reference in the
literature.

W. C. Franks and P. Reichenbach 13:43

We define recursively the subsets of weights
Γ2 :“ tpεi, ´εjq | i P rn ´ 1s, j P rnsu Ď Ωpπ2q Ď R2n

for d ě 3, Γd :“
!

`

p´1q
dεi, p´1q

d´1εn, 0n, . . . , 0n

˘

| i P rn ´ 1s

)

Y
`

t0nu ˆ Γd´1
˘

Ď Ωpπdq Ď Rdn .

▶ Remark 4.28. We note that for d ě 2, Γd is not not free. For instance, we can always
write

p0n, . . . , 0n, ε1, ´ε1q “ p0n, . . . , 0n, ε1, ´ε2q ` p0n, . . . , 0n, 0n, e2 ´ e1q,

i.e. the weights p0n, . . . , 0n, ε1, ´ε1q, p0n, . . . , 0n, ε1, ´ε2q P Γd differ by the root
p0n, . . . , 0n, 0n, e2 ´ e1q of SLpnqd. Therefore, we cannot deduce a bound on the gap γGpπdq

via Proposition 4.8. However, the latter allows us to deduce at least a bound on the gap of
πn

d .

In the next two lemmas we show that Γd witnesses the bound on γTpπdq and afterwards
we use Proposition 4.8 to transfer this bound to γGpπn

d q.

▶ Lemma 4.29. For all d ě 2 it holds that 0 R convpΓdq.

Proof. We prove the statement by induction on d ě 2. For d “ 2, just note that any element
in convpΓ2q Ď R2n has value ´1{n in the n-th entry. In particular, 0 R convpΓ2q. For d ě 3
let

x “
ÿ

ωPΓd

λω ω , λω ě 0

be a convex combination of the elements in Γd. Assume there is an i P rn ´ 1s such that for

ωi :“
`

p´1qdεi, p´1qd´1εn, 0n, . . . , 0n

˘

one has λωi
ą 0. Then the n-th entry of x is non-zero, since ωi has n-th entry p´1qd`1{n and

all (other) ω P Γd have p´1qd`1{n or zero as n-th entry. On the other hand, if λωi
“ 0 for

all i P rn ´ 1s, then x P t0nu ˆ convpΓd´1q. By induction hypothesis on d ´ 1 we necessarily
have x ‰ 0. ◀

▶ Lemma 4.30. For d ě 2 it holds that xd :“ λd

`

p´1qd´1εn, 0n, . . . , 0n

˘

P convpΓdq, where

λd :“
˜

d´1
ÿ

i“1
pn ´ 1qi

¸´1

.

In particular, }xd}2 ă |λd| ď pn ´ 1q´d`1.

Proof. We proceed by induction on d ě 2. In the case d “ 2, consider the convex combination
n´1
ÿ

i“1

n
ÿ

j“1

1
pn ´ 1qn

pεi, ´εjq “
1

n ´ 1 p´εn, 0nq “ x2 ,

where we used (5). Now assume the claim is proven for some d ě 2, hence

λd

`

0n, p´1qd´1εn, 0n, . . . , 0n

˘

P t0nu ˆ convpΓdq Ď convpΓd`1q. (33)

Setting µ :“ pn ´ 1qλd`1λ´1
d we have µλd “ pn ´ 1qλd`1 and µ ` pn ´ 1qλd`1 “ 1. Together

with (5) and (33) we deduce xd`1 P convpΓd`1q via

µ λd

`

0n, p´1qd´1εn, 0n, . . . , 0n

˘

` λd`1

n´1
ÿ

i“1

`

p´1qd`1εi, p´1qdεn, 0n, . . . , 0n

˘

“ xd`1.

This ends the induction. Finally, }xd}2 ă |λd| follows from }εn}2 ă 1. ◀

CCC 2021

13:44 Barriers in Geodesic Optimization

Proof of Theorem 4.25. By Lemma 4.29 and Lemma 4.30 we have

γTpπdq ď pn ´ 1q´d`1.

With the fact Ωpπdq “ Ωpπn
d q and with Proposition 4.8 we transfer this bound to the gap

of πn
d . To do so, we note that the natural inner product on V n

d “ pCnˆnqnpd´1q, given by
the trace inner product on each Cnˆn copy, is invariant under the action of K “ SUpnqd.
Clearly, distinct Cnˆn copies are orthogonal under this inner product. Thus, to be able to
apply Proposition 4.8 it is enough to assign to each Cnˆn copy, i.e. to each arrow of Q

pnq

d , a
matrix Mi such that supppMiq is free and Γd “

Ť

i supppMiq.
For this, we consider the n ˆ n matrices

M :“
ˆ

In´1 0
0 0

˙

and P :“
ˆ

0 In´1
1 0

˙

,

and Ei,j is the matrix with pi, jq-entry one and all other entries zero. Then Ei,iP “ Ei,σpiq,
where σ : rns Ñ rns is the cycle p1 2 . . . nq. Therefore, for k P rns we have

supp
´

MP k´1
¯

“

!

`

0npd´2q, εi, ´εσk´1piq

˘

| i P rn ´ 1s

)

and t0npd´2qu ˆ Γ2 “
ď

kPrns

supp
´

MP k´1
¯

.

For fixed k, i1 ‰ i2 implies σk´1pi1q ‰ σk´1pi2q, so any distinct elements of supppMP k´1q

differ in the last two Rn-components. Hence, each supppMP k´1q is free and we assign
M, MP, . . . , MP n´1 to the n arrows that go from vertex d to vertex d´1. For l P rd´2s, we as-
sign to the n arrows between the vertices l and l`1 each of the matrices E1,n, E2,n, . . . , En´1,n

at least once. (Exactly one of the latter matrices is assigned to two of these arrows.) Clearly,
the support of Ei,n, i P rn ´ 1s is free as it contains just one weight. By construction, this
assignment does the job. Moreover, the argument shows that n ´ 1 arrows between the
vertices l and l ` 1, l P rd ´ 2s, suffice. ◀

References
1 P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds.

Princeton University Press, Princeton, NJ, 2008. With a foreword by Paul Van Dooren.
doi:10.1515/9781400830244.

2 Zeyuan Allen-Zhu, Ankit Garg, Yuanzhi Li, Rafael Oliveira, and Avi Wigderson. Operator
scaling via geodesically convex optimization, invariant theory and polynomial identity testing.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages
172–181, 2018.

3 Zeyuan Allen-Zhu, Yuanzhi Li, Rafael Oliveira, and Avi Wigderson. Much faster algorithms for
matrix scaling. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 890–901. IEEE, 2017.

4 Noga Alon and Văn H. Vũ. Anti-Hadamard matrices, coin weighing, threshold gates, and
indecomposable hypergraphs. Journal of Combinatorial Theory, Series A, 79(1):133–160, 1997.

5 Jason M. Altschuler and Enric Boix-Adsera. Polynomial-time algorithms for Multimarginal
Optimal Transport problems with structure, 2020. arXiv:2008.03006.

6 Carlos Améndola, Kathlén Kohn, Philipp Reichenbach, and Anna Seigal. Invariant theory
and scaling algorithms for maximum likelihood estimation, 2020. arXiv:2003.13662.

7 Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials, entropy,
and a deterministic approximation algorithm for counting bases of matroids. In 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS), pages 35–46. IEEE,
2018.

https://doi.org/10.1515/9781400830244
http://arxiv.org/abs/2008.03006
http://arxiv.org/abs/2003.13662

W. C. Franks and P. Reichenbach 13:45

8 Miroslav Bacák. Convex analysis and optimization in Hadamard spaces, volume 22. Walter de
Gruyter GmbH & Co KG, 2014.

9 Rajendra Bhatia. Positive definite matrices. Princeton Series in Applied Mathematics.
Princeton University Press, Princeton, NJ, 2007.

10 Peter Bürgisser, Matthias Christandl, Ketan D. Mulmuley, and Michael Walter. Membership
in moment polytopes is in NP and coNP. SIAM J. Comput., 46(3):972–991, 2017. doi:
10.1137/15M1048859.

11 Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson.
Efficient algorithms for tensor scaling, quantum marginals, and moment polytopes. In 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 883–897.
IEEE, 2018.

12 Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson.
Towards a theory of non-commutative optimization: geodesic first and second order methods
for moment maps and polytopes, 2019. arXiv:1910.12375.

13 Peter Bürgisser, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson. Alternating
Minimization, Scaling Algorithms, and the Null-Cone Problem from Invariant Theory. In
9th Innovations in Theoretical Computer Science Conference (ITCS 2018), volume 94 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1–24:20, 2018. doi:
10.4230/LIPIcs.ITCS.2018.24.

14 Peter Bürgisser, Yinan Li, Harold Nieuwboer, and Michael Walter. Interior-point methods for
unconstrained geometric programming and scaling problems, 2020. arXiv:2008.12110.

15 James W. Cannon, William J. Floyd, Richard Kenyon, Walter R. Parry, et al. Hyperbolic
geometry. Flavors of geometry, 31:59–115, 1997.

16 Michael B. Cohen, Aleksander Madry, Dimitris Tsipras, and Adrian Vladu. Matrix scaling
and balancing via box constrained Newton’s method and interior point methods. In 2017
IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 902–913.
IEEE, 2017.

17 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances
in neural information processing systems, pages 2292–2300, 2013.

18 Jiri Dadok and Victor Kac. Polar representations. J. Algebra, 92(2):504–524, 1985. doi:
10.1016/0021-8693(85)90136-X.

19 Harm Derksen and Visu Makam. Degree bounds for semi-invariant rings of quivers. J. Pure
Appl. Algebra, 222(10):3282–3292, 2018. doi:10.1016/j.jpaa.2017.12.007.

20 Harm Derksen and Visu Makam. Algorithms for orbit closure separation for invariants
and semi-invariants of matrices. Algebra Number Theory, 14(10):2791–2813, 2020. doi:
10.2140/ant.2020.14.2791.

21 Harm Derksen and Visu Makam. An exponential lower bound for the degrees of invariants of
cubic forms and tensor actions. Adv. Math., 368:107136, 25, 2020. doi:10.1016/j.aim.2020.
107136.

22 Michael A Forbes and Amir Shpilka. Explicit noether normalization for simultaneous conjuga-
tion via polynomial identity testing. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 527–542. Springer, 2013.

23 Cole Franks and Ankur Moitra. Rigorous Guarantees for Tyler’s M-estimator via quantum
expansion, 2020. arXiv:2002.00071.

24 Matthias Franz. Moment polytopes of projective G-varieties and tensor products of symmetric
group representations. J. Lie Theory, 12(2):539–549, 2002.

25 Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. A deterministic polynomial
time algorithm for non-commutative rational identity testing. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS), pages 109–117. IEEE, 2016.

26 Ankit Garg, Christian Ikenmeyer, Visu Makam, Rafael Oliveira, Michael Walter, and Avi
Wigderson. Search Problems in Algebraic Complexity, GCT, and Hardness of Generators
for Invariant Rings. In 35th Computational Complexity Conference (CCC 2020), volume
169 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:17, 2020.
doi:10.4230/LIPIcs.CCC.2020.12.

CCC 2021

https://doi.org/10.1137/15M1048859
https://doi.org/10.1137/15M1048859
http://arxiv.org/abs/1910.12375
https://doi.org/10.4230/LIPIcs.ITCS.2018.24
https://doi.org/10.4230/LIPIcs.ITCS.2018.24
http://arxiv.org/abs/2008.12110
https://doi.org/10.1016/0021-8693(85)90136-X
https://doi.org/10.1016/0021-8693(85)90136-X
https://doi.org/10.1016/j.jpaa.2017.12.007
https://doi.org/10.2140/ant.2020.14.2791
https://doi.org/10.2140/ant.2020.14.2791
https://doi.org/10.1016/j.aim.2020.107136
https://doi.org/10.1016/j.aim.2020.107136
http://arxiv.org/abs/2002.00071
https://doi.org/10.4230/LIPIcs.CCC.2020.12

13:46 Barriers in Geodesic Optimization

27 X. Gual-Arnau and A. M. Naveira. Volume of tubes in noncompact symmetric spaces. Publ.
Math. Debrecen, 54(3-4):313–320, 1999.

28 V. Guillemin and S. Sternberg. Convexity properties of the moment mapping. II. Invent.
Math., 77(3):533–546, 1984. doi:10.1007/BF01388837.

29 Leonid Gurvits. Classical complexity and quantum entanglement. Journal of Computer and
System Sciences, 69(3):448–484, 2004.

30 Leonid Gurvits. Combinatorial and algorithmic aspects of hyperbolic polynomials, 2004.
arXiv:math/0404474.

31 Brian C. Hall. Lie groups, Lie algebras, and representations, volume 222 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 2003. An elementary introduction. doi:10.1007/
978-0-387-21554-9.

32 Linus Hamilton and Ankur Moitra. No-go Theorem for Acceleration in the Hyperbolic Plane,
2021. arXiv:2101.05657.

33 Moritz Hardt and Ankur Moitra. Algorithms and hardness for robust subspace recovery. In
Conference on Learning Theory, pages 354–375, 2013.

34 Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Constructive non-commutative
rank computation is in deterministic polynomial time. Comput. Complexity, 27(4):561–593,
2018. doi:10.1007/s00037-018-0165-7.

35 Bahman Kalantari and Leonid Khachiyan. On the complexity of nonnegative-matrix scaling.
Linear Algebra and its applications, 240:87–103, 1996.

36 George Kempf and Linda Ness. The length of vectors in representation spaces. In Algebraic
geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), volume 732 of
Lecture Notes in Math., pages 233–243. Springer, Berlin, 1979.

37 M. K. Kravtsov and V. E. Lukshin. On some properties of noninteger vertices of a three-index
axial transportation polytope. Tr. Inst. Matematiki NAN Belarusi, 13(2):31–36, 2005.

38 V. M. Kravtsov. Combinatorial properties of noninteger vertices of a polytope in a three-
index axial assignment problem. Kibernet. Sistem. Anal., 43(1):33–44, 189, 2007. doi:
10.1007/s10559-007-0023-0.

39 Tianyi Lin, Nhat Ho, Marco Cuturi, and Michael I. Jordan. On the complexity of approximating
multimarginal optimal transport, 2019. arXiv:1910.00152.

40 Nathan Linial and Zur Luria. On the vertices of the d-dimensional Birkhoff polytope. Discrete
& Computational Geometry, 51(1):161–170, 2014.

41 Tomasz Maciążek and Adam Sawicki. Critical points of the linear entropy for pure L-qubit
states. Journal of Physics A: Mathematical and Theoretical, 48(4):045305, January 2015.
doi:10.1088/1751-8113/48/4/045305.

42 Tomasz Maciążek and Adam Sawicki. Asymptotic properties of entanglement polytopes for
large number of qubits. Journal of Physics A: Mathematical and Theoretical, 51(7):07LT01,
January 2018. doi:10.1088/1751-8121/aaa4d7.

43 Ketan Mulmuley. Geometric complexity theory V: Efficient algorithms for Noether normaliza-
tion. Journal of the American Mathematical Society, 30(1):225–309, 2017.

44 David Mumford. Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzge-
biete, Neue Folge, Band 34. Springer-Verlag, Berlin-New York, 1965.

45 Linda Ness. A stratification of the null cone via the moment map. Amer. J. Math., 106(6):1281–
1329, 1984. With an appendix by David Mumford. doi:10.2307/2374395.

46 Beresford N. Parlett and Christian Reinsch. Balancing a matrix for calculation of eigenvalues
and eigenvectors. In Handbook for Automatic Computation, pages 315–326. Springer, 1971.

47 Alexander Rusciano. A Riemannian Corollary of Helly’s theorem. J. Convex Anal., 27(4):1261–
1275, 2020.

48 Mohit Singh and Nisheeth K. Vishnoi. Entropy, optimization and counting. In Proceedings of
the forty-sixth annual ACM symposium on Theory of computing, pages 50–59, 2014.

49 Reyer Sjamaar. Convexity properties of the moment mapping re-examined. Adv. Math.,
138(1):46–91, 1998. doi:10.1006/aima.1998.1739.

https://doi.org/10.1007/BF01388837
http://arxiv.org/abs/math/0404474
https://doi.org/10.1007/978-0-387-21554-9
https://doi.org/10.1007/978-0-387-21554-9
http://arxiv.org/abs/2101.05657
https://doi.org/10.1007/s00037-018-0165-7
https://doi.org/10.1007/s10559-007-0023-0
https://doi.org/10.1007/s10559-007-0023-0
http://arxiv.org/abs/1910.00152
https://doi.org/10.1088/1751-8113/48/4/045305
https://doi.org/10.1088/1751-8121/aaa4d7
https://doi.org/10.2307/2374395
https://doi.org/10.1006/aima.1998.1739

W. C. Franks and P. Reichenbach 13:47

50 Damian Straszak and Nisheeth K. Vishnoi. Maximum entropy distributions: Bit complexity
and stability. In Proceedings of the Thirty-Second Conference on Learning Theory, volume 99
of Proceedings of Machine Learning Research, pages 2861–2891. PMLR, 25–28 June 2019.
arXiv:1711.02036.

51 Nolan R. Wallach. Geometric Invariant Theory: Over the real and complex numbers. Universi-
text. Springer, Cham, 2017. doi:10.1007/978-3-319-65907-7.

52 Hermann Weyl. The classical groups: their invariants and representations, volume 45. Princeton
university press, 1946.

53 Hongyi Zhang and Suvrit Sra. First-order methods for geodesically convex optimization. In
Conference on Learning Theory, pages 1617–1638. PMLR, 2016.

A Notation

fp the function Rm
Ñ Rě0, x ÞÑ

ř

ωPΩ pωeω¨x, see Equation (2)
capppq the capacity of a non-negative function p on a finite set Ω Ď Rm, see Equation (2)
cappvq the capacity of a vector v under a group action, see Equation (4)

rns the set t1, 2, . . . , nu

0n the zero vector in Rn

ei the ith canonical unit vector in Rn

1n the all-ones vector in Rn

1
K
n the orthogonal complement of 1n in Rn, i.e.

␣

pv1, . . . , vnq P Rn :
ř

i vi “ 0
(

εi the vector ei ´
1
n1n

In the n ˆ n identity matrix
distp0, Sq the distance from the origin to the set S

convpSq the convex hull of S in Rn

AffpSq the affine hull of S in Rn

πn,d the representation for d-dimensional tensor scaling
Ωpπq the set of weights of a representation π

Ωn,d “ Ωpπn,dq the set tεi : i P rnsu
d corresponding to d-dimensional array scaling; equal to the set

of weights of the tensor scaling representation πn,d, see Example 4.5
γpΩq the margin of the finite set Ω Ď Rm, see Definition 1.2

γTpπq the weight margin of a representation π, i.e. γpΩpπqq, see Definition 4.3
γGpπq the gap of a representation π, see Definition 4.3
trpAq the trace of a square matrix A

Df pεq the diameter bound of a function f for ε ą 0, see Definition 3.1 respectively
Definition 4.18

}A}F the Frobenius norm of a square matrix A
eA the exponential of a square matrix A

LiepGq the Lie algebra of a matrix Lie group G
GLpnq the group of invertible complex n ˆ n matrices
SLpnq the group of invertible complex n ˆ n matrices with determinant one
STpnq the group of diagonal invertible complex n ˆ n matrices with determinant one
SUpnq the group of unitary matrices of size n ˆ n and determinant one

Hermpnq the set of complex Hermitian n ˆ n matrices
GLpV q the group of C-linear, bijective maps V Ñ V , where V is a C-vector space

B Representation theory background

In this section we briefly recall some representation theory. All the concepts we present here
actually work in the very general setting of reductive groups and their rational representations,
see e.g. [12, section 2]. For the sake of clarity and concreteness we stick to the special case
needed in this paper, i.e. the reductive group SLpnqd :“ SLpnq ˆ ¨ ¨ ¨ ˆ SLpnq with d ě 1
many copies of SLpnq.

We call a Euclidean-closed subgroup H Ď GLpnq a matrix Lie group. Indeed, such an H

is naturally a Lie group (c.f. [31, Theorem 1.19]) with real Lie algebra

LiepHq :“
␣

A P Cnˆn | @ t P R : etA P H
(

.

CCC 2021

http://arxiv.org/abs/1711.02036
https://doi.org/10.1007/978-3-319-65907-7

13:48 Barriers in Geodesic Optimization

The Lie bracket for LiepHq is the commutator rA, Bs :“ AB ´ BA. Moreover, for d ě 1 the
product Hd :“ H ˆ ¨ ¨ ¨ ˆ H becomes a matrix Lie group via block-diagonal embedding into
GLpdnq, i.e.

Hd ãÑ GLpdnq, ph1, . . . , hdq ÞÑ

¨

˚

˝

h1
. . .

hd

˛

‹

‚

Then the Lie algebra of Hd is LiepHqd “ LiepHq ˆ ¨ ¨ ¨ ˆ LiepHq block-diagonally embedded
into Cdnˆdn. If G Ď GLpnq is another matrix Lie group, then G X H is again a matrix Lie
group with Lie algebra LiepG X Hq “ LiepGq X LiepHq.

▶ Example B.1. The groups GLpnq, SLpnq, Upnq and GTpnq are matrix Lie groups with Lie
algebras

LiepGLpnqq “ Cnˆn LiepUpnqq “ tA P Cnˆn
| A:

“ ´Au “ i Hermpnq

LiepSLpnqq “ tA P Cnˆn
| trpAq “ 0u LiepGTpnqq “ tA P Cnˆn

| A diagonal matrixu.

Therefore, also SUpnq, STpnq and UpnqXSTpnq are matrix Lie groups and their Lie algebras
are obtained by corresponding intersections of the above Lie algebras. In particular, we have

LiepUpnq X STpnqq “
␣

i diagpx1, . . . , xnq | xj P R, x1 ` . . . ` xn “ 0
(

.

Thus, we can identify i LiepUpnq X STpnqq with the orthogonal complement p1nqK Ď Rn of
the all-ones vector 1n.

In the following, let G :“ SLpnqd for some d ě 1. Then K :“ SUpnqd is a maximal
compact subgroup of G, and T :“ STpnqd and TK :“ K X T are maximal tori of G and K,
respectively. As explained above, we think of all these groups as matrix Lie subgroups of
GLpdnq, and hence of their Lie algebras as subsets of Cdnˆdn.

A rational representation of G “ SLpnqd is a group morphism π : G Ñ GLpV q, such that
in some basis of V the matrix entries of πpgq P GLpV q are polynomials in the matrix entries
of g.21 Such a rational representation of G induces a representation of the Lie algebras by

Π: LiepGq Ñ EndpV q, A ÞÑ
d

dt

ˇ

ˇ

ˇ

ˇ

t“0
π
`

etA
˘

with the property πpeAq “ eΠpAq for all A P LiepGq. Restricting π to the commutative
subgroup T induces a so-called weight space decomposition of V . That is, there is some finite
set Ωpπq Ď i LiepTKq and a decomposition V “

À

ωPΩpπq Vω into non-zero subspaces such
that each ω P Ωpπq and any vω P Vω satisfy

@A P LiepTq : π
`

eA
˘

vω “ etrpAωqvω

or, equivalently,

@A P LiepTq : Π pAq vω “ trpAωqvω.

The elements ω P Ωpπq are called weights of π and the vω P Vω are called weight vectors.
Considering Example B.1 we frequently use the identification i LiepTKq – p1K

n qd, where 1K
n

is the orthogonal complement of 1n in Rn. We note that for ω P i LiepTKq Ď Cdnˆdn the
Frobenius norm }ω}F becomes under this identification the 2-norm }ω}2 in pRnqd.

21 In other words, π is a morphism of affine algebraic groups.

W. C. Franks and P. Reichenbach 13:49

▶ Example B.2. Let d “ 1. The group G “ SLpnq acts on Cn by left-multiplication, which
induces the rational representation π : SLpnq Ñ GLpnq, g ÞÑ g with corresponding Lie algebra
representation Π: LiepSLpnqq Ñ Cnˆn, A ÞÑ A. For i P rns we set

εi :“ ei ´
1
n
1n P 1K

n Ď Rn.

For all A “ diagpa1, . . . , anq P LiepTq and all i P rns

π
`

eA
˘

ei “ diagpea1 , . . . , ean qei “ eaiei
p˚q
“ etrpA diagpεiqqei

where we used a1 ` . . . ` an “ 0 in p˚q. Thus, εi P 1
K
n – i LiepTKq is a weight of π with

weight vector ei. Since Cn “
À

i Cei, we deduce Ωpπq “ tεi | i P rnsu.

▶ Example B.3. Of particular importance in representation theory is the adjoint rep-
resentation. That is, G “ SLpnqd acts on its Lie algebra by conjugation Ad: G Ñ

GLpLiepGqq, g ÞÑ pA ÞÑ gAg´1q, which induces the representation of Lie algebras
ad: LiepGq ÞÑ EndpLiepGqq, A ÞÑ pB ÞÑ rA, Bsq. The non-zero weights α P ΩpAdq are
called roots of G and the weight spaces LiepGqα are called root spaces.

Let d “ 1 and for i, j P rns denote by Ei,j the matrix with entry one at position i, j and all
other entries being zero. Then for i, j P rns with i ‰ j and for all A “ diagpa1, . . . , anq, B P

LiepTq we compute

adpAqEi,j “ rA, Ei,js “ pai ´ ajqEi,j “ tr
`

A diagpei ´ ejq
˘

Ei,j ,

adpAqpBq “ rA, Bs “ 0.

Since 0n, ei ´ ej P 1
K
n – i LiepTKq, we deduce ei ´ ej P ΩpAdq with weight vector Ei,j

and 0n P ΩpAdq with weight vector B P LiepTq. Therefore, the set of roots of SLpnq is
tei ´ ej | i, j P rns, i ‰ ju, because LiepGq “ LiepTq ‘

À

i‰j CEi,j.
More generally, one can deduce that the roots of G “ SLpnqd are the

pei ´ ej , 0n, . . . , 0nq, p0n, ei ´ ej , 0n, . . . , 0nq, , p0n, . . . , 0n, ei ´ ejq P pRnq
d

for i, j P rns with i ‰ j and that LiepGq “ LiepTq ‘
À

α LiepGqα.

We need the following property of roots, see e.g. [31, Lemma 7.11].

▶ Proposition B.4. Let α be a root of G “ SLpnqd and let π : G Ñ GLpV q be a rational
representation of G. If Vω is the weight space of some weight ω P Ωpπq, then

Π
`

LiepGqα

˘

pVωq Ď Vω`α,

where Vω`α :“ t0u, if ω ` α R Ωpπq.

C Padding for tensor margin and tensor gap

The Theorems 2.1 and 4.11 only give for all n ě 2 bounds for certain sub-families of
tpn, dq | d ě 3u. Still, we can deduce Theorems 1.3 and 1.6 via some padding on the
number of tensor factors d; that padding is provided in Proposition C.1 below. Recall the
representation for tensor scaling

πn,d : SLpnqd Ñ GL
`

pCnqbd
˘

, pg1, . . . , gdq ÞÑ g1 b ¨ ¨ ¨ b gd,

which set of weights is Ωpπn,dq “ Ωn,d “ tεi | i P rnsud Ď pRnqd.

CCC 2021

13:50 Barriers in Geodesic Optimization

▶ Proposition C.1. Let G :“ SLpnqd and n, d ě 1. Consider a set of weights Γn,d Ď

Ωn,d such that 0 R convpΓn,dq, i.e. Γn,d witnesses the inequality γpΩn,dq “ γTpπn,dq ď

distp0, convpΓn,dqq.
1. Then γpΩn,d`1q ď dist

`

0, convpΓn,dq
˘

. Consequently, γpΩn,d`1q ď γpΩn,dq.
2. If additionally Γn,d is free, then γGpπn,d`rq ď dist

`

0, convpΓn,dq
˘

for all r ě 2.

Proof. To prove the statement we set for r ě 1

∆r :“ tpεi, . . . , εiq | i P rnsu Ď pRnqr and Γn,d`r :“ Γn,d ˆ ∆r Ď Ωpπn,d`rq.

By Equation (5) we have 0 P convp∆rq and therefore

convpΓn,d`rq “ convpΓn,dq ˆ convp∆rq Ě convpΓn,dq ˆ t0u.

The latter implies

dist
`

0, convpΓn,d`rq
˘

ď dist
`

0, convpΓn,dq
˘

. (34)

Clearly, 0 P convpΓn,d`rq implies 0 P convpΓn,dq or, by contraposition, the assumption
0 R convpΓn,dq yields 0 R convpΓn,d`rq. The latter for r “ 1 shows γTpπn,d`1q ď

dist
`

0, convpΓn,d`1q
˘

and we conclude the first assertion with Equation (34).
Assume in addition that Γn,d is free and let r ě 2. Considering Definition 4.12 and

Proposition 4.13 we prove that also Γn,d`r is free. For this, let M Ď rnsd be such that
ΓM “ Γn,d and consider px, i, . . . , iq, py, j, . . . , jq P M ˆ rnsr with px, i, . . . , iq ‰ py, j, . . . , jq.
If x ‰ y, then x and y differ in at least two components by freeness of M . If x “ y, then
we have i ‰ j and so px, i, . . . , iq and py, j, . . . , jq differ in at least two components, using
r ě 2. This shows that Γn,d`r is free for r ě 2. Since also 0 R convpΓn,d`rq we obtain with
Proposition 4.8 that γGpπn,d`rq ď dist

`

0, convpΓn,d`rq
˘

holds for all r ě 2. Finally, we
deduce the second statement using Equation (34). ◀

▶ Proposition C.2. For n ě 3 it holds that γTpπn,4q ď γGpπn,4q ď 2´n`1.

Proof. This result can be obtained by imitating the proof of Theorem 2.1(b) in subsection 2.2
by using

Γn,4 :“ tpεi, εj , εk, εiq | pi, j, kq P Wnu Ď Ωpπn,4q.

Clearly, 0 R convpΓn,4q as 0 R convpΓn,3q by Lemma 2.8. Moreover, one can show with
Lemma 2.5 (similar to the proof of Lemma 2.7) that

x :“ ´
1

c 2n´1 pε1, ε1, ε1, ε1q P convpΓn,4q, where c “ n ´ 2´n`1 ě 2.

Thus, ∥pε1, ε1, ε1, ε1q∥ ď
?

4 implies ∥x∥ ď c´12´n`1?
4 ď 2´n`1. This proves γTpπn,4q ď

2´n`1.
Since Wn is free by Proposition 4.15, the set tpi, j, k, iq | pi, j, kq P Wnu is free. Hence,

we conclude γGpπn,4q ď 2´n`1 with Proposition 4.13 and Proposition 4.8. ◀

D Proof of Lemma 2.11

Proof. For the sake of contradiction assume that 0 P AffpΓn,6r´3q. Then there are coefficients
as, bs, cs P R, where 2 ď s ď rn, such that a2 “ . . . “ ar “ b2 “ . . . “ br “ 0,

ř

spas ` bs `

csq “ 1 and
rn
ÿ

s“2

`

as εσpsq,σp1q,σpsq ` bs εσpsq,σpsq,σp1q ` cs εσps´1q,σpsq,σpsq

˘

“ 0 P pRnq6r´3. (35)

W. C. Franks and P. Reichenbach 13:51

The bulk of our work will consist of proving the equations

b2 ` c2 “ b3 ` c3 “ . . . “ brn ` crn (36)
a2 ` c2 “ a3 ` c3 “ . . . “ arn ` crn. (37)

From here we will derive a contradiction. We now set about proving Equations (36) and (37).
Rewrite the left-hand-side of Equation (35) as the collection for k P r2r ´ 1s of the following
affine linear combinations of ε1, . . . , εn in Rn:

rn
ÿ

s“2

`

as εσkpsq ` bs εσkpsq ` cs εσkps´1q

˘

“ 0 (38)

rn
ÿ

s“2

`

as εσkp1q ` bs εσkpsq ` cs εσkpsq

˘

“ 0 (39)

rn
ÿ

s“2

`

as εσkpsq ` bs εσkp1q ` cs εσkpsq

˘

“ 0. (40)

If we expand this expressions as affine linear combinations of the εl, then by Lemma 2.2 the
coefficient of εl must be n´1 for all l P rns. Translating this for equations (38), (39) and (40)
respectively with 2 ď l ď n and k P rrs, and using for j P rrs that

σk

`

rpl ´ 1q ` j ´ k ` 1
˘

“

R

prpl ´ 1q ` j ´ k ` 1q ` pk ´ 1q

r

V

“ l (41)

we get

@ k P rrs, l P t2, 3, . . . , nu :
r
ÿ

j“1

`

arpl´1q`j´k`1 ` brpl´1q`j´k`1 ` crpl´1q`j´k`2
˘

“
1
n

(42)

@ k P rrs, l P t2, 3, . . . , nu :
r
ÿ

j“1

`

brpl´1q`j´k`1 ` crpl´1q`j´k`1
˘

“
1
n

(43)

@ k P rrs, l P t2, 3, . . . , nu :
r
ÿ

j“1

`

arpl´1q`j´k`1 ` crpl´1q`j´k`1
˘

“
1
n

(44)

respectively, where we set crn`1 :“ 0. Fixing some l ě 2 and subtracting Equation (43)
with k “ 1 from Equation (43) for k “ 2, we find a telescoping sum that reduces to
brpl´1q ` crpl´1q “ brl ` crl. Indeed, subtracting the two yields

0 “

r
ÿ

j“1

`

brpl´1q`j´1 ` crpl´1q`j´1
˘

´

r
ÿ

j“1

`

brpl´1q`j ` crpl´1q`j

˘

“

r´1
ÿ

j“0

`

brpl´1q`j ` crpl´1q`j

˘

´

r
ÿ

j“1

`

brpl´1q`j ` crpl´1q`j

˘

“ pbrpl´1q ` crpl´1qq ´ pbrl ` crlq.

More generally, for k P rr´1s combining (43) for k and k Ð k`1, implies brl´k`1 `crl´k`1 “

brpl´1q´k`1 ` crpl´1q´k`1 for all l “ 2, . . . , n, i.e. for every k P rr ´ 1s we have

cr´k`1 “ br´k`1 ` cr´k`1 “ b2r´k`1 ` c2r´k`1 “ . . . “ brn´k`1 ` crn´k`1. (45)

CCC 2021

13:52 Barriers in Geodesic Optimization

We are still missing the value k “ 0, or the equations

br`1 ` cr`1 “ b2r`1 ` c2r`1 “ . . . “ brpn´1q`1 ` crpn´1q`1. (46)

We obtain this by subtracting, for l “ 2, . . . , n, (43) for k “ 1 and l from (43) with k “ r

and l Ð l ` 1 . Indeed,

0 “

r
ÿ

j“1

`

brl`j´r`1 ` crl`j´r`1
˘

´

r
ÿ

j“1

`

brpl´1q`j ` crpl´1q`j

˘

“

r`1
ÿ

j“2

`

brpl´1q`j ` crpl´1q`j

˘

´

r
ÿ

j“1

`

brpl´1q`j ` crpl´1q`j

˘

“
`

brl`1 ` crl`1
˘

´
`

brpl´1q`1 ` crpl´1q`1
˘

.

Lastly, we are missing the equations b2 `c2 “ b3 `c3 “ . . . “ br`1 `cr`1 for Equation (36).
We have not yet used in Equation (39) the values k “ r ` m with m P rr ´ 1s. For this we
note that

σr`m

`

j
˘

“ 2 for j P tr ´ m ` 1u Y tr ` 2, r ` 3, . . . , 2ru.

We use this equation to apply Lemma 2.2 to (39) for ε2 and k “ r ` m with m P rr ´ 1s to
obtain

br´m`1 ` cr´m`1 `

r
ÿ

j“2

`

br`j ` cr`j

˘

“
1
n

.

We need one more equation to eliminate the right-hand term, so we use the following.
Lemma 2.2 applied to equation (43) for k “ 1 and l “ 2 yields

r
ÿ

j“1

`

br`j ` cr`j

˘

“
1
n

.

Subtracting this equation from the previous one yields, br´m`1 ` cr´m`1 “ br`1 ` cr`1 for
all m “ 1, . . . , r ´ 1. Together with the equations (45) and (46) we conclude Equation (36).
Analogously, (40) and (44) can be used to obtain Equation (37).

To get a contradiction we show that as “ bs “ cs “ 0 for all s “ 2, 3, . . . , rn. For this,
we set a :“

ř

s as and b :“
ř

s bs. Equation (41) still applies for l “ 1, k “ 1, so Lemma 2.2
applied to the coefficient of ε1 in (38), in (39) and in (40) respectively for k “ 1 gives

r
ÿ

j“1
cj`1 “

1
n

, a `

r´1
ÿ

j“1
cj`1 “

1
n

and b `

r´1
ÿ

j“1
cj`1 “

1
n

respectively. Subtracting the second equation from the first gives a “ cr`1, and reasoning
analogously for the third yields a “ b “ cr`1. Moreover, (43) with k “ r and l “ 2
is

řr
j“1pbj`1 ` cj`1q “ n´1. Using the latter together with b2 “ . . . “ br “ 0 and

řr
j“1 cj`1 “ n´1 yields br`1 “ 0 and similarly ar`1 “ 0 via (44) with k “ r and l “ 2.

Since now also ar`1 “ br`1 “ 0, the equation (42) with k “ r and l “ 2 simplifies to
řr

j“1 cj`2 “ n´1. In conjunction with
řr

j“1 cj`1 “ n´1 we deduce c2 “ cr`2 and hence
br`2 “ 0 “ ar`2 by (36) and (37). But now (42) with k “ r ´1 and l “ 2 is

řr
j“1 cj`3 “ n´1

and together with
řr

j“1 cj`2 “ n´1 we get c3 “ cr`3. Continuing inductively we obtain

@ j P rrs : cj`1 “ cr`j`1 and ar`j`1 “ br`j`1 “ 0

W. C. Franks and P. Reichenbach 13:53

via (42) with l “ 2, k P rrs and via (36), (37). Then (42) with k “ r and l “ 3 simplifies to
řr

j“1 cr`j`2 “ n´1 and together with n´1 “
řr

j“1 cj`1 “
řr

j“1 cr`j`1 we have cr`2 “ c2r`2.
Hence, b2r`2 “ 0 “ a2r`2 via (36) respectively (37). Continuing inductively in the outlined
manner with equation (42) for k P rrs, l “ 3, . . . , n and with the equations (36) and (37) we
conclude as “ bs “ 0 for all s “ 2, 3 . . . , rn, so a “ b “ 0. Finally, (36) implies cr`1 “ cs for
all s “ 2, . . . , rn, but cr`1 “ b “ 0 giving the desired contradiction. ◀

E Padding and rounding for diameter bounds

We begin with the proof of Proposition 3.5. We prove it only for d “ 3, but the proof goes
through mutatis mutandis for all d ě 1.

Proof of Proposition 3.5. Recall that q is the n ˆ n ˆ n array such that qijk “ t
n pijk for

i, j, k P rts, qiii “ 1{n for t ` 1 ď i ď n, and qijk “ 0 otherwise. We may split the inputs
x, y, z P 1K

n into

x “

ˆ

x1 ` α11t, x2 ´
t

n ´ t
α11n´t

˙

,

y “

ˆ

y1 ` α21t, y2 ´
t

n ´ t
α21n´t

˙

,

z “

ˆ

z1 ` α31t, z2 ´
t

n ´ t
α31n´t

˙

where x1, y1, z1 P Rt, x2, y2, z2 P Rn´t each sum to zero; write w “ px1, y1, z1q. As }px, y, zq}2 ě

}w}2, it is enough to prove that }w}2 is large for any approximate minimizer. By optimizing
over αi and x2, y2, z2 for fixed w, one computes that the optimum value for fq for any fixed
w is fppwqt{n. To see this, write

fqpx, y, zq “
teα1`α2`α3

n
fppwq `

e´ t
n´t pα1`α2`α3q

n

n
ÿ

i“t`1
ex2

i `y2
i `z2

i .

First note that for fixed αi’s, the second term is minimized at x2 “ y2 “ z2 “ 0 by Jensen’s
inequality. Furthermore, the value only depends on α :“ α1 ` α2 ` α3. With x2, y2, z2 “ 0,
we have

fqpx, y, zq “ gpw, αq :“ teα

n
fppwq `

pn ´ tq

n
e´ t

n´t α.

Taking the derivative in α, we see that this is minimized when fppwqeα “ e´ t
n´t α, or

eα “ fppwq
´1{p1` t

n´t q
“ fppwq´

n´t
n . Plugging this value in proves that the optimum is

fppwqt{n. By concavity of xt{n, provided fppwq ď 1 we have

fppwqt{n ´ capppqt{n ě
1 ´ capppqt{n

1 ´ capppq
pfppwq ´ capppqq.

The first factor in the second term is the slope of the line from pcapppq, capppqt{nq to p1, 1q.
Thus for any ε ď 1 ´ capppq, any ε-approximate minimizer for fq has norm at least that of
some

` 1´capppq

1´capppqt{n

˘

ε-approximate minimizer for fp. ◀

Proof of Lemma 4.23. We use the dual expression: log cap q “ ´ infErω“0 DKLpr||qq where
r ranges over probability distributions on Ω. In particular,

log cap q ě ´DKLpr||qq

CCC 2021

13:54 Barriers in Geodesic Optimization

for any distribution r on Ω with Erω “ 0. Let r be a probability distribution; calculate

log cap q ě ´DKLpr||qq “ ´DKLpr||pq ` DKLpr||pq ´ DKLpr||qq

“ ´DKLpr||pq `
ÿ

ωPΩ
rω logprω{pωq ´

ÿ

ωPΩ
rω logprω{qωq

“ ´DKLpr||pq `
ÿ

ωPΩ
rωplog qω ´ log pωq.

We lower bound log qω ´ log pω ě 1
qω

pqω ´ pωq by applying the inequality log x ď x ´ 1 to
x “ pω{qω. Hence

log cap q ě ´DKLpr||pq `
ÿ

ωPΩ
rω

1
qω

pqω ´ pωq

ě ´DKLpr||pq ´ M0}p ´ q}8.

Allowing ´DKLpr||pq to tend to log cap p completes the proof. ◀

Proof of Lemma 4.22. Applying Lemma 4.23 with the roles of p and q switched yields

log cap p ě log cap q ´ M}p ´ q}8.

Exponentiating both sides and applying the inequality ex ě 1 ` x yields cap p ě p1 ´ M}p ´

q}8q cap q. Thus

inf
xPB

fqpxq “ inf
xPS

fqpxq ě ´ sup
xPS

|fqpxq ´ fppxq| ` inf
xPS

fppxq.

Note that the minimizer for fq over B lies in the set S :“ B X tx : @ ω, qωex¨ω ď fqp0q “

}q}1u. For all x P S, we have ex¨ω ď cap q{pω for all ω P Ω, so

fqpxq ´ fppxq ď
ÿ

ωPΩ
|pω ´ qω|ex¨ω

ď
ÿ

ωPΩ
|pω ´ qω|}q}1{qωq

ď }p ´ q}1M}q}1.

Combining the above inequality with the lower bound for capppq,

inf
xPB

fqpxq ě ´M}q}1}p ´ q}1 ` p1 ` εq cap p

ě p1 ` εqp1 ´ M}p ´ q}8q cap q ´ M}p ´ q}1}q}1. ◀

Communication Complexity with Defective
Randomness
Marshall Ball #

Computer Science Department, Columbia University, New York, NY, USA

Oded Goldreich #

Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel

Tal Malkin #

Computer Science Department, Columbia University, New York, NY, USA

Abstract
Starting with the two standard model of randomized communication complexity, we study the
communication complexity of functions when the protocol has access to a defective source of
randomness. Specifically, we consider both the public-randomness and private-randomness cases,
while replacing the commonly postulated perfect randomness with distributions over ℓ bit strings that
have min-entropy at least k ≤ ℓ. We present general upper and lower bounds on the communication
complexity in these cases, where the bounds are typically linear in ℓ − k and also depend on the size
of the fooling set for the function being computed and on its standard randomized complexity.

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases Randomized Communication Complexity, Randomness Extraction, Min-
Entropy

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.14

Funding This work was supported in part by the Office of the Director of National Intelli-
gence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via Contract No. 2019-
1902070006. The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies, either express or implied, of ODNI,
IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation therein.
Marshall Ball: Partially supported by an IBM Research PhD Fellowship.
Oded Goldreich: Partially supported by an ISF grant number (Nr. 1146/18); research was conducted
while he enjoyed the hospitality of the computer science department at Columbia University.

1 Introduction

While communication complexity is typically viewed as a tool for establishing lower bound on
other models of computation, one may also view it as a study of (two-party) collaborations that
can be carried out using a small amount of communication. The (two) parties participating
in such a typical collaboration have a common goal, which is modeled as the computation of
a function of their private inputs, and they wish to achieve it efficiently, which means using
a small amount of communication (i.e., much smaller than required for communicating their
entire input).

Given this perspective, one can ask whether randomness is helpful, and it is well-
known that it is extremely helpful. For example, computing the equality function requires
deterministic protocols that use a linear amount of communication (i.e., are not significantly
better than the straightforward one), but can be performed by randomized protocols that use
a constant amount of communication. The question addressed in this work is what happens
when the parties have at their disposal only defective sources of randomness?

© Marshall Ball, Oded Goldreich, and Tal Malkin;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 14; pp. 14:1–14:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marshall@cs.columbia.edu
mailto:oded.goldreich@weizmann.ac.il
mailto:tal@cs.columbia.edu
https://doi.org/10.4230/LIPIcs.CCC.2021.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Communication Complexity with Defective Randomness

1.1 The Models
Our starting point is the two standard models of randomized communication complexity,
which are closely related in the standard setting but may not be so in the current setting. In
the standard public randomness model one postulates that the parties have access to a common
(i.e., public) source of perfect randomness, whereas in the standard private randomness model
one postulates that the each party has access to a private source of perfect randomness
(which is uncorrelated to the other party’s source). Indeed, in the standard setting, the
public randomness model can easily emulate the private randomness model, and the opposite
emulation is also possible at a very moderate cost [9].

We consider variants of these two models in which the postulated sources of perfect
randomness are replaced by defective sources of randomness. In particular, we consider sources
that output ℓ-bit long strings such that no string appears with probability exceeding 2−k;
that is, we consider sources of min-entropy k, with a focus on the case that k ∈ [Ω(log ℓ), ℓ).
A special case of interest is when the min-entropy rate (i.e., k/ℓ) is a constant smaller than 1
and the actual inputs are of length related to ℓ; yet, we shall consider the problem in almost
full generality.

1.2 Our Results
We show that if the random sources available to the two parties are moderately defective in
the sense that their min-entropy rate is a constant smaller than 1, then computing the equality
function on strings of length comparable to the length of the random sources requires a linear
amount of communication, just as in the case that one uses no randomness at all. More
generally, we show that, when using defective sources of randomness, no improvement can be
obtained over the lower bound on the communication complexity of deterministic protocol
that follows by a “fooling set” argument (see Definition 2.2). The foregoing assertions refers
to the case that min(m, ℓ) = Ω(n) and k < (1 − Ω(1)) · ℓ.

▶ Theorem 1.1 (general lower bounds). Suppose that f : {0, 1}n × {0, 1}n → {0, 1} has a
fooling set of size 2m, and let k ≤ ℓ.

(public randomness version): If f is computed by a protocol whose only source of ran-
domness is a public random string of length ℓ that has min-entropy k, then the protocol
uses at least min(m − 1, ℓ − k − 1)/2 bits of communication.
(private randomness version): If f is computed by a protocol in which the only source of
randomness is provided by two independent random strings of length ℓ, each seen by one of
the parties and having min-entropy k, then the protocol uses at least min(m−1, ℓ−k−1)/2
bits of communication.

We stress that, in the current context, the two models (i.e., public-randomness and private-
randomness) are not easily reducible to one another.1 Recall that lower-bounding the size
of a fooling set is one of the King’s Roads for proving lower bounds on the deterministic
communication complexity of functions.2 In particular, equality has a fooling set of size
2n. In general, the logarithm of the size of the fooling set seems a reasonable proxy for the
deterministic communication complexity, but it is indeed interesting to ask whether a result
as Theorem 1.1 holds with m replaced by the deterministic communication complexity of f .

1 In particular, the fact that a random source of logarithmic length suffices does not apply here: we are
given defective random sources of certain length, and cannot easily transform them to significantly
shorter length.

2 However, as shown by Dietzfelbinger, Hromkovic, and Schnitger [4], the deterministic complexity may
be exponentially larger than the lower bound provided by any fooling set.

M. Ball, O. Goldreich, and T. Malkin 14:3

While Theorem 1.1 asserts that using a moderately defective random sources of length
that is comparable to the input is useless, it does not rule out the benefit of sources that are
either less defective or are shorter (i.e., have shorter length). It turns out that it is possible
to benefit from the use of such sources.

▶ Theorem 1.2 (generic upper bounds). For f : {0, 1}n × {0, 1}n → {0, 1} and k ≥ 2 log2 n +
O(1), the following holds.

(public randomness version): Suppose that the randomized communication complexity of
f in the standard public-randomness model is C. Then, f can be computed by a protocol
whose sole source of randomness is a public random string of length ℓ that has min-entropy
k using O(ℓ − k + 1) · C bits of communication.
(private randomness version): Suppose that the randomized communication complexity of
f in the standard private-randomness model is C. Then, f can be computed by a protocol
whose sole source of randomness is provided by two independent random strings of length ℓ,
each seen by one of the parties and having min-entropy k, using 2(ℓ − k) + 3 log2 n + O(C)
bits of communication.

The protocols use suitable methods of randomness extraction. Specifically, in the public-
randomness case the two parties apply a seeded extractor to the only random string available
to them, while using all possible seeds (of length log2(ℓ−k)+O(1)). In the private-randomness
case the parties apply a two-source extractor to the 2 · (ℓ − k + log2 n + O(1))-bit long prefix
of their sources, which requires them to only communicate this prefix.

Recall that in the case of perfect randomness, a common random source (i.e., public
randomness) is preferable to private randomness, since the public randomness is known to both
parties whereas uncorrelated private randomness require coordination (or communication).
In contrast, in the context of defective randomness, two independent sources (even when each
is only seen by one party) seem preferable to a single source of (defective) public randomness.
We stress that our results only suggest that the communication complexity in the private
(defective-randomness) case may be lower than in the public (defective-randomness) case,
and establishing such a separation is left as an open problem. We mention that for some
functions such separation does not exist (see Proposition 3.5).

We focus on the case of min-entropy that is at least logarithmic in the length of the input
to the protocol (i.e., k ≥ log2 n), because this is the minimal amount of perfect randomness
that is required for constant-communication protocols for equality.3 Still, one may study the
case of sub-logarithmic min-entropy (and possibly integrate our results with those of [1]).

1.3 Remotely Related Works
Goldwasser, Sudan, and Vaikuntanathan [6] raised the general question of which distributed
computing tasks that require randomness can be performed also when having access to
defective sources of randomness.4 Specifically, they showed that (Byzantine) agreement tasks
fall into this category; that is, they can be performed quite well also in the case that each

3 See [1, Thm. 3], which shows that computing the equality function when having access only to k bits of
perfect public randomness requires communication complexity Ω(n/2k).

4 In a somewhat related vein, a body of work has investigated whether defective randomness suffices for
cryptographic security in a variety of settings. McInnes and Pinkas [8] initiated this line of work by
showing that information theoretic symmetric key cryptography is impossible without pure randomness.
Dodis et al. [5] later extended this result to rule out the feasibility of a variety of cryptographic tasks
from defective randomness, including computationally-secure symmetric key cryptography.

CCC 2021

14:4 Communication Complexity with Defective Randomness

party has access to a (single) defective source of randomness. We stress that since the parties
do not trust each other, the fact that their sources are independent of one another does not
mean that they can extract almost perfect randomness by using some adequate extractor.

The following works that refer to different models of communication complexity are more
related to the current study.

Canonne et al. [2] considered a model that lies between the standard public and private
randomness models (when the amount of randomness is sublogarithmic in the length
of the inputs). Specifically, they considered two parties that are each given access to a
private source of perfect randomness such that the two sources are tightly correlated (i.e.,
for a parameter ρ ∈ [±1], for each i, the ith bit in the first source is ρ-correlated with
the ith bit in the second source). We mention that their motivation is not to study the
usefulness of defective sources of randomness but rather to study the effect on uncertainty
(about “contents”) in communication complexity.
Canetti and Goldreich [1] studied trade-offs between randomness and communication
complexity. In particular, they showed that a logarithm amount of (perfect) randomness
is sufficient for any communication protocol and that in some cases this upper bound is
tight.
Chor and Goldreich [3] studied the “distributional communication complexity” of functions
when the protocol is only required to be correct with a specified probability p > 1/2,
where the probability is taken over input pairs that are each chosen according to some
distribution of specified min-entropy bound (i.e., min-entropy at least k). We stress that
their study is fundamentally different from ours; they study the average-case (on inputs)
behavior of protocols, where the inputs are drawn from a defective source of randomness,
whereas we study the worst-case (on inputs) behavior of protocols that employ defective
sources of randomness.

2 Preliminaries

We consider two-party randomized protocols for computing functions of the form f : {0, 1}n ×
{0, 1}n → {0, 1}, while using a defective source of randomness. Specifically, we consider
sources of randomness that produce ℓ-bit long strings having min-entropy at least k; that is,
each outcome occurs with probability at most 2−k. Such sources are called (ℓ, k)-sources.

We consider both the public-randomness model in which the parties have access to
common (public) randomness, and the private-randomness model in which each party has its
private source of randomness, which is independent of the randomness of the other party.
In our context (of defective random sources) it is important to stress that the postulated
sources of randomness are the only ones available to the parties.

The results hold not only for “alternating protocols” (in which the parties alternatively
exchange single bits), but directly for any protocol in which the sender of the next bit is
determined by the communication so far; that is, no need to lose a factor of two in translation
(from such general protocols to “alternating” ones).

2.1 Specific Background About Communication Complexity
We shall use the following basic result that refers to deterministic communication protocols.

▷ Claim 2.1 (the “corners lemma” (cf., e.g., [7, Prop. 1.13–1.14] or [10, Lem. 1.3–1.4])). Let
Π′ be a deterministic communication protocol and suppose that γ

def= Π′(x1, x2) = Π′(y1, y2).
Then, Π′(x1, y2) = Π′(y1, x2) = γ.

M. Ball, O. Goldreich, and T. Malkin 14:5

In addition, a basic notion of communication complexity that underlies many of its lower
bound proofs is that of a fooling set, defdined as follows.

▶ Definition 2.2 (fooling set (cf., e.g., [7, Sec. 1.3] or [10, Chap. 1])). We say that S ⊆ {0, 1}n+n

is a fooling set for f : {0, 1}n+n → {0, 1} if every f -monochromatic rectangle contains at most
one point in S, where an f -monochromatic rectangle is a set X × Y such that X, Y ⊆ {0, 1}n

and f is constant on X × Y (i.e., f(x, y) = f(x′, y′) for every (x, y), (x′, y′) ∈ X × Y).

Note that a fooling set cannot contain two pre-images of f−1(0) (resp., f−1(1)) that differ only
on one coordinate; that is, if (x, y) and (x′, y′) are in a fooling set for f and f(x, y) = f(x′, y′),
then x ≠ x′ and y ̸= y′ (because two points that differ on a single coordinate constitute an
f -monochromatic rectangle).

2.2 Specific Background About Randomness Extraction
As stated above, an (ℓ, k)-source is a distribution over ℓ-bit long strings having min-entropy
at least k, where the min-entropy of a random variable X is minv∈Supp(X){log2(1/Pr[X =v])}.
That is, X has min-entropy k if and only if for every v it holds that Pr[X =v] ≤ 2−k.

We say that EXT : {0, 1}d × {0, 1}ℓ → {0, 1}m is a (seeded) (k, ϵ)-extractor if for every
random variable X of min-entropy k the total variation distance between EXT(Ud, X) and
Um is at most ϵ, where Un denotes the uniform distribution on {0, 1}n. In this case ϵ is
called the error of EXT, and d is its seed length.

We say that EXT : {0, 1}ℓ × {0, 1}ℓ → {0, 1}m is a two-source extractor for independent
(ℓ, k)-sources if for every two independent random variables X and Y of min-entropy k the
total variation distance between EXT(X, Y) and Um is at most ϵ, called its error. This
definition is readily extended to independent sources of parameters (ℓ1, k1) and (ℓ2, k2)
respectively.

3 The Public-Randomness Model

For a protocol Π in the public-randomness model, we denote by Π(x, y; r) the transcript of
the communication on input (x, y) ∈ {0, 1}n+n and randomness r ∈ {0, 1}ℓ. The output of
such a protocol is determined by its transcript (e.g., it may be its last bit), and is denoted
Π(x, y; r).

▶ Definition 3.1 (communication complexity with a weak public source). An (ℓ, k)-public-
randomness protocol for computing a function f : {0, 1}n × {0, 1}n → {0, 1} is a protocol that
satisfies Pr[Π(x, y; Ξ) = f(x, y)] ≥ 2/3, for every (x, y) ∈ {0, 1}n+n and every (ℓ, k)-source
Ξ.

▶ Theorem 3.2 (a general lower bound). Suppose that f : {0, 1}n+n → {0, 1} has a fooling get
of size 2m. Then, any (ℓ, k)-public-randomness protocol for computing f has communication
complexity at least min(m − 1, ℓ − k − 1)/2.

Proof. Suppose that f has a (ℓ, k)-public-randomness protocol, denoted Π, of communication
complexity t ≤ (n − 1)/2. We first observe that there exists a dense set of possible source-
outcomes R and two input pairs (x1, y1) and (x2, y2) that reside in the fooling set such that
Π in constant on all triples (xi, yi, r), where r ∈ R and i ∈ {1, 2}. The theorem will follow
by using the standard “corners lemma” (in a non-standard way) and defining a source that
is uniform over R. Details follow.

CCC 2021

14:6 Communication Complexity with Defective Randomness

The following technical claim has nothing to do with communication complexity; it holds
for any function F : [2m] × {0, 1}ℓ → {0, 1}t, where in the current case [2m] represents the
indices of the strings in the fooling set (for f), {0, 1}ℓ represents possible outcomes of the
public source, and {0, 1}t represents possible transcripts of Π.

▷ Claim 3.2.1 (a simple combinatorial claim). Let F : [2m] × {0, 1}ℓ → {0, 1}t. Then, for
any S = {(x1, y1), ..., (x2m , y2m)} and t ≤ (m − 1)/2, there exist distinct i, j ∈ [2m], a string
γ ∈ {0, 1}t, and a set R ⊆ {0, 1}ℓ of density at least 2−2t−1 such that for every r ∈ R it
holds that F (i, r) = F (j, r) = γ.

We will apply Claim 3.2.1 to the hitting set S and to the function F (i, r) def= Π(xi, yi; r). But
let us prove the claim first.

Proof. A simple counting implies that, for every i ∈ [2m], there exist γi ∈ {0, 1}t and a set
Ri ⊆ {0, 1}ℓ of density 2−t such that for every r ∈ Ri it holds that F (i, r) = γi. Similarly,
there exist γ ∈ {0, 1}t and G ⊆ [2m] of density 2−t such that γi = γ for every i ∈ G.

The key observation is that if t ≤ (n − 1)/2, then there exist distinct i, j ∈ G such that
|Ri ∩ Rj | ≥ 2ℓ−2t−1. This is shown by fixing an arbitrary G′ ⊆ G of size 2t+1, which is
possible since 2t+1 ≤ 2n−t, and assuming towards the contradiction that, for every distinct
i, j ∈ G′, it holds that |Ri ∩ Ri| < 2ℓ−2t−1. Then, we get∣∣∣∣∣∑

i∈G′

Ri

∣∣∣∣∣ ≥
∑
i∈G′

|Ri| −
∑

i̸=j∈G′

|Ri ∩ Rj |

> 2t+1 · 2ℓ−t −
(

2t+1

2

)
· 2ℓ−2t−1

> 2ℓ+1 − 22t+1 · 2ℓ−2t−1

= 2ℓ

which is impossible. The claim follows by fixing i ≠ j such that |Ri ∩ Rj | ≥ 2ℓ−2t−1, and
defining R = Ri ∩ Rj . ◁

Applying Claim 3.2.1 to the hitting set S = {(x1, y1), ..., (x2m , y2m)} of the hypothesis,
while letting F (i, r) def= Π(xi, yi; r) and using t ≤ (m − 1)/2, we infer that the fooling set
contains two points (xi, yi) and (xj , yj) such that Π(xi, yi; r) = Π(xj , yj ; r) = γ holds for any
r ∈ R, where R ⊆ {0, 1}ℓ has density at least 2−2t−1.

Next, applying the “corners lemma” (i.e., Claim 2.1), we infer that Π(xi, yi; r) =
Π(xi, yj ; r) = Π(xi, yj ; r) = Π(xj , yj ; r) for every r ∈ R. Note that this application of
the “corners lemma” refers to the residual deterministic protocols Π′

r(x, y) = Π(x, y; r), for
all r ∈ R, and it implies that Π′

r(xi, yj) = Π′
r(xj , yi) = γ for each r ∈ R.

Lastly, picking an (ℓ, ℓ − 2t − 1)-source that is uniform on R, we infer that, when fed with
randomness from this source, the execution of Π does not distinguish these four input-pairs
(i.e., (xi, yi), (xi, yj), (xi, yj) and (xj , yj)). On the other hand, by hypothesis that (xi, yi)
and (xj , yj) belong to a fooling set, these four input-pairs cannot have the same f -value (i.e.,
it cannot be that f(xi, yi) = f(xi, yj) = f(xj , yi) = f(xj , yj), since this would mean that
(xi, yi) and (xj , yj) reside in the f -monochromatic rectangle {xi, xj} × {yi, yj}). Hence, the
hypothesis that Π is a (ℓ, k)-public-randomness protocol for f implies that the foregoing
source has min-entropy below k; that is, ℓ − 2t − 1 < k. The theorem follows, since we
established t > (ℓ − k − 1)/2, under the hypothesis t ≤ (m − 1)/2. ◀

M. Ball, O. Goldreich, and T. Malkin 14:7

An archetypical corollary

Recalling that equality has a fooling set of size 2n and applying Theorem 3.2, we get

▶ Corollary 3.3 (lower bound for equality). Any (ℓ, k)-public-randomness protocol for computing
equality of n-bit strings has communication complexity at least min(n − 1, ℓ − k − 1)/2.

This lower bound is tight up to a constant factor, since equality has a constant communication
protocol in the standard public-randomness model and the following generic result definitely
applies to it.

▶ Theorem 3.4 (a generic upper bound). Suppose that f : {0, 1}n+n → {0, 1} has communic-
ation complexity Cpub(f) in the standard public-randomness model. Then, for every k ≤ ℓ

such that k > log2 n + O(1), there exists an (ℓ, k)-public-randomness protocol for computing
f with communication complexity O(ℓ − k) · Cpub(f).

Recall that equality has constant communication complexity in the standard public-
randomness model.

Proof. Recall that the randomness complexity of any protocol for computing f can be
reduced to m

def= log2 n + O(1) (while possibly increasing its communication complexity
by a constant factor).5 The key observation is that the parties can emulate the extraction
of m almost-random bits from the public (ℓ, k)-source, by trying all possible seeds for an
adequate randomness extractor, and use the extracted bit to emulate the original randomized
protocol. Specifically, for k ≥ m, such extraction is possible using a (perfectly random) seed
of length d

def= log(ℓ − k) + O(1) (see, e.g., [11, Sec. 3.1]). Hence, the parties can emulate the
randomized protocol by invoking it 2d times using as randomness the “extracted outputs”
under all possible seeds. Details follow.

Let EXT(s, r) denote the output of the extractor EXT : {0, 1}d × {0, 1}ℓ → {0, 1}m on
seed s and source outcome r. Then, given (defective) public-randomness r ∈ {0, 1}ℓ, the
parties emulate 2d invocations of the standard randomized protocol such that in the ith

invocation they use public-randomness EXT(i, r), where i ∈ [2d] ≡ {0, 1}d, and rule by
majority. Actually, we use a randomized protocol for the standard model that has error
probability at most 0.1 (rather than at most 1/3), which can be obtained by a constant
number of repetitions.

We claim that if EXT has error 0.05 on any (ℓ, k)-source R, then, for every fixed input
pair, with probability at least 2/3 over the outcome of R, the majority of the extracted
values (over all possible seeds) yield protocol executions with the correct output. This is
the case because otherwise the statistical difference between EXT(Ud, R) and Um is at least
1
3 · 1

2 − 0.1 > 0.05, where the first (resp., second) term represents a lower bound (resp., upper
bound) on the probability that the protocol yields a wrong answer when run with randomness
EXT(Ud, R) (resp., Um). This yields an (ℓ, k)-public-randomness protocol of communication
complexity 2d · O(Cpub(f)) = O(ℓ − k) · Cpub(f). ◀

5 See, e.g., [1, Thm. 5] and [9]. The basic argument leaves the communication complexity intact, but
increases the error probability by an arbitrary small constant, where this constant effects the additive
constant in m. To regain the original error bound, three repetitions suffice.

CCC 2021

14:8 Communication Complexity with Defective Randomness

On the gap between the lower and upper bound

The bounds provided by Theorems 3.3 and 3.4 leave a gap of a factor Θ(Cpub(f)) in the
non-trivial case (i.e., Ω(ℓ − k)) versus O(ℓ − k) · Cpub(f)). The following example implies that
the gap cannot be closed by increasing the lower bound.

▶ Proposition 3.5 (improved upper bound). For every m < n, there exists a function
f : {0, 1}n+n → {0, 1} that satisfies the following two conditions:
1. The function f has communication complexity Cpub(f) = Θ(m) in the standard public-

randomness model;
2. For every k ≤ ℓ such that k > log2 n + O(1), there exists an (ℓ, k)-public-randomness

protocol for computing f with communication complexity O(ℓ − k) + O(Cpub(f)).

Proof. Consider the function f(x′x′′, y′y′′) = EQ(x′, y′) ⊕ IP2(x′′, y′′), where |x′′| = m = n −
|x′|, EQ denotes the equality function, and IP2 denotes inner-product mod 2. Then, Cpub(f) ≥
Cpub(IP2) = Ω(m), where the first inequality follows by a straightforward reduction and the
lower bound is proved in [3]. We obtain an (ℓ, k)-public-randomness protocol for computing
f with communication complexity O(ℓ − k) · Cpub(EQ) + m + 1 = O(ℓ − k) + O(Cpub(f)), by
combining the generic protocol for EQ (see Theorem 3.4) with the straightforward deterministic
protocol for IP2. ◀

4 The Private-Randomness Model

For a protocol Π in the private-randomness model, we denote by Π((x, r), (y, s)) the transcript
of the communication on input (x, y) ∈ {0, 1}n+n with private randomness r, s ∈ {0, 1}ℓ;
that is, the first (resp., second) party gets input x (resp., y) and private randomness r (resp.,
s). The output of such a protocol is determined by its transcript (e.g., it may be its last bit),
and is denoted Π((x, r), (y, s)).

▶ Definition 4.1 (communication complexity with weak private sources). An (ℓ, k)-private-
randomness protocol for computing a function f : {0, 1}n × {0, 1}n → {0, 1} is a protocol that
satisfies Pr[Π((x, Ξ′), (y, Ξ′′)) = f(x, y)] ≥ 2/3, for every (x, y) ∈ {0, 1}n+n and every pair
of independent (ℓ, k)-sources Ξ′ and Ξ′′.

▶ Theorem 4.2 (a general lower bound). Suppose that f : {0, 1}n+n → {0, 1} has a fooling get
of size 2m. Then, any (ℓ, k)-private-randomness protocol for computing f has communication
complexity at least min(m − 1, ℓ − k − 1)/2.

Proof. The proof is analogous to the proof of Theorem 3.2. We start with a hypothetical (ℓ, k)-
private-randomness protocol, denoted Π, that computes f with communication complexity
t ≤ (n − 1)/2. Then, we apply Claim 3.2.1 to the (somewhat less natural) function F : [2m] ×
{0, 1}ℓ → {0, 1}t defined by F (i, r) def= Π((xi, r), (yi, r)), where S = {(x1, y1), ..., (x2m , y2m)}
is a fooling set for f . Hence, we infer that there exist distinct i, j ∈ [2m], a string γ ∈ {0, 1}t,
and a set R ⊆ {0, 1}ℓ of density at least 2−2t−1 such that for every r ∈ R it holds that
Π((xi, r), (yi, r)) = Π((xj , r), (yj , r)) = γ.

Now, applying Claim 2.1 thrice, we infer that Π((xa, r), (yb, s)) = γ for every r, s ∈ R

and a, b ∈ {i, j}. Specifically, for both a ∈ {i, j} and every r, s ∈ R, considering the residual
protocol Π′

a(r, s) = Π((xa, r), (ya, s)) and using Π((xa, r), (ya, r)) = Π((xa, s), (ya, s)) = γ,
we infer that Π((xa, r), (ya, s)) = γ. Hence, Π((xi, r), (yi, s)) = γ = Π((xj , r), (yj , s)). Now,
considering the residual protocol Π′

r,s(x, y) = Π((x, r), (y, s)) and using Π((xi, r), (yi, s)) =
Π((xj , r), (yj , s)), we get that Π((xi, r), (yj , s)) = γ = Π((xj , r), (yi, s)).

M. Ball, O. Goldreich, and T. Malkin 14:9

Picking a pair of independent (ℓ, ℓ − 2t − 1)-sources that are each uniform on R, we infer
that the execution of Π does not distinguish the four input-pairs (xi, yi), (xi, yj), (xi, yj)
and (xj , yj). On the other hand, by hypothesis that (xi, yi) and (xj , yj) belong to a fooling
set, and so these four input-pairs cannot have the same f -value. Hence, the hypothesis that
Π is a (ℓ, k)-private-randomness protocol for f implies that ℓ − 2t − 1 < k. The theorem
follows, since we established t > (ℓ − k − 1)/2, under the hypothesis t ≤ (m − 1)/2. ◀

▶ Theorem 4.3 (a generic upper bound). Suppose that f : {0, 1}n+n → {0, 1} has communic-
ation complexity Cpriv(f) in the standard private-randomness model. Then, for every k ≤ ℓ

such that k > 2 log2 n + 2 log2 ℓ + O(1), there exists an (ℓ, k)-private-randomness protocol
for computing f with communication complexity min(2(ℓ − k) + 3 log2 n + O(Cpriv(f)), ℓ +
log2 n + O(Cpriv(f)))).

Proof. The bounds follow by having one party send a min(2·(ℓ−k+log2 n+O(1)), ℓ)-bit long
prefix of its private randomness to the second party, who extracts almost perfect randomness
from the two outcomes (using a two-source extractor), sends one half of it back, and then
both parties execute the standard protocol. Details follow.

First, recall that the randomness complexity of any protocol for computing f can be
reduced to m

def= log2 n + O(1) (while possibly increasing its communication complexity by a
constant factor). Second, recall that a seedless (two-source) randomness extractor can extract
2m almost random bits from an (ℓ, k)-source and an independent (ℓ′, k′)-source, provided that
2m ≤ k+k′−max(ℓ, ℓ′)−O(1) (see [3, Thm. 7(2)]).6 Now, if ℓ′ def= 2·(ℓ−k+log2 n)+O(1) ≤ ℓ,
then an ℓ′-bit prefix of an (ℓ, k)-source has min-entropy k′ def= ℓ′ − (ℓ−k) = (ℓ−k)+2 log2 n+
O(1), and so k + k′ − max(ℓ, ℓ′) − O(1) = 2 log2 n + O(1). Hence, sending the prefix of
the first source sent to the second party, allows it to extract 2 log2 n + O(1) bits that are
almost random. Sending half of these bits to the first party allows the two parties to emulate
the original protocol. The communication complexity of the proposed protocol is at most
ℓ′ + log2 n + O(1) + O(Cpriv(f)), which equals 2(ℓ − k) + 3 log2 n + O(Cpriv(f)).

As for the case of ℓ′ > ℓ, recall that a seedless (two-source) randomness extractor can
extract 2m almost random bits from a pair of independent (ℓ, k)-source, provided that
2m ≤ k − 2 log2 ℓ − O(1) (see [3, Thm. 7(1)]). In this case, sending the outcome of the first
source to the second party allows for the foregoing emulation, at a total communication cost
of ℓ + log2 n + O(Cpriv(f)). ◀

References
1 Ran Canetti and Oded Goldreich. Bounds on tradeoffs between randomness and communication

complexity. Comput. Complex., 3:141–167, 1993.
2 Clément L. Canonne, Venkatesan Guruswami, Raghu Meka, and Madhu Sudan. Commu-

nication with imperfectly shared randomness. IEEE Trans. Inf. Theory, 63(10):6799–6818,
2017.

3 Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput., 17(2):230–261, 1988.

4 Martin Dietzfelbinger, Juraj Hromkovic, and Georg Schnitger. A comparison of two lower-
bound methods for communication complexity. Theor. Comput. Sci., 168(1):39–51, 1996.

5 Yevgeniy Dodis, Shien Jin Ong, Manoj Prabhakaran, and Amit Sahai. On the (im)possibility
of cryptography with imperfect randomness. In FOCS, pages 196–205. IEEE Computer Society,
2004.

6 Note that for every d ≥ 0, a (ℓ, k)-source may be viewed as an (ℓ + d, k)-source.

CCC 2021

14:10 Communication Complexity with Defective Randomness

6 Shafi Goldwasser, Madhu Sudan, and Vinod Vaikuntanathan. Distributed computing with
imperfect randomness. In DISC, volume 3724 of Lecture Notes in Computer Science, pages
288–302. Springer, 2005.

7 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1997.

8 James L. McInnes and Benny Pinkas. On the impossibility of private key cryptography with
weakly random keys. In CRYPTO, volume 537 of Lecture Notes in Computer Science, pages
421–435. Springer, 1990.

9 Ilan Newman. Private vs. common random bits in communication complexity. Inf. Process.
Lett., 39(2):67–71, 1991.

10 Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications. Cambridge
University Press, 2020.

11 Ronen Shaltiel. An introduction to randomness extractors. In ICALP (2), volume 6756 of
Lecture Notes in Computer Science, pages 21–41. Springer, 2011.

On the Cut Dimension of a Graph
Troy Lee #

Centre for Quantum Software and Information, University of Technology Sydney, Australia

Tongyang Li #

Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
Center on Frontiers of Computing Studies, Peking University, Beijing, China

Miklos Santha #

CNRS, IRIF, Université de Paris, France
Centre for Quantum Technologies and MajuLab, National University of Singapore, Singapore

Shengyu Zhang #

Tencent Quantum Laboratory, Shenzhen, China

Abstract
Let G = (V, w) be a weighted undirected graph with m edges. The cut dimension of G is the
dimension of the span of the characteristic vectors of the minimum cuts of G, viewed as vectors in
{0, 1}m. For every n ≥ 2 we show that the cut dimension of an n-vertex graph is at most 2n − 3,
and construct graphs realizing this bound.

The cut dimension was recently defined by Graur et al. [13], who show that the maximum
cut dimension of an n-vertex graph is a lower bound on the number of cut queries needed by a
deterministic algorithm to solve the minimum cut problem on n-vertex graphs. For every n ≥ 2,
Graur et al. exhibit a graph on n vertices with cut dimension at least 3n/2 − 2, giving the first
lower bound larger than n on the deterministic cut query complexity of computing mincut. We
observe that the cut dimension is even a lower bound on the number of linear queries needed by
a deterministic algorithm to solve mincut, where a linear query can ask any vector x ∈ R(n

2) and
receives the answer wT x. Our results thus show a lower bound of 2n − 3 on the number of linear
queries needed by a deterministic algorithm to solve minimum cut on n-vertex graphs, and imply
that one cannot show a lower bound larger than this via the cut dimension.

We further introduce a generalization of the cut dimension which we call the ℓ1-approximate
cut dimension. The ℓ1-approximate cut dimension is also a lower bound on the number of linear
queries needed by a deterministic algorithm to compute minimum cut. It is always at least as large
as the cut dimension, and we construct an infinite family of graphs on n = 3k + 1 vertices with
ℓ1-approximate cut dimension 2n − 2, showing that it can be strictly larger than the cut dimension.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of compu-
tation → Graph algorithms analysis; Theory of computation → Computational complexity and
cryptography

Keywords and phrases Query complexity, submodular function minimization, cut dimension

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.15

Related Version Previous Version: https://arxiv.org/abs/2011.05085

Funding Research at CQT is funded by the National Research Foundation, the Prime Minister’s
Office, and the Ministry of Education, Singapore under the Research Centres of Excellence pro-
gramme’s research grant R-710-000-012-135. In addition, this work has been supported in part by
the QuantERA ERA-NET Cofund project QuantAlgo and the ANR project ANR-18-CE47-0010
QUDATA.
Troy Lee: Troy Lee is supported in part by the Australian Research Council Grant No: DP200100950.
Tongyang Li: Tongyang Li is supported by the ARO contract W911NF-17-1-0433, NSF grant PHY-
1818914, and an NSF QISE-NET Triplet Award (grant DMR-1747426).

© Troy Lee, Tongyang Li, Miklos Santha, and Shengyu Zhang;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 15; pp. 15:1–15:35

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:troyjlee@gmail.com
mailto:tongyang@mit.edu
mailto:miklos.santha@gmail.com
mailto:shengyzhang@tencent.com
https://doi.org/10.4230/LIPIcs.CCC.2021.15
https://arxiv.org/abs/2011.05085
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 On the Cut Dimension of a Graph

1 Introduction

Let G = (V,w) be a weighted undirected n-vertex graph where w is an
(

n
2
)
-dimensional

nonnegative real vector assigning a (possibly zero) weight to each edge slot. For a nontrivial
subset ∅ ≠ X ⊊ V , let ∆(X) be the set of edges of G with one endpoint in X and one
endpoint in X̄ = V \ X. A cut S in G is a subset of edges of the form ∆(X) for a
nontrivial set X. The sets X and X̄ are called the shores of the cut. For a cut S, its
weight is the sum of the weights of the edges in S, denoted w(S). The minimum cut
problem is to find the minimum of w(S) over all cuts S. The study of algorithms for the
minimum cut problem in theoretical computer science goes back at least to the 1960’s
and has given rise to a vast and beautiful literature. Minimum cut is also a problem of
great practical importance with applications to, for example, clustering algorithms and
evaluating network reliability. Randomized algorithms can solve the minimum cut problem
in nearly linear time: in 1996 Karger gave an algorithm with running time O(m log3(n))
to compute the minimum cut of a weighted graph with m edges [20]. This was the best
known bound until very recently when two independent works improved on it. Gawrychowski,
Mozes, and Weimann [8] gave a randomized algorithm with running time O(m log2(n)) [8]
and Mukhopadhyay and Nanongkai [24] gave a randomized algorithm with time complexity
O(m log2(n)

log log n +n log6(n)). Gawrychowski, Mozes, and Weimann [9] later improved the running
time of the Mukhopadhyay and Nanongkai algorithm to O(m log2(n)

log log n + n log3+ε(n)).
For simple graphs G, randomized algorithms are known with running times O(m log(n))

and O(m+n log3(n)) [10]. For simple graphs even nearly linear time deterministic algorithms
are known. Kawarabayashi and Thorup gave an O(m log12(n)) time algorithm [21], which
was subsequently improved to O(m(log(n) log log n)2) by Henzinger, Rao, and Wang [16].

Our work spans two aspects of the study of the minimum cut problem. The first is to
query complexity lower bounds on minimum cut. A natural model in which to study the
query complexity of minimum cut is for algorithms allowed to make cut queries. A cut
query algorithm can query any subset ∅ ≠ X ⊊ V and receives the answer w(∆(X)). One
motivation to study cut query algorithms comes from submodular function minimization.
The cut function f(X) = w(∆(X)) is a submodular function, and finding the minimum cut
value is equivalent to finding the minimum value of f over all nontrivial sets X. The problem
of minimizing a submodular function is often studied with respect to an evaluation oracle,
which in the case of the cut function is exactly a cut query.

Harvey [15] observed that results on the deterministic communication complexity of
deciding graph connectivity [14] imply that any deterministic cut query algorithm to compute
minimum cut, or even to decide if the graph is connected or not, must make at least cn
cut queries, for a constant c < 1. Analogous results on the randomized communication
complexity of connectivity [2] imply an Ω(n/ log(n)) lower bound on the number of cut
queries needed by a randomized algorithm to compute minimum cut (or even connectivity).

On the algorithms side, Rubinstein, Shramm, and Weinberg [26] gave a randomized
algorithm computing the minimum cut of a simple graph with Õ(n) many cut queries.
Recently, Mukhopadhyay and Nanongkai [24] used a different approach based on Karger’s
2-respecting tree algorithm [20] to also give a randomized Õ(n) cut query algorithm to
compute minimum cut in a general undirected weighted graph.

For deterministic cut query algorithms, there remains a large gap between the best upper
and lower bounds. We are not aware of any deterministic algorithm for minimum cut better
than learning the entire graph, which can take Ω(n2/ log(n)) cut queries in the worst case. On
the lower bound side, Graur, Pollner, Ramaswamy, and Weinberg [13] recently introduced a

T. Lee, T. Li, M. Santha, and S. Zhang 15:3

very interesting lower bound technique called the cut dimension, which we now describe. Let
G = (V,w) be a weighted undirected graph with n vertices and m edges, and let M(G) be
the set of minimum cuts of G. For a cut S ∈ M(G), let χ(S) ∈ {0, 1}m be the characteristic
vector of S amongst the m edges of G. Let M⃗(G) = {χ(S) : S ∈ M(G)}. The cut dimension
of G, denoted cdim(G), is the dimension of span(M⃗(G)). It is shown in [13] that for any
n-vertex graph G, the cut dimension cdim(G) is a lower bound on the deterministic cut
query complexity of computing minimum cut on weighted n-vertex graphs. Moreover, for
every n ≥ 2 they construct an n-vertex graph G with cut dimension 3n/2 − 2.

Besides showing lower bounds on cut query complexity, the cut dimension is a natural
measure of the complexity of mincuts in a graph. There is a rich literature on the possible
structure of mincuts in a graph. Perhaps the first result of this kind is the cactus representation
of mincuts by [6]. A cactus for a graph G is a sparse weighted graph C that represents all the
mincuts of G. One consequence of the cactus representation is that the number of possible
mincuts in an n-vertex weighted graph is at most

(
n
2
)
. This upper bound was later given

an algorithmic proof via Karger’s famous contraction algorithm ([19], Theorem 6.1). The
n-vertex cycle graph has

(
n
2
)

many minimum cuts and shows that this bound can be tight.
While the cycle has

(
n
2
)

many mincuts, these cuts live in an n-dimensional space as the
n-vertex cycle only has n edges. Is it possible to construct graphs with many cuts that also
have high cut dimension? We show that this is not possible, and in fact the cut dimension of
an n-vertex graph is at most 2n− 3.

▶ Theorem 1 (Main Upper Bound). For any weighted undirected graph G on n ≥ 2 vertices
it holds that cdim(G) ≤ 2n− 3.

Like the cactus representation, this shows another aspect in which the mincuts of a graph
are constrained to have a relatively simple structure. We further show that this bound is
tight by constructing graphs with cut dimension 2n− 3 for every n ≥ 2.

▶ Theorem 2 (Main Lower Bound). For every n ≥ 2 there exists an n-vertex weighted
undirected graph G with cdim(G) = 2n− 3.

In addition to shedding further light on the structure of minimum cuts, this improves
the best known lower bound on the deterministic cut query complexity of the minimum cut
problem to 2n− 3. We additionally show that the cut dimension is even a lower bound on
a stronger query model called the linear query model, recently studied in [1]. In the linear
query model, the algorithm can query any vector x ∈ R(n

2) and receives the answer ⟨w, x⟩,
the inner product of w and x. Linear queries can be much more powerful than cut queries as
one can completely learn an unweighted graph with a single linear query. By an information
theoretic argument learning an unweighted graph can require Ω(n2/ log(n)) many cut queries
since each cut query reveals at most O(log(n)) bits.

We further introduce a lower bound technique which is a generalization of the cut
dimension that we call the ℓ1-approximate cut dimension. This technique looks not just at
mincuts in the graph, but all cuts. We again look at the span of the dimension of these
cuts with an additional twist. Suppose the weight of a minimum cut in G is λ and cut S
has w(S) = λ + δ. Abusing notation we will let S represent both a set of edges and the
characteristic vector S ∈ {0, 1}(n

2) of S among all edge slots. The vector S can be perturbed
to S − u for any vector u ≥ 0 with ∥u∥1,w ≤ δ. Here ∥u∥1,w =

∑
i |w(i) · u(i)| is the ℓ1 norm

of u weighted by the edge weights of the graph. The ℓ1-approximate cut dimension of G is
then the minimum over all valid perturbations of the dimension of the span of the perturbed
cut vectors.

CCC 2021

15:4 On the Cut Dimension of a Graph

The minimization over all perturbations makes the ℓ1-approximate cut dimension a
difficult quantity to lower bound. We are able to show, however, that the ℓ1-approximate cut
dimension can be strictly larger than the cut dimension. For every k ∈ N and n = 3k+ 1, we
construct an unweighted n-vertex graph G whose ℓ1-approximate cut dimension is 2n− 2.
This has the following application.

▶ Theorem 3. Any deterministic linear query algorithm that correctly computes the minimum
cut of all n-vertex weighted undirected graphs must make at least 2n− 2 queries in the worst
case.

Computing the minimum cut of a graph with cut queries is a special case of finding the
nontrivial minimum of a symmetric submodular function f : 2V → R with evaluation queries.
That is, to find minX:∅̸=X⊊V f(S) for a submodular f that satisfies f(X) = f(V \ X) for
all X ⊆ V . As linear queries are more powerful than cut queries, Theorem 3 also implies
a 2n − 2 evaluation query lower bound for a deterministic algorithm finding a nontrivial
minimum of a symmetric submodular function, which is currently the best known.

1.1 Techniques
We give two different proofs of the 2n−3 upper bound on the cut dimension and two different
techniques to create graphs with cut dimension 2n − 3. The first proof is direct and uses
the combinatorial uncrossing technique, and in particular a key lemma of Jain [18] in his
factor of 2 approximation algorithm for the survivable network design problem. The second
proof is by induction and follows a framework for constructing a cactus representation of the
mincuts of a graph [6, 7]. The second proof uses very few properties of mincuts and seems
better suited to also upper bound the ℓ1-approximate cut dimension, one of our main open
questions.

Key to both proofs is the concept of when cuts cross each other. Two cuts ∆(X),∆(Y)
are said to cross if all four of the intersections X ∩ Y, X̄ ∩ Y,X ∩ Ȳ , X̄ ∩ Ȳ are non-empty.
Note that in the definition of crossing it does not matter which shore we take to define the
cut, thus crossing is a property of the cuts themselves. A family L of cuts is called cross-free
if for all cuts S, T ∈ L it holds that S and T do not cross.

First upper and lower bound proof. In the first upper bound proof, we first show that
any cross-free family of cuts has cardinality at most 2n− 3 (see Section 4.1). We then use
Jain’s lemma [18] (stated in Lemma 19) to conclude that for a maximal cross-free subset
L ⊆ M(G) it holds that L⃗ = {χ(S) : S ∈ L} spans the set M⃗(G). This shows that the cut
dimension of a graph is at most 2n− 3.

In the first lower bound proof we use a tree-representation of a cross-free family of cuts
to show that in a complete graph the cut vectors of a cross-free family of cuts are linearly
independent (Lemma 27). Thus the lower bound reduces to constructing a graph whose
minimum cuts are a cross-free family of cuts of size 2n− 3. Such a construction has already
been given by Chandra and Ram [5]. We go a step further, however. For any L which is a
cross-free family of cuts from a complete n-vertex graph with |L| = 2n− 3, in Theorem 31
we explicitly give the edge weights of a complete weighted graph G such that M(G) = L and
therefore cdim(G) = 2n− 3. This task is made easier by Lemma 29, which states that if L is
a cross-free family of cuts of size 2n− 3 that all have the same weight, then this must be the
weight of a minimum cut of the graph. This lemma is again shown by the combinatorial
uncrossing technique. This reduces the construction problem to solving the linear program of
finding a positive vector w that makes all cuts in L have the same weight. We explicitly give
a solution to this linear program by viewing it as a flow problem on the tree-representation
of L.

T. Lee, T. Li, M. Santha, and S. Zhang 15:5

Second upper and lower bound proof. The second upper bound proof is by induction and
follows methods to construct a cactus representation of mincuts [6, 7]. In the base case n = 2
it is easy to see that the cut dimension is at most 2n− 3 = 1. For the inductive step, when
G is an n > 2 vertex graph, there are 3 cases to consider. We call a cut of the form ∆({v})
a star cut, and we will refer to all other cuts as non-star cuts. The first case is where all
cuts in M(G) are star cuts. As the graph has n vertices there are at most n star cuts and so
in this case the cut dimension is at most n ≤ 2n − 3. The second case is where for every
non-star cut S ∈ M(G) there is a cut T ∈ M(G) which crosses S. In this case [6] show that
the graph must be a cycle and the cut dimension is again at most n ≤ 2n− 3.

The interesting case is where there is a non-star cut ∆(V0) ∈ M(G) which is not crossed
by any other cut in M(G). Let V1 = V̄0. In this case we use a decomposition of G along
the cut ∆(V0), that we call the separation of G, into two smaller graphs Gb, for b ∈ {0, 1}.
The graph Gb is formed from G by contracting V1−b into a single new vertex v1−b. We
show that cdim(G) ≤ cdim(G0) + cdim(G1) − 1 which implies immediately the upper bound.
Indeed, let k = |V0| ≥ 2. Then G0 is a graph on k + 1 vertices and G1 is a graph on
n− k + 1 vertices, both of which are less than n. The inductive hypothesis therefore gives
cdim(G) ≤ 2(k + 1) − 3 + 2(n− k + 1) − 3 − 1 = 2n− 3.

For the second lower bound proof we use the merge operation which creates from two
graphs Gb, for b ∈ {0, 1}, and a specified vertex v1−b from each, a composed graph G where
the vertices v0, v1 are not present but the cut ∆(V0) reflects the structure of the star cuts at
v0 and v1 in the original graphs. The operations separation and merge are inverses in the
sense that if we apply merge to {G0, G1} followed by separation on the resulting graph G, we
receive back {G0, G1}. We also show that the inequality cdim(G) ≤ cdim(G0)+cdim(G1)−1
holds with equality if ∆(V0) is a connected graph. This enables us to construct inductively a
sequence of graphs G(n) on n vertices whose cut dimension is 2n−3. In the base case G(3) is the
complete graph on 3 vertices where all the edges have the same weight. Then G(n) is defined
as the merge of G(3) and G(n−1) where the specified vertices can be chosen arbitrarily. Since
the separation of G(n) along the newly constructed complete cut gives back G(3) and G(n−1),
from the inductive hypothesis we conclude that cdim(G) = cdim(G0)+cdim(G1)−1 = 2n−3.

ℓ1-approximate cut dimension. As the cut dimension is at most 2n− 3, we have to look to
other methods in order to show larger lower bounds, if possible. We propose a generalization
of the cut dimension which we call the ℓ1-approximate cut dimension. In order to motivate
this, we quickly explain why the cut dimension is a lower bound on the linear query complexity
of mincut. The main idea behind the cut dimension lower bound on query complexity is to
answer all queries of the algorithm according to an n-vertex graph G = (V,w). Supposing
the algorithm makes k queries, we package these into a k-by-

(
n
2
)

matrix A whose rows are
the query vectors. If there is a cut S ∈ M(G) which is not in the rowspace of A, then by the
Fredholm alternative there is a vector z such that Az = 0, where 0 is the all-zero vector, but
⟨S, z⟩ > 0 and furthermore z(i) = 0 whenever w(i) = 0. Thus for a sufficiently small ε > 0
we have that w − εz ≥ 0 and so G′ = (V,w − εz) defines a valid non-negatively weighted
graph that has all the same answers to the queries of the algorithm as G. On the other
hand, the weight of a minimum cut in G′ is strictly smaller than that of G and thus as the
algorithm cannot distinguish G and G′ it cannot correctly compute the weight of a minimum
cut in all n-vertex graphs.

The ℓ1-approximate cut dimension extends this adversary argument to include all the
cuts of G instead of just the mincuts. If the minimum cut weight of G is λ and S is a cut
with weight λ+ δ, then the algorithm will still fail if there is a z such that

CCC 2021

15:6 On the Cut Dimension of a Graph

1. w − z ≥ 0
2. Az = 0
3. ⟨S, z⟩ > δ.

The reason is the same: the graph G′ = (V,w − z) has all the same answers to the queries
made by the algorithm as G yet has a cut with weight strictly smaller than λ.

Taking the dual of the corresponding linear program shows that such a vector z will not
exist iff S − u is in the rowspace of A for a vector u ≥ 0 with ∥u∥1,w ≤ δ. This leads us
to define the (w, c) one-sided row-by-row ℓ1 approximate rank of a matrix. For a matrix
Y ∈ RM×N this is defined by a weight vector w ∈ RN and a cost vector c ∈ RM with c ≥ 0.
It is the minimum rank of a matrix Ỹ such that Ỹ ≤ Y and ∥Y (i, :) − Ỹ (i, :)∥1,w ≤ c(i) for
every row i, where Y (i, :) denotes the ith row of Y . Let G = (V,w) be a graph and the weight
of a minimum cut in G be λ. The ℓ1-approximate cut dimension of a graph G = (V,w),
denoted c̃dim(G), is the (w, c) one-sided row-by-row ℓ1-approximate rank of the matrix Y
whose rows are the vectors S ∈ {0, 1}(n

2) for every cut S of G, and where c = Y w − λ1, and
1 is the all-one vector.

Lower bounding the rank under such an ℓ1 perturbation is a difficult task. However,
we are able to show an infinite family of graphs whose ℓ1-approximate cut dimension is
2n− 2, thereby showing the ℓ1-approximate cut dimension can be strictly larger than the cut
dimension. This lower bound is of a “direct sum” type. We show that the ℓ1-approximate
cut dimension of K4, the complete graph on 4 vertices, is 6, giving a tight lower bound of 6
on the number of linear queries needed to compute minimum cut on a 4 vertex graph. We
then show that the direct union (see Definition 6) of k copies of K4 has ℓ1-approximate cut
dimension 6k. The proof is tailored to the specific properties of the cut vectors of K4, and
makes use of Gaussian elimination and properties of diagonally dominant matrices.

Near-mincuts. Related to the ℓ1-approximate cut dimension is the question of the cut
dimension of near-mincuts. For α ≥ 1 call a cut S of a graph G an α-near-mincut if
its weight is at most α times the weight of a minimum cut of G. Let Mα(G) = {S :
S is an α-near-mincut of G}. It is known that |Mα(G)| ≤

(
n
2
)

for α < 4/3 [25] (see also
the beautiful proof given in Theorem 15 of [12]). Even for α < 3/2 the number of α-
near-mincuts is O(n2) [17], which is a sharp threshold as there exist graphs with Ω(n3)
many 3/2-mincuts. There is also a generalization of the cactus representation of mincuts
in terms of a tree of deformable polygons that applies to α-near-mincuts for α < 6/5 [3].
in Section 8 we show that if G is a simple graph then dim(span(M⃗α(G))) = O(n) for any
α < 2 (Theorem 41). This bound is tight as for α = 2 the unweighted complete graph Kn

witnesses dim(span(M⃗2(Kn))) =
(

n
2
)
. For weighted graphs, on the other hand, we show that

for any α > 1 there exists an n-vertex weighted graph G with dim(span(M⃗α(G))) =
(

n
2
)
.

1.2 Open Problems

Several interesting open problems remain from this work.
There is still a large gap between the known upper and lower bounds on the deterministic
cut/linear query complexity of minimum cut. What is the right answer? We conjecture
there is a deterministic cut query algorithm for minimum cut making O(n2−ε) many
queries for some ε > 0.
Is the ℓ1-approximate cut dimension O(n) for any n-vertex graph? Also can one show a
general direct sum theorem for the ℓ1-approximate cut dimension?

T. Lee, T. Li, M. Santha, and S. Zhang 15:7

1.3 Organization
The rest of the paper is organized as follows. We review necessary backgrounds about
graphs, operations on graphs, and query models in Section 2. In Section 3, we show that the
cut dimension is a lower bound on the deterministic linear query complexity of computing
minimum cut. We then prove that the cut dimension is at most 2n− 3 in Section 4, and give
an explicit construction of graphs with cut dimension 2n− 3 in Section 5. In Section 6, we
give another proof for both the upper and lower bounds on 2n− 3 using graph operations.
In Section 7 we show a 2n− 2 lower bound on ℓ1-approximate cut dimension which implies
Theorem 3. Finally, in Section 8 we show that for a simple graph G and 1 ≤ α < 2 it holds
that dim(span(M⃗α(G))) = O(n).

2 Preliminaries

For every natural number n, we denote by [n] the set {1, 2, . . . , n}. For a vector z ∈ Rn we
write z ≥ 0 if every coordinate of the vector is at least 0, and similarly we write z = 0 if z is
the all-zero vector. We denote the scalar product of two vectors z, z′ ∈ Rn by ⟨z, z′⟩. For
any matrix, denote the rank of A by rk(A). We denote the disjoint union of sets X and Y

by X ⊔ Y.

2.1 Graphs, cuts, sets
An undirected weighted graph on n vertices is a couple G = (V,w), where V is the set of
vertices with |V | = n, the set of edge slots V (2) is the set of subsets of V with cardinality 2,
and the weight function w : V (2) → R is non-negative. We refer to the vertex set of G as
V (G). The set of edges of G is defined as E = {e ∈ V (2) : w(e) > 0}. When in a graph
G = (V,w) the weight of every edge is 1, we say that the graph is unweighted, and we refer to
it also as G = (V,E); such graph is also called a simple graph. For an edge e = {u, v}, we say
that u and v are the endpoints of e. For a subset X ⊆ V of the vertices, we denote by E(X)
the set of edges in E which have both endpoints in X, and for disjoint subsets X,Y ⊆ V , we
denote by E(X,Y) the set of edges with exactly one endpoint in each of the two sets. We
extend the weight function w to any subset E′ of the edges by w(E′) =

∑
e∈E′ w(e). We will

deal only with graphs which have at least 2 vertices.
We fix an ordering v1 < v2 < · · · < vn of the vertices which induces also an ordering

{v1, v2}, {v1, v3}, . . . , {vn−1, vn} of the edge slots as well as an ordering e1 < e2 < . . . < em

of the m = |E| edges. We view w ∈ R(n
2) as a vector whose ith coordinate gives the (possibly

zero) weight of the ith edge slot according to this ordering, and we define w⃗ ∈ Rm as the
restriction of w to the edges. With some slight abuse of notation, for a set of edges S ⊆ E,
we use the same symbol S to also denote the characteristic vector in {0, 1}(n

2) of S among all
edge slots. We further need the characteristic vector of S ⊆ E among the m edges E, for
which we use the notation χ(S) ∈ {0, 1}m. For a family F of subsets of the edges, we use
the notation F⃗ = {χ(S) ∈ {0, 1}m : S ∈ F}.

For X ⊆ V , we denote by X̄ the set V \X. A cut S is a set E(X, X̄) for some ∅ ≠ X ⊊ V .
We call X and X̄ the shores of S, and we denote the cut by ∆(X). A cut is a star cut if
one of its shores is a singleton, otherwise it is non-star cut. If the singleton shore of a star
cut S is {v}, then we say that S is a star cut at v. The weight of a cut is the sum of the
weights of its edges. For a cut S we define the graph of the cut S as the unweighted graph
G(S) = (V ′, E′) where V ′ is the set of vertices in V that are endpoints of at least one edge
in S, and E′ = S. We say that a cut S is connected if G(S) is a connected graph. A cut is a
minimum cut, or mincut, for short, if no other cut has smaller weight. We denote by M(G)
be the set of minimum cuts of G. The cut dimension of G is cdim(G) = dim(span(M⃗(G))).

CCC 2021

15:8 On the Cut Dimension of a Graph

Let V be a set of size n. Two sets X,Y ⊆ V are said to overlap if X ∩ Y ̸= ∅, X̄ ∩ Y ̸=
∅, X ∩ Ȳ ̸= ∅. A family G of subsets of V is said to be laminar if for all X,Y ∈ G it holds
that X and Y do not overlap. A set family G ⊆ 2V is said to be closed under overlaps if for
every X,Y ∈ G that overlap it holds that X ∩ Y,X ∪ Y ∈ G. A laminar subset L ⊆ G is said
to be maximal in G if for every X ∈ G − L there is a Y ∈ L such that X,Y overlap. We say
a laminar subset L is maximal if it is maximal in 2V .

The sets X,Y ⊆ V cross if they overlap and additionally X̄ ∩ Ȳ ̸= ∅. Note that if X,Y
cross then so do X, Ȳ . A set family G ⊆ 2V is said to be cross-free if for all X,Y ∈ G it holds
that X and Y do not cross. Observe that if X and Y do not cross then either Y or Ȳ is a
subset of X or X̄. Let G = (V,w) be a graph with n vertices. Two cuts ∆(X) and ∆(Y) of
G are crossing if X and Y are crossing. Let F = {∆(X1), . . . ,∆(Xk)} be a set of cuts of
G. We say that F is cross-free family of cuts if G = {X1, . . . , Xk} is cross-free. Note that it
does not matter which shore we take to be in G.

There is a close relationship between cross-free families of cuts and laminar sets. Let
F = {∆(X1), . . . ,∆(Xk)} be a cross-free family of cuts where each Xi ⊆ V , and let X ′

i = Xi

if v1 ̸∈ Xi and X ′
i = X̄i otherwise. The beach of F is the set G = {X ′

1, . . . , X
′
k}. For a family

of sets G ⊆ 2V we say that it is proper if ∅, V ̸∈ G, and we say that it is complement free if it
does not contain X,Y with Y = X̄.

▷ Claim 4. Let F be a cross-free family of distinct cuts and G its beach. Then G is proper,
complement free and laminar.

Proof. First, G does not contain ∅ or V because these are not shores of cuts. It is complement
free because F contains distinct cuts, and its beach contains exactly one representative shore
from each cut. Finally, we show that it is laminar. Let X1, X2 ∈ G. By definition of a beach,
neither of these sets contain v1, thus X̄1 ∩ X̄2 ̸= ∅. Therefore if X1, X2 overlapped they
would also cross, in contradiction to F being a cross-free family of cuts. ◁

A mincut is crossless if no other mincut crosses it. Observe that a star mincut is always
crossless. Also, if a mincut ∆(X) is crossless then for every mincut ∆(Y), either Y or Ȳ is
a subset of X or X̄. Crossing mincuts have a nice structural property which was already
observed by [6].

▷ Claim 5. Let G = (V,w) be a weighted graph. If ∆(X),∆(Y) ∈ M(G) cross then
∆(X ∩ Y),∆(X ∪ Y) ∈ M(G).

Proof. We have ∆(X ∩ Y) ̸= ∅ and ∆(X ∪ Y) ̸= V because ∆(X) and ∆(Y) cross. The cut
function is submodular therefore we have

w(∆(X ∩ Y)) + w(∆(X ∪ Y)) ≤ w(∆(X)) + w(∆(Y)).

Let c be the weight of a minimum cut in G. Then the right hand side of the above inequality is
equal to 2c, while its left hand side is at least 2c. Therefore w(∆(X∩Y))+w(∆(X∪Y)) = 2c
from which the statement follows. ◁

2.2 Operations on graphs
We will use several operations on graphs. The first of these is the direct union.

▶ Definition 6 (direct union). For two graphs G0 = (V0, w0), G1 = (V1, w1) with disjoint
vertex sets, and for vertices v0 ∈ V0 and v1 ∈ V1, the direct union of G0 and G1 at vertices
v0, v1 is the fusion of the two by identifying v0 and v1. Formally, the direct union is
Gv0

0 ⊕Gv1
1 = (V,w) where V = (V0 ∪ V1 ∪ {v}) \ {v0, v1}, for a new vertex v ̸∈ V0 ∪ V1. The

weight function of Gv0
0 ⊕Gv1

1 is defined by

T. Lee, T. Li, M. Santha, and S. Zhang 15:9

w({x, y}) =

wb({x, y}) if x, y ∈ Vb \ {vb}, b ∈ {0, 1},
wb({x, vb}) if x ∈ Vb \ {vb}, y = v, b ∈ {0, 1},
0 otherwise.

The cut dimension of a direct union is a simple function of the cut dimensions of its
components.

▷ Claim 7. Let G = Gv0
0 ⊕Gv1

1 be the direct union of G0 and G1 at vertices v0, v1. Let cb

be the weight of a minimum cut in Gb, for b = 0, 1. Then cdim(G) = cdim(G0) + cdim(G1)
if c0 = c1, and cdim(G) = cdim(Gb) if cb < c1−b.

Proof. Let ∆(X) be an arbitrary cut of G where v ̸∈ X. If X ̸⊆ Vb, for b ∈ {0, 1}, then
the weight of the cut ∆(X) is at least c0 + c1, and therefore it is not a minimum cut. If
X ⊆ Vb, for some b ∈ {0, 1} then the weight of ∆(X) in G is the same as the weight of
∆(X) in Gb. Therefore if c0 = c1 then every mincut in G0 and every mincut of G1 is a
mincut of G, and these are the only mincuts. Since their supports are disjoint, we have
cdim(G) = cdim(G0) + cdim(G1). If cb < c1−b then only the mincuts of Gb are mincuts of
G, and therefore cdim(G) = cdim(Gb). ◁

The next two operations, which are inverses of each other, give a decomposition of a
graph along a cut into two smaller graphs, and a composition of two graphs into a bigger one
by unfolding a star cut in each components. The decomposition operation was essentially
defined in [7]. Let G = (V,w) be a weighted graph and let Z be a cut in G with shores X0
and X1 = V \X0. The separation of G along the cut Z, denoted by sep(G,Z), is the set of
two graphs {G0 = (V0, w0), G1 = (V1, w1)}, where Vb = Xb ∪ {v1−b}, for b = 0, 1 with new
vertices v0, v1. The respective weight functions are defined by wb({x, y}) = w({x, y}) for any
x, y ∈ Xb, and wb({x, v1−b}) =

∑
y∈V1−b

w({x, y}) for any x ∈ Xb.
Let G0 = (V0, w0), G1 = (V1, w1) be two graphs on disjoint vertex sets, and let vb ∈ V1−b

be arbitrary vertices for b ∈ {0, 1}. The merge of G0 and G1 along the vertices v1, v0, denoted
by mer({(G0, v1), (G1, v0)}), is the graph G = (V,w), where V = (V0 ∪ V1) \ {v0, v1}. The
weight function in G is defined by w({x, y}) = wb({x, y}) if x, y ∈ Vb, for b ∈ {0, 1}, and

w({x, y}) = w0({x, v1})w1({v0, y}), if x ∈ V0 and y ∈ V1.

It follows from the definitions sep is the left inverse of mer if the star cut at v1 in V0 and the
star cut at v0 in V1 both have weight one, and sep is the right inverse of mer if the weight of
the cut Z is one. We formally state the former property.

▷ Claim 8. Let G0 = (V0, w0) and G1 = (V1, w1) have disjoint vertex sets, and let vb ∈ V1−b

such that wb(∆(v1−b)) = 1, for b = 0, 1. Let Z be the cut in mer({(G0, v1), (G1, v0)}) whose
shores are V0 \ {v1} and V1 \ {v0}. Then w(Z) = 1 and

sep(mer({(G0, v1), (G1, v0)}), Z) = {G0, G1}.

2.3 Query models
▶ Definition 9 (MINCUTn). The input in the MINCUTn problem is an n-vertex weighted
undirected graph G = (V,w). The required output on G is the weight of a minimum cut in G.

CCC 2021

15:10 On the Cut Dimension of a Graph

A deterministic algorithm correctly solves the MINCUTn problem if it outputs the correct
mincut weight for every n-vertex input graph G. We consider algorithms given two models
of query access to the input graph G = (V,w), linear queries and cut queries. A linear query
for G is a vector x ∈ R(n

2), and the query is answered by ⟨x,w⟩. A cut query is a vector
x ∈ {0, 1}(n

2) which is the characteristic vector of a cut in the complete n-vertex graph. The
answer to a cut query is again ⟨x,w⟩. Clearly any cut query algorithm can be simulated by
a linear query algorithm.

We use Dcut(MINCUTn) to denote the minimum, over all deterministic query algorithms
A that correctly solve MINCUTn, of the maximum over all n-vertex input graphs G = (V,w)
of the number of cut queries made by A on G. Dlin(MINCUTn) is defined analogously for
linear queries.

Some authors instead define the output of the minimum cut problem to be a cut S that
achieves the minimum weight, rather than the weight itself. Over n-vertex weighted graphs
let us denote this problem as ARGMINCUTn. For linear and cut queries, an algorithm
that finds a minimum cut S can also return the weight of S with one additional query.
Thus Dlin,cut(ARGMINCUTn) ≥ Dlin,cut(MINCUTn) − 1, and the lower bounds we prove
for MINCUTn can be applied, minus 1, to ARGMINCUTn as well.

3 Lower bounds on the linear query complexity of MINCUT

Graur et al. [13] introduce the cut dimension as a means to show lower bounds on the
deterministic cut query complexity of computing minimum cut.

▶ Theorem 10 ([13]). If there is an n-vertex weighted graph G = (V,w) with cdim(G) = k

then Dcut(MINCUTn) ≥ k.

We show that this theorem even holds with respect to a stronger computational model
where the algorithm is able to make linear queries. We also give a generalization of the cut
dimension to a quantity which is at least as large, and can be strictly larger, that we call the
ℓ1-approximate cut dimension. We now give an overview of the Graur et al. [13] argument in
the context of linear queries and how we can extend it.

The proof of Theorem 10 is based on an adversary argument. Suppose a deterministic
algorithm makes k linear queries and consider the execution of the algorithm on a fixed
n-vertex graph G = (V,w) whose set of minimum cuts is M(G). Make a k-by-

(
n
2
)

matrix
A whose rows are the query vectors asked by the algorithm. Suppose we can find a vector
z ∈ R(n

2) such that
1. w − z ≥ 0,
2. Az = 0,
3. There is a cut S ∈ M(G) such that ⟨S, z⟩ > 0.
The existence of such a vector z means the algorithm cannot correctly compute minimum
cut weight on all weighted n-vertex graphs. The reason is that G′ = (V,w− z) is a valid non-
negatively weighted graph by (1), has the same answers on all queries asked by the algorithm
by (2), and by (3) has minimum cut weight at most ⟨S,w − z⟩ = ⟨S,w⟩ − ⟨S, z⟩ < ⟨S,w⟩,
which is strictly less than the minimum cut weight of G. As with k queries the algorithm
cannot distinguish whether the input is G or G′, it cannot correctly output the minimum
cut weight for all n-vertex weighted graphs.

A weaker condition than (3) suffices for this argument to work. Suppose that the minimum
cut weight in G is c∗. Then the argument still goes through with the condition

T. Lee, T. Li, M. Santha, and S. Zhang 15:11

3’. There is a cut S such that ⟨S, z⟩ > ⟨S,w⟩ − c∗.
This is because the algorithm cannot distinguish the graph G with minimum cut weight c∗

from the graph G′ = (V,w − z) which has minimum cut weight at most ⟨S,w − z⟩ < c∗.
In order to understand what kind of bound this argument gives, for fixed w,A, S we

define the quantity α(w,A, S) which is given by the following linear program.

α(w,A, S) = maximize
z

⟨S, z⟩

subject to w − z ≥ 0
Az = 0

Taking the dual of this program gives

α(w,A, S) = minimize
v

⟨S −AT v, w⟩

subject to S −AT v ≥ 0

The dual tells us that a vector z having large overlap with S and satisfying items (1), (2)
above exists iff the vector S is far away from the rowspace of A. The notion of far away here is a
one-sided ℓ1 distance weighted by w. It is one-sided because the condition S−AT v ≥ 0 tells us
we are looking to approximate S by vectors in the rowspace of A that are entrywise at most S.
As S−AT v ≥ 0 and w ≥ 0 this means ⟨S−AT v, w⟩ =

∑
i |w(i)·(S(i)−AT v)| = ∥S−AT v∥1,w,

where ∥u∥1,w is defined to be
∑

i |u(i)w(i)|. Thus the value of the dual can be interpreted as
the one-sided ∥ · ∥1,w distance between S and the rowspace of A.

This leads us to define an ℓ1 approximate version of the cut dimension. The notion we
need is given by the following definitions.

▶ Definition 11 (one-sided row-by-row ℓ1-approximate rank). Let Y ∈ RM×N be a matrix,
w ∈ RN a weight vector and c ∈ RM a cost vector. We define the (w, c) one-sided row-by-row
ℓ1-approximate rank of Y to be the minimum rank of a matrix Ỹ such that Ỹ ≤ Y and
∥Y (i, :) − Ỹ (i, :)∥1,w ≤ c(i), for all 1 ≤ i ≤ M .

▶ Definition 12 (ℓ1-approximate cut dimension). Let G = (V,w) be an n-vertex weighted
undirected graph with minimum cut weight c∗. Let M be (2n−1 − 1)-by-

(
n
2
)

matrix whose rows
are S ∈ {0, 1}(n

2) for all cuts S of G. Let c = Mw− c∗1, where 1 is the all one vector. Then
the ℓ1-approximate cut dimension of G, denoted c̃dim(G), is the (w, c) one-sided row-by-row
ℓ1-approximate rank of M .

▶ Theorem 13. If there is an n-vertex graph weighted graph G = (V,w) with c̃dim(G) = k

then Dlin(MINCUTn) ≥ k.

Proof. Let G = (V,w) be a graph with c̃dim(G) = k and let c∗ be the minimum cut weight
of G. Suppose for contradiction there is a deterministic k − 1 linear query algorithm that
correctly computes the minimum cut of any n-vertex graph. Run this algorithm answering
queries according to G and package the queries into a (k − 1)-by-

(
n
2
)

matrix A.
As the algorithm is correct, for every cut S of G it must be the case that α(w,A, S) ≤

⟨S,w⟩ − c∗. If not, the graph G′ = (V,w− z), where z is an optimal solution to the primal of
α(w,A, S), has minimum cut weight strictly smaller than c∗, yet G′ cannot be distinguished
from G by the algorithm. Thus by the dual formulation of α(w,A, S), this means that for
every cut S of G there is a vector S̃ = AT v in the rowspace of A such that S̃ ≤ S and
∥S − S̃∥1,w ≤ ⟨S,w⟩ − c∗. The matrix M̃ whose rows are S̃ for all cuts S therefore witnesses
that c̃dim(G) ≤ rk(A) ≤ k − 1, a contradiction. ◀

CCC 2021

15:12 On the Cut Dimension of a Graph

▶ Lemma 14. For any weighted graph G = (V,w) we have cdim(G) ≤ c̃dim(G).

Proof. Suppose that G = (V,w) has minimum cut weight c∗, and let M(G) be the set of
minimum cuts of G. Let M be the (2n−1 − 1)-by-

(
n
2
)

matrix whose rows are S ∈ {0, 1}(n
2)

for all cuts S of G and let c = Mw − c∗.
Let Y be the submatrix of M where rows are restricted to cuts in M(G) and columns

are restricted to the edge slots e where w(e) > 0. Thus the rows of Y are exactly the vectors
χ(S) for S ∈ M(G). and the rank of Y is cdim(G). Any matrix M̃ which satisfies M̃ ≤ M

and ∥M(i, :) − M̃(i, :)∥1,w ≤ c(i) for all i must contain Y as a submatrix, as c(i) = 0 for rows
i that correspond to minimum cuts and w is positive on the edge slots labeling the columns
of Y . Thus rk(M̃) ≥ rk(Y) for any (w, c) one-sided row-by-row ℓ1 approximation M̃ of M ,
giving the lemma. ◀

In Section 7 we will see that c̃dim(G) can be strictly larger than cdim(G). From
Theorem 13 and Lemma 14 we obtain the following corollary.

▶ Corollary 15. If there is an n-vertex weighted graph G = (V,w) with cdim(G) = k then
Dlin(MINCUTn) ≥ k.

4 The cut dimension is at most 2n − 3

In this section we prove Theorem 1 that cdim(G) ≤ 2n − 3 for any undirected weighted
graph G on n ≥ 2 vertices. This will follow from two facts:
1. For n ≥ 2 a cross-free family of cuts in an n-vertex graph has cardinality at most 2n− 3.
2. If L ⊆ M(G) is a maximal cross-free subset of the mincuts of G then span(L⃗) =

span(M⃗(G)).
We remind the reader that L⃗ = {χ(S) : S ∈ L} where χ(S) ∈ {0, 1}|E| is the characteristic
vector of the cut S amongst the edges of G.

These two facts are presented in the next two subsections.

4.1 Cardinality of a cross-free family of cuts
Recall from Claim 4 that if L is a cross-free family of cuts then the beach G of L is a laminar
family of sets. A standard inductive proof shows that a laminar family of subsets of a universe
of cardinality n that contains no singletons has size at most n− 1, and thus a laminar family
in general has size at most 2n− 1. A beach has the additional properties of being proper and
complement free which allows one to prove an upper bound of 2n− 3. This is mentioned
by Goemans [11] in the paragraph after Theorem 4 under the heading “Size of a Laminar
Family”, who observes that the standard inductive proof also implies the bound is attained
only if the family includes the universe and at least one set and its complement. See also
Corollary 2.15 of [22], where it is shown that a proper laminar family has cardinality at most
2n− 2.

▶ Lemma 16. Let n ≥ 2, V a set of cardinality n, and G ⊆ 2V be a family of sets which is
proper and laminar. Then |G| ≤ 2n− 2. If G is proper, laminar, and complement free then
|G| ≤ 2n− 3.

Proof. First we show the 2n− 2 upper bound. We prove by induction. Consider first the
base case where n = 2 and V = {v1, v2}. As ∅, V ̸∈ G the only possible elements to include
in G are {v1}, {v2} and |G| ≤ 2 = 2n− 2.

T. Lee, T. Li, M. Santha, and S. Zhang 15:13

Now we assume the statement is true for families of sets on a universe of n− 1 elements
and show it holds for families of sets on a universe of size n. Let G ⊆ 2V be a proper laminar
family. We say that X ∈ G is maximal if there is no set Y ∈ G with X ⊂ Y . Let X1, . . . , Xm

be the maximal sets in G. Note that we must have Xi ∩Xj = ∅ for all i ≠ j ∈ [m]. This is
because for distinct maximal sets Xi −Xj , Xj −Xi ̸= ∅ thus if Xi ∩Xj ̸= ∅ they would be
overlapping. If ∪m

i=1Xi ⊊ V then the result already holds by the induction hypothesis. Thus
we may assume m ≥ 2 and X1, . . . , Xm form a partition of V . The family F1 = {Y : Y ⊊ X1}
is a laminar family on the universe X1 which does not contain X1. Hence by the induction
hypothesis it has at most 2|X1| − 2 many sets. This holds for all i = 1, . . . ,m, thus including
X1, . . . , Xm the total number of sets is

∑m
i=1 2|Xi| −m ≤ 2n− 2.

Now we show the 2n− 3 upper bound additionally assuming the family is complement
free. We show this result directly using the upper bound of 2n − 2 we have just shown
on the size of proper laminar families. Let G ⊆ 2V be proper, laminar, and complement
free, and let X1, . . . , Xm be the maximal sets in G, which again must be disjoint. The
number of subsets strictly contained in Xi is at most 2|Xi| − 2 by the previous result. Thus,
including X1, . . . , Xm we can upper bound the size of G by

∑m
i=1 2|Xi| −m. If m > 2 then

the upper bound of 2n− 3 already holds. If m = 1 then as G is a proper family we must have
|X1| ≤ n− 1 in which case the upper bound of 2n− 3 holds as well. Finally, consider the case
m = 2. In this case, if |X1 ∪X2| < n then the bound already holds. If X1 ∪X2 = V then
X2 = X̄1 and we must exclude one of these sets, giving a bound of 2n− 2 − 1 = 2n− 3. ◀

▶ Remark 17. From the proof in the proper, laminar, complement-free case we can observe
for what maximal sets equality in the upper bound can hold. The first is the case where
there are three maximal sets X1, X2, X3 that form a partition of [n]. With V = [6] an
example of this type saturating the bound is G = {{1}, . . . , {6}, {1, 2}, {3, 4}, {5, 6}}. The
second is the case where there are two maximal sets X1, X2 that form a partition of [n]
and exactly one of X1, X2 is not included. The latter includes the case where there is
a single maximal set X1 of size |X1| = n − 1. For V = [6], an example of this type is
G = {{2}, . . . , {6}, {2, 3}, {2, 3, 4}, {2, 3, 4, 5}, {2, 3, 4, 5, 6}}.

Chandran and Ram (Lemma 2.13 in [5]) show that if the set M(G) of minimum cuts
of a graph G is cross-free, then |M(G)| ≤ 2n − 3. This is an easy corollary of Lemma 16,
which gives something more general.

▶ Corollary 18. Let G = (V,w) be a graph on n ≥ 2 vertices. Let L ⊆ M(G) be a subset of
minimum cuts that is cross-free. Then |L| ≤ 2n− 3.

4.2 Spanning
Let L ⊆ M(G) be a maximal cross-free subset of M(G). Here maximal means that for any
cut S ∈ M(G) \ L there is a cut T ∈ L that crosses S. The fact that span(L⃗) = span(M⃗(G))
essentially follows from a key lemma of Jain in his factor of 2 approximation algorithm for
the survivable network design problem (Lemma 4.2 in [18]). Another application of a similar
lemma can be found in Goeman’s approximation algorithm for the bounded-degree minimum
spanning tree problem [11].

The context of Jain’s lemma is slightly different than ours, as we now explain. Instead
of mincuts, Jain considers the set of cuts T which saturate the inequalities of a particular
linear program. He shows that the set T has the property that if ∆(X),∆(Y) ∈ T cross
then either
1. ∆(X ∩ Y),∆(X ∪ Y) ∈ T and χ(∆(X)) + χ(∆(Y)) = χ(∆(X ∩ Y)) + χ(∆(X ∪ Y)), or
2. X \ Y, Y \X ∈ T and χ(∆(X)) + χ(∆(Y)) = χ(∆(X \ Y)) + χ(∆(Y \X)).

CCC 2021

15:14 On the Cut Dimension of a Graph

As shown by Dinitz, Karzanov, and Lomonosov [6], for crossing mincuts ∆(X),∆(Y) both
items (1), (2) hold (see Proposition 45 for a proof). Thus Jain’s lemma applies to M(G) as
well.

▶ Lemma 19 ([18]). Let G = (V,w) be a graph and L ⊆ M(G) be a maximal cross-free
family of mincuts. Then span(L⃗) = span(M⃗(G)).

For completeness, we include a full proof of Lemma 19 in Appendix A.
We now can give the first proof of our main upper bound that for any n ≥ 2 an n-vertex

graph G = (V,w) has cdim(G) ≤ 2n− 3.

Proof of Theorem 1. Follows from Corollary 18 and Lemma 19. ◀

5 Explicit construction of graphs with cut dimension 2n − 3

In this section we prove Theorem 2 by giving a general technique to explicitly construct
graphs of cut dimension 2n − 3. We focus on constructing graphs G = (V,w) where w is
strictly positive, i.e. where G is a complete weighted graph. The main lemma of this section,
Lemma 27, shows that, in a complete weighted graph, for any cross-free family of cuts L the
vectors in L⃗ are linearly independent.

Thus to construct a graph with cut dimension 2n− 3 it suffices to construct a complete
weighted graph whose set of mincuts is a cross-free family of cuts of cardinality 2n−3. Such a
graph is constructed for every n ≥ 2 in Theorem 5.2 of [5]. Combining this construction with
our linear independence result Lemma 27 gives a proof of our main lower bound Theorem 2.

In Section 5.3 we go further and show for any maximal cross-free family F ⊆ 2[n] there is
a complete weighted graph G = ([n], w) with M(G) = {∆(X) : X ∈ F}. Moreover, we give
an explicit formula for the weight vector w. Part of this construction is a lemma, Lemma 29,
which may be of independent interest: it says that if L is a maximal family of cross-free cuts
in a graph G, and all cuts in L have the same weight c, then c is the weight of the minimum
cut in G.

A key tool for showing the linear independence of cuts from a cross-free family is the tree
representation of a laminar family, which we go over next.

5.1 Tree representation
▶ Definition 20. For an unweighted directed graph G = (V,E) we let δ+(X) = {(x, y) ∈ E :
x ∈ X, y ∈ V −X}. For a singleton v ∈ V we write δ+(v) instead of δ+({v}).

▶ Definition 21 (Arborescence). An arborescence is a directed rooted tree where all edges
point away from the root. A vertex of an arborescence which is not the root or a leaf we call
an internal vertex.

▶ Definition 22 (Tree representation). Let T be a directed graph whose underlying undirected
graph is a tree. Let U be a finite set and ϕ : U → V (T). For e = (x, y) ∈ E(T) define Se as

Se = {s ∈ U : ϕ(s) is in the same connected component of T − e as y} .

Then (T, ϕ) defines a set family F = F(T, ϕ) where F = {Se : e ∈ E(T)}. We say that
(T, ϕ) is a tree representation of (U,F). We call (T, ϕ) a faithful tree representation if
|E(T)| = |F|. For v ∈ V (T), if there is a u ∈ U such that ϕ(u) = v then we say that v has a
label.

T. Lee, T. Li, M. Santha, and S. Zhang 15:15

We will need the fact that a laminar set family has a faithful tree representation by
an arborescence. A textbook proof of this fact can be found in Korte and Vygen Propos-
ition 2.14 [22]. While they do not explicitly say the tree representation they construct is
faithful, this is clear from the proof.

▶ Proposition 23. Let (U,F) be laminar family. Then there is a faithful tree representation
(T, ϕ) of (U,F) where T is an arborescence.

Recall from Claim 4 that if L is a cross-free family of cuts then its beach G is laminar,
and thus has a tree representation.

▶ Lemma 24 (Tree structure of maximal cross-free families). Let L be a maximal family
of cross-free cuts of a graph G = ([n], w) and G ⊆ 2[n] its beach. Then in a faithful tree
representation (T, ϕ) of G it holds that
1. The root r is labeled by 1 and has |δ+(r)| = 1
2. There are n− 1 leaves of T each with a distinct label in {2, . . . , n}.
3. Every internal vertex v has |δ+(v)| = 2.

Proof. As by the definition of a beach, sets do not contain 1, this means that 1 must be the
label of the root. As star cuts do not cross any other cut, if L is maximal it must contain
all the star cuts. This means that G contains the sets {2}, . . . , {n}, {2, . . . , n}. Thus the
outdegree of the root must be 1, as this outgoing edge represents the set {2, . . . , n}. Further
there must be n− 1 leaves which are labeled by 2, . . . , n. We have now accounted for all the
labels, thus no internal vertex has a label. Further, if there was a leaf v with parent u such
that v did not have a label, then (u, v) would represent the empty set, which by definition is
not in G. Thus there are exactly n− 1 leaves.

It remains to show that every internal vertex v of T which is not the root has |δ+(v)| = 2.
Let v be an internal vertex, and as v is not the root, let u be its parent, and as v is not
a leaf let w be a child of v. If |δ+(v)| = 1 then the edges (u, v), (v, w) would represent
the same set, as v is not labeled. This contradicts the fact that (T, ϕ) is a faithful tree
representation. Now suppose |δ+(v)| > 2 and let w, x, y be three of its children. Consider
the sets X1, X2, X3 ∈ G represented by the edges (v, w), (v, x), (v, y). Further the edge (u, v)
represents a set A ∈ G with X1 ∪X2 ∪X3 ⊆ A. We claim that in this case L is not maximal
because the cut ∆(X1 ∪X2) does not cross any cut in L. Indeed, X1 ∪X2 is contained in all
the sets represented by edges on the path from v to the root, and is disjoint from the sets
represented by any other edge of T . Thus we have a contradiction. ◀

▶ Corollary 25. Let L be a maximal family of cross-free cuts of a graph G = ([n], w). Then
|L| = 2n− 3.

Proof. Let G be the beach of L and (T, ϕ) a faithful tree representation of G. As (T, ϕ) is
faithful |E(T)| = |L|. Let T ′ be the undirected graph underlying T . Clearly |E(T ′)| = |E(T)|.
We use Lemma 24 to count |E(T ′)|. Let i be the number of internal vertices of T ′, each of
which has degree 3. There are also n non-internal vertices each of which has degree 1. Thus
|E(T ′)| = (3i+ n)/2. Also as T ′ is a tree |E(T ′)| = |V (T ′)| − 1 = n+ i− 1. Hence i = n− 2
and |L| = |E(T)| = |E(T ′)| = 2n− 3. ◀

5.2 Linear independence
We now show the main theorem of this section that in a complete weighted graph any set L⃗
of cut vectors of a cross-free family of cuts L is linearly independent. We will use the tree
representation (T, ϕ) of the beach G of L to do this via the following lemma.

CCC 2021

15:16 On the Cut Dimension of a Graph

▶ Lemma 26. Let T be an arborescence with root r and ψ : E(T) → R. Let U be a finite set
and ϕ : U → V (T). Suppose that T, ϕ, ψ have the property that
1. The root r is labeled and has |δ+(r)| = 1.
2. Every internal vertex v is unlabeled and has |δ+(v)| = 2.
3. Every leaf of T has a label.
4. For every s, t ∈ U it holds that

∑
e∈ϕ(s)−ϕ(t) ψ(e) = 0, where ϕ(s) − ϕ(t) is the set of

edges on the undirected path from ϕ(s) to ϕ(t).
Then ψ is identically 0.

Proof. We will prove by induction on the depth of the arborescence. We need a slightly
different statement for the inductive hypothesis since when considering a sub-arborescence
T ′ of T we do not know that the root of T ′ has property (1).

Inductive hypothesis. Let T be an arborescence with root r that is unlabeled and has
|δ+(r)| = 2, and further suppose T, ϕ, ψ satisfy conditions (2)-(4) of the proposition. Then
letting u, v be the children of r it holds that ψ((r, u)) = −ψ((r, v)) and for any other edge
e ∈ E(T), e ̸= (r, u), (r, v) it holds that ψ(e) = 0.

For the base case consider a tree of depth 1, with root r and two children u, v which are
leaves. As they are leaves, u, v are labeled which, considering the path from u to v, means
ψ((r, u)) + ψ((r, v)) = 0. This concludes the base case.

Now we prove the inductive step. Let r be the root of a tree with children u, v. We
consider two cases:

Case 1: one of u, v is a leaf. Suppose without loss of generality that u is a leaf and v is an
internal node with children v1, v2. By the inductive hypothesis ψ((v, v1))+ψ((v, v2)) = 0 and
ψ is identically 0 on the subtrees rooted at v1, v2. Let y1, y2 be leaves that are descendants
of v1, v2 respectively (and can possibly be y1, y2 themselves). Considering the path from u

to y1 and y2 we have the equations

ψ((r, u) + ψ((r, v)) + ψ((v, v1)) = 0
ψ((r, u) + ψ((r, v)) + ψ((v, v2)) = 0

As ψ((v, v1)) + ψ((v, v2)) = 0, adding these equations shows that ψ((r, u) + ψ((r, v)) = 0,
as desired. Substituting this back into the equations further implies that ψ((v, v1)) =
ψ((v, v2)) = 0 so ψ is identically 0 on the subtree rooted at v completing this case.

Case 2: both u, v are internal vertices. Let the children of u be u1, u2 and the children of
v be v1, v2. By the inductive hypothesis, ψ(·) is identically zero on the sub-trees rooted at
u1, u2, v1, v2 and we have ψ((u, u1)) +ψ((u, u2)) = ψ((v, v1)) +ψ((v, v2)) = 0. We must show
that ψ((u, u1)) = ψ((u, u2)) = ψ((v, v1)) = ψ((v, v2)) = 0 and that ψ((r, u)) + ψ((r, v)) = 0.

Let x1, x2 be a leaves that are descendants of u1, u2, respectively, and similarly let y1, y2
be leaves that are descendants of v1, v2, respectively. By assumption all of these leaves are
labeled. Considering the paths from xb − yb′ for b, b′ ∈ {0, 1} we obtain the following four
constraints on ψ:

ψ((u, u1)) + ψ((r, u)) + ψ((r, v)) + ψ((v, v1)) = 0
ψ((u, u1)) + ψ((r, u)) + ψ((r, v)) + ψ((v, v2)) = 0
ψ((u, u2)) + ψ((r, u)) + ψ((r, v)) + ψ((v, v1)) = 0
ψ((u, u2)) + ψ((r, u)) + ψ((r, v)) + ψ((v, v2)) = 0

T. Lee, T. Li, M. Santha, and S. Zhang 15:17

Adding all four equations and using ψ((u, u1)) + ψ((u, u2)) = ψ((v, v1)) + ψ((v, v2)) = 0
shows that ψ((r, u)) + ψ((r, v)) = 0. Taking this into account, adding the first two equations
then shows ψ((u, u1)) = 0, and adding the last two equations shows ψ((u, u2)) = 0. This
then also means ψ((v, v1)) = ψ((v, v2)) = 0.

We have now shown the inductive statement holds. It remains to see why this implies the
lemma. Let r be the root of the tree, let u be the child of r, and let u1, u2 be the children of
u. By the inductive statement we have that ψ((u, u1)) + ψ((u, u2)) = 0 and ψ is identically
zero on the subtree rooted at u1 and the subtree rooted at u2. Let x1, x2 be leaves which
are descendants of u1, u2, respectively. As the root has a label, considering the path from r

to u1 implies that ψ((r, u)) + ψ((u, u1)) = 0 and considering the path from r to u2 implies
ψ((r, u)) + ψ((u, u2)) = 0. Adding these equations implies that ψ((r, u)) = 0, from which it
then follows that ψ((u, u1)) = ψ((u, u2)) = 0. ◀

▶ Lemma 27. Let G = ([n], w) be a complete weighted graph and let L be a cross-free family
of cuts. Then L⃗ = {χ(S) : S ∈ L} form a linearly independent set of vectors.

Proof. We may assume that L is a maximal cross-free family, as showing that a superset of
L⃗ is linearly independent implies that L⃗ is as well. Thus suppose L is a maximal cross-free
family and let G be its beach. Let (T, ϕ) be a faithful tree representation of G. By Lemma 24
we have that (T, ϕ) satisfy conditions (1)-(3) of Lemma 26.

Now we ask the question: for an edge {i, j} ∈ E(G) which sets S ∈ L contain it? This has
a very nice description in terms of the tree decomposition. Let u, v ∈ V (T) be the vertices
with ϕ(i) = u, ϕ(j) = v. Then the sets containing i are the sets represented by edges from
the root to u; the sets containing j are the sets represented by the edges on the path from
the root to v. Therefore the sets which contain i but not j or j but not i, are exactly those
represented by the edges on the path from u to v in the undirected tree underlying T . Thus
the cuts which contain the edge {i, j} are exactly those with a shore which is represented by
an edge on the path from u to v in undirected graph underlying T .

Consider a linear combination
∑

S∈L αSχ(S) = 0 which is equal to the all zero vector.
The {i, j} coordinate of this equation says that

∑
S∈L,{i,j}∈S αSχ(S)({i, j}) = 0. This sum

is exactly over the sets represented by edges on the path from ϕ(i) to ϕ(j). As this sum must
be zero for every edge {i, j}, this says that if we let ψ(e) = αS where the edge e represents a
shore of S then for any two labeled vertices u, v ∈ V (T) the sum of ψ(e) over the edges on
the path from u to v is zero. Thus also condition (4) of Lemma 26 is satisfied. Hence all of
the conditions of Lemma 26 hold which implies that ψ must be identically zero and therefore
all coefficients αS = 0. This shows that {χ(S) : S ∈ L} is a linearly independent set. ◀

We can now give the first proof of our main lower bound result on the cut dimension
Theorem 2, which says that for every integer n ≥ 2 there is an n-vertex weighted graph
G = (V,w) with cdim(G) ≥ 2n− 3.

Proof of Theorem 2. For every integer n ≥ 2, Theorem 5.2 of [5] constructs a complete
weighted graph G = (V,w) on n vertices such that M(G) is a cross-free family of size
|M(G)| = 2n − 3. By Lemma 27 the vectors in M⃗ form a linearly independent set, thus
cdim(G) ≥ 2n− 3. ◀

5.3 Constructing graphs with a cross-free set of mincuts
In this subsection we explicitly construct, for any maximal cross-free family F ⊆ 2[n], a
complete weighted graph G = ([n], w) with M(G) = {∆(X) : X ∈ F}. This task is made
easier by the next lemma. We first need a definition.

CCC 2021

15:18 On the Cut Dimension of a Graph

▶ Definition 28. Let F ⊆ 2V . For a subset X ⊆ V , let overlapF (X) = {Y ∈ F :
X,Y overlap}.

▶ Lemma 29. Let G = (V,w) be a graph and L be a maximal cross-free family of cuts.
Suppose that for all S ∈ L it holds that w(S) = c. Then the weight of a minimum cut in G

is c.

Proof. Let G be the beach of L. Suppose for a contradiction that the weight of a minimum
cut of G is < c. Let T = {Z : ∅ ̸= Z ⊊ V, v1 ̸∈ Z,Z ̸∈ G, w(∆(Z)) < c} and

X = argmin
Z

{|overlapG(Z)| : Z ∈ T } .

In the following we always use overlap(·) with respect to G and drop the subscript. As
|overlap(X)| ≥ 1, let Y ∈ overlap(X). As shown in Appendix A Lemma 46, both |overlap(X∩
Y)| and |overlap(X ∪ Y)| are strictly smaller than |overlap(X)|. Thus it must be the case
that X ∩ Y,X ∪ Y ̸∈ T . Let us take the case of X ∩ Y . It does not contain v1, as neither X
nor Y do, and it is a nonempty set by the definition of overlap. Thus it must be the case
that either w(∆(X ∩ Y)) ≥ c or that X ∩ Y ∈ G, which implies w(∆(X ∩ Y)) = c. The same
argument holds for X ∪ Y , thus both w(∆(X ∩ Y)), w(∆(X ∪ Y)) ≥ c.

However by submodularity of the cut function we have w(∆(X ∩ Y)) + w(∆(X ∪ Y)) ≤
w(∆(X)) + w(∆(Y)), which implies that at least one of ∆(X ∩ Y),∆(X ∪ Y) must have
weight < c. Hence we have a contradiction and the lemma holds. ◀

We will additionally need the following theorem which follows from Theorem 5.1 in [5].

▶ Theorem 30 ([5]). Let G = (V,w) be a complete weighted graph. Then M(G) is a
cross-free family of cuts.

▶ Theorem 31. Let n ≥ 2 and L be a maximal cross-free family of cuts in the n-vertex
complete graph. Let A be an |L|-by-

(
n
2
)

matrix whose rows are the vectors χ(S) for S ∈ L
and let z = AT 1. Define w(e) = 2−z(e)+1 for e ∈ [n](2). Then G = ([n], w) is a complete
weighted graph with cdim(G) = 2n− 3 and M(G) = L.

Proof. It is clear from the definition that w > 0 and so defines a complete weighted graph.
We will show that Aw = 1. By Lemma 29 this shows that the minimum cut weight of G
is 1 and so the set of minimum cuts includes L. As w defines a complete weighted graph,
by Theorem 30 the set of minimum cuts in G is cross-free and therefore must be exactly
M(G) = L, since L is maximal. Further, |L| = 2n− 3 by Corollary 25 and the vectors in L⃗
are linearly independent by Lemma 27, thus cdim(G) = 2n− 3.

It remains to show Aw = 1. We do this using an alternative way of viewing the assignment
of edge weights. Let G ⊆ 2[n] be the beach of L, and (T, ϕ) be a faithful tree representation
of G. For vertices u, v ∈ V (T) let d(u, v) be the length of the shortest path between u, v in
the undirected graph underlying T . Now let {i, j} ∈ [n](2) and suppose ϕ(i) = u, ϕ(j) = v.
We claim that w({i, j}) = 2−d(u,v)+1. The sets of G containing i are the sets represented by
edges from the root to u; the sets of G containing j are the sets represented by the edges
on the path from the root to v. Therefore the sets which contain i but not j or j but not
i, are exactly those represented by the edges on the path from u to v in the undirected
tree underlying T . As (T, ϕ) is faithful, each of these edges represents a different set, and
therefore the number of edges on the path from u to v is exactly the number of sets of L
which contain {i, j}.

We now continue with the proof that Aw = 1 using this interpretation of the weights. For
any cut S ∈ L with shore X ∈ G, take the edge (u, v) ∈ E(T) representing X. Now imagine
we remove the edge (u, v) from T which disconnects T into two components. Let Tu be the

T. Lee, T. Li, M. Santha, and S. Zhang 15:19

component containing u and Tv the component containing v. From Tu, which contains the
root r of T , we create a graph T ′

u whose underlying undirected graph is the same as Tu, but
for which all edges are directed away from u. Thus in T ′

u, vertex u becomes the root and
r becomes a leaf. Now by item (2) of Lemma 24, every non-leaf vertex in Tv and T ′

u has
out-degree 2. We inject a unit of flow into u in the graph T ′

u and let it propagate according
to the rule that at every non-leaf vertex half of the flow is routed along each outgoing edge.
We similarly inject a unit of flow into v in the graph Tv and let it propagate according to
the same rule. Thus in the tree Tv, each leaf a gets f(a) = 2−d(a,v) amount of flow, where
d(a, v) is the number of edges along the path from v to a in Tv. Similarly, if b is a leaf in
the tree T ′

u, the amount of flow arriving at b is f(b) = 2−d(b,u). Now let {i, j} ∈ [n](2) with
i ∈ X, j ∈ X̄ and observe that the way we defined w({i, j}) satisfies

w({i, j}) = 2−d(ϕ(i),ϕ(j))+1 = 2−d(ϕ(i),v)−d(ϕ(j),u) = f(ϕ(i)) · f(ϕ(j)) .

Thus the weight of the cut S is

∑
i∈X,j∈X̄

w({i, j}) =
∑

i∈X,j∈X̄

f(ϕ(i))·f(ϕ(j)) =
(∑

i∈X

f(ϕ(i))
)

·

∑
j∈X̄

f(ϕ(j))

 = 1·1 = 1 . ◀

6 Another proof using graph operations

In this section we give another proof of our main theorems: we prove that the cut dimension
of any n-vertex graph is at most 2n− 3 and we also prove that this upper bound is tight.
An important role will be played by the following lemma, giving an explicit characterization
of graphs having at least one non-star mincut, where none of these mincuts is crossless. This
characterization has originally appeared in [4, 6]. More modern presentations can be found
in Lemma 2.9 of [5] or Lemma 2 of [7].

▶ Lemma 32. Suppose that G = (V,w) is a graph which has a non-star mincut, and every
non-star mincut is crossed by a non-star mincut. Then G is a cycle where all edges have the
same weight.

Let us denote by Cn the cycle on the n vertex set V = {v1, . . . , vn} and with edge set
E = {{v1, v2}, . . . , {vn−1, vn}, {vn, v1}}, where the weight of every edge is the same. We also
need that the cut dimension of Cn is at most n. In fact, it is easy to prove that the its cut
dimension is exactly n when n ≥ 3.

▶ Lemma 33. The cut dimension of C2 is 1, and cdim(Cn) = n, for n ≥ 3.

Proof. The statement for n = 2 is obvious. For n ≥ 3 we have cdim(Cn) ≤ n as the graph
only has n edges and thus the cut vectors are elements of Rn which has dimension n.

For the lower bound we construct a set of n linearly independent minimum cut vectors in
Cn. Label the coordinates of the vectors by the edges {v1, v2}, . . . , {vn−1, vn}, {vn, v1}. We
define the sets X1 = {v1, v2} and Xk = {v2, . . . , vk}, for 2 ≤ k ≤ n.

We claim that the cut vectors ξk = χ(∆(Xk)), for 1 ≤ k ≤ n, are linearly independent.
Let ei be the ith standard basis vector in Rn. Then we see that ξ1 = e2 + en and ξk = e1 + ek,
for 2 ≤ k ≤ n. Thus ξ2 +ξn −ξ1 = 2e1, so e1 is in the span of these vectors. Also ek = ξk −e1
is in the span for 2 ≤ k ≤ n. Hence these n vectors span all of Rn and therefore must be
linearly independent. ◀

CCC 2021

15:20 On the Cut Dimension of a Graph

6.1 Two lemmas on graph operations
The main technical part of the second proof of our main theorems is played by the two
lemmas in this section. The second lemma gives an upper bound on the cut dimension of a
graph G in function of the cut dimension of the smaller graphs obtained when G is separated
along a crossless non-star minimum cut Z. Moreover, this upper bound becomes an equality
when in addition the cut Z is connected. Our upper and lower bounds for the cut dimension
are respectively almost immediate consequences of these results.

▶ Lemma 34. Let G = (V,w) be a weighted graph and let Z ∈ M(G) be a crossless non-star
minimum cut defined by shores X0, X1 = V \X0. For b ∈ {0, 1}, let Mb = {S ∈ M(G) : S ⊆
Z ∪ E(Xb)}. Let sep(G,Z) = {G0 = (V0, w0), G1 = (V1, w1)} as defined in Section 2, where
Vb = Xb ∪ {v1−b}, for b ∈ {0, 1}, with v0, v1 ̸∈ X0 ∪X1. Then dim(span(M⃗b)) = cdim(Gb),
for b ∈ {0, 1}.

Proof. We prove the statement for b = 0, the other case follows in exactly the same manner.
Let m = |E| and partition E into three disjoint sets E = E(X0) ⊔ Z ⊔ E(X1). Call a vertex
x ∈ X0 friendly if it has a neighbor in X1, that is there exists an edge {x, y} ∈ Z for some
y ∈ X1. The edges in Z can then be partitioned into the disjoint union of sets Zx, over all
friendly x, where Zx = {e ∈ Z : x ∈ e}.

Let M(G0) be the set of all minimum cuts of G0. The set M⃗(G0) is composed of m0
dimensional vectors where m0 = |E(X0)| + deg(v1). Observe that deg(v1) is the number of
friendly vertices in X0. We can partition the edges of G0 into two sets E(X0) ⊔ Z1 where
Z1 = {{x, v1} : x is friendly}.

We define a natural bijection ψ : M0 → M(G0) as follows. Let S be a mincut in M0
with shores X ′ and V \ X ′, where X ′ ⊆ X0. Note that we can assume this because Z is
crossless. Then ψ(S) is the mincut in M(G0) whose shores are X ′ and (X0 \X ′) ∪ {v1}. Let
k = |M0| = |M(G0)|.

We now consider two matrices C and D, where C is a k-by-m matrix and D is a k-by-m0
matrix. Fix an ordering S1, . . . , Sk of M0 and let the ith row of C be χ(Si), the characteristic
vector of the cut Si. Likewise the ith row of D is χ(ψ(Si)). We have rk(C) = dim(span(M⃗0))
and rk(D) = cdim(G0).

The columns of C,D are labeled by edges. For C, we label the edges according to the
partition E = E(X0) ⊔ Z ⊔ E(X1), with edges in E(X0) coming first, then edges from Z,
then edges from E(X1). For D, we label the edges according to the partition E(X0) ⊔ Z1,
again with edges from E(X0) coming first and then those from Z1. We observe the following
facts:

The edges in E(X0) are common in G and G1, and χ(ψ(Si))(e) = χ(Si)(e), for every
Si ∈ M0 and edge e ∈ E(X0). This means that columns of C and D labeled by an edge
e ∈ E(X0) are identical.
For an edge e ∈ E(X1), we have that χ(Si)(e) = 0, for every Si ∈ M0. Thus columns of
C labeled by an edge e ∈ E(X1) are all zero.
Finally, for a friendly x ∈ X0 consider any edge e = {x, y} ∈ Zx and the edge f =
{x, v1} ∈ Z1. Then the eth column of C and the f th column of D are identical because
for every Si ∈ M0 we have χ(Si)(e) = 1 iff x ∈ X ′ iff χ(ψ(Si))(f) = 1.

These points together imply that D is actually a submatrix of C, which can be obtained by
taking the columns labeled by edges in E(X0) and then taking |Z1| more columns of C by
choosing one e ∈ Zx for every friendly x ∈ X0. Therefore rk(D) ≤ rk(C).

We can also see that rk(C) ≤ rk(D) as C can be obtained from D by repeating columns
labeled by edges in Z1 several times and adding all zero columns, and neither of these
operations increase the rank. ◀

T. Lee, T. Li, M. Santha, and S. Zhang 15:21

▶ Lemma 35. Let G,Z,G0, G1 as in Lemma 34. Then cdim(G) ≤ cdim(G0)+cdim(G1)−1,
and if Z is connected then the equality holds.

Proof. We first prove that cdim(G) ≤ cdim(G0) + cdim(G1) − 1. The important fact is that
M(G) ⊆ M0 ∪ M1 because Z is a crossless mincut. Also since M0,M1 ⊆ M(G) we in fact
have M(G) = M0 ∪ M1. Therefore

cdim(G) = dim(span(M⃗(G)))

= dim(span(M⃗0 ∪ M⃗1))

= dim(span(span(M⃗0) ∪ span(M⃗1)))

= dim(span(M⃗0)) + dim(span(M⃗1)) − dim(span(M⃗0) ∩ span(M⃗1))

= cdim(G0) + cdim(G1) − dim(span(M⃗0) ∩ span(M⃗1)) .

We use Lemma 34 to obtain the last equality. Notice that Z ∈ M0 ∩ M1, which implies
that dim(span(M⃗0) ∩ span(M⃗1)) ≥ 1, and thus cdim(G) ≤ cdim(G0) + cdim(G1) − 1.

We now prove the inequality in the reverse direction, when Z is connected. Let
db = cdim(Gb)−1, for b = 0, 1. Let Zb be the star cut at v1−b in Gb. Since these are mincuts,
we can extend them to a basis in the respective graphs. Therefore there exist A1, . . . Ad0 ⊂ X0
and B1, . . . Bd1 ⊂ X1 such that the family {χ(∆(A1)), . . . , χ(∆(Ad0)), χ(Z0)} is independ-
ent in span(M⃗(G0)) and the family {χ(∆(B1)), . . . , χ(∆(Bd1)), χ(Z1)} is independent in
span(M⃗(G1). We claim that in span(M⃗(G)) the set

{χ(∆(A1)), . . . , χ(∆(Ad0)), χ(∆(B1)), . . . , χ(∆(Bd1)), χ(Z)}

of size d0 + d1 + 1 is independent.
Let us suppose on the contrary that a non-trivial linear combination of these d0 + d1 + 1

vectors gives 0. Then there exist non all zero real numbers a1, . . . , ad0 , b1, . . . , bd1 and
ε ∈ {0, 1} such that

d0∑
i=1

aiχ(∆(Ai)) +
d1∑

j=1
bjχ(∆(Bj)) = εχ(Z). (1)

We define the function S : V → R by

S(x) =
{∑

x∈Ai
ai if x ∈ X0,∑

x∈Bj
bj if x ∈ X1.

If x ∈ X0 and y ∈ X1 are arbitrary elements and {x, y} ∈ Z, then χ(∆(Ai))({x, y}) = 1 iff
x ∈ Ai and χ(∆(Bj))({x, y}) = 1 iff y ∈ Bj . Therefore for every {x, y} ∈ Z, the coordinate
{x, y} of Equation (1) gives

S(x) + S(y) = ε. (2)

From Equation (1) we can also deduce that for every {x, x′} ∈ E(X0) we have
d0∑

i=1
aiχ(∆(Ai))({x, x′}) = 0, (3)

and for every {y, y′} ∈ E(X1) we have
d1∑

j=1
bjχ(∆(Bj))({y, y′}) = 0. (4)

CCC 2021

15:22 On the Cut Dimension of a Graph

Let {x0, y0} be an arbitrary edge in Z, where x0 ∈ X0 and y0 ∈ X1. We set s0 = S(x0) and
s1 = S(y0). We know from Equation (2) that

s0 + s1 = ε.

We claim that for every {x, y} ∈ Z, where x ∈ X0 and y ∈ X1, we have S(x) = s0 and
S(y) = s1. For this consider an arbitrary breadth first search tree with root x0. Since the
graph of the cut Z, the graph G(Z) = (V ′, Z), is a connected bipartite graph, every vertex
in V ′ ∩X0 will be at some even depth of the tree, and every vertex in V ′ ∩X1 at some odd
depth of the tree. Going through all the vertices depth by depth starting with x0 at depth
0, Equation (2) gives the claim.

We now distinguish two cases. In the first case at least one of s0 and s1 is non-zero, say
without loss of generality that s0 ̸= 0. For i = 1, . . . , d0, we define

a′
i = ai/s0.

Then Equation (3) implies that in G0, for every {x, x′} ∈ E(X0), we have

d0∑
i=1

a′
iχ(∆(Ai))({x, x′}) = 0. (5)

Also in G0, if x ∈ X0 then χ(∆(Ai))({x, v1}) = 1 iff x ∈ Ai. Therefore

d0∑
i=1

a′
iχ(∆(Ai))({x, v1}) = s0/s0 = 1. (6)

Therefore Equations (5) and (6) imply that

d0∑
i=1

a′
iχ(∆(Ai)) = χ(Z0), (7)

which contradicts the linear independence of {χ(∆(A1)), . . . , χ(∆(Ad0)), χ(Z0)}.
In the second case s0 = s1 = 0, and thus for all {x, y} ∈ Z, with x ∈ X0 and y ∈ X1, we

have S(x) = S(y) = 0. Therefore in G0, for every edge {x, v1},

d0∑
i=1

aiχ(∆(Ai))({x, v1}) = 0, (8)

and similarly in G1, for every edge {y, v0},

d1∑
j=1

bjχ(∆(Bj))({y, v0}) = 0. (9)

Since a1, . . . , ad0 , b1, . . . , bd1 are not all zero, either a1, . . . , ad0 is not all zero or b1, . . . , bd1 is
not all zero. If a1, . . . , ad0 is not all zero then from Equations (3) and (8) it follows that the fam-
ily {χ(∆(A1)), . . . , χ(∆(Ad0))} is dependent in span(M⃗(G0)). If b1, . . . , bd1 is not all zero then
similarly from Equations (4) and (9) it follows that the family {χ(∆(B1)), . . . , χ(∆(Bd1))} is
dependent in span(M⃗(G1)). In either case, we reach a contradiction. ◀

T. Lee, T. Li, M. Santha, and S. Zhang 15:23

6.2 The upper bound
We now can give our second proof of the upper bound on the cut dimension Theorem 1.

Proof of Theorem 1. The proof is by induction. For the base case n = 2, the only graph to
be considered consists of a single edge and the cut dimension is 1 = 2n− 3.

Now let n ≥ 3, and we assume the inductive hypothesis holds for all graphs on at most
n− 1 vertices. We consider 3 cases.

Case 1: The graph G has only star mincuts, say at vertices v1, . . . vk, for some 1 ≤ k ≤ n.
As there are only k mincuts here we have cdim(G) ≤ k ≤ n ≤ 2n− 3 for n ≥ 3.

Case 2: There is a non-star mincut in G, and every non-star mincut is crossed by a
non-star mincut. Then by Lemma 32, the graph G is a cycle where the edges have all the
same weight. In this case by Lemma 33, we have cdim(G) = cdim(Cn) = n ≤ 2n − 3 for
n ≥ 3.

Case 3 is where we use the induction hypothesis: Suppose that G has a non-star crossless
mincut Z with shores X0 and X1 = V \ X0. Let |X0| = k. Then by Lemma 35 there are
graphs G0, G1 such that cdim(G) ≤ cdim(G0) + cdim(G1) − 1, where G0 is a graph on k + 1
vertices, and G1 is a graph on n− k + 1 vertices. Therefore by the inductive hypothesis

cdim(G) ≤ 2(k + 1) − 3 + 2(n− k + 1) − 3 − 1 = 2n− 3 . ◀

6.3 The lower bound
We now give our second proof of Theorem 2 that for every n ≥ 2 there exist graphs G with
cdim(G) = 2n− 3. We need a slightly more detailed statement for the inductive hypothesis
which is given in the following theorem.

▶ Theorem 36. For every integer n ≥ 2, there is a complete weighted graph G = (V,w) on
n vertices with cut dimension 2n− 3 and minimum cut weight 1, and where for every v ∈ V ,
the star cut ∆({v}) is a minimum cut.

Proof. For n = 2 the statement is satisfied by the graph consisting of a single edge of weight
one which has cut dimension one and where the two star cuts are minimum cuts. For n = 3
we may take the complete graph G(3) = (V (3), w(3)) with all weights 1/2, which has cut
dimension 3.

Now assume that there exists a graph G(n−1) = (V (n−1), w(n−1)) on n − 1 vertices
satisfying the inductive hypothesis. Let us consider a copy of G(3) = (V (3), w(3)) where
V (3) = {t, u, v0} and V (n−1) ∩ V (3) = ∅. We choose v1 ∈ V (n−1) arbitrarily. We claim that
the n-vertex graph Gn = (V (n), w(n)) defined as mer({(G(n−1), v1), (G(3), v0)}) satisfies the
statement. It follows from the definition of the merge operation that G(n) is a complete
weighted graph and that its star cuts are of weight one. In addition Claim 8 asserts that if
Z is the cut in Gn whose shores are V (n−1) \ {v1} and V (3) \ {v0} then w(Z) = 1.

We now claim that the weight of a minimum cut of G(n) is one and that the mincut Z is
crossless. Consider a non-star cut ∆(X). If both vertices t, u are on the same shore then the
weight of ∆(X) is the same as the analogous cut in G(n−1) and therefore is at least one. If
∆(X) crosses Z, then we suppose without loss of generality that t ∈ X,u ∈ X̄. We show that
the weight of ∆(X) is greater than one, which then implies both claims. The cut contains
the edge {t, u} which has weight 1/2. For every y ∈ V (n−1) \ {v1}, the cut either contains
the edge {t, y} or the edge {u, y}, and these edges have the same weight. Thus the total
weight of such edges is half of the weight of Z, that is 1/2. In addition, the cut contains also
at least one edge from G(n−1), therefore its total weight is greater than one.

CCC 2021

15:24 On the Cut Dimension of a Graph

1

2
3

4

5

6
7

8

Figure 1 Example graph G showing the necessity of the connected condition in Lemma 34. Red
edges have weight 2 and black edges have weight 1. The minimum cut weight is 4 and the cuts
achieving this are all the star cuts and ∆({1, 2}), ∆({3, 4}), ∆({5, 6}), ∆({7, 8}), ∆({1, 2, 3, 4}).

1

2

3

4

5

Figure 2 The graph G0. Red edges have weight 2 and black edges have weight 1. The minimum
cut weight is 4 and the cuts achieving this are all the star cuts and ∆({1, 2}), ∆({3, 4}). The cut
dimension is 7.

Finally Claim 8 says that sep(G(n), Z) = {G(n−1), G(3)}. Since Z is a crossless non-star
minimum cut that is also connected, Lemma 35 implies that cdim(G(n)) = cdim(G(n−1)) +
cdim(G(3)) − 1, which is 2n− 3 by the inductive hypothesis. ◀

6.4 On the tightness of Lemma 35
One can wonder whether the connectedness of Z is a necessary hypothesis in Lemma 35. In fact
it is, when Z ∈ M(G) is not connected then we can have cdim(G) < cdim(G0)+cdim(G1)−1.
An example is given in Figure 1. The mincuts in this graph are all the star cuts and

∆({1, 2}),∆({3, 4}),∆({5, 6}),∆({7, 8}),∆({1, 2, 3, 4}) .

Thus no mincuts cross each other. Also none of the non-star mincuts are connected.
Consider the case where Z = ∆({1, 2, 3, 4}). When we separate G along this cut we

see that G0 = G1 and they are equal to the graph in Figure 2. The mincuts in G0 are all
star cuts and ∆({1, 2}),∆({3, 4}). All non-star mincuts in G0 are connected so one can
use Lemma 34 to compute that cdim(G0) = 7, i.e. all these mincut vectors are linearly
independent. However, the cut dimension of G is clearly at most 12 as it only has 12 edges.
Direct computation shows that in fact cdim(G) = 11.

T. Lee, T. Li, M. Santha, and S. Zhang 15:25

7 ℓ1-approximate cut dimension

In this section, we use the ℓ1-approximate cut dimension method to show Theorem 3 that
for any k ∈ N and n = 3k + 1, it holds that Dlin(MINCUTn) ≥ 2n− 2.

Let K4 be the complete graph on 4 vertices with all edge weights equal to 1. The theorem
will follow from showing that the ℓ1-approximate cut dimension of the direct union of k
copies of K4 has ℓ1-approximate cut dimension 6k. We start with the base case k = 1 to
build up the notation and intuition that will be needed for the general case. The following
definition and fact will be useful.

▶ Definition 37 (Strictly diagonally dominant). Let A ∈ Rn×n be a matrix. We say that the
ith row of A is strictly diagonally dominant if |A(i, i)| >

∑
j ̸=i |A(i, j)|. We say that A is

strictly diagonally dominant iff all of its rows are.

It is well known that a strictly diagonally dominant matrix has full rank. One way to
prove this is via the following fact, which we will make use of in the proof of Theorem 3.

▶ Fact 38. Let A ∈ Rn×n be a matrix whose ith row is strictly diagonally dominant. If
Au = 0 for a vector u ̸= 0 then |ui| < ∥u∥∞.

Proof. Suppose for a contradiction that for some u ̸= 0 it holds that Au = 0 and |ui| = ∥u∥∞
where the ith row of A is strictly diagonally dominant. By normalizing and flipping the sign
of u if necessary we may assume ∥u∥∞ = 1 and A(i, i)ui = |A(i, i)|. Thus∑

j

A(i, j)uj = |A(i, i)| +
∑
j ̸=i

A(i, j)uj ≥ |A(i, i)| −
∑
j ̸=i

|A(i, j)| > 0 ,

a contradiction. ◀

7.1 ℓ1-approximate cut dimension of K4

v

a

b

c

3

5

6

1 2

4

Figure 3 The complete graph on 4 vertices with all edge weights equal to 1. The labels on edges
indicate the ordering of edges used to represent cut vectors in the proof.

We label the vertices of K4 by a, b, c, v, and use the ordering of edges indicated in Figure 3.
Let X be the 7-by-6 matrix whose rows correspond to the cut vectors of all the nontrivial
cuts

CCC 2021

15:26 On the Cut Dimension of a Graph

X =

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
0 1 1 1 1 0
1 0 1 1 0 1
1 1 0 0 1 1

. (10)

The cut vectors in X are given in the order

∆({a}),∆({b}),∆({c}),∆({a, b, c}),∆({a, b}),∆({a, c}),∆({b, c}) .

The first 4 rows correspond to star cuts which are minimum cuts of weight 3 in K4. The last
three rows correspond to cuts which have weight 4 in K4. Thus to show a lower bound of 6
on the number of linear queries needed to compute the minimum cut of a 4 vertex graph,
we need to show that the w = (1, 1, 1, 1, 1, 1), c = (0, 0, 0, 0, 1, 1, 1) one-sided ℓ1 approximate
rank of X is 6.

▷ Claim 39. Let w = 1 ∈ R6, and c = (0, 0, 0, 0, 1, 1, 1). The (w, c) one-sided ℓ1 approximate
rank of X is 6.

Proof. The rank of X at most 6 as this is the number of columns, which takes care of the
upper bound.

Now consider the lower bound. To do this we need to lower bound the rank of the matrix

Z = X −
[
04,2 04,2 04,2
A1 A2 A3

]
where each of A1, A2, A3 ≥ 0 are 3-by-2 matrices and every row of A1 +A2 +A3 sums to at
most 1. As the first 4 rows of X correspond to vectors of minimum cuts, no error is allowed
on the first 4 rows.

The first 4 rows of Z are equal to the first 4 rows of X, as there is no perturbation allowed
on these rows. By doing elementary row operations on the first four rows, which do not
change the rank, we can transform the first four rows of Z into the reduced row echelon form
of X(1 : 4, :). Thus we arrive at the following matrix.

1 0 0 0 0 −1
0 1 0 0 −1 0
0 0 1 0 1 1
0 0 0 1 1 1
0 1 1 1 1 0
1 0 1 1 0 1
1 1 0 0 1 1

−
[
04,2 04,2 04,2
A1 A2 A3

]
.

Now we do column operations to zero out the entries in the first four rows and last two
columns. For a m-by-2 matrix A we will use the notation A◦ to denote the matrix A with
the order of the columns swapped. We arrive at

T. Lee, T. Li, M. Santha, and S. Zhang 15:27

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 1 1 0 −2
1 0 1 1 −2 0
1 1 0 0 2 2

−
[
04,2 04,2 04,2
A1 A2 A◦

1 −A2 −A◦
2 +A3

]
.

Finally, we can do row operations to zero out the first four columns in the last three rows.

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −2
0 0 0 0 −2 0
0 0 0 0 2 2

−
[
04,2 04,2 04,2
03,2 03,2 A◦

1 −A2 −A◦
2 +A3

]
.

The task has now reduced to showing the matrix

Z ′ =

 2 0
0 2

−2 −2

+A1 −A2 −A◦
2 +A◦

3

has rank 2 for any A1, A2, A3 satisfying the constraints. Let us simplify the matrix A1 −
A2 −A◦

2 +A◦
3. First, let A′

1 = A1 +A◦
3. Next, note that D = A2 +A◦

2 has the property that
D(i, 1) = D(i, 2) for i ∈ [3]. In the sequel we call this the partner property.

As the row sum of A′
1 + A2 is at most 1, unless A′

1(1 : 2, 1 : 2) = 02,2 and at least one
row sum of A2(1 : 2, 1 : 2) is equal to 1 the first two rows of Z ′ will be strictly diagonally
dominant. If the first two rows of Z ′ are strictly diagonally dominant then the rank of Z ′

must be 2, thus we now handle the “unless” case.
First, suppose exactly one row sum of A2(1 : 2, 1 : 2) is equal to 1. Say without loss

of generality it is the second one, thus the first row of Z ′ is strictly diagonally dominant.
Then for a sufficiently small ε we can multiply the first column by 1 − ε so that the first
row remains strictly diagonally dominant and the second row becomes strictly diagonally
dominant as well. This does not increase the rank and thus shows again that the rank of Z ′

is 2.
The remaining case is where both rows of A2(1 : 2, 1 : 2) sum to one. In this case by the

partner property we have

Z ′(1 : 2, 1 : 2) =
[

1 −1
−1 1

]
.

On the other hand, the last row of Z ′ must have both entries ≤ −1. Thus the determinant
of the submatrix formed by the first row and the third is strictly negative and so Z ′ has
rank 2. ◁

CCC 2021

15:28 On the Cut Dimension of a Graph

v

a(1)

b(1)

c(1)

a(2)

b(2)

c(2)

3

5

6

9

11

12

1 2

4

78

10

X(2) =
[
X 07,6

07,6 X

]

Figure 4 Example of the direct union of two copies of K4. With the ordering of the edges
given by the edge labels, the matrix of cut vectors of the cuts ∆({a(i)}), ∆({b(i)}), ∆({c(i)}),
∆({a(i), b(i), c(i)}), ∆({a(i), b(i)}), ∆({a(i), c(i)}), ∆({b(i), c(i))} for i ∈ [2] becomes the matrix X(2)

on the right.

7.2 Direct union of K4 with itself

Now we prove the general case. The key to the proof is the following lemma.

▶ Lemma 40. Let k ∈ N and B be the 3k-by-2k matrix

B =
[

2I2k

−2Ik ⊗ [1, 1]

]
.

For any matrices 3k-by-2k matrices A1, A2 satisfying the conditions

1. A1, A2 ≥ 0

2. (partner property) For all i ∈ [3k] and j ∈ [k] it holds that A2(i, 2j − 1) = A2(i, 2j).

3. Every row of A1 +A2/2 sums to at most 1
it holds that B +A1 −A2 has rank 2k.

Proof. The rank is at most 2k as that is the number of columns; we focus on showing the
columns are linearly independent.

Let Z = B +A1 −A2. We call the first 2k rows of Z rows of type I, and the last k rows
of type II. If a type I row is not strictly diagonally dominant, we call it full. Notice that a
type I row i is full if and only if the ith row of A1 is zero and the ith row of A2 sums to 2. In
this case, Z(i, j) ≤ 0 for every j ̸= i and it holds that Z(i, i) = −

∑
j ̸=i Z(i, j). For i ∈ [k]

we call 2i− 1 and 2i partners.
Suppose for contradiction there is a vector u⃗ ̸= 0 such that Au⃗ = 0. As u⃗ ̸= 0 by

normalizing and multiplying by −1 as needed we may assume that ∥u∥∞ = 1 and i is a
coordinate with u⃗(i) = 1. By Fact 38 the ith row of Z, which is a type I row, cannot be
strictly diagonally dominant. Thus the ith row must be full. Therefore for Z(i, :)u⃗ = 0 to hold
it must be the case that u⃗(j) = 1 for every j where A2(i, j) > 0. Such a j must exist as the
ith row of A2 sums to 2. So let j be a coordinate with A2(i, j) > 0 and let j′ be the partner
of j. By the partner property we also have A2(i, j′) > 0 and therefore u⃗(j) = u⃗(j′) = 1.

T. Lee, T. Li, M. Santha, and S. Zhang 15:29

Now consider the type II row ℓ for which B(ℓ, j) = B(ℓ, j′) = −2. As B(ℓ, t) = 0 for
t ̸∈ {j, j′} this means

Z(ℓ, :)u⃗ = Z(ℓ, j) + Z(ℓ, j′) +
∑

t ̸∈{j,j′}

Z(ℓ, t)u⃗(t)

≤ B(ℓ, j) +A1(ℓ, j) +B(ℓ, j′) +A1(ℓ, j′) + ∥u⃗∥∞
∑

t̸∈{j,j′}

|Z(ℓ, t)|

≤ −4 +
∑

t

A1(ℓ, t) +A2(ℓ, t)

≤ −2 ,

and we have arrived at a contradiction. ◀

With Lemma 40 in hand we are now ready to prove Theorem 3.

Proof of Theorem 3. Let G(1), . . . , G(k) be k copies of K4 where the vertices in G(i) are
labeled by a(i), b(i), c(i), v(i) for i ∈ [k]. The graph G is formed by taking the direct union of
G(1), . . . , G(k) at the vertices v(1), . . . , v(k). That is, the vertices v(1), . . . , v(k) are all identified
by a common vertex denoted v. See Figure 4 for an illustration of the graph for k = 2.

The cuts of G we focus on are the 7k cuts given by

∆({a(i)}), ∆({b(i)}), ∆({c(i)}), ∆({a(i), b(i), c(i)}), ∆({a(i), b(i)}), ∆({a(i), c(i)}), ∆({b(i), c(i)} ,

for i ∈ [k]. For any i ∈ [k] the cuts ∆({a(i)}),∆({b(i)}),∆({c(i)}),∆({a(i), b(i), c(i)})
achieve the minimum cut weight of G, which is 3, and the cuts
∆({a(i), b(i)}),∆({a(i), c(i)}),∆({b(i), c(i)} have weight 4.

With an ordering of the edges as exemplified in Figure 4, the matrix of cut vectors of
these cuts is X(k) = Ik ⊗X, where X is the matrix from Equation (10). In every nonzero
block of X(k) the first four rows are minimum cuts with weight 3 and the last 3 rows are
cuts with weight 4. Let c′ = (0, 0, 0, 0, 1, 1, 1). The theorem will follow from Theorem 13 by
showing that the w = 16k, c = 1k ⊗ c′ one-sided ℓ1 approximate rank of X(k) is 6k.

To do this, we must show that X(k) −A has rank 6k for any matrix A ≥ 0 which is all
zero on any row of Ik ⊗X corresponding to a minimum cut, and where the row sum of A is at
most 1 on any row of Ik ⊗X corresponding to a cut of weight 4. In order to make reference
to the base case, it will be useful to partition the columns into k blocks of 6 columns, where
the ith block is further partitioned into blocks of size 2 represented by the 7k-by-2 matrices
A

(i)
1 , A

(i)
2 , A

(i)
3 . In other words, we view A as follows

A =
[
A

(1)
1 A

(1)
2 A

(1)
3 · · · A

(k)
1 A

(k)
2 A

(k)
3

]
where each A

(i)
j for j ∈ [3], i ∈ [k] is a 7k-by-2 matrix.

As in the base case, we begin by doing Gauss-Jordan elimination on the rows corresponding
to mincuts of each X block in X(k). These operations only touch rows corresponding to
mincuts where A is zero, thus they do not change A. After these operations we arrive at the
matrix Ik ⊗X ′ −A where

X ′ =

1 0 0 0 0 −1
0 1 0 0 −1 0
0 0 1 0 1 1
0 0 0 1 1 1
0 1 1 1 1 0
1 0 1 1 0 1
1 1 0 0 1 1

CCC 2021

15:30 On the Cut Dimension of a Graph

Next, as in the base case, we do column operations to zero out the last two columns in the
first four rows of each block of X ′. This gives us the matrix Ik ⊗X ′′ −A′ where

X ′′ =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 1 1 0 −2
1 0 1 1 −2 0
1 1 0 0 2 2

and the ith block of A′ looks like

[A(i)
1 A

(i)
2 A

(i)◦
1 − A

(i)
2 − A

(i)◦
2 + A

(i)
3]. .

Here A(i)◦
1 denotes the matrix A(i)

1 with the order of the columns swapped. Finally, we use
X ′′(1 : 4, 1 : 4) to zero out all other entries of Ik ⊗X ′′ − A′ in the first 4 columns of each
block. This brings us to the matrix Ik ⊗X ′′′ −A′′ where

X ′′′ =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −2
0 0 0 0 −2 0
0 0 0 0 2 2

and the ith block of A′′ is

[07k,2 07k,2 A
(i)◦
1 − A

(i)
2 − A

(i)◦
2 + A

(i)
3] .

Again, each of A(i)
1 , A

(i)
2 , A

(i)
3 is zero on rows corresponding to minimum cuts. Thus by

multiplying the last two columns of each block by −1 and permuting rows and columns we
can transform Ik ⊗X ′′′ −A′′ into the form[

I4k 04k,2k

03k,4k B +A1 −A2

]
where B,A1, A2 satisfy the conditions of Lemma 40. Thus a rank lower bound of 6k follows
from the lower bound of 2k on the rank of B +A1 −A2 given in Lemma 40. ◀

8 The dimension of approximate mincuts

Let G be a weighted graph and λ the weight of a minimum cut in G. For α ≥ 1 define an
α-near-mincut of G to be a cut S whose weight is at most αλ. Let Mα(G) be the set of
all α-near-mincuts of G and M⃗α(G) = {χ(S) : S ∈ Mα(G)}. In this section, we look at
cdimα(G) = dim(span(M⃗α(G))).

The first observation is that if α = 2 then the unweighted complete graph Kn satisfies
cdimα(Kn) =

(
n
2
)
. For simple graphs we can show α = 2 is a sharp threshold.

▶ Theorem 41. Let 1 ≤ α < 2 be a constant and G be a simple n-vertex graph. Then
cdimα(G) = O(n).

T. Lee, T. Li, M. Santha, and S. Zhang 15:31

The key to this theorem is the following lemma of Rubinstein, Schramm, and Weinberg [26].

▶ Lemma 42 (Lemma 2.6 [26]). Let G be a simple graph with minimum degree dmin and
minimum cut value λ. For constant 0 ≤ ϵ < 1 let T be the set of non-star cuts of G whose
weight is at most λ+ ϵdmin. Then | ∪T ∈T T | = O(n).

Proof of Theorem 41. Let G be a simple graph. To prove the theorem we create a set of
O(n) vectors that span M⃗α(G). Let Mα(G) = T ⊔ S, where T is the set of non-star cuts of
Mα(G) and S is the set of star cuts of Mα(G). Let E′ = ∪T ∈T T be the set of edges involved
in the cuts in T . Let L⃗ = {ei : i ∈ E′}. Note that from the definition of dmin, there is a star
cut with cut value dmin, which implies that λ ≤ dmin. As a result, every α-near-mincut has
cut value at most αλ ≤ λ+ (α− 1)dmin, and hence by Lemma 42 we have |L⃗| = O(n). Also
span(T⃗) ⊆ span(L⃗). Thus span(M⃗α(G)) ⊆ span(L⃗ ∪ S⃗). As |S| ≤ n this is a spanning set
of size O(n). ◀

In a previous version of this work we conjectured that for an n-vertex weighted graph G

it holds that cdimα(G) = O(n) for any α < 4/3. This turns out to be false, however. The
reason is that, on the one hand, in a graph G = (V,w) the characteristic vector of a cut χ(S)
depends only on the set of edges, but not the weight of these edges. On the other hand,
w(S) does of course depend on the weight of the edges. We can utilize this difference to
construct an example as follows. Let us start with a cycle Cn with all edge weights being 1.
While Cn has

(
n
2
)

mincuts with weight 2, these mincuts live in an n-dimensional space as
Cn only has n edges. We can then turn Cn into a complete weighted graph G by adding a
tiny weight ε = 2(α− 1)/

(
n
2
)

edge to all pairs of vertices that are not adjacent in the cycle.
As adding edges cannot decrease the minimum cut weight, the weight of a minimum cut in
G is at least 2. Further, if X is the shore of a minimum cut in Cn then in the graph G we
have w(∆(X)) ≤ 2 +

(
n
2
)
ε = 2α, as the weight is at most its weight in Cn plus the weight of

all added edges. Thus ∆(X) is an α-near-mincut in G. Further, the characteristic vectors
χ(∆(X)) ∈ {0, 1}(n

2) of these cuts in G now live in an
(

n
2
)
-dimensional space and become

linearly independent. This example demonstrates that a reasonable extension of the cut
dimension to near-mincuts should take into account the magnitude of the edge weights, as
the ℓ1-approximate cut dimension does.

We now give the formal proof that the graph G mentioned above has the correct properties.

▶ Lemma 43. Let n ∈ N. Let Cn be the cycle on n vertices and G the beach of M(Cn). Let Kn

be the complete graph on n vertices. Let T = {∆(X) : X ∈ G}, where here ∆(X) ∈ {0, 1}(n
2)

is the cut in Kn with shore X. Then dim(span(T⃗)) =
(

n
2
)
.

Proof. For this proof we assume the vertices are labeled by 0, . . . , n − 1 and use addition
modulo n. We will show that all of the standard basis vectors e{i,j} are in span(T⃗). For
concreteness, we show how to construct the vectors e{0,j}; by symmetry the same argument
can then be used for any e{i,j}.

We will actually construct the vectors Ej =
∑j

k=1 e{0,k}. This suffices as e{0,j} =
Ej −Ej−1. First note that e{0,1} = 1

2 (χ(∆({0}) + χ(∆({1})) − χ(∆({0, 1}))), and thus is in
span(T⃗) as all the vectors on the right hand side are in T⃗ .

Now let j > 1 and X = {1, . . . , j}, X ′ = X ∪ {0}. Then

χ(∆(X))(e) − χ(∆(X ′))(e) =

1 if e = {0, k}, k ∈ X

−1 if e = {0, k}, k ∈ X̄ ′

0 otherwise
.

Thus Ej = 1
2 (∆({0} + χ(∆(X)) − χ(∆(X ′))). ◀

CCC 2021

15:32 On the Cut Dimension of a Graph

▶ Theorem 44. Let n ∈ N. For any α > 1 there exists a graph G = ({0, . . . , n− 1}, w) such
that cdimα(G) =

(
n
2
)
.

Proof. We again use addition modulo n on the labels of the vertices. Let ε = 2(α− 1)/
(

n
2
)
.

Define w({i, i + 1}) = 1 for i ∈ {0, . . . , n − 1} and for any other i, j let w({i, j}) = ε. Let
G = ({0, . . . , n− 1}, w). Thus G is the graph of the cycle Cn with edges of weight ε added
between all pairs of vertices that are not adjacent in the cycle. The weight of a minimum
cut of G is at least that of Cn, which is 2, as adding edges cannot decrease the weight of
a cut. Further, if X is the shore of a minimum cut in Cn then in the graph G we have
w(∆(X)) ≤ 2 +

(
n
2
)
ε = 2α, as the weight is at most its weight in Cn plus the weight of

all added edges. Thus ∆(X) is an α-near-mincut in G and cdimα(G) is at least
(

n
2
)

by
Lemma 43. It also clearly cannot be larger than

(
n
2
)

and so the theorem is proved. ◀

References
1 Sepehr Assadi, Deeparnab Chakrabarty, and Sanjeev Khanna. Graph connectivity and single

element recovery via linear and OR queries. CoRR, abs/2007.06098, 2020. arXiv:2007.06098.
2 László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity

theory (preliminary version). In 27th Annual Symposium on Foundations of Computer Science,
Toronto, Canada, 27-29 October 1986, pages 337–347, 1986. doi:10.1109/SFCS.1986.15.

3 András A. Benczúr and Michel X. Goemans. Deformable polygon representations and near-
mincuts. In Martin Grøtschel and Gyula O. H. Katona, editors, Building Bridges: Between
Mathematics and Computer Science, volume 19 of Bolyai Society Mathematical Studies, pages
103–135. Springer, 2008.

4 R. E. Bixby. The minimum number of edges and vertices in a graph with edge connectivity n
and m n-bonds. Netw., 5(3):253–298, 1975. doi:10.1002/net.1975.5.3.253.

5 L. Sunil Chandran and L. Shankar Ram. On the number of minimum cuts in a graph. SIAM
J. Discret. Math., 18(1):177–194, 2004. doi:10.1137/S0895480103427138.

6 Efim A. Dinitz, Alexander V. Karzanov, and Michael V. Lomonosov. On the structure of the
system of minimum edge cuts of a graph. Studies in discrete optimization, 1976.

7 Tamás Fleiner and András Frank. A quick proof for the cactus representation of mincuts.
EGRES Quick Proof, 2009-03, 2009.

8 Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in O(m log2 n) time. In
Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium
on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken,
Germany (Virtual Conference), volume 168 of LIPIcs, pages 57:1–57:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.57.

9 Pawel Gawrychowski, Shay Mozes, and Oren Weimann. A note on a recent algorithm for
minimum cut. In Hung Viet Le and Valerie King, editors, 4th Symposium on Simplicity in
Algorithms, SOSA 2021, Virtual Conference, January 11-12, 2021, pages 74–79. SIAM, 2021.
doi:10.1137/1.9781611976496.8.

10 Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge con-
nectivity via random 2-out contractions. In Shuchi Chawla, editor, Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 1260–1279. SIAM, 2020. doi:10.1137/1.9781611975994.77.

11 Michel X. Goemans. Minimum bounded degree spanning trees. In 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2006), 21-24 October 2006, Berkeley,
California, USA, Proceedings, pages 273–282. IEEE Computer Society, 2006. doi:10.1109/
FOCS.2006.48.

12 Michel X. Goemans and V. S. Ramakrishnan. Minimizing submodular functions over families
of sets. Comb., 15(4):499–513, 1995. doi:10.1007/BF01192523.

http://arxiv.org/abs/2007.06098
https://doi.org/10.1109/SFCS.1986.15
https://doi.org/10.1002/net.1975.5.3.253
https://doi.org/10.1137/S0895480103427138
https://doi.org/10.4230/LIPIcs.ICALP.2020.57
https://doi.org/10.1137/1.9781611976496.8
https://doi.org/10.1137/1.9781611975994.77
https://doi.org/10.1109/FOCS.2006.48
https://doi.org/10.1109/FOCS.2006.48
https://doi.org/10.1007/BF01192523

T. Lee, T. Li, M. Santha, and S. Zhang 15:33

13 Andrei Graur, Tristan Pollner, Vidhya Ramaswamy, and S. Matthew Weinberg. New query
lower bounds for submodular function minimization. In Thomas Vidick, editor, 11th Innova-
tions in Theoretical Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle,
Washington, USA, volume 151 of LIPIcs, pages 64:1–64:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.ITCS.2020.64.

14 András Hajnal, Wolfgang Maass, and György Turán. On the communication complexity of
graph properties. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA, pages 186–191, 1988. doi:10.1145/62212.62228.

15 Nicholas J. A. Harvey. Matchings, matroids and submodular functions. PhD thesis, Massachu-
setts Institute of Technology, Cambridge, MA, USA, 2008. URL: http://hdl.handle.net/
1721.1/44416.

16 Monika Henzinger, Satish Rao, and Di Wang. Local flow partitioning for faster edge connectivity.
SIAM J. Comput., 49(1):1–36, 2020. doi:10.1137/18M1180335.

17 Monika Rauch Henzinger and David P. Williamson. On the number of small cuts in a graph.
Inf. Process. Lett., 59(1):41–44, 1996. doi:10.1016/0020-0190(96)00079-8.

18 Kamal Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Comb., 21(1):39–60, 2001. doi:10.1007/s004930170004.

19 David R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut
algorithm. In Vijaya Ramachandran, editor, Proceedings of the Fourth Annual ACM/SIGACT-
SIAM Symposium on Discrete Algorithms, 25-27 January 1993, Austin, Texas, USA, pages
21–30. ACM/SIAM, 1993. URL: http://dl.acm.org/citation.cfm?id=313559.313605.

20 David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000. doi:
10.1145/331605.331608.

21 Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic edge connectivity in near-linear
time. J. ACM, 66(1):4:1–4:50, 2019. doi:10.1145/3274663.

22 Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer, 2018.

23 László Lovász. Combinatorial problems and exercises (2. ed.). North-Holland, 1993.
24 Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-query,

and streaming algorithms. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 496–509, 2020.

25 Hiroshi Nagamochi, Kazuhiro Nishimura, and Toshihide Ibaraki. Computing all small cuts
in an undirected network. SIAM J. Discret. Math., 10(3):469–481, 1997. doi:10.1137/
S0895480194271323.

26 Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing exact minimum cuts
without knowing the graph. In 9th Innovations in Theoretical Computer Science Conference,
ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, pages 39:1–39:16, 2018. doi:
10.4230/LIPIcs.ITCS.2018.39.

A Jain’s spanning lemma

In this appendix we prove Lemma 19. The proof uses the following key property of mincuts
which goes back at least to work of Dinitz, Karzanov, and Lomonosov [6].

▶ Proposition 45 ([6] “Lemma on a quadrangle”). Let G = (V,w) be a graph. For any
crossing mincuts ∆(X),∆(Y) of G it holds that

χ(∆(X)) + χ(∆(Y)) = χ(∆(X ∩ Y)) + χ(∆(X ∪ Y)) .

Proof. If ∆(X),∆(Y) cross then ∆(X ∩Y),∆(X ∪Y) are mincuts of G by Claim 5. Further,
by counting the number of times an edge appears on each side it can be seen (eg. Ex. 6.48 in
[23]) that

χ(∆(X)) + χ(∆(Y)) = χ(∆(X ∩ Y)) + χ(∆(X ∪ Y)) + 2χ(E(X − Y, Y −X)) . (11)

CCC 2021

https://doi.org/10.4230/LIPIcs.ITCS.2020.64
https://doi.org/10.1145/62212.62228
http://hdl.handle.net/1721.1/44416
http://hdl.handle.net/1721.1/44416
https://doi.org/10.1137/18M1180335
https://doi.org/10.1016/0020-0190(96)00079-8
https://doi.org/10.1007/s004930170004
http://dl.acm.org/citation.cfm?id=313559.313605
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/3274663
https://doi.org/10.1137/S0895480194271323
https://doi.org/10.1137/S0895480194271323
https://doi.org/10.4230/LIPIcs.ITCS.2018.39
https://doi.org/10.4230/LIPIcs.ITCS.2018.39

15:34 On the Cut Dimension of a Graph

Let the minimum cut value of G be λ. Let m be the number of edges in G and
w⃗ ∈ Rm be the positive vector resulting from restricting w to the edges of G. The inner
product of w⃗ with the left hand side of Equation (11) is 2λ, and with the righthand side
is 2λ + 2⟨w⃗, χ(E(X − Y, Y − X))⟩. Thus ⟨w⃗, χ(E(X − Y, Y − X))⟩ = 0, which implies
χ(E(X − Y, Y −X)) = 0 since w⃗ is positive and χ(E(X − Y, Y −X)) is nonnegative. ◀

Jain’s proof uses the technique of combinatorial uncrossing. Recall the definition of
overlapG(X) from Definition 28. A key to the proof is the following simple lemma about
overlapG(X).

▶ Lemma 46 ([18]). Let F ⊆ 2V be a set family closed under overlaps and G ⊆ F be a
maximal laminar subset of F . Then for any X ∈ F − G and Y ∈ overlapG(X)

overlapG(X ∩ Y) ⊂ overlapG(X) (12)
overlapG(X ∪ Y) ⊂ overlapG(X) . (13)

Proof. In the following we always refer to overlap(X) with respect to G and drop the subscript.
We first show Equation (12). First note that Y ∈ overlap(X)−overlap(X∩Y). Thus to show
Equation (12) it suffices to show overlap(X ∩ Y) ⊆ overlap(X). Let W ∈ overlap(X ∩ Y).
We want to show that W ∈ overlap(X), i.e. that it cannot be the case that W ⊆ X,X ⊆ W ,
or X ∩W = ∅. We know that the last one cannot hold because W ∈ overlap(X ∩ Y) implies
W ∩ (X ∩ Y) ̸= ∅.

Also as W,Y ∈ G they do not overlap and thus either Y ⊆ W,W ⊆ Y , or Y ∩ W = ∅.
Again the last one cannot hold as W ∩ (X ∩Y) ̸= ∅. The following table shows that assuming
W ̸∈ overlap(X) leads to a contradiction in all 4 remaining cases.

Y ⊆ W W ⊆ Y

W ⊆ X
Y ⊆ X

Y ̸∈ overlap(X)
W ⊆ X ∩ Y

W ̸∈ overlap(X ∩ Y)

X ⊆ W
X ∩ Y ⊆ W

W ̸∈ overlap(X ∩ Y)
X ⊆ Y

Y ̸∈ overlap(X)

We now show Equation (13), which follows similarly. Again Y ∈ overlap(X)−overlap(X∪
Y) thus it suffices to show overlap(X ∪ Y) ⊆ overlap(X). Let W ∈ overlap(X ∪ Y). We
want to show that W ∈ overlap(X), i.e. that is not the case that either W ∩X = ∅, X ⊆ W ,
or W ⊆ X. We cannot have W ⊆ X because this means W ⊆ X ∪ Y which contradicts W ∈
overlap(X ∪Y). As W,Y ∈ G they do not overlap, so we also know either Y ⊆ W,W ∩Y = ∅,
or W ⊆ Y . The last one again cannot hold as it implies W ⊆ X ∪ Y . The following table
shows that assuming W ̸∈ overlap(X) leads to a contradiction in the remaining 4 cases.

Y ⊆ W W ∩ Y = ∅

X ⊆ W
X ∪ Y ⊆ W

W ̸∈ overlap(X ∪ Y)
X ∩ Y = ∅

Y ̸∈ overlap(X)

X ∩ W = ∅ Y ∩ X = ∅
Y ̸∈ overlap(X)

W ∩ (X ∪ Y) = ∅
W ̸∈ overlap(X ∪ Y)

◀

We are now ready to show the key lemma of Jain.

▶ Lemma 19 ([18]). Let G = (V,w) be a graph and L ⊆ M(G) be a maximal cross-free
family of mincuts. Then span(L⃗) = span(M⃗(G)).

T. Lee, T. Li, M. Santha, and S. Zhang 15:35

Proof. It is clear that span(L⃗) ⊆ span(M⃗(G)) so we focus on the other direction.
Let F be the beach of M(G). By Claim 5 F is closed under overlaps. Let G ⊆ F be the

beach of L. As L is a maximal cross-free subset of M(G) it follows that G is a maximal
laminar subset of F . Thus |overlapG(X)| ≥ 1 for all X ∈ F − G. In the following we will
always refer to overlap(X) with respect to G and drop the subscript.

Suppose for a contradiction that span(L⃗) is a strict subset of span(M⃗(G)). Let

X = argmin
Z∈F−G

{|overlap(Z)| : χ(∆(Z)) ̸∈ span(L⃗)} .

As overlap(X) ≥ 1, let Y ∈ overlap(X). By Lemma 46

|overlap(X ∩ Y)| < |overlap(X)| (14)
|overlap(X ∪ Y)| < |overlap(X)| . (15)

By the definition of X, and as F is closed under overlaps, we must have χ(∆(X∩Y)), χ(∆(X∪
Y)) ∈ span(L⃗). Also as Y ∈ G we have χ(∆(Y)) ∈ L⃗ which implies by Proposition 45 that

χ(∆(X)) = χ(∆(X ∩ Y)) + χ(∆(X ∪ Y)) − χ(∆(Y)) .

This implies χ(∆(X)) ∈ span(L⃗), a contradiction. ◀

CCC 2021

On p-Group Isomorphism: Search-To-Decision,
Counting-To-Decision, and Nilpotency Class
Reductions via Tensors
Joshua A. Grochow # Ñ

Departments of Computer Science and Mathematics, University of Colorado Boulder, CO, USA

Youming Qiao #

Centre for Quantum Software and Information, University of Technology Sydney, Australia

Abstract
In this paper we study some classical complexity-theoretic questions regarding Group Isomorphism
(GpI). We focus on p-groups (groups of prime power order) with odd p, which are believed to be a
bottleneck case for GpI, and work in the model of matrix groups over finite fields. Our main results
are as follows.

Although search-to-decision and counting-to-decision reductions have been known for over four
decades for Graph Isomorphism (GI), they had remained open for GpI, explicitly asked
by Arvind & Torán (Bull. EATCS, 2005). Extending methods from Tensor Isomorphism
(Grochow & Qiao, ITCS 2021), we show moderately exponential-time such reductions within
p-groups of class 2 and exponent p.
Despite the widely held belief that p-groups of class 2 and exponent p are the hardest cases of
GpI, there was no reduction to these groups from any larger class of groups. Again using methods
from Tensor Isomorphism (ibid.), we show the first such reduction, namely from isomorphism
testing of p-groups of “small” class and exponent p to those of class two and exponent p.

For the first results, our main innovation is to develop linear-algebraic analogues of classical
graph coloring gadgets, a key technique in studying the structural complexity of GI. Unlike the
graph coloring gadgets, which support restricting to various subgroups of the symmetric group,
the problems we study require restricting to various subgroups of the general linear group, which
entails significantly different and more complicated gadgets. The analysis of one of our gadgets relies
on a classical result from group theory regarding random generation of classical groups (Kantor
& Lubotzky, Geom. Dedicata, 1990). For the nilpotency class reduction, we combine a runtime
analysis of the Lazard Correspondence with Tensor Isomorphism-completeness results (Grochow
& Qiao, ibid.).

2012 ACM Subject Classification Computing methodologies → Algebraic algorithms; Theory of
computation → Problems, reductions and completeness

Keywords and phrases group isomorphism, search-to-decision reduction, counting-to-decision reduc-
tion, nilpotent group isomorphism, p-group isomorphism, tensor isomorphism

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.16

Related Version This paper is based on part of the following preprint:
Previous Version: https://arxiv.org/abs/1907.00309

Funding Joshua A. Grochow: Partially supported during the preparation of this work by NSF
Grants DMS-1750319 and CCF-2047756.
Youming Qiao: Partially supported during the preparation of this work by NSF Grant DMS-1750319
and Australian Research Council Grant DP200100950.

Acknowledgements The authors would like to thank James B. Wilson for related discussions, and
Ryan Williams for pointing out the problem of distinguishing between ETH and #ETH. J. A. G.
would like to thank V. Futorny and V. V. Sergeichuk for their collaboration on the related work [28].
Ideas leading to this work originated from the 2015 workshop “Wildness in computer science, physics,
and mathematics” at the Santa Fe Institute.

© Joshua A. Grochow and Youming Qiao;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 16; pp. 16:1–16:38

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jgrochow@colorado.edu
https://www.cs.colorado.edu/~jgrochow
https://orcid.org/0000-0002-6466-0476
mailto:youming.qiao@uts.edu.au
https://orcid.org/0000-0003-4334-1449
https://doi.org/10.4230/LIPIcs.CCC.2021.16
https://arxiv.org/abs/1907.00309
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

1 Introduction

In this paper, we study the algorithmic problem of deciding whether two finite groups
are isomorphic, known as the Group Isomorphism problem (GpI). Different variants
of the GpI problem arise, with correspondingly different complexities, when the groups
are given in different ways, e.g. by a generating set of permutations, a generating set of
matrices, a full multiplication table, or a black box oracle. In its various incarnations, GpI
is a fundamental problem in computational algebra and computational complexity. The
generator-enumerator algorithm solves isomorphism in |G|log |G|+O(1)-time [26,58]1, and even
the current state of the art for general groups – in any of the aforementioned input models –
is still |G|Θ(log |G|) [9, 10, 17, 25, 49, 66, 70]. Nonetheless, over the past 15 years there has been
significant progress on efficient isomorphism tests in various classes of groups: here is an
incomplete list of references [4–6,12,13,15,30,31,47,48,63,65,66].

When given by multiplication tables, GpI reduces to GI [44], and in the other, more
realistic (for computer algebra systems) and more succinct models, we get a reduction in the
other direction [32,34,52, 57]. As a result, the techniques and complexity of GpI are closely
bound up with GI. However, since the techniques used in GpI are often independent of the
input model, we are free to focus on the abstract structure of the groups in question, and
the choice of input model is then essentially just a choice of how we measure and report the
running time. For example, if GI is in P, then GpI can be solved in poly(|G|) time; if GpI
for groups given by a generating set of m matrices of size n × n over Fp can be solved in
pO(n+m) time, then GI is in P.

For GI, a wide variety of algorithmic and structural complexity results are known (see,
e.g., [3, 33,44]). In particular, there are polynomial-time search-to-decision and counting-to-
decision reductions [54], so search, counting, and decision are all equivalent for GI. (This was
an early piece of evidence that GI was not likely to be NP-complete, since for NP-complete
problems, their counting variants are typically #P-complete, hence at least as hard as all of
PH [68].) For GpI, no such reductions are known, even in restricted classes of groups; Arvind
and Torán [2, Problem 16] explicitly asked for such reductions. Additionally, for GI, there
are many classes of graphs for which the isomorphism problem remains GI-complete – such
as graphs of diameter 2 and radius 1, directed acyclic graphs, regular graphs, line graphs,
polytopal graphs [74] – but no such analogous results are known for GpI.

In this paper, we make progress on all three of these questions, within the class of groups
widely believed to be hardest cases of GpI, namely the p-groups of nilpotency class 2 and
exponent p; these are groups of order a power of the prime p, such that G modulo its center
is abelian, and such that gp = 1 for all g ∈ G. (Throughout most of this paper we assume p

is an odd prime.) For each of our three main results, we now give further motivation before
stating it formally.

1.1 Main results
Search-to-decision reductions. The “decision versus search” question is a classical one
in complexity theory, having attracted the attention of researchers since the introduction
of NP. Efficient search-to-decision reductions for SAT and GI are now standard. Valiant
first showed the existence of an NP relation for which search does not reduce to decision in
polynomial time [69]. A celebrated result of Bellare and Goldwasser shows that, assuming

1 Miller [58] attributes this algorithm to Tarjan.

J. A. Grochow and Y. Qiao 16:3

DTIME(22O(n)) ̸= NTIME(22O(n)), there exists an NP language for which search does not
reduce to decision in polynomial time [8]. However, as usual for such statements based on
complexity-theoretic assumptions, the problems constructed by such a proof are considered
somewhat unnatural, and natural problems for which search seems not reducible to decision
are rare. The most famous candidate may be Factoring (with the decision version being
Primality)2 and Nash Equilibrium [18] (the decision version is trivial).

▶ Theorem A. Let p be an odd prime, and let GpIso2Exp(p) denote the isomorphism
problem for p-groups of class 2 and exponent p in the model of matrix groups over Fp. For
groups of order pn, there is a search-to-decision reduction for GpIso2Exp(p) running in
time pO(n) = poly(|G|).

▶ Remark 1. This runtime is really only square-root (moderately) exponential: The running
time of the best-known algorithm for GpIso2Exp(p) is essentially pΘ(n2), and the best-
known witness size, if we think in terms of nondeterministic algorithms, is Θ(n2) [50]. So
our search-to-decision reduction in time pO(n) is akin to having such a reduction running in
time 2Θ(

√
N) for a problem that is solvable in 2Θ(N) time (resp., has witness size Θ(N)).

We note that that GpIso2Exp(p) seems different from all the problems listed above in
terms of search-to-decision reductions, in the following ways. First, unlike SAT and GI, a
polynomial-time search-to-decision reduction has been open for decades, whereas those for
SAT and GI are straightforward. Note that a polynomial-time reduction would need to
run in time poly(n, log p), and we find it unlikely that the time complexity of our reduction
can be brought down this far with current techniques. Second, unlike Factoring and
Nash Equilibrium, whose decision versions are computationally easy, its decision version
also seems to require deeper techniques. Indeed, it is a long-standing open problem to test
isomorphism of p-groups of class 2 and exponent p in time polynomial in the group order,
which already can be exponential in the input size if the input is given by a generating set of
matrices.

Counting-to-decision reductions. Counting-to-decision reductions are also of great interest
in complexity theory. An efficient counting-to-decision reduction for GI is also a well-known
result [54]. In contrast, for SAT, a polynomial-time counting-to-decision reduction would
imply that PH collapses [68].

▶ Theorem B. For p an odd prime, p ≥ nΩ(1), there is a randomized counting-to-decision
reduction for GpIso2Exp(p) for groups of order pn, running in time pO(n) = poly(|G|).

As with Theorem A, the runtime here is only moderately exponential, see Remark 1.
Also as in the case of search-to-decision, GpIso2Exp(p) seems different from the problems

listed above in terms of reducing counting to decision. First, a polynomial-time counting-to-
decision reduction for GpIso2Exp(p) remains open after 40 years, whereas the reduction for
GI was found within the first decade of the rise of computational complexity theory. Second,
unlike SAT, for which there have been no non-trivial algorithms to reduce exact counting to
decision, we show a moderately exponential-time algorithm for GpIso2Exp(p). As Ryan
Williams pointed out to us, asking for the existence of subexponential-time counting-to-
decision reduction for SAT seems to lead to asking for the relation between the decision [35]
and the counting [22] versions of the Exponential Time Hypothesis.

2 Here we are thinking of Factoring as the search problem corresponding to the relation {(n, d) :
d is a proper divisor of n} ⊆ N × N, so that the existence problem is then precisely Primality.

CCC 2021

16:4 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

Nilpotency class reduction. Unlike the case of Graph Isomorphism, for GpI essentially
the only class of groups for which isomorphism is known to be as hard as the general case are
those which are directly indecomposable, that is, they cannot be written as a direct product
A×B with both A, B nontrivial [42,72,73]. However, this result is the group analogue of
saying that isomorphism of connected graphs is GI-complete, so although useful (and much
less trivial than in the case of graphs vs connected graphs), from a structural perspective it
is more like a zero-th step.

For a variety of reasons (e. g., [29]), p-groups of nilpotency class 2 and exponent p are
widely believed to be the hardest cases of GpI, but to date there is no known reduction
from isomorphism in any larger class of groups to this class. The Tensor Isomorphism-
completeness of testing isomorphism in this class of groups (when given by generating
matrices over Fp) suggests an additional reason for hardness [32] (see also Section 6.1). Here,
we leverage that completeness result to give a reduction within GpI itself. While it falls
short of being GpI-complete (equivalent to GpI), this is the first such reduction that we are
aware of.

To state our result, we need to first recall the definition of nilpotency class. We will give
an inductive definition: a group G is nilpotent of class 1 if it is abelian, and nilpotent of class
c > 1 if G/Z(G) (G modulo its center) is nilpotent of class c− 1. Recall that a finite group
is nilpotent iff it is the direct product of its Sylow p-subgroups, so from the comment above,
isomorphism of nilpotent groups is polynomial-time equivalent to isomorphism of p-groups
(for varying p).

▶ Theorem P. Let p be an odd prime. For groups given by generating sets of m matrices of
size n×n over Fpe , Group Isomorphism for p-groups of exponent p and class c < p reduces
to Group Isomorphism for p-groups of exponent p and class 2 in time poly(n, m, e log p).

In fact, because the Lazard Correspondence works whenever all subgroups generated
by 3 elements have nilpotency class < p, our reduction also works in this more general
setting. For example, as a consequence of Theorem P, testing isomorphism of 5-groups in
which every 3-generated subgroup has class 4 (the groups themselves may have larger class)
reduces to testing isomorphism of 5-groups of class 2 in the matrix group model over fields
of characteristic 5.

▶ Remark 2. Two additional results would suffice to get the analogous result in the Cayley
table model. The first is to compute the Lazard Correspondence in the Cayley table model
in time poly(|G|); we thank an anonymous ITCS reviewer for pointing out that this can
be achieved by applying the matrix Lazard Correspondence (see Proposition 26) to the left
regular representation of the group on itself. The second is to improve the blow-up in the
reduction from (Lie) Algebra Isomorphism to 3TI from [28]. Currently this reduction
increases the dimension quadratically, which means the size of the group becomes |G|O(log |G|)

after the reduction; instead, we would need a reduction that increases the dimension only
linearly.

▶ Remark 3. One may also ask whether our theorems can be combined, in order to get
search-to-decision and counting-to-decision reductions for p-groups of class c < p instead of
only class 2. We believe this should be approachable, but again the quadratic increase in
dimension in reductions, mentioned in the previous remark, gets in the way. The quadratic
increase makes the square-root exponential reductions into ordinary exponential reductions,
negating any gains.

J. A. Grochow and Y. Qiao 16:5

1.2 Main techniques and proof strategies
All our results are based on the connection with Tensor Isomorphism (TI) [32]. Let
Λ(n,F) denote the space of n× n skew-symmetric (alternating) matrices over F. Then the
Baer Correspondence [7] gives an equivalence between

p-groups of class 2, ex-
ponent p, G/Z(G) ∼=
Zn

p , Z(G) ∼= Zm
p

←→
{
A ≤ Λ(n,Fp)
dimA = m

}
←→

Nilpotent Fp-Lie algebras
of class 2, L/Z(L) ∼= Fn

p ,
Z(L) ∼= Fm

p

in such a way that two such groups are isomorphic iff the corresponding Lie algebras are
isomorphic iff the corresponding matrix spaces A,B ≤ Λ(n,Fp) are isometric. Here, we say
that two such linear subspaces are isometric if there is an invertible matrix L ∈ GL(n,Fp)
such that B = LtAL := {LtAL : A ∈ A}.3 The corresponding computational problem is:

▶ Definition 4 (The Alternating Matrix Space Isometry problem).
Input: A1, . . . , Am and B1, . . . , Bm, n× n alternating4 matrices over a field F,
Decide: Is there a L ∈ GL(n,F), such that the linear span of {Ai : i ∈ [m]} is equal to the
linear span of {LtBiL : i ∈ [m]}?

Our search- and counting-to-decision reductions (Theorems A and B) actually follow
from analogous results on Alternating Matrix Space Isometry (Theorems A′ and B′),
using a constructive version of the Baer Correspondence communicated to us by James B.
Wilson (Lemma 24). The viewpoint of alternating matrix spaces made the constructions
much easier to find and reason about.

Our nilpotency class reduction uses a constructive version of the Lazard Correspondence
(Proposition 26), which generalizes the Baer Correpsondence to nilpotency class c < p; the
TI-completeness of Lie Algebra Isomorphism for nilpotent Lie algebras of class 2 (a
combination of reductions from [28] and [32]); and finally the aforementioned constructive
Baer Correspondence to go back to p-groups of class 2.

In the remainder of this section we give more details of the techniques involved.

1.2.1 Linear algebraic coloring gadgets
Our most novel technique is to devise linear algebraic analogues for Alternating Matrix
Space Isometry of the graph coloring gadget, a key technique in the structural complexity
study of Graph Isomorphism (see, e. g., [44]). This technique is crucial in the following
theorems, used to prove Theorems A and B, respectively.

▶ Theorem A′. Let q be a prime power. There is a search-to-decision reduction for Altern-
ating Matrix Space Isometry which, given n× n alternating matrix spaces A,B over Fq

of dimension m, computes an isometry between them if they are isometric, in time qÕ(n) or
in time qO(n+m). The reduction queries the decision oracle with inputs of dimension at most
O(n2).

3 For bilinear maps – which are another way of viewing matrix spaces – the corresponding notion is
often called “pseudo-isometry”, with “isometry” of bilinear maps being a more restrictive notion. We
chose our nomenclature by analogy with individual matrices: just as we call two matrix spaces A, B
“conjugate” when LAL−1 = B, or “equivalent” when LAM = B, we call two matrix spaces “isometric”
when there is an isometry-transformation that sends one such space to another. We are careful to use
“pseudo-isometry” when we refer to the corresponding notions for matrix tuples or for bilinear maps.

4 An n × n matrix A over F is alternating if for every v ∈ Fn, vtAv = 0. When F is not of characteristic
2, this is equivalent to being skew-symmetric At = −A.

CCC 2021

16:6 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

▶ Theorem B′. For q a prime power with q = nΩ(1), there is a randomized counting-to-
decision reduction for Alternating Matrix Space Isometry which, given n×n alternating
matrix spaces A,B over Fq of dimension m, computes the number of isometries from A to B
in time qO(n). The reduction queries the decision oracle with inputs of dimension at most
O(n2).

Let us first briefly review the graph coloring gadgets. Suppose we have a graph G = (V, E)
with the vertices colored, i. e., there is a map f : V → {1, . . . , c} =: [c], where we view [c]
as the set of colors. Let n = |V |. Suppose we want to construct an uncolored graph G̃, in
which the color information carried by f is encoded. One way to achieve this is the following.
(See [44] for other more efficient constructions.) For every v ∈ V , if v ∈ V is assigned color
k ∈ [c], then attach a “star” of size kn to v, that is add kn new vertices to G and attach them
all to v. We then get a graph G̃ with O(cn2) vertices, and we see that an automorphism of
G̃, when restricting to V , has to map v ∈ V to another v′ ∈ V of the same color, as degrees
need to be preserved under automorphisms.

Such an idea can be carried out in the 3-tensor context as in [28], but with a significant
loss of efficiency which prevents its use for search- and counting-to-decision reductions and
indicates the needs for new techniques. To illustrate the situation, we consider a toy problem.
To ease the presentation, we adopt a perspective on 3-tensors that we hope is clear on its
own; the analogy with the graph case is fairly close, but not immediately obvious, and we
present it in full detail in Section 3. Note that by slicing a 3-tensor along one direction, we
get a tuple of matrices (see also Section 2); in the following of this subsection we shall mostly
work with matrix tuples.

Let A = (A1, . . . , Am) ∈ M(n,F)m be a tuple of matrices, where Ai’s are linearly
independent. There are two natural actions on A. The first action is S = (si,j) ∈ GL(m,F)
on A by sending Aj to

∑
i∈[m] si,jAi. Denote the resulting matrix tuple by AS . The second

action is (L, R) ∈ GL(n,F) × GL(n,F) on A by sending Aj to LAjRt for j = 1, . . . , m.
Denote the resulting matrix tuple by LARt. For two tuples A, B, and for the purposes
of this illustration, let us define the set of isomorphisms as Iso(A, B) = {S ∈ GL(m,F) :
∃L, R ∈ GL(n,F), LARt = BS}.

In the counting-to-decision reduction we will need to test isomorphism of such tuples
under the action by diagonal matrices. Let diag(m,F) denote the subgroup of GL(m,F)
consisting of diagonal matrices. Our goal then is to construct Ã = (Ã1, Ã2, Ã3) ∈ M(N,F)3

and B̃, such that Iso(Ã, B̃) = Iso(A, B) ∩ diag(3,F). The construction we use, from [28], is
as follows. Let N = 23 · n = 8n, and let

Ã1 =

A1 0 0 0
0 In 0 0
0 0 0 0
0 0 0 0

 , Ã2 =

A2 0 0 0
0 0 0 0
0 0 I2n 0
0 0 0 0

 , Ã3 =

A3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I4n

 , (1)

where Is denotes the identity matrix of size s, and 0’s denote all-zero matrices of appropriate
sizes, and define B̃ similarly. By [28, Lemma 2.2], we have Iso(Ã, B̃) = Iso(A, B)∩diag(3,F).
The proof, while not difficult, relies on certain algebraic machineries like the Krull–Schmidt
Theorem for quiver representations. For our purpose, we only point out that a key in the
proof is that Iso(Ã, B̃) ⊆ diag(3,F), which can be easily checked by comparing the ranks of
the Ãi, B̃i. (We note that, because L and R act independently on the rows and columns of
the Ãi, for individual slices rank is essentially the only invariant we have.)

J. A. Grochow and Y. Qiao 16:7

The preceding gadget construction can be generalized to handle subgroups of GL(n,F) of
the form

S1 0 . . . 0
0 S2 . . . 0
...

...
. . .

...
0 0 . . . Sc

 : Si ∈ GL(ni,F)

 ,

where c = O(log n). We shall refer to this gadget as the Futorny–Grochow–Sergeichuk gadget,
or FGS gadget for short.

However, the FGS gadget cannot be used for search- and counting-to-decision reductions
in Theorems A and B. The key bottleneck is the restriction that c = O(log n). To check
why this is so reveals an interesting distinction between the combinatorial and the linear
algebraic worlds. Recall that in the graph setting, if there are c colors, we need stars of size
at most cn. While in the linear algebraic setting, if there are c components, the biggest
identity matrix needs to be of size 2c · n× 2c · n. The reason is that we can do non-trivial
linear combinations of the matrices Ãi, so several matrices of small ranks might be combined
to get a matrix of large rank. Indeed, in Eq. 1, if Ã3 was accompanied with I3n instead of
I4n, then a non-trivial linear combination of Ã1 and Ã2 could be of rank the same as Ã3,
and the argument that Iso(Ã, B̃) ⊆ diag(m,F) would not go through. That’s why we need
such exponential growth as the number of components grow.

To address this challenge, we devise two new gadgets, which restrict to the monomial
group and the diagonal group, respectively.

The monomial group of GL(n,F), denoted as Mon(n,F), consists of monomial matrices,
i.e. a matrix with exactly one non-zero entry in each row and each column. We design
a gadget that restricts to Mon(n,F), which is the key in the search-to-decision reduction
(Theorem A′).

In the case of F = Fq and q = nΩ(1), we design a gadget that restricts to diag(n, q), which
is the key in the counting-to-decision reduction (Theorem B′). The gadget for restricting to
monomial groups cannot be used in the counting-to-decision reduction. Its construction is
already delicate, and the analysis is involved, relying on a celebrated result of Kantor and
Lubotzky regarding random generation of classical groups [41].

1.2.2 Constructive Lazard Correspondence
In light of the TI-completeness of isomorphism of class 2 p-groups given by matrices over
finite fields of characteristic p [32], the key idea here is how to reduce isomorphism for other
classes of groups to some tensor problem. For groups in general it is unclear how to do
this, as tensors are multilinear and groups are not. But for p-groups of nilpotency class < p,
the Lazard Correspondence gives an equivalence between the category of such groups and
a corresponding category of Lie algebras (over the same field, nilpotent of the same class).
If this correspondence were computationally efficient, we would then be in the fortunate
setting in which Lie Algebra Isomorphism is multilinear, and is in TI [28], so we can then
reduce back to isomorphism of class 2 p-groups. We observe (Proposition 26) that when the
groups are given by matrices in characteristic p, the Lazard Correspondence can be efficiently
computed using the usual matrix logarithm and exponential.

The restriction to groups of nilpotency class c < p comes entirely from the Lazard
Correspondence, which is also known only to work under this same assumption (see [60] for
details, and what can be said when c = p, but unfortunately already when c = p one no
longer gets an equivalence up to isomorphism). Despite this restriction, we note that we
know of no prior reductions from any class of groups to p-groups of class 2.

CCC 2021

16:8 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

In Remark 2 we discuss the ingredients necessary to get the same result for GpI in the
Cayley table model, which seems approachable.

1.3 Organization of the paper
In Section 2 we present preliminaries and notation. In Section 3 we present more details of
the analogy with individualizing vertices in graphs by attaching stars, using the example
of reducing Monomial Code Equivalence to Tensor Isomorphism. In Section 4 we
present our gadget to restrict to the monomial subgroup, an example use of this to reduce
GI to Alternating Matrix Space Isometry, and Theorem A′. In Section 5 we prove
Theorem B′. In Section 6 we present the constructive Baer and Lazard Correspondences,
and use them to derive Theorems A and B from Theorems A′ and B′, respectively, as well as
proving Theorem P. Finally, in Section 7 we conclude with open questions and discuss the
relationship between this work and the authors’ line of work on Tensor Isomorphism.

2 Preliminaries

Table 1 Summary of notation related to 3-way arrays and tensors.

Font Object Space of objects
A, B, . . . matrix M(n,F) or M(ℓ× n,F)
A, B, . . . matrix tuple M(n,F)m or M(ℓ× n,F)m

A,B, . . . matrix space [Subspaces of M(n,F) or Λ(n,F)]
A, B, . . . 3-way array T(ℓ× n×m,F)

Vector spaces. Let F be a field. In this paper we only consider finite-dimensional vector
spaces over F. We use Fn to denote the vector space of length-n column vectors. The ith
standard basis vector of Fn is denoted e⃗i. Depending on the context, 0 may denote the zero
vector space, a zero vector, or an all-zero matrix. For S a set of vectors, we use ⟨S⟩ to denote
the subspace spanned by elements in S.

Some groups. The general linear group of degree n over a field F is denoted by GL(n,F).
The symmetric group of degree n is denoted by Sn. The natural embedding of Sn into
GL(n,F) is to represent permutations by permutation matrices. The subgroup of GL(n,F)
consisting of diagonal matrices is called the diagonal subgroup, denoted by diag(n,F). A
monomial matrix is a product of a diagonal and a permutation matrix; equivalently, each row
and each column has exactly one non-zero entry. The collection of monomial matrices forms
a subgroup of GL(n,F), which we call the monomial subgroup and denote by Mon(n,F). It
is the semi-direct product diag(n,F) ⋊ Sn

∼= (F∗)n ⋊ Sn.

Nilpotent groups. If A, B are two subsets of a group G, then [A, B] denotes the subgroup
generated by all elements of the form [a, b] = aba−1b−1, for a ∈ A, b ∈ B. The lower central
series of a group G is defined as follows: γ1(G) = G, γk+1(G) = [γk(G), G]. A group is
nilpotent if there is some c such that γc+1(G) = 1; the smallest such c is called the nilpotency
class of G, or sometimes just “class” when it is understood from context. A finite group is
nilpotent if and only if it is the product of its Sylow subgroups; in particular, all groups of
prime power order are nilpotent.

J. A. Grochow and Y. Qiao 16:9

Matrices. Let M(ℓ × n,F) be the linear space of ℓ × n matrices over F, and M(n,F) :=
M(n× n,F). Given A ∈ M(ℓ× n,F), At denotes the transpose of A.

A matrix A ∈ M(n,F) is alternating, if for any u ∈ Fn, utAu = 0. That is, A represents
an alternating bilinear form. Note that in characteristic ̸= 2, alternating is the same as skew-
symmetric, but in characteristic 2 they differ (in characteristic 2, skew-symmetric=symmetric).
The linear space of n× n alternating matrices over F is denoted by Λ(n,F).

The n×n identity matrix is denoted by In, and when n is clear from the context, we may
just write I. The elementary matrix Ei,j is the matrix with the (i, j)th entry being 1, and
other entries being 0. The (i, j)-th elementary alternating matrix is the matrix Ei,j − Ej,i.

Matrix tuples. We use M(ℓ × n,F)m to denote the linear space of m-tuples of ℓ × n

matrices. Boldface letters like A and B denote matrix tuples. Let A = (A1, . . . , Am), B =
(B1, . . . , Bm) ∈ M(ℓ × n,F)m. Given P ∈ M(ℓ,F) and Q ∈ M(n,F), PAQ :=
(PA1Q, . . . , PAmQ) ∈ M(ℓ,F). Given R = (ri,j)i,j∈[m] ∈ M(m,F), AR := (A′

1, . . . , A′
m) ∈

M(m,F) where A′
i =

∑
j∈[m] rj,iAj .

▶ Remark 5. In particular, note that the coefficients in the formula of defining A′
i correspond

to the entries in the ith column of R. While this choice is immaterial (we could have chosen
the opposite convention), all of our later calculations are consistent with this convention.

Given A, B ∈ M(ℓ × n,F)m, we say that A and B are isometric, if there exists P ∈
GL(n,F), such that P tAP = B. Finally, A and B are pseudo-isometric if there exist
P ∈ GL(n,F) and R ∈ GL(m,F), such that P tAP = BR.

Matrix spaces. Linear subspaces of M(ℓ×n,F) are called matrix spaces. Calligraphic letters
like A and B denote matrix spaces. By a slight abuse of notation, for A ∈ M(ℓ× n,F)m, we
use ⟨A⟩ to denote the subspace spanned by those matrices in A. For A, B ∈ M(n,F)m, we
say that the spaces ⟨A⟩, ⟨B⟩ are isometric iff the tuples A, B are pseudo-isometric.

3-way arrays. Let T(ℓ × n ×m,F) be the linear space of ℓ × n ×m 3-way arrays over F.
We use the fixed-width teletypefont for 3-way arrays, like A, B, etc..

Given A ∈ T(ℓ×n×m,F), we can think of A as a 3-dimensional table, where the (i, j, k)th
entry is denoted as A(i, j, k) ∈ F. We can slice A along one direction and obtain several
matrices, which are then called slices. For example, slicing along the first coordinate, we obtain
the horizontal slices, namely ℓ matrices A1, . . . , Aℓ ∈ M(n×m,F), where Ai(j, k) = A(i, j, k).
Similarly, we also obtain the lateral slices by slicing along the second coordinate, and the
frontal slices by slicing along the third coordinate.

We will often represent a 3-way array as a matrix whose entries are vectors. That is,
given A ∈ T(ℓ× n×m,F), we can write

A =

w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n

...
.

...
wℓ,1 wℓ,2 . . . wℓ,n

 ,

where wi,j ∈ Fm, so that wi,j(k) = A(i, j, k). Note that, while wi,j ∈ Fm are column vectors,
in the above representation of A, we should think of them as along the direction “orthogonal
to the paper.” Following [45], we call wi,j the tube fibers of A. Similarly, we can have the
row fibers vi,k ∈ Fn such that vi,k(j) = A(i, j, k), and the column fibers uj,k ∈ Fℓ such that
uj,k(i) = A(i, j, k).

CCC 2021

16:10 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

Given P ∈ M(ℓ,F) and Q ∈ M(n,F), let PAQ be the ℓ× n×m 3-way array whose kth
frontal slice is PAkQ. For R = (ri,j) ∈ GL(m,F), let AR be the ℓ × n × m 3-way array
whose kth frontal slice is

∑
k′∈[m] rk′,kAk′ . Note that these notations are consistent with the

notations for matrix tuples above, when we consider the matrix tuple A = (A1, . . . , Ak) of
frontal slices of A.

3 Warm up: reducing Monomial Code Equivalence to Tensor
Isomorphism

The purpose of this section is to present a concrete example that illustrates what we mean
by a gadget restricting to monomial subgroups. We also explain why the gadget would be
viewed as a linear algebraic analogue of attaching stars in the graph setting as mentioned in
Section 1.2.1.

We will give a reduction here to the Tensor Isomorphism (TI) problem, so we begin
by recalling its definition:

▶ Definition 6 (The d-Tensor Isomorphism problem). d-Tensor Isomorphism over
a field F is the problem: given two d-way arrays A = (ai1,...,id

) and B = (bi1,...,id
), where

ik ∈ [nk] for k ∈ [d], and ai1,...,id
, bi1,...,id

∈ F, decide whether there are Pk ∈ GL(nk,F) for
k ∈ [d], such that for all i1, . . . , id,

ai1,...,id
=

∑
j1,...,jd

bj1,...,jd
(P1)i1,j1(P2)i2,j2 · · · (Pd)id,jd

.

Let A be an ℓ × n × m 3-way array, with lateral slices L1, L2, . . . , Ln (each an ℓ × m

matrix). For any vector v ∈ Fn, we get an associated lateral matrix Lv, which is a linear
combination of the lateral slices as given, namely Lv :=

∑n
j=1 vjLj (note that when v = e⃗j

is the j-th standard basis vector, the associated lateral matrix is indeed Lj). By analogy
with adjacency matrices of graphs, Lv is a natural analogue of the neighborhood of a vertex
in a graph. Correspondingly, we get a notion of “degree,” which we may define as

degA(v) := rkLv = rk(
n∑

j=1
vjLj) = dim span{Lvw : w ∈ Fm} = dim span{utLv : u ∈ Fℓ}.

The last two characterizations are analogous to the fact that the degree of a vertex v in a
graph G may be defined as the number of “in-neighbors” (nonzero entries the corresponding
row of the adjacency matrix) or the number of “out-neighbors” (nonzero entries in the
corresponding column).

To “individualize” v, we can enlarge A with a gadget to increase degA(v), as in the graph
case. Note that degA(v) ≤ min{ℓ, m} because the lateral matrices are all of size ℓ×m. For
notational simplicity, let us individualize v = e⃗1 = (1, 0, . . . , 0)t. To individualize v, we will
increase its degree by d = min{ℓ, m}+ 1 > maxv∈Fn degA(v). Extend A to a new 3-way array
Av of size (ℓ + d)× n× (m + d); in the “first” ℓ× n×m “corner”, we will have the original
array A, and then we will append to it an identity matrix in one slice to increase deg(v).
More specifically, the lateral slices of Av will be

L′
1 =

[
L1 0
0 Id

]
and L′

j =
[
Lj 0
0 0

]
(for j > 1).

Now we have that degAv
(v) ≥ d. This almost does what we want, but now note that any

vector w = (w1, . . . , wn) with w1 ̸= 0 has degAv
(w) = rk(w1L′

1 +
∑

j≥2 wjLj) ≥ d. We can
nonetheless consider this a sort of linear-algebraic individualization.

J. A. Grochow and Y. Qiao 16:11

Leveraging this trick, we can then individualize an entire basis of Fn simultaneously, so
that d ≤ deg(v) < 2d for any vector v in our basis, and deg(v′) ≥ 2d for any nonzero v′

outside the basis (not a scalar multiple of one of the basis vectors), as we do in the following
result. This is also a 3-dimensional analogue of the reduction from GI to CodeEq [52,59,62]
(where they use Hamming weight instead of rank).

We now come to the concrete result. Given two d × n matrices A, B over F of rank d,
the Monomial Code Equivalence problem is to decide whether there exist Q ∈ GL(d,F)
and a monomial matrix P ∈ Mon(n,F) ≤ GL(n,F) (product of a diagonal matrix and a
permutation matrix) such that QAP = B. Monomial equivalence of linear codes is a basic
notion in coding theory [11], and Monomial Code Equivalence was recently studied in
the context of post-quantum cryptography [67].

▶ Proposition 7. Monomial Code Equivalence reduces to 3-Tensor Isomorphism.

Proof. Without loss of generality we assume d > 1, as the problem is easily solvable when
d = 1. We treat a d × n matrix A as a 3-way array of size d × n × 1, and then follow the
outline proposed above, of individualizing the entire standard basis e⃗1, . . . , e⃗n. Since the
third direction only has length 1, the maximum degree of any column is 1, so it suffices to
use gadgets of rank 2. More specifically, (see Figure 1) we build a (d + 2n)× n× (1 + 2n)
3-way array A whose lateral slices are

Lj =

a1,j 01×2 01×2 · · · 01×2 · · · 01×2
...

...
...

. . .
...

. . .
...

ad,j 01×2 01×2 · · · 01×2 · · · 01×2
02×1 02×2 02×2 · · · 02×2 · · · 02×2

...
...

...
. . .

...
. . .

...
02×1 02×2 02×2 · · · I2 · · · 02×2

...
...

...
. . .

...
. . .

...
02×1 02×2 02×2 · · · 02×2 · · · 02×2

where the I2 block is in the j-th block of size 2 (that is, rows d+2(j−1)+{1, 2} and columns
2(j − 1) + {1, 2}).

It will also be useful to visualize the frontal slices of A, as follows. Here each entry of the
“matrix” below is actually a (1 + 2n)-dimensional vector, “coming out of the page”:

A =

ã1,1 ã1,2 . . . ã1,n

...
...

. . .
...

ãd,1 ãd,2 . . . ãd,n

e1,1 0 . . . 0
e1,2 0 . . . 0
0 e2,1 . . . 0
0 e2,2 . . . 0
...

...
. . .

...
0 0 . . . en,1
0 0 . . . en,2

,

where

ãi,j =
[

ai,j

02n×1

]
∈ F1+2n

ei,j = e⃗1+2(i−1)+j ∈ F1+2n for i ∈ [n], j ∈ [2]

and the frontal slices are

A1 =
[

A

02n×n

]
A1+2(i−1)+j = Ed+2(i−1)+j,i for i ∈ [n], j ∈ [2]

(In A we turn the vectors ãi,j and ei,j “on their side” so they become perpendicular to the
page.)

CCC 2021

16:12 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

A

I2

I2

Figure 1 Pictorial representation of the reduction for Proposition 7.

We claim that A and B are monomially equivalent as codes if and only if A and B are
isomorphic as 3-tensors.

(⇒) Suppose QADP = B where Q ∈ GL(d,F), D ∈ diag(n,F) and P ∈ Sn ≤ GL(n,F).

Then by examining the frontal slices it is not hard to see that for Q′ =
[
Q 0
0 (DP)−1 ⊗ I2

]
(where (DP)−1 ⊗ I2 denotes a 2n × 2n block matrix, where the pattern of the nonzero
blocks and the scalars are governed by (DP)−1, and each 2 × 2 block is either zero or a
scalar multiple of I2) we have Q′A1DP = B1 and Q′A1+2(i−1)+jDP = B1+2(π(i)−1)+j , where
π is the permutation corresponding to P . Thus A and B are isomorphic tensors, via the
isomorphism (Q′, DP, diag(I1, P)).

(⇐) Suppose there exist Q ∈ GL(d + 2n,F), P ∈ GL(n,F), and R ∈ GL(1 + 2n,F), such
that QAP = BR. First, note that every lateral slice of A is of rank either 2 or 3, and the
actions of Q and R do not change the ranks of the lateral slices. Furthermore, any non-trivial
linear combination of more than 1 lateral slice results in a lateral matrix of rank ≥ 4. It
follows that P cannot take nontrivial linear combinations of the lateral slices, hence it must
be monomial.

Now consider the frontal slices. Note that, as we assume d > 1, every frontal slice of QAP ,

except the first one, is of rank 1. Therefore, R must be of the form
[
r1,1 01×(n−1)
r⃗′ R′

]
where

R′ is (n − 1) × (n − 1). Since R is invertible, we must have r1,1 ̸= 0, and the first frontal
slice of BR contains all the rows of B scaled by r1,1 in its first d rows. The first frontal slice
of QAP is a matrix that generates, by definition (and since we’ve shown P is monomial), a
code monomially equivalent to A. Since the first frontal slices of QAP and BR are equal, and
the latter is just a scalar multiple of B1, we have that A and B are monomially equivalent
as codes as well. ◀

J. A. Grochow and Y. Qiao 16:13

4 Search-to-decision reduction by restricting to monomial groups

4.1 The gadget restricting to the monomial group

In this section, we present the gadget that restricts to the monomial group in the setting of
Alternating Matrix Space Isometry. To show this, we will need the concept of monomial
isometry; see Some Groups above. Recall that a matrix is monomial if, equivalently, it can
be written as DP where D is a nonsingular diagonal matrix and P is a permutation matrix.
We say two matrix spaces A,B are monomially isometric if there is some M ∈ Mon(n,F)
such that M tAM = B.

▶ Lemma 8. Alternating Matrix Space Monomial Isometry reduces to Alternating
Matrix Space Isometry.

More specifically, there is a poly(n, m)-time algorithm r taking alternating matrix tuples
to alternating matrix tuples, such that for A, B ∈ Λ(n,F)m, the matrix spaces A = ⟨A⟩ and
B = ⟨B⟩ are monomially isometric if and only if the matrix spaces ⟨r(A)⟩ and ⟨r(B)⟩ are
isometric.

The gadget used in Lemma 8 is essentially to apply the gadget in Proposition 7 “in two
directions.” Still, to prove the correctness requires some work.

Proof. For A = (A1, . . . , Am) ∈ Λ(n,F)m, define r(A) to be the alternating matrix tuple
Ã = (Ã1, . . . , Ãm+n2) ∈ Λ(n + n2,F)m+n2 , where

1. For k = 1, . . . , m, Ãk =
[
Ak 0
0 0

]
.

2. For k = m + (i − 1)n + j, i ∈ [n], j ∈ [n], Ãk is the elementary alternating matrix
Ei,in+j − Ein+j,i.

At this point, some readers may wish to look at the large matrix in Equation 2 and/or at
Figure 2.

It is clear that r can be computed in time Õ((m + n2)(n2 + n)) = poly(n, m). Given
alternating matrix tuples A, B, let A,B be the corresponding matrix spaces they span, and
let Ã = ⟨r(A)⟩ and B̃ = ⟨r(B)⟩. We claim that A and B are monomially isometric if and
only if Ã and B̃ are isometric.

To prove this, it will help to think of our matrix tuples A, Ã, etc. as (corresponding to)
3-way arrays, and to view these 3-way arrays from two different directions. Towards this end,
write the 3-way array corresponding to A as

A =

0 a1,2 a1,3 . . . a1,n

−a1,2 0 a2,3 . . . a2,n

−a1,3 −a2,3 0 . . . a3,n

...
.

...
−a1,n −a2,n −a3,n . . . 0

 ,

where ai,j are vectors in Fm (“coming out of the page”), namely ai,j(k) = Ak(i, j). The
frontal slices of this array are precisely the matrices A1, . . . , Am.

The 3-way array corresponding to Ã = r(A) is then the (n + 1)n× (n + 1)n× (m + n2)
array:

CCC 2021

16:14 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

Ã =

0 ã1,2 ã1,3 . . . ã1,n e1,1 . . . e1,n 0 . . . 0 . . . 0 . . . 0
−ã1,2 0 ã2,3 . . . ã2,n 0 . . . 0 e2,1 . . . e2,n . . . 0 . . . 0

.

.

.
. . .

. . .
. . .

.

.

.
. . .

. . .
. . .

. . .
. . .

.

. . .
. . .

.

.

.
−ã1,n −ã2,n −ã3,n . . . 0 0 . . . 0 0 . . . 0 . . . en,1 . . . en,n
−e1,1 0 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0

.

.

.
.
.
.

.

.

. . . .

.

.

.
.
.
. . . .

.

.

.
.
.
. . . .

.

.

. . . .

.

.

. . . .

.

.

.
−e1,n 0 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0

0 −e2,1 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0

.

.

.
.
.
.

.

.

. . . .

.

.

.
.
.
. . . .

.

.

.
.
.
. . . .

.

.

. . . .

.

.

. . . .

.

.

.
0 −e2,n 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0

.

.

.
.
.
.

.

.

. . . .

.

.

.
.
.
. . . .

.

.

.
.
.
. . . .

.

.

. . . .

.

.

. . . .

.

.

.
0 0 0 . . . −en,1 0 . . . 0 0 . . . 0 . . . 0 . . . 0

.

.

.
.
.
.

.

.

. . . .

.

.

.
.
.
. . . .

.

.

.
.
.
. . . .

.

.

. . . .

.

.

. . . .

.

.

.
0 0 0 . . . −en,n 0 . . . 0 0 . . . 0 . . . 0 . . . 0

,

(2)

where ãi,j =
[
ai,j

0

]
∈ Fm+n2 (here think of the vector ai,j as a column vector, not coming

out of the page; in the above array we then lay the column vector ãi,j “on its side” so that
it is coming out of the page), and ei,j := em+(i−1)n+j ∈ Fm+n2 , which we can equivalently

write as
[

0m

ei ⊗ ej

]
, where we think of ei ⊗ ej here as a vector of length n2. Note that all the

the nonzero blocks besides upper-left “A” block only have nonzero entries that are strictly
behind the nonzero entries in the upper-left block.

A
In

In

-In

-In

Figure 2 Pictorial representation of the reduction for Lemma 8.

J. A. Grochow and Y. Qiao 16:15

The second viewpoint, which we will also use below, is to consider the lateral slices
of A, or equivalently, to view A from the side. When viewing A from the side, we see the
(n + 1)n× (m + n2)× (n + 1)n 3-way array:

Alat =

ℓ1,1 ℓ1,2 . . . ℓ1,m en+1 . . . e2n . . . 0 . . . 0
...

.
...

...
. . .

...
. . .

...
. . .

...
ℓn,1 ℓn,2 . . . ℓn,m 0 . . . 0 . . . en2+1 . . . en2+n

0 0 . . . 0 e1 . . . 0 . . . 0 . . . 0
...

...
. . .

...
...

. . .
... . . .

...
. . .

...
0 0 . . . 0 0 . . . e1 . . . 0 . . . 0
...

.
...

...
. . .

...
. . .

...
. . .

...
0 0 . . . 0 0 . . . 0 . . . en . . . 0
...

...
. . .

...
...

. . .
... . . .

...
. . .

...
0 0 . . . 0 0 . . . 0 . . . 0 . . . en

, (3)

where every ℓi,k ∈ Fn2+n has only the first n components being possibly non-zero, namely,
ℓi,k(j) = Ak(i, j) for i ∈ [n], j ∈ [n], k ∈ [m] and ℓi,k(j) = 0 for any j > n.

For the only if direction. Suppose there exist P ∈ Mon(n,F) and Q ∈ GL(m,F), such
that P tAP = BQ. We can construct P̃ ∈ Mon(n + n2,F) and Q̃ ∈ GL(m + n2,F) such that

P̃ tÃP̃ = B̃Q̃. In fact, we will show that we can take P̃ =
[
P 0
0 P ′

]
where P ′ ∈ Mon(n2,F),

and Q̃ =
[
Q 0
0 Q′

]
where Q′ ∈ Mon(n2,F). It is not hard to see that this form already

ensures that the first m matrices in the vector P̃ tÃP̃ and those of B̃Q̃ are the same, since
when P̃ , Q̃ are of this form, those first m matrices are controlled entirely by the P (resp., Q)
in the upper-left block of P̃ (resp., Q̃).

The remaining question is then how to design appropriate P ′ and Q′ to take care of the
last n2 matrices in these tuples. This actually boils down to applying the following simple
identity, but “in 3 dimensions:” Let P be the permutation matrix corresponding to σ ∈ Sn,
so that Pei = eσ(i), and et

iP = et
σ−1(i). Let D = diag(α1, . . . , αn) be a diagonal matrix.

Then

P tDP = diag(ασ−1(1), . . . , ασ−1(n)). (4)

To see how Equation 4 helps in our setting, it is easier to focus attention on the lower
right n2 × n2 sub-array of Alat, which can be represented as a symbolic matrix

M =

x1In 0 . . . 0

0 x2In . . . 0
...

.
...

0 0 . . . xnIn

 .

Here we think of the xi’s as independent variables, whose indices correspond to “how far
into the page” they are. That is, xi corresponds to the vector e⃗i in Alat, which is coming out
of the page and has its only nonzero entry i slices back from the page.

CCC 2021

16:16 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

Then the action of P permutes the xi’s and multiplies them by some scalars, the action
of P ′ is on the left-hand side, and the action of Q′ is on the right-hand side. Let σ be the
permutation supporting P . Then P sends M to

MP =

ασ(1)xσ(1)In 0 . . . 0

0 ασ(2)xσ(2)In . . . 0
...

.
...

0 0 . . . ασ(n)xσ(n)In

 .

So setting P ′ = σ ⊗ In, Q′ the monomial matrix supported by σ ⊗ In with scalars being
1/αi’s, we have P ′tMP Q′ = M by Equation 4.

For the if direction. Suppose there exist P̃ ∈ GL(n + n2,F) and Q̃ ∈ GL(m + n2,F), such
that P̃ tÃP̃ = B̃Q̃. The key feature of these gadgets now comes into play: consider the lateral
slices of Ã, which are the frontal slices of Alat (which may be easier to visualize by looking at
Equation 3 and Figure 2). The first n lateral slices of Ã and B̃ are of rank ≥ n and < 2n,
while the other lateral slices are of rank < n (in fact, they are of rank 1; note that without
loss of generality we may assume n > 1, for the only 1× 1 alternating matrix space is the
zero space). Furthermore, left multiplying a lateral slice by P̃ t and right multiplying it by Q̃

does not change its rank. However, the action of P̃ here is by P̃ tÃP̃ , and while the P̃ t here
corresponds to left multiplication on the lateral slices (=frontal slices of Alat), the P̃ on the
right here corresponds to taking linear combinations of the lateral slices. In other words,
just as Alat is the “side view” of Ã, (P̃ tAlatQ̃)P̃ is the side view of (P̃ tÃP̃)Q̃. Taking linear
combinations of the lateral slices could, in principle, alter their rank; we will use the latter
possibility to show that P̃ must be of a constrained form.

Write P̃ =
[
P1,1 P1,2
P2,1 P2,2

]
where P1,1 is of size n × n. We first claim that P1,2 = 0. For

if not, then in (Alat)P̃ (the side view), one of the last n2 frontal slices receives a nonzero
contribution from one of the first n frontal slices of Alat. Looking at the form of these slices
from Equation 3, we see that any such nonzero combination will have rank ≥ n, but this is a
contradiction since the corresponding slice in Blat has rank 1. Thus P1,2 = 0, and therefore
P1,1 must be invertible, since P̃ is.

Finally, we claim that P1,1 has to be a monomial matrix. If not, then some frontal slice
of (Alat)P̃ among the first n would have a contribution from more than one of these n slices.
Considering the lower-right n2 × n2 sub-matrix of such a slice, we see that it would have
rank exactly kn for some k ≥ 2, which is again a contradiction since the first n slices of
Blat all have rank < 2n. It follows that P t

1,1AiP1,1, i ∈ [m], are in B, and thus A and B are
monomially isometric via P1,1. ◀

4.1.1 Application: reducing Graph Isomorphism to Alternating
Matrix Space Isometry

An application of the monomial-restricting gadget is to give an immediate reduction from
Graph Isomorphism to Alternating Matrix Space Isometry. While a reduction
between these two problems is already known (cf. [32] for details), we choose to present it as
an illustration of using this gadget.

▶ Proposition 9. Graph Isomorphism reduces to Alternating Matrix Space Isometry.

J. A. Grochow and Y. Qiao 16:17

Proof. For a graph G = ([n], E), let AG be the alternating matrix tuple AG = (A1, . . . , A|E|)
with Ae = Ei,j − Ej,i where e = {i, j} ∈ E, and let AG = ⟨AG⟩ be the alternating matrix
space spanned by that tuple. If P is a permutation matrix giving an isomorphism between
two graphs G and H, then it is easy to see that P tAGP = AH , and thus the corresponding
matrix spaces are isometric. The converse direction is not clear, though it is recently shown
to be true in [34] with a rather intricate proof. Instead, we will provide a conceptually
simpler proof, by showing that this construction gives a reduction to monomial isometry,
and then using Lemma 8 to reduce to ordinary Alternating Matrix Space Isometry.

Let us thus establish that the preceding construction gives a reduction from GI to
Alternating Matrix Space Monomial Isometry. We will show that G ∼= H if and
only if AG and AH are monomially isometric. The forward direction was handled above.
For the converse, suppose P tDtAGDP = AH where D is diagonal and P is a permutation
matrix. We claim that in this case, P in fact gives an isomorphism from G to H . First let us
establish that P alone gives an isometry between AG and AH . Note that for any diagonal
matrix D = diag(α1, . . . , αn) and any elementary alternating matrix Ei,j − Ej,i, we have
Dt(Ei,j−Ej,i)D = αiαj(Ei,j−Ej,i). Since AG has a basis of elementary alternating matrices,
the action of D on this basis is just to re-scale each basis element, and thus DtAGD = AG.
Thus, we have P tAGP = AH .

Finally, note that P t(Ei,j − Ej,i)P = Eπ(i),π(j) − Eπ(j),π(i) = Aπ(e), where π ∈ Sn is
the permutation corresponding to P , and by abuse of notation we write π(e) = π({i, j}) =
{π(i), π(j)} as well. Since the elementary alternating matrices are linearly independent, and
AH has a basis of elementary alternating matrices, the only way for Aπ(e) to be in AH is
for it to be equal to one of the basis elements (one of the matrices in AH). In other words,
π(e) must be an edge of H. As P is invertible, we thus have that P gives an isomorphism
G ∼= H. ◀

4.2 Search-to-decision reduction for Alternating Matrix Space
Isometry

▶ Theorem A′. Given an oracle deciding Alternating Matrix Space Isometry, the
task of finding an isometry between two alternating matrix spaces A,B ∈ Λ(n,Fq), if it exists,
can be solved using at most qO(n) oracle queries each of size at most O(n2), and in time
either qO(n) · n! = qÕ(n), or qO(n+m).

Proof. We first present the gadget construction. Then based on this gadget, we present the
search-to-decision reduction.

Gadget construction. Let A = (A1, . . . , Am) be an ordered linear basis of A, and let
A ∈ T(n× n×m,Fq) be the 3-way array constructed from A, so we can write

A =

0 a1,2 a1,3 . . . a1,n

−a1,2 0 a2,3 . . . a2,n

−a1,3 −a2,3 0 . . . a3,n

...
.

...
−a1,n −a2,n −a3,n . . . 0

 ,

where ai,j ∈ Fm, 1 ≤ i < j ≤ n thought of as a vector coming out of the page.

CCC 2021

16:18 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

We first consider a 3-way array Ãi constructed from A, for any 1 ≤ i ≤ n− 1, as Ãi =

0 a1,2 . . . a1,i a1,i+1 . . . a1,n −e1,1 . . . −e1,2n 0 . . . 0 0 . . . 0 0 . . . 0
−a1,2 0 . . . a2,i a2,i+1 . . . a2,n 0 . . . 0 −e2,1 . . . −e2,2n 0 . . . 0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
−a1,i −a2,i . . . 0 ai,i+1 . . . ai,n 0 . . . 0 0 . . . 0 −ei,1 . . . −ei,2n 0 . . . 0

−a1,i+1 −a2,i+1 . . . −ai,i+1 0 . . . ai+1,n 0 . . . 0 0 . . . 0 0 . . . 0 −f1,1 . . . −f1,n

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
−a1,n −a2,n . . . −ai,n −ai+1,n . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 −fn−i,1 . . . −fn−i,n

e1,1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
e1,2n 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

0 e2,1 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
0 e2,2n . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 0 . . . ei,1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
0 0 . . . ei,2n 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 0 . . . 0 f1,1 . . . fn−i,1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
0 0 . . . 0 f1,n . . . fn−i,n 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

,

where ej,k is the (m + 2n(j− 1) + k)th standard basis vector, and fj,k is the (m + 2ni + n(j−
1) + k)th standard basis vector. A pictorial description can be seen by combining Figure 2
(for the ej,k) and [32, Figure 3] (for the fj,k).

We claim the following.

▷ Claim 10. If there exist invertible matrices P and Q to satisfy P tÃiP = B̃Q
i , then P must

be in the form

P1,1 0 0
0 P2,2 0

P3,1 P3,2 P3,3

, where P1,1 is a monomial matrix of size i× i, P2,2 is of

size (n− i)× (n− i), and P3,3 is of size (2ni + n)× (2ni + n).
Furthermore, there exist such P and Q if and only if A and B are isometric by a matrix

of the form
[
P1,1 0

0 P2,2

]
where P1,1 is a monomial matrix of size i× i.

Proof. This claim is immediate by combining the arguments for the FGS gadget [28] as used
in [32], and the monomial-restricting gadget introduced in Section 4.1. We only outline the
argument and point out some subtle issues here.

First, observe that for the lateral slices of Ãi:
The first i lateral slices have rank in [2n, 3n). Note that the rank is strictly less than 3n

because some tube fibers (coming out of the page) are 0 in the upper-left n× n sub-array.
The next n− i lateral slices have rank in [n, 2n).
The remaining 2ni + n lateral slices have rank in [1, n) (since i ≥ 1.)

Because of the above, for P and Q to satisfy P tÃiP = B̃Q
i , P must be in the required form.

It is the furthermore statement that requires certain care. The only if direction is
straightforward: after observing that P has to be of the above form, we can easily verify that[
P1,1 0

0 P2,2

]
is an isometry from A to B. For the if direction, starting from

[
P1,1 0

0 P2,2

]
and

Q1,1 ∈ GL(m,F), we need to design P3,3 ∈ GL(2ni + n,F) and Q2,2 ∈ GL(2ni + n(n− i),F)

such that letting P =

P1,1 0 0
0 P2,2 0
0 0 P3,3

 and Q =
[
Q1,1 0

0 Q2,2

]
, we have P tÃiP = B̃Q

i .

This can be achieved by combining the arguments for the only if directions in the proofs of
Lemma 8 and [32, Proposition 3.3]. ◁

J. A. Grochow and Y. Qiao 16:19

The search-to-decision reduction. Given these preparations, we now present the search-to-
decision reduction for Alternating Matrix Space Isometry. Recall that this requires us
to use the decision oracle O to compute an explicit isometry transformation P ∈ GL(n, q),
if A and B are indeed isometric. Think of P as sending the standard basis (e⃗1, . . . , e⃗n) to
another basis (v1, . . . , vn), where e⃗i and vi are in Fn

q .

In the first step, we guess v1, the image of e⃗1, and a complement subspace of ⟨v1⟩, at
the cost of qO(n). For each such guess, let P1 be the matrix which sends e⃗1 7→ v1 and sends
⟨e⃗2, . . . , e⃗n⟩ to the chosen complementary subspace arbitrarily. We apply P1 to A, and still
call the resulting 3-way array A in the following. Then construct Ã1 and B̃1, and feed these
two instances to the oracle O. Note that, since P1,1 (using notation as above) must be
monomial, any equivalence between Ã1 and B̃1 must preserve our choice of v1 up to scale.
Thus, clearly, if A and B are indeed isometric and we guess the correct image of e⃗1, then the
oracle O will return yes (and conversely).

In the second step, we guess v2, the image of e⃗2, and a complement subspace of ⟨v2⟩
within ⟨e⃗2, . . . , e⃗n⟩, at the cost of qO(n). Note here that the previous step guarantees that
there is an isometry respecting the direct sum decomposition ⟨v1⟩ ⊕ ⟨e⃗2, . . . , e⃗n⟩, so we need
only search for a complement of v2 within ⟨e⃗2, . . . , e⃗n⟩, and not a more general complement
of ⟨v1, v2⟩ in all of Fn

q . This is crucial for the runtime, as at the n/2 step, the latter strategy
would result in searching through qΘ(n2) possibilities.

For each such guess, we apply the corresponding transformation to A (and again call
the resulting 3-way array A). Then construct Ã2 and B̃2, and feed these two instances to
the oracle O. Clearly, if A and B are indeed isometric and we guess the correct image of
e⃗2 (and e⃗1 from the previous step), then the oracle O will return yes. However, there is a
small caveat here, namely we may guess some image of e2, such that A and B are actually

isometric by some matrix P of the form
[
P1,1 0

0 P2,2

]
where P1,1 is a monomial matrix of

size 2 (instead of the more desired diagonal matrix). But this is fine, as it still ensures P1,1
to be monomial, which is the key property to keep. This means that our choices of {v1, v2}
is correct as a set up to scaling, so we proceed.

In general, in the ith step, we maintain the property that A and B are isometric by some

P =
[
P1,1 0

0 P2,2

]
where P1,1 is a monomial matrix of size (i− 1)× (i− 1). We guess vi, the

image of e⃗i in ⟨e⃗i, . . . , e⃗n⟩, and a complement subspace of ⟨vi⟩ within ⟨e⃗i, . . . , e⃗n⟩. This cost
is qO(n). For each such guess, we apply the corresponding transformation to A (and call the
resulting 3-way array A). Then construct Ãi and B̃i, and feed these two instances to the oracle

O. Once we guess correctly, we ensure that A and B are isometric by P =
[
P1,1 0

0 P2,2

]
where P1,1 is a monomial matrix of size i× i.

So after the (n − 1)th step, we know that A and B are isometric by a monomial
transformation. As the number of all monomial transformations is (q−1)n ·n! ≤ qn ·2n log n =
qÕ(n), we can enumerate all monomial transformations and check correspondingly. This
gives an algorithm in time qÕ(n). By resorting to Proposition 11 which solves Alternating
Matrix Space Monomial Isometry in time qO(n+m), we have an algorithm in time
qO(n+m).

Note that all the instances we feed into the oracle O are of size O(n2). This concludes
the proof. ◀

CCC 2021

16:20 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

4.3 A simply-exponential algorithm for monomial isometry of
alternating matrix spaces

We now state the algorithm for monomial isometry used in Theorem A′.

▶ Proposition 11. Let A,B ≤ Λ(n, q) be m-dimensional. Then there exists a qO(n+m)-time
algorithm that decides whether A and B are monomially isometric, and if so, computes an
explicit monomial isometry.

Proof. Let A,B ≤ Λ(n, q) be two m-dimensional alternating matrix spaces. Clearly, by
incurring a multiplicative factor of qn, we can reduce to the problem of testing whether
A and B are permutationally isometric, i.e. whether there exists a permutation matrix
T ∈ GL(n, q), such that T tAT = B. We will solve this problem in time 2O(n) · qO(m). This
would give an algorithm with total running time qn · 2O(n) · qO(m) = qO(n+m). The basic
idea of the algorithm comes from Luks’s dynamic programming technique for Hypergraph
Isomorphism [53].

Reducing to a generalized linear code equivalence problem. Suppose A = ⟨A1, . . . , Am⟩,
and B = ⟨B1, . . . , Bm⟩. Let A and B be the n × n ×m 3-way arrays formed by the given
bases of A and B. For S ⊆ [n] of size s, let (Ai)S be the submatrix of Ai with row and
column indices in S. Then let AS be the s×s×m 3-way array formed by ((A1)S , . . . , (Am)S).
Similarly we can define BS for S ⊆ [n].

For each S ⊆ [n] of size s, let Iso(A[s], BS) be the coset in Sn × GL(m, q), such that
(A, B) ∈ Sn × GL(m, q) if and only if the natural action of (A, B) sends A[s] to BS . Since
all the matrices are alternating, their diagonal entries are zero, and thus A{i} and B{i}
are both the 1 × 1 × m zero vector for any i. It follows that if s = 1 and S = {i},
Iso(A[1], BS) = G×GL(m, q), where G is the coset of Sn consisting of permutations sending
1 to i.

Suppose we have computed Iso(A[s], BS) for all s < t. Fix T ⊆ [n], |T | = t, and let us
compute Iso(A[t], BT). For any (A, B) ∈ Iso(A[t], BT), A sends [t− 1] to some T ′ ⊆ T of size
t− 1. So in this case, (A, B) ∈ Iso(A[t−1], BT ′), which has been computed. Let T \ T ′ = {t′}.
On the other hand, for (A, B) ∈ Iso(A[t−1], BT ′) to be in Iso(At, BT), (A, B) needs to send the
tth horizontal slice of A[t] to the t′th horizontal slice of BT .

We first identify T ′ with [t− 1]. We then note that every horizontal slice of A[t] has a row
of zeros. So the problem now becomes: given two (t−1)×m matrices P and Q over Fq, decide
whether P and Q are the same under G ≤ St−1 ×GL(m, q). (Note that G = Iso(A[t−1], BT ′)
from above.) Clearly, this is a generalization of the Linear Code Equivalence problem.
Furthermore, if we could solve this problem in time 2O(n) · qO(m), we would have achieved
our original goal.

Solving the generalized linear code equivalence problem. We solve the above problem
again by a dynamic programming scheme as follows. For R ⊆ [t− 1] of size r, PR denotes
the r × m submatrix of P with row indices from R. Let Iso′(P[r], QR) be the coset in
St−1 ×GL(m, q), such that (C, D) ∈ Iso′(P[r], QR) if and only if the natural action of (C, D)
sends P[r] to QR. If r = 0, then Iso′(P∅, Q∅) = G where G ≤ St−1 ×GL(m, q) is given as an
input.

Suppose we have computed Iso′(P[r], QR) for any r < u. Fix U ⊆ [t− 1], |U | = u, and let
us compute Iso′(P[u], QU). For any (C, D) ∈ Iso′(P[u], QU), C sends [u− 1] to some U ′ ⊆ U

of size u − 1. So in this case, (A, B) ∈ Iso(P[u−1], QU), which has been computed. Let
U \ U ′ = {u′}. On the other hand, for (C, D) ∈ Iso(P[u−1], QU ′) to be in Iso(P[u], QU), D

J. A. Grochow and Y. Qiao 16:21

needs to send the uth row of P[u] to the u′th row of QU . This subcoset of Iso(P[u−1], QU ′)
can be computed in time qO(m), by treating GL(m, q) as a permutation group on Fm

q . We
then take a union over size-(u− 1) subsets U ′ to obtain a generating set for Iso(P[u], QU). If
necessary, we can reduce the generating set size by applying the standard permutation group
machinery, as our time bound is 2O(n) · qO(m), which is quite generous. ◀

5 Counting-to-decision reduction by restricting to diagonal groups

In this section, we devise a gadget to achieve the restriction to the group of diagonal matrices,
and use it to do the counting to decision reduction for Alternating Matrix Space
Isometry.

5.1 Preliminaries
Some preparations are in order.

▶ Observation 12. Let n ≥ 23. Then any permutation σ ∈ Sn either fixes a set of 6 points
P ⊆ [n], or moves a set of 6 points P ⊆ [n] to another set of 6 points Q ⊆ [n] such that these
two sets are disjoint.

Proof. Suppose σ fixes at most 5 points. Then there are at least 18 points that are not fixed
by σ. Suppose σ has t non-trivial cycles of length l1, . . . , lt, such that

∑
i li ≥ 18. For a cycle

(p1, . . . , ps), we can choose p1, p3, . . . , p2·⌊s/2⌋−1 and put them in P , and p2, p4, . . . , p2·⌊s/2⌋
in Q. Do this for every cycle, we obtain the desired P and Q. The worst case is when every
cycle is of length 3. Since there are at least 18 points not fixed by σ, P is of size ≥ 6. ◀

We shall make repeated uses of the following facts.

▶ Fact 13.
1. Given ai ∈ R, 0 ≤ ai ≤ 1, i ∈ [m],

∏
i∈[m](1− ai) ≥ 1−

∑
i∈[m] ai.

2. Let m, N ∈ N and 1 ≤ m ≤ N . A random matrix A ∈ M(N ×m, q) is of rank m with
probability ≥ 1− 2/qN−m+1.

3. For n ∈ N, 0 ≤ d ≤ n, the number of dimension-d subspaces of Fn
q is equal to the Gaussian

binomial coefficient(
n

d

)
q

:= (qn − 1) · (qn − q) · . . . · (qn − qd−1)
(qd − 1) · (qd − q) · . . . · (qd − qd−1) .

4. The Gaussian binomial coefficient satisfies:

q(n−d)d ≤
(

n

d

)
q

≤ q(n−d)d+d.

5. For d ∈ N, the number of complement subspaces of a fixed dimension-d subspace of Fn
q is

qd(n−d).

Proof. For (2), Pr[rk(A) = m] = (1 − 1
qN) · (1 − q

qN) · . . . · (1 − qm−1

qN). By (1), we have
Pr[rk(A) = m] ≥ 1−

∑N
i=N−m+1

1
qi = 1− 1

qN−m+1 −
∑N

i=N−m+2
1
qi ≥ 1− 2

qN−m+1 . ◀

5.2 Describing the gadget
Let A ≤ Λ(n, q) be an alternating matrix space, and let A = (A1, . . . , Am) ∈ Λ(n, q)m be an
ordered linear basis of A. Let A ∈ T(n× n×m,Fq) be the 3-way array constructed from A,
i.e. the ith frontal slice of A is Ai.

We shall assume n = Ω(1), and q = nΩ(1) throughout the remainder of this section.

CCC 2021

16:22 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

The form of the gadget. To describe the gadget, it is easier to view A from the lateral
viewpoint. That is, for i ∈ [n], let Ci = [A1ei, . . . , Amei] ∈ M(n × m, q). Let C =

(C1, . . . , Cn) ∈ M(n ×m, q)n. Then construct C′ = (C ′
1, . . . , C ′

n), C ′
i =

[
Ci 0
0 Gi

]
, where

Gi is of size 6n × 4n2. For i ∈ [n], Gi =
[
0 . . . 0 Hi 0 . . . 0

]
, where Hi is of size

6n× 4n in the ith block, and 0 denotes an all-zero matrix of size 6n× 4n. The Hi will be
described below.

Note that from the frontal viewpoint of looking at A, Gi’s are inserted, vertically, below and
behind A. So to preserve the alternating structure, −Gi’s also need to be inserted, horizontally,
on the right and behind A. We therefore get Ã, which is of size 7n× 7n× (m + 4n2).

Conditions imposed on the Hi’s. Of course, the key to the construction above lies in the
properties of the Hi’s. Let Vi ≤ F6n

q be the subspace spanned by the columns of Hi. We
shall impose the following conditions on Hi.
1. For any i ∈ [n], rk(Hi) = dim(Vi) = 4n.
2. For any i, j ∈ [n], i ̸= j, rk([HiHj]) = dim(Vi ∪ Vj) = 6n.
3. For any (i1, i2, i3, i4, i5, i6) ∈ [n]6 and (j1, j2, j3, j4, j5, j6) ∈ [n]6, such that |{i1, . . . i6} ∪
{j1, . . . , j6}| = 12, i.e. ik and jℓ all different, the coset C = {T ∈ GL(6n, q) : ∀k ∈
[6], T (Vik

) = Vjk
} is empty. Note that for any i ∈ [n], T (Vi) is spanned by the columns of

THi.
4. For any (i1, i2, i3, i4, i5, i6) ∈ [n]6, ik all different, the group S = {T ∈ GL(6n, q) : ∀k ∈

[6], T (Vik
) = Vik

} consists of only of scalar matrices.

▶ Remark 14. Given H1, . . . , Hn ∈ M(6n× 4n, q), whether they satisfy the four conditions
can be verified in polynomial time.

Conditions (1) and (2) are easily verified in deterministic polynomial time.
For condition (3), it can be formulated as a linear algebraic problem as follows. Let X

be a 6n × 6n variable matrix. Let Yk, k ∈ [6], be 4n × 4n variable matrices. Set up the
equations XHik

= Hjk
Yk, and solve the linear equations to get a subspace of F(6n)2+6·(4n)2

q .
The question is then whether this subspace contains (T, R1, . . . , R6) where T ∈ GL(6n, q)
and Ri ∈ GL(4n, q). This is an instance of the symbolic determinant identity testing (SDIT)
problem, so it admits a randomized efficient algorithm when q = nΩ(1).

In fact, this instance of SDIT problem can be solved in deterministic polynomial time.
For this let us also check out condition (4). Here, let X and Yi be from above, and set up
the equations XHik

= Hik
Yk. Solve the linear equations to get a subspace of F(6n)2+6·(4n)2

q .
This subspace turns out to be an algebra under the natural multiplications. Indeed, if
AHik

= Hik
Bk and A′Hik

= Hik
B′

k, then AA′Hik
= Hik

BkB′
k. To compute the unit

group in a matrix algebra can be solved by a polynomial-time Las Vegas algorithm by [16].
Given the unit group, whether it consists of only scalar matrices can be verified easily in
deterministic polynomial time.

Then the linear space in condition (3) is a module over the algebra defined in the last
paragraph. Because of this structure, the SDIT problem for such instances can be solved in
deterministic polynomial time [14,19,37].

5.3 Construction and properties of the gadget
The following three propositions reveal the construction and functions of the gadget described
above.

First about the construction. Instead of constructing the above Hi’s explicitly in a
deterministic way, we shall show that random choices suffice.

J. A. Grochow and Y. Qiao 16:23

▶ Proposition 15. Let Hi ∈ M(6n× 4n, q), i ∈ [n], be random matrices. Then Hi’s satisfy
the four conditions in Section 5.2 with probability ≥ 1− nO(1)

qΩ(1) .

Second about the functionality. The following proposition formally explains this.

▶ Proposition 16. Suppose A and B are two 3-tensors constructed from ordered bases of
m-dimensional alternating matrix spaces A,B ≤ Λ(n, q). Let Ã and B̃ be constructed as above,
and let Ã and B̃ be the alternating matrix spaces spanned by the frontal slices of Ã and B̃,
respectively. Then A and B are isometric via a diagonal matrix if and only if Ã and B̃ are
isometric.

Finally we shall use this gadget to achieve a counting-to-decision reduction for Altern-
ating Matrix Space Isometry. Formally, we have the following.

▶ Proposition 17. Suppose we are given A,B ≤ Λ(n, q) and a decision oracle for Altern-
ating Matrix Space Isometry. Then there exists a Las Vegas randomized algorithm that
computes the number of isometries from A to B in time qO(n).

The next three subsections are devoted to the proofs of Propositions 15 (Section 5.3.3),
16 (Section 5.3.1), and 17 (Section 5.3.2). Note that, because the proof of Proposition 15 is
more complicated compared to the other two, we postpone it to the last.
▶ Remark 18. In fact, we expect that this construction works even for small finite fields.
The bottleneck lies in Proposition 15. If the probability nO(1)

qΩ(1) could be improved to nO(1)

qΩ(n) ,
then we would be done. We believe it possible to utilize the structure of invariant subspaces
under matrix actions over Fq to achieve this. However, we expect that the calculations will
be tedious and heavy, so we hope to leave this to a future work.

5.3.1 Restricting to the diagonal group
Briefly speaking, conditions 1 and 2 ensure that we first restrict to monomial matrices.
Conditions 3 and 4 prevent non-trivial permutations due to the following. As we assume
n = Ω(1), by Observation 12, σ ∈ Sn either fixes 6 elements in [n], or moves a set of 6
elements to another, disjoint, set of 6 elements. Condition 3 ensures that the second case
could not happen. Condition 4 ensures that in the first case, the only possible invertible
matrices that “preserves” the matrices Gi for i ∈ P when multiplying from the left are scalar
matrices.

We now prove Proposition 16.

Proof of Proposition 16. Recall that we construct such Ã and B̃ from A and B, respectively,
using the method in Section 5.2. Let Ã and B̃ be alternating matrix spaces in Λ(7n, q),
spanned by the frontal slices of Ã and B̃, respectively.

We want to show that Ã and B̃ are isometric if and only if A and B are isometric via diag-
onal matrices. The if direction is straightforward. Suppose there exist P = diag(α1, . . . , αn) ∈

diag(n, q) and Q ∈ GL(m, q) such that P tAP = BQ. Let P̃ =
[
P 0
0 I6n

]
∈ GL(7n, q). Let

Q̃ =
[
Q 0
0 Q′

]
∈ GL(m + 4n2), where Q′ = diag(α1I4n, . . . , αnI4n). Then it is easy to verify

that P̃ tÃP̃ = B̃Q̃.
Now we turn to the only if direction. If Ã and B̃ are isometric, then there exists

P̃ ∈ GL(7n, q) and Q̃ ∈ GL(m + 4n2, q), such that P̃ tÃP̃ = B̃Q̃. Let P̃ =
[
P1,1 P1,2
P2,1 P2,2

]
, where

P1,1 is of size n× n. It can be checked easily, from the lateral viewpoint, that P1,2 = 0. As

CCC 2021

16:24 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

if not, then some Hi would appear in one of the last 6n lateral slices in ÃP̃ . This would
set this slice to be of rank ≥ 4n by condition (1), which contradicts that the corresponding
lateral slice of B̃Q̃ is of rank ≤ n. It follows that P1,1 ∈ GL(n, q) and P2,2 ∈ GL(6n, q).

We first claim that P1,1 has to be a monomial matrix. If not, then one of the first n

lateral slice of ÃP̃ has two distinct Hi and Hj . By condition (2), this slice is of rank ≥ 6n,
which contradicts that the corresponding lateral slice of B̃Q̃ is of rank ≤ 5n.

We further claim that P1,1 has to be a diagonal matrix. If not, then suppose the non-trivial
permutation underlying P1,1 is σ ∈ Sn. Since we assumed n = Ω(1), by Observation 12, one
of the following two cases has to happen.
∃{i1, . . . , i6} ⊆ [n], {j1, . . . , j6} ⊆ [n], |{i1, . . . , i6} ∪ {j1, . . . , j6}| = 12, such that σ(ik) =
jk for k ∈ [6]. We then claim the following.

▷ Claim 19. For P̃ tÃP̃ = B̃Q̃ to hold, a necessary condition is that ∀k ∈ [6], P2,2Hjk
and

Hik
have the same linear span.

Proof. To see this, note that the ikth lateral slice of P̃ tÃP̃ is the jkth lateral slice of P̃ tÃ
(up to a scalar multiple). It is equal to the ikth lateral slice of B̃Q̃. Then P̃ t acts on the

left on the jkth lateral slice of Ã. Noting that P t =
[
P t

1,1 P t
2,1

0 P t
2,2

]
and the jkth lateral

slice of Ã is C ′
jk

=
[
Cjk

0
0 Gjk

]
, we see that P tC ′

jk
=

[
∗ ∗
0 P t

2,2Gjk

]
. (Here, Ci and Gi are

defined in Section 5.2.) On the other hand, we see that the ikth lateral slice of B̃Q̃ is the
ikth lateral slice multiplied from the right by Q̃. Our claim follows then by comparing
the last 6n rows. ◁

But the condition (3) excludes the existence of such P2,2, so this cannot happen.
∃{i1, . . . , i6} ⊆ [n], ik all different, such that σ(ik) = ik. In this case, for P̃ tÃP̃ = B̃Q̃

to hold, by the same argument as in the proof of Claim 19, a necessary condition is
that P2,2Hik

and Hik
have the same linear span. Then the condition (4) ensures that

P2,2 = λI6n for some λ ̸= 0 ∈ F in this setting. Then because σ is non-trivial, σ moves
some i ∈ [n] to j ∈ [n], i ̸= j. By comparing the jth lateral slice of P̃ tÃ and the ith
lateral slice of B̃Q̃, P2,2Hi = λHi and Hj have the same linear span, which is not possible
because the condition (2) ensures that Hi and Hj span different subspaces.

We then have shown that P1,1 must be a diagonal matrix. By comparing the top-left-front
sub-tensors of size n× n×m of P̃ tÃP̃ and B̃Q̃, we arrive at the desired conclusion that A
and B are isometric via the diagonal matrix P1,1. ◀

5.3.2 Using the gadget for counting-to-decision reduction
The strategy follows closely the counting to decision reduction for graph isomorphism.

We first review the strategy for counting to decision reduction for graph isomorphism [54].
Suppose we are given two graphs with the vertex set being [n], i.e. G, H ⊆

([n]
2

)
. We first

use the decision oracle to decide whether G and H are isomorphic. If not, the number of
isomorphisms is 0. If so, we turn to compute the order of Aut(G). Let A = Aut(G). For
i ∈ [n], let Ai = {σ ∈ A : ∀1 ≤ j ≤ i, σ(j) = j}. Set A0 = A. We then have the tower of
subgroups A0 ≥ A1 ≥ · · · ≥ An = {id}. The order of A0 is then the product of [Ai : Ai+1],
the index of Ai+1 in Ai, for i = 0, 1, . . . , n− 1. Let Gi be the graph with the first i vertices
in G individualized. Then Aut(Gi) ∼= Ai. To compute [Ai : Ai+1], we note that it is equal to
the size of the orbit of the vertex i + 1 under Ai. For each j ≥ i + 1, construct from Gi two

J. A. Grochow and Y. Qiao 16:25

graphs G′
i and G′′

i as follows. In G′
i, individualize i + 1, and in G′′

i , individualize j. Then j

is in the orbit of i + 1 under Ai if and only if G′
i and G′′

i are isomorphic. Enumerating over
j ≥ i + 1 gives us the size of the orbit of i + 1 under Ai. This finishes an overview of the
idea for counting to decision reduction for graph isomorphism.

We then apply the above strategy to get a counting to decision reduction for alternating
matrix space isometry to prove Proposition 17.

Proof of Proposition 17. Our goal is to compute the number of isomorphisms from A to B,
where A,B ≤ Λ(n, q) are of dimension m. First, we use the decision oracle first to decide
whether A and B are isometric. If not, the number of isometries is 0. If so, we need to
caculate the order of the autometry group of A, Aut(A). To do that, we first randomly
sample n 6n × 4n matrices H1, . . . , Hn over Fq, and verify whether they satisfy the four
conditions in Section 5.2 using Remark 14. Note that this is where the algorithm needs to
be a Las Vegas algorithm.

Let A = Aut(A). Recall that ei denotes the ith standard basis vector in Fn
q . For i ∈ [n],

let Ai = {T ∈ A : ∀1 ≤ j ≤ i, T (ei) = λiei, λi ̸= 0 ∈ Fq}. Note that An = A∩ diag(n, q). We
can calculate the order of An in time qO(n) by brute-force, i.e., enumerating all invertible
diagonal matrices. Set A0 = A. We then have the tower of subgroups A0 ≥ A1 ≥ · · · ≥ An.

To compute the order of A0, it is enough to compute [Ai : Ai+1]. Note that for T, T ′ ∈ Ai,
TAi+1 = T ′Ai+1 as left cosets in Ai if and only if T (ei+1) = λT ′(ei+1) for some λ ̸= 0 ∈ Fq.
So [Ai : Ai+1] is equal to the size of the orbit of ei+1 under Ai in the projective space. Let
v ∈ Fn

q . To test whether v is in the orbit of ei+1 under Ai in the projective space, we tranform
A by P t · P , where P ∈ GL(n, q) sends ei+1 to v and ej to ej for j ̸= i + 1, to get A′. We
then add the diagonal restriction gadget to the first i + 1 lateral slices and the first i + 1
horizontal slices of A and A′, to obtain Ã and Ã′ respectively. Then feed A and A′ to the
decision oracle. By the functionality of the diagonal restriction gadget, v is in the orbit of
ei+1 in the projective space if and only if Ã and Ã′ are isometric. Enumerating v ∈ Fn

q up to
scalar multiples gives us the size of the orbit of ei+1 under Ai in the projective space. This
finishes the description of the algorithm.

A small caveat in the above is that our gadget requires n = Ω(1), so we cannot start
from A0 at the beginning. This issue can be revolved by noting that the order of Ac, for any
constant c, can be computed in time qO(n), by enumerating all possible images of e1, . . . , ec

in time qO(n), adding the diagonal restriction gadget, and utilizing the decision oracle. ◀

5.3.3 Random Hi’s satisfy the requirements when q = nΩ(1)

In the following we will encounter random matrices over Fq as well as random subspaces
in Fn

q . There is a subtle point which we want to clarify now. Let m ≤ n. Note that
there are

(
n
m

)
q

subspaces of Fn
q , and there are N1 = (qn − 1) · . . . · (qn − qm−1) rank-m

matrices of size n ×m. It can be seen easily that each m-dimensional subspace V of Fn
q

has N2 = (qm − 1) · . . . · (qm − qm−1) many representations as rank-m matrices of size
n ×m, i.e. the columns of the matrix span V . It follows that we can work with random
rank-m matrices of size n×m as if we are working with random m-dimensional subspaces of
Fn

q . Such correspondences will be used implicitly for other structures, including direct sum
decompositions.

Now let us get back to our question. We shall show that a random choice of Hi, i ∈ [n],
would satisfy the four conditions we imposed on Hi’s. We will prove that for conditions
k = 1, 2, 3,

Pr[random Hi not satisfy condition k] ≤ nO(1)

qΩ(n) .

CCC 2021

16:26 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

Once these hold, by a union bound, we have

Pr[∃i ∈ [3], random Hi not satisfy condition i] ≤ nO(1)

qΩ(n) .

For condition (4), we will prove that

Pr[random Hi not satisfy condition 4 | Hi satisfy conditions 1, 2, 3] ≤ nO(1)

qΩ(1) .

This then would allow us to conclude that when q = nΩ(1), random Hi’s satisfy all the four
conditions.

We examine the first three conditions one by one.
1. For condition (1), by Fact 13 (2), we have Pr[∃i ∈ [n], rk(Hi) < 4n] ≤ n · Pr[rk(Hi) <

4n] ≤ 2n
q2n+1 .

2. For condition (2), noting that the block matrix (HiHj) is a random 6n× 8n matrix over
Fq, by Fact 13 (2), we have Pr[∃i ̸= j ∈ [n], rk((HiHj)) < 6n] ≤

(
n
2
)
· 2

q8n−6n+1 ≤ n2

q2n+1 .
3. For condition (3), let I = (Hi1 . . . Hi6), and J = (Hj1 . . . Hj6). We see that C is

non-empty if and only if there exists L ∈ GL(6n, q) and Rk ∈ GL(4n, q), k ∈ [6],
such that LHik

Rk = Hjk
. Note that the orbit of I under this group action is of size

at most q(6n)2+6·(4n)2 = q132n2 . Since ik and jℓ are all different, the probability of
J belonging to this orbit is ≤ q132n2

q144n2 = 1
q12n2 . We then have Pr[∃ik, jk ∈ [n], k ∈

[6], ik, jk all different, C = ∅] ≤
(

n
12

) 2
q12n2 ≤ n12

q12n2 .

We now focus on condition (4). For condition (4), we first assume that the conditions (1)
and (2) as above hold. Then Vi’s are random 4n-dimensional subspaces of F6n

q . Note that

Pr[∃ik ∈ [n], k ∈ [6], ik all different, S non-scalar] ≤ n6 · Pr[S non-scalar for V1, . . . , V6].

So we turn to study Pr[S non-scalar for V1, . . . , V6], and will show that it is ≤ 1
qΩ(1) .

Let U1 = V1 ∩ V2, U2 = V2 ∩ V3, and U3 = V1 ∩ V3. Let W1 = V4 ∩ V5, W2 = V5 ∩ V6, and
W3 = V4 ∩ V6. Since conditions (1) and (2) hold, we have dim(Ui) = dim(Wi) = 2n. We
claim that with probability ≥ 1− 2/q, F6n

q = U1⊕U2⊕U3, i.e., U1 ∪U2 ∪U3 span F6n
q . This

can be seen as follows. Since we assumed conditions (1) and (2), this happens if and only if
V1 ∩ V2 and V3 together span F6n

q . Therefore we calculate, using Fact 13 (1), (3), and (5),
that

Pr[V3 is a complement subspace of V1 ∩ V2]

= q2n·4n/

(
6n

4n

)
q

= (q6n − q2n)(q6n − q2n+1) . . . (q6n − q6n−1)
(q6n − 1)(q6n − q) . . . (q6n − q4n−1)

≥ (q6n − q2n)(q6n − q2n+1) . . . (q6n − q6n−1)
q6n · q6n · · · · · q6n

= (1− 1/q4n)(1− 1/q4n−1) . . . (1− 1/q)

≥ 1−
4n∑

i=1
1/qi ≥ 1− 2/q.

It follows that with probability ≥ 1− 4/q, we can assume in addition that Wi form a direct
sum decomposition of F6n

q .
Therefore, we turn to bound the probability that there exists a non-scalar invertible

matrix stabilizing these two direct sum decompositions of F6n
q . Since ik are all different,

the two direct sum decompositions U1 ⊕ U2 ⊕ U3 and W1 ⊕ W2 ⊕ W3 are independent.

J. A. Grochow and Y. Qiao 16:27

So we can assume that Ui is spanned by those standard basis vectors ⃗e2n(i−1)+1, . . . , ⃗e2ni,
i = 1, 2, 3. The group that stabilizes this direct sum decomposition U1 ⊕ U2 ⊕ U3 consists ofD1 0 0

0 D2 0
0 0 D3

 ∈ GL(6n,Fq) where Di is of size 2n× 2n.

The question then becomes to bound the probability for a random W1 ⊕ W2 ⊕ W3
to be stabilized by a non-scalar matrix of the above form. This can be formulated as
the following linear algebraic problem. (Recall the correspondence between random m-
dimensional subspaces and random rank-m matrices as discussed at the beginning of the

subsection.) Let W =

W11 W12 W13
W21 W22 W23
W31 W32 W33

 ∈ GL(6n, q) be a block matrix where Wij is of

size 2n×2n. Suppose the columns of

W1i

W2i

W3i

 span Wi. Then D = diag(D1, D2, D3) stabilizes

W1 ⊕W2 ⊕W3 if and only if there exists a block diagonal matrix E = diag(E1, E2, E3),
Ei ∈ GL(2n, q), such thatD1 0 0

0 D2 0
0 0 D3

 W11 W12 W13
W21 W22 W23
W31 W32 W33

 =

W11 W12 W13
W21 W22 W23
W31 W32 W33

 E1 0 0
0 E2 0
0 0 E3

 . (5)

Note that each direct sum decomposition W1 ⊕W2 ⊕W3, dim(Wi) = 2n, has 6 · |GL(2n, q)|3
such matrix representations. (The factor 6 takes care of the orders of the three summands.)
So the question becomes to bound the probability for a random invertible matrix to have a
non-scalar D and E satisfying Equation 5.

First, note that Equation 5 holds if and only if DiWi,j = Wi,jEj for i, j ∈ [3].

▷ Claim 20. When q = Ω(1), we have Pr[∀i, j ∈ [3], rk(Wi,j) = 2n] ≥ 1− 20
q .

Proof. Let us work in the setting when W is a random matrix, not necessarily the one
above. Then Pr[rk(W) = 6n] ≥ 1 − 2

q . For any i, j ∈ [3], Pr[rk(Wi,j) < 2n] ≤ 2
q , so

Pr[∃i, j ∈ [3], rk(Wi,j) < 2n] ≤ 18
q . It follows that Pr[∃i, j ∈ [3], rk(Wi,j) < 2n | rk(W) =

6n] = Pr[∃i, j ∈ [3], rk(Wi,j) < 2n ∧ rk(W) = 6n]/ Pr[rk(W) = 6n] ≤ 18/q
1−2/q = 18

q−2 ≤
20
q ,

where the last inequality uses that q = Ω(1). ◁

So we assume that rk(Wi,j) = 2n for all i, j ∈ [3] in the following, with a loss of probability
≤ 20

q .
For i ∈ [3], by DiWii = WiiEi, we have Di = WiiEiW

−1
ii . For i ̸= j, by

(WjjEjW −1
jj)Wji = DjWji = WjiEi, we have Ej = W −1

jj WjiEiW
−1
ji Wjj . Again for i ̸= j,

we have WiiEiW
−1
ii Wij = DiWij = WijEj = WijW −1

jj WjiEiW
−1
ji Wjj . It follows that

∀i, j ∈ [3], i ̸= j, EiW
−1
ii WijW −1

jj Wji = W −1
ii WijW −1

jj WjiEi.

In particular, E3 commutes with X = W −1
33 W32W −1

22 W23 and Y = W −1
33 W31W −1

11 W13. Since
Wij are independent random invertible matrices, X and Y are independent random invertible
matrices. We now resort to the following classical result.

▶ Theorem 21 ([41], cf. also [23, 40]). Let X and Y be two random matrices in SL(n, q).
Then the probability of X and Y not generating SL(n, q) is ≤ 1

qΩ(n) .

CCC 2021

16:28 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

Back to our setting, the above theorem implies that the group G generated by random X

and Y from GL(2n, q) contains SL(2n, q) with probability ≥ 1 − 1
qΩ(n) . It follows that E3

belongs to the centralizer of G, so E3 must be a scalar matrix. Then note that Di’s and other
Ei’s are all conjugates of E3. So we have ∀i ∈ [3], Di = Ei = λI2n for some λ ̸= 0 ∈ Fq.

Summarizing the above, we have

Pr[S non-scalar for V1, . . . , V6]

≤ Pr[S non-scalar for Vi ∧ F6n
q = U1 ⊕ U2 ⊕ U3 = W1 ⊕W2 ⊕W3] + 4

q

≤ Pr[S non-scalar for Vi | F6n
q = U1 ⊕ U2 ⊕ U3 = W1 ⊕W2 ⊕W3] + 4

q

≤ Pr[D non-scalar for W ∧ ∀i, j ∈ [3], rk(Wij) = 2n] + 20
q

+ 4
q

≤ Pr[D non-scalar for W | ∀i, j ∈ [3], rk(Wij) = 2n] + 24
q

≤ 1
qΩ(n) + 24

q

≤ 1
qΩ(1) ,

when q = nΩ(1). This concludes the proof of Proposition 15. ◀

6 Application to p-Group Isomorphism, using constructive Baer and
Lazard Correspondences

The applications to p-Group Isomorphism rely on the following well-known connections
between alternating bilinear maps and Lie algebras on the one hand, and p-groups of
“small” class on the other. We present these connections here, partly for audiences not from
computational group theory, and partly because we will need to address some computational
aspects of these procedures. We begin with some preliminaries.

6.1 Preliminaries
TI-completeness. As the proof of Theorem P in Section 6.3.1 uses a result on TI-
completeness from [32], here we recall the definition of TI; see Definition 6 for the d-Tensor
Isomorphism problem.

▶ Definition 22 (dTI, TI). For any field F, dTIF denotes the class of problems that are
polynomial-time Turing (Cook) reducible to d-Tensor Isomorphism over F. Also let
TIF =

⋃
d≥1 dTIF.

The relationship between TI over different fields remains an intriguing open question [32],
but here we will only need TI over Fp. One of the the main results of [32] is that TI = dTI
for any fixed d ≥ 3.

Algebras and their algorithmic representations. A Lie algebra A consists of a vector space
V and a bilinear map [,] : V × V → V that is alternating ([v, v] = 0 for all v ∈ V ; this is
equivalent to skew-symmetry [u, v] = −[v, u] in characteristic not 2) and satisfies the Jacobi
identity [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0. The Jacobi identity is essentially the “derivative”
of associativity.

J. A. Grochow and Y. Qiao 16:29

After choosing an ordered basis (b1, . . . , bn) where bi ∈ Fn of V ∼= Fn, this bilinear map
[,] can be represented by an n× n× n 3-way array A, such that [bi, bj] =

∑
k∈[n] A(i, j, k)bk.

This is the structure constant representation of A. Algorithms for Lie algebras have been
studied intensively in this model, e. g., [21, 38].

It is also natural to consider matrix spaces that are closed under commutator. More
specifically, let A ≤ M(n,F) be a matrix space. If A is closed under commutator, that is,
for any A, B ∈ A, [A, B] = AB −BA ∈ A, then A is a matrix Lie algebra with the product
being the commutator. (Protip: one way to remember the Jacobi identity is to derive it as
the natural identity among nested commutators of three matrices.) Algorithms for matrix
Lie algebras have also been studied, e. g., [24, 36,38].

6.2 Constructive Baer Correspondence and Theorems A and B
Let us review Baer’s Correspondence [7], which connects alternating bilinear maps with
p-groups of class 2 and exponent p. Let P be a p-group of class 2 and exponent p, p > 2.
Suppose the commutator subgroup [P, P] ∼= Zm

p and P/[P, P] ∼= Zn
p . Then the commutator

map [,] : P/[P, P] × P/[P, P] → [P, P] is an alternating bilinear map. Conversely, let
ϕ : Zn

p × Zn
p → Zm

p be an alternating bilinear map. Then a p-group of class 2 and exponent
p, denoted as Pϕ can be defined as follows. The group elements are from Zn

p × Zm
p , and the

group product · is defined as

(u, v) · (u′, v′) = (u + u′, v + v′ + 1
2ϕ(u, u′)).

We say that (A, B) ∈ GL(n, p) × GL(m, p) is a pseudo-autometry of ϕ, if ϕ = B ◦ ϕ ◦ A.
Wilson [71] elucidated the structure of Aut(Pϕ) in terms of the pseudo-autometry group of
ϕ, that we denote ΨAut(ϕ). Here we recall the consequence of Wilson’s result that we need
for counting group isomorphisms.

▶ Proposition 23 (Wilson [71, Prop. 3.8], see [15, Prop. 2.4] for notation closer to ours). For
ϕ : Zn

p × Zn
p → Zm

p an alternating bilinear map,

|Aut(Pϕ)| = |ΨAut(ϕ)|pnm,

where ΨAut(ϕ) denotes the pseudo-autometry group of ϕ.

We then state a lemma which can be viewed as a constructive version of Baer’s Corres-
pondence, communicated to us by James B. Wilson.

▶ Lemma 24 (Constructive version of Baer’s Correspondence for matrix groups). Let p be
an odd prime. Over the finite field F = Fpe , Alternating Matrix Space Isometry is
equivalent to Group Isomorphism for matrix groups over F that are p-groups of class 2
and exponent p. More precisely, there are functions computable in time poly(n, m, log |F|):

G : Λ(n,F)m → M(n + m + 1,F)n+m and
Alt : M(n,F)m → Λ(m,F)O(m2)

such that: (1) for an alternating bilinear map A, the group generated by G(A) is the Baer
group corresponding to A, (2) G and Alt are mutually inverse, in the sense that the group
generated by G(Alt(M1, . . . , Mm)) is isomorphic to the group generated by M1, . . . , Mm, and
conversely Alt(G(A)) is pseudo-isometric to A.

Proof. First, let G be a p-group of class 2 and exponent p given by m generating matrices
of size n× n over F. Then from the generating matrices of G, we first compute a generating
set of [G, G], by just computing all the commutators of the given generators. We can then

CCC 2021

16:30 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

remove those redundant elements from this generating set in time poly(log |[G, G]|, log |F|),
using Luks’ result on computing with solvable matrix groups [51]. We then compute a
set of representatives of a non-redundant generating set of G/[G, G], again using Luks’s
aforementioned result. From these data we can compute an alternating bilinear map
representing the commutator map of G in time poly(n, m, log |F|).

Conversely, let an alternating bilinear map be given by A = (A1, . . . , Am) ∈ Λ(n,F)m.
From A, for i ∈ [n], construct Bi = [A1ei, . . . , Amei] ∈ M(n ×m,F), where ei is the ith
standard basis vector of Fn. That is, the jth column of Bi is the ith column of Aj . Then for
i ∈ [n], construct

B̃i =

1 et
i 0

0 In Bi

0 0 Im

 ∈ GL(1 + n + m,F),

where ei ∈ Fn, and for j ∈ [m], construct

C̃j =

1 0 et
j

0 In 0
0 0 Im

 ∈ GL(1 + n + m,F),

where ej ∈ Fm. Let G(A) be the matrix group generated by B̃i and C̃j . Then it can be verified
easily that, G(A) is isomorphic to the Baer group corresponding to the alternating bilinear
map defined by A. In particular, [G, G] ∼= Fm ∼= Zem

p (isomorphism of abelian groups), and
G/[G, G] ∼= Fn ∼= Zen

p . This construction can be done in time poly(n, m, log |F|). ◀

Given the above lemma, we can present search- and counting-to-decision reductions for
testing isomorphism of a class of p-groups, proving Theorems A and B.

Proof of Theorem A. The search-to-decision reduction follows from Theorem A′, using the
qO(n+m)-time algorithm, with the constructive version of Baer’s Correspondence in the model
of matrix groups over finite fields (Lemma 24).

In more detail, given Lemma 24 we can follow the procedure in the proof of Theorem A′.
For the given p-groups, we compute their commutator maps. Then whenever we need to
feed the decision oracle, we transform from the alternating bilinear map to a generating set
of a p-group of class 2 and exponent p with this bilinear map as the commutator map. After
getting the desired pseudo-isometry for the alternating bilinear maps, we can easily recover
an isomorphism between the originally given p-groups. ◀

Proof of Theorem B. For the counting-to-decision reduction, we basically follow the above
routine, but with a twist, because of the minor distinction between alternating matrix space
isometry, and alternating bilinear map pseudo-isometry. Let us briefly explain this issue.
Suppose from an alternating bilinear map ϕ : Zn

p × Zn
p → Zm

p we constructed the p-group Pϕ

of class 2 and exponent p; by Proposition 23 |Aut(Pϕ)| = pnm|ΨAut(ϕ)|, so by multiplying
the result by pnm, it is necessary and sufficient to count the psuedo-autometries of ϕ.

Towards that end, let (C1, . . . , Cm) ∈ Λ(n, p) be a matrix representation of ϕ. If Ci’s are
linearly independent, then for a pseudo-autometry (A, B) ∈ GL(n, p)×GL(m, p), given A

there exists a unique B that makes (A, B) a pseudo-autometry. If Ci’s are not linearly inde-
pendent, say the linear span of Ci’s is of dimension m′, then the number of B such that (A, B)
is a pseudo-autometry (assuming there are any) is |M((m−m′)×m′, p)||GL(m−m′, p)| =
pm′(m−m′)|GL(m−m′, p)|. To see this, suppose that we have taken linear combinations of the
Ci so that C1, . . . , C ′

m are linearly independent and Cm′+1, Cm′+2, . . . , Cm are zero. Then

J. A. Grochow and Y. Qiao 16:31

without changing the Ci, we may take any invertible linear combination among Cm′+1, . . . , Cm

(a copy of GL(m−m′, p)), and we may add any linear combination of the last m−m′ matrices
to the first m′ matrices (a copy of M((m−m′)×m′, p)). The counting to decision reduction
for Alternating Matrix Space Isometry computes the number of A ∈ GL(n, p) so that
there exists some B ∈ GL(m, p) such that (A, B) is a pseudo-autometry. So it needs to be
multiplied by a factor of pm′(m−m′)|GL(m−m′, p)|. ◀

6.3 Constructive Lazard’s Correspondence and Theorem P
The Lazard Correspondence [46] is a correspondence between certain classes of groups and
Lie algebras, which extends the usual correspondence between Lie groups and Lie algebras
(say, over R) to some groups and Lie algebras in positive characteristic. Here we state just
enough to give a sense of it; for further details and exposition we refer to Khukhro’s book [43]
and Naik’s thesis [60]. While Naik’s thesis is quite long, it also includes a reader’s guide,
and collects many results scattered across the literature or well-known to the experts in one
place, building the theory from the ground up and with many examples.

Recall that a Lie ring is an abelian group L equipped with a bilinear map [,], called the
Lie bracket, which is (1) alternating ([x, x] = 0 for all x ∈ L) and (2) satisfies the Jacobi
identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L (in some sense the “derivative”
of the associativity equation). Let L1 = L, and Li+1 = [L, Li], which is the subgroup (of
the underlying additive group) generated by all elements of the form [x, y] for x ∈ L, y ∈ Li.
Then L is nilpotent if Lc+1 = 0 for some finite c; the smallest such c is the nilpotency class.
(Lie algebras are just Lie rings over a field.)

The correspondence between Lie algebras and Lie groups over R uses the Baker–Campbell–
Hausdorff (BCH) formula to convert between a Lie algebra and a Lie group, so we start
there. The BCH formula is the solution to the problem that for non-commuting matrices
X, Y , eXeY ≠ eX+Y in general (where the matrix exponential here is defined using the power
series for ex). Rather, using commutators [A, B] = AB −BA, we have

exp(X) exp(Y) = exp
(

X + Y + 1
2[X, Y] + 1

12 ([X, [X, Y]]− [Y, [X, Y]]) + · · ·
)

,

where the remaining terms are iterated commutators that all involve at least 4 Xs and Y s,
and successive terms involve more and more. Applying the exponential function to a Lie
algebra in characteristic zero yields a Lie group. The BCH formula can be inverted, giving
the correspondence in the other direction.

In a nilpotent Lie algebra, the BCH formula has only finitely many nonzero terms, so
issues of convergence disappear and we may consider applying the correspondence over
finite fields or rings; the only remaining obstacle is that the denominators appearing in the
formula must be units in the ring. It turns out that the correspondence continues to work
in characteristic p so long as one does not need to use the p-th term of the BCH formula
(which includes division by p), and the latter is avoided whenever a nilpotent group has
class strictly less than p, or even when all subgroups generated by at most 3 elements have
class strictly less than p. While the correspondence does apply more generally, here we only
state the version for finite groups. For any fixed nilpotency class c, computing the Lazard
Correspondence is efficient in theory; for how to compute it in practice when the groups are
given by polycyclic presentations, see [20].

Let Grpp,n,c denote the set of finite groups of order pn and class c, and let Liep,n,c denote
the set of Lie rings of order pn and class c. We note that for nilpotency class 2, the Baer
Correspondence is the same as the Lazard Correspondence.

CCC 2021

16:32 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

▶ Theorem 25 (Lazard Correspondence for finite groups [46], see, e. g., [43, Ch. 9 & 10]
or [60, Ch. 6]). For any prime p and any 1 ≤ c < p, there are functions log : Grpp,n,c ↔
Liep,n,c : exp such that (1) log and exp are inverses of one another, (2) two groups
G, H ∈ Grpp,n,c are isomorphic if and only if log(G) and log(H) are isomorphic, and (3)
if G has exponent p, then the underlying abelian group of log(G) has exponent p. More
strongly, log is an isomorphism of categories Grpp,n,c

∼= Liep,n,c.

Part (3) can be found as a special case of [60, Lemma 6.1.2].
For p-groups given by d×d matrices over the finite field Fpe , we will need one additional fact

about the correspondence, namely that it also results in a Lie algebra of d×d matrices. (Being
able to bound the dimension of the Lie algebra and work with it in a simple linear-algebraic
way seems crucial for our reduction to work efficiently.) In fact, the BCH Correspondence is
easier to see for matrix groups using the matrix exponential and matrix logarithm; most of
the work for BCH and Lazard is to get the correspondence to work even without the matrices.
In some sense, this is thus the “original” setting of this correspondence. Though it is surely
not new, we could not find a convenient reference for this fact about matrix groups over
finite fields, so we state it formally here.

▶ Proposition 26 (cf. [43, Exercise 10.6]). Let G ≤ GL(d,Fpe) be a finite p-subgroup of
exponent p, consisting of d× d matrices over a finite field of characteristic p. Then log(G)
(from the Lazard Correspondence) can be realized as a finite Lie subalgebra of de×de matrices
over Fp. Given a generating set for G of m matrices, a generating set for log(G) can be
constructed in poly(d, n, e log p) time.

Khukhro [43] gives the characteristic zero analogue of this result (minus the straightforward
complexity analysis) for the full group of upper unitriangular matrices as Exercise 10.6. One
way to see Proposition 26 is to use the characteristic zero result, apply the fact that these
isomorphisms are in fact equivalence of categories (and thus hold for subgroups/subalgebras
as well), and note that the same formulae in characteristic zero apply in characteristic p so
long as one never needs to divide by p. We now sketch the argument.

Proof sketch. First we use the standard embedding of GL(d,Fpe) into GL(de,Fp) (replace
each element by an e×e block which is the left regular representation of Fpe acting on itself as
an e-dimensional Fp-vector space), to realize G as a subgroup of GL(de,Fp). G is conjugate
in GL(de,Fp) to a group of upper unitriangular matrices (upper triangular with all 1s on the
diagonal); this is a standard fact that can be seen in several ways, for example, by noting that
the group U of all upper unitriangular matrices in GL(de,Fp) is a Sylow p-subgroup, and
applying Sylow’s Theorem. (Note that we do not need to do this conjugation algorithmically,
though it is possible to do so [27,36,64]; this is only for the proof.) Thus we may write every
g ∈ G as 1 + n, where the sum here is the ordinary sum of matrices, 1 denotes the identity
matrix, and n is strictly upper triangular. To see that we can truncate the Taylor series for
logarithm before the p-th term (thus avoiding needing to divide by p), note that (1 + n)p = 1
since G is exponent p. We have (1 + n)p = 1p +

(
p
1
)
n +

(
p
2
)
n2 + · · ·+

(
p

p−1
)
np−1 + np. Since

these are matrices over a field of characteristic p, and p|
(

p
i

)
for all 1 ≤ i ≤ p − 1, all the

intermediate terms vanish and we have that (1 + n)p = 1p + np. Thus 1 = (1 + n)p = 1 + np,
so we get that np = 0. Thus, in the the Taylor series for the logarithm

log(1 + n) = n− n2

2 + n3

3 − · · ·

the last nonzero term is np−1/(p− 1), so we may use this Taylor series even over Fpe .

J. A. Grochow and Y. Qiao 16:33

The main things to check are that the set log(G) := {log(1 + n) : 1 + n ∈ G} is closed
under scalar multiplication, matrix addition, and matrix commutator [X, Y] = XY − Y X.
Suppose g1, g2 are matrices in G, and write them as gi = 1 + ni (i = 1, 2), as above. We
recall that, because np

i = 0 from above, the power series for both log and exp work to
compute the matrix logarithm and exponential over Fpe , respectively, and that the usual
rules of logarithms are satisfied for a single matrix A: whenever A ∈ Mde(Fp) satisfies
Ap = 0, we have log exp A = A, exp log(1 + A) = 1 + A, exp(nA) = (exp A)n for n ∈ Z, and
log((1 + A)n) = n log(1 + A).

Scalar multiplication: For α ∈ Fp, we show that α log(1 + n1) is in log(G). This
is easy to show, as it follows directly from the rules of logarithms just mentioned:
α log(1 + n1) = log((1 + n1)α) where on the right-hand side we treat α as an integer in
the range [0, p− 1]. (This is the only point where we are using that we are working over
Fp now rather than Fpe .)
Addition: Let xi = log(1 + ni) for i = 1, 2. We want to show that x1 + x2 is in log(G), or
equivalently that exp(x1 + x2) ∈ G. This follows from the first inverse BCH formula h1,
which satisfies exp(x̂1 + x̂2) = h1(exp(x̂1), exp(x̂2)) for x̂i in the free nilpotent-of-class-c
Fp-Lie algebra, and then we may apply the homomorphism from the latter algebra to
the subalgebra of Mn(Fp) generated by the ni to see that the same formula works. (We
note, because a reviewer asked, that here we do not need this entire subalgebra to be in
{g − 1 : g ∈ G}; the use of that subalgebra is just convenient for talking about algebra
homomorphisms in the proof. Rather, it suffices that the preceding equation holds for
these particular elements ni, which are by definition of the form gi − 1 for some matrices
gi ∈ G.)
Commutator: [log(1 + n1), log(1 + n2)]. A similar argument as in the previous case
works, using the second inverse BCH formula h2, which satisfies exp([x̂1, x̂2]) =
h2(exp(x̂1), exp(x̂2)).

Equivalently, we may note that the derivation of the inverse BCH formulas in [43] uses a
free nilpotent associative algebra as an ambient setting in which both the group (or rather, n

such that 1 + n is in the group) and the corresponding Lie algebra live; in our case, we may
replace the ambient free nilpotent associative algebra with the algebra of de × de strictly
upper-triangular matrices over Fp, and all the derivations remain the same, mutatis mutandis.
See, for example, [43, p. 105, “Another remark...”]. ◀

6.3.1 Class reduction in p-group isomorphism testing
Proposition 26 now allows us to prove Theorem P.

Proof of Theorem P. By the Lazard Correspondence (reproduced as Theorem 25) two p-
groups of exponent p and class c < p are isomorphic if and only if their corresponding Fp-Lie
algebras are. By Proposition 26, we can construct a generating set for the corresponding
Fp-Lie algebra by applying the power series for logarithm to the generating matrices of G.
This Lie algebra is thus a subalgebra of ne × ne matrices over Fp, so we can generate a
basis for the entire Lie algebra (using the linear-algebra version of breadth-first search; its
dimension is ≤ (ne)2) and compute its structure constants in time polynomial in n, m, and
e log p. Then use [28] to reduce isomorphism of Lie algebras to 3-Tensor Isomorphism,
and then use the fact that isomorphism of p-groups of exponent p and class 2 given by a
matrix generating set over Fp is TI-complete [32] to reduce to the latter problem. ◀

CCC 2021

16:34 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

7 Conclusion

In this paper, we gave first-of-their-kind results around search-to-decision, counting-to-
decision, and reductions to hard instances in the context of Group Isomorphism. We
focused on p-groups of class 2 (or more generally small class) and exponent p, as these are
widely believed to be the hardest cases of GpI. They also have the closest connection with
tensors.

We view this paper as the second in a planned series, focusing on isomorphism problems for
tensors, groups, polynomials, and related structures. Although Graph Isomorphism (GI)
is perhaps the most well-studied isomorphism problem in computational complexity – even
going back to Cook’s and Levin’s initial investigations into NP (see [1, Sec. 1]) – it has long
been considered to be solvable in practice [55, 56], and Babai’s recent quasi-polynomial-time
breakthrough is one of the theoretical gems of the last several decades [3]. However, several
isomorphism problems for tensors, groups, and polynomials seem to be much harder to solve,
both in practice – they’ve been suggested as difficult enough to support cryptography [39,61] –
and in theory: the best known worst-case upper bounds are barely improved from brute force
(e. g., [49, 66]). As these problems arise in a variety of areas, from multivariate cryptography
and machine learning, to quantum information and computational algebra, getting a better
understanding of their complexity is an important goal with many potential applications.

In the first paper in this series [32], we showed that numerous such isomorphism problems
from many research areas are equivalent under polynomial-time reductions, creating bridges
between different disciplines. The Tensor Isomorphism (TI) problem turns out to occupy a
central position among these problems, leading us to define the complexity class TI, consisting
of those problems polynomial-time reducible to the Tensor Isomorphism problem. The
gadgets and TI-completeness result from that first paper in some cases opened the door, and
in other cases are used as subroutines, in the main results of the current paper.

Finally, we list here some additional questions that we find interesting and approachable.
One question is whether our tensor-based methods here can be extended or combined with
other methods to get analogous results in wider classes of groups; for isomorphism algorithms,
something along these lines was proposed by Brooksbank, Grochow, Li, Wilson, & Qiao [12],
but there are many interesting open questions in this direction.

Getting the results of this paper to work in the Cayley table model would also be
interesting from the complexity-theoretic perspective; the necessary ingredients are discussed
in Remark 2.

Lastly, we mention that extending the results of the present paper, [28], and [32] to rings
beyond fields would be very interesting. In particular, working with tensors over Z/pkZ is
an important step towards extending the results of this paper to p-groups of class 2 without
restricting them to exponent p. (This is particularly important when p = 2, as groups of
exponent 2 are abelian, so the hardest instances of 2-groups, rather than “p-groups of class 2
and exponent p” with p = 2, are often taken to be 2-groups of class 2 and exponent four.)

It seems conceivable that many of our arguments could extend to tensors over local rings –
those with a unique maximal ideal – as many of our arguments are rank-based, and rank still
has nice properties over local rings (e.g. Nakayama’s Lemma). In particular, if R is a ring
and m a maximal ideal, then R/m is a field; in a local ring, there is a unique maximal ideal,
so the field R/m is canonically associated to R, and one can talk cleanly about rank and
dimension of R-modules considered over the field R/m. Besides Z/pkZ, another local ring of
interest is the ring F[[t]] of power series in one variable over a field F; a tensor over F[[t]] is
essentially a 1-parameter family of tensors over F, so studying tensor problems over F[[t]]
could have applications to border rank and geometric complexity theory.

J. A. Grochow and Y. Qiao 16:35

References
1 Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. Inf. Comput.,

256:2–8, 2017. doi:10.1016/j.ic.2017.04.004.
2 Vikraman Arvind and Jacobo Torán. Isomorphism testing: Perspective and open problems.

Bulletin of the EATCS, 86:66–84, 2005.
3 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Proceedings

of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages
684–697, 2016. arXiv:1512.03547 [cs.DS] version 2. doi:10.1145/2897518.2897542.

4 László Babai, Paolo Codenotti, Joshua A. Grochow, and Youming Qiao. Code equivalence
and group isomorphism. In Proceedings of the Twenty-Second Annual ACM–SIAM Symposium
on Discrete Algorithms (SODA11), pages 1395–1408, Philadelphia, PA, 2011. SIAM. doi:
10.1137/1.9781611973082.107.

5 László Babai, Paolo Codenotti, and Youming Qiao. Polynomial-time isomorphism test for
groups with no abelian normal subgroups - (extended abstract). In Automata, Languages, and
Programming - 39th International Colloquium, ICALP 2012, Proceedings, Part I, pages 51–62,
2012. doi:10.1007/978-3-642-31594-7_5.

6 László Babai and Youming Qiao. Polynomial-time isomorphism test for groups with Abelian
Sylow towers. In 29th STACS, pages 453–464. Springer LNCS 6651, 2012. doi:10.4230/
LIPIcs.STACS.2012.453.

7 Reinhold Baer. Groups with abelian central quotient group. Trans. AMS, 44(3):357–386, 1938.
doi:10.1090/S0002-9947-1938-1501972-1.

8 Mihir Bellare and Shafi Goldwasser. The complexity of decision versus search. SIAM J.
Comput., 23(1):97–119, 1994. doi:10.1137/S0097539792228289.

9 Hans Ulrich Besche and Bettina Eick. Construction of finite groups. J. Symb. Comput.,
27(4):387–404, 1999. doi:10.1006/jsco.1998.0258.

10 Hans Ulrich Besche, Bettina Eick, and E.A. O’Brien. A millennium project: Constructing small
groups. Intern. J. Alg. and Comput, 12:623–644, 2002. doi:10.1142/S0218196702001115.

11 Anton Betten, Michael Braun, Harald Fripertinger, Adalbert Kerber, Axel Kohnert, and
Alfred Wassermann. Error-correcting linear codes: Classification by isometry and applications,
volume 18. Springer Science and Business Media, 2006.

12 Peter A. Brooksbank, Joshua A. Grochow, Yinan Li, Youming Qiao, and James B. Wilson.
Incorporating Weisfeiler–Leman into algorithms for group isomorphism. arXiv:1905.02518
[cs.CC], 2019.

13 Peter A. Brooksbank, Yinan Li, Youming Qiao, and James B. Wilson. Improved algorithms for
alternating matrix space isometry: From theory to practice. In Fabrizio Grandoni, Grzegorz
Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA
2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages
26:1–26:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ESA.2020.26.

14 Peter A. Brooksbank and Eugene M. Luks. Testing isomorphism of modules. J. Algebra,
320(11):4020–4029, 2008. doi:10.1016/j.jalgebra.2008.07.014.

15 Peter A. Brooksbank, Joshua Maglione, and James B. Wilson. A fast isomorphism test
for groups whose Lie algebra has genus 2. J. Algebra, 473:545–590, 2017. doi:10.1016/j.
jalgebra.2016.12.007.

16 Peter A. Brooksbank and E. A. O’Brien. Constructing the group preserving a system of forms.
Internat. J. Algebra Comput., 18(2):227–241, 2008. doi:10.1142/S021819670800441X.

17 John J. Cannon and Derek F. Holt. Automorphism group computation and isomorphism testing
in finite groups. J. Symbolic Comput., 35(3):241–267, 2003. doi:10.1016/S0747-7171(02)
00133-5.

18 Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player
Nash equilibria. J. ACM, 56(3):Art. 14, 57, 2009. doi:10.1145/1516512.1516516.

CCC 2021

https://doi.org/10.1016/j.ic.2017.04.004
https://arxiv.org/abs/1512.03547
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1137/1.9781611973082.107
https://doi.org/10.1137/1.9781611973082.107
https://doi.org/10.1007/978-3-642-31594-7_5
https://doi.org/10.4230/LIPIcs.STACS.2012.453
https://doi.org/10.4230/LIPIcs.STACS.2012.453
https://doi.org/10.1090/S0002-9947-1938-1501972-1
https://doi.org/10.1137/S0097539792228289
https://doi.org/10.1006/jsco.1998.0258
https://doi.org/10.1142/S0218196702001115
https://arxiv.org/abs/1905.02518
https://doi.org/10.4230/LIPIcs.ESA.2020.26
https://doi.org/10.4230/LIPIcs.ESA.2020.26
https://doi.org/10.1016/j.jalgebra.2008.07.014
https://doi.org/10.1016/j.jalgebra.2016.12.007
https://doi.org/10.1016/j.jalgebra.2016.12.007
https://doi.org/10.1142/S021819670800441X
https://doi.org/10.1016/S0747-7171(02)00133-5
https://doi.org/10.1016/S0747-7171(02)00133-5
https://doi.org/10.1145/1516512.1516516

16:36 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

19 Alexander Chistov, Gábor Ivanyos, and Marek Karpinski. Polynomial time algorithms for
modules over finite dimensional algebras. In Proceedings of the 1997 International Symposium
on Symbolic and Algebraic Computation, ISSAC ’97, pages 68–74. ACM, 1997. doi:10.1145/
258726.258751.

20 Serena Cicalò, Willem A. de Graaf, and Michael Vaughan-Lee. An effective version of the Lazard
correspondence. J. Algebra, 352(1):430–450, 2012. doi:10.1016/j.jalgebra.2011.11.031.

21 W.A. de Graaf. Lie Algebras: Theory and Algorithms, volume 56 of North-Holland Mathemat-
ical Library. Elsevier Science, 2000.

22 Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlén. Exponential
time complexity of the permanent and the Tutte polynomial. ACM Trans. Algorithms,
10(4):Art. 21, 32, 2014. doi:10.1145/2635812.

23 Sean Eberhard and Stefan-C. Virchow. Random generation of the special linear group.
Transactions of the American Mathematical Society, page 1, 2020. doi:10.1090/tran/8009.

24 Wayne Eberly and Mark Giesbrecht. Efficient decomposition of associative algebras over finite
fields. Journal of Symbolic Computation, 29(3):441–458, 2000. doi:10.1006/jsco.1999.0308.

25 Bettina Eick, C. R. Leedham-Green, and E. A. O’Brien. Constructing automorphism groups
of p-groups. Comm. Algebra, 30(5):2271–2295, 2002. doi:10.1081/AGB-120003468.

26 V. Felsch and J. Neubüser. On a programme for the determination of the automorphism group
of a finite group. In Pergamon J. Leech, editor, Computational Problems in Abstract Algebra
(Proceedings of a Conference on Computational Problems in Algebra, Oxford, 1967), pages
59–60, Oxford, 1970.

27 Katalin Friedl and Lajos Rónyai. Polynomial time solutions of some problems in computational
algebra. In Robert Sedgewick, editor, Proceedings of the 17th Annual ACM Symposium on
Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages 153–162. ACM,
1985. doi:10.1145/22145.22162.

28 Vyacheslav Futorny, Joshua A. Grochow, and Vladimir V. Sergeichuk. Wildness for tensors.
Lin. Alg. Appl., 566:212–244, 2019. doi:10.1016/j.laa.2018.12.022.

29 Joshua A. Grochow. Answer to “what is the hardest instance for the group isomorph-
ism problem?”. Theoretical Computer Science Stack Exchange. URL: https://cstheory.
stackexchange.com/a/42551/129.

30 Joshua A. Grochow and Youming Qiao. Polynomial-time isomorphism test of groups that are
tame extensions - (extended abstract). In Algorithms and Computation - 26th International
Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, pages 578–589,
2015. doi:10.1007/978-3-662-48971-0_49.

31 Joshua A. Grochow and Youming Qiao. Algorithms for group isomorphism via group extensions
and cohomology. SIAM J. Comput., 46(4):1153–1216, 2017. Preliminary version in IEEE
Conference on Computational Complexity (CCC) 2014 (DOI:10.1109/CCC.2014.19). Also
available as arXiv:1309.1776 [cs.DS] and ECCC Technical Report TR13-123. doi:10.1137/
15M1009767.

32 Joshua A. Grochow and Youming Qiao. On the complexity of isomorphism problems for
tensors, groups, and polynomials I: Tensor Isomorphism-completeness. In ITCS, page to
appear, 2021. arXiv:1907.00309.

33 Martin Grohe and Pascal Schweitzer. The graph isomorphism problem. Commun. ACM,
63(11):128–134, 2020. doi:10.1145/3372123.

34 Xiaoyu He and Youming Qiao. On the Baer–Lovász–Tutte construction of groups from graphs:
isomorphism types and homomorphism notions. arXiv:2003.07200 [math.CO], 2020.

35 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput.
System Sci., 62(2):367–375, 2001. Special issue on the Fourteenth Annual IEEE Conference
on Computational Complexity (Atlanta, GA, 1999). doi:10.1006/jcss.2000.1727.

36 Gábor Ivanyos. Fast randomized algorithms for the structure of matrix algebras over finite fields.
In Proceedings of the 2000 international symposium on Symbolic and algebraic computation,
pages 175–183. ACM, 2000. doi:10.1145/345542.345620.

https://doi.org/10.1145/258726.258751
https://doi.org/10.1145/258726.258751
https://doi.org/10.1016/j.jalgebra.2011.11.031
https://doi.org/10.1145/2635812
https://doi.org/10.1090/tran/8009
https://doi.org/10.1006/jsco.1999.0308
https://doi.org/10.1081/AGB-120003468
https://doi.org/10.1145/22145.22162
https://doi.org/10.1016/j.laa.2018.12.022
https://cstheory.stackexchange.com/a/42551/129
https://cstheory.stackexchange.com/a/42551/129
https://doi.org/10.1007/978-3-662-48971-0_49
https://arxiv.org/abs/1309.1776
https://doi.org/10.1137/15M1009767
https://doi.org/10.1137/15M1009767
https://arxiv.org/abs/1907.00309
https://doi.org/10.1145/3372123
https://arxiv.org/abs/2003.07200
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1145/345542.345620

J. A. Grochow and Y. Qiao 16:37

37 Gábor Ivanyos, Marek Karpinski, and Nitin Saxena. Deterministic polynomial time algorithms
for matrix completion problems. SIAM J. Comput., 39(8):3736–3751, 2010. doi:10.1137/
090781231.

38 Gábor Ivanyos and Lajos Rónyai. Computations in associative and Lie algebras. In Some tapas
of computer algebra, pages 91–120. Springer, 1999. doi:10.1007/978-3-662-03891-8_5.

39 Zhengfeng Ji, Youming Qiao, Fang Song, and Aaram Yun. General linear group action on
tensors: A candidate for post-quantum cryptography. In Dennis Hofheinz and Alon Rosen,
editors, Theory of Cryptography - 17th International Conference, TCC 2019, Nuremberg,
Germany, December 1-5, 2019, Proceedings, Part I, volume 11891 of Lecture Notes in Computer
Science, pages 251–281. Springer, 2019. Preprint arXiv:1906.04330 [cs.CR]. doi:10.1007/
978-3-030-36030-6_11.

40 William M. Kantor. Some topics in asymptotic group theory. Groups, Combinatorics and
Geometry (Durham, pages 403–421, 1990.

41 William M Kantor and Alexander Lubotzky. The probability of generating a finite classical
group. Geometriae Dedicata, 36(1):67–87, 1990.

42 Neeraj Kayal and Timur Nezhmetdinov. Factoring groups efficiently. In Susanne Albers,
Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas,
editors, Automata, Languages and Programming, 36th International Colloquium, ICALP
2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume 5555 of Lecture Notes in
Computer Science, pages 585–596. Springer, 2009. Preprint ECCC Tech. Report TR08-074.
doi:10.1007/978-3-642-02927-1_49.

43 E. I. Khukhro. p-automorphisms of finite p-groups, volume 246 of London Mathematical
Society Lecture Note Series. Cambridge University Press, Cambridge, 1998. doi:10.1017/
CBO9780511526008.

44 Johannes Köbler, Uwe Schöning, and Jacobo Torán. The graph isomorphism problem: its
structural complexity. Birkhauser Verlag, Basel, Switzerland, Switzerland, 1993. doi:10.1007/
978-1-4612-0333-9.

45 Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455–500, 2009. doi:10.1137/07070111X.

46 Michel Lazard. Sur les groupes nilpotents et les anneaux de Lie. Ann. Sci. Ecole Norm. Sup.
(3), 71:101–190, 1954. doi:10.24033/asens.1021.

47 François Le Gall. Efficient isomorphism testing for a class of group extensions. In Proc. 26th
STACS, pages 625–636, 2009. doi:10.4230/LIPIcs.STACS.2009.1830.

48 Mark L. Lewis and James B. Wilson. Isomorphism in expanding families of indistinguishable
groups. Groups Complex. Cryptol., 4(1):73–110, 2012. doi:10.1515/gcc-2012-0008.

49 Yinan Li and Youming Qiao. Linear algebraic analogues of the graph isomorphism problem
and the Erdős–Rényi model. In Chris Umans, editor, 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, pages 463–474. IEEE Computer Society, 2017.
doi:10.1109/FOCS.2017.49.

50 Richard J. Lipton, Lawrence Snyder, and Yechezkel Zalcstein. The complexity of word and
isomorphism problems for finite groups. Yale University Department of Computer Science
Research Report # 91, 1977. URL: https://apps.dtic.mil/dtic/tr/fulltext/u2/a053246.
pdf.

51 Eugene M. Luks. Computing in solvable matrix groups. In FOCS 1992, 33rd Annual
Symposium on Foundations of Computer Science, pages 111–120. IEEE Computer Society,
1992. doi:10.1109/SFCS.1992.267813.

52 Eugene M. Luks. Permutation groups and polynomial-time computation. In Groups and
computation (New Brunswick, NJ, 1991), volume 11 of DIMACS Ser. Discrete Math. Theoret.
Comput. Sci., pages 139–175. Amer. Math. Soc., Providence, RI, 1993.

53 Eugene M. Luks. Hypergraph isomorphism and structural equivalence of boolean functions.
In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, May
1-4, 1999, Atlanta, Georgia, USA, pages 652–658, 1999. doi:10.1145/301250.301427.

CCC 2021

https://doi.org/10.1137/090781231
https://doi.org/10.1137/090781231
https://doi.org/10.1007/978-3-662-03891-8_5
https://arxiv.org/abs/1906.04330
https://doi.org/10.1007/978-3-030-36030-6_11
https://doi.org/10.1007/978-3-030-36030-6_11
https://doi.org/10.1007/978-3-642-02927-1_49
https://doi.org/10.1017/CBO9780511526008
https://doi.org/10.1017/CBO9780511526008
https://doi.org/10.1007/978-1-4612-0333-9
https://doi.org/10.1007/978-1-4612-0333-9
https://doi.org/10.1137/07070111X
https://doi.org/10.24033/asens.1021
https://doi.org/10.4230/LIPIcs.STACS.2009.1830
https://doi.org/10.1515/gcc-2012-0008
https://doi.org/10.1109/FOCS.2017.49
https://apps.dtic.mil/dtic/tr/fulltext/u2/a053246.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a053246.pdf
https://doi.org/10.1109/SFCS.1992.267813
https://doi.org/10.1145/301250.301427

16:38 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

54 Rudolf Mathon. A note on the graph isomorphism counting problem. Information Processing
Letters, 8(3):131–136, 1979.

55 Brendan D. McKay. Practical graph isomorphism. Congr. Numer., pages 45–87, 1980.
56 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal of Symbolic

Computation, 60(0):94–112, 2014. doi:10.1016/j.jsc.2013.09.003.
57 Alan H. Mekler. Stability of nilpotent groups of class 2 and prime exponent. The Journal of

Symbolic Logic, 46(4):781–788, 1981.
58 Gary L. Miller. On the nlog n isomorphism technique (a preliminary report). In STOC, pages

51–58. ACM, 1978. doi:10.1145/800133.804331.
59 Takunari Miyazaki. Luks’s reduction of graph isomorphism to code equivalence. Comment to

E. W. Clark, https://groups.google.com/forum/#!msg/sci.math.research/puZxGj9HXKI/
CeyH2yyyNFUJ, 1996.

60 Vipul Naik. Lazard correspondence up to isoclinism. PhD thesis, The University of Chicago,
2013. URL: https://vipulnaik.com/thesis/.

61 Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two
new families of asymmetric algorithms. In Advances in Cryptology - EUROCRYPT ’96, Inter-
national Conference on the Theory and Application of Cryptographic Techniques, Saragossa,
Spain, May 12-16, 1996, Proceeding, pages 33–48, 1996. doi:10.1007/3-540-68339-9_4.

62 Erez Petrank and Ron M. Roth. Is code equivalence easy to decide? IEEE Trans. Inf. Theory,
43(5):1602–1604, 1997. doi:10.1109/18.623157.

63 Youming Qiao, Jayalal M. N. Sarma, and Bangsheng Tang. On isomorphism testing of
groups with normal Hall subgroups. In Proc. 28th STACS, pages 567–578, 2011. doi:
10.4230/LIPIcs.STACS.2011.567.

64 Lajos Rónyai. Computing the structure of finite algebras. J. Symb. Comput., 9(3):355–373,
1990. doi:10.1016/S0747-7171(08)80017-X.

65 David J. Rosenbaum. Bidirectional collision detection and faster deterministic isomorphism
testing. arXiv preprint arXiv:1304.3935 [cs.DS], 2013.

66 David J. Rosenbaum. Breaking the nlog n barrier for solvable-group isomorphism. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1054–1073.
SIAM, 2013. Preprint arXiv:1205.0642 [cs.DS]. doi:10.1137/1.9781611973105.76.

67 Nicolas Sendrier and Dimitris E. Simos. The hardness of code equivalence over Fq and
its application to code-based cryptography. In International Workshop on Post-Quantum
Cryptography, pages 203–216. Springer, 2013.

68 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991. doi:10.1137/0220053.

69 Leslie G. Valiant. Relative complexity of checking and evaluating. Information Processing
Lett., 5(1):20–23, 1976/77. doi:10.1016/0020-0190(76)90097-1.

70 James Wilson. 2014 conference on Groups, Computation, and Geometry at Colorado State
University, co-organized by P. Brooksbank, A. Hulpke, T. Penttila, J. Wilson, and W. Kantor.
Personal communication, 2014.

71 James B. Wilson. Decomposing p-groups via Jordan algebras. J. Algebra, 322(8):2642–2679,
2009. doi:10.1016/j.jalgebra.2009.07.029.

72 James B. Wilson. Finding direct product decompositions in polynomial time. arXiv:1005.0548
[math.GR], 2010.

73 James B. Wilson. Existence, algorithms, and asymptotics of direct product decompositions, I.
Groups Complex. Cryptol., 4(1):33–72, 2012. doi:10.1515/gcc-2012-0007.

74 V. N. Zemlyachenko, N. M. Korneenko, and R. I. Tyshkevich. Graph isomorphism problem. J.
Soviet Math., 29(4):1426–1481, May 1985. doi:10.1007/BF02104746.

https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1145/800133.804331
https://groups.google.com/forum/#!msg/sci.math.research/puZxGj9HXKI/CeyH2yyyNFUJ
https://groups.google.com/forum/#!msg/sci.math.research/puZxGj9HXKI/CeyH2yyyNFUJ
https://vipulnaik.com/thesis/
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1109/18.623157
https://doi.org/10.4230/LIPIcs.STACS.2011.567
https://doi.org/10.4230/LIPIcs.STACS.2011.567
https://doi.org/10.1016/S0747-7171(08)80017-X
https://arxiv.org/abs/1304.3935
https://arxiv.org/abs/1205.0642
https://doi.org/10.1137/1.9781611973105.76
https://doi.org/10.1137/0220053
https://doi.org/10.1016/0020-0190(76)90097-1
https://doi.org/10.1016/j.jalgebra.2009.07.029
https://arxiv.org/abs/1005.0548
https://doi.org/10.1515/gcc-2012-0007
https://doi.org/10.1007/BF02104746

Branching Programs with Bounded Repetitions
and Flow Formulas
Anastasia Sofronova #

St. Petersburg Department of Steklov Mathematical Institute of
Russian Academy of Sciences, Russia

Dmitry Sokolov #

St. Petersburg Department of Steklov Mathematical Institute of
Russian Academy of Sciences, Russia
St. Petersburg State University, Russia

Abstract
Restricted branching programs capture various complexity measures like space in Turing machines or
length of proofs in proof systems. In this paper, we focus on the application in the proof complexity
that was discovered by Lovasz et al. [14] who showed the equivalence between regular Resolution and
read-once branching programs for “unsatisfied clause search problem” (Searchφ). This connection is
widely used, in particular, in the recent breakthrough result about the Clique problem in regular
Resolution by Atserias et al. [5].

We study the branching programs with bounded repetitions, so-called (1, +k)-BPs (Sieling [21])
in application to the Searchφ problem. On the one hand, it is a natural generalization of read-once
branching programs. On the other hand, this model gives a powerful proof system that can efficiently
certify the unsatisfiability of a wide class of formulas that is hard for Resolution (Knop [13]).

We deal with Searchφ that is “relatively easy” compared to all known hard examples for
the (1, +k)-BPs. We introduce the first technique for proving exponential lower bounds for the
(1, +k)-BPs on Searchφ. To do it we combine a well-known technique for proving lower bounds on
the size of branching programs [12, 21, 22] with the modification of the “closure” technique [1, 3].
In contrast with most Resolution lower bounds, our technique uses not only “local” properties of
the formula, but also a “global” structure. Our hard examples are based on the Flow formulas
introduced in [3].

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases proof complexity, branching programs, bounded repetitions, lower bounds

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.17

Related Version Full Version: https://eccc.weizmann.ac.il/report/2021/028/

Funding Anastasia Sofronova: The research presented in Sections 3 and 4 is supported by Russian
Science Foundation (project 18-71-10042).

Acknowledgements The authors would like to thank Dmitry Itsykson, Artur Riazanov for fruitful
discussions and comments, Edward Hirsch for comments on the draft, Alexander Knop for a
statement of the problem. The authors would also like to thank anonymous reviewers for their
valuable comments.

1 Introduction

Branching program is a computational model that generalizes decision tree in the most
natural way: the underlying graph of computation can be an arbitrary directed acyclic graph.
This is one of the most fundamental models in theoretical computer science: it captures the
space complexity of many versions of restricted and unrestricted Turing machines, various
proof systems may be described in terms of this model, etc.

© Anastasia Sofronova and Dmitry Sokolov;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 17; pp. 17:1–17:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ana.a.sofronova@gmail.com
mailto:sokolov.dmt@gmail.com
https://doi.org/10.4230/LIPIcs.CCC.2021.17
https://eccc.weizmann.ac.il/report/2021/028/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Branching Programs with Bounded Repetitions and Flow Formulas

A Shannon’s style counting argument says that there is a boolean function such that any
branching program that computes this function requires an exponential size. However for an
explicit function, we are still far from a superpolynomial lower bound, and the best known
result is n2

log2 n
due to Nechiporuk [16].

For some applications, it is enough to deal with the restricted models of branching
programs and many such models were considered. One of the most popular restrictions
is the read-once model of branching programs [15] where any input bit may be queried at
most once during each computation. This model corresponds to the eraser Turing machines.
Exponential lower bounds for this model were proven in [24, 26]. For capturing more general
machines some natural generalization of read-once branching programs were studied. And
one of the most important models among these generalizations is the model with bounded
repetitions aka (1, +k)-BP that was described in [21]. In this model, we allow our branching
programs to requery variables, but on each computation only k input bits may be queried
more than one time. There are two natural points of view on this model:

syntactic: if we apply the restriction on every path;
semantic: if we apply the restriction on consistent paths

(for formal definition see section 2.1). The semantic version is more powerful and may capture
strong Turing machine models (for details see [12]).

Exponential lower bounds on (1, +k)-BP were shown in [12,20–22] for various parameters k.
Lower bounds from [12] hold for k = Ω

(
n

log n

)
and the lower bound from [10] holds even for

k = Ω(n), where n is the number of input bits. We refer the reader to the books [11,25] with
the detailed description of results related to branching programs.

Lower bounds for (1, +k)-BP described above are given for “complicated” functions
(usually it is characteristic functions of an error-correcting code with additional properties).
In particular, these functions are complicated in terms of the certificate complexity. Un-
fortunately, for some applications, it is not enough. Following [14], we have a connection
between proof systems and branching programs in application to the “unsatisfied clause
search problem”. Hence for the lower bounds in proof complexity we want to deal with this
search problem, which is an “easy” problem. Namely, it can be described by a small collection
of certificates. In this paper we introduce a technique for proving such lower bounds on the
semantic (1, +k)-BP where k = O (log n/ log log n) where n is the number of variables.

1.1 Search Problem and Proof Systems
Consider a search problem, defined by a relation S ⊆ I ×O for some finite sets I and O.
On input x ∈ I the search problem is to find some output in S(x) := {o ∈ O | (x, o) ∈ S}.
In this paper we study the “unsatisfied clause search problem” for a CNF formula.

▶ Definition 1. A unsatisfied search problem Searchφ for an unsatisfiable CNF formula
φ :=

∧
i∈I

Ci on n variables is defined as follows:

input: an n-variable assignment z ∈ {0, 1}n;
output: an element i ∈ I such that clause Ci of φ is falsified by z.

Informally speaking, we may think that if we can solve the Searchφ problem in some
computational model C, then the description of C ∈ C that solves Searchφ is a “certificate of
unsatisfiability” of a formula φ. So we may think of this model as a proof system. We do
not want to formalize this statement for a general computational model, but we prove the
formal statement for the branching programs (see section 5).

A. Sofronova and D. Sokolov 17:3

The proof system that is defined by the read-once branching programs is equivalent to
regular Resolution [14]. This connection is widely used in proof complexity. As an example,
we can consider first lower bounds on the regular Resolution and Resolution proofs of the
Weak Pigeonhole Principle [17,18], recent breakthrough result: a lower bound on the regular
Resolution proofs of the Clique formulas [5].

The connection between regular Resolution and branching programs makes it interesting
to consider some less restricted models of branching programs in application to the Searchφ

problems. Some of these models were considered in [13]. In this paper we focus on (1, +k)-BPs.
Despite the success in proving lower bounds on the Resolution (and hence read-once programs)
the lower bounds for (1, +k)-BP on the Searchφ are an open question even for k = 1.

Previous Techniques

The behaviour of branching programs on functions differs from the behaviour on the Searchφ

problem. For example, the unrestricted programs may solve Searchφ for any φ in linear size
(we can implement a simple algorithm that checks clauses of φ step by step). Informally
speaking, as we said above, the lower bounds for functions on (1, +k)-BP [12, 20–22] heavily
used the fact that there is no efficient description of these functions in terms of certificates.
However Searchφ is defined by a small set of certificates. Considering this difference, it is
unclear how to use the classical techniques for our problem.

Another issue is that (1, +k)-BP is much stronger than general Resolution on some classes
of formulas [13] even for small constant k and syntactic model. This is a crucial observation
and it means that we cannot directly apply general techniques for proving lower bounds in
proof complexity like [3,6] etc., since these techniques cannot distinguish between considered
classes of formulas and other hard examples for Resolution. Hence if we want to prove
lower bound for (1, +k)-BP on Searchφ we need some additional arguments in comparison to
Resolution lower bounds.

1.2 Our Results
The main result is an exponential lower bound on the size of (1, +k)-BPs in application to
Searchφ for k = O

(
log n

log log n

)
.

▶ Theorem 2. For n ∈ N and k0 := k0(n) there is an unsatisfiable formula φ on n variables of
size nO(k0) such that any semantic (1, +k0)-BP solving Searchφ requires size exp

[
Ω

(
n

2O(k0)

)]
.

We also show that (1, +k)-BPs define a proof system in terms of Cook–Reckhow defini-
tion [7] (1, +k)-BP-PS (see section 5). That is a generalization of the result from [13], where
it was shown only for ℓ-CNF where ℓ is an absolute constant.

▶ Theorem 3. A syntactic (1, +k)-BP-PS is a proof system in terms of Cook–Reckhow
definition for any constant k ∈ N.

1.3 Technique
The key ingredients for the lower bound are:

garlands: aka (s, ℓ)-chains, that is a standard technique for proving lower bounds on the
branching programs [11,12,20–22];
closure: a technique that allows to make large partial restriction and keep the search
problem hard for branching programs (and proof systems) [1, 3];

CCC 2021

17:4 Branching Programs with Bounded Repetitions and Flow Formulas

amplification: a trick from [2] that makes formula hard for regular Resolution (and
read-once branching programs) and help us to force the branching program to use the
repetitions in a very structured way;
Flow-Cut: the famous Theorem [8] that shows the duality between the maximum flow
and the minimum cut, that we use to extend partial assignments to total assignments
with good properties.

Let us introduce a general sketch of the proof. In section 4.1 we define an unsatisfiable
formula FlowG [3] that states: in graph G we have a source of a flow but there is no sink.
We require graph G to be an algebraic expander, but, in fact, we need two properties:

G is a combinatorial expander; namely, each set of vertices of size at most r = Ω
(

n
log n

)
has a lot of neighbours (this is a “local” property, since we care only about small enough
sets);
max-balanced-cut of the graph G is large enough (this is a “global” property of the graph
G), where “balanced” means that each piece has size at least Ω(r).

It is not clear how to show the lower bound for this formula itself and we amplify FlowG

formulas by using the trick from [2]. Denote the result of amplification by φ.

1. For the sake of contradiction we assume that we have a small (1, +k)-BP solving Searchφ.
We generate a big family of paths and, using the upper bound on the size of our program,
we find some paths in the program that form a “garland” structure (see section 4). This
idea is similar to the idea from [12].

2. These paths correspond to some assignments and we keep our formula “hard” under
these assignments. To do it we use a modification of the “closure” technique [3] (an
easier version of this iterative modification was used in [23]). Here we use a combinatorial
expansion of the graph G.

3. By using the fact that we deal with an amplified version of FlowG we show that from the
end point of paths that form the garland we cannot reach any leaf that is marked by one
of the clauses from some set T ⊆ φ. Here we use the fact that k is small enough.

4. To conclude the proof, we use the Max-Flow Min-Cut Theorem (and global properties of
our graph) to show that there should be some path from the garland to some clause from
the set T .

See section 4 for more details.

2 Preliminaries

Let X be a set of boolean variables. For a variable x ∈ X we denote x1 := x and x0 := ¬x.
We say that α : X → {0, 1, ∗, ?} is a generalized partial assignment and α assigns or
touches x ∈ X iff α(x) ∈ {0, 1, ?}. And an assignment γ is an instance of α iff:

α(x) ∈ {0, 1, ∗} implies γ(x) = α(x);
α(x) =? implies γ(x) ∈ {0, 1}.

If α and β are two partial assignments to variables from the set X, we say that a
generalized partial assignment α ∪· β : X → {0, 1, ∗, ?} is a joint assignment iff:

if α(x) = a and β(x) ∈ {a, ∗}, then α ∪· β(x) = a;
if β(x) = a and α(x) ∈ {a, ∗}, then α ∪· β(x) = a;
if α(x) = a and β(x) = 1− a, then α ∪· β(x) =?;
if α(x) = β(x) = ∗, then α ∪· β(x) = ∗,

where a ∈ {0, 1}.
We will also use the famous Max-Flow Min-Cut Theorem.

A. Sofronova and D. Sokolov 17:5

▶ Theorem 4 (Max-Flow Min-Cut [8]). Let G := (V, E). For any s, t ∈ V the maximum value
of an s-t flow is equal to the minimum capacity over all s-t cuts.

2.1 Branching Programs
Let X := {x1, . . . , xn} be a set of propositional variables and O be a finite set. A branching
program is a directed acyclic graph with one source. Every vertex of the graph is labeled
by a variable from X, or by an element of the set O with respect to the following properties:

if a vertex is labeled by o ∈ O, then it is a sink;
if a vertex is labeled by a variable, then it has exactly two outgoing edges: one edge is
labeled by 0 and the other one is labeled by 1.

Every branching program B defines a function fB : {0, 1}n → O. We assume that every
input z ∈ {0, 1}n induces a path from source to sink in a natural way. If this path ends in a
vertex with a label o ∈ O then we define fB(z) := o.

We say that B is a branching program for the relation S ⊆ {0, 1} × O iff fB is
consistent with S: namely if fB(z) = o then (z, o) ∈ S.

Let D be a branching program and v is a node in it. The subprogram of D with the
root v we denote by D(v) and define as a subgraph of D that is reachable from v. Also for
a partial assignment ρ we define a branching program D|ρ as the following transformation
applied to D:

for each variable y to which ρ assigns a value a, contract edges y = a and delete edges
y = ¬a;
delete all vertices that are unreachable from the root.

These operations only decrease the size of the program.
If p is a consistent path in a branching program, we denote a partial assignment that

corresponds to this path by τp.
Let us also define some classical restrictions of the general branching programs.

▶ Definition 5. Let B be a branching program. We say that B is a (syntactic) read-once
branching program or 1-BP iff on every path from the source to a sink we can see each
variable at most once.

We say that B is a (1, +k)-BP iff on every path p from the source to a sink there is a
set of variables Xp of size at most k such that all other variables appear in p at most once.
And we can twist this definition a little bit and say that B is a semantic (1, +k)-BP iff
on every consistent path from p source to sink there is a set of variables Xp of size at most k

such that all other variables appear in p at most once.

If a branching program B computes a boolean function, we say that it is satisfiable iff
fB is not identically zero.

▶ Theorem 6 (Savický [19]). There is an algorithm to check a satisfiability of a syntactic
(1, +k)-BP in time O

[(4en
k

)k
sn

]
.

The following algorithm also will be useful for us.

▶ Theorem 7 (Savický [19]). The test whether an input branching program is a syntactic

(1, +k)-BP can be done in time O
[(

3en
k+1

)k+1
s

]
.

The next observation is natural and extremely useful for proving lower bounds.

CCC 2021

17:6 Branching Programs with Bounded Repetitions and Flow Formulas

▶ Lemma 8. Let D be a (1, +k)-BP for Searchφ, p be a consistent path from the root
to some node v. If p has a variable x queried more than one time on it then D(v)|τp

is
a (1, +(k − 1))-BP for the Searchφ|τp

. The result holds for both: semantic and syntactic
models.

Proof. A program D(v)|τp
is a program for the Searchφ|τp

by the correctness of the program
D. Consider a path s in D from v to some leaf. Let Xs be a set of variables that are queried
more than one time on s. If |Xs| = k and x /∈ Xs, the path ps has at least k +1 variables that
are queried more that one time. This is a contradiction. If |Xs| = k and x ∈ Xs, note that
in D(v)|τp

we contract all edges that correspond to the x variable and hence we transform
this path into a path with at most k − 1 repetitions. ◀

3 Expanders

We are given a graph G := (V, E). For two subsets of vertices A, B we write E(A, B) to
denote the set of pairs (v, e) where v ∈ A, e is an edge that is incident to v and e connects v

with some vertex in B. We will think about it as about set of edges between A and B, but if
A and B intersect we count edges within intersection twice. We also use a shortcut notations
E(S) := E(S, V) and S := V \ S. If the graph we consider is unclear from the context we
specify it as a subscript: EG(A, B).
▶ Remark 9. Assuming that G is ∆-regular graph this definition allows us to use natural
equalities:
|E(S)| = ∆|S|;
|E(A, A)| = ∆|A| − |E(A, A)|.

We write NG(v) to denote the set of neighbours of v in the graph G. We extend this
notion to sets and denote by NG(S) := {v | ∃u ∈ S, (u, v) ∈ E} the neighbourhood of a
set of vertices S ⊆ V .

A graph G := (V, E) is an (n, ∆, α)-algebraic expander (or just expander), if:
|V | = n;
the degree of any vertex v ∈ V equals ∆;
the absolute value of the second largest eigenvalue of the adjacency matrix of G is at
most α∆.

▶ Lemma 10 (Mixing Lemma [4]). Let G := (V, E) be an (n, ∆, α)-expander. For any two
subsets A, B ⊆ V the following holds:∣∣∣∣|E(A, B)| − ∆|A||B|

n

∣∣∣∣ ≤ α∆
√
|A||B|.

We also need combinatorial edge expansion. We say that G := (V, E) satisfies (r, β)-
(edge) expansion property for some r, β > 0, if for all S ⊆ V of size at most r holds
E(S, S) ≥ β∆|S|. The Mixing Lemma says that any expander graph satisfies expansion
property for suitable parameters.

▶ Corollary 11. If G := (V, E) is an (n, ∆, α)-expander, then for any 0 < β < 1 − α the
graph G satisfy ((1− α− β)n, β)-expansion property.

Proof. Consider some A ⊆ V of size at most (1− α− β)n. Note that |E(A, A)| = ∆|A| −
|E(A, A)|. By Mixing Lemma:

|E(A, A)| ≤ ∆|A|2

n
+ α∆|A| = ∆|A|

(
|A|
n

+ α

)
≤ ∆|A|(1− β).

Hence |E(A, A)| ≥ β∆|A| by Remark 9. ◀

A. Sofronova and D. Sokolov 17:7

The “vertex analog” of the next proposition is well known in the literature (for example [9]).
We turn it into edge version.

▶ Proposition 12. Let G := (V, E) be a graph of degree ∆. If G satisfies (r, β)-expansion
property then for any set S ⊆ V of size k ≤ r there is an enumeration v1, v2, . . . , vk ∈ S and
a sequence R1, . . . , Rk ⊆ E(S) such that:

Ri = E({vi}, V \ {v1, v2, . . . , vi});
|Ri| ≥ β∆.

Proof. We create this sequence in reversed order. Since |S| ≤ r, it holds that |E(S, S)| ≥
β∆|S| and there is a vertex vk ∈ S such that |E({vk}, S)| ≥ β∆. Let Rk := |E({vk}, S)|,
and repeat the process for S \ {vk}. ◀

4 Lower Bounds for (1, +k)-BP

In this section, we will prove the following theorem:

▶ Theorem 13 (2). For n ∈ N and k0 := k0(n) there is an unsatisfiable formula φ on n

variables of size nO(k0) such that any semantic (1, +k0)-BP solving Searchφ requires size
exp

[
Ω

(
n

2O(k0)

)]
.

Let us describe the main ideas used in the proof. To prove this Theorem we would like to
construct an exponentially big set of paths, which cannot be compactly “glued” together in
(1, +k)-BP, correctly solving Searchφ.

To give a detailed plan we need an auxiliary definition.

▶ Definition 14. A ℓ-garland in a branching program is a pair of paths (a, b) from the root
such that a := v0a1v1a2v2a3 . . . aℓvℓ and b := v0b1v1b2v2b3 . . . bℓvℓ where ai, bi are possibly
empty paths and paths vjaj+1vj+1 and vjbj+1vj+1 are different for all 0 ≤ j < ℓ (see Fig. 1).

v0

v1

v2

a1 b1

a2 b2

Figure 1 2-garland.

Let us consider the detailed plan.
1. By induction on k we want to show that Searchφ|ρ is hard for (1, +k)-BP even after some

“good” restriction ρ.
2. For the sake of contradiction we assume that we have a small (1, +k)-BP solving Searchφ|ρ .

In the section 4.2.1 we generate a family of paths starting from the root of the program
and find in this family a (k + 1)-garland (see Fig. 1). This idea is similar to [12].

3. To argue that we can find a garland we generate exponentially many paths by walking
from root (section 4.2). During this process, we have to make sure that on these paths
our branching program cannot determine an answer (that would mean that we cannot
walk anymore). To avoid it we use the “closure” technique that is motivated by technique
from [1,3] and avoid “local contradictions”. And hence we have to choose the formula φ

very carefully, but we still have some freedom.

CCC 2021

17:8 Branching Programs with Bounded Repetitions and Flow Formulas

4. If we found a repetition while constructing a garland, we use Lemma 8 and apply induction
hypothesis. This is a place where we use that formula φ is still hard even after the
restriction.

5. In the section 4.2.2 we combine different parts of garland and argue about the reachability
of certain leaves. We have to make sure that the paths we consider are consistent and
that when we reach the endpoint of the garland, formula φ remains hard. We achieve it
by using the following properties.

We have already removed repetitions from the garland by using Lemma 8 and induction
hypothesis.
To show that combinations of different parts of the garland give us consistent paths
we equip the closure technique by the notion of “strongly satisfied” (see Section 4.1.1)
constraints. This is the second place that requires specific properties of the formula φ.

At the end of this section, we will have a set of clauses C ⊆ φ such that leaves marked by
elements of this set should be unreachable from the endpoint of the garland.

6. For the last part (section 4.2.3) we consider an arbitrary path r in our garland and note
that φ \ C is a satisfiable formula even under the restriction τr. It is hard to show this
property for the formulas that encode natural combinatorial principles. We use the trick
from [2] to change the formula φ to make sure that C is large enough.
Here we use the global structure of our formula φ (in our case we use the Max-Flow
Min-Cut Theorem) to satisfy all clauses in φ \ C.

We start with defining the hard formulas on a suitable expander graph.

4.1 Hard Formulas
Let G := (V, E) be a directed graph. Each edge e ∈ E has the corresponding variable xe,
where xe = 1 indicates that a flow of size 1 is going through an edge e. Let u be an arbitrary,
but fixed vertex of the graph.

The formula FlowG,u consists of the following constraints written in CNF for all v ∈ V :∑
e∈E:st(e)=v

xe −
∑

e∈E:en(e)=v

xe ≥ c(v),

where e = (st(e), en(e)) and c : V → {0, 1} is a labeling function:
c(v) = 0, for all v ∈ V \ {u};
c(u) = 1.

This formulas states: for all vertices in the graph the flow is non-negative, and at least
for one vertex it is strictly positive. It is easy to see that FlowG,u is unsatisfiable. We omit
index u since in our applications it is an arbitrary vertex.

We use the most naive CNF encoding of these constraints. We represent each constraint
separately. Consider a vertex v ∈ V and a set of edges Ev := {e1, e2, . . . , es} ⊆ E that are
incident to v. Let ρv : Ev → {0, 1} be an assignment that violates the constraint in v. In
this case we add to the formula a clause C:

x
1−ρ(xe1)
e1 ∨ x

1−ρ(xe2)
e2 ∨ · · · ∨ x

1−ρ(xes)
es ,

and we also say that this assignment has a gap:

g(ρv) := c(v)−
∑

e∈E:st(e)=v

ρv(xe) +
∑

e∈E:en(e)=v

ρv(xe).

A. Sofronova and D. Sokolov 17:9

For our purpose we consider FlowG based on expanders. To be precise, we start with a
graph G that is an (n, ∆, α)-expander, where ∆ = Θ(log n) and α is some fixed constant,
and replace each undirected edge by two directed edges (we say that these edges are dual).
The exact value of ∆ depends on a value of k.
▶ Remark 15. We consider only proper partial assignments ρ that satisfy the following
property for all pairs of dual edges (e, e′):

ρ(xe) ∈ {0, 1} iff ρ(xe′) ∈ {0, 1};
if ρ(xe) = 1 then ρ(xe′) = 0.

We also identify supp(ρ) with an undirected set of edges that are assigned by ρ.
To make the formula somewhat “confusing” for (1, +k)-BP, we would like to add more

variables to clauses. These variables do not really affect the physical meaning of the formula,
but make it hard for (1, +k)-BP to extract additional information from repetitions on paths.
This transformation is sensitive to the exact CNF encoding of the constraints that is written
above.

▶ Definition 16. Let G := (V, E) be an undirected graph and Cv be a subset of clauses
corresponding to vertex v in FlowG. Let ηk

v : Cv →
(

E
k

)
be a mapping, and ηk := {ηk

v | v ∈ V }
be a family of such mappings. We define Flowηk

G the following way:
for each v ∈ V we consider each C ∈ Cv;
we take ηk

v (C) = {e1, . . . , ek}, which is a set of k edges;
we replace C by 22k clauses of the form:

C ∨
∨

i

xai
si
∨ x

a′
i

s′
i

enumerated by ai, a′i ∈ {0, 1}, where i ∈ [k] and si, s′i are directed copies of the edge ei.

As described in the plan, at some point in the proof we would like to construct an
assignment that leaves certain clauses (to which a certain set of variables was added)
unsatisfied. For our purpose, we would like those clauses to “strongly unsatisfy” the condition
in their vertices.

Let us describe the construction of ηk. Assume that ∆ ≥ 50 · k log n. For each v ∈ V we
define ηv independently. We will be interested in adding variables to clauses which correspond
to large incoming flow.
1. Let us consider a set of clauses C that corresponds to v and a proper partial assignment

on edges incident to v with gap equal to ∆
4 + 1.

2. Note that |C| ≥
(∆

∆/4
)
≥ 4∆/4 ≥ n4k. The first inequality holds since we can choose

arbitrary ∆/4 + 1 incoming edges to obtain the desired gap and set all other incident
edges to zero.

3. There are at most
(

n∆
k

)
≤

(
n∆e

k

)k ≤ n2k different sets of k edges. Hence we can choose a
subset of B ⊆ C and define ηk

v to be a bijection between B and all possible choices of sets
of k edges.

Note that the existence of (1, +k)-BP of size S solving Search
Flowηk

G

(for any ηk) implies
the existence of (1, +k)-BP of size S solving SearchFlowG

.

4.1.1 Locally Consistent Assignments
We need a notion of “good assignments”, i.e. assignments that reduce FlowG formulas to
smaller, but “equally hard” instances.

CCC 2021

17:10 Branching Programs with Bounded Repetitions and Flow Formulas

Let G := (V, E) be a graph. A proper assignment ρ δ-satisfies a set of vertices U ⊆ V iff
for all v ∈ U the following holds:

ρ assigns all edges that are incident to v;
ρ satisfies the constraint for v;∑
e∈E:st(e)=v

ρ(xe) ≥ δ ·∆.

We also say that a proper assignment ρ is (r, δ, β)-locally consistent iff there is a set
of vertices Vρ of size at most r such that:

ρ δ-satisfies Vρ;
(V \ Vρ, E \ supp(ρ)) satisfies (r, β)-expansion property.

▶ Remark 17. If ρ is an (r, δ, β)-locally consistent assignment for some β > 0, then Vρ is
uniquely defined.

Proof. For the sake of contradiction assume that there are two candidates A, B. Wlog
A \B ̸= ∅. Pick an arbitrary vertex v ∈ A \B. Since A satisfies the required properties, ρ

assigns all edges that are incident to v, which contradicts the fact that (V \B, E \ supp(ρ))
satisfies (r, β)-expansion property. ◀

4.2 Proof of Theorem 2
Let G be an (n, ∆, α)-expander and ηk0+1 be a mapping defined in section 4.1. In this section
we prove an exponential lower bound on Search

Flowηk0+1
G

for (1, +k0)-BP. We assume that n

is large enough.
Let us fix some parameters:
∆ := 100k0 log n and ∆ > 200;
α := 0.01 is the second eigenvalue of the normalized adjacency matrix of G;
r := n

∆ and β := 0.96 is the “combinatorial expansion” of the graph G;
β′ := 0.95 is an expansion parameter that we try to maintain after removing some vertices
and edges from G;
νk :=

(1
4 (β − β′)

)k+3 is a scaling factor that indicates the fraction of edges that we want
to assign in our partial assignment.

Note that r ≪ (1−β−α)n = 0.03·n and hence by Corollary 11 G satisfies (r, β)-expansion
property, hence we can use all combinatorial expansion properties and tools.

To formulate the induction hypothesis we need one more definition. Let M ⊆ E and ρ is
a proper assignment. We say that ρ is γ-minimal local consistent extension or (mlce)
on M iff:

ρ is (r, 0.6, γ)-locally consistent assignment;
supp(ρ) = M ∪ E(Vρ);
|E(Vρ, Vρ) \M | < γ∆|Vρ|.

Informally we may think about it in the following way: after we assign edges from M

somehow, ρ should assign also Vρ as a “minimal” set of vertices to take care of in order to be
locally consistent.

Let φ := Flowηk0+1

G . By induction on k ≤ k0 we show the following statement. For all sets
of edges M ⊆ E of size at most νk∆r and all β′-mlce ρ on M any (1, +k)-BP for Searchφ|ρ

has size at least 2
νk

4(k+1)2 ∆r.
Fix some M , ρ, 0 ≤ k ≤ k0 and for the sake of contradiction assume that we have a

(1, +k)-BP D of size 2
νk

4(k+1)2 ∆r for Searchφ|ρ .

A. Sofronova and D. Sokolov 17:11

4.2.1 Construction of the Garland
To fulfill our plan of the proof, described at the beginning of the section, we start constructing
the garland by obtaining an exponentially big set of paths with the corresponding assignments.
Let us remind that |M | ≤ νk∆r and ρ is β′-mlce on M .

We say that triple (p, Up, σp) is γ-good iff:
p is a path from the root of the branching program;
U is a subset of edges such that corresponding variables are queried on p, so-called
“branching variables”;
σp is a partial assignment such that:

σp extends ρ ∪ τp;
σp is a γ-mlce on M ∪ Up;
σp 0.8-satisfies Vσp

\ Vρ,
where τp is an assignment that corresponds to p.

We maintain the set of β′-good triples P and an auxiliary set S of triples that appear
in the set P at some moment during the process. In the beginning of our construction
P := {(∅, ∅, ρ)} and S := P.

We repeat the following process while we have at least one triple (p, Up, σp) ∈ P such
that |Up| ≤ νk∆r.

Consider the triple described above. Let v be the end of p and xe be the variable asked
in v.
1. If xe was queried on p we stop the process. In this case we return “Repetition” and we

remember the path p.
2. Erase the triple (p, Up, σp) from P.
3. If σp(xe) ∈ {0, 1}, then we continue along the edge xe = σp(xe). Consider a path p′ that

is the extension of p along this edge, Up′ := Up and σp′ := σp. Put (p′, Up′ , σp′) into P
and S and repeat the process from the beginning.

4. If σp(xe) = ∗, then it is a “branching node”, and we call this step a branching step.
a. Let p′ be a path obtained by continuing p along the edge xe = 0, and p′′ be a path

obtained by continuing p along the edge xe = 1.
b. Up′ := Up ∪ e, Up′′ := Up ∪ e.
c. τ ′ := σp ∪ {xe = 0, xe′ = 0}, τ ′′ := σp ∪ {xe = 1, xe′ = 0}, where xe′ is a dual edge.
d. (p′, Up′ , τ ′) is (β′ − 0.01)-good triple. We extend an assignment τ ′ to make this triple

β′-good. For the formal statement see Lemma 18. Here we describe an idea. Let
R ⊆ E be a set of edges that are unassigned by τ ′ (or τ ′′), and B ⊆ V \ Vσp

be the
maximal set of vertices that satisfies:
|B| ≤ r;
|E(B, B) ∩R| ≤ β′∆|B|.

Let κ be an assignment on variables that correspond to edges in the set E(B)\ supp(τ ′)
such that τ ′ ∪ κ 0.8-satisfies the constraints for all v ∈ B. This assignment κ always
exists (and moreover it is independent of the value of xe, but we do not use this fact).

e. We denote σp′ := τ ′ ∪ κ, σp′′ := τ ′′ ∪ κ and put (p′, Up′ , σp′) and (p′′, Up′′ , σp′′) into P
and into S.

To conclude the construction we want to show the following claims.
Repetition case. In the first case of the proof (if we have a repetition) we can reduce
the problem to a lower bound on (1, +(k − 1))-BP.
Correctness. The branching step can be done and triples (p′, Up′ , σp′) and (p′′, Up′′ , σp′′)
satisfy the required properties.
Garland extraction. Among these paths we can find an k-garland (a, b) and a locally
consistent extension of ρ.

CCC 2021

17:12 Branching Programs with Bounded Repetitions and Flow Formulas

4.2.1.1 Correctness

We show that if we have a triple (p, Up, τp) which is β′-good then after processing it with our
algorithm we also put in our sets β′-good triples. Let us formulate the general Lemma that
helps us with it.

▶ Lemma 18. Let (p, Up, σp) and (q, Uq, σq) be 0.9-good triples. Then there is an assignment
κ such that:

for any γ that is an instance of σp ∪· σq an assignment γ ∪ κ is a β′-mlce on supp(σp) ∪
supp(σq);
| supp(γ ∪ κ)| ≤ νk−1∆r.

Moreover if p = q then triple (p, Up, σp ∪ κ) is β′-good.

Proof. The proof was motivated by the closure technique developed in [1, 3]. For the full
version of the proof see Appendix A. ◀

If the branching step was not done, then we do not change U and τ , and we extend the
path p according to the assignment τ hence the triple remains β′-good. We are left with the
branching step. Note that (p′, Up′ , τ ′) is 0.9-good and we apply Lemma 18 to a pair composed
of two identical triples (p′, Up′ , τ ′) and obtain κ that satisfies the required properties.

4.2.1.2 Repetition case

First let us note that if there is a repetition, then k > 0. Suppose we found a repetition
while considering a triple (p, Up, σp). The size of M ∪ Up is at most 2νk∆r and σp is β′-
mlce on M ∪ Up. Let v be an end node of p. The program D(v)|σp

is a (1, +(k − 1))-BP
for Search

Flowηk

G
|σp

by Lemma 8. Thus by induction hypothesis we have a lower bound of

2
νk−1
4k2 ∆r ≥ 2

νk
4(k+1)2 ∆r on the size of D(v)|σp

and in this case we are done.

4.2.1.3 Garland extraction

The following Lemma gives us a pair of triples (p, Up, σp), (q, Up, σq) ∈ P such that (p, q)
forms a (k + 1)-garland.

▶ Lemma 19. There are (p, Up, σp), (q, Uq, σq) ∈ S such that (p, q) forms a (k + 1)-garland.

Proof. For the proof see Appendix B. ◀

To continue the proof we need some additional property that we can “avoid repetitions” in
this garland. We say that there is a repetition in a garland p = v0p1v1p2v2p3 . . . pk0+1vk0+1
and q = v0q1v1q2v2q3 . . . qk0+1vk0+1 iff there is path in the garland, i.e. path r of the form
v0r1v1r2v2r3 . . . rk0+1vk0+1, such that some variable is queried more than one time on it,
where ri ∈ {pi, qi}.

Consider a path r in our garland (p, q) that contains a repetition and r′ ⊆ r the largest
initial segment of r without repetitions. Let v be its end node. We apply Lemma 18
to triples (p, Up, σp), (q, Uq, σq), which gives us assignment κ, and choose a instance γ of
σp ∪· σq that is consistent with τr′ . Moreover, | supp(γ ∪ κ)| ≤ νk−1∆r, and γ ∪ κ is a
β′-mlce on supp(σp) ∪ supp(σq). Hence by Lemma 8 we can use the induction hypothesis
for (1, +k − 1)-BP D(v)|τr′ and formula φ|γ∪κ. The size of D(v)|τr′ is at least 2

νk−1
4k2 ∆r ≥

2
νk

4(k+1)2 ∆r.
For the rest of the proof we can assume that on any path r of the form described above

there are no repetitions.

A. Sofronova and D. Sokolov 17:13

4.2.2 Unreachable Leaves
Let us summarize what we have from the previous section. We created a pair of triples:
(p, Up, σp) and (q, Uq, σq) such that:

(p, q) forms (k0 + 1)-garland:
p = v0p1v1p2v2p3 . . . pk0+1vk0+1;
q = v0q1v1q2v2q3 . . . qk0+1vk0+1;

(p, Up, σp) and (q, Uq, σq) are β′-good;
there are no repetitions on any path in the garland (p, q).

We use Lemma 18 for (p, Up, σp) and (q, Uq, σq) and get an assignment κ. Let us fix an
assignment γ that is an instance of σp ∪· σq consistent with:

τp;
values in σq that do not contradict τp

and denote ζ := γ ∪ κ. Note that, by construction:
|ζ| ≤ νk−1∆r;
|ζ| is (r, 0.6, β′)-locally consistent.

In this section we describe a set of clauses that should be unreachable from the vertex
vk0+1. Note that on each segment of a garland (vipivi+1, viqivi+1) we query at least one
variable in both assignments τp and τq and get the different values. Denote any variable that
satisfies this property by xi.

We remind that φ := Flowηk0+1

G . Let D,C be the subsets of clauses:

D := {D ∈ FlowG | for every e that corresponds to some xi : e ∈ ηk0+1(D)}.

and

C := {C ∈ φ | C is obtained from some D ∈ D by the amplification trick}.

For the sake of contradiction suppose that there is a path s from vk0+1 such that:
s is a consistent path and τs is consistent with ζ and hence ps is also consistent;
s ends in a clause C ∈ C.

Consider a family of paths ri := v0p1v1p2v2p3 . . . pi−1vi−1qivipi+1qi+1pi+2 . . . pk0+1vk0+1,
where i ∈ [k0 + 1]. All paths ri are consistent since there are no repetitions in the garland
(p, q). Hence if ri is inconsistent with s then on s we requery some variable x′i from the
segment vi−1qivi and get an inconsistent value.

By construction, τs is consistent with ζ, and ζ := γ∪κ, where γ is an instance of σp∪· σq. If
x′i appeared in vi−1qivi, but not in vi−1pivi (note that it cannot appear in any other segment
of the garland, since there are no repetitions on the garland), then (σp ∪· σq)(x′i) ∈ {σq(x′i), ?}
and τp(x′i) = ∗ thus γ(x′i) = σq(x′i) by the choice of γ. It follows that ζ(x′i) = σq(x′i) as
well, and since τs is consistent with ζ, we cannot obtain an inconsistent with τqi

value for
x′i while requerying it. Hence x′i had appeared in vi−1pivi as well, and on s we requeried a
variable from vi−1pivi in consistent way. Moreover if all paths from some set {ri}i∈L where
L ⊆ [k0 + 1] are inconsistent with s we requery at least |L| variables from the path p on the
path s. Hence at least one of the paths ri0 is consistent with s, where i0 ∈ [k0 + 1] (or on
the path ps we requery at least k0 + 1 variables).

▶ Remark 20. This is the only place there we use the property that there are no repetitions
on the garland.

CCC 2021

17:14 Branching Programs with Bounded Repetitions and Flow Formulas

Consider two paths ps and ri0s:
these paths are consistent;
τps(xi0) ̸= τri0 s(xi0).

These properties imply that clause C is not a legal answer for at least one these paths, and
we have a contradiction with the assumption that there is a consistent path from vk0+1 to
this clause. That gives us the desired description of leaves that should be unreachable for
vk0+1.

To conclude the proof it remains to show that there should be a path from vk0+1 to at
least one leaf marked by a clause C ∈ C. We do it in the next section.

4.2.3 Directing the Flow

Let us remind that we deal with φ := Flowηk0+1

G . To show that there is a path consistent
with ζ from vk0+1 to a leaf with a label C ∈ C we show that (φ \ C)|ζ is satisfiable and hence
there should be an extension of ζ that violates only clauses from C.

▶ Remark 21. If we do not care about assignment ζ, the statement is trivial, since φ is
so-called minimally unsatisfiable formula (that becomes satisfiable after removing any clause).
But ζ transforms our formula to “heavily unsatisfiable” formula, since ζ 0.6-satisfies a lot of
vertices (that was the crucial property that we used to create a garland).

Note that by construction of ηk0+1 for each v ∈ V there exists a clause D ∈ D that had
originated from the constraint for v. For each v, we pick any such clause and denote it by
Dv. We divide the rest of the proof into two parts.
1. “Local part”. We find a carefully chosen large enough set of vertices U ∈ V and an

assignment τ ⊇ ζ such that there is a set Vτ ⊇ (U ∪ Vζ):
(V \ Vτ , E \ supp(τ)) satisfies (r, β′)-expansion property;
for all v ∈ U the assignment τ violates Dv and hence τ assigns all edges incident to v;
for all v ∈ Vτ \ U the assignment τ satisfies constraint for v.

For this part we use the simplified version of technique used for the garland creation.
2. “Global part”. By using Max-Flow Min-Cut Theorem we show that τ can be extended

to total assignment that satisfies constraints for vertices whose constraints are neither
satisfied nor falsified by τ yet.

Since we satisfy all the constraints of (FlowG \ D)ζ this assignment also satisfies all
constraints in (φ \ C)|ζ by the construction of the formula φ (clauses of φ are the weakened
versions of the clauses FlowG).

Before we proceed with the proof let us define the “overflow”.

▶ Definition 22. The overflow introduced by a locally consistent assignment σ is:

ofσ := 1 +
∑

v∈Vσ

 ∑
e∈E:st(e)=v

xe −
∑

e∈E:en(e)=v

xe − c(v)

 .

Note that ofζ ≤ |ζ|+ 1 ≤ νk−1∆r + 1.

4.2.3.1 Local part

We start with the local part of the proof. In the beginning of our construction U0 := ∅,
τ0 := ζ, Vτ0 := Vζ and i := 0.

A. Sofronova and D. Sokolov 17:15

We repeat the following process while ofτi
> 0.

1. Choose a vertex ui that is untouched by τi.
2. Let ρui

be an assignment to edges that are incident to ui such that Dui
is unsatisfied by

ρui .
3. τ ′ := τi ∪ ρui

. Since ui is untouched by τi there is no intersection between ρui
and τi.

4. Let Hi ⊆ V \ Vτi
be the maximal set of vertices that satisfies:

|Hi| ≤ r;
|E(Hi, Hi \ {ui}) \ supp(τi)| ≤ β′∆|Hi|.

Let κi be an assignment on variables that correspond to edges in the set E(H) \ supp(τ ′)
such that for all v ∈ Hi:∑

e∈E:st(e)=v

(τ ′ ∪ κi)(xe)−
∑

e∈E:en(e)=v

(τ ′ ∪ κi)(xe) = c(v).

5. Ui+1 := Ui ∪ {ui}, τi+1 := τ ′ ∪ κi and Vτi+1 := Vτi ∪Hi ∪ {ui}.
6. i := i + 1.

Let ℓ be a number of iterations in this process. Let U := Uℓ and τ := τℓ.
At first we give an upper bound on ℓ. Since for all i an assignment κi exactly satisfies

vertices in H, inclusion of H into Vτ does not change the overflow. Assignment ρui
violates

Dui ∈ D and by definition of ηk0+1:

−∆
4 − 1 ≤

∑
e∈E:st(e)=ui

ρui
(xe)−

∑
e∈E:en(e)=ui

ρui
(xe) ≤ −∆

4 .

Hence on each iteration ofτi+1 ≤ ofτi − ∆
4 and |U | ≤ 4|ζ|

∆ and −∆
4 − 1 ≤ ofτ ≤ 0.

▶ Lemma 23. For all i ≤ ℓ:
κi exists;
|Vτi
| ≤ 1

(β−β′)∆ (supp(ζ) + ∆|Ui|) and hence |τi| ≤ 2
(β−β′) (| supp(ζ)|+ ∆|Ui|);

(V \ Vτi
, E \ supp(τi)) satisfies (r, β′)-expansion property.

Proof. This Lemma may be considered as simplified version of Lemma 18. For the proof see
Appendix A. ◀

To conclude the construction note that τi ≤ 10
4 νk−2∆r ≤ ∆

4 r for all i ≤ ℓ and we always
can find the vertex untouched by τi.
▶ Remark 24. This is the only place where we use that r ≤ n

∆ .

4.2.3.2 Global part

Let B := Vτ \ Vζ . For the vertex v ∈ V the overflow of v is defined in the following way:

of(v) := −
∑

e∈supp(τ)
st(e)=u

τ(xe) +
∑

e∈supp(τ)
en(e)=u

τ(xe) + c(v).

We want to create an auxiliary graph. Let F + := {v ∈ V \ Vτ | of(v) > 0} and
F− := {v ∈ V \ Vτ | of(v) < 0}. See Fig. 2.

We define a graph G′ := (V ′, E′) on vertices V ′ := (V \ Vτ) ∪ {s} ∪ {t}, where s is a
source and t is a sink. Edges E′ include four groups:

CCC 2021

17:16 Branching Programs with Bounded Repetitions and Flow Formulas

Vζ

F +

F−

B

F−

F +

Figure 2 Set after assignment.

F + F−
alg.

expansion

source

sink
comb. expansion

Vζ

B

Figure 3 Graph G′ with cuts.

E \ supp(τ);
we connect s with all v ∈ F + by of(v) number of edges;
we connect t with all v ∈ F− by −of(v) number of edges;
if ofτ < 0 we choose an arbitrary set of vertices S ∈ V \ Vτ of size |ofτ | and connect all
v ∈ S with s by one more edge.

See Fig. 3.
▶ Remark 25. 1. deg(s) = deg(t);
2. If A ⊆ V ′ then E({s}, A) ≤ ∆

4 + 1 +
∑

v∈A

of(v) and E({t}, A) = −
∑

v∈A

of(v).

Proof. The first property follows from the construction of τ and the second one follows from
definition of G′. ◀

Let f := deg(s). To conclude the proof we want to show that there is an s-t flow in G′ of
size f (assuming that capacity of each edge is 1) and that if this flow exists, then we have an
extension of τ that satisfies FlowG \D. As we mention above together these facts imply that
(FlowG \D)|τ is satisfiable hence (FlowG \D)|ζ is satisfiable and (φ \ C)|ζ is also satisfiable
hence there is a path from vk0+1 to a leaf marked by some C ∈ C which is a contradiction
with an existence of a garland and an assumption about size of the branching program.

We start with the second part. Suppose that we have a flow of size f . Fix the flow that
achieves this value. We define a total proper assignment σ ⊇ τ in the natural way. Consider
an edge e ∈ E′ ∪ E and a = (u, v), a′ = (v, u) its directed copies. If there is a flow on the
edge e:

from u to v then xa = 1 and xa′ = 0;
from v to u then xa = 0 and xa′ = 1.

otherwise we set xa = 0 and xa′ = 0.
Note that f = deg(s) hence we use all edges that connect s with other vertices to push

the flow. That implies for all v ∈ V \ Vτ :∑
e∈supp(σ)\supp(τ)

st(e)=v

σ(xe) +
∑

e∈supp(σ)\supp(τ)
en(e)=v

σ(xe) = |E(s, v)| = of(v)

and hence∑
e∈E:st(e)=v

σ(xe) +
∑

e∈E:en(e)=v

σ(xe) = c(v).

and constraints for all vertices in V \ Vτ are satisfied, but τ itself satisfied all constraints in
FlowG \D that correspond to vertices in Vτ . Altogether it says that σ satisfies all constraints
in FlowG \D as desired.

A. Sofronova and D. Sokolov 17:17

It remains to show that we have an s-t flow of size f in G′. To do it we use the Max-Flow
Min-Cut Theorem and show that minimal s-t cut has size f . Consider such a cut (S, T),
where S, T are disjoint subsets of V ′ such that s ∈ S and t ∈ T . We consider two cases:

either S or T is small enough, then we use the (r, β′)-expansion property that we have
after removing supp(τ) and Vτ from G;
S and T are large enough, then we use the Mixing Lemma to show that even removing
supp(τ) from G cannot destroy balanced cuts.

see Fig. 3.

F + F−source sink

J

K

Figure 4 Graph s-t cut.

Consider an arbitrary s-t cut S ∪ T . Let J := S \ {s} and K := T \ {t} (see Fig. 4).
Consider the following cases.
1. If J = ∅ or K = ∅ then size of (S, T) cut equals deg(s) or deg(t) respectively and we are

done.
2. 0 < |J | ≤ r or 0 < |K| ≤ r. Wlog assume that |J | ≤ r. Note that:

EG′(S, T) = EG′({s}, K) + EG′({t}, J) + EG′(J, K).

EG′({s}, K) =
∑

v∈F +∩K

of(v), so by Remark 25 to give a lower bound on the size of cut

it is enough to show that EG′(J, K) ≥ ∆
4 + 1 +

∑
v∈F +∩J

of(v). But (V \ Vτ , E \ supp(τ))

satisfies (r, β′)-expansion property. Hence
for all v ∈ V \ Vτ : |of(v)| ≤ 0.1 ·∆;
|EG′(J, K)| ≥ 0.9 ·∆|J |,

that implies that |EG′(J, K)| − ∆
4 − 1 ≥ 2

∑
v∈F +∩J

of(v).

3. |J | > r, |K| > r. Wlog assume that |J | ≤ |K|. By Mixing Lemma:

|EG(J, J)| = ∆|J |−EG(J, J) ≥ ∆|J |−∆
n
|J |2−α∆|J | ≥ ∆|J |− |J |−α∆|J | ≥ 0.9 ·∆r,

and

|EG′(J, K)| ≥ |EG(J, J)| − | supp(τ)| ≥ 0.6 ·∆r.

On the other hand:

f =
∑

v∈F +

of(v) =

∑
v∈F +

− ∑
e∈supp(τ)

st(e)=u

τ(xe) +
∑

e∈supp(τ)
en(e)=u

τ(xe) + c(v)

 ≤
| supp(τ)| ≤ ∆

4 r.

CCC 2021

17:18 Branching Programs with Bounded Repetitions and Flow Formulas

Hence in all cases (S, T) has size at least f which by Max-Flow Min-Cut Theorem implies
the existence of flow in G′ of size at least f . That as mentioned above implies the desired
lower bound on the size of branching program.

5 Cook–Reckhow Proof Systems

In this section we illustrate that syntactic (1, +k)-BP give us a proof system in terms of
Cook–Reckhow. This result is a generalization of the same result for formulas of bounded
width [13]. We start with the most general definition of a proof system for a language of
unsatisfiable formulas.

▶ Definition 26 (Cook, Reckhow [7]). A proof system is a polynomial-time algorithm
Π(φ, w) that satisfies two properties:

correctness: if there is some w ∈ {0, 1}∗ such that Π(φ, w) = 1 then φ is unsatis-
fiable;

soundness: if φ is an unsatisfiable boolean formula then there is a string w ∈
{0, 1}∗ such that Π(φ, w) = 1.

We say that w is a witness of unsatisfiability of φ.

(1, +k)-BP can be used to define a natural proof system. We assume that the witness
of unsatisfiability of a CNF formula φ is a description of a (1, +k)-BP that solves Searchφ

problem; denote it by (1, +k)-BP-PS. This definition is equivalent to the definition of
(1, +k)-BP-PS from [13] but we erase some technicalities.

For our purpose we need to show that there is a polynomial-time algorithm that checks
whether a given description is a (1, +k)-BP and that it solves Searchφ.

▶ Lemma 27. There is an algorithm that for given syntactic (1, +k)-BP of size s and boolean
CNF formula φ with m clauses and n variables checks whether this program solves Searchφ

in time O
[(4en

k

)k
sn2m

]
.

We defer the proof of this Lemma to section 5.1.

▶ Theorem 5.1 (3). A syntactic (1, +k)-BP-PS is a proof system in terms of Cook–Reckhow
definition for any constant k ∈ N.

Proof. Given a description of a branching program B we can use an algorithm from Theorem
7 to check whether it is (1, +k)-BP. After that we can use an algorithm from Lemma 27
to check whether this program solves Searchφ problem. If k is an absolute constant both
algorithms work in time poly(|φ|, |B|). ◀

5.1 Proof of Lemma 27

Fix some syntactic (1, +k)-BP B and some CNF formula φ :=
m∨

i=1
Ci. Leaves of B are marked

by clauses of φ. We construct an auxiliary branching programs Bi that are obtained by
replacing the labels Ci of sinks by 1 and other labels by 0.

The clause C is a solution of the Searchφ problem for an assignment z iff C(z) = 0.
Hence B makes a mistake on the assignment z iff the path that corresponds to z ends in
sink marked by C and C(z) = 1. But it means that B makes a mistake iff there is a variable
xi such that an assignment xi ← zi satisfies C and there is a path in B from source to sink
labeled by C consistent with an assignment xi ← zi.

A. Sofronova and D. Sokolov 17:19

B

C1 C5

. . .
C3

B5

0 1
. . .

0

Figure 5 Construction of Bi.

The last observation gives useful criteria of correctness. We have path in B from source
to sink that is labeled by Ci consistent with some assignment xj ← a iff Bi|xj←a is satisfiable.
We are ready to describe an algorithm:
1. enumerate all clauses Ci ∈ φ;
2. enumerate variables xj ∈ Ci and consider a constant a such that Ci|xj←a = 1;
3. check whether Bi|xj←a is satisfiable, if yes return “NO”;
4. if B passes all tests then return “B is correct”.

The correctness of this algorithm follows from previous observation. And we run satis-
fiability algorithm at most nm times hence the running time is at most O

[(4en
k

)k
sn2m

]
.

6 Open Problems

In conclusion we want to mention some open problems. We start with the obvious ones.
1. Find a formula that is hard for (1, +k)-BP where k := nε.
2. Find a formula that is hard for read-twice branching programs (programs that on any

path may read each variable at most twice).

Another problems are more technical, but in our opinion the solution of these problems
may lead to new techniques for proving lower bounds.
1. Find a “natural” formula that is hard for (1, +k)-BP for any k > 0. The main problem

with the current bound is that we amplify our formula by an η function. This is an
artificial trick that prevents generalization of our main Theorem.

2. More difficult question: can we prove a lower bound on random ∆-CNF formulas? This
is a canonical example of the hard formulas. Typically, only the “local” structure is used
for proving lower bounds on these formulas, which is one of the important barriers for
proving lower bounds on these formulas in AC0-Frege proof system.

References
1 Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Pseudor-

andom generators in propositional proof complexity. SIAM J. Comput., 34(1):67–88, 2004.
doi:10.1137/S0097539701389944.

2 Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An exponential
separation between regular and general resolution. Theory Comput., 3(1):81–102, 2007.
doi:10.4086/toc.2007.v003a005.

3 Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calculus: Non-
binomial case. Proceedings of the Steklov Institute of Mathematics, 242:18–35, 2003. Available
at http://people.cs.uchicago.edu/~razborov/files/misha.pdf. Preliminary version in
FOCS ’01.

CCC 2021

https://doi.org/10.1137/S0097539701389944
https://doi.org/10.4086/toc.2007.v003a005
http://people.cs.uchicago.edu/~razborov/files/misha.pdf

17:20 Branching Programs with Bounded Repetitions and Flow Formulas

4 Noga Alon and Fan R. K. Chung. Explicit construction of linear sized tolerant networks.
Discret. Math., 72(1-3):15–19, 1988. doi:10.1016/0012-365X(88)90189-6.

5 Albert Atserias, Ilario Bonacina, Susanna F. de Rezende, Massimo Lauria, Jakob Nordström,
and Alexander A. Razborov. Clique is hard on average for regular resolution. In Ilias
Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA,
June 25-29, 2018, pages 866–877. ACM, 2018. doi:10.1145/3188745.3188856.

6 Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow – resolution made simple. J.
ACM, 48(2):149–169, 2001. doi:10.1145/375827.375835.

7 Stephen Cook and Robert Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44(1):36–50, March 1979. URL: https://projecteuclid.org:
443/euclid.jsl/1183740343.

8 L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

9 Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani. Optimal sherali-adams gaps from
pairwise independence. In Irit Dinur, Klaus Jansen, Joseph Naor, and José Rolim, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 125–139, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

10 Stasys Jukna. Expanders and time-restricted branching programs. Theor. Comput. Sci.,
409(3):471–476, 2008. doi:10.1016/j.tcs.2008.09.012.

11 Stasys Jukna. Boolean Function Complexity — Advances and Frontiers, volume 27 of Algorithms
and combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.

12 Stasys Jukna and Alexander A. Razborov. Neither reading few bits twice nor reading
illegally helps much. Discret. Appl. Math., 85(3):223–238, 1998. doi:10.1016/S0166-218X(98)
00042-0.

13 Alexander Knop. IPS-like Proof Systems Based on Binary Decision Diagrams. Electron.
Colloquium Comput. Complex., 24:179, 2017. URL: https://eccc.weizmann.ac.il/report/
2017/179.

14 László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. Search problems in the decision
tree model. SIAM J. Discret. Math., 8(1):119–132, 1995. doi:10.1137/S0895480192233867.

15 William Masek. A fast algorithm for the string editing problem and decision graph complexity.
Master Thesis, Massachusetts Institute of Technology, 1976.

16 E. I. Nechiporuk. On a boolean function. Dokl. Akad. Nauk SSSR, 169:765–766, 1966.
17 Toniann Pitassi and Ran Raz. Regular resolution lower bounds for the weak pigeonhole

principle. Comb., 24(3):503–524, 2004. doi:10.1007/s00493-004-0030-y.
18 Ran Raz. Resolution lower bounds for the weak pigeonhole principle. J. ACM, 51(2):115–138,

2004. doi:10.1145/972639.972640.
19 Petr Savický. A probabilistic nonequivalence test for syntactic (1,+k)-branching programs.

Electron. Colloquium Comput. Complex., 5(51), 1998. URL: http://eccc.hpi-web.de/
eccc-reports/1998/TR98-051/index.html.

20 Petr Savický and Stanislav Žák. A lower bound on branching programs reading some bits
twice. Theor. Comput. Sci., 172(1-2):293–301, 1997. doi:10.1016/S0304-3975(96)00183-1.

21 Detlef Sieling. New lower bounds and hierarchy results for restricted branching programs. J.
Comput. Syst. Sci., 53(1):79–87, 1996. doi:10.1006/jcss.1996.0050.

22 Detlef Sieling and Ingo Wegener. New lower bounds and hierarchy results for restricted
branching programs. In Ernst W. Mayr, Gunther Schmidt, and Gottfried Tinhofer, ed-
itors, Graph-Theoretic Concepts in Computer Science, 20th International Workshop, WG
’94, Herrsching, Germany, June 16-18, 1994, Proceedings, volume 903 of Lecture Notes in
Computer Science, pages 359–370. Springer, 1994. doi:10.1007/3-540-59071-4_61.

23 Dmitry Sokolov. (semi)algebraic proofs over ±1 variables. In Konstantin Makarychev, Yury
Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,
IL, USA, June 22-26, 2020, pages 78–90. ACM, 2020. doi:10.1145/3357713.3384288.

https://doi.org/10.1016/0012-365X(88)90189-6
https://doi.org/10.1145/3188745.3188856
https://doi.org/10.1145/375827.375835
https://projecteuclid.org:443/euclid.jsl/1183740343
https://projecteuclid.org:443/euclid.jsl/1183740343
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1016/j.tcs.2008.09.012
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1016/S0166-218X(98)00042-0
https://doi.org/10.1016/S0166-218X(98)00042-0
https://eccc.weizmann.ac.il/report/2017/179
https://eccc.weizmann.ac.il/report/2017/179
https://doi.org/10.1137/S0895480192233867
https://doi.org/10.1007/s00493-004-0030-y
https://doi.org/10.1145/972639.972640
http://eccc.hpi-web.de/eccc-reports/1998/TR98-051/index.html
http://eccc.hpi-web.de/eccc-reports/1998/TR98-051/index.html
https://doi.org/10.1016/S0304-3975(96)00183-1
https://doi.org/10.1006/jcss.1996.0050
https://doi.org/10.1007/3-540-59071-4_61
https://doi.org/10.1145/3357713.3384288

A. Sofronova and D. Sokolov 17:21

24 Ingo Wegener. On the complexity of branching programs and decision trees for clique functions.
J. ACM, 35(2):461–471, 1988. doi:10.1145/42282.46161.

25 Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000. URL:
http://ls2-www.cs.uni-dortmund.de/monographs/bdd/.

26 Stanislav Žák. An exponential lower bound for real-time branching programs. Information
and Control, 71(1):87–94, 1986. doi:10.1016/S0019-9958(86)80018-3.

A Missed Lemmas

A.1 Lemma 18
At first we prove an auxiliary Lemma.

▶ Lemma 28. If G := (V, E) satisfies (r, a)-expansion property, M ⊆ E, and S ⊆ V of size
at most r, such that |E(S, S) \M | ≤ b∆|S| then |S| ≤ |M |

(a−b)∆ .

Proof. The size of S is at most r, hence:

b∆|S| ≥ |E(S, S) \M | ≥ a∆|S| − |M |.

Thus |S| ≤ |M |
(a−b)∆ . ◀

▶ Lemma A.1 (18). Let (p, Up, σp) and (q, Uq, σq) be 0.9-good triples. Then there is an
assignment κ such that:

for any γ that is an instance of σp ∪· σq an assignment γ ∪ κ is a β′-mlce on supp(σp) ∪
supp(σq);
| supp(γ ∪ κ)| ≤ νk−1∆r.

Moreover if p = q then triple (p, Up, σp ∪ κ) is β′-good.

Proof. Let S := Vσp
∪ Vσq

, Eσ := supp(σp)∪ supp(σq) and B ⊆ V \ S be the maximal set of
vertices that satisfies:
|B| ≤ r;
|E(B, B) \ Eσ| ≤ β′∆|B|.

At first we give an upper bound on the size of set B.
Partial assignment σp is 0.9-mlce on M ∪ Up. β′∆|Vσp

| ≥ |E(Vσp
, V σp

) \ (M ∪ Up)| and
by Lemma 28

|Vσp | ≤
|M ∪ Up|
(β − β′)∆ ≤ 2 νk

(β − β′)r ≤ 1
2νk−1r.

By analogy the same holds for Vσq
.

The equality E(B, B)∩Eσ = E(B, S)∪ (E(B)∩ |M ∪Up ∪Uq|) together with |E(B, B) \
Eσ| ≤ β′∆|B| implies:

(1− β′)∆|B| − |M ∪ Up ∪ Uq| ≤ |E(B, S)|

By Mixing Lemma:

|E(B, S)| ≤ ∆
n
|B||S|+ α∆

√
|S||B|.

For the sake of contradiction assume that |B| ≥ |S| thus:

|E(B, S)| ≤ ∆
n
|B||S|+ α∆|B|.

CCC 2021

https://doi.org/10.1145/42282.46161
http://ls2-www.cs.uni-dortmund.de/monographs/bdd/
https://doi.org/10.1016/S0019-9958(86)80018-3

17:22 Branching Programs with Bounded Repetitions and Flow Formulas

Altogether:

(1− β′)∆|B| ≤ ∆r

n
νk−1|B|+ α∆|B|+ 3νk∆r ≤ 2α∆|B|,

that contradicts the choice of α and β′, hence |B| ≤ |S| ≤ νk−1r.
At first we show that (V \ (S ∪B), E \ (Eσ ∪ E(B))) satisfies (r, β′)-expansion property.

By contradiction, suppose that there is a set B′ ⊆ V \ (S ∪B) of size at most r such that
|E(B′, B′) \ (Eσ ∪ E(B))| < β′∆|B′|.

Again by Lemma 28 we conclude that:

|B′| ≤ |M ∪ Up ∪ Uq|+ ∆|S ∪B|
(β − β′)∆ ≤ νk−1r + 1

2r ≤ 3
4r.

But it implies that |B ∪B′| ≤ r, moreover:

|E(B ∪B′, B ∪B′) \ Eσ| ≤
β′∆|B|+ β′∆|B′| =

β′∆|B ∪B′|. B and B′ are disjoint

That contradicts the choice of B.
Now we find a proper assignment κ on the E(B) \ Eσ such that for all v ∈ B:∑
e∈E:st(e)=v

xe ≥ 0.8 ·∆.

Since σp is an (r, 0.6, 0.9)-locally consistent assignment, then (V \ Vσp , E \ supp(σp))
satisfies (r, 0.9)-expansion property. By analogy we have the same property for σq that
implies: (V \S, E \Eσ) satisfies (r, 0.8)-expansion property. Indeed, consider a set C ⊆ V \S

of size at most r:

|E(C, C) \ Eσ| = |E(C, C)| − |E(C, C) ∩ Eσ|
≥ |E(C, C)| − |E(C, C) ∩ supp(σp)| − |E(C, C) ∩ supp(σq)|
= |E(C, C) \ supp(σp)| − 0.1 ·∆|C|
≥ 0.8 ·∆|C|.

By Proposition 12 there is an enumeration of vertices in B: v1, v2, . . . , v|B| ∈ B and a
sequence R1, . . . , R|B| ⊆ (E(B) \ Eσ) such that:

Ri = E({vi}, V \ {v1, v2, . . . , vi}) \ Eσ;
|Ri| ≥ 0.8∆.

We define κ in the following way:
for an e ∈ Ri we assign corresponding variables to direct the flow outside of the vertex vi

(i.e. if e′ is a directed copy of e that goes outside of vi we set xe′ to 1 and set the dual
edge to 0);
for all loops inside the set B we assign corresponding variables to 0.

Let γ be an instance of σp ∪· σq, ζ := γ ∪ κ and Vζ := S ∪B. We have already shown that
the graph (V \ Vζ , E \ supp(ζ)) satisfies (r, β′)-expansion property. We want to show that
vertices in Vζ are 0.6-satisfied by ζ. Consider four cases.

1. v ∈ Vρ. Both assignments σp and σq extend an assignment ρ hence γ agreed with both
assignments on edges incident to Vρ. Thus γ 0.6-satisfies v.

A. Sofronova and D. Sokolov 17:23

2. v ∈ Vσp
\ Vρ. Let Ev be a set of edges that are incident to v. At least 0.8 ·∆ of those

edges carry outgoing flow from v in σp. Denote those edges as Eσp
.

If v /∈ Vσq
then σq may assign at most 0.1 ·∆ edges in Ev. That means that in γ at least

0.7 ·∆ edges from Eσp
still carry outgoing flow from v.

If v ∈ Vσq
then σp and σq both 0.8-satisfy v. Let Eσq

⊆ Ev be the set of edges that carry
outgoing flow from v in σq. Then Eσp ∩Eσq ≥ 0.6 ·∆, and all those edges carry outgoing
flow from v in γ.
Note that if σp = σq, then we 0.8-satisfy v.

3. v ∈ Vσp
\ Vρ. By analogy with the previous case.

4. v ∈ B. We direct the flow on at least 0.8 · ∆ edges from Ev outside of v hence κ

0.8-satisfies v.

By construction Vζ := Vσp ∪ Vσq ∪B hence |Vζ | ≤ νk−1r and | supp(ζ)| ≤ νk−1r. In order
to check that ζ is β′-mlce note that:

|E(B, B) \ Eσ| ≤ β′∆|B| ≤ β′∆|Vζ |,

but

|E(B, B) \ Eσ| = |E(Vζ , Vζ) \ Eσ|

since σp and σq together assign all edges that are incident to Vσp
∪ Vσq

. Thus:

|E(Vζ , Vζ) \ Eσ| ≤ β′∆|Vζ |

that concludes the proof.
In case of (p, Up, σp) = (q, Uq, σq) it remains to show that ζ is β′-mlce on M ∪ Up. Again

we note that:

|E(B, B) \ Eσ| ≤ β′∆|B|,

and also

|E(Vσp , V σp) \ Eσ| ≤ β′∆|Vσp |,

hence

|E(Vσp
∪B, Vσp

∪B) \ Eσ| ≤ β′∆(|Vσp
|+ |B|) ≤ β′∆|Vσp

∪B|,

where the last inequality holds since B and Vσp
are disjoint, that concludes the proof. ◀

A.2 Lemma 23
▶ Lemma A.2 (23). For all i ≤ ℓ:

κi exists;
|Vτi
| ≤ 1

(β−β′)∆ (supp(ζ) + ∆|Ui|) and hence |τi| ≤ 2
(β−β′) (| supp(ζ)|+ ∆|Ui|);

(V \ Vτi , E \ supp(τi)) satisfies (r, β′)-expansion property.

Proof. We show by induction on i that:
(V \ Vτi

, E \ supp(τi)) satisfies (r, β′)-expansion property;
|E(Vτi , V τi) \ (supp(ζ) ∪ E(Ui))| < β′∆|Vτi |;
|Vτi
| ≤ 1

(β−β′)∆ (supp(ζ) + ∆|Ui|) and hence |τi| ≤ 2
(β−β′) (| supp(ζ)|+ ∆|Ui|).

CCC 2021

17:24 Branching Programs with Bounded Repetitions and Flow Formulas

Assignment τ0 is ζ and ζ is (r, 0.6, β′)-locally consistent, in particular, (V \Vζ , E \supp(ζ))
satisfies (r, β′)-expansion property and E(Vζ , V ζ) \ supp(ζ)) = ∅.

By definition of Hi:

β′∆|Hi| > |E(Hi, Hi \ {ui}) \ supp(τi)| ≥ |E(Hi, Hi) \ (supp(τi) ∪ E(Hi, {ui}))|

and by Lemma 28

|Hi| ≤
| supp(τi) ∪ E(Hi, ui)|

(β − β′)∆ ≤ | supp(τi) ∪ E(Hi, ui)|
(β − β′)∆ ≤ 1

2νk−2(r + 1).

Hence |Hi ∪ Vτi
∪ {ui}| ≤ r that together with:

|E(Hi ∪ Vτi
∪ {ui}, Hi ∪ Vτi

∪ {ui}) \ (supp(ζ) ∪ E(Ui+1))| ≤
|E(Vτi

, Hi ∪ Vτi
) \ (supp(ζ) ∪ E(Ui+1))|+ |E(Hi, Hi) \ (supp(ζ) ∪ E(Ui+1) ∪ E(Vτi

)| ≤
β′∆|Vτi |+ β′∆|Hi| ≤

β′∆|Hi ∪ Vτi | ≤
β′∆|Hi ∪ Vτi

∪ {ui}|

implies |Vτi+1 | = |Hi ∪ Vτi ∪ {ui}| ≤ 1
(β−β′)∆ (| supp(ζ)|+ ∆|Ui+1|) by Lemma 28. Also

|τi+1| ≤ 2
(β−β′) (| supp(ζ)|+∆|Ui+1|) since by construction τi+1 assigns only edges in supp(ζ)∪

E(Ui ∪ Vτi+1).
Now we show that a graph (V \ Vτi+1 , E \ supp(τi+1)) satisfies (r, β′)-expansion property.

For the sake of contradiction assume that there is a set S ⊆ V \ Vτi+1 of size at most r such
that: E(S, S) \ supp(τi+1) ≤ β′∆|B|.

By Lemma 28 |S| ≤ | supp(τi+1)|
(β−β′)∆ ≤ 1

2 νk−2(r + 1). Hence |Hi ∪ S| ≤ r that together with:

E(Hi ∪ S, Hi ∪ S \ {ui}) \ supp(τi)| ≤
E(Hi, Hi ∪ S \ {ui}) \ supp(τi)|+ E(S, Hi ∪ S \ {ui}) \ supp(τi)| ≤

β′∆|Hi|+ β′∆|S| =
β′∆|Hi ∪ S|

contradicts the choice of Hi.
To conclude the proof we have to show the existence of κi. Note that (V \Vτi

, E \supp(τi))
satisfies (r, β′)-expansion property. Consider an arbitrary set B ⊆ V \ (Vτi

∪ {ui}) of size at
most r:

|E(B, B) \ (supp(τi) ∪ E({ui}))| ≥ β′∆|B| − E(B, {u}).

By Mixing Lemma:

|E(B, {u})| ≤ ∆
n
|B|+ α∆

√
B ≤ 0.05 ·∆|B|,

and hence

|E(B, B) \ (supp(τi) ∪ E({ui}))| ≥ 0.9 ·∆|B|

and graph (V \ Vτi \ {ui}, E \ supp(τi)) satisfies (r, 0.9)-expansion property.
By Proposition 12 there is an enumeration of vertices in Hi: v1, v2, . . . , v|Hi| ∈ Hi and a

sequence R1, . . . , R|Hi| ⊆ E(Hi) \ (supp(τi) ∪ E({ui})) such that:

A. Sofronova and D. Sokolov 17:25

Rk = E({vk}, V \ {v1, v2, . . . , vk}) \ (supp(τi) ∪ E({ui}));
|Ri| ≥ 0.9 ·∆.

We define κi for vertices v1, . . . , vHi
step by step, such that κi on E(vk) satisfies the constraint:∑

e∈E:st(e)=vk

(τ ′ ∪ κi)(xe)−
∑

e∈E:en(e)=vk

(τ ′ ∪ κi)(xe) = c(vk).

Since we have an access to the 0.9 ·∆ edges and others are already assigned, we can always
choose the right values (loops are always assigned to zero). ◀

B Garland in the Paths

▶ Lemma B.1 (19). There are (p, Up, σp), (q, Uq, σq) ∈ S such that (p, q) forms a (k + 1)-
garland.

Proof. Note that we can describe elements in P by a sequence of bits of size s := νk∆r.
Each bit of this sequence describes an assignment for an edge e that we choose on “branching
step”. From the construction it follows that different sequences generate different paths in
the branching program and hence different elements of P.

Let sk := ⌊ s
k+1⌋. We construct our garland by the iterative algorithm. After i-th iteration

we have a set Si of sequences of size isk such that any two of the corresponding paths form
i-garland and all paths end in the same node. The size of Si will be at least exp

[
sk − i

2k sk

]
for all 1 ≤ i ≤ k + 1.

1. For i = 1 consider all possible strings of length sk and paths that correspond to them.
The branching program has size at most 2

sk
2k , hence there exists a node such that at least

2
sk(2k−1)

2k paths end there. The set S1 consists of all corresponding sequences.
2. For the step i, 2 ≤ i ≤ k + 1, we consider all sequences in Si−1. Let v be the end node of

all paths corresponding to sequences in the set. To each sequence s ∈ Si−1 we append a
string us of sk bits in such a way that for any pair r, r′ ∈ Si−1 paths that corresponds to
rur and r′ur′ differ at some node after v. Since 2sk ≥ |Si−1|, it is possible to do this.
For the resulting sequences, we consider the set of the corresponding paths. The set of
paths has size at least 2

sk(2k−i+1)
2k , and the size of the program is at most 2

sk
2k . Hence

there exists a node such that 2
sk(2k−i)

2k paths end there. Let Si be the set of sequences
corresponding to those paths.

After k + 1 steps we have a set Sk+1, |Sk+1| ≥ 2, such that any two sequences in it
correspond to a (k + 1)-garland. ◀

CCC 2021

A Majority Lemma for Randomised Query
Complexity
Mika Göös #

School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland

Gilbert Maystre #

School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland

Abstract
We show that computing the majority of n copies of a boolean function g has randomised query
complexity R(Maj ◦ gn) = Θ(n · R1/n(g)). In fact, we show that to obtain a similar result for any
composed function f ◦ gn, it suffices to prove a sufficiently strong form of the result only in the
special case g = GapOr.

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-
tography

Keywords and phrases Query Complexity, Composition, Majority

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.18

Acknowledgements We thank Thomas Watson and anonymous reviewers for helpful comments.

1 Introduction

In boolean function complexity theory, a typical direct sum problem asks: For a given boolean
function g : {0, 1}m → {0, 1}, how much harder is it to compute g on n separate inputs, that
is, computing gn(x1, . . . , xn) := (g(x1), . . . , g(xn)), compared to computing g on a single
input? For randomised query complexity, a complete answer was recently obtained by Blais
and Brody [7] (improving on [17, 6]). They showed that the most obvious way to compute gn

is optimal: Evaluate each copy of g separately with a “reduced” error probability ≪ 1/n so
that, by a union bound, the n-bit output will be correct with high probability. More precisely,
their result states (we assume n ≥ 3 for simplicity of notation throughout the paper)

∀g : R(gn) = Θ(n · R1/n(g)). (Direct sum)

Here we used standard notation: R(g) := R1/3(g) where Rϵ(g) denotes the ϵ-error query
complexity of g, that is, the least number of queries a randomised algorithm (decision
tree) must make to the input bits xi ∈ {0, 1} of an unknown input x ∈ {0, 1}m in order
to output g(x) with probability at least 1 − ϵ (where the probability is over the internal
randomness of the algorithm). Similarly, Rϵ(g) denotes the ϵ-error expected query complexity
of g where we measure the expected (rather than worst-case) number of queries made by the
algorithm. See Section 2 for precise definitions.

How far can we push the direct sum result? What if, instead of all the n output bits
of gn, we only wanted to compute their parity? In other words, what is the randomised
query complexity of the composed function Xor ◦ gn? Do we still have to compute each g

with reduced error? Brody et al. [8] provided an affirmative answer:

∀g : R(Xor ◦ gn) = Θ(n · R1/n(g)). (Xor Lemma)

More generally, we can ask the following question.

▶ Problem 1. For which n-bit outer functions f (assume R(f) = Θ(n) for simplicity) and
inner functions g does the composed function f ◦ gn necessitate error reduction?

© Mika Göös and Gilbert Maystre;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mika.goos@epfl.ch
mailto:gilbert.maystre@epfl.ch
https://doi.org/10.4230/LIPIcs.CCC.2021.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 A Majority Lemma for Randomised Query Complexity

There is no conjectured characterisation for when error reduction is necessary. To showcase the
subtlety of this question, we mention that f = Or, despite having a highly “sensitive” input
x = 0n, never necessitates error reduction. By now, there are many proofs [12, 20, 22, 15, 5]
showing that R(Or ◦ gn) = O(n · R(g)) for every g.

Our goal in this paper is to make further progress on Problem 1.

1.1 Our results
Our main result is to prove tight bounds for composing with the n-bit majority function
Maj. This in particular confirms a conjecture made in [7, 5].

▶ Theorem 2 (Maj lemma). R(Maj ◦ gn) = Θ(n · R1/n(g)) for every partial function g.

Previously, Ben-David et al. [5] proved Theorem 2 in the special case g = GapOr. Here
GapOr = GapOrm is the m-bit partial function defined by GapOr(x) = Or(x) on inputs
of Hamming weight |x| ∈ {0, m/2} and is undefined otherwise. This is a particularly clean
example of a function whose query complexity behaves as (assuming m ≥ log(1/ϵ))

Rϵ(GapOr) = Θ(log(1/ϵ)).

We prove Theorem 2 by a direct reduction to this previous result! Our more general
result says, informally, that error reduction is necessary for any composed function f ◦ gn if
it is necessary in the special case g = GapOr. Our key conceptual insight is to formulate a
sense in which every g can be “simulated” by GapOr. There is, however, a slight technical
caveat. For the reduction to work, we need to assume that the lower bound for f ◦ GapOrn

holds not only against randomised decision trees but also against a more powerful model
called ϵ-approximate nonnegative degree deg+

ϵ (aka conical junta degree, partition bound),
which we will recall in Section 2.

▶ Theorem 3 (Reduction to GapOr). If a function f satisfies deg+
ϵ (f ◦ hn) ≥ Ω(n log n)

for some constant ϵ > 0 and for both h ∈ {GapOrlog n, ¬GapOrlog n}, then

∀g : R(f ◦ gn) = Ω(n · R1/n(g)).

Theorem 2 follows immediately by combining Theorem 3 with [5, Theorem 4], which
proved the required nonnegative degree lower bound for Maj ◦ GapOrn (we only note that
their proof works equally well for ¬GapOr in place of GapOr). In fact, the nonnegative
degree lower bound holds more generally for any (2n + 1)-bit outer function that agrees with
Maj on inputs of weight n and n + 1. For example, Xor is such a function, and hence the
Xor lemma of Brody et al. [8] can be recovered using Theorem 3. However, the original
proof in [8] is much simpler than ours, and moreover, the result of [8] actually characterises
Rϵ(Xor ◦ gn) for all ϵ > 0 while we focus on the bounded-error case ϵ = 1/3.

Our goal for the rest of the paper is to prove Theorem 3.

Optimality? We note that our choice of GapOr in Theorem 3 is optimal at least in the sense
that it cannot be replaced with the more symmetric alternative GapMaj, which is defined by
GapMajm(x) = Majm(x) on inputs of weight |x| ∈ {m/3, 2m/3} and undefined otherwise.
There are known examples of partial f (but no known total ones) for which GapOr does
not need error reduction while GapMaj does [5, Section 4]. We suspect however that other
aspects of Theorem 3 can be improved; see Subsection 1.4 for open problems.

M. Göös and G. Maystre 18:3

1.2 Techniques: Leaf Lemma
Our main technical contribution, which might be of independent interest, is what we call
Leaf Lemma. It states that every boolean function g admits a balanced input distribution
µ = 1

2 (µ0 + µ1), where µi is a distribution supported on g−1(i), and a “hard side” b ∈ {0, 1}
satisfying the following: If we run a decision tree of shallow depth ≪ Rϵ(g) on a random
input x ∼ µ then we will typically reach a leaf ℓ making one-sided error, that is, if the leaf ℓ

is reached by x ∼ µb with probability p, then ℓ is also reached by x ∼ µ1−b with probability
at least ϵ · p. Interestingly, this property is inherently one-sided and the choice of the hard
side b depends on the function g. For example, GapOr and ¬GapOr have distinct hard
sides. See our proof overview in Section 3 for more details.

1.3 Other related work
Complexity of composition. A major theme in boolean function complexity theory is to
understand the complexity of the composition f ◦ gn in terms of the complexities of its two
constituent functions. It has been long known that many well-studied complexity measures
behave multiplicatively under composition. For example, deterministic query complexity
satisfies D(f ◦ gn) = D(f) D(g) [24], quantum query complexity satisfies Q(f ◦ gn) =
Θ(Q(f) Q(g)) [23, 21], and yet more examples (degree, certificate complexity, sensitivity)
are discussed in [25]. An interesting exception to this rule is randomised query complexity,
where we can have two types of counter-examples.

Super-multiplicative: There are functions f and g such that R(f ◦ gn) ≥ ω(R(f) R(g)).
For example, this happens whenever f necessitates error reduction for g = GapOr.
Sub-multiplicative: Recent work [13, 3] has found surprising examples of partial f and g

such that R(f ◦ gn) ≤ o(R(f) R(g)).

It is still open to quantify the extent to which multiplicativity can fail. For example, it
has not been ruled out that R(f ◦ gn) ≥ R(f) R(g)/poly(log n) for all partial functions. It is
also possible that a strict multiplicative lower bound holds for all total functions. This latter
question is known as the randomised composition conjecture (for total functions) and it has
been studied in a long line of work [6, 1, 13, 2, 3, 4].

Noisy decision trees. Necessity of error reduction is closely related to the model of “noisy
decision trees” [12, 11, 10, 15]. In this model, the goal is to compute a boolean function f given
noisy query access to its input bits. A single query to an input variable xi returns its correct
value with probability 2/3 (say) and the opposite value 1 − xi with probability 1/3. This
model is effectively equivalent to computing f ◦GapMajn in the standard query model. With
this interpretation, one of the results of [12] states that R(Maj◦GapMajn) = Θ(n log n). We
note that this is weaker (in two respects) than the result deg+

ϵ (Maj ◦ GapOrn) = Θ(n log n)
from [5], which we used to derive our main result (although see Problem 4 below).

1.4 Open problems
How optimal is Theorem 3? We suspect that our assumption about nonnegative degree is an
artifact of our proof and can be relaxed as follows.

▶ Problem 4. Show that the hypothesis in Theorem 3 can be weakened to R(f ◦ hn) ≥
Ω(n log n).

CCC 2021

18:4 A Majority Lemma for Randomised Query Complexity

Whether we need to assume hardness for both GapOr and its negation, we do not know.

▶ Problem 5. Are there examples of f with R(f ◦ GapOrn) ≥ ω(R(f ◦ ¬GapOrn))?

Theorem 3 could be useful in showing tight composition results for yet more outer
functions. For example, consider the well-studied partial function SqrtGapMajn (often
called simply the gap majority function) defined as Majn but restricted to inputs of Hamming
weight |x| /∈ n/2 ±

√
n.

▶ Problem 6. Show R(SqrtGapMaj ◦ gn) = Θ(n · R1/n(g)) for every g.

2 Query complexity basics

We study partial boolean functions f : {0, 1}n → {0, 1, ∗}. The domain of the func-
tion is dom(f) := f−1({0, 1}) and the inputs f−1(∗) are undefined. We say f is total
if dom(f) = {0, 1}n. For partial functions f and g, their composition f ◦ gn is defined
by (f ◦ gn)(x1, . . . , xn) := f(g(x1), . . . , g(xn)) if xi ∈ dom(g) for all i ∈ [n]; otherwise
(f ◦ gn)(x1, . . . , xn) := ∗. Standard references for boolean function complexity are [9, 18].

Decision trees. A (deterministic) decision tree t is an algorithm for computing a boolean
function on an unknown input x ∈ {0, 1}n. The algorithm repeatedly queries the input
variables xi ∈ {0, 1} in some order (which can depend on outcomes of queries made so
far) until eventually producing an output t(x). Such an algorithm can be represented as a
binary tree, with internal nodes labelled with variables xi, outgoing edges of the internal
nodes labelled with query outcomes (xi = 0 and xi = 1), and leaves labelled with output
values. Each input x determines a unique root-to-leaf path, obtained by following the query
outcomes consistent with x. The most important cost measure of t is its depth, denoted
depth(t), which is the longest root-to-leaf path in the tree and equals maxx q(t, x) where
q(t, x) denotes the number of queries made by t on input x.

A randomised decision tree T is a distribution over deterministic decision trees t ∼ T .
We say T computes f : {0, 1}n → {0, 1, ∗} with error ϵ if for every x ∈ dom(f) we have
Pt∼T [t(x) = f(x)] ≥ 1 − ϵ. There are two cost measures for T : the (worst-case) depth
is the maximum depth of any decision tree in the support of T ; the expected depth is
maxx Et∼T [q(t, x)]. The ϵ-error query complexity of f , denoted Rϵ(f), is the least depth
of a randomised decision tree that computes f with error ϵ. The ϵ-error expected query
complexity, denoted Rϵ(f), is defined analogously.

Error reduction. It is well known that the error probability of an algorithm (computing a
boolean-valued function) can be reduced from any constant 1/2−δ, where δ > 0, to any other
constant ϵ > 0 by repeating the algorithm constantly many times (in fact, O(log(1/ϵ)/δ2)
many) and outputting the majority answer. Hence we often set ϵ := 1/3 and omit ϵ from
notation. In this bounded-error regime, we have R(f) ≤ R(f) ≤ O(R(f)) where the second
inequality follows by truncating executions that query many more bits than the expectation.
For vanishing ϵ = o(1) (as n → ∞), it is possible that Rϵ(f) ≤ o(Rϵ(f)). For example,
consider the partial 2n-bit function f where the task is to distinguish inputs of the form x0n

from inputs of the form 0nx with the promise that |x| = n/2. We have R1/n(f) = O(1) while
R1/n(f) = Θ(log n). In this small-error regime, the following fine-grained error reduction
calculation will be useful.

▷ Claim 7. Rϵk (f) ≤ 4k · Rϵ(f) for every k ≥ 1 and ϵ ≤ 1/16.

M. Göös and G. Maystre 18:5

Proof. Suppose T computes f with error ϵ and consider the algorithm T ′ that runs T 4k − 1
times and outputs the majority answer. Then T ′ errs iff at least 2k of the runs err. This
happens with probability at most

∑4k−1
i=2k

(4k−1
i

)
ϵi(1 − ϵ)4k−1−i ≤ 24kϵ2k ≤ ϵk. ◁

Leaf indicators. Let t be a decision tree with n-bit inputs. We denote by L(t) the set of its
leaves and by ℓt

x ∈ L(t) the unique leaf reached on input x. We often identify a leaf ℓ ∈ L(t)
with its associated leaf indicator function ℓ : {0, 1}n → {0, 1} defined by ℓ(x) := 1 iff input x

reaches leaf ℓ. Thus each ℓ is simply a conjunction of at most depth(t) literals (xi or x̄i)
determined by the unique root-to-ℓ path in t. If t outputs boolean values, we let A(t) ⊆ L(t)
denote the set of accepting leaves, that is, those that output 1. Since the leaf indicators have
pairwise disjoint supports, we can write the function computed by t as

t(x) =
∑

ℓ∈A(t) ℓ(x). (1)

Nonnegative degree. Let p : {0, 1}n → R≥0 be a nonnegative function. We say p is a
nonnegative d-junta if it depends on at most d of its variables. For example, if t is a depth-d
decision tree, then each ℓ ∈ L(t) is a nonnegative d-junta. More generally, we say that p is a
conical junta of degree d if it can be written as a conical combination of nonnegative d-juntas,
that is, p(x) =

∑
i aiqi(x) where ai ≥ 0 are nonnegative scalars and the qi are nonnegative

d-juntas. For example, the function computed by t is a degree-d conical junta, as given by
the expression (1). The nonnegative degree of p, denoted deg+(p), is the least d such that p

is a degree-d conical junta.
Let f : {0, 1}n → {0, 1, ∗} be a partial function. We say that p ϵ-approximates f if

p(x) ∈ f(x) ± ϵ for every x ∈ dom(f). The ϵ-approximate nonnegative degree of f , denoted
deg+

ϵ (f), is the least degree of a conical junta that ϵ-approximates f . For example, if T is a
depth-d randomised ϵ-error decision tree for f , then there exists a degree-d conical junta pT

that ϵ-approximates f , namely,

pT (x) := Et∼T [t(x)] ∈ f(x) ± ϵ.

This shows that deg+
ϵ (f) ≤ Rϵ(f). The gap betweeen deg+

1/3(f) and R(f) can be huge for
partial functions. For example, consider the n-bit UniqueOr defined by UniqueOr(x) =
Or(x) for inputs of weight |x| ∈ {0, 1} and undefined othwerwise. Then deg+(UniqueOr) =
1 (computed by

∑
i xi) while R(UniqueOr) = Θ(n). For total functions, the gap is at most

polynomial [9].
Nonnegative degree has been studied under many names: (one-sided) partition bound [16],

WAPP query complexity [14, 5], and query complexity “in expectation” [19].

3 Proof overview

Here we outline the proof of Theorem 3. We phrase the proof in the contrapositive: Supposing
that T is a randomised decision tree computing f ◦ gn of shallow depth ≪ n · R1/n(g) we
construct an approximate conical junta for f ◦GapOrn (or f ◦¬GapOrn) of degree ≪ n log n.

Our overview is in two parts.
(§3.1) We first formulate our main technical lemma called Leaf Lemma and its generalisation

Multileaf Lemma. They describe what typical leaves of T look like: they are noisy, meaning
that they make noticeable errors in predicting the outputs of many copies of g. The
proofs of these lemmas will occupy the remaining sections of this paper.

CCC 2021

18:6 A Majority Lemma for Randomised Query Complexity

(§3.2) Then we use Multileaf Lemma to prove Theorem 3. A notable component of this part
of the proof is showing how the acceptance probabilities of noisy leaves can be “simulated”
by low-degree conical juntas in the domain of f ◦ GapOrn.

3.1 Statement of Leaf Lemma
Example. We build up to the statement of Leaf Lemma by first considering the prototypical
example g = GapOrm. Define two distributions µ0 and µ1 so that µi is uniform over
GapOr−1

m (i). Namely, µ0 places probability 1 on the input 0m and µ1 is uniform over x of
weight |x| = m/2. Suppose t is a deterministic decision tree of shallow depth d ≪ m trying
to compute GapOrm. For a leaf ℓ ∈ L(t) and any input distribution µ we write for short

ℓ(µ) := Ex∼µ[ℓ(x)] = Px∼µ[ℓ(x) = 1].

What do the typical leaves look like when we run t on a random input x ∼ µi for i ∈ {0, 1}?

Easy side i = 1. The tree will query a 1-bit after about 2 queries in expectation. Such
leaves ℓ are safe to output 1 as they know GapOr(x) = 1 for certain: ℓ(µ0) = 0 and
ℓ(µ1) > 0.
Hard side i = 0. Here every query returns 0 and we reach a leaf ℓ reading d many 0s.
Although the leaf ℓ can be quite confident that the input x was sampled from µ0 rather
than µ1, some uncertainty remains: ℓ(µ0) = 1 and ℓ(µ1) ≥ ϵ for ϵ := 2−Ω(d).

In both cases, we have ℓ(µ1) ≥ ϵ · ℓ(µ0) and we say that ℓ is (one-sidedly) noisy. We now
formalise how every g gives rise to such noisy leaves.

General case. Fix a partial function g : {0, 1}m → {0, 1, ∗}. Let µ = 1
2 (µ0 + µ1) be a

balanced distribution where µi is supported on g−1(i). For a leaf ℓ over m bits, a “hard side”
b ∈ {0, 1}, and an error parameter ϵ ≥ 0, we define

ℓ is (ϵ, µ, b)-noisy def⇐⇒ ℓ(µ1−b) ≥ ϵ · ℓ(µb).

Our Leaf Lemma says that every partial function g admits a hard distribution µ =
1
2 (µ0 + µ1) such that if we run a shallow decision tree t on a random input x ∼ µ, the leaf
reached ℓt

x will typically be noisy. For simplicity of notation, for small quantities a, b ∈ [0, 1],
we write a ≪ b (resp. a ≪ b) to mean a ≤ cb (resp. ac ≤ b) for a sufficiently small constant
c > 0.

▶ Leaf Lemma. For every partial g and 0 < ϵ ≪ δ ≪ 1, there exists a distribution
µ = 1

2 (µ0 + µ1) over dom(g) and a hard side b ∈ {0, 1} such that for every deterministic tree
t and i ∈ {0, 1}:

Ex∼µi [q(t, x)]
Rϵ(g)

≪ δ =⇒ Px∼µi [ℓt
x is (ϵ, µ, b)-noisy] ≥ 1 − δ.

Leaf Lemma is our main technical contribution. The proof appears in Section 4. To
whet the reader’s appetite, we highlight two interesting challenges that make the lemma
non-trivial.

(C1) Which side is hard? We need to somehow tease out a hard side for an arbitrary g and
this can even depend on the choice of µ. For example, consider g(b, x) := b ⊕ GapOr(x)
where b ∈ {0, 1}. Rather than µ assigning b at random, the distribution can fix b to either
0 or 1, which reduces g to either GapOr or ¬GapOr (two functions with distinct hard
sides).

M. Göös and G. Maystre 18:7

(C2) Behaviour of typical leaves. The existence of µ is often proved using various minimax
theorems (we use one due to Blais and Brody [7]). These theorems typically guarantee
that any shallow decision tree incurs error at least ϵ on average relative to µ. This does
not rule out the following bad scenario: the tree could make error 1/2 on 2ϵ fraction of
the leaves reached and no error on 1 − 2ϵ fraction of the leaves – here the typical leaves
are not noisy!

In order to use Leaf Lemma in the context of composed functions, we generalise it to the
direct sum setting where the inputs come from dom(gn) := dom(g)n. Let ℓ be a leaf over nm

bits and write ℓ(x) =
∏

i∈[n] ℓi(xi) where xi ∈ {0, 1}m and each ℓi is over m bits. We define

ℓ is (δ, ϵ, µ, b)-noisy def⇐⇒ ℓi is (ϵ, µ, b)-noisy for at least (1 − δ)n many i ∈ [n].

Our generalised lemma says that we will typically reach a noisy leaf if we run a shallow
decision tree on a random input from the product distribution µy := µy1 × · · · × µyn where
y ∈ {0, 1}n.

▶ Multileaf Lemma. For every partial g and 0 < ϵ ≪ δ ≪ 1, there exists a distribution
µ = 1

2 (µ0 + µ1) over dom(g) and a hard side b ∈ {0, 1} such that for every deterministic tree
t taking inputs from dom(gn) and having depth(t)/(nRϵ(g)) ≪ δ,

∀y ∈ {0, 1}n : Px∼µy [ℓt
x is (δ, ϵ, µ, b)-noisy] ≥ 1 − δ.

Given Leaf Lemma the proof of the generalisation is not difficult: we can use linearity of
expectation to see that the expected number of queries t makes to most copies of g is low,
and hence we can apply Leaf Lemma for those copies. The details appear in Section 5.

3.2 Proof of Theorem 3
We conclude this overview section with a proof of Theorem 3 using Multileaf Lemma. We
start with a lemma that shows how the noisy leaves in the domain of gn can be “simulated”
by low-degree conical juntas in the domain of GapOrn. For simplicity, we state the lemma
assuming a hard side b = 0; an analogous lemma holds for b = 1 by replacing GapOr with
¬GapOr.

▶ Simulation Lemma. Let ℓ be a (δ, ϵ, µ, 0)-noisy leaf over the variables of gn. There exists
a conical junta pℓ : ({0, 1}log n)n → R≥0 of degree at most n · [δ log n + log(1/ϵ)] such that

∀x ∈ dom(GapOrn
log n) : pℓ(x) = ℓ(µGapOrn

log n(x)).

Proof. We start by defining three conical juntas in the domain of GapOrm for m := log n.
Let Sm

k be the distribution over multisets obtained by picking k random elements from [m]
with replacement.

q1(x) := 2
m

∑
i∈[m] xi of degree 1,

q2(x) :=
∏

i∈[m] x̄i of degree m = log n,
q3(x) := ES∼Sm

k

∏
i∈S

x̄i of degree k := log(1/ϵ).

Note the following output values:

∀x ∈ (GapOrm)−1(0) : q1(x) = 0, q2(x) = 1, q3(x) = 1,
∀x ∈ (GapOrm)−1(1) : q1(x) = 1, q2(x) = 0, q3(x) = 2−k = ϵ.

CCC 2021

18:8 A Majority Lemma for Randomised Query Complexity

Let y = (y1, . . . , yn) be the input variables of gn. We write ℓ(y) =
∏

i ℓi(yi) so that
ℓ(µGapOrn

m(x)) =
∏

i ℓi(µGapOrm(xi)). We simulate each factor in this product separately. For
i ∈ [n] consider the function pi : {0, 1}m → R≥0 defined by

pi(x) := ℓi(µGapOrm(x)).

First note that pi can always be written as a conical combination of q1 and q2 in degree
log n. Moreover, if ℓi is (ϵ, µ, 0)-noisy, meaning ℓi(µ1) ≥ ϵ · ℓi(µ0), then we can do better and
write pi as a conical combination of q1 and q3 in degree log(1/ϵ). We now define pℓ :=

∏
i pi.

The claimed bound on the degree of pℓ follows because at most δ fraction of the ℓi are
non-noisy. ◀

We are now ready to prove Theorem 3 using Multileaf Lemma and Simulation Lemma.

Proof of Theorem 3. Suppose for contradiction that T is a randomised decision tree for
f ◦ gn having error 1/3 and depth γnR1/n(g) where γ = o(1) as n → ∞. Our goal is
to construct an o(n log n)-degree o(1)-approximate conical junta for f ◦ GapOrn

log n (or
f ◦ ¬GapOrn

log n).
We make two simplifying assumptions wlog.

1. The randomised tree T has error o(1). To ensure this, we may reduce T ’s error by
running it 1/

√
γ = ω(1) times. This will yield an o(1)-error tree of depth √

γnR1/n(g) =
o(nR1/n(g)).

2. There is some ϵ := 1/no(1) such that T has depth o(nRϵ(g)). To ensure this, we may
apply Claim 7 to see that γnR1/n(f) ≤ √

γnRϵ(f) ≤ o(nRϵ(f)) where ϵ := 1/n4√γ .

We invoke Multileaf Lemma with the above ϵ ≤ o(1) and δ := max{γc, ϵc} ≤ o(1) for
small enough constant c > 0. We get a hard distribution µ and a hard side b, say b = 0 (case
b = 1 is similar, but using ¬GapOr), such that the following holds: For every t in the support
of T if we run t on a random input x ∼ µy, where y ∈ {0, 1}n, then the leaf reached ℓt

x will
be (δ, ϵ, µ, 0)-noisy with probability 1 − o(1). This allows us to effectively ignore non-noisy
leaves: denoting by N (t) ⊆ A(t) the set of accepting leaves that are (δ, ϵ, µ, 0)-noisy, we have

∀y ∈ {0, 1}n : Ex∼µy [t(x)] = Ex∼µy

[∑
ℓ∈A(t) ℓ(x)

]
(Using (1))

∈ Ex∼µy

[∑
ℓ∈N (t) ℓ(x)

]
± o(1). (2)

We now define the approximating conical junta by

p(x) := Et∼T

[∑
ℓ∈N (t) pℓ(x)

]
,

where the pℓ are given by Simulation Lemma. Hence p has degree at most

n · [δ log n + log(1/ϵ)] = n · [o(1) log n + log no(1)] = o(n log n).

We finish the proof of Theorem 3 by verifying that p indeed o(1)-approximates f ◦GapOrn
log n.

∀x : p(x) = Et∼T

[∑
ℓ∈N (t) pℓ(x)

]
= Et∼T

[∑
ℓ∈N (t) ℓ(µy)

]
(y := GapOrn

log n(x))

= Et∼T

[∑
ℓ∈N (t) Ex′∼µy [ℓ(x′)]

]
= Et∼T

[
Ex′∼µy [

∑
ℓ∈N (t) ℓ(x′)]

]
∈ Et∼T

[
Ex′∼µy [t(x′)]

]
± o(1) (Using (2))

M. Göös and G. Maystre 18:9

= Ex′∼µy

[
Et∼T [t(x′)]

]
± o(1)

∈ Ex′∼µy

[
(f ◦ gn)(x′)

]
± o(1) (T has error o(1))

= f(y) ± o(1)
= (f ◦ GapOrn

log n)(x) ± o(1). ◀

4 Proof of Leaf Lemma

We prove Leaf Lemma in three subsections.

(§4.1) We start by recalling a distributional characterisation due to Blais and Brody [7] of
expected query complexity Rϵ using decision trees that can “abort”.

(§4.2) We then formulate a Hard Side Lemma, which encapsulates the core challenge in
finding the hard side of a given function g and from which Leaf Lemma is easy to derive.

(§4.3) Finally, we prove the Hard Side Lemma.

4.1 Distributional characterisation of Rϵ due to Blais–Brody
A (deterministic) abort-tree t is a decision tree that outputs either a boolean value (0 or 1)
or the abort symbol ⊥. When an abort-tree is trying to compute a boolean function g, we
do not consider the output ⊥ as an “error”; the tree simply gives up on the computation.
Indeed, we say that t(x) errs iff t(x) = 1 − g(x), that is, t(x) ̸= ⊥ and t(x) ̸= g(x). As before,
a randomised abort-tree is a probability distribution over deterministic abort-trees. For
γ ∈ (0, 1) and ϵ ∈ [0, 1/2) we define Rγ,ϵ(g) as the least (worst-case) depth of a randomised
abort-tree T such that for all x ∈ dom(g):

Pt∼T [t(x) = ⊥] ≤ γ and Pt∼T [t(x) errs] ≤ ϵ.

We formulate a distributional version of Rγ,ϵ(g) as follows. For a distribution µ over dom(g),
we define Dµ

γ,ϵ(g) as the least depth of a deterministic abort-tree t such that

Px∼µ[t(x) = ⊥] ≤ γ and Px∼µ[t(x) errs] ≤ ϵ.

The following two lemmas from [7, §3.1] connect abort-trees and Rϵ(g).

▶ Lemma 8 (Abort vs. expected depth). For every ϵ ∈ [0, 1/2) and γ ∈ (0, 1),

γ · Rγ, ϵ(g) ≤ Rϵ(g) ≤ 1
1−γ · Rγ, (1−γ)ϵ(g).

▶ Lemma 9 (Minimax). For every ϵ ∈ [0, 1/2), γ ∈ (0, 1), and α, β ∈ (0, 1) with α + β ≤ 1,

maxµ Dµ
γ/α, ϵ/β(g) ≤ Rγ, ϵ(g) ≤ maxµ Dµ

αγ, βϵ(g).

4.2 Statement of Hard Side Lemma
When searching for the hard side of a partial function g under a distribution µ = 1

2 (µ0 + µ1),
it is convenient to study a more symmetric notion of noisiness than the one-sided variant
defined earlier. For a leaf ℓ ∈ L(t) of an abort-tree t, we define the relative error re(ℓ, µ) so
that if ℓ is an aborting leaf, then re(ℓ, µ) := 0; otherwise

re(ℓ, µ) := min{ℓ(µ0), ℓ(µ1)}
ℓ(µ0) + ℓ(µ1) ∈ [0, 1/2].

CCC 2021

18:10 A Majority Lemma for Randomised Query Complexity

This definition captures the best achievable error of a leaf in an abort-tree. Namely, let us
say that t is µ-smart if every non-abort leaf ℓ ∈ L(t) outputs a boolean value i ∈ {0, 1} that
maximises ℓ(µi). Then for every leaf ℓ in a µ-smart t we have Px∼µ[t(x) errs | ℓt

x = ℓ] =
re(ℓ, µ). An easy calculation gives the following claim, which we record for future use.

▷ Claim 10. For a µ-smart t we have Px∼µ[t(x) errs] = Ex∼µ[re(ℓt
x, µ)].

Another easy calculation shows that relative error implies noisiness.

▷ Claim 11. If re(ℓ, µ) ≥ ϵ, then ℓ is (ϵ, µ, b)-noisy for both b ∈ {0, 1}.

We are now ready to formulate Hard Side Lemma, which isolates the technical challenge 3.1
(discussed in Subsection 3.1): Every partial function g admits a balanced distribution µ and
a hard side b such that if we run a shallow abort-tree on the hard side µb of µ, then t must
either abort with high probability or we reach a leaf of noticeable error (in expectation).

▶ Hard Side Lemma. For every partial function g and 0 < ϵ ≪ δ ≪ 1, there exists
a distribution µ = 1

2 (µ0 + µ1) over dom(g) and a hard side b ∈ {0, 1} such that for any
deterministic abort-tree t with depth(t)/Rϵ(g) ≪ δ we have either

Px∼µb [t(x) = ⊥] > 1 − δ or Ex∼µb [re(ℓt
x, µ)] > ϵ. (3)

We defer the proof until Subsection 4.3. We first use the lemma to prove Leaf Lemma,
and here is where we address challenge 3.1: we exploit the high abort probability (namely,
1 − δ) guaranteed by Hard Side Lemma to show that typical leaves are noisy.

▶ Leaf Lemma (restated). For every partial g and 0 < ϵ ≪ δ ≪ 1, there exists a distribution
µ = 1

2 (µ0 + µ1) over dom(g) and a hard side b ∈ {0, 1} such that for every deterministic tree
t and i ∈ {0, 1}:

Ex∼µi [q(t, x)]
Rϵ(g)

≪ δ =⇒ Px∼µi [ℓt
x is (ϵ, µ, b)-noisy] ≥ 1 − δ.

Proof. We observe first that regardless of µ, b, or even the expected depth of t, the lemma
holds for the easy side i = 1−b. Indeed, if we let B ⊆ L(t) denote the set of non-(ϵ, µ, b)-noisy
leaves,

Px∼µ1−b [ℓt
x ∈ B] =

∑
ℓ∈B ℓ(µ1−b) < ϵ

∑
ℓ∈B ℓ(µb) ≤ ϵ

∑
ℓ∈L(t) ℓ(µb) = ϵ ≤ δ.

Let us then focus on the interesting case i = b where the careful choice of µ and b is
essential. We invoke Hard Side Lemma with parameters ϵ and δ̇ := δ2 (assuming suitably
0 < ϵ ≪ δ̇ ≪ 1) to obtain µ and b such that for every abort-tree ṫ with depth(ṫ) ≤ δ̇cRϵ(g) the
property (3) holds (with dotted parameters). Let x ∼ µb henceforth and write re(ℓ) := re(ℓ, µ)
for short. Suppose t satisfies Ex[q(t, x)] ≤ δ̇c+2Rϵ(g) (where we chose 2(c+2) as the exponent
hidden by ≪). Recalling from Claim 11 that relative error implies noisiness, our goal is to
show

Px[re(ℓt
x) ≥ ϵ] ≥ 1 − δ. (4)

We convert t into an abort-tree by letting t′ be a modification of t that aborts whenever more
than δ̇cRϵ(g) queries are made. Using Markov’s inequality and the low expected depth of t,

Px[t′(x) = ⊥] = Px[q(t, x) > δ̇cRϵ(g)] ≤ Ex[q(t, x)]/δ̇cRϵ(g) ≤ δ̇2.

M. Göös and G. Maystre 18:11

We also have Px[re(ℓt
x) ≥ ϵ] ≥ Px[re(ℓt′

x) ≥ ϵ] since we only made more executions abort.
To prove (4), suppose for contradiction that Px[re(ℓt′

x) ≥ ϵ] < 1 − δ. Let ṫ be a further
modification of t′ that aborts any leaf ℓ ∈ L(t′) with re(ℓ) ≥ ϵ. Note that

Px[ṫ(x) = ⊥] ≤ Px[t′(x) = ⊥] + Px[re(ℓt′

x) ≥ ϵ] ≤ δ̇2 + 1 − δ ≤ 1 − δ̇.

Hence we get from (dotted) property (3) that Ex[re(ℓṫ
x)] > ϵ. But this contradicts the fact

that re(ℓ) < ϵ for all ℓ ∈ L(ṫ) by construction. This verifies (4) and concludes the proof. ◀

4.3 Proof of Hard Side Lemma
Let ν be a distribution that witnesses D := maxν′ Dν′

1−δ, ϵ1/3(g) so that every abort-tree t

with depth(t) < D fails to satisfy at least one of the following:

Px∼ν [t(x) = ⊥] ≤ 1 − δ, (5)

Px∼ν [t(x) errs] ≤ ϵ1/3. (6)

As a minor technicality, we re-balance ν. We can write ν = λµ0 + (1 − λ)µ1 where λ ∈ (0, 1)
and µi is a distribution supported on g−1(i). We define µ := 1

2 (µ0 + µ1) as our balanced
distribution.

Assume towards a contradiction that there does not exist a hard side for µ, that is, the
claim of the lemma fails for both b ∈ {0, 1}. This means there exists two abort-trees t0 and
t1 of depth at most δ3Rϵ(g) (where we chose 3 as the exponent hidden by ≪) such that for
both b ∈ {0, 1}:

Px∼µb [tb(x) = ⊥] ≤ 1 − δ, (7)
Ex∼µb [re(ℓtb

x , µ)] ≤ ϵ. (8)

We will use t0 and t1 to construct a third tree t that computes g too well relative to ν

contradicting our choice of ν. We may assume wlog that t0 and t1 are µ-smart, since the
properties (7)–(8) do not depend on the boolean leaf-labels (only whether a leaf aborts or
not). We now define t as follows: On input x we run both t0(x) and t1(x); if t0(x) ̸= ⊥, we
output t0(x); otherwise we output t1(x). We will show that t has depth(t) < D and satisfies
(5)–(6), which will contradict our choice of ν.

Tree t is shallow. We have the following chain of inequalities

depth(t) ≤ 2δ3Rϵ(g) ≤ 32δ3Rϵ1/4(g) < δ2Rϵ1/4(g) ≤ R1−δ2, δ2ϵ1/4(g)

≤ maxν′ Dν′

(1−δ2)2, δ4ϵ1/4(g) ≤ maxν′ Dν′

1−δ, ϵ1/3(g) =: D.

The first inequality uses the definition of t. Second uses error reduction (Claim 7 with k := 4).
Third uses δ ≪ 1. Fourth uses Lemma 8 (with γ := 1 − δ2). Fifth uses the minimax lemma
(Lemma 9 with α := 1 − δ2, β := δ2). The final inequality uses ϵ ≪ δ ≪ 1.

Tree t has bounded abort. We verify property (5) by

Px∼ν [t(x) = ⊥] = Px∼ν [t0(x) = ⊥ ∧ t1(x) = ⊥]
= λPx∼µ0 [t0(x) = ⊥ ∧ t1(x) = ⊥]

+ (1 − λ)Px∼µ1 [t0(x) = ⊥ ∧ t1(x) = ⊥]
≤ λPx∼µ0 [t0(x) = ⊥] + (1 − λ)Px∼µ1 [t1(x) = ⊥]
≤ 1 − δ. (Using (7))

CCC 2021

18:12 A Majority Lemma for Randomised Query Complexity

t0 t1g−1(0) g−1(1) g−1(0) g−1(1)

⊥ (≤ 10%)

⊥
⊥ ⊥ (≤ 10%)

Figure 1 Two trees t0 and t1 in the proof of Hard Side Lemma. The leaves partition dom(g) into
subcubes where grey leaves output ⊥, green leaves output 1, and blue leaves output 0. Hatched
regions are error. We are promised that, e.g., t0 has bounded abort (10% in our figure) over µ0, but
not necessarily over µ1.

Tree t errs rarely. We start with a claim that says that if the expected relative error is low
over one side µb of µ, then a µ-smart tree errs rarely over the whole distribution µ.

▷ Claim 12. Let t′ be µ-smart and b ∈ {0, 1}. If Ex∼µb [re(ℓt′

x , µ)] ≤ ϵ then Px∼µ[t′(x) errs] ≤
ϵ1/2.

Proof. We prove the claim for b = 0 as the other case is analogous. Since t′ and µ are fixed,
we drop them from notation writing re(ℓ) := re(ℓ, µ), ℓx := ℓt′

x , L := L(t′). We argue that
relative error on one side of the distribution must spill over to the other side:

Ex∼µ0 [re(ℓx)] =
∑

ℓ∈L ℓ(µ0) re(ℓ) ≥
∑

ℓ∈L ℓ(µ1) re(ℓ)2 = Ex∼µ1 [re(ℓx)2] ≥ Ex∼µ1 [re(ℓx)]2.

Here the first inequality used ℓ(µ0) ≥ ℓ(µ1) re(ℓ) (from Claim 11) and the second inequality
used Jensen’s inequality. It follows that Ex∼µ1 [re(ℓx)] ≤ Ex∼µ0 [re(ℓx)]1/2 ≤ ϵ1/2 and therefore
Ex∼µ[re(ℓx)] ≤ ϵ1/2. The claim then follows from Claim 10. ◁

We now verify property (6), which concludes the proof of Hard Side Lemma.

Px∼ν [t(x) errs] ≤ Px∼ν [t0(x) errs ∨ t1(x) errs]
≤

∑
b∈{0,1} Px∼ν [tb(x) errs]

=
∑

b∈{0,1} λPx∼µ0 [tb(x) errs] + (1 − λ)Px∼µ1 [tb(x) errs]

≤
∑

b∈{0,1} 2Px∼µ[tb(x) errs]

≤
∑

b∈{0,1} 2 · ϵ1/2 (Claim 12 and (8))

= 4ϵ1/2

≤ ϵ1/3. (ϵ ≪ 1)

5 Proof of Multileaf Lemma

▶ Multileaf Lemma (restated). For every partial g and 0 < ϵ ≪ δ ≪ 1, there exists a
distribution µ = 1

2 (µ0 + µ1) over dom(g) and a hard side b ∈ {0, 1} such that for every
deterministic tree t taking inputs from dom(gn) and having depth(t)/(nRϵ(g)) ≪ δ,

∀y ∈ {0, 1}n : Px∼µy [ℓt
x is (δ, ϵ, µ, b)-noisy] ≥ 1 − δ.

M. Göös and G. Maystre 18:13

Proof. Apply Leaf Lemma with parameters ϵ and δ̇ := δ3 (assuming suitably 0 < ϵ ≪
δ̇ ≪ 1) to obtain µ = 1

2 (µ0 + µ1) and b ∈ {0, 1} that satisfy the lemma for trees of
depth at most δ̇cRϵ(g). Fix y ∈ {0, 1}n and a deterministic tree t over dom(gn) with
depth(t) ≤ δ̇c+4nRϵ(g) (where we chose 3(c + 4) as the exponent hidden by ≪).

Here is the plan for our proof. An input x ∈ dom(gn) can be seen as inducing several
subtrees of t corresponding to distinct coordinates i ∈ [n]. Indeed, define tx,i as the tree over
inputs from dom(g) that is obtained from t by substituting x as its input variables except
retaining xi as free variables. If we can show that tx,i has shallow depth in expectation over
an input z ∼ µyi then we can hope to use and argue that the reached leaf ℓz ∈ L(tx,i) (which
is one of the n components of a leaf of t) is typically (ϵ, µ, b)-noisy.

Let us formalise this plan. Let x ∼ µy henceforth. For i ∈ [n] we define two events

i-th tree is shallow: Si(x) def⇐⇒ Ez∼µyi [q(tx,i, z)] ≤ δ̇cRϵ(g),
i-th leaf is noisy: Ni(x) def⇐⇒ ℓxi ∈ L(tx,i) is (ϵ, µ, b)-noisy.

Note that Leaf Lemma states Px[Ni | Si] ≥ 1 − δ̇. Thinking of Si and Ni as indicator
variables, we define S := 1

n

∑
i Si and N := 1

n

∑
i Ni. With this notation, Multileaf Lemma

becomes equivalent to

Px[N ≥ 1 − δ] ≥ 1 − δ. (9)

To show this, we compute as follows (using Claim 13 that is proved below)

Ex[N] = 1
n

∑
i Px[Ni]

≥ 1
n

∑
i(1 − δ̇)P[Si] (Leaf Lemma)

= (1 − δ̇)Ex[S]
≥ (1 − δ̇)(1 − δ̇) (Claim 13)
≥ 1 − δ2. (δ̇ := δ3 ≪ 1)

Hence (9) follows by applying Markov’s inequality to the nonnegative random variable
1 − N ≥ 0. This completes the proof apart from the following claim. ◀

▷ Claim 13. Ex[S] ≥ 1 − δ̇.

Proof. Let qi(t, x) denote the number of queries made by t to the i-th component of x.
Define xi←z as a copy of x but where z is inserted at the i-th component. Note that
qi(t, xi←z) = q(tx,i, z). Linearity of expectation gives∑

i∈[n] Ex[qi(t, x)] ≤ depth(t) ≤ δ̇c+4nRϵ(g). (10)

Define I ⊆ [n] as the set of coordinates i satisfying

Ex [qi(t, x)] ≤ δ̇c+2Rϵ(g). (11)

We have that |I| ≥ (1 − δ̇2)n as otherwise more than δ̇2n terms in the sum (10) are larger
than δ̇c+2Rϵ(g) contradicting the upper bound on depth(t). Fix i ∈ I. Sampling x ∼ µy is
equivalent to first taking x ∼ µy, then sampling independently z ∼ µyi , and finally outputting
xi←z. Hence

Ex Ez∼µyi [qi(t, xi←z)] = Ex[qi(t, x)] ≤ δ̇c+2Rϵ(g).

CCC 2021

18:14 A Majority Lemma for Randomised Query Complexity

We get from Markov’s inequality and the above that

Px[¬Si] = Px

[
Ez∼µyi [qi(t, xi←z)] > δ̇cRϵ(g)

]
≤ δ̇2. (12)

In conclusion,

Ex[S] ≥ 1
n

∑
i∈I Px[Si] ≥ 1

n |I| · (1 − δ̇2) ≥ (1 − δ̇2)2 ≥ 1 − δ̇. ◁

References
1 Anurag Anshu, Dmitry Gavinsky, Rahul Jain, Srijita Kundu, Troy Lee, Priyanka Mukhopad-

hyay, Miklos Santha, and Swagato Sanyal. A composition theorem for randomized query
complexity. In Proceedings of the 37th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), pages 10:1–10:13. Schloss Dagstuhl, 2017.
doi:10.4230/LIPIcs.FSTTCS.2017.10.

2 Andrew Bassilakis, Andrew Drucker, Mika Göös, Lunjia Hu, Weiyun Ma, and Li-Yang Tan.
The power of many samples in query complexity. In Proceedings of the 47th International
Colloquium on Automata, Languages, and Programming (ICALP), volume 168, pages 9:1–9:18.
Schloss Dagstuhl, 2020. doi:10.4230/LIPIcs.ICALP.2020.9.

3 Shalev Ben-David and Eric Blais. A new minimax theorem for randomized algorithms. In
Proceedings of the 61st Symposium on Foundations of Computer Science (FOCS), pages
403–411, 2020. doi:10.1109/FOCS46700.2020.00045.

4 Shalev Ben-David and Eric Blais. A tight composition theorem for the randomized query
complexity of partial functions. In Proceedings of the 61st Symposium on Foundations of
Computer Science (FOCS), pages 240–246, 2020. doi:10.1109/FOCS46700.2020.00031.

5 Shalev Ben-David, Mika Göös, Robin Kothari, and Thomas Watson. When is amplification
necessary for composition in randomized query complexity? In Proceedings of the 22nd
International Conference on Randomization and Computation (RANDOM), volume 176, pages
28:1–28:16. Schloss Dagstuhl, 2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.28.

6 Shalev Ben-David and Robin Kothari. Randomized query complexity of sabotaged and com-
posed functions. Theory of Computing, 14(1):1–27, 2018. doi:10.4086/toc.2018.v014a005.

7 Eric Blais and Joshua Brody. Optimal separation and strong direct sum for randomized query
complexity. In Proceedings of the 34th Computational Complexity Conference (CCC), pages
29:1–29:17. Schloss Dagstuhl, 2019. doi:10.4230/LIPIcs.CCC.2019.29.

8 Joshua Brody, Jae Tak Kim, Peem Lerdputtipongporn, and Hariharan Srinivasulu. A strong
XOR lemma for randomized query complexity. Technical report, arXiv, 2020. arXiv:2007.
05580.

9 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
A survey. Theoretical Computer Science, 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)
00144-X.

10 Chinmoy Dutta and Jaikumar Radhakrishnan. Lower bounds for noisy wireless networks using
sampling algorithms. In Proceedings of the 49th Symposium on Foundations of Computer
Science (FOCS), pages 394–402. IEEE, 2008. doi:10.1109/FOCS.2008.72.

11 William Evans and Nicholas Pippenger. Average-case lower bounds for noisy boolean decision
trees. SIAM Journal on Computing, 28(2):433–446, 1998. doi:10.1137/S0097539796310102.

12 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy informa-
tion. SIAM Journal on Computing, 23(5):1001–1018, 1994. doi:10.1137/S0097539791195877.

13 Dmitry Gavinsky, Troy Lee, Miklos Santha, and Swagato Sanyal. A composition theorem
for randomized query complexity via max-conflict complexity. In Proceedings of the 46th
International Colloquium on Automata, Languages, and Programming (ICALP), pages 64:1–
64:13. Schloss Dagstuhl, 2019. doi:10.4230/LIPIcs.ICALP.2019.64.

https://doi.org/10.4230/LIPIcs.FSTTCS.2017.10
https://doi.org/10.4230/LIPIcs.ICALP.2020.9
https://doi.org/10.1109/FOCS46700.2020.00045
https://doi.org/10.1109/FOCS46700.2020.00031
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.28
https://doi.org/10.4086/toc.2018.v014a005
https://doi.org/10.4230/LIPIcs.CCC.2019.29
http://arxiv.org/abs/2007.05580
http://arxiv.org/abs/2007.05580
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1109/FOCS.2008.72
https://doi.org/10.1137/S0097539796310102
https://doi.org/10.1137/S0097539791195877
https://doi.org/10.4230/LIPIcs.ICALP.2019.64

M. Göös and G. Maystre 18:15

14 Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rectangles
are nonnegative juntas. SIAM Journal on Computing, 45(5):1835–1869, 2016. doi:10.1137/
15M103145X.

15 Navin Goyal and Michael Saks. Rounds vs. queries tradeoff in noisy computation. Theory of
Computing, 6(1):113–134, 2010. doi:10.4086/toc.2010.v006a006.

16 Rahul Jain and Hartmut Klauck. The partition bound for classical communication complexity
and query complexity. In Proceedings of the 25th Conference on Computational Complexity
(CCC), pages 247–258. IEEE, 2010. doi:10.1109/CCC.2010.31.

17 Rahul Jain, Hartmut Klauck, and Miklos Santha. Optimal direct sum results for deterministic
and randomized decision tree complexity. Information Processing Letters, 110(20):893–897,
2010. doi:10.1016/j.ipl.2010.07.020.

18 Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of Algorithms
and Combinatorics. Springer, 2012.

19 Jedrzej Kaniewski, Troy Lee, and Ronald de Wolf. Query complexity in expectation. In
Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming
(ICALP), pages 761–772. Springer, 2015. doi:10.1007/978-3-662-47672-7_62.

20 Claire Kenyon and Valerie King. On boolean decision trees with faulty nodes. Random
Structures and Algorithms, 5(3):453–464, 1994. doi:10.1002/rsa.3240050306.

21 Troy Lee, Rajat Mittal, Ben Reichardt, Robert Špalek, and Mario Szegedy. Quantum query
complexity of state conversion. In Proceedings of the 52nd Symposium on Foundations of
Computer Science (FOCS), pages 344–353. IEEE, 2011. doi:10.1109/FOCS.2011.75.

22 Ilan Newman. Computing in fault tolerant broadcast networks and noisy decision trees.
Random Structures and Algorithms, 34(4):478–501, 2009. doi:10.1002/rsa.20240.

23 Ben Reichardt. Reflections for quantum query algorithms. In Proceedings of the 22nd
Symposium on Discrete Algorithms (SODA), pages 560–569. SIAM, 2011.

24 Petr Savický. On determinism versus unambiquous nondeterminism for decision trees. Technical
Report TR02-009, Electronic Colloquium on Computational Complexity (ECCC), 2002. URL:
http://eccc.hpi-web.de/report/2002/009/.

25 Avishay Tal. Properties and applications of boolean function composition. In Proceedings of
the 4th Conference on Innovations in Theoretical Computer Science (ITCS), pages 441–454.
ACM, 2013. doi:10.1145/2422436.2422485.

CCC 2021

https://doi.org/10.1137/15M103145X
https://doi.org/10.1137/15M103145X
https://doi.org/10.4086/toc.2010.v006a006
https://doi.org/10.1109/CCC.2010.31
https://doi.org/10.1016/j.ipl.2010.07.020
https://doi.org/10.1007/978-3-662-47672-7_62
https://doi.org/10.1002/rsa.3240050306
https://doi.org/10.1109/FOCS.2011.75
https://doi.org/10.1002/rsa.20240
http://eccc.hpi-web.de/report/2002/009/
https://doi.org/10.1145/2422436.2422485

Hitting Sets and Reconstruction for Dense Orbits
in VPe and ΣΠΣ Circuits
Dori Medini #

StarkWare Industries Ltd., Netanya, Israel

Amir Shpilka #

Blavatnik School of Computer Science, Tel Aviv University, Israel

Abstract
In this paper we study polynomials in VPe (polynomial-sized formulas) and in ΣΠΣ (polynomial-
size depth-3 circuits) whose orbits, under the action of the affine group GLaff

n (F) (the action of
(A, b) ∈ GLaff

n (F) on a polynomial f ∈ F[x] is defined as (A, b) ◦ f = f(AT x + b)), are dense in
their ambient class. We construct hitting sets and interpolating sets for these orbits as well as give
reconstruction algorithms. Specifically, we obtain the following results:

1. For Cn (ℓ1(x), . . . , ℓn(x)) ≜ Trace
((

ℓ1(x) 1
1 0

)
· . . . ·

(
ℓn(x) 1

1 0

))
, where the ℓis are linearly

independent linear functions, we construct a polynomial-sized interpolating set, and give a
polynomial-time reconstruction algorithm. By a result of Bringmann, Ikenmeyer and Zuiddam,
the set of all such polynomials is dense in VPe [14], thus our construction gives the first
polynomial-size interpolating set for a dense subclass of VPe.

2. For polynomials of the form ANF∆ (ℓ1(x), . . . , ℓ4∆ (x)), where ANF∆(x) is the canonical read-
once formula in alternating normal form, of depth 2∆, and the ℓis are linearly independent
linear functions, we provide a quasipolynomial-size interpolating set. We also observe that the
reconstruction algorithm of [35] works for all polynomials in this class. This class is also dense
in VPe.

3. Similarly, we give a quasipolynomial-sized hitting set for read-once formulas (not necessarily in
alternating normal form) composed with a set of linearly independent linear functions. This
gives another dense class in VPe.

4. We give a quasipolynomial-sized hitting set for polynomials of the form f (ℓ1(x), . . . , ℓm(x)),
where f is an m-variate s-sparse polynomial. and the ℓis are linearly independent linear functions
in n ≥ m variables. This class is dense in ΣΠΣ.

5. For polynomials of the form
∑s

i=1

∏d

j=1 ℓi,j(x), where the ℓi,js are linearly independent lin-
ear functions, we construct a polynomial-sized interpolating set. We also observe that the
reconstruction algorithm of [45] works for every polynomial in the class. This class is dense in
ΣΠΣ.

As VP = VNC2, our results for VPe translate immediately to VP with a quasipolynomial blow up
in parameters. If any of our hitting or interpolating sets could be made robust then this would
immediately yield a hitting set for the superclass in which the relevant class is dense, and as a
consequence also a lower bound for the superclass. Unfortunately, we also prove that the kind of
constructions that we have found (which are defined in terms of k-independent polynomial maps)
do not necessarily yield robust hitting sets.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Algebraic complexity, VP, VNP, algebraic circuits, algebraic formula

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.19

Related Version Full Version: https://arxiv.org/pdf/2102.05632

Funding The research leading to these results has received funding from the Israel Science Foundation
(grant number 514/20) and from the Len Blavatnik and the Blavatnik Family foundation.

© Dori Medini and Amir Shpilka;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 19; pp. 19:1–19:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dorimedini@gmail.com
mailto:shpilka@tauex.tau.ac.il
https://doi.org/10.4230/LIPIcs.CCC.2021.19
https://arxiv.org/pdf/2102.05632
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Hitting Sets and Reconstruction for Dense Orbits in VPe and ΣΠΣ Circuits

1 Introduction

Proving lower bounds on the size of algebraic circuits (also called arithmetic circuits), is an
outstanding open problem in algebraic complexity. In spite of much effort, only a handful of
lower bounds are known (a detailed account of most known lower bounds can be found in
the excellent survey of Saptharishi [61]). One common theme of most known lower bounds
is that they are proved using algebraic arguments. That is, a proof of a lower bound for a
class of circuits C, usually has the following structure: one comes up with a set of (nonzero)
polynomials F1, . . . , Fm, in N =

(
n+d

d

)
many variables, such that the coefficient vector of

every n-variate, degree-d polynomial that can be computed in C, is a common zero of all
the Fis (such Fis are called separating polynomials). Then, one exhibits a polynomial f

whose coefficient vector is not a common zero, thus proving f ̸∈ C. As an example one can
immediately see that the well known partial derivative technique, and its successor, shifted
partial derivative technique, are algebraic. Grochow [29] demonstrated this for most of the
known lower bound proofs. As the set of common zeros of a set of polynomials is closed,1
this immediately implies that if we prove that f ̸∈ C using an algebraic argument, then
the same argument also implies that f ̸∈ C, the closure of C. Recall that, in characteristic
zero, the closure of a class C is the set of all polynomials that are limit points of sequences
of polynomials from C, where convergence is coefficient-wise (see Definition 9 for a general
definition over arbitrary characteristic). As most known techniques are algebraic, we see
that for proving a lower bound for a class C one actually has to consider the larger, and less
structured class, C.

Geometric Complexity Theory (GCT for short), which was initiated by Mulmuley and
Sohoni [55, 56], approaches the lower bound question from a different angle. GCT also looks
for an algebraic lower bound proof, but rather than exhibiting an algebraic argument, it
aims to prove the existence of a separating polynomial. Specifically, GCT attempts to prove
Valiant’s hypothesis, that VP ̸=VNP, over C, via representation theory. Valiant’s hypothesis
is, more or less, equivalent to showing that the permanent of a symbolic n × n matrix is not
a projection of the symbolic m × m determinant for any m = m(n) polynomial in n.2 Recall
that a projection of a polynomial is a restriction of the polynomial to an affine subspace
of its inputs. Observe that a restriction of an n-variate polynomial f(x) to a subspace
of its inputs, is equivalent to considering the polynomial f(Ax + b), where A is an n × n

matrix and b ∈ Cn. As any matrix is a limit point of a sequence of invertible matrices,
an algebraic proof that the permanent is not a projection of the m × m determinant, over
C, is equivalent to an algebraic proof showing that the permanent is not in the closure
of the set of polynomials {Det(AX + b) | A ∈ GLm(C), B ∈ Cm2}, where GLm(C) is
the group of invertible m × m matrices (this is true for every field of characteristic ̸= 2).
The set {Det(AX + b) | A ∈ GLm(C), B ∈ Cm2} is called the orbit of the determinant
under the action of the affine group (we denote the affine group over Cm with GLaff

m (C)).
GCT considers the linear space of polynomials that vanish on every coefficient vector in
the orbit of the determinant, and similarly the linear space of polynomials that vanish
on every coefficient vector in the orbit of the permanent. There is a natural action of
GLaff

m (C) on those linear spaces, thus defining two representations of GLaff
m (C). GCT wishes

1 It is closed in the Zariski topology. Over R or C this is the same as being closed in the Euclidean
topology.

2 A super-quasipolynomial lower bound would imply that VP ̸=VNP whereas a super-polynomial lower
bound would imply that permanent does not have polynomial-size algebraic formulas or algebraic
branching programs.

D. Medini and A. Shpilka 19:3

to find a separating polynomial by showing that some irreducible representation of GLaff
m (C)

has strictly larger multiplicity when considering the representation corresponding to the
determinant. This approach bypasses the barrier given in [28, 30] as it does not exhibit any
efficiently computable separating polynomial but rather just proves the existence of one.
However, the representation theory questions arising in this program are quite difficult, even
when considering the analog questions for restricted classes. For an introduction to GCT see
the lecture notes of Bläser and Ikenmeyer [13].

Another possible approach for proving lower bounds against a class of polynomials C, is
via the construction of a hitting set for C. Recall that a hitting set H for a class C is a set of
points such that for any nonzero polynomial f , that can be computed by a circuit from C,
there is v ∈ H such that f(v) ̸= 0. In [37] Heintz and Schnorr observed that if we have such
a hitting set H then any nonzero polynomial g that vanishes on H cannot be computed in C.
It is also not hard to see that this way of obtaining lower bounds also bypasses the natural
proof barrier of [28, 30]. The problem is that in most cases we obtained a hitting set for a
class only after proving a lower bound for it.

In [26] Forbes and Shpilka defined the notion of a robust hitting set for a circuit class C.
Over fields of characteristic zero, a hitting set H for a class C is c-robust if it also satisfies
that for every f ∈ C there is v ∈ H such that |f(v)| ≥ c · ∥f∥, where ∥·∥ is some fixed norm
on C[x] (see Definition 13 for a definition over arbitrary fields). It is not hard to see that if
H is a robust hitting set for a class C then it also hits the closure of C.

In this work we focus on depth-3 algebraic circuits, known as ΣΠΣ, and on VPe, the class
of algebraic formulas, two classes for which we lack strong lower bounds, and in particular
we do not have hitting sets for them. For ΣΠΣ circuits the best lower bound is the near
cubic lower bound of Kayal, Saha and Tavenas [46], and for VPe the best lower bound is the
quadratic lower bound of Kalarkoti [39]. Recall that by the result of Valiant et al. [71], a
super-quasipolynomial lower bound against VPe implies a super-polynomial lower bound
against VP. Similarly, a hitting set for VPe implies a hitting set for VP. We also note
that by a result of Gupta et al. [33], a strong enough lower bound or a hitting set for
ΣΠΣ imply both a lower bound for general circuits and a hitting set for them. This result
also implies that a polynomial-time reconstruction algorithm for ΣΠΣ circuits would give
rise to a sub-exponential time reconstruction algorithm for general circuits. Recall that a
reconstruction algorithm for a class C is an algorithm that, given black-box access to a circuit
from C, outputs a circuit in C that computes the same polynomial.

Instead of viewing robust hitting sets as a way to obtain hitting sets for the closure of
circuit classes, we suggest to find subclasses of interesting classes, C̃ ⊂ C, such that C is
contained in the closure of C̃, and aim to construct a robust hitting set for the subclass C̃.
This offers a new approach for constructing hitting sets for known classes and for obtaining
lower bounds. Specifically, we consider subclasses of ΣΠΣ and VPe that are dense in their
superclasses. Each of these subclasses is the orbit of some simple polynomial under the group
of invertible affine transformations.

For VPe, we first consider a subclass that was defined by Bringmann, Ikenmeyer and
Zuiddam [14]–the orbit of the so called continuant polynomial (see Definition 27). We
give a polynomial-sized interpolating set3 for this subclass as well as a polynomial-time

3 Recall that an interpolating set for a class C of polynomials in n variables, over a field F, is a set of points
H ⊂ Fn such that for every f ∈ C, the list of values f(H) uniquely determines f . See Definition 15.

CCC 2021

19:4 Hitting Sets and Reconstruction for Dense Orbits in VPe and ΣΠΣ Circuits

deterministic reconstruction algorithm that uses as oracle a root-finding algorithm.4 In
particular, this implies a polynomial-time randomized reconstruction algorithm, and, in some
cases, a polynomial-time deterministic algorithm.

In addition, we exhibit two other subclasses that are dense in VPe. The first class
is defined as the orbit of read-once formulas (ROF for short, see Definition 5) and the
second as the orbit of read-once formulas in alternating normal form (ROANF for short,
see Definition 7). We obtain hitting sets for both classes and an interpolating set for the
second. We also observe that the reconstruction algorithm of [35] works for the polynomials
in the orbit of ROANFs. Although the results that we obtain for the subclass defined by the
continuant polynomial are stronger, we think that every such dense subclass can shed more
light on VPe and may eventually be used in order to obtain new lower bounds.

For ΣΠΣ we consider two subclasses. One is based on orbits of sparse polynomials
(polynomials having polynomially many monomials) and the other on orbits of diagonal
tensors (see Definition 40). We give a hitting set for the first, an interpolation set for the
second, and we also observe that a slight modification of the randomized reconstruction
algorithm of [43] applies for the second class.

In particular, our results give the first dense subclasses inside VPe and ΣΠΣ for which
a polynomial-size interpolating set is known as well as a polynomial-time reconstruction
algorithm. By [71] our result immediately translate to VP, giving a dense subclass of for
which a quasipolynomial-sized interpolating set is known as well as a quasipolynomial-time
reconstruction algorithm.

If we could transform the interpolating sets that we have found to robust hitting sets for
the orbits, then this will immediately give hitting sets for the closure of the orbits, i.e. for
ΣΠΣ and VPe, which, by [37] gives a lower bound for the class. Thus, our work raises an
intriguing problem:

▶ Problem 1. Given an interpolating set for a class C construct a robust hitting set for C.

We stress that by our results, solving this problem would lead to hitting sets, and lower
bounds, for VPe and VP.

Another advantage for having small interpolating sets for dense subclasses is the following:
One approach for searching for separating polynomials for a class, is by considering the map
from circuits in the class to the coefficient vectors of the polynomials that they compute.
That is, once we fix a computation graph, an assignment to the constants appearing in the
circuit determines the output polynomial. Each coefficient is a polynomial in those constants,
and as there are “few” constants (polynomially many for polynomially sized circuits), and
there are exponentially many coefficients, there should be many polynomials vanishing on
the closure of the image of this map. If we could get a good understanding of this map
then perhaps we could use it to construct a polynomial that vanishes on all such coefficient
vectors. This polynomial will vanish on all coefficient vectors of the superclass in which the
subclass is dense. A different approach is to find a coefficient vector that is not in the closure
of the image of this map (this is the approach of Raz in [57]). Now, assume that H is an
interpolating set for a dense subclass C̃ ⊂ C. We know that the map f → f

∣∣
H is one-to-one

on C̃. Thus, the list of values f
∣∣
H can be viewed as an efficient encoding that is given in

terms of values of the computed polynomial. This provides a different encoding of a circuit –
instead of the constants in it, use the evaluations on H. Thus, by studying the closure of

4 A root-finding algorithm, over a field F, when given black-box access to a univariate polynomial, outputs
a root of that polynomial in F, if such a root exists.

D. Medini and A. Shpilka 19:5

this map (i.e. the closure of the set of points on F|H| that can be obtained as evaluation
vectors of polynomials in the subclass) we may be able to find a separating polynomial, or,
as in Raz’s approach, find an evaluation vector that is not obtained by any polynomial in the
superclass. It is clear that one can also try this approach even if H is not an interpolating
set, however, as interpolating sets “preserve information” of a dense set, we believe that such
sets are better suited for this approach.

To conclude, focusing on dense subclasses and studying their properties could lead to
better understanding of their superclasses and perhaps to breakthrough results in algebraic
complexity.

To formally state our results we need some definitions that we give next.

1.1 Basic definitions

1.1.1 Notation
For k ∈ N, we denote [k] ≜ {1, 2, 3, . . . , k} and [k]0 ≜ {0, 1, 2, . . . , k − 1}. We use boldface
lowercase letters to denote tuples of variables or vectors, as in x = (x1, . . . , xn), a =
(a1, . . . , am), when the dimension is clear from the context. For any two elements i, j coming
from some set S (usually i and j will be numbers), δi,j equals 1 when i = j and 0 otherwise.

The individual degree of a variable xi in f(x) is the degree of f as a polynomial in xi. A
polynomial f ∈ F[x] of deg(f) ≤ 1 is called a linear function, and if f is homogeneous then
it is called a linear form. For a polynomial f ∈ F[x] and an integer k ∈ N we denote by f [k]

the degree-k homogeneous part of f(x),i.e. the sum of all monomials of f of degree exactly
k. In particular,

f(x) = f [0](x) + f [1](x) + . . . + f [deg(f)](x) .

Note that for a linear function f , f [1] is a linear form. We say that a polynomial f is
homogeneous of degree k or that f is k-homogeneous if f = f [k]. We say a set of linear
functions {ℓ1(x), . . . , ℓn(x)} ⊂ F[x] is linearly independent if the set

{
ℓ

[1]
i

}
is linearly

independent.5 Given a polynomial f(x), a subset of variables y ⊆ {x1, . . . , xn} and an
assignment to those variables a ∈ F|y|, we denote by f

∣∣
y=a

∈ F[x \ y] the polynomial
resulting from assigning the values of a to the variables of y in f(x). We sometimes abuse
notation and write y ⊆ [n] to indicate the indices of the assigned variables instead of the
variables themselves.

1.1.2 Circuit classes
▶ Definition 2. An algebraic formula (also called arithmetic formula) over a field F, is a
rooted tree whose leaves are labeled with either variable or scalars from F, and whose root and
internal nodes (called gates) are labeled with either “+” (addition) or “×” (multiplication).
An algebraic formula computes a polynomial in the natural way. Each leaf computes the
polynomial that labels it, and each gate computes either the sum or product of its children,
depending on its label. The output of the formula is the polynomial computed at its root.
The size of a formula is the number of wires in it. The depth of a formula is the length of
the longest simple leaf-root path in it. The formula size of a polynomial f is defined as the
smallest size of a formula that outputs f .

5 Note that by our definition, x and x + 1 are linearly dependent.

CCC 2021

19:6 Hitting Sets and Reconstruction for Dense Orbits in VPe and ΣΠΣ Circuits

A sequence m(n) of natural numbers is called polynomially bounded if there exists a
univariate polynomial q such that m(n) ≤ q(n) for all n.

The complexity class VPe is defined as the set of all families of polynomials (fn)n, with
fn ∈ F[x1, . . . , xn], whose formula size is polynomially bounded.

▶ Definition 3. An arithmetic circuit Φ is a Σ[s]Π[d] circuit if it is a layered graph of depth-2,
has a top gate labeled + with fan-in ≤ s and its second layer is comprised entirely of × gates
with fan-in ≤ d. In other words, Σ[s]Π[d] compute polynomials of degree d with at most s

monomials.

▶ Definition 4. An arithmetic circuit Φ in n variables is a Σ[s]Π[d]Σ circuit if it is a layered
graph of depth-3, has a top gate labeled + with fan-in ≤ s, its second layer is comprised
entirely of × gates with fan-in ≤ d, and its bottom layer is comprised of linear functions in
x1, . . . , xn. In other words, Σ[s]Π[d]Σ circuit compute polynomials of the form

f(x) =
s∑

i=1

d∏
j=1

(αi,j,0 +
n∑

k=1
αi,j,kxk) .

Given a family of circuits C, we will sometime denote it as C(F) to stress that we allow
coefficients to come from the field F. Observe that the definitions of the classes above do not
depend on the field and so we can define them over any field of our choice.

▶ Definition 5. An arithmetic read-once formula (ROF for short) Φ over a field F in the
variables x = (x1, . . . , xn) is a binary tree T whose leaves are labeled with input variables and
a pairs of field elements (α, β) ∈ F2, and whose internal nodes are labeled with the arithmetic
operations {+, ×} and a field element α ∈ F. Each input variable can label at most one
leaf. The computation is performed in the following way: A leaf labeled with the variable xi

and with (α, β), computes the polynomial αxi + β. If a node v is labeled with the operation
∗ ∈ {+, ×} and with α ∈ F, and its children compute the polynomials Φv1 and Φv2 , then the
polynomial computed at v is Φv = Φv1 ∗ Φv2 + α. A polynomial f(x) is called a read-once
polynomial (ROP for short) if f(x) can be computed by a ROF.

▶ Observation 6. Read-once polynomials are always multilinear polynomials.

We next define formulas in alternating normal form, as was first defined in [35].

▶ Definition 7 (Section 3.2 in [35]). We say that an arithmetic formula Φ, over F, is in
alternating normal form (Φ is called an ANF for short) if:
1. The underlying tree of Φ is a complete rooted binary tree (the root node is called the

output node). In particular, size(Φ) = 2depth(Φ)+1 − 1, where size(Φ) is the number of
nodes in the tree of Φ and depth(Φ) is the maximum distance of a leaf node from the
output node of Φ.

2. The internal nodes consist of alternating layers of + and × gates. In particular, the
label of an internal node at distance d from the closest leaf node is + if d is even and ×
otherwise. So if the root node is a + node, its children are all × nodes, its grandchildren
are all + etc.

3. The leaves of the tree are labeled with linear functions. That is, each leaf is labeled with
ℓ(x) = a0 +

∑n
i=1 aixi, where each ai ∈ F is a scalar.

The product depth ∆ of Φ is the number of layers of product gates. The number of leaves of
Φ is therefore always 4∆ if the top gate is +, and 1

2 · 4∆ if the top gate is ×.

D. Medini and A. Shpilka 19:7

The class ANFGLaff(F) mentioned in Section 1.2.2 is defined in terms of the following
canonical read-once ANF formula (ROANF for short):

▶ Definition 8 (Notation from Fact 3.4 of [35]). We denote the canonical ROANF polynomial,
of product depth ∆ on 4∆ variables, as ANF∆(x). It is defined recursively as follows:

ANF0(x) = x1

ANF∆+1(x) = ANF∆

(
x(1)

)
ANF∆

(
x(2)

)
+ ANF∆

(
x(3)

)
ANF∆

(
x(4)

)
,

where x(i) is the 4∆-tuple of variables {x(i−1)·4∆+1, . . . , xi·4∆}.

For example, ANF1 (x) = x1x2 + x3x4.
Observe that any polynomial in ANFGLaff

n (F)
∆ is an ANF according to Definition 7, but

not vice versa.

1.1.3 Approximate complexity
The following definition gives sense to the notion of approximation over arbitrary fields. In
what follows we let ε be a new formal variable.6 For a field F we denote with F[ε] the ring of
polynomial expressions in ε over F, and with F(ε) the fraction field of F[ε], i.e. the field of
rational expressions in ε.

▶ Definition 9. Let C(F) be a circuit class over a field F. The closure of C, denoted C(F), is
defined as follows: A family of functions (fn)n, where fn ∈ F[x1, . . . , xn], is in C(F) if there
is a polynomially bounded function m : N → N, and a family of functions (gm(n))n ∈ C(F(ε)),
with gm(n) ∈ F[ε][x1, . . . , xm(n)], such that for all n ∈ N,

gm(n)(x1, . . . , xm(n)) = fn(x1, . . . , xn) + ε · gn,0(x1, . . . , xm(n)) , (1)

for some polynomial gn,0 ∈ F[ε][x1, . . . , xm(n)]. Whenever an equality as in (1) holds we say
that

gm(n) = fn + O(ε) or fn = gm(n) + O(ε) .

In that case we think of gm(n) as an “approximation” of fn, and we say that the family
(gm(n))n approximates the family (fn)n.

Alder [3] have shown that over C it holds that (fn) ∈ C(C), in the sense of Definition 9, if
and only if it is in the closure of C(C) in the usual sense. That is, if for every n there exists
a sequence of polynomials gn,k ∈ C(C) such that limk→∞ gn,k = fn, where convergence is
taken coefficient wise. This result holds over R as well, see [52, 17].

Finally, we note that every matrix is approximable (in the sense of Definition 9) by
a non-singular matrix (which is equivalent to being a limit of a sequence of non-singular
matrices, in characteristic zero).

▶ Observation 10. For every A ∈ Fn×n there exists a non-singular matrix B ∈ F(ε)n×n

such that A = B + O(ε).

6 Intuitively, one should think of ε as an infinitesimal quantity.

CCC 2021

19:8 Hitting Sets and Reconstruction for Dense Orbits in VPe and ΣΠΣ Circuits

1.1.4 Hitting and interpolating sets
▶ Definition 11. A set of points H ⊆ Fn is called a hitting set for a circuit class C (we also
say that H hits C) if for every circuit Φ ∈ C, computing a non-zero polynomial, there exists
some a ∈ H such that Φ(a) ̸= 0.

We next give the definition of a robust hitting set, a notion first defined in [26]. Here we
extend the definition for arbitrary characteristic. We start by giving the definition of [26],
over characteristic zero (and focus on C) and then the more general definition.

▶ Definition 12 (Following Definition 5.1 of [26]). Let ∥·∥ be some norm on C[x]. A hitting
set H for a circuit class C ⊆ C[x] is called robust if there exists some constant c > 0 such
that, for every 0 ̸= f ∈ C,7 there exists some a ∈ H such that |f(a)| ≥ c · ∥f∥.

For arbitrary characteristic we use the same approach as in Definition 9.

▶ Definition 13. Let F be a field of arbitrary characteristic. A hitting set H ⊂ Fn for a
circuit class C(F) is called robust if for every circuit Φ ∈ C(F(ε)) computing a polynomial
f(x) = h(x) + ε · g(x), where h(x) ∈ F[x] and g(x) ∈ F[ε][x], there exists some a ∈ H such
that f(a) ̸∈ ε · F[ε].

It is not hard to prove using the result of [3] that for F = C, Definitions 12 and 13 are
equivalent.

▶ Observation 14. If H is a finite robust hitting set for C(F), then H hits C(F) as well.

Proof. Consider 0 ̸= f ∈ C(F). By Definition 9 there is g ∈ C(F(ε)), such that f = g + O(ε).
Clearly g ̸= 0. Let a ∈ H be such that g(a) ̸∈ ε · F[ε]. It follows that f(a) ̸∈ ε · F[ε]. In
particular, f(a) ̸= 0. ◀

We next define the notion of an interpolating set.

▶ Definition 15. Let C be a class of n-variate polynomials. A set H ⊆ Fn is called an
interpolating set for C if, for every f ∈ C, the evaluations of f on H uniquely determine f .

▶ Observation 16. If H is a hitting set for C(F) + C(F) ≜ {αf + βg : f, g ∈ C, α, β ∈ F},
then H is an interpolating set for C.

A common method for designing hitting and interpolating sets is via hitting set generators.

▶ Definition 17. A polynomial mapping G : Fk → Fn is called a hitting set generator (or
simply a generator) for a circuit class C(F) if for any non-zero n-variate polynomial f ∈ C,
the k-variate polynomial f ◦ G is non-zero.

Similarly, we call G : Fk → Fn an interpolating set generator for a circuit class C(F) if
for any two different n-variate polynomials f1, f2 ∈ C, the k-variate polynomial (f1 − f2) ◦ G
is non-zero.

Generators immediately give rise to hitting sets.

▶ Observation 18. Let G : Fk → Fn be a generator for C(F) such that the individual degree
of each coordinate of G is at most r. Let W ⊂ F be any set of size |W | = d · r + 1. Let
H = G

(
W k
)
. Then H hits every n-variate polynomial f ∈ C of degree at most d.

Proof. As G is a generator, the k-variate polynomial f ◦ G is nonzero. As its individual
degrees are bounded by d · r it follows that at least one of the values in (f ◦ G)

(
W k
)

= f (H)
is not zero. ◀

7 We abuse notation and write f ∈ C when f is the output of some circuit from C.

D. Medini and A. Shpilka 19:9

1.1.5 k-independent maps
Our constructions rely on polynomial mappings Gk, parameterized by some integer k ≤ n,
with the property that the image of f ◦ Gk contains all projections of f to k variables. We
call such a map a k-independent map.

▶ Definition 19. We call a polynomial mapping G(y1, . . . , yt, z1) : Ft+1 → Fn a
1-independent polynomial map if for every index i ∈ [n] there exists an assignment ai ∈ Ft

to y1, . . . , yt such that the ith coordinate of G(ai, z1) is z1, and the rest of the coordinates
are 0. For k > 1, a polynomial mapping G(y1, . . . , ytk, z1, . . . , zk) : Fk(t+1) → Fn is called a
k-independent polynomial map (or a k-independent map) if G is a sum of k variable-disjoint
1-independent polynomial maps. We denote k-independent polynomial maps as G(y, z) when
k, t are implicit. The y variables are called control variables.

A k-independent polynomial map G is called uniform if all n coordinates of G are
homogeneous polynomials of the same degree.

We discuss k-independent maps in more detail in Section 2.

1.1.6 Subgroups of the linear and affine groups and their actions
Given a matrix A ∈ Fn×n and a tuple of variables x = (x1, . . . , xn), we denote

Ax =
(

n∑
i=1

A1,ixi,
n∑

i=1
A2,ixi, . . . ,

n∑
i=1

An,ixi

)
.

Let n ≥ m ∈ N. For an m-variate polynomial f(x1, . . . , xm) ∈ F[x1, . . . , xm], a matrix
A = (Ai,j)n

i,j=1 ∈ Fn×n and a vector b = (b1, . . . , bn) ∈ Fn, we define the n-variate polynomial
f (Ax + b) to be

f (Ax + b) ≜ f

(
n∑

i=1
A1,ixi + b1,

n∑
i=1

A2,ixi + b2, . . . ,

n∑
i=1

Am,ixi + bm

)
. (2)

Note that we ignored the last n − m coordinates of Ax + b.
We denote with GLn(F) the group of invertible n × n matrices over F, and with GLaff

n (F)
the group of invertible affine transformation, i.e. all the maps x → Ax+b, where A ∈ GLn(F)
and b ∈ Fn.

For an m-variate polynomial f over F, and n ≥ m we denote with fGLaff
n (F) the orbit of f

under the natural action of GLaff
n (F):8

fGLaff
n (F) ≜ {f(Ax + b) | A ∈ GLn(F), b ∈ Fn} .

We similarly define fGLn(F). More generally, for a class of m-variate polynomials C(F), we
denote the orbit of C under GLaff

n (F) by

CGLaff
n (F) ≜ {f(Ax + b) | f ∈ C, A ∈ GLn(F), b ∈ Fn} .

We similarly define CGLn(F). When we want to speak about orbits of families of polynomials
from C(F), with arbitrary number of variables, we use the notation CGL(F) or CGLaff(F).

8 To be precise, the action is ((A, b) ◦ f) (x) = f(AT x + b). This is required in order to make the action
a homomorphism, however, for the groups that we consider it does not change the orbit.

CCC 2021

19:10 Hitting Sets and Reconstruction for Dense Orbits in VPe and ΣΠΣ Circuits

▶ Observation 20. For any m variate polynomial f(x1, . . . , xm) and n ≥ m:
For any A ∈ GLn(F) and d ∈ N, f [d](Ax) is the d-homogeneous part of f(Ax).
For any A ∈ GLaff

n (F), f(x) is irreducible if and only if f (Ax) is irreducible.
The set of matrices A for which f(x) = f(Ax) forms a multiplicative subgroup of GLn(F)
and a similar claim holds for GLaff

n (F).

We next define some special groups that serve as group of symmetries of some of the
models that we consider. We first define the group of symmetries of ANF∆(x). We denote
with Ik the k × k identity matrix.

▶ Definition 21. For m, ∆ ∈ N such that m = 2∆, the tree-symmetry group TRm(F) denotes
the automorphisms of a rooted complete binary tree of depth ∆. It is defined recursively as
follows.

For m = 1, TR1(F) consists only of the identity matrix.
For m > 0, TRm(F) is generated by matrices of the form(

A 0
0 B

)
and

(
0 I m

2

I m
2

0

)
where A, B ∈ TR m

2
(F).

▶ Definition 22. For any m = 4∆, the tree-scale group TSm(F) is the group generated by
elements of TRm(F) and matrices of the form

αI m
4

0 0 0
0 α−1I m

4
0 0

0 0 βI m
4

0
0 0 0 β−1I m

4

where 0 ̸= α, β ∈ F.

The importance of the group TSm(F) stems from the fact that it is the symmetry group
of ANF∆. To intuitively see why this is the case, notice that in any representation of an
ANF one may swap children of any node without changing the output polynomial. We call
such symmetries “tree-symmetries” and they are captured by the group TRn(F). A second
source of ambiguity comes from the fact that we can rescale the formula. Recall that the
output polynomial is of the form f1 · f2 + f3 · f4 (Definition 7). Clearly, the output does not
change if we replace f1 by, say, 2f1 and f2 by f2/2. Such rescaling symmetries are captured
by the group TSn(F). Finally, another source for ambiguity comes from the fact that the
quadratic polynomials computed at the bottom two layers of the ANF may have different
representations. For example,

4xy + 4wz = (x + y + w − z) · (x + y − w + z) + (w + z + x − y) · (w + z − x + y) .

As there is an infinite number of representations for each quadratic polynomial (over infinite
fields), we can expect to characterize the symmetries in term of the quadratics computed at
the bottom two layers of the ANF.

▶ Fact 23 (Special case of Theorem 5.43(iii) of [35]). Let m, ∆, n ∈ N such that m = 4∆−1 ≤
n/4. Let f = ANF∆(ℓ1, . . . , ℓ4m) ∈ ANFGLaff

n (F)
∆ . Let Q = (q1, . . . , qm) be the list of quadratic

polynomials that are computed at the bottom two layers of the formula ANF∆(ℓ1, . . . , ℓ4m). In
particular, f = ANF∆−1(q1, . . . , qm). If Q′ = (q′

1, . . . , q′
m) is any other m-tuple of quadratic

polynomials for which f = ANF∆−1(q′
1, . . . , q′

m) then Q is TSm(F)-equivalent to Q′.

D. Medini and A. Shpilka 19:11

Next, we define the group of symmetries of Ts,d(x).

▶ Definition 24. For any n ∈ N the permutation-scale group, denoted PSn(F), is the set of
all matrices A ∈ GLn(F) which are row-permutations of non-singular diagonal matrices with
determinant one.

For example,

 0 −2 0
0 0 −1

1/2 0 0

 ∈ PS3(C).

▶ Definition 25. Let s, d, n ∈ N such that n = s · d. A matrix A ∈ GLn(F) is a member of
the tensor permutation-scale group, denoted TPSs,d(F), if A = (P ⊗ Id) · B, where P is an

s × s permutation matrix and B =

B1 0 . . . 0
0 B2 . . . 0
...

. . .
...

0 . . . 0 Bd

 is a block diagonal matrix such

that each block Bi of B satisfies Bi ∈ PSd(F).

For example, for s = d = 2 the matrix A =

0 0 0 2
0 0 1/2 0

−1 0 0 0
0 −1 0 0

 is in TPS2,2(C), as for

P =
(

0 1
1 0

)
and B =

−1 0 0 0
0 −1 0 0
0 0 0 2
0 0 1/2 0

, we have A = (P ⊗ I2) · B, and clearly each

block of B is in PS2(C).

Another way of defining the group is as follows: index rows and columns of A with pairs
(i, j) ∈ [s] × [d]. Then, A ∈ TPSs,d(F) if and only if there exists a permutation π : [s] → [s],
and for all i ∈ [s] permutations θi : [d] → [d] and constants αi,j satisfying

∏d
j=1 αi,j = 1,

such that A(i,j),(i′,j′) = δπ(i),i′ · δθi(j),j′ · αi,j for all i, j.
We next prove that TPSs,d(F) is the group of symmetries of Ts,d(x). In other words,

we show that Ts,d(x) = Ts,d(Ax) if and only if A ∈ TPSs,d(F). Intuitively, Ts,d admits no
symmetries other than the trivial ones: permutations on the product gates, and internal
permutation-scale of each product gate such that the product of the scale coefficients is 1.
This is exactly captured by the group TPSs,d(F), which is therefore contained in the group
of symmetries of Ts,d(x).

▶ Lemma 26. Let s, d, n ∈ N, such that d > 2 and n = s · d. If A ∈ GLn(F) satisfies
Ts,d(x) = Ts,d(Ax), then A ∈ TPSs,d(F).

1.2 Our results
We first give our results for the class VPe and then for the class of depth-3 circuits, for which
it may be easier to obtain a robust hitting set, or prove super-polynomial lower bounds.

1.2.1 The continuant polynomial
Bringmann, Ikenmeyer and Zuiddam [14] defined the following polynomial (in Remark 3.14
of their paper), which they called the continuant polynomial:

CCC 2021

19:12 Hitting Sets and Reconstruction for Dense Orbits in VPe and ΣΠΣ Circuits

▶ Definition 27. The continuant polynomial on n variables, Cn(x1, . . . , xn), is defined as
the trace of the following matrix product:

Cn(x1, . . . , xn) ≜ Trace
((

x1 1
1 0

)
·
(

x2 1
1 0

)
· . . . ·

(
xn 1
1 0

))
. (3)

We denote with CGLaff(F) the class of families of polynomials (fn)n such that fn ∈ F[x1, . . . , xn]
and for some m ≤ n, fn ∈ CGLaff

n (F)
m .

A result of Allender and Wang implies that the polynomial x1 · y1 + · · · + x8 · y8 is not in
CGLaff(F) [4]. Thus, as a computational class it is very weak. However, Theorem 3.12 of [14]
states that for every field F of characteristic different than 2, it holds that

CGLaff(F) = VPe . (4)

We give a polynomial-size interpolating set for the class CGLaff(F) as well as a polynomial-
time reconstruction algorithm for it. We first state a simple result that gives a hitting set for
the class.

▶ Theorem 28. Let f(x1, . . . , xn) ∈ CGLaff
n (F)

m , for m ≤ n, and arbitrary F. Then, for any
uniform 1-independent polynomial map G over F, f ◦ G ̸= 0.

As immediate corollary we get a hitting set for the class.

▶ Corollary 29. For every field F, there is an explicit hitting set H ⊂ Fn, of size |H| = O
(
n6),

that hits every 0 ̸= f ∈ CGLaff
n (F)

m . If |F| < n2 then H is defined over a polynomial-sized
extension field of F, K such that |K| ≥ n2.

▶ Theorem 30. For every field F, there is an explicit interpolating set H ⊂ Fn, of size
|H| = O

(
n10), for

⋃n
m=1 CGLaff

n (F)
m . If |F| < n2 then H is defined over a polynomial-sized

extension field of F, K such that |K| ≥ n2.

▶ Theorem 31. There is a deterministic algorithm that given F, an integer n, or-
acle access to a root-finding algorithm over F, and black-box access to a polynomial
f(x1, . . . , xn) ∈ CGLaff

n (F)
m (for any m ≤ n), runs in polynomial-time and outputs linear

functions (ℓ1(x1, . . . , xn), . . . , ℓm(x1, . . . , xn)) such that

f(x1, . . . , xn) = Cm (ℓ1(x), . . . , ℓm(x)) .

If |F| < n3 then the algorithm will make queries from a polynomial-sized extension field of F,
K, such that |K| ≥ n3, and it also requires oracle access to a root-finding algorithm over K.

1.2.2 Orbits of read-once formulas
We denote with ROFGL(F) the class of families of polynomials (fn)n, such that for every n

there exists a ROF Φ, on m ≤ n variables, such that fn(x1, . . . , xn) ∈ ΦGLn(F). Similarly,
we denote with ANFGLaff[F] the class of families of polynomials (fn)n, such that for every n

there exists ∆ such that 4∆ ≤ n and fn(x1, . . . , xn) ∈ ANFGLaff
n (F)

∆ .
We first make the following simple observation.

▶ Theorem 32. For every field F, it holds that

ANFGLaff(F) ⊊ ROFGL(F) ⊊ VPe(F) . (5)

However, when taking closures we get

ANFGLaff(F) = ROFGL(F) = VPe(F) . (6)

D. Medini and A. Shpilka 19:13

Our main results for ROFs and ROANFs are a construction of a hitting set for the orbit
of ROFs, and an interpolating set for the orbit of ROANFs. Both constructions are obtained
using independent polynomial maps (Definition 19).

▶ Theorem 33. Let 0 ̸= f ∈ ROFGLaff
n (F) where the underlying ROF depends on 2t variables,

for 2t ≤ n. Then, for any (t + 1)-independent polynomial map G, over F, f ◦ G ̸= 0.

▶ Corollary 34. For every field F, there is a hitting set H ⊂ Fn, of size |H| = nO(log n),
that hits every 0 ̸= f ∈ ROFGLaff

n (F). If |F| < n2 then H is defined over a polynomial-sized
extension field of F, K such that |K| ≥ n2.

Since a hitting set for all polynomials of the form g − h where g, h ∈ C is the same as
an interpolating set for C, the following theorem gives an interpolating set for the orbit of
ROANFs.

▶ Theorem 35. Let f1 = ANF∆1(A1x + b1), f2 = ANF∆2(A2x + b2) ∈ ANFGLaff
n (F) and

f = f1 − f2. Set k ≜ 2 max{∆1, ∆2} + 7 and let G be any uniform k-independent polynomial
map, over F. If f ̸= 0 then f ◦ G ̸= 0.

▶ Corollary 36. For any field F, the class ANFGLaff
n (F)

∆ , for 4∆ ≤ n, admits an interpolating
set H ⊂ Fn, of size |H| = nO(∆). If |F| < n2 then H is defined over a polynomial-sized
extension field of F, K, such that |K| ≥ n2.

Finally, we observe that the randomized algorithm of Gupta, Kayal And Qiao [35], for
reconstructing random algebraic formula (for a natural definition of a random formula),
yields a randomized reconstruction algorithm for ANFGLaff(C). Naturally, the reconstruction
is up to the symmetry group of ROANFs.

▶ Theorem 37 (A special case of Theorem 1.1 of [35]). Let T be a finite subset of C. Let
n, ∆ ≥ 1 be integers such that s ≜ 4∆ ≤ n. Given black-box access to the output f of
a circuit Φ ∈ ANFGLaff

n (C), with probability at least 1 − n2sO(1)

|T | (on internal randomness),
Algorithm 6.9 of [35] successfully computes a tuple of s linearly independent linear functions
L = (ℓ1, . . . , ℓs) ∈ (C[x])s such that f = ANF∆(ℓ1, . . . , ℓs), and the ℓis are identical to the
labels of the leaves of Φ up to TSn(C)-equivalence (see Definition 22). Moreover, the running
time of the algorithm is poly(n, s, log(|T |)).

▶ Remark 38. Theorem 1.1 of [35] is stated only for characteristic zero fields. However, in
Remark 6.10 they explain how to make the algorithm work over any characteristic, for a large
enough field. Thus, Theorem 37 also holds over large enough fields in arbitrary characteristic.

▶ Remark 39. As a direct implication of Theorem 35, the reconstruction algorithm of
Theorem 37 can be converted into a zero-error algorithm, with expected quasipolynomial
running time: Given black-box access to some f1 ∈ ANFGLaff(F), we define f2 to be the output
of the algorithm of Theorem 37 on input f1, and then verify f1 = f2 using Corollary 36.

1.2.3 Dense subclasses of ΣΠΣ
We start by defining the canonical diagonal tensor of degree d and rank s, Ts,d ∈
F[x1,1, . . . , xs,d], and the resulting class of polynomials T GLaff(F).

▶ Definition 40. Let Ts,d ≜
∑s

i=1
∏d

j=1 xi,j . I.e., it is a sum of s variable-disjoint monomials.

For n ≥ s · d, we denote with TGLaff
n (F)

s,d the orbit of Ts,d over F, under the action of the affine
group. Finally, we denote with T GLaff(F) the class of families of polynomials (fn)n, such that
for every n there exist s and d such that n ≥ s · d and fn(x1, . . . , xn) ∈ TGLaff

n (F)
s,d .

CCC 2021

19:14 Hitting Sets and Reconstruction for Dense Orbits in VPe and ΣΠΣ Circuits

Clearly, TGLaff
n (F)

s,d ⊂ Σ[s]Π[d]Σ. We next define the class consisting of orbits of sparse
polynomials.

▶ Definition 41. Let ΣΠGLaff(F) denote the class of families of polynomials that are computed
by orbits of depth-2 circuits, of polynomially bounded size, over F. I.e., it is all families
(fn)n, of polynomially bounded degree, such that for some polynomially bounded m(n), there
exist Σm(n)Πdeg(fn) circuits Φm, in k ≤ n, many variables, such that fn ∈ ΦGLaff

n (F)
m .

As before we first give the basic observation connecting all three classes.

▶ Theorem 42. For every field F it holds that

T GLaff(F) ⊊ ΣΠGLaff(F) ⊆ ΣΠΣ(F) ,

and for fields of size |F| ≥ n + 1

ΣΠGLaff(F) ⊊ ΣΠΣ(F) .

In addition,

T GLaff(F) = ΣΠGLaff(F) = ΣΠΣ(F) . (7)

Our main results for this section are a quasipolynomial-size hitting set for the class
ΣΠGLaff(F), and a polynomial-size interpolating set for T GLaff(F).

▶ Theorem 43. Let 0 ̸= g ∈ F[x] have sparsity ≤ 2t. Let (A, b) ∈ GLaff
n (F), and f(x) =

g(Ax + b). Then, for any (t + 1)-independent polynomial map G, f ◦ G ̸= 0.

▶ Corollary 44. For any integers s, d, n, there exists an explicit hitting set H ⊂ Fn, of
size |H| = (nd)O(log s), such that H hits every nonzero polynomial f ∈

(
Σ[s]Π[d])GLaff

n (F). If
|F| ≤ n · d then we let H be defined over an extension field K of F of size |K| > n · d.

We next state our result concerning an interpolating set for T GLaff(F).

▶ Theorem 45. Let n, s1, s2, d1, d2 ∈ N be such that n ≥ s1 · d1, s2 · d2. For i ∈ {1, 2} let
fi ∈ TGLn(F)

si,di
, and let f = f1 − f2. If f ≠ 0, then any uniform 6-independent polynomial map

G satisfies f ◦ G ̸= 0.

Finally we note that the randomized reconstruction algorithm of Kayal and Saha [45],
which works for (as it is termed in their paper) “non-degenerate” homogeneous depth-3
circuits, works for T GLaff(F). This follows from the observation that T GLaff(F) circuits are
always non-degenerate.

▶ Theorem 46 (special case of Theorem 1 of [45]). Let n, d, s ∈ N, n ≥ (3d)2 and s ≤
(n

3d) d
3 . Let F be a field of characteristic zero or greater than ds2. There is a randomized

poly(n, d, s) = poly(n, s) time algorithm which takes as input black-box access to a polynomial
f that is computable by a TGLaff

n (F)
s,d circuit, and outputs a TGLaff

n (F)
s,d circuit Φ computing f with

high probability. Furthermore, Φ is unique up to TPSs,d(F)-equivalence (see Definition 25).

▶ Remark 47. As in Remark 39, Theorem 45 enables us to convert the reconstruction
algorithm of Theorem 46 to a zero-error algorithm, with expected polynomial running time.
Given black-box access to some f1 ∈ T GLaff(F), we define f2 to be the output of the algorithm
of Theorem 46 on input f1, and then verify f1 ≡ f2 by applying Theorem 45 to f = f1 − f2.

D. Medini and A. Shpilka 19:15

1.2.4 Robust hitting sets?
As we showed in Observation 14, if a hitting set H for a circuit class C is robust, then H hits
C as well. It is thus natural to ask whether our interpolating sets are already robust. Our
next result shows that the property of being a t-independent map, which was sufficient for
the constructions in Theorems 28, 30, 33, 35, 43, and 45 (for the appropriate values of t),
by itself is not sufficient for obtaining robust hitting sets. We prove this by constructing
an independent polynomial map which gives rise to a provably non-robust hitting set. Our
construction is the same as the one given by Forbes et al. [27] (Construction 6.3 in the full
version).

▶ Theorem 48. Let F be of characteristic zero. For every t, there exists a uniform t-
independent polynomial map G and a nonzero polynomial f such that f ◦ G ≡ 0, and f can be
computed by a ΣΠΣ formula of size tO(

√
t). If F has a positive characteristic then f can be

computed by a ΣΠΣ formula of size tt, or by a general formula of size tO(log t). Furthermore,
for a certain arrangement of the variables in a

√
n ×

√
n matrix, f can be taken to be the

determinant of any (t + 1) × (t + 1) minor.

1.3 Polynomial Identity Testing
So far we discussed our work from the perspective of dense subclasses of classes for which
no strong lower bounds are known. Here we put our work in the context of the polynomial
identity testing problem.

Polynomial Identity Testing (PIT for short) is the problem of designing efficient determ-
inistic algorithms for deciding whether a given arithmetic circuit computes the identically
zero polynomial. PIT has many applications, e.g. deciding primality [1], finding a perfect
matching in parallel [23, 69] etc., and strong connection to circuit lower bounds [38, 22, 19, 32].
See [67, 62, 63] for surveys on PIT and [50] for a survey of algebraic hardness-randomness
tradeoffs.

PIT is considered both in the white-box model, in which we get access to the graph of
computation of the circuit, and in the black-box model in which we only get query access
to the polynomial computed by the circuit. Clearly, a deterministic PIT algorithm in the
black-box model is equivalent to a hitting set for the circuit class. In this work we only focus
on the black-box model.

The continuant polynomial and algebraic branching programs

The continuant polynomial is trivially computed by width-2 Algebraic Branching Programs
(ABPs). Recall that an ABP of depth-d and width-w computes polynomials of the form
Trace (M1(x) · . . . · Md(x)), where each Mi is a w × w matrix whose entries contain variables
or field elements. Ben-Or and Cleve proved that every polynomial in VPe can be computed
by a width-3 ABP of polynomial-size [8].

Raz and Shpilka gave the first polynomial-time white-box PIT algorithm for read-once
ABPs (ABPs in which every variable can appear in at most one matrix) [58]. Forbes,
Saptharishi and Shpilka gave the first quasipolynomial-sized hitting set for read-once ABPs
(ROABPs) [25]. This result was slightly improved in [31] for the case where the width of the
ROABP is small. Anderson et al. gave a subexponential hitting set for read-k ABPs [5]. We
note that none of these models is strong enough to contain the orbit CGLaff(F). For ABPs
that are not constant-read we do not have sub-exponential time PIT algorithms. Thus, the
following is an interesting open problem (recall that by the result of Ben-Or and Cleve a
PIT algorithm for width-3 ABPs works for VPe as well).

CCC 2021

19:16 Hitting Sets and Reconstruction for Dense Orbits in VPe and ΣΠΣ Circuits

▶ Problem 49. Give a sub-exponential time PIT algorithm for ABPs of width-2.

It is interesting to note that by a result of Saha, Saptharishi and Saxena [59], PIT for
ABPs of width-2 would yield PIT for ΣΠΣ circuits.

Although we do not have a PIT algorithm for general branching programs, in [44] Kayal et
al. gave an average-case reconstruction algorithm for low width ABPs. Kayal, Nair and Saha
obtained a significantly better algorithm in [43]. Their algorithm succeeds w.h.p, provided
the ABP satisfies four non-degeneracy conditions (these conditions are defined in Section
4.3 of [43]). However, the ABP computing the continuant polynomial does not satisfy the
non-degeneracy conditions that are required for their algorithm to work. Thus, Theorem 31
does not follow from [43].

To the best of our knowledge, CGLaff(F) is the first natural9 computational class that is
dense in VPe for which a polynomial (or even sub-exponential)-sized interpolating set (or a
hitting set) is known.

Read-Once formulas

Hitting sets for read-once formulas were first constructed by Volkovich and Shpilka [66], who
gave quasipolynomial-sized hitting set for the model, as well as a deterministic reconstruction
algorithm of the same running time (earlier randomized reconstruction algorithms were
known [16, 15]). Minahan and Volkovich obtained a polynomial-sized hitting set for the class,
which led to a similar improvement in the running time of the reconstruction algorithm [54].
Anderson, van Melkebeek and Volkovich constructed a hitting set of size nkO(k)+O(k log n) for
read-k formulas [6]. All these results work in a slightly stronger model in which we allow
to label leaves with univariate polynomials, of polynomial degree, such that every variable
appears in at most one polynomial, or with sparse polynomials on disjoint sets of variables.

The read-once models that we consider here, ANFGLaff(F) and ROFGL(F), can be viewed
as read-once formulas composed with a layer of addition gates with the restriction that the
bottom layer of additions computes linearly independent linear functions. We note that these
models do not fall into any of the previously studied models, as a variable can appear in all
the linear functions.

As is the case with CGLaff(F), our hitting sets for ANFGLaff(F) and ROFGL(F) are the first
sub-exponential-sized hitting sets for natural dense subclasses of VPe.

Small depth circuits

The class of ΣΠ circuits was considered in many works, see e.g. [9, 48] and polynomial-sized
hitting sets were constructed. The class of ΣΠΣ circuits also received a lot of attention
but with lesser success. Dvir and Shpilka [21] and Karnin and Shpilka [40] gave the
first quasipolynomial-time white-box and black-box PIT algorithms for Σ[k]Π[d]Σ circuits,
respectively. Currently, the best result is by Saxena and Seshadhri who gave a hitting set of
size (nd)O(k) for such circuits [64]. In [20] a subexponential-size hitting set for multilinear
ΣΠΣ circuits was given. In [2], Agrawal et al. gave a hitting set of size nO(1) · (kd)O(r) for
Σ[k]Π[d]Σ circuits, where r is an upper bound on the algebraic rank of the multiplication gates
in the circuit. Thus, known quasipolynomial-size hitting sets for subclasses of ΣΠΣ circuits
are known when the fan-in of the top gate is poly-logarithmic, or when the algebraic rank of

9 It is hard to define what a natural class means, but, for example the set of all polynomials in VPe with
a nonzero free term has a trivial hitting set, but is not a “computational” subclass.

D. Medini and A. Shpilka 19:17

the set of multiplication gates is poly-logarithmic. In contrast, polynomials in T GLaff
n (F) and

ΣΠGLaff(F), when viewed as ΣΠΣ circuits, can have polynomially many multiplication gates
and their algebraic rank can be n. On the other hand, the corresponding ΣΠΣ circuits are
such that the different linear functions that are computed at their bottom layer are linearly
independent (when we view linear functions that are a constant multiple of each other as the
same function). Thus, our Corollary 44 provides a hitting set for a new subclass of ΣΠΣ
circuits.

To the best of our knowledge, our results for T GLaff(F) and ΣΠGLaff(F) give the first
sub-exponential size hitting sets for natural subclasses that are dense in ΣΠΣ.

1.4 More related work
Approximations in algebraic complexity were first studied by Bini et al. in the context of
algorithms for matrix multiplication [12]. For more on the history of border rank in the
context of matrix multiplication see notes of chapter 15 in [18]. More recently, influenced by
the GCT program, a lot of research was invested in trying to find polynomials characterizing
tensors of small rank. See [51] for a discussion on this approach. More recently, Kumar
proved that every polynomial over C can be approximated by a Σ[2]ΠΣ circuit (of exponential
degree) [49].

Very little is known about the closure of circuit classes. Forbes observed that the class
of ROABPs is closed [24]. I.e. ROABP = ROABP. We are not aware of other collapses or
separation between general “natural” classes and their closures.

Beside the reconstruction algorithms mentioned earlier, reconstruction algorithms are
known for ΣΠ circuits [9, 48]; for random depth three powering circuits [42]; for set-multilinear
ΣΠΣ and ROABPs [7, 47]; for ΣΠΣ circuits with bounded top fan-in [65, 41, 68]; and for
multilinear depth-4 circuits with a constant top fan-in [34, 11].

In general, we do not expect the reconstruction problem to be solvable efficiently, as the
problem of finding the minimal circuit computing a given polynomial is a notoriously hard
problem. A detailed discussion on the hardness of reconstruction can be found in [43].

Independently and concurrently with our work Saha and Thankkey gave PIT algorithms
for orbits of different models of read-once oblivious algebraic branching programs (ROABPs)
and for constant-depth, constant-occur formulas [60]. Their results concerning ROABPs
were recently improved by Bhargava and Ghosh [10]. Interestingly, both [60, 10] use k-wise
independent maps in their construction. We note that the only model that is studied in
this paper and in [60, 10] is that of (orbits of) sparse polynomials. For orbits of sparse
polynomials are hitting set is potentially much smaller than those constructed in [60, 10] as
it does not depend on the individual degrees appearing in the sparse polynomial.

Simultaneously and independently, Saha and Thankey [60] studied PIT for orbits of
related computational models. Specifically, they obtained quasi-polynomial sized hitting sets
for: Low-individual-degree polynomials computable by commutative ROABP; Multilinear
polynomials computable by constant-width ROABP; Polynomials computable by constant-
depth, constant-occur formulas with low-individual-degree sparse polynomials at the leaves;
and Polynomials computable by occur-once formulas with low-individual-degree sparse
polynomials at the leaves. We refer the reader for their paper for definitions of these models.
The results of [60] are mostly disjoint from ours, except for the model of sparse polynomials
that is captured by commutative ABPs. In this case our result is superior to theirs as
their hitting set has an exponential dependence in the individual degrees, while ours work
for any polynomial degree sparse polynomial. It is interesting to note that the hitting set
constructions of [60] are also based on k-independent maps.

CCC 2021

19:18 Hitting Sets and Reconstruction for Dense Orbits in VPe and ΣΠΣ Circuits

1.5 Proof technique
Our proofs are based on the following simple yet important, and as far as we know novel,
observations concerning k-independent polynomial maps. Specifically, our proofs are based
on the following two claims:

1. If we have a hitting-set generator H for nonzero polynomials of the form ∂f
∂x1

, for f ∈ C,
and if G is a 1-independent map then H + G hits every nonzero f ∈ C. This is proved in
Lemma 61.

2. Similarly, we prove that if we have a hitting-set generator H for nonzero polynomials of the
form f

∣∣
ℓ=0(Ax + b), for f ∈ C, a linear function ℓ, and an invertible affine transformation

(A, b), and if G is a 1-independent map then H + G hits every nonzero f ∈ C. This follows
from Lemma 62.

By applying these claims k + r times we get that composition with a (k + r)-independent
map allows to reduce the problem of hitting a class C to hitting polynomials of the form

∂kf
∂xi1 ∂xi2 ···∂xik

∣∣∣
ℓ1=...=ℓr=0

. Thus, if we could prove that for a class C, there is such a sequence
of derivatives and restrictions that simplifies the polynomials in it to a degree that they can
be easily hit by some map H, then we conclude that H + Gk+r, for a (k + r)-independent
map Gk+r, is a hitting set generator for C.

It seems that all that is left to do is prove that for each of the orbits that we consider
in Section 1.2 that is such small k and r. However, a potential problem is that a partial
derivative of the polynomial g(x) = f(Ax + b) gives ∂g

∂x1
=
∑n

i=1
∂f
∂yi

· ∂ℓi

∂x1
, where ℓi is

the ith coordinate of Ax + b. Thus, it is no longer a derivative composed with an affine
transformation but rather a sum of such derivatives, which could lead to polynomials outside
of our class. For example, it is not hard ot prove that if we compose the ROF y1 · y2 · y3 with
(x1, x1 +x2, x1 +x3) and then take a derivative according to x1, then the resulting polynomial,
∂(x1·(x1+x2)·(x1+x3))

∂x1
= 3x2

1 + 2x1 · (x2 + x3) + x2 · x3, is not in the orbit of any ROF. The
solution to this problem is to take a directional derivative in a direction coming from a dual
basis. For example if ℓi(vj) = δi,j then ∂g

∂v1
= ∂f

∂x1
(Ax + b) (see Lemma 60). Now, comes

another important observation: If H is a hitting-set generator for nonzero polynomials of
the form ∂f

∂v , for f ∈ C and a direction v, and if G is a 1-independent map then H + G hits
every nonzero f ∈ C. The point is that if ∂f

∂v ◦ H ̸= 0 then for some i, ∂f
∂xi

◦ H ̸= 0 and the
claim follows from the first claim above. Thus, composition with (k + r)-independent maps
allows us to reduce the problem of hitting a class C to finding a generator for polynomials
that are obtained as a restriction to a subspace of co-dimension r of a directional partial
derivative of order k of polynomials in C.

Let us demonstrate this idea for the case of orbits of sparse polynomials. I.e. to
polynomials of the form g(x) = f(Ax + b), where the number of monomials in f is at most
2t. It is not hard to see that there is a variable xi such that if we consider f

∣∣
xi=0 and ∂f

∂xi

then one of these polynomials has at most 2t−1 monomials.10 Thus, after a a sequence of at
most t partial derivatives and restrictions, we get to a polynomial with only one monomial
that we can easily hit. Hence after at most t directional derivatives and restrictions to a
subspace, we get that g is a product of linear forms, which we can easily hit. This proves
that any (t + 1)-independent map hits such nonzero polynomials g.

10 This is not exactly accurate – it only holds if f is not divisible by some variable xi. However, the case
where there is a monomial dividing f is also quite easy to handle as it is enough to hit the polynomial
obtained after dividing by that monomial (since a composition with a 1-independent map keeps any
nonzero linear function nonzero).

D. Medini and A. Shpilka 19:19

To obtain interpolating sets for our classes (and also a reconstruction algorithm for the
orbit of the continuant polynomial), we prove that if two polynomials in the orbit, of any
of the classes that we consider, are different, then there is a sequence of a few (directional)
partial derivatives and restrictions that makes one of them zero while keeping the other
nonzero. Using this and the ideas from above we construct our interpolating sets.

▶ Remark 50. In this version of the paper we only give proofs of the main properties of
k-wise independent maps (outlined above), as these are the main tool that we used in all our
proofs. The full version can be found at [53].

1.6 Discussion
As Theorem 48 shows, our hitting sets are not necessarily robust. It is thus an outstanding
open problem to find a way to convert a hitting set to a robust one (recall Problem 1).

The following toy example demonstrates that converting a hitting set for a class C to a
robust hitting set for C, cannot be done in a black-box manner and one has to use information
about C for that: let C(F) be the class of all polynomials with non-zero free term. A trivial
hitting set for C would simply be the singleton set H = {0}. On the other hand, it is clear
that C = F[x], so making H robust would yield a hitting set for all polynomials. Note,
however, that this is not a “computational class.”

Another potential approach for obtaining robust hitting sets follows from the observation
that the set of queries made by a non-adaptive deterministic black-box reconstruction
algorithm, A, for C, which is continuous at 0 (i.e. at the identically zero polynomial) is
a robust hitting set for C. The reason is, that if 0 ̸= f ∈ C and {fk}∞

k=1 ⊆ C converges
to f , then for large enough k: ∥fk∥2 ≥ 1

2 ∥f∥2 > 0. As the fk sequence converges and
polynomial evaluation is continuous (and their evaluation vectors are bounded), the sequence
vk = fk

∣∣
H ⊆ C|H| must also converge to some vector v = f

∣∣
H ∈ C|H|. If v = 0 then the

continuity of A at 0 implies the coefficients of the polynomials fk(x) must also converge to
zero, as A(0) = 0. This would contradict ∥fk∥2 ≥ 1

2 ∥f∥2 > 0 for large enough k, so v ≠ 0
and thus H hits C.

Thus, an interesting challenge is to derandomize the reconstruction algorithms given in
Theorems 31, 37, and 46, hoping that the resulting algorithms are continuous at 0. We note
however, that currently we do not even have efficient deterministic root-finding algorithms
over C. It is also known that in general, finding the minimal circuit for a polynomial can
be very difficult. E.g., in [36, 70] it was shown that the question of computing, or even
approximating, tensor rank, for degree 3 tensors, is NP hard, over any field.
▶ Remark 51. In Theorem 45, we have seen that any uniform O(log(sn))-independent
polynomial map G is an interpolating set generator for T GLaff(C); i.e, G induces an interpolating
set H for T GLaff(C). On the other hand, in Theorem 48, we constructed such a map G, with
the additional property that G is not a hitting set generator for ΣΠΣ circuits. In particular,
this implies that the induced (non-efficient) reconstruction map A (that takes f(H) and
returns a circuit computing f) is not continuous at 0.

We conclude this section with a somewhat vague question.

▶ Problem 52. Find a “computational” class of polynomials C with a known hitting set H,
such that C ̸= C, and convert H to a robust hitting set.

We note that the closure of Σ
∧

Σ circuits (i.e. circuits computing polynomials of the
form

∑
i ℓi(x)d, for linear functions ℓi) is contained in the class of commutative read-once

algebraic branching programs (see [25]). Thus, the hitting set for the latter class gives a
robust hitting set for the former [25]. However, we seek an example in which there is an
“interesting” conversion of a hitting set to a robust one.

CCC 2021

19:20 Hitting Sets and Reconstruction for Dense Orbits in VPe and ΣΠΣ Circuits

2 k-independent polynomial maps and their properties

▶ Observation 53. It holds that
1. If G(y, z) is a (k + 1)-independent polynomial map, then there exists a subset of variables

S and an assignment α ∈ F|S| such that G
∣∣
S=α

is a k-independent polynomial map.
2. For any k ≥ 1, the n coordinates of any k-independent polynomial map are F-linearly

independent.
3. Let ℓ1(x) and ℓ2(x) be linearly independent linear functions in F[x]. Let G(y, z1, z2) be

any 2-independent polynomial map. Consider ℓ1 ◦ G and ℓ2 ◦ G as polynomials in z1, z2
over F(y). Then, (ℓ1 ◦ G)[1] and (ℓ2 ◦ G)[1] are linearly independent, as linear forms in
z1, z2 over F(y).

We next give the construction of [66] of a k-independent polynomial map (denoted Gk

in [66]).

▶ Definition 54. Fix n and a set of n distinct field elements A = {α1, . . . , αn} ⊆ F.11 For
every i ∈ [n] let Li(w) : F → F be the ith Lagrange Interpolation polynomial for the set A.
That is, each Li(w) is polynomial of degree n − 1 that satisfies Li(αj) = δi,j. We define
GSV

1 (y1, z1) : F2 → Fn as:

GSV
1 (y1, z1) ≜ (L1(y1) · z1, L2(y1) · z1, . . . , Ln(y1) · z1) ,

and for any k ≥ 1, we define GSV
k : F2k → Fn as:

GSV
k (y, z) ≜ GSV

1 (y1, z1) + GSV
1 (y2, z2) + . . . + GSV

1 (yk, zk)

=

 k∑
j=1

L1(yj) · zj ,

k∑
j=1

L2(yj) · zj , . . . ,

k∑
j=1

Ln(yj) · zj

 .

▶ Observation 55. GSV
k is a k-independent polynomial map, in which each variable has

degree at most n − 1.

The generator GSV
k can be converted to a uniform k-independent polynomial map by

adding another k control variables yk+1, . . . , y2k, and swapping out the Li(yj)s for their
homogenizations yn−1

j+k Li

(
yj

yj+k

)
:

▶ Definition 56. With the notation used in Definition 54, define the uniform SV-generator
with k independence GSV-hom

k : F3k → Fn as:

GSV-hom
k (y1, . . . , y2k, z1, . . . , zk)

≜ yn−1
1+k · GSV

1

(
y1

y1+k
, z1

)
+ yn−1

2+k · GSV
1

(
y2

y2+k
, z2

)
+ . . . + yn−1

2k · GSV
1

(
yk

y2k
, zk

)

=

 k∑
j=1

yn−1
j+k L1

(
yj

yj+k

)
· zj ,

k∑
j=1

yn−1
j+k L2

(
yj

yj+k

)
· zj , . . . ,

k∑
j=1

yn−1
j+k Ln

(
yj

yj+k

)
· zj

 .

▶ Observation 57. GSV-hom
k is a uniform k-independent polynomial map, with individual

degrees at most n − 1.

11 If |F| < n then we take these elements from an appropriate extension field of F.

D. Medini and A. Shpilka 19:21

We next show how we can use k-independent polynomial maps in order to, roughly,
simulate a kth order directional derivative or, project a polynomial to a subspace of co-
dimension k. We first need to define the notion of a directional derivative.

▶ Definition 58. For an n-variate polynomial f ∈ F[x] and v = (v1, . . . , vn) ∈ Fn, the
derivative of f(x) in the direction v is defined as:

∂f

∂v
=

n∑
i=1

vi · ∂f

∂xi
.

If F has positive characteristic then by ∂F
∂xi

we refer to the formal derivative (which in
the case of fields of characteristic zero is equal to the analytical definition). Observe that we
still have that

∂2f

∂y∂x
= ∂2f

∂x∂y
, ∂(fg)

∂x
= ∂f

∂x
· g + ∂g

∂x
· f

and

∂f (g1(x), . . . , gm(x))
∂xk

=
m∑

i=1

∂f

∂yi
(g1(x), . . . , gm(x)) · ∂gi

∂xk
,

where in the last expression f is an m variate polynomial, and g1, . . . , gm are n variate
polynomials.

We shall often take derivatives according to a dual set to a set of linearly independent
linear functions:

▶ Definition 59. A dual set for m linearly independent linear functions (recall that we
say that linear functions are linearly independent if and only if their degree-1 homogeneous
parts are linearly independent) in n ≥ m variables, ℓ1(x), . . . , ℓm(x) is a set of m vectors
{vi} ⊂ Fn such that ℓ

[1]
i (vj) = δi,j.

▶ Lemma 60. Let ℓ1, . . . , ℓm ∈ F[x1, . . . , xn], for n ≥ m, be linearly independent linear
functions. Let {vi} ⊂ Fn be a dual set. Let g ∈ F[y1, . . . , ym] be a polynomial. Then, for
f(x) = g (ℓ1(x), . . . , ℓm(x)) it holds that

∂f

∂vi
(x) = ∂g

∂yi
(ℓ1(x), . . . , ℓm(x)) .

Proof.

∂f

∂vi
(x) =

∑
j

vi,j · ∂f

∂xj
(x) =

∑
j,k

vi,j · ∂ℓk

∂xj
· ∂g

∂yk
(ℓ1(x), . . . , ℓm(x))

=
∑

k

ℓ
[1]
k (vi) · ∂g

∂yk
(ℓ1(x), . . . , ℓm(x)) = ∂g

∂yi
(ℓ1(x), . . . , ℓm(x)) . ◀

▶ Lemma 61. Let f ∈ F[x] where x = (x1, . . . , xn). Let H(w) : Ft → Fn be a polynomial map
in variables w, and let G(y, z) be a k-independent polynomial map such that var(H)∩var(G) =
∅. Then, for any v1, . . . , vk ∈ Fn:

∂kf

∂v1∂v2 · · · ∂vk
◦ H ̸= 0 ⇒ f ◦ (G + H) ̸= 0 .

CCC 2021

19:22 Hitting Sets and Reconstruction for Dense Orbits in VPe and ΣΠΣ Circuits

Proof. By definition of k-independent polynomial maps, G = G1(y1, z1) + . . . + Gk(yk, zk)
for some variable-disjoint 1-independent polynomial maps G1, . . . , Gk. It is therefore enough
to prove the lemma for k = 1, as we can replace f with ∂k−1f

∂v2···∂vk
, H with H + G2 + . . . + Gk

and G with G1; by iterative application of the result for k = 1, we will get the general result
for an arbitrary k ∈ N.

Denote H = (H1, H2, . . . , Hn). By Definition 58, the condition ∂f
∂v ◦ H ̸= 0 implies that

there exists some i ∈ [n] such that ∂f
∂xi

◦ H ̸= 0. Assume, WLOG, ∂f
∂x1

◦ H ̸= 0. As G is a
1-independent polynomial map, there exists some α ∈ F|y1| such that f ◦ (G + H)

∣∣
y1=α

=
f(z1 + H1, H2, . . . , Hn); denote g ≜ f ◦ (G + H)

∣∣
y1=α

. As no coordinate of H depends on
z1:

∂g

∂z1
= ∂ (z1 + H1)

∂z1
· ∂f

∂x1
(z1 + H1, H2, . . . , Hn) = 1 ·

(
∂f

∂x1

)
(z1 + H1, H2, . . . , Hn)

and therefore:
∂g

∂z1

∣∣∣∣
z1=0

= 1 ·
(

∂f

∂x1

)
(0 + H1, H2, . . . , Hn) =

(
∂f

∂x1

)
◦ H ̸= 0 .

As g is a projection of f ◦ (G + H), it follows that f ◦ (G + H) ̸= 0. ◀

The next lemma shows how to use k-independent maps in order to project a polynomial
to a subset of its coordinates.

▶ Lemma 62. Let m ≤ n ∈ N and g(w) ∈ F[w1, . . . , wm]. Let f(x) = g(ℓ1(x), . . . , ℓm(x))
for linearly independent linear functions ℓ1(x), . . . , ℓm(x). Let G(y, z) be a k-independent
polynomial map. For a set S ⊆ [n] of size k denote by g̃(xi : i ∈ [m] \ S) = g

∣∣
S=0 the

projection of g to the variables outside of S. Then, there exist linearly independent linear
functions {ℓ̃i(x) : i ∈ [m] \ S}, additional linear functions L(x) = (L1(x), . . . , Lk(x)) and
an assignment α ∈ F|y| such that:

f(x + G(α, L(x))) = g̃(ℓ̃i(x) : i ∈ [m] \ S) .

Proof. It is enough to prove the lemma for the case k = 1, as we may then define f̃(x) ≜
f(x + G(α, L1(x))) = g̃(ℓ̃1(x), . . . , ℓ̃m−1(x)) and apply the result iteratively. Thus, assume
k = 1, and WLOG assume S = {x1} (thus, g̃(w2, . . . , wm) = g(0, w2, . . . , wm)).

Let xi be some variable with a non-zero coefficient in ℓ1(x). Such a variable exists as the
ℓjs are linearly independent. For j ∈ [m], denote βj = ∂ℓj

∂xi
, i.e. βj is the coefficient of xi in

ℓj . By our choice of i, β1 ̸= 0. Choose some α ∈ F|y| such that G(α, z1) has z1 in the ith
coordinate, and 0 in all other coordinates. Define L(x) ≜ − ℓ1(x)

β1
, so we get:

f(x + G(α, L(x)) = f

(
x1, x2, . . . , xi−1, xi − ℓ1(x)

β1
, xi+1, . . . , xn

)
.

Observe that for every i,

ℓi (x + G(α, L(x)) = ℓi

(
x1, x2, . . . , xi−1, xi − ℓ1(x)

β1
, xi+1, . . . , xn

)
= ℓi(x) − βi

β1
· ℓ1(x) .

In particular, ℓ1 (x + G(α, L(x)) = 0. For i = 2, . . . , m, define:

ℓ̃i(x) ≜ ℓi(x) − βi

β1
· ℓ1(x) .

As ℓ1, . . . , ℓm are linearly independent, it follows that ℓ̃2, . . . , ℓ̃m are also linearly independent.
We get that

f(x + G(α, L(x))) = g(0, ℓ̃2(x), . . . , ℓ̃m(x)) = g̃(ℓ̃2(x), . . . , ℓ̃m(x)) . ◀

D. Medini and A. Shpilka 19:23

2.1 Proof of Theorem 48
We next prove that there are k-independent maps that are provably not robust. The proof
is by giving a different construction of such maps that, for an appropriate arrangement of
the n variables in a matrix, is guaranteed to output matrices of rank at most k. Thus, a
determinant of any (k + 1) × (k + 1) minor, a polynomial that has small formulas for small
values of k, vanishes on the output of any such map.

The fact that such a construction exists was already noticed in [27] (Construction 6.3 of
the full version of the paper). For completeness we repeat the construction here.

Proof. (of Theorem 48) Fix the number of variables n and assume WLOG n is a perfect
square, i.e., n = m2. We index the variables as xi,j for i, j ∈ [m]. We let f = Dett+1. By
[33], over fields of characteristic zero, f has a tO(

√
t) = O(n) sized ΣΠΣ formula, which

is polynomial in n for t = O
(

(log n/ log log n)2
)

. Over fields of positive characteristic
the formula size is quasipolynomial in t, and the ΣΠΣ complexity is at most t!, which is
polynomial in n for t = O (log n/ log log n).

Denote by M the (t + 1) × (t + 1) symbolic matrix of variables Mi,j = xi,j . We first
construct a uniform 1-independent polynomial map G1 such that M ◦ G1 is of rank 1, and
define G to be a sum of t variable-disjoint copies of G1. As rank(M ◦ G1) = 1, we have
rank(M ◦ G) ≤ t so Dett+1(M ◦ G) = 0, as required. We now focus on G1.

Fix n distinct field elements {αi,j}m
i,j=1 ⊆ F and let w, y, z be new variables. Define two

vectors of polynomials of degree n − 1, R = (R1, . . . , Rm), C = (C1, . . . , Cm) ∈ F[y]m, such
that for every k ∈ [m] Rk and Ck satisfy

Rk(αi,j) = δi,k and Ck(αi,j) = δj,k.

Define G1(w, y, z) as the m × m matrix z · (w2n−2R(y
w) · C(y

w)T) (the (i, j) entry of G1 is
z · w2n−2 · Ri(y

w) · Cj(y
w)). As every coordinate of G1 is a homogeneous polynomial of degree

2n − 1, G1 is a uniform polynomial map. For any i, j ∈ [m] we have that

G1(1, αi,j , z) = z · (Ri′(αi,j) · Cj′(αi,j))i′,j′∈[m] = z · (δi,i′δj,j′)i′,j′∈[m] .

The above matrix has z in entry (i, j) and 0 everywhere else, so G1 is a uniform 1-independent
polynomial map. The resulting matrix M ◦G1 is of rank 1 since it is a product of vectors R·CT ,
so the variable-disjoint sum G =

∑t
1 G1(wi, yi, zi) is a uniform t-independent polynomial map

satisfying f ◦ G = 0. ◀

References
1 Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Ann. of Math, 2:781–793,

2002.
2 Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. Jacobian hits

circuits: Hitting sets, lower bounds for depth-d occur-k formulas and depth-3 transcendence
degree-k circuits. SIAM J. Comput., 45(4):1533–1562, 2016. doi:10.1137/130910725.

3 A. Alder. Grenzrang und Grenzkomplexität aus algebraischer und topologischer Sicht. PhD
thesis, Universität Zürich, Philosophische Fakultät II, 1984.

4 Eric Allender and Fengming Wang. On the power of algebraic branching programs of width
two. Computational Complexity, 25(1):217–253, 2016. doi:10.1007/s00037-015-0114-7.

5 Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, and Ben Lee
Volk. Identity testing and lower bounds for read-k oblivious algebraic branching programs.
ACM Trans. Comput. Theory, 10(1):3:1–3:30, 2018. doi:10.1145/3170709.

CCC 2021

https://doi.org/10.1137/130910725
https://doi.org/10.1007/s00037-015-0114-7
https://doi.org/10.1145/3170709

19:24 Hitting Sets and Reconstruction for Dense Orbits in VPe and ΣΠΣ Circuits

6 Matthew Anderson, Dieter van Melkebeek, and Ilya Volkovich. Deterministic polynomial
identity tests for multilinear bounded-read formulae. Computational Complexity, 24(4):695–776,
2015. doi:10.1007/s00037-015-0097-4.

7 Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz, and Stefano Var-
ricchio. Learning functions represented as multiplicity automata. J. ACM, 47(3):506–530,
2000. doi:10.1145/337244.337257.

8 Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant number
of registers. SIAM J. Comput., 21(1):54–58, 1992. doi:10.1137/0221006.

9 Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate
polynominal interpolation (extended abstract). In Janos Simon, editor, Proceedings of the
20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA, pages 301–309. ACM, 1988. doi:10.1145/62212.62241.

10 Vishwas Bhargava and Sumanta Ghosh. Improved hitting set for orbit of roabps. Electron.
Colloquium Comput. Complex., 28:62, 2021. URL: https://eccc.weizmann.ac.il/report/
2021/062/.

11 Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction of depth-4 multilinear
circuits. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2144–2160.
SIAM, 2020. doi:10.1137/1.9781611975994.132.

12 Dario Bini, Milvio Capovani, Francesco Romani, and Grazia Lotti. O(n2.7799) complexity for
n × n approximate matrix multiplication. Information Processing Letters, 8(5):234–235, 1979.
doi:10.1016/0020-0190(79)90113-3.

13 Markus Bläser and Christian Ikenmeyer. Introduction to geometric complexity theory. https:
//pcwww.liv.ac.uk/~iken/teaching_sb/summer17/introtogct/gct.pdf, 2019.

14 Karl Bringmann, Christian Ikenmeyer, and Jeroen Zuiddam. On algebraic branching programs
of small width. J. ACM, 65(5):32:1–32:29, 2018. doi:10.1145/3209663.

15 Daoud Bshouty and Nader H. Bshouty. On interpolating arithmetic read-once formulas with
exponentiation. J. Comput. Syst. Sci., 56(1):112–124, 1998. doi:10.1006/jcss.1997.1550.

16 Nader H. Bshouty, Thomas R. Hancock, and Lisa Hellerstein. Learning arithmetic read-once
formulas. SIAM J. Comput., 24(4):706–735, 1995. doi:10.1137/S009753979223664X.

17 Peter Bürgisser. The complexity of factors of multivariate polynomials. Found. Comput. Math.,
4(4):369–396, 2004. doi:10.1007/s10208-002-0059-5.

18 Peter Bürgisser, Michael Clausen, and Mohammad A Shokrollahi. Algebraic complexity theory,
volume 315. Springer Science & Business Media, 2013.

19 Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Hardness vs randomness for bounded
depth arithmetic circuits. In Rocco A. Servedio, editor, 33rd Computational Complexity
Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume 102 of LIPIcs, pages
13:1–13:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.
CCC.2018.13.

20 Rafael Mendes de Oliveira, Amir Shpilka, and Ben lee Volk. Subexponential size hitting sets
for bounded depth multilinear formulas. Computational Complexity, 25(2):455–505, 2016.
doi:10.1007/s00037-016-0131-1.

21 Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and polynomial identity
testing for depth 3 circuits. SIAM Journal on Computing, 36(5):1404–1434, 2007.

22 Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-Randomness Tradeoffs for
Bounded Depth Arithmetic Circuits. SIAM J. Comput., 39(4):1279–1293, 2009. doi:
10.1137/080735850.

23 Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. A deterministic parallel algorithm
for bipartite perfect matching. Commun. ACM, 62(3):109–115, 2019. doi:10.1145/3306208.

24 Michael A. Forbes. Some concrete questions on the border complexity of polynomials. https:
//www.youtube.com/watch?v=1HMogQIHT6Q, 2016.

https://doi.org/10.1007/s00037-015-0097-4
https://doi.org/10.1145/337244.337257
https://doi.org/10.1137/0221006
https://doi.org/10.1145/62212.62241
https://eccc.weizmann.ac.il/report/2021/062/
https://eccc.weizmann.ac.il/report/2021/062/
https://doi.org/10.1137/1.9781611975994.132
https://doi.org/10.1016/0020-0190(79)90113-3
https://pcwww.liv.ac.uk/~iken/teaching_sb/summer17/introtogct/gct.pdf
https://pcwww.liv.ac.uk/~iken/teaching_sb/summer17/introtogct/gct.pdf
https://doi.org/10.1145/3209663
https://doi.org/10.1006/jcss.1997.1550
https://doi.org/10.1137/S009753979223664X
https://doi.org/10.1007/s10208-002-0059-5
https://doi.org/10.4230/LIPIcs.CCC.2018.13
https://doi.org/10.4230/LIPIcs.CCC.2018.13
https://doi.org/10.1007/s00037-016-0131-1
https://doi.org/10.1137/080735850
https://doi.org/10.1137/080735850
https://doi.org/10.1145/3306208
https://www.youtube.com/watch?v= 1HMogQIHT6Q
https://www.youtube.com/watch?v= 1HMogQIHT6Q

D. Medini and A. Shpilka 19:25

25 Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for multilinear
read-once algebraic branching programs, in any order. In David B. Shmoys, editor, Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
867–875. ACM, 2014. doi:10.1145/2591796.2591816.

26 Michael A. Forbes and Amir Shpilka. A PSPACE construction of a hitting set for the closure
of small algebraic circuits. In Ilias Diakonikolas, David Kempe, and Monika Henzinger,
editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 1180–1192. ACM, 2018. doi:
10.1145/3188745.3188792.

27 Michael A. Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson. Proof complexity
lower bounds from algebraic circuit complexity. In Ran Raz, editor, 31st Conference on
Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, volume 50
of LIPIcs, pages 32:1–32:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. Full
version at http://arxiv.org/abs/1606.05050. doi:10.4230/LIPIcs.CCC.2016.32.

28 Michael A. Forbes, Amir Shpilka, and Ben Lee Volk. Succinct hitting sets and barriers
to proving lower bounds for algebraic circuits. Theory of Computing, 14(1):1–45, 2018.
doi:10.4086/toc.2018.v014a018.

29 Joshua A. Grochow. Unifying known lower bounds via geometric complexity theory. Compu-
tational Complexity, 24(2):393–475, 2015. doi:10.1007/s00037-015-0103-x.

30 Joshua A. Grochow, Mrinal Kumar, Michael E. Saks, and Shubhangi Saraf. Towards an
algebraic natural proofs barrier via polynomial identity testing. CoRR, abs/1701.01717, 2017.
arXiv:1701.01717.

31 Zeyu Guo and Rohit Gurjar. Improved explicit hitting-sets for roabps. In Jaroslaw Byrka
and Raghu Meka, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Confer-
ence, volume 176 of LIPIcs, pages 4:1–4:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.4.

32 Zeyu Guo, Mrinal Kumar, Ramprasad Saptharishi, and Noam Solomon. Derandomization
from algebraic hardness: Treading the borders. In David Zuckerman, editor, 60th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland,
USA, November 9-12, 2019, pages 147–157. IEEE Computer Society, 2019. doi:10.1109/FOCS.
2019.00018.

33 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic circuits:
A chasm at depth 3. SIAM J. Comput., 45(3):1064–1079, 2016. doi:10.1137/140957123.

34 Ankit Gupta, Neeraj Kayal, and Satya Lokam. Reconstruction of depth-4 multilinear circuits
with top fan-in 2. In Proceedings of the forty-fourth annual ACM symposium on Theory of
computing, pages 625–642, 2012.

35 Ankit Gupta, Neeraj Kayal, and Youming Qiao. Random arithmetic formulas can be
reconstructed efficiently. Computational Complexity, 23(2):207–303, 2014. doi:10.1007/
s00037-014-0085-0.

36 Johan Håstad. Tensor rank is NP-complete. J. Algorithms, 11(4):644–654, 1990. doi:
10.1016/0196-6774(90)90014-6.

37 Joos Heintz and Claus-Peter Schnorr. Testing polynomials which are easy to compute
(extended abstract). In Raymond E. Miller, Seymour Ginsburg, Walter A. Burkhard, and
Richard J. Lipton, editors, Proceedings of the 12th Annual ACM Symposium on Theory of
Computing, April 28-30, 1980, Los Angeles, California, USA, pages 262–272. ACM, 1980.
doi:10.1145/800141.804674.

38 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. doi:10.1007/
s00037-004-0182-6.

39 Kyriakos Kalorkoti. A lower bound for the formula size of rational functions. SIAM J. Comput.,
14(3):678–687, 1985. doi:10.1137/0214050.

CCC 2021

https://doi.org/10.1145/2591796.2591816
https://doi.org/10.1145/3188745.3188792
https://doi.org/10.1145/3188745.3188792
http://arxiv.org/abs/1606.05050
https://doi.org/10.4230/LIPIcs.CCC.2016.32
https://doi.org/10.4086/toc.2018.v014a018
https://doi.org/10.1007/s00037-015-0103-x
http://arxiv.org/abs/1701.01717
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.4
https://doi.org/10.1109/FOCS.2019.00018
https://doi.org/10.1109/FOCS.2019.00018
https://doi.org/10.1137/140957123
https://doi.org/10.1007/s00037-014-0085-0
https://doi.org/10.1007/s00037-014-0085-0
https://doi.org/10.1016/0196-6774(90)90014-6
https://doi.org/10.1016/0196-6774(90)90014-6
https://doi.org/10.1145/800141.804674
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1137/0214050

19:26 Hitting Sets and Reconstruction for Dense Orbits in VPe and ΣΠΣ Circuits

40 Zohar S Karnin and Amir Shpilka. Black box polynomial identity testing of generalized
depth-3 arithmetic circuits with bounded top fan-in. In 2008 23rd Annual IEEE Conference
on Computational Complexity, pages 280–291. IEEE, 2008.

41 Zohar Shay Karnin and Amir Shpilka. Reconstruction of generalized depth-3 arithmetic
circuits with bounded top fan-in. In Proceedings of the 24th Annual IEEE Conference on
Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 274–285. IEEE
Computer Society, 2009. doi:10.1109/CCC.2009.18.

42 Neeraj Kayal. Affine projections of polynomials. In Proceedings of the forty-fourth annual
ACM symposium on Theory of computing, pages 643–662, 2012.

43 Neeraj Kayal, Vineet Nair, and Chandan Saha. Average-case linear matrix factorization
and reconstruction of low width algebraic branching programs. Computational Complexity,
28(4):749–828, 2019. doi:10.1007/s00037-019-00189-0.

44 Neeraj Kayal, Vineet Nair, Chandan Saha, and Sébastien Tavenas. Reconstruction of full
rank algebraic branching programs. ACM Transactions on Computation Theory (TOCT),
11(1):1–56, 2018.

45 Neeraj Kayal and Chandan Saha. Reconstruction of non-degenerate homogeneous depth three
circuits. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pages 413–424. ACM, 2019. Full version at https://eccc.weizmann.ac.il/report/
2018/191. doi:10.1145/3313276.3316360.

46 Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. An almost cubic lower bound for
depth three arithmetic circuits. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages
33:1–33:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
ICALP.2016.33.

47 Adam R. Klivans and Amir Shpilka. Learning restricted models of arithmetic circuits. Theory
of Computing, 2(10):185–206, 2006. doi:10.4086/toc.2006.v002a010.

48 Adam R Klivans and Daniel Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 216–223, 2001.

49 Mrinal Kumar. On the power of border of depth-3 arithmetic circuits. ACM Trans. Comput.
Theory, 12(1):5:1–5:8, 2020. doi:10.1145/3371506.

50 Mrinal Kumar and Ramprasad Saptharishi. Hardness-Randomness tradeoffs for algebraic
computation. Bull. EATCS, 129, 2019. URL: http://bulletin.eatcs.org/index.php/
beatcs/article/view/591/599.

51 Joseph M. Landsberg. Geometry and Complexity Theory. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2017. doi:10.1017/9781108183192.

52 Thomas Lehmkuhl and Thomas Lickteig. On the order of approximation in approximative
triadic decompositions of tensors. Theor. Comput. Sci., 66(1):1–14, 1989. doi:10.1016/
0304-3975(89)90141-2.

53 Dori Medini and Amir Shpilka. Hitting sets and reconstruction for dense orbits in vp$_e$
and $\sigma\pi\sigma$ circuits. Electron. Colloquium Comput. Complex., 28:14, 2021. URL:
https://eccc.weizmann.ac.il/report/2021/014.

54 Daniel Minahan and Ilya Volkovich. Complete derandomization of identity testing and
reconstruction of read-once formulas. ACM Transactions on Computation Theory (TOCT),
10(3):1–11, 2018.

55 Ketan Mulmuley and Milind A. Sohoni. Geometric complexity theory I: an approach to
the P vs. NP and related problems. SIAM J. Comput., 31(2):496–526, 2001. doi:10.1137/
S009753970038715X.

https://doi.org/10.1109/CCC.2009.18
https://doi.org/10.1007/s00037-019-00189-0
https://eccc.weizmann.ac.il/report/2018/191
https://eccc.weizmann.ac.il/report/2018/191
https://doi.org/10.1145/3313276.3316360
https://doi.org/10.4230/LIPIcs.ICALP.2016.33
https://doi.org/10.4230/LIPIcs.ICALP.2016.33
https://doi.org/10.4086/toc.2006.v002a010
https://doi.org/10.1145/3371506
http://bulletin.eatcs.org/index.php/beatcs/article/view/591/599
http://bulletin.eatcs.org/index.php/beatcs/article/view/591/599
https://doi.org/10.1017/9781108183192
https://doi.org/10.1016/0304-3975(89)90141-2
https://doi.org/10.1016/0304-3975(89)90141-2
https://eccc.weizmann.ac.il/report/2021/014
https://doi.org/10.1137/S009753970038715X
https://doi.org/10.1137/S009753970038715X

D. Medini and A. Shpilka 19:27

56 Ketan Mulmuley and Milind A. Sohoni. Geometric complexity theory II: towards explicit
obstructions for embeddings among class varieties. SIAM J. Comput., 38(3):1175–1206, 2008.
doi:10.1137/080718115.

57 Ran Raz. Elusive functions and lower bounds for arithmetic circuits. Theory of Computing,
6(1):135–177, 2010. doi:10.4086/toc.2010.v006a007.

58 Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative
models. Computational Complexity, 14(1):1–19, 2005. doi:10.1007/s00037-005-0188-8.

59 Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. The power of depth 2 circuits
over algebras. In Ravi Kannan and K. Narayan Kumar, editors, IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2009,
December 15-17, 2009, IIT Kanpur, India, volume 4 of LIPIcs, pages 371–382. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2009. doi:10.4230/LIPIcs.FSTTCS.2009.2333.

60 Chandan Saha and Bhargav Thankey. Hitting sets for orbits of circuit classes and polynomial
families. Electron. Colloquium Comput. Complex., 28:15, 2021. URL: https://eccc.weizmann.
ac.il/report/2021/015.

61 Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Github
survey, 2015. Available at https://github.com/dasarpmar/lowerbounds-survey.

62 Nitin Saxena. Progress on polynomial identity testing. Bull. EATCS, 99:49–79, 2009.
63 Nitin Saxena. Progress on Polynomial Identity Testing-II, volume 26 of Progress in Computer

Science and Applied Logic, pages 131–146. Birkhäuser Basel, 2014. arXiv:1401.0976.
64 Nitin Saxena and C. Seshadhri. Blackbox Identity Testing for Bounded Top-Fanin Depth-

3 Circuits: The Field Doesn’t Matter. SIAM J. Comput., 41(5):1285–1298, 2012. doi:
10.1137/10848232.

65 Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication gates. SIAM
Journal on Computing, 38(6):2130–2161, 2009.

66 Amir Shpilka and Ilya Volkovich. Read-once polynomial identity testing. Computational
Complexity, 24(3):477–532, 2015.

67 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Found. Trends Theor. Comput. Sci., 5(3-4):207–388, 2010. doi:10.1561/
0400000039.

68 Gaurav Sinha. Reconstruction of real depth-3 circuits with top fan-in 2. In Ran Raz, editor, 31st
Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan,
volume 50 of LIPIcs, pages 31:1–31:53. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.CCC.2016.31.

69 Ola Svensson and Jakub Tarnawski. The matching problem in general graphs is in quasi-nc.
In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 696–707. IEEE Computer Society,
2017. doi:10.1109/FOCS.2017.70.

70 Joseph Swernofsky. Tensor rank is hard to approximate. In Eric Blais, Klaus Jansen, José
D. P. Rolim, and David Steurer, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2018, August 20-22, 2018
- Princeton, NJ, USA, volume 116 of LIPIcs, pages 26:1–26:9. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.26.

71 Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast parallel computation
of polynomials using few processors. SIAM J. Comput., 12(4):641–644, 1983. doi:10.1137/
0212043.

CCC 2021

https://doi.org/10.1137/080718115
https://doi.org/10.4086/toc.2010.v006a007
https://doi.org/10.1007/s00037-005-0188-8
https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2333
https://eccc.weizmann.ac.il/report/2021/015
https://eccc.weizmann.ac.il/report/2021/015
https://github.com/dasarpmar/lowerbounds-survey
http://arxiv.org/abs/1401.0976
https://doi.org/10.1137/10848232
https://doi.org/10.1137/10848232
https://doi.org/10.1561/0400000039
https://doi.org/10.1561/0400000039
https://doi.org/10.4230/LIPIcs.CCC.2016.31
https://doi.org/10.1109/FOCS.2017.70
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.26
https://doi.org/10.1137/0212043
https://doi.org/10.1137/0212043

Variety Evasive Subspace Families
Zeyu Guo #

Department of Computer Science, University of Haifa, Israel

Abstract
We introduce the problem of constructing explicit variety evasive subspace families. Given a family
F of subvarieties of a projective or affine space, a collection H of projective or affine k-subspaces
is (F , ϵ)-evasive if for every V ∈ F , all but at most ϵ-fraction of W ∈ H intersect every irreducible
component of V with (at most) the expected dimension. The problem of constructing such an
explicit subspace family generalizes both deterministic black-box polynomial identity testing (PIT)
and the problem of constructing explicit (weak) lossless rank condensers.

Using Chow forms, we construct explicit k-subspace families of polynomial size that are evasive
for all varieties of bounded degree in a projective or affine n-space. As one application, we obtain a
complete derandomization of Noether’s normalization lemma for varieties of bounded degree in a
projective or affine n-space. In another application, we obtain a simple polynomial-time black-box
PIT algorithm for depth-4 arithmetic circuits with bounded top fan-in and bottom fan-in that are
not in the Sylvester–Gallai configuration, improving and simplifying a result of Gupta (ECCC TR
14-130).

As a complement of our explicit construction, we prove a lower bound for the size of k-subspace
families that are evasive for degree-d varieties in a projective n-space. When n − k = nΩ(1), the
lower bound is superpolynomial unless d is bounded. The proof uses a dimension-counting argument
on Chow varieties that parametrize projective subvarieties.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Theory
of computation → Pseudorandomness and derandomization

Keywords and phrases algebraic complexity, dimension reduction, Noether normalization, polynomial
identity testing, pseudorandomness, varieties

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.20

Related Version Full Version: https://arxiv.org/abs/2105.02908

Acknowledgements We thank Nitin Saxena, Noga Ron-Zewi, Amit Sinhababu, and Suryajith
Chillara for helpful discussions. We also thank the anonymous reviewers of CCC’21 for their careful
reading of our manuscript and their insightful suggestions that helped improve this paper.

1 Introduction

Polynomial identity testing (PIT) is a fundamental problem in the areas of derandomization
and algebraic complexity theory. The problem asks whether a multivariate polynomial,
computed by an arithmetic circuit, formula, or other algebraic computational models, is
identically zero. For example, the polynomial (X + Y)(X − Y) −X2 − Y 2 is identically zero
while (X + Y)2 −X2 is not.

It is easy to solve PIT in randomized polynomial time, as we may simply evaluate the
input polynomial at a random point and check if the evaluation is zero. On the other hand,
finding a deterministic polynomial-time PIT algorithm for general arithmetic circuits is a
long-standing open problem. Such algorithms are known for some special cases, and we refer
the readers to the surveys [67, 68, 73] for details.

Black-box PIT algorithms are a special kind of PIT algorithm. A (deterministic) black-box
PIT algorithm tests if a polynomial in a family F is zero by constructing a hitting set for F ,
which is a finite collection H of evaluation points with the following property: for any nonzero
Q ∈ F , there exists p ∈ H such that the evaluation of Q at p is nonzero. After constructing

© Zeyu Guo;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 20; pp. 20:1–20:33

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zguotcs@gmail.com
https://orcid.org/0000-0001-7893-4346
https://doi.org/10.4230/LIPIcs.CCC.2021.20
https://arxiv.org/abs/2105.02908
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Variety Evasive Subspace Families

such a hitting set H, the algorithm simply checks if the evaluation of the given polynomial at
every point in H is zero. The problem of designing a deterministic black-box PIT algorithm
is thus equivalent to constructing a hitting set. To make the algorithm efficient, such a
hitting set should be small and efficiently computable.

From a geometric perspective, an n-variate nonzero polynomial Q over an algebraically-
closed field F defines a hypersurface V(Q) := {α ∈ Fn : Q(α) = 0} of Fn. A hitting set H
for F has the property that for every nonzero Q ∈ F , there exists a point p ∈ H that is
disjoint from the hypersurface V(Q), or we say p evades V(Q). It is natural to consider
the generalization of this property to higher dimensions/codimensions. Namely, we want to
construct a finite collection H of affine k-subspaces (i.e. affine subspaces of dimension k)
such that for every variety V ⊆ Fn (i.e., solution set of a set of polynomial equations) from
a certain family, some (or most) W ∈ H evade V, in the sense that the dimension of the
intersection V ∩W is bounded by the expected dimension achieved by W in general position.
A similar property can be defined for projective k-spaces, to be defined below. We call such a
collection H of projective or affine k-subspaces a variety evasive subspace family. The formal
definition is given below.

1.1 Variety Evasive Subspace Families
Let F be an algebraically closed field. An affine n-space An, as a set, is simply defined to be
the vector space Fn. We also need the notion of a projective n-space, denoted by Pn, which is
(intuitively) the set of lines passing through the origin 0 of An+1. Formally, it is defined to
be the quotient set (An+1 \ {0})/ ∼, where ∼ is the equivalence relation defined by scaling,
i.e., u ∼ v if u = cv for some nonzero scalar c ∈ F.

An (affine) subvariety V ⊆ An is the set of common zeros of a set of n-variate polynomials
over F. Similarly, a (projective) subvariety V ⊆ Pn is the set of common zeros of a set of
homogeneous (n+ 1)-variate polynomials over F, where we represent each element of Pn as
an (n+ 1)-tuple in An+1. In this paper, a variety refers to a subvariety of a projective or
affine space, and is said to be irreducible if it cannot be written as a union of finitely many
proper subvarieties.1

The dimension of a variety V , denoted by dim(V), is intuitively the “degree of freedom”
of picking a point in the variety. See Subsection 2.3 for its formal definition. For a linear
subspace V ⊆ An, the linear-algebraic dimension of V is the same as its dimension as a
variety.

For two irreducible subvarieties V1 and V2 of Pn or An in general position, we expect
the dimension of V1 ∩ V2 to be dim(V1) + dim(V2) − n (unless dim(V1) + dim(V2) < n, in
which case we expect V1 ∩ V2 = ∅). The following definition captures the condition that
dim(V1 ∩ V2) is bounded by the expected dimension.

▶ Definition 1 (Evading). Let V1 and V2 be irreducible subvarieties of Pn or An. We say V1
evades V2 if

dim(V1 ∩ V2) ≤ dim(V1) + dim(V2) − n,

where the dimension of an empty set is assumed to be −∞. In particular, if dim(V1) +
dim(V2) < n, then V1 evades V2 iff V1 ∩ V2 = ∅.

More generally, suppose V1 is irreducible but V2 is possibly reducible. We say V1 evades
V2 if it evades every irreducible component of V2.

1 Varieties in this paper are not necessarily irreducible and are often called algebraic sets in literature.

Z. Guo 20:3

Next, we define subspace families and variety evasive subspace families.

▶ Definition 2 (Subspace family). For 0 ≤ k ≤ n, a finite collection2 of k-subspaces of
Pn is called a (projective) k-subspace family on Pn. Similarly, a finite collection of affine
k-subspaces of An is called an affine k-subspace family on An.

▶ Definition 3 (Variety evasive subspace family). Let F be a family of subvarieties of Pn

(resp. An). Let H be a k-subspace family on Pn (resp. affine k-subspace family on An) where
0 ≤ k ≤ n. Then:

We say H is F -evasive if for every V ∈ F , there exists W ∈ H that evades V.
We say H is (F , ϵ)-evasive if for every V ∈ F , a random element W ∈ H evades V with
probability at least 1 − ϵ.

Connection with hitting sets. Definition 3 naturally generalizes the notions of hitting sets
in the context of PIT. For example, a collection of points in Pn is a hitting set for a family
F of homogeneous polynomials in F[X1, . . . , Xn+1] iff it is an F ′-evasive 0-subspace family,
where F ′ = {V(P) : P ∈ F} is the family of hypersurfaces defined by the polynomials in
F . In other words, hitting sets may be viewed as 0-subspace families that are evasive for
varieties of codimension one.

Connection with lossless rank condensers. Other than the case of codimension one, we
may also consider the special case of degree one, and this leads to another important family of
pseudorandom objects, called (weak) lossless rank condensers [33, 29, 28, 27]. These objects
were used by Gabizon and Raz [33] to construct affine extractors. They also play a crucial
role in polynomial identity testing [51, 69, 29, 28].

A lossless rank condenser is defined as follows: Let r ≤ t ≤ n be positive integers. A
finite collection H of matrices E ∈ Ft×n is called an (r, L)-lossless rank condenser if for every
matrix M ∈ Fn×r of rank r, the number of E ∈ H satisfying rank(EM) < r is at most L.

The connection between lossless rank condensers and variety evasive subspace families
can be seen as follows: Let us assume every matrix E ∈ H has full rank t. Such a matrix E
corresponds a linear t-subspace W of Fn. On the other hand, a matrix M ⊆ Fn×r of rank r
corresponds to a linear (n− r)-subspaces of Fn via M 7→ ker(M), where ker(M) = {u ∈ Fn :
uM = 0} denotes the left kernel of M . It is easy to see that the condition rank(EM) = r is
equivalent to dim(W ∩ ker(M)) = t − r. Passing from Fn to Pn−1 by taking the quotient
modulo scalars, this condition is also equivalent to the condition that the two projective
subspaces PW and P(ker(M)) evade each other.

Every projective (n−r−1)-subspace of Pn−1 can be realized as P(ker(M)) for some rank-r
matrix M . Therefore, H is an (r, L)-lossless rank condenser iff it is an (F , ϵ)-evasive (t− 1)-
subspace family on Pn−1, where ϵ = L/|H| and F is the family of all (n− r − 1)-subspaces
of Pn−1.

Rank condensers are central objects in the theory of “linear-algebraic pseudorandomness”
coined by Guruswami and Forbes [27]. Our study of variety evasive subspace families may
be seen as one step of extending the theory to a nonlinear setting.

Explicit lossless rank condensers were used to construct explicit (deterministic) affine
extractors [33] and more generally, extractors for varieties [18]. Similar ideas were used to
construct explicit deterministic extractors (and rank extractors) for polynomial sources [19],

2 In this paper, a collection is a multiset, i.e., its elements are allowed to appear more than once.

CCC 2021

20:4 Variety Evasive Subspace Families

which also generalize affine extractors. It is an interesting question to us whether explicit
variety-evasive subspace families and the related derandomized Noether’s normalization
lemma (see below) can be similarly useful in this area.

1.2 Our Results

We have seen that variety evasive subspace families generalize some important and well-
studied pseudorandom objects. This leads to the following natural question: For which
interesting families F of subvarieties can we construct explicit F-evasive or (F , ϵ)-evasive
subspace families?

In this paper, we focus on the families of subvarieties of bounded degree. First, we recall
the definition of the degree of a variety.

▶ Definition 4 (degree). The degree of an irreducible variety V in Pn (resp. An) is the
number of intersections of V with a general projective (resp. affine) subspace of codimension
dim(V). Following [46], we define the degree of a (possibly reducible) variety to be the sum
of the degrees of its irreducible components.

For convenience, we introduce the following definition.

▶ Definition 5. We say a projective (resp. affine) k-subspace family H on Pn (resp. An) is
(n, d)-evasive if it is F-evasive, where F is chosen to be the family of all subvarieties of Pn

(resp. An) of degree at most d. Similarly, we say H is (n, d, ϵ)-evasive if it is (F , ϵ)-evasive.

▶ Remark. In Definition 5, we do not make any assumption about the dimension of the
varieties in F or their irreducible components. We will see in Subsection 3.1 that in fact, it
suffices to consider the subfamily of equidimensional varieties or even irreducible varieties of
dimension n− k − 1 when constructing variety evasive k-subspace families.

For n, d ∈ N+ and k ∈ {0, 1, . . . , n}, define N(k, d, n) by

N(k, d, n) := min
{(

(k + 1)(n+ 1 + d)
(k + 1)d

)
,

(
(n− k)(n+ 1 + d)

(n− k)d

)
,

(
(d− 1)(n+ 1 + d)

(d− 1)d

)}
.

Our main theorem then states as follows.

▶ Theorem 6 (Main Theorem). For n, d ∈ N+, k ∈ {0, 1, . . . , n}, and ϵ ∈ (0, 1), there exists
an (n, d, ϵ)-evasive k-subspace family (resp. affine k-subspace family) H on Pn (resp. An) of
size poly(N(k, d, n), n, 1/ϵ), which is poly(nmin{k+1,n−k,d}d, 1/ϵ) when d = o(n). Moreover,
the total time complexity of computing the linear equations defining the projective or affine
subspaces in H is polynomial in |H| (and log p, if the characteristic of the base field F is
p > 0). In particular, H can be constructed in polynomial time when d is bounded.

▶ Remark (Boundedness of coefficients). For simplicity, the base field F in this paper is
assumed to be an algebraically closed field. Nevertheless, we choose the coefficients of the
linear equations defining the subspaces in H so that they live in either Q (if char(F) = 0) or
a finite extension of Fp (if char(F) = p > 0). Moreover, when char(F) = 0, the bit-length of
the numerators and denominators of these coefficients are bounded by |H|O(1). And when
char(F) = p > 0, the finite field that contains these coefficients has size max{|H|O(1), p}. This
can be readily checked from our construction. Similar properties hold for all constructions
presented in this paper.

Z. Guo 20:5

Lower bound. As a complement of the above result, we establish the following lower bound
for projective k-subspace families. It implies that when n − k = nΩ(1), the assumption
of d being bounded is necessary for a projective (n, d)-evasive k-subspace family to have
polynomial size.

▶ Theorem 7. Let n, d ∈ N+ and k ∈ {0, 1, . . . , n−1}. Let F be the family of equidimensional
projective subvarieties of Pn of dimension n− k − 1 and degree at most d. Suppose H is an
F-evasive k-subspace family on Pn. Then

|H| ≥

(n− k)(k + 1) + 1 if d = 1,
max

{
d(n− k)(k + 1) + 1,

(
d+n−k

d

)
+ (n− k + 1)k

}
if d > 1.

In particular, |H| is superpolynomial in n when n− k = Ω(n) and d = ω(1).

When d = 1, the lower bound |H| ≥ (n−k)(k+ 1) + 1 in Theorem 7 is achieved by known
explicit lossless rank condensers [29, 28, 26] (see Subsection 2.2). For general d, the lower
bound in Theorem 7 is also tight and matched by non-explicit constructions. See Section 4
for a discussion.

Next, we list two applications of our Main Theorem (Theorem 6): derandomizing Noether’s
normalization lemma for varieties of bounded degree, and polynomial identity testing for a
special family of depth-4 arithmetic circuits.

1.2.1 Derandomizing Noether’s Normalization Lemma
Noether’s normalization lemma, introduced by Noether [64], is an important result in
commutative algebra and algebraic geometry with many applications. For example, it is used
in the development of dimension theory and can be used to prove Grothendieck’s generic
freeness lemma [23]. It also has applications in computational algebraic geometry, e.g.,
computing the dimension of a projective variety [36, 35].

The usual geometric formulation of Noether’s normalization lemma states that for any
affine variety V ⊆ An of dimension r, there exists a surjective finite morphism π : V → Ar.
(See Subsection 2.3 for the definition of finite morphisms.) Moreover, π may be chosen to
be the restriction of a linear map An → Ar.3 There is also a related projective or graded
version of the lemma, which states that for any projective variety V of dimension r, there
exists a surjective finite morphism π : V → Pr. A special form of this lemma goes back to
Hilbert [48].

In these versions of Noether’s normalization lemma, it can be shown that with high
probability, a random linear map yields a valid finite morphism π, where “random” means
the coefficients of the linear map are chosen randomly from a sufficiently large finite set
S ⊆ F. It is thus a natural question to derandomize the lemma.

Mulmuley [62] studied a form of Noether’s normalization lemma and proved that de-
randomizing it is equivalent to a strengthened form of the black-box derandomization of
PIT. There, the ambient projective space has exponential dimension and the problem is

3 For simplicity, we assume the base field is algebraically closed and hence infinite. But the lemma and
our derandomization are valid as long as the field is large enough, depending on the variety V. Nagata
[63] proved a version of the normalization lemma that is deterministic and does not require the base
field to be sufficiently large, but the morphism he used is highly nonlinear. Due to the inductive nature
of Nagata’s argument, it only yields a multiply exponential degree bound for the polynomials that
define the morphism. Bruce and Erman [9] proved an effective Noether normalization result over finite
fields, which states that with high probability, a random tuple of degree-d polynomials over a finite field
induces a valid finite morphism for large enough d satisfying a certain effective bound. We leave it as
an open problem to derandomize their version of the normalization lemma.

CCC 2021

20:6 Variety Evasive Subspace Families

constructing a finite morphism π : V → Pk with a succinct specification in deterministic
polynomial time, where k = poly(dim(V)) and V is an explicit variety [62]. This problem was
later shown to be in PSPACE [31, 38]. The special case for the ring of matrix invariants under
simultaneous conjugation was solved in quasipolynomial time by Forbes and Shpilka [30].

We consider Noether’s normalization lemma in its original context and completely
derandomize it for projective/affine varieties of bounded degree. The following two theorems
summarize our results.

▶ Theorem 8. Let n, d ∈ N+, r ∈ {0, 1, . . . , n}, and ϵ ∈ (0, 1). There exists an explicit
collection L of linear maps An+1 → Ar+1 of size poly(N(k, d, n), n, 1/ϵ) such that for every
subvariety V ⊆ Pn of dimension r and degree at most d, all but at most ϵ-fraction of π ∈ L
induce a surjective finite morphism from V to Pr. Moreover, L can be computed in time
polynomial in |L| (and log p, if char(F) = p > 0).

▶ Theorem 9. Let n, d ∈ N+ and r ∈ {0, 1, . . . , n}, and ϵ ∈ (0, 1). There exists an explicit
collection L of linear maps An → Ar of size poly(N(k, d, n), n, 1/ϵ) such that for every
subvariety V ⊆ An of dimension r and degree at most d, all but at most ϵ-fraction of π ∈ L
restrict to a surjective finite morphism from V to Ar. Moreover, L can be computed in time
polynomial in |L| (and log p, if char(F) = p > 0).

Theorem 8 is proved by derandomizing a standard proof of Noether’s normalization
lemma that has a geometric flavor [71]. Namely, we consider a projection π : Pn \W → Pr

sending x to (ℓ1(x), · · · , ℓr+1(x)), where ℓ1, . . . , ℓr are linear forms and W is the (n− r− 1)-
subspace where these linear forms simultaneously vanish. It is known that π restricts to
a finite morphism V → Pr iff W ∩ V = ∅. So the problem reduces to choosing a family of
(n− r − 1)-subspaces of Pn such that most of them are disjoint from V . This is exactly the
property satisfied by our explicit variety evasive subspace families.

Theorem 9 is proved similarly. Here An is viewed as an open subset of Pn whose
complement is the “hyperplane at infinity” H∞. Then we first construct a projection
π : Pn \W → Pr such that W is a subspace of H∞ and is disjoint from the projective closure
of V . Then restrict π to An. By carefully choosing π, we can make sure that the restriction
is a linear map An → Ar and is a surjective finite morphism.

Dimension-preserving morphisms vs. finite morphisms. Our construction of finite linear
morphisms preserve the dimension of a variety of low degree while reducing the dimension of
the ambient space. This generalizes the property of lossless rank condensers. However, for
the dimension-preserving property, better constructions are known. For example, it follows
implicitly from the proof in [18] that most of the linear maps An → At from a lossless rank
condenser H ⊆ Ft×n already preserve the dimension of a variety V ⊆ An.4 This was used
by Dvir [18] in his explicit constructions of extractors for varieties, which generalize affine
extractors [33].

On the other hand, the morphisms we construct are finite morphisms, which are strictly
stronger than morphisms that are dimension-preserving. In particular, a finite morphism π

always maps a closed set onto a closed set in the Zariski topology. Moreover, the preimage
π−1(p) of every point p in the image of π is a finite set. Neither of these two properties is
necessarily satisfied by morphisms that are only dimension-preserving.

4 The intuition here is that V can be locally approximated at a nonsingular point p ∈ V by its tangent
space at p. So any linear map that preserves the dimension of this tangent space also preserves the
dimension of V.

Z. Guo 20:7

These properties of finite morphisms may be useful in extractor theory or other areas.
For example, in Theorem 9, the cardinality of π−1(p) is bounded by the degree of V for every
p ∈ π(V), which translates into a lower bound for the min-entropy of the output of π when
the input random source is distributed over the variety V.

1.2.2 Depth-4 Polynomial Identity Testing
Depth-4 arithmetic circuits, also known as ΣΠΣΠ circuits, play a very important role in
polynomial identity testing. In a surprising result, Agrawal and Vinay [3] proved that a
complete derandomization of black-box PIT for depth-4 circuits implies an nO(log n)-time
derandomization of PIT for general circuits of poly(n) degree.

Dvir and Shpilka [22] initialized the approach of applying Sylvester–Gallai type theorems
in geometry to PIT for depth-3 (ΣΠΣ) circuits. Extending this approach, Gupta [39]
formulated a conjecture of Sylvester–Gallai type and proved that his conjecture implies a
complete derandomization of black-box PIT for depth-4 circuits with bounded top fan-in and
bottom fan-in (also called ΣΠΣΠ(k, r) circuits, where k, r = O(1)). In a recent breakthrough
(built on [72, 65]), Peleg and Shpilka [66] proved that this conjecture holds for k = 3 and
r = 2, and used it to give a polynomial-time black-box PIT algorithm for ΣΠΣΠ(3, 2) circuits.

In [39], Gupta divided ΣΠΣΠ(k, r) into two families: those in a certain Sylvester–Gallai
configuration and those that are not. His conjecture states that the circuits in the first family
always have bounded transcendence degree, depending only on k and r. If the conjecture is
true, then the results in [6, 2] imply a complete derandomization of the black-box PIT for
this family. For the second family of circuits, which we call non-SG circuits, he proved that
the black-box PIT can also be derandomized completely.

▶ Theorem 10 ([39]). There exists a deterministic black-box PIT algorithm with time
complexity (dnk)poly(rk2

+k) for non-SG ΣΠΣΠ(k, r) circuits of degree at most d in X1, . . . , Xn

over . In particular, the algorithm runs in polynomial time when k and r are bounded.

Gupta’s proof of Theorem 10 is quite complex and used tools from computational algebraic
geometry, including an effective version of Bertini irreducibility theorem [47] and radical
membership testing (which in turn depends on effective Nullstellensatz [53, 17]).

We observe that what is needed here is simply an explicit construction of subspaces
intersecting certain varieties with (at most) the expected dimension. Plugging in our explicit
construction of variety evasive subspace families, we obtain an improved black-box PIT
algorithm with a simple proof.

▶ Theorem 11. There exists a deterministic black-box PIT algorithm with time complexity
polynomial in d ·

(k(n+1+rk)
krk

)
·
(

k−1+d
k−1

)
≤ poly(dk, nrk

, rk2rk) (and log p, if char(F) = p > 0)
for non-SG ΣΠΣΠ(k, r) circuits of degree at most d in X1, . . . , Xn over an algebraically
closed field F.

In particular, Theorem 11 improves the exponent of n in the time complexity from
poly(rk2 + k) to O(rk), and the exponent of d from poly(rk2 + k) to O(k). Moreover, our
proof is more direct and conceptually simpler than the proof in [39].
▶ Remark. In [61], Mukhopadhyay gave a deterministic polynomial-time black-box PIT
algorithm for ΣΠΣΠ(k, r) circuits satisfying a variant of the non-SG assumption. (Its
time complexity is similar to the time complexity in Theorem 10.) It appears to us that
his assumption in fact implies the non-SG assumption. The main tool used there is the
multivariate resultant, which may be related to our approach based on Chow forms (see
Subsection 1.3). Indeed, it is known that a multivariate resultant is the Chow form of a
Veronese variety [34, Chapter 3, Example 2.4].

CCC 2021

20:8 Variety Evasive Subspace Families

1.3 Proof Overview
We present an overview of our proof of Theorem 6 and that of Theorem 7.

Overview of the proof of Theorem 6

In the proof of Theorem 6, we focus on constructing a k-subspace family on Pn. The case of
An can be easily derived from it by viewing An as an open subset of Pn and restricting to
this subset.

Consider a variety V ⊆ Pn of degree at most d. We want to construct a k-subspace family
H on Pn, independent of V , such that all but at most ϵ-fraction of W ∈ H evade V . Our key
ideas can be summarized as follows.

Reducing to the equidimensional/irreducible case of dimension n − k − 1. As a first step,
we reduce the problem to the special case that V is an equidimensional (or even irreducible)
variety of Pn of dimension n − k − 1, which means every irreducible component of V has
dimension exactly n− k − 1. This step is explained in Subsection 3.1.

Hitting the Chow form of V. Denote by G(k, n) the Grassmannian consisting of of all
k-subspaces of Pn. As codim(V) = n− (n− k− 1) > k, a general k-subspace W ∈ G(k, n) is
disjoint from V, but we want to find such W explicitly.

One remarkable fact in algebraic geometry is that there is a single polynomial R̃V on the
Grassmannian G(k, n) that defines precisely the subset of k-subspaces that intersect V . This
polynomial R̃V is called the Chow form of V (in Stiefel coordinates). Chow forms are also
known as Cayley forms or Cayley–van der Waerden–Chow forms in literature. They were
introduced by Cayley [11] to represent curves in P3 and later generalized by Chow and van
der Waerden [13]. See [15] for an introduction to Chow forms and [34] for an exposition in
the context of elimination theory.

To be more specific, for a k-subspace W ∈ G(k, n), we choose a (k + 1) × (n+ 1) matrix
A that represents W . The Chow form R̃V is a polynomial of degree (k + 1) deg(V) in
(k + 1)(n+ 1) variables with the following property: R̃V vanishes at the matrix A (viewed as
a list of (k + 1)(n+ 1) coordinates) if and only if V ∩W ≠ ∅. Thus, R̃V defines precisely the
subset of “bad” k-subspaces that we want to avoid.

Therefore, the problem becomes finding a collection of (k + 1) × (n+ 1) matrices of full
rank that “hit” the polynomial R̃V of degree (k+ 1) deg(V) ≤ (k+ 1)d. Using black-box PIT
for low degree polynomials (see Subsection 2.1), we are able to construct an (n, d, ϵ)-evasive
k-subspace family of size polynomial in

((k+1)(n+1+d)
(k+1)d

)
and 1/ϵ, which is poly(n, 1/ϵ) when

k and d are both bounded. A similar “dual” construction yields a k-subspace family of
size polynomial in

((n−k)(n+1+d)
(n−k)d

)
and 1/ϵ, which is poly(n, 1/ϵ) when both n− k and d are

bounded. For applications where d is small and either k or n− k is small (e.g., Theorem 11),
these constructions are good enough. However, when k and n− k are both linear in n, the
resulting k-subspace families have exponential size in n, even if d is bounded.

A two-step construction. To obtain a good construction for arbitrary dimension k, we use
a standard fact from algebraic geometry, which states that the codimension of an irreducible
subvariety V ⊆ Pn in span(V) is at most deg(V) − 1, where span(V) denotes the smallest
projective subspace containing V (see Lemma 32). Therefore, for irreducible V of degree at
most d, there exists a projective subspace Λ of dimension (at most) dim(V) + d − 1 that
contains V.

Z. Guo 20:9

Our idea is to use a two-step construction. Namely, we first construct subspaces of
dimension n − dim Λ − 1 that evade Λ, and then extend these subspaces to k-subspaces
that evade V. The first step is just the problem of constructing lossless rank condensers,
which has an optimal solution [29, 28] (see Subsection 2.2). The second step is equivalent
to extending a ((k + 1) − (d − 1)) × (n + 1) matrix B to a (k + 1) × (n + 1) matrix (

A
B

)
such that the polynomial R̃V does not vanish at (

A
B

). The polynomial R̃V(
(

·
B

)
) has degree

(d− 1) deg(V) ≤ (d− 1)d, as there are only d− 1 rows of free variables. Using black-box PIT
for low degree polynomials, we obtain a construction of size polynomial in

((d−1)(n+1+d)
(d−1)d

)
and 1/ϵ, which is poly(n, 1/ϵ) for any bounded d.

Overview of the proof of Theorem 7

Our lower bound (Theorem 7) follows from a dimension counting argument. Let C(r, d, n)
be the set of all varieties V ⊆ Pn of dimension r := n − k − 1 and degree d, which is the
space of varieties that we want to evade.

Roughly speaking, the idea is to show that (1) C(r, d, n) itself can be realized as a
subvariety of some projective space PN , and (2) for every k-subspace W , the subset of
V ∈ C(r, d, n) that W fails to evade is the intersection of C(r, d, n) with some hyperplane
HW of PN .

To see how (1) and (2) above lead to a lower bound, suppose H is a C(r, d, n)-evasive
k-subspace family, i.e., for any V ∈ C(r, d, n), there exists W ∈ H that is disjoint from V.
Then the intersection C(r, d, n) ∩

⋂
W ∈H HW must be empty. On the other hand, taking the

intersection with each hyperplane HW reduces the dimension of a projective variety by at
most one. So we have a lower bound |H| ≥ dim(C(r, d, n)) + 1.

How do we realize C(r, d, n) as a subvariety of PN ? It turns out that this is a classical
problem in the study of moduli spaces and a solution was given by Cayley [11] and Chow–van
der Waerden [13] using the Chow embedding: The Chow embedding C(r, d, n) → PN simply
sends a variety V to its Chow form R̃V , where R̃V is viewed as a point in the projective space
PN whose homogeneous coordinates are given by the coefficients of R̃V .5

A technical issue here is that the image of C(r, d, n) under the Chow embedding is
generally not closed in the Zariski topology. To fix this issue, the definition of C(r, d, n) needs
to be modified so that it contains not only subvarieties of Pn, but also (effective) algebraic
cycles on Pn, which are a generalization of subvarieties. A theorem of Chow and van der
Waerden [13] then states that the Chow embedding does embed C(r, d, n) in a projective
subspace PN as a subvariety, known as a Chow variety.

Finally, we also need a lower bound for the dimension of the Chow variety C(r, d, n). In
fact, the exact value of dim(C(r, d, n)) was determined by Azcue [5] and independently by
Lehmann [59]. Plugging in the value of dim(C(r, d, n)) proves Theorem 7.

1.4 Other Related Work
In [20], Dvir, and Kollár, and Lovett constructed explicit variety evasive sets, which are large
subsets of Fn

q over a finite field Fq that have small intersection with affine varieties of fixed
dimension and bounded degree. It generalizes an earlier construction of subspace evasive
sets of Dvir and Lovett [21]. The definition of evasiveness there is different from ours, but
they are related, since a key step in the proofs of [21, 20] is proving the intersection of two

5 The actual Chow embedding we use has a slightly different form, which is essentially equivalent to the
one described here.

CCC 2021

20:10 Variety Evasive Subspace Families

varieties has dimension zero. We also note that a subspace/variety evasive set is a single set,
defined in a highly nonlinear way, whereas we define a variety evasive subspace family to
be a collection of projective or affine subspaces. Finally, the results in [21, 20] hold only for
affine subspaces/subvarieties, whereas we give our construction first in the projective setting
and then derive the affine counterpart from it.

Guruswami and Xing in [43] introduced a related notion called subspace designs. A
subspace design is a collection H of large subspaces of Fn such that for any small subspace
V ⊆ Fn, the number of W ∈ H satisfying dim(W ∩ V) > 0 is small (or even the sum∑

W ∈H dim(W ∩ V) is small). An equivalence between subspace designs and lossless rank
condensers was proved in [27]. Explicit subspace designs were constructed by Guruswami
and Kopparty [40] and also by Guruswami, Xing, and Yuan [44]. They have applications
to constructing explicit list-decodable codes with small list size [43, 42, 55, 37] and explicit
dimension expanders [27, 41]. Subspace designs were also used to prove lower bounds in
communication complexity [12].

Jeronimo, Krick, Sabia, and Sombra [49] gave a randomized algorithm, in the Blum-
Shub-Smale model over fields of characteristic zero, that computes the Chow forms of
varieties defined by input polynomials. The (expected) time complexity of their algorithm is
polynomial in the sizes of the arithmetic circuits encoding the input polynomials and the
geometric degree of the polynomial system. See also the survey by Krick [56].

Chow varieties of effective zero-cycles and their higher secant varieties are related to
lower bounds for depth-3 arithmetic circuits. They have received a considerable amount of
attention in Geometric Complexity Theory [57, 58].

Organization of the paper. Preliminaries and notations are given in Section 2. We prove
the Main Theorem (Theorem 6) in Section 3. The lower bound (Theorem 7) is proved in
Section 4. The applications to the derandomization of Noether’s normalization lemma and
PIT for depth-4 circuits are explained in Section 5. Finally, we list some open problems and
future directions in Section 6.

2 Preliminaries and Notations

Define N := {0, 1, 2 . . . } and N+ := {1, 2, . . . }. Let [n] := {1, 2, . . . , n} for n ∈ N. For a set S
and k ∈ N, denote by

(
S
k

)
the set of all subsets of S of cardinality k.

Denote by F an algebraically closed field throughout this paper. We use notations like
F[Xi,j : i ∈ [n], j ∈ [m]] to denote the polynomial ring over F in a finite set of variables (in
this case, in the set of variables {Xi,j : i ∈ [n], j ∈ [m]}). The vector space of n×m matrices
over F is denoted by Fn×m.

For an n×m matrix A and subsets S ⊆ [n], T ⊆ [m], denote by AS,T the submatrix of
A whose rows and columns are selected by S and T respectively, where the orderings of rows
and columns are preserved.

2.1 Black-Box PIT for Low Degree Polynomials
For convenience, we strengthen the definition of hitting sets as follows.

▶ Definition 12 (ϵ-hitting set). Let F be a family of polynomials in F[X1, . . . , Xn] and
ϵ ∈ (0, 1). We say a finite collections of points H ⊆ Fn is an ϵ-hitting set for F if for any
nonzero Q ∈ F , the evaluation Q(α) is nonzero for all but at most ϵ-fraction of α ∈ H.

Z. Guo 20:11

We need an explicit construction of ϵ-hitting sets for low degree polynomials. This
problem has been well studied [16, 74, 70, 52, 8, 60, 14, 10, 7]. For completeness, we present
a construction based on sparse polynomial identity testing.

Recall that a polynomial is s-sparse if it has at most s monomials. We need the following
lemma from [1].

▶ Lemma 13 ([1, Lemma 4, restated]). For n, s, d ∈ N+ and ϵ0 ∈ (0, 1), there exist maps
w1, w2, . . . , wN : [n] → [N logN], where N = poly(n, s, log d, ϵ−1

0), such that for any nonzero
s-sparse polynomial f ∈ F[X1, . . . , Xn] of individual degree at most d, all but at most ϵ0-
fraction of wi among w1, w2, . . . , wN satisfies f(Y wi(1), . . . , Y wi(n)) ̸= 0. Moreover, the time
complexity of computing w1, w2, . . . , wN is polynomial in N .

Given n, d ∈ N+ and ϵ ∈ (0, 1), we construct an ϵ-hitting set for n-variate polynomials of
degree at most d as follows:
1. Let s =

(
n+d

d

)
, ϵ0 = ϵ/2, and M = ⌈ϵ−1

0 dN logN⌉, where N is as in Lemma 13.
2. Let w1, . . . , wN be as in Lemma 13, which can be computed in time poly(N).
3. If char(F) = 0, let S = [M] ⊆ Z ⊆ F. If char(F) = p > 0, choose a finite extension Fq of

Fp such that M ≤ q = poly(M,p), and choose S to be a subset of Fq ⊆ F of cardinality
M .

4. Finally, construct the following collection of points in Fn of size MN

T = {(αwi(1), . . . , αwi(n)) : α ∈ S, i ∈ [N]} ⊆ Fn.

▶ Lemma 14. For any nonzero polynomial f ∈ F[X1, . . . , Xn] of degree at most d, we
have f(u) ̸= 0 for all but at most ϵ-fraction of u ∈ T . The collection T has cardinality
poly

((
n+d

d

)
, 1/ϵ

)
and can be computed in time poly(|T |).

Proof. Let f ∈ F[X1, . . . , Xn] be a nonzero polynomial of degree at most d. Note that f is
trivially s-sparse, where s =

(
n+d

d

)
. So by Lemma 13, for all but at most ϵ0-fraction of i ∈ [N],

we have f̃i := f(Y wi(1), . . . , Y wi(n)) ̸= 0. Consider i ∈ [N] such that f̃i ̸= 0. Note that f̃i

is a univariate polynomial of degree at most dN logN . So it has at most dN logN ≤ ϵ0M

zeros. Therefore, by the choice of M , we have f(αwi(1), . . . , αwi(n)) = f̃i(α) ̸= 0 for all but
at most ϵ0-fraction of α ∈ S. It follows that f(u) ̸= 0 holds for all but at most ϵ-fraction of
u ∈ T , as claimed. The rest of the lemma follows easily from the construction. ◀

Note that the seed length required to choose a random element in T is log |T | =
O(log

(
n+d

d

)
+ log(1/ϵ)), which is optimal up to a constant factor. We have made no effort to

optimize the constant hidden in O(·). Interested readers may find the state-of-the-art result
in [7], which achieves the optimal constant, at least for d = o(n).

2.2 Explicit Lossless Rank Condensers
We need the following lemma in the context of lossless rank condensers. The construction in
the lemma was given by Forbes and Shpilka [29] and the lemma itself follows implicitly from
the analysis of Forbes, Saptharishi, and Shpilka in [28]. It was also stated explicitly in [26,
Theorem 5.4.3].

▶ Lemma 15 ([28, 26]). Let n ∈ N+ and r ∈ [n]. Let ω ∈ F× such that the multiplicative
order of ω is at least n. Define the r × n matrix W = (wi,j)i∈[r],j∈[n] over F[X] by

wi,j = (ωi−1X)j−1.

Then for every n× r matrix M over F of rank r, the polynomial det(WM) ∈ F[X] is nonzero
and has degree at most r(n− r) after dividing out powers of X.

CCC 2021

20:12 Variety Evasive Subspace Families

▶ Corollary 16. Let n, r,W be as in Lemma 15 and ϵ ∈ (0, 1). Let S ⊆ F× be a finite set
of cardinality at least r(n − r)/ϵ. For every n × r matrix M over F of rank r, we have
rank(W (α)M) = r for all but at most ϵ-fraction of α ∈ S, where W (α) denotes the matrix
(wi,j(α))i∈[r],j∈[n] over F.

Corollary 16 states that the collection {W (α) : α ∈ S} of matrices is a (weak) (r, ϵ|S|)-
lossless rank condenser, as defined in [27]. Note that for each α ∈ S, we have rank(W (α)) = r

and hence W (α) correspond to an (r − 1)-subspace UW (α) of Pn−1. As explained in the
introduction, the collection H = {UW (α) : α ∈ S} is an (F , ϵ)-evasive (r − 1)-subspace
family on Pn−1, where F is the family of (n− r − 1)-subspaces of Pn−1. Choosing S of size
r(n− r) + 1 and ϵ = 1 − 1

r(n−r)+1 shows that the lower bound in Theorem 7 is achieved when
d = 1.

2.3 Preliminaries on Algebraic Geometry
We list basic preliminaries and notations on algebraic geometry used in this paper. One can
also refer to a standard text, e.g., [71, 45].

Affine and projective spaces. For n ∈ N, write An for the affine n-space over F. It is defined
to be the set Fn equipped with the Zariski topology, defined as follows: A subset S ⊆ An is
(Zariski-)closed if it is the set of common zeros of a set of polynomials in F[X1, . . . , Xn]. The
complement of a closed set is an open set. The origin of an affine space is denoted by 0.

Write Pn for the (projective) n-space over F, defined to be the quotient set (An+1\{0})/ ∼,
where ∼ is the equivalence relation defined by scaling, i.e., u ∼ v if u = cv for some c ∈ F×.
The set Pn is again equipped with the Zariski topology, where a subset is closed if it is
the set of common zeros of a set of homogeneous polynomials in F[X1, . . . , Xn+1]. We use
(n+ 1)-tuples (x1, . . . , xn+1) to represent points in Pn, called homogeneous coordinates.

For a vector space V over F of dimension n+ 1, where n ∈ N, define the projective space
PV = (V \ {0})/ ∼, where ∼ is again the equivalence relation defined by scaling. By fixing a
coordinate system of V and identifying it with An+1, we may identify PV with Pn.

Varieties. Varieties in this paper refer to either projective or affine varieties. A projective
(resp. affine) variety is simply a closed subset of a projective (resp. affine) subspace. If
V1 and V2 are closed subsets of a projective or affine space and V1 ⊆ V2, we say V1 is a
subvariety of V2.

A variety is reducible if it is the union of finitely many proper subvarieties, and otherwise
irreducible. Affine and projective spaces are irreducible. A variety V can be uniquely written
as the union of finitely many irreducible varieties, which are called the irreducible components
of V.

A projective or affine variety is called a hypersurface (resp. hyperplane) if it is definable
by a single polynomial (resp. single linear polynomial).

Hilbert’s Nullstellensatz. An ideal I of a commutative ring R is radical if am ∈ I implies
a ∈ I for every a ∈ R and m ∈ N+. For an ideal I of F[X1, . . . , Xn], denote by V(I) the
subvariety of An defined by the polynomial in I. Define V(f1, . . . , fk) = V(⟨f1, . . . , fk⟩)
for f1, . . . , fk ∈ F[X1, . . . , Xn]. For a subvariety V of An, denote by I(V) the ideal of
F[X1, . . . , Xn] consisting of all the polynomials vanishing on V. Hilbert’s Nullstellensatz
states that the map V 7→ I(V) is an inclusion-reversing one-to-one correspondence between
the subvarieties of An and the radical ideals of F[X1, . . . , Xn], with the inverse map I 7→ V(I).

Z. Guo 20:13

For a subvariety V of An, define F[V] := F[X1, . . . , Xn]/I(V), called the coordinate ring
of V.

Projective Nullstellensatz. Consider the polynomial ring R = F[X1, . . . , Xn+1]. It can
be written as a direct sum R =

⊕∞
d=0 Rd where each Rd denotes the space of degree-d

homogeneous polynomials, called the homogeneous part of degree d of R or simply the
degree-d part of R. For an ideal I of R and d ∈ N, let Id := I ∩Rd, called the degree-d part
of I. We say I is a homogeneous ideal if I =

⊕∞
d=0 Id. For a homogeneous ideal I of R, we

have R/I =
⊕∞

d=0(R/I)d where (R/I)d := Rd/Id.
For a homogeneous ideal I of R, denote by V(I) the subvariety of Pn defined by the

homogeneous polynomials in I. Define V(f1, . . . , fk) = V(⟨f1, . . . , fk⟩) for homogeneous
polynomials f1, . . . , fk ∈ R. For a subvariety V of Pn, denote by I(V) the ideal generated
by the homogeneous polynomials vanishing on V, which is a homogeneous ideal. The
projective Nullstellensatz states that the map V 7→ I(V) is an inclusion-reversing one-to-one
correspondence between the nonempty subvarieties of Pn and the radical homogeneous ideals
of R properly contained in ⟨X1, . . . , Xn+1⟩, with the inverse map I 7→ V(I).

For a subvariety V ⊆ Pn and the corresponding homogeneous ideal I = I(V), we say R/I
is the homogeneous coordinate ring of V.

Morphisms. Let V1 ⊆ An and V2 ⊆ Am be affine varieties. A morphism from V1 to V2 is a
map f : V1 → V2 that is a restriction of a polynomial map An → Am. Such a morphism f

is associated with a ring homomorphism f ♯ : F[V2] → F[V1], making F[V1] an algebra over
F[V2]. We say f is finite if F[V1] is finitely generated as an F[V2]-module.

Let f : V1 → V2 be a map between projective varieties V1 and V2. We say f is a
morphism from V1 to V2 if there exists a collection of open subsets {Ui}i∈I of V2 such
that V2 =

⋃
i∈I Ui (i.e., {Ui}i∈I is an open cover of V2) and for each i ∈ I, the restriction

f |f−1(Ui) : f−1(Ui) → Ui is a morphism between affine varieties. Furthermore, if each
f |f−1(Ui) is finite, then we say f is finite. Finiteness does not depend on the choice of the
affine open cover. Namely, if f : V1 → V2 is a finite morphism between projective varieties
V1 and V2, and U is an open subset of V2 such that f |f−1(U) : f−1(U) → U is a morphism
between affine varieties, then f |f−1(U) is also finite.

The image of a morphism f : V1 → V2 is denoted by Im(f) or f(V1). The image of a
closed set under a finite morphism is still closed.

Dimension. The dimension of an irreducible variety V, denoted by dim(V), is the largest
integer m such that there exists a chain of irreducible varieties ∅ ⊊ V0 ⊊ V1 ⊊ · · · ⊊ Vm = V .
More generally, the dimension of a nonempty variety is the maximal dimension of its
irreducible components. We define the dimension of an empty set to be −∞. A variety is
equidimensional if its irreducible components have the same dimension.

If π : V → V ′ is a finite morphism, then dim(V) = dim(π(V)).

Degree. The degree of an irreducible subvariety V of Pn (resp. An), denoted by deg(V), is
the number of intersections of V with a projective (resp. affine) subspace of codimension
dim(V) in general position. More generally, we define the degree of a subvariety of Pn or An

to be the sum of the degrees of its irreducible components.

CCC 2021

20:14 Variety Evasive Subspace Families

Projective closure. The affine n-space An may be regarded as an open subset of Pn via the
map (x1, . . . , xn) 7→ (x1, . . . , xn, 1). The complement H∞ := Pn \ An is a hyperplane of Pn

defined by Xn+1 = 0, called the hyperplane at infinity. For an affine subvariety V of An ⊆ Pn,
the smallest projective subvariety of Pn containing V is the projective closure of V , which we
denote by Vcl. It is known that Vcl ∩ An = V, dim(Vcl) = dim(V), and deg(Vcl) = deg(V).

Joins of disjoint projective varieties. For two distinct points p, q ∈ Pn, denote by pq

the unique projective line passing through them. For two disjoint projective subvarieties
V1,V2 ⊆ Pn, define the join J(V1,V2) of V1 and V2 as

J(V1,V2) :=
⋃

p∈V1,q∈V2

pq.

▶ Lemma 17 ([45, Examples 6.17, 11.36, and 18.17]). J(V1,V2) is a subvariety of Pn of
dimension dim(V1) + dim(V2) + 1 and degree at most deg(V1) · deg(V2).

We also need the following lemmas.

▶ Lemma 18. Let V be a nonempty subvariety of Pn of dimension r < n. Let W ⊆ Pn be a
k-subspace disjoint from V. Let k′ be an integer satisfying k ≤ k′ ≤ n− r − 1. Then there
exists a k′-subspace W ′ ⊆ Pn such that W ⊆ W ′ and W ′ is disjoint from V. In particular,
choosing W to be a point not in V shows that there exists an (n− r − 1)-subspace disjoint
from V.

Proof. We prove the lemma for the special case k′ = k + 1 ≤ n− r − 1 and the general case
follows from iteration. By Lemma 17, J(V,W) has dimension r+ k+ 1 ≤ n− 1. Pick a point
p ∈ Pn \ J(V,W) and let W ′ = J(p,W). Then W ′ is a (k + 1)-subspace and W ⊆ W ′. To
prove W ′ is disjoint from V, assume to the contrary that there exists a point q ∈ W ′ ∩ V.
By definition, q ∈ pq′ for some q′ ∈ W . As W is disjoint from V, we have q′ ̸= q. Then
p ∈ pq′ = qq′ ∈ J(V,W), contradicting the choice of p. ◀

▶ Lemma 19 ([45, Exercise 11.6 and Corollary 18.5]). Let V be a nonempty equidimensional
subvariety of Pn and H a hypersurface of Pn not containing an irreducible component of V.
Then V ∩H is an equidimensional subvariety of dimension dim(V) − 1 and degree at most
deg(V) · deg(H) (or an empty set if dim(V) = 0).

▶ Lemma 20 ([71, Section I.6.2, Theorem 6]). Suppose V1 and V2 are subvarieties of Pn and
dim(V1) + dim(V1) ≥ n. Then V1 ∩ V2 ̸= ∅ and dim(V1 ∩ V2) ≥ dim(V1) + dim(V1) − n.

3 Proof of the Main Theorem

We prove the Main Theorem (Theorem 6) in this section. In Subsection 3.1, we show that
it suffices to consider equidimensional or irreducible subvarieties of dimension n − k − 1.
Subsection 3.2 contains an introduction to Chow forms. Finally, in Subsection 3.3, we present
the explicit constructions and complete the proof of Theorem 6.

3.1 Reducing to the Case of Equidimensional or Irreducible Varieties
The following lemma states that to construct k-subspace families that are evasive for
subvarieties of Pn, it suffices to consider equidimensional subvarieties of dimension n− k − 1
(i.e., codimension k + 1).

Z. Guo 20:15

▶ Lemma 21. Let n, d ∈ N+ and k ∈ {0, 1, . . . , n− 1}. Let F be the family of all equidimen-
sional subvarieties of Pn of dimension n−k− 1 and degree at most d. Then an (F , ϵ)-evasive
k-subspace family is also (n, d, ϵ)-evasive.

The proof of Lemma 21 is based on the following claim.

▷ Claim 22. Let V be an irreducible subvariety of Pn. There exists a subvariety Ṽ ⊆ Pn of
dimension n− k − 1 and degree at most deg(V) such that any k-subspace of Pn that evades
Ṽ also evades V.

Proof. If dim(V) = n− k − 1, then just let Ṽ = V.
Now assume dim(V) < n− k − 1. Let t = (n− k − 1) − dim(V) − 1 and let Ṽ be the join

of V and a t-subspace disjoint from V (which exists by Lemma 18). Then Ṽ is a projective
subvariety of dimension n− k− 1 and degree at most deg(V) by Lemma 17. Suppose W is a
k-subspace that evades Ṽ. Then W is disjoint from Ṽ ⊇ V . So W also evades V.

Finally, assume dim(V) > n− k − 1. Let t = dim(V) − (n− k − 1). By Lemma 19, there
exist t hyperplanes H1, . . . ,Ht of Pn such that V ∩

⋂t
i=1 Hi is equidimensional of dimension

n − k − 1 and degree at most deg(V). Let Ṽ = V ∩
⋂t

i=1 Hi. Suppose W is a k-subspace
that evades Ṽ. Then W ∩ Ṽ = (W ∩ V) ∩

⋂t
i=1 Hi = ∅. Again by Lemma 19, we have

dim(W ∩ V) ≤ t− 1 = dim(V) + dim(W) − n. So W also evades V. ◁

Proof of Lemma 21. Consider a projective subvariety V ⊆ Pn of degree at most d. Let
V1, . . . ,Vs be the irreducible components of V. For each i ∈ [s], use Claim 22 to choose
a projective subvariety Ṽi ⊆ Pn of dimension n − k − 1 and degree at most deg(Vi) such
that any k-subspace that evades Ṽi also evades Vi. Let Ṽ =

⋃s
i=1 Ṽi. Then Ṽ ∈ F . By

construction, any k-subspace that evades Ṽ also evades V. It follows that an (F , ϵ)-evasive
k-subspace family is also (n, d, ϵ)-evasive. ◀

We further reduce to the case of irreducible varieties at the cost of blowing up the
parameter ϵ by a factor of d. This is useful as we need irreducibility later in Lemma 32.

▶ Lemma 23. Let n, d ∈ N+ and k ∈ {0, 1, . . . , n− 1}. Let F ′ be the family of all irreducible
subvarieties of Pn of dimension n − k − 1 and degree at most d. Then an (F ′, ϵ)-evasive
k-subspace family is also an (n, d, dϵ)-evasive k-subspace family.

Proof. Let F be as in Lemma 21. Each V ∈ F has at most d irreducible components, which
are all in F ′ since their degrees are bounded by d. By definition and the union bound, if a
k-subspace family H is (F ′, ϵ)-evasive, then it is also (F , dϵ)-evasive. Combining this with
Lemma 21 proves the lemma. ◀

3.2 Chow Forms
By Lemma 21 and Lemma 23, we only need to evade equidimensional or irreducible projective
subvarieties of codimension k + 1. The “bad” k-subspaces that intersect such a variety V
form a hypersurface of the Grassmannian defined by a single form called the Chow form of
V. We now explain the basic theory of Chow forms.

Grassmannians. Let n ∈ N and k ∈ {0, 1, . . . , n− 1}. The Grassmannian G(k + 1, n+ 1) is
the set of all (k + 1)-dimensional linear subspaces of An+1. By taking the quotient modulo
scalars, it may also be identified with the set of all k-subspaces of Pn, which we denote by
G(k, n).

CCC 2021

20:16 Variety Evasive Subspace Families

The Plücker embedding and Plücker coordinates. Consider a linear subspace W ∈
G(k + 1, n+ 1). The simplest way of representing W is using a (k + 1) × (n+ 1) matrix A
over F such that W equals the row space of A. We call such a matrix A a generating matrix
of W . For convenience, we also say A is a generating matrix of PW ∈ G(k, n).

The entries of A are called the (primal) Stiefel coordinates of W . However, note that A
is not uniquely determined by W since for any (k + 1) × (k + 1) invertible matrix M over F,
the matrix MA is also a generating matrix of W .

Another way of representing W is using the vector (detA[k+1],S)
S∈([n+1]

k+1) of maximal
minors of a generating matrix A of W . For a (k + 1) × (k + 1) invertible matrix M over
F, replacing A by MA corresponds to multiplying all the maximal minors detA[k+1],S by
detM ∈ F×. To remove ambiguity, we could view (detA[k+1],S)

S∈([n+1]
k+1) as a point in the

projective space P(n+1
k+1)−1, which is then uniquely determined by W . This leads to the

definition of the Plücker embedding.

▶ Definition 24 (Plücker embedding). Define ϕ : G(k + 1, n+ 1) → P(n+1
k+1)−1 by

ϕ(W) = (detA[k+1],S)
S∈([n+1]

k+1)
where A is a generating matrix of W .

The Plücker embedding embeds the Grassmannian G(k + 1, n + 1) in P(n+1
k+1)−1 as an

irreducible projective subvariety, as stated by the following theorem. See, e.g., [45, 32] for
proofs.

▶ Theorem 25. The Plücker embedding ϕ is a well-defined injective map whose image is an
irreducible projective subvariety of P(n+1

k+1)−1.

The homogeneous coordinates (detA[k+1],S)
S∈([n+1]

k+1) of ϕ(W) are called the (primal)
Plücker coordinates of W .

Denote by R := F
[
XS : S ∈

([n+1]
k+1

)]
the homogeneous coordinate ring of P(n+1

k+1)−1. The
irreducible projective subvariety ϕ(G(k+1, n+1)) is defined by a homogeneous prime ideal of
R, which we denoted by I. Then R/I is the homogeneous coordinate ring of ϕ(G(k+1, n+1)).
The ideal I contains precisely the polynomial relations that the Plücker coordinates need to
satisfy. It is also known that I is generated by certain quadratic forms, known as the Plücker
relations. See [45, 32] for details.

Dual Plücker coordinates. Alternatively, we could represent a linear subspace W ∈ G(k +
1, n+ 1) by an (n− k) × (n+ 1) matrix B over F whose rows specify the linear equations
defining W . We call such a matrix B a parity check matrix of W . For convenience, we also
say B is a parity check matrix of PW ∈ G(k, n).

The entries of B are called the dual Stiefel coordinates of W . This gives another embedding
ϕ∨ : G(k + 1, n+ 1) → P(n+1

n−k)−1 = P(n+1
k+1)−1, defined by

ϕ∨(W) = (detB[n−k],S)
S∈([n+1]

n−k).

The homogeneous coordinates (detB[n−k],S)
S∈([n+1]

n−k) of ϕ∨(W) are called the dual Plücker
coordinates of W .6 In fact, it is known that dual Plücker coordinates are equivalent
to primal Plücker coordinates. Namely, if W ∈ G(k + 1, n + 1) has primal Plücker
coordinates (cS)

S∈([n+1]
k+1), then it has dual Plücker coordinates (c′

S)
S∈([n+1]

n−k) with c′
S =

(−1)
∑

i∈S
i−

∑
i∈[k+1]

i · c[n+1]\S (see, e.g., [50]).

6 Some authors use “primal” and “dual” in the opposite way (e.g., [15]).

Z. Guo 20:17

Chow forms. Recall that we denote by G(k, n) the set of all k-subspaces of Pn. By
identifying G(k + 1, n+ 1) with G(k, n) via W 7→ PW , we regard ϕ and ϕ∨ as maps from
G(k, n) to P(n+1

k+1)−1.
We also need the notion of associated hypersurfaces.

▶ Definition 26 (Associated hypersurface [34]). For an irreducible subvariety V ⊆ Pn of
dimension n− k− 1, define the associated hypersurfaces ZV of V to be the set of k-subspaces
intersecting V, i.e.,

ZV := {W ∈ G(k, n) : V ∩W ̸= ∅}.

The term “associated hypersurface” is justified by the following theorem.

▶ Theorem 27. Let V ⊆ Pn be an irreducible projective subvariety of dimension n− k − 1
and degree d ∈ N+. Then there exists a nonzero homogeneous polynomial PV ∈ R =
F

[
XS : S ∈

([n+1]
k+1

)]
of degree d such that ϕ(ZV) is defined by PV as a subvariety of ϕ(G(k, n)).

That is,

ϕ(ZV) = ϕ(G(k, n)) ∩ V(PV).

Moreover, RV := PV + I ∈ (R/I)d is uniquely determined by V up to scalars.

Theorem 27 is explicitly stated as [15, Theorem 1.1 and Corollary 2.1]. A proof can be found
in [34, Section 3.2]. We briefly explain how to find a polynomial PV satisfying Theorem 27:
Firstly, it can be shown using the trick of dimension counting via incidence varieties that
ϕ(ZV) is an irreducible projective subvariety of the Grassmannian ϕ(G(k, n)) of codimension
one [34, Section 3.2, Proposition 2.2]. Secondly, the homogeneous coordinate ring R/I of the
Grassmannian is known to be a unique factorization domain [32, Chapter 9]. These two facts
imply that the homogeneous ideal of R/I defining ϕ(ZV) is a principal ideal. Choose RV to
be a generator of this principal ideal, which is unique up to scalars. Then lift RV ∈ R/I to
PV ∈ R.

Now we are ready to define the Chow form of projective subvarieties.

▶ Definition 28 (Chow form). Let V ⊆ Pn be an irreducible subvariety of dimension n− k− 1
and degree d ∈ N+. Define the Chow form of V in Plücker coordinates, or simply the Chow
form of V, to be RV ∈ (R/I)d as in Theorem 27.

More generally, for an equidimensional subvariety V =
⋃s

i=1 Vi ⊆ Pn of dimension
n− k− 1 and degree d, where V1, . . . ,Vs are the irreducible components of V, the Chow form
of V is RV :=

∏s
i=1 RVi ∈ (R/I)d. It is uniquely determined by V up to scalars.

As a k-subspace intersects V =
⋃s

i=1 Vi iff it intersects some Vi, we see from Theorem 27
that the Chow form RV of an equidimensional projective subvariety V of dimension n− k− 1
vanishes precisely at the set of k-subspaces that intersect V.
▶ Example 29. Let k = 0. Let V ⊆ Pn be a hypersurface defined by a nonzero homogeneous
polynomial P ∈ F[X1, . . . , Xn+1] = R. The ideal I of R is zero in this case. And the Chow
form RV of V is simply P (up to a scalar).
▶ Example 30. Let V ∈ G(n − k, n + 1) and W ∈ G(k + 1, n + 1). Choose matrices
A,B ∈ F(k+1)×(n+1) such that A is a generating matrix of W and B is a parity check matrix
of V . Then PV ∩ PW ≠ ∅ iff dim(V ∩W) > 0, which holds iff det(ABT) = 0. On the other
hand, we have

det(ABT) =
∑

S∈([n+1]
k+1)

det(A[k+1],S)·det((BT)S,[k+1]) =
∑

S∈([n+1]
k+1)

det(A[k+1],S)·det(B[k+1],S),

CCC 2021

20:18 Variety Evasive Subspace Families

where the first equation is known as the Cauchy–Binet formula (see, e.g., [28]). So PPV ∈
R1 is a linear polynomial whose coefficients are given by the dual Plücker coordinates
(detB[k+1],S)

S∈([n+1]
k+1) of V (up to a scalar). The degree-one part I1 of I is zero as I is

generated by quadratic forms. So the Chow form RPV ∈ (R/I)1 = R1 is simply PPV .

Chow forms in Stiefel coordinates. We may also express the Chow form in Stiefel coordi-
nates, i.e., in the entries of a generating matrix of a linear subspace. This expression has the
advantage that it is an actual polynomial rather than a member of the abstract vector space
(R/I)d.

Formally, let A∗ be a (k + 1) × (n+ 1) variable matrix whose (i, j)-th entry is a variable
Yi,j . Define the ring homomorphism

ϕ♯ : R = F
[
XS : S ∈

(
[n+ 1]
k + 1

)]
→ F[Yi,j : i ∈ [k + 1], j ∈ [n+ 1]]

that sends each variable XS to det(A∗
[k+1],S). Define the Chow form of V in Stiefel coordinates

to be

R̃V := ϕ♯(PV) ∈ F[Yi,j : i ∈ [k + 1], j ∈ [n+ 1]]

where PV ∈ Rd is a lift of RV ∈ (R/I)d. Note that I is precisely the kernel of ϕ♯. So R̃V
is uniquely determined by V up to scalars. By construction, for any W ∈ G(k + 1, n + 1)
and generating matrix A = (ai,j)i∈[k+1],j∈[n+1] of W , we have PV(ϕ(W)) = R̃V(A) :=
R̃V(a1,1, . . . , ak+1,n+1). So R̃V vanishes at A iff PW ∈ G(k, n) intersects V.

Chow forms in dual Stiefel coordinates. Similarly, we may express the Chow form in dual
Stiefel coordinates, i.e., in the entries of a parity check matrix of a linear subspace.

More specifically, choose a homogeneous polynomial QV ∈ F
[
XS : S ∈

([n+1]
n−k

)]
that

defines the set of k-subspaces intersecting V in terms of dual Plücker coordinates. As primal
and dual Plücker coordinates are equivalent, QV can be obtained from the polynomial
PV above by simply negating and renaming variables. Next, compose QV with a ring
homomorphism that substitutes dual Plücker coordinates with dual Stiefel coordinates. The
resulting polynomial, which we denote by R̃∨

V ∈ F[Yi,j : i ∈ [n− k], j ∈ [n+ 1]], is called the
Chow form of V in dual Stiefel coordinates.

We note that the Chow form R̃V in primal Stiefel coordinates is a homogeneous polynomial
of degree (k + 1)d in (k + 1)(n + 1) variables, whereas the Chow form R̃∨

V in dual Stiefel
coordinates is a homogeneous polynomial of degree (n − k)d in (n − k)(n + 1) variables.
This suggests that it is more convenient to use the Chow form in primal (resp. dual) Stiefel
coordinates when k is small (resp. n− k is small).7

3.3 Explicit Constructions of Variety Evasive Subspace Families
Let n, d ∈ N+, k ∈ {0, 1, . . . , n}, and ϵ ∈ (0, 1). In this subsection, we prove the Main
Theorem (Theorem 6) by constructing explicit projective or affine k-subspace families that
are (n, d, ϵ)-evasive. The problem is trivial when k = n, as we just need to choose the
singleton {Pn} or {An}. So assume k < n.

7 While both RV and R∨
V may be viewed as elements of (R/I)d, the two (injective) maps RV 7→ R̃V and

R∨
V 7→ R̃∨

V come from different linear embedding of (R/I)d in vector spaces of polynomials. As a result,
the representation of V by the polynomial R̃V and the representation by R̃∨

V are not equally succinct in
general.

Z. Guo 20:19

We first prove Theorem 6 in the projective case, and then derive the affine case from it by
viewing An as an open subset of Pn. For the projective case, we present two constructions.
The first one is simple and only uses ϵ-hitting sets for low degree polynomials (Lemma 14).
But the size of the resulting subspace family is polynomial only when both d and k (or n− k)
are bounded. Next, we give a more sophisticated construction, which yields subspace families
of polynomial size as long as d is bounded.

3.3.1 Simple Construction
We first present a simple construction of (n, d, ϵ)-evasive k-subspace families on Pn.

First assume k + 1 ≤ n − k. In this case, construct a k-subspace family H on Pn as
follows:
1. Use Lemma 14 to compute an ϵ-hitting set T for the family of polynomials f ∈ F[Yi,j : i ∈

[k + 1], j ∈ [n+ 1]] of degree at most (k + 1)d such that |T | = poly
(((k+1)(n+1+d)

(k+1)d

)
, 1/ϵ

)
.

Think of T as a collection of (k + 1) × (n+ 1) matrices over F.
2. Initialize H = ∅. For each matrix A ∈ T , if A has full row rank k + 1, add to H the

k-subspace W ∈ G(k, n) with the generating matrix A.

Next, assume k + 1 > n− k. In this case, construct H in a similar way, but use parity
check matrices instead of generating matrices. Namely, compute an ϵ-hitting set T for the
family of polynomials f ∈ F[Yi,j : i ∈ [n− k], j ∈ [n+ 1]] of degree at most (n− k)d such that
|T | = poly

(((n−k)(n+1+d)
(n−k)d

)
, 1/ϵ

)
. Think of T as a collection of (n − k) × (n + 1) matrices

over F. For each matrix A ∈ T , add to H the k-subspace W ∈ G(k, n) with the parity check
matrix A.

This construction does give an (n, d, ϵ)-evasive k-subspace family, as stated by the following
lemma.

▶ Lemma 31. The k-subspace family H constructed above is (n, d, ϵ)-evasive and has size
polynomial in min

{((k+1)(n+1+d)
(k+1)d

)
,
((n−k)(n+1+d)

(n−k)d

)}
and 1/ϵ. Moreover, the total time com-

plexity of computing the linear equations defining the k-subspaces in H is polynomial in |H|
(and log p, if char(F) = p > 0).

Proof. We only show that H is (n, d, ϵ)-evasive since the rest of the lemma is obvious from
the construction. Let F be the family of all equidimensional subvarieties of Pn of dimension
n− k − 1 and degree at most d. By Lemma 21, it suffices to prove that H is (F , ϵ)-evasive.
Consider any V ∈ F . We want to show that V ∩ W = ∅ for all but at most ϵ-fraction of
W ∈ H.

First assume k + 1 ≤ n− k. The Chow form R̃V of V in Stiefel coordinates is a nonzero
homogeneous polynomial in F[Yi,j : i ∈ [k+ 1], j ∈ [n+ 1]] of degree (k+ 1) deg(V) ≤ (k+ 1)d.
By the choice of T , for all but at most ϵ-fraction of A ∈ T , we have R̃V(A) ̸= 0, which
implies V ∩W = ∅, where A is a generating matrix of W .

By construction, H is the collection of k-subspaces corresponding to the matrices A ∈ T

of full row rank. So we have ignored the matrices that do not have full row rank. But this
does not increase the fraction of “bad” W ∈ H since if A does not have full row rank, then
the maximal minors of A are all zero, and R̃V(A) must be zero. It follows that V ∩W = ∅
for all but at most ϵ-fraction of W ∈ H, as desired.

CCC 2021

20:20 Variety Evasive Subspace Families

Now assume k + 1 > n − k. The proof in this case is similar and we omit the details.
The only difference is that we use the Chow form R̃∨

V in dual Stiefel coordinates instead
of R̃V . ◀

3.3.2 Improved Construction
For a subvariety V ⊆ Pn, denote by span(V) the smallest projective subspace that contains
V. We say V is nondegenerate if it is not contained in a hyperplane of Pn, or equivalently,
span(V) = Pn.

We need the following fact from algebraic geometry (see, e.g., [24, Proposition 0] or [45,
Corollary 18.12]).

▶ Lemma 32. The codimension of a nondegenerate irreducible subvariety V of Pn is at most
deg(V) − 1.

We now give an improved construction of (n, d, ϵ)-evasive k-subspace families on Pn as
follows.
1. If min{k + 1, n − k} ≤ d − 1, just use the previous simple construction. So assume

min{k + 1, n− k} > d− 1. Let t = k − d+ 2 and ϵ0 = ϵ/(2d).
2. Use Lemma 14 to construct an ϵ0-hitting set T ⊆ F(d−1)(n+1) for the family of polynomials

f ∈ F[Yi,j : i ∈ [d − 1], j ∈ [n + 1]] of degree at most (d − 1)d such that |T | =
poly

(((d−1)(n+1+d)
(d−1)d

)
, d/ϵ

)
. Think of T as a collection of (d− 1) × (n+ 1) matrices over

F.8
3. Use Corollary 16 to construct a collection U of t × (n + 1) matrix over F such that

|U | = poly(n, d/ϵ) and for every (n+ 1) × t matrix M over F of rank t, all but at most
ϵ0-fraction of B ∈ U satisfies rank(BM) = t.

4. Initialize H = ∅. For each (A,B) ∈ T × U , if the (k + 1) × (n+ 1) matrix (
A
B

) has full
row rank, add to H the k-subspace W ∈ G(k, n) with the generating matrix (

A
B

).

See below for an illustration of a matrix
(

A
B

)
, where (A,B) ∈ T × U .

A

B

 n+ 1{
d− 1{

t

k + 1

We use the construction above to prove the Main Theorem (Theorem 6) in the projective
case. For convenience, we restate it in the following form.

▶ Theorem 33 (Main Theorem in the projective case). The k-subspace family H constructed
above is (n, d, ϵ)-evasive and has size poly(N(k, d, n), n, 1/ϵ). Moreover, the total time
complexity of computing the linear equations defining the k-subspaces in H is polynomial in
|H| (and log p, if char(F) = p > 0).

Proof. The theorem follows from Lemma 31 if min{k + 1, n − k} ≤ d − 1. So assume
min{k + 1, n− k} > d − 1 and hence t ≥ 1. We only show that H is (n, d, ϵ)-evasive since
the rest of the theorem is obvious from the construction.

8 When d = 1, just let T be the singleton F(d−1)(n+1)
q = F0

q , which consists of an “empty matrix”.

Z. Guo 20:21

Let F be the family of all irreducible subvarieties of Pn of dimension n− k− 1 and degree
at most d. By Lemma 23, it suffices to prove that H is (F , 2ϵ0)-evasive. Consider any V ∈ F .
We want to show that V ∩W = ∅ for all but at most (2ϵ0)-fraction of W ∈ H.

By definition, V is a nondegenerate irreducible subvariety of span(V). By Lemma 32, the
codimension of V in span(V) is at most d− 1. Therefore,

dim(span(V)) ≤ dim(V) + d− 1 = (n− k − 1) + (d− 1) = n− t.

Let Λ ⊆ Pn be an (n−t)-subspace that contains span(V). Let M ∈ Ft×(n+1) be a parity check
matrix of Λ. By the choice of U , all but at most ϵ0-fraction of B ∈ U satisfies rank(BM) = t.
Fix B ∈ U such that rank(BM) = t. Let W0 ∈ G(t − 1, n) such that B is a generating
matrix of W0. The condition rank(BM) = t is equivalent to W0 ∩ Λ = ∅.

We make the following claim.

▷ Claim 34. For all but ϵ0-fraction of A ∈ T , the matrix (
A
B

) is a generating matrix of a
k-subspace W ∈ G(k, n) that is disjoint from V.

Note that Claim 34 implies that V ∩W = ∅ holds for all but at most (2ϵ0)-fraction of W ∈ H.
So it remains to prove this claim.

A matrix
(

A
B

)
is a generating matrix of a k-subspace disjoint from V as long as R̃V(

(
A
B

)
) ̸= 0,

where R̃V ∈ F[Yi,j : i ∈ [k + 1], j ∈ [n + 1]] is the Chow form of V in Stiefel coordinates.
Consider the polynomial

P = R̃V(
(

·
B

)
) ∈ F[Yi,j : i ∈ [d− 1], j ∈ [n+ 1]]

which is obtained from R̃V by assigning the t × (n + 1) entries of B to the variables
Yd,1, . . . , Yk+1,n+1 on the bottom t rows, with the top d−1 rows of variables Y1,1, . . . , Yd−1,n+1
left free.

As W0 ∩ Λ = ∅ and span(V) ⊆ Λ, we know W0 is disjoint from V. By Lemma 18, W0
extends to a k-subspace that is disjoint from V . So the generating matrix B of W0 extends to
a matrix

(
A
B

)
such that R̃V(

(
A
B

)
) ̸= 0. In particular, the polynomial P is not identically zero.

Also note deg(P) = (d− 1) deg(V) ≤ (d− 1)d. By the choice of T , for all but ϵ0-fraction of
A ∈ T , we have R̃V(

(
A
B

)
) = P (A) ̸= 0, and hence

(
A
B

)
is a generating matrix of a k-subspace

that is disjoint from V. This proves Claim 34 and completes the proof of the theorem. ◀

3.3.3 The Affine Case
In this subsection, we prove Theorem 6 in the affine case. Recall that we may view An as an
open subset of Pn via the map (x1, . . . , xn) 7→ (x1, . . . , xn, 1). In this way, Pn becomes the
disjoint union of An and the hyperplane at infinity H∞ defined by Xn+1 = 0.

We use the following lemma to reduce the affine case to the projective case.

▶ Lemma 35. Let n, d ∈ N+, k ∈ {0, 1, . . . , n − 1}, and ϵ′ ∈ (0, 1/2). Suppose H is an
(n, d, ϵ′)-evasive k-subspace family on Pn. Then

H′ = {W ∩ An : W ∈ H,W ̸⊆ H∞}

is an (n, d, ϵ)-evasive affine k-subspace family on An, where ϵ = ϵ′/(1 − ϵ′) ≤ 2ϵ′. Moreover,

H′′ = {W ∈ H : W ̸⊆ H∞} = {Wcl : W ∈ H′}

is an (n, d, ϵ)-evasive k-subspace family on Pn.

CCC 2021

20:22 Variety Evasive Subspace Families

Proof. By (n, d, ϵ′)-evasiveness of H, at most ϵ′-fraction of W ∈ H are fully contained in
H∞. Throwing away those k-subspaces fully contained in H∞ increases the error parameter
ϵ′ by at most a factor of 1/(1 − ϵ′). Therefore, H′′ = {W ∈ H : W ̸⊆ H∞} is (n, d, ϵ)-evasive.
We want to prove that H′ = {W ∩ An : W ∈ H′′} is also (n, d, ϵ)-evasive.

Consider a subvariety V ⊆ An of degree at most d. Let V1, . . . ,Vs be the irreducible com-
ponents of V . The projective closure Vcl of V has the irreducible components (V1)cl, . . . , (Vs)cl.
Consider a k-subspace W ∈ H′′ that evades Vcl. We just need to prove that W ∩ An evades
V. This is true since for each i ∈ [s],

dim((W ∩ An) ∩ Vi) ≤ dim(W ∩ (Vi)cl) ≤ dim(W) + dim((Vi)cl) − n

= dim(W ∩ An) + dim(Vi) − n

where the second inequality holds since W evades Vcl and the last equality uses the fact
W ̸⊆ H∞. ◀

The affine case of Theorem 6 now follows easily.

Proof of Theorem 6 in the affine case. If k = n, just choose H = An. Now assume k < n.
Construct an (n, d, ϵ/2)-evasive k-subspace family H on Pn using Theorem 33. Then

H′ := {W ∩ An : W ∈ H,W ̸⊆ H∞}

is an (n, d, ϵ)-evasive affine k-subspace family on An by Lemma 35. The nonhomogeneous
linear equations defining W ∩ An ∈ H′ can be easily computed from the homogeneous linear
equations defining W ∈ H by letting Xn+1 = 1. ◀

The proof of Theorem 6 is now complete.

Strengthening Theorem 6 in the affine case. For projective subvarieties V1,V2 ⊆ Pn

such that dim(V1) + dim(V2) ≥ n, the minimum possible dimension of V1 ∩ V2 is dim(V1) +
dim(V2) − n, as stated by Lemma 20. Nevertheless, for two affine subvarieties V1,V2 ⊆ An,
it is possible that the intersection of V1 and V2 is empty even if its expected dimension
dim(V1) + dim(V2) − n is nonnegative. For example, the intersection of two distinct and
parallel affine hyperplanes V1,V2 ⊆ An is always empty even if n ≥ 2. The reason this
happens is that, while the dimension of (V1)cl ∩ (V2)cl is n− 2 (as expected), this intersection
is fully contained in the hyperplane H∞, which is excluded from An.

One may strengthen the definition of evading (Definition 1) by requiring the intersection
of V1 with every irreducible component of V2 to have exactly the expected dimension. It is
possible to construct explicit affine k-subspace families satisfying Theorem 6 even under this
stronger definition of evading. We sketch the ideas as follows but omit the details.

First construct an (n − 1, d, ϵ′)-evasive (k − 1)-subspace family H′ on H∞ ∼= Pn−1 for
some sufficiently small ϵ′ depending on ϵ. Then extend each W ∈ H′ to a collection of
k-subspaces by picking p ∈ An and taking the k-subspace J(W,p), where the coordinates of
p are chosen from an ϵ′-hitting set for polynomials of degree at most d given by Lemma 31.
Call the resulting k-subspace family H. It is easy to prove that H is (n, d,O(ϵ′))-evasive.

Furthermore, the affine k-subspace family {W ∩ An : W ∈ H} is (n, d, ϵ)-evasive even
under the stronger definition of evading. To see this, consider an affine subvariety V ⊆ An of
degree at most d. For most W ∈ H, we have:

For each irreducible component Vi of V, the dimension of (Vi)cl ∩W is as expected by
(n, d,O(ϵ′))-evasiveness of H and Lemma 20. Call this dimension di, which is −∞ if
(Vi)cl ∩W = ∅.

Z. Guo 20:23

Moreover, the dimension of ((Vi)cl ∩H∞) ∩ (W ∩H∞) is at most di − 1 by (n− 1, d, ϵ′)-
evasiveness of H′.
Therefore, Vi ∩ (W ∩ An) has the expected dimension di for each irreducible component
Vi of V.

4 Lower Bound

We prove Theorem 7 in this section. The main tool is the notion of Chow varieties, which
parameterize projective subvarieties. More precisely, they parametrize a generalization of
projective subvarieties, called (effective) algebraic cycles on a projective space.

Algebraic cycles. An algebraic r-cycle (or simply r-cycle) on Pn is a formal linear combi-
nation

∑
ciVi of finitely many irreducible subvarieties Vi ⊆ Pn of dimension r, where the

coefficients ci are integers. The degree of
∑
ciVi is

∑
ci deg(Vi). An r-cycle is effective if all

its coefficients are nonnegative. Denote by C(r, d, n) the set of all effective r-cycles of degree
d on Pn.

Chow varieties. Let k ∈ {0, 1, . . . , n− 1} and r = n− k − 1. The definition of Chow forms
naturally extends to effective r-cycles. Namely, for an effective r-cycle D =

∑r
i=1 ciVi of

degree d on Pn, define the Chow form of D to be RD :=
∏r

i=1 Rci

Vi
.

Note that RD is a vector in (R/I)d and is uniquely determined by D up to scalars. Write
[RD] for the point in P(R/I)d represented by RD. Then we have map ψ : C(r, d, n) →
P(R/I)d, given by

ψ : D 7→ [RD],

called the Chow embedding of C(r, d, n). Indeed, it embeds C(r, d, n) in P(R/I)d as a
projective subvariety, as stated by the following theorem of Chow and van der Waerden [13].

▶ Theorem 36 ([13]). The map ψ is injective and its image is Zariski-closed.

A proof can also be found in [34, Chapter 4]. We identify C(r, d, n) with its image under
ψ and view it as a projective variety. This variety is called the Chow variety of effective
r-cycles of degree d on Pn.
▶ Example 37. Let V be the subspace of homogeneous polynomials in F[X1, . . . , Xn+1] of
degree d. Then C(n− 1, d, n) is simply the projective space PV (see Example 29).
▶ Example 38. C(r, 1, n) is the Grassmannian G(r + 1, n + 1) (or G(r, n)) embedded in
P(n+1

r+1)−1 = P(n+1
k+1)−1 via ϕ∨ (see Example 30).

The dimension of Chow varieties. When d = 1, the Chow variety C(r, d, n) is just the
Grassmannian G(r + 1, n + 1) (see Example 38) and its dimension is well known to be
(r + 1)(n− r) [45]. When d > 1, the dimension of C(r, d, n) was determined by Azcue in his
Ph.D. thesis [5] and independently by Lehmann [59]. We state their result as follows.

▶ Theorem 39 ([5, 59]). For d > 1 and 0 ≤ r < n, the dimension of C(r, d, n) is

max
{
d(r + 1)(n− r),

(
d+ r + 1
r + 1

)
− 1 + (r + 2)(n− r − 1)

}
.

This theorem was previously proved by Eisenbud and Harris [25] for the special case r = 1.

CCC 2021

20:24 Variety Evasive Subspace Families

▶ Remark. To prove Theorem 7, we only need a lower bound for the dimension of the Chow
variety, which is much easier to prove than Theorem 39. Indeed, it is not difficult to see
that d(r + 1)(n − r) is the dimension of the space of unions of d r-subspaces of Pn, and(

d+r+1
r+1

)
− 1 + (r + 2)(n− r − 1) is the dimension of the space of degree-d hypersurfaces in

(r + 1)-subspaces of Pn.

Lower bound via dimension counting. We now restate Theorem 7 and prove it using a
dimension counting argument.

▶ Theorem 7. Let n, d ∈ N+ and k ∈ {0, 1, . . . , n−1}. Let F be the family of equidimensional
projective subvarieties of Pn of dimension n− k − 1 and degree at most d. Suppose H is an
F-evasive k-subspace family on Pn. Then

|H| ≥

(n− k)(k + 1) + 1 if d = 1,
max

{
d(n− k)(k + 1) + 1,

(
d+n−k

d

)
+ (n− k + 1)k

}
if d > 1.

In particular, |H| is superpolynomial in n when n− k = Ω(n) and d = ω(1).

Proof. Consider an arbitrary k-subspace W ∈ H. We may think of each point in P(R/I)d as
a homogeneous polynomial of degree d in Plücker coordinates modulo scalars and the ideal
I of Plücker relations. We know Plücker coordinates always satisfy the Plücker relations.
So it makes sense to talk about if a point in P(R/I)d vanishes at ϕ(W) or not, as it does
not depend on the choice of the homogeneous polynomial representing this point. Note that
the constraint of p ∈ P(R/I)d vanishing at ϕ(W) is a linear equation in the homogeneous
coordinates of p. So the set of points in P(R/I)d vanishing at ϕ(W) is a hyperplane of
P(R/I)d, which we denote by HW .

Let r = n− k − 1. Assume |H| ≤ dim(C(r, d, n)). Then we have

ψ(C(r, d, n)) ∩
⋂

W ∈H
HW ̸= ∅

since taking the intersection with a hyperplane reduces the dimension of a projective subvariety
by at most one (Lemma 19 or Lemma 20). So there exists an effective r-cycle D ∈ C(r, d, n)
such that ψ(D) = [RD] vanishes at ϕ(W) for all W ∈ H. Suppose D =

∑s
i=1 ciVi where

ci ∈ N+ for i ∈ [s] and V1, . . . ,Vs are distinct irreducible varieties.
Let V =

⋃s
i=1 Vs. Note V ∈ F since deg(V) =

∑s
i=1 deg(Vi) ≤

∑s
i=1 ci deg(Vi) = d. For

all W ∈ H, we know RD =
∏s

i=1 Rci

Vi
vanishes at ϕ(W), or equivalently, RV =

∏s
i=1 RVi

vanishes at ϕ(W). This implies V ∩W ̸= ∅ for all W ∈ H. As V ∈ F , this contradicts our
assumption about H. We conclude

|H| ≥ dim(C(r, d, n)) + 1.

The dimension of C(r, d, n) is (r + 1)(n− r) when d = 1 and is given by Theorem 39 when
d > 1. Plugging in r = n− k − 1 proves the theorem. ◀

▶ Remark. It is easy to show that the lower bound in Theorem 7 is optimal by reversing its
proof. Namely, we add random k-subspaces W ∈ G(k, n) to H one by one, such that each
time the dimension of ψ(C(r, d, n)) ∩

⋂
W ∈H HW is reduced by one with high probability.

It is easy to see that at each step, a general k-subspace W does reduce the dimension
by one. However, it requires more work to prove a reasonable bound for the coefficients
defining such a k-subspace W . This is because we need to apply a union bound over the
irreducible components of ψ(C(r, d, n)) ∩

⋂
W ∈H HW . An upper bound for the number of

these irreducible components can be shown by following [54, Exercise 3.28]. We postpone
the details to the full version of this paper.

Z. Guo 20:25

5 Applications

In this section, we use the explicit constructions of variety-evasive subspace families in
Section 3 to derandomize Noether’s Normalization Lemma (Theorem 8 and Theorem 9) and
black-box PIT for special depth-4 circuits (Theorem 11). The proof of Theorem 11 only uses
the simple construction of variety-evasive subspace families (Lemma 31).

5.1 Derandomization of Noether’s Normalization Lemma
Suppose W is a k-subspace of Pn, and ℓ1, . . . , ℓn−k ∈ F[X1, . . . , Xn+1] are n−k homogeneous
linear polynomials such that W = V(ℓ1, . . . , ℓn−k). Then we have a map πℓ1,...,ℓn−k

: Pn\W →
Pn−k−1 defined by

πℓ1,...,ℓn−k
: x 7→ (ℓ1(x), . . . , ℓn−k(x))

which is well-defined since ℓ1, . . . , ℓn−k never simultaneously vanish on Pn \ W . We say
πℓ1,...,ℓn−k

is a projection from Pn \W to Pn−k−1 and W is its center.
The following lemma is crucial. Its proof can be found in [71].

▶ Lemma 40 ([71, Section I.5.3, Theorem 7]). Suppose π : Pn \W → Pm is a projection with
center W and V is a subvariety of Pn disjoint from W . Then π restricts to a finite morphism
from V to Pm.

We are now ready to prove Theorem 8 and Theorem 9, which we restate below for
convenience.

▶ Theorem 8. Let n, d ∈ N+, r ∈ {0, 1, . . . , n}, and ϵ ∈ (0, 1). There exists an explicit
collection L of linear maps An+1 → Ar+1 of size poly(N(k, d, n), n, 1/ϵ) such that for every
subvariety V ⊆ Pn of dimension r and degree at most d, all but at most ϵ-fraction of π ∈ L
induce a surjective finite morphism from V to Pr. Moreover, L can be computed in time
polynomial in |L| (and log p, if char(F) = p > 0).

Proof. If r = n, we have V = Pn. Then just use the identity map An+1 → An+1. So assume
r < n.

Let k = n − r − 1. Construct an (n, d, ϵ)-evasive k-subspace family H on Pn using
Theorem 6. Consider W ∈ H. Pick n − k = r + 1 homogeneous linear polynomials
ℓ1, . . . , ℓr+1 ∈ F[X1, . . . , Xn+1] such that W = V(ℓ1, . . . , ℓr+1). These r+1 linear polynomials
determine a linear map π̃ℓ1,...,ℓr+1 : An+1 → Ar+1 sending x ∈ An+1 to (ℓ1(x), . . . , ℓr+1(x)),
and the latter induces the projection πℓ1,...,ℓr+1 : Pn \W → Pr. Let L be the collection of all
these linear maps π̃ℓ1,...,ℓr+1 , one from each W ∈ H.

Let V be a subvariety of Pn of dimension r and degree at most d. We know all but
at most ϵ-fraction of W ∈ H are disjoint from V. So we just need to prove that for every
W ∈ H disjoint from V , the corresponding projection π := πℓ1,...,ℓr+1 : Pn \W → Pr restricts
to a surjective finite morphism from V to Pr. The restriction π|V : V → Pr is indeed
finite by Lemma 40. So its image π(V) is closed and has dimension dim(V) = r. The only
r-dimensional closed subset of Pr is Pr itself. So π is surjective. ◀

▶ Theorem 9. Let n, d ∈ N+ and r ∈ {0, 1, . . . , n}, and ϵ ∈ (0, 1). There exists an explicit
collection L of linear maps An → Ar of size poly(N(k, d, n), n, 1/ϵ) such that for every
subvariety V ⊆ An of dimension r and degree at most d, all but at most ϵ-fraction of π ∈ L
restrict to a surjective finite morphism from V to Ar. Moreover, L can be computed in time
polynomial in |L| (and log p, if char(F) = p > 0).

CCC 2021

20:26 Variety Evasive Subspace Families

Proof. If r = n, we have V = An. Then just use the identity map An → An. If r = 0,
use the only map An → A0. So assume 0 < r < n. Regard An as an open subset of
Pn via (x1, . . . , xn) 7→ (x1, . . . , xn, 1). Similarly, regard Ar as an open subset of Pr via
(x1, . . . , xr) 7→ (x1, . . . , xr, 1).

Let k = n−r−1. Construct an (n−1, d, ϵ)-evasive k-subspace family H on H∞ = Pn\An ∼=
Pn−1 using Theorem 6. Consider W ∈ H. Pick n−k = r+1 homogeneous linear polynomials
ℓ1, . . . , ℓr+1 ∈ F[X1, . . . , Xn+1] such that ℓr+1 = Xn+1, ℓ1, . . . , ℓr ∈ F[X1, . . . , Xn], and
W = V(ℓ1, . . . , ℓr+1). This is possible as W ⊆ H∞ = V(Xn+1). These r + 1 linear
polynomials determine the projection πℓ1,...,ℓr+1 : Pn \W → Pr, defined by

x = (x1, . . . , xn+1) 7→ (ℓ1(x), . . . , ℓr+1(x)) = (ℓ1(x), . . . , ℓr(x), xn+1).

As xn+1 = 1 for x ∈ An, we have πℓ1,...,ℓr+1(An) ⊆ Ar. Restricting πℓ1,...,ℓr+1 on An yields
a map πℓ1,...,ℓr+1 |An : An → Ar, which is a linear map as ℓ1, . . . , ℓr are homogeneous linear
polynomials in F[X1, . . . , Xn]. Let L be the collection of all these linear maps πℓ1,...,ℓr+1 |An ,
one from each W ∈ H.

Let V be a subvariety of An of dimension r and degree at most d. Its projective closure
Vcl has dimension dim(V) = r and degree deg(V) ≤ d. By the definition of Vcl, none of the
irreducible components of Vcl is fully contained in H∞. So by Lemma 19, the projective
subvariety Vcl ∩H∞ has dimension r − 1 and degree at most d.

By the choice of H, all but at most ϵ-fraction of W ∈ H are disjoint from Vcl ∩ H∞
and hence from Vcl. So we just need to prove that for every W ∈ H disjoint from Vcl and
the corresponding projection π := πℓ1,...,ℓr+1 , the map π|V : V → Ar is a surjective finite
morphism. We have already seen from the proof of Theorem 8 that, as the center W of π is
disjoint from Vcl, the projection π restricts to a surjective finite morphism π|Vcl : Vcl → Pr. As
V = Vcl ∩An = Vcl ∩π−1(Ar), the map π|V is precisely the restriction of π|Vcl to (π|Vcl)−1(Ar).
As π|Vcl is a surjective finite morphism, so is π|V . ◀

▶ Remark. For simplicity, we have restricted to the category of varieties over an algebraically
closed field F when stating Theorem 8 and Theorem 9. We now mention some generalizations
without proofs, which lead to the usual algebraic formulation of Noether’s normalization
lemma and its derandomization:

As mentioned in the remark after Theorem 6, the coefficients of the linear maps that we
use live in a non-algebraically closed field K0 ⊆ F, which is either Q or a finite extension
of Fp. For any field K ⊇ K0, we have actually constructed explicit families of linear
maps that are defined over K. Theorem 8 and Theorem 9 then hold for projective/affine
varieties over K (which we have not defined) as well.
Furthermore, Theorem 8 and Theorem 9 hold for closed subschemes of projective/affine
spaces over K as well. In fact, it suffices to consider the variety Vred := V(

√
I(V)) in

place of a closed subscheme V when checking if a linear map gives a valid surjective finite
morphism. This is because the evading property that we need is set-theoretic.
A generalization of Theorem 9 then translates into the following derandomization of
Noether’s normalization lemma: Let K be a field containing all the coefficients of the linear
maps in L, where L is as constructed in Theorem 9. Let A ≠ 0 be a finitely generated
commutative K-algebra with generators b1, . . . , bn such that the Krull dimension of A is r
and the variety V ⊆ An

K has degree at most d, where V = V(
√
I) and I ⊆ K[X1, . . . , Xn]

is the set of polynomial relations that b1, . . . , bn satisfy. For a linear map π ∈ L defined
by (x1, . . . , xn) 7→ (

∑n
i=1 ci,1xi, . . . ,

∑n
i=1 ci,rxi), let yπ

j =
∑n

i=1 ci,jbi for j ∈ [r]. Then

Z. Guo 20:27

for all but at most ϵ-fraction of π ∈ L, the corresponding yπ
1 , . . . , y

π
r are algebraically

independent and A is a finitely-generated module over K[yπ
1 , . . . , y

π
r]. The existence of

such yπ
1 , . . . , y

π
r is the content of the usual algebraic formulation of Noether’s normalization

lemma [4, Chapter 5, Exercise 16].

5.2 Black-Box PIT for Non-SG Depth-4 Circuits
We first define ΣΠΣΠ(k, r) circuits and non-SG ΣΠΣΠ(k, r) circuits.

▶ Definition 41 (ΣΠΣΠ(k, r) circuit). An algebraic circuit C over F is a ΣΠΣΠ(k, r) circuit
if it has the form

C(X1, . . . , Xn) =
k′∑

i=1
Fi =

k′∑
i=1

di∏
j=1

Qi,j (1)

where k′ ≤ k, d1, . . . , dk′ ∈ N+, Fi =
∏di

j=1 Qi,j for j ∈ [k′], and each Qi,j is a polynomial
in X1, . . . , Xn of degree at most r over F. The degree of the circuit C is defined to be
max{deg(Fi) : i ∈ [k′]}. In addition:

C is minimal if
∑

i∈I Fi ̸= 0 for all nonempty proper subset I ⊆ [k′].
C is homogeneous if all the polynomials Fi are homogeneous of the same degree.
Let gcd(C) := gcd(F1, . . . , Fk′). We say C is simple if gcd(C) = 1. In general, we have
C = gcd(C) · sim(C) where sim(C) is a simple ΣΠΣΠ(k, r) circuit, called the simple part
of C. Note the simple part of a minimal ΣΠΣΠ(k, r) circuit is still minimal.

The polynomial computed by C is again denoted by C by an abuse of notation.

▶ Definition 42 (Non-SG circuit). We say a minimal, simple, and homogeneous ΣΠΣΠ(k, r)
circuit C(X1, . . . , Xn) =

∑k′

i=1 Fi as in (1) is non-SG if there exists i ∈ [k′] such that⋂
j∈[k′]\i

V(Fj) ̸⊆ V(Fi)

where V(F) denotes the subvariety of Pn defined by F . More generally, a minimal and simple
ΣΠΣΠ(k, r) circuit C(X1, . . . , Xn) =

∑k′

i=1 Fi of degree d is non-SG if its homogenization

C̃(X1, . . . , Xn+1) =
k′∑

i=1
Fi(X1/Xn+1, . . . , Xn/Xn+1) ·Xd

n+1 =
k′∑

i=1

d′
i∏

j=1
Q̃i,j

is non-SG, where each Q̃i,j is either the homogenization of Qi,j or Xn+1. A minimal
ΣΠΣΠ(k, r) circuit C is non-SG if sim(C) is non-SG. Finally, a ΣΠΣΠ(k, r) circuit is
non-SG if it has an equivalent minimal non-SG ΣΠΣΠ(k, r) circuit.

We restate our result (Theorem 11) and then give a proof.

▶ Theorem 11. There exists a deterministic black-box PIT algorithm with time complexity
polynomial in d ·

(k(n+1+rk)
krk

)
·
(

k−1+d
k−1

)
≤ poly(dk, nrk

, rk2rk) (and log p, if char(F) = p > 0)
for non-SG ΣΠΣΠ(k, r) circuits of degree at most d in X1, . . . , Xn over an algebraically
closed field F.

Proof. If n ≤ k − 1, we may simply use Lemma 14 to construct a 1
2 -hitting set of size

polynomial in
(

n+d
n

)
≤

(
k−1+d

k−1
)

for n-variate polynomials of degree at most d, and then run
the corresponding black-box PIT algorithm. So assume n > k − 1.

CCC 2021

20:28 Variety Evasive Subspace Families

Consider a nonzero non-SG ΣΠΣΠ(k, r) circuit C of degree at most d. We want to design
a black-box PIT algorithm for C. By replacing C with an equivalent minimal non-SG circuit,
we may assume C is minimal. Let D = gcd(C) and E = sim(C). Let C̃, D̃, and Ẽ be the
homogenization of C, D, and E respectively. Then D̃ = gcd(C̃), Ẽ = sim(C̃), and C̃ = D̃ · Ẽ.

Let H be an affine (k − 1)-subspace family on An of size poly(
(k(n+1+rk)

krk

)
, d) such that

H′ := {Wcl : W ∈ H} is an (n, rk, 1
4d)-evasive (k − 1)-subspace family on Pn. Such a family

H can be computed using Lemma 35 and Lemma 31. We claim
1. D̃|W ̸= 0 for all but at most 1

4 -fraction of W ∈ H′, and
2. Ẽ|W ̸= 0 for all but at most 1

4 -fraction of W ∈ H′.
Assume these two claims hold. Then for at least half of W ∈ H, we have C̃|Wcl ≠ 0 and hence
C|W = C̃|Wcl∩An ≠ 0, where we use the facts that C̃(X1, . . . , Xn, 1) equals C(X1, . . . , Xn)
and Wcl ∩ An is dense in Wcl. The restriction of C to each W ∼= Ak−1 is a (k − 1)-variate
polynomial of degree at most d. So to test if C|W is zero, we just need to use Lemma 14
to construct a hitting set in W of size poly(

(
k−1+d

k−1
)
) for (k − 1)-variate polynomials of

degree at most d. Take the union of these hitting sets to obtain a hitting set of size
poly(

(k(n+1+rk)
krk

)
, d,

(
k−1+d

k−1
)
) and we are done.

So it remains to prove the two claims. Note D̃ is the product of at most d factors whose
degrees are bounded by r. The first claim then follows from the (n, rk, 1

4d)-evasiveness of H′

and the union bound.
Now we prove the second claim. By definition, Ẽ is a non-SG ΣΠΣΠ(k, r) circuit. Suppose

it has the form

Ẽ =
k′∑

i=1
Fi =

k′∑
i=1

di∏
j=1

Qi,j (2)

where each Qi,j is a homogeneous polynomial of degree at most r. As Ẽ is non-SG, there
exists i0 ∈ [k′] such that⋂

i∈[k′]\i0

V(Fi) ̸⊆ V(Fi0)

Without loss of generality, we may assume i0 = k′. Note V(Fi) =
⋃di

j=1 V(Qi,j) for i ∈ [k′].
So there exists (j1, . . . , jk′−1) ∈ [d1] × · · · × [dk′−1] such that

k′−1⋂
i=1

V(Qi,ji
) ̸⊆ V(Fk′).

Let V0 be an irreducible component of
⋂k′−1

i=1 V(Qi,ji) such that V0 ̸⊆ V(Fk′). Let d0 =
dim(V0) ≥ 0. By Lemma 19, we have d0 ≥ n − k′ + 1 and the variety V0 ∩ V(Fk′) =⋃dk′

j=1(V0∩V(Qk′,j)) has dimension at most d0−1. For each j ∈ [dk′], the degree of V0∩V(Qk′,j)
is at most rk by Lemma 19 (or by Bézout’s inequality [46]). By (n, rk, 1

4d)-evasiveness of
H′ and the union bound, all but at most 1

4 -fraction of W ∈ H′ evade V0 ∩ V(Qk′,j) for
j = 1, 2, . . . , dk′ .

Consider any W ∈ H′ that evades V0 ∩ V(Qk′,j) for j = 1, 2, . . . , dk′ . We just need to
prove Ẽ|W ̸= 0, or equivalently, W ̸⊆ V(Ẽ). Assume to the contrary that W ⊆ V(Ẽ). Then
W ∩ V0 ⊆ V(Ẽ). So

Z. Guo 20:29

W ∩ V0 = W ∩ V0 ∩ V(Ẽ) = W ∩ V0 ∩ V

 dk′∏
j=1

Qk′,j

 =
dk′⋃
j=1

(W ∩ V0 ∩ V(Qk′,j)) (3)

where the second equality holds since Ẽ ≡
∏dk′

j=1 Qk′,j modulo the ideal

I0 := ⟨Q1,j1 , . . . , Qk′−1,jk′−1⟩

by (2) and V0 ⊆
⋂k′−1

i=1 V(Qi,ji) = V(I0). We know the dimension of
⋃dk′

j=1(V0 ∩ V(Qk′,j))
is at most d0 − 1. So by the choice of W , the dimension of

⋃dk′
j=1(W ∩ V0 ∩ V(Qk′,j)) is at

most (k − 1) + (d0 − 1) − n. However, by Lemma 20, the dimension of W ∩ V0 is at least
(k− 1) + d0 − n ≥ 0, where we use the fact d0 ≥ n− k′ + 1 ≥ n− k+ 1. This contradicts (3).
So Ẽ|W ̸= 0. ◀

6 Open Problems and Future Directions

We have seen that constructing explicit variety evasive subspace families is a natural problem
that generalizes important problems in algebraic pseudorandomness and algebraic complexity
theory, including deterministic black-box polynomial identity testing (evading varieties of
codimension one) and constructing explicit lossless rank condensers (evading varieties of
degree one). It is closely connected with advanced topics in algebraic geometry such as
Chow forms and Chow varieties, and has applications to derandomizing PIT and non-explicit
results in algebraic geometry like Noether’s normalization lemma.

There are many interesting open problems and potential future directions. We list some
of them here.

1. Theorem 6 focuses on subvarieties of bounded degree in a projective or affine space. Are
there other interesting families of varieties for which we could construct explicit variety
evasive subspace families? Families that are defined computation-theoretically may be
particularly interesting, as many results of this kind are already known for polynomial
identity testing.

2. Can explicit variety evasive subspace families be used to derandomize other non-explicit
results in algebraic geometry?

3. Can our explicit construction in Theorem 6 be improved? In the case k = 0 and the
case d = 1, there are optimal or essentially optimal constructions, and our construction
indeed degenerates into these constructions. In general, however, there is a significant
gap between the upper bound in Theorem 6 and the lower bound in Theorem 7.

4. Extending the notion of strong lossless rank condensers [27], one could strengthen the
definition of (F , ϵ)-evasive subspace families in Definition 3 by bounding the total deviation
of the dimension instead of the number of bad subspaces. At the same time, one could
consider the setting where there is gap between dim(V1) and codim(V2), as in typical
applications of subspace designs [43, 37, 41]. Alternatively, one could relax the definition
by allowing dim(V1 ∩ V2) to be slightly greater than dim(V1) + dim(V2) − n, which is
related to the notion of lossy rank condensers in [27]. It is natural to study explicit
constructions of these variants and their applications, which can be seen as extensions of
the theory of “linear-algebraic pseudorandomness” [27] to a nonlinear setting.

5. Could our lower bound (Theorem 7) be extended to the affine case or to a “lossy”
relaxation of the problem?

CCC 2021

20:30 Variety Evasive Subspace Families

6. When n− k = O(1), our lower bound (Theorem 7) is only polynomial in n and d. So one
question is if there are explicit constructions of polynomial size when n− k = O(1).
As a concrete special case, consider the problem of constructing an explicit affine (n− 2)-
subspace family H on An such that H is evasive for degree-d curves that are images of
morphisms A1 → An. Note that for φ : A1 → An corresponding to a ring homomorphism
φ♯ : F[X1, . . . , Xn] → F[Y], an affine (n− 2)-subspace defined by affine linear polynomials
ℓ1 and ℓ2 evades the curve Im(φ) iff φ♯(ℓ1) and φ♯(ℓ2) have no common root. Using
resultants, we could reduce this problem to black-box PIT for symbolic determinants.
We are not aware of any unconditional derandomization whose time complexity is
subexponential in min{n, d}, however.

References
1 Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets for ROABP

and sum of set-multilinear circuits. SIAM Journal on Computing, 44(3):669–697, 2015.
doi:10.1137/140975103.

2 Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. Jacobian hits
circuits: Hitting sets, lower bounds for depth-d occur-k formulas and depth-3 transcendence
degree-k circuits. SIAM Journal on Computing, 45(4):1533–1562, 2016.

3 Manindra Agrawal and V Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings
of the 49th Annual IEEE Symposium on Foundations of Computer Science, pages 67–75, 2008.

4 Michael F. Atiyah and I. G. MacDonald. Introduction to Commutative Algebra. Addison-
Wesley-Longman, 1969.

5 Pablo Azcue. On the dimension of the Chow varieties. PhD thesis, Harvard University, 1992.
6 Malte Beecken, Johannes Mittmann, and Nitin Saxena. Algebraic independence and blackbox

identity testing. Information and Computation, 222:2–19, 2013.
7 Markus Bläser and Anurag Pandey. Polynomial identity testing for low degree polynomials

with optimal randomness. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM), pages 8:1–8:13, 2020.

8 Andrej Bogdanov. Pseudorandom generators for low degree polynomials. In Proceedings of
the 37th Annual ACM Symposium on Theory of Computing, pages 21–30, 2005.

9 Juliette Bruce and Daniel Erman. A probabilistic approach to systems of parameters and
Noether normalization. Algebra & Number Theory, 13(9):2081–2102, 2019.

10 Nader Bshouty. Testers and their applications. In Proceedings of the 5th Conference on
Innovations in Theoretical Computer Science, pages 327–352, 2014.

11 Arthur Cayley. On a new analytical representation of curves in space. The Quarterly Journal
of Pure and Applied Mathematics, 3:225–236, 1860.

12 Arkadev Chattopadhyay, Ankit Garg, and Suhail Sherif. Towards stronger counterexamples
to the log-approximate-rank conjecture. arXiv preprint, 2020. arXiv:2009.02717.

13 Wei-Liang Chow and B.L. van der Waerden. Zur algebraischen Geometrie. IX. Mathematische
Annalen, 113(1):692–704, 1937.

14 Gil Cohen and Amnon Ta-Shma. Pseudorandom generators for low degree polynomials from
algebraic geometry codes. In Electronic Colloquium on Computational Complexity (ECCC),
volume 20, page 155, 2013.

15 John Dalbec and Bernd Sturmfels. Introduction to Chow forms. Invariant Methods in Discrete
and Computational Geometry, pages 37–58, 1995.

16 Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic program
testing. Information Processing Letters, 7(4):193–195, 1978.

17 Thomas W Dubé. A combinatorial proof of the effective Nullstellensatz. Journal of Symbolic
Computation, 15(3):277–296, 1993.

18 Zeev Dvir. Extractors for varieties. Computational Complexity, 21(4):515–572, 2012.

https://doi.org/10.1137/140975103
http://arxiv.org/abs/2009.02717

Z. Guo 20:31

19 Zeev Dvir, Ariel Gabizon, and Avi Wigderson. Extractors and rank extractors for polynomial
sources. Computational Complexity, 18(1):1–58, 2009.

20 Zeev Dvir, János Kollár, and Shachar Lovett. Variety evasive sets. Computational Complexity,
23(4):509–529, 2014.

21 Zeev Dvir and Shachar Lovett. Subspace evasive sets. In Proceedings of the 44th Annual ACM
Symposium on Theory of Computing, pages 351–358, 2012.

22 Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and polynomial identity
testing for depth 3 circuits. SIAM Journal on Computing, 36(5):1404–1434, 2007.

23 David Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry, volume 150.
Springer Science & Business Media, 2013.

24 David Eisenbud and Joe Harris. On varieties of minimal degree. In Proceedings of Symposia
in Pure Mathematics, volume 46, pages 3–13, 1987.

25 David Eisenbud and Joe Harris. The dimension of the Chow variety of curves. Compositio
Mathematica, 83(3):291–310, 1992.

26 Michael A. Forbes. Polynomial identity testing of read-once oblivious algebraic branching
programs. PhD thesis, Massachusetts Institute of Technology, 2014.

27 Michael A. Forbes and Venkatesan Guruswami. Dimension expanders via rank condensers. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM), 2015.

28 Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for multilinear
read-once algebraic branching programs, in any order. In Proceedings of the 46th Annual ACM
Symposium on Theory of Computing, pages 867–875, 2014.

29 Michael A. Forbes and Amir Shpilka. On identity testing of tensors, low-rank recovery
and compressed sensing. In Proceedings of the 44th Annual ACM Symposium on Theory of
Computing, pages 163–172, 2012.

30 Michael A. Forbes and Amir Shpilka. Explicit Noether normalization for simultaneous conju-
gation via polynomial identity testing. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM), pages 527–542, 2013.

31 Michael A. Forbes and Amir Shpilka. A PSPACE construction of a hitting set for the closure
of small algebraic circuits. In Proceedings of the 50th Annual ACM Symposium on Theory of
Computing, pages 1180–1192, 2018.

32 William Fulton. Young Tableaux: With Applications to Representation Theory and Geometry,
volume 35. Cambridge University Press, 1997.

33 Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources over large fields.
Combinatorica, 28(4):415–440, 2008.

34 Israel M. Gelfand, Mikhail M. Kapranov, and Andrei V. Zelevinsky. Discriminants, Resultants
and Multidimensional Determinants. Birkhäuser, 1994.

35 Marc Giusti, Klemens Hägele, Grégoire Lecerf, Joël Marchand, and Bruno Salvy. The projective
Noether Maple package: computing the dimension of a projective variety. Journal of Symbolic
Computation, 30(3):291–307, 2000.

36 Marc Giusti and Joos Heintz. La d etermination des points isol es et de la dimension d’une
vari et e alg ebrique peut se faire en temps polynomial. Computational Algebraic Geometry
and Commutative Algebra (Cortona, 1991), pages 216–256, 1993.

37 Zeyu Guo and Noga Ron-Zewi. Efficient list-decoding with constant alphabet and list sizes.
arXiv preprint, 2020. To appear in STOC 2021. arXiv:2011.05884.

38 Zeyu Guo, Nitin Saxena, and Amit Sinhababu. Algebraic dependencies and PSPACE algorithms
in approximative complexity over any field. Theory of Computing, 15(16):1–30, 2019.

39 Ankit Gupta. Algebraic geometric techniques for depth-4 PIT & Sylvester-Gallai conjectures
for varieties. In Electronic Colloquium on Computational Complexity (ECCC), volume 21,
page 130, 2014.

40 Venkatesan Guruswami and Swastik Kopparty. Explicit subspace designs. Combinatorica,
36(2):161–185, 2016.

CCC 2021

http://arxiv.org/abs/2011.05884

20:32 Variety Evasive Subspace Families

41 Venkatesan Guruswami, Nicolas Resch, and Chaoping Xing. Lossless dimension expanders via
linearized polynomials and subspace designs. Combinatorica, pages 1–35, 2021.

42 Venkatesan Guruswami, Carol Wang, and Chaoping Xing. Explicit list-decodable rank-
metric and subspace codes via subspace designs. IEEE Transactions on Information Theory,
62(5):2707–2718, 2016.

43 Venkatesan Guruswami and Chaoping Xing. List decoding Reed-Solomon, Algebraic-Geometric,
and Gabidulin subcodes up to the Singleton bound. In Proceedings of the 45th Annual ACM
Symposium on Theory of Computing, pages 843–852, 2013.

44 Venkatesan Guruswami, Chaoping Xing, and Chen Yuan. Subspace designs based on algebraic
function fields. Transactions of the American Mathematical Society, 370(12):8757–8775, 2018.

45 Joe Harris. Algebraic Geometry: A First Course, volume 133. Springer Science & Business
Media, 2013.

46 Joos Heintz. Definability and fast quantifier elimination in algebraically closed fields. Theoretical
Computer Science, 24(3):239–277, 1983.

47 Joos Heintz and Malte Sieveking. Absolute primality of polynomials is decidable in random
polynomial time in the number of variables. In International Colloquium on Automata,
Languages, and Programming, pages 16–28, 1981.

48 David Hilbert. Ueber die Theorie der algebraischen Formen. Mathematische Annalen, 36(4):473–
534, 1890.

49 Gabriela Jeronimo, Teresa Krick, Juan Sabia, and Martín Sombra. The computational
complexity of the Chow form. Foundations of Computational Mathematics, 4(1):41–117, 2004.

50 Michael Joswig and Thorsten Theobald. Polyhedral and Algebraic Methods in Computational
Geometry. Springer Science & Business Media, 2013.

51 Zohar S. Karnin and Amir Shpilka. Black box polynomial identity testing of generalized
depth-3 arithmetic circuits with bounded top fan-in. Combinatorica, 31(3):333, 2011.

52 Adam R. Klivans and Daniel Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing,
pages 216–223, 2001.

53 János Kollár. Sharp effective Nullstellensatz. Journal of the American Mathematical Society,
pages 963–975, 1988.

54 János Kollár. Rational Curves on Algebraic Varieties, volume 32. Springer Science & Business
Media, 2013.

55 Swastik Kopparty, Noga Ron-Zewi, Shubhangi Saraf, and Mary Wootters. Improved decoding
of folded Reed-Solomon and multiplicity codes. In Proceedings of the 59th Annual IEEE
Symposium on Foundations of Computer Science, pages 212–223, 2018.

56 Teresa Krick. Straight-line programs in polynomial equation solving. Foundations of Compu-
tational Mathematics, 312:96–136, 2002.

57 Joseph M. Landsberg. Tensors: geometry and applications. Representation theory, 381(402):3,
2012.

58 Joseph M. Landsberg. Geometric complexity theory: an introduction for geometers. Annali
dell’universita’di Ferrara, 61(1):65–117, 2015.

59 Brian Lehmann. Asymptotic behavior of the dimension of the Chow variety. Advances in
Mathematics, 308:815–835, 2017.

60 Chi-Jen Lu. Hitting set generators for sparse polynomials over any finite fields. In Proceedings
of the 27th Conference on Computational Complexity, pages 280–286, 2012.

61 Partha Mukhopadhyay. Depth-4 identity testing and Noether’s normalization lemma. In
Proceedings of the 11th International Computer Science Symposium in Russia, pages 309–323,
2016.

62 Ketan Mulmuley. Geometric complexity theory V: Efficient algorithms for Noether normaliza-
tion. Journal of the American Mathematical Society, 30(1):225–309, 2017.

63 Masayoshi Nagata. Local rings. Interscience Tracts in Pure and Applied Mathematics, 1962.

Z. Guo 20:33

64 Emmy Noether. Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charak-
teristik p. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-
Physikalische Klasse, 1926:28–35, 1926.

65 Shir Peleg and Amir Shpilka. A generalized Sylvester-Gallai type theorem for quadratic
polynomials. In Proceedings of the 35th Computational Complexity Conference, 2020.

66 Shir Peleg and Amir Shpilka. Polynomial time deterministic identity testing algorithm for
Σ[3]ΠΣΠ[2] circuits via Edelstein-Kelly type theorem for quadratic polynomials. arXiv preprint,
2020. arXiv:2006.08263.

67 Nitin Saxena. Progress on polynomial identity testing. Bulletin of the EATCS, 99:49–79, 2009.
68 Nitin Saxena. Progress on polynomial identity testing - II. Electronic Colloquium on Computa-

tional Complexity (ECCC), 20:186, 2013. URL: http://eccc.hpi-web.de/report/2013/186.
69 Nitin Saxena and Comandur Seshadhri. Blackbox identity testing for bounded top-fanin

depth-3 circuits: The field doesn’t matter. SIAM Journal on Computing, 41(5):1285–1298,
2012.

70 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27(4):701–717, 1980.

71 Igor R. Shafarevich. Basic Algebraic Geometry 1: Varieties in Projective Space. Springer
Science & Business Media, 2013.

72 Amir Shpilka. Sylvester-Gallai type theorems for quadratic polynomials. In Proceedings of the
51st Annual ACM Symposium on Theory of Computing, pages 1203–1214, 2019.

73 Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A Survey of Recent Results and
Open Questions. Now Publishers Inc, 2010.

74 Richard Zippel. Probabilistic algorithms for sparse polynomials. In International Symposium
on Symbolic and Algebraic Manipulation, pages 216–226, 1979.

CCC 2021

http://arxiv.org/abs/2006.08263
http://eccc.hpi-web.de/report/2013/186

A Lower Bound for Polynomial Calculus with
Extension Rule
Yaroslav Alekseev #

Chebyshev Laboratory, St. Petersburg State University, Russia

Abstract
A major proof complexity problem is to prove a superpolynomial lower bound on the length of Frege
proofs of arbitrary depth. A more general question is to prove an Extended Frege lower bound.
Surprisingly, proving such bounds turns out to be much easier in the algebraic setting. In this paper,
we study a proof system that can simulate Extended Frege: an extension of the Polynomial Calculus
proof system where we can take a square root and introduce new variables that are equivalent to
arbitrary depth algebraic circuits. We prove that an instance of the subset-sum principle, the binary
value principle 1 + x1 + 2x2 + . . . + 2n−1xn = 0 (BVPn), requires refutations of exponential bit size
over Q in this system.

Part and Tzameret [18] proved an exponential lower bound on the size of Res-Lin (Resolution
over linear equations [22]) refutations of BVPn. We show that our system p-simulates Res-Lin and
thus we get an alternative exponential lower bound for the size of Res-Lin refutations of BVPn.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases proof complexity, algebraic proofs, polynomial calculus

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.21

Related Version Full Version: https://arxiv.org/abs/2010.05660

Funding Yaroslav Alekseev: research is supported by «Native towns», a social investment program
of PJSC «Gazprom Neft».

Acknowledgements I would like to thank Edward A. Hirsch for guidance and useful discussions at
various stages of this work. Also, I wish to thank Dmitry Itsykson and Dmitry Sokolov for very
helpful comments concerning this work.

1 Introduction

In essence, the study of propositional proof complexity started with the work of Cook
and Reckhow [7], which states that if there is a propositional proof system in which any
unsatisfiable formula F has a short proof of unsatisfiability, then NP = CoNP. The first
superpolynomial bound on the proof size was proved in a pioneering work of Tseitin [27] for
regular resolution. Since then, many proof systems have been studied, some of them are
logic-style (working with disjunctions, conjunctions, and other Boolean operations) and some
of them are algebraic (working with arbitrary polynomials).

In this work, we consider extensions of two systems, an algebraic one and a logic-style one.

Logic-style systems

As it was mentioned before, the first superpolynomial bound on the proof size was proved
in a work of Tseitin for regular resolution, which is a popular logic proof system. Lately,
Haken [11] proved an exponential lower bound on the size of (unrestricted) Resolution
refutation of the pigeonhole principle (PHP), expressing that there is no (total) injective
map from a set with cardinality m to a set with cardinality n if m > n.

© Yaroslav Alekseev;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 21; pp. 21:1–21:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tolstreg@gmail.com
https://orcid.org/0000-0003-3196-6919
https://doi.org/10.4230/LIPIcs.CCC.2021.21
https://arxiv.org/abs/2010.05660
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 A Lower Bound for Polynomial Calculus with Extension Rule

Since then, a stronger logic proof systems such as Frege systems were considered. But
while exponential lower bounds for low-depth proof systems (both algebraic and logical ones)
are known for decades, the situation with the higher depth proof systems is much worse.
The present knowledge is limited to superpolynomial lower bounds for Frege systems over de
Morgan basis (that is, without xor’s or equivalences) of depth up to Θ(log(n)/ log log(n)) [12]
(see also [21] where a superpolynomial lower bound for systems of depth up to Θ(

√
log(n))

is proved).

Resolution with counting

Another approach to strengthen resolution is to use weak extensions in order to do some sort
of counting. Res-Lin (defined in [22]) is a system working with disjunctions of linear equations,
and can be viewed as a generalization of Resolution (we consider this system in the present
paper). However, no truly exponential lower bounds are known for the size of refutations of
formulas in CNF in (dag-like) systems that work over disjunctions of equations or inequalities
(see [16] as the first paper defining these systems and containing partial results). Part and
Tzameret [18] proved an exponential lower bound for (dag-like) Res-Lin refutations over Q
for the binary value principle BVPn. Although this is the first exponential lower bound for
this system, the instance does not correspond to a translation of formula in CNF.

Itsykson and Sokolov [15] considered another extension of the resolution proof system
that operates with disjunctions of linear equalities over F2 named Res(⊕) and proved an
exponential lower bound on the size of tree-like Res(⊕)-proofs.

Algebraic proof systems

Algebraic proof systems such as Nullstellensatz were developed to use some algebraic techniques
of Razborov and Smolensky [23, 25] in the proof complexity case. Lower bounds for algebraic
systems started with an exponential lower bound for the Nullstellensatz [2] system. The main
system considered in this paper is based on the Polynomial Calculus system [6], which is a
dynamic version of Nullstellensatz. Many exponential lower bounds are known for the size of
Polynomial Calculus proofs for tautologies like the Pigeonhole Principle [24, 14] and Tseitin
tautologies [3]. While most results concern the representation of Boolean values by 0 and 1,
there are also exponential lower bounds over the {−1, +1} basis [26].

However, simple algebraic proof systems such as Nullstellensatz and Polynomial Calculus
cannot simulate strong logic systems like Frege systems and thus cannot provide lower bounds
for these systems. In order to fix this issue, strong extensions were considered: Grigoriev and
Hirsch [9] considered algebraic systems over formulas. Grochow and Pitassi [10] introduced
the Ideal Proof System, IPS, which can be considered as the version of Nullstellensatz where
all polynomials are written as algebraic circuits (see also [19, 20] for earlier versions of this
system).

Many other extensions of Polynomial Calculus and Nullstellensatz have been considered
also. Buss, Impagliazzo, Krajíček, Pudlák, Razborov and Sgall [4] showed that there is
a tight connection between the lengths of constant-depth Frege proofs with MODp gates
and the length of Nullstellensatz refutations using extension axioms. Impagliazzo, Mouli
and Pitassi [13] showed that a depth-3 extension of Polynomial Calculus called ΣΠΣ-PC
p-simulates semantic CP∗ (an inequalities-based system, Cutting Planes [8, 5] with coefficients
written in unary) over Q. Also, they showed that a stronger extension of Polynomial Calculus,
called Depth-k-PC, p-simulates Cutting Planes and another inequalities-based system Sum-of-
Squares; the simulations can be conducted over Fpm for an arbitrary prime number p if m is

Y. Alekseev 21:3

sufficiently large. However, the question about proving a superpolynomial lower bound even
on the size of ΣΠΣ-PC refutations over any field remains open since it is not clear how to
extend lower bound techniques such as size-degree tradeoff to this system.

1.1 Our results
We extend Polynomial Calculus with two additional rules. One rule allows us to take a square
root (it was introduced by Grigoriev and Hirsch [9] in the context of transforming refutation
proofs of non-Boolean formulas into derivation proofs; our motivation to take square roots is
to consider an algebraic system that is at least as strong as Res-Lin even for non-Boolean
formulas, see below). Another rule is an algebraic version of Tseitin’s extension rule, which
allows us to introduce new variables that are equivalent to arbitrary depth algebraic circuits.
We will denote our generalization of Polynomial Calculus as Ext-PC

√
. Note that Ext-PC

√

p-simulates Extended Frege system (since Ext-PC
√

p-simulates Extended Resolution and
Extended Resolution p-simulates Extended Frege [17]), but it’s not obvious how to p-simulate
IPS refutations in Ext-PC

√
(since IPS refutations polynomials are written as algebraic circuits

and Ext-PC
√

refutations are written explicitly as a sum of monomials).
In this work we give a partial positive answer to the question raised in [13] asking for a

technique for proving size lower bounds on Polynomial Calculus without proving any degree
lower bounds. However, our lower bound works only for field Q and the question about
proving lower bounds over finite fields remains open. Also, we give a partial answer to
another question raised in [13] by proving an exponential lower bound for the system with an
extension rule even stronger than that in ΣΠΣ-PC, which is another extension of Polynomial
Calculus presented in the aforementioned work.

We consider the following subset-sum instance, called Binary Value Principle (BVPn) [1, 18]:

1 + x1 + 2x2 + . . . 2n−1xn = 0,

and prove an exponential lower bound for the size of Ext-PC
√

Q refutations of BVPn. Note
that Binary Value Principle does not correspond to the translation of any CNF formula and
thus the question about proving the size lower bound on the refutation of formulas in CNF
without proving degree lower bounds remains open.

▶ Theorem 1. Any Ext-PC
√

Q refutation of BVPn requires size 2Ω(n).

The technique we use for proving this lower bound is similar to the technique for proving
the conditional IPS lower bound in [1]. However, since Ext-PC proof system is weaker than
Ideal Proof System, we get an unconditional lower bound. The main idea of the conditional
lower bound in [1] is to prove the complexity lower bound on the free term in the end of
the IPS-refutation of BVPn over Z and then show that IPSZ simulates IPSQ. One difference
is that instead of concentrating on the complexity of computing the free term of the proof,
we concentrate on the prime numbers being mentioned in the proof (and thus appearing as
factors of the free term).

Then we consider Res-Lin and show that Ext-PC
√

Q simulates Res-Lin and thus get an
alternative lower bound for Res-Lin.

▶ Corollary 2. Any Res-LinQ refutation of BVPn requires size 2Ω(n).

Note that while Part and Tzameret [18] prove an exponential lower bound on the number
of lines in the proof, we prove a bound on the proof size (essentially, on the bit size of scalars
appearing in the proof).

CCC 2021

21:4 A Lower Bound for Polynomial Calculus with Extension Rule

1.2 Organization of the paper
In Section 2 we recall the definition of Polynomial Calculus (PC) and give the definitions of
Polynomial Calculus with square root (PC

√
) and Extended Polynomial Calculus with square

root (Ext-PC
√

).
In Section 3 we prove an exponential lower bound on the size of Ext-PC

√

Q refutations of
BVPn. We start with considering derivations with integer coefficients (Ext-PC

√

Z) and show
that the free term in the end of such refutation of BVPn is not just large but also is divisible
by all primes less than 2n (see Theorem 9). Then, in Theorem 11, we convert proofs over Q
into proofs over Z without changing the set of primes mentioned in the proof and thus get
an Ext-PC

√

Q lower bound.
In Section 4 we show that Ext-PC

√

Q simulates Res-Lin and thus we get an alternative lower
bound for the size of Res-Lin refutations of BVPn.

2 Preliminaries

In this paper we are going to work with polynomials over integers or rationals. We define the
size of a polynomial roughly as the total length of the bit representation of its coefficients:

▶ Definition 3 (Size of a polynomial). Let f be an arbitrary integer or rational polynomial in
variables {x1, . . . , xn}.

If f ∈ Z[x1, . . . , xn] then Size(f) =
∑

(⌈log |ai|⌉ + 1) where ai are the coefficients of f .
If f ∈ Q[x1, . . . , xn] then Size(f) =

∑
(⌈log |pi|⌉ + ⌈log |qi|⌉ + 1) where pi ∈ Z, qi ∈ N

and pi

qi
are the coefficients of f .

▶ Definition 4 (Polynomial Calculus). Let Γ = {P1, . . . , Pm} ⊂ F[x1, . . . , xn] be a set of
polynomials in variables {x1, . . . , xn} over a field F such that the system of equations P1 =
0, . . . , Pm = 0 has no solution. A Polynomial Calculus refutation of Γ is a sequence of
polynomials R1, . . . , Rs where Rs = 1 and for every l in {1, . . . , s}, Rl ∈ Γ or is obtained
through one of the following derivation rules for j, k < l

Rl = αRj + βRk for α, β ∈ F
Rl = xiRk

The size of the refutation is
∑s

l=1 Size(Rl). The degree of the refutation is maxl deg(Rl).

Now we consider a variant of Polynomial Calculus proof system with additional square
root derivation rule (see [9]). Moreover, we extend our definition from fields to rings.

▶ Definition 5 (Polynomial Calculus with square root). Let Γ = {P1, . . . , Pm} ⊂ R[x1, . . . , xn]
be a set of polynomials in variables {x1, . . . , xn} over a domain R such that the system of
equations P1 = 0, . . . , Pm = 0 has no solution. A PC

√

R refutation of Γ is a sequence of
polynomials R1, . . . , Rs where Rs = M for some constant M ∈ R, M ̸= 0 and for every l in
{1, . . . , s}, Rl ∈ Γ or is obtained through one of the following derivation rules for j, k < l

Rl = αRj + βRk for α, β ∈ R

Rl = xiRk for some i ∈ {1, . . . , n}
R2

l = Rk (which means that we can take square root of a polynomial if and only if it is a
square of some other polynomial)

The size of the refutation is
∑s

l=1 Size(Rl), where Size(Rl) is the size of the polynomial Rl.
The degree of the refutation is maxl deg(Rl).

▶ Note 6. We will consider Q or Z as the ring R. For both of those rings, if we consider
Boolean case, where axioms x2

i − xi = 0 added, our system will be complete, which means
that for every unsatisfiable over {0, 1} assignment system {fi(x⃗) = 0} there is a PC

√

R

refutation. Also, note that if R is a domain and P 2 = 0 for some P ∈ R[x⃗], then P = 0.

Y. Alekseev 21:5

We now define a variant of PC
√

R , Ext-PC
√

R where the proof system is additionally allowed to
introduce new variables yi corresponding to arbitrary polynomials in the original variables xi.

▶ Definition 7 (Extended Polynomial Calculus with square root). Let Γ = {P1, . . . , Pm} ⊂
R[x1, . . . , xn] be a set of polynomials in variables {x1, . . . , xn} over a domain R such that
the system of equations P1 = 0, . . . , Pm = 0 has no solution. A Ext-PC

√

R refutation of Γ is a
PC

√

R refutation of a set

Γ′ = {P1, . . . , Pm, y1 − Q1(x1, . . . , xn), y2 − Q2(x1, . . . , xn, y1), . . . ,

ym − Qm(x1, . . . , xn, y1, . . . , ym−1)}

where Qi ∈ R[x⃗, y1, . . . , yi−1] are arbitrary polynomials.
The size of the Ext-PC

√

R refutation is equal to the size of the PC
√

R refutation of Γ′.

3 Lower bound

In order to prove the lower bound for the Ext-PC
√

Q proof system, we consider the following
subset-sum instance [1, 18]:

▶ Definition 8 (Binary Value Principle BVPn). The binary value principle over the variables
x1, . . . , xn, BVPn for short, is the following unsatisfiable system of equations:

x1 + 2x2 + . . . 2n−1xn + 1 = 0,

x2
1 − x1 = 0, x2

2 − x2 = 0, . . . , x2
n − xn = 0.

▶ Theorem 9. Any Ext-PC
√

Z refutation of BVPn requires size Ω(2n). Moreover, the absolute
value of the constant in the end of our Ext-PC

√

Z refutation consists of at least C · 2n bits for
some constant C > 0. Also, the constant in the end of our Ext-PC

√

Z refutation is divisible by
every prime number less than 2n.

Proof. Assume that {R1, . . . , Rt} is an Ext-PC
√

Z refutation of BVPn. Then we know that
{R1, . . . , Rt} is a PC

√

Z refutation of some set

Γ′ = {G(x⃗), F1(x⃗), . . . , Fn(x⃗), y1 − Q1(x⃗), . . . ym − Qm(x⃗, y1, . . . , ym−1)}

where G(x⃗) = 1 +
∑i=n

i=1 2(i−1)xi, Fi(x⃗) = x2
i − xi and Qi ∈ Z[x⃗, y1, . . . , yi−1].

By the definition of an Ext-PC
√

Z refutation we know that there exists an integer constant
M ̸= 0 such that Rt = M .

▷ Claim 10. M is divisible by every prime number less than 2n.

Proof of claim. Consider arbitrary integer number 0 ≤ k < 2n and its binary representation
b1, . . . , bn. Let k + 1 be prime. Then G(b1, . . . , bn) = k + 1, Fi(b1, . . . , bn) = b2

i − bi = 0.
Also consider integers c1, . . . , cm such that ci = Qi(b1, . . . , bn, c1, c2, . . . , ci−1). Now we will
prove by induction that every integer number Ri(b1, . . . , bn, c1, . . . , cm) is divisible by k + 1
and thus M is divisible by every prime number less than 2n.

CCC 2021

21:6 A Lower Bound for Polynomial Calculus with Extension Rule

Base case: if i = 1, then

Ri = G(b1, . . . , bn, c1, . . . , cm) = k + 1

or

Ri = Fi(b1, . . . , bn, c1, . . . , cm) = 0

or

Ri(b1, . . . , bn, c1, . . . , cm) = ci − Qi(b1, . . . , bn, c1, . . . , ci−1) = 0

which means that Ri is divisible by k + 1.

Induction step: suppose we know that Rj is divisible by k + 1 for any j ≤ i. Now we will
show it for Ri+1. There are four cases:
1. If Ri+1 ∈ Γ′, then this case is equivalent to the base case and Ri+1(b1, . . . , bn, c1, . . . , cm)

is divisible by k + 1.
2. If Ri+1 = αRj +βRs for α, β ∈ Z and j, s ≤ i, then Ri+1(b1, . . . , bn, c1, . . . , cm) is divisible

by k + 1 because Rj(b1, . . . , bn, c1, . . . , cm) and Rs(b1, . . . , bn, c1, . . . , cm) are divisible by
k + 1 and α and β are integers.

3. If Ri+1 = xjRs or Ri+1 = yjRs, then Ri+1(b1, . . . , bn, c1, . . . , cm) is divisible by k + 1
because Rs(b1, . . . , bn, c1, . . . , cm) is divisible by k + 1 and bi and ci are integers.

4. If R2
i+1 = Rs, then we know that Rs(b1, . . . , bn, c1, . . . , cm) is divisible by k + 1. Suppose

Ri+1(b1, . . . , bn, c1, . . . , cm) is not divisible by k + 1. Then Ri+1(b1, . . . , bn, c1, . . . , cm)2

is not divisible by k + 1 since k + 1 is prime. But Ri+1(b1, . . . , bn, c1, . . . , cm)2 =
Rs(b1, . . . , bn, c1, . . . , cm) which leads us to a contradiction.

Since every Ri(b1, . . . , bn, c1, . . . , cm) is divisible by k + 1, we know that M = Rt(b1, . . . , bn,

c1, . . . , cm) is divisible by every k + 1 less than 2n, and in particular M is divisible by every
prime number less than 2n.

So we know that M is divisible by the product of all prime numbers less than 2n. Then
we know that |M | > (π(2n))! where π(2n) is the number of all prime numbers less than 2n.
By the prime number theorem π(2n) > C 2n

n . By Stirling’s approximation we get

|M | >

(
C

2n

n

)
! > C ′ ·

(
C

2n

e · n

)C 2n

n

> C ′′ (
2 n

2
)C 2n

n > C ′′2(2nC0)

which means that M consists of at least C1 · 2n bits and therefore any Ext-PC
√

Z refutation of
BVPn requires size Ω(2n). ◁

◀

In order to prove a lower bound over Q, we need to convert an Ext-PC
√

Q proof into an
Ext-PC

√

Z proof. The key idea of this translation is that we can create an Ext-PC
√

Z proof in
which the constant in the end is a multiplication of some constants occurring in the original
Ext-PC

√

Q refutation. Since the constant in the end of the Ext-PC
√

Z refutation is divisible by
all prime numbers less then 2n, we get a lower bound on the size of constants occurring in
the Ext-PC

√

Q refutation and hence on the size of the refutation itself.

▶ Theorem 11. Any Ext-PC
√

Q refutation of BVPn requires size Ω(2n).

Y. Alekseev 21:7

Proof. Assume that {R1, . . . , Rt} is an Ext-PC
√

Q refutation of Γ of the size S. Then we
know that {R1, . . . , Rt} is a PC

√

Q refutation of some set Γ′ = Γ ∪ {y1 − Q1(x⃗), . . . , ym −
Qm(x⃗, y1, . . . , ym−1)} where Qi ∈ Q[x⃗, y⃗]. Also, we know that Rt = M for some M ∈ Q.

Consider integers M1, . . . , Mm where Mi is equal to the product of denominators of all
coefficients of polynomial Qi. Also consider all polynomials Rj(x⃗, y⃗) which was derived by
using linear combination rule which means that Rj = αRi + βRk. Then we consider all
constants α and β occurring in linear combination derivations in our proof. Let’s denote the
set of those constants as {γ1, γ2, . . . , γl} ⊂ Q. Now consider the set of all denominators of
the constants in {γ1, γ2, . . . , γl} and denote this set as {δ1, δ2, . . . , δl} ⊂ N.

Also consider the products of all denominators of coefficients of polynomials {R1, . . . , Rt}.
We will denote the set of those integers as {L1, . . . , Lt} ⊂ N.

Now we will construct the Ext-PC
√

Z refutation of Γ such that the constant in the end
of this proof is equal to M c1

1 · M c2
2 · · · M cm

m · δ
cm+1
1 · · · δ

cm+l

l · L
cm+l+1
1 · · · L

cm+l+t

t · M where
{c1, c2, . . . , cm+l+t} ⊂ N ∪ {0}.

Firstly, we will translate polynomials Qi into some integer polynomials Q′
i. Consider

Q′
1(x⃗) = M1 · Q1(x⃗) where M1 is equal to the product of denominators of all coefficients of

the polynomial Q1. Then Q′
1 ∈ Z[x⃗] and T1 = M1. Then consider Q′

2(x⃗, y′
1) = T2 · Q2(x⃗,

y′
1

T1
)

where T2 is equal to T α11
1 · M2 where α11 is an arbitrary non-negative integer such that

Q′
2 ∈ Z[x⃗, y′

1]. Then for every i we consider Q′
i(x⃗, y′

1, . . . , y′
i−1) = Ti · Qi(x⃗,

y′
1

T1
, . . . ,

y′
i−1

Ti−1
)

where Ti = T αi1
1 · T αi2

2 · · · T
αii−1
i−1 · Mi where αi1, . . . , αii−1 are arbitrary integers such that

Q′
i ∈ Z[x⃗, y′

1, . . . , y′
i−1]. Note that we are not interested in the size of the integers αij so they

could be arbitrary large.
Now we will construct a PC

√

Q refutation {R′
1, . . . , R′

s} of the set Γ′′ = Γ ∪ {y′
1 −

Q′
1(x⃗), . . . y′

m − Q′
m(x⃗, y′

1, . . . , y′
m−1)} of the following form: this refutation duplicates the

original refutation {R1, . . . , Rt} in all cases except when the polynomial Ri was derived by
multiplying by some variable yj from some polynomial Rk. In this case we will multiply
corresponding polynomial by y′

j and then multiply it by 1
Tj

.
Formally, we will prove the following claim:

▷ Claim 12. There is a PC
√

Q refutation {R′
1, . . . , R′

s} of the set Γ′′ = Γ∪{y′
1 −Q′

1(x⃗), . . . y′
m −

Q′
m(x⃗, y′

1, . . . , y′
m−1)} for which the following properties holds:

For every polynomial R′
i(x⃗, y′

1, . . . , y′
m) one of the following equations holds: R′

i(x⃗, y1 ·
T1, . . . , ym · Tm) = Rj(x⃗, y1, . . . , ym) for some j or R′

i(x⃗, y1 · T1, . . . , ym · Tm) = Tk ·
Rj(x⃗, y1, . . . , ym) for some k and j.
If R′

i(x⃗, y′
1, . . . , y′

m) was derived from R′
j(x⃗, y′

1, . . . , y′
m) and R′

k(x⃗, y1, . . . , ym) by taking
linear combination with rational constants α and β (which means that R′

i = αR′
j + βR′

k),
then α = 1

Tf
and β = 0 for some f or there is some polynomial Rh(x⃗, y′

1, . . . , y′
m) which

was derived from some polynomials Rk and Rl by using linear combination with constants
α and β.

Proof of claim. The proof is an easy (but lengthy) inductive argument and is given in the
Appendix A. ◁

Now we will show that Γ′′ has a PC
√

Z refutation in which the constant in the end is
equal to

M c1
1 · M c2

2 · · · M cm
m · δ

cm+1
1 · · · δ

cm+l

l · L
cm+l+1
1 · · · L

cm+l+t

t · M.

CCC 2021

21:8 A Lower Bound for Polynomial Calculus with Extension Rule

In order to do this we will fix a PC
√

Q refutation {R′
1, . . . , R′

s} of Γ′′ with the properties
from the Claim 12 and construct a PC

√

Z refutation of Γ′′ by induction. Moreover, we
will construct a PC

√

Z refutation {R′′
1 , . . . , R′′

f } in which every polynomial R′′
i is equal to

Md1
1 · Md2

2 · · · Mdm
m · δ

dm+1
1 · · · δ

dm+l

l · L
dm+l+1
1 · · · L

dm+l+t

t · R′
i for some non-negative integers

d1, . . . , dm+l+t and some polynomial R′
i.

Informally, we are going to multiply each line in our PC
√

Q refutation by some constant in
order to get a correct PC

√

Z refutation. But since we cannot divide polynomials in our PC
√

Z
refutation by any constant, we will duplicate original PC

√

Q refutation multiplied by some
constant of the form Md1

1 · Md2
2 · · · Mdm

m · δ
dm+1
1 · · · δ

dm+l

l · L
dm+l+1
1 · · · L

dm+l+t

t every time we
would like to simulate derivation in the original proof.

Induction statement. Let {R′
1, . . . , R′

i} be a PC
√

Q derivation from Γ′′ with the properties
from the Claim 12. Then there exists a PC

√

Z derivation {R′′
1 , . . . , R′′

f } from Γ′′ such that
f ≤ 2i2.
There is some constant Fi = M b1

1 · M b2
2 · · · M bm

m · δ
bm+1
1 · · · δ

bm+l

l · L
bm+l+1
1 · · · L

bm+l+t

t ∈ N
such that

Fi · R′
1 = R′′

f−i+1, Fi · R′
2 = R′′

f−i+2, . . . , Fi · R′
i = R′′

f

Both base case of induction and induction step are straightforward derivations and are given
in the Appendix B.

So now we have a Ext-PC
√

Z refutation of Γ such that the constant in the end of this
refutation is equal to M c1

1 · M c2
2 · · · M cm

m · δ
cm+1
1 · · · δ

cm+l

l · L
cm+l+1
1 · · · L

cm+l+t

t · M . Suppose
that M = p′

q′ where p ∈ Z and q ∈ N. Then, from Theorem 9 we know that M c1
1 ·

M c2
2 · · · M cm

m · δ
cm+1
1 · · · δ

cm+l

f · L
cm+l+1
1 · · · L

cm+l+t

t · p′ is divisible by every prime number
less than 2n. Since M1, . . . , Mm, δ1, . . . , δl, L1, . . . , Lt are positive integers we know that
M1 · M2 · · · Mm · δ1 · · · δl · L1 · · · Lt · p′ is divisible by every prime number less than 2n. Also
we know that

log⌈M1⌉+· · ·+log⌈Mm⌉+log⌈δ1⌉+· · ·+log⌈δl⌉+log⌈L1⌉+· · ·+log⌈Lt⌉+log⌈p⌉ ≤ O(Size(S))

because all constants M1, . . . , Mm, L1, . . . , Lt are products of denominators in the lines of
our refutation {R1, . . . , Rt} and constants δ1, . . . , δl are denominators of rationals in linear
combinations used in our derivation.

On the other hand, we know that

M1 · M2 · · · Mm · δ1 · · · δl · L1 · · · Lt · p′ ≥ 22Ω(n)

since our product is divisible by every prime number less than 2n. Then we know that
S ≥ 2Ω(n). ◀

4 Connection between Res-Lin, Ext-PC
√

Q and Ext-PCQ

Following [22], we define Res-Lin proof system.

▶ Definition 13. A disjunction of linear equations is of the following general form:

(a(1)
1 x1 + . . . + a(1)

n xn = a
(1)
0) ∨ · · · ∨ (a(t)

1 x1 + . . . + a(t)
n xn = a

(t)
0) (1)

where t ≥ 0 and the coefficients aj
i are integers (for all 0 ≤ i ≤ n, 1 ≤ j ≤ t). The semantics

of such a disjunction is the natural one: We say that an assignment of integral values to the
variables x1, . . . , xn satisfies (1) if and only if there exists j ∈ {1, . . . , t} so that the equation
a

(j)
1 x1 + . . . + a

(j)
n xn = a

(j)
0 holds under the given assignment.

Y. Alekseev 21:9

The size of the disjunction of linear equations is
∑n

i=1
∑t

j=1 |a(j)
i | if all coefficients are

written in unary notation. If all coefficients are written in binary notation then the size is
equal to

∑n
i=1

∑t
j=1(⌈log |a(j)

i |⌉ + 1).

▶ Definition 14. Let K := {K1, . . . , Km} be a collection of disjunctions of linear equations.
An Res-Lin proof from K of a disjunction of linear equations D is a finite sequence π =
(D1, . . . , Dl) of disjunctions of linear equations, such that Dl = D and for every i ∈ {1, . . . , l},
either Di = Kj for some j ∈ {1, . . . , m}, or Di is a Boolean axiom (xh = 0) ∨ (xh = 1) for
some h ∈ {1, . . . , n}, or Di was deduced by one of the following Res-Lin inference rules, using
Dj, Dk for some j, k < i:

Resolution: Let A, B be two, possibly empty, disjunctions of linear equations and let L1,
L2 be two linear equations. From A ∨ L1 and B ∨ L2 derive A ∨ B ∨ (αL1 + βL2) where
α, β ∈ Z.
Weakening: From a (possibly empty) disjunction of linear equations A derive A ∨ L,
where L is an arbitrary linear equation over {x1, . . . , xn}.
Simplification: From A ∨ (k = 0) derive A, where A is a, possibly empty, disjunction
of linear equations and k ̸= 0 is a constant.
Contraction: From A ∨ L ∨ L derive A ∨ L, where A is a, possibly empty, disjunction
of linear equations and L is some linear equation.

Note that we assume that the order of equations in the disjunction is not significant, while
we contract identical equations, especially.

An Res-Lin refutation of a collection of disjunctions of linear equations K is a proof
of the empty disjunction from K. The size of an Res-Lin proof π is the total size of all the
disjunctions of linear equations in π.

If all coefficients in our Res-Lin proof π are written in the unary notation then we denote
this proof an Res-LinU derivation. Otherwise, if all coefficients are written in the binary
notation then we denote this proof an Res-LinB derivation.

▶ Note 15. In the original Res-Lin proof system duplicate linear equations can be discarded
from the disjunction. Instead, we will use contraction rule explicitly. It is easy to see that
both these variants of Res-Lin system are equivalent.

▶ Definition 16. Let D be a disjunction of linear equations:

(a(1)
1 x1 + . . . + a(1)

n xn = a
(1)
0) ∨ · · · ∨ (a(t)

1 x1 + . . . + a(t)
n xn = a

(t)
0)

We denote by D̂ its translation into the following system of polynomial equations:

y1 · y2 · · · yt = 0

y1 = a
(1)
1 x1 + . . . + a(1)

n xn − a
(1)
0 , y2 = a

(2)
1 x1 + . . . + a(2)

n xn − a
(2)
0 , . . . ,

yt = a
(t)
1 x1 + . . . + a(t)

n xn − a
(t)
0

If D is the empty disjunction, we define D̂ to be the single polynomial equation 1 = 0.

Now we will prove that Ext-PC
√

Q p-simulates Res-LinB and ΣΠΣ-PCQ p-simulates Res-
LinU .

▶ Theorem 17. Let π = (D1, . . . , Dl) be an Res-LinB proof sequence of Dl from some
collection of initial disjunctions of linear equations Q1, . . . , Qm. Also consider L1, . . . , Lt –
all affine forms that we have in all disjunctions in our Res-LinB proof sequence.

Then, there exists a PC
√

Q proof of D̂l from Q̂1 ∪ . . .∪Q̂m ∪{y1 = L1, y2 = L2, . . . , yt = Lt}
of size at most O(p(Size(π))) for some polynomial p.

CCC 2021

21:10 A Lower Bound for Polynomial Calculus with Extension Rule

Proof. The proof is a straightforward induction and is given in the Appendix C. ◀

Following [13], we define the ΣΠΣ-PCR proof system.

▶ Definition 18 ([13]). Let Γ = {P1, . . . , Pm} ⊂ R[x1, . . . , xn] be a set of polynomials in
variables {x1, . . . , xn} over a ring R such that the system of equations P1 = 0, . . . , Pm =
0 has no solution. A ΣΠΣ-PCR refutation of Γ is a PCR refutation of a set Γ′ =
{P1, . . . , Pm, Q1, . . . , Qm} where Qi are polynomials of the form Qi = yi − (ai0 +

∑
j aijxj)

for some constants aij ∈ R.
The size of the ΣΠΣ-PCR refutation is equal to the size of the PCR refutation of Γ′.

▶ Theorem 19. Let π = (D1, . . . , Dl) be an Res-LinU proof sequence of Dl, from some
collection of initial disjunctions of linear equations Q1, . . . , Qm. Then, there exists a ΣΠΣ-
PCQ proof of D̂l from Q̂1 ∪ . . . ∪ Q̂m of size at most O(p(Size(π))) for some polynomial p.

Proof. To prove this theorem we will use the following lemma from [13]:

▶ Lemma 20 ([13], revision 2 of the ECCC report, lemma 7, p.32). Let Γ = {P1, . . . , Pa,

Q1, . . . , Qb, X, Y } be a set of polynomials such that

P1 = x1 − (x − 1), P2 = x2 − (x − 2), . . . , Pa = xa − (x − a),

Q1 = y1 − (y − 1), Q2 = y2 − (y − 2), . . . , Qb = yb − (y − b),

X = x · x1 · x2 · · · xa, Y = y · y1 · y2 · · · yb.

Then we can introduce new variables z, z1, . . . , za+b using the ΣΠΣ-PCQ extension rule
and derive Γ′ from Γ in ΣΠΣ-PCQ with a derivation of size poly(ab), where Γ′ =
{Z0, Z1, . . . , Za+b, Z} and

Z0 = z−(x+y), Z1 = z1−(x+y+1), Z2 = z2−(x+y+2), . . . , Za+b = za+b−(x+y+a+b),

Z = z · z1 · z2 · · · za+b.

Now we will prove the theorem by induction on lines in π.
Base case: An Res-LinU axiom Qi is translated into Q̂i and Res-LinU Boolean axiom
(xi = 0) ∨ (xi = 1) is translated into PC axiom x2

i − xi = 0.
Induction step: Now we will simulate all Res-LinU derivation rules in the ΣΠΣ-PCQ proof.

Resolution, Weakening, Simplification rules simulation is the same as in Theorem 17.
Contraction: Assume that Di = A ∨ L and Dj = A ∨ L ∨ L where L is a linear equation.
Then, we have already derived polynomial equations

yj1 = (a(1)
j1 x1 + . . .+a

(1)
jn xn −a

(1)
j0), . . . , yjtj−1 = yjtj

= (a(tj)
j1 x1 + . . .+a

(tj)
jn xn −a

(tj)
j0),

yj1 · yj2 · · · yjtj−1 · yjtj
= 0.

Then we can derive yjtj−1 = yjtj
and yj1 · yj2 · · · yjtj−2 · (y2

jtj−1) = 0. Using lemma we
can introduce new variables {z−M , . . . , zM } and derive

z−M = yjtj−1 + M, , z−M+1 = yjtj−1 + M − 1, . . . , z0 = yjtj−1 , zM = yjtj−1 − M,

z−M · z−M+1 · · · zM−1 · zM = 0,

where M = |a(tj−1)
j1 | + |a(tj−1)

j2 | + . . . + |a(tj−1)
jn |. Then we can substitute yjtj − k for each

zk one by one and get equation

f(yjtj−1) = 0

Y. Alekseev 21:11

where f(yjtj−1) = b1 · yjtj−1 + b2 · y2
jtj−1

+ . . . + b2M+1 · y2M+1
jtj−1

is some polynomial from
Z[yjtj−1] and b1 = (M !)2 · (−1)M . Then we can derive the following equation by using
multiplication rule:

yj1 · yj2 · · · yjtj−2 · f(yjtj−1) = b1 · yj1 · yj2 · · · yjtj−2 · yjtj−1+
+ yj1 · yj2 · · · yjtj−2 · (y2

jtj−1) · (b2 + b3 · yjtj−1 + . . . + b2M+1 · y2M−1
jtj−1

) = 0.

Now, using the equation yj1 ·yj2 · · · yjtj−2 ·(y2
jtj−1) = 0 we can derive b1 ·yj1 ·yj2 · · · yjtj−2 ·

yjtj−1 = 0 and since b1 ̸= 0 we can derive yj1 · yj2 · · · yjtj−2 · yjtj−1 = 0. This equation is
the last part of D̂i because other parts were derived earlier.

◀

Now we will show that our lower bound provides an interesting counterpart to a result
from [18].

▶ Theorem 21 ([18]). Any Res-LinB refutation of 1 + 2x1 + . . . + 2nxn = 0 is of the size
2Ω(n).

Proof. From Theorem 11 we know that any Ext-PC
√

Q refutation of BVPn requires size 2Ω(n)

and thus from Theorem 17 we know that there is some polynomial p such that for any
Res-LinB refutation of BVPn of size S the equation p(S) ≥ C0 · 2C1·n holds. Then we know
that for some constant C the equation S ≥ 2C·n holds. ◀

Also we will show that there is no straightforward translation of Res-LinB derivations
into Ext-PCQ refutations.

▶ Theorem 22. Any Ext-PCQ-derivation of 1 + x1 + . . . + 2n−1xn = 0 from equation
(1 + x1 + . . . + 2n−1xn)2 = 0 requires size 2Ω(n).

Proof. The proof of this theorem essentially copies the proof of Theorem 11 and consists of
two parts. In the first part we prove that if we have an Ext-PCZ-derivation of M · (1 + x1 +
. . . + 2n−1xn) = 0 from equation (1 + x1 + . . . + 2n−1xn)2 = 0 where M ∈ Z, M ̸= 0, then
M is divisible by every prime number less than 2n.

In the second part we prove that for every Ext-PCQ-derivation of (1+x1+. . .+2n−1xn) = 0
from equation (1+x1 + . . .+2n−1xn)2 = 0 there is an Ext-PCZ-derivation of Mα1

1 · · · Mαk

k ·(1+
x1 + . . . +2n−1xn) = 0 from equation (1+x1 + . . . +2n−1xn)2 = 0 where Mi ∈ Z, Mi ≠ 0 and
Mi are denominators from the original Ext-PCQ-derivation. Then we know that M1 · · · Mk is
divisible by all prime numbers less than 2n and thus the size of the original Ext-PCQ-derivation
was 2Ω(n).

For the full proof see Appendix D. ◀

Open Problems

1. Theorem 17 says that Ext-PC
√

Q p-simulates any Res-LinB derivation. However, from
Theorem 22 we know that simulation from Theorem 17 doesn’t work for Ext-PCQ. Is
the square root rule necessary, that is, can we p-simulate the Res-LinB refutation in the
Ext-PCQ proof system?

2. A major question is to prove an exponential lower bound on the size of the ΣΠΣ-PCQ
refutation of a translation of formula in CNF.

CCC 2021

21:12 A Lower Bound for Polynomial Calculus with Extension Rule

3. Theorem 21 says that any Res-LinB refutation of BVPn requires size 2Ω(n). Does the
exponential lower bound on the size of the Res-LinB refutation imply the exponential
lower bound on the number of lines in the Res-LinB refutation? Do we necessarily need
large coefficients in some Res-LinB refutations with a small number of lines? Or if there
is a Res-LinB refutation with a small number of lines then there is a Res-LinB refutation
with a small number of lines and small coefficients?

References
1 Yaroslav Alekseev, Dima Grigoriev, Edward A. Hirsch, and Iddo Tzameret. Semi-algebraic

proofs, IPS lower bounds and the τ -conjecture: Can a natural number be negative? In
Proceedings of the 52th Annual ACM Symposium on Theory of Computing (STOC 2020),
pages 54–67, 2020.

2 Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, and Pavel Pudlák. Lower
bounds on Hilbert’s Nullstellensatz and propositional proofs. Proc. London Math. Soc. (3),
73(1):1–26, 1996. doi:10.1112/plms/s3-73.1.1.

3 Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps between
degrees for the polynomial calculus modulo distinct primes. Journal of Computer and System
Sciences, 62(2):267–289, 2001. doi:10.1006/jcss.2000.1726.

4 Samuel R. Buss, Russell Impagliazzo, Jan Krajíček, Pavel Pudlák, Alexander A. Razborov,
and Jiří Sgall. Proof complexity in algebraic systems and bounded depth Frege systems with
modular counting. Computational Complexity, 6(3):256–298, 1996. doi:10.1007/BF01294258.

5 V. Chvátal, W. Cook, and M. Hartmann. On cutting-plane proofs in combinatorial optimization.
Linear Algebra and its Applications, 114-115:455–499, 1989. Special Issue Dedicated to Alan J.
Hoffman. doi:10.1016/0024-3795(89)90476-X.

6 Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm
to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium on the
Theory of Computing (Philadelphia, PA, 1996), pages 174–183, New York, 1996. ACM.

7 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. J. Symb. Log., 44(1):36–50, 1979. doi:10.2307/2273702.

8 W. Cook, C. R. Coullard, and G. Turan. On the complexity of cutting plane proofs. Discrete
Applied Mathematics, 18:25–38, 1987.

9 Dima Grigoriev and Edward A. Hirsch. Algebraic proof systems over formulas. Theoret.
Comput. Sci., 303(1):83–102, 2003. Logic and complexity in computer science (Créteil, 2001).

10 Joshua A. Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and polynomial
identity testing: The ideal proof system. J. ACM, 65(6):37:1–37:59, 2018. doi:10.1145/
3230742.

11 Armin Haken. The intractability of resolution. Theoret. Comput. Sci., 39(2-3):297–308, 1985.
12 Johan Håstad. On small-depth Frege proofs for tseitin for grids. J. ACM, 68(1), 2020.

doi:10.1145/3425606.
13 Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi. The surprising power of constant

depth algebraic proofs. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’20, page 591–603, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3373718.3394754.

14 Russell Impagliazzo, Pavel Pudlák, and Jiří Sgall. Lower bounds for the polynomial calculus
and the gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999. doi:
10.1007/s000370050024.

15 Dmitry Itsykson and Dmitry Sokolov. Resolution over linear equations modulo two. Annals
of Pure and Applied Logic, 171(1):102722, 2020. doi:10.1016/j.apal.2019.102722.

16 Jan Krajíček. Discretely ordered modules as a first-order extension of the cutting planes proof
system. The Journal of Symbolic Logic, 63(4):1582–1596, 1998.

https://doi.org/10.1112/plms/s3-73.1.1
https://doi.org/10.1006/jcss.2000.1726
https://doi.org/10.1007/BF01294258
https://doi.org/10.1016/0024-3795(89)90476-X
https://doi.org/10.2307/2273702
https://doi.org/10.1145/3230742
https://doi.org/10.1145/3230742
https://doi.org/10.1145/3425606
https://doi.org/10.1145/3373718.3394754
https://doi.org/10.1007/s000370050024
https://doi.org/10.1007/s000370050024
https://doi.org/10.1016/j.apal.2019.102722

Y. Alekseev 21:13

17 Jan Krajíček and Pavel Pudlák. Propositional proof systems, the consistency of first order
theories and the complexity of computations. Journal of Symbolic Logic, 54(3):1063–1079,
1989. doi:10.2307/2274765.

18 Fedor Part and Iddo Tzameret. Resolution with counting: Different moduli and dag-like
lower bounds. In 12th Innovations in Theoretical Computer Science Conference, ITCS 2020,
January, 2020, Seattle, WA, USA, 2020.

19 Toniann Pitassi. Algebraic propositional proof systems. In Descriptive complexity and finite
models (Princeton, NJ, 1996), volume 31 of DIMACS Ser. Discrete Math. Theoret. Comput.
Sci., pages 215–244. Amer. Math. Soc., Providence, RI, 1997.

20 Toniann Pitassi. Unsolvable systems of equations and proof complexity. In Proceedings of the
International Congress of Mathematicians, Vol. III (Berlin, 1998), pages 451–460, 1998.

21 Toniann Pitassi, Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. Poly-logarithmic
Frege depth lower bounds via an expander switching lemma. In Proceedings of the Forty-Eighth
Annual ACM Symposium on Theory of Computing, STOC ’16, page 644–657, New York, NY,
USA, 2016. Association for Computing Machinery. doi:10.1145/2897518.2897637.

22 Ran Raz and Iddo Tzameret. Resolution over linear equations and multilinear proofs. Ann.
Pure Appl. Logic, 155(3):194–224, 2008. doi:10.1016/j.apal.2008.04.001.

23 Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical notes of the Academy of Sciences of the USSR,
41(4):333–338, 1987. doi:10.1007/BF01137685.

24 Alexander A. Razborov. Lower bounds for the polynomial calculus. Comput. Complexity,
7(4):291–324, 1998.

25 Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing
(STOC 1987), pages 77–82, 1987. doi:10.1145/28395.28404.

26 Dmitry Sokolov. (semi)algebraic proofs over {± 1} variables. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, page 78–90, New
York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3357713.3384288.

27 Grigori Tseitin. On the complexity of derivations in propositional calculus, pages 466–483.
Studies in constructive mathematics and mathematical logic Part II. Consultants Bureau,
New-York-London, 1968.

A Proof of the Claim 12

▶ Claim 12. There is a PC
√

Q refutation {R′
1, . . . , R′

s} of the set Γ′′ = Γ∪{y′
1 −Q′

1(x⃗), . . . y′
m −

Q′
m(x⃗, y′

1, . . . , y′
m−1)} for which the following properties holds:

For every polynomial R′
i(x⃗, y′

1, . . . , y′
m) one of the following equations holds: R′

i(x⃗, y1 ·
T1, . . . , ym · Tm) = Rj(x⃗, y1, . . . , ym) for some j or R′

i(x⃗, y1 · T1, . . . , ym · Tm) = Tk ·
Rj(x⃗, y1, . . . , ym) for some k and j.
If R′

i(x⃗, y′
1, . . . , y′

m) was derived from R′
j(x⃗, y′

1, . . . , y′
m) and R′

k(x⃗, y1, . . . , ym) by taking
linear combination with rational constants α and β (which means that R′

i = αR′
j + βR′

k),
then α = 1

Tf
and β = 0 for some f or there is some polynomial Rh(x⃗, y′

1, . . . , y′
m) which

was derived from some polynomials Rk and Rl by using linear combination with constants
α and β.

Proof of claim. We will construct PC
√

Q refutation {R′
1, R′

2, . . . , R′
s} of the set Γ′′ by induction.

CCC 2021

https://doi.org/10.2307/2274765
https://doi.org/10.1145/2897518.2897637
https://doi.org/10.1016/j.apal.2008.04.001
https://doi.org/10.1007/BF01137685
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/3357713.3384288

21:14 A Lower Bound for Polynomial Calculus with Extension Rule

Induction statement. Let {R1, . . . , Ri} be a PC
√

Q derivation from Γ′. Then there exists a
PC

√

Q derivation {R′
1, . . . , R′

p} from Γ′′ such that
p ≤ 2i.
For every Rj(x1, . . . , xn, y1, . . . , ym) there exists some R′

k(x1, . . . , xn, y′
1, . . . , y′

m) such
that

R′
k(x1, . . . , xn, T1 · y1, . . . , Tm · ym) = Rj(x1, . . . , xn, y1, . . . , ym).

All the properties mentioned in the claim are true for our derivation {R′
1, . . . , R′

p}.

Base case: If i = 1 then Ri ∈ Γ′. If Ri ∈ Γ then we can take R′
1 = R1. Otherwise, if

Ri = yj − Qj(x⃗) then we can take R′
1 = y′

j − Q′
j(x⃗, y′

1, . . . , y′
j−1) and R′

2 = y′
j−Q′

j(x⃗,y′
1,...,y′

j−1)
Tj

.
Then it’s obvious that

R′
2(x⃗, T1 · y1, . . . , Tm · ym) = R1(x⃗, y1, . . . , ym).

Induction step: Suppose we have already constructed the PC
√

Q refutation {R′
1, R′

2, . . . , R′
p}

for which the induction statement is true. Now we have five cases depending on the way the
Ri+1 is derived.
Case 1: If Ri+1 ∈ Γ′ then this case is equivalent to the base case of induction.
Case 2: If Ri+1 = αRj + βRl then R′

p+1 = αR′
j′ + βR′

l′ where R′
j′(x1, . . . , xn, T1 ·

y1, . . . , Tm · ym) = Rj(x1, . . . , xn, y1, . . . , ym) and R′
l′(x1, . . . , xn, T1 · y1, . . . , Tm · ym) =

Rl(x1, . . . , xn, y1, . . . , ym).
Case 3: If Ri+1 = xl · Rj then R′

p+1 = xl · R′
j′ where R′

j′(x1, . . . , xn, T1 · y1, . . . , Tm · ym) =
Rj(x1, . . . , xn, y1, . . . , ym).

Case 4: If R2
i+1 = Rj then we take

R′
p+1(x1, . . . , xn, y′

1, . . . , y′
m) = Ri+1(x1, . . . , xn,

y′
1

T1
, . . . ,

y′
m

Tm
)

By the induction statement we know that

Rj(x1, . . . , xn, y1, . . . , ym) = R′
j′(x1, . . . , xn, T1 · y′

1, . . . , Tm · y′
m)

for some R′
j′ . Thus we know that

Rj(x1, . . . , xn,
y′

1
T1

, . . . ,
y′

m

Tm
) = R′

j′(x1, . . . , xn, y′
1, . . . , y′

m).

So we know that

R′
p+1(x1, . . . , xn, y′

1, . . . , y′
m)2 = Ri+1(x1, . . . , xn,

y′
1

T1
, . . . ,

y′
m

Tm
)2 =

= Rj(x1, . . . , xn,
y′

1
T1

, . . . ,
y′

m

Tm
) = R′

j′(x1, . . . , xn, y′
1, . . . , y′

m)

and R′
p+1 is derived from R′

j′ .
Case 5: If Ri+1 = yl · Rj then we take R′

p+1 = y′
l · R′

j′ and R′
p+2 = R′

p+1
Tl

where
R′

j′(x1, . . . , xn, T1 · y1, . . . , Tm · ym) = Rj(x1, . . . , xn, y1, . . . , ym).
It’s easy to see that in all these cases the induction statement stays true. ◁

Y. Alekseev 21:15

B Induction form the Theorem 11

Induction statement. Let {R′
1, . . . , R′

i} be a PC
√

Q derivation from Γ′′ with the properties
from the Claim 12. Then there exists a PC

√

Z derivation {R′′
1 , . . . , R′′

f } from Γ′′ such that
f ≤ 2i2.
There is some constant Fi = M b1

1 · M b2
2 · · · M bm

m · δ
bm+1
1 · · · δ

bm+l

l · L
bm+l+1
1 · · · L

bm+l+t

t ∈ N
such that

Fi · R′
1 = R′′

f−i+1, Fi · R′
2 = R′′

f−i+2, . . . , Fi · R′
i = R′′

f

Base case: If i = 1 then R′
i ∈ Γ′′. Then we can take R′′

1 = R′
i.

Induction step: Suppose we have already constructed the PC
√

Z refutation {R′′
1 , R′′

2 , . . . , R′′
f }

for which the induction statement is true. Then there are four cases depending on the way
the R′

i+1 is derived.
Case 1: If R′

i+1 ∈ Γ′′ then Fi+1 = Fi and

R′′
f+1 = R′

i+1, R′′
f+2 = Fi+1 · R′

1, R′′
f+3 = Fi+1 · R′

2, . . . ,

R′′
f+i+1 = Fi+1 · R′

i, , R′′
f+i+2 = Fi+1 · R′

i+1

Case 2: If R′
i+1 = xjR′

l or R′
i+1 = y′

jR′
l then Fi+1 = Fi,

R′′
f+1 = Fi+1 · R′

1, R′′
f+2 = Fi+1 · R′

2, . . . , R′′
f+i = Fi+1 · R′

i

and R′′
f+i+1 = xjR′′

f−i+l = Fi+1 · R′
i+1 or R′′

f+i+1 = yjR′′
f−i+l = Fi+1 · R′′

i+1.
Case 3: If Ri+1 = αRj + βRk where α = p1

q1
and β = p2

q2
where {p1, q1, p2, q2} ⊂ Z. Then

we can take Fi+1 = q1q2Fi,

R′′
f+1 = q1q2 · R′′

f−i+1 = Fi+1 · R′
1, R′′

f+2 = q1q2 · R′′
f−i+2 = Fi+1 · R′

2, . . . ,

R′′
f+i = q1q2 · R′′

f = Fi+1R′
i

and R′′
f+i+1 = p1q2 · R′′

f−i+j + p2q1 · R′′
f−i+k = Mi+1R′

i+1. From the Claim 12 we know
that α = 1

Tk
for some k and β = 0, or q2 and q1 are equal to some δk and δr. From the

induction statement we know that

Fi = M b1
1 · M b2

2 · · · M bm
m · δ

bm+1
1 · · · δ

bm+l

l · L
bm+l+1
1 · · · L

bm+l+t

t .

Then, since Tk = Mr1k
1 · · · Mrmk

m , we know that

Fi+1 = M
b′

1
1 · M

b′
2

2 · · · M
b′

m
m · δ

b′
m+1

1 · · · δ
b′

m+l

l · L
b′

m+l+1
1 · · · L

b′
m+l+t

t ,

and the induction statement stays true.
Case 4: Suppose R′2

i+1 = R′
j . We know that

R′
i+1(x1, . . . , xn, y′

1, . . . , y′
m) = Rk(x1, . . . , xn,

y′
1

T1
, . . . ,

y′
m

Tm
)

or

R′
i+1(x1, . . . , xn, y′

1, . . . , y′
m) = Th · Rk(x1, . . . , xn,

y′
1

T1
, . . . ,

y′
m

Tm
)

CCC 2021

21:16 A Lower Bound for Polynomial Calculus with Extension Rule

for some h. Then we can take M ′ = Lk · T α1
1 · T α2

2 · · · T αm
m = Lk · M

α′
1

1 · M
α′

2
2 · · · M

α′
m

m for
some non-negative integers α1, . . . , αm, such that M ′ · R′

i+1 is an integer polynomial. We
know that such integers α1, . . . , αm exist since Lk is the product of all denominators of
coefficients of polynomial Rk.

Then we can take Fi+1 = M ′ · Fi. It’s obvious that Fi+1 · R′
i+1 is an integer polynomial.

Then we can make the following PC
√

Z derivation:

R′′
f+1 = Fi(M ′)2 · R′′

f−i+j = (FiM
′)2 · R′

j , R′
f+2 = M ′ · R′

f−i+1 = Fi+1 · R1,

R′
f+3 = M ′ · R′

f−i+2 = Fi+1 · R2, . . . , R′
f+i+1 = M ′ · R′

f = Fi+1Ri.

Then we can take R′′
f+i+2 = FiM

′ · R′
i+1 and since R′′

f+1 = (FiM
′)2 · R′

j we know that
(R′′

f+i+2)2 = R′′
f+1 and we get a correct PC

√

Z derivation.
Since M ′ = Lp · M

α′
1

1 · M
α′

2
2 · · · M

α′
m

m we know that

Fi+1 = M
b′

1
1 · M

b′
2

2 · · · M
b′

m
m · δ

b′
m+1

1 · · · δ
b′

m+l

f · L
b′

m+l+1
1 · · · L

b′
m+l+t

t ,

and the induction statement stays true.

C Proof of the Theorem 17

▶ Theorem 17. Let π = (D1, . . . , Dl) be an Res-LinB proof sequence of Dl from some
collection of initial disjunctions of linear equations Q1, . . . , Qm. Also consider L1, . . . , Lt –
all affine forms that we have in all disjunctions in our Res-LinB proof sequence.

Then, there exists a PC
√

Q proof of D̂l from Q̂1 ∪ . . .∪Q̂m ∪{y1 = L1, y2 = L2, . . . , yt = Lt}
of size at most O(p(Size(π))) for some polynomial p.

Proof. We proceed by induction on the number of lines in π.
Base case: An Res-LinB axiom Qi is translated into Q̂i and Res-LinB Boolean axiom (xi =
0) ∨ (xi = 1) is translated into PC axiom x2

i − xi = 0.
Induction step: Now we will simulate all Res-LinB derivation rules in the PC

√

Q proof.
Resolution: Assume that Di = A∨B∨(αL1 +βL2) where Dj = A∨L1 and Dk = B∨L2.
Then, we have already derived polynomial equations

yj1 = (a(1)
j1 x1 + . . . + a

(1)
jn xn − a

(1)
j0), . . . , yjtj

= (a(tj)
j1 x1 + . . . + a

(tj)
jn xn − a

(tj)
j0),

yk1 = (a(1)
k1 x1 + . . . + a

(1)
kn xn − a

(1)
k0), . . . , yktk

= (a(tk)
k1 x1 + . . . + a

(tk)
kn xn − a

(tk)
k0),

yj1 · yj2 · · · yjtj
= 0, yk1 · yk2 · · · yktk

= 0
where

A = (a(2)
j1 x1 + . . . + a

(2)
jn xn = a

(2)
j0) ∨ · · · ∨ (a(tj)

j1 x1 + . . . + a
(tj)
jn xn = a

(tj)
j0),

B = (a(2)
k1 x1 + . . . + a

(2)
kn xn = a

(2)
k0) ∨ · · · ∨ (a(tk)

k1 x1 + . . . + a
(tk)
kn xn = a

(tk)
k0)

L1 = (a(1)
j1 x1 + . . . + a

(1)
jn xn = a

(1)
j0), L2 = (a(1)

k1 x1 + . . . + a
(1)
kn xn = a

(1)
k0).

Then we can derive yj1 · yj2 · · · yjtj
· yk2 · · · yktk

= 0, yk1 · yj2 · · · yjtj
· yk2 · · · yktk

= 0 and
thus (αyj1 + βyk1) · yj2 · · · yjtj

· yk2 · · · yktk
= 0. Then there is some equation yi = Li

from the set {y1 = L1, y2 = L2, . . . , yt = Lt}, for which holds

Li = α(a(1)
j1 x1 + . . . + a

(1)
jn xn − a

(1)
j0) + β(a(1)

k1 x1 + . . . + a
(1)
kn xn − a

(1)
k0).

Then we can derive yi = αyj1 + βyk1 and yi · yj2 · · · yjtj
· yk2 · · · yktk

= 0 which is part
of D̂i.

Y. Alekseev 21:17

Weakening: Assume that Di = Dj ∨ L where L is a linear equation. Then, we have
already derived polynomial equations

yj1 = (a(1)
j1 x1 + . . . + a

(1)
jn xn − a

(1)
j0), . . . , yjtj

= (a(tj)
j1 x1 + . . . + a

(tj)
jn xn − a

(tj)
j0),

yj1 · yj2 · · · yjtj
= 0.

We know that there is some variable y0 for which y0 = b1x1 + . . . bnxn − b0 where
L is a linear equation b1x1 + . . . bnxn = b0. From yj1 · yj2 · · · yjtj = 0 we can derive
y0 · yj1 · yj2 · · · yjtj = 0 which is part of D̂i.
Simplification: Suppose that Di = A and Dj = A ∨ (k = 0) where k ∈ Z, k ̸= 0. Then,
we have already derived polynomial equations

yj1 = (a(1)
j1 x1 + . . . + a

(1)
jn xn − a

(1)
j0), . . . ,

yjtj−1 = (a(tj−1)
j1 x1 + . . . + a

(tj−1)
jn xn − a

(tj−1)
j0), yjtj

= k,

yj1 · yj2 · · · yjtj = 0.

From equation yj1 · yj2 · · · yjtj
= 0 we can derive equation yj1 · yj2 · · · yjtj−1 · k = 0 from

which we can derive yj1 · yj2 · · · yjtj−1 = 0 which is part of D̂i.
Contraction: Assume that Di = A ∨ L and Dj ∨ L ∨ L where L is a linear equation.
Then, we have already derived polynomial equations

yj1 = (a(1)
j1 x1 + . . .+a

(1)
jn xn −a

(1)
j0), . . . , yjtj−1 = yjtj

= (a(tj)
j1 x1 + . . .+a

(tj)
jn xn −a

(tj)
j0),

yj1 · yj2 · · · yjtj−1 · yjtj = 0.

Then we can derive yjtj−1 = yjtj
and yj1 ·yj2 · · · yjtj−2 ·(y2

jtj−1) = 0. Using multiplication
we can derive y2

j1 · y2
j2 · · · y2

jtj−2 · (y2
jtj−1) = 0 from which we can derive the equation

yj1 · yj2 · · · yjtj−1 = 0 by using the square root rule. This equation is the last part of D̂i

because other parts were derived earlier. ◀

D Proof of the theorem 22

▶ Theorem 22. Any Ext-PCQ-derivation of 1 + x1 + . . . + 2n−1xn = 0 from equation
(1 + x1 + . . . + 2n−1xn)2 = 0 requires size 2Ω(n).
Proof. Firstly, we need the following claim:
▷ Claim. For any Ext-PCZ-derivation of M · (1 + x1 + . . . + 2n−1xn) = 0 from equation
(1 + x1 + . . . + 2n−1xn)2 = 0 where M ∈ Z, M ̸= 0, constant M is divisible by every prime
number less than 2n.
Proof of claim. Assume that {R1, . . . , Rt} is an Ext-PCZ-derivation of M · (1 + x1 + . . . +
2n−1xn) = 0 from equation (1 + x1 + . . . + 2n−1xn)2 = 0. Then we know that {R1, . . . , Rt}
is a PCZ refutation of some set

Γ′ = {G(x⃗), F1(x⃗), . . . , Fn(x⃗), y1 − Q1(x⃗), . . . ym − Qm(x⃗, y1, . . . , ym−1)}

where G(x⃗) = (1 +
∑i=n

i=1 2(i−1)xi)2, Fi(x⃗) = x2
i − xi, Qi ∈ Z[x⃗, y1, . . . , yi−1] and Rt =

M · (1 + x1 + . . . + 2n−1xn).
Now consider arbitrary integer number 0 ≤ k < 2n and its binary representation b1, . . . , bn.

Then G(b1, . . . , bn) = (k + 1)2, Fi(b1, . . . , bn) = b2
i − bi = 0. Also consider integers c1, . . . , cm

such that ci = Qi(b1, . . . , bn, c1, c2, . . . , ci−1). Now we will prove by induction that every
integer number Ri(b1, . . . , bn, c1, . . . , cm) is divisible by (k + 1)2 and thus M is divisible by
every prime number less than 2n since 1 + b1 + . . . + 2n−1bn = k + 1.

CCC 2021

21:18 A Lower Bound for Polynomial Calculus with Extension Rule

Base case: if i = 1, then Ri = G(b1, . . . , bn, c1, . . . , cm) = (k + 1)2 or Ri = Fi(b1, . . . , bn,

c1, . . . , cm) = 0 or Ri(b1, . . . , bn, c1, . . . , cm) = ci − Qi(b1, . . . , bn, c1, . . . , ci−1) = 0 which
means that Ri is divisible by (k + 1)2.

Induction step: suppose we know that Rj is divisible by (k + 1)2 for any j ≤ i. Now we
will show it for Ri+1. There are three cases:
1. If Ri+1 ∈ Γ′, then this case is equivalent to the base case and Ri+1(b1, . . . , bn, c1, . . . , cm)

is divisible by (k + 1)2.
2. If Ri+1 = αRj +βRs for α, β ∈ Z and j, s ≤ i, then Ri+1(b1, . . . , bn, c1, . . . , cm) is divisible

by (k + 1)2 because Rj(b1, . . . , bn, c1, . . . , cm) and Rs(b1, . . . , bn, c1, . . . , cm) are divisible
by (k + 1)2 and α and β are integers.

3. If Ri+1 = xjRs or Ri+1 = yjRs, then Ri+1(b1, . . . , bn, c1, . . . , cm) is divisible by (k + 1)2

because Rs(b1, . . . , bn, c1, . . . , cm) is divisible by (k + 1)2 and bi and ci are integers.
Since every Ri(b1, . . . , bn, c1, . . . , cm) is divisible by (k + 1)2, we know that Rt(b1, . . . , bn,

c1, . . . , cm) = M · (k + 1) is divisible by (k + 1)2. Then we know that M is divisible by k + 1
and thus M is divisible by every prime number less than 2n.

Now assume that {R1, . . . , Rt} is an Ext-PCQ-derivation from arbitrary set of equations
Γ ⊂ Z[x⃗] of the size S. Then we know that {R1, . . . , Rt} is a PC

√

Q refutation of some set
Γ′ = Γ ∪ {y1 − Q1(x⃗), . . . , ym − Qm(x⃗, y1, . . . , ym−1)} where Qi ∈ Q[x⃗, y⃗]. Like in the proof
of Theorem 11 we can consider all products of denominators of polynomials Qi, Ri and all
denominators in linear combination rule. Let’s denote those constants as Ti. We know that∏

Ti ≤ 2Ω(S). From the proof of Theorem 11 we know that there is an Ext-PCZ-derivation
{R′

1, . . . , R′
f } from the set Γ for which R′

f = T α1
1 · · · T αr

r Rt where αi ∈ N.
Then we can consider

Γ = {(1 + x1 + . . . + 2n−1xn)2 = 0, x2
1 − x1 = 0, . . . , x2

n − xn = 0}

and Rt = 1 + x1 + . . . + 2n−1xn. Then we know that for every Ext-PCQ-derivation of
1 + x1 + . . . + 2n−1xn = 0 from equation (1 + x1 + . . . + 2n−1xn)2 = 0 of size S there is an
Ext-PCZ-derivation of M ·(1+x1+. . .+2n−1xn) = 0 from equation (1+x1+. . .+2n−1xn)2 = 0
where M = T α1

1 · · · T αr
r and T1 · · · Tr ≤ 2Ω(S). However, from previous claim we know that

M is divisible by all prime numbers less than 2n. Then T α1
1 · · · T αr

r is divisible by all prime
numbers less than 2n which means that T1 · · · Tr is divisible by all prime numbers less than
2n. Then 22Ω(n) ≤ T1 · · · Tr ≤ 2Ω(S) which means that S ≥ 2Ω(n). ◁

◀

Error Reduction for Weighted PRGs Against Read
Once Branching Programs
Gil Cohen #

School of Computer Science, Tel Aviv University, Israel

Dean Doron #

Department of Computer Science, Stanford University, CA, USA

Oren Renard #

School of Computer Science, Tel Aviv University, Israel

Ori Sberlo #

School of Computer Science, Tel Aviv University, Israel

Amnon Ta-Shma #

School of Computer Science, Tel Aviv University, Israel

Abstract

Weighted pseudorandom generators (WPRGs), introduced by Braverman, Cohen and Garg [5], are a
generalization of pseudorandom generators (PRGs) in which arbitrary real weights are considered,
rather than a probability mass. Braverman et al. constructed WPRGs against read once branching
programs (ROBPs) with near-optimal dependence on the error parameter. Chattopadhyay and
Liao [6] somewhat simplified the technically involved BCG construction, also obtaining some
improvement in parameters.

In this work we devise an error reduction procedure for PRGs against ROBPs. More precisely,
our procedure transforms any PRG against length n width w ROBP with error 1/poly(n) having
seed length s to a WPRG with seed length s + O(log w

ε
· log log 1

ε
). By instantiating our procedure

with Nisan’s PRG [17] we obtain a WPRG with seed length O(log n · log(nw) + log w
ε

· log log 1
ε
).

This improves upon [5] and is incomparable with [6].

Our construction is significantly simpler on the technical side and is conceptually cleaner.
Another advantage of our construction is its low space complexity O(log nw) + poly(log log 1

ε
) which

is logarithmic in n for interesting values of the error parameter ε. Previous constructions (like [5, 6])
specify the seed length but not the space complexity, though it is plausible they can also achieve
such (or close) space complexity.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases Pseudorandom generators, Read once branching programs, Space-bounded
computation

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.22

Funding Gil Cohen: Supported by ERC starting grant 949499 and by Israel Science Foundation
grant 1569/18.
Dean Doron: Supported by NSF award CCF-1763311.
Oren Renard: Supported by the Azrieli Faculty Fellowship.
Ori Sberlo: Supported by ERC starting grant 949499 and by ISF grant 952/18.
Amnon Ta-Shma: Supported by Israel Science Foundation grant 952/18.

© Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gil@tauex.tau.ac.il
mailto:ddoron@stanford.edu
mailto:orenrenard@mail.tau.ac.il
mailto:orisberlo@mail.tau.ac.il
mailto:amnon@tauex.tau.ac.il
https://doi.org/10.4230/LIPIcs.CCC.2021.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Error Reduction for Weighted PRGs Against Read Once Branching Programs

1 Introduction

1.1 A brief account of space-bounded derandomization

Understanding the role that randomness plays in computation is of central importance in
complexity theory. While randomness is provably necessary in many computational settings
such as cryptography, PCPs and distributed computing, it is widely believed that randomness
adds no significant computational power to neither time- nor space-bounded algorithms.
Remarkably, proving such a statement for time-bounded algorithms implies circuit lower
bounds which seem to be out of reach of current proof techniques [19, 14, 16].

On the other hand, there is no known barrier for proving such a statement in the space-
bounded setting. Indeed, while we cannot even rule out a scenario in which randomness “buys”
exponential time, the space-bounded setting is much better understood. Savitch’s theorem [23]
already implies that any one-sided error randomized algorithm can be simulated determinis-
tically with only a quadratic overhead in space, namely RL ⊆ L2. The (possibly) stronger
inclusion BPL ⊆ L2 can be proven easily through a variant of Savitch’s theorem and also
follows from [4]. Using pseudorandom generators, Nisan [17, 18] devised a time-efficient deran-
domization with quadratic overhead in space, concretely, BPL ⊆ DTISP(poly(n), log2 n).
Focusing solely on space, the state of the art result was obtained by Saks and Zhou [22]
that build on Nisan’s work to deterministically simulate two-sided error space s randomized
algorithms in space O(s3/2), thus, establishing that BPL ⊆ L3/2.

1.2 Pseudorandom generators for ROBPs

Space-bounded algorithms are typically studied by considering their non-uniform counterparts.
A length n, width w read-once branching program (ROBP) is a directed graph whose nodes,
called states, are partitioned to n + 1 layers, each consists of at most w states. The first
layer contains a designated “start” state, and the last layer consists of two states labeled
’accept’ and ’reject’. From every state but for the latter two, there are two outgoing edges,
labeled by 0 and 1, to the following layer.1 On input x ∈ {0, 1}n, the computation proceeds
by following the edges according to the labels given by the bits of x starting from the start
state. The string x is accepted by the program if the computation ends in the accept state.

A well-known fact (see, e.g., [10, Chapter 5], and [3, Chapter 14.4.4]) is that any space
s randomized algorithm in the Turing model can be simulated by a length n, width w

ROBP with n, w = 2O(s). Thus, one approach to derandomize two-sided error space-bounded
algorithms is to construct, in bounded space, a distribution of small support that “looks
random” to any such ROBP. We say that a distribution D on n-bit strings is (n, w, ε)
pseudorandom if for every length n, width w ROBP, the path induced by an instruction
sequence that is sampled from D has, up to an additive error ε, the same probability to
end in the accept state as a truly random path. A truly random path corresponds to a
path picked uniformly at random from the 2n possible paths. An (n, w, ε) pseudorandom
generator (PRG) is an algorithm PRG : {0, 1}s → {0, 1}n that when fed with s uniformly
random bits has an output distribution that is (n, w, ε) pseudorandom. We refer to the input
to PRG as the seed.

1 For simplicity, here we only consider ROBPs with two outgoing edges. Larger out-degrees (or alphabet)
can also be considered and is in fact crucial for obtaining our result even if one is only interested in the
binary case.

G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma 22:3

Derandomizing using a PRG is straightforward. By iterating over all seeds and generating
the corresponding instruction sequences, one can calculate the fraction of those paths that
end in the accept state. This way, one obtains an ε-approximation to the probability of
reaching the accept state while taking a truly random path in the program. The space
overhead consists of the seed length s (as an iterator is maintained) and the space of the
PRG.

One can prove the existence of an (n, w, ε) PRG with seed length O(log(nw/ε)). The
proof is via the probabilistic method and has no guarantee on the space complexity of the
PRG. As such, it is not useful for the purpose of derandomization. In his seminal work,
Nisan [17] devised a PRG with seed length s = O(log n · log(nw/ε)) and space complexity
O(log(nw/ε)). Setting n, w = 2Θ(s) and ε to a small constant, the seed length is O(s2) indeed
yields derandomization with quadratic overhead in space. Saks and Zhou [22] applied Nisan’s
generator in a far more sophisticated way than the naïve derandomization, in particular
exploiting its low space complexity, so to obtain their result.

1.3 Pseudorandom pseudo-distributions for ROBPs
Braverman et al. [5] introduced the notion of a pseudorandom pseudo-distribution (PRPD)
generalizing pseudorandom distributions.

▶ Definition 1 (pseudorandom pseudo-distribution). Let ρ1, . . . , ρ2s ∈ R and p1, . . . , p2s ∈
{0, 1}n. The sequence D̃ = ((ρ1, p1), . . . , (ρ2s , p2s)) is an (n, w, ε) pseudorandom pseudo-
distribution (PRPD) if for every length n, width w ROBP, the sum of all ρi-s for which the
respective paths pi end in the accept state is an ε-approximation to the probability of ending
at the accept state by taking a truly random path in the program.

Note that Definition 1 allows the weights ρi to take both positive and negative values.
These values are not necessarily bounded by 1 in absolute value, nor by any constant for
that matter, and they do not necessarily sum up to 1. Nevertheless, the definition requires
that the numbers cancel out nicely so that summing the weights of the respective paths
that arrive to the accept state yields an ε-approximation for the probability of arriving to
the accept state by taking a truly random path (and, in particular, the sum is a number in
[−ε, 1 + ε]). Analogous to a PRG, an (n, w, ε) weighted pseudorandom generator (WRPG) is
an algorithm WPRG : {0, 1}s → R × {0, 1}n whose output, when fed with a uniform seed, is
an (n, w, ε) PRPD.

A WPRG that can be computed in bounded space suffices to derandomize two-sided error
randomized algorithms. Indeed, the straightforward derandomization using a pseudorandom
(proper) distribution, which sums the probability mass of the relevant paths, works just as
well for pseudo-distributions as one can sum up the weights ρi which, in a sense, generalize
the probability mass. Of course, the space requirement now depends on the bit complexity
of the weights as well.

1.4 The error parameter
Braverman et al. [5] constructed a WPRG that has seed length with an improved–in
fact near-optimal–dependence on the error parameter ε. Their WPRG has seed length
O(log2 n · log logn

1
ε +log n · log w +log w

ε · log log w
ε). For the purpose of derandomization, the

error parameter is anyhow taken to be constant, and so the necessity of such an improvement
may seem moot. However, by inspecting Nisan’s recursive construction one can see that
the log2 n term in the seed length appears due to the way the error evolves throughout the

CCC 2021

22:4 Error Reduction for Weighted PRGs Against Read Once Branching Programs

recursion. Hence, a construction which allows for a more delicate error analysis is called for.
Furthermore, the Saks-Zhou construction applies Nisan’s PRG in a setting in which ε ≪ 1/n

for obtaining their result. It was observed [5] that improving upon [22] can be obtained by
constructing a PRG having seed length with better dependence on both w, ε, even when
retaining the log2 n dependence.

Interestingly (and unfortunately), the log2 n term in the BCG construction appears for
a completely different reason. In short, unlike prior works [17, 15] that maintain a list of
instructions throughout the recursion, BCG maintains a more involved structure consisting
of several lists of lists. Maintaining the invariant on this complex structure is the reason for
the log2 n term in the seed of BCG’s construction.

As hinted above, the BCG construction is quite involved. In a subsequent work Chat-
topadhyay and Liao [6] somewhat simplified the BCG construction also obtaining slight
improvement in parameters. In particular, the seed length obtained by [6] is O(log n ·
log nw · log log nw + log 1

ε). Additionally, Hoza and Zuckerman [13] obtained a significantly
simpler construction of hitting sets against ROBPs. Their construction has seed length
O(1

max(1,log log w−log log n) · log n · log nw+log 1
ε). Although hitting sets are weaker objects than

PRPDs that are aimed for the derandomization of one sided error randomized algorithms,
a subsequent work by Cheng and Hoza [7] showed how to derandomize two sided error
randomized algorithms using hitting sets. While this is an illuminating result, we stress
that most known constructions of PRGs, WPRGs and hitting sets make use of compositions
(either directly or indirectly) and HSGs do not compose well, and so it is very much desired
to devise new techniques for constructing PRGs and WPRGs.

1.5 Our contribution
This work further focuses on the error parameter of PRPDs. As our main result, we obtain
an error reduction procedure. That is, we devise an algorithm that transforms, in a black-box
manner, a PRG with a modest error parameter ε0 to a WPRG with a desired error parameter
ε, having comparable seed length and with a near optimal dependence on ε.

▶ Theorem 2 (main result, see also Corollary 15). Suppose PRG is an
(
n, w, n−2) PRG with

seed length s0, computable in space m. Then, for every ε there exists an (n, w, ε) WPRG
with seed length

s = s0 + O

(
log w

ε
· log logn

1
ε

)
.

that is computable in space O(m + (log log w
ε)3).

When instantiated with Nisan’s PRG [17] our error reduction procedure yields WPRGs with
a seed that is slightly shorter than [5] and is incomparable to [6].

▶ Corollary 3 (see also Corollary 16). There exists an (n, w, ε) WPRG with seed length

O

(
log n · log nw + log w

ε
· log logn

1
ε

)
computable in space O

(
log nw +

(
log log w

ε

)3
)

.

Our error reduction procedure as well as the resulting WPRG are significantly simpler
than [5, 6]. Moreover, the underlying ideas are different and conceptually cleaner. More
generally, it is much preferred to have a black-box error reduction procedure rather than a

G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma 22:5

specific explicit construction. On top of the insights obtained, such a modularization has
the potential of being instantiated in different settings such as for regular and permutation
ROBPs or for bounded-width ROBPs.

Our error reduction procedure borrows ideas from the line of work concerning determin-
istic space-efficient graph algorithms, in particular a recent work by Ahmadinejad, Kelner,
Murtagh, Peebles, Sidford and Vadhan [1] (which, in turn, is based on an exciting line of work
on nearly-linear time graph algorithms, deterministic or otherwise. See [9, 8] and references
therein).

Independently, Pyne and Vadhan [20] also used the Richardson iteration to obtain a
WPRG for polynomial-width branching programs, and furthermore used that to obtain new
results for permutation BPs.

1.6 An overview of our construction
Let PRG : {0, 1}s → {0, 1}n be an (n, w, ε0) PRG whose error we wish to reduce. Let
A = (A1, . . . , An) be the w × w stochastic matrices that correspond to a length n width
w ROBP. That is, Ai = 1

2 (A(0)
i + A

(1)
i) where A

(0)
i is the Boolean stochastic matrix that

encodes the edges leaving layer i that are labeled with 0 and A
(1)
i encodes the edges labeled

with 1. Define the (n + 1)w × (n + 1)w lower triangular block matrix B as follows. For
a, b ∈ [n + 1], a > b, and σ ∈ {0, 1}s, let

B[a, b] = E
σ∈{0,1}s

[
A(PRG(σ)a−b)

a · · · A
(PRG(σ)1)
b

]
.

Further, B[a, a] = Iw. Since PRG has error ε0, for every block B[a, b] with a > b, ∥B[a, b] −
Aa · · · Ab∥ ≤ ε0. Following [1] we observe that by denoting

L =

I 0 . . . 0 0
−A1 I . . . 0 0

0 −A2
. . . 0 0

...
...

. . .
...

...
0 0 . . . −An I

 ,

one has that

L−1 =

I 0 . . . 0 0
A1 I . . . 0 0

A2A1 A2
. . . 0 0

...
...

. . .
...

...
An . . . A1 An . . . A2 . . . An I

 .

Thus, ∥B − L−1∥ ≤ (n + 1)ε0. That is, the crude error PRG can be used to approximate L−1

by applying it to all subprograms of the original ROBP.
Richardson iteration is a method for improving a given approximation to an inverse of a

matrix. This method is frequently used to construct a preconditioner to a Laplacian system.
To describe this method, let L = I − A. For k ≥ 1 define the matrix

Rk =
k∑

i=0
(I − BL)iB. (1)

CCC 2021

22:6 Error Reduction for Weighted PRGs Against Read Once Branching Programs

It can be shown that
∥∥Rk − L−1

∥∥ ≤ (n + 1) (2(n + 1)ε0)k+1. Thus, by taking ε0 = n−2 and
k = O(logn

1
ε), one obtains approximation ∥Rk − L−1∥ ≤ ε. In particular, the lower left

block of Rk is an ε-approximation of the desired product An · · · A1.
We further develop Equation (1). Let ∆ = I − BL. One can show that

∆[a, b] =
{

B[a, b + 1] · Ab − B[a, b] a > b,

0 a ≤ b.
(2)

Substituting this back to Rk, for a > b we have that

Rk[a, b] = B[a, b] +
k∑

i=1

∑
a>ℓi>···>ℓ1≥b

∆[a, ℓi] · ∆[ℓi, ℓi−1] · · · ∆[ℓ2, ℓ1] · B[ℓ1, b].

If we further let C0[a, b] = B[a, b + 1] · Ab and C1[a, b] = B[a, b] then

Rk[a, b] = B[a, b]+
k∑

i=1

∑
a>ℓ1>···>ℓi≥b

∑
t1,...,ti∈{0,1}

(−1)t1+···+ti · Cti
[a, ℓi] · · · Ct1 [ℓ2, ℓ1] · B[ℓ1, b]. (3)

By extending the definition of ROBPs to arbitrary alphabets (rather than binary) we
observe that each summand in Equation (3) can be realized by a ROBP. Our construction
thus uses an auxiliary PRG that ε′ fools each summand and hence ε′nO(k) ≈ ε′ · poly(1

ε)
approximates Rk which, in turn, ε approximates L−1 yielding overall an O(ε) approximation.
As the ROBP that correspond to each summand is short (recall i ≤ k = O(logn

1
ε) ≪ n), a

short seed is sufficient even for the high accuracy ε′ = poly(ε) that we require. We invoke [15]
as our auxiliary PRG as it has good dependence on the alphabet size which, in our case, is
comparable to the seed of the crude PRG that we started with. We remark that the weights
in our PRPD are used so to mimic Equation (3). Indeed, on top of the sign, there are

(
n
i

)
summands that correspond to partition to i + 1 segments and so the weights are used for
creating the appropriate scaling between different values of i.

Discussion

While C1[a, b] = B[a, b] is obtained by PRG, C0[a, b] is computed by following the instructions
of PRG for all but the first step. For the latter, we use a fresh random bit. Namely, consider a
thought experiment in which we use a new–more expensive–PRG PRG′ : {0, 1}s+1 → {0, 1}ℓ

that is defined by PRG′(σ, p) = p ◦ PRG(σ)[1,ℓ−1], where σ : {0, 1}s and p ∈ {0, 1}. The
matrix ∆[a, b] = C1[a, b] − C0[a, b] then compares the better approximation C1[a, b] with
the “actual” approximation C0[a, b]. From this perspective, Equation (3) suggests interpret-
ing the Richardson iteration as a linear combination with ±1 coefficients (as determined
by (−1)t1+···+ti) of approximations of An · · · A1 where each approximation is partition to
segments (encoded by ℓ1 > · · · > ℓi). In segment j, according to the value tj , the relevant
sequence of instructions is obtained either from the original PRG or via the refined one PRG′.

1.7 A comparison with [5]
It is worthwhile to explore the differences between the BCG construction [5] (and the followup
work of Chattopadhyay and Liao [6] which uses similar ideas) and ours and to point out the
aspects of our work that we find similar to the work of Cheng and Hoza [7], and of Hoza and
Zuckerman [13]. We start by giving a brief overview of the BCG construction.

G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma 22:7

1.7.1 A brief overview of BCG
In constructions prior to [5] (e.g., [17, 15]), a list of instructions is maintained with the
property that given a ROBP A1, . . . , An, averaging over the products corresponding to
the instructions yields the desired approximation to the product An · · · A1. The key idea
suggested in [5] is to maintain not a single list whose average yields the desired approximation
but rather several lists of instructions L0, L1, . . . , Lk such that averaging according to the
instructions in L0 yields a modest approximation; averaging according to L0 ∪ L1 yields a
more refined approximation, and so forth. Averaging according to the instructions given
by L0 ∪ · · · ∪ Lk gives the desired approximation. Thus, L0 can be thought of as a crude
approximation, L1 a first order correction term, L2 a second order correction term, etc.

To implement this idea, weights were introduced and, moreover, each list but for L0 was
in itself a list of lists, or bundles. The different instructions in a bundle did not carry useful
information by themselves and it is the bundle which has the desired properties. Lists that
correspond to higher error terms requires the expensive use of bigger bundles and larger
weights, and so a delicate use of balanced and unbalanced samplers is employed in [5] in order
to maintain the desired invariant throughout the recursion and assuring that the bundles
and weights do not get too large.

1.7.2 Comparison with BCG
Our work, in comparison, goes back to the use of a single list as in [17, 15]. We do not need
to maintain several lists, let alone lists of bundles. This makes our construction significantly
simpler and, in particular, spares us from the delicate application of different types of
samplers. The only component we do need are weights, both positive and negative that
are unbounded in absolute value. However, it is straightforward to pinpoint the weights
used by our construction (see Equation (11)) whereas in [5] the weights are computed via
a recursive algorithm. As a result, it is difficult to argue about them. We believe that the
simpler and more explicit structure of our construction would enable future works to combine
our construction with other ideas for the purpose of obtaining improved constructions and
derandomization results.

The common theme to both our construction and BCG is working with cancellations.
We “read off” the Richardson iteration what cancellations to consider. As we discussed in
the end of Section 1.6, we interpret Richardson iteration as comparing a PRG with the
PRG obtained by replacing the first bit by a fresh truly random bit. The BCG construction,
on the other hand, “plants” cancellations by considering two samplers–one more refined
than the other–and encode their difference in their lists (this requires the introduction of
bundles). So, in a sense, BCG’s cancellations are obtained by comparing one approximation
to another where both approximations are obtained via samplers whereas we make use of one
approximation coming from a PRG and another that is obtained by replacing the first bit by
a fresh truly uniform bit. The way we combine these is dictated by Richardson iteration.

1.7.3 Common aspects with [13, 7]
For their derandomization result, Cheng and Hoza [7] introduce the notion of local consistency.
Informally, the authors consider the difference between applying a generated sequence of
instructions (via a hitting set) to that obtained by the generated sequence when replacing
the last bit with a fresh truly random bit. This is somewhat reminisce to the way we read the
cancellations of the Richardson iteration. However, while local consistency is used for making
decisions once a ROBP is given, we combine the analog sequences using the Richardson
iterator in a block-box matter.

CCC 2021

22:8 Error Reduction for Weighted PRGs Against Read Once Branching Programs

The construction of Hoza and Zuckerman [13] also shares similar aspects with ours. There,
they start with a modest-error PRG to get an ε-error hitting set by running the PRG for
k = logn(1/ε) times according to partitions of [n] to k segments, resembling what we do.
Instead of drawing the PRG’s seeds uniformly at random, they derandomize the construction
using a hitter. We note however, that their analysis is very different from ours, and uses a
progress measure concerning the probability of reaching an accepting state.

2 Preliminaries

2.1 Matrices, branching programs, and space complexity

A matrix is Boolean if all its entries are in {0, 1}, and stochastic if all its entries are
nonnegative and the sum of each column is 1. Denote by BSto(w) the set of w × w boolean
stochastic matrices. We will denote by ∥·∥ the induced ℓ1 norm, i.e., ∥A∥ = maxj

∑
i |Ai,j |.

We will often work with block matrices. For instance, we may interpret A ∈ Rnm×nm as
an n × n matrix with entries which are m × m matrices. Whenever this interpretation is
clear, we let A[i, j] be the (i, j)-th block. In this example, A[i, j] ∈ Rm×m.

▶ Definition 4 (branching program). Let Σ be some alphabet and let n, w ∈ N. An (n, Σ, w)
branching program (BP) is a sequence B = (B1, . . . , Bn), where each Bi : Σ → BSto(w).

For b ≤ a we let B[b,a] be the (a − b + 1, Σ, w) BP (Ba, . . . , Bb).

▶ Definition 5. The value of an (n, Σ, w) BP B = (B1, . . . , Bn) on x = (x1, . . . , xn) ∈ Σn,
denoted val(B, x), is the realized w × w matrix of B when fed by x, i.e.

val
(
B, x

)
= Bn(xn) · Bn−1(xn−1) · · · B1(x1).

If B is the empty sequence, we set val(∅, x) = Iw.

▶ Definition 6 (weighted PRG). We say W is an (n, Σ, w, ε)-WPRG against BPs with seed
length s if:

W = (I, µ) where I : {0, 1}s → Σn and µ : {0, 1}s → R, and,
For every (n, Σ, w) BP B = (B1, . . . , Bn), it holds that∥∥∥∥ E

x∈{0,1}s

[
µ(x) · val

(
B, I(x)

)]
− E

x∈Σn

[
val
(
B, x

)]∥∥∥∥ ≤ ε.

When µ ≡ 1, we say that W is a PRG.

For 1 ≤ ℓ ≤ n we let Gℓ : {0, 1}s0 → Σℓ be the first ℓ symbols of the output of G. Note
that if G : {0, 1}s0 → Σn is an (n, Σ, w, ε) PRG then Gℓ is an (ℓ, Σ, w, ε) PRG.

We say f : Λ1 → Λ2 is computable in space s, if given x ∈ Λ1 and index j, f(x)j ∈ Λ2
can be computed in additional work space that consists of s bits. We will use the following
well known theorem regarding the space complexity of compositions.

▶ Theorem 7. Let f1, f2 : {0, 1}⋆ → {0, 1}⋆ be two functions that can be computed in
s1, s2 : N → N space such that s1(n), s2(n) = Ω(log n). Then, on input x, f2 ◦ f1 : {0, 1}⋆ →
{0, 1}⋆ can be computed using O(s1(|x|) + s2(|f1(x)|)) space.

G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma 22:9

2.2 Known PRG constructions
▶ Theorem 8 ([17, 18]). For any positive integers n, w, any error parameter ε > 0 and any
alphabet Σ, there exists an (n, Σ, w, ε) PRG with seed length

s = O

(
log n · log nw|Σ|

ε

)
,

computable in space min
{

O
(

log nw|Σ|
ε

)
, O
(

log n · log log nw|Σ|
ε

)}
.

▶ Theorem 9 ([15]). For any positive integers n, w, any error parameter ε > 0 and any
alphabet Σ, there exists an (n, Σ, w, ε) PRG with seed length

s = log |Σ| + O
(

log n · log
(nw

ε

))
,

computable in space O

(
log n ·

(
log log nw|Σ|

ε

)2
)

.

Theorem 8 is derived almost directly from [17, 18], and Theorem 9 follows from [15],
except for the space complexity which is implicit in those works and also depends on the
specific implementation. For completeness, we give the proof of Theorem 8 in Appendix B.1,
and of Theorem 9 in Appendix B.3.

3 Richardson iteration

Let A be an invertible n × n real matrix, and assume that B approximates A−1, concretely,
∥B − A−1∥ ≤ ε0 for some sub-multiplicative norm. Richardson iteration is a method for
obtaining a more refined approximation of A−1 given access to the crude B as well as to the
original matrix A.

▶ Lemma 10. Let L ∈ Rm×m be an invertible matrix and A ∈ Rm×m such that
∥∥L−1 − A

∥∥ ≤
ε0. For any nonnegative integer k, define

R(A, L, k) =
k∑

i=0
(I − AL)iA.

Then,
∥∥L−1 − R(A, L, k)

∥∥ ≤
∥∥L−1

∥∥ · ∥L∥k+1 · εk+1
0 .

The proof is deferred to Appendix A.
Following [1] we will be interested in the following instantiation of the Richardson iteration.

Let M = (M1, . . . , Mn) be a sequence of w ×w matrices. We consider the (n+1)w × (n+1)w
matrix

M =

0 0 . . . 0 0

M1 0 . . . 0 0
0 M2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Mn 0

 . (4)

The Laplacian of M is L = I(n+1)w − M , and we treat L as an (n + 1) × (n + 1) block matrix.
The following claim follows by a simple calculation.

CCC 2021

22:10 Error Reduction for Weighted PRGs Against Read Once Branching Programs

▷ Claim 11. For i, j ∈ [n + 1], the (i, j)-th block of L−1 is given by

L−1[i, j] =

Mi−1 · · · Mj i > j,

Iw i = j,

0 i < j.

Richardson for branching programs

Let B = (B1, . . . , Bn) be an (n, Σ, w) BP and let Mi = Eσ∈Σ[Bi(σ)] be the corresponding
transition matrices. Thus, approximating the transition probabilities of B,

E
x∈Σn

[
val
(
B, x

)]
= Mn · · · M1,

amounts to approximating the lowest leftmost entry L−1[n + 1, 1].

▷ Claim 12. Let B = (B1, . . . , Bn) be an (n, Σ, w) BP. Set Mi = Eσ∈Σ[Bi(σ)] and L as in
Equation (4). Also, let G : {0, 1}s → Σn be an (n, Σ, w, ε0) PRG and consider

A[a, b] =
{
Ex∈{0,1}s

[
val
(
B[b,a−1], Ga−b(x)

)]
, a ≥ b

0 a < b.
(5)

Then,∥∥L−1 − R(A, L, k)
∥∥ ≤ (n + 1) · (2ε0)k+1.

Let A as in Equation (5) and write R(A, L, k) =
∑k

i=0 ∆iA where ∆ = I − AL. Denote
A′ = A − I, i.e., A′ is the part of A below the main diagonal. Then,

∆ = I − AL = I − A(I − M) = (I − A) + AM = AM − A′.

In block notation, for a, b ∈ [n + 1], following Equation (4),

AM [a, b] =
n+1∑
i=1

A[a, i]M [i, b] = A[a, b + 1]M [b + 1, b] = A[a, b + 1] · Mb.

Thus,

∆[a, b] =
{

A[a, b + 1] · Mb − A[a, b] a > b,

0 a ≤ b.
(6)

Going back to R(A, L, k), for a > b we have that

R(A, L, k)[a, b] = A[a, b] +
k∑

i=1

∑
a>ri>···>r1≥b

∆[a, ri] · ∆[ri, ri−1] · · · ∆[r2, r1] · A[r1, b]. (7)

If we further let C0[a, b] = A[a, b + 1] · Mb and C1[a, b] = A[a, b], then

R(A, L, k)[a, b] = A[a, b]+ (8)∑
t∈{0,1}i

a>ri>···>r1≥b

∑
t1,...,ti∈{0,1}

(−1)t1+···+ti · Cti [a, ri] · · · Ct1 [r2, r1] · A[r1, b].

G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma 22:11

4 The construction

4.1 Black-box error reduction
Let G : {0, 1}s0 → Σn be an (n, Σ, w, εG) and Gaux : {0, 1}saux → ({0, 1}s0 × Σ)k+1 be a
(k + 1, {0, 1}s0 × Σ, w, εaux) PRG. Also, for t ∈ {0, 1} and σ ∈ Σ we let

Gt,ℓ(x, σ) =
{

σ ◦ Gℓ−1(x) t = 0,

Gℓ(x) t = 1.
(9)

We now define the WPRG (I, µ) : {0, 1}s → Σ × R. The seed x ∈ {0, 1}s to our WPRG
is interpreted as follows.

The first log(k + 1) bits encode i ∈ {0, . . . , k}.
The next log

(
n
i

)
bits encode a sequence ℓ = (ℓ0, ℓ1, . . . , ℓi) such that ℓ0 + · · · + ℓi = n,

ℓi, . . . , ℓ1 > 0, and ℓ0 ≥ 0.
The next i bits are denoted by t = t = (t1, . . . , ti) ∈ {0, 1}i.
The next saux bits are denoted by xaux ∈ {0, 1}saux .

Overall, we can write x = (i, ℓ, t, xaux), and the WPRG (I, µ) has seed length

s = saux + O(k log n). (10)

For brevity we sometimes omit the dependence of i, (ℓ0, . . . , ℓi), (t1, . . . , ti), and xaux on x.
We define I and µ as follows.

I(x) =
{

Gn(Gaux(xaux)0) i = 0,

Gti,ℓi(Gaux(xaux)i) ◦ · · · ◦ Gt1,ℓ1(Gaux(xaux)1) ◦ Gℓ0(Gaux(xaux)0) otherwise.

µ(x) =
{

k + 1 i = 0,

(k + 1) ·
(

n
i

)
· 2i · (−1)t1+···+ti otherwise.

(11)

where Gaux(xaux)j denotes the j’th symbol in Gaux(xaux) ∈ ({0, 1}s0 × Σ)k+1.
The weights are chosen so that the approximation yielded by the above WPRG is a

derandomized version of Equation (8) for (a, b) = (n + 1, 1). Note that in Equation (8)
we used r1, . . . , ri which partitioned the interval [n + 1, 1], while in Equation (11) we used
ℓ0, . . . , ℓi that sum to n. This is merely an alternative way of writing the sum – the ℓi-s are
the sum of differences of the ri-s.

4.2 Correctness
In this section we use the same notation as in Section 3.

▶ Lemma 13. Let 0 < ε < ε0 = 1
4n and let k = log1/ε0

(1/ε). Suppose

G : {0, 1}s0 → Σn is an
(

n, Σ, w, εG = ε0
2(n+1)

)
PRG, and,

Gaux : {0, 1}saux → ({0, 1}s0 × Σ)k+1 is a (k + 1, {0, 1}s0 × Σ, w, εaux = ε3) PRG.
Then, (I, µ) is an (n, Σ, w, ε) WPRG with seed length s = saux + O(log(1/ε)) computable in
space O(space(Gaux) + space(G) + log s).

CCC 2021

22:12 Error Reduction for Weighted PRGs Against Read Once Branching Programs

Proof. Assume k, G and Gaux are as in the hypothesis of the lemma. The space complexity
follows from Theorem 7 and the seed length was analyzed in Equation (10). We are left to
prove that (I, µ) is an (n, Σ, w, ε) WPRG. Fix any (n, Σ, w) BP B = (B1, . . . , Bn). Let A be
the (n + 1)w × (n + 1)w lower triangular block matrix in which

A[a, b] = E
x∈{0,1}s0

[
val
(
B[b,a−1], Ga−b(x)

)]
for a > b, and A[a, a] = Iw. Since G is

(
n, Σ, w, εG = ε0

2(n+1)

)
PRG we have that∥∥L−1[a, b] − A[a, b]

∥∥ ≤ εG

and
∥∥L−1 − A

∥∥ ≤ (n + 1)εG. By our choice of µ,

E
x∈{0,1}s

[
µ(x) · val

(
B, I(x)

)]
=

k∑
i=0

∑
t,ℓ

(−1)t1+···+ti · E
xaux

[
val
(
B, I(i, ℓ, t, xaux)

)]
,

and

R(A, L, k)[n + 1, 1] = A[n + 1, 1]+
k∑

i=1

∑
t,r

(−1)t1+···+ti · Cti
[n + 1, ri] · · · Ct1 [r2, r1] · A[r1, 1],

where ℓ0 + · · · + ℓi = n and n + 1 > ri > · · · > r1 ≥ 1. We soon prove:

▷ Claim 14. For every fixed i ∈ {0, . . . , k}, t ∈ {0, 1}i, and ℓ such that ℓ0 + · · · + ℓi = n∥∥∥∥ E
xaux

[
val
(
B, I(i, ℓ, t, xaux)

)]
− Cti [n + 1, ri] · · · Ct1 [r2, r1] · A[r1, 1]

∥∥∥∥ ≤ εaux,

where rj = 1 + ℓ0 + · · · + ℓj−1.

As we have at most (k + 1)nk2k summands, we see that∥∥∥∥ E
x∈{0,1}s

[
µ(x) · val

(
B, I(x)

)]
− R(A, L, k)[n + 1, 1]

∥∥∥∥ ≤ (k + 1)nk2k · εaux

≤ n2k

2 · εaux ≤ ε

2 .

It therefore follows from Claim 12 that∥∥∥∥R(A, L, k)[n + 1, 1] − E
x∈Σn

[
val
(
B, x

)]∥∥∥∥ ≤ (n + 1)(2(n + 1)εG)k+1

≤ 2n · εk+1
0 ≤ 2nε0ε = ε

2 ,

which together completes the proof. ◀

Proof of Claim 14. Fix i ∈ {0, . . . , k}, ℓ0 + · · · + ℓi = n, and t ∈ {0, 1}i and recall that
rj = 1 + ℓ0 + · · · + ℓj−1. We define a (k + 1, {0, 1}s0 × Σ, w) BP B′ = (B′

0, . . . , B′
k) (that

depends on i, ℓ, and t) such that for all j = 0, ..., k,

B′
j(x, σ) =

val
(
B[rj ,rj+1−1], σ ◦ Gℓj−1(x)

)
j > 0, t = 0,

val
(
B[rj ,rj+1−1], Gℓj

(x)
)

j > 0, t = 1,

val
(
B[1,r1−1], Gℓ0(x)

)
j = 0.

(12)

We stress that B′
j is a BP because a product of Boolean stochastic matrices is Boolean

stochastic. The claim now follows since Gaux is a (k + 1, {0, 1}s0 × Σ, w, εaux) PRG. ◁

G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma 22:13

4.3 The final construction
We now instantiate Lemma 13 with Gaux being the INW PRG from Theorem 9 and G being
an arbitrary PRG. The reason for using the INW generator is its additive dependence on
log |Σ|.

▶ Corollary 15. Let G : {0, 1}s0 → Σn be an (n, Σ, w, εG). Then, for any error parameter
1

4n > ε > 0 there exists an (n, Σ, w, ε) WPRG with seed length

s0 + O

(
log w

ε
· log logn

1
ε

)
computable in space O

(
space(G) + log logn(1/ε) ·

(
log log w

ε

)2
)

.

Had we used Nisan’s PRG from Theorem 8 instead of INW then the seed length would
deteriorate to

O

(
s0 · log logn

1
ε

+ log w

ε
· log logn

1
ε

)
.

Corollary 15 can be interpreted as an error reduction procedure for PRGs with a slight
overhead in the seed and space complexity. We proceed by applying this error reduction to
Nisan’s PRG from Theorem 8.

▶ Corollary 16. For any positive integers n, w, any error parameter 1
4n > ε > 0 and any

alphabet Σ, there exists an (n, Σ, w, ε) WPRG with seed length

O

(
log n log(nw|Σ|) + log w

ε
· log logn

1
ε

)
computable in space O

(
log(nw|Σ|) + log logn(1/ε) ·

(
log log w

ε

)2
)

.

Note that for ε which is not tiny the space complexity is dominated by the first term.
Specifically, for ε > 2−2log1/3 n , w < 22log1/3 n the space complexity is indeed O(log(nw|Σ|)).
Had we used INW instead, the space complexity would deteriorate to

O

(
log n ·

(
log log nw|Σ|

ε

)2
+ log w

ε
· log logn

1
ε

)
.

References
1 AmirMahdi Ahmadinejad, Jonathan Kelner, Jack Murtagh, John Peebles, Aaron Sidford, and

Salil Vadhan. High-precision estimation of random walks in small space. In Proceedings of
the 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2020), pages
1295–1306. IEEE, 2020.

2 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost
k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.

3 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge
University Press, 2009. URL: http://www.cambridge.org/catalogue/catalogue.asp?isbn=
9780521424264.

4 Allan Borodin, Stephen Cook, and Nicholas Pippenger. Parallel computation for well-endowed
rings and space-bounded probabilistic machines. Information and Control, 58(1-3):113–136,
1983.

CCC 2021

http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264

22:14 Error Reduction for Weighted PRGs Against Read Once Branching Programs

5 Mark Braverman, Gil Cohen, and Sumegha Garg. Pseudorandom pseudo-distributions
with near-optimal error for read-once branching programs. SIAM Journal on Computing,
49(5):STOC18–242–STOC18–299, 2020.

6 Eshan Chattopadhyay and Jyun-Jie Liao. Optimal error pseudodistributions for read-once
branching programs. In Proceedings of the 35th Computational Complexity Conference (CCC
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

7 Kuan Cheng and William M. Hoza. Hitting sets give two-sided derandomization of small space.
In 35th Computational Complexity Conference (CCC 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020.

8 Michael B. Cohen, Jonathan Kelner, John Peebles, Richard Peng, Anup B. Rao, Aaron
Sidford, and Adrian Vladu. Almost linear-time algorithms for Markov chains and new spectral
primitives for directed graphs. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing (STOC 2017). ACM, 2017.

9 Michael B. Cohen, Jonathan Kelner, John Peebles, Richard Peng, Aaron Sidford, and Adrian
Vladu. Faster algorithms for computing the stationary distribution, simulating random walks,
and more. In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2016). IEEE, 2016.

10 Oded Goldreich. Computational complexity: a conceptual perspective. Cambridge University
Press, Cambridge, 2008.

11 Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties: A
quality-size trade-off for hashing. Random Structures & Algorithms, 11(4):315–343, 1997.

12 Alexander Healy and Emanuele Viola. Constant-depth circuits for arithmetic in finite fields of
characteristic two. In Annual Symposium on Theoretical Aspects of Computer Science (STACS
2006). Springer, 2006.

13 William M. Hoza and David Zuckerman. Simple optimal hitting sets for small-success RL.
SIAM Journal on Computing, 49(4):811–820, 2020.

14 Russel Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002.

15 Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Proceedings of the 26th Annual ACM SIGACT Symposium on Theory of
Computing (STOC 1994). ACM, 1994.

16 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. computational complexity, 13(1-2):1–46, 2004.

17 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

18 Noam Nisan. RL ⊆ SC. computational complexity, 4(1):1–11, 1994.
19 Noam Nisan and Avi Wigderson. Hardness vs. randomness. Journal of Computer and System

Sciences, 49(2):149–167, 1994.
20 Edward Pyne and Salil Vadhan. personal communication, February 2021.
21 Ran Raz and Omer Reingold. On recycling the randomness of states in space bounded

computation. In Proceedings of the 31st Annual ACM SIGACT Symposium on Theory of
Computing (STOC 1999). ACM, 1999.

22 Michael E. Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S2/3). Journal of Computer and
System Sceinces, 58(2):376–403, 1999.

23 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4(2):177–192, April 1970.

G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma 22:15

A Proof of Lemma 10

We restate Lemma 10.

▶ Lemma 17. Let L ∈ Rm×m be an invertible matrix and A ∈ Rm×m such that
∥∥L−1 − A

∥∥ ≤
ε0. For any nonnegative integer k, define

R(A, L, k) =
k∑

i=0
(I − AL)iA.

Then,
∥∥L−1 − R(A, L, k)

∥∥ ≤
∥∥L−1

∥∥ · ∥L∥k+1 · εk+1
0 .

Proof. For any matrix Z, the matrices I and Z commute, and so by a straightforward
induction,

I −
k∑

i=0
(I − Z)iZ = (I − Z)k+1.

In particular, for Z = AL,

I − R(A, L, k) · L = (I − AL)k+1.

Thus,∥∥L−1 − R(A, L, k)
∥∥ =

∥∥(I − R(A, L, k) · L) · L−1∥∥
≤
∥∥L−1∥∥ · ∥I − R(A, L, k) · L∥

≤
∥∥L−1∥∥ · ∥I − AL∥k+1

=
∥∥L−1∥∥ ·

∥∥(L−1 − A) · L
∥∥k+1

≤
∥∥L−1∥∥ · ∥L∥k+1 · εk+1

0 . ◀

B The space complexity of some pseudorandom objects

In this section we show how to achieve the space complexity declared in Theorem 8 and
Theorem 9. For the INW generator we choose a specific implementation with a small space
complexity. The constructions are well known, and the variant of INW we use was explored
by [12]. We give it here for completeness.

B.1 Nisan’s generator
Proof sketch of Theorem 8. We are given parameters n, Σ, w, ε. We set X = [A] for
A = O

(
nwΣ

ε

)
. We let H be a 2-universal family of hash functions over X where |H| = A2

and h(x), for h ∈ H and x ∈ X, can be computed in space O(log log |X|) (see [17, 18]).
Nisan’s generator interprets the seed as y, h1, . . . , hlog n, where y ∈ X, and h1, . . . , hlog n ∈

H. For j ∈ [n], the j-th symbol in the output of the generator is hb1
1

(
hb2

2

(
· · · h

blog n

log n (y)
))

,

where (b1, . . . , blog n) ∈ {0, 1}log n is the binary representation of j, and hb is either h, if b = 1,
or the identity function, if b = 0. Given y, h1, . . . , hlog n, j = (b1, . . . , blog n) we can compute
the j-th output symbol in the following two alternative ways.

CCC 2021

22:16 Error Reduction for Weighted PRGs Against Read Once Branching Programs

We can successively compute h
bj

j

(
· · · h

blog n

log n (y)
)

for j = log n, . . . , 1, each time keeping
the current X-symbol. This takes

O

(
log nw|Σ|

ε
+ log log n + log log |X|

)
= O

(
log nw|Σ|

ε

)
space.
Alternatively, we can do the above computation using composition of space bounded
reductions, resulting in space complexity

O(log n · log log |X|) = O

(
log n · log log nw|Σ|

ε

)
. ◀

B.2 A high min-entropy extractor
To apply INW, we need a space-efficient seeded extractor with a small entropy loss in the
high min-entropy regime. Goldreich and Wigderson [11] gave such a construction utilizing a
regular expander G = (V, E) with a small normalized second eigenvalue. For our expander,
we choose a Cayley graph over the commutative group Zn

2 with a generator set S ⊆ {0, 1}n

that is λ-biased. It is well known that Cay(Zn
2 , S) has normalized second largest eigenvalue

at most λ. For the λ-biased set we choose a construction from [2]. Altogether, this unfolds
for the following.

For the λ-biased set S, first pick q to be the first power of two larger than n
λ . The

set S is of cardinality q2. For every α, β ∈ Fq there is an elements sα,β ∈ Zn
2 where

(sα,β)i = ⟨αi, β⟩, such that multiplication is in Fq and the inner product is over Z2. [2]
showed the set is λ-biased.
We let G = (V, E) with V = Zn

2 and (x, y) ∈ E iff x + y ∈ S. G is a λ-expander.

The extractor GW : {0, 1}n × [D] → {0, 1}n is defined by letting G(x, i) be the i-th
neighbour of x in the graph G.

▷ Claim 18. Let 0 < ∆ < n and set G and GW as above. Then, GW : {0, 1}n × [D] → {0, 1}n

is a (k = n − ∆, ε) extractor with seed length d = O(∆ + log n
ε) and space complexity

O(log n · log(∆ + log(n/ε))).

Proof. For correctness, note that the expander mixing lemma shows that GW is an (n−∆, ε =
O(2∆/2λ)) extractor.
Seed length. The seed length of this extractor is log |S| = O(log n

λ) = O(log n2∆

ε) = O(∆ +
log n

ε).
Space complexity. The space complexity of computing GW(x, y) given x and y, is the space

needed to compute sy ∈ S from y = (α, β) ∈ F2
q, plus the space needed to compute

x + sy. The dominating step in computing sy is computing αi (for i ≤ n) which can
be done in O(log n log log q) with space composition. Altogether, the space needed is
O(log n · log log n

λ) = O
(

log n · log log n2∆

ε

)
.

We note that Healy and Viola [12] gave an extremely efficient implementation of the above
AGHP generator, yielding a better space complexity of O(log(n + log q)) to compute
⟨αi, β⟩. However, in our overall setting of parameters it will make negligible difference.

◁

We remark that by using expanders with better dependence between D and λ, one can get
d = O(∆ + log 1

ε), but here we care more about the space complexity, and log n factors are
negligible for us.

G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma 22:17

B.3 The INW generator
Proof sketch of Theorem 9. We consider the INW generator [15] instantiated with extrac-
tors (as, e.g., in [21]). We are given parameters n, Σ, w, and ε = εINW . We set parameters
∆ = log w + O(log n

ε), and d as the seed length for the extractor of Claim 18 for length n,
error εExt = ε

n and ∆. We let s = log |Σ|+log n ·2d and we assume s ≤ n. We let ℓi = s− i ·∆
for 0 ≤ i ≤ n.

Given a seed x ∈ {0, 1}s we view the computation of INW(x) as a full binary tree of depth
log n. Nodes in level i of the tree are labeled by strings of length ℓi. The root (at level 0) is
labeled by x (of length ℓ0 = s). Given any internal node in level i ∈ {0, . . . , log n} labeled by
some string z ∈ {0, 1}ℓi , we write z = z1 ◦ z2 with zi ∈ {0, 1}ℓi+1 and z2 ∈ {0, 1}d. The left
child of z is labeled with z1, and the right child of z is labeled with Exti(z1, z2), where Exti

is given by Claim 18 for ∆, length ℓi+1 and error εExt (notice that since ℓi < n, d bits suffice
for the seed). INW(x) is the concatenation of the leaf’s labels, from left to right, truncating
outputs to log |Σ| bits.

Given an index j ∈ [n], computing INW(x)j ∈ Σ can be done by walking down the
computation tree, and each time either truncating a string or invoking an extractor. By
composition of space bounded reductions the space complexity of the construction is log n

times the space complexity of the worst extractor used. That is, log n · log ℓ0 · log(∆+log ℓ0
εExt

).
Plugging-in ∆ and εExt, the space complexity is bounded by

O
(

log n · log ℓ0 · log log nw

ε

)
= O

(
log n · log

(
log |Σ| + log n log nw

ε

)
· log log nw

ε

)
= O

(
log n ·

(
log log nw|Σ|

ε

)2
)

. ◀

CCC 2021

A Stress-Free Sum-Of-Squares Lower Bound for
Coloring
Pravesh K. Kothari #

Carnegie Mellon University, Pittsburgh, PA, USA

Peter Manohar #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
We prove that with high probability over the choice of a random graph G from the Erdős-Rényi
distribution G(n, 1/2), a natural nO(ε2 log n)-time, degree O(ε2 log n) sum-of-squares semidefinite
program cannot refute the existence of a valid k-coloring of G for k = n1/2+ε. Our result implies
that the refutation guarantee of the basic semidefinite program (a close variant of the Lovász theta
function) cannot be appreciably improved by a natural o(log n)-degree sum-of-squares strengthening,
and this is tight up to a no(1) slack in k. To the best of our knowledge, this is the first lower bound
for coloring G(n, 1/2) for even a single round strengthening of the basic SDP in any SDP hierarchy.

Our proof relies on a new variant of instance-preserving non-pointwise complete reduction
within SoS from coloring a graph to finding large independent sets in it. Our proof is (perhaps
surprisingly) short, simple and does not require complicated spectral norm bounds on random
matrices with dependent entries that have been otherwise necessary in the proofs of many similar
results [12, 33, 45, 28, 51].

Our result formally holds for a constraint system where vertices are allowed to belong to multiple
color classes; we leave the extension to the formally stronger formulation of coloring, where vertices
must belong to unique colors classes, as an outstanding open problem.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases Sum-of-Squares, Graph Coloring, Independent Set, Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.23

Related Version Full Version: https://arxiv.org/abs/2105.07517

Funding Pravesh K. Kothari: Supported by NSF CAREER Award #2047933.
Peter Manohar : NSF Graduate Research Fellowship Program and the ARCS Foundation. This
material is based upon work supported by the National Science Foundation Graduate Research
Fellowship Program under Grant No. DGE 1745016. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

Acknowledgements We thank Xinyu Wu for taking part in early stages of this research, and the
anonymous reviewers for providing valuable feedback.

1 Introduction

Starting with the seminal work of Arora, Bollobás, Lovász and Tourlakis [2], understand-
ing the power of systematic hierarchies of linear and semidefinite programs for solving
combinatorial optimization problems has been a foundational goal in complexity the-
ory. This project has achieved many successes including sharp lower bounds for basic
problems [58, 20, 54, 17, 15, 16, 27] in various hierarchies of linear and semidefinite pro-
grams [47, 52, 59, 49] (see [22, 26] for expositions).

© Pravesh K. Kothari and Peter Manohar;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 23; pp. 23:1–23:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:praveshk@cs.cmu.edu
mailto:pmanohar@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.CCC.2021.23
https://arxiv.org/abs/2105.07517
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 A Stress-Free Sum-Of-Squares Lower Bound for Coloring

However, proving lower bounds for the sum-of-squares (SoS) semidefinite programming
hierarchy – the strongest known hierarchy of efficiently solvable convex programs – has
achieved only a limited amount of success. This is partially explained by the remarkable
success of the SoS hierarchy in designing state-of-the-art algorithms for worst-case optim-
ization problems such as max-cut [29], sparsest cut [4], unique games on general [1] and
algebraic graphs [5, 32], quantum separability [13] and more recently, a string of successes in
high-dimensional algorithmic statistics including robust estimation of moments [44], clus-
tering spherical [34, 43] and non-spherical mixture models [8, 24], robust learning of all
Gaussian mixtures [6, 48], list-decodable learning [39, 55, 7, 56], tensor decomposition [50],
and sparse [25] and tensor principal component analysis [36], among others. Indeed, given the
remarkable power of the SoS method in designing algorithms for such average-case settings,
SoS lower bounds (and related restricted algorithmic techniques such as the low-degree
polynomial method [33, 37, 46]) are increasingly used to ascertain average-case hardness and
algorithmic thresholds.

In the last few years, there has been some progress in proving sum-of-squares lower
bounds for average-case problems [30, 31, 57, 61, 11, 12, 42, 28, 51]. However, such progress
has come about via fairly technical1, problem-specific arguments and a host of natural
questions, e.g. combinatorial optimization on sparse random graphs, remain out of reach
of current techniques. In particular, a central challenge in this line of work has been to
analyze the sum-of-squares semidefinite programs for refuting the existence of a k-coloring in
Erdős-Rényi random graphs. Classical works [19] in probability showed that the chromatic
number of G ∼ G(n, 1/2)2 is tightly concentrated around n/2 log2 n. However, the best
known polynomial time algorithm (corresponding to the degree 2 SoS relaxation, a close
variant of the famous Lovász theta function) can only refute the existence of a

√
n-coloring

in such random graphs3. While it is natural to guess that higher-degree relaxations yield no
significant improvement, establishing this has proved to be an elusive goal. Indeed, even the
easier goal of establishing sharp SoS lower bounds for the clique number of G ∼ G(n, 1/2)
required [12] the introduction of pseudo-calibration – a technique that has found several
further uses in establishing SoS lower bounds for average-case problems. However, analyzing
lower bound constructions based on pseudo-calibration requires understanding the spectra
of complicated random matrices with dependent random entries. While this has been
accomplished for a few select examples [33, 28], the case of graph coloring seems to be
particularly unwieldy and has thus resisted progress so far.

In this paper, we establish a tight SoS lower bound for a natural higher-degree SoS
relaxation of the graph coloring problem in G(n, 1/2). Our proof circumvents pseudo-
calibration entirely. Instead, we exhibit a non-pointwise complete reduction – a notion of
reductions that departs from the standard framework introduced by Tulsiani [61] (and used
in [18]) – that obtains a lower bound for the coloring problem from a lower bound for the
independent set problem (see Section Section 1.3 for a detailed discussion). Somewhat
surprisingly, our analysis does not require spectral analysis of complicated random matrices
and instead succeeds whenever the lower bound construction for the independent set problem
satisfies some natural covering properties. Our main result then follows by verifying these
properties for the construction of [12].

1 Almost all recent analyses run into ∼ 50 pages!
2 Recall G ∼ G(n, 1/2) is a graph on n vertices where each edge {i, j} is independently included with

probability 1/2.
3 We note that a close variant of Lovász-theta function is also a crucial component in the current state-

of-the-art algorithms for worst-case coloring of k-colorable graphs with a small polynomial number of
colors [38, 3, 21].

P. K. Kothari and P. Manohar 23:3

1.1 Results

Our results apply to the following polynomial constraint system in the real-valued variables
{xi,c}i∈[n],c∈[k] that is satisfiable if and only if the graph G is k-colorable.

Color Constraints
x2

i,c = xi,c for all i ∈ [n], c ∈ [k] (Booleanity Constraints)
xi,cxj,c = 0 for all c ∈ [k] and {i, j} ∈ E(G) (Edge Constraints)∑

c

xi,c ⩾ 1 for all i ∈ [n] (Sum Constraints)

In Color Constraints, the variable xi,c represents the 0-1 indicator of whether the i vertex
is in the c-th color class. The booleanity constraints enforce that xi,c ∈ {0, 1}, the edge
constraints enforce that if {i, j} ∈ E(G), then the subset of colors assigned to i is disjoint
from the subset of colors assigned to j, and the sum constraints enforce that each vertex is
in at least one color class.

Color Constraints allow for a vertex to be in more than one color class. Our lower bound
technique does not currently succeed for the related set of constraints where each vertex
must belong to exactly one color class. See Section 1.5 for a discussion on the difference
between the formulations.

Our main result shows that with high probability over the draw of G ∼ G(n, 1/2), the
degree O(ε2 log n) SoS proof system cannot refute Color Constraints for G when k = n

1
2 +ε.

▶ Theorem 1. Let n be sufficiently large positive integer and ε ∈ (Ω(
√

1
log n), 1

2). Then, for
k = n

1
2 +ε and d = O(ε2 log n), with probability 1−1/ poly(n) over the draw of G ∼ G(n, 1/2),

the nO(d)-time, degree d sum-of-squares relaxation of Color Constraints cannot refute the
existence of a k-coloring of G.

Equivalently, Theorem 1 says that with high probability over G ∼ G(n, 1/2),
Color Constraints do not admit an O(ε2 log n)-degree positivstellensatz refutation when
k = n

1
2 +ε. As was formally verified in [10]4, a degree 2 coloring pseudo-expectation is equival-

ent to a vector solution with value at least k to the semidefinite program that computes the
Lovász theta function. To the best of our knowledge, this result gives the first lower bound
for ω(1) rounds (or even a single round of strengthening of the basic SDP) in a natural SDP
hierarchy.

▶ Remark 1 (Tightness of Theorem 1). It is well-known [23, 9] that the degree 2 sum-of-squares
relaxation of Color Constraints can refute the existence of k-coloring in G ∼ G(n, 1/2) for
k = O(

√
n). Thus, our lower bound in Theorem 1 is tight up to a nε factor in k. On the other

hand, we give a simple proof in Appendix B that shows that the degree 8(1 + o(1)) log2 n SoS
relaxation of Color Constraints succeeds in refuting the existence of a k-coloring in G(n, 1/2)
(w.h.p.) for the nearly optimal [19] bound of k ⩽ n

e·2(1+o(1)) log2 n . Hence, the upper bound
on d in Theorem 1 is tight up to constants.

4 [10] proved this equivalence for a slightly different formulation of Color Constraints, which we will
discuss in Section 1.5. However, the same proof works even for Color Constraints.

CCC 2021

23:4 A Stress-Free Sum-Of-Squares Lower Bound for Coloring

1.2 A non-pointwise complete SoS reduction from coloring to
independent set

Using standard SDP duality, proving Theorem 1 is equivalent to proving the existence of
a dual witness called a pseudo-expectation defined below (see lecture notes [14] and the
monograph [26] for background).

▶ Definition 2 (Pseudo-expectation for Coloring). A degree d coloring pseudo-expectation Ẽ
for G using k colors is a linear operator that maps polynomials of degree ⩽ d in variables
{xi,c}i∈[n],c∈[k] to R, satisfying the following three properties:
1. Normalization: Ẽ[1] = 1,
2. Positivity: Ẽ[f2] ⩾ 0 for every polynomial f of degree at most d/2,
3. Coloring Constraints: Ẽ satisfies Color Constraints.

(a) for every polynomial f of degree at most d − 2, Ẽ[f · (x2
i,c − xi,c)] = 0,

(b) for every polynomial f of degree at most d − 2 and any edge {i, j} ∈ E(G), Ẽ[f ·
xi,cxj,c] = 0,

(c) for every polynomial f of degree at most d−1
2 , Ẽ[f2 · (

∑
c⩽k xi,c − 1)] ⩾ 0.

In order to prove Theorem 1, it suffices to show that with high probability over the draw
of G ∼ G(n, 1/2), there is a degree O(ε2 log n) coloring pseudo-expectation for the graph
G that uses k = n

1
2 +ε colors. Somewhat surprisingly, we prove the existence of such a

pseudo-expectation essentially without any random matrix analysis. Instead, we construct
a coloring pseudo-expectation Ẽ′ for G from a pseudo-expectation Ẽ satisfying the related
independent set constraints for the same graph G whenever Ẽ satisfies two additional natural
“covering” properties. We recall the definition of an independent set pseudo-expectation
below.

▶ Definition 3 (Pseudo-expectation for Independent Set). A degree d independent set pseudo-
expectation Ẽ is a linear operator that maps polynomials of degree ⩽ d in variables {xi}i∈[n]
to R, satisfying the following three properties:
1. Normalization: Ẽ[1] = 1,
2. Positivity: Ẽ[f2] ⩾ 0 for every polynomial f of degree at most d/2,
3. Independent Set Constraints: For every polynomial f of degree at most d − 2,

Ẽ[f · (x2
i − xi)] = 0 and Ẽ[f · xixj] = 0 for any edge {i, j} ∈ E(G).

Our main result that constructs a reduction from coloring to independent set is described
below.

▶ Theorem 2. Let G be a graph on n vertices, and let Ẽ be a degree d independent set pseudo-
expectation. Suppose further that Ẽ satisfies the two “covering” properties: (1) Ẽ[xi] ⩾ 1

k0
for some integer k0, and (2) there exists λ ∈ R>0 such that for all multilinear f with
deg(f) ⩽ d/2, Ẽ[f2] ⩾ λ ∥ΠGf∥2

2, where ΠG is the projection of f onto the linear subspace
orthogonal to {gxixj : {i, j} ∈ E(G), deg(g) ⩽ d − 2} (viewed as a subset of coefficient
vectors of polynomials with the Euclidean inner product), and ∥f∥2 denotes the ℓ2 norm of
the polynomial of f , viewed as a coefficient vector. Then, there is a degree d′ := 1 + d/2
coloring pseudo-expectation Ẽ′ using k = O(k0d log(nd/λ)) colors.

Theorem 1 follows by verifying (see Section 3) that the independent set pseudo-expectation
constructed in [12] satisfies the hypotheses of Theorem 2 with k0 = n

1
2 +ε and λ = n−O(d).

Theorem 2 holds for every graph G that admits an independent set pseudo-expectation
satisfying the two additional covering properties. Hence, Theorem 2 gives a reduction “within
SoS” from the problem of coloring G to the problem of finding a large independent set in G.
As a consequence of the modularity of Theorem 2, we have also reduced the task of proving

P. K. Kothari and P. Manohar 23:5

SoS lower bounds for coloring for G(n, p) with p ≪ 1/2 to the task of “merely” proving a
similar lower bound for independent set for G(n, p). The latter task, though challenging,
appears significantly less daunting than attacking coloring directly.

To understand the two covering properties intuitively, note that even in “real-life” the
existence of a single large independent set (say of size ∼ n/k) does not imply the existence
of a k-coloring of G. However, the existence of a k-coloring follows if we can prove that there
is a collection of k independent sets that cover all vertices of G. The conditions appearing in
Theorem 2 can be thought of as forcing two “low-degree” consequences of such a uniform
covering property on the pseudo-expectation for independent sets. Informally, the first
constraint says that each vertex i appears in the independent set with reasonable probability,
and the second constraint says that the minimum eigenvalue of Ẽ is not too small, once we
ignore polynomials that are required to have pseudo-expectation 0 due to the independent
set constraints.

1.3 Comparison with Tulsiani’s framework
Our proof of Theorem 2 requires a notion of reduction that departs from the standard
framework introduced in [60]. Tulsiani’s method5 uses a pointwise complete reduction from
problem B to problem A to construct a pseudo-expectation consistent with a polynomial
formulation for B from a pseudo-expectation consistent with a polynomial formulation for
A. Specifically, a pointwise complete SoS reduction from problem B to problem A is a map
from instances IA of problem A to instances IB of problem B, along with a “solution map”
x 7→ y that takes any solution x of instance IA into a solution y of instance IB that, in
addition, satisfies: (1) each entry of the solution map x → y is computable by low-degree
polynomials, and (2) there is a “low-degree sum-of-squares proof” that if x satisfies the
constraint system A for instance IA then y satisfies the constraint system B for instance
IB . In particular, if yi = pi(x) for each i for polynomials p1, p2, . . . of degree most d1, then
the framework allows us to transform a degree d pseudo-expectation consistent with A into
a degree ≈ d/d1 pseudo-expectation consistent with B. Tulsiani used this machinery to
prove several SoS lower bounds for worst-case combinatorial optimization problems such as
constraint satisfaction, vertex cover, independent set and coloring.

In average-case settings, however, we need tight control over the map between instances
IA and IB in order to obtain a lower bound that applies to the target distribution over
the instances of problem B. This makes Tulsiani’s method not directly applicable to our
setting since (if we insist on instance-preserving reductions) there is provably no pointwise
complete, instance-preserving reduction from k-coloring to independent set. This is because
the existence of a large independent set in G does not, in general, imply the existence of a
valid coloring of G with a small number of colors. Instead, as we discuss next, our reduction
directly maps a pseudo-expectation for independent set into a pseudo-expectation for coloring
as long as the pseudo-expectation for independent set satisfies the additional uniform covering
conditions.

1.4 Proof overview: coloring by repeated sampling
We describe our construction and a couple of main insights that go into the proof of Theorem 2
here. These ideas make the proof of Theorem 1 “stress-free”: they allow us to completely
sidestep the technical complexity of analyzing constructions based on pseudo-calibration that
involve computing the spectra of certain random matrices (called graphical matrices) for
proving SoS lower bounds.

5 What follows is an equivalent description of Tulsiani’s work in the language of pseudo-expectations.

CCC 2021

23:6 A Stress-Free Sum-Of-Squares Lower Bound for Coloring

We begin by describing the conceptual heart of the idea. In order to do this, it is helpful
to consider the thought experiment (and very special case!) where the independent set
pseudo-expectation Ẽ is in fact the expectation operator Eµ associated with some distribution
µ on independent sets of G. Further, suppose that Eµ[xi] = Pr[i ∈ S] ⩾ 1

k0
. Then, observe

that we can immediately derive that G must be k-colorable with O(k0 log n) colors. In fact,
we can produce a simple, explicit probability distribution on k-colorings of G: independently
sample k independent sets S1, . . . , Sk from µ and set each of them to be a new color
class. Observe that the chance that a certain vertex is not included in any of the Si’s is
Pr[i /∈ ∪k

j=1Sj] = (1 − 1
k0

)k ⩽ e−k/k0 ≪ 1
n for k = O(k0 log n), and hence by a union bound,

using the Si’s as color classes gives a valid k-coloring of G with high probability.6 To get a
distribution µ′ entirely supported over k-colorings of G, one can simply sample S1, . . . , Sk

from µ conditioned on the high probability event that ∪k
j=1Sj = V (G).

Our key idea is to replicate this “independent sampling” step within the sum-of-squares
framework. For pseudo-expectations, independent sampling produces a pseudo-expectation
on a tuple of k independent sets given by the k-th tensor Ẽ⊗k. However, there is no natural
way to perform the final “conditioning” step for low-degree pseudo-expectations7, which for
distributions is the simplest way to ensure the “covering property”, that is, i ∈ ∪k

j=1Sj for
every i, or equivalently to make Eµ′ satisfy the sum constraints

∑
c xi,c ⩾ 1 for every i.

The sampling analogy suggests a way out, however: observe that when one draws
S1, . . . , Sk from an actual probability distribution µ on independent sets that satisfies
Eµ xi ⩾ 1/k0, we expect each i to be in not just one but in fact in k

k0
= O(log n) of the subsets.

Equivalently, we expect that Eµ

∑
c xi,c = Ω(log n). Because this expectation is large, if low-

degree polynomials of µ are sufficiently well-concentrated around their expectations, we may
expect that the influence of the points x in the support of µ where

∑
c xi,c ⩽ 1 ≪ Eµ

∑
c xi,c

to be small. Thus, one may hope that expectations of low-degree (deg ⩽ d) polynomials
cannot “distinguish” between distributions µ where every point in the support of µ satisfies∑

c xi,c > 1 versus those where the probability of
∑

c xi,c = 0 is non-zero for some i. In that
case, one might expect Ẽ⊗k to satisfy the sum constraints.

Our actual proof establishes precisely such a statement even for pseudo-distributions
whenever the smallest nontrivial eigenvalue of the pseudo-moment matrix of the independent
set pseudo-expectation Ẽ is not too small. We show that this condition implies a non-trivial
eigenvalue lower bound for the k-fold tensor power of Ẽ on polynomials of total degree8 d.
A direct argument relying on spectra of the tensor product of matrices yields an estimate
that decays exponentially in k, which is too weak for us. Instead, we show that the smallest
eigenvalue of Ẽ⊗k when restricted to the subspace of polynomials of total degree ⩽ d decays
only as an exponential in d log n. While eventually elementary, this argument is both crucial
and somewhat technical and is presented in full in Section 2.4.1.

Intuitively, a good enough lower bound on the smallest non-zero eigenvalue of Ẽ⊗k on
the relevant subspace of polynomials is our “surrogate” for the concentration of low-degree
polynomials that we needed in the case of actual probability distributions above. Concretely,

6 Note that a vertex i will, with high probability, belong to multiple color classes. In order to obtain a
valid k-coloring, we simply remove each vertex from all but one of its assigned color classes.

7 There is a natural and standard way to import “conditioning” of probability distributions into the
SoS framework via “polynomial reweightings” (see [13] for a formal treatment of such reweightings).
However, the relevant polynomial

∏
i
(1 −

∏
c
(1 − xi,c)) in our case has degree nk, and so we would

need the independent set pseudo-expectation to have degree ≫ n in order for the reweighting to be
well-defined!

8 Notice that Ẽ⊗k is defined and even positive semidefinite on a larger subspace of polynomials that
includes some of total degree ∼ kd!

P. K. Kothari and P. Manohar 23:7

we use this non-trivial eigenvalue lower bound on Ẽ⊗k as follows: let hi be the indicator
polynomial of the “bad event”

∑
c xi,c ⩽ 1. Then, we prove that for a polynomial f to

be able to “detect” this event, we must have Ẽ⊗k[f2hi] = Ω(Ẽ⊗k[f2]). However, applying
Cauchy-Schwarz, we have that Ẽ⊗k[f2hi] ⩽

√
Ẽ⊗k[f4]Ẽ⊗k[h2

i]. We show that the smallest
eigenvalue condition implies a 2 � 4 hypercontractive inequality on the pseudo-expectation
operator on polynomials of total degree ⩽ d, i.e., Ẽ⊗k[f4] ⩽ (nO(d)

λ)dẼ⊗k[f2]2. Combined
with the estimate (that one roughly expects to hold from the independent sampling based
argument) Ẽ⊗k[hi] ≈ e−k/k0 , this yields that Ẽ⊗k indeed satisfies the constraints

∑
c xi,c ⩾ 1

for every i, when k = O(k0d log(nd/λ)).

1.5 Weak vs. strong formulation for coloring
The coloring axioms are often stated with an equality (we call this the strong form) in the
sum constraints along with the additional constraints {xi,cxi,c′ = 0 : c ̸= c′}, instead of
an inequality (the weak form) as done in Color Constraints. Namely, the strong coloring
constraints are the following.

(Strong) Color Constraints

x2
i,c = xi,c for all i ∈ [n], c ∈ [k] (Booleanity Constraints)

xi,cxj,c = 0 for all c ∈ [k] and {i, j} ∈ E(G) (Edge Constraints)∑
c

xi,c = 1 for all i ∈ [n] (Sum Equality Constraints)

xi,cxi,c′ = 0 for all c ̸= c′ ∈ [k] (Same Color Constraints)

When viewed as a polynomial optimization problem, there is no difference between the weak
and strong formulations: one is satisfiable if and only if the other is. Further, SoS relaxations
of both formulations “converge” (i.e., refute k-coloring in G(n, 1/2) for the right value of k)
at O(log n) degree, and both imply corresponding lower bounds for independent set: a degree
d coloring (weak or strong) pseudo-expectation with k colors can easily be transformed into a
degree d independent set pseudo-expectation with independent set size ⩾ n

k . Thus, while the
SoS relaxation of the strong form is formally stronger (for degrees > 2), Color Constraints
do not appear to meaningfully weaken the strong formulation.

However, at the moment our technique does not succeed in constructing a pseudo-
expectation that satisfies the constraints in the strong formulation. This is an important
technical issue encountered in proving several prior SoS lower bounds where it turns out to
be unwieldy to handle “hard” constraints such as those formulated by an exact polynomial
equality. For example, in the planted clique problem, one may naturally wish for the pseudo-
expectation to satisfy the clique-size constraint “

∑
i xi = ω” exactly. While this is achieved for

the degree 4 pseudo-expectation of [35, 53], the degree ∼ log n pseudo-expectation constructed
in [12] does not satisfy this as a constraint. This technical deficiency can sometimes even be
crucial in downstream applications. For example, the construction of the hardness result
for finding Nash equilibria in two player games in [41] (see also the discussion in [40]) needs
elaborate work-arounds in order to work without satisfying such exact constraints.

Informally speaking, this is because the proofs of positivity of candidate pseudo-
expectations rely on “collecting terms” together in the graphical matrix (a class of structured
random matrices) decomposition in order to form PSD matrices. This aggregation step needs
coefficients on various graphical matrices appearing in the decomposition to satisfy certain
exact relationships. Modifying such coefficients to satisfy hard constraints while maintaining
positivity appears challenging.

CCC 2021

23:8 A Stress-Free Sum-Of-Squares Lower Bound for Coloring

Such technical difficulty has been dealt with in some special cases (where the analyses
did not need pseudo-calibration in the first place). For example, for the (much simpler) case
of constraint satisfaction problems with a single global equality constraint, this problem
was addressed via certain ad hoc methods in a recent work [40]. That work also includes a
longer discussion on the issues arising in constructing pseudo-expectations satisfying hard
constraints. Finding general techniques to design and analyze pseudo-expectations that
exactly satisfy multiple hard constraints simultaneously – such as those arising in the strong
formulation of graph coloring – is an important and challenging open problem.

2 Reduction to SoS Lower Bounds for Independent Set

In this section, we prove Theorem 2 (restated below).

▶ Theorem (Theorem 2, restated). Let G be a graph on n vertices, and let Ẽ be a degree
d independent set pseudo-expectation. Suppose further that Ẽ satisfies the two “covering”
properties: (1) Ẽ[xi] ⩾ 1

k0
for some integer k0, and (2) there exists λ ∈ R>0 such that for all

multilinear f with deg(f) ⩽ d/2, Ẽ[f2] ⩾ λ ∥ΠGf∥2
2, where ΠG is the projection of f onto

the linear subspace orthogonal to {gxixj : {i, j} ∈ E(G), deg(g) ⩽ d − 2} (viewed as a subset
of coefficient vectors of polynomials with the Euclidean inner product), and ∥f∥2 denotes
the ℓ2 norm of the polynomial of f , viewed as a coefficient vector. Then, there is a degree
d′ := 1 + d/2 coloring pseudo-expectation Ẽ′ using k = O(k0d log(nd/λ)) colors.

2.1 Coloring degree of polynomials

Before proceeding with the proof, we first introduce some notation. Let f be a polynomial
in the variables {xi,c}i∈[n],c∈[k]. We define the coloring degree of f , denoted by cdeg(f),
to be the maximum, taken over all monomials

∏k
c=1

∏n
i=1 x

αi,c

i,c for which f has a nonzero
coefficient, of maxc∈[k] deg(

∏n
i=1 x

αi,c

i,c). As an example, the polynomial x1,1x1,2 has degree
2 and coloring degree 1, while the polynomial x1,1x2,1 has degree 2 and coloring degree 2.
Informally, the coloring degree only “charges” a polynomial for degrees in variables of a single
color.

Let Pd denote the set of polynomials in the variables {xi}i∈[n] of degree at most d. Then,
the set of coloring degree ⩽ d polynomials is precisely P⊗k

d . Recall that the operator ΠG is the
projection of f ∈ Pd to the subspace orthogonal to {gxixj : {i, j} ∈ E(G), deg(g) ⩽ d − 2}.
We let Π⊗k

G denote the k-th tensor of ΠG. Namely, Π⊗k
G is the projection of f ∈ P⊗k

d to the
subspace orthogonal to {gxi,cxj,c : {i, j} ∈ E(G), c ∈ [k], cdeg(gxi,cxj,c) ⩽ d}.

Recall that a degree d pseudo-expectation is a linear operator Ẽ : Pd → R such that
Ẽ[1] = 1, and Ẽ[f2] ⩾ 0 for all f with deg(f) ⩽ d/2. For a pseudo-expectation Ẽ : Pd → R,
we define Ẽ⊗k : P⊗k

d → R to be the k-th tensor of Ẽ. Concretely, Ẽ⊗k is a pseudo-expectation
in the variables {xi,c}i∈[n],c∈[k], defined as follows. For polynomials f1, . . . , fk where (1)
fc is a polynomial in the variables {xi,c}i∈[n] for each c, and (2) deg(fc) ⩽ d for all c, we
first define Ẽ⊗k[

∏k
c=1 fc] def=

∏k
c=1 Ẽ[fc], and then extend Ẽ⊗k to be defined on all f ∈ P⊗k

d

via linearity. We define a coloring degree d pseudo-expectation to be a linear operator
Ẽ : P⊗k

d → R such that Ẽ[1] = 1 and Ẽ[f2] ⩾ 0 for all f with cdeg(f) ⩽ d/2. If Ẽ is a degree
d pseudo-expectation, then Ẽ⊗k is a coloring degree d pseudo-expectation.

It is well-known that degree d pseudo-expectations satisfy the Cauchy-Schwarz inequality:

P. K. Kothari and P. Manohar 23:9

▶ Fact 4 (See [14]). Let f, g be polynomials with deg(f), deg(g) ⩽ d/2, and let Ẽ be a degree
d pseudo-expectation. Then Ẽ[fg] ⩽

√
Ẽ[f2]Ẽ[g2].

We observe that a similar fact also holds for coloring degree d pseudo-expectations.

▶ Fact 5. Let f, g be polynomials with cdeg(f), cdeg(g) ⩽ d/2, and let Ẽ be a coloring degree
d pseudo-expectation. Then Ẽ[fg] ⩽

√
Ẽ[f2]Ẽ[g2].

The proof of Fact 5 is nearly identical to the proof of Fact 4, as the proof of Fact 4 merely
requires that Ẽ is a pseudo-expectation where Ẽ[f2], Ẽ[g2], Ẽ[fg] and Ẽ[(f − g)2] are all
well-defined.

2.2 Proof of Theorem 2
Construction of the pseudo-expectation. Fix a graph G and degree bound d, and let
Ẽ : Pd → R be a degree d independent set pseudo-expectation for G such that (1) Ẽ[xi] ⩾ 1

k0
,

and (2) Ẽ[f2] ⩾ λ ∥ΠGf∥2
2. Let k ∈ N to be chosen later, and assume without loss of

generality that k < n.
Let Ẽ⊗k : P⊗k

d → R be the k-fold tensor power of Ẽ, and let Ẽ′ be the pseudo-expectation
defined over all polynomials f that have degree at most 1 + d/2 obtained by restricting Ẽ⊗k

to this subspace.

Analysis of the constraints. We first observe that both Ẽ′ and Ẽ⊗k trivially satisfy the
booleanity constraints, edge constraints, and positivity constraint (over their respective
domains), since Ẽ satisfies these constraints. We verify these simple facts in Appendix A. As
a consequence, if f has Π⊗k

G f = 0, then Ẽ⊗k satisfies f = 0 as a constraint; namely, for any
g with cdeg(fg) ⩽ d, it holds that Ẽ⊗k[fg] = 0.

It remains to show that Ẽ′ satisfies the sum constraints, i.e., for all f with deg(f) ⩽ d
4 and

for every i, Ẽ′[f2(
∑

c xi,c −1)] ⩾ 0. Fix i, and let hi :=
∑

c xi,c

∏
c′ ̸=c(1−xi,c′)+

∏
c(1−xi,c).

Note that hi is the indicator of the event that
∑k

c=1 xi,c ⩽ 1, and when written as a
polynomial, has coloring degree 1.

We will rely on the following two technical lemmas in our proof. The first informally shows
that Ẽ⊗k “thinks” that

∑
c xi,c ⩾ 2 when the event indicated by hi, namely “

∑
c xi,c ⩽ 1”,

does not occur. Intuitively, this should clearly hold.

▶ Lemma 6. Ẽ⊗k satisfies the constraint (1 − hi)(
∑

c xi,c − 2) ⩾ 0. Namely, for every
polynomial f with cdeg(f) ⩽ d−2

2 , it holds that Ẽ⊗k[f2(1 − hi)(
∑

c xi,c − 2)] ⩾ 0.

The second lemma shows that the linear operator Ẽ satisfies a hypercontractive inequality
– that is, the expectations of 4th powers of low-degree polynomials can be upper-bounded in
terms of the expectations of their 2nd powers. Readers familiar with Fourier analysis over
the hypercube may observe that the “scaling” in our estimate grows as exp(O(d log n)) in
contrast to the exp(O(d)) scaling in the usual hypercontractive inequality over the uniform
measure on the Boolean hypercube. However, this worse bound will be sufficient for our
purposes.

▶ Lemma 7 (Hypercontractivity). For any multilinear f with cdeg(f) ⩽ d/4 satisfying
f = Π⊗k

G f , we have Ẽ⊗k[f4] ⩽ nO(deg(f)) · Ẽ⊗k[f2]2/(λn−O(d))2 deg(f).

CCC 2021

23:10 A Stress-Free Sum-Of-Squares Lower Bound for Coloring

We postpone the proofs of Lemmas 6 and 7 to Sections 2.3 and 2.4, respectively, and finish
the proof assuming these two claims. Let f be any polynomial with cdeg(f) ⩽ d

4 . We lower
bound Ẽ⊗k[f2∑

c xi,c]. Without loss of generality, we can assume that f is multilinear, as if
f is not multilinear, then we can reduce it modulo the booleanity constraints. We can also
assume that f = Π⊗k

G f , as if this does not hold then we write f = f1 + f2 where f1 = Π⊗k
G f1

and Π⊗k
G f2 = 0, and then we observe that Ẽ⊗k[(f1 + f2)2∑

c xi,c] = Ẽ⊗k[f2
1
∑

c xi,c] (because
f2 = 0 is satisfied by Ẽ⊗k as a constraint) and cdeg(f1) ⩽ cdeg(f) ⩽ d

4 , as the projection
operation can only decrease coloring degree. We note that Ẽ⊗k[h2

i] = Ẽ⊗k[hi], since h2
i ≡ hi

modulo the booleanity constraints {x2
i,c = xi,c}. We have that

Ẽ⊗k[f2
∑

c

xi,c] = Ẽ⊗k[f2hi

∑
c

xi,c] + Ẽ⊗k[f2(1 − hi)
∑

c

xi,c]

= Ẽ⊗k[f2h2
i

∑
c

x2
i,c] + Ẽ⊗k[f2(1 − hi)

∑
c

xi,c] (as h2
i ≡ hi and x2

i,c ≡ xi,c)

⩾ 0 + Ẽ⊗k[f2(1 − hi)
∑

c

xi,c] (by positivity of Ẽ⊗k)

⩾ Ẽ⊗k[f2 · 2(1 − hi)] (by Lemma 6)
= 2(Ẽ⊗k[f2] − Ẽ⊗k[f2hi]) .

Note that this is well-defined because Ẽ⊗k is defined on each of the terms in the above
inequalities since cdeg(f) ⩽ d/4 ⩽ (d − 4)/2 and cdeg(hi) = cdeg(

∑
c xi,c) = 1.

Now, we observe that

Ẽ⊗k[f2hi] ⩽
√
Ẽ⊗k[f4]

√
Ẽ⊗k[h2

i] (by Fact 5)

⩽

(
nO(d)

λ

)2 deg(f)

Ẽ⊗k[f2] ·
√
Ẽ⊗k[h2

i] (by Lemma 7)

⩽

(
nO(d)

λ

)2 deg(f)

Ẽ⊗k[f2] ·
√
Ẽ⊗k[hi] (since h2

i ≡ hi) .

Next, we observe that Ẽ⊗k[hi] = Ẽ⊗k[
∏

c(1 − xi,c)] +
∑

c Ẽ⊗k[xi,c

∏
c′ ̸=c(1 − xi,c′)] = (1 −

Ẽ[xi])k + (k − 1)(Ẽ[xi](1 − Ẽ[xi])k−1) ⩽ k · e−k/k0 using the tensor structure of Ẽ⊗k and that
Ẽ[xi] ⩾ 1

k0
. Hence,

Ẽ⊗k[f2hi] ⩽
(

nO(d)

λ

)2 deg(f)

Ẽ⊗k[f2] · k · e−k/k0

=⇒ Ẽ⊗k[f2
∑

c

xi,c] ⩾ 2Ẽ⊗k[f2]
(

1 − k · e−k/k0

(
nO(d)

λ

)2 deg(f))
.

Now, suppose that f is any polynomial with deg(f) ⩽ d
4 . This implies that (1)

Ẽ′[f2∑
c xi,c] is defined, and (2) cdeg(f) ⩽ d

4 , and so we have that (using λ ⩽ 1)

Ẽ′[f2
∑

c

xi,c] = Ẽ⊗k[f2
∑

c

xi,c] ⩾ 2Ẽ⊗k[f2]
(

1 − k · e−k/k0

(
nO(d)

λ

)d/2)

= Ẽ′[f2] · 2
(

1 − k · e−k/k0

(
nO(d)

λ

)d/2)
.

P. K. Kothari and P. Manohar 23:11

Choosing k = O(k0d log(nd/λ)), it follows that 1 − k · e−k/k0
(

nO(d)

λ

)d/2
⩾ 1

2 and so
Ẽ′[f2(

∑
c xi,c − 1)] ⩾ 0 for all f with deg(f) ⩽ d

4 . Since Ẽ′ is a degree 1 + d
2 pseudo-

expectation, this means that Ẽ′ satisfies the constraint
∑

c xi,c − 1 ⩾ 0, which finishes the
proof.

2.3 Proof of Lemma 6
Let f be any polynomial with cdeg(f) ⩽ (d − 2)/2. It suffices to show that Ẽ⊗k[f2(1 −
hi)(

∑
c xi,c − 2)] ⩾ 0. For 2 ⩽ t ⩽ k, let g

(t)
i =

∏
c⩽t(1 − xi,c), g

(t)
i,c =

∏
c′ ̸=c,c′⩽t(1 − xi,c′),

and h
(t)
i :=

∑
c⩽t xi,cg

(t)
i,c + g

(t)
i . We show by induction on t that for each t ⩾ 0, it holds that

Ẽ⊗k[f2(1 − h
(t)
i)(

∑
c⩽t xi,c − 2)] ⩾ 0 for every f where the coloring degree of f on the first t

colors is at most (d − 2)/2, and cdeg(f) ⩽ d/2.
The base case is when t = 2. In this case, we have 1−h

(t)
i = 1−xi,1(1−xi,2)−xi,2(1−xi,1)−

(1 − xi,1)(1 − xi,2) = xi,1xi,2, so Ẽ⊗k[f2(1 − h
(t)
i)(

∑
c⩽t xi,c − 2)] = Ẽ⊗k[f2(xi,1xi,2)(xi,1 +

xi,2 − 2)] = Ẽ⊗k[f2(2xi,1xi,2 − 2xi,1xi,2)] = 0. Note that since f has coloring degree at most
(d − 2)/2 on the first colors, Ẽ⊗k is always defined on each of these polynomials.

We now show the induction step. We observe that h
(t+1)
i = (1 − xi,t+1)h(t)

i + xi,t+1g
(t)
i .

Let f be a polynomial that has coloring degree ⩽ (d − 2)/2 on the first t + 1 colors, and
cdeg(f) ⩽ d/2. We have

Ẽ⊗k[f2(1 − h
(t+1)
i)(xi,t+1 +

∑
c⩽t+1

xi,c − 2)]

= Ẽ⊗k[f2
(

(1 − xi,t+1)(1 − h
(t)
i) + xi,t+1(1 − g

(t)
i)
)

· (xi,t+1 +
∑
c⩽t

xi,c − 2)]

= Ẽ⊗k[f2(1 − xi,t+1)(1 − h
(t)
i)(

∑
c⩽t

xi,c − 2)] + Ẽ⊗k[f2xi,t+1(1 − g
(t)
i)(1 +

∑
c⩽t

xi,c − 2)]

= Ẽ⊗k[f2(1 − xi,t+1)2(1 − h
(t)
i)(

∑
c⩽t

xi,c − 2)] + Ẽ⊗k[f2x2
i,t+1(1 − g

(t)
i)(

∑
c⩽t

xi,c − 1)] .

Since f has coloring degree at most (d − 2)/2 on the first t + 1 colors, f · (1 − xi,t+1) has
coloring degree at most (d−2)/2 on the first t colors, and also cdeg(f · (1−xi,t+1)) is at most
d/2, as on the (t + 1)-th color it has degree at most (d − 2)/2 + 1, and on every other color
it is either at most (d − 2)/2 or d/2. So, Ẽ⊗k[f2(1 − xi,t+1)2(1 − h

(t)
i)(

∑
c⩽t xi,c − 2)] ⩾ 0

by the induction hypothesis. We also observe that f · xi,t+1 has coloring degree at most
(d − 2)/2 on the first t colors, and has coloring degree at most d/2.

It remains to show that Ẽ⊗k[f2(1 − g
(t)
i)(

∑
c⩽t xi,c − 1)] ⩾ 0 for all t and for all f with

cdeg(f) ⩽ d/2 and coloring degree at most (d − 2)/2 in the first t colors. We observe that
g

(t)
i xi,c ≡ 0 for all c ⩽ t, and so it suffices to show that Ẽ⊗k[f2∑

c⩽t xi,c] ⩾ Ẽ⊗k[f2(1 − g
(t)
i)].

We do this by induction on t. In the base case, we have Ẽ⊗k[f2xi,1] = Ẽ⊗k[f2(1 − (1 − xi,1))].
For the induction step, we have

Ẽ⊗k[f2(xi,t+1 +
∑
c⩽t

xi,c)] ⩾ Ẽ⊗k[f2xi,t+1] + Ẽ⊗k[f2(1 − g
(t)
i)]

⩾ Ẽ⊗k[f2xi,t+1g
(t)
i] + Ẽ⊗k[f2(1 − g

(t)
i)]

= Ẽ⊗k[f2(1 − (1 − xi,t+1)g(t)
i)] = Ẽ⊗k[f2(1 − g

(t+1)
i)] ,

where we use the fact that fxi,t+1g
(t)
i has coloring degree ⩽ d/2 since f has coloring degree

at most (d − 2)/2 in the first t + 1 colors, and that (g(t)
i)2 ≡ g

(t)
i modulo the hypercube

constraints. This finishes the proof.

CCC 2021

23:12 A Stress-Free Sum-Of-Squares Lower Bound for Coloring

2.4 Proof of Lemma 7: hypercontractivity
Let f be a multilinear polynomial with cdeg(f) ⩽ d/4 with Π⊗k

G f = f . Suppose that:

Ẽ⊗k[f2] ⩾ λ1 ∥f∥2
2 , (2.1)

Ẽ⊗k[f4] ⩽ λ2
∥∥f2∥∥2

2 , (2.2)∥∥f2∥∥2
2 ⩽ C ∥f∥4

2 . (2.3)

Then it follows that Ẽ⊗k[f4] ⩽ λ2
∥∥f2

∥∥2
2 ⩽ λ2C ∥f∥4

2 ⩽ λ2C
λ2

1
Ẽ⊗k[f2]2.

Equation (2.1) follows from the following lemma with λ1 := (λn−O(d))deg(f).

▶ Lemma 8 (Eigenvalue lower bound for Ẽ⊗k). Suppose that for any multilinear g with
deg(g) ⩽ d/2, Ẽ[g2] ⩾ λ ∥ΠGg∥2

2. Then for any multilinear f of coloring degree ⩽ d/2, it
holds that Ẽ⊗k[f2] ⩾ (λn−O(d))deg(f) ·

∥∥Π⊗k
G f

∥∥2
2.

We postpone the proof of Lemma 8 for now, and finish the proof of Lemma 7.
Let g =

∑
m gm · m be a polynomial of degree deg(g) with cdeg(g) ⩽ d/2, where m

is a monomial and gm is the coefficient of g for the monomial m. Since Ẽ⊗k satisfies the
booleanity constraints, it follows that Ẽ[m] ⩽ 1 for all monomials m. Hence, Ẽ[g2] ⩽∑

m1,m2
|gm1gm2 | = (

∑
m |gm|)2 ⩽ (nk)O(deg(g)) ∥g∥2

2, by Cauchy-Schwarz, as g is supported
on at most (nk)O(deg(g)) distinct monomials. Since (nk)O(deg(g)) ⩽ nO(deg(g)) as k < n, it
follows that Ẽ⊗k[g2] ⩽ nO(deg(g)) ∥g∥2

2, and so (setting g = f2) Equation (2.2) holds with
λ2 := nO(deg(f)).

Finally, for a polynomial g and monomial m let gm be the coefficient of g on m. For
any m of degree ⩽ 2 deg(f), we have that f2

m =
∑

m1,m2:m1·m2=m fm1fm2 . We observe
that this is equal to ⟨v(m), f⟩, where v(m) is the vector defined as v

(m)
m2

def= fm1 where
m1 · m2 = m (and is 0 if no such m1 exists). It follows that

∥∥v(m)
∥∥

2 ⩽ ∥f∥2, and hence
that

∣∣⟨v(m), f⟩
∣∣ ⩽ maxv:∥v∥2⩽∥f∥2

|⟨v, f⟩| = ∥f∥2
2. Hence,

∣∣f2
m

∣∣2 ⩽ ∥f∥4
2, and so

∥∥f2
∥∥2

2 =∑
m:deg(m)⩽2 deg(f)

∣∣f2
m

∣∣ ⩽ (nk)O(deg(f)) ∥f∥4
2 = nO(deg(f)) ∥f∥2

4, and so Equation (2.3) holds
with C := nO(deg(f)).

Combining, we conclude that Ẽ⊗k[f4] ⩽ Ẽ⊗k[f2]2/(λn−O(d))2 deg(f), which finishes the
proof.

2.4.1 Proof of Lemma 8: eigenvalue lower bound for Ẽ⊗k

Proof outline. The proof proceeds in three steps. First, we show that the moment matrix
of the independent set pseudo-expectation Ẽ, when written in a basis so that the constant
polynomial 1 is an eigenvector, has an eigenvalue lower bound of λn−O(d). To show that
this property implies the desired eigenvalue lower bound, we observe that any f of total
degree ⩽ d is a linear combination of monomials that use at most deg(f) colors. Further,
(the coefficient vector of) each such monomial is a linear combination of tensor products of
eigenvectors of the Ẽ that use a “non-1” eigenvector in at most deg(f) modes of the tensor
and thus is in the span of eigenvectors of Ẽ⊗k (in the new basis) with eigenvalue at least
(λn−O(d))deg(f). This reasoning immediately implies that f , when written in the chosen basis,
has the desired eigenvalue lower bound. To finish the proof, we argue that the change of
basis does not modify ∥f∥2 by too much.

We now proceed with implementing the above proof plan. For every S ⊆ [n] with
|S| ⩽ d, recall that we can express any multilinear polynomial g with degree ⩽ d as a
linear combination of the monomials xS

def=
∏

i∈S xi. Let gS be the coefficient of g on the

P. K. Kothari and P. Manohar 23:13

monomial S, so that g =
∑

|S|⩽d gSxS . Let eS be the S-th standard basis vector in R(n
⩽d).

Then g (as a vector of coefficients) is
∑

S gSeS . For S ̸= ∅, define e′
S as eS − Ẽ[xS] · e∅.

We can write g uniquely in the e′
S basis as g =

∑
S g′

Se′
S , where g′

S = gS for S ̸= ∅, and
g′

∅ = g∅ +
∑

S ̸=∅ gSẼ[xS] = Ẽ[g]. Note that, if we let x′
S := xS − Ẽ[xS] for S ≠ ∅ and

x′
∅ := x∅ = 1, then g =

∑
S g′

Sx′
S as a polynomial.

Let M be the moment matrix of Ẽ in the x′ basis. This matrix is indexed by sets
S, S′ ⊆ [n] with |S| , |S′| ⩽ d/2, and M(S, S′) = Ẽ[x′

Sx′
S′], which is equal to Ẽ[(xS −

Ẽ[xS])(xS′ − Ẽ[xS′])] = Ẽ[xSxS′] − Ẽ[xS]Ẽ[xS′] if S, S′ ̸= ∅, equal to 0 if exactly one of S, S′

is ∅, and equal to 1 if S = S′ = ∅. This implies that e′
∅ is an eigenvector of M with eigenvalue

1. We also observe that if g has degree ⩽ d/2 and g′ is the coefficient vector of g in the e′

basis, then Ẽ[g2] = g′⊤Mg′.
We now prove the following eigenvalue lower bound on M.

▷ Claim 9. M ⪰ λn−O(d)ΠG.

Proof. Let S with |S| ⩽ d/2 be a set that is not an independent set in G, i.e. that ΠGeS = 0.
We observe that Me′

S = 0. Indeed, the T -th entry of Me′
S is M(T, S) = Ẽ[x′

T x′
S] =

Ẽ[xT xS] − Ẽ[xT]Ẽ[xS] = 0 − 0 = 0 for T ̸= ∅, and is 0 if T = ∅ because M(∅, S) = 0 for
S ̸= ∅.

Now, let g′ =
∑

S:|S|⩽d g′
Se′

S be arbitrary. By the above, without loss of generality we may
assume that g′

S = 0 for all S that is not an independent set in G. Let g be the corresponding
polynomial in the x basis, so that g =

∑
S gSxS , where g∅ = g′

∅ −
∑

S ̸=∅ g′
SẼ[xS] and gS = g′

S

for all S ̸= ∅. Notice that Ẽ[g] = g′
∅. We observe that ΠGg = g, as gS = g′

S = 0 for all S that
is not an independent set in G. Now, we have that g′⊤Mg′ = Ẽ[g2] ⩾ λ ∥ΠGg∥2

2 = λ ∥g∥2
2,

by our eigenvalue lower bound assumption on Ẽ.
It remains to relate ∥g∥2

2 and ∥g′∥2
2. We have that ∥g′∥2

2 =
∑

|S|⩽d/2 g′2
S = Ẽ[g]2 +∑

S ̸=∅ g′2
S ⩽ Ẽ[g]2 + ∥g∥2

2 ⩽ Ẽ[g2] + ∥g∥2
2 ⩽ (nO(d) + 1) ∥g∥2

2, as Ẽ[g2] ⩽ nO(d) ∥g∥2
2 since

0 ⩽ Ẽ[xSxT] ⩽ 1 for all S, T , and there are at most nO(d) such pairs. Hence, g′⊤Mg′ ⩾
λn−O(d) ∥g′∥2

2 when g′ = ΠGg′, and so M ⪰ λn−O(d)ΠG. ◁

We have already shown that e′
∅ is an eigenvector of M with eigenvalue 1, and that the

zero eigenvectors of M are the vectors e′
S where S is not an independent set in G. Let f0 =

e′
∅, f1, . . . , fr be the eigenvectors of M with nonzero eigenvalues λ0 = 1, λ1, . . . , λt, where λi ⩾

λn−O(d) for 1 ⩽ i ⩽ t. Let M⊗k be the k-th tensor of M. Let f
(c)
i denote the i-th eigenvector

in the c-th component of the tensor. The eigenvectors of M⊗k are the vectors
⊗k

c=1 f
(c)
ic

. We
additionally observe that V(c) def= Span

(
f

(c)
i : i > 0

)
= Span

(
e

′(c)
S : |S| > 0, ΠGeS = eS

)
,

as f
(c)
0 = e′

∅
(c).

Let f be a multilinear polynomial with cdeg(f) ⩽ d/2 in the variables {xi,c}i∈[n],c∈[k].
That is, f is a vector in Span

(⊗k
c=1 e

(c)
Sc

: |Sc| ⩽ d/2 ∀c ∈ [k]
)

, where e
(c)
S denotes the S-th

standard basis vector in the c-th component of the tensor. As before, we can write f as
a vector f ′ in the e′ basis, so f ′ =

∑
(S1,...,Sk):|Sc|⩽d/2 ∀c∈[k] f ′

(S1,...,Sk)
⊗k

c=1 e
′(c)
Sc

. We again
observe that Ẽ⊗k[f2] = f ′⊤M⊗kf ′, because the ((S1, . . . , Sk), (T1, . . . , Tk))-th entry of M⊗k

is exactly
∏k

c=1 Ẽ[x′
Sc

x′
Tc

] = Ẽ⊗k[
∏k

c=1 x′
Sc

x′
Tc

]. Note that by the structure of the zero
eigenvectors of M, if f satisfies Π⊗k

G f = 0, then f is an eigenvector of M⊗k with eigenvalue
0. In particular, without loss of generality we can assume that f = Π⊗k

G f , as by the above
we can discard the component of f in the kernel of Π⊗k

G .

CCC 2021

23:14 A Stress-Free Sum-Of-Squares Lower Bound for Coloring

Let (S1, . . . , Sk) be such that f ′
(S1,...,Sk) ≠ 0. We must have Sc = ∅ for all but at

most deg(f) of the c’s. This is because f has degree deg(f), and so in particular every
monomial in f can only use at most deg(f) distinct colors. This shows that f ′ ∈ V :=
Span

(⊗
c∈C V(c)⊗

c/∈C e
′(c)
∅ : C ⊆ [k], |C| ⩽ deg(f)

)
. We observe that V is the span of

eigenvectors of M of the form
⊗

c∈C f
(c)
ic

⊗
c/∈C e

′(c)
∅ for |C| ⩽ deg(f). Since each of these

vectors is an eigenvector with eigenvalue at least (λn−O(d))|C| · 1k−|C| ⩾ (λn−O(d))deg(f), it
follows that f ′⊤M⊗kf ′ ⩾ (λn−O(d))deg(f) ∥f ′∥2

2. Thus, Ẽ⊗k[f2] ⩾ (λn−O(d))deg(f) ∥f ′∥2
2.

It remains to relate ∥f ′∥2
2 and ∥f∥2

2. Fix (S1, . . . , Sk) with |Sc| ⩽ d/2. Let (T1, . . . , Tk)
with |Tc| ⩽ d/2. We say that (T1, . . . , Tk) extends (S1, . . . , Sk) if for every c, either Tc = Sc or
Tc ̸= ∅ and Sc = ∅. The parity of the extension is the parity of the number of c where Tc ̸= ∅
and Sc = ∅. We observe that f(S1,...,Sk) =

∑
(T1,...,Tk) extending (S1,...,Sk) (parity of extension) ·

f ′
(T1,...,Tk). This is because e′

(T1,...,Tk) =
⊗k

c=1 e′
Tc

=
⊗k

c=1(eTc
− e∅). We thus see that

∥f∥1 ⩽
∑

(T1,...,Tk)

∣∣∣f ′
(T1,...,Tk)

∣∣∣ · n(T1,...,Tk), where n(T1,...,Tk) is the number of (S1, . . . , Sk)
that (T1, . . . , Tk) extends. We have shown that if f ′

(T1,...,Tk) ≠ 0 then it must be the case
that Tc ≠ ∅ for at most deg(f) of the c’s. Hence, such (T1, . . . , Tk) can only extend at most
2deg(f) of the (S1, . . . , Sk)’s, as each of the (S1, . . . , Sk)’s is obtained by changing a subset of
the Tc’s to be empty. Hence, ∥f∥1 ⩽ 2deg(f) ∥f ′∥1. Since f ′ has at most (nk)deg(f) ⩽ n2 deg(f)

nonzero coefficients, we get that ∥f∥2 ⩽ ndeg(f) · 2deg(f) ∥f ′∥2, and so we conclude that
∥f∥2

2 ⩽ nO(deg(f)) ∥f ′∥2
2, which finishes the proof.

3 Proof of Theorem 1: coloring lower bound

We now prove Theorem 1 (restated below in the language of pseudo-expectations) from
Theorem 2. In this section, we assume familiarity with the planted clique pseudo-expectation
of [12].

▶ Theorem (Theorem 1, restated). For sufficiently large n, for any ε ∈ (Ω(
√

1
log n), 1

2), with
probability 1 − 1/ poly(n) over the draw of G ∼ G(n, 1/2), there is a degree d = O(ε2 log n)
coloring pseudo-expectation Ẽ using k = n

1
2 +ε colors.

We begin by recalling the main theorem of [12].

▶ Theorem 10 ([12]). There is an absolute constant C such that for n sufficiently large,
C/

√
log n ⩽ ε < 1

2 , ω = n
1
2 −ε, and d = (ε/C)2 log n, with probability 1 − 1/ poly(n) over

G ∼ G(n, 1/2), the operator ẼG defined in [12] satisfies:
1. ẼG[1] = 1 ± n−Ω(ε),
2. ẼG[

∑
i xi] = ω(1 ± n−Ω(ε)),

3. ẼG[xS] = 0 for all |S| ⩽ d that is not a clique in G,
4. ẼG[f2] ⩾ λ ∥Π′

Gf∥2
2 where λ = Ω

((
ω
n

)d+1
)

and Π′
G is the projection onto xS for S a

clique in G.
We first observe that if G ∼ G(n, 1/2), then the complement graph Ḡ ∼ G(n, 1/2) also,
and moreover ẼG will satisfy the independent set constraints as ẼG[xS] = 0 for S that
is not a clique in G, which is equivalent to S not being an independent set in Ḡ. We
also note that Π′

G = ΠḠ, and that the final pseudo-expectation is obtained by setting
Ẽ[xS] := ẼG[xS]/ẼG[1]; this is done so that the normalization condition Ẽ[1] = 1 is satisfied.

We thus see that Ẽ satisfies the second additional condition of Theorem 2. Hence, in order
to apply Theorem 2 to conclude Theorem 1, it suffices to argue that with high probability
over G, it holds that ẼG[xi] ⩾ ω

n (1 − n−Ω(ε)) for all i. Indeed, if this holds then we have
Ẽ[xi] ⩾ ω

n (1 − n−Ω(ε)) also, and then we can apply Theorem 2 with k = n
ω (1 + n−Ω(ε)) which

finishes the proof. Thus, it remains to prove the following claim.

P. K. Kothari and P. Manohar 23:15

▷ Claim 11. For each i, ẼG[xi] ⩾ ω
n · (1 − n−Ω(ε)) with probability 1 − n− log n.

Proof. We have that ẼG[xi] :=
∑

T ⊆([n]
2):|V (T)|⩽τ

(
ω
n

)|V (T)∪{i}|
χT (G), where τ ⩽ (ε/C) log n.

The T = ∅ term always contributes ω
n . The other terms all have |V (T)| ⩾ 2. Let H1 be the

set of T such that i ∈ V (T), and let H2 be the set of T such that i /∈ V (T). Let H
(t)
1 be

the set of T ∈ H1 with |V (T)| = t, and similarly for H
(t)
2 . Each set H

(t)
1 can be partitioned

into families {T (t)
1,r }p1,t

r=1 where T and T ′ are in the same family if there is a permutation
σ : [n] → [n] such that T = σ(T ′), or equivalently if T and T ′ are isomorphic. Similarly, each
set H

(t)
2 can be partitioned into families {T (t)

2,r }p2,t

r=1.
We thus have

∣∣ẼG[xi] − ω

n

∣∣ ⩽ τ∑
t=2

(ω

n

)t
p1,t∑
r=1

∣∣ ∑
T ∈T (t)

1,r

χT (G)
∣∣+
(ω

n

)t+1 p2,t∑
r=1

∣∣ ∑
T ∈T (t)

2,r

χT (G)
∣∣
 .

▶ Lemma 12. Let T be a family of subsets of
([n]

2
)

such that |V (T)| = t for every T ∈ T ,
and for every T, T ′ ∈ T , there exists σ : [n] → [n] such that T = σ(T ′). Let S = ∩T ∈T V (T).
Then for every s ⩾ 0 and even ℓ,

Pr
G∼G(n,1/2)

[∣∣ ∑
T ∈T

χT (G)
∣∣ ⩽ s

]
⩾ 1 − n(t−|S|)ℓ/2 · (tℓ)tℓ

sℓ
.

We postpone the proof of Lemma 12 to the end of the section, and now use it to finish the
proof of Claim 11. Applying Lemma 12 with ℓ = (log n)2, we get∣∣ ∑

T ∈T (t)
1,r

χT (G)
∣∣ ⩽ n(t−1)/2(log n)3t with probability ⩾ 1 − 2−t log2 n(log log n−log t)

∣∣ ∑
T ∈T (t)

2,r

χT (G)
∣∣ ⩽ nt/2(log n)3t with probability ⩾ 1 − 2−t log2 n(log log n−log t) .

We observe that p1,t and p2,t are both at most 2t2 , as an equivalence class with t

vertices is uniquely determined by a graph on t vertices. By union bound, we see
that the above holds for all equivalence classes T (t)

1,r and T (t)
2,r with probability at least

1 − 2
∑τ

t=2 2t2−t log2 n(log log n−log t). Since t ⩽ τ ⩽ (ε/C) log n, it follows that

τ∑
t=2

2t2−t log2 n(log log n−log t) =
τ∑

t=2
2t(t−log2 n(log log n−log t))

⩽
τ∑

t=2
2t(ε

C log n−(log2 n)(log log n−log ε
C −log log n))

⩽ τ · 22 log n·(ε
C −log C

ε ·log n) ⩽ n− log n ,

as C
ε ⩾ C ⩾ 16. Thus, with probability at least 1 − n− log n, we have

∣∣ẼG[xi] − ω

n

∣∣ ⩽ τ∑
t=2

[(ω

n

)t

2t2
n(t−1)/2(log n)3t +

(ω

n

)t+1
2t2

nt/2(log n)3t

]

⩽
2√
n

τ∑
t=2

(ω

n

)t

2t2
(log n)3tnt/2 = 2

(ω

n

) τ∑
t=2

n(t−1)/2n−(t−1)ε2t2
(log n)3tnt/2n−1/2

CCC 2021

23:16 A Stress-Free Sum-Of-Squares Lower Bound for Coloring

⩽ 2
(ω

n

) τ∑
t=2

n−(t−1)ε2t2
(log n)3t ⩽

(ω

n

)
· max

2⩽t⩽τ
2n−(t−1)ε2t2

(log n)3t+1

⩽
(ω

n

)
· 2nε(log n) max

2⩽t⩽τ
(n−ε2τ (log n)3)t ⩽

(ω

n

)
· nεn2ε/K max

2⩽t⩽τ
(n−εnε/C · n3ε/K)t

⩽
(ω

n

)
· nεn2ε/Kn−2ε(1−1/C−3/K) =

(ω

n

)
· n−ε(1−2/C−8/K) ⩽

(ω

n

)
· n−ε/2 ,

as ε ⩾ C/
√

log n ⩾ K log log n/ log n for K ⩾ 32 and τ ⩽ (ε/C) log n. Hence, with probability
1 − 1/nlog n, we have that ẼG[xi] = ω

n (1 ± n−ε/2), which completes the proof. ◁

Proof of Lemma 12. Let ℓ ∈ N be even. We have that

E
G∼G(n,1/2)

∣∣ ∑
T ∈T

χT (G)
∣∣ℓ = E

G∼G(n,1/2)

(∑
T ∈T

χT (G)
)ℓ =

∑
T1,...,Tℓ∈T

E
G∼G(n,1/2)

ℓ∏
i=1

χTi
(G) .

We have that EG∼G(n,1/2)
∏ℓ

i=1 χTi(G) = 1 iff
⊕ℓ

i=1 Ti = ∅, that is, every edge in the
multiset ∪ℓ

i=1Ti appears an even number of times, and otherwise the term is 0. Since
every edge in the multiset appears an even number of times, every vertex also appears an
even number of times in ∪ℓ

i=1V (Ti), and hence every vertex appears at least twice. Since
S ⊆ V (Ti) for all i, every vertex in S appears exactly ℓ times. So, the number of distinct
vertices in ∪ℓ

i=1(V (Ti) \ S) is at most (t − |S|) · ℓ/2. Each tuple (T1, . . . , Tℓ) with this
property can thus be chosen by (1) selecting (t − |S|) · ℓ/2 distinct vertices S′ (at most
n(t−|S|)ℓ/2 choices), and then (2) choosing injections σi : V (T) → S′ and setting Ti = σi(T),
where T ∈ T is an arbitrary fixed element (at most (|S′|t)ℓ ⩽ (tℓ)tℓ choices). Thus, we
get EG∼G(n,1/2)

∣∣∑
T ∈T χT (G)

∣∣ℓ ⩽ n(t−|S|)ℓ/2(tℓ)tℓ. By Markov’s inequality, it follows that
PrG∼G(n,1/2)

[∣∣∑
T ∈T χT (G)

∣∣ > s
]

= PrG∼G(n,1/2)

[∣∣∑
T ∈T χT (G)

∣∣ℓ > sℓ
]
⩽ n(t−|S|)ℓ/2(tℓ)tℓ

sℓ ,
which completes the proof. ◀

References
1 Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games

and related problems. J. ACM, 62(5):Art. 42, 25, 2015. doi:10.1145/2775105.
2 Sanjeev Arora, Béla Bollobás, László Lovász, and Iannis Tourlakis. Proving integrality gaps

without knowing the linear program. Theory Comput., 2:19–51, 2006. doi:10.4086/toc.2006.
v002a002.

3 Sanjeev Arora, Eden Chlamtac, and Moses Charikar. New approximation guarantee for
chromatic number. In STOC’06: Proceedings of the 38th Annual ACM Symposium on Theory
of Computing, pages 215–224. ACM, New York, 2006. doi:10.1145/1132516.1132548.

4 Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and
graph partitioning. J. ACM, 56(2):Art. 5, 37, 2009. doi:10.1145/1502793.1502794.

5 Mitali Bafna, Boaz Barak, Pravesh Kothari, Tselil Schramm, and David Steurer. Playing unique
games on certified small-set expanders. CoRR, abs/2006.09969, 2020. arXiv:2006.09969.

6 Ainesh Bakshi, Ilias Diakonikolas, He Jia, Daniel M. Kane, Pravesh K. Kothari, and Santosh S.
Vempala. Robustly learning mixtures of k arbitrary gaussians. CoRR, abs/2012.02119, 2020.
arXiv:2012.02119.

7 Ainesh Bakshi and Pravesh Kothari. List-decodable subspace recovery via sum-of-squares.
CoRR, abs/2002.05139, 2020. arXiv:2002.05139.

8 Ainesh Bakshi and Pravesh Kothari. Outlier-robust clustering of non-spherical mixtures, 2020.
arXiv:2005.02970.

9 Jess Banks, Robert Kleinberg, and Cristopher Moore. The lovász theta function for random
regular graphs and community detection in the hard regime. In APPROX-RANDOM, volume 81
of LIPIcs, pages 28:1–28:22. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

https://doi.org/10.1145/2775105
https://doi.org/10.4086/toc.2006.v002a002
https://doi.org/10.4086/toc.2006.v002a002
https://doi.org/10.1145/1132516.1132548
https://doi.org/10.1145/1502793.1502794
http://arxiv.org/abs/2006.09969
http://arxiv.org/abs/2012.02119
http://arxiv.org/abs/2002.05139
http://arxiv.org/abs/2005.02970

P. K. Kothari and P. Manohar 23:17

10 Jess Banks, Robert Kleinberg, and Cristopher Moore. The lovász theta function for random
regular graphs and community detection in the hard regime. SIAM J. Comput., 48(3):1098–
1119, 2019. doi:10.1137/18M1180396.

11 Boaz Barak, Siu On Chan, and Pravesh K. Kothari. Sum of squares lower bounds from pairwise
independence [extended abstract]. In STOC’15—Proceedings of the 2015 ACM Symposium on
Theory of Computing, pages 97–106. ACM, New York, 2015.

12 Boaz Barak, Samuel B. Hopkins, Jonathan A. Kelner, Pravesh Kothari, Ankur Moitra, and
Aaron Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. In
FOCS, pages 428–437. IEEE Computer Society, 2016.

13 Boaz Barak, Pravesh K. Kothari, and David Steurer. Quantum entanglement, sum of squares,
and the log rank conjecture. In STOC, pages 975–988. ACM, 2017.

14 Boaz Barak and David Steurer. Proofs, beliefs, and algorithms through the lens of sum-of-
squares, 2016. Lecture notes in preparation, available on http://sumofsquares.org.

15 Siavosh Benabbas, Siu On Chan, Konstantinos Georgiou, and Avner Magen. Tight gaps for
vertex cover in the sherali-adams SDP hierarchy. In FSTTCS, volume 13 of LIPIcs, pages
41–54. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

16 Siavosh Benabbas, Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani. SDP gaps
from pairwise independence. Theory of Computing, 8(1):269–289, 2012.

17 Siavosh Benabbas and Avner Magen. Extending SDP integrality gaps to sherali-adams with
applications to quadratic programming and maxcutgain. In IPCO, volume 6080 of Lecture
Notes in Computer Science, pages 299–312. Springer, 2010.

18 Aditya Bhaskara, Moses Charikar, Aravindan Vijayaraghavan, Venkatesan Guruswami, and
Yuan Zhou. Polynomial integrality gaps for strong SDP relaxations of densest k-subgraph. In
SODA, pages 388–405. SIAM, 2012.

19 B. Bollobás. The chromatic number of random graphs. Combinatorica, 8(1):49–55, 1988.
doi:10.1007/BF02122551.

20 Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Integrality gaps for Sherali-
Adams relaxations. In STOC’09—Proceedings of the 2009 ACM International Symposium on
Theory of Computing, pages 283–292. ACM, New York, 2009.

21 Eden Chlamtac. Approximation algorithms using hierarchies of semidefinite programming
relaxations. In FOCS, pages 691–701. IEEE Computer Society, 2007.

22 Eden Chlamtac and Madhur Tulsiani. Convex relaxations and integrality gaps. In Handbook on
semidefinite, conic and polynomial optimization, volume 166 of Internat. Ser. Oper. Res. Man-
agement Sci., pages 139–169. Springer, New York, 2012. doi:10.1007/978-1-4614-0769-0_6.

23 Amin Coja-Oghlan. The lovász number of random graphs. Comb. Probab. Comput., 14(4):439–
465, 2005. doi:10.1017/S0963548305006826.

24 Ilias Diakonikolas, Samuel Hopkins, Daniel Kane, and Sushrut Karmalkar. Robustly learning
any clusterable mixture of gaussians. Personal Communication, 2020.

25 Tommaso d’Orsi, Pravesh K. Kothari, Gleb Novikov, and David Steurer. Sparse PCA:
algorithms, adversarial perturbations and certificates. In 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pages 553–564. IEEE, 2020. doi:10.1109/FOCS46700.2020.00058.

26 Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and efficient
algorithm design. Foundations and Trends® in Theoretical Computer Science, 14(1-2):1–221,
2019. doi:10.1561/0400000086.

27 Mrinal Kanti Ghosh and Madhur Tulsiani. From weak to strong LP gaps for all csps. In
Computational Complexity Conference, volume 79 of LIPIcs, pages 11:1–11:27. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2017.

28 Mrinalkanti Ghosh, Fernando Granha Jeronimo, Chris Jones, Aaron Potechin, and Goutham
Rajendran. Sum-of-squares lower bounds for sherrington-kirkpatrick via planted affine planes,
2020. arXiv:2009.01874.

CCC 2021

https://doi.org/10.1137/18M1180396
http://sumofsquares.org
https://doi.org/10.1007/BF02122551
https://doi.org/10.1007/978-1-4614-0769-0_6
https://doi.org/10.1017/S0963548305006826
https://doi.org/10.1109/FOCS46700.2020.00058
https://doi.org/10.1561/0400000086
http://arxiv.org/abs/2009.01874

23:18 A Stress-Free Sum-Of-Squares Lower Bound for Coloring

29 Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput.
Mach., 42(6):1115–1145, 1995. doi:10.1145/227683.227684.

30 D. Grigoriev. Complexity of Positivstellensatz proofs for the knapsack. Comput. Complexity,
10(2):139–154, 2001. doi:10.1007/s00037-001-8192-0.

31 Dima Grigoriev and Nicolai Vorobjov. Complexity of Null- and Positivstellensatz proofs. Ann.
Pure Appl. Logic, 113(1-3):153–160, 2002. First St. Petersburg Conference on Days of Logic
and Computability (1999). doi:10.1016/S0168-0072(01)00055-0.

32 Max Hopkins, Tali Kaufman, and Shachar Lovett. High dimensional expanders: Random walks,
pseudorandomness, and unique games. CoRR, abs/2011.04658, 2020. arXiv:2011.04658.

33 S. B. Hopkins, P. K. Kothari, A. Potechin, P. Raghavendra, T. Schramm, and D. Steurer.
The power of sum-of-squares for detecting hidden structures. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 720–731, 2017. doi:10.1109/
FOCS.2017.72.

34 Sam B. Hopkins and Jerry Li. Mixture models, robustness, and sum of squares proofs, 2017.
35 Samuel B. Hopkins, Pravesh K. Kothari, and Aaron Potechin. Sos and planted clique: Tight

analysis of MPW moments at all degrees and an optimal lower bound at degree four. CoRR,
abs/1507.05230, 2015. arXiv:1507.05230.

36 Samuel B. Hopkins, Jonathan Shi, and David Steurer. Tensor principal component analysis via
sum-of-square proofs. In COLT, volume 40 of JMLR Workshop and Conference Proceedings,
pages 956–1006. JMLR.org, 2015.

37 Samuel B. Hopkins and David Steurer. Efficient bayesian estimation from few samples:
Community detection and related problems. In Chris Umans, editor, 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 379–390. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.42.

38 David R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by
semidefinite programming. J. ACM, 45(2):246–265, 1998.

39 Sushrut Karmalkar, Adam R. Klivans, and Pravesh K. Kothari. List-decodable linear regression.
CoRR, abs/1905.05679, 2019. arXiv:1905.05679.

40 Pravesh Kothari, Ryan O’Donnell, and Tselil Schramm. SOS lower bounds with hard con-
straints: think global, act local. CoRR, abs/1809.01207, 2018. arXiv:1809.01207.

41 Pravesh K. Kothari and Ruta Mehta. Sum-of-squares meets nash: lower bounds for finding any
equilibrium. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018, pages 1241–1248. ACM, 2018. doi:10.1145/3188745.3188892.

42 Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of squares lower
bounds for refuting any CSP. In STOC, pages 132–145. ACM, 2017.

43 Pravesh K. Kothari and Jacob Steinhardt. Better agnostic clustering via relaxed tensor norms,
2017.

44 Pravesh K. Kothari and David Steurer. Outlier-robust moment-estimation via sum-of-squares.
CoRR, abs/1711.11581, 2017. arXiv:1711.11581.

45 Dmitriy Kunisky and Afonso S. Bandeira. A tight degree 4 sum-of-squares lower bound for
the sherrington-kirkpatrick hamiltonian. CoRR, abs/1907.11686, 2019. arXiv:1907.11686.

46 Dmitriy Kunisky, Alexander S. Wein, and Afonso S. Bandeira. Notes on computational
hardness of hypothesis testing: Predictions using the low-degree likelihood ratio. CoRR,
abs/1907.11636, 2019. arXiv:1907.11636.

47 Jean Bernard Lasserre. Optimisation globale et théorie des moments. C. R. Acad. Sci. Paris
Sér. I Math., 331(11):929–934, 2000. doi:10.1016/S0764-4442(00)01750-X.

48 Allen Liu and Ankur Moitra. Settling the robust learnability of mixtures of gaussians. CoRR,
abs/2011.03622, 2020. arXiv:2011.03622.

49 László Lovász and Alexander Schrijver. Cones of matrices and set-functions and 0-1 optimiza-
tion. SIAM Journal on Optimization, 1(2):166–190, 1991.

https://doi.org/10.1145/227683.227684
https://doi.org/10.1007/s00037-001-8192-0
https://doi.org/10.1016/S0168-0072(01)00055-0
http://arxiv.org/abs/2011.04658
https://doi.org/10.1109/FOCS.2017.72
https://doi.org/10.1109/FOCS.2017.72
http://arxiv.org/abs/1507.05230
https://doi.org/10.1109/FOCS.2017.42
http://arxiv.org/abs/1905.05679
http://arxiv.org/abs/1809.01207
https://doi.org/10.1145/3188745.3188892
http://arxiv.org/abs/1711.11581
http://arxiv.org/abs/1907.11686
http://arxiv.org/abs/1907.11636
https://doi.org/10.1016/S0764-4442(00)01750-X
http://arxiv.org/abs/2011.03622

P. K. Kothari and P. Manohar 23:19

50 Tengyu Ma, Jonathan Shi, and David Steurer. Polynomial-time tensor decompositions with
sum-of-squares. In FOCS, pages 438–446. IEEE Computer Society, 2016.

51 Sidhanth Mohanty, Prasad Raghavendra, and Jeff Xu. Lifting sum-of-squares lower bounds:
Degree-2 to degree-4. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, page 840–853, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3357713.3384319.

52 Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization. PhD thesis, California Institute of Technology, 2000.

53 Prasad Raghavendra and Tselil Schramm. Tight lower bounds for planted clique in the degree-4
SOS program. CoRR, abs/1507.05136, 2015. arXiv:1507.05136.

54 Prasad Raghavendra and David Steurer. Integrality gaps for strong SDP relaxations of Unique
Games. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science—FOCS
2009, pages 575–585. IEEE Computer Soc., Los Alamitos, CA, 2009. doi:10.1109/FOCS.2009.
73.

55 Prasad Raghavendra and Morris Yau. List decodable learning via sum of squares. CoRR,
abs/1905.04660, 2019. arXiv:1905.04660.

56 Prasad Raghavendra and Morris Yau. List decodable subspace recovery, 2020. arXiv:
2002.03004.

57 Grant Schoenebeck. Linear level lasserre lower bounds for certain k-csps. In FOCS, pages
593–602. IEEE Computer Society, 2008.

58 Grant Schoenebeck, Luca Trevisan, and Madhur Tulsiani. Tight integrality gaps for Lovasz-
Schrijver LP relaxations of vertex cover and max cut. In STOC’07—Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, pages 302–310. ACM, New York, 2007.
doi:10.1145/1250790.1250836.

59 Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the continuous
and convex hull representations for zero-one programming problems. SIAM J. Discrete Math.,
3(3):411–430, 1990. doi:10.1137/0403036.

60 Madhur Tulsiani. CSP gaps and reductions in the lasserre hierarchy. In STOC, pages 303–312.
ACM, 2009.

61 Madhur Tulsiani. CSP gaps and reductions in the Lasserre hierarchy [extended abstract]. In
STOC’09—Proceedings of the 2009 ACM International Symposium on Theory of Computing,
pages 303–312. ACM, New York, 2009.

A Satisfying the booleanity, edge and positivity constraints

We prove the following three simple claims.

▷ Claim 13. Ẽ⊗k and Ẽ′ satisfy the booleanity constraints {x2
i,c = xi,c : i ∈ [n], c ∈ [k]}.

▷ Claim 14. Ẽ⊗k and Ẽ′ satisfy the edge constraints {xi,cxj,c = 0 : (i, j) ∈ E(G), c ∈ [k]}.

▷ Claim 15. Ẽ⊗k and Ẽ′ satisfy the positivity constraint.

Proof of Claim 13. Since Ẽ′ is obtained by restricting Ẽ⊗k to a smaller domain, it suffices
to show that Ẽ⊗k satisfies the constraints. We observe that Ẽ⊗k satisfies the above con-
straints if and only if for all monomials

∏k
c=1

∏
i∈Sc

x
αi,c

i,c (where each αi,c ⩾ 1), it holds
that Ẽ⊗k[

∏k
c=1

∏
i∈Sc

x
αi,c

i,c] = Ẽ⊗k[
∏k

c=1
∏

i∈Sc
xi,c]. We have that Ẽ⊗k[

∏k
c=1

∏
i∈Sc

x
αi,c

i,c] =∏k
c=1 Ẽ[

∏
i∈Sc

x
αi,c

i] =
∏k

c=1 Ẽ[
∏

i∈Sc
xi] = Ẽ⊗k[

∏k
c=1

∏
i∈Sc

xi,c], as Ẽ satisfies the con-
straints x2

i = xi, and so we are done. ◁

Proof of Claim 14. Since Ẽ′ is obtained by restricting Ẽ⊗k to a smaller domain, it suffices to
show that Ẽ⊗k satisfies the constraints. We observe that Ẽ⊗k satisfies the above constraints if
and only if for all multilinear monomials

∏k
c=1 xSc,c of coloring degree at most d − 2, it holds

CCC 2021

https://doi.org/10.1145/3357713.3384319
http://arxiv.org/abs/1507.05136
https://doi.org/10.1109/FOCS.2009.73
https://doi.org/10.1109/FOCS.2009.73
http://arxiv.org/abs/1905.04660
http://arxiv.org/abs/2002.03004
http://arxiv.org/abs/2002.03004
https://doi.org/10.1145/1250790.1250836
https://doi.org/10.1137/0403036

23:20 A Stress-Free Sum-Of-Squares Lower Bound for Coloring

that Ẽ⊗k[xi,cxj,c

∏k
c′=1 xS′

c,c′] = 0. This is because by Claim 13, we can reduce any polynomial
modulo the booleanity constraints to make it multilinear. Using the tensor product structure,
we have Ẽ⊗k[xi,cxj,c

∏k
c′=1 xS′

c,c′] =
∏

c′ ̸=c Ẽ[xSc′] · Ẽ[xSc
xixj] =

∏
c′ ̸=c Ẽ[xSc′] · 0 = 0, since

Ẽ satisfies the edge constraints. This completes the proof. ◁

Proof of Claim 15. Since Ẽ′ is obtained by restricting Ẽ⊗k to a smaller domain, it suf-
fices to prove the claim only for Ẽ⊗k. Let M be the moment matrix of Ẽ. That is,
M is the matrix indexed by sets (S, T) with |S| , |T | ⩽ d/2 and M(S, T) := Ẽ[xSxT].
We note that for any f ∈ Pn

d/2, Ẽ[f2] = f⊤Mf , where we interpret f as a vector of
coefficients in the second expression. The moment matrix of Ẽ⊗k is indexed by tuples
of sets ((S1, . . . , Sk), (T1, . . . , Tk)) where |Sc| , |Tc| ⩽ d/2 for all c ∈ [k]. We observe
that the moment matrix of Ẽ⊗k is M⊗k, as the ((S1, . . . , Sk), (T1, . . . , Tk))-th entry is
Ẽ⊗k[

∏k
c=1 xSc,cxTc,c] =

∏k
c=1 Ẽ[xSc

xTc
] =

∏k
c=1 M(Sc, Tc). We also note that for any f with

cdeg(f) ⩽ d/2, it holds that Ẽ⊗k[f2] = f⊤M⊗kf ⩾ 0, as the tensor product of a positive
semidefinite matrix is also positive semidefinite. This shows that Ẽ⊗k[f2] ⩾ 0 for all f with
cdeg(f) ⩽ d/2, which finishes the proof. ◁

B Tightness of degree in Theorem 1

In this section, we prove the following lemma, showing that the upper bound on d in
Theorem 1 is tight up to constant factors.

▶ Lemma 16. With high probability over G ∼ G(n, 1/2), there is no degree 8(1 + o(1)) log2 n

coloring pseudo-expectation for G using k ⩽ n
e·2(1+o(1)) log2 n colors.

Let t = 2(1 + o(1)) log2 n. We show that with high probability over G ∼ G(n, 1/2), there is
no degree 4t coloring pseudo-expectation for G using k ⩽ n

et colors. We first observe that
with high probability, the maximum independent set in G has size at most t. Suppose that
we draw G ∼ G(n, 1/2) such that this holds, and suppose that such a pseudo-expectation
Ẽ′ exists. We observe that there is a natural action of permutations σ : [k] → [k] on Ẽ′,
given by Ẽ′(σ)[

∏k
c=1

∏
i∈Sc

xi,c] := Ẽ′[
∏k

c=1
∏

i∈Sc
xi,σ(c)]. Let Ẽ′′ := Eσ Ẽ′(σ) be the pseudo-

expectation obtained by averaging over all σ. We then have that Ẽ′′ satisfies the coloring
constraints and is symmetric with respect to the color classes, e.g. that Ẽ′′[xi,c] = Ẽ′′[xi,c′] for
all c, c′ ∈ [k]. This implies that Ẽ′′[xi,1] = 1

k

∑k
c=1 Ẽ′′[xi,c] ⩾ 1

k · 1. Let Ẽ be the projection of
Ẽ′′ onto the first color, so that Ẽ[

∏
i∈S xi] := Ẽ′′[

∏
i∈S xi,1]. We then see that Ẽ is a degree

4t independent set pseudo-expectation with Ẽ[
∑

i xi] ⩾ ω, where ω := n
k ⩾ et.

To complete the proof, we show the following lemma.

▶ Lemma 17. Suppose that the maximum independent set in G has size ⩽ t. Then there is
no degree 4t independent set pseudo-expectation Ẽ for G with Ẽ[

∑
i xi] = ω ⩾ et.

Proof. Suppose that such a pseudo-expectation Ẽ exists. Let f =
∑

i xi, and let ℓ ∈ N be
the smallest integer so that 2ℓ ⩾ 2t. Note that 2ℓ ⩽ 4t must hold also. By Cauchy-Schwarz,
we have

Ẽ[f2ℓ

] ⩾ (Ẽ[f2ℓ−1
])2 ,

Ẽ[f2ℓ−1
] ⩾ Ẽ[f2ℓ−2

]2 ⩾ . . . ⩾ Ẽ[f]2
ℓ−1

,

=⇒ Ẽ[f2ℓ

] ⩾ (Ẽ[f2ℓ−1
]) · (Ẽ[f])2ℓ−1

= Ẽ[f2ℓ−1
] · ω2ℓ−1

.

Note that each polynomial above has degree at most 2ℓ ⩽ 4t, so the above pseudo-expectations
are all well-defined. Now, we observe that

Ẽ[f2ℓ−1
] = Ẽ[

∑
S⊆[n]:|S|⩽2ℓ−1

cSxS] =
∑

S:|S|⩽t, S indep set in G

cSẼ[xS] ,

P. K. Kothari and P. Manohar 23:21

Ẽ[f2ℓ

] =
∑

S:|S|⩽t, S indep set in G

c′
SẼ[xS]

where the coefficients cS and c′
S are each nonnegative integers. Notice that c′

S ⩽ |S|2
ℓ

, as
every contribution to xS is made by choosing an i ∈ S from each of the

∑
i xi factors. We

also observe that cS ⩾ |S|2
ℓ−1−|S| · (|S|!), as we can choose each i ∈ S exactly once from the

first |S| factors, and then select an arbitrary i ∈ S from the remaining 2ℓ−1 − |S| factors.
Note that here we use the fact that |S| ⩽ t ⩽ 2ℓ−1 always holds. Fix S, and let s = |S|. We
observe that

c′
S

cS
⩽

s2ℓ

s2ℓ−1−s · s!
⩽ s2ℓ−1

· ss · 1√
2π · ss+ 1

2 e−s
< s2ℓ−1

· es ⩽ (e · s)2ℓ−1
⩽ ω2ℓ−1

,

using Stirling’s approximation and the fact that ω ⩾ et ⩾ es. It therefore follows that
(c′

S − cSω2ℓ−1)Ẽ[xS] < 0. Hence,

Ẽ[f2ℓ

] − Ẽ[f2ℓ−1
] · ω2ℓ−1

=
∑

S:|S|⩽t, S indep set in G

(c′
S − cSω2ℓ−1

)Ẽ[xS] < 0 ,

which is a contradiction. ◀

CCC 2021

Junta Distance Approximation with
Sub-Exponential Queries
Vishnu Iyer # Ñ

University of California at Berkeley, CA, USA

Avishay Tal # Ñ

University of California at Berkeley, CA, USA

Michael Whitmeyer # Ñ

University of California at Berkeley, CA, USA

Abstract
Leveraging tools of De, Mossel, and Neeman [FOCS, 2019], we show two different results pertaining
to the tolerant testing of juntas. Given black-box access to a Boolean function f : {±1}n → {±1}:
1. We give a poly(k, 1

ε
) query algorithm that distinguishes between functions that are γ-close to

k-juntas and (γ + ε)-far from k′-juntas, where k′ = O(k
ε2).

2. In the non-relaxed setting, we extend our ideas to give a 2Õ(
√

k/ε) (adaptive) query algorithm
that distinguishes between functions that are γ-close to k-juntas and (γ +ε)-far from k-juntas. To
the best of our knowledge, this is the first subexponential-in-k query algorithm for approximating
the distance of f to being a k-junta (previous results of Blais, Canonne, Eden, Levi, and Ron
[SODA, 2018] and De, Mossel, and Neeman [FOCS, 2019] required exponentially many queries
in k).

Our techniques are Fourier analytical and make use of the notion of “normalized influences” that
was introduced by Talagrand [32].

2012 ACM Subject Classification Theory of computation → Computational complexity and
cryptography

Keywords and phrases Algorithms, Complexity Theory, Fourier Analysis, Juntas, Normalized
Influence, Property Testing, Tolerant Property Testing

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.24

Acknowledgements We thank Anindya De, Shafi Goldwasser, Amit Levi, and Orr Paradise for very
helpful discussions.

1 Introduction

The study of property testing, initiated by Blum, Luby, and Rubinfeld in their seminal
work on linearity testing [8], is concerned with making fast decisions about a global object
having some global property, while only accessing (or “querying”) parts of it. This notion
was further explored by Goldreich, Goldwasser, and Ron [17], who drew connections to the
areas of learning theory and approximation algorithms in the context of graph properties.
We focus on properties of Boolean functions, i.e., f : {±1}n → {±1}. First, we state the
definition of a property testing algorithm A. Given ε > 0 and a class of functions C, we say
that A is a property tester for C if it satisfies the following two conditions:
1. if f ∈ C, then A accepts f with probability at least 2/3;
2. if dist(f, g) ≥ ε for all g ∈ C, then A rejects with probability at least 2/3.
In the above definition, dist(f, g) = Pr[f(x) ̸= g(x)] is the fraction of inputs on which f

and g disagree under the uniform distribution. The primary measure of efficiency for such
property testing algorithms is the algorithms query complexity, or the number of times it

© Vishnu Iyer, Avishay Tal, and Michael Whitmeyer;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 24; pp. 24:1–24:38

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vishnu.iyer@berkeley.edu
http://vishnuiyer.org
https://orcid.org/0000-0001-8072-1390
mailto:atal@berkeley.edu
http://avishaytal.org
https://orcid.org/0000-0002-0375-6554
mailto:mwhitmeyer@berkeley.edu
https://mwhitmeyer.github.io
https://orcid.org/0000-0002-5930-4733
https://doi.org/10.4230/LIPIcs.CCC.2021.24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Junta Distance Approximation with Sub-Exponential Queries

must use its black box access to f . Such query algorithms can be adaptive in that the
coordinates on which they query f depend on previous answers, or they can be nonadaptive
in that the algorithm always queries f in a predetermined manner.

In this writeup, our algorithms will be adaptive, and we will focus on testing the particular
class of functions known as k-juntas. Juntas comprise a simple and natural class of functions:
those that depend only on a smaller subset of their input variables. More precisely, a Boolean
function f : {±1}n → {±1} is said to be a k-junta if there exists k coordinates i1, . . . , ik ∈ [n]
such that f(x) only depends on xi1 , . . . , xik

. In essence, juntas capture the existence of
many irrelevant variables, and arise naturally in the context of feature selection in machine
learning and many computational biology problems. A canonical example is the problem of
determining the relationship between genes and phenotypes; for example, one might wish to
test whether a particular physical trait is a function of many genes or only a small number.

The fundamental problem of learning and/or testing juntas has been given much attention
in recent years. We refer the reader to the works of Mossel, O’Donnell, and Servedio [24] and
Valiant [33] for the most recent work on learning k-juntas. In this paper, we focus on the
problem of testing juntas. Testing 1-juntas (aka dictators) and related functions had initial
theoretical interest in the context of long-code testing in PCPs [18, 3], and was first formally
explored in [29], which gave algorithms for testing dictators, monomials, and monotone DNFs.
The more general problem of testing k-juntas was first studied by Fischer et. al. [16], where
they exhibited a k-junta tester with query complexity Õ(k2) queries to f . Crucially, their
upper bound lacked any dependence on the ambient dimension n. More recently, it was
shown in [5] that O(k log k + k/ε) adaptive queries suffice to test k-juntas, and this is tight
for constant ε [30, 12]. There has also been recent interest in the distribution free setting
for junta testing (wherein the distribution on inputs is not assumed to be uniform). Liu et
al. [23] initially gave a Õ(k2/ε)-query algorithm with one-sided error, which was quickly
followed up by the works of Bshouty [9] and Zhang [34] who gave Õ(k/ε)-query algorithms
with two-sided and one-sided error, respectively. The methods utilized by Bshouty extend
those of Diakonikolas et al. [14] and result in algorithms not only for junta testing but also
several subclasses of juntas. We note that while we solve a similar problem in a different
setting, some of our techniques resemble those of [9]: notably, an idea introduced in [9] is to
find a witness such that, if all coordinates outside a subset of the coordinates are fixed to
this witness’ values, then f becomes a dictator on a single coordinate within that subset.
This can be thought of as obtaining oracle access to a relevant coordinate, an idea pervasive
throughout the work of [13] and ours. The techniques in [14, 15, 9] can all be categorized in
the “testing via implicit learning” paradigm, as surveyed in [31].

1.1 Tolerant Junta Testing
One of the first relaxations of the standard property testing model considered (sometimes
referred to as the “parameterized” regime) were testers that distinguished between f ∈ H

and f being ε-far from H ′ ⊇ H. This notion was introduced by Kearns and Ron [20] in the
context of testing decision trees and certain classes of neural networks. We note that if H ′ is
a strict superset of H, then the job of the tester becomes easier, and smaller query or sample
complexity is often achievable than in the regular testing model. Indeed, our Theorem 3 is
an example of a (tolerant) parameterized tester. Tolerant testing is another generalization of
the standard property testing model. The notion was first introduced by Parnas, Ron, and
Rubinfeld [28]. Normal property testing entails distinguishing between functions that exactly
satisfy a certain property, and functions that are ε-far from satisfying said property. This is
somewhat restrictive, and the tolerant testing problem seeks to more generally distinguish

V. Iyer, A. Tal, and M. Whitmeyer 24:3

Π

cu

cℓ

Figure 1 A visualization of the tolerant property testing paradigm. Assuming the outermost
oval represents all functions f : {±1}n → {±1} and the property at hand is represented by a class
of functions Π, the goal is to distinguish between the light grey (at most cℓ close to a function in Π)
and the dark grey (at least cu far from all functions in Π) regions.

functions that are cℓ close to having the desired property, and those that are at least cu

far from having the property, for some 0 < cℓ < cu < 1. We also note that the notion of
tolerant testing is closely related to the notion of distance approximation – indeed, if one can
estimate dist(f, C) up to additive error (cu− cℓ)/2 with probability at least 2/3, then one has
solved the tolerant testing problem for that class.1 In general, tolerant testing (and therefore
distance approximation), is much more challenging than traditional property testing. Figure 1
provides a visualization of the tolerant testing problem. Tolerant testing has received a lot
of attention recently, see for example [7] for work on tolerant testing of decision trees and
[1, 27] for work on tolerant testing of monotonicity. For the case of k-juntas, we have the
following (relaxed) definition of a tolerant tester. In the following we denote by Jn,k the
class of k-juntas, and for a class of functions C, we denote dist(f, C) := ming∈C dist(f, g).

▶ Definition 1. For constants 0 < cℓ < cu < 1/2 and a given k′, k ∈ N with k′ ≥ k, a
(k, k′, cℓ, cu) tolerant junta tester is an algorithm that, given oracle access to f : {±1}n →
{±1},
1. if dist(f,Jn,k) ≤ cℓ accepts with probability 2/3;
2. if dist(f,Jn,k′) ≥ cu rejects with probability 2/3.
Our definition incorporates both tolerant and parameterized testers; when cℓ = 0 the tester
is non-tolerant and when k′ = k the tester is non-parameterized. We note that in the above
definition we upper bound cu < 1/2 since k-juntas are closed under complements, meaning if
g ∈ Jn,k, then −g ∈ Jn,k. Parnas, Ron, and Rubinfeld in their seminal work [28] showed that
while standard property testers, when querying uniformly, are weakly tolerant, entirely new
algorithms are usually needed to tolerant test with better parameters. Tolerant junta testing
was first considered by Diakonikolas et al. [14] which used the aforementioned observation
from [28] to show that a standard tester from [16] actually gave a (k, k, poly(γ

k), γ) tolerant
tester. Chakraborty et al. [10] subsequently showed that a similar analysis to that of Blais [5]
gave a (k, k, γ/C, γ) tolerant junta tester (for some constant C) using exp(k/γ) queries.

1 The reverse direction is also true – given a tolerant tester it is possible to estimate the distance to that
property. See for example section 3 in [1].

CCC 2021

24:4 Junta Distance Approximation with Sub-Exponential Queries

More recently, Blais et al. [6, Theorem 1.2] showed a tradeoff between query complexity
and the amount of tolerance. In particular, they gave an algorithm which, given k, γ, and
ρ ∈ (0, 1), is a (k, k, ργ/16, γ) tolerant junta tester. The query complexity of the algorithm
is O

(
k log k

γρ(1−ρ)k

)
. In particular, note that when ρ is a constant bounded away from zero, this

yields an exp(k) query algorithm, but when ρ = 1/k this yields a poly(k) query algorithm. We
also note that there is an undesirable multiplicative “gap” between cu and cℓ that precludes
one from tolerantly testing for arbitrary close values of cu and cℓ (i.e., in [6], cu ≥ 16cℓ for all
choices of ρ). The recent work of [13] addressed this, giving an algorithm for any arbitrary
γ, ε > 0 that required 2kpoly(k, 1

ε) queries and was a (k, k, γ, γ + ε) tolerant junta tester.
In the relaxed setting (when k′ ≠ k), [6, Theorem 1.1] also gave an algorithm which

used poly(k, 1
γ) queries to f and was a (k, 4k, γ/16, γ) tolerant junta tester. This once again

posed the issue of not allowing for arbitrary cu and cℓ values, which was resolved by [13,
Corollary 1.6], which gave a (k, O(k2/ε2), γ, γ +ε) tolerant junta tester with query complexity
poly(k, 1

ε).
It is interesting to note that the techniques used to obtain the results from [6] and [13]

are actually quite different, and yield results that are qualitatively similar but quantitatively
incomparable. The results from [6] extend the techniques of [5], which partition the n input
coordinates into poly(k) disjoint sets or “parts”. It is immediate that any k-junta is a k-part
junta, but in [5] it was shown that with high probability a function that is far from being
a k-junta is also far from being a “k-part junta” (for a definition of this and more details
we refer the reader to [5]). The results of [6] extend the idea of considering the relationship
between k-juntas and k-part juntas in the context of tolerant testing.

The techniques in [13] suggest a new way of attacking the problem of tolerant k-junta
testing. The core idea in [13] was to get access to “oracles” to coordinates of f which have
large low-degree influence. These coordinate oracles are obtained with high probability via a
combination of random restrictions and noise operators to the original function, and once
obtained, can be used to search, in a brute force manner, for the nearest k-junta.

In terms of lower bounds for tolerant testing of juntas, two recent works addressed the non-
adaptive case. Levi and Waingarten [22] demonstrated that there exists 0 < ε1 < ε2 < 1/2
such that any (k, k, ε1, ε2) tolerant junta tester requires Ω̃(k2) non-adaptive queries to f . In
particular, this result demonstrated that the tolerant testing regime is quantitatively harder
than the standard testing regime, in which a Õ(k3/2)-query non-adaptive query algorithm is
known [4] (and indeed optimal due to [11]). Subsequently, Pallavoor, Raskhodnikova, and
Waingarten [27] demonstrated that for any k ≤ n/2 there exists 0 < ε1 < ε2 < 1/2 (with
ε1 = O(1/k1−η) and ε2 = Ω(1/

√
k)) such that every nonadaptive (k, k, ε1, ε2)-tolerant junta

tester requires at least 2kη queries to f , for any 0 < η < 1/2.2

1.2 Our Results
Our first result is a subexponential-in-k query tolerant junta tester in the standard (non-
relaxed) setting. In fact, we obtain an ε-accurate estimate of the distance of f to the class of
k-juntas.

▶ Theorem 2. Given a Boolean function f : {±1}n → {±1}, it is possible to estimate the
distance of f from the class of k-juntas to within additive error ε with probability 2/3 using
2Õ(
√

k/ε) adaptive queries to f . In particular, when ε is constant, this yields a 2Õ(
√

k)-query
algorithm. However, the algorithm still requires exp(k/ε) time.

2 We note that this lower bound does not necessarily rule out poly(k) exp(1/ε) nonadaptive query
(k, k, ε1, ε2) (where ε = ε2 − ε1) tolerant junta testers due to the setting of ε1 and ε2 in their hard
instance.

V. Iyer, A. Tal, and M. Whitmeyer 24:5

A simple corollary of the above theorem is that for any 0 < cℓ < cu < 1/2, we have a
(cu, cℓ, k, k) tolerant junta tester with the same query complexity as in Theorem 2, where
ε = (cu − cℓ)/2. This is an improvement of the results of [13, 6], whose tolerant junta
testers when k′ = k required exponential query complexity in k in the worst case. We note
that although we obtain this improvement, our algorithm still requires exp(k) time. In the
appendix, we show a result solving a similar problem3 with an improved dependence on
ε, giving an algorithm requiring only 2Õ(

√
k log(1/ε))-queries and exp(k log(1/ε)) time (see

Theorem 49).
In the relaxed/parameterized setting when k′ ̸= k, we give a polynomial-in-k query

tolerant junta tester that is valid for any setting of cu and cℓ, and reduces k′ dependence on
k to be linear instead of quadratic due to the result of [13, Corollary 1.6].

▶ Theorem 3. For any γ, ε > 0 and k ∈ N, there is an algorithm with query complexity
poly(k, 1/ε) that is a (k, O(k/ε2), γ, γ + ε)-tolerant junta tester.

Theorem 3 is a simple corollary of the following theorem we prove.

▶ Theorem 4. Let ε > 0, k ∈ N, and k′ = O(k/ε2). Then, there exists an algorithm that
given parameters k, ε and oracle access to f makes at most poly(k, 1/ε) queries to f and
returns a number α such that with high probability (at least 0.99)
1. α ≤ dist(f,Jn,k) + ε

2. α ≥ dist(f,Jn,k′)− ε

Indeed, to solve the problem in Theorem 3 we can apply the algorithm from Theorem 4 with
ε = (cu − cℓ)/3 and accept if and only if α < 1

2 (cu + cℓ). If dist(f,Jn,k) ≤ cℓ we have that
with high probability α ≤ cℓ + ε < 1

2 (cu + cℓ) and we will accept. On the other hand, if
dist(f,Jn,k′) ≥ cu we have that with high probability α ≥ cu − ε > 1

2 (cu + cℓ) and we will
reject.

Both of the algorithms used to prove Theorem 2 and Theorem 4 rely on the fact that we
can get approximate oracle access to influential coordinates of f using techniques from [13].
From there, we analyze the Fourier coefficients of f after a series of random restrictions in
order gain more information about the relevant coordinates of f at different Fourier levels.
Along the way, we give an algorithm which provides us with oracle access to a junta in the
following sense:4

▶ Theorem 5 (Informal). Let f : {±1}n → {±1}, D = {g1, . . . , gk′} be a set of functions
giving oracle access to a certain set of coordinates. Let g be a function from {±1}k′ → [−1, 1]
defined by g(x) = E[f(y)|g1(y) = x1, . . . , gk′(y) = xk′]. Then g can be computed by a
randomized algorithm that runs in expected time poly(k′).

We note that one can view this as an oracle access to the junta, without even figuring
out the coordinates on which the junta depends. More details on the ideas behind both
algorithms can be found in Section 3.

3 In particular, this problem is the problem of finding the subset of k inputs that “contain” the most
Fourier mass – see Section 2 and Theorem 49 for more details.

4 A similar technique appeared in [13, Section 5.1] to sample two inputs on which the coordinate oracles
agree. We note that our algorithm allows to specify the values the coordinate oracles attain.

CCC 2021

24:6 Junta Distance Approximation with Sub-Exponential Queries

1.3 Structure of this Paper
Section 2 surveys some necessary preliminaries. Section 3 gives high level overviews of the
techniques and ideas that go into the proofs of Theorem 4 and Theorem 2. Section 4 first
describes how to get obtain “oracle access” to a junta (see Theorem 5) using only oracles
for relevant coordinates of the junta, and then provides all the details of the algorithm and
proof for Theorem 4. Finally, Section 5 provides all the details of the algorithm and proof
for Theorem 2.

2 Preliminaries

Throughout the paper we adopt certain notation conventions. For a positive integer n, we
denote by [n] the set {1, . . . , n}. For a distribution D, we denote that a random variable
x is sampled according to D by x ∼ D. In the case that x is sampled uniformly at
random from a set S, we will abuse notation slightly and write x ∼ S. The binomial
distribution with n trials and probability p per trial will be denoted Bin(n, p). We denote
the set {−1, 1} with the shorthand {±1}. For functions f, g from {±1}n to {±1} we define
dist(f, g) = Prx∼{±1}n [f(x) ̸= g(x)]: that is, the fraction of inputs on which f and g differ.
For a set S ⊆ [n] we will denote by {±1}S the set of possible assignments to the variables
{xi}i∈S .

2.1 Probability
We recall the following Chernoff/Hoeffding bounds.

▶ Fact 6. If X1, . . . , XN are independent random variables bounded in [0, 1] and X̄ :=
1
N

∑N
i=1 Xi, then we have

Pr[|X̄ −E[X̄]| ≥ η] ≤ 2 exp(−2Nη2),

Furthermore, denoting by p = E[X̄], we have

Pr[X̄ ≤ p− η] ≤ exp(−2Nη2),

Pr[X̄ ≤ (1− η)p] ≤
(

e−η

(1− η)1−η

)pN

≤ exp
(
−η2pN

2

)
.

2.2 Boolean Functions
In this section we recall some tools in the analysis of Boolean functions. For a more thorough
introduction to the field, we refer the reader to [25]. For every subset S ⊆ [n], we define the
parity function on the bits in S, denoted by χS : {±1}n → {±1} as χS(x) =

∏
i∈S xi. It is a

well-known fact that we can express uniquely any f : {±1}n → R as a linear combination of
{χS}S⊆[n]:

f(x) =
∑

S⊆[n]

f̂(S)χS(x).

The coefficients {f̂(S)}S⊆[n] are referred to as the Fourier coefficients of f , and can be
calculated by f̂(S) = E[f(x)χS(x)]. We say Fourier coefficients are on level s if they
correspond to subsets of size s.

V. Iyer, A. Tal, and M. Whitmeyer 24:7

Given a function f : {±1}n → {±1} and a coordinate i ∈ [n], we define the influence of
the i-th coordinate on f to be

Inf i[f] = Pr
x∼{±1}n

[f(x) ̸= f(xi)].

It is a well-known fact (see, e.g., [25, Theorem 2.20]) that Inf i[f] =
∑

S∋i f̂(S)2. The latter
definition naturally extends to functions f : {±1}n → R. We naturally extend this notion
and define the low-degree influence (up to level k) of coordinate i on f as

Inf≤k
i [f] =

∑
S∋i,|S|≤k

f̂(S)2.

For a set T ⊆ [n] we define the projection of the function f to T , denoted f⊆T , as the
partial Fourier expansion restricted to sets contained in T , i.e., f⊆T (x) =

∑
S:S⊆T f̂(S)χS(x).

We observe that f⊆T depends only on coordinates in T and that it can be alternatively
defined as f⊆T (x) = Ey∼{±1}n [f(y)|yT = xT]. As suggested by the last identity, we also
denote f⊆T by favg,T .

In the regime of property testing, we will need a notion of “closeness” of functions.

▶ Definition 7. For functions f, g : {±1}n → {±1} and a set of functions G, all from
{±1}n → {±1} we say that
1. f is ν-close to g if dist(f, g) ≤ ν;
2. f is ν-close to G if ming∈G dist(f, g) ≤ ν;
3. f and g are c-correlated if Ex∈{±1}n [f(x)g(x)] = c;
4. f and G are c-correlated (denoted corr(f, G) = c) if maxg∈G Ex∈{±1}n [f(x)g(x)] = c.
In the paper, we will occasionally abbreviate the correlation between f and g as E[fg] when
the domain is implied. Observe that when f and g are Boolean-valued (in ±1) we have
E[fg] = 1− 2dist(f, g).

▶ Fact 8. For functions f, g : {±1}n → R, we have Plancheral’s identity:

E
x∼{±1}n

[f(x)g(x)] =
∑

S⊆[n]

f̂(S)ĝ(S) .

When f = g, this fact is known as Parseval’s identity.

▶ Definition 9. For a function f : {±1}n → R we define:

W≤k[f] =
∑

|S|≤k

f̂(S)2 .

The definitions of W≥k[f], W=k[f], and similar follow from a natural extension. Now, we
define some classes of Boolean functions with properties that will be useful to us.

▶ Definition 10 (Junta). Let T ⊆ [n]. A function f : {±1}n → R is called a junta on T if
f depends only on coordinates in T . I.e., there exists a function g : {±1}T → R such that
f(x) = g(xT). A function is called a k-junta if it is a junta on T for some T ⊆ [n] of size k.
Following the notation of [13], we denote the class of k-juntas on n inputs as Jn,k. We also
denote JU,k as the set of k-juntas with inputs inside of U , and when |U | = k then we often
denote JU := JU,k for brevity.

▶ Definition 11 (Dictator, Anti-Dictator). The i-th dictator function is given by Dicti(x) = xi,
for x ∈ {±1}n. The i-th antidictator function is simply the negation −Dicti(x).

CCC 2021

24:8 Junta Distance Approximation with Sub-Exponential Queries

▷ Claim 12 (Nearest k-junta on a Subset). For a function f : {±1}n → [−1, 1] and a subset
T ⊆ [n], the Boolean-valued junta-on-T most correlated with f is given by

sgn(favg,T (x)) = sgn
(

E
y∈{±1}n

[f(y)|yT = xT]
)

.

Furthermore, the correlation between f and sgn(favg,T (x)) is simply Ex∼{±1}n [|favg,T (x)|].

We keep the proof for this well-known claim for completeness.

Proof. Let g : {±1}n → [−1, 1] be any junta-on-T . It suffices to show that Ex[f(x)g(x)] ≤
E[f(x)sgn(favg,T (x))], as we do next. Indeed, for any g(x) that is a junta-on-T we have
g(x) = g′(xT) for some g′ : {±1}T → [−1, 1]. Thus, we have

E
x∼{±1}n

[f(x)g(x)] = E
x∼{±1}n

[f(x)g′(xT)]

= E
x∼{±1}n

[
g′(xT) · E

y∼{±1}n
[f(y)|xT = yT]

]
= E

x∼{±1}n
[g′(xT)favg,T (x)]

≤ E
x∼{±1}n

[|favg,T (x)|]

= E
x∼{±1}n

[sgn(favg,T (x)) · favg,T (x)]

= E
x∼{±1}n

[f(x)sgn(favg,T (x))]. ◁

A useful tool in Boolean Function Analysis is the noise operator Tρ. For a vector
x ∈ {±1}n we denote by Nρ(x) the distribution over vectors y ∈ {±1}n such that for each
coordinate i ∈ [n] independently yi = xi with probability (1 + ρ)/2 and yi = −xi otherwise
(alternatively, E[xiyi] = ρ). For a function f : {±1}n → R we denote by Tρf : {±1}n → R
the function defined by

Tρf(x) = E
y∼Nρ(x)

[f(y)]

There’s also a nice Fourier expression for the function Tρf given by Tρf(x) =
∑

S⊆[n] f̂(S)ρ|S|.
We will need a simple fact about the noise operator.

▶ Fact 13 ([25, Exercise 2.33]). For any function f : {±1}n → R and any ρ ∈ [−1, 1] we
have that E[|Tρf |] ≤ E[|f |].

2.3 Estimating Fourier Coefficients
The following claim is a standard tool in many learning algorithms. It establishes that
estimating Fourier coefficients of a Boolean function f can be done with a few queries to f .

▷ Claim 14 ([25, Proposition 3.39]). Suppose f : {±1}n → {±1} and S ⊆ [n] then there
exists an algorithm that estimates f̂(S) up to additive error ε with probability at least 1− δ

that makes O((1/ε2) · log(1/δ)) samples.

The next claim generalizes the claim to a bounded function f : {±1}n → [−1, 1]. For
that generalization, we need the definition of a randomized algorithm computing a bounded
function f .

V. Iyer, A. Tal, and M. Whitmeyer 24:9

▶ Definition 15 (Randomized Algorithm for a Bounded Function). Let f : {±1}n → [−1, 1] be
a bounded function. We say that algorithm A is a randomized algorithm for f if on any fixed
input x algorithm A outputs a random bit y ∈ {±1} with E[y] = f(x).

▷ Claim 16. Let f : {±1}n → [−1, 1], and let A be a randomized algorithm for f . Then,
there exists an algorithm making O((1/ε2) · log(1/δ)) calls to A that estimates f̂(S) up to
additive error ε with probability at least 1− δ.

Proof Sketch. We estimate f̂(S) by sampling m = O((1/ε2) · log(1/δ)) uniformly random
inputs x(1), . . . , x(m), applying A to each of them to get random bits (y1, y2, . . . , ym), and
taking the empirical mean of 1

m

∑m
i=1 yi · χS(x(i)). Note that for each i ∈ [m] we have that

yi · χS(x(i)) is a {±1} random variable with expectation

E
x(i),yi

[yi · χS(x(i))] = E
x(i)

[
E
yi

[yi|x(i)] · χS(x(i))
]

= E
x(i)

[f(x(i)) · χS(x(i))] = f̂(S).

The claim follows from Fact 6. ◁

2.4 Random Restrictions
▶ Definition 17 (Restriction). Consider the class of functions on {±1}n. A restriction is a
pair (J, z) where J ⊆ [n], and z ∈ {±1}J . Given a function f : {±1}n → R, and a restriction
(J, z), the restricted function fT →z : {±1}T → R is defined by fT →z(x) = f(y) where yT = x

and yT = z.

▶ Definition 18 (δ-Random Restriction). For δ ∈ [0, 1] we say that J is a δ-random subset
of S if it is formed by including each element independently with probability δ, which we
denote as J ⊆δ S. A δ-random restriction, denoted (J, z) ∼ Rδ, is sampled by taking J to be
a δ-random subset J on [n], and taking z to be a uniformly random string in {±1}J .

Occasionally, we will abuse notation and think of fT →z as a function from {±1}n

to {±1} that ignores bits outside T . For example, fT →z : {±1}n → {±1} is given by
fT →z(x) = f(xT , zT). Finally, we will use the following fact on random restrictions:

▶ Fact 19 ([25, Corollary 3.22]). For a function f : {±1}n → R and sets S ⊆ J ⊆ [n] we
have

E
z∈{±1}J

[f̂J→z(S)2] =
∑

R⊆[n],R∩J=S

f̂(R)2.

3 Overview of Techniques

Both of our algorithms rely on only having to consider a subset of influential coordinates,
rather than all n input variables. This is obtained using results from [13], and is discussed
further in Section 4. For now, we simply assume that we are only dealing with poly(k, 1/ε)
coordinates S. For simplicity of presentation, we ignore dependence on ε, and focus only
the dependence on k. Thus, in this section, assume that ε is a small universal constant, e.g.,
ε = 0.01.

3.1 Techniques for Establishing Theorem 4
Our first result shows how to further reduce the number of coordinates we need to consider
down to O(k/ε2), while only losing at most ε amount of correlation with the maximally
correlated k-junta. In establishing Theorem 4, we first develop intuition behind a notion of
normalized influence that we introduce next:

CCC 2021

24:10 Junta Distance Approximation with Sub-Exponential Queries

▶ Definition 20 (Normalized Influence). Let f : {±1}n → R. We define the normalized
influence of coordinate i on f as

NInf i[f] =
∑
S∋i

f̂(S)2

|S|
.

We also naturally define the normalized influence below level k:

NInf≤k
i [f] :=

∑
|S|≤k
S∋i

f̂(S)2

|S|
.

We note that while the term “normalized influence” is new, the quantity itself is not.
It first appeared in a work of Talagrand [32] (expressed as M(∆if)2) which generalized
the famous KKL theorem [19, 21], and subsequently appeared in followup works extending
Talagrand’s theorem to Schreier graphs [26]. As far as we know, this is the first use of this
quantity in a learning or testing setting.

The next claim states that the sum of normalized influences of f equals its variance.

▷ Claim 21. For any function f : {±1}n → R, we have that
∑

i NInf i[f] = Var[f].

Proof. We have that∑
i∈[n]

NInf i[f] =
∑
i∈[n]

∑
S∋i

f̂(S)2

|S|
=
∑

S⊆[n]
S ̸=∅

∑
i∈S

f̂(S)2

|S|
=
∑

S⊆[n]
S ̸=∅

|S| f̂(S)2

|S|
=
∑

S⊆[n]
S ̸=∅

f̂(S)2 = Var[f],

where the last equality follows from Parseval’s identity. ◁

▶ Remark 22. We note that for a balanced Boolean function f (that is, one where Ex[f(x)] = 0)
the normalized influences form a probability distribution on the coordinates i.
The idea behind establishing Theorem 4 begins with the observation the these normalized
influences can be thought of as defining a sub-probability distribution over the input
coordinates of f , since these are non-negative numbers whose sum is at most 1. The
weight assigned to coordinate i, similar to the regular influence, captures how important i is
to f , but assigns a higher relative weight to the coordinates with Fourier mass coming from
the lower levels of the Fourier decomposition.

The second important observation for us is that for any set T of size at most k we can
write∑

i∈T

NInf≤k
i [f] =

∑
i∈T

∑
|S|≤k
∅̸=S∋i

f̂(S)2

|S|
≥
∑
i∈T

∑
S⊆T
S∋i

f̂(S)2

|S|
=

∑
∅̸=S⊆T

f̂(S)2. (1)

Intuitively, this shows that if some set of coordinates captures large amount of Fourier mass,
then this same subset of coordinates also is very likely to be sampled by our sub-probability
distribution defined by the normalized influences. Our idea follows this line of thought – we
get decent estimates for all of the normalized influences, and sample coordinates from this
estimated distribution. Let T be the “target set” of size k, i.e., the one for which the closest
k-junta to f is a junta on T . Without loss of generality we can assume that T captures
constant fraction of the Fourier mass, meaning

∑
∅̸=S⊆T f̂(S)2 ≥ Ω(1). Otherwise, the best

correlation of f with a k-junta is o(1) < ε and the task of ε-accurately estimating the distance

V. Iyer, A. Tal, and M. Whitmeyer 24:11

to the set of k-juntas becomes trivial. Assuming T captures constant fraction of the Fourier
mass, Equation (1) tells us that we will sample i ∈ T with constant probability mass. Thus,
sampling from this distribution O(k) times means we will have seen most of T up to a small
loss in correlation.

To actually estimate these normalized influences, we apply a series of log 10k random
restrictions to our function f (first take 1-random restrictions, then 1/2-random restrictions,
then 1/4-random restrictions, and so on), and then show that summing f̂J̄→z({i})2 for each
of these restrictions is sandwiched between NInf≤k

i [f] and NInf i[f]:

1
2NInf≤k

i [f] ≤
log 10k∑

i=0
E

(J,z)∼R2−i

[
f̂J̄→z({i})2

]
≤ 2NInf i[f].

This would allow us to effectively sample from a proxy distribution that still samples i ∈ T

with constant probability.
We repeat the process iteratively, sampling coordinates one at a time, until we either

sampled all of T or sampled a subset T ′ ⊆ T for which we have that the best junta on T ′ is
almost as correlated with f as the best junta on T . Since the process samples a coordinate
in T with constant probability in each round, after O(k) iterations we are likely to succeed,
giving us a set U of O(k) coordinates that contains either T or T ′ (as above). Finally, we
show we can estimate, up to a small additive error, the best correlation of a junta-on-U with
f , given only approximate oracle access to the coordinates in S. By the above discussion
the estimate we get is lower bounded by the best correlation with a k-junta up to a small
additive error. It is also upper bounded (trivially) with the best correlation of f with a
O(k)-junta, since |U | = O(k).

3.2 Techniques for Theorem 2

A limitation of the algorithm we described in the previous subsection is that it only samples
one coordinate at a time. In particular, suppose we want to find T exactly, instead of a
superset U of T . Then, the naive algorithm would need to consider all subsets of U of size k,
estimating the best correlation with a junta on each of them. This gives a exp(O(k))-query
algorithm. It would be nicer if we can devise a sampling algorithm that outputs, with
constant probability, many coordinates of T at a time. Such a sampling algorithm would
reduce the number of possibilities for T in the second stage. In particular, consider the case
that the nearest k-junta to f had significant amount of Fourier mass on higher levels, say at
level ≈ k or maybe ≈

√
k. In this case it would be nice to be able to sample from the Fourier

distribution of f , that would give us a large subset of T with constant probability. We note
that sampling from the Fourier distribution of a Boolean function is easy for a quantum
algorithm but hard for a randomized algorithm. Nevertheless, the (classical) algorithm we
describe in this section takes inspiration from this, and samples subsets of size

√
k according

to the Fourier mass of f above level
√

k of each subset, in time and query complexity
exp(Õ(

√
k)).

We will start with the preliminary that we have reduced to the case of only having to
consider the coordinates in S ⊆ [n] with |S| ≤ O(k/ε2), using our aforementioned algorithm
from the previous section, incurring only a small additive loss in correlation with the closest
k-junta. We start with the following definition that generalizes normalized influences of
coordinates to normalized influences of sets of coordinates.

CCC 2021

24:12 Junta Distance Approximation with Sub-Exponential Queries

▶ Definition 23. For a given subset U ⊆ [n], we define its normalized influence as follows:

NInfU [f] :=
∑

S: U⊆S

f̂(S)2(|S|
|U |
) .

We also have the natural extension of NInf≤k
U [f] =

∑
S: |S|≤k,U⊆S

f̂(S)2

(|S|
|U|)

, analogous to
Definition 20.

This is a direct generalization of the quantity in Definition 20. In particular, we consider
taking |U | =

√
k. Note there are 2Õ(

√
k) such U within the coordinates in S, and we can

think of these normalized influences as once again defining a sub-probability distribution
over subsets of size

√
k. It likely does not sum to 1, but rather sums to W≥

√
k

S [f] ≤ 1. We
show that these normalized influences at exactly level

√
k can once again be approximated

to within a constant factor via a sequence of random restrictions to f :

1
2NInf≤k

U [f] ≤
2

√
k log 10k∑
i=0

E
(J,z)∼Rpi

[
f̂J̄→z(U)2

]
≤ 3NInfU [f],

where p =
(

1− 1
2

√
k

)
. For more details on this statement, see Theorem 40.

We are now ready to outline the overall algorithm in Section 5. Suppose T ⊆ S is the
subset on which the nearest k-junta (within S) is defined. Our algorithm can then be broken
down into two phases:
Phase 1. We get a proxy for NInfU for all |U | =

√
k. This is achieved by performing a

series of random restrictions to f .
We consider these proxies as a distribution, and sample a constant (this constant is
actually dependent on ε, see Section 5 for details) number of subsets of size

√
k. With

high probability, one of these is in our set of interest T , provided T has a non-negligible
amount of Fourier mass above level

√
k.

We don’t know which of the subsets we sample are actually in T , so we start a branching
process. For each subset we sampled, we restrict f ’s values in that subset, and recursively
sample from sets of size

√
k using the steps described above. Our branching process

will have depth at most
√

k since at each level we sample
√

k new coordinates, and T

can have at most k relevant coordinates. This phase of our algorithm produces 2Õ(
√

k)

possible subsets of our target set T .
Phase 2. With high probability, one of the branches in the above process will have captured

most of the coefficients of T that are relevant above level
√

k on the Fourier spectrum.
Each branch of this process represents a different possibility for what T may be, so for
each branch we randomly restrict f so that the coordinates sampled in that branch
are fixed, which effectively moves most of the mass of T to levels below

√
k. We then

estimate all the Fourier coefficients of this restricted f below level
√

k, allowing us to
get an estimate for the closest k-junta on any subset using these estimated coefficients.
Each estimation of a Fourier coefficient requires 2Õ(

√
k)-queries to estimate to the desired

accuracy, and there are 2Õ(
√

k) Fourier coefficients to estimate, so overall we make at most
2Õ(

√
k) queries. From there, for each possible subset of B ⊆ T outputted by phase one, we

brute force over all possible subsets of size k containing B, estimating the correlation f

has with the closest k-junta on that subset using our estimated Fourier coefficients. This
last step takes exponential time in k. We emphasize that while our runtime is exponential
in k, our query complexity is only exponential in Õ(

√
k).

V. Iyer, A. Tal, and M. Whitmeyer 24:13

In the entire above explanation, we have eliminated the dependence on ε for simplicity. We
also only consider T for conceptual and analytic simplicity – in reality, we have no idea what
T is, and indeed it is exactly what we are looking for. Therefore, more work must be done in
order to show that we do not accidentally pick the wrong set, for which our estimates may
be inaccurate. To get around this subtle issue, we further apply a noise operator in order to
ensure that the significant parts of f lie below level roughly

√
k. We discuss this further in

Section 5.2.

4 Finding a Small(er) Set of Influential Coordinate Oracles

In this section, we detail the process of constructing oracles to coordinates with large low-
degree influence. We expand upon the techniques in [13], reducing the number of coordinates
one needs to consider to produce a highly correlated k-junta (assuming one exists).

4.1 Approximate Oracles to Influential Coordinates
In this subsection we outline and generalize the methods used by [13] to achieve oracle access
to coordinates with large low-degree infuence in f . We start with the following definitions
from their paper, repeated here for clarity:

▶ Definition 24 ([13, Def. 3.1]). Let D be a set of functions mapping {±1}n to {±1}. We
say that D is an oracle for the coordinates in S if

for every g ∈ D, there is some i ∈ S such that g = ±Dicti; and
for every i ∈ S, there is some g ∈ D such that g = ±Dicti.

In other words, D is an oracle for S if D = {Dicti : i ∈ S} “up to sign”.

However, it is not tractable to achieve perfect access to such oracles, so we have to settle
for the following weaker notion of approximate oracles:

▶ Definition 25 ([13, Def. 3.2]). Let D be a set of functions mapping {±1}n to {±1}. We
say that D is an ν-oracle for the coordinates in S if

for every g ∈ D, there is some i ∈ S such that g is ν-close to ±Dicti; and
for every i ∈ S, there is exactly one g ∈ D such that g is ν-close to ±Dicti; and
For every g ∈ D, and δ > 0, there is a randomized algorithm that compute g(x) correctly
on any x ∈ {±1}n with probability at least 1− δ, using poly(k, log 1

δ) queries to f .

Lemma 3.6 in [13] establishes that we can achieve access to a set D of approximate oracles
to S ⊇ {i : Inf≤k

i [f] ≥ ε2/k} of bounded size. More specifically, we have the following
corollary:

▶ Corollary 26 ([13, Lemma 3.6]). With poly(k, 1
ε , log 1

δ) · 1
ν queries to f , we can gain access to

an approximate oracle set D in the sense that for every coordinate i such that Inf≤k
i [f] ≥ ε2

k ,
there exists a g ∈ D such that g is ν-close to ±Dicti with probability at least 1−δ. Furthermore,
|D| ≤ poly(k, 1

ε , log(1/δ)).

For our purposes, we take ν = 0.1 and δ = 2−poly(k, 1
ε) in all our algorithms. Since we will

make much fewer than 2poly(k/ε)-many queries to the coordinate oracles, we can assume that
all of our oracles are indeed ν = 0.1 close to dictators/anti-dictators, since by a union bound
this is true with high probability.

CCC 2021

24:14 Junta Distance Approximation with Sub-Exponential Queries

It is important to note that we do not have a description of which coordinates are
influential: from an information theoretic standpoint this would require query complexity
dependent on n. What we do have is oracle access to these coordinates in the sense that for
all i such that Inf≤k

i [f] ≥ ε2/k, there exists gi ∈ D such that gi(x) ≈ ±Dicti(x), that is, D
contains dictators or anti-dictators to every influential coordinate. Using simple techniques
of local correction we can simplify this: we need only consider dictators to each coordinate
in the oracle. Also, we can convert closeness on average x to high probability correctness for
all x (i.e., a worst-case guarantee).

▶ Lemma 27. Suppose f is ν-close to ±Dicti. For any x ∈ {±1}n, LocalCorrect(f, x) samples
a random y ∼ {±1}n and outputs f(y)f(x · y), where x · y is pointwise multiplication. Then,

∀x : Pr
y∼{±1}n

[LocalCorrect(f, x) ̸= Dicti(x)] ≤ 2ν.

Proof. Suppose that f is ν close to Dicti. Then we have Pry∼{±1}n [f(y) ̸= Dicti(y)] ≤ ν,
and since x · y has the same distribution as y, Pry∼{±1}n [f(x · y) ̸= Dicti(x · y)] ≤ ν. Let
A be the event that f(y) ̸= Dicti(y) and let B be the event that f(x · y) ̸= Dicti(x · y).
Clearly if LocalCorrect(f, x) ̸= Dicti(x) then at least one of A and B must have occurred
(since Dicti(x) = Dicti(x · y) · Dicti(y)). Thus, by the union bound, we have

Pr
y∼{±1}n

[LocalCorrect(f, x) ̸= Dicti(x)] ≤ Pr[A ∪B] ≤ Pr[A] + Pr[B] ≤ 2ν

A similar argument shows that if f is ν close to −Dicti, then LocalCorrect(f, x) is not equal to
(−Dicti(y))(−Dicti(x · y)) = Dicti(y)Dicti(x · y) = Dicti(x) with probability at most 2ν. ◀

Given a noisy black box computing h which is ν-close to g = ±Dicti, local correction will
compute Dicti with high probability, on every input x. Critically, we can treat potentially
faulty ±Dicti oracles as correct Dicti oracles provided suitably many repetitions.

▶ Corollary 28. If f is ν-close to ±Dicti for ν = 0.1, then repeating LocalCorrect(f, x)
independently poly(k, 1/ε) times and taking the majority outcome results in an incorrect value
for Dicti(x) with probability at most 2−poly(k,1/ε).

Proof. Clear from applying the first bound in Fact 6 with N = O(poly(k/ε)) and η =
(1− 2ν − 0.5) = 0.3 in this case. ◀

We also show that restricting our attention to S we have not lost more than ε in the best
correlation of f with a k-junta. This is proved in the following claim.

▷ Claim 29. Let f : {±1}n → {±1} and let g : {±1}n → {±1} be a k-junta on U . Let
τ > 0. Take

S =
{

i ∈ U
∣∣∣ Inf≤k

i [f] ≥ τ2

k

}
Then, there is a junta on S with correlation at least E[fg]− τ with f .

Proof. To prove this claim, we define a function on the set S such that the loss in correlation
is at most τ . Consider:

g′(x) = gavg,S(x) = E
y

[g(y)|yS = xS].

V. Iyer, A. Tal, and M. Whitmeyer 24:15

First, we note g′ is a function over only the variables in S. Second, it is bounded in [−1, 1],
so it is not quite Boolean, but it can be randomized rounded to a Boolean function, with the
expected correlation with f equaling E[fg′]. Thus, it suffices to show that E[fg′] ≥ E[fg]−τ

to deduce that there exists a randomize rounding of g′ to a Boolean function g′′ with
E[fg′′] ≥ E[fg]− τ . We also recall that

ĝ′(T) =
{

ĝ(T) if T ⊆ S

0 otherwise

We thus have:

|E[fg]−E[fg′]| =
∣∣∣∣ ∑

T⊈S
T ⊆U

f̂(T)ĝ(T)
∣∣∣∣ ≤√√√√√∑

T⊈S
T ⊆U

f̂(T)2 ≤
√√√√ ∑

i∈U\S

∑
T ∋i

T ⊆U

f̂(T)2

≤
√ ∑

i∈U\S

Inf≤k
i (f) ≤

√
k · τ2

k
= τ ◀

Finally, the below corollary summarizes what we have achieved in this section.

▶ Corollary 30. With poly(k, 1
ε , log 1

δ) queries to f , we can gain access to an approximate
oracle set D for a set of coordinates {i : Inf≤k

i ≥ ε2

k } ⊆ S ⊆ [n]. Moreover, these coordinates
and oracles satisfy the following properties.

For every coordinate i ∈ S, there exists a g ∈ D such that g is 0.1-close to Dicti with
probability at least 1− δ.
dist(f,Jn,k)− dist(f,JS,k) ≤ ε.
|S| ≤ poly(k, 1/ε, log(1/δ)).
For any algorithm A that uses at most q queries to D, we can use LocalCorrect from
Lemma 27 with error δ/q to assume that we actually have perfect access to each
coordinate oracle, up to an additive loss of δ in confidence and a multiplicative overhead
of poly(log(q/δ)) in query complexity.

Proof. The first and the third bullet point follow from Corollary 26. The second bullet point
follows from Claim 29. To achieve the last point, we can use Corollary 28 every time we
make a “query” to an oracle in our algorithm. Thus every “query” to an oracle g ≈ ±Dicti at
x involves poly(log(q/δ)) many repetitions of LocalCorrect(g, x), which results in an incorrect
value with probability at most δ/2q, as noted above. Recall that Corollary 26 guarantees
that we can output g(x) correctly with probability 1 − δ/2q with only a poly(k, log(q/δ))
queries to f . Since we only ever make at most q queries to our coordinate oracles, we can
assume that LocalCorrect(g, x) = Dicti(x) in all queries. This happens with probability at
least 1− δ by the union bound. ◀

Therefore, for the rest of this paper, we will assume that we have oracle access to exact
dictators.

4.2 Implicit Access to an Underlying Junta
An important consequence of having coordinate oracles is that it allows us to reduce the input
size of the function dramatically. Suppose f : {±1}n → {±1} and we have D = {g1, . . . , gk′}
are randomized algorithms that for any x ∈ {±1}n output gi(x) = Dictji(x) = xji . We have
that j1, . . . , jk′ ∈ [n] are a set of k′ distinct coordinates. Let U = {j1, . . . , jk′}. We want to get

CCC 2021

24:16 Junta Distance Approximation with Sub-Exponential Queries

access to the following function: g(x1, . . . , xk′) = E[f(y)|yj1 = x1, yj2 = x2, . . . , yjk′ = xk′].
More precisely, given x1, . . . , xk′ we want to sample uniformly from all y ∈ {±1}n that satisfy
yj1 = x1, yj2 = x2, . . . , yjk′ = xk′ and apply f on this y.

The following algorithm that runs in poly(k, log(1/δ)) time samples y from such a
distribution.

Algorithm 1 Sampling a uniformly random input consistent with the oracles’ values.

Input: f (target function), D = {g1, . . . , gk′} (coordinate oracles),
(x1, . . . , xk′) ∈ {±1}k′

Output: A vector y ∈ {±1}n with (g1(y), . . . , gk′(y)) = (x1, . . . , xk′)
1 Sample y ∼ {±1}n and let z ∈ {±1}k′ be the vector of evaluations of {g1, . . . , gk′} on

y;
2 while z ̸= x do
3 repeat
4 Let y′ be a copy of y, but flip each bit independently with probability 1

k′ ;
5 Let z′ be the vector of evaluations of {g1, . . . , gk′} on y′;
6 until dist(x, z′) < dist(x, z)
7 y = y′;
8 z = z′;
9 return y

▶ Theorem 31. Algorithm 1 with probability 1− δ runs in time poly(k′, log(1/δ)).

Proof. We focus on the number of iterations of the inner repeat loop. Given (y, z) with z ̸= x

we analyze the time it takes to find a (y′, z′) with dist(z′, x) < dist(z, x). Since x ̸= z without
loss of generality we can assume that x1 ̸= z1. To get (y′, z′) with dist(z′, x) < dist(z, x), it
suffices to sample a vector y′ with y′

j1
= x1 and y′

j2
= yj2 , y′

j3
= yj3 , . . . , y′

jk′ = yjk′ . Indeed,
since we are flipping each coordinate with probability 1/k′ the probability of sampling such
a y′ is exactly 1/k′ · (1− 1/k′)k′−1 ≥ 1/(ek′). Thus, we get that the runtime of the repeat
loop is stochastically dominated by a geometric random variable with success probability
1/(ek′). Thus with probability at least 1− δ/k′, it finishes after O(k′ · log(k′/δ)) iterations.
We run the inner repeat loop at most k′-times, thus by union bound, with probability at
least 1− δ the entire process end after at most O(k′2 · log(k′/δ)) executions of line 5. We
note that execution line 5 actually requires k′ queries to g1, . . . , gk′ , each of them takes
poly(k) = poly(k′) time. thus overall, with probability at least 1− δ, our algorithm run in
time poly(k′, log(1/δ)). ◀

▶ Theorem 32. Algorithm 1 samples uniformly from the set of inputs {y′ :
(g1(y′), . . . , gk′(y′)) = (x1, . . . , xk′))}.

Proof. Let U = {j1, . . . , jk′} be the set of coordinates for which {g1, . . . , gk′} are oracles
to. Algorithm 1 certainly samples a vector y with yj1 = x1, . . . , yjk′ = xk′ . We want to
show additionally that Algorithm 1 samples yU uniformly at random. In fact, at any point
in the algorithm the distribution over yU is uniform. This is clearly true in the first step
where y ∼ {±1}n, and remains true along the algorithm as we apply independent noise to
coordinates in U and decide whether to apply the noise or not according to the value of yU

which is independent of yU . ◀

V. Iyer, A. Tal, and M. Whitmeyer 24:17

We will consider algorithms computing non-Boolean function like g = favg,S for some
subset S ⊆ [n]. Note that g is a function whose range in [−1, 1], but not necessarily a Boolean
function.

▶ Theorem 33 (Formal version of Theorem 5). Let f : {±1}n → {±1}, D = {g1, . . . , gk′}
be a set of coordinate oracles. Let g be a function from {±1}k′ → [−1, 1] defined by
g(x) = E[f(y)|g1(y) = x1, . . . , gk′(y) = xk′]. Then g has a randomized algorithm in the sense
of Definition 15 computing it that runs in expected time poly(k′).

Proof. Given x = (x1, . . . , xk′) apply Algorithm 1 on f , D and x to get a vector y ∈ {±1}n.
Return f(y). It is clear that since y is a uniform input subject to g1(y) = x1, . . . , gk′(y) = xk′

that our algorithm is a randomized algorithm for g. ◀

4.3 Influential Coordinate Oracles

As above, denote as S the superset of the low-degree influential coordinates of f , and D as
the set of approximate oracles to said coordinates, obtained via Corollary 26 with parameter
ν = 0.1. As we discussed in Section 4.1, we assume (with a small loss in error probability,
and a small multiplicative factor on query complexity) that we have exact access to dictators
for each influential coordinate. We work towards proving the following improved version of a
corollary that appeared in [13]:

The idea will be to take D, a set of k′ = poly
(
k, 1

ε

)
coordinate oracles, and somehow

“prune” it down to a set D′ of at most O(k
ε2) coordinate oracles, such that that the loss in

the most correlated junta on this smaller set of coordinates is at most ε

max
g∈JD,k

E[fg]− max
g∈JD′,k

E[fg] ≤ ε.

4.4 Reducing the Number of Oracles to Consider

Starting with a set of poly(k/ε) set of oracles D for a set S containing the influential
coordinates of f , our goal in this section is to prune the number of oracles to O(k/ε2) in a
way that incurs only a small loss in correlation with the nearest k-junta. [13] achieved their
theorem by noting that applying a standard noise operator to f did not affect its proximity
to the nearest k-junta significantly, while also guaranteeing that at most k2

ε2 coordinates could
have large influence. They then were able to estimate the influence of every coordinate in D
despite only having (approximate) oracle access to the influential coordinates, and thus were
able to determine which oracles were actually oracles to influential coordinates, of which
there were less than k2/ε2.

Our approach, as explained at a high level in Section 3, is to estimate the normalized
influence of each coordinate in S, which is done via a sequence of random restrictions
to f . In words, the below algorithm estimates for each coordinate i ∈ S the quantity
λ≈2d

i = E(J,z)∼R2−d
[f̂J̄→z({i})2], where (J, z) ∼ R2−d parameterize a 2−d-random restriction

to f . Then, λi is defined to be sum over a series of random restrictions d = 0, ..., log 10k of
λ≈2d

i . The core idea of our algorithm is that this sum over Fourier coefficients on the first
level of restricted versions of f is a proxy for NInf i[f]. In other words, we have the following
theorem:

CCC 2021

24:18 Junta Distance Approximation with Sub-Exponential Queries

▶ Theorem 34. Let f : {±1}k′ → R, where k′ = |D|. Let i ∈ [k′]. Let

λi[f] =
log(10k)∑

m=0
λ≈2m

i [f], where λ≈2m

i [f] = E
(J,z)∼R2−m

[f̂J̄→z({i})2].

Then, 1
2 NInf≤k

i [f] ≤ λi[f] ≤ 2NInf i[f].

We postpone the proof of Theorem 34 to Section 4.5. The definition of λi naturally gives
rise to an algorithm for estimating λi that we present next. The algorithm would return for
each i ∈ [k′] an estimate λ̃i that would be close to λi with high probability.

Algorithm 2 Estimating λi.

Input: f : {±1}k′ → [−1, 1] along with randomized algorithm A computing f (recall
Def. 15). Parameters 1− δ (confidence), ε (additive error) and k.

Output: Estimates (λ̃1, . . . , λ̃k′) for (λ1, . . . , λk′).
1 Let m = poly(k, k′, 1/ε, log(1/δ))
2 Initialize λ̃i = 0 for all i ∈ [k′];
3 for d = 0 to log 10k do
4 Initialize λ̃≈2d

i = 0 for all i ∈ [k′];
5 repeat m times
6 Let (J, z) ∼ R2−d be a 2−d-random restriction.
7 Estimate f̂J̄→z({j}) for all j ∈ J up to additive error ε

6 log(10k) with
probability 1− δ/poly(k, k′, m) using Claim 16 and algorithm A.

8 Denote by f̃J̄→z({j}) the estimated Fourier coefficient.
9 Update λ̃≈2d

j = λ̃≈2d

j + f̃J̄→z({j})2 for all j ∈ J .

10 Let λ̃≈2d

i = λ̃≈2d

i /m for all i ∈ [k′];

11 Let λ̃i =
∑

d λ̃≈2d

i ;
12 return (λ̃1, λ̃2, . . . , λ̃k′)

▶ Lemma 35. With probability at least 1 − δ we have that for all i ∈ [k′] it holds that
|λ̃i − λi| ≤ ε.

Proof. If j /∈ J the Fourier coefficient of f̂J̄→z is 0 and so our estimate is correct in that
case. In the case j ∈ J , each estimation of the Fourier coefficient is correct up to additive
error η = ε/6 log(10k) with probability at least 1 − δ/poly(k, k′, m). Thus, we get that
f̃J̄→z({j})2 = (f̂J̄→z({j}) ± η)2 = f̂J̄→z({j})2 ± 2η|f̂J̄→z({j})| ± η2 = f̂J̄→z({j})2 ± 3η.
Furthermore, we have that E(J,z)∼R2−d

[f̂J̄→z({j})2] = λ≈2d

j , thus by Fact 6 we have that
the empirical mean of m = poly(1/ε, log(k), log(k′), log(1/δ)) copies of f̃J̄→z({j})2 is within
additive error ε/(2 log(10k)) from λ≈2d

j with probability at least 1 − δ/(k′ log(10k)). By
union bound, all these estimates are within the error bound, and we get that |λ̃≈2d

j −λ≈2d

j | ≤
3η + ε/(2 log(10k)) ≤ ε/(log(10k)). Overall, we get that |λ̃j − λj | ≤ ε for all j ∈ [k′] with
probability at least 1− δ. ◀

With Algorithm 2 in hand, we are ready to present the pruning procedure.

V. Iyer, A. Tal, and M. Whitmeyer 24:19

Algorithm 3 Reduce Number of Oracles.

Input: f (target function), D (influential coordinate oracles, where D are oracles for
S). Parameters ε and δ.

Output: A subset D′ ⊆ D of size O(k
ε2) such that we lose at most ε in correlation

with f .
1 Initialize D′ = ∅;
2 Let m = O((k + log(1/δ))/ε2)
3 repeat m times
4 Let {g1, . . . , gk′} = D −D′, and {gk′+1, . . . , g|D|} = D′

5 Sample z ∈ {±1}|D′|. Let f ′ : {±1}k′ → R be the function defined by
f ′(x1, . . . , xk′)
= E

y∼{±1}n
[f(y)|g1(y) = x1, . . . , gk′ (y) = xk′ , gk′+1(y) = z1, . . . , gk′+|D′|(y) = z|D′|].

and let A be the randomized algorithm for f ′ from Theorem 33.
6 Apply Algorithm 2 on f ′ using the randomized algorithm A for f ′ with confidence

1− δ
2m and accuracy ε2

48·|S| =⇒ λ̃ = (λ̃1, . . . , λ̃k′).
7 Let our distribution P be defined by λ̃, normalized appropriately.
8 Sample i ∼ P , and add gi to D′.
9 return D′

▶ Lemma 36. With probability at least 1− δ, Algorithm 3 returns a set of oracles D′ to a
subset of coordinates S ′ ⊆ S, such that

max
g∈JS,k

E[fg]− max
g∈JS′,k

E[fg] ≤ ε.

To prove Lemma 36, which tells us our algorithm succeeds and directly implies Theorem 4,
we will need a few more lemmas.

We denote the event E that in the entire execution of Algorithm 3 all λ̃i were ε2/(48 · |S|)
close to the real λi. We note that by union bound this event happens with probability at
least 1− δ/2.

Suppose T is the (unknown) set of k oracles for which the best-k junta approximating f

is a junta on T . We want to show that our algorithm either samples all the coordinates in T ,
or it samples a subset T ′ of T that captures all but ε2/4 of the Fourier mass of f on T .

▷ Claim 37. Assume the event E happens. Then, with probability at least 1− δ/2, after m

iterations, we will have either:
1. sampled i for all i ∈ T , our target set;
2. sampled i for all i ∈ T ′ ⊆ T , where

∑
S⊆T ′ f̂(S)2 ≥

∑
S⊆T f̂(S)2 − ε2/4.

Proof. In each iteration, assume we have not yet satisfied either items. Let V be the subset
of coordinates in T that we have not yet sampled. Let T ′ = T \ V . By assumption,

ε2/4 <
∑
S⊆T

f̂(S)2 −
∑

S⊆T ′

f̂(S)2 =
∑

S⊆T :S∩V ̸=∅

f̂(S)2.

Let S ′′ = S \ S ′. We have that |S ′′| = k′. Now note that up to relabeling of coordinates
f ′ from Algorithm 3 is the same as (favg,S)S′→z, where z was randomly chosen. For brevity,
denote by fz = (favg,S)S′→z. Note that for any fixed z, fz is a function that depends only
on the coordinates in S ′′.

CCC 2021

24:20 Junta Distance Approximation with Sub-Exponential Queries

By Fact 19, we have

E
z

 ∑
∅̸=S⊆V

f̂z(S)2

 =
∑

R:∅̸=(R∩S′′)⊆V

f̂avg,S(R)2 =
∑

R⊆S:
∅̸=(R∩S′′)⊆V

f̂(R)2 ≥
∑

R⊆T :R∩V ̸=∅

f̂(R)2

> ε2/4. (2)

Next, by applying Theorem 34, for any fixed z, we have∑
i∈V

λi[fz] ≥ 1
2
∑
i∈V

NInf≤k
i [fz] ≥ 1

2
∑

∅̸=S⊆V

f̂z(S)2.

By the assumption that E happens, the λ̃i are ε2

48·|S| -accurate, and we get that

∑
i∈V

λ̃i[fz] ≥ 1
2
∑

∅̸=S⊆V

f̂z(S)2 − ε2

48 · |S| · |V | ≥
1
2
∑

∅̸=S⊆V

f̂z(S)2 − ε2

48 .

On the other hand by applying Theorem 34 again we see that∑
i∈S′′

λi[fz] ≤ 2 ·
∑

i∈S′′

NInf i[fz] = 2 ·Var[fz] ≤ 2

and thus
∑

i∈S′′ λ̃i[f] ≤ 2 + k′ · ε2

48·|S| ≤ 2 + ε2

48 ≤ 3 (under the assumption that E happens).
Overall, the probability to sample an element from V is at least

1
3 ·

1
2
∑

∅̸=S⊆V

f̂z(S)2 − ε2

48

 = 1
6
∑

∅̸=S⊆V

f̂z(S)2 − ε2

3 · 48

By taking expectation over z, and using Equation (2) we see that the probability to sample
an element from V overall is at least

E
z

1
6
∑

∅̸=S⊆V

f̂z(S)2 − ε2

3 · 48

 ≥ 1
6 ·

ε2

4 −
ε2

3 · 48 >
ε2

30 .

We get that in each iteration as long as we don’t satisfy Items (1) and (2) above, we
sample an element from i ∈ T with probability at least ε2/30. By repeating the process
m = O(k+log(1/δ)

ε2) times we would sample all of T , or get stuck at some T ′ satisfying Item (2),
with probability at least 1− δ/2, using Fact 6. ◁

Next, we show that finding T ′ is almost as good as finding T in the sense that the
best correlation by juntas-on-T ′ with f is up to small additive error the best correlation by
juntas-on-T with f .

▶ Lemma 38. Suppose we have some subset T such that
∑

S⊆T f̂(S)2 = c, and we then
identified a subset T ′ ⊆ T such that

∑
S⊆T ′ f̂(S)2 ≥ c− ε2

4 . Then∣∣∣∣ max
g∈JT,k

E[fg]− max
g∈JT ′,k

E[fg]
∣∣∣∣ ≤ ε

V. Iyer, A. Tal, and M. Whitmeyer 24:21

Proof. We know that argmaxg∈JT,k
E[fg] = sgn(favg,T) and similarly argmaxg∈JT ′,k

E[fg] =
sgn(favg,T ′). Then we have that∣∣∣∣ max

g∈JT,k

E[fg]− max
g∈JT ′,k

E[fg]
∣∣∣∣ = E[f(x)(sgn(favg,T (xT))− sgn(favg,T ′(xT ′))]

= E
xT

[
E
x

T

[f(xT , xT)] (sgn(favg,T (xT))− sgn(favg,T ′(xT ′))
]

= E
xT

[favg,T (xT) (sgn(favg,T (xT))− sgn(favg,T ′(xT ′))]

≤ 2 E
xT

[|favg,T (xT)− favg,T ′(xT ′)|]

(Since z(sgn(z)− sgn(z′)) ≤ 2|z − z′| for all z, z′ ∈ R)

≤ 2
√

E
xT

[
(favg,T (xT)− favg,T ′(xT ′))2

]
= 2
√∑

S⊆T

f̂(S)2 − 2
∑

S⊆T ′

f̂(S)2 +
∑

S⊆T ′

f̂(S)2

≤ 2
√

ε2

4 = ε . ◀

Proof of Lemma 36. Let g be the k-junta that maximizes E[fg] among all k-juntas on S.
Let T be the set of variables on which g depends. By Claim 37 we either sample oracles to
all of T or to a subset T ′ for which∑

S⊆T ′

f̂(S)2 ≥
∑
S⊆T

f̂(S)2 − ε2/4.

In the second case, by Lemma 38, we incur a loss in correlation of at most ε with our nearest
k-junta. In the first case, we lose no correlation with the closest k-junta, and by a union
bound our probability of failure is at most δ. ◀

The above concludes the proof of Lemma 36. Finally, Theorem 4 is implied by Lemma 36, as
shown below.

▶ Theorem 39 (Theorem 4, restated). Let ε > 0, k ∈ N, and k′ = C(k/ε2) for some universal
constant C. Then, there exists an algorithm that given f, k, ε makes at most poly(k, 1/ε)
queries to f and returns a number α such that with probability at least 0.99
1. α ≤ maxg∈Jn,k′ E[fg] + O(ε)
2. α ≥ maxg∈Jn,k

E[fg]−O(ε)

Proof. Set δ = 2−poly(k,1/ε). We first apply Corollary 26 from [13]. This gives us
poly(k, 1

ε , log(1/δ)) = poly(k/ε) coordinate oracles D to coordinates S that includes all
coordinates i with Inf≤k

i [f] ≥ ε2

k . By Claim 29 we see that

max
g∈JS,k

E[fg] ≥ max
g∈Jn,k

E[fg]− ε

Next, we apply Algorithm 3 to get a subset D′ ⊆ D to coordinates S ′ ⊆ S such that with
high probability

max
g∈JS′,k

E[fg] ≥ max
g∈JS,k

E[fg]− ε

CCC 2021

24:22 Junta Distance Approximation with Sub-Exponential Queries

We take α to be the estimation of the correlation of the best junta on S ′ with f . By
Claim 12 we have that maxg∈JS′ E[fg] = E[|favg,S′(x)|]. To estimate the latter, we use a
randomized algorithm that computes favg,S′ given by Theorem 33. We randomly sample
O(1/ε2) many values for x and estimate for each of them |favg,S′(x)| up to additive error ε/2
via the randomized algorithm with expected value favg,S′(x).

Assume that α is a ε-additive approximation to maxg∈JS′ E[fg]. In this case, we claim
that α satisfies both items from the theorem’s statement. Indeed,
1. α ≤ maxg∈JS′ E[fg] + ε ≤ maxg∈Jn,k′ E[fg] + ε.
2. α ≥ maxg∈JS′ E[fg] − ε ≥ maxg∈JS′,k

E[fg] − ε ≥ maxg∈JS,k
E[fg] − 2ε ≥

maxg∈Jn,k
E[fg]− 3ε.

Next, we analyze the number of queries of our algorithm. Obtaining the initial set
of coordinate oracles D takes poly(k, 1/ε, log(1/δ)) = poly(k, 1/ε) queries. Then, we go
on to run Algorithm 3 that makes m = O((k + log(1/δ))/ε2) iterations, each making
poly(k, 1/ε, log(1/δ)) queries. Next, to estimate E[|favg,S′(x)|] we require poly(1/ε) samples
from randomized algorithm for favg,S′(x) each such sample translate to poly(k, 1/ε) samples
to f . Finally, we note that each “query” to an oracle incurs an overhead of poly(log(k, 1/ε))
queries to f along with an o(1) additive loss in confidence by Corollary 30. Overall, we make
poly(k, 1/ε) queries. ◀

4.5 Proof of Theorem 34

We now present the proof of Theorem 34.

Proof of Theorem 34. We express λi in terms of the Fourier spectrum of f . Using Fact 19,

λi =
log(10k)∑

m=0

∑
S:S∋i

f̂(S)2 · Pr
J⊆2−m [k′]

[S ∩ J = {i}]

=
log(10k)∑

m=0

∑
S:S∋i

f̂(S)2 · Pr
J⊆2−m [k′]

[|S ∩ J | = 1] · 1
|S|

=
∑

S:S∋i

f̂(S)2

|S|
·

log(10k)∑
m=0

Pr
J⊆2−m [k′]

[|S ∩ J | = 1]

It therefore suffices to show that for any non-empty set S such that |S| ≤ k it holds that

1
2 ≤

log(10k)∑
m=0

Pr
J(m)⊆2−m [k′]

[|S ∩ J (m)| = 1] ≤ 2 . (3)

From which it is clear that λi ≤ 2 ·
∑

S:S∋i
f̂(S)2

|S| = 2 · NInf i[f] and similarly λi ≥
1
2
∑

S∋i,
|S|≤k

f̂(S)2

|S| = 1
2 NInf≤k

i [f].

We move to prove Equation (3). The first observation is that an equivalent way to
sample J (m) ⊆2−m [k′] is to sample m independent set J

(m)
1 , . . . , J

(m)
m ⊆1/2 [k′] and take

their intersection J (m) = J
(m)
1 ∩ · · · ∩ J

(m)
m . Furthermore, by linearity of expectation

V. Iyer, A. Tal, and M. Whitmeyer 24:23

∞∑
m=0

Pr
J(m)⊆2−m [k′]

[|S ∩ J | = 1] =
∞∑

m=0
E

J
(m)
1 ⊆1/2[k′],

J
(m)
2 ⊆1/2[k′],

...

[
1|S∩J

(m)
1 ∩···∩J

(m)
m |=1

]

= E
J1⊆1/2[k′],
J2⊆1/2[k′],

...

[∞∑
m=0

1|S∩J1∩···∩Jm|=1

]

which in essence means that the choices for J
(1)
1 , J

(2)
1 , . . . can be the same set J1, and similarly

for any Ji.
To analyze the latter expectation, we note that it can be described as the expected value

of the following random process:

1 X ← 0
2 for i = 1, 2, . . . , log(10k) do
3 if S = ∅ then
4 halt!;
5 if |S| = 1 then
6 increment X;
7 Sample Ji ⊆1/2 [k′];
8 S ← S ∩ Ji;

It therefore suffices to show that the expected value of the above random process is
bounded in [1/2, 2]. In the analysis, we consider also the infinite horizon process that keeps
on going until S = ∅. We observe that the expected values of both processes depend only on
the size of the initial S from symmetry. For any t ∈ {0, 1, . . . , k′}, denote by Ft the expected
value of the infinite horizon process starting with a set S of size t. For the finite horizon
process with i iterations, we let the expected value be denoted by F

(i)
t . We observe that

F0 = 0, and furthermore that F1 = 2 since starting from a set of size 1 the random variable
X would behave like geometric random variable with p = 1/2. Similarly, F

(i)
1 = 2− 1

2i−1 as
it is the minimum of i and a geometric random variable with p = 1/2.

Furthermore, for the infinite horizon process, we observe that we have the following
recurrence

Ft =
t∑

a=0

(
t
a

)
2t
· Fa,

for t ≥ 2 or equivalently

Ft · (1− 2−t) =
t−1∑
a=0

(
t
a

)
2t
· Fa.

We show by induction that 1/2 < F
(log 10k)
t ≤ 2 for t ≥ 1. The base case t = 1 was discussed

above. Applying the induction hypothesis we have

Ft · (1− 2−t) =
t−1∑
a=0

(
t
a

)
2t
· Fa ≤

t−1∑
a=0

(
t
a

)
2t
· 2 ≤ (1− 2−t) · 2.

Dividing both sides by (1− 2−t) gives the inequality Ft ≤ 2, which implies that F
(log 10k)
t ≤ 2.

CCC 2021

24:24 Junta Distance Approximation with Sub-Exponential Queries

For the lower bound, we consider the indicator random variable Y
(i)

t , where t = |S|, which
equals 1 if |S| = 1 at some point during the above process before iteration i. We note that
Y

(log 10k)
t is a lower bound for the value of X in the finite horizon process, and Yt is a lower

bound for the value of X at the end of the infinite horizon process. First, we claim that
E[Yt] = Pr[Yt = 1] ≥ 2/3 for all t ≥ 1. The base case of t = 1 is certainly true, and we also
have, similar to before, that

E[Yt] · (1− 2−t) =
t−1∑
a=0

(
t
a

)
2t

E[Ya]

≥ 0 · 1
2t

+ 1 · t

2t
+ 2

3 ·
t−1∑
a=2

(
t
a

)
2t︸ ︷︷ ︸

1− 2+t

2t

= 2
3 +

t− 2
3 (2 + t)
2t

≥ 2
3 + t/3− 4/3

2t
≥ 2

3 −
2/3
2t

= 2
3 · (1− 2−t)

which holds for all t ≥ 2, and thus Pr[Yt = 1] ≥ 2/3. However, this only holds for the infinite
horizon random process. Let A be the event that S = ∅ by iteration log 10k, and note that
Pr[A] = Pr[Bin(|S|, 1

10k) = 0] ≥ Pr[Bin(k, 1
10k) = 0] =

(
1− 1

10k

)k ≥ 1− k
10k = 0.9. Finally,

we claim that for all t ≥ 2 we have that Pr[Y (log 10t)
t] ≥ 1/2. Note that for Yt to happen, it

must be the case that either A happens or Y
(log 10t)

t happens. Thus, by a union bound

2
3 ≤ Pr[Yt = 1] ≤ Pr[Y (log 10t)

t = 1] + Pr[A] ≤ Pr[Y (log 10t)
t = 1] + 0.1 ,

which implies Pr[Y (log 10t)
t = 1] > 1/2. Finally, F

(log 10t)
t ≥ Pr[Y (log 10t)

t = 1] > 1/2 as
desired. ◀

5 A 2Õ(
√

k)-query Tolerant Junta Tester

In this section, we prove Theorem 2. Throughout this section, we assume that we already
applied Algorithm 3 to reduce the number of coordinate oracles to O(k/ε2). We denote by
D the set of oracles we get, and by S ⊆ [n] the set of coordinate to which they are oracles to.
Suppose that the best k-junta approximation of f is a junta-on-T , for a set T ⊆ S of size k.
We call T the “target set”. Note that T is unknown to the algorithm, and in fact, identifying
T (or a close approximation to T) from all subsets of size k of S is the crux of the problem.

We start with the observation that if we were somehow able to identify all of the variables
of T that capture most of the Fourier mass above level κ, then we could simply restrict f

by randomly fixing these variables, leaving us with the task of identifying the best k-junta
approximation of f , given that we know the best k-junta has most its Fourier mass below level
κ. For the latter case, there are only

(|S|
κ

)
Fourier coefficients to estimate, and estimating

these to sufficient accuracy allows one to estimate the the correlation f has with any subset
U ⊆ S such that |U | ≤ k.

We are now ready to present the details of the algorithm. The algorithm can be broken
down into two main steps. First, we find, with high probability, a set B ⊆ T that captures
almost all Fourier mass of T above level κ. This first step, which we call “phase one”,
closely resembles the techniques in Section 4 in that we utilize a series of random restrictions
to estimate normalized influences. The main difference is that rather than considering
normalized influences of individual coordinates, we now consider normalized influences of
sets of size κ. The goal of phase one is to produce at least one subset B of our target set T

V. Iyer, A. Tal, and M. Whitmeyer 24:25

which effectively captures most of the Fourier mass within T above level κ. Once we have
done that, we have reduced to the scenario of the closest k-junta to f having most of its
Fourier mass below level κ, which can be solved via estimating all of the Fourier coefficients
below level κ.

5.1 Phase One: The Higher Levels
First, we prove an analogous theorem to Theorem 34, which relates λU [f] to NInfU [f] for
all U :

▶ Theorem 40. Let f : {±1}ℓ → R. Let U ⊆ [ℓ], where ℓ = |D| and |U | ≤ k. Let

λU [f] =
2|U | log(10k)∑

m=0
λ≈p−m

U [f], where λ≈p−m

U [f] = E
(J,z)∼Rpm

[f̂J̄→z(U)2]

for p = 1− 1
2|U | . Then, 1

2 ·NInf≤k
U [f] ≤ λU [f] ≤ 3 ·NInfU [f].

Again, we postpone the proof of this to the end of this section in Section 5.3. The definition
of λU [f] is naturally algorithmic, and therefore we can design the following algorithm to
approximate the values of λU [f] for all sets U of size κ =

√
εk.

Algorithm 4 Estimating λU ’s.

Input: f : {±1}k′ → [−1, 1] along with a randomized algorithm A computing f

(recall Def. 15). Parameters 1− δ (confidence), ε (additive error) and k.
Output: Estimates {λ̃U}|U |=κ for {λU}|U |=κ.

1 Let m = poly(k, k′, 1/ε, log(1/δ))
2 Initialize λ̃U = 0 for all U ⊆ [k′], |U | = κ =

√
εk

3 Let p =
(
1− 1

2κ

)
4 for d = 0 to 2κ log 10k do
5 Initialize λ̃≈p−d

U = 0 for all U ⊆ [k′] such that |U | = κ

6 repeat m times
7 Let (J, z) ∼ Rpd be a pd-random restriction.
8 Estimate f̂J̄→z(U) for all U ⊆ J of size κ up to additive error ε

12κ log(10k) with
probability 1− δ

(k′
κ)m·2κ log(10k)

using Claim 16 and algorithm A. Denote by

f̃J̄→z(U) the estimated Fourier coefficient.
9 Update λ̃≈p−d

U = λ̃≈p−d

U + f̃J̄→z(U)2 for all U ⊆ J of size κ.

10 Let λ̃≈p−d

U = λ̃≈p−d

U /m for all U ⊆ J of size κ;

11 Let λ̃U =
∑

d λ̃≈p−d

U ;
12 return {λ̃U}|U |=κ

▶ Lemma 41. With probability at least 1− δ we have that for all U ⊆ [k′] of size κ it holds
that |λ̃U − λU [f]| ≤ ε.

Proof. This proof closely follows that of Lemma 35. If U ̸⊆ J the Fourier coefficient
of f̂J̄→z(U) is 0 and so our estimate is correct in that case. In the case U ⊆ J , each
estimation of the Fourier coefficient is correct up to additive error η = ε

12κ log(10k) with
probability at least 1 − δ/ exp(k, k′, m). Thus, we get that f̃J̄→z(U)2 = (f̂J̄→z(U) ±

CCC 2021

24:26 Junta Distance Approximation with Sub-Exponential Queries

η)2 = f̂J̄→z(U)2 ± 2η|f̂J̄→z(U)| ± η2 = f̂J̄→z(U)2 ± 3η. Furthermore, we have that
E(J,z)∼R

pd
[f̂J̄→z(U)2] = λ≈p−d

U , thus by Fact 6 we have that the empirical mean of
m = poly(1/ε, poly(k), poly(k′), log(1/δ)) copies of f̃J̄→z(U)2 is within additive error
ε/(4κ log(10k)) from λ≈p−d

U with probability at least 1− δ

(k′
κ)m·2κ log(10k)

. By union bound,
all these estimates are within the error bound, and we get that∣∣∣λ̃≈p−d

U − λ≈p−d

U

∣∣∣ ≤ 3η + ε/(4κ log(10k)) ≤ ε/(2κ log(10k)).

Overall, we get that |λ̃U − λU [f]| ≤ ε for all |U | = κ with probability at least 1− δ. ◀

Since we are sampling sets of size κ, we need to sample at most k/κ =
√

k/ε =: α distinct
subsets of T of size κ in order to capture all the potential mass of T above level κ.

Algorithm 5 Branching Process.

Input: f (target function), D (where D are coordinate oracles for S) a current depth
t, a current subset D′ ⊆ D of coordinate oracles, ε, δ

Output: Return collection of subsets of D of size at most k.
1 Let α = k/κ =

√
k/ε

2 Let r = O(1/ε2) and ℓ = 2(r + 1)3α+log(2/δ)

/* r + 1 is the branching factor, and ℓ is an upper bound on the number
of nodes in the branching process (the process depth is
3α + log(2/δ)). */

3 if t = 3α + log(2/δ) or |D′| > k − κ then
4 return {D′}
5 Let {g1, ..., gk′} = D −D′ and {gk′+1, ..., g|D|} where k′ = |D| − |D′|
6 Sample z ∈ {±1}|D′|. Let f ′ : {±1}k′ → R be the function defined by

f ′(x1, . . . , xk′) =
E

y∼{±1}n
[f(y)|g1(y) = x1, . . . , gk′(y) = xk′ , gk′+1(y) = z1, . . . , g|D|(y) = z|D′|],

and let A be the randomized algorithm for f ′ from Theorem 33.
7 Apply Algorithm 4 on f ′ using the randomized algorithm A for f ′ with confidence

1− δ
2ℓ and accuracy ε2

48·(|D|
κ) =⇒ λ̃ = {λ̃U}|U |=κ.

8 Let our distribution P be defined by λ̃, normalized appropriately
9 Sample M1, ..., Mr ∼ λ̃

10 Let L = {}.
11 for M = ∅, M1, ..., Mr do
12 L = L ∪ BranchingProcess(f,D, t + 1,D′ ∪ {gi : i ∈M}, ε, δ)
13 return L

▶ Lemma 42. With probability at least 1− δ, at least one of the subsets Algorithm 5 returns
is a set of coordinate oracles to B ⊆ T such that

E
z

[∑
S⊆T \B
|S|>κ

f̂B→z(S)2

]
≤ ε2/4. (4)

V. Iyer, A. Tal, and M. Whitmeyer 24:27

The reason for Equation (4) becomes clear in Section 5.2, where we show that assuming the
inequality, we lose at most an additive error of ε/2 to the nearest k-junta if we ignore the
Fourier mass above level κ after restricting B. As before, in order to prove the above lemma,
we prove a claim capturing the algorithm’s progress towards satisfying Equation (4).

We denote the event E that in the entire execution of Algorithm 5 all of the λ̃U were
ε2/48 ·

(|D|
κ

)
close to the real λU . We note that by a union bound, this happens with

probability at least 1− δ/2.
Suppose again that T is the (unknown) set of k coordinates for which the best k-junta

approximating f is a junta on T . If T has Fourier mass less than ε2/4 above level κ then
one of the subsets that Algorithm 5 will return is the empty set, which satisfies the claim.
Therefore, henceforth we assume that T has at least ε2/4 Fourier mass above level κ. We
show that in such a case, each Mi for i = 1, . . . , r will be a subset of T with probability at
least Ω(ε2).

▷ Claim 43. Assume D′ are coordinate oracles to S ′ ⊆ T . Suppose also that

E
z

[∑
S⊆T \S′

|S|>κ

f̂S′→z(S)2

]
> ε2/4.

Then, conditioned on E , when running the Branching Process on D′, each Mi will be with
probability at least ε2/40 a collection of κ new coordinate oracles to coordinates in T .

Proof. Similar to the proof of Claim 37, denote by fz = (favg,S)S′→z, and note that f ′ is up
to relabeling of coordinates the same function as fz. Denote V ⊆ T as the part of the target
set we have not yet sampled, so V = T \ S ′. Then, using our assumption, we have that

ε2/4 < E
z

[∑
S⊆V
|S|>κ

f̂S′→z(S)2

]

=
∑
S⊆V
|S|>κ

∑
R⊆[n]:

R∩S′=S

f̂(R)2 (Fact 19)

=
∑
S⊆V
|S|>κ

∑
R⊆S:

R∩S′=S

f̂(R)2 (if R ̸⊆ S then R ∩ S ′ ̸= S)

=
∑
S⊆V
|S|>κ

∑
R⊆S:

R∩S′=S

f̂avg,S(R)2

= E
z

[∑
S⊆V
|S|>κ

f̂z(S)2

]
.

Next, by applying Theorem 40, we have that∑
U⊆V
|U |=κ

λU [fz] ≥ 1
2
∑

U⊆V

NInf≤k
U [fz] ≥ 1

2
∑

U⊆V :|U |=κ

∑
S:U⊆S⊆V

f̂z(S)2(|S|
|U |
) = 1

2
∑

|S|>κ
S⊆V

f̂z(S)2

Then, using the assumption that E happens, the λ̃U are ε2

48·(|S|
κ) -accurate, and we get that

∑
U⊆V
|U |=κ

λ̃U [fz] ≥ 1
2
∑

|S|>κ
S⊆V

f̂z(S)2 − ε2

48 ·
(|S|

κ

) · (k

κ

)
≥ 1

2
∑

|S|>κ
S⊆V

f̂z(S)2 − ε2

48 .

CCC 2021

24:28 Junta Distance Approximation with Sub-Exponential Queries

On the other hand, again by applying Theorem 40, we have that∑
U⊆S
|U |=κ

λU [fz] ≤ 3
∑
U⊆S
|U |=κ

NInfU [fz] ≤ 3W≥κ[fz] ≤ 3.

This implies that
∑

U λ̃U ≤ 3 + ε2

48·(|S|
κ) ·

(|S|
κ

)
≤ 4. Overall, the probability to sample U ⊆ V

is at least

1
4

1
2
∑

|S|>κ
S⊆V

f̂z(S)2 − ε2

48

 = 1
8
∑

|S|>κ
S⊆V

f̂z(S)2 − ε2

4 · 48 .

Taking an expectation over z, we see that the probability to sample a subset of V is at least

E
z

[
1
8
∑

|S|>κ
S⊆V

f̂z(S)2 − ε2

4 · 48

]
≥ 1

8 ·
ε2

4 −
ε2

4 · 48 ≥
ε2

40 . ◀

We are now ready to prove Lemma 42.

Proof of Lemma 42. By Claim 43, if our special set T has at least ε2/4 mass on the levels
above κ, then if we sample according to our distribution λ̃ = {λ̃U}|U |=κ, we will see U ⊆ T

with probability at least ε2/40. Then, if we sample r = O(ε−2) subsets in Algorithm 5,
applying the multiplicative Chernoff bound in Fact 6, we see at least one subset of T with
probability at least p ≥ 0.9 each time we sample M1, ..., Mr in Algorithm 5. In order for
Algorithm 5 to successfully find Bi with the desired property, it suffices to have sampled from
T at least α times in our branching process. Therefore, we can treat our N := (3α +log(2/δ))
depth branching process as a X = Bin(N, p) random variable. Applying a standard Chernoff
bound (second case in Fact 6), we have that our probability of failure is

Pr[X < α] = Pr[X < α
N]

= Pr[X < 0.9− (0.9− α
N)]

≤ exp(−2N(0.9− α
N)2) (Using Fact 6)

≤ exp(−2N(0.81− 2 α
N))

≤ exp(−1.5N + 4α)
≤ exp(− log(2/δ)) = δ/2.

This shows that, by a union bound with event E , one of the branches of our algorithm find’s
a Bi satisfying Equation (4) with probability at least 1− δ. ◀

▷ Claim 44. The query complexity of phase one of the algorithm for constant δ (failure
probability) is 2Õ(

√
k/ε).

Proof. All of our queries to f in phase one come from estimating fourier coefficients using
Claim 16 in Algorithm 4. We require that the estimated Fourier coefficients be accurate
to within 1/poly(k, 1/ε) with confidence 1−O(1/ℓ) = 1− 2−Ω̃(

√
k/ε), which is possible via

Fact 6 with query complexity poly(k/ε). However, we do this O(ℓ) = 2Õ(
√

k/ε) times during
the branching process, which yields the final overall query complexity. ◁

V. Iyer, A. Tal, and M. Whitmeyer 24:29

5.2 Phase Two: The Lower Levels
Now, we are ready to use Algorithm 5. Our strategy will be to take the subsets outputted
from Algorithm 5 one at time, randomly fixing those coordinates, and then treating this
restricted version of f as if all its Fourier mass were below level κ (recall that κ =

√
εk).

Let T be the target set of size k on which there exists a k-junta which best approximates f .
Assume that the first part of the algorithm is successful in yielding at least one B ⊆ T such
that:

E
z∈{±1}B

[∑
S⊆T \B
|S|>κ

f̂B→z(S)2
]
≤ ε2/4. (5)

Let g be the maximizer of maxg′∈JT
E[fg′]. Recall that by Claim 12 we have that g =

sgn(favg,T) and

corr(f,JT) = E[fg] = E
y∈{±1}T

[|favg,T (y)|] = E
z∈{±1}B

E
x∈{±1}T \B

∣∣∣∣(favg,T)B→z(x)
∣∣∣∣ (6)

= E
z∈{±1}B

E
x∈{±1}T \B

∣∣∣∣ ∑
S⊆T \B

f̂B→z(S)χS(x)
∣∣∣∣
(7)

Furthermore, using the assumption in Eq. (5) it is an easy calculation to show that (7) equals

E
z∈{±1}B

E
x∈{±1}T \B

∣∣∣∣ ∑
S⊆T \B,|S|≤κ

f̂B→z(S)χS(x)
∣∣∣∣± ε/2.

Similarly, for any set U ⊆ S of size k containing B (think of U as a candidate for T) we
have that the best correlation between a junta-on-U and f is

corr(f,JU) = E
z∈{±1}B

E
x∈{±1}U\B

∣∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)
∣∣∣∣. (8)

Now, however, the right hand side in Eq. (8) is not necessarily approximated by the low-degree
counterpart as above for T . Indeed, we would like to estimate Eq. (8) for all candidates
U ⊆ S of size k containing B, and pick the set with best estimated correlation. Based
on our assumption on T , we can replace

∑
S⊆U\B f̂B→z(S)χS(x) with its low-degree part∑

S⊆U\B,|S|≤κ f̂B→z(S)χS(x) for U = T , but its not clear whether we can do it in general.
In particular, if U satisfies

E
z∈{±1}B

[∑
S⊆U\B,

|S|>κ

f̂B→z(S)2
]

> ε2/4, (9)

then taking the low-degree part can give an overestimate to the correlation with the best
junta on U .5 We settle for an estimate that is ε-accurate for the target set T assuming it
satisfies Equation (5), and is not overestimating by more than ε for any other set U ⊇ B of
size k. Towards this goal, we first apply a noise operator that would essentially eliminate
most of the contribution from sets larger than

√
k/ε log(1/ε) regardless of whether U satisfies

Eq. (9) or not. This is captured by the following claim.

5 To see a simple example of how this can happen, consider f(x, y) = 1 − x − y + xy. Then one can verify
that E[|f(x, y)|] = 1 < 1.5 = E[|1 − x − y|].

CCC 2021

24:30 Junta Distance Approximation with Sub-Exponential Queries

▷ Claim 45. Let ρ = 1 −
√

ε/k, z ∈ {±1}B and denote by h = fB→z and hlow =
h≤(
√

k/ε)·log(1/ε) (i.e., hlow is the truncated Fourier expansion of h that zeroes out all Fourier
coefficients above level (

√
k/ε) · log(1/ε)). For any U : B ⊆ U ⊆ S it holds that

∣∣∣∣corr (Tρh,JU)− corr
(
Tρhlow,JU

) ∣∣∣∣ ≤ ε.

Proof. We have∣∣∣∣corr (Tρh,JU)− corr
(
Tρhlow,JU

) ∣∣∣∣
=

∣∣∣∣∣ E
x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

ĥ(S)χS(x)ρS
∣∣∣ − E

x∈{±1}U\B

∣∣∣ ∑
S⊆U\B,

|S|≤(
√

k/ε)·log(1/ε)

ĥ(S)χS(x)ρS
∣∣∣∣∣∣∣∣

≤ E
x∈{±1}U\B

∣∣∣∣∣ ∑
S⊆U\B,

|S|>(
√

k/ε)·log(1/ε)

ĥ(S)χS(x)ρ|S|

∣∣∣∣∣

≤

√√√√√√√ E
x∈{±1}U\B

(∑
S⊆U\B,

|S|>(
√

k/ε)·log(1/ε)

ĥ(S)χS(x)ρ|S|

)2

=
√√√√√

∑
S⊆U\B,

|S|>(
√

k/ε)·log(1/ε)

ĥ(S)2ρ2|S| ≤
√

ρ2(
√

k/ε)·log(1/ε) ≤ ε. ◀

Next, we show that applying a noise operator to f does not affect its correlation with a
set U of size k, under the condition that most of the Fourier mass of fB→z falls on the lower
levels, i.e., Ez

[∑
S⊆U\B,|S|≥

√
k

f̂B→z(S)2
]
≤ ε2/4. Recall that this is what was guaranteed

with high probability from the output of Algorithm 5 for our target set T .

▷ Claim 46. Let ρ = 1−
√

k/ε. Given U : B ⊆ U ⊆ S such that Ez

[∑
S⊆U\B,

|S|≥κ

f̂B→z(S)2
]
≤

ε2/4, we have that

∣∣∣E
z

corr(Tρ(fB→z),JU)−E
z

corr(fB→z,JU)
∣∣∣ ≤ 1.2ε.

Proof. Similar to the proof of Claim 45, we have∣∣∣∣∣ E
z∈{±1}B

x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)
∣∣∣ − E

z∈{±1}B

x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x) · ρ|S|
∣∣∣∣∣∣∣∣

≤ E
z∈{±1}B

x∈{±1}U\B

∣∣∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)(1− ρ|S|)

∣∣∣∣∣

V. Iyer, A. Tal, and M. Whitmeyer 24:31

≤

√√√√√√ E
z∈{±1}B

x∈{±1}U\B

 ∑
S⊆U\B

f̂B→z(S)χS(x)(1− ρ|S|)

2

=

√√√√ E
z∈{±1}B

[∑
S⊆U\B

f̂B→z(S)2 · (1− ρ|S|)2

]

≤

√√√√ E
z∈{±1}B

[∑
S⊆U\B:|S|≤κ

f̂B→z(S)2 · (1− ρ|S|)2 +
∑

S⊆U\B:|S|>κ

f̂B→z(S)2 · (1− ρ|S|)2

]

≤
√

(1− ρκ)2 + ε2/4 ≤
√

ε2 + ε2/4 ≤ 1.2 · ε. ◀

The next lemma gives an algorithm that on any B, satisfying Equation (5), outputs
U : B ⊆ U ⊆ S with corr(f,JU) ≥ corr(f,JT)−O(ε), with high probability.

▶ Lemma 47 (Algorithm and Analysis for Phase-Two). Let ε, δ > 0. There’s an algorithm
that with probability at least 1− δ, gives ε-accurate estimates c̃U to

cU = E
z∈{±1}B

E
x∈{±1}T \B

∣∣∣∣ ∑
S⊆U\B:|S|≤

√
k/ε·log(1/ε)

f̂B→z(S)χS(x)ρ|S|
∣∣∣∣

for all U : B ⊆ U ⊆ S of size k simultaneously. We return (U, c̃U) for the set U with maximal
c̃U .

Complexity The procedure uses log(1/δ)2Õ(
√

k/ε) queries and runs in time log(1/δ)2k·Õ(1/ε).
Correctness In the case where all estimates are ε-accurate, the following holds. If B ⊆ T

satisfies Equation (5), the above procedure would return (U, c̃U) with c̃U ≥ corr(f,JT)−
3.2ε. Moreover, regardless of whether T and B satisfy Equation (5), we have c̃U ≤
corr(f,JU) + 2ε.

Proof. First we show that we can estimate all cU up to error ε simultaneously with high
probability using the aforementioned query complexity and running time. We sample
t = O(log(1/δ)/ε2) different z ∈ {±1}B, and estimate for each value of z the Fourier
coefficients of f̂B→z(S) of all sets S ⊆ S of size at most ζ =

√
k/ε · log(2

ε) up to additive
error ε/

(
k

≤ζ

)
= 2−Ω̃(

√
k/ε) with probability 1 − δ

t·(k
≤ζ)

, which is possible via Fact 6 with

log(1/δ)2Õ(
√

k/ε) queries. Fact 6 guarantees that with probability 1− δ for all sampled z,
all estimated low-degree Fourier coefficients are within the additive error bound, in which
case we have estimates for all cU up to error ε simultaneously with probability 1− δ.

Next, we show the correctness of the procedure. On the one hand, in the assumed case,
i.e., that T satisfies Ez

[∑
S⊆T \B,|S|≥κ f̂B→z(S)2

]
≤ ε2

4 , we will have by Claim 45 and
Claim 46 that

cT ≥ corr(f,JT)− 2.2ε (10)

Since we output the set U with maximal c̃U , and since all estimates are correct up to ε

we know that we output U with

c̃U ≥ c̃T ≥ cT − ε. (11)

CCC 2021

24:32 Junta Distance Approximation with Sub-Exponential Queries

Combining Equations (10) and (11) together we get

c̃U ≥ cT − ε ≥ corr(f,JT)− 3.2ε.

We move to prove the furthermore part, i.e., that c̃U ≤ corr(f,JU) + 2ε regardless of
whether T and B satisfy Equation (5). We start by showing that for any set U (whatsoever)
we have that corr(f,JU) ≥ cU − ε. Indeed, by Claim 45 we have

cU ≈ε E
z∈{±1}B

x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)ρ|S|
∣∣∣

and since the noise operator can only reduce ℓ1-norm (see Fact 13), we see that for all
z ∈ {±1}B it holds that

E
x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)ρ|S|
∣∣∣ ≤ E

x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)
∣∣∣

Thus,

cU ≤ ε + E
z∈{±1}B

x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)ρ|S|
∣∣∣

≤ ε + E
z∈{±1}B

x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)
∣∣∣ = ε + corr(f,JU)

Since |cU − c̃U | ≤ ε, we get that c̃U ≤ cU + ε ≤ corr(f,JU) + 2ε. ◀

After phase one, we can apply Lemma 47 to each B from phase one, and get a set
UB : B ⊆ UB ⊆ S of size k, along with an estimate of the correlation of f to JUB

. This
leads to the proof of Theorem 2 which we restate next.

▶ Theorem 48. Given a Boolean function f : {±1}n → {±1}, it is possible to estimate the
distance of f from the class of k-juntas to within additive error ε with probability 2/3 using
2Õ(
√

k/ε) adaptive queries to f . In particular, when ε is constant, this yields a 2Õ(
√

k)-query
algorithm. However, the algorithm still requires exp(k/ε) time.

Proof. Let ε0 = ε/6
1. We first apply the result of [13] to reduce the down to only poly(k, 1/ε0) coordinates.

This incurs a loss in correlation of at most ε0, and fails with probability at most δ1, which
we can set to be 1/20, by Corollary 26.

2. Next, we apply our Theorem 4, which reduces the number of oracles we have to consider
down to O(k/ε2

0), incurs an additive loss in correlation of at most ε0, and fails with
probability at most δ2 = 1/20.

3. Then, we run phase 1 of our algorithm, which fails with probability at most δ3 = 1/20 by
Lemma 42.

4. Finally, we apply Lemma 47 to every B outputted by Algorithm 5 to get a set UB and
an estimate C̃UB

for the correlation of f with JUB
We iterate on all sets B returned by

phase-1 and return UB with the highest estimate of correlation.
There are ℓ = O(1

ε2
0
)3
√

k/ε0+log(2/δ3) = 2Õ(
√

k/ε0) branches, and thus if we apply the
algorithm from Lemma 47 with δ = 1/(20ℓ), we get that all this step fail with probability
at most 1/20 by a union bound.

V. Iyer, A. Tal, and M. Whitmeyer 24:33

By a union bound, each of these steps succeeds with probability at least 1−4/20 ≥ 2/3. In
the case all steps succeeds, we return a set U with c̃U ≥ corr(f,Jn,k)−5.2ε0. In addition, the
moreover part in Lemma 47 guarantees that c̃U ≤ corr(f,JU) + 2ε0 ≤ corr(f,Jn,k) + 2ε0. We
get that the returned value is within 5.2ε0 < ε of corr(f,Jn,k). Finally, since dist(f,Jn,k) =
1+corr(f,Jn,k)

2 we get that 1+c̃U

2 is an ε/2-accurate approximation of dist(f,Jn,k). Finally, we
note that the query complexities of phase 1 and phase 2 are both 2Õ(

√
k/ε), but the runtime

is exponential due to Lemma 47. ◀

Finally, we mention that if our goal is not to estimate to correlation with the nearest
k-junta to f , but rather to simply estimate the most amount of Fourier mass any subset of k

variables contains, then we have the following theorem with an improved dependence on ε:

▶ Theorem 49. Given a Boolean function f : {±1}n → {±1}, it is possible to estimate
the most mass any subset of at most k variables of f has to within additive error ε with
probability 2/3 using 2Õ(

√
k log(1/ε)) adaptive queries to f . In particular, when ε is constant,

this yields a 2Õ(
√

k)-query algorithm. However, the algorithm still requires exp(k log(1/ε))
time.

We leave the proof of this theorem, which involves simple modifications to the algorithm
presented in this section, to Appendix A.

5.3 Proof of Theorem 40
We now present the proof of Theorem 40.

Proof of Theorem 40. The proof is very similar to the previous proof of Theorem 34, so we
explain how to modify it to this case.

We express λU in terms of the Fourier spectrum of f .

λU =
2|U | log(10k)∑

m=0

∑
S:S⊇U

f̂(S)2 · Pr
J⊆pm [ℓ]

[S ∩ J = U]

=
2|U | log(10k)∑

m=0

∑
S:S⊇U

f̂(S)2 · Pr
J⊆pm [ℓ]

[|S ∩ J | = |U |] · 1(|S|
|U |
)

=
∑

S:S⊇U

f̂(S)2(|S|
|U |
) · 2|U | log(10k)∑

m=0
Pr

J⊆pm [ℓ]
[|S ∩ J | = |U |]

It suffices to show that for any non-empty set S of size at least |U | and at most k it holds
that

2|U | log(10k)∑
m=0

Pr
J⊆pm [ℓ]

[|S ∩ J | = |U |] ∈ [1/2, 3] . (12)

Again, we can analyze the sum on the left hand side of Equation (12) as the expected final
value of X in the following random process:

By symmetry the expected value depends only on the size of the initial set S. As before,
we denote by Ft its expected value starting with a set S of size t with an infinite horizon,
and F

(i)
t as the expected value of X at the end of the above process with finite horizon i.

CCC 2021

24:34 Junta Distance Approximation with Sub-Exponential Queries

1 X ← 0
2 for i = 1, 2, . . . , 2|U | log(10k) do
3 if |S| < |U | then
4 halt!
5 if |S| = |U | then
6 increase X

7 Sample Ji ⊆p [ℓ]
8 S ← S ∩ Ji

We start by analyzing F|U |. In this case, X is a geometric random variable with stopping
probability 1− p|U |. Thus, its expectation is

F|U | = 1/(1− p|U |) = 1/(1− (1− 1/2|U |)|U |) ∈ [2, 3].

This implies that F
(2|U | log(10k))
|U | ≤ F|U | ≤ 3. For t > |U | in the infinite horizon case we have

the recurrence

Ft =
t∑

a=0
Fa ·Pr[Bin(t, p) = a] =

t−1∑
a=|U |

Fa ·Pr[Bin(t, p) = a] + Ft ·Pr[Bin(t, p) = t] (13)

or equivalently

Ft ·Pr[Bin(t, p) < t] =
t−1∑

a=|U |

Fa ·Pr[Bin(t, p) = a] (14)

We prove by induction that for t ≥ |U | it holds that Ft ≤ F|U |. The claim clearly holds
for t = |U |. For t > |U | we can apply induction and get

Ft ·Pr[Bin(t, p) < t] ≤
t−1∑

a=|U |

F|U | ·Pr[Bin(t, p) = a] ≤ F|U | ·Pr[Bin(t, p) < t],

and thus Ft ≤ F|U |. This immediately implies that F
(2|U | log(10k))
t ≤ Ft ≤ 3. On the other

hand we prove that F
(2|U | log(10k))
t ≥ 1/2 as long as t ≤ k. To do so, we once again introduce

the indicator random variable Y
(i)

t , where t = |S|, and which equals 1 if |S| = |U | at some
point during the above process before iteration i. We note that Y

(2|U | log(10k))
t is a lower

bound for the value of X in the above process, and Yt is a lower bound for the value of
X at the end of the infinite horizon process. We note that the case |U | = 1 was already
lower bounded in Section 4.5, where it was shown that E[Y (log(10k))

t] ≥ 1/2, and therefore
E[Y (2|U | log(10k))

t] ≥ 1/2. It remains to show that the E[Y (2|U | log(10k))
t] ≥ 1/2 is true for any

set |U | ≥ 2.
First, we show that Pr[Bin(t, p) < |U |] ≤ 1

2 Pr[Bin(t, p) = |U |]. Towards this goal, it
would suffice to prove that 3 ≤ Pr[Bin(t, p) = i + 1]/ Pr[Bin(t, p) = i] for i < |U | and
t ≥ |U |+ 1. This would suffice since in this case

|U |−1∑
i=0

Pr[Bin(t, p) = i] ≤
|U |−1∑

i=0

3i

3|U | Pr[Bin(t, p) = |U |] ≤ 1
2 ·Pr[Bin(t, p) = |U |].

V. Iyer, A. Tal, and M. Whitmeyer 24:35

Indeed, The ratio between the two aforementioned probabilities is

Pr[Bin(t, p) = i + 1]
Pr[Bin(t, p) = i] =

(
t

i+1
)(

t
i

) · pi+1(1− p)t−(i+1)

pi(1− p)t−i

= t− i

i + 1 ·
p

1− p
≥ 2
|U |
· 1− 1/2|U |

1/2|U | = 2− 1/|U |
1/2 ≥ 3

as needed. Now, we claim that E[Yt] = Pr[Yt = 1] ≥ 2/3 for all t ≥ 1. The base case of t = 1
is certainly true. Assuming we have Pr[Bin(t, p) < |U |] ≤ 1

2 Pr[Bin(t, p) = |U |] we have

E[Yt] · Pr[Bin(t, p) < t] =
t−1∑

a=|U|

E[Ya] · P r[Bin(t, p) = a]

≥ Pr[Bin(t, p) = |U |] +
t−1∑

a=|U|+1

Pr[Bin(t, p) = a] E[Ya]

≥ Pr[Bin(t, p) = |U |] + 2
3 Pr[Bin(t, p) ∈ [|U | + 1, t − 1]]

= 2
3 Pr[Bin(t, p) < t] − 2

3 Pr[Bin(t, p) < |U |] + 1
3 Pr[Bin(t, p) = |U |]

≥ 2
3 Pr[Bin(t, p) < t]

which implies that E[Yt] ≥ 2/3. Finally, let A be the event that S = ∅ by iteration
2|U | log(10k), and note that

Pr[A] = Pr[Bin(|S|, (1− 1
2|U |)

2|U | log(10k)) = 0]

≥ Pr[Bin(k, e− log(10k)) = 0] = Pr[Bin(k, 1
10k) = 0] ≥ 0.9

as was shown in the proof for Theorem 34 in Section 4.5. Finally, we claim that for all t ≥ 2
we have that Pr[Y (2|U | log 10k)

t] ≥ 1/2. Indeed, we have that

Pr[Y (2|U | log 10k))
t = 1] ≥ Pr[Yt = 1]−Pr[A] ≥ 2

3 − 0.1 ≥ 1
2 .

as desired, provided |S| ≤ k. ◀

6 Conclusions and Open Problems

We conclude by mentioning some future research directions. First, we believe some of
the techniques discussed in this paper could lead to other interesting work in property
testing, learning theory, or Boolean function analysis in general. In particular, the procedure
in Algorithm 1 makes use of a random process to get access to an underlying junta, a
subprocedure that could be useful in other learning or testing algorithms. In addition, we
are able to approximate the quantities NInf i and NInfU , that serve as key steps in our
algorithms. These quantities seems natural on their own, and would likely find further
applications in Analysis of Boolean functions. In particular, they seem to capture more
accurately the intuition that “influences measures the importance of coordinates”. While the
total influence of a Boolean function can be any number between Var[f] and n ·Var[f] the
total normalized influence equals exactly Var[f], and thus normalized influences can be seen
as a distribution of the variance among the coordinates.

Interestingly, our algorithms strongly resemble certain quantum algorithms. In particular,
the sampling of coordinates is done through the Fourier distribution, a process which can be
done much more efficiently with a quantum algorithm (querying f in superposition, applying

CCC 2021

24:36 Junta Distance Approximation with Sub-Exponential Queries

the Hadamard transform, and measuring). This idea was leveraged in [2] to provide fast
quantum algorithms for testing juntas in the standard property testing regime. Indeed, if the
nearest k-junta to f has its mass on higher levels (say above

√
k or even k/2), then Fourier

sampling is extremely effective and provides a cleaner way of sampling subsets according
to the Fourier distribution than the related classical technique we provided in Section 5.
However, the issue arises when the nearest k-junta has Fourier mass on lower levels (below
log k or even a constant, for example). In this case, it is not clear to us how quantum
algorithms provide any advantage over classical ones. An open question is whether quantum
Fourier sampling techniques can be applied in a more clever way to give faster algorithms in
the tolerant testing paradigm.

Finally, a clear open question is how good of a lower bound one can prove on the query
complexity of the tolerant junta testing problem. Our main result Theorem 2, rules out
strictly exponential-in-k query lower bounds for k-junta distance approximation. [27] proved
a non-adaptive query complexity lower bound of 2kη for (k, k, ε1, ε2)-tolerant junta testing
(given a particular choice of 0 < ε1 < ε2 < 1/2), for any 0 < η < 1/2. While this is quite
close to our upper bound of 2Õ(

√
k), our algorithm is highly adaptive, while the lower bound

due to [27] applies only to nonadaptive algorithms. Therefore, another interesting direction
would be to explore whether any nontrivial lower bounds apply to adaptive algorithms for
tolerant (junta) testing and distance approximation.

References
1 Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the distance to

a monotone function. Random Structures & Algorithms, 31(3):371–383, 2007. doi:10.1002/
rsa.20167.

2 Andris Ambainis, Aleksandrs Belovs, Oded Regev, and Ronald de Wolf. Efficient quantum
algorithms for (gapped) group testing and junta testing. In SODA, pages 903–922. SIAM,
2016.

3 Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, pcps, and nonapproximability-
towards tight results. SIAM J. Comput., 27(3):804–915, 1998.

4 Eric Blais. Improved bounds for testing juntas. In APPROX-RANDOM, volume 5171 of
Lecture Notes in Computer Science, pages 317–330. Springer, 2008.

5 Eric Blais. Testing juntas nearly optimally. In STOC, pages 151–158. ACM, 2009.
6 Eric Blais, Clément L. Canonne, Talya Eden, Amit Levi, and Dana Ron. Tolerant junta

testing and the connection to submodular optimization and function isomorphism. ACM
Trans. Comput. Theory, 11(4):24:1–24:33, 2019.

7 Guy Blanc, Jane Lange, and Li-Yang Tan. Testing and reconstruction via decision trees.
CoRR, abs/2012.08735, 2020.

8 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. In STOC, pages 73–83. ACM, 1990.

9 Nader H. Bshouty. Almost optimal distribution-free junta testing. In Computational Complexity
Conference, volume 137 of LIPIcs, pages 2:1–2:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019.

10 Sourav Chakraborty, Eldar Fischer, David García-Soriano, and Arie Matsliah. Junto-symmetric
functions, hypergraph isomorphism and crunching. In Computational Complexity Conference,
pages 148–158. IEEE Computer Society, 2012.

11 Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie. Settling the query
complexity of non-adaptive junta testing. J. ACM, 65(6):40:1–40:18, 2018.

12 Hana Chockler and Dan Gutfreund. A lower bound for testing juntas. Inf. Process. Lett.,
90(6):301–305, 2004.

https://doi.org/10.1002/rsa.20167
https://doi.org/10.1002/rsa.20167

V. Iyer, A. Tal, and M. Whitmeyer 24:37

13 Anindya De, Elchanan Mossel, and Joe Neeman. Junta correlation is testable. In FOCS, pages
1549–1563. IEEE Computer Society, 2019.

14 Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld, Rocco A.
Servedio, and Andrew Wan. Testing for concise representations. In FOCS, pages 549–558.
IEEE Computer Society, 2007.

15 Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Rocco A. Servedio, and Andrew Wan.
Efficiently testing sparse GF(2) polynomials. In ICALP (1), volume 5125 of Lecture Notes in
Computer Science, pages 502–514. Springer, 2008.

16 Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnitsky. Testing juntas.
J. Comput. Syst. Sci., 68(4):753–787, 2004.

17 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. In 37th Annual Symposium on Foundations of Computer Science,
FOCS ’96, Burlington, Vermont, USA, 14-16 October, 1996, pages 339–348. IEEE Computer
Society, 1996. doi:10.1109/SFCS.1996.548493.

18 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
19 Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on boolean functions

(extended abstract). In FOCS, pages 68–80. IEEE Computer Society, 1988.
20 Michael J. Kearns and Dana Ron. Testing problems with sublearning sample complexity. J.

Comput. Syst. Sci., 61(3):428–456, 2000.
21 Esty Kelman, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. Theorems of kkl,

friedgut, and talagrand via random restrictions and log-sobolev inequality. Electron. Colloquium
Comput. Complex., 27:9, 2020.

22 Amit Levi and Erik Waingarten. Lower bounds for tolerant junta and unateness testing
via rejection sampling of graphs. In ITCS, volume 124 of LIPIcs, pages 52:1–52:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

23 Zhengyang Liu, Xi Chen, Rocco A. Servedio, Ying Sheng, and Jinyu Xie. Distribution-free
junta testing. ACM Trans. Algorithms, 15(1):1:1–1:23, 2019.

24 Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio. Learning juntas. In STOC, pages
206–212. ACM, 2003.

25 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. URL:
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-
complexity-computer-algebra-and-computational-g/analysis-boolean-functions.

26 Ryan O’Donnell and Karl Wimmer. Sharpness of KKL on Schreier graphs. Electronic
Communications in Probability, 18:1–12, 2013. doi:10.1214/ECP.v18-1961.

27 Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Erik Waingarten. Approximating
the distance to monotonicity of boolean functions. In SODA, pages 1995–2009. SIAM, 2020.

28 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. Electron. Colloquium Comput. Complex., 010, 2004.

29 Michal Parnas, Dana Ron, and Alex Samorodnitsky. Proclaiming dictators and juntas or
testing boolean formulae. In RANDOM-APPROX, volume 2129 of Lecture Notes in Computer
Science, pages 273–284. Springer, 2001.

30 Mert Saglam. Near log-convexity of measured heat in (discrete) time and consequences. In
FOCS, pages 967–978. IEEE Computer Society, 2018.

31 Rocco A. Servedio. Testing by implicit learning: A brief survey. In Property Testing, volume
6390 of Lecture Notes in Computer Science, pages 197–210. Springer, 2010.

32 Michel Talagrand. On Russo’s Approximate Zero-One Law. The Annals of Probability,
22(3):1576–1587, 1994. doi:10.1214/aop/1176988612.

33 Gregory Valiant. Finding correlations in subquadratic time, with applications to learning
parities and juntas. In FOCS, pages 11–20. IEEE Computer Society, 2012.

34 Xiaojin Zhang. Near-optimal algorithm for distribution-free junta testing. CoRR,
abs/1911.10833, 2019.

CCC 2021

https://doi.org/10.1109/SFCS.1996.548493
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
https://doi.org/10.1214/ECP.v18-1961
https://doi.org/10.1214/aop/1176988612

24:38 Junta Distance Approximation with Sub-Exponential Queries

A Maximum k-Subset Fourier Mass Approximation

In this section, we sketch a proof of Theorem 49, which involves simple modifications
and observations about our algorithm. The main difference is that we sample from the
normalized influence subdistribution at a different Fourier level – namely, we let κ :=

√
k and

α = k/κ =
√

k in Algorithm 4 and Algorithm 5, respectively (recall that before, κ =
√

εk).
This improves the query complexity dependence on ε in Phase 1.

▷ Claim 50. The query complexity of phase one of the algorithm for constant δ (failure
probability) is 2Õ(

√
k log(1/ε)).

Proof. The proof is analogous to the proof of Claim 44, so we just point out the differences.
We still require our Fourier coefficients to be accurate to within 1/poly(k, 1/ε), and we require
confidence 1 − O(1/ℓ) = 1 − 2Ω̃(

√
k log(1/ε)). However, now our branching process now has

depth only O(
√

k), so we need only repeat this O(ℓ) = 2Õ(
√

k log(1/ε)) times, which yields the
improved query complexity. ◁

In Phase 2, we argue that it is not necessary to apply a noise operator in order to only
consider Fourier mass below level κ after Phase 1. Recall that we applied this noise operator
in Section 5.2 in order to deal with the case that a particular U satisfied

E
z∈{±1}B

[∑
S⊆U\B,

|S|>κ

f̂B→z(S)2
]

> ε2/4. (15)

If this happened, then we could not rule out the possibility that taking the low-degree part
of f within U gives an overestimate to the correlation with the best k-junta. However, now
we are not concerned with the junta correlation, but rather which set has the most mass, so
we claim we do not have to worry about this possibility anymore. To see this, suppose we
have identified B ⊆ U , and note that∑

S⊆U

f̂(S)2 = E
x

[f(x)favg,U (x)]

= E
z∈{±1}B

[
E
x

[fB→z(x)(favg,U)B→z(x)]
]

= E
z

[∑
S⊆U
|S|≤κ

f̂B→z(S)2 +
∑
S⊆U
|S|>κ

f̂B→z(S)2
]

≥ E
z

[∑
S⊆U
|S|≤κ

f̂B→z(S)2
]
.

Therefore, we no longer have to apply any noise operator, which negates the necessity of
Claim 45 and Claim 46. It therefore suffices in Lemma 47 to estimate the mass of each set,
rather than the correlation, as

mU = E
z

[∑
S⊆U
|S|≤κ

f̂B→z(S)2
]
.

To do so, as in the proof of Lemma 47 we let t = O(log(1/δ)/ε2) be the number of random
samples of z we take. Then we estimate all the Fourier coefficients below level κ. This requires
estimating f̂(S) for all S ⊆ S of size at most κ up to additive error ε/

(
k

≤κ

)
= 2Ω̃(

√
k log(1/ε))

with probability 1− δ

t·(k
≤κ) , which is possible via Fact 6 with log(1/δ)2Õ(

√
k log(1/ε)) queries.

The rest of our argument and algorithm is exactly the same as in Section 5.

Arithmetic Circuit Complexity of Division and
Truncation
Pranjal Dutta #

Chennai Mathematical Institute, India

Gorav Jindal #

Institut für Mathematik, Technische Universität Berlin, Germany

Anurag Pandey #

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Amit Sinhababu #

Aalen University, Germany

Abstract

Given polynomials f, g, h ∈ F[x1, . . . , xn] such that f = g/h, where both g and h are computable by
arithmetic circuits of size s, we show that f can be computed by a circuit of size poly(s, deg(h)).
This solves a special case of division elimination for high-degree circuits (Kaltofen’87 & WACT’16).
The result is an exponential improvement over Strassen’s classic result (Strassen’73) when deg(h) is
poly(s) and deg(f) is exp(s), since the latter gives an upper bound of poly(s, deg(f)).

Further, we show that any univariate polynomial family (fd)d, defined by the initial segment of
the power series expansion of rational function gd(x)/hd(x) up to degree d (i.e. fd = gd/hd mod xd+1),
where circuit size of g is sd and degree of gd is at most d, can be computed by a circuit of size
poly(sd, deg(hd), log d). We also show a hardness result when the degrees of the rational functions
are high (i.e. Ω(d)), assuming hardness of the integer factorization problem.

Finally, we extend this conditional hardness to simple algebraic functions as well, and show that
for every prime p, there is an integral algebraic power series with its minimal polynomial satisfying
a degree p polynomial equation, such that its initial segment is hard to compute unless integer
factoring is easy, or a multiple of n! is easy to compute. Both, integer factoring and computation of
multiple of n!, are believed to be notoriously hard. In contrast, we show examples of transcendental
power series whose initial segments are easy to compute.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Theory
of computation → Computational complexity and cryptography

Keywords and phrases Arithmetic Circuits, Division, Truncation, Division elimination, Rational
function, Algebraic power series, Transcendental power series, Integer factorization

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.25

Funding Pranjal Dutta: Supported by Google Ph. D. Fellowship.
Gorav Jindal: Supported by Graduiertenkolleg “Facets of Complexity/Facetten der Komplexität”
(GRK 2434).
Amit Sinhababu: Supported by DFG grant TH 472/5-1.

Acknowledgements We thank Himanshu Shukla for several discussions on the complexity of truncated
power series, and for bringing the reference [13] to our attention. P. D. would like to thank CSE,
IIT Kanpur for the hospitality. A. S. would like to thank the Institute of Theoretical Computer
Science at Ulm University for the hospitality. We thank Thomas Thierauf and Nitin Saxena for
discussions and feedback on the draft.

© Pranjal Dutta, Gorav Jindal, Anurag Pandey, and Amit Sinhababu;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 25; pp. 25:1–25:36

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pranjal@cmi.ac.in
mailto:gorav.jindal@gmail.com
mailto:anurag.pandey3113@gmail.com
mailto:anurag.pandey3113@gmail.com
https://doi.org/10.4230/LIPIcs.CCC.2021.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Division and Truncation

1 Introduction

An arithmetic circuit over an underlying field F is a natural model that represents a polynomial
compactly (for definition see Appendix A). Arithmetic circuit complexity is the study of
complexity (in terms of circuit size) of computing polynomial families. In this paper, we
study two important questions in arithmetic circuit complexity. The first question is about
the power of division in arithmetic circuits. The second question is about arithmetic circuit
complexity of univariate polynomial families, defined by initial segments of various power
series.

Complexity of division. In a classic result [45], Strassen showed that a polynomial
f(x1, . . . , xn) of degree d, computed by an arithmetic circuit of size s using division, can also
be computed by a division-free arithmetic circuit (i.e. only using addition and multiplication
gates) of size poly(s, d).

Note that, arithmetic circuits can compute polynomials that have exponential degree
wrt its size. For example, g(x) := x2s − 1, has O(s)-size circuit. Now, if we divide it by
h(x) := x − 1, we get the polynomial f(x) := 1 + x + · · · + x2s−1. Strassen [45] gives an
exp(s)-size upper bound on the complexity of f(x), whereas it is easy to see that f(x) can be
computed by just a poly(s)-size circuit (see Remark 15). This leads to the following natural
question.

▶ Problem 1 ([23, Problem 5]). If a polynomial can be computed by an arithmetic circuit
(with division) of size s, can it be computed by a division-free arithmetic circuit of size
poly(s)?

This question is still open [49] and it is unclear whether we should expect a positive
answer. One can push the division gate at the top and show that if f has a s-size circuit
(with division gates) then there exist polynomials g and h such that f = g/h, where both g

and h have poly(s)-size circuits. However, deg(f), deg(g) and deg(h) can be exp(s), and it is
not clear how to eliminate this division gate at the top without incurring exponential blowup.
In fact, the division elimination method, due to Strassen [45], leads to an exponential blowup
in size (see Section 1.3).

Even a special case of eliminating division is open, when f = g/x2s , and deg(g) and
deg(f) are exp(s), but g has a s-size circuit. Solving this case would resolve a couple of
interesting questions in algebraic complexity. We briefly discuss some of these implications
in Section 4.

Complexity of truncated power series. The second part of the paper studies the complexity
of families of univariate polynomials, defined by the initial segments (equivalently, truncation)
of a power series. Power series are ubiquitous in all branches of mathematics. From the
perspective of computer science, they are quite crucial because of their pervasiveness in
enumeration and combinatorics. Efficient methods to compute truncations of power series
allows us to compute number sequences emerging in enumerative combinatorics like Fibonacci
numbers, Catalan numbers, and Bell numbers; thanks to the generating functions (see [39]
for a survey). It also facilitates approximations of several irrational and transcendental
numbers of interest, for example: e, π,

√
2, and ζ(3). The relation between truncations of

power series and the theory of formal languages and context-free grammars, and the theory
of codes is also well studied (see, for instance, [33, 4]). In complexity theory, computing
truncations of power series has been crucial in results on polynomial factorization [17],
division elimination in circuits [45], complexity of symmetric polynomials [5], and complexity
of algebraic functions [29].

P. Dutta, G. Jindal, A. Pandey, and A. Sinhababu 25:3

Easy and hard univariate families. A univariate polynomial family (fd)d, where fd has degree
d, is called easy to compute, if there is a poly(log d)-size circuit computing fd, otherwise
we call it a hard family. Some examples of easy families are, fd := xd, fd :=

∑
i∈[d] ir xi,

where r ∈ N (see [52]). A candidate hard family is the Pochhammer-Wilkinson polynomial
fd :=

∏
i∈[d] (x + i), for if it turns out to be easy, it would imply that integer factorization is

also easy [32, 9].
One of the ultimate goals in algebraic complexity is to characterize “easy” and “hard”

polynomial families (by showing explicit bounds). Can we give interesting examples of easy
univariate polynomial families that can be defined via truncation of power series? Let us
again look at the polynomial family fd := 1 + x + · · ·+ xd; this has a O(log d)-size circuit
(Remark 15). Interestingly, it is also the initial segment of the power series expansion of
1/(1−x). In contrast, [31] showed that there exists a power series with 0− 1 coefficients such
that their initial segments are hard. In fact, some of the famous candidate hard univariate
polynomial families are those corresponding to initial segments of transcendental power series,
for instance, fd :=

∑d
i=0 xi/i!, and fd :=

∑
i∈[d](−1)ixi/i, the truncations of ex and log(1+x)

respectively. Their hardness is known to imply that permanent requires superpolynomial
size constant-free circuits, which implies the constant-free version of Valiant’s hypothesis
(the algebraic analog of P ̸= NP hypothesis) [9].

This motivates our second problem.

▶ Problem 2. Characterize (differentiate “easy” and “hard”) polynomial families (fd(x)),
defined by the initial segment (upto degree d) of a power series

∑
i≥0 ai xi .

Since the truncation of 1/(1 − x) is easy to compute, as a natural first step towards
the above Problem 2, we explore the complexity of initial segments of general rational
functions g(x)/h(x). Note that, rational function truncation is interesting, as any power
series truncation up to some degree matches with a unique rational function (of given
numerator and denominator degree) given by Padé approximation and this arises in many
symbolic computational problems.

Subsequently, we study the complexity of initial segments of algebraic power series
(eg.
√

1 + x), and its connections to the central problems in algebraic complexity theory. Also,
the examples of truncations of ex and log(1 + x) make us wonder whether all transcendental
power series are likely to be hard. Towards this, we study truncations of transcendental
power series as well.

▶ Remark 3. Very recently, [18] introduced the notion of SOS-hardness (in the sum-of-squares
(SOS) representation). A family (fd)d is SOS-easy if it can be written as fd =

∑
i∈[s] ci g2

i ,
for ci ∈ F such that

∑
i |gi|0 = O(d1/2), where |gi|0 denotes the sparsity or the number of

monomials in gi. Otherwise, fd is a SOS-hard family. The minimal SOS-representation
captures its SOS-complexity. For formal definitions, refer to Section 8. [18] showed that
the SOS-hard families are innately connected to proving VP ̸= VNP (for definitions, see
Appendix A). Throughout the paper, we will talk about easy/hard families wrt. both the
measures (circuit complexity and SOS-complexity1).

1 Although there are polynomial families like fd :=
∑d

i=0 xi, which are easy wrt. both the measures (see
Lemma 67), in general, connection between these notions is unclear. Eg. fd := (x + 1)d is a candidate
SOS-hard family, but has O(log d)-size circuit. Conversely, a random d1/2-sparse polynomial is trivially
SOS-easy but requires ω(log d)-size circuit.

CCC 2021

25:4 Division and Truncation

1.1 Our contributions
In this work, we make progress towards both Problems Problem 1 and Problem 2. Towards
the division problem, we show the following Theorem 4. For more details, see Section 3
(Theorem 18 and Theorem 22).

▶ Theorem 4 (Division by low-degree polynomial). Suppose, f, g, h are polynomials in
F[x1, . . . , xn] such that f = g/h. Then, f can be computed by an arithmetic circuit of
size poly(s1, s2, dh), where s1 (respectively, s2) is the circuit complexity of g (respectively h),
and dh is the degree of h.

▶ Remark 5.
a. This result also holds when one replaces the circuit-size by approximative circuit-size; see

Section 3.3 for details.
b. When s1, s2 ≤ s, deg(h) = poly(s), and deg(f) = exp(s), our result is exponentially better

than Strassen’s division elimination [45] as the latter gives exp(s) upper bound.
Cofactor of a low-degree factor. If a multivariate polynomial f = gh, has size s, with
gcd(g, h) = 1, and deg(g) = poly(s), then [23] showed that g has a poly(s)-size circuit.
Invoking Theorem 4, we can now conclude that the cofactor h has a poly(s)-size circuit as
well (Kaltofen claimed only a poly(s)-size circuit with division, for computing h; see the last
paragraph in [23, Section 4]). If g, h are not co-prime, then we need Factor Conjecture (see
Section 4) to claim low complexity of h.

A related problem to division elimination is the truncation problem. Towards that, we
initiate a systematic study by considering truncation of rational, algebraic and transcendental
functions. For computing the initial segment of rational functions, we first generalize the
observation that the initial segment of 1/(1− x) is easy to compute, via the inverse identity:
1/(1− x) =

∑
i≥0 xi. It turns out that as long as the degree of the denominator is small, the

degree-d truncation has low complexity (Theorem 6). We denote the ring of formal power
series as F[[x]].

▶ Theorem 6 (Truncation of low-degree rational function). Suppose, g and h are two univariate
polynomials in F[x] such that deg(g) ≤ d, deg(h) = dh, and g can be computed a circuit of
size s. Let, g/h ∈ F[[x]]. Then, truncation of g/h upto degree-d can be computed by a circuit
of size poly(s, dh, log d).

▶ Remark 7.
a. When g and h are both constant-degree polynomials, then the truncation, in fact, has a

small SOS-complexity. For details, see Theorem 49.
b. We complement the above Theorem 6 upper bound by a conditional hardness result.

In particular, we exhibit rational functions of high degree (e.g. Ω(d)) whose degree-d
truncations are hard to compute conditioned on the hardness of integer factorization or
computation of n!. See Theorem 30 for more details.

Continuing the study of the complexity of truncated power series, we move on to algebraic
power series. Here we work with constant-free circuits (i.e. constants like 2n has to be built up
from 1, requiring O(log n) many gates; for formal definition, see Section 5.2). It is not hard
to show that the n-th coefficient of the integral power series expansion of

√
1 + 4x (which has

minpoly y2 = 1 + 4x, of degree 2) is hard to compute (implying the truncation must be hard
to compute, by a constant-free circuit as well) unless integer factoring is easy [11]; this follows
from the well-known reductions: integer-factoring ≤P computing n! ≤P computing

(2n
n

) 2; for
a self-contained proof we refer to Theorem 72.

2 here computation of an integer means, by a straight-line program or a constant-free circuit, see
Definition 11

P. Dutta, G. Jindal, A. Pandey, and A. Sinhababu 25:5

Can we show such a result for simple3 algebraic functions when the minpoly has degree
> 2? For instance, for 3

√
1 + 9x? Here, 9 is just to make the power series integral. It is

not at all clear, how the n-th coefficient of 3
√

1 + 9x, namely 3n/n!
∏n−1

j=0 (1− 3j), helps in
integer factoring (or in efficiently computing a multiple of n!). However, it turns out that
the product of the n-th coefficients of 3

√
1 + 9x and 3

√
(1 + 9x)2, is a divisor of 3n(3n)!/(n!)3;

and computing it efficiently implies both the consequences. Exploiting the product of such
binomial coefficients leads us to the following generalization; for details see Theorem 32 and
Theorem 35.

▶ Theorem 8 (Truncation of algebraic power series). Let k ∈ N. Then, there exists 1 ≤ i < k

with i ∈ N, such that truncation of the integral power series (1 + k2x)i/k cannot have small
constant-free circuits unless (i) integer factoring is easy (in the non-uniform setting) (see
Algorithm 1), or (ii) some multiple of n! is easy to compute (i.e. by a small straight-line
program).
▶ Remark 9.
a. [42] showed that if n! is easy to compute, then integer factoring must be easy as well.

However, it is not clear whether such statement can be drawn from some multiple of n!.
Thus, (i) may not reduce to (ii) (& vice-versa). For details and definitions, see Section 6.

b. We also show that the hardness of the truncation of the above power series implies that
permanent requires superpolynomial-size constant-free circuits, implying VP0 ≠ VNP0; in
fact, assuming GRH (Generalized Riemann Hypothesis), it implies VPC ̸= VNPC. This is
reminiscent of [9]. For details, we refer to Appendix H.

Finally, we move to the truncations of transcendental functions, where we show, to our
surprise that there do exist some integral transcendental power series whose initial segments
are easy to compute. Thus, transcendental power series does not necessarily mean hard. We
refer the readers to Section 7.1 for the detailed formal statements.

▶ Theorem 10 (Informal). There are integeral transcendental power series whose truncations
are easy.

Therefore, Theorem 6–Theorem 10 together help in getting a good picture of the charac-
terization sought in Problem 2.

1.2 Limitations of known techniques
We first discuss why standard techniques for division elimination and computing the trunca-
tions of power series do not yield the results we discover.

For the division problem, we first discuss why the division elimination method, due to
Strassen [45], leads to an exponential blowup in size.

Strassen’s division elimination. For g(x1, . . . , xn)/h(x1, . . . , xn), wlog, assume that
h(0, . . . , 0) = 1 (if not, then shift xi by a random value αi and get h(α1, . . . , αn) as a
non-zero constant, which can be made 1, by scaling). Now, f = g/h = g/ (1− (1− h)) =
g
∑∞

i=0(1− h)i. Here, we use the inverse identity: 1/(1− x) =
∑

i≥0 xi. Assume that, f

has degree d. Note that, f̃ := g
(
1 + (1− h) + (1− h)2 + · · ·+ (1− h)d

)
, has a poly(s, log d)

size circuit. Moreover, as 1− h is constant-free, truncation of f̃ upto degree-d (denoted as
Hom≤d f̃), correctly computes f .

3 here simple means that the degree of the minpoly of the algebraic functions and the degree of the
coefficients of minpoly are both bounded by a constant

CCC 2021

25:6 Division and Truncation

Howbeit, computationally, the truncation incurs a poly(d)-size multiplicative blowup. In
general, given a polynomial f , computed by a circuit of size s, it is unlikely that we can
always get poly(s, log d)-size circuit for the polynomial Hom≤d f , unless, permanent has a
small circuit (see Lemma 69 for a proof of this well-known fact). In fact, every method to
eliminate divisions which uses truncation, (for instance, Newton iteration, see [48], Kaltofen’s
Hensel-lifting [22, 23], or allRootNI-technique via logarithmic-derivative [17]) give polynomial
dependence on the degree (or the square-free part) of the quotient polynomial f ; both can
be large.

For computing the truncation of power series of rational functions, Kung and Treib [29]
used Newton iteration which also works, more generally, for all algebraically functions.
However, the problem with Newton iteration is that even though the precision doubles with
each iteration, there is always an error term as well (see [29] for details). So, if we want
to exactly compute the polynomial up to degree d, we need to truncate in order to get rid
of the error terms. This again, due to the reasons described above, incurs a poly(d)-size
multiplicative blowup, and is unlikely to be possible with an overhead bounded by poly(log d).

1.3 Proof idea

Our proofs are simple and use natural ideas combined with some subtle observations and
careful maneuvering. We denote x = (x1, . . . , xn).

Division by low-degree polynomial: Proof idea of Theorem 4. As a warm up, we first
show a similar theorem for univariate polynomials which is a much simpler case, yet it
constitutes the fundamental idea.
Division by a low-degree polynomial for univariates. Let g be a univariate polynomial in
F[x], computable by an arithmetic circuit C, and we want to divide it by degree-d univariate
polynomial h. We do this by splitting each gate of C into two parts – one computing the
quotient and the other computing the remainder when divided by h (denoted by div h, and
mod h respectively); they are computed corresponding to each gate of the circuit, in the
bottom-up manner.

In case of a ‘+′ gate, the corresponding quotient and the remainder are precisely the
sum of the quotients and the remainders corresponding to its children gates. While for a
‘×′ gate with its children computing polynomials p1 = q1h + r1 and p2 = q2h + r2, we have
p1p2 mod h = r1r2 mod h, and p1p2 div h = q1q2h + q2r1 + q1r2 + r1r2 div h. Thus, apart
from combining the outputs of the children gates, we also need to compute the quotient
and the remainder of the product of the remainders of the two children (r1r2 div h and
r1r2 mod h), which is unclear. However, if we are in the regime where the degree of h is low,
then both r1r2 div h and r1r2 mod h will have low degree. So, we can use a simple fact that
every univariate polynomial of degree at most d is trivially computable by an arithmetic
circuit of size O(d). This is sufficient to complete the proof (see Section 3.1 for details).
Going from univariates to multivariates. Here, the strategy is to somehow exploit the core
idea used in the univariate setting. The very first step is to view the polynomials g(x) and
h(x) as univariates in xn, and also see h(x) as a monic polynomial in xn (wlog) where the
coefficients are polynomials in the variables x1, . . . , xn−1,. This step is fairly standard and is
achieved via an invertible linear transformation (see Appendix C).

Now, the obvious idea of splitting each gate in the circuit of g into two gates computing
the quotient and remainder simultaneously, fails directly, as a polynomial whose degree with
respect to xn is bounded by d, may not be computable by a poly(d)-size circuit.

P. Dutta, G. Jindal, A. Pandey, and A. Sinhababu 25:7

To overcome this, we need a subtler observation from the univariate case. Recall that
apart from combining the output from children gates, the only extra quotient and remainder
computation that need to be done locally for a “×” gate are r1r2 mod h and r1r2 div h. Since,
deg(r1), deg(r2) ≤ d− 1, we need to compute the quotient and remainder of a polynomial
of degree at most 2d − 2. We show that when we divide a polynomial of degree d1 by a
polynomial of degree d2, then there exists a circuit of size O(d1d2) which takes as input
the coefficients of both the polynomials and outputs the coefficients of the quotient and
remainder polynomials (see Lemma 16). In the univariate case, this gives a multiplicative
blowup of O(d2) which is worse than plugging in the trivial circuits of the quotient and the
remainder (trivial circuit has size O(d)). However, the advantage this offers is that it also
extends to the multivariate case (see Lemma 16). There, the degree refers to the degree
wrt xn, and instead of coefficients of the polynomials r1r2 and h as the inputs, we have the
circuits for their coefficients (viewed as univariates in xn) as inputs.

This also suggests the right structure to maintain in the circuit throughout. Since we also
need the circuits for the coefficients of the remainder, we split each gates in the circuit of
g(x) into d + 1 gates: d gates to maintain the remainder, and the (d + 1)-th gate to maintain
the quotient. Note that, since the degree in xn is bounded by d, hence the degree (wrt xn)
of the remainder ≤ d− 1, and the d remainder gates compute the corresponding coefficients
(which will be polynomials in x1, . . . , xn−1). We also need the coefficients of h(x), when
viewed as a univariate in xn; this can be efficiently done with a small blowup using standard
techniques (see Lemma 61). It turns out that the above idea suffices in the multivariate
setting, see Section 3.2 for details.
Going to border. It turns out that our proof technique is robust to taking approximations, in
the sense of border (or approximative) complexity, used in algebraic and geometric complexity
theory (see Section 3.3 for details). The only subtle difference from the non-border case is
that here the degree of the approximate circuit for h can be large (over F(ϵ)[x]), but thanks
to homogenization (Lemma 62) which would keep the degree (in x) low throughout.

Truncation of rational function: Proof idea of Theorem 6. Here, the core idea is to use
partial fraction decomposition of rational functions. Over an algebraically closed field (F = F),
this allows us to decompose an arbitrary rational function g(x)/h(x) (with deg(g) < deg(h))
as a sum of rational functions, each of the form b/(x− a)i, where a, b ∈ F (see Lemma 24);
this basically follows from factoring of h over F[x] (and thus the a’s are roots of h).

When, deg(h) is small, number of such b/(x− a)i is also small. Moreover, the truncations
of the 1/(x − a)i, for a ≠ 0, is easy to compute (see Section 5.1). But there are two
subtle issues to be handled: (i) what to do when a = 0? and (ii) what happens when
deg(g) > deg(h)?

Theorem 4 along with some basic analysis turns out to be the savior for both the cases.
For the first issue, note that a = 0 implies xm divides h for some m ≥ 1. However,

as g/h ∈ F[[x]], it turns out that xm must also divide g, for such power series to exist
(Lemma 65). Thus, it suffices to work with g/h = g1/h1, where g1 := g/xm and h1 := h/xm,
both being polynomials in F[x]. But what happens to the size of g1 ? Well, thanks to
Theorem 4: as, m is small (because m ≤ deg(h)), it turns out that the circuit complexity of
g1 is also small.

For the second issue, note that, deg(g) > deg(h) implies deg(g1) > deg(h1). But thanks
to Theorem 4 again. Of course, g1/h1 = g1 div h1 + (g1 mod h1)/h1. Thus, g1 div h1 and
g1 mod h1 have small complexity and moreover deg(g1 mod h1) < deg(h1). Additionally,
g1 div h1 has degree < d (as deg(g) ≤ d). Thus, combining all these, the conclusion follows.

CCC 2021

25:8 Division and Truncation

Extending to SOS-complexity. We remark that, similar proof works wrt SOS-complexity
when both g and h have constant-degrees. This is mainly because 1/(1 − x)i has small
SOS-complexity as SOS-model is closed under small derivatives (Lemma 51). For details, see
Theorem 49.

Truncation of algebraic functions: Proof idea of Theorem 8. There are two parts of
the proof. But before delving into that, it is not hard to show that (1 + k2x)1/k is an
integral power series; this can be proved by some basic number-theoretic tools, for details
see Theorem 77.

For the first part, we show that easiness of the truncation of each (1 + k2x)i/k, for all
i ∈ [k− 1], leads to an efficient integer factoring algorithm (Algorithm 1). This algorithm is a
subtle generalization of the algorithm of [30]. Note that from binomial expansion, coefficient
of xd in (1 + k2x)i/k is Cd,i := kd/d! ·

∏d−1
j=0 (i−kj). Moreover, when the truncations are easy,

the coefficients are also easily computable, just by subtracting two consecutive truncatations
and substituting x = 1. For a fixed i and k ≥ 3, it is not clear how Cd,i behaves (when
k = 2, it is =

(2d
d

)
/(2d − 1)). However, if we take product of all the d-degree coefficients

(i.e.
∏

i∈[k−1 Cd,i), it turns out to be a “nicer” quantity. In particular, one can show that this
product is a divisor of the integer N(d, k) := k(k−2)d (dk)!/(d!)k. Moreover, N(d, k) turns
out to be easily computable as well.

Can we exploit any property of N(d, k) which could help us factor an integer n? Well, as
N(d, k) is easy, computing gcd of N(d, k) and n is also easy. If we can figure-out a d such that
gcd(N(d, k), n) ̸= 1, n, we have already found a factor! So the aim is to somehow reduce the
search space cleverly and find a suitable d. Wlog, one can assume that all the factors of n are
greater than k (otherwise we can remove them by brute-force, as k is constant). Now, we try
to find the smallest prime p dividing n. Of course, there must exist t ∈ S := {k, k2, . . . , kℓ},
where kℓ ≤ n/k, such that p ∈ [t + 1, tk] (as these disjoint intervals cover [n]). Note that
|S| = log n. Also, trivially p | N(t, k), as p divides the numerator but cannot divide the
denominator. So, if the gcd(N(t, k), n) ̸= n, we are done. But, if the gcd becomes n, it
simply implies all the prime factors of n must lie in the interval [t + 1, tk].

Unfortunately, this interval size is still huge and we cannot brute-force over it. But,
we can further reduce our search space by binary search. This idea is similar to [30]; each
time we halve the search interval to reduce the search space for candidate d such that
gcd(N(d, k), n) ̸= 1, n. At first, we have two integers a, b with a = 1 and b = t such that the
prime factors are in [ak + 1, bk]. Fix c = (a + b)/2 and compute gcd(N(c, k), n). If the gcd is
̸= 1, n, we are done, otherwise we branch accordingly into the first half or the second. When
the gcd is 1, it must happen that the factors are in the second half i.e.[ck + 1, bk]. When gcd
= n, the factors are in the first half [ak + 1, ck]. After at most log n steps, we must have
either found a factor and if not, we have found a small interval [sk, (s + 1)k] of length k

where all the prime factors lie. We can now brute-force to find the factors. For details, see
Section 6.1 and Algorithm 1.

The second part eventually exploits and recurse on the fact that (dk)!/(d!)k is easy to
compute and (d!)k is easy when (d!) is easy, implying a clear pattern of recurrence from dk

to d (Section 6.2).

Truncation of transcendental power series. Finally, for showing Theorem 10 about tran-
scendental power series, we discover some explicit integral power series whose initial segments
are non-sparse yet easy to compute. For this purpose, we use stern sequences (Section 7.1)
and power series whose coefficients are multiplicative, and exploit their recursive structures.
Conversely, we show hardness for the truncation of an integral transcendental power series
defined via holonomic sequences (Section 7.2).

P. Dutta, G. Jindal, A. Pandey, and A. Sinhababu 25:9

2 Preliminaries

Notation. We denote x = (x1, . . . , xn). [n] denotes the set {1, . . . , n}. For a polynomial
f ∈ F[x], we denote up to degree-d part as Hom≤d f and |f |0 as the sparsity or the number
of monomials in f . For a differentiable function f(x), we denote f (k)(x) := dkf/dxk, as
the k-th derivative of f . We also recall the definition of gcd of two polynomials f, g in the
ring F[x]: gcd(f, g) =: h⇔ h | f, h | g, and h′ | f, g =⇒ h′ | h . It is unique up to constant
multiples.

Field. We denote the underlying field as F and assume that it is algebraically closed. All
our results hold when the characteristic is large or not algebraically closed, as we can go to
polynomial extensions and work with it.

Binomial series. For rational n, (x + a)n =
∑

k≥0
(

n
k

)
xk an−k, where

(
n
k

)
= n · (n − 1) ·

· · · (n− k + 1)/k!.

div and mod operations. For polynomials f and g ∈ F[x], if f = g ·h+r, where h, r ∈ F[x]
such that deg(r) < deg(g), then h is called the quotient, denoted f div g, and r is called the
remainder, denoted f mod g. Operation mod may not be well-defined in the multivariate
settings, however, if one assumes g to be monic in a variable say xn, it is always well-defined
(by thinking g to be a univariate in xn). A polynomial g is monic in xn if the leading
coefficient (the nonzero coefficient of highest degree) of xn is a non-zero constant in F. Of
course, if g | f , then f div g = h and f mod g = 0, irrespective of monic-ness.

Power series and truncation. A formal power series is a generalization of a polynomial,
where the number of terms can be infinite. Formally, A =

∑
i≥0 Aix

i with Ai ∈ F, is a power
series in the power series ring F[[x]]. We define the degree d truncation trunc(A, d) of A to
be trunc(A, d) :=

∑
0≤i≤d Aix

i. So, trunc(A, d) is always a polynomial of degree at most d.

▶ Definition 11 (Straight Line Program). An SLP (straight line program) P (for computing an
integer) of length (or size) n is a sequence of integers a0, . . . , an with a0 = 1 and ak = ai ◦ aj

with i, j < k for ◦ ∈ {+,−,×}. We say that the SLP P computes the integer an. For an
integer N , we define the straight line complexity τ(N) of N to be the length of the smallest
SLP computing N .

▶ Definition 12 (Algebraic and Transcendental Power Series). A formal power series f ∈ C[[x]]
is said to be algebraic if there exists a polynomial g ∈ C[x][t] such that g(f) = 0. Otherwise
f is said to be transcendental.

With abuse of notation, for integers, we will sometime use complexity of the integer
(implying τ(·) only). Sometimes we also allow division as a operation in straight line program
(each time we mention if so). For a polynomial f ∈ F[x], we define the complexity LF(f) of
f to be the length of the smallest division-free arithmetic circuit (with only {+,−,×} gates)
computing f . We also define, the complexity τF(f) of f to be the length of the smallest
division and constant-free arithmetic circuit computing f (all the constants are made from 1),
for formal definition see Section 5.2. We will remove subscript F when the underlying field is
clear from the context.

CCC 2021

25:10 Division and Truncation

3 Division elimination in high-degree circuits

This section deals with Problem 1, where the divisor has small degree and proves Theorem 4.
Section 3.1 shows it in the univariate setting while Section 3.2 deals with the multivariate
setting, and finally, Section 3.3 shows an analogous theorem in the border complexity setting.
Here, we remark that formally, one should use fd = gd/hd, with d as an index, however with
abuse of notation, we use g/h throughout the paper.

3.1 Division of Univariate Polynomials
The following theorem deals with Problem 1 in the univariate setup.

▶ Theorem 13. Let g, h be polynomials in F[x]. If L(g) = s and deg(h) = d, then both
L(g div h) and L(g mod h) have complexity O(sd).

Proof. Suppose C is a circuit of size s which computes g. We split every gate Φ in C into
two gates Φ1 and Φ2, to make a new circuit C ′, which computes both g div h and g mod h.
If Φ is computing some polynomial ϕ in C, then Φ1 computes the polynomial ϕ mod h and
Φ2 computes the polynomial ϕ div h.

The proof is inductive and traverses from bottom to the top. The base case is trivial. At
some step, say that we are at a gate Φ. The children gate of ϕ are computing polynomials α

and β. Let, α = q1h + r1, β = q2h + r2 and ϕ = qh + r, where the degrees of r, r1, r2 are
smaller than d. So in the new circuit C ′, we have already computed r1, q1, r2, q2. If Φ is a ±
gate then it is clear that r = r1 ± r2 and q = q1 ± q2. If Φ is a × gate then we have:

r = (r1r2) mod h , and q = q1q2h + r1q2 + r2q1 + (r1r2) div h.

We know that r is a polynomial of degree at most d − 1. Since, deg(r1r2) ≤ 2d − 2, we
get that deg((r1r2) div h) ≤ d − 2. Therefore, we trivially have that: L(r) = O(d) and
L((r1r2) div h)) = O(d). Hence we can compute r, q using additional O(d) many gates.
Thus, C ′ has at most O(sd) many gates. Hence L(g div h) = O(sd) (same for g mod h). ◀

▶ Corollary 14. For f, g, h ∈ F[x], if f = g/h with L(g) = s and deg(h) = d then L(f) =
O(sd).

▶ Remark 15. The polynomial fd := 1 + · · · + xd = (xd+1 − 1)/(x − 1) has O(log d) size
circuit. This can also be shown via a recursive computation argument.

Can we expect both div and mod to have poly(s, log d)-size circuits? We show that it
is highly unlikely unless factoring is easy, see Theorem 54 for details.

3.2 Division of Multivariate Polynomials
This section deals with division in the multivariate setting. But before that, we solve a
particular case (by folklore techniques) which will play a crucial role to prove the main
Theorem 18. For a proof of the following Lemma 16, see Appendix E.

▶ Lemma 16. Suppose g =
∑

i≤d1
gix

i and h = xd2 +
∑

i<d2
hi xi, in F[x]. Suppose

g = hq + r, with r =
∑

i<d2
rix

i and q =
∑

i≤d1−d2
qix

i. Then, there is a circuit of size
O(d1 d2), whose inputs are all hi, gi and outputs are all ri, qi.

Now we prove the following Lemma 17 which shows that both div and mod have low
complexity when the divisor has low-degree and monic (in fact, constant leading-coefficient
suffices).

P. Dutta, G. Jindal, A. Pandey, and A. Sinhababu 25:11

▶ Lemma 17 (Main Lemma). Let the polynomials g, h ∈ F[x] such that h is monic in xn,
L(g) = s1, L(h) = s2, and degxn

(h) = d. Then, both L(g div h), L(g mod h) ≤ O((s1 +
s2) d2).

Proof. Suppose C is a circuit of size s2 which computes h and Cg is the circuit of size s1
which computes g. By using Lemma 61, there is a circuit of size O(s2 d2), which computes
h0, · · · , hd−1.

Now, we split every gate F in C into d + 1 gates F0, F1, . . . , Fd. Suppose, the gate F is
computing a polynomial PF . Let PF mod h =

∑
i<d pix

i
n. Then we want the property that

Fi computes pi for i < d. And if i = d then Fi computes PF div h.
Suppose F is a + gate in C with children gates computing the polynomials a and b.

Again express a mod h =
∑

i<d aix
i
n and b mod h =

∑
i<d bix

i
n. It is clear that

(a + b) mod h = a mod h + b mod h.

Therefore pi = ai + bi. It is also clear that PF div h = a div h + b div h.
Suppose F is a × gate in C with children gates computing the polynomials a and b.

Again express a mod h =
∑

i<d aix
i
n and b mod h =

∑
i<d bix

i
n. It is clear that:

(a · b) mod h = (a mod h · b mod h) mod h.

For div , we have that:

PF div h = a div h ·b div h ·h+b div h ·a mod h+a div h ·b mod h+(a mod h ·b mod h) div h.

We have already computed a mod h, b mod h, a div h, b div h. So, we only need to compute
(a mod h · b mod h) mod h and (a mod h · b mod h) div h. Since we have already computed
ai, bi for all i < d, by using Lemma 16, we can compute all the pi and (a mod h·b mod h) div h

in O((2d− 2)d) = O(d2) many gates. Therefore the new circuit has O(s1d2) has many gates.
Also we used O(s2d2) gates to computes h0, · · · , hd−1. Hence,

L(g div h) = O((s1 + s2)d2), and L(g mod h) = O((s1 + s2)d2) . ◀

The following theorem settles Problem 1, when the divisor has small degree (proving
Theorem 4).

▶ Theorem 18 (Division elimination for low-degree divisor). Let the polynomials f, g, h ∈ F[x]
such that f = g/h, with L(g) = s1, L(h) = s2, and deg(h) = d. Then, L(f) ≤ O((s1 +s2) d2).

Proof. The above Lemma 17 shows that when h is monic in xn, the upper bound holds.
Let τ : F[x] −→ F[x], be an invertible monic transformation (sends xi 7→ αi · xn + xi, where
αi ∈ F) s.t. τ(h) is monic wrt xn, such transformation exists (Lemma 68). Note that,
L(τ(g)) ≤ s + n = O(s1), and L(τ(h)) ≤ s2 + n = O(s2). Moreover, as τ is degree-preserving,
degxn

(τ(h)) = d.
So, apply Lemma 17 to conclude that τ(f) = τ(g) div τ(h), has a circuit of size O((s1 +

s2)d2). We apply τ−1 again (which is just a additive n-blowup) to finally deduce that

L(f) ≤ O((s1 + s2) d2) . ◀

▶ Remark 19. This proof holds when one replaces L by τ , i.e. the constant-free circuit
complexity (for definition, see Section 5.2). Note that, neither div nor mod introduce
any new constant in the process. Moreover, one can choose the αi to be explicit and
poly(log d)-computable so that τ is a monic invertible map. This establishes the claim.

CCC 2021

25:12 Division and Truncation

3.3 Division in border complexity
The notion of border (equivalently, approximative) complexity is important in computer
science. This concept popped up from early works on matrix multiplication and border
rank of tensors, see [10]). Whether approximation of polynomials provides any additional
computational power is a natural question which fundamentally motivated the foundation of
Geometric Complexity theory (GCT). The notion of border complexity can be motivated
through two ways: topological and algebraic, and both the perspectives are known to be
equivalent [1]. For further details, we refer to [20, 36].

In this paper, we only work with algebraic approximation upper bounds. In the algebraic
definition, one can talk about the convergence ϵ→ 0. Here, one can see ϵ as a formal variable
and F(ϵ) as the function field. For an algebraic complexity class C, the approximation is
defined as follows [7, Definition 2.1].

▶ Definition 20 (Approximative closure of a class [7]). Let C be an algebraic complexity
class over field F. A family (fn) of polynomials from F[x] is in the class C(F) if there are
polynomials fn;i and a function t : N 7→ N such that gn is in the class C over the field F(ϵ)
with gn(x) = fn(x) + ϵfn,1(x) + ϵ2fn,2(x) + · · ·+ ϵt(n)fn,t(n)(x).

▶ Definition 21 ([8, Defn.3.1]). Let f ∈ F[x]. The border complexity L(f) is the smallest
number r, such that there exists F in F(ϵ)[x] satisfying F |ϵ=0 = f and LF(ϵ)(F) ≤ r.

Note that, the circuit of F may be using 1/ϵ in an intermediate step. So, we cannot
merely assign ϵ = 0 and get a ϵ-free circuit. Also, the ϵ-degree can be exponential in its
size (and thus cannot be interpolated), see [8, Theorem 5.7]). Thus, potentially L(f) can be
significantly smaller than L(f).

The above definition can be used to define closures of complexity class, e.g., VP. In this
case, one can assume wlog that the degrees of gn and fn,i are poly(n). It is known to be
closed under factoring [8, Theorem 4.1]. However, the usual method of Hensel-lifting does not
work when the given circuit class computes polynomials of super-polynomial degree. Also,
Strassen’s method would have a dependency on the degree of the final polynomial. However,
we can prove Theorem 18 analogously, in the border sense.

▶ Theorem 22 (Division elimination in border complexity). Let f, g, h ∈ F[x], such that
f = g/h, with L(g) = s1, L(h) = s2, and deg(h) = d. Then, L(f) ≤ O(s1 d2 + s2 d4).

Proof. By definition, there exists G, H ∈ F(ϵ)[x], of size at most s1 and s2, respectively, such
that G := g+ϵ·g̃(x, ϵ), and H := h+ϵ·h(x, ϵ), where g̃, h ∈ F[ϵ, x]. We note that, degx(H) can
be larger than d. However, using Lemma 62, we know that LF(ϵ)(Hom≤d H) ≤ O(s2d2) := s′

2.
We denote H̃ := Hom≤d H. It is important to observe that H̃|ϵ=0 = h. By definition,

there exists m (could be exp(s′
2)) such that

H̃ := h + ϵ · h̃(x, ϵ) = h +
∑

j∈[m]

ϵj · hj(x) , where hj ∈ F[x] .

Let τ : F[x] −→ F[x], be an invertible monic transformation (sends xi 7→ αi · xn + xi,
where αi ∈ F) s.t. τ(h) and each τ(hj), for j ∈ [m] is monic wrt xn; such transformation
exists (Lemma 68). Note that, LF(ϵ)(τ(G)) ≤ O(s1) and LF(ϵ)(τ(H̃)) ≤ O(s′

2). Further,
degx(τ(H̃)) = d, as τ is a degree-preserving map. We also have the following identities:

τ(H̃) = τ(h) + ϵ · τ(h̃) and τ(G) = τ(f) · τ(h) + ϵ · τ(g̃) .

P. Dutta, G. Jindal, A. Pandey, and A. Sinhababu 25:13

By assumption, the leading coefficient of xn in τ(H̃) (call it α) is in F[ϵ] (in fact, α ̸ ≡
0 mod ϵ). This basically makes τ(H̃) a monic polynomial over F(ϵ)[x]. Therefore, div τ(H̃)
and modτ(H̃) now make sense over F(ϵ)[x]. By simple division, we have

τ(G) div τ(H̃) = τ(f) + ϵ ·
((

τ(g̃)− τ(f) · τ(h̃)
)

div τ(H̃)
)

. (1)

Note that, Lemma 17 implies LF(ϵ)
(
τ(G) div τ(H̃)

)
= O((s1 + s′

2)d2). By definition of L

and Equation (1), it is trivial to conclude that L(τ(f)) ≤ O((s1 + s′
2)d2) = O(s1 d2 + s2 d4).

As τ is invertible, we can get back f by applying τ−1 (incurring n-additive blowup). This
finally shows

L(f) ≤ O(s1 d2 + s2 d4) . ◀

4 Implications of division elimination in algebraic complexity

An affirmative solution to Problem 1 would have nontrivial applications in algebraic com-
plexity. We briefly discuss some of them in the next few paragraphs.

Division elimination in border complexity. It is not clear whether a positive solution to
Problem 1 would resolute to solving VP = VP (the converse direction is also not clear). Note
that, an approximative circuit can use arbitrary scalars from the field F(ϵ). So it is not clear
if the polynomial computed by an approximative circuit of size s can be expressed as g/h,
where g, h ∈ F[ϵ, x] can be computed by circuits (using constants from F) of size poly(s).
However, a special case of Problem 1, when the denominator is as simple as xd, is open, and
it has interesting implications as we discuss. The following example is from Bürgisser [8],
which relates the complexity of trailing coefficient of a polynomial to the complexity of the
polynomial itself.

Let us take a polynomial f(x, ϵ) ∈ F[x, ϵ] computed by an arithmetic circuit of size s (over
F). Suppose, f :=

∑D
i=d Ci(x) ϵi where Ci are polynomials in F[x]. The trailing coefficient

of f wrt ϵ, which is the polynomial Cd can be computed by a circuit of size poly(s, d),
by homogenization. Note that d can be exp(s). In contrast, it can be computed by an
approximative circuit of size just s. The approximative circuit C ′ computes the polynomial
f/ϵd (as limϵ→0 f/ϵd = Cd). Note that, ϵd has O(log d)-size circuit. Now, a positive solution
to Problem 1 would imply that f/ϵd has a division-free circuit C of size poly(s, log d). We
can simply put ϵ = 0 in C and compute Cd.

Division elimination in polynomial factoring. Another interesting consequence of the above
mentioned case of Problem 1 would be the proof of Factor conjecture [23, 8]: Any factor g of
a given polynomial f can be computed by poly(s, deg(g))-size circuit. Bürgisser [8] gave an
approximative circuit of poly(s, deg(g)) that involves division by ϵd where ϵ can be seen as a
formal variable. See [8, 19] for various consequences of Factor conjecture.

Division elimination and gcd. It turns out that the existence of small circuits for gcd and
division elimination can resolve the radical conjecture [17]: the squarefree-part or the radical
of a multivariate polynomial f of size s, has size poly(s).

The gcd question [23, Problem 4] asks whether given polynomials f1, . . . , fm, computed
by a circuit size s, their gcd g := gcd(f1, . . . , fm) has size poly(s). Currently, the best
known bound (due to Kaltofen [23]) is poly(s, deg(g)). It is not hard to show that a positive
resolution to both Problem 1 and gcd would also resolve the aforementioned radical conjecture.

In fact, it would also lead to poly(s) bound for computing the reduced rational function.
Given a rational function p/q computed by a circuit (with division gates) of size s, compute
the numerator and denominator in the reduced form (g/h = p/q, where g and h are coprime)

CCC 2021

25:14 Division and Truncation

in poly(s). Kaltofen [23, Problem 4] showed a bound of poly(s, deg(g), deg(h)). Note that
getting numerator and denominator of reduced rational function in poly(s) directly implies
solution to both high degree division and gcd questions.

▶ Remark 23. It is known that given a polynomial f , computed by poly(s), all its factors
cannot be computed by poly(s)-size circuits. For eg. x2s − 1; it has factors of size exp(s) [33].
However, this does not give a counterexample for Problem 1 (as the cofactor of a hard factor
is also expected to be hard).

5 Circuit complexity of rational function truncation

First, we deal with rational functions. We show both upper bound and conditional lower
bound results (relating to integer factoring).

5.1 Upper bounds for rational function truncation
We show that complexity of truncation of rational functions where the degrees are small, has
low complexity. For simplicity, we work with F = F, an algebraically closed field. We first
recall the following folklore decomposition.

▶ Lemma 24 (Partial fraction decomposition). Let g(x)/h(x) be a rational function with
deg(g) < deg(h). If h(x) =

∏
i∈[k](x− ai)di is the factorization of h(x) over F[x], then, there

exist bij ∈ F s.t. :

g(x)/h(x) =
∑
i∈[k]

∑
j∈[di]

bij/(x− ai)j .

Here is an important lemma which plays a crucial role in the size upper bound of
truncation.

▶ Lemma 25. For any non zero a ∈ F, we have L (trunc (1/(x− a), d)) = O(log d).

Proof. This follows from the inverse identity: 1/(a−x) = 1/a
∑

i≥0 (x/a)i and the fact that
L(
∑

0≤i≤d(x/a)i) = O(log d) (By using Remark 15). ◀

Now, we prove Theorem 6. For brevity, we state it again.

▶ Theorem 26 (Truncation of low-degree rational function). Suppose, g and h are two
univariate polynomials in F[x] such that deg(g) ≤ d, deg(h) = dh, and g can be computed a
circuit of size s. Let, g/h ∈ F[[x]]. Then, truncation of g/h upto degree-d can be computed
by a circuit of size poly(s, dh, log d).

Proof. The main idea is to use Lemma 24 and the low complexity of the truncation of inverse
identity (Lemma 25). However, the given polynomial h may be divisible by x (i.e. h(0) = 0).
In that case, let m be the highest power of x such that xm | h (i.e. xm+1 ∤ h). Note that, as
g/h ∈ F[[x]], xm | g as well (Lemma 65). As deg(h) ≤ dh, thus m ≤ dh.

By using Theorem 18, we know that g1 := g/xm has a cicuit of size O((s+log dh) d2
h) =: s1.

Trivially, h1 := h/xm has degree ≤ dh, and g/h = g1/h1. Denote, g2 := g1 mod h1.
Obviously, deg(g2) < deg(h1) and g1/h1 = g1 div h1 + g2/h1. Invoking Theorem 13, one
concludes that L(g1 div h1) = O(s1 dh). Therefore, L(trunc(g1 div h1, d)) = O(s1 dh), as
deg(g1) < d.

P. Dutta, G. Jindal, A. Pandey, and A. Sinhababu 25:15

Let h1 factors over F[x] as h1 :=
∏

i∈[k] (x − ai)di . Trivially,
∑

di ≤ dh. By using
Lemma 24 on g2/h1, we know that there are constants ai, bij ∈ F such that:

g2(x)/h1(x) =
∑
i∈[k]

∑
j∈[di]

bij/(x− ai)j .

Note that, for any a ∈ F and t ∈ N, dt/dxt (1/(x− a)) = (−1)t t! ·
(
1/(x− a)t+1), and thus,

trunc(1/(x− a)t+1, d) = (−1)t/t! · dt/dxt (trunc(1/(x− a), d)) +
d∑

i=d−t+1

γi xi , where γi ∈ F .

Using the above identity and Lemma 63, we can show that

L

trunc

∑
j∈[di]

bij/(x− ai)j , d

 = O(log d · d2
i) .

To show this, note that L(trunc(1/(x−ai), d)) = O(log d), and using Lemma 63, we compute
all its derivative till the di-th one which has a circuit of size O(log d · d2

i). Using the
above identity, we can add di − 1 many monomials of the form cxℓ with d − di + 2 ≤
ℓ ≤ d (each monomial has trivial size of O(log d)) to the circuit to obtain a circuit for
trunc

(∑
j∈[di] bij/(x− ai)j , d

)
, which still has size O(log d · d2

i). Thus, doing it for each ai

for i ∈ [k], one obtains that

L (trunc (g(x)/h(x), d)) = L (trunc (g1(x)/h1(x), d))
= L (g1 div h1, d) + L (g2/h1, d)

= O(s1 dh) + L

trunc

∑
i∈[k]

∑
j∈[di]

bij/(x− ai)j , d

= O((s + log dh) d3

h) + O(log d ·
∑
i∈[k]

d2
i)

= O(s d3
h log d). ◀

▶ Remark 27. Eventually, we can replace g ∈ F[[x]] with the given complexity trunc(g, d) = s

and show that the exact same proof as above, works.

5.2 Hardness results for rational function truncation
Now, we give some evidence that we cannot expect logarithmic dependence on dh in The-
orem 26, unless integer factoring is easy. Before going into technicalities, we define easy
sequence and constant-free complexity.

▶ Definition 28 (Easy sequence). A sequence (an)n of integers is said to be “easy to compute”
if there exists a polynomial p such that straight line complexity of an, i.e. τ(an) ≤ p(log n),
for n ≥ 1.

If a sequence is not easy to compute, it is said to be hard. In fact, for most numbers
N , one can show that τ(N) ≥ log N/ log log N (“close” to the trivial upper bound) [14, 35].
It is believed that (d!) is hard to compute. In fact, its hardness is deeply connected to the
infamous integer factoring problem. [42] showed that d! being easy to compute will imply
factoring is easy in the non-uniform setting 4.

4 However, this result does not imply that natural numbers can be factored in polynomial time in the
Turing-Machine model, as the numbers used can be poly(n)-bits.

CCC 2021

25:16 Division and Truncation

Constant-free circuit complexity. In the same spirit, one can define constant-free circuit
complexity of polynomials where the given constants belong to the set {−1, 0, 1}5. We denote,
τ(f) as the size of the minimal constant-free circuit computing f . Trivially, L(f) ≤ τ(f).

It was shown in [3] that (an)n∈N, where an :=
(2n

n

)
, is easy implies (n!)n∈N is easy. This

proof is similar to [42]. This lemma will be crucial to prove the hardness result for truncations.

▶ Lemma 29 (Lemma 6.3 in [3]). If an :=
(2n

n

)
has complexity O(logc n), for some c ∈ N,

then (n!) has complexity O(logc+1 n).

In the following theorem, we show that constant-free complexity of the truncation of a
power series with the denominator degree being high, is expected to be large, otherwise n! is
easy.

▶ Theorem 30. If τ
(
trunc

(
1/(1 + x)d+1, m

))
= O(logc d), for some constant c ∈ N and

m ∈ {d− 1, d}, then (n!) is easy. In fact, τ(n!) = O(logc+1 n).

Proof. From the power series expansion (Section 2), it is easy to see that,

trunc
(
1/(1 + x)d+1, m

)
=

m∑
i=0

(
−d− 1

i

)
xi.

Let us notice
(−d−1

i

)
= (−d− 1)(−d− 2) . . . (−d− i)/i! = (−1)i(d + i)!/i! d! = (−1)i

(
d+i

i

)
.

Therefore,

trunc
(
1/(1 + x)d+1, d

)
− trunc

(
1/(1 + x)d+1, d− 1

)
= (−1)d

(
2d

d

)
xd .

By assumption, τ
(

(−1)d
(2d

d

)
xd
)

= O(logc d). Therefore
(2d

d

)
has complexity O(logc d),

as desired (just by substituting x = 1, which gives an SLP). Invoking Lemma 29, we
conclude. ◀

6 Hardness of Truncation of algebraic functions

In this section, we show conditional hardness of truncation of power series of algebraic
functions with degree of its minpoly ≥ 3. In the first part, we show connection with integer
factoring. In the second part, we show connection with computation of multiple of (n!).

Throughout the section, we will be working with algebraic functions of the form (1+k2x)i/k,
for i, k ∈ N with i < k. Here is a crucial claim. For a proof, we refer to Theorem 77.

▶ Theorem 31. Fix i, k ∈ N with i < k. Then, (1 + k2x)i/k ∈ Z[[x]], i.e. it is an integral
power series.

6.1 Hardness of truncation of algebraic functions and integer factoring
Here, we show that if the truncation of each (1+k2x)i/k, for i ∈ [k−1], has small constant-free
circuit, then one can factor n in poly(log n) time, in the non-uniform setting. This would
readily imply the first part of Theorem 8.

5 To use 2n in the circuit, one has to build up a circuit for 2n, of size log n, from 1; whereas in the usual
sense of circuit size, constants are free. Thus, fd := 22d

xd has O(log d)-size circuit but requires Ω(d)-size
constant-free circuit.

P. Dutta, G. Jindal, A. Pandey, and A. Sinhababu 25:17

▶ Theorem 32. Let k ∈ N. If τ(trunc((1 + k2x) i
k , d)) = O(logc d) (for some constant c) for

all i ∈ [k − 1] then integer factorization (in the non-uniform setting) can be performed in
polynomial time.

Proof. Let, (1 + k2x) i
k =

∑
d≥0 Cd,i xd ∈ Z[[x]], where the coefficient Cd,i of xd is equal to

±kd(−i) · (k− i) · (2k− i) · · · ((d− 1)k− i)/d!. We see that the product of all Cd,i is equal to:

∏
i∈[k−1]

Cd,i = ± k(k−1)d(k − 1)!(dk)!
(d!)kkd(kd− 1)(kd− 2) · · · (kd− (k − 1)) .

The assumption τ(trunc((1+k2x) i
k , d)) = O(logc d) implies that τ(Cd,i) = O(logc d) (just

by subtracting two consecutive truncations and substituting x = 1). This further implies
that τ(

∏
i∈[k−1] Cd,i) = O(logc d), Let us define, for any d ≥ 1,

N(d, k) := k(k−2)d(dk)!
(d!)k

.

We first argue that N(d, k) ∈ N. This follows from the fact that N(d, k) =
∏

i∈[k−1] Cd,i ·
(kd− 1) · · · (kd− (k − 1))/(k − 1)!, and (k − 1)! must divide (kd− 1) · · · (kd− (k − 1)), by
Fact 74.

Further, since k is constant, it implies that τ(N(d, k)) = O(logc d) (because the extra
term has trivial O(log d)-complexity).

Now, we describe how to find a non-trivial factor of a given integer n. We assume that
all the primes dividing n are larger than k; otherwise we can remove all the prime factors
smaller than k + 1 (since k is a constant).

The idea is to first find a positive integer t such that all the primes dividing n are in the
interval [t + 1, tk], by using an iterative algorithm; if such a t does not exist we would have
already found a non-trivial factor of n (by the algorithm). As an invariant, we maintain an
integer m such that all the prime divisors of n are greater than m. We start with m = k and
compute gcd(N(m, k), n) at each iteration. Since all the primes dividing n are greater than
m (by assumption), we get that gcd(N(m, k), n) = gcd((mk)!, n). If the gcd((mk)!, n) ̸= 1, n,
we must have already found a non-trivial factor of n and we are done. Otherwise, we can
have two cases: either (i) gcd((mk)!, n) = 1, or (ii) gcd((mk)!, n) = n.

If gcd((mk)!, n) = 1 then we set m← mk and continue (because in this case all the primes
dividing n must be greater than mk). Otherwise we have gcd((mk)!, n) = n, and hence, all
the primes dividing n are in the interval [m + 1, mk] and we stop with t ← m. We know
that t ≤ ⌈n/k⌉ and this uses at most logk n = log n iterations. So, this step has given us an
integer t such that all the primes dividing n are in the interval [t + 1, tk], and the time taken
is poly(log n), due to only log n many iterations and each step takes poly(log n)-time due to
the fact that τ(N(d, k)) = O(logc d) implies gcd computation can be done in poly(log n) (by
euclidean algorithm).

Once, we know that all the primes are in an interval of the form [t + 1, tk], we now try to
reduce the length of it to k so that, we can simply brute force to get a factor of n, otherwise
of course our algorithm would already find a factor. The length reduction part is similar to
binary search algorithm that we describe below.

To find a positive integer s such that all the primes dividing n are in the interval
[sk +1, (s+1)k] (Or we find a non-trivial factor of n), again we use an iterative algorithm. As
an invariant, we maintain two positive integers a, b such that all the prime divisors of n are in
the interval [ak + 1, bk]. We start with a = 1, b = t. Our invariant is trivially true at the start.

CCC 2021

25:18 Division and Truncation

At each iteration, we set c = ⌈(a + b)/2⌉ and compute gcd(N(c, k), n). Since c ≤ t and all
the prime divisors of n are larger than t, we get that gcd(N(c, k), n) = gcd((ck)!, n). Again,
we argue in the same way as before. If the gcd is ̸= 1, n, we have already found a non-trivial
factor of n and we are done. Otherwise, we have two cases: either (i) gcd((ck)!, n) = 1, or (ii)
gcd((ck)!, n) = n.

If gcd((ck)!, n) = 1 then it is clear that all the primes dividing n are in the interval
[ck + 1, bk] and hence we set a ← c, b ← b. If gcd((ck)!, n) = n then they all the primes
dividing n are in the interval [ak + 1, ck] and hence we set a← a, b← c. This will terminate
when b− a ≤ 1. Hence we find the desired positive integer s. This uses at most log t = log n

iterations.
Now we just need to search for the prime divisors of n in the interval [sk + 1, (s + 1)k]

(an interval of constant length). Now, we brute force to finally find a non-trivial factor of n.
Similarly, this step also takes poly(log n) as each gcd computation takes poly(log n) time.

So, we have successfully found a non-trivial factor of n by the end of this process, repeating
this, we can get all the factors in poly(log n)-time and we are done. ◀

We also refer to Algorithm 1 in Appendix I.

6.2 Hardness of truncation of algebraic functions and complexity of
multiple of (n!)

In this section, we show that easiness of truncation of (1 + k2x)i/k shows that a multiple of
n! must be easy. Note that, this may not imply that n! is easy, however, from complexity-
theoretic point-of-view, it is believed to be hard because of non-trivial implications. Shub
& Smale [44] proved: If n! is ultimately hard to compute, then P ̸= NP over the field of
complex numbers.. Here, the computation is over Blum-Shub-Smale (BSS) model and can
use complex numbers in the algorithm. In fact, a stronger version (known as τ -conjecture)
connects z(f), distinct integer roots of f with τ(f). Recently, [16] showed that a similar
conjecture, in the SOS-model, would in fact imply explicit constructions of rigid matrices &
VP ̸= VNP. For similar related works, we refer to [25, 27].

Before discussing and stating the formal result, we need an important notion of complexity,
which is closely related to τ -complexity.

▶ Definition 33 (Ultimately easy). A sequence of integers (an) is ultimately easy if there
exists another sequence (bn) such that τ(an bn) ≤ poly(log n) for all large enough n.

▶ Definition 34 (Ultimate complexity). Define the ultimate complexity of an integer n as
the minimum τ -complexity of its multiple, i.e. τ1(n) = minb∈Z\{0} τ(b · n).

It is clear that Definition 33 can be stated wrt τ1. We remark that τ1(n1 · n2) ≤
τ1(n1) + τ1(n2) + 1, for any n1, n2 ∈ Z.

Following the same spirit as above, we prove the second part of Theorem 8.

▶ Theorem 35. Fix k ∈ N. Suppose, for each i ∈ [k − 1], there exists some constant c such
that τ(trunc

(
(1 + k2 · x)i/k, d

)
= O(logc d), for large enough d. Then, (n!)n∈N is ultimately

easy.

Proof. Let, (1 + k2x) i
k =

∑
d≥0 Cd,i xd ∈ Z[[x]]. From the hypothesis, it follows that there

exists c such that τ(Cd,i) ≤ logc d, for each i ∈ [k − 1] (subtract two consecutive terms and
substitute x = 1). Further, from the proof in Section 6.1 (and following the same notation),
we know that

P. Dutta, G. Jindal, A. Pandey, and A. Sinhababu 25:19

∏
i∈[k−1]

Cd,i = ± k(k−2)d(k − 1)!(dk)!
(d!)k(kd− 1)(kd− 2) · · · (kd− (k − 1)) .

Let us define, a(d, k) := (dk)!/(d!)k. Note that, a(d, k) ∈ N (it is the multinomial coefficient(
dk

d,...,d

)
). Further, k(k−2)d · a(d, k) =

∏
i∈[k−1] Cd,i · (kd− 1) · · · (kd− (k − 1))/(k − 1)!, and

(k − 1)! must divide (kd − 1) · · · (kd − (k − 1)), by Fact 74. As k is constant, each kd − i

can be computed in O(log d)-time trivially. Further, τ(
∏

i∈[k−1] Cd,i) ≤ O(logc d). As τ is
additive over multiplication, it follows that

τ(k(k−2)d · a(d, k)) ≤ O(logc d) ⇒ τ1(a(d, k)) ≤ O(logc d) .

Now we recurse by noticing the following trivial identity that n! = n!/ (⌊n/k⌋)!)k ·((⌊n/k⌋)!)k.
We know by the above relation on a(d, k) (and replacing d := ⌊n/k⌋ for some integer n)

that

τ1

(
(k · ⌊n/k⌋)!
(⌊n/k⌋)!k

)
≤ O(logc n) .

Further, any integer n can be written as n = k · ⌊n/k⌋+ j for some j ≤ k − 1. Note that
k · ⌊n/k⌋+ j has complexity at most log n for each j ∈ [k − 1]. So, multiplying k · ⌊n/k⌋+ j

for j ∈ [k − 1], it is straightforward to deduce that

τ1

(
n!

(⌊n/k⌋!)k

)
≤ O(logc n) . (2)

As, n! = n!/ (⌊n/k⌋)!)k · ((⌊n/k⌋)!)k, and τ1

(
(⌊n/k⌋!)k

)
≤ τ1 (⌊n/k⌋!) + O(1); use Equa-

tion (2):

τ1(n!) ≤ τ1 (⌊n/k⌋!) + O(logc n) + O(1)
≤ τ1

(
⌊n/k2⌋!

)
+ O(logc n) + O(logc n) + O(1)

...
≤ logk n ·O(logc n) = O(logc+1 n) .

Therefore, (n!) is ultimately easy to compute, as we wanted. ◀

7 Complexity of the truncation of transcendental power series

In this section, we show examples where the truncation of transcendental power series is easy.
We also complement this by showing the existence of integral transcendental power series
which is conditionally hard.

7.1 The truncation of transcendental power series can be easy

In this section, we show two examples of integral transcendental power series whose truncations
are easy.

CCC 2021

25:20 Division and Truncation

7.1.1 Transcendental series corresponding to the Stern Sequence is easy
▶ Definition 36 (The Stern sequence). The sequence (an)n≥0 given by a0 = 0, a1 = 1, and
when n ≥ 1, by a2n = an and a2n+1 = an + an+1, is called the Stern sequence.

The generating function A(x) def====
∑

anxn of the Stern sequence has the following
properties.

▶ Theorem 37 (Lemma 2.1 and Theorem 2.2 in [12]). If A(z) is the generating function of
the Stern sequence, then
1. A(x2) = A(x)

(
x

x2+x+1

)
.

2. The function A(x) is transcendental.

Now we prove the following Theorem 38 which shows that its truncation has small circuit.

▶ Theorem 38. For the generating function A(x) of the Stern sequence, we have

L (trunc (A(x), d)) = O(log2 d) .

Proof. By using Theorem 37, we obtain that:

A(x) = (x2 + 1)A(x2) + A(x2)
x

. (3)

Suppose Bd(x) def==== trunc
(
A(x), ⌊d

2⌋+ 1
)
. Notice that the degree of Cd(x) def==== (x2 +

1)Bd(x2) + Bd(x2)/x is at most 2⌊d/2⌋ + 4 and trunc(Cd(x), d) = trunc (A(x), d). Hence
we can compute trunc (A(x), d) from Cd(x) by subtracting at most 4 monomials, which can
be done using O(log d) gates. Also Bd(x) can be computed from trunc (A(x), ⌊d/2⌋) using
O(log d) gates. Hence we obtain the following recurrence:

L (trunc (A(x), d)) ≤ L (trunc (A(x), ⌊d/2⌋)) + O(log d) .

This implies, L (trunc (A(x), d)) = O(log2 d). ◀

7.1.2 Transcendental power series whose coefficients are multiplicative
The sequence (fn)n≥0 is defined as: f0 = 1, f1 = 1, f2 = −1, fp = 1 for all odd primes p and
fab = fafb. We look at the corresponding generating function F (x) def====

∑
fnxn .

▶ Theorem 39 ([13, Theorem 2]). The power series F (x) is transcendental.

Now we prove the following Theorem 40 which shows that truncation of F (x) is easy.

▶ Theorem 40. For F (x), we have L (trunc (F (x), d)) = O(log2 d).

Proof. We use the notation ν2(m) to denote the highest power of 2 which divides m ∈ N. We
partition the set [d] into ⌊log d⌋ sets S0, S1, S2, . . . , S⌊log d⌋ such that k ∈ Si iff ν2(k) = i. We
define the set Om

def==== {k | k ≤ m and k is odd}. Now, notice that Si = {2ik | k ∈ O⌊d/2i⌋}.
For a set S ∈ N, we define the polynomial gS

def====
∑

i∈S xi. Observe that:

trunc (F (x), d) = 1 +
⌊log d⌋∑

i=1
(−1)igSi

.

Trivially, gSi
= gO⌊d/2i⌋

(x2i). Also notice that gOm
= g[m] − g⌊ m

2 ⌋(x2). Therefore,
L(gOm) = (log m), which implies that gSi = O(log d). Hence, L (trunc (F (x), d)) = O(log2 d).

◀

P. Dutta, G. Jindal, A. Pandey, and A. Sinhababu 25:21

▶ Remark 41. Note that, there are power series like
∑

i≥0 xi! which are transcendental and
their truncations up to degree d are easy to compute. However, the series is highly sparse
and degree-d truncations has only poly(log d) monomials, hence the easiness is trivial. The
examples we discover in this work are of dense power series.

7.2 The truncation of Transcendental power series can be hard
A sequence (hn)n≥0 is called holonomic if it satisfies the recurrence of the form:

ar(n) hn+r + ar−1(n) hn+r−1 + · · · + a0(n)hn = 0 ,

where ai are polynomials in n. The corresponding generating function, H(x) def====
∑

hnxn,
is said to be a holonomic function.

Consider the holonomic sequence fn = (n!) defined by f0 = 1 and fn+1 − (n + 1)fn = 0.
Also consider the corresponding generating function F (x) =

∑
n≥0 n!xn. We now show that

F (x) is transcendental and that truncation of F (x) is (conditionally) hard to compute. To
this end, we need the following Lemma 42, which follows directly from Proposition 2 in [28].

▶ Lemma 42 ([28]). If F (x) =
∑

n≥0 fnxn is a power series in C[[x]] and the radius of
convergence of F (x) is zero then F (x) is transcendental.

▶ Corollary 43. The power series F (x) =
∑

n≥0 n!xn is transcendental.

Proof. It is clear that the radius of convergence of F (x) is zero (follows from the ratio test).
Hence Lemma 42 implies that F (x) is transcendental. ◀

▶ Theorem 44. If τ(trunc(F (x), d)) = poly(log d) then (d!) has complexity poly(log d).

Proof. We know that d!xd = trunc(F (x), d) − trunc(F (x), d − 1). Setting x = 1, we
conclude. ◀

8 SOS-complexity of truncation

A univariate polynomial f(x) ∈ F[x] over a field F is computed as a sum-of-squares (SOS) if

f =
s∑

i=1
cif

2
i , (4)

for some top-fanin s, where fi(x) ∈ F[x] and ci ∈ F.
▶ Remark 45. In real analysis, the SOS representation of a polynomial f(x) ∈ R[x], is defined
where the coefficients ci > 0 (in fact, we can take ci = 1, by taking √ci inside fi); thus the
definition makes sense only for non-negative polynomials f . In this sense, (Equation (4)) is a
weighted SOS. However, we will skip the term “weighted” (also because F can be = C here).

▶ Definition 46 (Support-sum size SF(f), [18]). The size of the representation of f in Equa-
tion (4) is the support-sum, the sum of the support size (or sparsity) of the polynomials fi.
The support-sum size of f , denoted by SF(f), is defined as the minimum support-sum of f .

We will often refer to SF(f) as the SOS-complexity of f . Note that, it is sub-additive,
i.e. for two polynomials f, g ∈ F[x], we have SF(f + g) ≤ SF(f) + SF(g).

Let |f |0 denote the sparsity of f . For any field F of characteristic ̸= 2, we have |f |1/2
0 ≤

SF(f) ≤ 2 |f |0 +2. The lower bound can be shown by counting monomials. The upper bound
is because f = (f + 1)2/4 − (f − 1)2/4. In particular, the SOS-model is complete when
char(F) ̸= 2. We will drop the subscript F when it is clear or unnecessary in the context.

CCC 2021

25:22 Division and Truncation

▶ Definition 47 (SOS-hardness, [18]). An “explicit” univariate (fd(x))d, where fd is of degree
d in F[x], is SOS-hard if S(fd) = ω(d1/2).

▶ Remark 48. If S(fd) = O(d1/2), we call (fd) SOS-easy. Eg. fd =
∑d

i=0 xi is SOS-easy
(Lemma 67).

It was shown in [18] that an SOS-hard family, with S(fd) ≥ d1/2+ϵ, for ϵ = ω
(√

log log d
log d

)
,

implies VP ̸= VNP. We want to characterize the SOS-easy and SOS-hard families, via natural
operations like division and truncation. Towards that, we show the following Theorem 49.
We assume F = F (otherwise we can go to small extensions).

▶ Theorem 49 (Truncation is SOS-easy). Let g, h ∈ F[x] are both constant-degree polynomials
s.t. g/h ∈ F[[x]]. Then, truncation of g/h upto degree-d is SOS-easy,i.e. S(trunc(g/h, d)) =
O(d1/2).

Before proving this, we need a few important lemmas.

▶ Lemma 50. Let f ∈ F[x]. Then, S(f (k)) ≤ O(k S(f)).

Proof. Let f =
∑s

i=1 cif
2
i be the minimal SOS representation with |fi|0 = ti, i.e.

∑
i∈[s] ti =

S(f). Trivially, f (k) =
∑

i∈[s] f2(k)

i . Using the Leibniz rule (Lemma 66), we have

f2(k)

i =

2

k
2 −1∑
j=0

(
k

j

)
· f (j)

i · f (k−j)
i +

(
k

k/2

)(
f

(k/2)
i

)2
if k ≡ 0 mod 2

2
k−1

2∑
j=0

(
k

j

)
· f (j)

i · f (k−j)
i if k ≡ 1 mod 2

Write each f
(j)
i · f (k−j)

i as

f
(j)
i · f (k−j)

i = 1/4 · (f (j)
i + f

(k−j)
i)2 − 1/4 · (f (j)

i − f
(k−j)
i)2 .

Note that, |f (j)
i |0 ≤ ti, for each i ∈ [s] and j ∈ [0, k]. Thus, f

2(k)
i has a representation

with support-sum at most ⌈k+1
2 ⌉ · 4 · ti ≤ O(k ti). Applying this to each i ∈ [s] shows that

f (k) has a SOS representation with support-sum at most O (k ·
∑

i ti) = O(k S(f)); and the
conclusion follows. ◀

▶ Lemma 51. S
(
trunc

(
1/(x− a)j , d

))
≤ O

(
j ·
√

d + j
)
, for any j ∈ Z≥0 .

Proof. Let gd(x) := trunc(1/x−a, d) = −1/a ·
(∑d

i=0 (x/a)i
)

. By differentiation, it follows

that (1/(x− a))(j−1) = (−1)j−1 · (j − 1)! ·
(
1/(x− a)j

)
. Thus, one can conclude that

trunc
(
1/(x− a)j , d

)
= (−1)j−1/(j − 1)! · g(j−1)

d+j−1(x) .

Note that, SF(gd+j−1(x)) = O
(√

d + j − 1
)

(Lemma 67). Using Lemma 50, the conclusion
follows. ◀

Now, we are well-equipped to prove Theorem 49.

P. Dutta, G. Jindal, A. Pandey, and A. Sinhababu 25:23

Proof of Theorem 49. This proof is very similar to that of Theorem 26. Let m be the
highest power of x such that xm | h (i.e. xm+1 ∤ h). Note that, as g/h ∈ F[[x]], xm | g as well
(Lemma 65). Suppose, deg(h) =: dh. Thus m ≤ dh. As dh is a constant, so is m. Note that,
g1 := g/xm and h1 := h/xm are both constant degree polynomials.

By definition, g/h = g1/h1. Let g2 := g1 mod h1. Hence, g1/h1 = g1 div h1 + g2/h1
and deg(g2) < deg(h1). Finally, trunc(g1/h1, d) = g1 div h1 + trunc(g2/h1, d). However,
S(g1 div h1) = O(1), as it has constant degree. Thus, it suffices to bound S(trunc(g2/h1, d)).

Suppose, h1 factors over F[x], as h1 :=
∏

i∈[k] (x− ai)di . Moreover, using Lemma 24, we
know that there are constants ai, bij ∈ F such that

g2(x)/h1(x) =
∑
i∈[k]

∑
j∈[di]

bij/(x− ai)j .

Therefore,

trunc(g2/h1, d) =
∑
i∈[k]

∑
j∈[di]

bij · trunc
(
1/(x− ai)j , d

)
.

Note that, di and k are constants. Using Lemma 51 and sub-additivity property of S,
the conclusion follows. ◀

▶ Remark 52.
1. It is unclear how to extend this proof to non-constant degree polynomials g and h.
2. It is unclear whether S(g/h) is small, when h | g and S(g) is small and deg(h) is small.

9 Constant-free complexity of modxd and PosSLP

In this section, we investigate constant-free complexity of computing modxd and its intrinsic
connection with the positivity questions (i.e. PosSLP, for definition, see Problem 56).

▶ Problem 53 (Modular complexity). If we have L(f) = s for some f ∈ C[x], what is
complexity of f mod xd?

We prove a conditional lower bounds on the constant-free complexity of f mod xd.

▶ Theorem 54. If τ(f) = s implies τ(f mod xd) = poly(s, log d) for all f ∈ Z[x] then(2n
n

)
n∈N has complexity poly(log n).

Proof. Suppose m = 2⌈log d⌉. Consider
√

1 + 4x, by Lemma 71, we know that
√

1 + 4x ∈
Z[[x]]. By using Newton’s iteration, we can compute a polynomial g ∈ Z[x] such that g

mod xm =
√

1 + 4x mod xm and τ(g) = O(m) = (log d) (Using Newton’s iteration, see
Theorem 6.5 in [21], also [29]). Now g mod xd = trunc(

√
1 + 4x, d). Our assumption implies

that L(trunc(
√

1 + 4x, d) = poly(log d). By a similar argument as in the proof of Theorem 72,
we get that

(2n
n

)
n∈N has complexity poly(log n).

An alternative proof: we know τ((x + 1)2n) = O(log n). Now see that ((x + 1)2n)
mod xn+1 − ((x + 1)2n) mod xn = xn

(2n
n

)
. Therefore the assumption in the statement of

the theorem implies that
(2n

n

)
n∈N has complexity poly(log n). ◀

Theorem 54 demonstrates that computing remainders modxd should be hard. Now we pose
the following simpler problem.

▶ Problem 55 (Special divisibility question). If we have τ(f) = s for some f ∈ C = Z[x], what
is complexity of deciding if f mod xd = 0 , i.e., decide if xd divides f? Here the input is a
circuit C of size s which computes f.

CCC 2021

25:24 Division and Truncation

It turns out that the question essentially reduces to decide the positivity of a number,
computed by an SLP (Theorem 60).

▶ Problem 56 (PosSLP [2]). Given an SLP P (without divisions), decide if the integer
computed by P is positive?

▶ Remark 57. [2] proved that that the Generic Task of Numerical Computation is polynomial-
time equivalent to PosSLP and also showed that PosSLP lies in the counting hierarchy CH.

▶ Proposition 58 (Folklore). Given an an SLP P (with divisions) of length n computing a
rational number p

q , there exist a division free SLP Q = (q0, q1, . . . , q6n) such that q6n−1 = p

and q6n = q.

Proof. Suppose P = (a0, a1, . . . , an). We split every gate ai in P to two gates bi and ci such
that ai = bi

ci
. Now notice that:

b1

c1
+ b2

c2
= b1c2 + b2c1

c1c2
.

b1

c1
· b2

c2
= b1b2

c1c2
.

This implies the claimed SLP Q. ◀

▶ Lemma 59. Given two SLP P1, P2 (with divisions) of length n computing the rational
numbers a

b and p
q respectively, problem of deciding

∣∣a
b

∣∣ >
∣∣∣p

q

∣∣∣ is in PPosSLP.

Proof. By using Proposition 58, we first obtain SLPs Q = (q0, q1, . . . , q6n) and R = (r0, r1,

. . . , r6n) such that q6n−1 = a, q6n = b and r6n−1 = p, r6n = q. Using the PosSLP oracle, we
find the signs of a

b and p
q . After finding the signs, we can find SLPs (of length 6n + 1) which

compute |a| , |b| , |p| , |q|. This implies an SLP of length 24n + 7 which computes |a| |q|− |p| |b|.
And deciding |a| |q| − |p| |b| > 0 also decides

∣∣a
b

∣∣ >
∣∣∣p

q

∣∣∣. ◀

▶ Theorem 60. Problem 55 is in PPosSLP.

Proof. We are given a constant free circuit C of size s which computes f. It is easy to see
that deg(f) ≤ 2s. We define ∥f∥∞ to be the largest absolute value of coefficients of f . By
induction, it is easy to see that ∥f∥∞ ≤ 222s . Let M be any positive integer such that
M > 4 · 2s · ∥f∥∞. Now we claim:

xd | f ⇐⇒
∣∣∣∣f (1

M

)∣∣∣∣ <
1

4Md−1 .

Suppose xd | f . Then we have f = fdxd + fd+1xd+1 + · · ·+ fnxn. In this case:

f

(
1

M

)
= 1

Md−1

(
fd

M
+ fd+1

M2 + · · ·+ fi

M i−d+1 + · · ·+ fn

Mn−d+1

)
. (5)

In Equation (5), the absolute value of each term fi

Mi−d+1 is less than 1
4·2s . Therefore

∣∣f (1
M

)∣∣ <
1

4Md−1 .

Now consider the case when xd ∤ g. Let m < d be the least positive integer such that xm

has non-zero coefficient in f . So f = fmxm + g with fm ̸= 0 and g = fm+1xm+1 + · · ·+ fnxn.
By using the argument above, we obtain

∣∣g (1
M

)∣∣ < 1
4Mm . Also, |fmxm| ≥ 1

Mm . Therefore∣∣f (1
M

)∣∣ > 3
4

1
Mm ≥ 3

4
1

Md−1 > 1
4Md−1 . Hence our claim is true.

P. Dutta, G. Jindal, A. Pandey, and A. Sinhababu 25:25

Now notice that M has straight complexity at most 3s. Thereforef
(1

M

)
has straight

complexity (with divisions) at most 4s + 1. Also, 1
4Md−1 has straight complexity (with

divisions) at most 3s + 2 + 2 log d. Therefore, by using Lemma 59 we can check
∣∣f (1

M

)∣∣ <
1

4Md−1 in PPosSLP. Therefore Problem 55 is in PPosSLP. ◀

Theorem 60 and Remark 57 imply that Problem 55 lies in the counting hierarchy CH.

10 Conclusion

Our result on division elimination can be seen as evidence towards the possibility of a
positive solution of Problem 1. Though the current techniques may not solve Problem 1, it
is interesting to know division elimination (in circuits) is possible without using power series.

It is known that the decision problem of divisibility testing in the high degree regime:
whether g (of size s and degree exp(s)) is divisible by a polynomial h (of size s and degree
exp(s)) is NP-hard, even when h is a supersparse polynomial [40]. However, its NP-hardness
does not rule out the possibility of positive solution of Problem 1.

There are several avenues for extending our study of truncations of power series. Here,
we remark that, Theorem 8 implies that, for any prime p, there is a simple algebraic function
with degree of its minpoly = p, such that the truncation is conditionally hard. But it is not
clear whether it is true for composite (because i/k can reduce, when k ̸= p).

One can also investigate truncation of algebraic power series over characteristic p. [6]
showed that n-th coefficient of an algebraic power series over characteristic p can be computed
in O(log n, p)-time. One can study truncations of power series with 0 − 1 coefficients and
relate their hardness with classical assumptions in complexity, eg. truncated Θ-functions [37].

Here are some immediate questions of interest which require rigorous investigation.

1. Can we remove the degree condition on g in Theorem 6?
2. Does Theorem 6 hold in the border sense? Note that, the degree of the approximate

circuit can have degree > d and thus homogenization seems necessarily blowing the
complexity in d.

3. Can we show that the truncation of any “simple” algebraic function (satisfying a minpoly
of degree > 2 with bounded coefficients) must be conditionally hard in Theorem 8? In
particular, can we show that (1 + 9x)1/3 is conditionally hard?

4. Does Theorem 4 hold in the SOS-complexity regime?

References
1 Alexander Alder. Grenzrang und Grenzkomplexität aus algebraischer und topologischer Sicht.

PhD thesis, Zentralstelle der Studentenschaft, 1984.
2 Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Miltersen. On the

Complexity of Numerical Analysis. SIAM Journal on Computing, 38, January 2006. Preliminary
version in the 21st Annual IEEE Conference on Computational Complexity (CCC’06). doi:
10.1109/CCC.2006.30.

3 Robert Andrews. Algebraic Hardness Versus Randomness in Low Characteristic. In 35th
Computational Complexity Conference (CCC 2020), volume 169 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 37:1–37:32. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.CCC.2020.37.

4 Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages. Springer-
Verlag, Berlin, Heidelberg, 1988. URL: https://dl.acm.org/doi/book/10.5555/52107.

CCC 2021

https://doi.org/10.1109/CCC.2006.30
https://doi.org/10.1109/CCC.2006.30
https://doi.org/10.4230/LIPIcs.CCC.2020.37
https://dl.acm.org/doi/book/10.5555/52107

25:26 Division and Truncation

5 Markus Bläser and Gorav Jindal. On the Complexity of Symmetric Polynomials. In 10th

Innovations in Theoretical Computer Science Conference (ITCS’19), volume 124 of LIPIcs,
pages 47:1–47:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/
LIPIcs.ITCS.2019.47.

6 Alin Bostan, Gilles Christol, and Philippe Dumas. Fast computation of the Nth term of
an algebraic series over a finite prime field. In Proceedings of the ACM on International
Symposium on Symbolic and Algebraic Computation (ISSAC’16), pages 119–126, 2016. doi:
10.1145/2930889.2930904.

7 Karl Bringmann, Christian Ikenmeyer, and Jeroen Zuiddam. On Algebraic Branching Programs
of Small Width. J. ACM, 65(5):1–29, 2018. (Preliminary version in the 32nd Computational
Complexity Conference (CCC’17). doi:10.1145/3209663.

8 Peter Bürgisser. The complexity of factors of multivariate polynomials. Foundations of
Computational Mathematics, 4(4):369–396, 2004. arXiv:1812.06828.

9 Peter Bürgisser. On defining integers and proving arithmetic circuit lower bounds. Computa-
tional Complexity, 18(1):81–103, 2009. doi:10.1007/s00037-009-0260-x.

10 Peter Bürgisser, Michael Clausen, and Amin Shokrollahi. Algebraic complexity theory, volume
315. Springer Science & Business Media, 2013.

11 David V Chudnovsky and Gregory V Chudnovsky. On expansion of algebraic functions
in power and Puiseux series, I. Journal of Complexity, 2(4):271–294, 1986. URL: https:
//www.sciencedirect.com/science/article/pii/0885064X86900063.

12 Michael Coons. The Transcendence of Series Related to Stern’s Diatomic Sequence. Interna-
tional Journal of Number Theory, 06, November 2011. doi:10.1142/S1793042110002958.

13 Michael Coons and Peter Borwein. Transcendence of power series for some number theoretic
functions. Proceedings of the American Mathematical Society, 137, July 2008. doi:10.1090/
S0002-9939-08-09737-2.

14 Wellington De Melo and Benar Fux Svaiter. The cost of computing integers. Proceedings-
American Mathematical Society, 124:1377–1378, 1996. URL: https://www.ams.org/journals/
proc/1996-124-05/S0002-9939-96-03173-5/S0002-9939-96-03173-5.pdf.

15 Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic program testing.
Information Processing Letters, 7(4):193–195, 1978. URL: https://www.sciencedirect.com/
science/article/abs/pii/0020019078900674.

16 Pranjal Dutta. Real tau-Conjecture for sum-of-squares: A unified approach to lower bound and
derandomization. In 16th International Computer Science Symposium in Russia (CSR 2021),
2021. URL: https://drive.google.com/file/d/1X8eo9GM4SCNsC2vWjPbUwMX0vff5i2k3/
view.

17 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu. Discovering the roots: Uniform closure
results for algebraic classes under factoring. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 1152–1165, 2018. URL: https://www.cse.iitk.
ac.in/users/nitin/papers/factor-closure.pdf.

18 Pranjal Dutta, Nitin Saxena, and Thomas Thierauf. A Largish Sum-Of-Squares Implies
Circuit Hardness and Derandomization. In 12th Innovations in Theoretical Computer Science
Conference (ITCS 2021), volume 185 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 23:1–23:21. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021. URL:
10.4230/LIPIcs.ITCS.2021.23.

19 Joshua A Grochow et al. Complexity in ideals of polynomials: questions on algebraic complexity
of circuits and proofs. Bulletin of EATCS, 2(130), 2020. URL: http://bulletin.eatcs.org/
index.php/beatcs/article/view/607.

20 Joshua A. Grochow, Ketan D. Mulmuley, and Youming Qiao. Boundaries of VP and VNP. In
43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016),
volume 55, pages 34:1–34:14, 2016. URL: https://core.ac.uk/download/pdf/62922137.pdf.

21 Gorav Jindal. On approximate polynomial identity testing and real root finding. PhD thesis,
Saarland University, 2019. doi:10.22028/D291-29880.

https://doi.org/10.4230/LIPIcs.ITCS.2019.47
https://doi.org/10.4230/LIPIcs.ITCS.2019.47
https://doi.org/10.1145/2930889.2930904
https://doi.org/10.1145/2930889.2930904
https://doi.org/10.1145/3209663
http://arxiv.org/abs/1812.06828
https://doi.org/10.1007/s00037-009-0260-x
https://www.sciencedirect.com/science/article/pii/0885064X86900063
https://www.sciencedirect.com/science/article/pii/0885064X86900063
https://doi.org/10.1142/S1793042110002958
https://doi.org/10.1090/S0002-9939-08-09737-2
https://doi.org/10.1090/S0002-9939-08-09737-2
https://www.ams.org/journals/proc/1996-124-05/S0002-9939-96-03173-5/S0002-9939-96-03173-5.pdf
https://www.ams.org/journals/proc/1996-124-05/S0002-9939-96-03173-5/S0002-9939-96-03173-5.pdf
https://www.sciencedirect.com/science/article/abs/pii/0020019078900674
https://www.sciencedirect.com/science/article/abs/pii/0020019078900674
https://drive.google.com/file/d/1X8eo9GM4SCNsC2vWjPbUwMX0vff5i2k3/view
https://drive.google.com/file/d/1X8eo9GM4SCNsC2vWjPbUwMX0vff5i2k3/view
https://www.cse.iitk.ac.in/users/nitin/papers/factor-closure.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/factor-closure.pdf
10.4230/LIPIcs.ITCS.2021.23
http://bulletin.eatcs.org/index.php/beatcs/article/view/607
http://bulletin.eatcs.org/index.php/beatcs/article/view/607
https://core.ac.uk/download/pdf/62922137.pdf
https://doi.org/10.22028/D291-29880

P. Dutta, G. Jindal, A. Pandey, and A. Sinhababu 25:27

22 Erich Kaltofen. Uniform closure properties of p-computable functions. In Proceedings of
the eighteenth annual ACM symposium on Theory of computing, pages 330–337, 1986. doi:
10.1145/12130.12163.

23 Erich Kaltofen. Single-factor Hensel lifting and its application to the straight-line complexity
of certain polynomials. In Proceedings of the 19th annual ACM symposium on Theory of
computing (STOC’87), pages 443–452, 1987. doi:10.1145/28395.28443.

24 Pascal Koiran. Valiant’s model and the cost of computing integers. computational complexity,
13(3):131–146, 2005.

25 Pascal Koiran. Shallow circuits with high-powered inputs. Innovations in Computer Sci-
ence (ICS), 2011. URL: https://hal-ens-lyon.archives-ouvertes.fr/ensl-00477023v4/
document.

26 Pascal Koiran and Sylvain Perifel. Interpolation in Valiant’s theory. Computational Complexity,
20(1):1–20, 2011. doi:10.1007/s00037-011-0002-8.

27 Pascal Koiran, Natacha Portier, Sébastien Tavenas, and Stéphan Thomassé. A τ -Conjecture
for Newton Polygons. Foundations of computational mathematics, 15(1):185–197, 2015. doi:
10.1007/s10208-014-9216-x.

28 FV Kuhlmann. On convergent power series, 1996. URL: https://www.mathi.uni-heidelberg.
de/~roquette/KONVPOTREIHEN.pdf.

29 Hsiang Kung and Joseph Traub. All Algebraic Functions Can Be Computed Fast. J. ACM,
25:245–260, April 1978. doi:10.1145/322063.322068.

30 Dick Lipton and Ken Regan. Factoring and factorials, February 2009. URL: https://rjlipton.
wordpress.com/2009/02/23/factoring-and-factorials/.

31 Richard J Lipton. Polynomials with 0-1 coefficients that are hard to evaluate. SIAM Journal
on Computing, 7(1):61–69, 1978. Preliminary version in the 16th Annual Symposium on
Foundations of Computer Science (FOCS 1975). URL: https://epubs.siam.org/doi/abs/
10.1137/0207004?journalCode=smjcat.

32 Richard J Lipton. Straight-line complexity and integer factorization. In International
Algorithmic Number Theory Symposium (ANTS 94), pages 71–79. Springer, 1994. doi:
10.1007/3-540-58691-1_45.

33 Richard J Lipton and Larry J Stockmeyer. Evaluation of polynomials with super-
preconditioning. Journal of Computer and System Sciences, 16(2):124–139, 1978. URL:
https://www.sciencedirect.com/science/article/pii/0022000078900417.

34 Meena Mahajan. Algebraic Complexity Classes. In Perspectives in Computational Complexity,
pages 51–75. Springer, 2014. doi:10.1007/978-3-319-05446-9_4.

35 Carlos Moreira. On asymptotic estimates for arithmetic cost functions. Proceedings of
the American Mathematical Society, 125(2):347–353, 1997. URL: https://www.jstor.org/
stable/2161660.

36 Ketan D Mulmuley. The GCT program toward the P vs. NP problem. Communications of
the ACM, 55(6):98–107, 2012. doi:10.1145/2184319.2184341.

37 Danny Nguyen and Igor Pak. Complexity of short generating functions. In Forum of
Mathematics, Sigma, volume 6. Cambridge University Press, 2018. arXiv:1702.08660.

38 Øystein Ore. Über höhere kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15, 1922.
39 Igor Pak. Complexity problems in enumerative combinatorics. In Proceedings of the Inter-

national Congress of Mathematicians – Rio de Janeiro 2018. Vol. IV. Invited lectures, pages
3153–3180. World Sci. Publ., Hackensack, NJ, 2018. doi:10.1142/9789813272880_0176.

40 David A Plaisted. New NP-hard and NP-complete polynomial and integer divisibility
problems. Theoretical Computer Science, 31(1-2):125–138, 1984. Preliminary in the 17th

Annual Symposium on Foundations of Computer Science (FOCS 1976). URL: https:
//www.sciencedirect.com/science/article/pii/0304397584901300.

41 Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM (JACM), 27(4):701–717, 1980. doi:10.1145/322217.322225.

CCC 2021

https://doi.org/10.1145/12130.12163
https://doi.org/10.1145/12130.12163
https://doi.org/10.1145/28395.28443
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00477023v4/document
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00477023v4/document
https://doi.org/10.1007/s00037-011-0002-8
https://doi.org/10.1007/s10208-014-9216-x
https://doi.org/10.1007/s10208-014-9216-x
https://www.mathi.uni-heidelberg.de/~roquette/KONVPOTREIHEN.pdf
https://www.mathi.uni-heidelberg.de/~roquette/KONVPOTREIHEN.pdf
https://doi.org/10.1145/322063.322068
https://rjlipton.wordpress.com/2009/02/23/factoring-and-factorials/
https://rjlipton.wordpress.com/2009/02/23/factoring-and-factorials/
https://epubs.siam.org/doi/abs/10.1137/0207004?journalCode=smjcat
https://epubs.siam.org/doi/abs/10.1137/0207004?journalCode=smjcat
https://doi.org/10.1007/3-540-58691-1_45
https://doi.org/10.1007/3-540-58691-1_45
https://www.sciencedirect.com/science/article/pii/0022000078900417
https://doi.org/10.1007/978-3-319-05446-9_4
https://www.jstor.org/stable/2161660
https://www.jstor.org/stable/2161660
https://doi.org/10.1145/2184319.2184341
http://arxiv.org/abs/1702.08660
https://doi.org/10.1142/9789813272880_0176
https://www.sciencedirect.com/science/article/pii/0304397584901300
https://www.sciencedirect.com/science/article/pii/0304397584901300
https://doi.org/10.1145/322217.322225

25:28 Division and Truncation

42 Adi Shamir. Factoring numbers in O (logn) arithmetic steps. Information Processing Let-
ters, 8(1):28–31, 1979. URL: https://www.sciencedirect.com/science/article/abs/pii/
0020019079900875.

43 Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent results and open
questions. Foundations and Trends® in Theoretical Computer Science, 5(3–4):207–388, 2010.
doi:10.1561/0400000039.

44 Michael Shub and Steve Smale. On the intractability of Hilbert’s Nullstellensatz and an
algebraic version of “NP ̸= P?”. Duke Math. J., 81(1):47–54 (1996), 1995. A celebration of
John F. Nash, Jr. doi:10.1215/S0012-7094-95-08105-8.

45 Volker Strassen. Vermeidung von divisionen. Journal für die reine und angewandte Mathematik,
264:184–202, 1973.

46 L Valiant. Reducibility by algebraic projections in: Logic and algorithmic. In Symposium in
honour of Ernst Specker, pages 365–380, 1982.

47 Leslie G Valiant. Completeness classes in algebra. In Proceedings of the 11th Annual ACM
symposium on Theory of computing, pages 249–261. ACM, 1979. doi:10.1145/800135.804419.

48 Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge university
press, 2013.

49 Wact. Some Accessible Open Problems. Workshop on Algebraic Complexity Theory (WACT
2016). URL: https://www.cs.tau.ac.il/~shpilka/wact2016/concreteOpenProblems/
openprobs.pdf.

50 Klaus W Wagner. The complexity of combinatorial problems with succinct input representation.
Acta informatica, 23(3):325–356, 1986. doi:10.1007/BF00289117.

51 Richard Zippel. Probabilistic Algorithms for Sparse Polynomials. In Proceedings of the
International Symposium on Symbolic and Algebraic Computation, EUROSAM ’79, pages
216–226, 1979. doi:10.1007/3-540-09519-5_73.

52 J.von zur Gathen and V. Strassen. Some polynomials that are hard to compute. Theoretical
Computer Science, 11(3):331–335, 1980. URL: http://www.sciencedirect.com/science/
article/pii/0304397580900201.

A Basics in Arithmetic circuit complexity

An arithmetic circuit over a field F is a layered directed acyclic graph that uses field operations
{+,×} and computes a polynomial. It can be thought of as an algebraic analog of Boolean
circuits. The leaf nodes are labeled with the input variables x1, . . . , xn and constants from F.
Other nodes are labeled as addition and multiplication gates. The root node outputs the
polynomial computed by the circuit. At times, we also use ÷ gate in the circuit.

For a polynomial f , the size of the smallest circuit computing f is denoted by L(f), it is
the arithmetic circuit complexity of f . Here, size of an arithmetic circuit is assumed to be
the number of nodes (variables included).

In complexity classes, we specify an upper bound on these parameters. Valiant’s class VP
contains the families of n-variate polynomials of degree poly(n) over F, computed by circuits
of poly(n)-size. The class VNP can be seen as a non-deterministic analog of the class VP. A
family of n-variate polynomials (fn)n over F is in VNP if there exists a family of polynomials
(gn)n in VP such that for every x = (x1, . . . , xn) one can write fn(x) =

∑
w∈{0,1}t(n) gn(x, w),

for some polynomial t(n) which is called the witness size. It is straightforward to see that
VP ⊆ VNP and conjectured to be different (Valiant’s Hypothesis [47]). Equivalently, symbolic
permanentn×n requires nω(1) size circuit.

One can define the class VP0 (respectively, VNP0) as the analogue of VP (respectively,
VNP) in the constant-free regime. For more details see [24, 26, 34, 43, 10].

https://www.sciencedirect.com/science/article/abs/pii/0020019079900875
https://www.sciencedirect.com/science/article/abs/pii/0020019079900875
https://doi.org/10.1561/0400000039
https://doi.org/10.1215/S0012-7094-95-08105-8
https://doi.org/10.1145/800135.804419
https://www.cs.tau.ac.il/~shpilka/wact2016/concreteOpenProblems/openprobs.pdf
https://www.cs.tau.ac.il/~shpilka/wact2016/concreteOpenProblems/openprobs.pdf
https://doi.org/10.1007/BF00289117
https://doi.org/10.1007/3-540-09519-5_73
http://www.sciencedirect.com/science/article/pii/0304397580900201
http://www.sciencedirect.com/science/article/pii/0304397580900201

P. Dutta, G. Jindal, A. Pandey, and A. Sinhababu 25:29

Coefficient-extraction in arithmetic circuits is easy using interpolation, see the folklore
lemma below, for a proof see [43].

▶ Lemma 61 (Coefficient-Extraction). Let L(f) = s with f ∈ F[x] and f =
∑

0≤i≤d fix
i
n with

fi ∈ F[x1, x2, . . . , xn−1]. Then there is a circuit C of size O(sd2) computing f0, f1, . . . , fd.

The next lemma is a homogenization trick, used in [45]. For a proof, see [43, Theorem 2.2].

▶ Lemma 62 (Homogenization). If f has an arithmetic circuit of size s, then for any d,
there is a circuit of size O(sd2) computing Hom≤d f .

▶ Lemma 63. Let f be a polynomial F[x], computed by a size s circuit C. Then, there exists
a circuit C ′ of size O(sm2) which computes f, f (1), f (2), . . . , f (m).

Proof. We split every G gate in C to n + 1 gates G0, . . . , Gm in C ′. The property we want
is that if the gate G is computing the polynomial g in C then Gk computes the polynomial
g(k) in C ′. Suppose G is a + gate in C with children gates computing the polynomials g1
and g2. Now we know that g(k) = g

(k)
1 + g

(k)
2 . Thus we can easily propagate the derivatives

on addition/subtraction gates. If G is a × gate then using Lemma 66, we know that:

(g1g2)(k) =
k∑

i=0

(
k

i

)
g

(k−i)
1 g

(i)
2

Thus we can computes g, g(1), g(2), . . . , g(m) using additional O(m2) gates. Therefore C ′ has
O(sm2) gates. ◀

Polynomial Identity Testing (PIT) is a fundamental question in algebraic complexity. It
asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.
It is known that efficient evaluation at random points lead to a randomized polynomial time
algorithm for PIT. This is known as Polynomial Identity Lemma [38, 15, 51, 41].

▶ Lemma 64 (Polynomial Identity Lemma). Let p(x) be an n-variate nonzero polynomial of
degree d. Let S ⊆ F be a finite set. Then,

Pr
α∼Sn

[p(α) = 0] ≤ d/|S| .

Here, α ∈ Sn is picked independently and uniformly at random.

B Basic mathematical tools

▶ Lemma 65 (Power series valuation). Let g, h ∈ F[x] such that g/h ∈ F[[x]]. Let m (respec. n)
be the highest power dividing g (respec. h) i.e. xm | g and xm+1 ∤ g (respec. for h). Then,
m ≥ n.

Proof. Suppose, m < n. Note that, there exists 0 ̸= α ∈ F, such that h = α xn · (1 + x h̃),
for some h̃ ∈ F[x]. Similarly, let g = β xm · (1 + x g̃), for some g̃ ∈ F[x] and β ∈ F. Thus,

g

h
= β

α
· xm−n · 1 + x g̃

1 + x h̃

= β

α
· xm−n · (1 + x g̃) · (1 + x h̃ + (x h̃)2 + · · ·)

̸∈ F[[x]] , a contradiction . ◀

CCC 2021

25:30 Division and Truncation

▶ Lemma 66 (General Leibniz rule). If f and g are k-time differentiable functions, then

(fg)(k) =
k∑

i=0

(
k

i

)
f (k−i) g(i) .

▶ Lemma 67. Define fd :=
∑d

i=0 xi. Then, SF(fd) ≤ 9 · d1/2, over any field F.

Proof of Lemma 67. Fix some n ∈ N. Note that,

fn2−1(x) =
(
1 + x + . . . + xn−1) · (1 + xn + . . . + xn(n−1)

)
.

As each factor has n terms, we can write the product as sum of two squares with each
polynomial having at most 2n terms. Therefore,

SF(fn2−1(x)) ≤ 4 n . (6)

For general d, let n ∈ N be such that n2 − 1 ≤ d < (n + 1)2 − 1. By definition,

fd(x) = fn2−1(x) + xn2
· fd−n2(x) .

Note that, |fd−n2(x)|0 ≤ d + 1− n2 ≤ 2n. Thus, using the trivial upper bound on S(f), we
must have

SF(xn2
· fd−n2(x)) ≤ 2 · (2n + 1) . (7)

Combining Equation (6) and Equation (7), we get that SF(fd(x)) ≤ 8 · ⌈
√

d + 1⌉ + 2 ,

and the conclusion follows. ◀

C Monic transformation

Given any polynomial p(x) in variables x = (x1, . . . , xn), there is a standard trick to make it
monic in xn by applying a linear transformation on the variables: for α = (α1, . . . , αn−1) ∈
Fn−1, let

τα : xi 7→ αixn + xi ,

for i ∈ [n − 1], and xn 7→ xn. Note that deg(τα(p)) ≤ deg(p) [it may decrease because of
non-trivial cancellations]. It is easy to see that τα is an invertible map. We show that τα(p)
is monic in xn, for a random transformation τα i.e. when α ∈ Fn−1 chosen randomly. In
fact, we show that this map can simultaneously make polynomials monic given that the field
F is sufficiently large.

▶ Lemma 68 (Monic Transformation). Let p1(x), . . . , pm(x) be m-many polynomial of degree
d. Let S ⊆ F be a finite set. For α ∈ Sn−1, picked independently and uniformly at random,

Pr
[

m∧
i=1

τα(pi(x)) is monic in xn

]
≥ 1− dm

|S|
.

Proof. Consider the terms of degree d of a non-zero polynomial p ∈ F[x]. Define the set

T := {β = (β1, . . . , βn) | |β|0 =
∑

i

βi = d, and coefxβ (p) ̸= 0} .

We also denote β′ = (β1, . . . , βn−1), the first n − 1-coordinates of β, and similarly x′ =
(x1, . . . , xn−1). Note that, τα(xβ) = αβ′ · xd

n + (lower terms in xn).

P. Dutta, G. Jindal, A. Pandey, and A. Sinhababu 25:31

Observe that the homogeneous component of degree d in τα(p) can be written as ad,p(x) =∑
β∈T cβ ·τα(xβ), for some constants cβ. Trivially, ad,p is a nonzero polynomial, and moreover,

ad,p(α) = (
∑
β∈T

cβαβ′
) · xd

n + (lower terms in xn).

In order to make τα(p) monic in xn, we want (
∑

β∈T cβαβ′) ̸= 0. So, define, another
polynomial bd,p(x′) = (

∑
β∈T cβx′β′). It can have degree atmost d.

As we want each τα(p) monic where p = pm(x), it suffices to find α such that∏
i∈[m] bd,pi(α) ̸= 0. Note that, deg

(∏
i∈[m] bd,pi(x)

)
≤ d · m. Thus, when we pick α

at random, the probability that
∏

i∈[m] bd,pi(α) = 0, is at most ≤ dm/|S|, from Lemma 64.
Hence, the conclusion follows. ◀

D Truncation is hard

One can show that truncation (or cost of mod) cannot be expected to be logarithmically
dependent on the precision (unless permanent is easy), reminiscent to [46]. We sketch the
proof for the sake of completeness.

▶ Lemma 69 (Folkore). Suppose, for any polynomial f(x) ∈ F[x] of size s, Hom≤d f(x) can
be computed by circuit of size poly(s, log d), then VP = VNP.

Proof. Consider the following polynomial of n2 + n variables, where we denote y =
(y1, . . . , yn), and z = (z1,1, . . . , zn,n):

g(y, z) :=
∏

i∈[n]

∑
j∈[n]

yjzi,j

Observe that coefficient of y1 . . . yn in g is nothing but perm(z1,1, . . . , zn,n), the permanent

polynomial on variables z. Further, each coefyα(g) is a multilinear polynomial in z, of degree
n. Consider a new polynomial f by substituting yi = x(n+1)i−1 (Kronecker substitution). In
particular, let

f(x, z) := g(x, xn+1, x(n+1)2
, . . . , x(n+1)n−1

, z).

As Kronecker substitution gives different weights to different monomials and the maximum
degree can be n · (n + 1)n−1 (i.e. when yn

n gets substituted), it is easy to deduce that

f =
n·(n+1)n−1∑

k=0
ck(z) · xk .

Here, each ck(z) is a multilinear polynomial of degree n. Moreover, from the above discussion,

cj(z1,1, . . . , zn,n) = perm(z1,1, . . . , zn,n) , where j := 1 + (n + 1) + . . . + (n + 1)n−1 .

In that case, the degree of cj(z) · xj is m := j + n = nO(n). Thus, we can conclude that
Hom=m(f) = cj(z) · xj = perm(z) · xj .

CCC 2021

25:32 Division and Truncation

Observe that L(g) ≤ poly(n). After Kronecker substitution, the blowup in size in still
poly i.e. L(f) ≤ poly(n). Hence, assuming the hypothesis, we would get that

perm(z) · xj = Hom=m(f) = Hom≤m(f) − Hom≤m−1(f) ,

has poly(n) size circuit. This implies perm(z) has poly(n) size circuit (by substituting x = 1),
i.e. VP = VNP. ◀

E Details for Section 3

Here we prove Lemma 16. For completeness, we again state the lemma.

▶ Lemma 70. Suppose g =
∑

i≤d1
gix

i and h = xd2 +
∑

i<d2
hi xi, in F[x]. Suppose

g = hq + r, with r =
∑

i<d2
rix

i and q =
∑

i≤d1−d2
qix

i. Then, there is a circuit of size
O(d1 d2), whose inputs are all hi, gi and outputs are all ri, qi.

Proof. We shall denote the desired circuit by Cd1,d2 . So we want:

Cd1,d2(g0, g1, . . . , gd1 , h0, h1, . . . , hd2) = (r1, r2, . . . , rd2−1, q0, q1, . . . , qd1−d2).

If d1 < d2, we know that q = 0. Hence:

Cd2−1,d2(g0, g1, . . . , gd1−1, h0, h1, . . . , hd1) = (g1, g2, . . . , gd1−1).

If d1 > d2, we perform a long division step:

g ← g − h · xd1−d2 · gd1 =
∑

i≤d1−d2−1
gi xi +

d1−1∑
i≥d1−d2

(
gi − hi−(d1−d2) gd1

)
xi.

Note that, we can set qd1−d2 = gd1 . Define:

g def==== (g0, g1, . . . , gd1−d2−1, gd1−d2 − h0gd1 , . . . , gd1−1 − hd2−1gd1) .

Then we have:

Cd1,d2(g0, g1, . . . , gd1 , h0, h1, . . . , hd2) = (Cd1−1,d2(g, h0, h1, . . . , hd2), gd1). (8)

Hence if S(d1, d2) is the size of Cd1,d2 then Equation (8) implies that S(d1, d2) = S(d1 −
1, d2) + 2d2 and S(d2 − 1, d2) = 2d2 − 1. Therefore S(d1, d2) ≤ 2 d1 d2. ◀

F Conditional hardness of
√

1 + 4x

We first show that
√

1 + 4x ∈ Z[[x]].

▶ Lemma 71 (Folklore). We have
√

1 + 4x =
∑

i≥0
(2i

i

)
/(2i− 1) xi ∈ Z[[x]].

Proof. We know that,
√

1 + 4x =
∑

i≥0
(1/2

i

)
(4x)i. Now, it is easy to see that:(1

2
d

)
=

1
2 ·
(1

2 − 1
)
·
(1

2 − 2
)
· · · · ·

(1
2 − d + 1

)
d! = (−1)d−1 ·

(2d
d

)
4d(2d− 1) .

This implies that
√

1 + 4x =
∑

i≥0
(2i

i

)
/(2i− 1) xi. Further, it is also easy to verify that(

2d

d

)
=
(

4
(

2d− 2
d− 1

)
−
(

2d

d

))
· (2d− 1) =⇒

(
2d

d

)
/(2d− 1) ∈ N .

Therefore,
√

1 + 4x ∈ Z[[x]], as desired. ◀

P. Dutta, G. Jindal, A. Pandey, and A. Sinhababu 25:33

Lemma 71 implies that all the truncations of
√

1 + 4x can be computed by division-free
circuits.

▶ Theorem 72. If τ(trunc
(√

1 + 4x, d
)

= O(logc d), for some constant c ∈ N, then (d!) is
easy. In fact, τ(d!) = O(logc+1 d).

Proof. By assumption, we know that τ(trunc
(√

1 + 4x, d− 1
)

= O(logc d) and
τ(trunc

(√
1 + 4x, d

)
= O(logc d). By using Lemma 71, we see that:

trunc
(√

1 + 4x, d
)
− trunc

(√
1 + 4x, d− 1

)
= (−1)d−1xd

(2d
d

)
2d− 1 .

Hence, τ((−1)d−1xd ·
(2d

d

)
/(2d − 1) = O(logc d). Therefore

(
(−1)n−1(2d

d

)
/(2d− 1)

)
has

complexity O(logc d) by substituting x = 1. This also implies that
(2d

d

)
has complexity

O(logc d). Invoking Lemma 29, we conclude. ◀

▶ Corollary 73. If (d!) has complexity ω(poly(log d)), then τ(trunc
(√

1 + 4x, d
)

=
ω(poly(log d)).

G Integral power series: Details for Section 6

We will use some number-theoretic tool to show that the candidate power series is integral.
So, before delving into that, we go through some preliminary tools being used.

▶ Fact 74 (Folklore). Product of any k consecutive positive integers is divisible by k!.

▶ Definition 75 (p-adic valuation). Let p be a prime and n ∈ Z. We denote p-adic valuation
of n as νp(n) to be the highest exponent such that pνp(n) | n. Formally, νp : Z −→ N defined
by

νp(n) = max{v ∈ N : pv | n} .

Note that, by definition, νp(rad(n)) = 1 if p | n, and 0 otherwise.

▶ Theorem 76 (Legendre’s formula). For a prime p and n ∈ N, νp(n) =
∞∑

j=1
⌊n/pj⌋ .

Now, we prove integrality of a power series which is our candidate algebraic function for
Theorem 8. It suffices to prove the integrality of (1 + k2x)1/k, which we prove below.

▶ Theorem 77 (Restatement of Theorem 31, Integral power series). Let k ∈ N. Define
fk(x) :=

(
1 + k2 · x

)1/k. Then, fk(x) ∈ Z[[x]].

Proof. By binomial expansion, fk ∈ Q[[x]]. Let fk(x) =
∑

d≥0 ad · xd. We’ll prove by strong
induction that indeed the coefficients are integers.

Obviously a0 = 1, and assume that for m ∈ N we have proved that aℓ ∈ Z for 0 ≤ ℓ < m.
The coefficient at xm in

(∑∞
d=0 adxd

)k =
(
1 +

∑∞
d=1 adxd

)k is equal to k · am plus a bunch
of terms that we know are integer by the induction hypothesis; hence k · am = b ∈ Z. But by
the binomial series formula we have

am = k2m ·
(

1/k

m

)
=

k2m ·
∏m−1

j=0 (1/k − j)
m! =

km ·
∏m−1

j=0 (1− kj)
m! .

CCC 2021

25:34 Division and Truncation

It suffices to prove that k | b. If we can show that νp(b) ≥ νp(k) for every prime p dividing k,
this would certainly imply that k | b. So, fix a prime p | k. Note that

b = k · am = X/m! , where X := km+1 ·
m−1∏
j=0

(1− kj) .

As, p | k, we must have
∏m−1

j=0 (1 − kj) ≡ 1 mod p. Thus, νp(X) = νp

(
km+1) =

(m+1)νp(k). And by Theorem 76, νp(m!) =
∑∞

j=1
⌊
m/pj

⌋
<
∑∞

j=1 m/pj = m/p−1 ≤ m.
Thus,

νp(b) = νp(X)− νp(m!) ≥ (m + 1)νp(k)−m ≥ νp(k) ,

as we wanted. Putting it together gives am ∈ Z proving the inductive step. Hence, the
conclusion follows. ◀

H From hardness of algebraic functions to hardness of permanent in
constant-free regime

Here, we sketch why one of the truncations being hard implies permanent does not have
small constant-free circuits (implying VP0 ̸= VNP0). The proof is reminiscent to [9]. We
point out the main components. We denote Permn as the permanent polynomial of a n× n

symbolic matrix.

▶ Theorem 78 (Hardness of permanent). Let us fix i, k ∈ N such that i < k. Further, assume
that, L

(
trunc

(
(1 + k2 x)i/k

)
, d
)

= ω(poly(log d)), then τ(Permn) = ω(poly(log n)).

▶ Remark 79. One can also prove a conditional implication referring to the original Valiant
hypothesis VPC ̸= VNPC, assuming GRH (Generalized Riemann Hypothesis). This has also
been pointed out in [9, Corollary 4.2]. This basically follows from the fact that under GRH
and assuming VP = VNP, then CH ⊆ P/poly.

Before going into the proof sketch, we define CH-definable sequences. The counting
hierarchy is denoted by CH [50]. The class of poly-size circuits can be expressed by the
nonuniform advice class P/poly.

Let q(n) be a polynomial. Let a = (a(n, ℓ))n∈N, ℓ≤q(n) be a sequence of integers such
that a(n, ℓ) has exponential bitsize, i.e., |a(n, ℓ)| ≤ 2nc for all k and some constant c. We
think of n, ℓ as being represented in binary using O(log n) bits.

With the sequence, we associate a language that determines the bits of a(n, ℓ) in binary,

Sgn(a) = {(n, ℓ) | a(n, ℓ) ≥ 0},
Bit(a) = {(n, ℓ, j, b) | the j-th bit of a(n, ℓ) equals b} .

▶ Definition 80 ([9, Definition 3.2]). The sequence a = (a(n, ℓ))n,ℓ of integers of exponential
bitsize is CH-definable if Sgn(a) ∈ CH and Bit(a) ∈ CH.

The sequences of integers that are definable in CH are closed under iterated addition,
iterated multiplication, and integer division [9, Theorem 3.10]. Koiran et al. [26, Theorem 2.14]
used the binary version of the same theorem.

P. Dutta, G. Jindal, A. Pandey, and A. Sinhababu 25:35

▶ Theorem 81 ([9, 26]).
(i) Let q(n) be a polynomial and suppose (a(n, ℓ))n∈N,ℓ≤q(n) is CH-definable. Then the

sum- and product-sequences b(n) and c(n) are CH-definable, where

b(n) =
q(n)∑
ℓ=0

a(n, ℓ) and c(n) =
q(n)∏
ℓ=0

a(n, ℓ) .

(ii) Suppose (s(n))n∈N and (t(n))n∈N are definable in CH and t(n) > 0 for all n. Then the
sequence of quotients ⌊s(n)/t(n)⌋n∈N is definable in CH.

Now, we state the most important theorem proven in [9, Theorem 4.1] from which
Theorem 78 will follow almost trivially.

▶ Theorem 82. Let q be a polynomially bounded function and (b(n, ℓ))n∈N,ℓ≤q(n) and
(d(n))n∈N are definable in CH. Let

fn =
q(n)∑
ℓ=0

b(n, ℓ)xℓ ∈ Z[x] , gn = fn/d(n) ∈ Q[x] .

If τ(Permn) = poly(log n), then LQ(gn) = poly(log n).

Now, we are ready to prove Theorem 78.

Proof sketch of Theorem 78. Let, (1 + k2 · x)i/k :=
∑

j≥0 ai,j xj ∈ Z[[x]]. By binomial
expansion, we have

ai,j = k2j ·
(

i/k

j

)
= kj/j! ·

j−1∏
ℓ=0

(i− kℓ) .

As k is a constant,
∏j−1

ℓ=0 (i − kℓ), j!, kj are all trivially definable in CH, by Theorem 81.
Further, by Theorem 77, ai,j ∈ Z implying (ai,j) CH-definable, again by Theorem 81.

The rest directly follows from Theorem 82. Note that, if τ(Permn) = poly(log n), then
from the above argument, truncation of the power series upto n i.e. fn =

∑n
j=0 ai,jxj

must be easy, as the coeffecients are CH-definable. This directly contradicts our assumption
that the truncation is hard. Hence, permanent cannot have polynomial size constant-free
circuits. ◀

I Algorithm

On the following page, we write the algorithm for the first part of Theorem 8.

CCC 2021

25:36 Division and Truncation

Algorithm 1 Integer factorization assuming the truncations of (1 + k2x)i/k being easy for each i.

Input: A composite positive integer n.
Output: A non-trivial factor of n.
1: Define N(d, k) := k(k−2)d(dk)!

(d!)k .
2: m ← k.
3: while true do
4: Compute gcd(N(m, k), n).
5: if gcd(N(m, k), n) = 1 then
6: m ← mk.
7: else if gcd(N(m, k), n) = n then
8: t ← m. ▷ This m is the desired t.
9: break

10: else
11: return gcd(N(m, k), n) ▷ Here gcd(N(m, k), n) is a non-trivial factor of n.
12: end if
13: end while

▷ At this step, all the primes dividing n are in the interval [t + 1, tk].
14: a ← 1.
15: b ← t.
16: while true do
17: if b− a ≤ 1 then
18: s ← a. ▷ This a is the desired s.
19: break
20: end if
21: c ← ⌈(a + b)/2⌉.
22: Compute gcd(N(c, k), n).
23: if gcd(N(c, k), n) = 1 then
24: a ← c.
25: else if gcd(N(c, k), n) = n then
26: b ← c.
27: else
28: return gcd(N(c, k), n) ▷ Here gcd(N(c, k), n) is a non-trivial factor of n.
29: end if
30: end while

▷ At this step, all the primes dividing n are in the interval [sk + 1, (s + 1)k].
31: for i = sk + 1 to (s + 1)k do
32: if i divides n then
33: return i ▷ Here i is a non-trivial factor of n.
34: end if
35: end for

SOS Lower Bound for Exact Planted Clique
Shuo Pang # Ñ

Mathematics Department, University of Chicago, IL, USA

Abstract
We prove a SOS degree lower bound for the planted clique problem on the Erdös-Rényi random graph
G(n, 1/2). The bound we get is degree d = Ω(ϵ2 log n/ log log n) for clique size ω = n1/2−ϵ, which is
almost tight. This improves the result of [5] for the “soft” version of the problem, where the family
of the equality-axioms generated by x1 + ... + xn = ω is relaxed to one inequality x1 + ... + xn ≥ ω.

As a technical by-product, we also “naturalize” certain techniques that were developed and used
for the relaxed problem. This includes a new way to define the pseudo-expectation, and a more
robust method to solve out the coarse diagonalization of the moment matrix.

2012 ACM Subject Classification Theory of computation → Proof complexity; Mathematics of
computing → Random graphs; Theory of computation → Semidefinite programming

Keywords and phrases Sum-of-Squares, planted clique, random graphs, average-case lower bound

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.26

Related Version ECCC Technical Report: https://eccc.weizmann.ac.il/report/2021/070

Acknowledgements I am very grateful to Aaron Potechin for the introduction of the problem and
the encouraging communications, and to Alexander Razborov for the advice and help on improving
the quality of the paper. My thanks also go to the anonymous reviewers for their constructive
criticism of the presentation.

1 Introduction

1.1 The problem and the proof system

Whether one can find a max-clique in a random graph G ∼ G(n, 1/2) efficiently and be
correct with high probability has been a long-standing open problem in computational
complexity since [19]. In [18, 22], a relaxed formulation as the planted clique problem was
introduced: if we further plant a random clique of size ω ≫ log n to G, can it be efficiently
recovered? Information-theoretically this is possible, since w.h.p. the largest clique in G has
size (2 + o(1)) log n. While computationally, the average-case hardness of this problem is still
widely believed even after it has been intensively studied and has inspired research directions
in an extremely wide range of fields (just to mention a few: cryptography [2], learning
theory [8], mathematical finance [3], computational biology [28]). So far, the best known
polynomial-time algorithm is for ω = Ω(

√
n) [1], which is a so-called spectral algorithm

(see e.g. [17]).
The sum-of-squares (SOS) hierarchy [30, 27, 23] is a stronger family of semidefinite

programming (SDP) algorithms which, roughly speaking, is SDP on the extended set of
variables {xi(1)...xi(d) | i1, ..., id ∈ [n]} according to the degree parameter d, and it can be
significantly more powerful than spectral algorithms and traditional SDP (see e.g. [4, 17]).
Recent years have witnessed rapid development on SOS-based algorithms which turn out to
provide a characterization of a wide class of algorithmic techniques – for a list of evidence, we
refer the reader to the survey [6] and the introduction of [17]. The SOS proof system is the
natural proof-theoretic counterpart of these algorithms, also known as the Positivstellensatz
system [14]: it works with polynomials over R, and given polynomial equalities (axioms)
f1(x) = 0, ..., fk(x) = 0 on x = (x1, ..., xn), a proof (that is, a refutation of the existence of a
solution) is

© Shuo Pang;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 26; pp. 26:1–26:63

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:spang@uchicago.edu
https://math.uchicago.edu/~spang/
https://doi.org/10.4230/LIPIcs.CCC.2021.26
https://eccc.weizmann.ac.il/report/2021/070
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 SOS Lower Bound for Exact Planted Clique

−1 =
k∑

i=1
fiqi +

∑
j

r2
j in R[x1, ..., xn]

where q1, ..., qm and r1, ... are arbitrary polynomials on x1, ..., xn over R. Under certain
conditions, in particular when all variables are boolean (x2

i = xi), such an refutation always
exists if the axioms are contradictory. The degree-d SOS proof system is this plus a degree
limitation

max
i,j
{deg(fi) + deg(qi), 2 deg(rj)} ≤ d.

For more about the relation between the SOS proofs and SDP algorithms, see e.g. [26, 29].
The average-case hardness of the clique problem has a very simple form in proof complexity:
for G ∼ G(n, 1/2), can the proof system efficiently refute the existence of a size-ω (≫ log n)
clique w.h.p.? Note the system cannot just say “No” but must search for a certificate – a
proof. A lower bound here would automatically give the hardness on any class of algorithms
based on the proof system. Given that the decision version of the spectral algorithm of [1]
corresponds to a degree-2 SOS proof, a SOS degree lower bound would bring us a much better
understanding of the hardness of the problem. The standard formulation is the following.

▶ Definition 1.1. Given an n-vertex simple graph G and a number ω, the Clique Problem
for degree-d SOS proof system has the following axioms.

(Boolean) x2
i = xi ∀i ∈ [n]

(Clique) xixj = 0 ∀{i, j} non-edge
(Size) x1 + ... + xn = ω

(1.1)

To confirm no ω-clique exists is to give a SOS refutation of the above. The SOS system has
the so-called duality: to show degree lower bound it suffices to consider pseudo-expectation
and the resulting moment matrix1. With boolean variables (which is our case), this can be
demonstrated on multi-linear polynomials. Let X≤a = {xS | S ⊆ [n], |S| ≤ a} for any a.

▶ Definition 1.2. A degree-d pseudo-expectation for the Clique Problem on G is a map
Ẽ : X d → R satisfying the following four constraints when extended by R-linearity.

(Default) Ẽx∅ = 1 (1.2)

(Clique) ẼxS = 0, ∀S : |S| ≤ d, G|S non-clique (1.3)

(Size) Ẽ

(
(x1 + ... + xn)xS

)
= ω · ẼxS ∀S : |S| ≤ d− 1 (1.4)

where in (1.4), xA · xB := xA∪B. For the last constraint, define the moment matrix M

to be the
([n]

≤d/2
)
×
([n]

≤d/2
)

matrix2 with expression M(A, B) = ẼxA∪B for all |A|, |B| ≤ d/2,
then:

(PSDness) M is positive semi-definite. (1.5)

It is not hard to see that if a degree-d pseudo-expectation exists then there is no degree-d
SOS refutation.

1 We use the name for simplicity. More cautiously, it should be called the pseudo-moment matrix.
2 d is always assumed to be even.

S. Pang 26:3

A relaxation of the problem was studied in [5]: decide whether there exists Ẽ as in
Definition 1.2 except by one change – replace Size Constraints by one weaker inequality
Ẽ(x1 + ... + xn) ≥ ω. Henceforth, we call the Clique Problem (Def. 1.1) Exact Clique
and this relaxation Non-Exact Clique.3 We will study their average-case hardness over
G ∼ G(n, 1/2).

How to deal with the exact problem is a subtle but important open problem. On the
problem itself, lower bounds on the “weak” formulation indeed gave the important algorithmic
message – an integrality gap for many SOS-based optimization algorithms – but still, they do
not rule out the possibility that SOS can efficiently refute x1 + ...+xn = k for each individual
large k, and the distinction between “weak” and “strong” formulations also involves how one
thinks the SOS SDP optimization problem should be formulated.

Perhaps more importantly, it is about the limit of existing methods for proving average-
case SOS lower bounds. Current techniques from the so-called pseudo-calibration heuristic
[5] tend to deal successfully with “soft” constraints (i.e. inequalities, or usually just one
bound on a single pseudo-expectation value) while being poor at handling “hard” constraints
(i.e. equalities). Finding techniques to deal with the latter is thus in need. Progress toward
this goal is made in [20] for random CSPs, where the number of hard constraints is at most
two4. Their method is to break such constraint(s) into local ones and satisfy each using real,
independent distributions. For “inherently more rigid” problems like Exact Clique (whose
hard constraints are “almost everywhere”), however, it seems unlikely a similar strategy
could work.

Lastly, there are concrete applications of lower bounds on Exact Clique. Such a lower
bound can give by reduction lower bounds for other problems, e.g. for the approximated
Nash-Welfare, and potentially for the coloring problem and stochastic block models [20, 21].

1.2 Previous work

For upper bounds, if ω = Ω(
√

n) then degree-2 SOS can refute Exact Clique with high
probability [12]. On the other hand, if ω > d ≥ 2.1 log n, a degree-d SOS refutation for Exact
Clique is not hard to see; since we have not been able to find it in the literature, we include
it as Observation 1.3 below.

For lower bounds, for Exact Clique, [13] showed that the weaker system d-round Lovasz-
Schrijver cannot refute it when ω = O(

√
n/2d); [25] proved degree-d lower bound on SOS for

ω = Õ(n1/d), and this bound on ω was improved to Õ(n1/3) for d = 4 [10] and Õ(n
1

⌊d/2⌋+1) for
general d [15]. For Non-Exact Clique, [5] proved the almost tight lower bound d = Ω(ϵ2 log n)
for ω = n1/2−ϵ, ϵ > 0 arbitrary (could depend on n).

▶ Observation 1.3 (Upper bound for Exact Clique if ω > d = 2.1 log n). Note (x1 + ... +
xn)d = ωd modulo the Size Axiom. The LHS can be multi-linearly homogenized to degree-d
by xS = 1

ω−|S|
∑

i/∈S xS∪{i} by this axiom again, after which w.h.p. all terms are 0 by
Clique Axioms, as there is no size-2.1 log n clique in G ∼ G(n, 1/2) w.h.p.. This gives the
contradiction 0 = 1. Note this proof is actually in the weaker Nullstellensatz system (for
definition see e.g. [7]).

3 There is no “planted clique” in the problem’s formulation, but traditionally, the problem is still called
the planted clique problems due to the algorithmic motivation behind.

4 One on the objective value of the CSP, and/or one on the Hamming weight of x.

CCC 2021

26:4 SOS Lower Bound for Exact Planted Clique

1.3 Results of the paper

Our main result is the following.

▶ Theorem 1.4. Let ϵ > 0 be any parameter, ω = n1/2−ϵ. W.p. > 1 − n−4 log n over
G ∼ G(n, 1

2), any SOS refutation of Exact Clique requires degree at least ϵ′ log n/ log log n,
where ϵ′ = min{ϵ2, 1

402 }/2000.

We also have the following result. It does not allow to improve the lower bound but provides a
new, hopefully simplifying, perspective on certain techniques that were used for the non-exact
problem.

▶ Theorem 1.5 (Informal). For the Non-Exact Clique problem,
(1) There is a way to define the correct pseudo-expectation from simple incidence algebra on

the vertex-set;
(2) For the resulting moment matrix M , there is a weakened version of the quadratic

equation M = NN⊤ whose solvability is given by, and actually equivalent to, a general
graph-decomposition fact from which a “first-approximate” diagonalization of M can be
deduced.

2 Key technical ideas

The two results use almost completely different ideas, so we treat them separately in the
proof overview:

Theorem 1.4: Section 2.1 to 2.4.
Theorem 1.5: Section 2.5.

The presentation of this section is structured for mathematical clarity. On the other hand, the
following picture may provide a clearer bird’s-eye view, where “· · · ” means the corresponding
section(s) in the text:

Pseudo-expectation design: A common idea (in below)
→ Non-exact case (2.5 first half · · · 3.1)
→ Exact case (2.1 · · · 3.2).

Proving PSDness: Recursive factorization refresh (5.1, 5.3)
→ Lower bound proof (2.1 to 2.4 · · · 6).

And a “naturalizing” result that can be read independently:

How to deduce the “coarse” diagonalization (2.5 second half · · · 5.2).

Let’s start with a common idea. Suppose we deal with degree-d SOS, ω = n1/2−ϵ where
ϵ > 0 is small. To construct pseudo-expectations on size ≤ d-subsets of [n], as is usual
in complexity theory, we take a parameter τ ≫ d (think of d ≪ τ ≪ log n) and make
the construction for all size ≤ τ -subsets first, in hope to later have a good control on its
behavior on size ≤ d subsets. This idea is most clearly demonstrated in the nonexact case
(Section 3.1.2) and is also inherited to the exact case, as we will see next (equation (2.1)).

S. Pang 26:5

2.1 The exact pseudo-expectation
We define the pseudo-expectation for Exact Clique now. To satisfy Size Constraints (1.4), a
natural way is to generate Ẽ in a top-down fashion: fix ẼxS for all |S| = d first, denoted as
the vector Ẽdx, then recursively set

ẼxS ←
1

ω − |S|
∑
i/∈S

ẼxS∪{i} ∀|S| < d.

The Clique Constraints (1.3) can be satisfied if ẼdxS factors through the clique function on
S. Inspired by the non-exact case (Lemma 3.5), we use Fourier characters and consider

ẼxS =
∑

T :|V (T)∪S|≤τ

F (|V (T) ∪ S|) · χT ∀S : |S| = d (2.1)

for some function F . We call F a d-generating function.5 Thus

ẼxS = 1(
w−d+u

u

) ∑
T :|V (T)∪S|≤τ

χT ·
[u∑

c=0

(
|V (T) ∪ S| − d + u

c

)(
n− |V (T) ∪ S|

u− c

)

· F (|V (T) ∪ S|+ u− c)
]

where u := d− |S|, for all S with |S| ≤ d.
One key novelty we bring is the following choice

F (x) = (x + 8τ2)!
(8τ2)! · (ω

n
)x. (2.2)

With this F , the resulting moment matrix, denoted by M̃ , is:

M̃(A, B) =
∑

T :|V (T)∪A∪B|≤τ

M̃(A, B; T)χT ∀A, B : |A|, |B| ≤ d/2

where M̃(A, B; T) =

1(
ω−d+u

u

)[u∑
c=0

(
|V (T) ∪A ∪B| − (d− u)

c

)(
n− |V (T) ∪A ∪B|

u− c

)

·
(
|V (T) ∪A ∪B|+ u− c + 8τ2)!

(8τ2)! · (ω

n
)|(V (T)∪A∪B)|+u−c︸ ︷︷ ︸

F
(

|V (T)∪A∪B|+u−c
)

]
,

(2.3)

where u = d− |A ∪B|.
This seemingly mysterious choice of F is ultimately for proving PSDness of M̃ , which

can be seen after a series of technical transformations (Remark 2.10, 3.12). It will be very
interesting to know if there is a priori an explanation of it. See Remark 3.9, 6.14 for why the
simpler, “traditional” choices from the literature, which simulate some plant-distributions,
seem cannot work here.

5 To be distinguished from the usual generating functions for sequences.

CCC 2021

26:6 SOS Lower Bound for Exact Planted Clique

2.2 An Hadamard decomposition and Euler transform
For the Exact Clique problem, by a standard SOS homogeneity reduction (Lemma 4.1) it
suffices to prove PSDness of the

([n]
d/2
)
×
([n]

d/2
)

principal minor of M̃ . We denote this minor
by M .

One unpleasant feature of M is that in its expression (2.3), the parameter u = |A ∩B|
appears in a deeply nested way. To make a PSDness analysis on M (in particular, get a clue
of how to diagonalize it), we resolve this intricacy by two steps. First,

M =
d
2∑

c=0
mc ◦Mc (2.4)

where mc, Mc are matrices s.t. for all |I|, |J | = d/2,

mc(I, J) = 1(
ω−d+u

u

)ωu−c where u denotes |I ∩ J |; (2.5)

Mc(I, J) =

∑

T :|V (T)∪I∪J|≤τ

χT ·Mc(|I ∩ J |, |V (T) ∪ I ∪ J |), if |I ∩ J | ≥ c;

0, o.w.
(2.6)

whose coefficients are

Mc(u, a) =
(

a− (d− u)
c

)(
n− a

u− c

)
n−(u−c) (a + u− c + 8τ2)!

(8τ2)! (ω

n
)a,

where u = |I ∩ J |, a = |V (T) ∪ I ∪ J |. We will analyze mc, Mc’s separately.
The “harder” part is Mc. To further remove the dependence on |I ∩ J | in Mc(I, J), our

second step is to consider a decomposition

Mc =
∑

R∈([n]
≤ d

2
)
MR

c (2.7)

where for each R the matrix MR
c is supported on rows and columns whose index contains R.

To derive the expression of MR
c , we use Euler transform: if x(·), y(·) are two sequences

defined on N s.t. x(m) =
∑m

l=0
(

m
l

)
y(l) for all m, then x(·) is called the Euler transform of

y(·), and the inverse transform is given by y(m) =
∑m

l=0(−1)m−l
(

m
l

)
x(l).

Apply the inverse Euler transform to Mc(u, a) in the above6 on u (fixing c, a), we get:

Yc(r, a) =

r∑

l=c

(−1)r−l
(

r
l

)(
a+l−d

c

)(
n−a
l−c

)
n−(l−c) (a+l−c+8τ2)!

(8τ2)! , if r ≥ c;

0 , o.w.
(2.8)

In summary, the following lemma can be proved.

▶ Lemma 2.1 (ΣΠ-decomposition of M).

M =
d
2∑

c=0
mc ◦

 ∑
R∈([n]

≤d/2)
MR

c

 =
∑

R∈([n]
≤d/2)

 |R|∑
c=0

mc ◦MR
c

 (2.9)

where each mc is by (2.5), and each MR
c has the following expression.

6 A subtle but important point is that Mc(u, a) is partial (i.e. defined only when u ≥ c, a − (d − u) ≥ c),
and we need to extend it to (u, a) ∈ N2 – see Def. 6.5.

S. Pang 26:7

1. MR
c = 0 if |R| < c;

2. If R ̸⊆ I ∩ J , MR
c (I, J) = 0;

3. If |R| ≥ c and R ⊆ I ∩ J , then

MR
c (I, J) =

∑
T :|V (T)∪I∪J|≤τ

MR
c (I, J ; T)χT

where, if denote a = |V (T) ∪ I ∪ J |,

MR
c (I, J ; T) = (ω

n
)a · Yc(|R|, a) (defined by (2.8)). (2.10)

4. For all 0 ≤ c ≤ r ≤ d/2 and 0 ≤ a ≤ τ , |Yc(r, a)| < τ5τ .

Intuition for analysis. The intuition behind decomposition (2.9) is that, the first factor mc

is decreases in c and m0 is very positive; while for every fixed R, MR
0 is positive and other

MR
c ’s (c > 0) are not too large. This is expounded by the following two lemmas.

▶ Lemma 2.2. For each c = 0, ..., d/2,

m0 = ωm1 = ... = ω
d
2 m d

2
≻ d

2ω
Id. (2.11)

▶ Lemma 2.3 (Main Lemma). In decomposition (2.9), w.p. > 1 − n−5 log n the following
hold. For all R ∈

([n]
≤d/2

)
, let P R = {I ∈

([n]
d/2
)
| R ⊆ I}, the following holds.

(1)

MR
0 ⪰ n−ddiag(C̃l)P R×P R ; (2.12)

(2)

±ω−cMR
c ⪯ n−c/6 ·MR

0 , ∀0 < c ≤ |R|. (2.13)

These two lemmas immediately imply that M(G) ⪰ n−d−1diag(C̃l(G))([n]
d/2)×([n]

d/2) w.h.p.,
and Theorem 1.4 is an easy corollary of this (Cor. 6.2, 6.10).

The proof of Lemma 2.2 is relatively easy using Johnson schemes (see Lemma 6.4). Below
we show how to prove the Main Lemma.

2.3 Recursive factorization: an extension
Fix any c, R (|R| ≥ c). To prove the Main Lemma, an important step is to derive an
approximate diagonalization of MR

c , where we will use the recursive factorization technique
from [5]. This technique will be refreshed, formalized and extended properly for our use in
Section 5.3.

For now, we give a first-approximate factorization of MR
c then apply this technique

to get a refined diagonalization by Lemma 2.6.
The next definition in full (Definition 6.11) mentions many terms about a graph-theoretic

structure; we omit the details here.

▶ Definition 2.4 (Side factors). Fix R ∈
([n]

≤ d
2

)
. For i = 0, 1, ..., τ let LR,i be the matrix of

dimension
([n]

d
2

)
×
([n]

≤ d
2

)
defined by equation (6.20) (the exact content is not important for

now). Call L̃R = (LR,0, ..., LR,τ) the left factor, and (L̃R)⊤ the right factor.

CCC 2021

26:8 SOS Lower Bound for Exact Planted Clique

We use these factors to give a PSD factorization in the form MR = L̃R (−)
(

L̃R
)⊤

. The
starting point is a coarse, “first approximate” factorization. In the definition below, Tm

simply means an edge-set and mSepA,B(Tm) is the set of all minimal separators of vertex-sets
A, B (Def. 4.10). Let Dτ be the diagonal matrix diag

(
(ω

n)
|A|

2

)
⊗ Id{0,...,τ}×{0,...,τ}.

▶ Definition 2.5. For any R ∈
([n]

≤d/2
)

define the index set

SR = {(A, i) ∈
(

[n]
≤ d/2

)
× {0, ..., τ} | A ⊇ R, |A|+ i ≥ d

2}.

For c = 0, ..., |R|, define QR
c,0 to be the {0, ..., τ} × {0, ..., τ}-blocked matrix, each block of

dimension
([n]

≤d/2
)
×
([n]

≤d/2
)
: it is supported on SR × SR, expressed by QR

c,0

(
(A, i), (B, j)

)
=

∑
Tm:|V (Tm)∪A∪B|≤τ
A,B∈mSepA,B(Tm)

(ω

n
)|V (Tm)∪A∪B|− |A|+|B|

2 ·Yc

(
|R|, |V (Tm) ∪A ∪B|+ (i + j)

)︸ ︷︷ ︸
defined by (2.8)

·χTm
(2.14)

Then we call L̃R ·
(
Dτ ·QR

c,0 ·Dτ
)
·
(

L̃R
)⊤

the first approximate factorization of MR
c .

▶ Lemma 2.6 (Recursive approximate factorization; informal). For any R ∈
([n]

≤d/2
)

and
0 ≤ c ≤ |R|, we have the following decomposition.

MR
c = L̃R ·

[
Dτ

(
QR

c,0 −QR
c,1 + ...±QR

c,d

)
Dτ

]
·
(

L̃R
)⊤

+ ER
c . (2.15)

Here, all QR
c,k’s (k = 0, 1, ..., d) are supported within SR × SR with expression

QR
c,k

(
(A, i), (B, j)

)
=

∑
Tm:|V (Tm)∪A∪B|≤τ

qR
c,k(Rm, i, j) · χTm

where Rm denotes the triple (A, B; Tm), and the coefficients qR
c,k(·, i, j)’s depend only on the

“shape” of Rm, satisfying

|qR
c,k(Rm, i, j)| ≤ τ5τ · (ω

n1−ϵ
)s−p+k/3 ∀(i, j) (2.16)

where s = |A|+|B|
2 , p is the max number of vertex-disjoint paths from A to B in Rm.

Moreover, the “error” ER
c (G) is supported within rows and columns that contains R and

is clique in G, and w.p. > 1− n−9 log n,
∥∥ER

c

∥∥ < n−ϵτ/2.

▶ Remark 2.7. In this factorization, the middle matrices Q’s have a “tensored-dimension” with
(τ + 1), i.e. it is a (τ + 1)× (τ + 1)-blocked matrix, each block of dimension

([n]
≤d/2

)
×
([n]

≤d/2
)
.

This reflects a key difference (at least technically) between Exact Clique and the non-exact
case; see Remark 6.14.

2.4 Proving PSDness: encounter with Hankel matrices
With Lemma 2.2 and the recursive factorization lemma 2.6 at hand, the following is the key
step towards the Main Lemma.

S. Pang 26:9

▶ Lemma 2.8. W.p. > 1− n−8 log n over G, the following holds.
(1) ∀R ∈

([n]
≤d/2

)
,

QR
0,0 −QR

0,1 + ...±QR
0, d

2
⪰ τ−7τ · diag

(
C̃l
)

SR×SR

where recall SR = {(A, i) ∈
([n]

≤d/2
)
× {0, ..., τ} | A ⊇ R, |A|+ i ≥ d

2}.
(2) ∀R, 0 < c ≤ |R|

±ω−c
(

QR
c,0 −QR

c,1 + ...±QR
c, d

2

)
⪯ n−c/4 · diag

(
C̃l
)

SR×SR
.

To prove this lemma, modulo somewhat standard steps (three Lemmas 6.34, 6.37, 6.38) the
final technical challenge is:

Show the positiveness of E[QR
0,0] (Corollary 6.30).

We describe below how this is done. After simplification, the real task is to analyze the
positiveness of the following matrix7:

r∑
l=0

(−1)r−l

(
r
l

)
l! ·Hτ, l+8τ2 for any 0 ≤ r ≤ d/2 (2.17)

where {Hm,t} is the family of (m + 1)× (m + 1)-matrices

Hm,t(i, j) = (i + j + t)! ∀0 ≤ i, j ≤ m.

This is a special family of the so-called Hankel matrices whose (i, j)th element depends only
on i + j. General Hankel matrices seem to arise naturally in moment problems but they
are notoriously wild-behaving in many aspects (see e.g. [31]). Fortunately enough, for the
special family here we can manage to get a relatively fine understanding; we term this family
factorial Hankel matrices. The key observation is that they have a concrete recursive
diagonalization (Proposition 6.27), resulting in the following property.

▶ Proposition 2.9. If parameters m, t, r satisfy

t + 1 > 8 ·max{r2, m}, (2.18)

then Hm,t+1 ⪰ 2r2Hm,t.

▶ Remark 2.10. The condition (2.18) in the above proposition is the reason of the “8τ2” in
the numerator of F , (2.2).

With this proposition, it is relatively easy to complete the proof of the Lemma 2.8, hence
the Main Lemma. This completes the proof overview of Theorem 1.4.

2.5 Ideas for Theorem 1.5
In this subsection, we demonstrate how to “naturalize” certain techniques that were used for
the lower bounds of Non-Exact Clique.

7 The subscripts are not exactly as in the problem but suffice to demonstrate the spirit.

CCC 2021

26:10 SOS Lower Bound for Exact Planted Clique

On defining the pseudo-expectation. (Section 3.1) Previously, the pseudo-expectation is
obtained via the so-called pseudo-calibration method. We show how to define the same Ẽ in
very different terms via the incidence algebra on the vertex-set, which can also be regarded
as a simple refinement of the construction in [13].

The ζ-matrix on [n] is the 2[n] × 2[n] 0-1 matrix with ζ(A, B) = 1 iff A ⊆ B. We observe
that ζ reveals the basic linear structure of the true expectation on cliques in the case of a
single planted clique, and we use ζ to define Ẽ. That is, we define a degree-τ approximate-
distribution vector pτ (G) first – it approximates the real planted-clique distribution, with a
standard twist so as to be supported on cliques in G (3.8) – then take the vector ζd,τ · pτ (G)
as Ẽx (Def. 3.3). Here, (·)τ means to truncate the matrix or vector to indices whose size
≤ τ . In this way, Ẽ inherits the linear structure posed by ζ too.

On deducing the first-approximate diagonalization. (Section 5) We deduce a “coarse”
diagonalization of the resulting moment matrix from Ẽ in above. The deduction has two
steps: 1. Analyze the expectation of the matrix; 2. The (imaginary) diagonalization of the
matrix is in essence a quadratic equation, which we weaken to a proper “modular” version
and solve the latter. We call step 2 the mod-order analysis (Section 5.2), whose underlying
idea is inspired by and similar to the more broad dimension-analysis in physical sciences:
weaken the equation to its most significant part in a well-defined way (Def. 5.5). One
ingredient towards defining the weakening is the norm information on certain pseudo-random
matrices (the graphical matrices).

The resulting weakened equation has a nice structure to work with (Lem. 5.6, Cor. A.2).
Using standard techniques for studying algebraic equations – actually a simple polarization
(Appendix A.2) – we can deduce a solvability condition for the polarized equation, which
translates to the existence of a general graph-theoretic structure (equation (A.19) and
Fact A.1). The “coarse” diagonalization is then formulated based on this structure.

To demonstrate this equation in more detail, it suffices to concentrate on the
([n]

d/2
)
×
([n]

d/2
)
-

minor of the moment matrix, denoted by M ′:

M ′(I, J) =
∑

T :|V (T)∪I∪J|≤τ

(ω

n
)|V (T)∪I∪J|χT , ∀I, J : |I| = |J | = d/2.

Step 1: expectation. By using Johnson schemes as in [25], we get an explicit decomposition
E[M ′] = CC⊤ where C is

([n]
d/2
)
×
([n]

≤d/2
)
, and actually with a fine understanding of the

spectrum of E[M ′].
Step 2: mod-order analysis. Given E[M ′] = CC⊤ from Step 1, ideally we hope to solve the

quadratic matrix equation

M ′ = NN⊤ (2.19)

in N with E[N] = C, and N extending C by non-trivial Fourier characters. Two
observations about (2.19) follow.

(1) Order in ω
n

. Entries of M ′ all have a clear order in ω
n . Like in fixed-parameter problems,

we treat ω
n as a distinguished structural parameter and try to solve the correct power of

ω
n in N first.

(2) Norm-match. A closer look into CC⊤ shows

∥∥CrC⊤
r

∥∥ ≈ (d/2
r

)
· (ω

n
)d−rnd/2−r, r = 0, ..., d/2, (2.20)

S. Pang 26:11

where assume C = (C0, ..., Cd/2), each Cr having column dimension
([n]

r

)
. Assume

N = (N0, ..., Nd/2). Then we expect NrN⊤
r to concentrate around CrC⊤

r for each r, and
so expect the norm of the non-constant part of NrN⊤

r to be bounded by (2.20). Under
this expectation, the known tight norm bounds on related matrix pieces would tell us, for
each possible appearing term in N , the least order of ω

n in its coefficient.

With these observations, we can weaken equation (2.19) to a simple “modular version”
that is more informative about the (imaginary) solution N . Namely, abstract (ω

n) as a fresh
variable α and work in ring R[α, {χT }], consider

(M ′ mod high order) = (N mod high order) · (N⊤ mod high order) (2.21)

where “order” means power of α (think of α as an “infinitesimal”). We call (2.21) the
mod-order equation and its analysis the mod-order analysis. For details see Definition 5.5.

We feel that this approach leads us more naturally to the realization of using the graph-
theoretic structure beyond guesses, and the simple general idea behind the mod-order analysis
might hopefully find other applications.

2.6 Structure of the paper
In Section 3 we define the pseudo-expectations and show Theorem 1.5(1). In Section 4 we
recall some fundamental tools for analysis. In Section 5 we refresh the technique of recursive
factorization and show Theorem 1.5(2). With all preparations in place, in Section 6 we prove
the main Theorem 1.4. The paper is concluded in Section 7 with open problems.

Notation. I, J, A, B, S will be used to denote vertex-sets, and T for edge-sets. E(S) :=
(

S
2
)
.

G denotes a simple graph on the vertex-set [n]. “T ⊆ E([n])” will be omitted in summation
when there is no confusion. Finally, we use y(n) = O(x(n)) to mean that there is some
absolute constant c s.t. y(n) ≤ cx(n) for all n.

Parameter regime. Throughout the paper,

ϵ = any positive parameter (wlog ϵ <
1
40);

ω = n1/2−4ϵ;

τ = ϵ

200 log n/ log log n;

d = ϵ

100τ.

3 Pseudo-expectations

In this section, we define the pseudo-expectations. As a warm-up we start with the non-exact
problem, then move on to the exact case.

3.1 Non-exact case: a new perspective
Given a graph G we can think of a degree-d pseudo-expectation as assigning a number ẼxS

to each subset S ⊆ [n] of size ≤ d, so that the resulting vector Ẽx looks indistinguishable to
the expectation resulted from the case when a random-ω clique is planted, from the view of
degree-d SOS.

CCC 2021

26:12 SOS Lower Bound for Exact Planted Clique

As explained at the beginning of Section 2, to make up such an assignment we first go
beyond to slightly larger subsets of size τ . We define an “approximate distribution” on size
≤ τ -cliques in G then use it to generate pseudo-expectation on all size ≤ d-subsets.

3.1.1 ζ-function and Möbius inversion
Given n-vertex graph G, let p(G) ∈ R2[n] be the max-clique-indicator vector, then

q(G) := ζ · p(G)

is a vector supported exactly on all cliques in G, where ζ is the 2[n] × 2[n] matrix

ζ(A, B) = 1 iff A ⊆ B, ∀A, B ⊆ [n]. (3.1)

In particular, if G itself is a single clique then q(G) is the clique-indicator. We will use ζa,b

to denote the submatrix of ζ on rows
([n]

≤a

)
and columns

([n]
≤b

)
, and use similar notation on all

related vectors.
Consider the plant-situation where G is indeed a single random clique. Suppose its

distribution is represented by a plant-distribution vector pplant ∈ R2[n] . Let the output-
expectation qout be indicator-vector of cliques in G in expectation. Then

qout = ζ · pplant. (3.2)

We call such a pair (pplant, qout) a plant-setting.

▶ Definition 3.1 (Two plant-settings). The exact plant-setting (p0, q0) is:

p0(S) = 1(
n
ω

) if |S| = ω and 0 otherwise, (3.3)

and

q0(S) = (ζp0)(S) =

(
n−|S|
ω−|S|

)(
n
ω

) . (3.4)

I.e. in this setting a random size-ω subset is chosen to be the planted clique.
The independent plant-setting (p1, q1) is:

p1(S) = (ω

n
)|S|(1− ω

n
)n−|S| ∀S ⊆ [n], (3.5)

and

q1(S) = (ζp1)(S) = (ω

n
)|S|. (3.6)

I.e. any vertex is included in the planted clique w.p. ω
n independently.

Thus the matrix ζ reveals the basic linear relations between (pplant, qout). It is upper-
triangular (with row- and column-indices ordered in a size-ascending way), invertible, and
the inverse is the Möbius inversion matrix:

ζ−1(A, B) = (−1)|B\A| if A ⊆ B, and 0 otherwise.

Note (ζa,a)−1 = (ζ−1)a,a for all a ≤ n. Moreover, if let the pseudo-expectation be defined as
Ẽx = p ∈ R2[n] for some vector p, then the “full” 2[n] × 2[n] moment matrix is

MSOS = ζdiag(p)ζ⊤. (3.7)

In particular, if p is a nonnegative vector then MSOS is immediately PSD.

S. Pang 26:13

3.1.2 The non-exact pseudo-expectation
Idea. Given any G, we will first construct a degree-τ “approximate plant-distribution”
pτ (G), which simulates the plant-distribution (Def. 3.1) in the sense that they give similar
output-expectations. We also require pτ (G) to be supported on size ≤ τ -cliques in G. Then
we can take Ẽx = ζd,τ · pτ (G) so that the result inherits the linear structure posed by ζ.

What is this pτ (G)? From the view of approximation it seems taking ζ−1
τ,τ (q1)τ would

suffice, while to make it supported on cliques, same as in [13] we add a clique-indicator factor:

pτ (G)(S) =
(

2|(S
2)|ClS(G) · ζ−1

τ,τ (q1)τ

)
(S) ∀S ⊆ [n] of size ≤ τ (3.8)

where ClS(·) is the clique indicator function and 2|(S
2)| is for re-normalization.

▶ Definition 3.2. ∀S ⊆ [n], the normalized clique-indicator is function

C̃lS(G) := 2|(S
2)|ClS(G). (3.9)

C̃l(G) denotes the (column) vector of them over a family of S’s, which will always be clear
from the context.

▶ Definition 3.3. The non-exact pseudo-expectation is

Ẽnonexact = ζd,τ · pτ (G) = ζd,τ · (C̃l(G) ◦ ζ−1
τ,τ) · (q1)τ ∈ R([n]

≤d) (3.10)

where “◦” is the Hadamard product8.

In short, Ẽnonexact refined the construction in [13] by one step: factor through size-τ
subsets (in the only non-trivial way) so that the size-d output inherits linear relations posed
by ζ.

The resulting moment matrix is

Mnonexact(G) = ζd/2,τ · diag (pτ (G)) · (ζd/2,τ)⊤, (3.11)

similarly as (3.7).
▶ Remark 3.4. Ẽnonexact looks like a true expectation on cliques in G, namely, if pτ (G) were
nonnegative then the PSDness of Mnonexact(G) would be immediate. Alas, this is not true
by computation9. That the PSDness could still possibly hold is because ζd/2,τ in (3.11) is
degenerate.

▶ Lemma 3.5 (Theorem 1.5(1)). For all S ⊆ [n] s.t. |S| ≤ d,

ẼnonexactxS =
∑

T :|V (T)∪S|≤τ

(ω

n
)|V (T)∪S|χT . (3.12)

Proof. Note C̃lS =
∑

T ⊆E(S) χT for all S. Now for S, S′ with appropriate size bound,

(
C̃l ◦ ζ−1

τ,τ

)
(S, S′) =

{∑
T ∈E(S) χT · (−1)|S′\S|, if S ⊆ S′

0, o.w.
;

8 In general (M1 ◦ M2) · M3 ̸= M1 ◦ (M2 · M3), but they are equal if M1 is a column vector.
9 One intuition, suggested by a reviewer, is that any true expectation on cliques has objective value∑n

i=1 xi = O(log n) w.h.p.. Now if pτ (G) were nonnegative then it would be almost a distribution since
Ẽnonexact(xϕ) ≈ 1 (which is not too hard to check by (3.12)), but its objective value n

1
2 −ϵ is too big.

CCC 2021

26:14 SOS Lower Bound for Exact Planted Clique

(
ζd,τ · (C̃l ◦ ζ−1

τ,τ)
)

(S, S′) =
∑

S′′:S⊆S′′⊆S′

 ∑
T ⊆E(S′′)

χT · (−1)|S′\S′′|

=

∑
T :V (T)∪S⊆S′

χT ·

 ∑
S′′:V (T)∪S⊆S′′⊆S′

(−1)|S′\S′′|

=

∑
T :V (T)∪S⊆S′

χT · δS′=V (T)∪S =
∑

T :V (T)∪S=S′

χT .

Therefore, ẼnonexactxS =

(
ζd,τ · (C̃l ◦ ζ−1

τ,τ)(q1)τ

)
(S) =

∑
S′:|S′|≤τ

 ∑
T :V (T)∪S=S′

χT · (
ω

n
)|S′|

=

∑
T :|V (T)∪S|≤τ

χT · (
ω

n
)|V (T)∪S|

for all S with |S| ≤ d. ◀

3.2 The exact case
In this subsection, we give a generic way to generate possible pseudo-expectations that satisfy
Size Constraints (1.4). The idea is to define ẼxS in a top-down fashion: fix ẼxS for all
|S| = d first, then recursively set

ẼxS ←
1

ω − |S|
∑
i/∈S

ẼxS∪{i} (3.13)

for smaller-sized S’s. If denote by Ẽdx the vector of the assignments for S’s s.t. |S| = d,
then this amounts to multiplying Ẽdx by the following matrix.

▶ Definition 3.6. The d-filtration matrix Fild,=d, of dimension
([n]

≤d

)
×
([n]

d

)
, is:

Fild,=d(A, B) =

(

ω−|A|
d−|A|

)−1
, if A ⊆ B (where |B| = d);

0, otherwise.
(3.14)

▶ Definition 3.7. Given vector Ẽdx which assigns a value to each d-subset S ⊆ [n], the
exact pseudo-expectation generated by Ẽdx is

Ẽx := Fild,=d · Ẽdx. (3.15)

▶ Lemma 3.8. The pseudo-expectation in Definition 3.7 satisfies the Size Constraints (1.4),
regardless of the choice of Ẽdx.

Proof. For any S ∈
([n]

<d

)
, take a vector vS ∈ R([n]

≤d)

vS(S′) =

ω − |S|, if S′ = S;
−1, if S′ ⊇ S and |S′\S| = 1;
0, otherwise

then it suffices to show v⊤
S Fild,=d = 0. But this is a direct check. ◀

S. Pang 26:15

The Ẽ generated like so should further satisfy:
1. Clique Constraints (1.3);
2. PSDness Constraint (1.5);
3. Default Constraint (1.2) (so far we only have ω · Ẽx∅ = Ẽx1 + ... + Ẽxn).
Item 3 is not a problem as long as Ẽx∅ > 0, since we can always rescale everything by
(Ẽx∅)−1 without affecting other constraints.
▶ Remark 3.9 (Example). The following construction seems natural. Combining Def. 3.7 with
the perspective from Section 3.1.2, we can take (3.10) with the exact plant-setting (p0, q0),
followed by multiplying Fild,=d:

ẼexamplexS = Fild,=d ·
(

ζd,τ · (C̃l(G) ◦ ζ−1
τ,τ) · (q0)τ

)
.

Actually, it can be easily checked that it satisfies Clique Constraints; it also has a nice
expression in Fourier characters. By some computation which we omit here, modulo provably
negligible error the resulting matrix is

Mexample(I, J) =
∑
T :

|V (T)\(I∪J)|≤τ−d

χT ·

(
n−|V (T)∪I∪J|
ω−|V (T)∪I∪J|

)(
n
ω

) .

The only problem, however, is that we don’t know how to prove the PSDness. Despite a
transparent similarity to the previous expression (3.12), a similar proof breaks down seriously
here, and the main reason is the loss of nice arithmetic structure when changing from function
(ω

n)x to (n−x
ω−x)
(n

ω) . See also Remark 6.14.

3.3 The exact pseudo-expectation
Now we pinpoint an exact pseudo-expectation in Definition 3.7. With the idea stated in
detail in the overview (Section 2.1), we give the construction directly.

We take the pseudo-expectation for |S| = d in the form

ẼxS =
∑

T :|V (T)∪S|≤τ

χT · F (|V (T) ∪ S|)

for some function F . F is called a d-generating function. Then for general |S| ≤ d, (3.14)
gives:

ẼxS = 1(
w−d+u

u

) ∑
T :|V (T)∪S|≤τ

χT ·
[u∑

c=0

(
|V (T) ∪ S| − d + u

c

)(
n− |V (T) ∪ S|

u− c

)

· F (|V (T) ∪ S|+ u− c)
] (3.16)

where we have let u := d− |S|.

▶ Lemma 3.10. Any exact pseudo-expectation generated by (3.16) satisfies the Clique and
Size Constraints (1.3),(1.4).

Proof. For Clique Constraints, note (3.16) only depends on |V (T) ∪ S|, so by grouping
terms ẼxS =

∑
T :|V (T)∪I∪J|≤τ M(I, J ; T)χT factors through C̃lI∪J =

∑
T ⊆E(I∪J) χT . I.e.,

M(I, J)(G) = 0 if C̃lI∪J(G) = 0.
It satisfies Size Constraints by Lemma 3.8. ◀

CCC 2021

26:16 SOS Lower Bound for Exact Planted Clique

Now we pinpoint a choice of the d-generating function.

▶ Definition 3.11 (Exact d-generating function).

F (x) := (x + 8τ2)!
(8τ2)! · (ω

n
)x.

▶ Remark 3.12. As is said in the proof overview, the design of F , especially its first factor, is
technical and the ultimate goal is to make the resulting M positive. The numerator (x+8τ2)!
will be used in Proposition 6.28, where the term 8τ2 can be replaced by larger polynomials
in τ . The (8τ2)! in denominator is added just for convenience (see Remark 3.14).

▶ Definition 3.13. The exact moment matrix M̃ is

M̃(A, B) =
∑

T :|V (T)∪A∪B|≤τ

M̃(A, B; T)χT ∀|A|, |B| ≤ d/2

where M̃(A, B; T) =

1(
ω−d+u

u

)[u∑
c=0

(
|V (T) ∪A ∪B| − (d− u)

c

)(
n− |V (T) ∪A ∪B|

u− c

)

·
(
|V (T) ∪A ∪B|+ u− c + 8τ2)!

(8τ2)! · (ω

n
)|(V (T)∪A∪B)|+u−c︸ ︷︷ ︸

f
(

|V (T)∪A∪B|+u−c
)

]
(3.17)

and where u = d− |A ∪B|.

▶ Remark 3.14. In (3.17), the “most significant” factor is (ω
n)|V (T)∪A∪B| · ω−c, if notice

(n−|V (T)∪A∪B|
u−c)

(ω−d+u
u) ωun−(u−c) has 0th-order in ω, n. One thing to keep in mind is that other

factors like (|V (T)∪A∪B|+u−c+8τ2)!
(8τ2)! are qualitatively smaller than ω, within our parameter

regime.

4 Preparations

In this section, we prepare some necessary tools for studying the matrices.

4.1 Homogenization for Exact Clique
With the Size Constraints (1.4) satisfied, any moment matrix can be reduced to its

([n]
d/2
)
-

principal minor, which is slightly more convenient to work with. The following homogeneity
trick is standard in the SOS literature.

Given any degree-d moment matrix MdSOS(G) that satisfies the Size Constraints (1.4),
let M(G) be its principal minor on

([n]
d/2
)
×
([n]

d/2
)
.

▶ Lemma 4.1. MdSOS(G) is PSD ⇔ M(G) is PSD.

Proof. The ⇒ part is trivial. Now suppose MdSOS is not PSD, then

∃a ∈ R([n]
≤d/2) a⊤MdSOSa = −1. (4.1)

S. Pang 26:17

With the presence of boolean constraints (i.e. define Ẽ(x2
i · p) := Ẽ(xi · p) for all i and all

polynomial p of degree ≤ d− 2), this is equivalent to

Ẽ(g2) = −1 (4.2)

where g = a⊤x =
∑

|S|≤d/2 aSxS is multi-linear. Now substitute every xS (|S| < d) in g by
the corresponding linear combination of {xS′ | |S′| = d} from (3.13). This does not affect
the value of (4.2) since Ẽ satisfies the equality constraints. We get

Ẽ(g2
1) = −1 (4.3)

for some multi-linear, degree-d/2 homogeneous g1. Now translate (4.3) back (assume g1 = bT x,
x = (xS)|S|=d/2) to b⊤Mb = −1, we see that M is not PSD. ◀

4.2 Concentration bound on polynomials
The following is standard.

▶ Lemma 4.2. Suppose a < log n, and p is a polynomial

p =
∑

T : |V (T)|=a

c(T)χT cT ∈ R

and C > 0 is a number s.t. |c(T)| ≤ C for all T . Then W.p. 1− n−10 log n over G,

|p(G)| < C · na/22a2
n4 log log n. (4.4)

Proof. Power-estimation. For all k ∈ N, (we can think of a < k = o(n/a))

p2k =
∑

T1,...,T2k: |V (Ti)|=a

c(T1)...c(T2k)χT1 · ... · χT2k
(4.5)

Take expectation of (4.5). Each E[χT1 ...χT2k
(G)] ̸= 0 (i.e. equals 1) iff every edge appears

even times in T1, ..., T2k, which implies |V (T1 ∪ ... ∪ T2k)| ≤ 1
2 · 2ka = ka. There are at most

ka
(

n
ka

)
< nka many choices of such V (T1 ∪ ... ∪ T2k). For each choice, there are in turn at

most
(

ka
a

)
· 2(a

2) < (ka)a · 2a2/2 many ways to choose each Ti. Therefore,

E[p2k] ≤ C2k · nka
(

(ka)a2a2/2
)2k

:= N2k where N = Cna/2 · (ka)a · 2a2/2.

By Markov inequality, Pr
[
p2k > (2N)2k

]
< 2−2k. Take k := 10 log2 n, we get that w.p.

> 1− n−10 log n,

|p(G)| < 2N < C · na/22a2
n4 log log n

for all large enough n. ◀

4.3 Norm concentration of pseudo-random matrices
Now we state a concentration bound on pseudo-random matrices which, like in almost all
previous work on the subject, will be a fundamental tool for us.

The pseudo-random matrices refer to the graphical matrices ([24]). Intuitively, such a
matrix collects Fourier characters of all embeddings of a fixed “shape”. Definition 4.3, 4.5
below are implicit in [24, 25, 16] and is termed explicitly in [5].

CCC 2021

26:18 SOS Lower Bound for Exact Planted Clique

▶ Definition 4.3. A ribbon R is a (ordered) triple (A, B; T) where A, B are vertex-sets and
T is an edge set. A, B are called the left and right vertex set of R. The size of R is

|V (R)| = |V (T) ∪A ∪B|.

By definition, a ribbon R = (A, B; T) as a graph always has no isolated vertex outside of
A ∪B.

▶ Definition 4.4. We say R = (A, B; T) is left-generated if every vertex in V (R) is either
in B or can be reached by paths10 from A without touching B. Being right-generated is
symmetrically defined.

▶ Definition 4.5. For ribbon (A, B; T), if further A ∪ B is totally-ordered, it is called a
shape. Denote a shape by U = (A, B; T). As before, V (U) = A ∪ B ∪ V (T), and its size
is |V (U)|.

When fixing an underlying vertex-set [n], a ribbon R within vertex set [n] can always be
regarded as shapes, with the induced ordering on vertices. So in this setting, we may speak
of the shape of R and interchangeably use R to denote shapes.

▶ Definition 4.6. A real-valued function f defined on a set of ribbons within vertex-set [n] is
called symmetric with respect to shapes, if whenever R and R′ are of the same shape
then f(R) = f(R′).

▶ Definition 4.7 ([24]). Fix an n, and a shape U = (A, B; T) Define the graphical matrix
of shape U to be the following 2[n] × 2[n]-matrix MU . Call a map ϕ : V (U)→ [n] proper if ϕ

is injective and respects the order on A ∪B, then

∀I, J ⊆ [n], MU (I, J) =
∑

T : ∃proper ϕ s.t.
ϕ(A)=I,ϕ(B)=J,ϕ(T)=T ′

χT ′

(= 0 if no such ϕ exists). Here, ϕ on T means the natural induced map on edges.

▶ Theorem 4.8 (Norm bounds on MU [24, 5]). For any shape U = (A, B; T) of size t < log n,
w.p. > 1− n−10 log n over G,

∥MU (G)∥ ≤ n
t−p

2 · 2O(t) · (log n)O(t+p−2r) (4.6)

where r = |A ∩ B|, p is the maximum number of vertex-disjoint paths between (A, B) in
U . Moreover, this bound is tight up to polylog(n)-factors, for all MU with the described
parameters ([24], Thm 38]).

Moreover, under the same notation, if further denote s = |A|+|B|
2 then

∥MU (G)∥ ≤ n
t−p

2 · 2O(t) · (log n)O(t−s). (4.7)

Theorem 4.8 is proved by a careful estimation of the trace-power E[tr(M2k
U)] (for some k > 0),

which we omit here. Its “moreover” part follows from (4.6) since t ≥ |A ∪ B| = 2s − r,
p ≤ s, so

t + p− 2r ≤ t + s− 2(2s− t) = 3(t− s).

▶ Remark 4.9. Theorem 4.8 and its proof is a far-reaching generalization of that of the
concentration bounds on polynomials, Lemma 4.2. Namely, if take special shapes in the
form U = (A, A; T), then the corresponding matrix MU is diagonal, so estimating its norm is
equivalent to estimating absolute values of the diagonals which are polynomials.

10 We always stick to the convention of including degenerate paths (one-point path).

S. Pang 26:19

4.4 Some general notions on graphs
We finish our preparation with some general graph-theoretic notions.

▶ Definition 4.10 (Vertex-separator). Given graph H and two vertex-subsets A, B ⊆ V (H),
call S ⊆ V (H) an (A, B)-vertex-separator if any path11 from A to B in H must pass
through S. Let

sA,B(H) := min{|S| | S is an (A, B)-vertex-separator}.

A vertex-separator achieving this minimum is a min-separator. mSepA,B(H) denotes the
set of all min-separators.

This definition naturally applies to ribbons R = (A, B; T), by using the graph H as on
V (T) ∪A ∪B with edge-set T . In that case we can write the corresponding size and set of
the min-separators as

sA,B(T), mSepA,B(T) or mSep(R).

Menger’s theorem. For any finite graph H, sA,B(H) equals to the maximum number of
vertex-disjoint paths from A to B in H.

▶ Definition 4.11. For ribbon R = (A, B; T), let us define its reduced size to be

eA,B(T) := |V (T) ∪A ∪B| − sA,B(T). (4.8)

The reduced size is double of the exponent in n in the bound of Theorem 4.8, hence is the
controlling parameter of the norm of the graphical matrix.

5 Non-exact case PSDness: a refresh

In this section, we review and refresh the proof techniques for the non-exact problem. In
Section 5.1 and 5.2, we show Theorem 1.5(2) via the so-called mod-order analysis, which
gives a conceptually different approach to the techniques. In Section 5.3, we formalize the
recursive factorization in a convenient language and extend it properly for later use.

Declaration. Section 5.2 is only for Theorem 1.5(2). The reader can safely skip it if she
wants to proceed directly to the proof of Theorem 1.4.

Notation. Thoughout Section 5, M ′ denotes the
([n]

d
2

)
×
([n]

d
2

)
-minor12 of the non-exact

moment matrix.

M ′(I, J) =
∑

T :|V (T)∪I∪J|≤τ

(ω

n
)|V (T)∪I∪J|χT ∀I, J ∈

(
[n]
d/2

)
. (5.1)

Goal of Section 5. Diagonalize M ′ approximately, such that the difference matrix is
negligible (w.h.p. when plugging G).

11 Same as in the previous footnote. In particular, every vertex-separator contains A ∩ B.
12 Strictly speaking, PSDness of this minor is not sufficient as we do not have a homogeneity reduction in

non-exact case. Nevertheless, it suffices to demonstrate the idea.

CCC 2021

26:20 SOS Lower Bound for Exact Planted Clique

5.1 Step 1: Diagonalization of E[M ′]
▶ Proposition 5.1. E[M ′] = CC⊤, where C is the

([n]
d/2
)
×
([n]

≤d/2
)
-matrix

C = (ζ⊤)d/2,≤d/2 · diag
(√

t(|A|)
)

A∈([n]
≤d/2)

(5.2)

and t(r) = (1−O(dω
n)) · (ω

n)d−r for all r = 0, ..., d/2.

This can be shown by a similar calculation as in [25], as below.

▶ Definition 5.2 (See e.g. [9]). Fix parameters n, k. A Johnson scheme J is an
([n]

k

)
×
([n]

k

)
-

matrix that satisfies J(I, J) = J(I ′, J ′) whenever |I ∩ J | = |I ′ ∩ J ′|.

It can be checked that (fix n, k) all Johnson schemes are symmetric matrices and form a
commutative R-algebra, so they are simultaneously diagonalizable. In below we fix n and
k = d/2. An obvious R-basis for Johnson schemes is D0, ..., Dd/2 where

Dr(I, J) =
{

1, if |I ∩ J | = r

0, o.w.
∀I, J ∈

(
S

d/2

)
. (5.3)

Another basis which we denote by J0, ..., Jd/2 is

Jr(I, J) =
(
|I ∩ J |

r

)
, ∀I, J ∈

(
[n]
d
2

)
. (5.4)

J0, ..., Jd/2 are PSD matrices since

Jr =
∑

A⊆[n],|A|=r

uAu⊤
A where uA ∈ R([n]

k), uA(B) = 1A⊆B . (5.5)

Clearly Jd/2 = Id. More generally, we have:

▶ Fact 5.3 (See e.g. (4.29) in [9]). The Johnson schemes (for (n, d/2)) have shared eigenspace-
decomposition R([n]

d/2) = V0 ⊕ ...⊕ Vd/2, and

Jr =
d
2⊕

i=0
λr(i) ·Πi for r = 0, ..., d/2

where Πi is the orthogonal projection to Vi w.r.t. the Euclidean inner product, and the
eigenvalues are

λr(i) =
(d

2 − i

r − i

)(
n− d

2 − i
d
2 − r

)
, 0 ≤ i ≤ d

2 .

▶ Lemma 5.4. E[M ′] =
∑d/2

r=0 t(r)Jr where each t(r) = (1−O(dω
n)) · (ω

n)d−r.

Proof. By definition, E[M ′] =
∑d/2

r=0(ω
n)d−rDr. Note each Dr decomposes as

Dr =
d/2∑

r′=r

(−1)r′−r

(
r′

r

)
· Jr′ (5.6)

S. Pang 26:21

since RHS(I, J) =
d/2∑

r′=r

(−1)r′−r
(

r′

r

)(|I∩J|
r′

)
=

|I∩J|∑
r′=r

(−1)r′−r
(|I∩J|

r

)(|I∩J|−r
r′−r

)
=
(|I∩J|

r

)
·

1|I∩J|=r = 1|I∩J|=r. So together,

E[M ′] =
d/2∑
r=0

(ω

n
)d−r

 d/2∑
r′=r

(−1)r′−r

(
r′

r

)
Jr′

=

d/2∑
r′=0

Jr′ ·

 r′∑
r=0

(ω

n
)d−r(−1)r′−r

(
r′

r

)
=

d/2∑
r′=0

Jr′ · (ω

n
)d−r′

(1− ω

n
)r′

(5.7)

which proves the lemma. ◀

By Lemma 5.4 and (5.5), if let t(r) = (ω
n)d−r′ [1− ω

n]r′ then

E[M ′] =
∑

A:|A|≤d/2

t(|A|)uAu⊤
A=(ζ⊤)d/2,≤d/2 · diag

(
t(|A|)

)
· ζ≤d/2,d/2 = CC⊤,

where used that the matrix (ζ⊤)d/2,≤d/2 has columns {uA | |A| ≤ d/2}. This proves
Proposition 5.1.

5.2 Step 2: Mod-order analysis toward “coarse” diagonalization
Given E[M ′] = CC⊤, ideally we hope to continue to solve for

M ′ = NN⊤ (5.8)

with E[N] = C, and N extending C by non-trivial Fourier characters. Also, we restrict
ourselves to symmetric solutions w.r.t. shapes (Def. 4.6).

Toward this goal, we define and study a relaxed equation first (Definition 5.5). Let us
start with its motivation.
(1) Order in ω

n
. Entries of M ′ all have a clear order in ω

n . Like in fixed-parameter problems,
we treat ω

n as a distinguished structural parameter and try to solve the correct power of
ω
n in terms in N .

(2) Norm-match. Let’s have a closer look into

E[M ′] = CC⊤ =
d/2∑
r=0

(1−O(dω

n
)) · (ω

n
)d−rJr.

By fact 5.3, each Jr b has norm
(

d/2
r

)
· nd/2−r so

∥∥CrC⊤
r

∥∥ ≈ (d/2
r

)
· (ω

n
)d−rnd/2−r, r = 0, ..., d/2. (5.9)

We expect Nr(Nr)⊤ to concentrate around Cr(Cr)⊤, so the norm of the “random” part,
i.e. matrix of nontrivial Fourier characters in Nr(Nr)⊤, is expected to be bounded by (5.9).
The tight bound from Theorem 4.8 tells how this may happen, which we review below.

It will be convenient to use a scaling of variables: let

L = (L0, ..., L d
2
) = (Nr · (

ω

n
)

−|A|
2)0≤r≤ d

2
,

CCC 2021

26:22 SOS Lower Bound for Exact Planted Clique

then

M ′ = L · diag
(

(ω

n
)|A|
)
· L⊤ with E[L] = (Cr · (

ω

n
)−r/2)r=0,1,...,d/2. (5.10)

Now suppose

Lr(I, A) =
∑

small T

βI,A(T)χT , A ∈
(

[n]
r

)
where assume as in (1), an order of ω

n can be separated:

βI,A(T) = (ω

n
)x︸ ︷︷ ︸

main-order term

· (factor ≪ n

ω
and ≫ ω

n
). (5.11)

Fix I, A, T , we are looking for the condition on x in order to have the expected norm control
on Lr(ω

n)r(Lr)⊤. Ignore for a moment the cross-terms, such a single graphical matrix square
in Lr(ω

n)rL⊤
r is

(ω

n
)2xR(I,A;T) · (

ω

n
)r ·R⊤

(I,A;T)

which has norm13

⪅ (ω

n
)2x+r · neI,A(T) · 2O(|V (T)∪I∪A|) · (log n)>0

by Theorem 4.8. Here recall eI,A(T) = |V (T)∪I∪A|−sI,A(T)(≥ |I|−|A| = d
2−r). Compare

this with (5.9), we need (ω
n)2xneI,A(T) <

(
d/2

r

)
(ω√

n
)d/2−r. If think of 2d as qualitatively smaller

than any positive constant power of ω, n, the natural bound to put is x ≥ eI,A(T) which
actually is the limit requirement when log ω

log n →
1
2 . Suggested by this, we will set the restriction

x ≥ eI,A(T) right from the start in the relaxed equation.

The above motivation leads to the following definition. Take a ring A by adding fresh
variables α and χT ’s to R, where T ranges over subsets of

([n]
2
)

and they only satisfy relations
{χT ′ · χT ′′ = χT : T ′ ⊕ T ′′ = T}.

▶ Definition 5.5. The mod-order equation is

Lα · diag
(

α|A|
)
· (Lα)⊤ = Mα mod (∗) (5.12)

on the
([n]

d/2
)
×
([n]

≤d/2
)

matrix variable Lα in ring A, where

Mα(I, J) :=
∑

T :|V (T)∪I∪J|≤τ

α|V (T)∪I∪J|χT ,

and mod (∗) is the modularity, which means position-wise mod the ideal(
{α|V (T)∪I∪J|+1χT }, {χT : |V (T) ∪ I ∪ J | > τ}

)
.

Moreover, if denote Lα(I, A) =
∑

T βI,A(T)χT where βI,A(T) ∈ R[α], then14

αeI,A(T) | βI,A(T) ∀I, A, T. (5.13)

We are interested in solutions that are symmetric, i.e. βI,A(T ′) = βJ,B(T ′′) whenever
(I, A; T ′), (J, B; T ′′) are of the same shape.

13 Here the matrix is naturally truncated from 2[n] × 2[n], which doesn’t change anything since the original
matrix is always 0 elsewhere.

14 Recall eI,A(T ′) is the reduced size |V (T ′) ∪ I ∪ A| − sI,A(T ′) (Def. 4.11).

S. Pang 26:23

The following is the key observation. Its proof demonstrates how to make deductions
from the mod-order equations efficiently, and is presented in Appendix A.1.

▶ Lemma 5.6 (Order match). If a product α|A| · βI,A(T ′) · βJ,A(T ′′) from the LHS of (5.12)
is nonzero mod (∗), then both of the following hold:

A is a min-separator for both (I, A; T ′), (J, A; T ′′); (5.14)
(V (T ′) ∪ I ∪A) ∩ (V (T ′′) ∪ J ∪A) = A. (5.15)

Moreover, (5.14), (5.15) imply that

A is a min-separator of (I, J ; T) (where T = T ′ ⊕ T ′′); (5.16)
|V (T ′) ∪ I ∪A|, |V (T ′′) ∪ J ∪A| ≤ τ. (5.17)

By this lemma, in an imagined solution we can assume βI,A(T ′) ̸= 0 only when it satisfies
its part in conditions (5.14), (5.17).

Using this information, plus a further technique of polarization, we can deduce the
following Proposition 5.8 which is the main takeaway of the analysis here. A graph-theoretic
fact (the “in particular” part below) appears exactly as the solvability condition. For
deductions see Appendix A.2.

▶ Fact 5.7 ([11]). For any ribbon (I, J ; T), the set of all min-separators, mSepI,J (T), has a
natural poset structure: min-separators A1 ≤ A2 iff A1 separates (I, A2; T), or equivalently
as can be checked, iff A2 separates (J, A1; T). The set is actually a lattice under this partial-
ordering: ∀A1, A2 ∈ mSepI,J(T) their join and meet exist. In particular, there exist unique
minimum and maximum.

Denote the minimum by Sl(I, J ; T) and the maximum by Sr(I, J ; T), which is the “left-
most” and “rightmost” min-separator, respectively.

▶ Proposition 5.8 (Mod-order diagonalization). Let

Lα(I, A) :=
∑

T ′: |V (T ′)∪I∪A|≤τ
A=Sl(I,A;T ′)
T ′∩E(A)=∅

(I,A;T ′) left-generated (Def. 4.4)

αeI,A(T ′)χT ′ ,

Q0,α(A, B) :=
∑

Tm: |T ∪A∪B|≤τ
A,B∈mSepA,B(Tm)

αeA,B(Tm)χTm

(Tm to indicate “middle”). Then

Lα · [diag
(

α
|A|

2

)
·Q0,α · diag

(
α

|A|
2

)
] · L⊤

α = Mα mod (∗) (5.18)

where recall (∗) means ideal ({α|V (T)∪I∪J|+1χT }, {χT : |V (T) ∪ I ∪ J | > τ}) position-wise
on each (I, J).

Equation (5.18) is slightly weaker than a solution to (5.12) but is sufficient for all use, as we
are only concerned with PSDness. In particular, it gives the first-approximate diagonalization
of the matrix M ′, recast as Definition 5.9 below. This shows Theorem 1.5(2).

CCC 2021

26:24 SOS Lower Bound for Exact Planted Clique

5.3 Recursive factorization
In this subsection, we give a formalization and extension of the recursive factorization
technique, which is used to refine the coarse diagonalization from Step 2 above. We give
some new notions that are convenient and extendable to matrix products (Def. 5.13, 5.15),
along with some simplification (Lem. 5.25) and refinement (Prop. 5.24) for later use.

First, the coarse diagonalization (5.18) can be recast in R[{χT }]-matrices as below.

▶ Definition 5.9. Let L be the
([n]

d
2

)
×
([n]

≤ d
2

)
-matrix

L(I, A) :=
∑

T ′: |V (T ′)∪I∪A|≤τ
A=Sl(I,A;T ′)
T ′∩E(A)=∅

(I,A;T ′) left-generated

(ω

n
)|V (T ′)∪I∪A|−|A|χT ′ , (5.19)

and Q0 be the
([n]

≤ d
2

)
×
([n]

≤ d
2

)
-matrix

Q0(A, B) :=
∑

Tm:|Tm∪A∪B|≤τ
A,B∈mSepA,B(Tm)

(ω

n
)|V (Tm)∪A∪B|χTm

. (5.20)

Finally, let

D := diag
(

(ω

n
)

|A|
2

)
A∈([n]

≤d/2)
. (5.21)

We call L(DQ0)L⊤ the first-approximate diagonalization of M ′.

Despite of its name (“approximate”), the difference

M ′ − L(DQ0D)L⊤ (5.22)

is, however, far from negligible. This is where the recursive factorization will be applied, and
in the end it will give

M ′ = L · [D · (Q0 −Q1 + Q2...±Qd/2) ·D] · L⊤ + E (5.23)

for some negligible error-matrix E .

▶ Remark 5.10. Use of D is superficial in (5.22), (5.23); we keep it so that the middle matrices
Qi are better-positioned. The LD here corresponds to the “L” matrix in [5].

Let us start with some necessary notions.

5.3.1 More notion on graphs
▶ Definition 5.11 ([5] Def. 6.515). For any ribbon R = (I, J ; T), its canonical decomposi-
tion is a ribbon-triple

(Rl,Rm,Rr) = ((I, A; Tl), (A, B; Tm), (B, J ; Tr))

15 Similar notions actually appeared implicitly in the mod-order analysis (cf. condition (5.14), (5.15)),
while here they appear in a more “canonical” left-, middle-, right- form.

S. Pang 26:25

determined uniquely by the following. A = Sl(I, J ; T), B = Sr(I, J ; T). V (Rl) is A

unioned with the set of vertices reachable by paths from I in T without touching A, and
Tl = T |V (Rl)\E(A). Similarly, V (Rr) is B unioned with the set of the vertices reachable
from J in T without touching B, and Tr = T |V (Rr)\E(B). Finally, Tm = T\(T ′ ⊔ T ′′).

Rl, Rm, Rr are called the left-, middle-, right- ribbon of R, respectively.

▶ Remark 5.12 (Properties of the canonical decomposition). A few properties follow from the
definition of the canonical decomposition of R = (I, J ; T).

A = Sl(I, A; Tl), B = Sr(B, J ; Tr)

(so they are unique separator of Rl,Rr, respectively);

Tl ∩ E(A) = ∅ = Tr ∩ E[A];

Rl is left-generated, Rr is right-generated (Def. 4.4);

A, B ∈ mSepA,B(Tm) (so |A| = |B|).

The above four are about each of Rl, Rm, Rm (the “inner” conditions). Moreover, there is
the intersection property on pairs of them (the “outer” conditions)16:

V (Rl) ∩ V (Rm) ⊆ A, V (Rm) ∩ V (Rr) ⊆ B, V (Rl) ∩ V (Rr) ⊆ A ∩B

which implies

e(Rl) + |V (Rm)|+ e(Rr) = |V (R)|. (5.24)

The canonical decomposition can be reversely described as follows.

▶ Definition 5.13 (Inner and outer canonicality). For a triple of ribbons in the form

(Rl,Rm,Rr) =
(

(I, A; Tl), (A, B; Tm), (B, J ; Tr)
)

(Tl, Tm, Tr are arbitrary subsets of an edge-set), their ribbon-sum is ribbon

(I, J ; T) where T = Tl ⊕ Tm ⊕ Tr.

The triple is called inner-canonical, if they satisfy the “inner” conditions:

A = Sl(I, A; Tl), B = Sr(B, J ; Tr),
Tl ∩ E(A) = ∅ = Tr ∩ E[A],
Rl left-generated, Rr right-generated,

A, B ∈ mSepA,B(Tm).

(5.25)

The triple is outer-canonical if they satisfy the “outer” condition:

V (Rl) ∩ V (Rm) ⊆ A, V (Rm) ∩ V (Rr) ⊆ B, V (Rl) ∩ V (Rr) ⊆ A ∩B. (5.26)

The triple is a canonical triple if it is both inner- and outer- canonical.

16 cf. conditions (5.14), (5.15)

CCC 2021

26:26 SOS Lower Bound for Exact Planted Clique

▶ Proposition 5.14. Canonical triples are 1-1 correspondent to their ribbon-sum, via the
canonical decomposition.

Proof. This follows by an immediate check from the definition. ◀

We further extend the notions to matrix products. Recall R[{χT }] is the ring from adding
fresh variables χT ’s into R for every T ⊆

([n]
2
)

(fixing an n), with relations {χT ′ · χT ′′ = χT |
T ′ ⊕ T ′′ = T}.

▶ Definition 5.15 (Approximate form). Suppose matrices X, Y have rows and columns indexed
by subsets of [n] with entries in R[{χT }]; and in every entry, each character regarded as a
ribbon on distinguished sets (row, column) has ribbon size ≤ τ . Suppose X, Y have dimensions
s.t. XY X⊤ is defined.

Every nonzero triple product (without collecting like-terms) in

XY X⊤ (5.27)

thus has form

X(I, A; Tl)Y (A, B; Tm)X(J, B; Tr)︸ ︷︷ ︸
nonzero in R

χTl
· χTm · χTr , (5.28)

and can be identified with a ribbon-triple in the natural way, with

X(I, A; Tl)Y (A, B; Tm)X(J, B; Tr)χTl⊕Tm⊕Tr ∈ R[{χT }]

its resulting term. We say (5.28) is an outer-canonical product if the ribbon-triple is
outer-canonical, and it exceeds degree if |V (T) ∪ I ∪ J | > τ .

The approximation form of XY X⊤ is:

XY X⊤ =
(
XY X⊤)

can + (XY X⊤)non-can + Edeg, (5.29)

or equivalently,(
XY X⊤)

can = XY X⊤ − (XY X⊤)non-can − Edeg,

where
(
XY X⊤)

out-can is the matrix collecting all terms of outer-canonical products that do
not exceed degree, (XY X⊤)non-can collecting all terms of non-outer-canonical products, and
Edeg collecting all rest terms.

▶ Remark 5.16. With this language, Proposition 5.14 gives an a posteriori explanation of
the coarse diagonalization (Def. 5.9): M ′ = [L(DQ0D)L⊤]can.

5.3.2 Recursive factorization: the machinery
We start with the following, which is Definition 5.9 restated in the current language.

▶ Definition 5.17 (First-approximate factorization of M ′).

M ′ = L(DQ0D)L⊤ − [L(DQ0D)L⊤]non-can − E1;deg (5.30)

where E1;deg is by Def. 5.15, applied to the product L(DQ0D)L⊤, where the index “1” is
added for later convenience. L(DQ0D)L⊤ is celled the first-approximate factorization
of M ′.

S. Pang 26:27

The high-degree error E1;deg is actually negligible in norm17 (we will prove the anal-
ogous statement in the exact case); the main task is to analyze the “main error”,
[L(DQ0D)L⊤]non-can. For this, the key point of the whole technique is

[L(DQ0D)L⊤]non-can itself factors through L, L⊤ approximately, too.

I.e. ∃Q1 s.t.

[L(DQ0D)L⊤]non-can = [L(DQ1D)L⊤]can + E ′
1;negl. (5.31)

for some negligible E ′
1;negl. And we can repeat this for [L(DQ1D)L⊤]non-can and so on. To

describe the factorization (5.31), a generalized notion is useful.

▶ Definition 5.18 ([5], Def. 6.918). A generalized ribbon is a usual ribbon together with a
new set of isolated vertices. In symbol, it is denoted as R∗ = (A, B; T ∗) where

T ∗ = T ⊔ I,

T an edge-set, I a vertex set disjoint from V (T) ∪A∪B, called the isolated vertex-set of
R∗, denoted as I(R∗). V (R∗) = V (T) ∪ A ∪ B ∪ I. A usual ribbon is also a generalized
ribbon with I = ∅. (A, B; T) is called the (unique) largest ribbon in R.

▶ Remark 5.19. I(R∗) could be different from the isolated set of the underlying graph, as it
excludes vertices in A ∪B.

▶ Definition 5.20. A side-inner-canonical triple is

(Rl,Rm,Rr) = ((I, A; Tl), (A, B; Tm), (B, J ; Tr))

where Rl, Rr are ribbons satisfying the inner-canonical conditions on their part (the first
three of (5.25)), while Rm is just a ribbon.

The following operation is the technical core of recursive factorizations.

▶ Definition 5.21 (Separating factorization; Def. 6.10 of [5]). Given an side-inner-canonical
tripe

(Rl,Rm,Rr) = ((I, A; Tl), (A, B; Tm), (B, J ; Tr)),

denote T = Tl ⊕ Tm ⊕ Tr, and denote by Z the multi-set of “unexpected intersections” i.e.
multi-set of vertices from (Rl ∩ Rm) − A, (Rm ∩ Rr) − B, (Rl ∩ Rr) − (A ∩ B). Call
z(Rl,Rm,Rr) = |Z| the intersection size of the triple. It can be checked that

|V (Rl) ∪ V (Rm) ∪ V (Rr)| = |V (Rl)|+ |V (Rm)|+ |V (Rr)| − |A| − |B| − z. (5.32)

We further separate this triple into an “outer-canonical” one, as follows.
Define S′

l to be the leftmost min-separator of (I, A ∪ (Z ∩ V (Rl)); Tl), and similarly S′
r

the right-most min-separator of (B ∪ (Z ∩ V (Rr)), J ; Tr). Note S′
l , S′

r ⊆ V (T) ∪ I ∪ J from
definition.

17 Matrices considered all have support on clique-rows and clique-columns, given G.
18 It was called improper ribbon, but we feel the name here is perhaps more proper.

CCC 2021

26:28 SOS Lower Bound for Exact Planted Clique

Define ribbon R′
l = (I, S′

l ; T ′
l), whose vertex set V (R′

l) is S′
l unioned with the set of

vertices in Rl reachable from I by paths in Tl without touching S′
l, and T ′

l is Tl\E(S′
l)

restricted to V (R′
l). Ribbon R′

r is symmetrically defined. In particular, T ′
l ∩ T ′

r = ∅. R∗
m is

the generalized ribbon (S′
l , S′

r; T ∗
m) where

T ∗
m = T\(T ′

l ⊔ T ′
r) ⊔ I(R∗

m),

I(R∗
m) collecting all the rest isolated vertices:

I(R∗
m) = V (Rl) ∪ V (Rm) ∪ V (Rr) − V (T) ∪ I ∪ J. (5.33)

The resulting (R′
l,R∗

m,R′
r) is called the separating factorization of ribbon triple

(Rl,Rm,Rr), which we denote as

(Rl,Rm,Rr)→ (R′
l,R∗

m,R′
r). (5.34)

▶ Remark 5.22 (Properties of separating factorization). Some natural properties follow. Let
(Rl,Rm,Rr)→ (R′

l,R∗
m,R′

r) in the same notation as above.
(1) The resulting triple (R′

l, R∗
m,R′

r) is side-inner-canonical and outer-canonical (i.e. their
pair-wise vertex intersections are within the corresponding S′

l , S′
r and S′

l ∩ S′
r). So the

corresponding ribbon triple (from replacing R∗
m with its largest ribbon) is canonical and

is disjoint from I(R∗
m).

(2) R′
l ⊆ Rl, and S′

l separates (V (R′
l), V (Rl) − V (R′

l)) in Rl. In particular, we can talk
about the part of Rl to the right of S′

l , which is disjoint from R′
l and actually can be

easily checked to be in R∗
m. Similar fact holds for Rr.

(3) Since S′
l separates (I, A) in Rl, and A is the unique min-separator of Rl, there are |A|

many vertex-disjoint paths from A to S′
l in Rl. Similarly for Rr.

▶ Lemma 5.23 (Lemma 6.14, 7.14 of [5]). Suppose (Rl,Rm,Rr) → (R′
l,R∗

m,R′
r). In the

same notation as in Definition 5.21,
(1) |S′

l |+ |S′
r| ≥ |A|+ |B|+ 1;

(2) 19 If further denote s = |A|+|B|
2 , p′ the maximum number of vertex-disjoint paths from

S′
l to S′

r in R∗
m, and p the maximum number of vertex-disjoint paths from A to B in

Rm, then

2(s′ − s) + (p− p′) + |I(R∗
m)| ≤ z(Rl,Rm,Rr).

Proof.
(1) By definition there must be some unexpected pair-wise intersection between (Rl,Rm,Rr).

In either of the three cases of breaking (5.26), ∃v ∈ Z that is in V (Rl)−A or in V (Rr)−B.
WLOG suppose the first happens. Then S′

l ̸= A since v can be reached from I without
passing A by the left-generated condition on Rl. Similarly, if |S′

l | = |A| then it is A as A

is the unique min-separator separating (I, A), so this is impossible. Thus S′
l > A.

(2) We refer the reader to its proof in the original paper. ◀

Now we apply the above machinery to the target, L(DQ0D)L⊤.

19 Recall in our setting Rm is always a ribbon, without any isolated vertex.

S. Pang 26:29

5.3.3 Apply the machinery
Conceptually, the separating factorization tells us how to “cancel” the terms in
[L(DQ0D)L⊤]non-can using L, L⊤. Namely, in L(DQ0D)L⊤, any product from (Rl,Rm,Rr)
(Def.5.15) that is non-outer-canonical results in a term in [L(DQ0D)L⊤]non-can at (I, J), and
we can cancel it by the product from its separating factorization (R′

l,R∗
m,R′

r): take R′
l at

position (I, S′
l) in L, R′

r at position (S′
r, J) in L⊤, and the largest ribbon of R∗

m at (S′
l , S′

r)
in a new middle matrix DQ1D. I.e., we cancel it by −[L(DQ1D)L⊤]can.

Of course, there are other triples whose separating factorization result in the same
(R′

l, largest ribbon of R∗
m, R′

r) so we need to collect them all in DQ1D. More seriously,
the (I, S′

l)th entry of L is actually a sum of different R′
ls, so we need to make sure that this

cancellation works for them simultaneously in multiplication.
The following is what insures the simultaneous cancellation can work. It is stated in

a refined version that is more than needed here (i.e. we further distinguish different (i, j)
parameters), but this will be needed in the exact case (Lemma 6.20).

▶ Proposition 5.24 (Solvability condition, cf. Claim 6.12 in [5]). Fix (I, J, S′
l , S′

r), and a
generalized ribbon R∗

m on (S′
l , S′

r). Let (R′
l,R′

r) be inner-canonical left and right ribbons with
distinguished sets (I, S′

l), (S′
r, J) respectively, as in Definition 5.13. Let (R′′

l ,R′′
r) be another

such ribbon pair, with the same reduced size

e(R′
l) = e(R′′

l), e(R′
r) = e(R′′

r).

(Or the same size, equivalently.) Then for every fixed tuple (i, j, z) the following holds: there
is an 1-1 matching between ribbon-triples

(Rl,Rm,Rr) s.t.
{

(Rl,Rm,Rr)→ (R′
l,R∗

m,R′
r),

(e(Rl), e(Rr), z(Rl,Rm,Rr)) = (i, j, z).
(5.35)

and

(Rl,Rm,Rr) s.t.
{

(Rl,Rm,Rr)→ (R′′
l ,R∗

m,R′′
r),

(e(Rl), e(Rr), z(Rl,Rm,Rr)) = (i, j, z).
(5.36)

Moreover, this matching fixes every middle Rm.

Proof. We give a reversible map from the set of (5.35) onto the set of (5.36). Take a
(Rl,Rm,Rr) from (5.35). By Remark 5.22 (2), the part of Rl to the right of S′

l is in R∗
m

hence is disjoint from both R′
l and R′′

l . Similarly for R′
r, Rr. Now take the map

(Rl,Rm,Rr) 7→ (ϕ(Rl),Rm, ϕ(Rr))

where ϕ(Rl) replace R′
l to R′′

l within Rl, and ϕ(Rr) replaces R′
r to R′′

r within Rr. Clearly
R∗

m, thus Rm, is unchanged. Also, as R′
l, R′′

l have the same size by assumption, by
the disjointness above this replacement operation keeps the size of Rl. Moreover, Rl,
ϕ(Rl) have the same right distinguished set which is the unique min-separator of both,
so e(Rl) = e(ϕ(Rl)). Similarly for Rr, ϕ(Rr), so the parameter (i, j) is unchanged by ϕ.
The intersection parameter z is unchanged too, since the changed part is disjoint from
Z(Rl,Rm,Rr). Finally, the inverse map is given the same way by changing the role of
(R′

l,R′
r) and (R′′

l ,R′′
r). ◀

The following lemma will be repeatedly used.

CCC 2021

26:30 SOS Lower Bound for Exact Planted Clique

▶ Lemma 5.25 (One round of factorization). Let L be as (5.19), and Q be any
([n]

≤d/2
)
×
([n]

≤d/2
)
-

matrix with entries

Q(A, B) =
∑

Tm: |V (Tm)∪A∪B|≤τ

(ω

n
)|V (Rm)|q(Rm) · χTm (5.37)

where Rm denotes (A, B; Tm), and q(·) is a function symmetric w.r.t. shapes.
Define matrix Q′, E ′

negl as follows so that

(LQL⊤)non-can = (LQ′L⊤)can + E ′
negl (5.38)

holds. First, let

Q′(A, B) =
∑

Tm: |V (Tm)∪A∪B|≤τ

(ω

n
)|V (Rm)|q′(Rm) · χTm

(5.39)

where q′(Rm) is as follows. Fix any Rm = (A, B; Tm) and let t = |V (Rm)| ≤ τ , s = |A|+|B|
2 .

For every generalized ribbon R∗
m that contains Rm as its largest ribbon and |V (R∗

m)| ≤ τ ,
fix a ribbon pair (R′

l,R′
r) s.t. (R′

l,R∗
m,R′

r) is the separating factorization for some ribbon
triple with |V (R′

l)|, |V (R′
r)| ≤ τ (if there is none, exclude this R∗

m in the summation below).
Then let

q′(Rm) =
∑

R∗
m: gen. ribbon on (A,B)

|V (R∗
m)|≤τ

largest ribbon is Rm

(ω

n
)|I(R∗

m)| · q′′(R∗
m), where

q′′(R∗
m) =

∑
1≤z≤d/2

∑
P=(Rl,R,Rr): side-inn. can.

P→(R′
l,R∗

m,R′
r) for the fixed R′

l,R′
r

z(P)=z

(ω

n
)z · q(R).

(5.40)

Note q′(Rm) doesn’t depend on the choice (R′
l,R′

r) by Proposition 5.24, and q′(·) is also
symmetric w.r.t. shapes. Now define E ′

negl s.t. (5.38) holds.
Then the conclusions are:

(1) W.p. > 1− n−9 log n over G,
∥∥E ′

negl
∥∥ ≤ max{q(A, B; T)} · n−ϵτ ;

(2) If there is a number C for which

∀Rm |q(Rm)| ≤ C · (ω

n1−ϵ
)s−p (5.41)

where p denotes the maximum number of vertex-disjoint paths between A, B in Rm.20

Then

∀Rm |q′(Rm)| ≤ C · (ω

n1−ϵ
)s−p+1/3.

Proof. We compare [LQ′L⊤]can with [LQL⊤]non-can as step (0), then prove (1), (2).
(0). For any fixed (I, J), recall [LQL⊤]non-can(I, J) is∑
(Rl,Rm,Rr): side. inn. can.

non-outer-can.
all three have size ≤τ

(ω

n
)|V (Rl)|+|V (Rm)|+|V (Rr)|−|A|−|B|q(Rm)χTl⊕Tm⊕Tr (5.42)

where we denoted the distinguished sets of Rm by (A, B) when Rm is given. For each
(Rl,Rm,Rr) in it, there is a unique (R′

l,R∗
m,R′

r) that is its separating factorization:
(Rl,Rm,Rr)→ (R′

l,R∗
m,R′

r). There are two cases.

20 This is also sA,B(Tm) by Menger’s theorem; we use p here for appliance with applying Lemma 5.23(2).

S. Pang 26:31

First case: |V (R∗
m)| ≤ τ . In this case, there is the corresponding term

(ω

n
)|V (R′

l)|+|V (R′
m)|+V (R′

r)|−|S′
l|−|S′

r| · (ω

n
)z+|I(R∗

m)| · q(R′
m)χT ′

l
⊕T ∗

m⊕T ′
r

(5.43)

in (LQ′L⊤)can(I, J), where R′
m denotes the largest ribbon of R∗

m and χT ∗
m

means the
character from R′

m, and z ≥ 1 is the intersection size of (Rl,Rm,Rr). Recall for the
separating factorization, T ′

l ⊕ T ∗
m ⊕ T ′

r = Tl ⊕ Tm ⊕ Tr and

|V (Rl) ∪ V (Rm) ∪ V (Rr)| = |V (R′
l)|+ |V (R∗

m)|+ |V (R′
r)| − |S′

l | − |S′
r|

= |V (Rl)|+ |V (Rm)|+ |V (Rr)| − |A| − |B| − z

Also, |V (R∗
m)| = |V (R′

m)| + |I(R∗
m)|. Together we have that the coefficient in (5.43)

equals the one in (5.42) from (R′
l,R∗

m,R′
r).

Conversely, by definition of Q′ and (5.40) and Prop. 5.24 every outer-canonical product
in LQ′L⊤ corresponds uniquely to a side inner-canonical triple (Rl,Rm,Rr) in the above
case. Therefore, E ′

negl by definition collects all terms in the next case.
Second case: |V (R∗

m)| > τ . By the above explanation, E ′
negl(I, J) =∑

(Rl,Rm,Rr): side. inn. can.
non-outer-can.

all three has size ≤τ
resulting |V (R∗

m)|>τ

(ω

n
)|V (Rl)|+|V (Rm)|+|V (Rr)|−|A|−|B|q(Rm)χTl⊕Tm⊕Tr

. (5.44)

where we omit writing the obvious condition that Rl (Rr) has its left (right) vertex set
as I (J).

(1) Take a triple (Rl,Rm,Rr) in (5.44). Recall

|V (Rl)|+ |V (Rm)|+ |V (Rr)| − |A| − |B| = |V (Rl) ∪ V (Rm) ∪ V (Rr)|+ z

= |V (T) ∪ I ∪ J |+ |I(R∗
m)|+ z.

Also |I(R∗
m)| ≤ z +d/2 as a quick corollary of Lemma 5.2321. Fix an T = Tl⊕Tm⊕Tr

and a > τ − |V (T) ∪ I ∪ J |, we upper bound the number of triples in (5.44) resulting
in (ω

n)|V (T)∪I∪J|+a · χT (ignoring q(Rm) for the moment): to create such a triple, we
need to choose a set as I(R∗

m) of size ≤ a/2+d/4 since a is intended to be |I(R∗
m)|+z

so a ≥ 2I(R∗) − d/2; then to decide the triple over the fixed vertex set there are
< 33τ · 23(τ

2) many ways. Together, the coefficient of χT in (5.44) has absolute value
smaller than the following: let B0 = max{q(·)},

B0 · (
ω

n
)|V (T)∪I∪J|+a · n(a+d)/222τ2

= B0(ω

n1−2ϵ
)|V (T)∪I∪J| (n−2ϵ

)|V (T)∪I∪J| · (ω√
n

)a · nd/222τ2

≤ B0(n−1/2)|V (T)∪I∪J| · n−2ϵ(|V (T)∪I∪J|+a)nd/222τ2
(ω ≤ n1/2−4ϵ)

≤ B0(n−1/2)|V (T)∪I∪J| · n−1.5ϵτ

the last step by |V (T) ∪ I ∪ J | + a > τ by the case condition and that d < ϵτ/10,
22τ < nϵ/10. Also, all χT appearing in (5.44) has |V (T)| ≤ 3τ . So by Lemma 4.2, for
fixed (I, J), w.p. > 1− n−10 log n

|E ′
negl(I, J)| <

3τ∑
a=0

B0n−a/2n−1.5ϵτ · na/2n4 log log n2a2
< n−1.4ϵτ .

By union bound over |{(I, J)}| < nd, w.p. > 1−n−9 log n
∥∥E ′

negl
∥∥ < nd ·n−1.4ϵτ < n−ϵτ .

21 Actually it can be shown that |I(R∗
m)| ≤ z but we don’t need this.

CCC 2021

26:32 SOS Lower Bound for Exact Planted Clique

(2) Fix an Rm. By (5.40),

q′(Rm) =
∑

z,R∗
m:

largest ribbon =Rm

(ω

n
)|I(R∗

m)|+z
∑

P=(Rl,R,Rr): side-inn. can.
P→(R′

l,R∗
m,R′

r) for the fixed R′
l,R′

r

z(P)=z

q(R).

For a fixed R∗
m, there are no more than 8zτ < nϵz many triples in the second summation

(recall R′
l,R′

r is fixed), as after fixing whether each vertex appears in each of the three
ribbons and fixing A, B ⊆ R∗

m as distinguished sets of R, we only need to assign
possible edges that appear in more than once in the original triple, and it can be
checked that such an edge must has at least one end in the already fixed (multi-set) Z

of size ≤ z. Further, by Lemma 5.23(2) and condition (5.41), the second summation
in above in absolute value is

≤ nϵz(ω

n
)z+|I(R∗

m)||q(R)| ≤ (ω

n1−ϵ
)2(s′−s)+(p−p′)+2|I(R∗

m)| · C(ω

n1−ϵ
)s−p

≤ C · (ω

n
)2|I(R∗

m)| · (ω

n1−ϵ
)s′−p′+1/2

where (s, p) denotes the corresponding parameter for each R and (s′, p′) for Rm, and
the last step uses s′ − s ≥ 1/2 from Lemma 5.23(1). Finally, in the outer sum, for
fixed i0 there are < ni0 many ways to choose R∗

m s.t. |I(R∗
m)| = i0, and 1 ≤ z ≤ 3τ .

So together,

|q′(Rm)| ≤ 3τ

d/2∑
i0=0

C · ni0(ω

n
)2i0 · (ω

n1−ϵ
)s′−p′+1/2 ≤ C · (ω

n1−ϵ
)s′−p′+1/3. ◀

Now we can apply Lemma 5.25 to [L(DQ0D)L⊤]non-can: in (5.30) let Q ← (DQ0D),
we get

[L(DQ0D)L⊤]non-can = [L(DQ1D)L⊤]can + E ′
1;negl

for some Q1 and E ′
1;negl. Then we can repeat this on [L(DQ1Q)L⊤]non-can and so on, to get

a final recursive approximate factorization of M :

M ′ = L

(
D(Q0 −Q1 + Q2 − ...±Qd)D

)
L⊤ −

(
E1;deg − ...± E1+d;deg

)
+
(
E ′

1;negl + ... + E ′
d;negl

)
.

(5.45)

Here it implicitly used the following.

▶ Proposition 5.26 ([5] Claim 6.15). Qd+1 = 0.

Proof. First we show by induction: ∀k, in Qk every appearing ribbon Rm = (A, B; Tm)
has |A| + |B| ≥ k. Case k = 0 is trivial. From k to k + 1, by Lemma 5.25 every R′

m =
(A′, B′; T ′

m) in Qk+1 is the largest ribbon of some R∗
m in the separating factorization of

some non-outer-canonical triple in L(DQkD)L⊤. Suppose that triple has the middle part
Rm = (A, B; Tm). Then by the inductive hypothesis |A|+ |B| ≥ k, and by Lemma 5.23(1)
|A′|+ |B′| ≥ |A|+ |B|+ 1 ≥ k + 1, and the induction is completed. For k = 1 + d, no ribbon
can satisfy this while having both distinguished sets in

([n]
d/2
)
. ◀

We have completed the recursive factorization technique for later use.

S. Pang 26:33

▶ Remark 5.27. PSDness of M ′ would follow from (5.45) by a few last steps22. This part is
standard, and similar arguments will be given for the exact case (Section 6) so we omit it
here.

6 PSDness of the exact pseudo-expectation

Notation. Henceforth M exclusively refers to the d/2-homogeneous minor of the moment
matrix M̃ in Definition 3.13.

The main theorem of this section is the following.

▶ Theorem 6.1. W.p. > 1− n−5 log n, M(G) ⪰ n−d−1diag
(

C̃l(G)
)

([n]
d/2)×([n]

d/2)
.

▶ Corollary 6.2. W.p. > 1− n−5 log n, Ẽx∅ > 0.

Proof. By construction (3.13), Ẽx∅ = (ω−d/2
d−d/2)

(ω
d)(d

d/2)
∑

S:|S|=d/2
ẼxS = (ω−d/2

d−d/2)
(ω

d)(d
d/2)

Tr(M), and by Theo-

rem 6.1 this is positive with high probability. ◀

Theorem 1.4 is a quick corollary of Theorem 6.1: for our pseudo-expectation from
Definition 3.13, its moment matrix is PSD by Theorem 6.1 and Lemma 4.1; it satisfies the
Default Constraint by Corollary 6.2 and the discussion above Remark 3.9; and it satisfies
the Clique and Size Constraints by Lemma 3.8. The degree-d lower bound follows.

The rest of Section 6 is for proving Theorem 6.1. We first reduce it to the main lemma
(Lemma 6.9) in the next subsection, then prove that lemma.

6.1 An Hadamard product and Euler transform
For proving Theorem 6.1, we want to factor the matrix M into an XY X⊤ form as in the
non-exact case. The first problem is that, unlike in the non-exact situation, here in the
expression of M(I, J) (Def. 3.13), the appearance of the parameter

u = |I ∩ J |

makes a similar factorization of terms unlikely23. As a first step towards resolving this
issue, in this subsection, we express M in a ΣΠ-form (6.15) where in each leaf matrix, the
dependence on u is removed. In later subsections, we will factor each such leaf matrix.

6.1.1 Hadamard product
By definition (3.17), in M(I, J) the coefficient before χT can be re-written as

M(I, J ; T) =
u∑

c=0

[
1(

ω−d+u
u

)ωu−c·

·
((

a− (d− u)
c

)(
n− a

u− c

)
n−(u−c) (a + u− c + 8τ2)!

(8τ2)! (ω

n
)a

)
︸ ︷︷ ︸

:=Mc(u,a)

] (6.1)

22 As noted previously, this is not yet the PSDness of the moment matrix as we do not have the homogeneous
reduction in non-exact case. A full proof is just similar, though.

23 It doesn’t appear in the non-exact case (5.1) at all.

CCC 2021

26:34 SOS Lower Bound for Exact Planted Clique

where again u = |I ∩ J |, a = |V (T) ∪ I ∪ J |. This means M is a sum of Hadamard products

M =
d
2∑

c=0
mc ◦Mc (6.2)

where mc, Mc are matrices: for all |I|, |J | = d/2,

mc(I, J) = 1(
ω−d+u

u

)ωu−c u = |I ∩ J | (6.3)

Mc(I, J) =

∑

T :|V (T)∪I∪J|≤τ

χT ·Mc(|I ∩ J |, |V (T) ∪ I ∪ J |) , if |I ∩ J | ≥ c;

0 , o.w.
(6.4)

▶ Remark 6.3. It is important to note that we defined mc to be supported on all (I, J), while
let Mc(I, J) = 0 if |I ∩ J | < c, so (6.2) still holds. The use of this is in Lemma 6.4 below.
The intuition behind decomposition (6.2) is that the second factor Mc is “close” to each
other for varying c, while the first factor mc is qualitatively decreasing in c. This, if true,
would make it possible for us to concentrate on showing the PSDness in the main case c = 0.

The next lemma proves the second half of the above intuition. The other half will be
stated more precisely as the Main Lemma 6.9.

▶ Lemma 6.4. For each c = 0, ..., d/2,

mc = ω−c

d/2∑
k=0

bk · Jk

where Jk’s are the Johnson basis (5.4), bk/k! ∈ [d
2ω , 1 + 2dk

ω]. In particular,

m0 = ωm1 = ... = ω
d
2 m d

2
≻ 1

ω
Id. (6.5)

Proof. By definition, mc = ω−c
d/2∑
l=0

ωl

(ω−d+l
l)Dl, where matrices Dl (l = 0, ..., d/2) are

the simple basis of Johnson schemes (5.3). By basis-change (5.6), mc = ω−c
d/2∑
k=0

Jk ·

k!

 k∑
l=0

(−1)k−l ·
[

ω

ω − (d− l) · ... ·
ω

ω − (d− 1) ·
1

(k − l)!

]
︸ ︷︷ ︸

:=fk(l), which is 1/k! if l=0

. For fixed k, fk(l) is increas-

ing in l so
k∑

l=0
(−1)k−lfk(l) ≥ fk(k)− fk(k − 1) > d/2

ω · (1 + d/2
ω)k−1 ≥ d

2ω . Note for k = d/2,

Jd/2 = Id so we get (6.5). ◀

6.1.2 Euler transform
Fixing c, now we look into the second factor Mc in (6.2). For fixed (I, J ; T), again denote
u = |I ∩ J |, a = |V (T) ∪ I ∪ J |. By (6.1)

Mc(u, a) =
(

a− (d− u)
c

)(
n− a

u− c

)
n−(u−c) (a + u− c + 8τ2)!

(8τ2)! (ω

n
)a (6.6)

is the coefficient of χT in Mc(I, J) for c ≤ u, which is a partial function.

S. Pang 26:35

▶ Definition 6.5 (Extended Mc(u, a)). For fixed c ≥ 0, the function Mc(u, a) in (6.6) is
partial, defined for (u, a) ∈ N2 s.t.

u ≥ c, u + a ≥ d + c.

It can be naturally extended to N2 by letting(
n− a

u− c

)
= 0 if u < c, (6.7)

and using the usual convention on binomial coefficients(
−m

k

)
= (−1)k ·

(
m + k − 1

k

)
∀0 < m, 0 ≤ k; (6.8)(

m

k

)
= 0 ∀0 ≤ m < k (6.9)

on the expression Mc(u, a) (6.6). We will still use Mc(u, a) to mean this extended function.

In particular,
(

m
0
)

= 1 for all m ∈ Z; if 0 ≤ a − (d − u) < c then Mc(u, a) = 0 since(
a−(d−u)

c

)
= 0.

To further remove the dependence on u = |I ∩ J |, consider a decomposition

Mc =
∑

R∈([n]
≤ d

2
)
MR

c (6.10)

where for each R ∈
([n]

≤ d
2

)
the matrix MR

c is supported on rows and columns whose index
contains R. More explicitly, for any (I, J ; T) let a = |V (T) ∪ I ∪ J |, suppose

MR
c (I, J) :=

(ω

n)a
∑

T :|V (T)∪I∪J|≤τ

Yc(|R|, a) · χT , if R ⊆ I, J ;

0 , o.w.
(6.11)

for some function Yc(u, a) to be chosen, then comparing for every tuple (I, J ; T) we see that
equation (6.10) is equivalent to that for any fixed c, a:

u∑
r=0

(
u

r

)
Yc(r, a)(ω

n
)a = Mc(u, a). (6.12)

This suggests to take Yc(u, a) · (ω
n)a to be the inverse Euler transform (w.r.t. variable u) of

the extended function Mc(u, a).

▶ Fact 6.6. 24 If x(m), y(m) are two sequences defined on N s.t.

∀m x(m) =
m∑

l=0

(
m

l

)
y(l),

then x(m) is called the Euler transform of y(m), whose inverse transform is

∀m y(m) =
m∑

l=0
(−1)m−l

(
m

l

)
x(l).

24 The fact itself can be seen as an application of ζ-matrix and its inverse.

CCC 2021

26:36 SOS Lower Bound for Exact Planted Clique

▶ Definition 6.7 (Coefficients in MR
c). For every fixed c, define

Yc(r, a) =

r∑

l=c

(−1)r−l
(

r
l

)(
a+l−d

c

)(
n−a
l−c

)
n−(l−c) (a+l−c+8τ2)!

(8τ2)! , if r ≥ c;

0 , o.w.
(6.13)

Then as a clear-up summary, we get:

▶ Lemma 6.8 (The Hadamard-product decomposition of M).

M =
d
2∑

c=0
mc ◦

 ∑
R:R∈([n]

≤d/2)
MR

c

 (6.14)

=
∑

R∈([n]
≤d/2)

 |R|∑
c=0

mc ◦MR
c

︸ ︷︷ ︸

:=MR

(6.15)

where each mc is as in Lemma 6.4 and each MR
c has the following expression.

1. MR
c = 0 if |R| < c;

2. If R ̸⊆ I ∩ J , MR
c (I, J) = 0;

3. If |R| ≥ c and R ⊆ I ∩ J ,

MR
c (I, J) =

∑
T :|V (T)∪I∪J|≤τ

MR
c (I, J ; T)χT

where, if denote a = |V (T) ∪ I ∪ J |,

MR
c (I, J ; T) =

(ω

n
)a

|R|∑
l=c

(−1)|R|−l

(
|R|
l

)(
a + l − d

c

)(
n− a

l − c

)
n−(l−c) (a + l − c + 8τ2)!

(8τ2)!︸ ︷︷ ︸
Yc(|R|,a), (6.13)

. (6.16)

4. For all 0 ≤ c ≤ r ≤ d/2 and 0 ≤ a ≤ τ ,

|Yc(r, a)| < τ5τ .

Proof. (1), (2), (3) is definition. To check (6.14) i.e. Mc =
∑

R MR
c , we check for every

(I, J ; T) where |I| = |J | = d/2, |V (T)∪ I ∪ J | ≤ τ . Let u = |I ∩ J |, a = |V (T)∪ I ∪ J |, then
note a− (d− u) ≥ 0, and

∑
R:

MR
c (I, J ; T) =

∑
R:R⊆I∩J

MR
c (I, J ; T) = (ω

n
)a

|I∩J|∑
r=0

(
|I ∩ J |

r

)
Yc(r, a).

By the Euler transform and (6.12), the RHS equals the extended Mc(u, a). Thus, we only
need to see Mc(u, a) = 0 if further u < c or a − (d − u) < c (in particular, in such cases
c > 0), and this is by (6.7), (6.9).

For (4),

|Yc(u, a)| =

∣∣∣∣∣
r∑

l=c

(−1)r−l

(
r

l

)(
a + l − d

c

)[(n− a

l − c

)
n−(l−c)] (a + l − c + 8τ2)!

(8τ2)!

∣∣∣∣∣
< r · 2r · (2τ)r · 1 · (9τ2)2τ < τ5τ

where note r ≤ d/2≪ τ in our parameter regime. ◀

S. Pang 26:37

▶ Lemma 6.9 (Main Lemma). In the decomposition (6.15), w.p. > 1−n−5 log n the following
hold. For all R ∈

([n]
≤d/2

)
, let P R = {I ∈

([n]
d/2
)
| R ⊆ I},

(1)

MR
0 ⪰ n−ddiag(C̃l)P R×P R ; (6.17)

(2)

±ω−cMR
c ⪯ n−c/6 ·MR

0 , ∀0 < c ≤ |R|. (6.18)

▶ Corollary 6.10 (Theorem 6.1). W.p. > 1− n−5 log n over G,

M(G) ⪰ n−d−1diag(C̃l(G))([n]
d/2)×([n]

d/2).

Proof. For each R, by definition MR =
|R|∑
c=0

mc ◦MR
c . Suppose the situation in Lemma 6.9

happens, which has probability > 1− n−5 log n. Since Hadamard product with a PSD matrix
presevres PSDness (the Schur product theorem),

|R|∑
c=1

mc ◦MR
c ⪯

|R|∑
c=1

mc ◦
(

ωcn−c/6 ·MR
0

)
(Lemma 6.9(2))

=

 |R|∑
c=1

n−c/6 ·m0

 ◦MR
0 (Lemma 6.4)

⪯ n−1/6m0 ◦MR
0

Similarly,
|R|∑
c=1

mc ◦MR
c ⪰ −n−1/6m0 ◦MR

c . So

MR ⪰ (1− n−1/6)m0 ◦MR
0 ⪰ n−d−1diag(C̃l)P R×P R (Lem. 6.4 and 6.9(2)).

Apply this to (6.15),

M = M∅ +
∑

∅̸=R∈([n]
≤d/2)

MR ⪰ M∅ ⪰ n−d−1diag(C̃l)([n]
d/2)×([n]

d/2).
(6.19)

◀

The rest of Section 6 is devoted to proving the Main Lemma 6.9, completed in Subsection 6.7.
The key ingredient is Lemma 6.21, stated in Section 6.4. The statement requires the recursive
factorization of each MR

c , which we show as Lemma 6.19 in the upcoming Subsections 6.2
and 6.3.

6.2 The first-approximate factorization of MR
c

In this subsection and the next, we factorize each matrix MR
c in (6.15) by the recursive

approximate factorization.
Terminology established in Section 5.3 will be used. We start by defining the first-

approximate factorization (cf. Definition 5.17).

CCC 2021

26:38 SOS Lower Bound for Exact Planted Clique

▶ Definition 6.11. Fix R ∈
([n]

≤ d
2

)
. For every i = 0, 1, ..., τ define the left-i-factor LR,i to be

the matrix of dimension
([n]

d
2

)
×
([n]

≤ d
2

)
,

LR,i(I, A) =

0 , if R ̸⊆ I ∩A;∑
T : |V (T)∪I∪A|≤τ

A=Sl(I,A;T)
T ∩E(A)=∅

(I,A;T) left-generated
eI,A(T)=i

(ω
n)iχT , o.w.

(6.20)

(LR,j)⊤ is called the right-j-factor. Call L̃R = (LR,0, ..., LR,τ) the left factor, (L̃R)⊤ the
right factor. Note these matrices do not depend on “c”.

▶ Definition 6.12. Let Dτ denote the constant diagonal matrix

diag
(

(ω

n
)

|A|
2

)
A:|A|≤d/2

⊗ Id{0,...,τ}×{0,...,τ}

of dimension
(([n]

≤d/2
)
× (τ + 1)

)
×
(([n]

≤d/2
)
× (τ + 1)

)
.

▶ Definition 6.13 (Goal factorization of MR
c). Our goal is to find a middle matrix QR

c of
dimension((

[n]
≤ d

2

)
× (τ + 1)

)
×
((

[n]
≤ d

2

)
× (τ + 1)

)
s.t. the following factorization approximately holds:

MR
c ≈ (LR,0, ..., LR,τ)︸ ︷︷ ︸

L̃R

·
(
Dτ ·QR

c ·Dτ
)
· (LR,0, ..., LR,τ)⊤︸ ︷︷ ︸(

L̃R

)⊤

(6.21)

▶ Remark 6.14. Unlike in the non-exact case (section 5.3), here we factorize MR
c by further

distinguishing a parameter pair in {0, ..., τ} × {0, ..., τ}. The reason is that in (6.13), or
more broadly in any exact pseudo-expectation generated by the method in Section 3.2, the
parameter

a = |V (T) ∪ I ∪ J |

appears nestedly in an essential way.
Fixing (I, J ; T), previously the coefficient (3.12) is intended as

(ω

n
)a = (ω

n
)e(Rl)+|V (Rm)|+e(Rr)

as in Remark 5.12, which naturally factors into the left, middle, right terms. Here, however,
there are terms like

(
a+l−d

c

)
·
(

n−a
l−c

)
that are not log-additive in a. Also, the reason we chose

the d-generating function as in Def. 3.11 is exactly to prove the positiveness of E[QR
0,0] in

this harder situation. This is eventually made clear by Prop. 6.28 and Cor. 6.30.
To approach the goal decomposition (6.21), in the coefficients in MR

c (6.16) we separate
the main factor

(ω

n
)a = (ω

n
)e(Rl) · (ω

n
)|V (Rm)| · (ω

n
)e(Rr)

into left, right, and middle factors as before, while leave the factor Yc(r, a) for the middle

matrix QR
c

(
(·, el), (·, er)

)
to bear , where the index (el, er) has the natural intended meaning.

S. Pang 26:39

▶ Definition 6.15 (First-approximate factorization by QR
c,0). Define QR

c,0 to be the {0, ..., τ} ×
{0, ..., τ}-block matrix, each block of dimension

([n]
≤d/2

)
×
([n]

≤d/2
)
, that is 0 outside of the

principal minor

SR × SR, SR = {(A, i) ∈
(

[n]
≤ d/2

)
× {0, ..., τ} | A ⊇ R, |A|+ i ≥ d

2}, (6.22)

and in this principal minor, QR
c,0

(
(A, i), (B, j)

)
=

∑
Tm:|V (Tm)∪A∪B|≤τ
A,B∈mSepA,B(Tm)

(ω

n
)|V (Tm)∪A∪B|− |A|+|B|

2 ·Yc

(
|R|, |V (Tm) ∪A ∪B|+ (i + j)

)︸ ︷︷ ︸
defined by (6.13)

·χTm (6.23)

Correspondingly, define

L̃R ·
(
Dτ ·QR

c,0 ·Dτ
)
·
(

L̃R
)⊤

to be the first approximate factorization of MR
c .

Some remarks on the definition of QR
c,0 follow.

▶ Remark 6.16 (Intended meaning of parameters in QR
c,0).

(1) The set SR (6.22) is defined independently of c, where the condition |A| + i ≥ d/2 is
natural because of the intended meaning of i: it is intended as |V (T ′)\A| ≥ |I| − |A| for
some ribbon (I, A; T ′) in L̃R. If |A|+ i < d/2 the corresponding column in L̃R is always
0. Similarly for j.

(2) By definition, QR
c,0 is supported only on those ((A, i), (B, j)) ∈ SR × SR with |A| = |B|.

(3) Regarding (6.23), as before by Remark 5.12, in “canonical” situations i.e. for outer-

canonical products in L̃R ·
(
Dτ ·QR

c,0 ·Dτ
)
·
(

L̃R
)⊤

,

|V (Tm) ∪A ∪B|+ (i + j) = |V (T) ∪ I ∪ J |

for ribbons (I, J ; T) that take (A, B; Tm) as the middle part of its canonical decomposition
and for which e(Rl) = i, e(Rr) = j.

Recall the terminology on the XY X⊤-type matrix product, Def 5.15.

▶ Lemma 6.17 (QR
c,0 indeed gives the first-approximation). Fix R, c ≤ |R|. For every (I, J ; T)

s.t. |V (T) ∪ I ∪ J | ≤ τ and R ⊆ I ∩ J , there is exactly one outer-canonical product in the
XY X⊤-type matrix product

L̃R ·
(
Dτ ·QR

c,0 ·Dτ
)︸ ︷︷ ︸

Y

·
(

L̃R
)⊤

(6.24)

which corresponds to the canonical decomposition of (I, J ; T), and which gives term

MR
c (I, J ; T)χT .

Proof. Suppose R ⊆ I ∩ J . First, note every triple in (6.24) is inner-canonical by definition
of L̃R, QR

c,0, so all outer-canonical triples there 1-1 correspond to their triple-product (I, J ; T)
via the canonical decomposition.

CCC 2021

26:40 SOS Lower Bound for Exact Planted Clique

Fix an (I, J ; T) and its canonical decomposition, where |V (T) ∪ I ∪ J | ≤ τ . (I, A; T ′)
appears exactly once in L̃R(I, A) in block LR,el , where el = eI,A(T ′); similarly for (J, B; T ′′)
and er = eJ,B(T ′′). And further there is exactly one outer-canonical product in (6.24)
corresponding to this triple, with coefficient

LR,el(I, A; T ′) · (ω

n
)

|A|
2 ·QR

c,0(A, B; Tm) · (ω

n
)

|B|
2 · LR,er (J, B; T ′′). (6.25)

By definition (6.20), (6.23), if a := |V (T)| ∪ I ∪ J ≤ τ then the above coefficient is

(ω

n
)a · Yc(|R|, a) = MR

c (I, J ; T),

by comparing (6.13) and (6.16), noticing that

a = |V (T) ∪ I ∪ J | (#)= el + |V (Tm) ∪A ∪B|+ er,

where (#) is by canonicality. This proves the lemma. ◀

▶ Definition 6.18 (First error-matrices). Let Ec,1;negl be the matrix of the sum of all outer-
canonical products in (6.24) that exceeds degree, i.e. the resulting

|V (T) ∪ I ∪ J | > τ.

Let [L̃R · (Dτ QR
c,0Dτ) · (L̃R)⊤]non-can be the matrix of the sum of all products that is non-

outer-canonical.

Lemma 6.17 can be restated in the terminology of approximate form (Def. 5.15): ∀R ∈([n]
≤d/2

)
and 0 ≤ c ≤ |R|,

MR
c = [L̃R ·

(
Dτ QR

c,0Dτ
)
·
(

L̃R
)⊤

]can

Equivalently,

MR
c = L̃R ·

(
Dτ QR

c,0Dτ
)
·
(

L̃R
)⊤
− [L̃R ·

(
Dτ QR

c,0Dτ
)
·
(

L̃R
)⊤

]non-can − ER
c,1;deg. (6.26)

As we will see, the crucial fact is that the error matrix Ec,1;main factorizes through
L̃R, (L̃R)⊤ approximately too, as in the non-exact case. In the next subsection, we show how
the recursive factorization method works here in an extended form.

6.3 Recursive factorization: exact case
The main result of this subsection is the following lemma.

▶ Lemma 6.19 (Recursive approximate factorization; exact case). For any fixed R ∈
([n]

≤d/2
)

and 0 ≤ c ≤ |R|, we have the following decomposition.

MR
c = L̃R ·

[
Dτ

(
QR

c,0 −QR
c,1 + ...±QR

c,d

)
Dτ

]
·
(

L̃R
)⊤

+ ER
c , (6.27)

where:
(1) All QR

c,k’s are supported on the principal minor SR × SR, where recall

SR = {(A, i) ∈
(

[n]
≤ d/2

)
× {0, ..., τ} | A ⊇ R, |A|+ i ≥ d/2}.

S. Pang 26:41

(2) QR
c,0 is by Definition 6.15;

(3) ∀1 < k ≤ d/2, QR
c,k is a (τ + 1)× (τ + 1)-block-matrix with the (i, j)-block

QR
c,k

(
(A, i), (B, j)

)
=

∑
Tm:|V (Tm)∪A∪B|≤τ

qR
c,k(Rm, i, j) · χTm (6.28)

(within SR × SR), where we naturally denote Rm = (A, B; Tm); these qR
c,k(·, i, j)’s are

symmetric w.r.t. shapes, and

∀(i, j) |qR
c,k(Rm, i, j)| ≤ τ5τ · (ω

n1−ϵ
)s−p+k/3, (6.29)

where as usual s = |A|+|B|
2 , p is the max number of vertex-disjoint paths from A to B in

Rm.
(4) For any G, ER

c (G) is supported within rows and columns that is clique in G and contains
R. Moreover, w.p. > 1− n−9 log n,∥∥ER

c

∥∥ < n−ϵτ/2. (6.30)

Proof of Lemma 6.19 Like before, the key is to look at one round of the factorization.
The following lemma is strictly parallel to Lemma 5.25. Again fix R ⊆

([n]
d/2
)
, c ≤ |R|; for

convenience denote n1 :=
([n]

d/2
)
× (τ + 1) in the following.

▶ Lemma 6.20 (One round of factorization; exact case). Let L̃R be from Def. 6.11, QR be
any n1 × n1-matrix supported on SR × SR and

QR((A, i), (B, j)) =
∑

Tm: |V (Tm)∪A∪B|≤τ

(ω

n
)|V (Rm)|q(Rm, i, j) · χTm

(6.31)

where Rm denotes (A, B; Tm), and q(·, i, j) is symmetric w.r.t. shapes for any fixed (i, j).
Now we define matrix Q′, E ′

negl so that the following holds:

[L̃R ·Q · (L̃R)⊤]non-can = [L̃R ·Q′ · (L̃R)⊤]can + E ′
negl. (6.32)

Namely, let Q′ be supported on SR × SR,

Q′((A, i), (B, j)) =
∑

Tm: |V (Tm)∪A∪B|≤τ

(ω

n
)|V (Rm)|q′(Rm, i, j) · χTm

(6.33)

where the coefficients q′(Rm, i, j) are as follows. Fix any Rm = (A, B; Tm) and (i, j). Let
t = |V (Rm)| ≤ τ , s = |A|+|B|

2 . For every generalized ribbon R∗
m that contains Rm as its

largest ribbon and |V (R∗
m)| ≤ τ , fix any a ribbon pair (R′

l,R′
r) so that (R′

l,R∗
m,R′

r) is the
separating factorization for some ribbon triple, |V (R′

l)|, |V (R′
r)| ≤ τ and

(e(R′
l), e(R′

r)) = (i, j). (6.34)

If there is no such choice, exclude this R∗
m in the summation below. Then:

q′(Rm, i, j) =
∑

R∗
m: gen. ribbon on (A,B)

|V (R∗
m)|≤τ

largest ribbon is Rm

(ω

n
)|I(R∗

m)| · q′′(R∗
m, i, j) where

q′′(R∗
m, i, j) =

∑
(z,i1,j1):
1≤z≤d/2

∑
P=(Rl,R,Rr): side-inn. can.

P→(R′
l,R∗

m,R′
r) for the fixed R′

l,R′
r

z(P)=z, e(Rl)=i1,e(Rr)=j1

(ω

n
)z · q(R, i1, j1).

(6.35)

CCC 2021

26:42 SOS Lower Bound for Exact Planted Clique

Note q′′(Rm, i, j) doesn’t depend on the choice (R′
l,R′

r) by (the full of) Proposition 5.24.
Thus q′(·, i, j) is also symmetric w.r.t. shapes.
E ′

negl is defined s.t. (6.32) holds. Then the conclusions are:
(1) W.p. > 1− n−9 log n over G,∥∥E ′

negl
∥∥ ≤ max{q(·)} · n−ϵτ ;

(2) If there is a number C for which

∀Rm, i, j |q(Rm, i, j)| ≤ C · (ω

n1−ϵ
)s−p (6.36)

where p denotes the maximum number of vertex-disjoint paths between A, B in Rm, then

∀Rm, i, j |q′(Rm)| ≤ C · (ω

n1−ϵ
)s−p+1/3.

Proof of Lemma 6.20. The proof is almost the same as that of Lemma 5.25; we point out
and explain the differences below.

The support condition (i.e. supported on SR × SR) doesn’t affect anything since L̃R

itself is automatically 0 on columns and rows that are not in SR.
As step (0) like before, we expand [L̃R ·Q′ ·(L̃R)⊤]can to compare with [L̃R ·Q·(L̃R)⊤]non-can

term-wise, using Prop. 5.24. Here, notice that when (i, j) and R∗
m are fixed, the size of

any choice of (R′
l,R′

r) satisfying (6.34) are also fixed, so the proposition is applicable.
The comparison for order on (ω

n) between the two is exactly the same as in step (0) of
the proof of Lemma 5.25, and the conclusion is that the matrix E ′

negl collects all terms
in [L̃R · Q · (L̃R)⊤]non-can whose R∗

m in the separating factorization exceeds size τ , i.e.
E ′

negl(I, J) =∑
i,j

∑
(Rl,Rm,Rr): side. inn. can.

non-outer-can.
all three has size ≤τ

|V (R∗
m)|>τ, (e(Rl),e(Rr))=(i,j)

(ω

n
)|V (Rl)|+|V (Rm)|+|V (Rr)|−|A|−|B|q(Rm, i, j)χT (6.37)

where T = Tl ⊕ Tm ⊕ Tr, and we omit writing the default requirement that Rl (Rr) has the
left (right) distinguished vertex set I (J).

The numerical conclusions (1), (2) follow from the same estimates as in Lemma 5.25
(after (5.44) there). We only point out that, for (1), the estimate there is actually loose
enough s.t. with even an extra (1 + τ)2-factor (from union bound on blocks) it is still smaller
than n−ϵτ . ◀

Now we can prove Lemma 6.19.

Proof for Lemma 6.19. Apply the one-round factorization Lemma 6.20 to

[L̃R ·
(
Dτ QR

c,iD
τ
)
·
(

L̃R
)⊤

]non-can

for i = 0, we get QR
c,1, E ′

1;negl (for ease of notation, we hide the index R, c for this negligible
matrix). Then repeat this for i = 1 we get Ec,1;deg, QR

c,2, and E ′
2,negl. Continuing this, as the

result we get the recursive factorization

MR
c =L̃R ·

[
Dτ
(
QR

c,0 −QR
c,1 + ...±QR

c,d

)
Dτ
]
·
(

L̃R
)⊤
−(

ER
c,1;deg − ER

c,2;deg + ...± ER
c,d;deg

)
+
(
E ′

1;negl + ... + E ′
d;negl

)
.

(6.38)

Again, here it uses that QR
c,d+1 = 0, by the same proposition 5.26.

S. Pang 26:43

(1) All QR
c,k is supported within SR × SR by definition of each round (Lemma 6.20);

(2) By definition.
(3) The coefficients of each QR

c,k (k = 0, 1, ..., d), {qR
c,k(·, i, j)} is always symmetric w.r.t.

shapes from Lemma 6.20. Moreover, from definition (6.23),

∀Rm, i, j |qR
c,0(Rm)| = |Yc(|R|, |Rm|)| ≤ τ5τ

where the last one is by Lemma 6.8(4). Since QR
c,0 is special in that for allRm = (A, B; Tm)

appearing in it, there are |A| = |B| many vertex-disjoint paths between A, B in Rm,
i.e. s = p, where as usual when Rm is fixed we use s = |A|+|B|

2 and p denotes the max
number of vertex-disjoint paths between A, B. So the above can be equivalently written
as

∀Rm, i, j |qR
c,0(Rm)| ≤ (ω

n1−ϵ
)s−pτ5τ . (6.39)

Now use Lemma 6.20(2), where notice the “q(·)” in there corresponds to qR
c,k here, since

the “Q” matrix is Dτ QR
c,kD so the “(ω

n)|V (Rm)|q(·)” is (ω
n)|V (Rm)|−s · (ω

n)s · qR
c,k. As the

result, we get the recursive bound

∀Rm, i, j |qR
c,k(Rm, i, j)| ≤ τ5τ · (ω

n1−ϵ
)s−p+k/3.

(4) First, when plugged in any G, both

MR
c and L̃R ·

[
Dτ

(
QR

c,0 −QR
c,1 + ...±QR

c,d

)
Dτ

]
·
(

L̃R
)⊤

are supported within clique rows and columns that contain R by their definition. So
it must be the case for their difference, ER

c , too. Next we only need to give the norm
bound. By (6.38), the final error matrix is

ER
c = −

(
ER

c,1;deg − ER
c,2;deg + ...± ER

c,d;deg
)

+
(
E ′

1;negl + ... + E ′
d;negl

)
.

Note by Lemma 6.20(2), by induction all |qR
c,k| < τ5τ . For each E ′

k;negl, by Lemma 6.20(1)
w.p. > 1− n−9 log n,

∥∥∥E ′
k;negl

∥∥∥ < τ5τ n−ϵτ < n−0.9ϵτ .

As for ER
c,k;deg, recall by definition 5.15 on (I, J) it is the sum of outer-canonical products

in L̃R ·
(
Dτ QR

c,i−1Dτ
)
·
(

L̃R
)⊤

(I, J) s.t. |V (T) ∪ I ∪ J | > τ . So

ER
c,k;deg(I, J) =

∑
(Rl,Rm,Rr):
semi-inn.can.

outer.can.
|V (T)∪I∪J|>τ

(ω

n
)|V (T)∪I∪J| · qR

c,k−1(Rm, e(Rl), e(Rr))χT

where as usual s = s(Rm) is the average of its two side vertex-sets, T = Tl ⊕ Tm ⊕ Tr, and
in the summation Rl (Rr) should have I (J) as the left (right) set. Note the above uses
|V (T) ∪ I ∪ J | = el + er + |V (Rm)| from the outer- and semi-inner- canonicality. Moreover,
any fixed (I, J ; T) can come from at most 33τ triples as their vertex set union is |V (T)∪I∪J |
by canonicality. Since 3τ ≥ |V (T) ∪ I ∪ J | > τ and w.h.p. |qR

c,k−1(·)| < τ5τ , use Lemma 4.2
and we get that w.p. > 1− n−10 log n,∣∣ER

c,k;deg(I, J)
∣∣ < τ6τ ·

3τ∑
c=0

(ω

n
)max{τ,c} · (nc/22c2

n4 log log n) < n−2ϵτ .

So by union bound over (I, J),
∥∥∥ER

c,k;deg

∥∥∥ < n−d/4n−2ϵτ < n−ϵτ w.p. > 1− n−9.5 log n.
Together, sum the two and by union bound over k, we get that w.p. > 1 − n−9 log n,∥∥ER

c

∥∥ < n−ϵτ/2. ◀

CCC 2021

26:44 SOS Lower Bound for Exact Planted Clique

6.4 Positiveness of the middle matrices: proof overview
Now we use the approximate decomposition of MR

c ’s to prove the Main Lemma 6.9. Recall
for each R, c ≤ |R|, by Lemma 6.19

MR
c = L̃R ·

Dτ

(
QR

c,0 −QR
c,1 + ...±QR

c,d

)
︸ ︷︷ ︸

:=QR
c

Dτ

 · (L̃R
)⊤

+ ER
c .

The key is the following lemma. Recall SR = {(A, i) ∈
([n]

≤d/2
)
×{0, ..., τ} | A ⊇ R, |A|+i ≥ d

2}.

▶ Lemma 6.21. W.p. > 1− n−8 log n over G, the following holds.
(1) ∀R ∈

([n]
≤d/2

)
,

QR
0,0 −QR

0,1 + ...±QR
0, d

2
⪰ τ−7τ · diag

(
C̃l
)

SR×SR
,

where recall SR = {(A, i) ∈
([n]

≤d/2
)
× {0, ..., τ} | A ⊇ R, |A|+ i ≥ d

2}.
(2) ∀R, 0 < c ≤ |R|

±ω−c
(

QR
c,0 −QR

c,1 + ...±QR
c, d

2

)
⪯ n−c/4 · diag

(
C̃l
)

SR×SR
.

The proof of Lemma will span the upcoming three subsections, completed at the end of
Section 6.6. The Main Lemma 6.9 then follows by standard steps (Section 6.7).

Proof plan for Lemma 6.21. Fix an R ∈
([n]

≤d/2
)
. We will prove the lemma by three

ingredients: Corollary 6.36, Lemma 6.37, Lemma 6.38.
Corollary 6.36 (in Section 6.5, 6.6): Positiveness of QR

0,0. This is the last real technical
challenge. We use a natural “structural part + pseudo-random part” decomposition of QR

0,0
(Def. 6.23), aiming to show that on their common support, the structural part is positive
enough and the pseudo-random part is small enough in norm. The main difficulty here
is in analyzing E[QR

0,0] which, ultimately, is about the choice of generating function F in
Definition 3.11.

Lemma 6.37, 6.38 (Section 6.6): Other QR
c,k’s (k > 0 or c > 0), when timed with ω−c, are

small and appropriately supported. These two lemmas are proved by standard means.
We will follow this plan in the next two subsections. Here we end this subsection with

two definitions for preparation.

▶ Definition 6.22. Let the root diagonal-clique matrix be

DCl(A, B) =
{

0 , if A ̸= B;

2−(|A|
2)/2 · C̃lA = 2−(|A|

2)/2∑
T ⊆E[A] χT , o.w.

(6.40)

of dimension
([n]

≤d/2
)
×
([n]

≤d/2
)
, so that D2

Cl(A, A) = C̃l(A) for all A ∈
([n]

d/2
)
. Define

Dτ
Cl := DCl⊗ Id{0,...,τ}×{0,...,τ}. (6.41)

which is also diagonal.

▶ Definition 6.23. The structural-pseudorandom decomposition of QR
0,0 is

QR
0,0 = Dτ

Cl · E[QR
0,0] ·Dτ

Cl +
(
QR

0,0 −Dτ
Cl · E[QR

0,0] ·Dτ
Cl

)
, (6.42)

where the summand Dτ
Cl · E[QR

0,0] · Dτ
Cl is called the structural part, and the summand(

QR
0,0 −Dτ

Cl · E[QR
0,0] ·Dτ

Cl

)
the pseudo-random part.

S. Pang 26:45

6.5 Positiveness of E[QR
0,0]

▶ Proposition 6.24 (Expression of E[QR
c,0]). Fix R ∈

([n]
≤d/2

)
and 0 ≤ c ≤ |R|. let r = |R|.

Recall SR is defined by (6.22).
(1) E[QR

c,0] is supported on the blockwise partial-diagonals

{
(

(A, i), (A, j)
)
∈ SR × SR}.

(i.e. requires R ⊆ A and |A|+ min{i, j} ≥ d/2)

(2) For all
(

(A, i), (A, j)
)
∈ SR × SR, E[QR

c,0]
(

(A, i), (A, j)
)

=

r∑
l=c

(−1)r−l

(
r
l

)
(l − c)!

(
|A|+ i + j + l − d

c

)(|A|+ 8τ2 + (l − c) + (i + j)
)

!

(8τ2)!

+ O

(
τ1.5τ

n

)
.

(6.43)

In particular, for c = 0,

E[QR
0,0]
(

(A, i), (A, j)
)

=
r∑

l=0
(−1)r−l

(
r
l

)
l! ·

(
|A|+ 8τ2 + l + (i + j)

)
!

(8τ2)! + O

(
τ1.5τ

n

)
.

(6.44)

(3) For every A ∈
([n]

≤d/2
)

let 1A,A be the
([n]

≤d/2
)
×
([n]

≤d/2
)
-matrix with a single 1 on position

(A, A). Then

E[QR
0,0] =

∑
A⊆([n]

≤d/2)
A⊇R

1A,A ⊗

[(
r∑

l=0
(−1)r−l

(
r
l

)
l! · P|A|+l

)
+ ER

A

]
(6.45)

where, for every fixed A, P|A|+landER
A are (τ + 1)× (τ + 1)-matrices both supported on

the principal minor {i | d/2− |A| ≤ i ≤ τ} × {i | d/2− |A| ≤ i ≤ τ} with the following
property:

∥∥ER
A

∥∥ <
τ2τ

n
, (6.46)

and

P|A|+l(i, j) =

(
|A|+ l + 8τ2 + (i + j)

)
!

(8τ2)! , d/2− |A| ≤ i, j ≤ τ. (6.47)

Proof. For (1), the constant terms in (6.23) correspond to Tm = ∅, which is nonzero only
when A = B for A, B in SR.

For (2), from definition (6.23) we notice again Tm = ∅ and A = B. E[QR
c,0((A, i), (A, j))] =

Yc(|R|︸︷︷︸
:=r

, |A|+ i + j︸ ︷︷ ︸
:=a

), which expands to:

CCC 2021

26:46 SOS Lower Bound for Exact Planted Clique

r∑
l=c

(−1)r−l

(
r

l

)(
a + l − d

c

)
︸ ︷︷ ︸

Def. 6.5

(
n− a

l − c

)
n−(l−c) (a + l − c + 8τ2)!

(8τ2)! . (6.48)

Now use(
n− a

l − c

)
n−(l−c) = 1

(l − c)!
(n− a)...(n− a− (l − c) + 1)

nl−c
= 1

(l − c)! (1−O(d2/n))

and∣∣∣∣(r

l

)(
a + l − d

c

)(
n− a

l − c

)
n−(l−c) (a + l − c + 8τ2)!

(8τ2)!

∣∣∣∣ < (4d)d · (9τ2)d < τ τ

to (6.48), we get (6.43). Further, in (6.48) when c = 0 we have
(

a+l−d
0
)

= 0 regardless of
a + l − d (any value of it, positive, negative or 0). And the same analysis gives (6.44).

For (3), each ER
A has dimension (τ + 1)× (τ + 1) and each entry is absolutely < τ1.5τ /n

from part (2). ◀

▶ Remark 6.25 (Specialty of c = 0). Comparing E[QR
0,0] and E[QR

c,0] (6.43), (6.44), the
specialty of the case c = 0 is that the factor

(|A|+l−d
0

)
is always 1, which is important for

E[QR
0,0] to be positive. In cases c > 0,

(|A|+l−d
c

)
might be 0 or negative depending on the

order between 0, c, |A|+ l − d, making E[QR
c,0] possibly not PSD.

▶ Definition 6.26. For every m, t ∈ N, define the factorial Hankel matrix to be

Hm,t(i, j) = (i + j + t)! ∀0 ≤ i, j ≤ m. (6.49)

The following is our key observation on the structure of these matrices.

▶ Proposition 6.27 (Almost common decomposition of {Hm,t}).
(1) The matrix family {Hm,t} have decomposition

Hm,t = Lm ·
(
Nm,t ·Dm,t · (Nm,t)⊤) · (L⊤

m)

where Lm, Dm,t are diagonal, Nm,t is lower-triangular

Lm(i, i) = i! Dm,t(i, i) =
t∏

t′=1
(i + t′) Nm,t(i, j) =

(
i + t

i− j

)
In particular, Lm is independent of t, and Hm,t is positive.

(2) Let Jm denote the (1 + m)× (1 + m) lower-triangular Jordan block

Jm(i, j) =
{

1 , if i = j or i = j + 1;
0 , o.w.

Then the “left factors” Nm,t satisfy the recursive relation

Nm,t+1 = Nm,t · Jm. (6.50)

Proof. This follow from a direct inspection. ◀

S. Pang 26:47

▶ Proposition 6.28. If parameters m, t, r satisfy

t + 1 > 8 ·max{r2, m} (6.51)

then

Hm,t+1 ⪰ 2r2Hm,t.

Proof. By Proposition 6.27 it suffices to show that under (6.51),

Jm ·Dm,t+1 · J⊤
m ⪰ 2r2Dm,t.

Equivalently, we need to compare the quadratic forms for fixed m:

qt+1(x) := (x⊤Jm)Dm,t+1(J⊤
mx) v.s. qt(x) := 2r2 · x⊤Dm,tx (6.52)

where x⊤ = (x0, ..., xm) is the formal variable row-vector. Define polynomials

α(y) = 2r2
t∏

t′=1
(y + t′), β(y) =

t+1∏
t′=1

(y + t′).

By definition of Dm,t, Jm,

qt+1(x) =
m∑

i=0
β(i)(xi + xi+1)2, xm+1 := 0;

qt(x) =
m∑

i=0
α(i)x2

i .

To compare the two, note

qt+1(x) =
m∑

i=0
β(i) · (xi + xi+1)2 =

m∑
i=0

[
α(i)x2

i +
(

β(i)− α(i)
)
· (xi + β(i)

β(i)− α(i)xi+1)2 − β(i)2

β(i)− α(i)x2
i+1

]
So if for 0 ≤ i ≤ m let

bi = 1− α(i)
β(i) −

β(i− 1)
β(i)

1
bi−1

, b0 = 1− α(0)
β(0) , (6.53)

then

qt+1(x) =
m∑

i=0
α(i)x2

i︸ ︷︷ ︸
qt(x)

+
m∑

i=0
β(i)bi · (xi + 1

bi
xi+1)2. (6.54)

▷ Claim 6.29. In (6.53), for all i ≤ m we have bi > 1/2.

Proof. By definition, b0 = 1− 2r2

(t+1) and

bi = 1− 2r2

(t + 1 + i) −
i

(t + 1 + i) ·
1

bi−1
, i ≥ 1. (6.55)

CCC 2021

26:48 SOS Lower Bound for Exact Planted Clique

Use induction for the claim: b0 = 1− 2r2

t+1 > 1/2 by (6.51). For 1 ≤ i ≤ m,

bi = 1− 2r2

t + 1 + i
− i

t + 1 + i
· 1

bi−1

≥ 1− 2r2

t + 1 −
m

t + 1 · 2 > 1/2 by (6.51) and the inductive hypothesis.

◁

By (6.54) and positiveness of each bi (Claim 6.29), qt+1(x) ≥ qt(x). The lemma is proved. ◀

Now we apply Proposition 6.28 to matrices P|A|+l (6.47). Note

P|A|+l = 1
(8τ2)!Hτ−(d/2−|A|), d−|A|+8τ2+l

where A is fixed, l varies; below, we regard P|A|+l as a matrix on its support.

▶ Corollary 6.30 (Positiveness of E[QR
0,0]). In the decomposition (6.45) of E[QR

0,0],(
r∑

l=0
(−1)r−l

(
r
l

)
l! · P|A|+l

)
+ ER

A ≻ diag
(
τ−6τ

)
0≤i≤τ−(d/2−|A|) (6.56)

where we naturally regarded matrices as on their support

{i | d/2− |A| ≤ i ≤ τ)}2 ∼= {0, ..., τ − (d/2− |A|)}2.

In particular, by (6.45)

E[QR
0,0] ≻

∑
A⊆([n]

≤d/2)
A⊇R

1A,A ⊗ diag
(
τ−6τ

)
d/2−|A|≤i≤τ

= diag
(
τ−6τ

)
SR×SR

(6.57)

where recall SR = {(A, i) | R ⊆ A, |A|+ i ≥ d/2}.

Proof. The “in particular” part is straightforward from (6.56) by checking the support, and
that tensoring with a nonzero PSD matrix preserves the relation ≻. In below we prove for
(6.56).

Fix A, let

τ0 = τ − (d/2− |A|), t0 = d− |A|+ 8τ2. (6.58)

Then
r∑

l=0
(−1)r−l

(
r
l

)
l! · P|A|+l = 1

(8τ2)! · (Xr + Xr−2 + ...) (6.59)

where, ∀0 ≤ v ≤ ⌊r/2⌋,

Xr−2v =
(

r
r−2v

)
(r − 2v)! ·

(
Hτ0,t0+r−2v −

(r − 2v)2

(2v + 1)︸ ︷︷ ︸
≤r2

Hτ0,t0+r−2v−1

)
, Hτ0,−1 := 0.

Since t0 > 8 max{r2, τ0}, by Proposition 6.28

Xr−2v ⪰
(

r
r−2v

)
(r − 2v)! ·max{1

2Hτ0,t0+r−2v, r2Hτ0,t0+r−2v−1} ∀0 ≤ v ≤ r/2.

S. Pang 26:49

So in (6.59), in particular,
r∑

l=0
(−1)r−l

(
r
l

)
l! · P|A|+l ⪰

1
(8τ2)! ·Hτ0,t0

Prop. 6.27= L

(
Nt0 ·

Dt0

(8τ2)! · (Nt0)⊤
)

L (6.60)

where we temporarily abuse the notation by omitting the index τ0 in the RHS.
Using the following claim, we can finish the proof of (6.56):

RHS of (6.60) ≻ L · diag
(
τ−5τ

)
0≤i≤τ0

· L (by Claim 6.31)

⪰ diag
(
τ−5τ

)
0≤i≤τ0

,

while by Proposition 6.24 (3),∥∥ER
A

∥∥ <
τ2τ

n
< τ−6τ (parameter regime).

So LHS of (6.56) ⪰ diag
(
τ−5τ − τ−6τ

)
0≤i≤τ0

⪰ RHS of (6.56). ◀

▷ Claim 6.31. In notation of Corollary 6.30,

N−1
t0

(i, j) = (−1)i−j

(
i + t0

i− j

)
0 ≤ i, j ≤ τ0 (6.61)

and

Nt0 ·
Dt0

(8τ2)! · (Nt0)⊤ ≻ diag
(
τ−5τ

)
0≤i≤τ0

. (6.62)

Proof. For (6.61), multiply this matrix with Nt0 then the (i, j)th entry is

∑
j≤k≤i

(−1)i−k

(
i + t0

i− k

)(
k + t0

k − j

)
=

i′∑
k′=0

(−1)i′−k′
(

i′ + j + t0

i′ − k′

)(
k′ + j + t0

k′

)
where i′ = i − j, k′ = k − j. To see this is identity matrix, use generating functions: let
Dm[(1 + x)a] denote the coefficient of xm in (1 + x)a, m ≥ 0, a ∈ Z, the above RHS is

(−1)i′
i′∑

k′=0
Di′−k′ [(1 + x)i′+j+t0] ·Dk′ [(1 + x)−(t0+j+1)]

=(−1)i′
Di′ [(1 + x)i′+j+t0−(t0+j+1)] = (−1)i′

Di′ [(1 + x)i′−1] = 1i′=0.

For (6.62), it is equivalent to

Dt0

(8τ2)! ≻ N−1
t0
· τ−5τ · (N−1

t0
)⊤. (6.63)

To upper bound the RHS, let a0 = τ−5τ , consider the quadratic form

x⊤N−1
t0
· a0 · (N−1

t0
)⊤x = a0

τ0∑
j=0

y2
j , (6.64)

where by (6.61),

yj =
(
x⊤N−1

t0

)
j

=
τ0∑

i=j

(−1)i−j

(
i + t0

i− j

)
xi.

CCC 2021

26:50 SOS Lower Bound for Exact Planted Clique

By Cauchy-Schwartz, y2
j ≤ τ0 ·

∑τ0
i=j

(
i+t0
i−j

)2
x2

i , so

RHS of (6.64) = a0

τ0∑
j=0

y2
j ≤ a0

τ0∑
i=0

x2
i ·

τ0

i∑
j=0

(
i + t0

i− j

)2

<

τ0∑
i=0

(
τ−5τ · (9τ2)2i+2

)
x2

i .

Now (6.63) follows since for each i, in the LHS of (6.63)

Dt0(i, i)
(8τ2)! ≥ (8τ2)−(d/2−|A|) (by definition)

> τ−2d > τ−5τ · (9τ2)2i+2

using i ≤ τ0 < τ , d≪ τ . So (6.63) holds. ◁

We get the main conclusion of this subsection:

▶ Corollary 6.32 (Positiveness of the structural part of QR
0,0 (Def. 6.23)).

Dτ
Cl · E[QR

0,0] ·Dτ
Cl︸ ︷︷ ︸

stractural part of QR
0,0

⪰ τ−6τ · diag
(

C̃l
)

SR×SR
.

Proof. This follows from Cor. 6.30 and that D2
Cl(A, A) = C̃l(A) for all A in Def. 6.22. ◀

6.6 Rest bounds: QR
c,ks

In this subsection, we bound the rest matrices:

QR
0,0 −Dτ

Cl · E[QR
0,0] ·Dτ

Cl︸ ︷︷ ︸
pseudo−random part of QR

0,0 (Def. 6.23)

, QR
0,k (k > 0), ω−c ·QR

c,k (c > 0, k ≥ 0)

by three Lemmas 6.34, 6.37, 6.38, respectively, which would prove Lemma 6.21.
The arguments are quite standard but somewhat lengthy, as one needs to be careful on

the block structure and the support of the matrices.

▶ Definition 6.33 (0-1 diagonal-clique matrix). Recall the matrix Dτ
Cl from Def. 6.22. Denote

by D′ its 0-1 valued version, i.e. D′ is also diagonal and has entries

D′((A, i), (A, i)) = ClA, ∀A ∈
(

[n]
≤ d/2

)
∀0 ≤ i ≤ τ.

▶ Lemma 6.34 (Bound on pseudo-random part of QR
0,0). W.p. > 1− n−9 log n the following

holds: ∀R ∈
([n]

≤d/2
)
,

±(QR
0,0 −Dτ

Cl · E[QR
0,0] ·Dτ

Cl︸ ︷︷ ︸
pseudo−random part of QR

0,0

)(G) ⪯ n−ϵ · diag
(

C̃l(G)
)

SR×SR
(6.65)

Proof. Fix R. For simplicity, in this proof abbreviate:

Qps := QR
0,0 −Dτ

Cl · E[QR
0,0] ·Dτ

Cl =
(
Qps,(i,j)

)
0≤i,j≤τ

(“ps” for pseudo-random), which is a (τ + 1)× (τ + 1)-block matrix.

S. Pang 26:51

In block (i, j), by Def. 6.15 and Prop. 6.24, Qps,(i,j) is supported within

Si,j × Si,j where Si,j := {A | |A|+ min{i, j} ≥ d/2}.

And for each A ̸= B,

Qps,(i,j)(A, B) = QR
0,0((A, i), (B, j)) =∑

Tm: |V (Tm)∪A∪B|≤τ
A,B∈mSepA,B(Tm)

(ω

n
)|V (Tm)∪A∪B|− |A|+|B|

2 · q(A, B; Tm) · χTm ; (6.66)

and

Qps,(i,j)(A, A) =
∑

Tm: 1≤|V (Tm)\A|≤τ−|A|

(ω

n
)|V (Tm)∪A|−|A| · q(A, A; Tm) · χTm . (6.67)

Here we have abbreviated q(A, B; Tm) := Y0

(
|R|, |V (Tm) ∪A ∪B|+ (i + j)

)
((6.23)) and

have omitted the indices |R|, i + j when they are fixed. Two properties we need:

q(A, B; Tm) depends only on |V (Tm) ∪A ∪B| when fixing (A, B); (6.68)∣∣∣∣q(A, B; Tm)
∣∣∣∣ < τ5τ (by Lemma 6.8 (4)). (6.69)

By (6.68), Qps,(i,j)(A, B) always factors through ClA∪B and so also through ClAClB . In
particular,

Qps = D′ ·Qps ·D′ (6.70)

where D′ is the 0-1 diagonal-clique matrix (Definition 6.33).

▷ Claim 6.35. W.p. > 1− n−9.5 log n the following holds:

∀(i, j) ±Qps,(i,j) ≺ n−1.1ϵ · diag
(

2(|A|
2)
)

SR
min{i,j}×SR

min{i,j}

where SR
a := {A ∈

([n]
≤d/2

)
| |A|+ a ≥ d/2}.

The lemma follows from this claim and (6.70). Namely, consider a different decomposition
of Qps as follows. For every b ∈ [0, d

2], let

Ib := {i | d/2− b ≤ i ≤ τ}

and Qps;b be the principal minor Wb :=
(
P R

b × Ib

)
×
(
P R

b × Ib

)
of Qps (0 elsewhere), where

P R
b = {A ⊆ [n] | R ⊆ A, |A| = b}. Then we have

{((A, i), (B, j)) ∈ SR × SR | 0 ≤ |A| = |B| ≤ d/2} =
d/2
⊔

b=0
Wb.

Since QR
c,0 is supported only on those ((A, i), (B, j)) ∈ SR × SR with |A| = |B| (Remark

6.16(2)), in particular for c = 0 we have

Qps =
d/2∑
b=0

Qps;b. (6.71)

CCC 2021

26:52 SOS Lower Bound for Exact Planted Clique

Each Qps;b is block-wise in blocks Ib × Ib, each block a principal minor of Qps,(i,j). So
by Claim 6.35 w.p. > 1 − n−9.5 log n any (±) such a block ≺ n−1.5ϵ · diag

(
2(b

2)
)

([n]
b)×([n]

b)
,

so ±Qps;b ≺ τ2 · n−1.5ϵdiag
(

2(b
2)
)

Wb

≺ n−ϵdiag
(

2(b
2)
)

Wb

. Hence by (6.71) and the union

bound over b, ±Qps ≺ n−ϵdiag
(

2(|A|
2)
)

SR×SR
w.p. 1− n−9 log n. Finally, insert this to the

middle of (6.70), where notice C̃lA = 2(|A|
2) · ClA, ClA = Cl2A, we get (6.65). ◀

Proof of Claim 6.35. We use the norm bounds from Section 4. Fix (i, j), consider consider

Qdiag
ps,(i,j) and Qoff

ps,(i,j) = Qps,(i,j) −Qdiag
ps,(i,j).

Diagonal part. For Qdiag
ps,(i,j), by (6.67) for any (A, A) in the support (i.e. |A| + i ≥ d/2,

|A|+ j ≥ d/2),

Qdiag
ps,(i,j)(A, A) = C̃lA ·

 ∑
Tm: 1≤|V (Tm)\A|≤τ−|A|

Tm∩E[A]=∅

(ω

n
)|V (Tm)\A|q(A, A; Tm) · χTm

︸ ︷︷ ︸

:=g(A)

.

For every fixed A in support, this g(A) can be bounded by norms of diagonal graphical
matrices, as follows. First, q(A, A; Tm) depends only on |V (Tm)\A| (we have fixed R, i, j, A),
so temporarily denote it as q(|V (Tm)\A|). For every 1 ≤ v ≤ τ − |A|, let Uv

1 , ...,Uv
h(v) be all

different shapes (A, A; T) (Def. 4.7) s.t. T ∩ E[A] = ∅ and |V (T)\A| = v. Clearly,

h(v) ≤ 2|A|v+v2
since we required T ∩ E[A] = ∅. (6.72)

So w.p. > 1− n−9.6 log n the following holds:

|g(A)| =
∣∣∣∣τ−|A|∑

v=1
(ω

n
)vq(v) ·

(h(v)∑
x=1

∑
Tm:(A,A;Tm) has

shape Uv
x

χTm

︸ ︷︷ ︸
=MUv

x
(A,A) by Def. 4.7

)∣∣∣∣

≤
τ−|A|∑
v=1

(ω

n
)vq(v) ·

h(v)∑
x=1

∥∥MUv
x

∥∥ (each MUv
x

is diag.)

≤
τ−|A|∑
v=1

(ω

n
)vτ5τ

h(v)∑
x=1

∥∥MUv
x

∥∥ (by (6.69))

<
τ∑

v=1
(ω

n
)vτ5τ · 2|A|v+v2

· n v
2 2O(|A|+v) (by (6.72) and Thm. 4.8)

<
τ∑

v=1
n−3ϵv · nϵv < n−1.2ϵ (by the parameter regime)

Off-diagonal part. Similarly, by symmetry of the coefficients (6.68), Qoff
ps,(i,j) is a sum of

graphical matrices. I.e. let Us,t
1 , ...,Us,t

h(s,t) be the collection of distinct shapes (A, B; T) s.t.
|A| = |B| = s, A ̸= B, A, B ∈ mSepA,B(T) and |V (T) ∪A ∪B| = t, then by (6.66), Qoff

ps,(i,j)
is a block-diagonal matrix for blocks s = d/2− i, ..., d/2 according to s = |A| = |B|, the sth
block being

S. Pang 26:53

Qoff
ps,(i,j)(s) =

∑
t: s<t≤τ

(ω

n
)t−s

h(s,t)∑
x=1

q(Us,t
x)MUs,t

x

where naturally we denote q(A, B; Tm) = q(Us,t
x) if (A, B; Tm) has shape Us,t

x . By Theorem
4.8, w.p. > 1− n−9.8 log n,∥∥∥Qoff

ps,(i,j)(s)
∥∥∥ ≤ ∑

s<t≤τ

(ω

n
)t−s · h(t, s) · n

t−s
2 2O(t)(log n)O(t−s) (6.73)

Also, clearly h(t, s) ≤ 2(t
2)+O(t). Therefore, with the same high probability

RHS of (6.73) ≤
∑

d/2−max{i,j}≤s≤d/2
s<t≤τ

(ω

n
)t−s2(t

2)+O(t)n
t−s

2 (log n)O(t−s)

<
∑

d/2−max{i,j}≤s≤d/2
s<t≤τ

n−2ϵ(t−s)2O(t)2(s
2)(2t+s log n)O(t−s)

<2(s
2) · n−1.9ϵ. (in our parameter regime)

Adding these diagonal blocks, we get that ±Qoff
ps,(i,j) ≺ n−1.9ϵ ·diag

(
2(|A|

2)
)

SR
min{i,j}×SR

min{i,j}

.

Finally, by the union bound we get that w.p. > 1− n−9.5 log n,

±Qps,(i,j) = ±(Qdiag
ps,(i,j) + Qoff

ps,(i,j)) ≺ n−1.5ϵ · diag
(

2(|A|
2)
)

SR
min{i,j}×SR

min{i,j}

,

completing the proof. ◁

▶ Corollary 6.36 (Positiveness of QR
0,0). For every R ∈

([n]
≤d/2

)
, w.p. > 1− n−8 log n over G

QR
0,0(G) ⪰ τ−6.1τ · diag

(
C̃l(G)

)
SR×SR

.

Proof. By Lemma 6.34 and Corollary 6.32, where τ−6.1τ ≫ n−ϵ/10 in our parameter regime.
◀

▶ Lemma 6.37 (Bounds on QR
0,k). W.p. > 1−n−9 log n the following holds. For all R ∈

([n]
≤d/2

)
and all 1 ≤ k ≤ d/2,

±QR
0,k(G) ⪯ n−k/10 · diag

(
C̃l(G)

)
SR×SR

.

Proof. We will use union bound over (R, k) so fix them first. For the fixed R, k(> 0), in
this proof we abbreviate:

QR
0,k ↔ Q.

Recall the definition of QR
0,k (Lemma 6.19 (3)): Q is supported within SR × SR,

Q

(
(A, i), (B, j)

)
=

∑
Tm:|V (Tm)∪A∪B|≤τ

(ω

n
)t−sqR

0,k(Rm, i, j) · χTm
. (6.74)

CCC 2021

26:54 SOS Lower Bound for Exact Planted Clique

where t = |A ∪B|, s = |A|+|B|
2 . Abbreviate qR

0,k as qk. By Lemma 6.19(3),

qk(·, i, j) is symmetric w.r.t. shapes for all fixed (i, j); (6.75)

|qk(Rm, i, j)| ≤ τ5τ · (ω

n1−ϵ
)s−p+k/3 (6.76)

where t = |A ∪B|, s = |A|+|B|
2 , p is the maximum number of vertex-disjoint paths from A to

B in (A, B; Tm).
By symmetry of qk’s, Q((A, i), (B, j)) factors through Cl(A)Cl(B), so

Q = D′ ·Q ·D′. (6.77)

where D′ is by Definition 6.33. It suffices to show:

w.p. > 1− n−9.5 log n ±Q ≺ n−k/10 · diag
(

2(|A|
2)
)

SR×SR
. (6.78)

This is because, like in the proof of Lemma 6.34, we can insert (6.78) to the middle of (6.77)
which proves the lemma for the fixed R, k.

In below we prove (6.78). First, express each block of Q as a sum of graphical matrices. As
a block-matrix, Q = (Q(i,j))0≤i,j≤τ where Q(i,j) is supported on those A’s s.t. |A|+ i ≥ d/2.
For any fixed (i, j) any (s1, s2) ∈ {0, ..., d/2}2 s.t. s1 + i ≥ d/2, s2 + j ≥ d/2, and any
t ≥ max{s1, s2}, let U t;s1,s2

1 , ...,U t;s1,s2
h(t;s1,s2) be all different shapes (A, B; T) where |A| = s1,

|B| = s2, |V (T) ∪A ∪B| = t. Then by (6.74) and symmetry,

Q(i,j) =
∑

(t;s1,s2)
s1+i,s2+j≥d/2

τ≥t≥s1,s2

h(t;s1,s2)∑
x=1

qk(U (t;s1,s2)
x , i, j) ·MU(t;s1,s2)

x
.

This equation can be naturally viewed block-wise w.r.t. (s1, s2), i.e.

Q(i,j) =
∑
s1,s2

s1+i,s2+j≥d/2

Q(s1,i),(s2,j) (6.79)

where

Q(s1,i),(s2,j) :=
∑

t:
s1,s2≤t≤τ

h(t;s1,s2)∑
x=1

qk(U (t;s1,s2)
x , i, j) ·MU(t;s1,s2)

x
. (6.80)

Note that Q(s1,i),(s2,j) is a
([n]

s1

)
×
([n]

s2

)
-matrix on the (i, j)th block of Q.

By Theorem 4.8 and (6.76), w.p. > 1− n−10 log n∥∥Q(s1,i),(s2,j)
∥∥ ≤ ∑

t: t≤τ
t≥s1,s2

h(t; s1, s2) · (ω

n
)t−s(ω

n1−ϵ
)s−p+k/3 · n

t−p
2 2O(t)(log n)O(t−s) (6.81)

where, as usual, s = s1+s2
2 and p is the maximum number of vertex-disjoint paths between

the two distinguished subsets in the shape. Since

h(t; s1, s2) ≤ 2(t
2)+O(t) = 2(s

2)+O(t)+(t+s)·(t−s),

we can bound the RHS of (6.81) (note k > 0, 2O(t) < nϵ/10, τ5τ < n1/30) by

< 2(s
2) · τ5τ n−k/6n−ϵ(t−s) < 2(s

2)n−k/8. (6.82)

S. Pang 26:55

Finally, sum over all double-blocks and use Cauchy-Schwartz. Namely, regard each Q(s1,i),(s2,j)
now as on SR × SR (extended by 0’s), then

Q =
∑

(s1,i),(s2,j)
s1+i,s2+j≥d/2

Q(s1,i),(s2,j) (6.83)

and for each (s1, i), (s2, j) in the summand,

±Q(s1,i),(s2,j) ≺ n−k/8 ·
(

2(s1
2)Id(s1,i),(s1,i) + 2(s2

2)Id(s2,j),(s2,j)

)
/2

by (6.82) and Cauchy-Schwartz. So by (6.83), w.p. > 1− n−9.5 log n,

±Q ≺ τ2n−k/8diag
(

2(|A|
2)
)

SR×SR
≺ n−k/10diag

(
2(|A|

2)
)

SR×SR
.

(6.78) is proved. ◀

▶ Lemma 6.38 (Bounds on QR
c,k, c > 0). W.p. > 1− n−9 log n the following holds: ∀(R, c, k)

where R ∈
([n]

≤d/2
)
, 0 < c ≤ |R| and 0 ≤ k ≤ d/2,

±ω−c ·QR
c,k ⪯ n−c/3 · diag

(
C̃l
)

SR×SR
. (6.84)

Proof. The proof is almost the same as the previous one (Lemma 6.37). First, by a union
bound over all such (R, c, k), it suffices to show that w.p. > 1 − n−9.5 log n the inequality
holds for a fixed (R, c, k); we do it below.

Fix (R, c, k) as in the condition. If k > 0 then the proof is identical to that of Lemma
6.37 (c = 0), since the same coefficient-size condition and symmetry condition (6.75), (6.76)
hold here by Lemma 6.19, and moreover, the matrix QR

c,k is supported within SR × SR too.
So we only need to deal with the case c > 0, k = 0, i.e. QR

c,0. By Definition 6.15, the

matrix is supported on SR × SR with expression QR
c,0

(
(A, i), (B, j)

)
=

∑
Tm:|V (Tm)∪A∪B|≤τ
A,B∈mSepA,B(Tm)

(ω

n
)|V (Tm)∪A∪B|− |A|+|B|

2 ·Yc

(
|R|, |V (Tm)∪A∪B|+ (i + j)

)
·χTm

(6.85)

where
∣∣Yc

(
|R|, |V (Tm) ∪A ∪B|+ (i + j)

)∣∣ < τ5τ by Lemma 6.8 (4). If for every fixed
(A, B; Tm) denote t = |V (Tm) ∪ A ∪ B|, s = |A|+|B|

2 (= |A| = |B| in this case), then the
coefficient in (6.85) is bounded by (ω

n)t−s · τ5τ . Therefore, we have the support condition,
the symmetry, and the size condition on the coefficients as in Lemma 6.37, so we can proceed
exactly the same as there till equation (6.81), where a single term in its RHS now becomes

h(t; s1, s2) · (ω

n
)t−sτ5τ · n

t−p
2 2O(t)(log n)O(t−s).

Note in (6.85) any appearing ribbon Rm = (A, B; Tm) satisfies A, B ∈ mSepA,B(Tm) so
p = s (the specialty of the case k = 0). So we can replace the bound on the RHS of (6.82)
by τ32(s

2) · n−3ϵ(t−s)τ5τ 2O(t) < 2(s
2)τ6τ , and then proceed to the last line of the proof there,

with the bound now being

±QR
c,0 ≺ τ7τ · diag

(
2(|A|

2)
)

SR×SR
.

CCC 2021

26:56 SOS Lower Bound for Exact Planted Clique

In particular, since c ≥ 1, ω = n
1
2 −4ϵ (assuming ϵ < 1/40) and τ7τ < n1/15, we get

±ω−c ·QR
c,0 ≺ n−c/3 · diag

(
2(|A|

2)
)

SR×SR
by our parameters. Once again like before, using

QR
c,0 = D′ ·QR

c,0 ·D′ we get that ±ω−c ·QR
c,0 ⪯ n−c/3 · diag

(
C̃l
)

SR×SR
. ◀

Lemma 6.21 follows immediately from Corollary 6.36, Lemma 6.37, 6.38.

6.7 Last step
Now we prove the Main Lemma 6.9, hence Theorem 6.1. For any fixed R, recall the notation
P R = {I ∈

([n]
d/2
)
| R ⊆ I}.

Lemma 6.9 recast. W.p. 1− n−5 log n it holds that for all R ⊆
([n]

d/2
)
:

MR
0 ⪰ n−d · diag(C̃l)P R×P R ; (6.86)

± ω−cMR
c ⪯ n−c/6 ·MR

0 , ∀0 < c ≤ |R|. (6.87)

Further recall that Dτ = diag
(

(ω
n)

|A|
2

)
A:|A|≤ d

2

⊗ Id{0,...,τ}×{0,...,τ} (Def. 6.12), and that

SR = {(A, i) ∈
([n]

≤d/2
)
× {0, ..., τ} | A ⊇ R, |A|+ i ≥ d

2}. The following lemma will be handy.

▶ Lemma 6.39. ∀R ∈
([n]

≤d/2
)
,

L̃RDτ · diag
(

C̃l
)

SR×SR
·Dτ (L̃R)⊤ ⪰ (ω

n
)d/2diag

(
C̃l
)

P R×P R

when evaluated on any G.

Proof. Fix any R ∈
([n]

≤d/2
)
. Without confusion, we omit subscript SR×SR by regarding the

supports as the vertex-set [n′] = [n]−R and regarding the corresponding matrix indices as([n′]
d′/2
)

or
([n′]

≤d′/2
)
, where d′/2 = d/2− |R|. τ is unchanged. We will still use C̃l(X) to mean

C̃l(X ⊔R) for X ⊆ [n′].
Since Dτ diag(C̃l)Dτ is nonnegative and diagonal for any G, we have

L̃R
(

Dτ · diag
(

C̃l
)
·Dτ

)
(L̃R)⊤ ⪰ LR,0

(
Dτ · diag

(
C̃l
)
·Dτ

)
(LR,0)⊤, (6.88)

where recall L̃R = (LR,0, ..., LR,τ). Further, LR,0 = (LR,0
0 , ..., LR,0

d′/2), where LR,0
t is the matrix

on column set
(

n′

t

)
. In particular,

LR,0
d/2−|R| =

(
0, ..., 0, diag

(
C̃l
)

([n′]
d′/2)×([n′]

d′/2)

)

since in the definition of LR,0 (Def. 6.11) only ribbons R = (I, A; T ′) with 0-reduced size
can occur, and with the other conditions on it this simply means that A = I and T ′ ⊆ E(I).
This implies

RHS of (6.88) ≻ (ω

n
)d/2 · diag

(
C̃l
)

([n′]
d′/2)×([n′]

d′/2)
.

Translated back to [n] and d/2, this is exactly the bound in the lemma. ◀

S. Pang 26:57

Proof for Lemma 6.9. Fix R ∈
([n]

≤d/2
)
. By Lemma 6.19, for all c ≤ |R|

MR
c = L̃R ·

[
Dτ

(
QR

c,0 −QR
c,1 + ...±QR

c,d

)
Dτ

]
·
(

L̃R
)⊤

+ ER
c . (6.89)

The following bounds all hold w.p. > 1− n−8 log n from the corresponding lemmas, and we
take union bound so the overall probability is > 1− n−5 log n.

For (6.86). Fix R, we have:

MR
0 = L̃R ·

[
Dτ

(
QR

0,0 −QR
0,1 + ...±QR

0,d

)
Dτ

]
·
(

L̃R
)⊤

+ ER
0

⪰ τ−7τ

[
L̃R ·Dτ diag

(
C̃l
)

SR×SR
Dτ ·

(
L̃R
)⊤
]

+ ER
0 (Lem. 6.21(1))

⪰ τ−7τ (ω

n
)d/2 · diag

(
C̃l
)

P R×P R
+ ER

0 (Lemma 6.39)

⪰ (τ−7τ (ω

n
)d/2 − n−ϵτ/2) · diag

(
C̃l
)

P R×P R
(Lemma 6.19(4))

⪰ n−d · diag(C̃l)P R×P R (parameter regime)

For (6.87). Fix R, 1 ≤ c ≤ |R|, we have:

MR
c = L̃R ·

[
Dτ

(
QR

c,0 −QR
c,1 + ...±QR

c,d

)
Dτ

]
·
(

L̃R
)⊤

+ ER
c

⪯ ωcn−c/4
[
L̃RDτ · diag

(
C̃l
)

SR×SR
·Dτ

(
L̃R
)⊤
]

+ ER
c (Lem. 6.21(2))

⪯ ωcn−c/4 [τ7τ (MR
0 − ER

0)
]

+ ER
c (Lem. 6.21(1) and (6.89))

⪯ ωcn−c/5MR
0 +

(
ωcn−c/5 + 1

)
n−ϵτ/2diag (Cl)P R×P R (Lem. 6.19(4))

So

ω−cMR
c ⪯ n−c/5MR

0 + 2n−ϵτ/2 · diag (Cl)P R×P R

⪯ (n−c/5 + 2ndn−ϵτ/2)MR
0 ((6.86) and C̃l ≥ Cl)

⪯ n−c/6 ·MR
0 (c ≤ |R| ≤ d/2 and parameter regime)

The same analysis holds for −ω−cMR
c . ◀

7 Concluding remarks

We established the average Ω(ϵ2 log n/ log log n) SOS degree lower bound for Exact Clique
with clique-size ω = n1/2−ϵ, which is nearly optimal in both parameters ω, d. We also
refreshed the techniques for the Non-Exact Clique problem in hope to make them simpler
and generalizable. Some open problems follow.
(1) Can we remove the log log n factor in d? Perhaps it helps to first find a conceptual

explanation of Definition 3.11.
(2) How about the same problem on G(n, p), p ̸= 1

2 and for suitable ω? For Non-Exact
Clique, we can define the pseudo-expectation similarly as in Section 3.1.2. Also, using
the Fourier orthonormal basis

χT =
∏
e∈T

xe − (2p− 1)
2
√

p(1− p)
∀T ⊆ E[n], (7.1)

CCC 2021

26:58 SOS Lower Bound for Exact Planted Clique

where xe(G) is the ±1-indicator of edge e, we have the corresponding version of norm
bounds in Section 4 since the trace-power method works the same. The questions is,
what is the best meaningful degree lower bound for varying p (especially small p)? How
about the exact case?

(3) What can be said when G is drawn from other random models, or is pseudo-random?

References
1 Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique in a

random graph. Random Structures & Algorithms, 13(3-4):457–466, 1998.
2 Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from different

assumptions. In Proceedings of the forty-second ACM symposium on Theory of computing,
pages 171–180, 2010.

3 Sanjeev Arora, Boaz Barak, Markus Brunnermeier, and Rong Ge. Computational complexity
and information asymmetry in financial products. Communications of the ACM, 54(5):101–107,
2011.

4 Boaz Barak, Fernando GSL Brandao, Aram W Harrow, Jonathan Kelner, David Steurer, and
Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. In Proceedings
of the forty-fourth annual ACM symposium on Theory of computing, pages 307–326, 2012.

5 Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra, and Aaron
Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. SIAM
Journal on Computing, 48(2):687–735, 2019.

6 Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward optimal algorithms.
In Proceedings of International Congress of Mathematicians (ICM), 2014.

7 Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, and Pavel Pudlák. Lower
bounds on hilbert’s nullstellensatz and propositional proofs. Proceedings of the London
Mathematical Society, 3(1):1–26, 1996.

8 Quentin Berthet and Philippe Rigollet. Complexity theoretic lower bounds for sparse principal
component detection. In Conference on Learning Theory, pages 1046–1066. PMLR, 2013.

9 P Delsarte. An algebraic approach to association schemes of coding theory, phillips j, 1973.
10 Yash Deshpande and Andrea Montanari. Improved sum-of-squares lower bounds for hidden

clique and hidden submatrix problems. In Conference on Learning Theory, pages 523–562.
PMLR, 2015.

11 Fernando Escalante. Schnittverbände in graphen. In Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, volume 38, pages 199–220. Springer, 1972.

12 Uriel Feige and Robert Krauthgamer. Finding and certifying a large hidden clique in a
semirandom graph. Random Structures & Algorithms, 16(2):195–208, 2000.

13 Uriel Feige and Robert Krauthgamer. The probable value of the lovász–schrijver relaxations
for maximum independent set. SIAM Journal on Computing, 32(2):345–370, 2003.

14 Dima Grigoriev and Nicolai Vorobjov. Complexity of null-and positivstellensatz proofs. Annals
of Pure and Applied Logic, 113(1-3):153–160, 2001.

15 Samuel B Hopkins, Pravesh Kothari, Aaron Henry Potechin, Prasad Raghavendra, and Tselil
Schramm. On the integrality gap of degree-4 sum of squares for planted clique. ACM
Transactions on Algorithms (TALG), 14(3):1–31, 2018.

16 Samuel B Hopkins, Pravesh K Kothari, and Aaron Potechin. Sos and planted clique: Tight
analysis of mpw moments at all degrees and an optimal lower bound at degree four. arXiv
preprint, 2015. arXiv:1507.05230.

17 Samuel B Hopkins, Pravesh K Kothari, Aaron Potechin, Prasad Raghavendra, Tselil Schramm,
and David Steurer. The power of sum-of-squares for detecting hidden structures. In 2017
IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 720–731.
IEEE, 2017.

http://arxiv.org/abs/1507.05230

S. Pang 26:59

18 Mark Jerrum. Large cliques elude the metropolis process. Random Structures & Algorithms,
3(4):347–359, 1992.

19 R Karp. Probabilistic analysis of some combinatorial search problems. traub, jf (ed.): Algo-
rithms and complexity: New directions and recent results, 1976.

20 Pravesh Kothari, Ryan O’Donnell, and Tselil Schramm. Sos lower bounds with hard constraints:
think global, act local. arXiv preprint, 2018. arXiv:1809.01207.

21 Pravesh K Kothari and Ruta Mehta. Sum-of-squares meets nash: Optimal lower bounds for
finding any equilibrium. arXiv preprint, 2018. arXiv:1806.09426.

22 Luděk Kučera. Expected complexity of graph partitioning problems. Discrete Applied
Mathematics, 57(2-3):193–212, 1995.

23 Jean B Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on optimization, 11(3):796–817, 2001.

24 Dhruv Medarametla and Aaron Potechin. Bounds on the norms of uniform low degree graph
matrices. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2016.

25 Raghu Meka, Aaron Potechin, and Avi Wigderson. Sum-of-squares lower bounds for planted
clique. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pages 87–96, 2015.

26 Ryan O’Donnell. Sos is not obviously automatizable, even approximately. In 8th Innovations
in Theoretical Computer Science Conference (ITCS 2017). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2017.

27 Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization. PhD thesis, California Institute of Technology, 2000.

28 Pavel A Pevzner, Sing-Hoi Sze, et al. Combinatorial approaches to finding subtle signals in
dna sequences. In ISMB, volume 8, pages 269–278, 2000.

29 Prasad Raghavendra and Benjamin Weitz. On the bit complexity of sum-of-squares proofs.
arXiv preprint, 2017. arXiv:1702.05139.

30 Naum Z Shor. Class of global minimum bounds of polynomial functions. Cybernetics,
23(6):731–734, 1987.

31 Evgenij E Tyrtyshnikov. How bad are hankel matrices? Numerische Mathematik, 67(2):261–
269, 1994.

A Deductions in mod-order analysis (Section 5.2)

A.1 Set-up recap
Ring A is got by adding fresh variables α and χT ’s to R, where T ranges over edge sets
on [n], and they only satisfy the relations {χT ′ · χT ′′ = χT whenever T ′ ⊕ T ′′ = T}. The
mod-order equation is

Lα · diag
(

α|A|
)
· (Lα)⊤ = Mα mod (∗) (A.1)

on the
([n]

d/2
)
×
([n]

≤d/2
)
-matrix variable Lα in ring A, where

Mα(I, J) =
∑

T :|V (T)∪I∪J|≤τ

α|V (T)∪I∪J|χT ∀I, J : |I| = |J | = d/2,

and mod (∗) means to mod the ideal ({α|V (T)∪I∪J|+1χT }, {χT : |V (T) ∪ I ∪ J | > τ})
position-wise on each (I, J). We call (∗) the modularity. Moreover, if denote

L′
1(I, A) =

∑
T ′

βI,A(T ′)χT ′ , βI,A(T ′) ∈ R[α]

CCC 2021

http://arxiv.org/abs/1809.01207
http://arxiv.org/abs/1806.09426
http://arxiv.org/abs/1702.05139

26:60 SOS Lower Bound for Exact Planted Clique

then we require

αeI,A(T ′) | βI,A(T ′) ∀I, A, T ′ (A.2)

where eI,A(T ′) is the reduced size |V (T ′) ∪ I ∪A| − sI,A(T ′) (Def. 4.11).
Expressed in terms, equations (A.1), (A.2) become the following.∑
A∈([n]

≤d/2)

∑
T ′,T ′′:

T ′⊕T ′′=T

α|A| · βI,A(T ′) · βJ,A(T ′′) = α|V (T)∪I∪J| mod α|V (T)∪I∪J|+1 (A.3)

for every (I, J ; T) with |V (T) ∪ I ∪ J | ≤ τ , and

αeI,A(T ′) | βI,A(T ′) (A.4)

for every (I, A; T ′).
The main observation (Lemma 5.6) is the following.

▶ Lemma A.1 (Order match). In the LHS of equation (A.3), only products α|A| · βI,A(T ′) ·
βJ,A(T ′′) that satisfies the following are non-zero modulo (∗).

A is a min-separator for both (I, A; T ′), (J, A; T ′′); (A.5)
(V (T ′) ∪ I ∪A) ∩ (V (T ′′) ∪ J ∪A) = A. (A.6)

Moreover, (A.5), (A.6) imply that

A is a min-separator of (I, J ; T) (where T = T ′ ⊕ T ′′); (A.7)
|V (T ′) ∪ I ∪A|, |V (T ′′) ∪ J ∪A| ≤ τ. (A.8)

Proof. Pick a term α|A| · βI,A(T ′) · βJ,A(T ′′) form the LHS of (A.3). By (A.4),

its order in α ≥ |A|+ |V (T ′) ∪ I ∪A| − sI,A(T ′) + |V (T ′′) ∪A ∪ J | − sJ,A(T ′′).

By modularity on the RHS of (A.3), the term is non-zero only if

its order in α ≤ |V (T) ∪ I ∪ J | and |V (T) ∪ I ∪ J | ≤ τ

where T = T ′ ⊕ T ′′. This implies

|V (T ′) ∪ I ∪A|+ |V (T ′′) ∪ J ∪A| ≤ |V (T) ∪ I ∪ J |︸ ︷︷ ︸
1⃝

+ (sI,A(T ′) + sJ,A(T ′′)− |A|)︸ ︷︷ ︸
2⃝

(A.9)

Note 2⃝ ≤ |A| and “=” holds iff sI,A(T ′) = sJ,A(T ′′) = |A|. While the LHS above

= |(V (T ′) ∪ I ∪A) ∪ (V (T ′′) ∪ J ∪A)|︸ ︷︷ ︸
≥|V (T)∪I∪J|= 1⃝

+ |(V (T ′) ∪ I ∪A) ∩ (V (T ′′) ∪ J ∪A)|︸ ︷︷ ︸
≥|A|≥ 2⃝

.

Therefore, (A.9) could hold only when all “=”’s hold, which means: (1). A is a min-separator
of (I, A; T ′), (J, A; T ′′); (2). (V (T ′) ∪ I ∪ A) ∪ (V (T ′′) ∪ J ∪ A) = V (T) ∪ I ∪ J ; (3).
(V (T ′) ∪ I ∪A) ∩ (V (T ′′) ∪ J ∪A) = A.

Next, we show (1),(3) imply A ∈ mSepI,J(T) (and also (2), actually). By (3), T ′, T ′′

could overlap only in E(A). Now T = T ′ ⊕ T ′′, so

T = T ′ ⊔ T ′′ modulo E(A) (A.10)

S. Pang 26:61

(also ⇒ V (T ′) ∪ V (T ′′) ⊆ V (T) ∪ A). By (1) there are |A| many vertex-disjoint paths
p1, , , .p|A| from I to A in T ′, and similarly q1, ..., q|A| from J to A in T ′′. These paths are
also present in T by (A.10) – where it naturally assumes every path touches A only once
at its endpoint. By (3) again, any pi, qj do not intersect beside endpoint in A so they are
paired to |A| many vertex-disjoint paths from I to J in T , all passing A (this also implies
A ⊆ V (T) ∪ I ∪ J). On the other hand, if p is a path in T from I not passing A, then it is a
path on I ∪ V (T ′) by induction using (3). Now by (3) again we have (V (T ′)∪ I)∩ J ⊆ A, so
p can’t reach J . So A ∈ mSepI,J(T).

Finally, under the above implications, V (T ′) ∪ I ∪ A ⊆ V (T) ∪ I ∪ J and similarly for
V (T ′′) ∪ J ∪A, so both have size ≤ τ . ◀

By this lemma, we can assume that in an imagined solution, βI,A(T ′) ̸= 0 only when it satisfies
the conditions (A.5), (A.8) on its part. If assume further that the solution is symmetric
(which looks plausible), i.e. βI,A(T ′) = βJ,B(T ′′) whenever (I, A; T ′), (J, B; T ′′) are of the
same shape, then this lemma is particularly informative about some special (I, J ; T)’s.

▶ Corollary A.2. If (I, J ; T) has a unique min-separator A, then∑
T ′,T ′′: T ′⊕T ′′=T
(A.5), (A.6) hold

βI,A(T ′) · βJ,A(T ′′) = αeI,J (T) (A.11)

where eI,J(T) = |V (T) ∪ I ∪ J | − sI,J(T). In particular, in symmetric solution,∑
T1⊆E(A)

βI,A(T1 ⊕ T ′)2 = α2·eI,A(T ′) (A.12)

for all (I, A; T ′) such that

A is the unique min-separator of (I, A; T ′). (A.13)

Proof. The first part is directly from Lemma 5.6. For the “in particular” part, let (I, A; T ′)
satisfy (A.13). By mirroring (I, A; T ′) through A, we get a (J, A; T ′′) that satisfies the same
condition and they together satisfy (A.5), (A.6). There are always enough vertices in [n]
to carry out this mirroring operation. By the symmetry assumption, βI,A(T ′) = βJ,A(T ′′).
From mirroring it is not hard to see that A is the unique min-separator of (I, J ; T = T ′⊕T ′′),
so for this triple (I, J ; T) equation (A.11) holds, giving that

∑
T1⊆E(A) βI,A(T ′ ⊕ T1)2 =

α|V (T)∪I∪J|−|A| = α2(|V (T ′)∪I∪A|−|A|). ◀

We can summarize what we got as follows. If let all βI,A(T ′ ⊕ T1)’s in equa-
tion (A.12) be equal (which is a plausible assumption), then βI,A(T ′) = 2−(|A|

2)/2 ·
αeI,A(T ′) (take all + signs). Collecting these terms, we get the following matrix

L′
1 : L′

1(I, A) =
∑

T ′: |V (T ′)∪I∪A|≤τ
(A.13) holds
T ′∩E(A)=∅

2−(|A|
2)/2 · α|V (T ′)∪I∪A|−|A|χT ′ · C̃lA

where C̃lA =
∑

T ⊆E(A) χT . To see how far this is from a solution, notice C̃l
2
A = 2(|A|

2)C̃lA
and consider

L′
1 · diag

(
α|A|

)
· (L′

1)⊤ = L1 · diag
(

α|A| · C̃lA
)
· L⊤

1 (A.14)

where L1 is the matrix in A as below (which is cleaner than L′
1 to use).

CCC 2021

26:62 SOS Lower Bound for Exact Planted Clique

▶ Definition A.3. ∀I ∈
([n]

d/2
)
, A ∈

([n]
≤d/2

)
,

L1(I, A) :=
∑

T ′: |V (T ′)∪I∪A|≤τ
(A.13) holds
T ′∩E(A)=∅

α|V (T ′)∪I∪A|−|A|χT ′ . (A.15)

Surely L′
1 is not a solution to the mod-order equation, since (A.14) equals (mod (*)) only the

part of Mα consisting of the special (I, J ; T)’s from Corollary A.2. For a general (I, J ; T),
Lemma A.1 only says:∑

A,T ′,T ′′: T ′⊕T ′′=T
A∈mSepI,J (T)
(A.5),(A.6) hold

βI,A(T ′)βJ,A(T ′′) = αeI,J (T) mod αeI,J (T)+1. (A.16)

To see how to proceed further, we inspect a further weakening: polarization.

A.2 Polarized solution
Roughly speaking, polarization weakens linear equations about “x2

i ’s” by replacing these
terms with multi-linear “xiyi’s”, where y⃗ are fresh variables. Then we can plug in any
“tentative” solution x⃗0 to solve for y⃗ more easily (as the equations are linear in y⃗), and see
how to modify x⃗0 further.

▶ Definition A.4. The polarized mod-order equation w.r.t. L1 is:

L1 · diag
(

α|A| · C̃lA
)
· L⊤

2 = Mα mod (∗) (A.17)

where (∗) is the modularity in (A.1), L1 is by (A.15), L2 is the variable matrix

L2(I, A) =
∑

T ′: |V (T ′)∪I∪A|≤τ

β
(2)
I,A(T ′)χT ′ (A.18)

satisfying αeI,A(T ′) | β(2)
I,A(T ′) for all (I, A, T ′).

In this polarized form, the essential condition (A.16) becomes∑
A,T ′,T ′′: T ′⊕T ′′=T

(I,A;T ′) appears in L1
(A.5),(A.6) hold

αeI,A(T ′) · β(2)
J,A(T ′′) = αeI,J (T) mod αeI,J (T)+1. (A.19)

By (A.19), existence of a solution L2 at least requires the following condition: for general
(I, J ; T), there always exist “(I, A; T ′) appearing in L1” and T ′′ which satisfy the condition
in the LHS of (A.19). By a direct (but careful) check, this condition is actually equivalent
to an essential part of the following graph-theoretic fact due to Escalante (its “In particular”
part).

▶ Fact A.1 ([11]; also Appendix A.3 of [5]). For any ribbon (I, J ; T), the set of all min-
separators, mSepI,J(T), has a natural poset structure: min-separators A1 ≤ A2 iff A1
separates (I, A2; T), or equivalently as can be checked, iff A2 separates (J, A1; T). The set
is further a lattice under this partial-ordering: ∀A1, A2 ∈ mSepI,J(T) their join and meet
exist. In particular, there exist a unique minimum and maximum.

Denote the minimum by Sl(I, J ; T) and the maximum by Sr(I, J ; T), which is the “left-
most” and “rightmost” min-separator, respectively.

S. Pang 26:63

By this fact, some (I, A; T ′) indeed appears in (A.19) with A = Sl(I, J ; T). Moreover, (A.19)
is naturally satisfied if take

L2(J, A) =
∑

T ′′: |V (T ′′)∪J∪A|≤τ
A∈mSepJ,A(T ′′)

T ′′∩E(A)=∅
(J,A;T ′′) left-generated

αeJ,A(T ′′)χT ′′ . (A.20)

Here, recall being left-generated means every vertex is either in A or can be connected from
J without touching A. Also, with this L2 only one product in the LHS of (A.19) contributes
to the right modulo αeI,J (T)+1. We get:

▶ Proposition A.5. The pair (L1, L2) is a solution to the polarized mod-order equation
(A.17), (A.18).

Remove the polarization. One more use of fact A.1 actually shows that, if move the
“left-generated” condition from L2 to L1, then L2 itself effectively factors through L1, i.e. we
can replace diag(C̃l) · L⊤

2 by some X · L⊤
1 in (A.17). This is the idea behind the following

proposition (Prop. 5.8 recast).

▶ Proposition A.6 (Mod-order diagonalization). Let

Lα(I, A) :=
∑

T ′: |V (T ′)∪I∪A|≤τ
A=Sl(I,A;T ′)
T ′∩E(A)=∅

(I,A;T ′) left-generated

αeI,A(T ′)χT ′ ,

Q0,α(A, B) :=
∑

Tm: |T ∪A∪B|≤τ
A,B∈mSepA,B(Tm)

αeA,B(Tm)χTm

(where Tm indicates “middle”). Then

Lα · [diag
(

α
|A|

2

)
·Q0,α · diag

(
α

|A|
2

)
] · L⊤

α = Mα mod (∗) (A.21)

where (∗) is the modularity in (A.1).

Proof. Given Fact A.1, we immediately have the canonical decomposition of graphs as in
Definition 5.11 and Remark 5.12. This implies that in the LHS of (A.21) only the products
from canonical triples are non-zero modulo (∗), and they give Mα. ◀

Thus we get a “L1(−)L⊤
1 ”-shape decomposition, meaning that we do not lose much from

the polarization step if recall the goal is only about PSDness.

CCC 2021

A Direct Product Theorem for One-Way Quantum
Communication
Rahul Jain #

Centre for Quantum Technologies & Department of Computer Science,
National University of Singapore, Singapore
Majulab, UMI 3654, Singapore

Srijita Kundu #

Centre for Quantum Technologies, National University of Singapore, Singapore

Abstract
We prove a direct product theorem for the one-way entanglement-assisted quantum communication
complexity of a general relation f ⊆ X × Y × Z. For any 0 < ε < δ < 1

2 and any k ≥ 1, we show that

Q1
1−(1−ε)Ω(k/ log |Z|) (fk) = Ω

(
k · Q1

δ(f)
)

,

where Q1
ε(f) represents the one-way entanglement-assisted quantum communication complexity of f

with worst-case error ε and fk denotes k parallel instances of f .
As far as we are aware, this is the first direct product theorem for the quantum communication

complexity of a general relation – direct sum theorems were previously known for one-way quantum
protocols for general relations, while direct product theorems were only known for special cases.
Our techniques are inspired by the parallel repetition theorems for the entangled value of two-player
non-local games, under product distributions due to Jain, Pereszlényi and Yao [24], and under
anchored distributions due to Bavarian, Vidick and Yuen [4], as well as message compression for
quantum protocols due to Jain, Radhakrishnan and Sen [29]. In particular, we show that a direct
product theorem holds for the distributional one-way quantum communication complexity of f

under any distribution q on X × Y that is anchored on one side, i.e., there exists a y∗ such that
q(y∗) is constant and q(x|y∗) = q(x) for all x. This allows us to show a direct product theorem for
general distributions, since for any relation f and any distribution p on its inputs, we can define a
modified relation f̃ which has an anchored distribution q close to p, such that a protocol that fails
with probability at most ε for f̃ under q can be used to give a protocol that fails with probability at
most ε + ζ for f under p.

Our techniques also work for entangled non-local games which have input distributions anchored
on any one side, i.e., either there exists a y∗ as previously specified, or there exists an x∗ such
that q(x∗) is constant and q(y|x∗) = q(y) for all y. In particular, we show that for any game
G = (q, X × Y, A × B, V) where q is a distribution on X × Y anchored on any one side with constant
anchoring probability, then

ω∗(Gk) =
(
1 − (1 − ω∗(G))5)Ω

(
k

log(|A|·|B|)

)
where ω∗(G) represents the entangled value of the game G. This is a generalization of the result of
[4], who proved a parallel repetition theorem for games anchored on both sides, i.e., where both a
special x∗ and a special y∗ exist, and potentially a simplification of their proof.

2012 ACM Subject Classification Theory of computation → Communication complexity; Theory of
computation → Quantum complexity theory

Keywords and phrases Direct product theorem, parallel repetition theorem, quantum communication,
one-way protocols, communication complexity

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.27

Related Version Full Version: https://arxiv.org/abs/2008.08963

© Rahul Jain and Srijita Kundu;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 27; pp. 27:1–27:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rahul@compnus.edu.sg
mailto:srijita.kundu@u.nus.edu
https://doi.org/10.4230/LIPIcs.CCC.2021.27
https://arxiv.org/abs/2008.08963
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 A Direct Product Theorem for One-Way Quantum Communication

Funding This work is supported by the National Research Foundation, including under NRF RF
Award No. NRF-NRFF2013-13, the Prime Minister’s Office, Singapore and the Ministry of Education,
Singapore, under the Research Centres of Excellence program and by Grant No. MOE2012-T3-1-009
and in part by the NRF2017-NRF-ANR004 VanQuTe Grant.

1 Introduction

A fundamental question in complexity theory is: given k independent instances of a function
or relation, does computing them require k times the amount of resources required to compute
a single instance of the function or relation? Suppose solving one instance of some problem
with success probability at least 1 − ε requires c units of some resource. A natural way to
solve k independent instances of this problem would be to solve them independently, which
requires ck units of the resource. A direct sum theorem for this problem would state that any
algorithm for solving k instances which uses o(ck) units of resource has success probability
at most 1 − ε. A direct product theorem for the problem would state that any algorithm
for solving k instances that uses o(ck) units of resource has success probability at most
(1 − ε)Ω(k). Hence a direct product theorem is the stronger result of the two.

In this paper, we deal with direct product theorems in the model of communication
complexity. In this model, there are two parties Alice and Bob, who receive inputs x and y

respectively, and wish to jointly compute a relation f . They can use local computation, public
coins, and communicate with each other using classical messages, in the classical model;
use local unitaries, shared entanglement, and communicate with each other using quantum
messages, in the quantum model. The resource of interest is the number of bits/qubits
communicated; so the parties are allowed to share an arbitrary amount of randomness or
entanglement, and perform local operations of arbitrary complexity.

Direct product theorems in communication are related to parallel repetition theorems for
non-local games. In a non-local game, two parties Alice and Bob are given inputs x and y

respectively from some specified distribution, and without communicating with each other,
they are required to give answers a and b respectively to a referee. They are considered to
win the game if V(a, b, x, y) holds for a specified predicate V. In the classical model, the
players are allowed to share randomness, and in the quantum model they are allowed to share
entanglement. A parallel repetition theorem shows that the maximum probability of winning
k independent instances of a non-local game is pΩ(k), if the maximum probability of winning
a single instance of it is p, regardless of the amount of shared randomness or entanglement
used. Direct product theorems in communication are often proved by combining techniques
used to prove direct sum theorems in communication, which require message compression,
and parallel repetition theorems for games.

In classical communication complexity, there is a long line of works on direct sum and
direct-product theorems including [40, 14, 1, 41, 27, 28, 30, 5, 38, 44, 22, 21, 18, 35, 32, 2, 12,
11, 10, 7, 13, 20, 25, 37, 9, 43]. A parallel repetition theorem for the classical value of general
two-player non-local games was first shown by Raz [39], and the proof was subsequently
simplified by Holenstein [19].

In quantum communication complexity, a direct sum theorem is known for the
entanglement-assisted one-way [30], simultaneous-message-passing (SMP), entanglement-
assisted [30] and unassisted models [21]. A strong parallel repetition theorem for the quantum
value of a general two-player non-local game is not known. Parallel repetition theorems
were shown for special classes of games such as XOR games [15], unique games [34] and
projection games [17]. When the type of game is not restricted but the input distribution is,

R. Jain and S. Kundu 27:3

parallel repetition theorems have been shown under product distributions [24] and anchored
distributions [4, 3]. For general games under general distributions, the best current result is
due to Yuen [46], which shows that the quantum value of k parallel instances of a general
game goes down polynomially in k, if the quantum value of the original game is strictly less
than 1. No direct product theorems for quantum communication for a general function had
previously been known. However, a direct product theorem has been shown for the gener-
alized discrepancy method [42], which is a lower bound technique that often characterizes
(multi-round) quantum communication complexity. [5] showed a direct product theorem for
functions whose one-way quantum communication is characterized by VC dimension, and
[36] showed a direct product theorem for symmetric functions.

Combining ideas from Jain, Pereszlényi and Yao [24] and the message compression scheme
from Jain, Radhakrishnan and Sen [30], it is possible to show a strong direct product
theorem for one-way quantum communication under product distributions. To deal with
non-product distributions, we borrow the idea of anchored distributions due to Bavarian,
Vidick and Yuen [4, 3], which allows us to prove a direct product theorem for the worst case
one-way quantum communication complexity of a general function. We make some crucial
changes in the definition of correlation-breaking random variable as used by [4] which help
us use one-sided anchored distribution and simplify their proof. This simplification is in fact
crucial for us to combine the anchored distribution technique with the message compression
argument of [30] in the communication complexity setting. We elaborate further on our proof
techniques in Section 1.2.

Parallel repetition and direct product theorems have a number of applications. For
example, Raz’s parallel repetition theorem [39] can be used to prove the PCP theorem [16];
the [4] parallel repetition theorem was used to prove the recent MIP∗ = RE result [33].
Sherstov’s direct product theorem for generalized discrepancy was used in [8] to prove a
near-optimal lower bound on the bounded-round quantum communication complexity of set
disjointness. [36] used their direct product theorem to prove time-space tradeoffs for solving
certain problems. We expect our result to have similar applications.

1.1 Our results

Let Q1
ε(f) denote that the one-way entanglement-assisted quantum communication complexity

of a relation f , with worst-case error ε. Let fk denote k parallel instances of f . Our strong
direct product theorem is as follows.

▶ Theorem 1. For any relation f ⊆ X × Y × Z, and any 0 < ε, ζ < 1
2 ,

Q1
1−(1−ε)Ω(ζ6k/ log |Z|)(fk) = Ω

(
k

(
ζ5 · Q1

ε+ζ(f) − log log(1/ζ)
))
.

Let ω∗(G) represent the entangled value of a two-player non-local game G, and let Gk

denote k parallel instances of G. We call a distribution q on X × Y anchored on one side
with anchoring probability ζ if one of the following conditions holds:

(i) There exists an x∗ ∈ X such that q(x∗) = ζ and q(y|x∗) = q(y) for all y ∈ Y,
(ii) There exists a y∗ ∈ Y such that q(y∗) = ζ and q(x|y∗) = q(x) for all x ∈ X .

The game will be called anchored on both sides with anchoring probability ζ if both conditions
hold simultaneously.

Then our parallel repetition theorem is stated as follows.

CCC 2021

27:4 A Direct Product Theorem for One-Way Quantum Communication

▶ Theorem 2. For a two-player non-local game G = (q,X × Y ,A × B,V) such that q is a
distribution anchored on one side with anchoring probability ζ,

ω∗(Gk) =
(
1 − (1 − ω∗(G))5)Ω

(
ζ2k

log(|A|·|B|)

)
.

One can get a game anchored on one side (say the Y side) from a general game in the
following way: in the anchored game, the referee chooses (x, y) from the original probability
distribution, and with probability ζ replaces y with a new input y∗. If Bob’s input is y∗,
then the referee accepts any answer from the players. In a game anchored on both sides, the
referee must instead replace x with x∗ and y with y∗ independently with probability ζ, and
accept if either Alice’s input is x∗ or Bob’s input is y∗. It is clear that anchoring makes the
game easier. In this light, a parallel repetition theorem for anchoring games can be thought
of as follows: for a general game G, there exists a simple transformation taking it to another
game G̃ such that
1. If ω∗(G) = 1, then ω∗(G̃k) = 1.
2. If ω∗(G) < 1, then ω∗(G̃k) = exp(−Ω(k)).
The merit of our result here is that the transformation involved for anchoring on one side
changes the game less than the transformation involved in anchoring it on both sides.

We note that the definition of anchoring used in [4, 3] is more general: instead of single
inputs x∗, y∗, they consider anchoring sets X ∗ ⊆ X and Y∗ ⊆ Y , such that q(X ∗), q(Y∗) ≥ ζ,
and whenever x ∈ X ∗ or y ∈ Y∗, q(x, y) = q(x)q(y). However, it appears this generalized
definition is not more useful from the perspective of anchoring transformations. While our
technique could go through for the one-sided version of this definition of anchoring, we do
not state or prove it as such for the sake of simplicity.

Unlike in the case of communication, worst-case success probability is usually not con-
sidered for non-local games. But one could define a game Gwc = (X × Y ,A × B,V) without
an associated distribution, and the worst-case winning probability ω∗

wc over all inputs of this
can be considered. As long as Alice and Bob are allowed to share randomness (which they
are, in the quantum case), Yao’s lemma [45] holds just like in the case of communication,
relating the worst-case winning probability to distributional winning probability. Hence, by
choosing ζ = (1−ω∗

wc(Gwc))/2 and using the same arguments as in the case of communication,
Theorem 2 leads to the following corollary about the worst-case winning probability of any
game.

▶ Corollary 3. For any two-player non-local game Gwc = (X × Y ,A × B,V),

ω∗
wc(Gk

wc) =
(
1 − (1 − ω∗

wc(Gwc))7)Ω
(

k
log(|A|·|B|)

)
.

This is in fact also implied by the result of [4], although it is not explicitly observed by them.

1.2 Proof overview
We describe how to prove the parallel repetition and direct product theorems in the distri-
butional setting first, and we shall later describe how to go from there to the worst case
setting. We use the information theoretic framework for parallel repetition established by [39]
and [19].The broad idea is as follows: for a given relation f̃ ⊆ X × Y × Z, let the one-way
quantum communication required to compute a single copy with constant success be c. Now
consider a one-way quantum protocol P for f̃k which has communication o(ck), in which
we can condition on the success of some t coordinates. If the success probability in these

R. Jain and S. Kundu 27:5

t coordinates is already as small as we want, then we are done. Otherwise, we exhibit a
(t+ 1)-th coordinate i, such that conditioned on the success on the t coordinates, the success
of i in P is bounded away from 1. This is done by showing that if the success probability in
the t coordinates is not too small, then we can give a protocol P ′ for f̃ whose communication
is o(c) and whose success probability is constant – a contradiction.

P ′ works by embedding its input into the i-th coordinate of a shared quantum state
representing the final input, output, message and discarded registers of P, conditioned
on the success event in the t coordinates, which we denote by E . Suppose the quantum
state conditioned on E , when Alice and Bob’s inputs are xi and yi respectively at the i-th
coordinates, is |φ⟩xiyi . On input (xi, yi) in P ′, Alice and Bob will by means of local unitaries
and communication try to get the shared state close to |φ⟩xiyi

, on which Bob can perform a
measurement to get an outcome zi. The state |φ⟩xiyi

is such that the resulting probability
distribution PXiYiZi is the distribution of XiYiZi in P conditioned on success. Hence our
proof mainly consists of showing how Alice and Bob can get the shared state close to |φ⟩xiyi

.
The proof technique for a parallel repetition theorem is the same, except one cannot, and
need not, use communication to get the shared state |φ⟩xiyi

there.

1.2.1 Product distribution parallel repetition
In [24] the following three states are considered: |φ⟩xi

which is the superposition of |φ⟩xiyi

over the distribution of Yi, |φ⟩yi which is the superposition over the distribution of Xi, and
|φ⟩ which is the superposition over both. In this setting, X1 . . . Xk are initially in product
with all of Bob’s registers and Y1 . . . Yk are in product with all of Alice’s registers. If the
probability of E is large, then conditioning on it, the following can be shown:
1. By chain rule of mutual information, there is an Xi whose mutual information with Bob’s

registers in |φ⟩ is small. Hence by Uhlmann’s theorem, there exist unitaries Uxi
acting

on Alice’s registers that take |φ⟩ close to |φ⟩xi
.

2. Similarly, the mutual information between Yi and Alice’s registers in |φ⟩ is small, and
hence there exist unitaries Uyi acting on Bob’s registers that take |φ⟩ close to |φ⟩yi .

3. Since Uxi
and Uyi

act on disjoint registers, using a commuting argument and the mono-
tonicity of ℓ1 distance under quantum operations, Uxi

⊗ Uyi
takes |φ⟩ close to |φ⟩xiyi

.
Alice and Bob can thus share |φ⟩ as entanglement, and get close to |φ⟩xiyi

by local operations.

1.2.2 Product distribution direct product
It is possible to combine techniques from the product parallel repetition theorem above and
a message compression technique from [30] to give a direct product theorem for one-way
quantum communication complexity under product distributions, and we give a proof outline
here.

If the communication protocol involves a message from Alice to Bob, we cannot then get
the state |φ⟩xiyi by applying Uhlmann unitaries on both Alice and Bob’s registers: because
of Alice’s message, the dependence of |φ⟩xiyi

on xi can be quite large. Instead, we use the
result of [26, 30] to do the transformation from |φ⟩ to |φ⟩xi on Alice’s side via a projector
instead. By [30], as long as |φ⟩ is the superposition of |φ⟩xi

over the Xi distribution, such a
projector Πxi

always exists and its success probability depends on the mutual information
between Xi and Bob’s registers. This success probability is not close to 1, but as long as it
is not too small, Alice and Bob can share multiple copies of |φ⟩ and Alice can perform the
{Πxi ,1 − Πxi} measurement on all of them. With high probability, she succeeds on at least
one copy, and her message to Bob is then just the index of the copy she succeeds on.

CCC 2021

27:6 A Direct Product Theorem for One-Way Quantum Communication

Overall, the steps analogous to the parallel repetition proof are as follows:
1. If the message size in P is o(ck) bits, by the chain rule of mutual information, the

information between Xi and Bob’s registers is o(c). Hence by [30], there exist projectors
Πxi

acting on Alice’s registers, which succeed with probability 2−o(c) on |φ⟩, and on
success, take |φ⟩ close to |φ⟩xi

.
2. Since there is no communication from Bob to Alice, by the same argument as in the case

for games, there exist unitaries Uyi
acting on Bob’s registers, that take |φ⟩ close to |φ⟩yi

.
3. By the same commuting argument, conditioned on the success of Πxi

, Πxi
⊗ Uyi

takes
|φ⟩ close to |φ⟩xiyi .

Hence there is a communication protocol with prior shared entanglement between Alice and
Bob to obtain a state close to |φ⟩xiyi

on inputs (xi, yi): Alice and Bob share 2o(c) copies of
|φ⟩y∗ as entanglement; Alice performs the Πxi

measurement on all these copies, and succeeds
on at least one copy with high probability. She sends the index of the copy on which she
succeeds to Bob, who performs Uyi

on the same copy. This protocol has communication
o(c), since that is how many classical bits Alice needs in order to encode the index of the
successful copy out of 2o(c) copies.

1.2.3 Anchored distribution parallel repetition
[3] in their parallel repetition theorem use anchored distributions, which are non-product
distributions that “look like” product distributions. However, since overall X1 . . . Xk are not
initially in product with Y1 . . . Yk, one needs to use what are known as correlation-breaking
variables. For each i, correlation-breaking variables DiGi are such that conditioned on DiGi,
Xi and Yi are independent. In particular, Di is a uniformly distributed bit, and Gi takes
values in either X or Y depending on whether Di is 0 or 1, and is highly correlated with
either Xi or Yi in the respective cases. This means that conditioned on Di = 0, Gi = x∗

with probability Ω(ζ) and conditioned on Di = 1, Gi = y∗ with probability Ω(ζ).
1. The mutual information between Xi and Bob’s registers in |φ⟩ conditioned on Di = 1 and

Gi is small. Further conditioning on Gi = y∗ (which happens with constant probability),
the mutual information between Xi and Bob’s registers in |φ⟩y∗ is small. Hence by
Uhlmann’s theorem, there exist unitaries Uxi

on Alice’s registers, taking |φ⟩x∗y∗ close to
|φ⟩xiy∗ .

2. Similarly, the mutual information between Yi and Alice’s registers in |φ⟩ conditioning on
Di = 0 and Gi = x∗ is small, which means there exist unitaries Uyi

on Bob’s registers,
taking |φ⟩x∗y∗ close to |φ⟩x∗yi

.
3. Using an involved argument, it is possible to show that Uxi

⊗ Uyi
takes |φ⟩x∗y∗ close to

|φ⟩xiyi
.

Alice and Bob can thus share |φ⟩x∗y∗ in this case, and get close to |φ⟩xiyi by local operations.

1.2.4 Anchored distribution direct product
In our direct product proof, since the distribution is anchored on one side, we use correlation-
breaking variables that are identical to those in [3] in the Di = 1 case, but in the Di = 0
we consider a simpler distribution where Gi is perfectly correlated with Xi. Here we also
clarify what we mean by Gi and Yi being highly correlated when Di = 1: if Gi = y∗, then
Yi is always y∗; but if Gi = yi for yi ≠ y∗, then Yi still takes value y∗ with probability
Ω(ζ), and is yi otherwise. The distribution of Xi conditioned on Gi = y∗ is the marginal
distribution of Xi, while conditioned on yi, it is the same as the distribution of Xi conditioned
on Yi = yi (potentially different from the marginal distribution of Xi). Our use of these
correlation-breaking variables is quite different from that in [3], however.

R. Jain and S. Kundu 27:7

1. If the message size is o(ck), the mutual information between Xi and Bob’s registers in
|φ⟩ is o(c), conditioned on Di = 1, Gi = y∗. Since the distribution is anchored on Bob’s
side, this means that the mutual information between Xi and Bob’s registers in |φ⟩y∗ is
o(c). By [30], there exist projectors Πxi acting on Alice’s registers, which succeed with
probability 2−o(c) on |φ⟩y∗ , and on success take it close to |φ⟩xiy∗ .

2. The mutual information between Yi and Alice’s registers conditioned on Di = 1, Gi ̸= y∗

is small. For each value of Gi ̸= y∗, there exist only two possible values of Yi: yi and y∗,
and hence Alice’s registers in |φ⟩yi

and |φ⟩y∗ must be close on average. By Uhlmann’s
theorem, there exist unitaries Uyi

acting on Bob’s registers, taking |φ⟩y∗ close to |φ⟩yi
.

3. Since the marginal distribution of Xi conditioned on Gi = yi is approximately the same
as the marginal distribution of Xi conditioned on Yi = yi, we can show by the same
commuting argument that conditioned on success of Πxi

, Πxi
⊗ Uyi

takes |φ⟩y∗ close to
|φ⟩xiyi

.
Hence there is a communication protocol with prior shared entanglement which allows Alice
and Bob to obtain a state close to |φ⟩xiyi

as a shared state on input (xi, yi): this works just
like the communication protocol for the product case, except the initial shared entanglement
is 2o(c) copies of |φ⟩y∗ instead. We note that our step 3 above is the simpler argument used
in [24] and the product distribution direct product, instead of the more involved technique
from [4].

1.2.5 Simplified anchored distribution parallel repetition
Our anchored distribution parallel repetition proof is the same as the anchored direct product
proof, except no communication is necessary, since there was no communication in the original
protocol. Instead of a projector on Alice’s registers taking |φ⟩y∗ close to |φ⟩xiy∗ , in this case
we will have a unitary Uxi doing it. We can argue identically to the direct product proof
that there exist Uyi

taking |φ⟩y∗ close to |φ⟩yi
, and Uxi

⊗ Uyi
takes |φ⟩y∗ close to |φ⟩xiyi

.
Our simplification of the techniques [4] is crucial to our direct product proof: we need to

use the commuting argument from [30, 24] in order to make use of the message compression
scheme. It is not clear whether the involved argument in [4] for the existence of Uxi

⊗ Vyi

that takes |φ⟩x∗y∗ to |φ⟩xiyi
can work when there needs to be a projector rather than a

unitary on Alice’s side.

1.2.6 From anchored distribution to worst case direct product
The above argument proves a direct product theorem for the distributional one-way quantum
communication complexity of under anchored distributions. However, what we are actually
interested in is a direct product theorem for the worst case one-way quantum communication
complexity. To get this for a relation f , we consider the distribution under which the
distributional communication complexity is equal to the worst case communication complexity
of f – this is guaranteed to exist by Yao’s lemma. We do an anchoring transformation on f

with this distributon to get f̃ with an anchored distribution. Note that it is fine if we can lower
bound the distributional communication complexity of f̃k with success probability (1 − ε)Ω(k)

under an anchored distribution by k times the worst case communication complexity of f with
success probability δ. This is because fk is harder than f̃k, and the worst case communication
complexity of f̃k is lower bounded by its distributional communication complexity under
any distribution. By the argument described above, we can lower bound the distributional
communication complexity of f̃k under the k-tensored anchored distribution with success
probability (1 − ε)Ω(k) by k times the distributional communication complexity of f̃ under

CCC 2021

27:8 A Direct Product Theorem for One-Way Quantum Communication

the anchored distribution. Now it is easy to go from a distributional protocol for f̃ under
the anchored distribution to a protocol for f under the original hard distribution decreasing
the success probability by only O(ζ), since the anchoring transformation only disturbs the
original distribution by this amount.

2 Preliminaries

2.1 Probability theory
We shall denote the probability distribution of a random variable X on some set X by PX .
For any event E on X , the distribution of X conditioned on E will be denoted by PX|E . For
joint random variables XY , PX|Y =y(x) is the conditional distribution of X given Y = y;
when it is clear from context which variable’s value is being conditioned on, we shall often
shorten this to PX|y. We shall use PXY PZ|X to refer to the distribution

(PXY PZ|X)(x, y, z) = PXY (x, y) · PZ|X=x(z).

For two distributions PX and PX′ on the same set X , the ℓ1 distance between them is defined
as

∥PX − PX′∥1 =
∑
x∈X

|PX(x) − PX′(x)|.

▶ Fact 4. For joint distributions PXY and PX′Y ′ on the same sets,

∥PX − PX′∥1 ≤ ∥PXY − PX′Y ′∥1.

▶ Fact 5. For two distributions PX and PX′ on the same set and an event E on the set,

|PX(E) − PX′(E)| ≤ 1
2∥PX − PX′∥1.

▶ Fact 6. For two distributions PX and PX′ on the same set, and any joint distribution
PXX′ whose marginals are PX and PX′ respectively, we have

∥PX − PX′∥1 ≤ 2PXX′(X ̸= X ′).

▶ Fact 7. Suppose probability distributions PX ,PX′ satisfy ∥PX − PX′∥1 ≤ ε, and an event
E satisfies PX(E) ≥ α, where α > ε. Then,

∥PX|E − PX′|E∥1 ≤ 2ε
α
.

Proof. From Fact 5, α − ε/2 ≤ PX′(E) ≤ α + ε/2. By definition, there exists an event E ′

such that 2(PX|E(E ′) − PX′|E(E ′)) = ∥PX|E − PX′|E∥1. Now, PX(E ∧ E ′) = PX(E)PX|E(E ′) ≥
αPX|E(E ′). Similarly, PX′(E ∧ E ′) ≤ (α+ ε/2)PX′|E(E ′) ≤ αPX′|E(E ′) + 1

2 ∥PX − PX′∥1.
Now,

∥PX − PX′∥1 ≥ 2(PX(E ∧ E ′) − PX′(E ∧ E ′))
≥ 2α(PX|E(E ′) − PX′|E(E ′)) − ∥PX − PX′∥1

≥ α∥PX|E − PX′|E∥1 − ∥PX − PX′∥1

which gives the required result. ◀

R. Jain and S. Kundu 27:9

▶ Fact 8 ([3], Lemma 16). Suppose XY Z are random variables satisfying PXY (x, y∗) =
α · PX(x) for all x. Then,∥∥PXY Z − PXY PZ|X,y∗

∥∥
1 ≤ 2

α

∥∥PXY Z − PXY PZ|X
∥∥

1 .

▶ Corollary 9. Supose PXY and PX′Y ′Z′ are distributions such that PX(x, y∗) = α · PX(x)
for all x. Then,

∥PX′Z′|y∗ − PX′Z′∥1 ≤ 11
α

∥PX′Y ′Z′ − PXY PZ′|X′∥1.

Proof. Let ∥PX′Y ′Z′ − PXY PZ′|X′∥1 = ε. Note that

∥PX|y∗ − PX′|y∗∥1 ≤ 2ε
α

by Fact 7. Let PXY Z′′ denote the distribution PXY PZ′|X′Y ′ .

∥PX′Z′ − PXZ′′∥1 =
∑
x,z

∣∣∣∣∣PX′(x)
∑

y

PY ′|x(y)PZ′|xy(z) − PX(x)
∑

y

PY |x(y)PZ′|xy(z)

∣∣∣∣∣
≤

∑
x,y,z

∣∣PX′(x)PY ′|x(y) − PX(x)PY |x(y)
∣∣ PZ′|xy(z)

= ∥PX′Y ′ − PXY ∥1 ≤ ε.

∥PXY Z′′ − PXY PZ′′|X∥1 ≤ ∥PXY Z′′ − PX′Y ′Z′∥1 + ∥PX′Y ′Z′ − PXY PZ′|X′∥1

+ ∥PXY PZ′|X′ − PXY PZ′′|X∥1

= ∥PXY − PX′Y ′∥1 + ∥PX′Y ′Z′ − PXY PZ′|X′∥1

+
∑
x,y

PXY (x, y)∥PZ′|x − PZ′′|x∥1

≤ 2ε+
∑

x

PX(x)
∑
y,z

|PY |x(y) − PY ′|x(y)|PZ′|xy(z)

≤ 2ε+
∑
x,y

|PX(x)PY |x(y) − PX′(x)PY ′|x(y)|

+
∑
x,y

|PX′(x) − PX(x)|PY ′|x(y)

≤ 2ε+ 2∥PXY − PX′Y ′∥1 ≤ 4ε.

Combining all this,

∥PX′Z′|y∗ − PX′Z′ ∥1 ≤ ∥PX′Z′|y∗ − PXZ′′|y∗ ∥1 + ∥PXZ′′|y∗ − PXZ′′ ∥1 + ∥PXZ′′ − PX′Z′ ∥1

≤ ∥PX|y∗ − PX′|y∗ ∥1 + ∥PXZ′′|y∗ − PXZ′′ ∥1 + ∥PXZ′′ − PX′Z′ ∥1

≤ 2ε

α
+ 2

α
∥PXY Z′′ − PXY PZ′′|X∥1 + ε

≤ 2ε

α
+ 8ε

α
+ ε ≤ 11ε

α
.

where we have used Lemma 8 in the third inequality. ◀

▶ Fact 10 ([19], Corollary 6). Let PT U1...UkV = PT PU1|T PU2|T . . .PUk|T PV |T U1...Uk
be a

probability distribution over T × Uk × V, and let E be any event. Then,
k∑

i=1
∥PT UiV |E − PT V |EPUi|T ∥1 ≤

√
k

(
log(|V|) + log

(
1

Pr[E]

))
.

CCC 2021

27:10 A Direct Product Theorem for One-Way Quantum Communication

▶ Definition 11 ([19]). For two distributions PXY and PX′Y ′ST , we say (X,Y) is (1 − ε)-
embeddable in (X ′S, Y ′T) if there exists a random variable R on a set R independent of XY
and functions fA : X × R → S and fB : Y × R → T , such that

∥PXY fA(X,R)fB(X,R) − PX′Y ′ST ∥1 ≤ ε.

▶ Fact 12 ([19, 25]). If two distributions PXY and PX′Y ′R′ satisfy

∥PX′Y ′R′ − PXY PR′|X′∥1 ≤ ε ∥PX′Y ′R′ − PXY PR′|Y ′∥1 ≤ ε,

then (X,Y) is (1 − 5ε)-embeddable in (X ′R′, Y ′R′).1

2.2 Quantum information
The ℓ1 distance between two quantum states ρ and σ is given by

∥ρ− σ∥1 = Tr
√

(ρ− σ)†(ρ− σ) = Tr|ρ− σ|.

The fidelity between two quantum states is given by

F(ρ, σ) = ∥√
ρ
√
σ∥1.

ℓ1 distance and fidelity are related in the following way.

▶ Fact 13 (Fuchs-van de Graaf inequality). For any pair of quantum states ρ and σ,

2(1 − F(ρ, σ)) ≤ ∥ρ− σ∥1 ≤ 2
√

1 − F(ρ, σ)2.

For two pure states |ψ⟩ and |ϕ⟩, we have

∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥1 =
√

1 − F (|ψ⟩⟨ψ|, |ϕ⟩⟨ϕ|)2 =
√

1 − |⟨ψ|ϕ⟩|2.

▶ Fact 14 (Uhlmann’s theorem). Suppose ρ and σ are mixed states on register X which are
purified to |ρ⟩ and |σ⟩ on registers XY , then it holds that

F(ρ, σ) = max
U

|⟨ρ|1X ⊗ U |σ⟩|

where the maximization is over unitaries acting only on register Y .

▶ Fact 15 (Data-processing inequality). For a quantum channel E and states ρ and σ,

∥E(ρ) − E(σ)∥1 ≤ ∥ρ− σ∥1 and F(E(ρ), E(σ)) ≥ F(ρ, σ).

The entropy of a quantum state ρ on a register Z is given by

S(ρ) = −Tr(ρ log ρ).

The relative entropy between two states ρ and σ of the same dimensions is given by

S(ρ∥σ) = Tr(ρ log ρ) − Tr(ρ log σ).

1 This fact is equivalent to Lemma 2.11 in [25], although this lemma is stated in terms of relative entropies
instead of trace distances between the various distributions. In the proof of the lemma, the relative
entropies are converted to the same trace distances as we consider, using Pinsker’s inequality. This
justifies our statement of the fact, which is tailored towards our application.

R. Jain and S. Kundu 27:11

The relative min-entropy between ρ and σ is defined as

S∞(ρ∥σ) = min{λ : ρ ≤ 2λσ}.

It is easy to see that S(ρ∥σ) and S∞(ρ∥σ) only take finite values when the support of ρ is
contained in the support of σ. Moreover, clearly 0 ≤ S(ρ∥σ) ≤ S∞(ρ∥σ) for all ρ and σ.

The ε-smooth relative min-entropy between ρ and σ is defined as

Sε
∞(ρ∥σ) = inf

ρ′:∥ρ−ρ′∥1≤ε
S(ρ′∥σ).

Sε
∞(ρ∥σ) can take a finite value even if the support of ρ is not contained in the support of σ,

for example if ρ is ε-close to a state contained within the support of σ. S∞(ρ∥σ) cannot be
upper bounded by S(ρ∥σ), but Sε

∞(ρ∥σ) can be, due to the Quantum Substate Theorem.

▶ Fact 16 (Quantum Substate Theorem, [31, 23]). For any two states ρ and σ such that the
support of ρ is contained in the support of σ, and any ε > 0,

Sε
∞(ρ∥σ) ≤ 4S(ρ∥σ)

ε2 + log
(

1
1 − ε2/4

)
.

▶ Fact 17 (Pinsker’s Inequality). For any two states ρ and σ, ∥ρ− σ∥1 ≤
√

S(ρ∥σ).

▶ Fact 18. If σ = ερ+ (1 − ε)ρ′, then S∞(ρ∥σ) ≤ log(1/ε).

▶ Fact 19. For any three quantum states ρ, σ, φ such that supp(ρ) ⊆ supp(φ) ⊆ supp(σ),

S∞(ρ∥σ) ≤ S∞(ρ∥φ) + S∞(φ∥σ).

▶ Fact 20. For any unitary U , S∞(UρU †∥UσU †) = S∞(ρ∥σ).

A state of the form

ρXY =
∑

x

PX(x)|x⟩⟨x|X ⊗ ρY |x

is called a CQ (classical-quantum) state, with X being the classical register and Y being
quantum. We shall use X to refer to both the classical register and the classical random
variable with the associated distribution. As in the classical case, here we are using ρY |x
to denote the state of the register Y conditioned on X = x, or in other words the state of
the register Y when a measurement is done on the X register and the outcome is x. Hence
ρXY |x = |x⟩⟨x|X ⊗ ρY |x. When the registers are clear from context we shall often write
simply ρx.

The mutual information between Y and Z with respect to a state ρ on Y Z is defined as

I(Y : Z)ρ = S(ρY Z∥ρY ⊗ ρZ).

The conditional mutual information between Y and Z conditioned on a classical register X,
is defined as

I(Y : Z|X) = E
PX

[I(Y : Z)ρx
].

Mutual information can be seen to satisfy the chain rule

I(XY : Z)ρ = I(X : Z)ρ + I(Y : Z|X)ρ.

CCC 2021

27:12 A Direct Product Theorem for One-Way Quantum Communication

▶ Fact 21 ([6], Lemma B.7). For any quantum state ρY Z ,

inf
σZ

S∞(ρY Z∥ρY ⊗ σZ) ≤ 2 min{log |Y|, log |Z|}.

▶ Fact 22. For CQ states

ρXY =
∑

x

PX(x)|x⟩⟨x|X ⊗ ρY |x σXY =
∑

x

PX′(x)|x⟩⟨x|X ⊗ σY |x,

their relative entropy is given by

S(ρXY ∥σXY) = S(PX∥PX′) + E
PX

[S(ρY |x∥σY |x)].

▶ Fact 23. Suppose σXY Z and ρXY Z are CQ states defined as follows

σXY Z =
∑
x,y

PXY (x, y)|x, y⟩⟨x, y| ⊗ σZ|xy ρXY Z =
∑
x,y

PX′Y ′(x, y)|x, y⟩⟨x, y| ⊗ σZ|xy,

where ∥PXY − PX′Y ′∥1 ≤ δ. Let I(Y : Z|X)σ ≤ c. Then, for any 0 < ε < 1
4 ,

PX′Y ′

(
Sε

∞(σZ|xy∥σZ|x) > 4c+ 1
ε3

)
≤ ε+ δ

2 .

Proof. We have EPXY
[S(σZ|xy∥σZ|x)] = I(Y : Z|X)σ ≤ c. By Markov’s inequality, this

means that

PXY

(
S(σZ|xy∥σZ|x) > c

ε

)
≤ ε.

Using the Quantum Substate Theorem, this implies

PXY

(
Sε

∞(σZ|xy∥σZ|x) > 4c+ 1
ε3

)
≤ PXY

(
Sε

∞(σZ|xy∥σZ|x) > 4c
ε3 + log

(
1

1 − ε2/4

))
≤ ε.

Since ∥PXY − PX′Y ′∥1 ≤ δ, this gives us the required bound of the probability under
PX′Y ′ . ◀

▶ Fact 24 (Quantum Raz’s Lemma, [3]). Let ρXY and σXY be two CQ states with X =
X1 . . . Xk being classical, and σ being product across all registers. Then,

k∑
i=1

I(Xi : Y)ρ ≤ S(ρXY ∥σXY).

▶ Fact 25 ([29], Lemma 2). Suppose the state

|σ⟩XX̃AB =
∑

x

√
PX(x)|xx⟩XX̃ |σ⟩AB|x

satisfies PX(Sε
∞(σB|x∥σB) > c) ≤ δ for some δ > 0. Then there is a family of measurement

operators {Πx}x acting only on XX̃A such that:
(i) Each Πx succeeds with probability α = 2−c/δ on |σ⟩XX̃AB, i.e., ∥Πx ⊗1B |σ⟩∥2

2 = 2−c/δ,
(ii) (Πx ⊗ 1B)|σ⟩⟨σ|(Πx ⊗ 1B) is of the form |xx⟩⟨xx| ⊗ ρx, for some state ρx on AB, and

E
PX

∥∥∥∥ 1
α

(Πx ⊗ 1B)|σ⟩⟨σ|XX̃AB(Πx ⊗ 1B) − |xx⟩⟨xx|XX̃ ⊗ |σ⟩⟨σ|AB|x

∥∥∥∥
1

≤ ε+ 2δ.

The version of the above fact stated here is slightly different from the original statement in
[29], in order to suit our application. In the original statement, I(X : B)σ is used instead,
and the superposition state lacks the X̃ register. However, in the proof of the fact in [29],
I(X : B)σ is converted to PX(Sε

∞(σB|x∥σB) > c) anyway, so the first change makes no
difference. The second change also makes no difference as the same projector that takes the
superposition state without the X̃ register to |x⟩⟨x| ⊗ |σ⟩⟨σ|AB|x takes the superposition
state with the X̃ register to |xx⟩⟨xx| ⊗ |σ⟩⟨σ|AB|x.

R. Jain and S. Kundu 27:13

2.3 Quantum communication & entangled games
We briefly describe a quantum communication protocol P for computing a relation f ⊆
X × Y × Z, between two parties Alice and Bob sharing prior entanglement, with inputs x
and y respectively.

In each round, either Alice or Bob will apply a unitary on their classical input register,
along with the quantum register they received as a message from the other party in the last
round, and memory registers they may have kept from previous rounds; after the unitary
they will keep some registers as memory and send the rest to the other party as the message
for that round. We can always assume that players make “safe” copies of their inputs using
CNOT gates in such protocols, so that the input registers come out as is after each round.
We also note that though in general we need not consider shared classical randomness in
quantum communication protocols, protocols with shared randomness fall under the shared
entanglement framework we have described. This is because shared randomness can be
obtained by sharing entanglement and then both parties measuring in the same basis.

In a one-way, i.e., a single round protocol, the memory from previous rounds is replaced
by Alice’s (who we consider to be sending the single message) part of the shared entangled
state, and any register she does not send as a message is simply discarded. After Alice’s
message, Bob performs a projective measurement on his input register, his part of the shared
entanglement, and Alice’s message, and gives the outcome of this measurement as the output
of the protocol, which we shall denote by P(x, y). We can of course think of this measurement
as Bob performing a unitary on the three registers, and then doing a measurement in the
computational basis on some log |Z| qubits which are designated for the output.
▶ Definition 26. The one-way entanglement-assisted quantum communication complexity,
with error 0 < ε < 1, of a relation f ⊆ X ×Y ×Z, denoted by Q1

ε(f), is the minimum message
size, i.e., number of qubits sent, in a one-way entanglement-assisted quantum protocol P
such that for all (x, y) ∈ X × Y,

Pr[P(x, y) ∈ f(x, y)] ≥ 1 − ε,

where the probability is taken over the inherent randomness in the protocol.
▶ Definition 27. For a probability distribution p on X × Y, the distributional one-way
entanglement-assisted quantum communication complexity of a relation f ⊆ X × Y × Z, with
error 0 < ε < 1 with respect to p, is defined as the minimum message size of a one-way
entanglement-assisted quantum protocol P such that

Pr[P(x, y) ∈ f(x, y)] ≥ 1 − ε,

where the probability is taken over the distribution p on (x, y) as well as the inherent
randomness in the protocol.
▶ Fact 28 (Yao’s lemma, [45]). For any 0 < ε < 1, and any relation f , Q1

ε(f) = maxp Q1
p,ε(f).

A two-player non-local game G is described as (q,X ×Y ,A×B,V) where q is a distribution
over the input set X ×Y , A×B is the output set, and V : X ×Y ×A×B → {0, 1} is a predicate.
It is played as follows: a referee selects inputs (x, y) according to q, sends x to Alice and y

to Bob. If Alice and Bob are allowed to share entanglement, they perform measurements on
their respective halves of the entangled state along with their respective input registers (which
we model as performing unitaries and then measuring in the computational basis on some
log |A| and log |B| qubits designated for outputs respectively), and send their outputs (a, b)
back to the referee. The referee accepts and Alice and Bob win the game iff V(x, y, a, b) = 1.
▶ Definition 29. The entangled value of a game G = (q,X × Y ,A × B,V), denoted by ω∗(G),
is the maximum winning probability of Alice and Bob, averaged over the distribution q as
well as inherent randomness in the strategy, over all shared entanglement strategies for G.

CCC 2021

27:14 A Direct Product Theorem for One-Way Quantum Communication

3 Proof of direct product theorem

In this section, we prove Theorem 1, whose statement we recall below.

▶ Theorem 1. For any relation f ⊆ X × Y × Z, and any 0 < ε, ζ < 1
2 ,

Q1
1−(1−ε)Ω(ζ6k/ log |Z|)(fk) = Ω

(
k

(
ζ5 · Q1

ε+ζ(f) − log log(1/ζ)
))
.

3.1 Setup
Let p be the hard distribution on X × Y for Q1

ε+12ζ(f) from Yao’s lemma, i.e., Q1
ε+12ζ(f) =

Q1
p,ε+12ζ(f). Consider the relation f̃ ⊆ X × (Y ∪ {y∗}) × Z which is the same as f on

X × Y × Z and additionally,

(x, y∗, z) ∈ f̃ ∀x ∈ X , ∀z ∈ Z.

We can think of p as a distribution on X × (Y ∪ {y∗}) as well, which has p(y∗) = 0. Clearly,

Q1
p,γ(f̃) = Q1

p,γ(f) (1)

for any error γ, since p has no support on the extra inputs on which f̃ is defined. We also
note that

Q1
γ(fk) ≥ Q1

γ(f̃k) (2)

for any γ. This is because any protocol for fk is also a protocol for f̃k: on the indices where
Bob’s input is y∗ instead of an element of Y, he pretends he has gotten an input from Y,
runs the protocol with this input and gives the answer accordingly. This gives a correct
output if the original protocol gives a correct output, since any output is correct when Bob’s
input in y∗.

For a distribution q related to p, we shall show that

Q1
qk,1−(1−ε)Ω(ζ6k/ log |Z|)(f̃k) ≥ ζ5k

60 · Q1
p,ε+12ζ(f̃) − k log log

(
24
5ζ

)
. (3)

Since Q1
γ(f̃k) ≥ Q1

qk,γ(f̃k), (1), (2) and (3) imply the theorem. The distribution q is defined
as follows

q(x, y) = (1 − ζ) · p(x, y) ∀x ∈ X , y ∈ Y
q(x, y∗) = ζ · p(x) ∀x ∈ X .

Clearly, q(x, y∗) = q(x)q(y∗) for all x, and

∥p(x, y) − q(x, y)∥1 ≤ 2ζ. (4)

Following [3], for each i ∈ [k], we shall define a joint distribution PXiYiDiGi , where the
marginal on XiYi is q(x, y), and DiGi are correlation-breaking variables such that conditioned
on DiGi = digi, Xi and Yi are independent. Each XiYiDiGi is distributed independently of
the rest. Each Di is distributed uniformly in {0, 1}. Depending on the value of Di, Gi is
distributed in the following way:

Gi =

x w.p. p(x) if Di = 0
y∗ w.p. 1 − (1 − ζ)2/3 if Di = 1
y w.p. (1 − ζ)2/3 · p(y) if Di = 1

R. Jain and S. Kundu 27:15

Now depending on the value of DiGi, XiYi is distributed in the following way:

XiYi =

(x, y∗) w.p. ζ if Di = 0, Gi = x

(x, y) w.p. (1 − ζ) · p(y|x) if Di = 0, Gi = x

(x, y∗) w.p. p(x) if Di = 1, Gi = y∗

(x, y∗) w.p.
(
1 − (1 − ζ)1/3)

· p(x|y) if Di = 1, Gi = y

(x, y) w.p. (1 − ζ)1/3 · p(x|y) if Di = 1, Gi = y.

The following lemma is similar to Claim 18 from [3]; we provide a proof for completeness.

▶ Lemma 30. For all (x, y) ∈ X × (Y ∪ {y∗}), PXiYi
(x, y) = q(x, y).

Proof. It is trivial to see that PGiYi|Di=0(x, y) = PXiYi|Di=0(x, y) = q(x, y), since Gi = Xi

conditioned on Di = 0. We now prove the Di = 1 case. First consider a y ∈ Y. Yi can only
take value y if Gi takes value y. Hence,

PXiYi|Di=1(x, y) = PGi|Di=1(y) · PXiYi|Di=1,Gi=y(x, y)

= (1 − ζ)2/3p(y) · (1 − ζ)1/3p(x|y)
= (1 − ζ) · p(x, y) = q(x, y).

On the other hand, Yi can take value y∗ when Gi = y∗ or when Gi = y for any y ∈ Y . Hence,

PXiYi|Di=1(x, y∗) = PGi|Di=1(y∗) · PXiYi|Di=1,Gi=y∗ (x, y∗)

+
∑
y∈Y

PGi|Di=1(y) · PXiYi|Di=1,Gi=y(x, y∗)

=
(
1 − (1 − ζ)2/3)

· p(x) + (1 − ζ)2/3 (
1 − (1 − ζ)1/3) ∑

y∈Y

p(y) · p(x|y)

=
(
1 − (1 − ζ)2/3)

· p(x) +
(
(1 − ζ)2/3 − (1 − ζ)

)
· p(x)

= ζ · p(x) = q(x, y∗). ◀

In particular the lemma means PXiYi(x, y∗) = PXi(x)PYi(y∗). We also note

PYiGi|Di=1(Yi ̸= Gi) = (1 − ζ)2/3(1 − (1 − ζ)1/3) ≤ 1 − 2ζ/3 − 1 + ζ = ζ/3. (5)

Let P be any quantum one-way protocol between Alice and Bob, for f̃k ⊆ X k × (Y ∪
{y∗})k × Zk, which has communication cost ck. P is depicted in Figure 1. Alice and Bob’s
inputs are in registers X = X1 . . . Xk and Y = Y1 . . . Yk, and they share an entangled pure
state uncorrelated with the inputs on registers EAEB, with Alice holding EA and Bob
holding EB. Alice applies a unitary V A on XEA, to get the message register M , and the
register A to be discarded. We shall use |θ⟩AMEB|x to refer to the pure state in AMEB in
the protocol after Alice’s unitary, for inputs xy (|θ⟩x only depends on y via x). When Alice
and Bob’s inputs are distributed according to PXY , the state of the protocol after Alice’s
message, will be given by the following CQ state:

θXY AMEB =
∑
xy

PXY (xy)|xy⟩⟨xy|XY ⊗ |θ⟩⟨θ|AMEB|x.

We shall also consider the following purification of it, with the purifying registers X̃ and Ỹ :

|θ⟩XX̃Y Ỹ AMEB =
∑
xy

√
PXY (xy)|xxyy⟩XX̃Y Ỹ |θ⟩AMEB|x.

CCC 2021

27:16 A Direct Product Theorem for One-Way Quantum Communication

After receiving Alice’s message, Bob applies a unitary V B to YMEB, after which MEB gets
converted to BZ, where Z = Z1 . . . Zk are the answer registers. We shall use |ρ⟩XX̃Y Ỹ ABZ

to refer to |θ⟩XX̃Y Ỹ AMEB after V B. We shall use PXY DGZ to refer to the joint distribution
where XYDG are as previously defined; Z is independent of DG given XY , and the
conditional distribution of Z given XY is what is obtained by measuring the Z register in
the computational basis in |ρ⟩.

X

EA

EB

Y

V A

M

V B

X

A

B

Z

Y

θ ρ

Figure 1 One-way quantum protocol P.

3.2 Proof of Theorem 1
We shall show that if the communication cost ck of P is < ζ5k

300 ·Q1
p,ε+12ζ(f̃)−k log log(24/5ζ),

then the success probability of P is (1 − ε)Ω(ζ6k/ log |Z|). This is implied by the following
claim, which the rest of the proof will show.

▶ Lemma 31. Let δ = ζ6

1440000 and δ′ = ζ6

1440000 log |Z| . For i ∈ [k], let Ti be the random
variable which takes value 1 if P computes f(Xi, Yi) correctly, and value 0 otherwise. If
the communication cost of P is < ζ5k

60 · Q1
p,ε+12ζ(f̃) − k log log(24/5ζ), then there exist ⌊δ′k⌋

coordinates {i1, . . . , i⌊δ′k⌋} ⊆ [k], such that for all 1 ≤ r ≤ ⌊δ′k⌋ − 1, at least one of the
following two conditions holds

(i) Pr
[∏r

j=1 Tij
= 1

]
≤ (1 − ε)δk

(ii) Pr
[
Tir+1 = 1

∣∣∣∏r
j=1 Tij

= 1
]

≤ 1 − ε.
Lemma 31 can be proved inductively. Suppose we have already identified 1 ≤ t ≤ ⌊δ′k⌋
coordinates in C = {i1, . . . it}, such that for all 1 ≤ r ≤ t− 1, Pr

[
Tir+1 = 1|

∏r
j=1 Tij

= 1
]

≤
1 − ε. Let E refer to the event

∏
i∈C Ti = 1. If Pr[E] ≤ (1 − ε)δk, then we are already

done. If not, then we shall show how to identify the (t + 1)-th coordinate i such that
Pr [Ti = 1|E] ≤ 1 − ε. The process of identifying the first coordinate is also similar, except in
that case the conditioning event is empty. Since we only use the lower bound (1 − ε)δk on
the probability of the conditioning event in our proof, the proof goes through for that case
as well.

We shall use the state |φ⟩, which is |ρ⟩XX̃Y Ỹ ABZ conditioned on E , for the proof of
Lemma 31. For any value DG = dg, |φ⟩XX̃Y Ỹ ABZ|dg is defined as:

R. Jain and S. Kundu 27:17

|φ⟩XX̃Y Ỹ ABZ|dg = 1
√

γdg

∑
xy

√
PXY |dg(xy)|xxyy⟩XX̃Y Ỹ ⊗

∑
zC :(xC ,yC ,zC)∈f̃t

|zC⟩ZC |φ̃⟩ABZC̄ |xyzC
.

Here |φ̃⟩xyzC
is a subnormalized state with ∥|φ̃⟩ABZC̄ |xyzC

∥2
2 = PZC |xy(zC). The overall

normalization factor γdg is the probability of E conditioned on dg, and satisfies∑
dg

PDG(dg) · γdg = Pr[E].

It is clear that the distribution of XY Z in |φ⟩XX̃Y Ỹ ABZ|dg is PXY Z|E,dg. Note that we are
using the notation |φ⟩dg without explicitly considering registers DG on which a measurement
is done to obtain |φ⟩dg. We shall also sometimes use |φ⟩d−ig−i in which the xy distributions
are conditioned on d−ig−i instead, which changes the normalization factor to some γd−ig−i

,
everything else remaining the same. φxiyid−ig−i refers as usual to the state obtained when
a measurement done on the XiYi registers (which are actually present in |φ⟩) in |φ⟩d−ig−i

.
For i /∈ C̄, we shall use the states |φ⟩XC̄ X̃C̄ YC̄ ỸC̄ ABZC̄ |xiyixC yC zC d−ig−i

in our proof, which
we note are pure states.

Lemma 31 will be proved with the help of the following lemma, whose proof we give later.

▶ Lemma 32. If Pr[E] ≥ (1 − ε)δk, then there exist a coordinate i ∈ C̄, a random variable
Ri = XCYCZCD−iG−i and for each Ri = ri a state |φ′⟩XC̄ X̃C̄ YC̄ ỸC̄ ABZC̄ |y∗ri

such that the
following conditions hold:

(i) ∥PXiYiRi|E − PXiYi
PRi|E,Xi

∥1 ≤ 7ζ
120

(ii) ∥PXiYiRi|E − PXiYiPRi|E,Yi
∥1 ≤ 7ζ

120 .
(iii) There exist projectors {Πxiri

}xiri
acting only on registers XC̄X̃C̄A and unitaries

{Uyiri}yiri acting only on YC̄ ỸC̄BZC̄ , such that each Πxiri succeeds on |φ′⟩ri with
probability α = 2−c′ where c′ ≤ 60c

ζ5 , and

E
PXiYiRi|E

∥∥∥∥ 1
α

(Πxiri ⊗ Uyiri)|φ′⟩⟨φ′|y∗ri(Πxiri ⊗ U †
yiri

) − |φ⟩⟨φ|xiyiri

∥∥∥∥
1

≤ 21ζ.

Proof of Lemma 31. We give a one-way quantum protocol P ′ for f̃ , whose inputs are
distributed according to PXiYi

, i.e., q, by embedding Alice and Bob’s inputs into the i-th
coordinate of |φ⟩xiyiri

, as follows:
Alice and Bob have r according to the distribution required by Fact 12 as shared
randomness, and 260c/ζ5 log(24/5ζ) copies of |φ′⟩y∗ri as shared entanglement, with Alice
holding registers XC̄X̃C̄A and Bob holding registers YC̄ ỸC̄BZC̄ of each copy.
On input (xi, yi) from PXiYi , using items (i), (ii) of Lemma 32, their shared randomness,
and the protocol from Fact 12, Alice and Bob generate random variables RA

i R
B
i such that

∥PXiYiRA
i

RB
i

− PXiYiRiRi|E∥1 ≤ 7ζ
24 .

where RiRi denotes two perfectly correlated copies of Ri in PXiYiRiRi|E .
Alice applies the {ΠxirA

i
,1 − ΠxirA

i
} measurement according to her input and RA

i on her
registers for each copy of the shared entangled state. If the ΠxirA

i
measurement does not

succeed on any copy, then she aborts. Otherwise, she sends to Bob a (60c
ζ5 +log log(24/5ζ))-

bit message indicating an index where ΠxirA
i

measurement succeeded.

CCC 2021

27:18 A Direct Product Theorem for One-Way Quantum Communication

Bob applies the unitary UyirB
i

according to his input and RB
i on the copy of the shared

entangled state whose index Alice has sent, and measures the Zi register of the resulting
state to give his output.

To analyze the success of this protocol, first note that

E
PXiYiRi|E

Pr[Result of Zi measurement on |φ⟩xiyiri ∈ f̃(xi, yi)] = Pr[Ti = 1|E].

Let us first assume Alice and Bob have (xi, yi, r
A
i , r

B
i) distributed exactly according to

PXiYiRiRi|E – we shall denote both rA
i and rB

i by ri in this case. Alice aborts the protocol if
none of her measurements succeed. This happens with probability

(1 − 2−c′
)260c/ζ5

·log(24/5ζ) ≤ 5ζ
24 .

If Alice does not abort, then Alice and Bob’s state after Bob’s unitary is 1√
α

Πxiri
⊗

Uyiri |φ′⟩y∗ri . From (iii), the expected probability of the Zi measurement on this state giving
an answer ∈ f̃(xi, yi) is at least Pr[Ti = 1|E]− 21ζ

2 . Hence, if Alice and Bob had (xi, yi, r
A
i , r

B
i)

distributed according to PXiYiRiRi|E , then their expected success probability would have
been at least Pr[Ti = 1|E] − 21ζ

2 − 5ζ
24 . Since Alice and Bob have (xi, yi, r

A
i , r

B
i) according to

PXiYiRA
i

RB
i

instead, their expected success probability is at least

Pr[Ti = 1|E] − 21ζ
2 − 5ζ

24 − 7ζ
24 ≥ Pr[Ti = 1|E] − 11ζ.

Since ∥q(x, y) − p(x, y)∥1 ≤ 2ζ, when the same protocol is run on XiYi distributed according
to p instead, it must succeed with probability at least Pr[Ti = 1|E] − 12ζ. Since the
communication in P ′ is at most (60c

ζ5 + log log(24/5ζ)) < Q1
p,ε+12ζ(f̃), Pr[Ti = 1|E] ≥ 1 − ε

gives the error probability of P ′ to be ≤ ε+ 12ζ, which is a contradiction. Hence we must
have Pr[Ti = 1|E] ≤ 1 − ε. The desired result thus follows by setting it+1 = i. ◀

3.3 Proof of Lemma 32
First we shall show that on expectation over i ∈ C̄, a number of probability distributions
conditioned on E are close to those unconditioned on E . Applying Fact 10 with T and V

being trivial and Ui = XiYiDiGi for i ∈ C̄, we get,

E
i∈C̄

∥PXiYiDiGi|E − PXiYiDiGi
∥1 ≤ 1

k − t

√
k · log((1 − ε)−δk) ≤

√
2δ. (6)

In particular, due to (5), this means

E
i∈C̄

PYiGi|E,Di=1(Yi = Gi) ≥ 1 − ζ/3 −
√

2δ. (7)

And since PGi|Di=1(y∗) = 1 − (1 − ζ)2/3, PYi|Di=1,Gi=yi
(yi) = (1 − ζ)1/3 for yi ∈ Y , we have

ζ+
√

2δ ≥ 1−(1−ζ)2/3 +
√

2δ ≥ E
i∈C̄

PGi|E,Di=1(y∗) ≥ 1−(1−ζ)2/3 −
√

2δ ≥ 2ζ/3−
√

2δ (8)

(
1− ζ

3 +
√

2δ
)

E
i∈C̄

PGi|E,Di=1(yi) ≥ E
i∈C̄

PYiGi|E,Di=1(yi, yi) ≥ (1−ζ −
√

2δ) E
i∈C̄

PGi|E,Di=1(yi). (9)

Fact 10 can again be applied with Ui = XiYi, T = XCYCDG and V = ZC . Let δ1 =
δ + δ′ log |Z| = ζ6

720000 . Then we have,√
2δ1 ≥ E

i∈C̄
∥PXiYiXC YC ZC DG|E − PXC YC ZC DG|EPXiYi|XC YC DG∥1

R. Jain and S. Kundu 27:19

= E
i∈C̄

∥PXiYiXC YC ZC DG|E − PXC YC ZC DG|EPXiYi|DiGi
∥1

= E
i∈C̄

∥PXiYiDiGiRi|E − PDiGiRi|EPXiYi|DiGi
∥1. (10)

We note that Di takes value uniformly in {0, 1} even conditioned on E . Hence from (10),√
2δ1 ≥ 1

2 E
i∈C̄

∥PXiYiGiRi|E,Di=0 − PGiRi|E,Di=0PXiYi|Gi,Di=0∥1

= 1
2 E

i∈C̄
∥PXiYiRi|E − PXiRi|EPYi|Xi

∥1

where we have used the fact that Xi = Gi conditioned on Di = 0. Combining this with the
fact that Ei∈C̄ ∥PXi|E − PXi

∥1 ≤
√

2δ, we have,

E
i∈C̄

∥PXiYiRi|E − PXiYi
PRi|E,Xi

∥1 ≤ 3
√

2δ1 <
7ζ3

600 . (11)

Due to Corollary 9 we also have from (11),

E
i∈C̄

∥PXiRi|E,y∗ − PXiRi|E∥1 ≤ 33
√

2δ1

ζ
. (12)

Let Fi denote the event Yi = Gi. We know Ei∈C̄ PXiYiGi|Di=1(Fi) ≥ 1 − ζ/3 −
√

2δ, from
(7). Hence, using Fact 7,

E
i∈C̄

∥PXiYiRi|E − PYiRi|EPXi|Yi
∥1

= E
i∈C̄

∥PXiYiGiRi|E,Di=1,Fi
− PGiRi|E,Di=1,Fi

PXiYi|GiDi=1,Fi
∥1

≤ 6 E
i∈C̄

∥PXiYiDiRi|E,Di=1 − PGiRi|E,Di=1PXiYi|GiDi=1∥1 ≤ 6
√

2δ1.

Using Ei∈C̄ ∥PYi|E − PYi
∥1 ≤

√
2δ, we have as before,

E
i∈C̄

∥PXiYiRi|E − PXiYi
PRi|E,Yi

∥1 ≤ 7
√

2δ1 = 7ζ3

600 . (13)

Next we shall show the existence of projectors Πxiri which take |φ′⟩y∗ri (which will be
defined soon) close to |φ⟩xiy∗ri

. Since M is ck qubits, by Fact 21, for any value DG = dg,
there exists some state σM |dg such that

S∞(θXY Ỹ EBM |dg∥θXY Ỹ EB|dg ⊗ σM |dg) ≤ 2ck.

By Fact 20 we have,

S∞

(
ρXY Ỹ BZ|dg∥V B(θXY Ỹ EB|dg ⊗ σM |dg)(V B)†

)
≤ 2ck.

Let ψXC̄ YC̄ ỸC̄ BZC̄ |dg = TrZC
(V B(θXY EB|dg ⊗ σM |xC yC dg)(V B)†). Note that θXY Ỹ EB|dg ⊗

σM |dg is product across X and the other registers, and V B does not act on X. Hence
ψXC̄ YC̄ ỸC̄ BZC̄ |dg is also product across X and the other registers, and moreover, all the Xi-s
are in product with each other as well. We have,

S∞

(
ρXY Ỹ BZC̄ |dg∥ψXY Ỹ BZC̄ |dg

)
≤ 2ck.

CCC 2021

27:20 A Direct Product Theorem for One-Way Quantum Communication

Using Facts 22 and 19, this gives us

E
PXC YC ZC DG|E

[
S

(
φXC̄ YC̄ ỸC̄ BZC̄ |xC yC zC dg∥ψXC̄ YC̄ ỸC̄ BZC̄ |xC yC dg

)]
≤ E

PZC DG|E

[
S

(
φXY Ỹ BZC̄ |zC dg∥ψXY Ỹ BZC̄ |dg

)]
≤ E

PZC DG|E

[
S∞

(
φXY Ỹ BZC̄ |zC dg∥ψXY Ỹ BZC̄ |dg

)]
≤ E

PZC DG|E

[
S∞

(
φXY Ỹ BZC̄ |zC dg∥φXY Ỹ BZC̄ |dg

)
+ S∞

(
φXY Ỹ BZC̄ |dg∥ρXY Ỹ BZC̄ |dg

)
+ S∞

(
ρXY Ỹ BZC̄ |dg∥ψXY Ỹ BZC̄ |dg

)]
≤ E

PZC DG|E

[
log(1/PZC |E(zC)) + log(1/Pr[E]) + 2ck

]
≤ |C| log |Z| + δk + 2ck ≤ (δ1 + 2c)k.

By Quantum Raz’s Lemma,

4c+ 2δ1 ≥ E
i∈C̄

E
PXC YC ZC DG|E

I(Xi : YC̄ ỸC̄BZC̄)φxC yC zC dg

= E
i∈C̄

E
PDiGiRi|E

I(Xi : YC̄ ỸC̄BZC̄)φdigiri

≥ E
i∈C̄

1
2PGi|E,Di=1(y∗) E

PRi|E,Di=1,Gi=y∗
I(Xi : YC̄ ỸC̄BZC̄)φri|Di=1,Gi=y∗

≥ E
i∈C̄

1
2(2ζ/3 −

√
2δ) E

PRi|E,Di=1,Gi=y∗
I(Xi : YC̄ ỸC̄BZC̄)φri,Di=1,Gi=y∗ (14)

where we have used (8) in the last inequality.
Note that φXC̄ X̃C̄ YC̄ ỸC̄ ABZC̄ |xiri,Di=1,Gi=y∗ is the same state as φXC̄ X̃C̄ YC̄ ỸC̄ ABZC̄ |xiy∗ri

,
where the value of Yi is being conditioned on, instead of Gi. |φ⟩ri,Di=1,Gi=y∗ is the super-
position over Xi of |φ⟩xiri,Di=1,Gi=y∗ , with the Xi distribution being PXi|E,ri,Di=1,Gi=y∗ .
The only difference between |φ⟩y∗ri and |φ⟩ri,Di=1,Gi=y∗ is the Xi distribution, which in the
former is PXi|E,y∗ri

instead. We shall refer to |φ⟩ri,Di=1,Gi=y∗ as simply |φ⟩ri,1,y∗ as now on –
note that there is no ambiguity between this and |φ⟩y∗ri . The same goes for the distributions
PXiRi|E,1,y∗ and PXiRi|E,y∗ .

PXi|1,y∗ is the same distribution as PXi|y∗ and PRi|E,xi,1,y∗ is the same distribution as
PRi|E,xiy∗ for any xi. Hence,

E
i∈C̄

∥PXiRi|E,y∗ − PXiRi|E,1,y∗∥1 ≤ E
i∈C̄

[
∥PXiRi|E,y∗ − PXi|y∗PRi|E,Xi,y∗∥1

+∥(PXi|1,y∗ − PXi|E,1,y∗)PRi|E,Xi,y∗∥1
]

≤ E
i∈C̄

[∥PXiRi|E − PXiPRi|E,Xi
∥1

2ζ/3 −
√

2δ
+

∥PXi|E − PXi∥1

2ζ/3 −
√

2δ

]
≤ 7

√
2δ1

ζ

where we have used (8) in the second inequality. Using the above computation and (12),
we get,

E
i∈C̄

∥PXiRi|E − PXiRi|E,1,y∗∥1 ≤ 40
√

2δ1

ζ
.

R. Jain and S. Kundu 27:21

Let

|φ′⟩XC̄ X̃C̄ YC̄ ỸC̄ ABZC̄ |y∗ri
=

∑
xi

√
PXi|E,ri

|φ⟩XC̄ X̃C̄ YC̄ ỸC̄ ABZC̄ |xiy∗ri
,

i.e., |φ′⟩y∗ri
is the same state as |φ⟩y∗ri

except that the distribution of distribution of Xi is
unconditioned on Yi = y∗. From (14) and Fact 23, we then have that,

E
i∈C̄

PXiRi|E

(
Sζ

∞

(
φ′

YC̄ ỸC̄BZ
C̄

|xiy∗ri
∥φ′

YC̄ ỸC̄BZ
C̄

|y∗ri

)
>

28(2c+ δ1) + 1
ζ4

)
≤ ζ + 20

√
2δ1

ζ
.

Hence by Fact 25, there exist projectors Πxiri
acting on registers XC̄X̃C̄A, such that Πxiri

succeeds with probability α = 2−c′ on |φ′⟩XC̄ X̃C̄ YC̄ ỸC̄ ABZC̄ |y∗ri
, where c′ = 60c

ζ5 , and

E
∈C̄

E
PXiRi|E

∥∥∥∥ 1
α

(Πxiri
⊗ 1)|φ′⟩⟨φ′|y∗ri

(Πxiri
⊗ 1) − |φ⟩⟨φ|xiy∗ri

∥∥∥∥
1

≤ 3ζ + 40
√

2δ1

ζ2

≤ 7ζ
2 . (15)

Next we shall show the existence of unitaries Uyiri
taking |φ⟩y∗ri,Di=1,Gi=yi

close to
|φ⟩yiri,Di=1,Gi=yi . By similar arguments as the ones leading to (14) on Bob’s side (except
the first step where we consider the information due to Alice’s message, which does not apply
here), we can alo upper bound EPXC YC ZC DG|E

[
S

(
φYC̄ XC̄ X̃C̄ A|xC yC zC dg∥ρYC̄ XC̄ X̃C̄ A|xC yC dg

)]
.

Hence by Raz’s lemma again,

2δ1 ≥ E
i∈C̄

E
PDiGiRi|E

I(Yi : XC̄X̃C̄A)φdigiri

≥ E
i∈C̄

1
2(1 − ζ −

√
2δ) E

PRiGi|E,Di=1,Gi ̸=y∗
I(Yi : XC̄X̃C̄A)φri,Di=1,gi

= E
i∈C̄

1
2(1 − ζ −

√
2δ) E

PRiGiYi|E,Di=1,Gi ̸=y∗

[
S

(
φXC̄ X̃C̄ A|yi,Di=1,gi

∥φXC̄ X̃C̄ A|Di=1,gi

)]
≥ E

i∈C̄

1
2(1 − ζ −

√
2δ)

∑
yi∈Y

E
PRi|E,Di=1,Gi=yi

PGi|E,Di=1(yi)·[
(1 − ζ −

√
2δ)∥φXC̄ X̃C̄ A|yi,ri,Di=1,Gi=yi

− φXC̄ X̃C̄ A|ri,Di=1,Gi=yi
∥2

1

+(ζ/3 −
√

2δ)∥φXC̄ X̃C̄ A|y∗,ri,Di=1,Gi=yi
− φXC̄ X̃C̄ A|ri,Di=1,Gi=yi

∥2
1

]
.

where we have used (9) and Pinsker’s inequality in the last line. Since the ℓ1 norm obeys
triangle inequality, we have,

E
i∈C̄

∑
yi∈Y

E
PRi|E,1,yi

PGi|E,1(yi)∥φXC̄ X̃C̄ A|yiri,1,yi
− φXC̄ X̃C̄ A|y∗ri,1,yi

∥2
1

≤ E
i∈C̄

∑
yi∈Y

E
PRi|E,1,yi

PGi|E,1(yi) · 2
[
∥φXC̄ X̃C̄ A|yi,ri,1,yi

− φXC̄ X̃C̄ A|ri,1,yi
∥2

1

+ ∥φXC̄ X̃C̄ A|y∗,ri,1,yi
− φXC̄ X̃C̄ A|ri,1,yi

∥2
1

]
≤ 4δ1

1 − ζ −
√

2δ

(
1

1 − ζ −
√

2δ
+ 1
ζ/3 −

√
2δ

)
≤ 32δ1

ζ
.

CCC 2021

27:22 A Direct Product Theorem for One-Way Quantum Communication

We note that φXC̄ X̃C̄ YC̄ ỸC̄ ABZC̄ |yiri,1,yi
and φXC̄ X̃C̄ YC̄ ỸC̄ ABZC̄ |y∗ri,1,yi

are pure states. Hence,
using the Fuchs-van de Graaf inequality and Uhlmann’s theorem, there exist unitaries Uyiri

acting only on YC̄ ỸC̄BZC̄ such that

= E
i∈C̄

∑
yi∈Y

E
PRi|E,1,yi

PGi|E,1(yi)∥|φ⟩⟨φ|yiri,1,yi
− (1 ⊗ Uyiri

)|φ⟩⟨φ|y∗ri,1,yi
(1 ⊗ U†

yiri
)∥1

≤
(

32δ1

ζ

)1/4
(16)

Finally, we need to show that Πxiri ⊗Uyiri takes |φ′⟩y∗ri
close to |φ⟩xiyiri

. To do this, we
shall first show that Uyiri

in fact takes |φ⟩xiy∗ri
close to |φ⟩xiyiri

. Consider the superoperator
OXi that measures the register Xi and writes it in a different register.

OXi
(|φ⟩⟨φ|yiri,1,yi

) =
∑
xi

PXi|E,yiri,Di=1,Gi=yi
(xi)|xi⟩⟨xi| ⊗ |φ⟩⟨φ|xiyiri,1,yi

=
∑
xi

PXi|E,yiri,Di=1,Gi=yi
(xi)|xi⟩⟨xi| ⊗ |φ⟩⟨φ|xiyiri

OXi
(|φ⟩⟨φ|y∗ri,1,yi

) =
∑
xi

PXi|E,y∗ri,Di=1,Gi=yi
(xi)|xi⟩⟨xi| ⊗ |φ⟩⟨φ|xiy∗ri

where we have made the observation that |φ⟩⟨φ|xiyiri,1,yi
and |φ⟩⟨φ|xiy∗ri,1,yi

are the same
states as |φ⟩⟨φ|xiyiri

and |φ⟩⟨φ|xiy∗ri
. By Fact 10 we can get,

E
i∈C̄

∥PXiGiRi|E,1 − PGiRi|E,1PXi|1,Gi
∥1 ≤ 2

√
2δ1.

Hence, for any value Yi = yi,

E
i∈C̄

∥PXiGiRi|E,1 − PGiRi|E,1PXi|E,yi,1,GiRi
∥1

≤ E
i∈C̄

[
∥PXiGiRi|E,1 − PGiRi|E,1PXi|yi,1,Gi

)∥1 + ∥PGiRi|E,1(PXi|yi,1,Gi
− PXi|E,yi,1,GiRi

)∥1
]

≤ E
i∈C̄

[
∥PXiGiRi|E,1 − PGiRi|E,1PXi|1,Gi

∥1 + 2
ζ
3 −

√
2δ

∥PXiGiRi|E,1 − PGiRi|E,1PXi|1,Gi
∥1

]
≤ 8

√
2δ1

ζ

where we have used the fact that for any value Gi = gi, we must have PYi|1,gi
(yi) ≥ ζ/3−

√
2δ.

Finally,

E
i∈C̄

∥PXiGiRi|E,1 − PXiYiRi|E,1∥1 ≤ 2PYiGi|E,1(Yi ̸= Gi) ≤ ζ/3 +
√

2δ.

Observing that PXiYiRi|E,1 is the same as PXiYiRi|E we get,

E
i∈C̄

∥PXiYiRi|E − PGiRi|E,1PXi|E,yi,1,GiRi
∥1 ≤ 8

√
2δ1

ζ
+ ζ

3 +
√

2δ.

Using this and (16) we get,

E
i∈C̄

E
PXiYiRi|E

∥|φ⟩⟨φ|xiyiri − (1 ⊗ Uyiri)|φ⟩⟨φ|xiy∗ri (1 ⊗ U†
yiri

)∥1

≤ E
i∈C̄

[
∥PXiYiRi|E − PGiRi|E,1PXi|E,yi,1,GiRi

∥1 + ∥PXiYiRi|E − PGiRi|E,1PXi|E,y∗,1,GiRi
∥1

R. Jain and S. Kundu 27:23

+ E
PGiRi|E,1

∥∥∥∥ E
PXi|E,yiri,1,yi

|xi⟩⟨xi| ⊗ |φ⟩⟨φ|xiyiri − E
PXi|E,y∗ri,1,yi

1 ⊗ Uyiri |φ⟩⟨φ|xiy∗ri1 ⊗ U†
yiri

∥∥∥∥
1

]

= 16
√

2δ1

ζ
+ 2ζ

3 + 2
√

2δ +
(

32δ1

ζ

)1/4

<
7ζ

10 (17)

where we have bounded the last term in the first inequality by applying Fact 15 on (16)
with OXi . Notice that we have also removed the conditioning Gi ̸= y∗, since for Gi = y∗,
the corresponding states are both |φ⟩xiy∗ri

.
From (15) and (17) we get,

E
i∈C̄

E
PXiYiRi|E

∥∥∥∥ 1
α

(Πxiri ⊗ Uyiri)|φ′⟩⟨φ′|y∗ri(Πxiri ⊗ U†
yiri

) − |φ⟩⟨φ|xiyiri

∥∥∥∥
1

≤ E
i∈C̄

E
PXiYiRi|E

[∥∥∥∥ 1
α

(Πxiri
⊗ Uyiri

)|φ′⟩⟨φ′|y∗ri
(Πxiri

⊗ U†
yiri

)

− (1 ⊗ Uyiri
)|φ⟩⟨φ|xiy∗ri

(1 ⊗ U †
yiri

)
∥∥∥∥

1

+
∥∥(1 ⊗ Uyiri)|φ⟩⟨φ|xiy∗ri(1 ⊗ U †

yiri
) − |φ⟩⟨φ|xiyiri

∥∥
1

]
= E

i∈C̄
E

PXiYiRi|E

[∥∥∥∥ 1
α

(Πxiri
⊗ 1)|φ′⟩⟨φ′|y∗ri

(Πxiri
⊗ 1) − |φ⟩⟨φ|xiy∗ri

∥∥∥∥
1

+
∥∥(1 ⊗ Uyiri

)|φ⟩⟨φ|xiy∗ri
(1 ⊗ U †

yiri
) − |φ⟩⟨φ|xiyiri

∥∥
1

]
≤ 7ζ

2 + 7ζ
10 = 21ζ

5 . (18)

Using Markov’s inequality on (11), (13) and (18), we get an index i ∈ C̄ such that the
conditions (i)-(iii) for Lemma 32 hold.

4 Proof of parallel repetition theorem

In this section we prove Theorem 2, whose statement is recalled below.

▶ Theorem 2. For a two-player non-local game G = (q,X × Y ,A × B,V) such that q is a
distribution anchored on one side with anchoring probability ζ,

ω∗(Gk) =
(
1 − (1 − ω∗(G))5)Ω

(
ζ2k

log(|A|·|B|)

)
.

4.1 Setup
The proof of this theorem is very similar to that of the direct product theorem, so we
shall only highlight points of difference. Whereas in the communication case, we started
with an arbitrary distribution p and defined distribution q anchored on one side close to
p, here we start with an already anchored distribution. To preserve similarity with the
direct product proof, we shall consider q to be anchored on the Y side here as well, but the
proof goes through analogously for a distribution anchored on the X side. We define the
correlation-breaking variables and the joint distribution PXY DG exactly as before.2

2 The definition of PXiYiDiGi
in the previous section makes references to p(x, y). Since there is no p in

the present case, p(x, y) can simply be replaced by q(x, y|y ̸= y∗).

CCC 2021

27:24 A Direct Product Theorem for One-Way Quantum Communication

We consider an entangled strategy S for Gk, where Alice and Bob, with input registers
X = X1 . . . Xk and Y = Y1 . . . Yk, initially share an entangled state, and perform unitaries
V A and V A respectively on their parts of the entangled state and and their input registers.
As before, conditioned on any value DG = dg, we define the following pure state representing
S after these unitaries:

|θ⟩XX̃Y Ỹ ABE′AE′B|dg =
∑
xy

√
PXY |dg(xy)|xxyy⟩XX̃Y Ỹ ⊗ |θ⟩ABEAEB|xy

where AB are the answer registers which are measured in the computational basis by Alice
and Bob to obtain their answers (a, b), and E′AE′B are some additional registers which are
discarded. We shall use PXY AB|dg to denote the distribution of XY AB in |θ⟩dg; PXY DGAB

is obtained by averaging over dg.
Let the winning probability of of ω∗(G) be 1 − 5ε for an appropriate ε. We shall prove the

following lemma, which is analogous to the direct product case. It is clear that the lemma
implies

ω∗(Gk) ≤ (1 − ε)
ζ2ε4k

log(|A|·|B|) =
(
1 − (1 − ω∗(G))5)Ω

(
ζ2k

log(|A|·|B|)

)
.

▶ Lemma 33. Let δ = ζ2ε4

1440000 and δ′ = ζ2ε4

1440000 log(|A|·|B|) . For i ∈ [k], let Ti denote the
random variable V(Xi, Yi, Ai, Bi), where XiYiAiBi are according to PXY AB. Then there
exist ⌊δ′k⌋ coordinates {i1, . . . , i⌊δ′k⌋} ⊆ [k], such that for all 1 ≤ r ≤ ⌊δ′k⌋ − 1, at least one
of the conditions holds

(i) Pr
[∏r

j=1 Tij
= 1

]
≤ (1 − ε)δk

(ii) Pr
[
Tir+1 = 1

∣∣∣∏r
j=1 Tij

= 1
]

≤ 1 − ε.

As before, we shall consider that we have identified a set of coordinates C = {i1, . . . , it}
such that for all 1 ≤ r ≤ t − 1, Pr

[
Tir+1 = 1|

∏r
j=1 Tij = 1

]
≤ 1 − ε and Pr[E] =

Pr
[∏t

j=1 Tij = 1
]

≥ (1 − ε)δk, and identify a (t + 1)-th coordinate i. Let EA and EB

to denote AC̄E
′A and BC̄E

′B respectively. We define the following state, which is |θ⟩dg

conditioned on success in C:

|φ⟩XX̃Y Ỹ AC BC BEAEB|dg

= 1
√

γdg

∑
xy

√
PXY |dg(xy)|xxyy⟩XX̃Y Ỹ ⊗

∑
aC bC :Vt(xC ,yC ,aC ,bC)=1

|aCbC⟩AC BC |φ̃⟩EAEB|xyaC bC
.

Here |φ̃⟩EAEB|xyaC bC
is a subnormalized state satisfying ∥|φ̃⟩EAEB|xyaC bC

∥2
2 =

PAC BC |xy(aCbC).
The following lemma is the analog of Lemma 32, which we shall use to prove Lemma 33.

▶ Lemma 34. If Pr[E] ≥ (1 − ε)δk, then there exist a coordinate i ∈ C̄, a random variable
Ri = XCYCACBCD−iG−i, such that the following conditions hold:

(i) ∥PXiYiRi|E − PXiYi
PRi|E,Xi

∥1 ≤ 7ε
150

(ii) ∥PXiYiRi|E − PXiYi
PRi|E,Yi

∥1 ≤ 7ε
150

(iii) There exist unitaries {Uxiri
}xiri

and {Uyiri
}yiri

respectively acting only on XC̄X̃C̄E
A

and YC̄ ỸC̄E
B, such that

E
PXiYiRi|E

∥∥(Uxiri
⊗ Uyiri

)|φ⟩⟨φ|y∗ri
(U†

xiri
⊗ U†

yiri
) − |φ⟩⟨φ|xiyiri

∥∥
1 ≤ 36ε

5 .

R. Jain and S. Kundu 27:25

It is easy to see how this lemma implies Lemma 33. As in the direct product case, Alice
and Bob share |φ⟩y∗ri

as entanglement – though in this case only one copy, as well as classical
randomness with which they can produce RA

i R
B
i satisfying

∥PXiYiRA
i

RB
i

− PXiYiRiRi|E∥1 ≤ 7ε
30 .

Alice and Bob apply UxirA
i

and UyirB
i

according to their inputs and RA
i and RB

i respectively,
on their registers EA and EB of |φ⟩y∗ri

. They then measure in the computational basis on
the AiBi registers of resulting state, to give their outcomes (ai, bi). Pr[Ti = 1|E] ≥ 1 − ε

implies that the resulting strategy for G has success probability > (1 − 5ε), a contradiction
which lets us identify i as the (t+ 1)-th coordinate.

4.2 Proof of Lemma 34
We can prove

E
i∈C̄

∥PXiYiRi|E − PXiYi
PRi|E,Xi

∥1 ≤ 7ε
600 (19)

E
i∈C̄

∥PXiYiRi|E − PXiYi
PRi|E,Yi

∥1 ≤ 7ε
600 (20)

E
i∈C̄

E
PXiYiRi|E

∥|φ⟩⟨φ|xiyiri − (1 ⊗ Uyiri)|φ⟩⟨φ|xiy∗ri(1 ⊗ U†
yiri

)∥1 ≤ 4ε
5 (21)

exactly the same way as in the direct product case, except conditioning on zC is replaced by
conditioning on aCbC , which leads to the factor of log(|A| · |B|). The rest of the proof will
hence be spent getting Alice’s unitaries Uxiri

.
Letting δ1 = δ+ δ′ log(|A| · |B|), the following is derived analogously to the direct product

case, except for the extra factor in the mutual information bound due to communication:

E
i∈C̄

E
Ri|E,Di=1,Gi=y∗

I(Xi : YC̄ ỸC̄E
B)φri,Di=1,Gi=y∗ ≤ 10δ1

ζ
(22)

E
i∈C̄

∥PXiRi|E,y∗ − PXiRi|E,1,y∗∥1 ≤ 7
√

2δ1

ζ
(23)

E
i∈C̄

∥PXiRi|E − PXiRi|E,1,y∗∥1 ≤ 40
√

2δ1

ζ
. (24)

From (22), by applying Pinsker’s inequality, we get,

E
i∈C̄

E
PXiRi|E,1,y∗

∥φYC̄ ỸC̄ EB|xiri,1,y∗ − φYC̄ ỸC̄ EB|ri,1,y∗∥1 ≤
(

10δ1

ζ

)1/2

Note that φYC̄ ỸC̄ EB|xiri,1,y∗ is the same state as φYC̄ ỸC̄ EB|xiy∗ri
. But φYC̄ ỸC̄ EB|ri,1,y∗ is not

the same state as φYC̄ ỸC̄ EB|y∗ri
, due to the averaging over Xi being done with respect to

PXi|E,ri,1,y∗ in one, and with respect to PXi|E,y∗ri
in the other. However, due to (23) we can

say,

E
i∈C̄

E
PXiRi|E,1,y∗

∥φYC̄ ỸC̄ EB|xiy∗ri
− φYC̄ ỸC̄ EB|y∗ri

∥1

≤
(

10δ1

ζ

)1/2
+ E

i∈C̄
∥PXiRi|E,1,y∗ − PRi|E,1,y∗PXi|E,Ri,y∗∥1

≤
(

10δ1

ζ

)1/2
+ E

i∈C̄
∥PXiRi|E,y∗ − PXiRi|E,1,y∗∥1

CCC 2021

27:26 A Direct Product Theorem for One-Way Quantum Communication

≤ 2
√

108δ1

ζ
.

Since |φ⟩XC̄ X̃C̄ YC̄ ỸC̄ EAEB|y∗ri
is a purification of φYC̄ ỸC̄ EB|y∗ri

and |φ⟩XC̄ X̃C̄ YC̄ ỸC̄ EAEB|xiy∗ri

is a purification of φYC̄ ỸC̄ EB|xiy∗ri
, by the Fuchs-van de Graaf inequality and Uhlmann’s

theorem we can say that there exist unitaries Uxiri
on XC̄X̃C̄E

A such that

E
i∈C̄

E
PXiRi|E,1,y∗

∥|φ⟩⟨φ|xiy∗ri
− (Uxiri

⊗ 1)|φ⟩⟨φ|y∗ri
(U†

xiri
⊗ 1)∥1 ≤

(
2
√

108δ1

ζ

)1/2

and by (24) again,

E
i∈C̄

E
PXiRi|E

∥|φ⟩⟨φ|xiy∗ri − (Uxiri ⊗ 1)|φ⟩⟨φ|y∗ri (U†
xiri

⊗ 1)∥1 ≤
(

2
√

108δ1

ζ

)1/2

+ 40
√

2δ1

ζ

≤ 2
(

10800δ1

ζ2

)1/4

≤ ε. (25)

Combining (25) and (21) we get,

E
i∈C̄

E
PXiYiRi|E

∥∥(Uxiri
⊗ Uyiri

)|φ⟩⟨φ|y∗ri
(U†

xiri
⊗ U †

yiri
) − |φ⟩⟨φ|xiyiri

∥∥
1 ≤ 9ε

5 .

The result then follows by Markov’s inequality.

References
1 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An Information Statistics

Approach to Data Stream and Communication Complexity. In Proceedings of the 43th Annual
IEEE Symposium on Foundations of Computer Science, FOCS ’02, pages 209–218, 2002.
doi:10.1109/SFCS.2002.1181944.

2 Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to Compress Interactive Com-
munication. SIAM Journal on Computing, 42(3):1327–1363, 2013. doi:10.1137/100811969.

3 Mohammad Bavarian, Thomas Vidick, and Henry Yuen. Anchoring Games for Parallel
Repetition, 2015. arXiv:1509.07466.

4 Mohammad Bavarian, Thomas Vidick, and Henry Yuen. Hardness Amplification for Entangled
Games via Anchoring. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC ’17, page 303–316, 2017. doi:10.1145/3055399.3055433.

5 Avraham Ben-Aroya, Oded Regev, and Ronald de Wolf. A Hypercontractive Inequality for
Matrix-Valued Functions with Applications to Quantum Computing and LDCs. In Proceedings
of the 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’08, pages
477–486, 2008. doi:10.1109/FOCS.2008.45.

6 Mario Berta, Matthias Christandl, and Renato Renner. The Quantum Reverse Shannon
Theorem Based on One-Shot Information Theory. Communications in Mathematical Physics,
306(3):579–615, 2011. doi:10.1007/s00220-011-1309-7.

7 Mark Braverman. Interactive information complexity. SIAM Journal on Computing, 44(6):1698–
1739, 2015. doi:10.1137/130938517.

8 Mark Braverman, Ankit Garg, Young Kun Ko, Jieming Mao, and Dave Touchette. Near-
Optimal Bounds on Bounded-Round Quantum Communication Complexity of Disjointness.
In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages 773–791,
2015. doi:10.1109/FOCS.2015.53.

9 Mark Braverman and Gillat Kol. Interactive Compression to External Information. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
’18, page 964–977, 2018. doi:10.1145/3188745.3188956.

https://doi.org/10.1109/SFCS.2002.1181944
https://doi.org/10.1137/100811969
http://arxiv.org/abs/1509.07466
https://doi.org/10.1145/3055399.3055433
https://doi.org/10.1109/FOCS.2008.45
https://doi.org/10.1007/s00220-011-1309-7
https://doi.org/10.1137/130938517
https://doi.org/10.1109/FOCS.2015.53
https://doi.org/10.1145/3188745.3188956

R. Jain and S. Kundu 27:27

10 Mark Braverman and Anup Rao. Information Equals Amortized Communication. IEEE Trans-
actions on Information Theory, 60(10):6058–6069, 2014. doi:10.1109/TIT.2014.2347282.

11 Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct Product via
Round-Preserving Compression. In Automata, Languages, and Programming, volume 7965
of Lecture Notes in Computer Science, pages 232–243. Springer Berlin Heidelberg, 2013.
doi:10.1007/978-3-642-39206-1_20.

12 Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct Products
in Communication Complexity. In Proceedings of the 54th Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’13, pages 746–755, 2013. doi:10.1109/FOCS.2013.
85.

13 Mark Braverman and Omri Weinstein. An Interactive Information Odometer and Applications.
In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC
’15, page 341–350, 2015. doi:10.1145/2746539.2746548.

14 Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Yao. Informational Complexity
and the Direct Sum Problem for Simultaneous Message Complexity. In Proceedings of the 42nd
Annual IEEE Symposium on Foundations of Computer Science, FOCS ’01, pages 270–278,
2001. doi:10.1109/SFCS.2001.959901.

15 Richard Cleve, William Slofstra, Falk Unger, and Sarvagya Upadhyay. Perfect Parallel
Repetition Theorem for Quantum XOR Proof Systems. Computational Complexity, 17(2):282–
299, 2008. doi:10.1007/s00037-008-0250-4.

16 Irit Dinur. The PCP Theorem by Gap Amplification. J. ACM, 54(3):12–es, 2007. doi:
10.1145/1236457.1236459.

17 Irit Dinur, David Steurer, and Thomas Vidick. A Parallel Repetition Theorem for En-
tangled Projection Games. Computational Complexity, 24(2):201–254, 2015. doi:10.1007/
s00037-015-0098-3.

18 Prahladh Harsha, Rahul Jain, David McAllester, and Jaikumar Radhakrishnan. The Commu-
nication Complexity of Correlation. IEEE Transactions on Information Theory, 56(1):438–449,
2010.

19 Thomas Holenstein. Parallel Repetition: Simplifications and the No-Signaling Case. In
Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC ’07,
page 411–419, 2007. doi:10.1145/1250790.1250852.

20 Rahul Jain. New Strong Direct Product Results in Communication Complexity. Journal of
the ACM, 62(3), 2015. doi:10.1145/2699432.

21 Rahul Jain and Hartmut Klauck. New Results in the Simultaneous Message Passing Model
via Information Theoretic Techniques. In Proceedings of the 24th Annual IEEE Conference on
Computational Complexity, CCC ’09, pages 369–378, 2009. doi:10.1109/CCC.2009.28.

22 Rahul Jain, Hartmut Klauck, and Ashwin Nayak. Direct Product Theorems for Classical
Communication Complexity via Subdistribution Bounds: Extended Abstract. In Proceedings
of the 40th Annual ACM Symposium on Theory of Computing, STOC ’08, pages 599–608,
2008. doi:10.1145/1374376.1374462.

23 Rahul Jain and Ashwin Nayak. Short Proofs of the Quantum Substate Theorem. IEEE
Transactions on Information Theory, 58(6):3664–3669, 2012.

24 Rahul Jain, Attila Pereszlényi, and Penghui Yao. A Parallel Repetition Theorem for Entangled
Two-Player One-Round Games under Product Distributions. In 2014 IEEE 29th Conference
on Computational Complexity (CCC ’14), pages 209–216, 2014.

25 Rahul Jain, Attila Pereszlényi, and Penghui Yao. A Direct Product Theorem for Two-Party
Bounded-Round Public-Coin Communication Complexity. Algorithmica, 76(3):720–748, 2016.
doi:10.1007/s00453-015-0100-0.

26 Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. The Quantum Communication
Complexity of the Pointer Chasing Problem: The Bit Version. In FSTTCS 2002: Foundations
of Software Technology and Theoretical Computer Science, volume 2556 of Lecture Notes in
Computer Science, pages 218–229, 2002. doi:10.1007/3-540-36206-1_20.

CCC 2021

https://doi.org/10.1109/TIT.2014.2347282
https://doi.org/10.1007/978-3-642-39206-1_20
https://doi.org/10.1109/FOCS.2013.85
https://doi.org/10.1109/FOCS.2013.85
https://doi.org/10.1145/2746539.2746548
https://doi.org/10.1109/SFCS.2001.959901
https://doi.org/10.1007/s00037-008-0250-4
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1007/s00037-015-0098-3
https://doi.org/10.1007/s00037-015-0098-3
https://doi.org/10.1145/1250790.1250852
https://doi.org/10.1145/2699432
https://doi.org/10.1109/CCC.2009.28
https://doi.org/10.1145/1374376.1374462
https://doi.org/10.1007/s00453-015-0100-0
https://doi.org/10.1007/3-540-36206-1_20

27:28 A Direct Product Theorem for One-Way Quantum Communication

27 Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A Direct Sum Theorem in Com-
munication Complexity via Message Compression. In Automata, Languages and Program-
ming, volume 2719 of Lecture Notes in Computer Science, pages 300–315. Springer, 2003.
doi:10.1007/3-540-45061-0_26.

28 Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A Lower Bound for the Bounded
Round Quantum Communication Complexity of Set Disjointness. In Proceedings of the 44th
Annual IEEE Symposium on Foundations of Computer Science, FOCS ’03, pages 220–229.
IEEE Computer Society, 2003. doi:10.1109/SFCS.2003.1238196.

29 Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. Prior Entanglement, Message Com-
pression and Privacy in Quantum Communication. In 20th Annual IEEE Conference on
Computational Complexity (CCC ’05), pages 285–296, 2005.

30 Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. Optimal Direct Sum and Privacy Trade-
off Results for Quantum and Classical Communication Complexity, 2008. arXiv:0807.1267.

31 Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A Property of Quantum Relative
Entropy with an Application to Privacy in Quantum Communication. Journal of the ACM,
56(6), 2009. doi:10.1145/1568318.1568323.

32 Rahul Jain and Penghui Yao. A Strong Direct Product Theorem in Terms of the Smooth
Rectangle Bound, 2012. arXiv:1209.0263.

33 Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. MIP*=RE,
2020. arXiv:2001.04383.

34 Julia Kempe, Oded Regev, and Ben Toner. Unique Games with Entangled Provers are Easy.
SIAM Journal on Computing, 39(7):3207–3229, 2010. doi:10.1137/090772885.

35 Hartmut Klauck. A Strong Direct Product Theorem for Disjointness. In Proceedings of
the 42nd ACM Symposium on Theory of Computing, STOC ’10, pages 77–86, 2010. doi:
10.1145/1806689.1806702.

36 Hartmut Klauck, Robert Špalek, and Ronald de Wolf. Quantum and Classical Strong
Direct Product Theorems and Optimal Time-Space Tradeoffs. SIAM Journal on Computing,
36(5):1472–1493, 2007. doi:10.1137/05063235X.

37 Gillat Kol. Interactive Compression for Product Distributions. In Proceedings of the Forty-
Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, page 987–998, 2016.
doi:10.1145/2897518.2897537.

38 Troy Lee, Adi Shraibman, and Robert Špalek. A Direct Product Theorem for Discrepancy. In
Proceedings of the 23rd Annual IEEE Conference on Computational Complexity, CCC ’08,
pages 71–80, 2008. doi:10.1109/CCC.2008.25.

39 Ran Raz. A Parallel Repetition Theorem. In Proceedings of the Twenty-Seventh Annual ACM
Symposium on Theory of Computing, page 447–456, 1995. doi:10.1145/225058.225181.

40 Alexander A. Razborov. On the Distributional Complexity of Disjointness. Theoretical
Computer Science, 106(2):385–390, 1992. doi:10.1016/0304-3975(92)90260-M.

41 Ronen Shaltiel. Towards Proving Strong direct Product Theorems. Computational Complexity,
12(1-2):1–22, 2003. doi:10.1007/s00037-003-0175-x.

42 Alexander A. Sherstov. Strong Direct Product Theorems for Quantum Communication and
Query Complexity. SIAM Journal on Computing, 41(5):1122–1165, 2012. doi:10.1137/
110842661.

43 Alexander A. Sherstov. Compressing Interactive Communication Under Product Distributions.
SIAM Journal on Computing, 47(2):367–419, 2018. doi:10.1137/16M109380X.

44 Emanuele Viola and Avi Wigderson. Norms, XOR Lemmas, and Lower Bounds for Polynomials
and Protocols. Theory of Computing, 4(7):137–168, 2008. doi:10.4086/toc.2008.v004a007.

45 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.
In 18th Annual Symposium on Foundations of Computer Science (SFCS 1977), pages 222–227,
1977. doi:10.1109/SFCS.1977.24.

46 Henry Yuen. A Parallel Repetition Theorem for All Entangled Games. In 43rd International
Colloquium on Automata, Languages, and Programming (ICALP ’16), volume 55 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 77:1–77:13, 2016. doi:10.4230/
LIPIcs.ICALP.2016.77.

https://doi.org/10.1007/3-540-45061-0_26
https://doi.org/10.1109/SFCS.2003.1238196
http://arxiv.org/abs/0807.1267
https://doi.org/10.1145/1568318.1568323
http://arxiv.org/abs/1209.0263
http://arxiv.org/abs/2001.04383
https://doi.org/10.1137/090772885
https://doi.org/10.1145/1806689.1806702
https://doi.org/10.1145/1806689.1806702
https://doi.org/10.1137/05063235X
https://doi.org/10.1145/2897518.2897537
https://doi.org/10.1109/CCC.2008.25
https://doi.org/10.1145/225058.225181
https://doi.org/10.1016/0304-3975(92)90260-M
https://doi.org/10.1007/s00037-003-0175-x
https://doi.org/10.1137/110842661
https://doi.org/10.1137/110842661
https://doi.org/10.1137/16M109380X
https://doi.org/10.4086/toc.2008.v004a007
https://doi.org/10.1109/SFCS.1977.24
https://doi.org/10.4230/LIPIcs.ICALP.2016.77
https://doi.org/10.4230/LIPIcs.ICALP.2016.77

Quantum Complexity of Minimum Cut
Simon Apers # Ñ

CWI, Amsterdam, The Netherlands
Université libre de Bruxelles (ULB), Brussels, Belgium

Troy Lee # Ñ

Centre for Quantum Software and Information, University of Technology Sydney, Australia

Abstract
The minimum cut problem in an undirected and weighted graph G is to find the minimum total
weight of a set of edges whose removal disconnects G. We completely characterize the quantum
query and time complexity of the minimum cut problem in the adjacency matrix model. If G has
n vertices and edge weights at least 1 and at most τ , we give a quantum algorithm to solve the
minimum cut problem using Õ(n3/2√

τ) queries and time. Moreover, for every integer 1 ≤ τ ≤ n

we give an example of a graph G with edge weights 1 and τ such that solving the minimum cut
problem on G requires Ω(n3/2√

τ) queries to the adjacency matrix of G. These results contrast with
the classical randomized case where Ω(n2) queries to the adjacency matrix are needed in the worst
case even to decide if an unweighted graph is connected or not.

In the adjacency array model, when G has m edges the classical randomized complexity of
the minimum cut problem is Θ̃(m). We show that the quantum query and time complexity are
Õ(

√
mnτ) and Õ(

√
mnτ + n3/2), respectively, where again the edge weights are between 1 and τ .

For dense graphs we give lower bounds on the quantum query complexity of Ω(n3/2) for τ > 1 and
Ω(τn) for any 1 ≤ τ ≤ n.

Our query algorithm uses a quantum algorithm for graph sparsification by Apers and de
Wolf (FOCS 2020) and results on the structure of near-minimum cuts by Kawarabayashi and
Thorup (STOC 2015) and Rubinstein, Schramm and Weinberg (ITCS 2018). Our time efficient
implementation builds on Karger’s tree packing technique (STOC 1996).

2012 ACM Subject Classification Theory of computation → Quantum query complexity; Mathem-
atics of computing → Graph algorithms; Theory of computation → Quantum complexity theory

Keywords and phrases Quantum algorithms, quantum query complexity, minimum cut

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.28

Funding Simon Apers: Supported in part by the Dutch Research Council (NWO) through QuantERA
ERA-NET Cofund project QuantAlgo 680-91-034.
Troy Lee: Supported in part by the Australian Research Council Grant No: DP200100950.

Acknowledgements We would like to thank Ronald de Wolf for discussions which started this paper,
and in particular a conversation which led to Theorem 35. We also thank Debmalya Panigrahi and
Miklos Santha for helpful conversations on this topic.

1 Introduction

Let G = (V, w) be a weighted graph, where w :
(

V
2
)
→ R≥0 assigns a non-negative weight to

every edge slot. We denote the edges of G, i.e. the edge slots that are given positive weight,
by E(G). For a nontrivial set ∅ ̸= X ⊊ V let ∆G(X) be the set of edges of G with exactly
one endpoint in X and one endpoint in X = V \ X. A cut of G is a set of edges of the
form ∆G(X) for some nontrivial set X ⊆ V . We call X and X the shores of the cut. The
minimum cut problem is to determine the minimum of

∑
e∈∆G(X) w(e) over all non trivial

subsets X. This is equivalent to the minimum total weight of edges that need to be removed
from G in order to disconnect it. We call this minimum value λ(G). A set of edges ∆G(X)
realizing λ(G) is called a minimum cut of G. If G is unweighted λ(G) is known as the edge
connectivity of G and is the minimum number of edges whose removal disconnects G.

© Simon Apers and Troy Lee;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 28; pp. 28:1–28:33

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:smgapers@gmail.com
https://simonapers.github.io
mailto:troyjlee@gmail.com
https://troylee.org
https://doi.org/10.4230/LIPIcs.CCC.2021.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Quantum Complexity of Minimum Cut

Computing the weight of a minimum cut of a graph is a fundamental computational
problem that has been extensively studied in theoretical computer science since at least
the 1960s [18, 13]. It is also a problem of great practical importance, with applications to
clustering algorithms [8] and evaluating network reliability, among others (see [33] for a
survey of applications). Classically it is known that edge connectivity can be computed in
nearly linear time even by deterministic algorithms [26, 21]. For weighted graphs with m

edges, the weight of a minimum cut can be determined in nearly linear time1 Õ(m) by a
randomized algorithm [25, 30, 16] and in almost linear time O(m1+o(1)) by a deterministic
algorithm [27].

In this work we study quantum algorithms for the minimum cut problem in two standard
models for graph problems, the adjacency matrix and the adjacency array models. In the
adjacency matrix model a query consists of a pair {u, v} of vertices, and the answer is
w({u, v}). The adjacency array model allows 3 types of queries: one can query the degree of
a vertex v, the name of the ith neighbor of v, according to some arbitrary ordering, and the
weight of the edge between v and its ith neighbor.

For classical randomized algorithms, in the adjacency matrix model it is known that
even deciding if a graph is connected or not requires Ω(n2) queries in the worst case [11].
More recently, the randomized query complexity of edge connectivity was studied by Bishnu,
Ghosh, Mishra and Paraashar [7] in a common generalization of the adjacency matrix and
adjacency array models called the local query model. This model allows queries to the degree
of a vertex and to the ith neighbor of a vertex v, as in the adjacency array model, and also
queries as to whether or not {u, v} is an edge, as in the adjacency matrix model. Over simple
graphs G with m edges, they show an Ω(m) lower bound on the number of local queries
needed by a randomized algorithm to succeed with probability 2/3 for both the problems of
determining the edge connectivity and outputting a cut realizing the edge connectivity [7,
Theorems 2 and 3].

In this work we completely characterize the quantum query and time complexity of the
minimum cut problem in the adjacency matrix model. The complexity depends on what
we call the edge-weight ratio. We say a graph has edge-weight ratio τ if the ratio of the
largest weight of the graph to the smallest is at most τ . When the edge-weight ratio of an
n-vertex graph is τ , we give a bounded-error quantum algorithm to solve the minimum cut
problem using Õ(n3/2√τ) queries and time in the adjacency matrix model (Theorem 5). For
the unweighted case, i.e. the case τ = 1, one can see this bound is tight as Dürr, Heiligman,
Høyer, and Mhalla [11] show that even deciding if a graph is connected or not requires
Ω(n3/2) quantum queries in the adjacency matrix model. We extend this bound by showing
that for any 1 ≤ τ ≤ n there is a graph family with edge-weight ratio τ for which solving
the minimum cut problem requires Ω(n3/2√τ) quantum queries to the adjacency matrix
(Theorem 35). For τ ≥ n one can always use the trivial O(n2) algorithm, thus our results
characterize the quantum query complexity of the minimum cut problem in the adjacency
matrix model for any value of τ .

For the adjacency array model, we give a bounded-error quantum algorithm that solves the
minimum cut problem in an n vertex, m edge graph with edge-weight ratio τ using Õ(

√
mnτ)

quantum queries (Theorem 21). The quantum algorithm runs in time Õ(
√

mnτ + n3/2)
(Theorem 5). In this case we do not know whether the bound is tight in all regimes. For
unweighted graphs (τ = 1) the best lower bound we know of is Ω(n), which again follows
from a lower bound for connectivity [11]. For any τ > 1 we show that the minimum cut

1 The Õ(·) notation hides polylogarithmic factors in its argument.

S. Apers and T. Lee 28:3

problem requires Ω(n3/2) quantum queries to the adjacency array (Theorem 37). Finally, for
any 1 ≤ τ ≤ 5n/8 we show a lower bound of Ω(τn) on the number of quantum adjacency
array queries for solving the minimum cut problem (Theorem 40).

In addition to computing the weight λ(G) of a minimum cut, all of our upper and lower
bounds also apply to outputting the edges or shores of a cut realizing λ(G).

1.1 Previous work
We are not aware of any previous work on the quantum complexity of exact global minimum
cut. The closest work to ours in topic is the recent paper of Apers and de Wolf [2], which in
particular shows that in a weighted graph a (1+ε)-approximation to the weight of a minimum
cut can be found in time Õ(n3/2/ϵ) in the adjacency matrix model and time Õ(

√
mn/ϵ) in

the adjacency array model. The sparsifier construction of Apers and de Wolf that yields this
approximation also plays a key role in our algorithm.

Another key work for us is the seminal paper of Dürr, Heiligman, Høyer and Mhalla [11]
which gives tight bounds for the quantum complexity of many graph problems in both the
adjacency matrix and adjacency array models. In particular, they show that determining if
a graph is connected or not, i.e. determining if the minimum cut value is zero or positive,
requires Ω(n3/2) queries in the adjacency matrix model and Ω(n) queries in the adjacency
array model. These are still the best lower bounds we know of for simple graphs2 even for
the more general problem of computing the edge connectivity. Indeed, we show the Ω(n3/2)
connectivity lower bound in the adjacency matrix model is a tight lower bound even on the
quantum complexity of edge connectivity. In [11] it is also shown that finding a spanning
forest in the adjacency matrix model can be done with a quantum algorithm in queries and
time Õ(n3/2), which is a result we will make use of in our time efficient algorithm.

Two classical papers which inspired our algorithm are the works of Kawarabayashi and
Thorup (KT) [26] and Rubinstein, Schramm, and Weinberg (RSW) [35]. KT give the first
near-linear time deterministic algorithm to compute the edge connectivity of a simple graph
G = (V, E). A key idea of KT is to look at a contraction of the original graph G. Let
P = {P1, . . . , Pk} be a partition of V . The contraction G′ = Contract(G,P) is a multi-graph
whose vertices are labeled by the sets in P and which has all the edges of G whose endpoints
lie in different sets of P . KT first check the cardinality of all star cuts of the form ∆G({v}),
which can be done deterministically in linear time. To find the minimum non-star cut, KT
show that any simple graph G with minimum degree d has a contraction G′ = Contract(G,P)
that preserves all of the near-minimum non-star cuts of G, but which has only Õ(n/d) vertices
and Õ(n) edges. Moreover, they show how to find such a contraction deterministically in
near-linear time. They then use Gabow’s Õ(λ(G)|E(G)|) mincut algorithm [15] to find a
minimum cut in G′. If G has m edges then λ(G′) = λ(G) ≤ m/n, and as |E(G′)| ∈ Õ(n),
this gives a time bound that is nearly linear in m.

RSW follow a similar high-level approach to give a classical randomized algorithm that
computes the edge connectivity of a simple graph with cut queries. In the cut query model,
when the input is a graph G, an algorithm can query any nontrivial set X and receive the
answer |∆G(X)|. RSW show that the edge connectivity of a simple graph can be computed
with high probability by a randomized algorithm after O(n log(n)3) cut queries. In fact, this
algorithm finds all minimum cuts of the graph. The RSW algorithm again first evaluates all

2 We use the term simple graph to mean an undirected, unweighted graph with no self-loops and no
multiple edges.

CCC 2021

28:4 Quantum Complexity of Minimum Cut

star cuts. They then remove the log factors from the KT result to show there is a partition
P of V such that G′ = Contract(G,P) preserves all near-minimum cuts of G and has only
O(n) edges.3 Moreover, they show how to efficiently learn this contraction with cut queries.
The log factors of the original KT proof were also removed via another algorithmic proof by
Lo, Schmidt, and Thorup [28].

Our quantum algorithm will follow the approach taken by RSW to learn such a contraction
of G, as is detailed in the next section.

1.2 Technical overview
In this overview we focus on the adjacency matrix model. Apart from the lower bound, most
ideas carry over in a straightforward way to the adjacency array model. We start off by
explaining the lower bound, as this clearly shows the origin of the n3/2√τ complexity.

Lower bound on the quantum query complexity

For the lower bound we construct a family of graphs on 2n vertices with edge weights in
{1, τ}. Partition the 2n vertices into two sets A and B each of size n. Make a complete
graph among the vertices in A where every edge has weight τ and do the same to B. This
ensures that w(∆G(X)) ≥ τ(n− 1) for any ∅ ≠ X ⊂ A, and the same for B. This large value
gives us “cover” to hide either k− 1 or k edges of weight 1 between A and B. If k < τ (n− 1)
these edges will constitute the unique minimum cut, and thus an algorithm that outputs the
weight of the minimum cut must determine if we hid k − 1 or k edges. This is equivalent to
determining if there are k − 1 or k marked items in a search space of size n2, for which a
quantum query lower bound of Ω(

√
kn2) is known [32]. In our case, with k = τ(n− 1)− 1

this gives a bound of Ω(n3/2√τ). Thus we see that ultimately the lower bound for minimum
cut boils down to the difficulty of counting for quantum algorithms. We will see how a similar
task arises in the upper bound as well.

Upper bound on the quantum query complexity

We first describe a quantum algorithm for computing the edge connectivity of an unweighted
graph. We will follow the outline of the RSW cut query algorithm, which proceeds in
the following way. The algorithm first computes the degree of every vertex of G, thereby
determining the minimum cardinality of a star cut. The task is then reduced to finding the
minimum cardinality of a non-star cut. To do this, the RSW algorithm first produces an
ε-cut sparsifier of the graph, following an algorithm due to Benczúr and Karger [5]. An ε-cut
sparsifier of G = (V, E) is a sparse weighted graph H whose edge set is a subset of E, but
where edges are allowed to be weighted. For every nontrivial X the weight of the cut ∆H(X)
in H is within a factor of 1± ε of |∆G(X)|.

For ϵ = 1/100, the algorithm finds an ε-cut sparsifier H of G. The algorithm is able to
write H down in memory and then, without further queries, it can compute the weight of a
minimum cut in H, say it is λ(H), and enumerate all non-star cuts of H whose weight is at
most (1 + 3ϵ)λ(H). With high probability this includes the shores of all non-star minimum
cuts of G. Let T be the set of all shores of these cuts. The algorithm then computes the
coarsest partition P = {P1, . . . , Pk} of the vertex set with the property that for all Pj ∈ P

3 An O(n) bound on the number of edges implies an O(n/d) bound on the number of vertices in a
black-box way.

S. Apers and T. Lee 28:5

and u, v ∈ Pj it holds that u, v ∈ X or u, v ∈ X for all X ∈ T . We call P the set of atoms of
T , denoted atoms(T). As T is the set of shores of all non-star near-minimum cuts, this means
that, for every Pj ∈ P, no non-star near-minimum cut has an edge with both endpoints in
Pj ; as P is the coarsest partition with this property, among such partitions it minimizes the
number of edges between components of the partition. A key fact is that Contract(G,P) is a
sparse graph.

▶ Lemma 1 ([26, 35, 28]). Let G = (V, E) be a simple n-vertex graph with minimum
degree d. For a nonnegative ε < 1, let T = {X : |X|, |X| ≥ 2 and |∆G(X)| ≤ λ(G) + εd},
that is the set of shores of all non-star cuts whose weight is at most λ(G) + εd, and let
G′ = Contract(G, atoms(T)). Then |E(G′)| = O(n).

By the definition of P in this lemma, one can also see that G′ preserves all of the non-star
near-minimum cuts of G. As we already know the minimum degree of G, to determine λ(G)
it suffices to compute the edge connectivity of G′. For a query algorithm, to do this it suffices
to learn the O(n) edges of the graph G′; then one can compute the edge connectivity of G′

without further queries. The edge connectivity of G is then the minimum of the minimum
degree of G and the edge connectivity of G′.

We phrase the RSW algorithm in an abstract way in terms of four computational
primitives. We indicate oracle access to G by square brackets and put the parameters
explicitly given to the routines in parentheses.
1. FindMinStar[G](δ) – a routine that given oracle access to G finds the minimum weight of

a star cut of G with error probability at most δ.
2. Cut-Sparsifier[G](ε, δ) – a routine that given oracle access to G outputs an ε-cut sparsifer

of G with error probability at most δ.
3. LearnCutAtoms(H, λ, δ) – a routine that given an explicit description of a graph H, a

cut threshold λ, and an error probability δ, outputs P , the atoms of the shores of all cuts
of weight at most λ, with error probability at most δ.

4. LearnContraction[G](P, M, δ) – a routine that given oracle access to G and a partition P
of the vertex set, learns Contract(G,P) if it has at most M edges and otherwise outputs
NULL, again with error probability at most δ.

In Theorem 19, we show a general upper bound on the query complexity of edge connectivity
in terms of the sum of the query complexity of the routines in steps (1), (2), and (4). Step (3)
requires no queries. It is somewhat surprising that a randomized algorithm designed for cut
queries leads to an optimal quantum query algorithm in the adjacency matrix model. We
hope that phrasing the algorithm in this abstract way will make it easy to further apply it
to other computational models.

In terms of quantum query complexity in the adjacency matrix model, the cost of the 4
steps are as follows. Item (1) can be done with O(n3/2) queries by composing the O(

√
n)

query quantum minimum finding algorithm over the n vertices with the n query classical
algorithm to evaluate the degree of a vertex. The quantum complexity of (2) was recently
studied by Apers and de Wolf [2]. They show that even an ε-spectral sparsifier can be found
in time Õ(n3/2/ε) in the adjacency matrix model. For our purposes, we take ε = 1/100
giving an Õ(n3/2) bound here. Item (3) costs no queries as the routine is given an explicit
description of H. Item (4) is very similar to the problem that we saw in the lower bound:
we have to learn up to M edges in a search space of size O(n2) which can be done with
O(n
√

M) queries. By Lemma 1 we can take M = O(n) resulting in an O(n3/2) quantum
query bound for this step.

These bounds when taken together imply a quantum algorithm for edge connectivity
making Õ(n3/2) queries in the adjacency matrix model.

CCC 2021

28:6 Quantum Complexity of Minimum Cut

Extension to weighted graphs

The query complexity of steps 1–3 does not change for weighted graphs. The complexity
of step 4, however, depends on the upper bound M on the number of edges in the graph
Contract(G,P), which does depend on the edge weights. To extend the above algorithm to
weighted graphs, we prove the following generalization of Lemma 1.

▶ Lemma 2. Let G = (V, w) be a weighted graph with |V | = n and where every edge has
weight at most τ . Let d = minu∈V w(∆G({u})). For a nonnegative ε < 1, let T = {X :
|X|, |X| ≥ 2 and w(∆G(X)) ≤ λ(G) + εd} and let G′ = Contract(G, atoms(T)). Then

w(E(G′)) ≤ 68τn

(1− ε)2 .

This lemma is tight as can be seen from the cycle graph with all edge weights τ . Because
the bound necessarily depends on τ , applying this lemma back to the cut query or sequential
models does not seem to lead to good algorithms.4 For quantum algorithms, however, it is
exactly what is needed.

If the edge-weight ratio is τ , for constant ε Lemma 2 implies an O(τn) upper bound on
the number of edges in the contracted graph Contract(G,P). This means that the LearnCon-
traction step can be performed with O(n3/2√τ) queries. Together with the Ω(n3/2√τ) query
lower bound mentioned above we obtain the following tight characterization of the query
complexity of minimum cut in the adjacency matrix model in terms of the edge-weight ratio.

▶ Theorem 3. Let G = (V, w) be an n-vertex weighted graph with edge-weight ratio τ .
There is a quantum algorithm that finds the weight and shores of a minimum cut of G with
probability at least 3/4 after Õ(n3/2√τ) queries to the adjacency matrix of G. Moreover, there
is a family of graphs with edge-weight ratio τ for which computing the weight of a minimum
cut with bounded-error requires Ω(n3/2√τ) quantum queries to the adjacency matrix.

The upper bound for this theorem is given in Theorem 21, and the lower bound in
Theorem 35.

Upper bound on the quantum time complexity

Let us now consider the time complexity of the above algorithm, corresponding to the total
number of queries and elementary gates in the quantum circuit model that the algorithm uses.
Steps (1) and (4) are ultimately applications of Grover’s algorithm and can be implemented
in time which is just a O(log(n)) factor more than their query complexity. For step (2), Apers
and de Wolf already give a time complexity upper bound of Õ(n3/2/ε). Thus to get an upper
bound on the time complexity it suffices to analyze the routine LearnCutAtoms(H, λ, δ) from
step (3). Given a graph H, this subroutine requires us to output the atoms of T , where
T is the set of shores of all near-minimum cuts of H. For this discussion, one should take
near-minimum cuts to mean cuts of weight at most (1 + 1/100)λ(H). It is known that an
n-vertex graph H has at most O(n2) cuts of weight < 3λ(H)/2 [22]. Thus we know that |T |
is not too large. However, we still need to efficiently find these near-minimum cuts.

To do this we build on Karger’s seminal work [25] that connects near-minimum cuts with
tree packings. Consider a spanning tree T of H, as in Figure 1. A cut in H with shore X is
said to 2-respect T if it cuts at most 2 edges of T , that is |∆T (X)| ≤ 2. Karger showed how

4 The randomized cut query complexity of minimum cut for weighted graphs was recently resolved using
different techniques by Mukhopadhyay and Nanongkai [30].

S. Apers and T. Lee 28:7

to efficiently construct a set of O(log n) spanning trees in H so that every near-minimum cut
2-respects at least one of them. As each tree has at most n− 1 +

(
n−1

2
)

=
(

n
2
)

2-respecting
cuts, this family of trees defines a set of shores T ′ of cardinality O(n2 log n) which necessarily
contains T . A graph can potentially contain

(
n
2
)

minimum cuts, as witnessed by the cycle
graph, thus this bound is nearly tight. Unfortunately, iterating over T ′ is still too costly
for us.

Figure 1 Graph H (thin grey edges) with spanning tree T (thick black edges). The cut with
shore X 2-respects T since |∆T (X)| = |{e, e′}| ≤ 2. There are at most

(
n
2

)
such cuts.

As we are only interested in atoms(T), and not T itself, it suffices for us to find a set
S such that atoms(S) = atoms(T). We call such an S a generating set for atoms(T). Our
next observation is that there necessarily exists a generating set for atoms(T) of size O(n).
This follows by a greedy argument: set S = ∅ and iterate over all cut shores X ∈ T , adding
X to S iff atoms(S ∪X) ̸= atoms(S). The resulting S has the same atoms as T . Moreover,
|S| ≤ n− 1 since every element added to S creates at least one new atom, there are at most
n atoms in total, and S = ∅ has 1 atom. While a good start, this still leaves the problem of
efficiently finding a small generating set.

We are able to give an explicit description of an O(n log(n)) size generating set. First
consider a single spanning tree T of H. For any f ∈ E(T) ∪ E(T)(2) we let shore(f)
denote the cut shore such that ∆T (shore(f)) = f . 5 Now define an unweighted graph
L(T) whose vertex set is E(T) and where f ∈ E(T)(2) is an edge of L(T) iff shore(f) is a
near-minimum cut of H (i.e., shore(f) ∈ T). We show an example in Figure 2. Further,
let O(T) = {e ∈ E(T) : ∃X ∈ T : ∆T (X) = {e}} index the set of near-minimum cuts that
1-respect T . We prove the following lemma.

▶ Lemma 4. Let T ′ = {X ∈ T : |∆T (X)| ≤ 2} be the shores in T whose corresponding cuts
2-respect T . If F is a spanning forest of L(T) then S(T) = {shore(f) | f ∈ E(F) ∪O(T)} is
a generating set for atoms(T ′).

Moreover, since |E(F)| ≤ n − 2 and |O(T)| ≤ n − 1 we have |S(T)| ≤ 2n − 3. Taking
the union of S(T) over all of the log(n) spanning trees T of Karger’s tree packing gives a
generating set S for T of size O(n log(n)).

We cannot explicitly write down the graph L(T), but using an efficient data structure
for evaluating 2-respecting cuts [30, 17] we can in O(log(n)) time determine whether or not
{e, e′} is an edge of L(T). This essentially gives us adjacency matrix access to L(T), and

5 As ∆T (X) = ∆T (X), for uniqueness we define a root r in T and choose shore(f) so that it does not
contain r.

CCC 2021

28:8 Quantum Complexity of Minimum Cut

Figure 2 Left: A spanning tree T (thick black edges) of the graph H (thin grey edges) with
minimum cut λ(H) = 2. Right: The associated graph L(T) with vertex set E(T) and f ∈ E(T)(2)

an edge of L(T) iff shore(f) is the shore of a near-minimum cut in H (in this case, a near-minimum
cut is a cut of weight ≤ 3

2 λ(H)).

hence we can use the Õ(n3/2) time quantum algorithm from [11] to construct a spanning
forest F of L(T). We note that it is conceivable that there exists an efficient classical
algorithm to do this. However this would require using further properties of L(T) since
classically computing a spanning forest in the adjacency matrix model requires Ω(n2) queries.

Once we have the O(n log n) size generating set S, we still cannot naively compute the
atoms of S because this would again be too costly. Rather, we find the atoms of S in
Õ(n) time by combining a random hashing scheme with an efficient data structure based
on Euler tour trees [20]. This shows that a quantum algorithm can implement step (3),
LearnCutAtoms, in time Õ(n3/2). Note that this running time is independent of the kind of
oracle access we have to G. This gives the following theorem.

▶ Theorem 5. Let G = (V, w) be an n-vertex weighted graph with m edges and edge-weight
ratio τ . There is a quantum algorithm that finds the weight and shores of a minimum cut
of G with probability at least 2/3 in query and time complexity Õ(n3/2√τ) in the adjacency
matrix model and Õ(

√
mnτ + n3/2) in the adjacency array model.

1.3 Open problems
A few open problems remain from this work.
1. In the adjacency array model there remains a significant gap between the upper and lower

bounds we are able to show. For dense graphs the upper bound is Õ(n3/2√τ) and we
have the lower bounds Ω(n3/2) for τ > 1 and Ω(τn) for 1 ≤ τ ≤ n. We suspect that the
quantum query complexity of the minimum cut problem in the adjacency array model is
Θ̃(n) for simple graphs (τ = 1) and Θ̃(

√
mnτ) for weighted graphs (1 < τ ≤ m/n), but

were unable to prove this.
2. We have given a quantum algorithm with running time Õ(m + n3/2) for the subroutine

LearnCutAtoms. By building on our insights we believe that this routine can even be
performed by a classical randomized algorithm in near-linear time Õ(m). This would
improve the running time of our quantum algorithm for the minimum cut problem in
the adjacency array model from Õ(

√
mnτ + n3/2) to Õ(

√
mnτ). It also seems of more

general interest, giving a weighted (but potentially randomized) generalization of the
algorithm by Kawarabayashi and Thorup [26] for finding a contraction of G that preserves
all near-minimum cuts and only has O(τn) total weight of edges.

3. What is the quantum complexity of determining a (1 + ε)-approximation of the minimum
cut weight? Apers and de Wolf [2] gave a (1 + ε)-approximation algorithm with time and
query complexity Õ(

√
mn/ε) in the adjacency array model. For the unweighted case, our

algorithm improves this in terms of query complexity by exactly computing the minimum
cut with Õ(

√
mn) queries. Can one approximate the weight of a minimum cut in an

unweighted graph with even fewer queries?

S. Apers and T. Lee 28:9

2 Preliminaries

For a natural number n ≥ 1 we let [n] = {1, . . . , n}. For a real number x we let ⌊x⌉ denote
the closest integer to x.

2.1 Graph basics and notation
Let V be a finite set and V (2) the set of all subsets of V of cardinality 2. We represent
a weighted undirected graph as a pair G = (V, w) where w : V (2) → R is a non-negative
function. We let V (G) be the vertex set of a graph G and E(G) = {e ∈ V (2) : w(e) > 0} be
the set of edges of G. We extend the weight function to sets S ⊆ V (2) by w(S) =

∑
e∈S w(e).

We say that G is simple if w : V (2) → {0, 1} and in this case also denote G as G = (V, E),
where E is the set of edges. We call the ratio of the largest edge weight of G to the smallest
the edge-weight ratio of G.

For a subset X ⊆ V we use the shorthand X = V \ X, and we say X is non-trivial
if ∅ ≠ X ⊊ V . For disjoint sets X, Y ⊆ V we use E(X, Y) for the set of edges with one
endpoint in X and one endpoint in Y . For a non-trivial set X, let ∆G(X) = {{i, j} ∈ E(G) :
i ∈ X, j ∈ X} be the set of edges of G with one endpoint in X and one endpoint in X. A cut
of G is a set of the form ∆G(X) for some non-trivial set X. We call X and X the shores of
the cut ∆G(X). We call a cut of the form ∆G({u}) a star cut, and refer to all other cuts as
non-star cuts. The weight of a cut S is w(S), which in the case of a simple graph equals |S|.
We let λ(G) = min∅̸=X⊊V w(∆G(X)) be the minimum weight of a cut in G. We call a cut
realizing this bound a minimum cut. We call a cut ∆G(X) satisfying w(∆G(X)) ≤ αλ(G)
an α-near minimum cut. In the case where G is simple we call λ(G) the edge connectivity of
G. We will only use the term edge connectivity in the context of unweighted graphs.

▶ Definition 6 (Vertex Contraction). Let G = (V, w) be a weighted graph and P = {S1, . . . , Sk}
be a partition of V . Define Contract(G,P) to be the k-vertex weighted graph G′ = (P, w′)
where w′({Si, Sj}) = w(E(Si, Sj)) for each {Si, Sj} ∈ P(2).

Note that as long as |P| ≥ 2 it will hold that λ(Contract(G,P)) ≥ λ(G).
We will also need to make use of graph sparsifiers.

▶ Definition 7 (Cut sparsifier). For a weighted graph G = (V, w) and ε > 0 an ε-cut sparsifier
H = (V, w′) of G satisfies
1. H is a reweighted subgraph of G, that is w′(e) > 0 only if w(e) > 0.
2. It holds that (1− ε)w(∆G(X)) ≤ w′(∆H(X)) ≤ (1 + ε)w(∆G(X)) for all ∅ ̸= X ⊊ V .

Cut sparsifiers were first defined by Benczúr and Karger [5] who showed that a weighted
graph G has an ε-cut sparsifier H with O(n log(n)/ϵ2) edges, and H can be constructed by
a randomized algorithm in time O(m log3(n)). Fung, Hariharan, Harvey and Panigrahi [14]
have since shown that a cut sparsifier with the same bound on the number of edges can be
constructed by a randomized algorithm in time O(m) + Õ(n/ε2), and Batson, Spielman and
Srivastava [3] have given a deterministic polynomial time construction of sparsifiers with
only O(n/ε2) edges.

2.2 Atoms
A family of subsets T = {X1, . . . , Xk} of V induces a partition of V given by the regions in
the Venn diagram of T . We call the resulting sets of this partition the atoms of T :

CCC 2021

28:10 Quantum Complexity of Minimum Cut

▶ Definition 8 (Atoms). Let V be a finite set and let T = {X1, . . . , Xk} where each Xi ⊆ V .
Define atoms(T) = {A1, . . . , Aℓ} to be a partition of V such that
1. For any Aj ∈ atoms(T) and u, v ∈ Aj it holds that for all Xi ∈ T either u, v ∈ Xi or

u, v ∈ Xi.
2. atoms(T) is the coarsest partition with property (1).

▶ Definition 9 (Generating set). Let V be a finite set and T a set of subsets of V . We say
that S ⊆ T is a generating set for atoms(T) if atoms(S) = atoms(T).

▶ Proposition 10. Let V be a finite set and T1, T2 two sets whose elements are subsets of
V . Let S1,S2 be generating sets for atoms(T1), atoms(T2) respectively. Then S1 ∪ S2 is a
generating set for atoms(T1 ∪ T2).

Proof. As S1 ⊆ T1,S2 ⊆ T2 by the definition of a generating set, S1 ∪ S2 ⊆ T1 ∪ T2 and
atoms(T1 ∪ T2) is a refinement of atoms(S1 ∪ S2). Now we show that for any u, v that are in
different sets of atoms(T1 ∪ T2) there is a set S ∈ S1 ∪ S2 which separates them. This will
imply that in fact atoms(T1 ∪ T2) = atoms(S1 ∪ S2).

If u, v are in different sets of atoms(T1∪T2) then there must be a T ∈ T1∪T2 which separates
them. Suppose without loss of generality that T ∈ T1. Then since atoms(S1) = atoms(T1)
and u, v are in different sets of atoms(T1), there must be an S ∈ S1 which separates u and v.
This completes the proof. ◀

2.3 Quantum query and computational models
For general background on the quantum query model we refer the reader to [23]. Here
we restrict ourselves to describing the quantum implementation of the input oracles in the
adjacency matrix and adjacency array models.

In the adjacency matrix model, on input a weighted graph G = (V, w), classically one
can query any {u, v} ∈ V (2) and receive the answer w({u, v}). We now describe how to
model this by a quantum query. We will assume that the edge weights are given as binary
decimal numbers with M1 bits before the decimal and M2 bits after the decimal for a total
of M = M1 + M2 bits. The state of the quantum query algorithm will have three registers, a
query register, an answer register, and a workspace register. The state of the algorithm will in
general be in a superposition of the basis states |{u, v}⟩|b⟩|a⟩ where {u, v} ∈ V (2), b ∈ {0, 1}M

and a ∈ A for an arbitrary finite set A. On input graph G = (V, w), the input oracle OG

acts on a basis state |{u, v}⟩|b⟩|a⟩ as

OG|{u, v}⟩|b⟩|a⟩ = |{u, v}⟩|b⊕ w({u, v})⟩|a⟩ .

In the adjacency array model, on input a weighted n-vertex graph G = (V, w) one can
make two types of queries. In the first type, one can query a vertex v ∈ V and receive its
degree deg(v). The second type is specified by a family of functions {fv : [deg(v)]→ V }v∈V

such that fv(i) corresponds to the ith neighbor of vertex v (according to some arbitrary but
fixed ordering). A query consists of a pair (v, i) for i ∈ [deg(v)] and the returned answer
is the pair (fv(i), w({v, fv(i)})). In this paper we will only need to model the second type
of query quantumly. This is because our upper bounds are larger than n so we can let the
algorithm classically query all degrees at the start of the algorithm, and in our lower bound
on the query complexity of edge connectivity for weighted graphs we assume the algorithm
already knows the degree of every vertex. The state of the quantum query algorithm will
again have a query register, an answer register, and a workspace register, with the state of
the algorithm in general being in a superposition of the basis states |(v, i)⟩|x⟩|b⟩|a⟩ where

S. Apers and T. Lee 28:11

v ∈ V, i ∈ [deg(v)], x ∈ {0, . . . , n − 1}, b ∈ {0, 1}M , and a ∈ A for an arbitrary finite set A.
We further let τ : V → {0, 1, . . . , n− 1} be a bijection where |V | = n. Then the input oracle
OG acts on a basis state in the following way:

OG|(v, i)⟩|x⟩|b⟩|a⟩ = |(v, i)⟩|x + τ(fv(i)) mod n⟩|b⊕ w({v, fv(i)})⟩|a⟩ .

In Section 5 we will further show that our query algorithms can be implemented in a
time efficient manner. We analyze the time complexity in terms of the standard quantum
circuit model augmented with two types of oracles. One is the oracle for the input, either
in the adjacency matrix or array model, and the second is an oracle to a classical memory
of Õ(n) bits. The latter corresponds to a quantum random-access-memory or QRAM. We
further assume that we can classically update a value in this Õ(n) bit classical memory in
time Õ(1). The assumption of QRAM access is also required for the time efficiency of the
sparsifier construction in [2] which our algorithms build on, and in fact is a necessary (but
sometimes inexplicit) assumption in the time analysis of many quantum algorithms for graph
problems, e.g. [11, 1, 4].

2.4 Quantum algorithmic primitives
We now go over the quantum subroutines we will need. We need several variants of quantum
search.

▶ Theorem 11 (Quantum search [19]). Given oracle access to a string x ∈ {0, 1}N such that
|x| > 0, there is a quantum algorithm that with probability at least 9/10 returns an i such that
xi = 1. The algorithm makes O(

√
N) queries to x and has time complexity O(

√
N log(N)).

▶ Theorem 12 (Exact quantum search, [9, Theorem 4]). Given a positive integer k and oracle
access to a string x ∈ {0, 1}N with |x| = k, there is a quantum algorithm that returns an i

such that xi = 1 with certainty. The algorithm makes O(
√

N/k) queries to x and has time
complexity O(

√
N/k log(N)).

▶ Theorem 13 (Based on [10, Theorem 3]). Given t, N ∈ N with 1 ≤ t ≤ N and oracle access
to x ∈ {0, 1}N , there is a quantum algorithm such that

if |x| ≤ t then the algorithm outputs x with certainty, and
if |x| > t then the algorithm reports so with probability at least 9/10.

The algorithm makes O(
√

tN) queries to x and has time complexity O(
√

tN log(N)).

Proof. Initialize S = ∅. For k = t down to 1, do: (i) run exact quantum search (from
Theorem 12) on x with parameter k, returning an index i, (ii) query xi and if xi = 1 then
add i to S and “unmark” xi for all future iterations, i.e. implicitly return xi = 0 to future
queries of the algorithm.

Finally, run normal quantum search (from Theorem 11) on the indices of x outside of S

to check that there are no more solutions. If this returns an i ̸∈ S such that xi = 1, then
report |x| > t, otherwise return the string y where yi = 1 if i ∈ S and yi = 0 otherwise.

The query complexity of the algorithm is

O

(
t∑

k=1

√
N

k

)
+ O(

√
N) = O(

√
tN) ,

and its time complexity is similarly O(
√

tN log(N)), as claimed. For correctness, first note
that if |x| > t then necessarily an index i such that xi = 1 is remaining in the final step.
Quantum search Theorem 11 will find such an index with probability at least 9/10. It remains
to prove that x is learned with certainty if |x| ≤ t. To this end, assume for contradiction that

CCC 2021

28:12 Quantum Complexity of Minimum Cut

|S| < |x|. Then necessarily there was an iteration k′ between t and 1 such that k′ = |x|. In
such case, however, the remaining k′ runs of exact quantum search will each return a nonzero
index, and so all nonzero indices will be found. This proves that necessarily all indices are
found in the first t iterations of exact quantum search, and hence the final quantum search
step cannot find an additional nonzero index. ◀

▶ Theorem 14 (Quantum minimum finding [12]). Let N, M ∈ N be positive integer and
f : [N] → R. There is a quantum algorithm that with probability at least 2/3 outputs an
element of argmini∈[N] f(i). The algorithm makes O(

√
N) oracle calls to f and has time

complexity Õ(
√

N).

▶ Theorem 15 ([2, Theorem 1]). Let G be a weighted n-vertex graph with m edges. There
is a quantum algorithm that with high probability outputs an explicit description of an ε-
cut sparsifier H of G with Õ(n/ε2) edges in query and time complexity Õ(

√
mn/ε) in the

adjacency array model or Õ(n3/2/ϵ) in the adjacency matrix model.

Apers and de Wolf actually show a stronger theorem than this in that their algorithm can
output a spectral sparsifier instead of just a cut sparsifier. We will not need this additional
property, however.

2.5 Problems related to minimum cuts
Let G = (V, w) be a weighted graph. There are three outputs related to a minimum cut of
G that one could want from an algorithm: the weight of a minimum cut, the shores of a
minimum cut, or the edges in a minimum cut. The relationship between the complexity of
these problems is not always obvious, and can depend on the computational model one is
studying. All the upper and lower bounds we prove in this paper apply to all three problems.

Say the edge-weight ratio of G is τ . As an example of how we can apply the quantum
search algorithm Theorem 13, we show that, given the shores of a minimum cut in G, a
quantum algorithm can also find the edges of the cut with O(n3/2√τ) and O(

√
mnτ) queries

in the adjacency matrix and array models respectively. As this matches the complexity of our
upper bounds, we will only explicitly mention finding the weight and shores of a minimum
cut in Theorem 21.

▶ Proposition 16. Let G = (V, w) be an n-vertex weighted graph with edge-weight ratio τ . Let
∆G(X) be a minimum cut of G. Given X, a quantum algorithm can with probability at least
3/4 output ∆G(X) with O(n3/2√τ) queries and time complexity Õ(n3/2√τ) in the adjacency
matrix model, and O(

√
mnτ) queries and time complexity Õ(

√
mnτ) in the adjacency array

model.

Proof. Consider the adjacency matrix model first. With O(n) queries and time O(n log(n))
we can identify the smallest and largest edge weights of G except error probability at most
1/8. Thus by rescaling we will henceforth assume that the smallest edge weight is 1 and
largest edge weight is at most τ .

Let x ∈ {0, 1}(
n
2) denote a bit string labeled by elements of V (2) and set x({u, v}) = 1

iff {u, v} ∈ E(G) and u and v are not both in X or both in X. Given X, a query to x can
be answered by a single query to the adjacency matrix of G. As the largest weight of an
edge of G is at most τ and ∆G(X) is a minimum cut, w(∆G(X)) ≤ τ(n− 1). As every edge
of G has weight at least 1 we also have |x| ≤ τ(n− 1). Thus by Theorem 13, except with
error probability 1/8, we can learn x, and therefore also ∆G(X), with O(n3/2√τ) queries
and time Õ(n3/2√τ).

The statement for the adjacency array model follows from Theorem 13 by a similar
argument. ◀

S. Apers and T. Lee 28:13

3 Number of edges in near-minimum cuts

In this section, we generalize Lemma 1 to weighted graphs. Our proof follows that of
Rubinstein, Schramm, and Weinberg [35].

▶ Lemma 2. Let G = (V, w) be a weighted graph with |V | = n and where every edge has
weight at most τ . Let d = minu∈V w(∆G({u})). For a nonnegative ε < 1, let T = {X :
|X|, |X| ≥ 2 and w(∆G(X)) ≤ λ(G) + εd} and let G′ = Contract(G, atoms(T)). Then

w(E(G′)) ≤ 68τn

(1− ε)2 .

Before proving this lemma we first state and prove a claim.

▷ Claim 17. Let V be a finite set of cardinality n and r ≤ n be a positive integer. Let
T = {X1, . . . , Xk} where each Xi ⊆ V . Let T0 = V and for i = 1, . . . , k let Ti = {X1, . . . , Xi}.
Suppose that T has the property that for all i = 0, . . . , k − 1 there is a set Aj ∈ atoms(Ti)
that is refined into two sets each of cardinality ≥ r in atoms(Ti+1). Then |T | ≤ n

r − 1.

Proof. To each Ti for i = 1, . . . , k we associate a binary tree Bi. Each vertex of Bi has a
label, which will be an element of ∪i

j=0atoms(Tj). The tree B1 has root v, labeled by V , and
two children v0, v1 labeled by the two elements X1, X1 ∈ atoms(T1). Note that by definition
|X1|, |X1| ≥ r.

In general, the tree Bi+1 is formed from Bi as follows. Initially, set Bi+1 = Bi. Then for
every leaf u of Bi which is labeled by a set Y ∈ atoms(Ti) of size ≥ 2r, if Y is refined into
sets Y1, Y2 in atoms(Ti+1), then in Bi+1 the node u is given two children labeled by Y1 and
Y2, respectively. Note that this construction has the property that only internal vertices of
Bi that are labeled by sets of size ≥ 2r have children. Call a vertex big if it is labeled by a
set of size ≥ r and small otherwise. By construction, every internal vertex of Bi has at least
one big child.

Let bi be the number of big leaves in Bi. We now show by induction that i ≤ bi− 1. This
will prove the claim as the leaves of Bi partition V and therefore bi ≤ n/r.

For i = 1 we have that bi = 2 since |X1|, |X1| ≥ r, thus the base case holds. Now suppose
that i ≤ bi − 1, we will show that i + 1 ≤ bi+1 − 1. By definition of T , there must be
some set Y ∈ atoms(Ti) which is refined into two sets Y1, Y2 both of cardinality at least r in
atoms(Ti+1). Further, Y will label some leaf of u of Bi and u will have two children which
are big in Bi+1. Any other big leaf of Bi which becomes an internal vertex of Bi+1 must
have at least one child which is big. This shows that bi+1 ≥ bi + 1 and gives the inductive
step. ◁

Now we are ready for the proof of Lemma 2.

Proof of Lemma 2. Let α = β = 1
4 (1− ε) so that α + β ≤ 1

2 (1− ε). Let K ⊆ T be formed
as follows. Initialize K to be empty. Then do the following: while there is an X ∈ T
such that there is an A ∈ atoms(K), A1, A2 ∈ atoms(K ∪X) such that A = A1 ∪ A2 and
|A1|, |A2| ≥ βd

τ , add X to K. By Claim 17, at the end of this process |K| ≤ τn
βd . Let

K = ∪X∈K∆G(X) be the set of edges of cuts with shores in K. Throughout this proof, cuts
will always be with respect to G and we will henceforth drop the subscript to simply write
∆(X).

Let S ⊆ V be the set of vertices v such that w(E(v, V \ {v}) ∩ K) ≥ α · w(v). We say
that v ∈ V is small if for the A ∈ atoms(K) with v ∈ A there is an X ∈ T such that
atoms(K ∪X) refines A into A1, A2 with v ∈ A1 and |A1| < βd

τ .

CCC 2021

28:14 Quantum Complexity of Minimum Cut

▷ Claim 18. If v is small then v ∈ S.

Proof. Let X ∈ T be the shore of a cut which witnesses that v is small. Let us assume
without loss of generality that v ∈ X. Suppose for contradiction that v ̸∈ S. There are three
possibilities for an edge {u, v}: either {u, v} ∈ K, or u ∈ A1, or u ∈ A2. Let the total weight
of these kind of edges be wK, w1, w2, respectively. Thus w(v) = wK + w1 + w2. We further
know that wK < αw(v) by the assumption that v ̸∈ S and that w1 < βd since |A1| < βd

τ and
the maximum edge weight is τ . This means w2 > w(v)− αw(v)− βd. Further note that v

contributes weight at least w2 to the weight of ∆(X).
As ∆(X) is not a star cut, we can consider the cut ∆(X ′) where X ′ = X \ {v}. We

claim that w(∆(X ′)) < λ, which is a contradiction. The only difference between w(∆(X))
and w(∆(X ′)) is the contribution of v. The weight of edges involving v in ∆(X ′) is at most
wK + w1 < αw(v) + βd. Thus

w(∆(X))− w(∆(X ′)) ≥ w2 − (wK + w1)
> w(v)− 2αw(v)− 2βd

≥ d(1− 2α− 2β)
≥ εd ,

implying that w(∆(X ′)) < λ. ◁

Let G′ = Contract(G, atoms(T)). We now bound w(E(G′)). We claim that every edge in G′

is either in K or is incident to a vertex in S. For if {u, v} ∈ E(G′) but {u, v} ̸∈ K, then for a
cut ∆(Y) for Y ∈ T with {u, v} ∈ ∆(Y) it must be the case that there is an A ∈ atoms(K)
such that u, v ∈ A and that for the A1, A2 ∈ atoms(K ∪ Y) with A = A1 ∪A2, one of A1, A2
has size < βd

τ . This means that either u or v is small and so by Claim 18, {u, v} is incident
to S.

The number of sets in K is at most τn
βd and for each X ∈ K we have w(∆(X)) ≤ λ + εd ≤

(1 + ε)d. Thus we have that w(K) ≤ (1 + ε) τn
β .

Let us now bound the weight of edges incident to S. As each vertex v ∈ S has weight at
least αw(v) amongst edges in K we have that α

2
∑

v∈S w(v) ≤ w(K). Thus overall we find

w(E(G′)) ≤ w(K)
(

1 + 2
α

)
≤ (1 + ε)(α + 2) τn

αβ

≤ 68τn

(1− ε)2 . ◀

The bound in Lemma 2 is tight up to constant factors. To see this, consider a cycle
graph with uniform edge weight τ . Every edge participates in some minimum cut, and hence
G = G′ and w(E(G′)) = τn.

4 Query-efficient quantum algorithm for minimum cut

We first describe a query-efficient quantum algorithm to find the weight and shores of
a minimum cut. In Section 5 we make this algorithm time-efficient. Our quantum query
algorithm for minimum cut mainly relies on Lemma 2, and is inspired by a classical randomized
algorithm for edge connectivity in the cut query model by Rubinstein, Schramm, and Weinberg
(RSW) [35]. The RSW cut query algorithm is based on 4 subroutines whose input/output

S. Apers and T. Lee 28:15

behavior we describe in Algorithms 1–4 below. For weighted graphs, we need an additional
subroutine to compute the maximum weight of an edge in the graph which is stated in
Algorithm 5. We describe all these subroutines in an abstract way to make it easy to (i)
describe the time-efficient algorithm in the next section, and (ii) to instantiate this algorithm
for other query models in the future. We indicate oracle access to G by square brackets and
put the parameters explicitly given to the routines in parentheses.

Algorithm 1 FindMinStar[G](δ).
Input: Oracle access to a weighted graph G, error parameter δ.
Output: With probability at least 1 − δ output v ∈ argminu∈V w(∆G({u})) and

dmin = minu∈V w(∆G({u})).

Algorithm 2 Cut-Sparsifier[G](ε, δ).
Input: Oracle access to a weighted graph G, sparsifier accuracy parameter ε, error

parameter δ.
Output: With probability at least 1− δ output an integer-weighted ε-cut sparsifier H

of G with Õ(n/ϵ2) edges.

Algorithm 3 LearnCutAtoms(H, λ, δ).
Input: Adjacency array description of H, cut threshold λ, and error parameter δ.
Output: Define the set T = {X : |X|, |X| ≥ 2, w(∆H(X)) ≤ λ}. With probability at

least 1− δ output atoms(T).

Algorithm 4 LearnContraction[G](P, M, δ).
Input: Oracle access to a weighted graph G, a partition P of V (G), a natural number

M , and error parameter δ.
Output: Let G′ = Contract(G,P). With probability at least 1 − δ return G′ if the

number of edges of G′ is at most M , and otherwise return NULL.

Algorithm 5 FindMaxWeight[G](δ).
Input: Oracle access to a weighted graph G, error parameter δ.
Output: With probability at least 1− δ output τ , the maximum weight of an edge of G.

We combine these subroutines in Algorithm 6 to give a template for solving the minimum
cut problem in an abstract query model.

CCC 2021

28:16 Quantum Complexity of Minimum Cut

Algorithm 6 Query algorithm for minimum cut.
Input: Oracle access to a weighted graph G

Output: λ(G) and the shores of a minimum cut of G.
1: (v, dmin)← FindMinStar[G](1

20).
2: τ ← FindMaxWeight[G](1

20).
3: H = (V, w′)← Cut-Sparsifier[G](1

100 , 1
20).

4: Compute λ(H).
5: P = {S1, . . . , Sk} ← LearnCutAtoms(H, (1 + 1

100)λ(H), 1
20).

6: G′ ← LearnContraction[G](P, 100τn, 1
20). If G′ = NULL then abort.

7: Compute the weight λ(G′) and shores (Y, V (G′) \ Y) of a minimum cut in G′.
8: If dmin ≤ λ(G′) output (dmin, ({v}, V \{v})). Otherwise, let Z = ∪Si∈Y Si and output

(λ(G′), (Z, Z)).

▶ Theorem 19. Let G be a weighted graph with n vertices, minimum edge weight at least 1,
and maximum edge weight τ . Algorithm 6 finds the weight and shores of a minimum cut
of G with probability at least 3/4. The number of queries of the algorithm is the sum
of the number of queries of the subroutines FindMinStar[G](1

20), FindMaxWeight[G](1
20),

Cut-Sparsifier[G](1
100 , 1

20), and LearnContraction[G](P, 100τn, 1
20).

Proof. Queries to the input graph G are only made in steps 1, 2, 3, and 6. This gives the
statement about the complexity of the algorithm.

Next let us deal with the error probability. With probability at least 16/20 steps 1–5
return correctly by the definition of these subroutines and the error parameter provided. Let
us now assume this is the case. Then H = (V, w′) is a valid ε-sparsifier of G for ε = 1/100.
Let X ∈ T . Then we have

w(∆G(X)) ≤ (1 + ε)w′(∆H(X)) ≤ (1 + ε)(1 + 3ε)λ(H) ≤ (1 + ε)2(1 + 3ε)λ(G) .

We have (1+ε)2(1+3ε) ≤ 11
10 by the choice of ε, and so w(∆G(X)) ≤ 11

10 λ(G) ≤ λ(G)+ 1
10 dmin

since λ(G) ≤ dmin. Thus by Lemma 2, the total weight of edges in Contract(G,P) will be
at most 100τn. As we assume the minimum weight of an edge is at least 1, the number of
edges in Contract(G,P) will also be at most 100τn. Hence except with probability at most
1/20, LearnContraction will correctly return Contract(G,P) in step 5.

We have now argued that with probability at least 3/4 all subroutines will correctly
return. We now argue correctness assuming that this is the case. In this case, G′ will be
a valid contraction of G and so λ(G′) ≥ λ(G). Thus if λ(G) is achieved by a star cut the
algorithm will return correctly.

Let us now assume that dmin > λ(G) and let ∆G(X) be a non-star cut with w(∆G(X)) =
λ(G). We have

w′(∆H(X)) ≤ (1 + ε)w(∆G(X)) = (1 + ε)λ(G) ≤ 1 + ε

1− ε
λ(H) ≤ (1 + 3ε)λ(H) ,

where the last step holds as ε ≤ 1
3 . This means X ∈ T and therefore no edge of ∆G(X)

will be contracted in G′ = Contract(G,P). Thus λ(G′) ≤ λ(G) and as the edge connectivity
cannot decrease in a contraction in fact λ(G′) = λ(G). Hence the algorithm returns correctly
in step 8. ◀

S. Apers and T. Lee 28:17

▶ Lemma 20. Let G = (V, w) be a weighted graph with n vertices and m edges. Subroutines
FindMinStar[G](1

20), FindMaxWeight[G](1
20), Cut-Sparsifier[G](1

100 , 1
20) can be implemented

by a quantum algorithm with query and time complexity Õ(n3/2) in the adjacency matrix and
Õ(
√

mn) in the adjacency array model.
LearnContraction[G](P, 100τn, 1

20) can be implemented by a quantum algorithm with query
and time complexity Õ(n3/2√τ) in the adjacency matrix and Õ(

√
mnτ) in the adjacency

array model.

Proof. First note that in the adjacency array model we may assume that m ≥ n. Otherwise,√
mn ≥ m and we can perform each task classically in Õ(m) time and queries. We consider

each of the subroutines in turn:

FindMinStar[G](1
20): In the adjacency matrix model we can compute w(∆G({v}) with

n−1 classical queries to the adjacency matrix. We can compose this with quantum minimum
finding to find the minimum weight of a star cut and a vertex realizing this in query and
time complexity Õ(n3/2) by Theorem 14.

In the adjacency array model we first classically query the degrees of all the vertices
with n queries. In a simple graph this suffices to determine the minimum weight of a star
cut. In a weighted graph we continue as follows. For 1 ≤ ℓ ≤ ⌈log n⌉, define the bucket
Bℓ ⊆ V as the subset of nodes v that have degree in [2ℓ−1, 2ℓ). As the sum of the degrees is
2m we have that |Bℓ| ≤ 2m/2ℓ−1. Finding the minimum minv∈Bℓ

w(∆G({v})) over a single
bucket has quantum query and time complexity Õ(

√
mn): we can compute w(∆G({v}))

for a single v ∈ Bℓ using at most 2ℓ classical queries, and then do quantum minimum
finding over the |Bℓ| ≤ 2m/2ℓ−1 nodes in Bℓ. This has total query and time complexity
Õ(2ℓ

√
2m/2ℓ−1) ∈ Õ(

√
m2ℓ) ∈ Õ(

√
mn). We do this for each of the ⌈log n⌉ buckets and we

output the minimum overall weight and a vertex realizing this. This yields a total time and
query complexity Õ(

√
mn).

FindMaxWeight[G](1
20): This amounts to finding the maximum of a set of n2 numbers in

the adjacency matrix model, or m numbers in the adjacency list model. By Theorem 14 this
has query and time complexity Õ(n) and Õ(

√
m), respectively.

Cut-Sparsifier[G](1
100 , 1

20): A 1
100 -cut sparsifier with Õ(n/ϵ2) edges can be constructed

with high probability in query and time complexity Õ(n3/2) in the adjacency matrix model
or Õ(

√
mn) in the adjacency array model by Theorem 15.

LearnContraction[G](P, 100τn, 1
20): First we handle a trivial case. If τ ≥ n then we can

classically learn the input in time n2 = O(n3/2√τ) in the adjacency matrix model and time
m = O(

√
mnτ) in the adjacency array model. Thus we can assume τ < n.

First we do the adjacency matrix case. Let x ∈ R(n
2) be a vector whose entries are labeled

by elements of V (2) and where x(e) = w(e) if the endpoints of e are in distinct elements of P
and x(e) = 0 otherwise. A query to an entry of x can be answered with one query to the
adjacency matrix of G. Let x̂ ∈ {0, 1}(

n
2) be defined by x̂(e) = 1 if w(e) > 0 and x̂(e) = 0

otherwise. We can also answer a query to x̂ with one query to the adjacency matrix of G.
By Theorem 13 in query and time complexity Õ(n3/2√τ) in the adjacency matrix model we
can with probability at least 9/10 output x̂ if |x̂| ≤ 100τn and otherwise output NULL. We
can then classically query x in the non-zero locations of x̂ with 100τn = O(n3/2√τ) more
classical queries to output x. This fulfils the specification of LearnContraction.

CCC 2021

28:18 Quantum Complexity of Minimum Cut

Similarly, in the adjacency array model let x ∈ Rm be labeled by entries of the adjacency
array of G and define x(e) = w(e) if the endpoints of e are in distinct elements of P and
x(e) = 0 otherwise. Let x̂(e) = 1 if x(e) > 0 and x̂(e) = 0 otherwise as before. A query to
an entry of x or x̂ can be answered with one query to the adjacency array of G. Again by
Theorem 13, in query and time complexity Õ(

√
mnτ) in the adjacency array model we can

with probability at least 9/10 output x̂ if |x̂| ≤ 100τn and otherwise output NULL. With
100τn = O(

√
mnτ) more queries we can then output x. ◀

▶ Theorem 21. Let G = (V, w) be an n-vertex weighted graph with m edges and edge-weight
ratio τ . There is a quantum algorithm that finds the weight and shores of a minimum cut
of G with probability at least 3/4 after Õ(n3/2√τ) queries to the adjacency matrix of G or
Õ(
√

mnτ) queries to the adjacency array.

Proof. First we use the minimization analogue of FindMaxWeight to find the minimum edge
weight α. Then by normalizing by 1/α we may assume that all edge weights are at least 1
and apply Theorem 19. The bound on the quantum query complexities then follows from
Lemma 20. ◀

5 Time-efficient quantum algorithm for minimum cut

In this section we describe a quantum algorithm for computing the weight of a minimum cut
of a weighted graph with time complexity Õ(

√
mnτ + n3/2) in the adjacency array model and

Õ(n3/2√τ) in the adjacency matrix model. In the adjacency matrix model this is optimal up
to polylogarithmic factors. Our algorithm is a time-efficient implementation of Algorithm 6.
The running time of this algorithm is the sum of the running time of its 4 subroutines, and
we have already analyzed the complexity of 3 of those subroutines in Lemma 20. Thus it
now suffices to give a time-efficient implementation of the subroutine LearnCutAtoms, as
formalized in the next lemma.

▶ Lemma 22. Let κ(n) denote the maximum time complexity of a quantum algorithm for
the subroutine LearnCutAtoms(H, (1 + 1

100)λ(H), 1
20) over weighted n-vertex graphs H with

Õ(n) edges. Let G be a weighted graph with n vertices, m edges, and edge-weight ratio τ .
There is a quantum algorithm to compute the weight and shores of a minimum cut of G with
probability at least 2/3 that runs in time κ(n) + Õ(

√
mnτ) in the adjacency array model and

κ(n) + Õ(n3/2√τ) in the adjacency matrix model.

Proof. First we use minimum finding Theorem 14 to determine the minimum α and maximum
β edge weights with error probability at most 1/12. This requires time Õ(

√
m) in the

adjacency array model and Õ(n) in the adjacency matrix model and so will be low order to
the time bounds stated in the lemma. From α, β we compute the edge-weight ratio τ = β/α.
By multiplying all edge weights by 1/α we may assume that the minimum edge weight is 1
and the maximum edge weight is τ .

If τ > m/n (in the adjacency array model) or τ > n (in the adjacency matrix model),
then we simply run a randomized near-linear time algorithm (e.g., [25]) for calculating the
weight and shores of a minimum cut of G. This then takes time Õ(m) ∈ Õ(

√
mnτ) in

the array model and Õ(n2) ∈ Õ(n3/2√τ) in the matrix model. We can hence assume that
τ ≤ m/n in the array model and τ ≤ n in the matrix model.

We use a quantum implementation of Algorithm 6. By Theorem 19 this algorithm has
error probability at most 1/4, thus our overall error probability will be at most 1/3 as
desired. For the running time it suffices to analyze the quantum time complexity of all 8

S. Apers and T. Lee 28:19

steps. In Lemma 20 we show that the time complexity of steps 1–3 and 6 is Õ(
√

mnτ) in the
adjacency array model and Õ(n3/2√τ) in the adjacency matrix model. For step 4, we can use
a randomized near-linear time algorithm (e.g., [25]) for calculating the weight and shores of
a minimum cut of H . As H has Õ(n) edges this takes time Õ(n). In step 7, we compute the
weight and shores of a minimum cut in G′ which has at most 100τn edges by the definition
of LearnContraction. This takes time Õ(τn), which is Õ(

√
mnτ) in the array model (by

the assumption τ ≤ m/n) or Õ(n3/2√τ) in the matrix model (by the assumption τ ≤ n).
Finally, step 8 is trivial and the quantum time complexity of step 5 is exactly κ(n). ◀

This section is hence devoted to proving the following theorem.

▶ Theorem 23. Let H be an n-vertex weighted graph with m edges. There is a quantum
algorithm that implements LearnCutAtoms(H, (1 + 1

100)λ(H), 1
20) in time Õ(m + n3/2).

In particular, Theorem 23 implies that κ(n) ∈ Õ(n3/2), and hence we find a time-efficient
quantum algorithm.

▶ Theorem 5. Let G = (V, w) be an n-vertex weighted graph with m edges and edge-weight
ratio τ . There is a quantum algorithm that finds the weight and shores of a minimum cut
of G with probability at least 2/3 in query and time complexity Õ(n3/2√τ) in the adjacency
matrix model and Õ(

√
mnτ + n3/2) in the adjacency array model.

Proof. Follows from Lemma 22 and Theorem 23. ◀

5.1 Tools
Our time efficient algorithm builds on a number of tools, which we first introduce here.

5.1.1 2-respecting cuts and Karger’s theorem
In his seminal work on a near-linear time randomized algorithm for minimum cut [25], Karger
combined sparsification with the notion of tree-respecting cuts. Consider an n-vertex graph
G = (V, w), a spanning tree T and a cut with shore X. We say that the cut 2-respects T if it
cuts at most 2 edges of T , i.e., |∆T (X)| ≤ 2, and strictly 2-respects T if |∆T (X)| = 2. Note
that the set of cuts which 2-respect T depends only on E(T) and not the weight of edges in
T . Note also that there are n− 1 +

(
n−1

2
)

=
(

n
2
)

cuts that 2-respect T .
Karger proved that we can efficiently construct a set of O(log n) spanning trees of G such

that every minimum cut of G will 2-respect a constant fraction of them. This effectively
reduces the exponentially large search space for finding a minimum cut to the set of merely
O(n2 log n) cuts that 2-respect one of the spanning trees. For our purpose, we will use these
spanning trees as an efficient representation of the near-minimum cuts of the graph. For
this, we need a slight generalization of Karger’s theorem on tree-respecting cuts. This shows
we can efficiently find O(log n) spanning trees such that any (1 + 1/16)-near-minimum cut
2-respects a constant fraction of them, while Karger’s statement was only for minimum cuts.
This only requires a minor modification of Karger’s proof, but for completeness we provide a
proof in Appendix A.

Throughout this section we will use the phrase “with high probability” to mean with
probability at least 1− 1/nc for an arbitrary constant c.

▶ Theorem 24 ([25, Theorem 4.1]). Let G = (V, w) be a weighted graph with n vertices
and m edges. There is a randomized algorithm that in time O(m log2(n) + n log4(n)) time
constructs a set of O(log n) spanning trees such that every (1 + 1/16)-near minimum cut of
G 2-respects 1/4 of them with high probability.

CCC 2021

28:20 Quantum Complexity of Minimum Cut

Karger states the runtime of the algorithm in this theorem as O(m + n log3(n)), but we
opt for a simpler proof rather optimizing log factors.

5.1.2 Data structures
We will frequently need to refer to a 2-respecting cut both by its shores and the edges of the
tree it cuts. We develop some notation to make this easier.

▶ Definition 25 (Notation for 2-respecting cuts). Let T be a tree on vertex set V with root r.
Define N(T) = E(T)∪E(T)(2). For f ∈ N(T) define shore(f) to be the set X ⊆ V such that
∆T (X) = f and X does not contain r. For X ⊆ V such that |∆T (X)| ≤ 2, let cutedges(X) =
∆T (X). We overload both these notations to sets so that shore(Q) = {shore(f) : f ∈ Q}
for Q ⊆ N(T) and similarly cutedges(T) = {∆T (X) : X ∈ T } for a set T of shores of
2-respecting cuts of T .

With some preprocessing time, we can efficiently evaluate the weight of 2-respecting cuts.
The following lemma is very useful.

▶ Lemma 26 ([17, Lemma 1]). Given a weighted graph G = (V, w) with n vertices and m

edges, and a spanning tree T of G, we can construct in O(m log n) time a data structure that,
for any f ∈ N(T), reports the weight w(∆G(shore(f))) of the corresponding 2-respecting cut
in O(log n) time.

Another data structure that we use is based on the Euler tour technique [36, 20]. This is
a way of representing a tree that is useful to access and modify data in subtrees. Consider
an undirected tree T = (VT , ET) with root r ∈ VT . To T we associate the directed graph
T⃗ = (VT , E⃗T) obtained by replacing every edge in ET by a pair of directed edges in opposite
directions. Now let ET ∈ (E⃗T)2(n−1) denote an Euler tour in T⃗ , starting and ending in root
r. ET is a sequence of 2(n− 1) edges as each directed edge is traversed exactly once.

For every node u in VT , let f(u) be the index in ET of the edge that points toward u,
and let ℓ(u) be the index of the last edge that points toward u. Now if T (u) is the subtree
of T induced by vertex u and all of its descendants, then the subsequence of ET starting
at f(u) and ending at ℓ(u) (both included) is an Euler tour representation of T (u). Hence
any subtree corresponds to a subsequence of ET . We can use this to prove the lemma below,
which will be useful to compute atoms(T) from a set T of shores of cuts that 2-respect a
given tree.

Given a tree whose nodes have some key value, we call a subtree-add the increasing or
decreasing of the key value in a subtree by some fixed amount.

▶ Lemma 27. Let T = (VT , ET) be a tree with key values {ku | u ∈ VT } of O(log n) bits.
There is a data structure that implements M subtree-adds in time Õ(n + M).

Proof. Fix a root node r. Represent T by an Euler tour ET ∈ (E⃗T)2(n−1) and define f(u), ℓ(u)
for each u ∈ V as above. Associate to ET a list A of length 2(n− 1) to store the key values,
setting A(i) = ku if the i-th entry of ET is an edge whose tail is u. Adding value α to the keys
of nodes in subtree T (u) amounts to adding α to every entry in the subsequence in A starting
with f(u) and ending with ℓ(u) (both included). Call such an operation ADD(α, f(u), ℓ(u)).

To implement M ADD operations, create a second emtpy list B with length 2(n− 1). For
every operation ADD(α, f(u), ℓ(u)), set B(f(u)) = B(f(u)) + α and if ℓ(u) < 2(n − 1) set
B(ℓ(u) + 1) = B(ℓ(u) + 1)− α. Now do a partial sum transformation of B:

S. Apers and T. Lee 28:21

1: Create list sB of length 2(n− 1) with sB(1) = B(1) and sB(i) = 0 for all i ∈ [2, 2(n− 1)].
2: for i = 2, 3, . . . , 2(n− 1) do
3: Set sB(i) = sB(i− 1) + B(i).
4: end for

In total this has time complexity Õ(n + M) (assuming Õ(1) cost for arithmetic operations).
The final key values are now given by setting ku = A(f(u)) + B(f(u)). ◀

5.2 Generating set for a single tree
Let G = (V, w) be an n-vertex weighted graph and T be a spanning tree of G. Let Q ⊆ E(T)(2)

and M = shore(Q). In words, M is an arbitrary set of shores of cuts that strictly 2-respect
T . The next lemma gives an explicit generating set S for atoms(M) with |S| ≤ n− 2. We
first make a definition that will be used throughout this section.

▶ Definition 28 (separate). Let V be a finite set and X ⊆ V . For u, v ∈ V we say that X

separates u, v if exactly one of them is in X.

▶ Lemma 29. Let T be a tree on a vertex set V of cardinality n. Let M⊆ 2V be a set of
shores that strictly 2-respect T and let Q = cutedges(M). Define the graph L = (E(T), Q)
and let F be a spanning forest of L. Then S = shore(E(F)) is a generating set for atoms(M).

Proof. Clearly E(F) ⊆ Q thus S ⊆ M. This means that atoms(M) is a refinement of
atoms(S). Thus to show atoms(S) = atoms(M) it suffices to show that any u, v ∈ V that
are in different sets of atoms(M) are also in different sets of atoms(S).

The key fact we need is that if ∆T (X) = {e, e′} then X separates u, v iff exactly one of
e, e′ is on the path from u to v in T . Suppose that u, v are in different sets of atoms(M),
that is there is an X ∈ M which separates them. Say that ∆T (X) = {ein, eout} where
ein is on the u − v path in T and eout is not. Then {ein, eout} ∈ Q and therefore there
must be a path between ein and eout in the spanning forest F . Let (e0, e1, e2, . . . , ek), where
e0 = ein, ek = eout, be the sequence of vertices on this path in F . As ein is on the u− v path
in T and eout is not, there must be consecutive vertices ei, ei+1 where ei is on the u− v path
in T and ei+1 is not. As {ei, ei+1} ∈ E(F) there is an X ∈ S which separates u and v. ◀

▶ Lemma 30. Let G = (V, w) be an n-vertex weighted graph with m edges and T a spanning
tree of G. For a real number α ≥ 1, let T = {X ⊆ V : w(∆G(X)) ≤ αλ(G), |∆T (X)| ≤ 2}.
There is a quantum algorithm that outputs with high probability a set Q ⊆ N(T) in time
Õ(m + n3/2) such that |Q| ≤ 2n− 3 and S = shore(Q) is a generating set for atoms(T).

Proof. Let T1 = {X ∈ T : |∆T (X)| = 1} and T2 = {X ∈ T : |∆T (X)| = 2}. Let
Q1 = cutedges(T1) and Q2 = cutedges(T2). Let F be a spanning tree for L = (E(T), Q2).
By Lemma 29, R = shore(E(F)) is a generating set for atoms(T2) and |R| ≤ n− 2 as F is a
spanning tree of an n− 1-vertex graph. Thus by Proposition 10, S = T1 ∪R is a generating
set for T of size at most 2n− 3. Thus taking Q = Q1 ∪ E(F) satisfies the conditions of the
lemma.

Now we must show how to efficiently output Q. We can first run a near-linear time
classical randomized algorithm to compute λ(G) [25]. We then in near-linear time set up the
data structure given by Lemma 26. For an f ∈ N(T) this lets us check in time O(log(n))
if f ∈ Q1 ∪Q2. We can then cycle over the edges e ∈ E(T) to create the set Q1 classically
in time Õ(n). It now remains to construct a spanning tree of L = (E(T), Q2). For any
f ∈ E(T)(2) we can use the data structure to check in O(log n) time if f ∈ Q2. This gives us
adjacency matrix access to L with O(log n) overhead for each query. Now we can use the

CCC 2021

28:22 Quantum Complexity of Minimum Cut

quantum algorithm from [11] that with high probability outputs a spanning forest of an n

vertex graph in the adjacency matrix model with Õ(n3/2) queries and time. Thus we can
use this algorithm to construct a spanning forest F of L. We then output Q = Q1 ∪E(F) as
desired. ◀

Now we have an implicit representation cutedges(S) of a generating set S for atoms(T),
where T is the set of near-minimum cuts of a graph G that 2-respect a tree T . What we
need, however, is to actually output atoms(T). In the following lemma we show how to do
this efficiently by combining random hashing with Euler tour trees.

▶ Lemma 31. Let T be a tree on a vertex set V of size n, Q ⊆ N(T), and S = shore(Q).
Given input Q there is a classical algorithm that with probability at least 1 − 1/n outputs
atoms(S) in time Õ(n + |Q|).

Proof. Let M be a large integer to be chosen later and consider the following algorithm.
Pick ℓ ∈ ZM uniformly at random and give every vertex u ∈ V the key value ku = ℓ. For
every f ∈ Q, do:

Pick ℓ ∈ ZM uniformly at random and set ku = ku + ℓ (modM) for all u ∈ shore(f).
Now if u and v are in the same set of atoms(S), that is no set of S separates them, then
ku = kv. On the other hand, if u and v are in different sets of atoms(S) then there is some
f ∈ Q such that u ∈ shore(f) and v ̸∈ shore(f), or vice versa. In this case, ku and kv are
pairwise independent and distributed uniformly at random in ZM . Hence ku = kv with
probability 1/M . Taking a union bound over all pairs u, v, we see that with probability at
least 1 −

(
n
2
)
/M we have that ku ̸= kv for all u, v in different sets of atoms(S). If we set

M = n3 and we let P({ku}) denote the partition induced by gathering nodes with the same
key value, then P({ku}) = atoms(S) with probability at least 1− 1/n.

The cost of actually implementing this algorithm is dominated by sequentially updating
for every f ∈ Q the key value for all nodes in shore(f). This amounts to changing the key
value in at most 2 subtrees of T :

If f = e ∈ E(T), then shore(f) is the subtree T (u) of some node u and we have to change
the key value in T (u).
If f = {e, e′} ∈ E(T)(2), then we distinguish two cases. If one of the two cut edges is a
descendant of the other then shore(f) is of the form T (u) \ T (v) for two nodes u, v ∈ V .
In this case we can update the key values by adding ℓ to T (u) and subtracting ℓ from
T (v). If neither of the edge is a descendant of the other then shore(f) is of the form
T (u) ∪ T (v), and we can update the key values by adding ℓ to T (u) and T (v).

In Lemma 27 we show how to change the key values in |Q| subtrees in total time Õ(n + |Q|)
using Euler tour trees. ◀

We can now put all these pieces together into the following algorithm.

Algorithm 7 Algorithm for finding atoms of the shores of 2-respecting near-minimum cuts.
Input: Explicit description of G = (V, w), a spanning tree T of G, a real number α ≥ 1.
Output: atoms(T) where T = {X : w(∆G(X)) ≤ αλ(G) and |∆T (X)| ≤ 2}.

1: Compute λ(G).
2: Create data structure as in Lemma 26 for evaluating the weight of cuts in G that 2-respect

T .
3: Compute Q such that shore(Q) is a generating set for atoms(T) by Lemma 30.
4: Use Lemma 31 to find and return atoms(shore(Q)) = atoms(T).

S. Apers and T. Lee 28:23

▶ Lemma 32. Let G = (V, w) be an n-vertex weighted graph with m edges and T a spanning
tree of G. Let α ≥ 1 be a real number and T = {X : w(∆G(X)) ≤ αλ(G) and |∆T (X)| ≤ 2}.
Algorithm 7 outputs atoms(T) with high probability and can be implemented by a quantum
algorithm in time Õ(m + n3/2).

5.3 Time-Efficient quantum algorithm for LearnCutAtoms
We now describe a time-efficient quantum algorithm for outputting atoms(T), where T is the
set of shores of all (1 + 1/100)-near-minimum cuts of a weighted graph H. This algorithm
combines Karger’s tree packing Theorem 24 with the algorithm that produces the atoms of
shores of cuts that 2-respect a tree from the previous section (Lemma 32).

Algorithm 8 LearnCutAtoms(H, λ, δ).
Input: Explicit description of an n-vertex weighted graph H = (V, w) with m edges, a

cut threshold λ ≤ (1 + 1/16)λ(H), and an error parameter δ.
Output: atoms(T) where T = {X ⊆ V : w(∆G(X)) ≤ λ}.

1: Construct set of K ∈ O(log n) spanning trees {Ti} using Theorem 24.
2: for i = 1, 2, . . . , K do
3: Use Algorithm 7 to find atoms(Ti) where Ti = {X ⊆ V : w(∆G(X)) ≤

λ and |∆Ti
(X)| ≤ 2}.

4: end for
5: Output atoms(∪iatoms(Ti)).

▶ Theorem 23. Let H be an n-vertex weighted graph with m edges. There is a quantum
algorithm that implements LearnCutAtoms(H, (1 + 1

100)λ(H), 1
20) in time Õ(m + n3/2).

Proof. We use Algorithm 8. First let us argue correctness. As λ ≤ (1 + 16)λ(H), by
Theorem 24 for every X ∈ T there will be a tree Ti such that ∆Ti

(X) ≤ 2. This means that
T = ∪K

i=1Ti. Hence atoms(T) = atoms(∪Ti) = atoms(∪atoms(Ti)). By Lemma 32, step (3)
correctly outputs atoms(Ti) for i = 1, . . . , K with high probability, and thus step (5) will
output atoms(T) with high probability.

Now let us analyze the complexity. Step (1) can be done in Õ(m) time by a classical
randomized algorithm by Theorem 24. Step (3) can be done by a quantum algorithm in time
Õ(m + n3/2) by Lemma 32, and thus the for loop has the same time bound as K = O(log n).

Finally, we need to explain how to (classically) implement step (5). First we give every
node v ∈ V a key value kv = 0. Then, for each i = 1, . . . , K, we iterate over the node set
and append a log n-bit string to the key value of every node, indicating the component of
atoms(Ti) of which it is part. At the end of this routine every node has a O(log2 n)-bit key
value that indicates its component in atoms(T). The total runtime for this step is Õ(n).
Thus overall the running time is Õ(m + n3/2). ◀

6 Lower bounds

In this section we present lower bounds on the complexity of edge connectivity and weighted
minimum cut.

First we describe some existing lower bounds for the case of simple graphs. Let CONn be
the problem of deciding if an input simple graph on n vertices is connected or not. This is a
special case of edge connectivity, where one wants to decide if the edge connectivity is zero
or positive. Dürr, Heiligman, Høyer and Mhalla [11] proved the following quantum query
lower bounds on the complexity of CONn.

CCC 2021

28:24 Quantum Complexity of Minimum Cut

▶ Theorem 33 ([11]). The bounded-error quantum query complexity of CONn is Θ(n3/2) in
the adjacency matrix model and Θ(n) in the adjacency array model.

This theorem shows that, in the adjacency matrix model, Theorem 21 is tight up to
polylogarithmic factors for simple graphs. For the adjacency array model there is still
a gap between the Ω(n) lower bound from Theorem 33 and the Õ(

√
mn) upper bound for

simple graphs given by Theorem 21.
For the minimum cut problem in a weighted graph we prove separate and distinct lower

bounds for the adjacency matrix model and the adjacency array model. All our lower bounds
essentially follow by forcing the algorithm to solve a counting problem in order to compute
the weight of a minimum cut. We then use the following theorem by Nayak and Wu that
gives a lower bound on the quantum query complexity of exact counting.

▶ Theorem 34 ([32, Corollary 1.2]). Let k, N ∈ N with 2k + 1 ≤ N . Assume query access to
x ∈ {0, 1}N with the promise that |x| = k + 1 or |x| = k − 1. Any quantum algorithm that
correctly decides whether |x| = k + 1 or |x| = k − 1 with probability at least 2/3 must make
Ω(
√

Nk) queries.

6.1 Adjacency matrix model
In the adjacency matrix model we show that for any integer 1 ≤ τ ≤ (⌊n/2⌋ − 1)/2, in
the worst case Ω(n3/2√τ) adjacency matrix queries are needed to compute the weight of
a minimum cut of a graph with edge weights in {1, τ}. This matches the upper bound in
Theorem 21, and hence settles the quantum query complexity of weighted minimum cut in
the adjacency matrix model. For τ = 1 this reproduces the aforementioned Ω(n3/2) bound
which follows from [11].

▶ Theorem 35. Let n, τ ∈ N satisfy 1 ≤ τ ≤ (⌊n/2⌋ − 1)/2. There is a family of n-vertex
graphs G all of which have edge weights in {0, 1, τ} such that any quantum algorithm that for
every graph G ∈ G computes with probability at least 2/3 the weight of a minimum cut in
G must make Ω(n3/2√τ) queries in the adjacency matrix model. Similarly, any quantum
algorithm that for every graph G ∈ G computes with probability at least 2/3 the shores (X, X)
of a cut realizing the minimum weight must make Ω(n3/2√τ) queries in the adjacency matrix
model.

Proof. Let V be an n-element set and partition V into disjoint sets V = V0 ⊔ V1 where
|V0| = ⌊n/2⌋, |V1| = ⌈n/2⌉. Choose a distinguished vertex v0 ∈ V0, and let V ′

0 = V0 \ {v0}.
Let N = |V ′

0 × V1| and let g : V ′
0 × V1 → [N] be a bijection. For every x ∈ {0, 1}N we define

a weighted graph Gx = (V, wx) where
wx({u, v}) = τ if u, v ∈ V0 or u, v ∈ V1,
wx({u, v}) = x(g({u, v})) if (u ∈ V ′

0 , v ∈ V1) or (u ∈ V1, v ∈ V ′
0),

wx({u, v}) = 0 otherwise.
Let k = τ(⌊n/2⌋− 1). In the following ∆Gx(·) will always be with respect to Gx and we drop
the subscript. For any x it holds that wx(∆(V0)) = |x| and wx(∆({v0})) = k. Now consider
any x and a subset ∅ ̸= Y ⊊ V different from V0 or V1. We can prove that wx(∆(Y)) ≥ k.
To this end note that either ∅ ≠ Y ∩ V0 ⊊ V0 or ∅ ≠ Y ∩ V1 ⊊ V1. First assume that the
former is the case. Then

wx(∆(Y)) =
∑

u∈Y,v /∈Y

wx({u, v}) ≥
∑

u∈Y ∩V0,v∈V0\Y

wx({u, v}) ≥ k,

S. Apers and T. Lee 28:25

as k is the weight of a minimum cut in the complete weighted graph over ⌊n/2⌋ nodes
with all edge weights τ . If instead ∅ ≠ Y ∩ V1 ⊊ V1 then a similar argument shows that
wx(∆(Y)) ≥ τ(⌈n/2⌉ − 1) ≥ k.

Thus if |x| < k then ∆(V0) will be the unique minimum cut of Gx, and the weight of a
minimum cut in Gx will be wx(∆(V0)) = |x|. On the other hand, if |x| > k then the weight
of a minimum cut in Gx will be k, which is realized by the star cut ∆({v0}) (and potentially
other cuts in Gx) but not by ∆(V0) as wx(∆(V0)) = |x| > k.

Let S = {x ∈ {0, 1}N : |x| ∈ {k − 1, k + 1}} and G = {Gx : x ∈ S}. Suppose there was a
T query algorithm in the adjacency matrix model that for any Gx ∈ G with probability at
least 2/3 output the weight of a minimum cut in Gx. If the output is < k then we know that
|x| = k− 1 and if the output is k then we know that |x| = k + 1. Moreover, any query to the
adjacency matrix of Gx can be simulated by a query to x, thus such an algorithm gives a
T query algorithm to determine if |x| = k − 1 or |x| = k + 1 when we are promised one of
these is the case. Since τ ≤ (⌊n/2⌋ − 1)/2 we have 2k + 1 ≤ N and therefore we may apply
Theorem 34 to obtain T ∈ Ω(

√
Nk) = Ω(n3/2√τ).

Similarly, a T query algorithm in the adjacency matrix model that for any Gx ∈ G with
probability at least 2/3 outputs the shores of a cut realizing the minimum weight also implies
a T query algorithm to determine if |x| = k − 1 or |x| = k + 1. In this case, if |x| = k − 1
then the output must be (V0, V 0) as these are the shores of the unique minimum cut in Gx.
On the other hand, if |x| = k + 1 then (V0, V 0) is not a correct output. Thus the output of
the algorithm lets us determine with probability at least 2/3 if |x| = k− 1 or |x| = k + 1 and
we again have T ∈ Ω(

√
Nk) = Ω(n3/2√τ). ◀

6.2 Adjacency array model
Given adjacency array access to a graph with edge-weight ratio τ , we showed an upper bound
of Õ(

√
mnτ) on the quantum query complexity of computing the weight of a minimum cut.

In this section we prove two distinct lower bounds, each of which is tight in a specific regime.
First we show that for any τ > 1 there exists a family of dense graphs on n vertices with
edge-weight ratio τ for which computing the weight of a minimum cut requires Ω(n3/2) queries
to the adjacency array. This shows that the adjacency array upper bound of Theorem 21 is
tight for dense weighted graphs with constant (but non-unit) edge-weight ratio. Secondly
and using a different approach, for any 1 ≤ τ ∈ O(n) we prove an Ω(τn) lower bound for a
family of dense graphs with edge-weight ratio τ . This shows that we cannot get a quantum
speedup when τ ∈ Ω(n).

6.2.1 Constant edge-weight ratio
For the first bound we first need a claim about the minimum cuts of a complete weighted
bipartite graph.

▷ Claim 36. Let n ≥ 8 be a multiple of 4 and G = (L ⊔ R, w) be a weighted bipartite
graph with bipartition L, R where |L| = 3n/4, |R| = n/4. Further suppose that for every
x ∈ L, y ∈ R it holds that w({x, y}) ≥ 1. Then any cut of G that is not of the form ∆G({x})
for x ∈ L has weight at least n/2.

Proof. First consider a star cut ∆G({y}) for y ∈ R. This has weight at least 3n/4, since this
is the degree of y and all edges have weight at least 1.

CCC 2021

28:26 Quantum Complexity of Minimum Cut

It now remains to show the claim holds for non-star cuts. Consider a general non-star
cut with shore X ∪ Y with X ⊆ L, Y ⊆ R. Let k = |X|, ℓ = |Y |. As it is a non-star cut we
have k + ℓ ≥ 2. By complementing as needed we may also assume that k ≤ 3n/8. We also
have the obvious constraints that ℓ ≤ n/4 and k, ℓ ≥ 0.

As G is a complete weighted bipartite graph with every edge weight at least one we have

w(∆G(X ∪ Y)) ≥ k(n/4− ℓ) + ℓ(3n/4− k) .

As k ≤ 3n/8 the term ℓ(3n/4− k) is greater than n/2 whenever ℓ ≥ 2. Thus we can focus
on ℓ ∈ {0, 1}. If ℓ = 0 then k ≥ 2 and so the weight of the cut is at least k(n/4) = n/2 as
desired. If ℓ = 1 then the weight of the cut is k(n/4− 1) + 3n/4− k which is always at least
3n/4 as long as n ≥ 8. ◁

This claim means that if minx∈L w(∆G({x})) < n/2 then this value will be the weight of
a minimum cut in G. We can leverage this to show a lower bound as follows. In the next
proof, for a function f : {0, 1}n → {0, 1} we will use Q1/3(f) to denote the quantum query
complexity of computing f with error at most 1/3.

▶ Theorem 37. Let n ≥ 8 be a multiple of 4 and 0 < ε ≤ 1. There is a family of n-vertex
graphs G all of which have edge weights in {1, 1+ε} such that any quantum algorithm that for
every graph G ∈ G computes with probability at least 2/3 the weight of a minimum cut in G

must make Ω(n3/2) queries in the adjacency array model. Similarly, any quantum algorithm
that for every graph G ∈ G computes with probability at least 2/3 the shores (X, X) of a cut
realizing the minimum weight must make Ω(n3/2) queries in the adjacency array model.

Proof. Let X = {x ∈ {0, 1}n/4 : |x| = ⌊n/8⌋ − 1} and Y = {y ∈ {0, 1}n/4 : |y| = ⌊n/8⌋+ 1}.
For every x = (x(1), . . . , x(3n/4)) ∈ (X∪Y)3n/4 we associate a bipartite graph Gx = (L⊔R, wx)
where L = {1, . . . , 3n/4}, R = {3n/4 + 1, . . . , n} and wx({i, j}) = 1 + ε · x(i)(j − 3n/4) for
every i ∈ L, j ∈ R. We set G = {Gx : x ∈ (X ∪ Y)3n/4}.

Define the function g : X ∪Y → {0, 1} where g(x) = 0 iff x ∈ X. We have Q1/3(g) ∈ Ω(n)
by Theorem 34. Let f : {0, 1}3n/4 → {0, 1} be the AND function, for which Q1/3(f) ∈ Ω(

√
n).

By the composition theorem for quantum query complexity [23, 34], we have Q1/3(h) ∈
Ω(n3/2) for the composed function h = f ◦ g3n/4.

Let x = (x(1), . . . , x(3n/4)) ∈ (X ∪Y)3n/4. If h(x) = 1 then x(i) ∈ Y for all i ∈ [3n/4] and
the weight of the star cut ∆Gx({i}) = n/4 + ε · (⌊n/8⌋+ 1). As ε ≤ 1 this will be the weight
of a minimum cut in Gx by Claim 36. On the other hand if h(x) = 0 then some x(i) ∈ X

and ∆Gx({i}) = n/4 + ε · (⌊n/8⌋ − 1) and this will be the weight of a minimum cut of Gx.
Thus computing the weight of a minimum cut of Gx lets us evaluate h(x). Further, given
oracle access to x we can simulate queries to Gx in the adjacency array model. Let Ax be a
3n/4-by-n/4 matrix whose ith row is the vector 1 + εx(i). Then the vertical concatenation of
A with AT is a valid adjacency array for Gx. To a degree query on vertex i we simply answer
n/4 if 1 ≤ 3n/4 and 3n/4 if 3n/4 + 1 ≤ i ≤ n. We can also answer a query to the name and
weight of the jth neighbor of i with one query to x. This shows that the (1/3)-error quantum
query complexity of computing the weight of a minimum cut on graphs in G in the adjacency
array model is at least Q1/3(f ◦ g3n/4) ∈ Ω(n3/2).

Finally, suppose a quantum query algorithm can compute a shore of a minimum cut in
Gx with T queries. We know that this shore must be of the form {v} for a vertex v ∈ L.
Thus with with O(n) more queries the algorithm can classically compute the weight of a
minimum cut by querying the weight of the neighbors of v. Thus T + O(n) ∈ Ω(n3/2), which
means T ∈ Ω(n3/2). This completes the proof. ◀

S. Apers and T. Lee 28:27

6.2.2 Large edge-weight ratio
Let n ∈ N be a multiple of 4 and V be a vertex set with |V | = n. Partition V into four sets
V1, V2, V3, V4.

Now consider an integer τ such that 1 ≤ τ ≤ 5n/8 and τn/10 is an integer. Fix a set S

of τn/10 “edge disjoint” quadruples (u1, u2, u3, u4) ∈ V1 × V2 × V3 × V4. By edge disjoint
we mean no pair of consecutive elements (ui, ui+1) or (u4, u1) appears in more than one
quadruple. We fix an enumeration of S and refer to the vertices in the ℓth quadruple as
uℓ

1, uℓ
2, uℓ

3, uℓ
4.

For every x ∈ {0, 1}τn/10 we define an n-vertex weighted graph Gx = (V, wx) where
wx({u, v}) = τ if u ̸= v ∈ Vi for some i ∈ [4], and for ℓ ∈ [τn/10] we set

wx({uℓ
1, uℓ

2}) = wx({uℓ
3, uℓ

4}) = xℓ,

wx({uℓ
2, uℓ

3}) = wx({uℓ
4, uℓ

1}) = 1− xℓ .

Otherwise, wx({u, v}) = 0. In words, on each Vi we have a complete graph with all edge
weights τ , and for each ℓ ∈ [τn/10] we either add unit weight edges {uℓ

1, uℓ
2}, {uℓ

3, uℓ
4} or

{uℓ
2, uℓ

3}, {uℓ
4, uℓ

1} depending on xℓ. The construction is depicted in Figure 3.
There are a few important points to note about this definition. First, the edge-weight

ratio of Gx is τ . Second, for any X that nontrivially intersects some Vi we have that
w(∆Gx(X)) ≥ τ(n/4− 1). This means that such an X cannot be the shore of a minimum
cut of Gx. Third, by construction the degree of every vertex of Gx is independent of x.
This means that degree queries to Gx can be trivially answered and give us no information
about x.

Figure 3 Figure of graph Gx. If xℓ = 1 then we add edges {uℓ
1, uℓ

2} and {uℓ
3, uℓ

4}. If xℓ = 0 then
we add edges {uℓ

2, uℓ
3} and {uℓ

4, uℓ
1}.

▶ Lemma 38. We can simulate a single query to Gx in the adjacency array model using a
single query to x.

Proof. We first handle degree queries. This can be answered with no queries to x as the
degree of a vertex is independent of x.

Now consider a query (v, k) ∈ V × [deg(v)] to which we must answer the name u of the
k-th neighbor of v and the edge weight wx({u, v}). For clarity of exposition, we assume
v = ut

1 ∈ V1; the other cases are handled similarly.

CCC 2021

28:28 Quantum Complexity of Minimum Cut

If k ≤ n/4−1 then return the k-th neighbor u of v inside V1 and edge weight wx({u, v}) =
τ .
If k ≥ n/4 then let j = k − n/4 + 1. Letting ℓ denote the index of the jth quadruple of S

containing v we query xℓ.
If xℓ = 1 then return neighbor uℓ

2 and edge weight w({v, uℓ
2}) = 1.

If xℓ = 0 then return neighbor uℓ
4 and edge weight w({v, uℓ

4}) = 1.
In total this takes a single query to x, which proves the lemma. ◀

Now we can prove the following lemma.

▶ Lemma 39. Fix integers n and τ such that 1 ≤ τ ≤ 5n/8 and τn/10 ∈ N. Consider a
string x ∈ {0, 1}τn/10 and the corresponding graph Gx. If |x| < τn/20 then Gx has a unique
minimum cut with shores (X, X) = (V1 ∪ V2, V3 ∪ V4) and weight w(∆Gx

(X)) = 2|x|. If
|x| > τn/20 then Gx has a unique minimum cut with shores (X, X) = (V1 ∪ V4, V2 ∪ V3) and
weight w(∆Gx

(X)) = 2(τn/10− |x|).

Proof. First consider any cut shore that nontrivially intersects some Vi. Since the subgraph
Gx[Vi] induced on Vi is a complete graph with edge weights τ , this implies that such a cut
has weight at least τ(|Vi| − 1) = τ(n/4− 1). Now consider the small set of remaining cut
shores that trivially intersect the Vi’s. The weight of each one of these cuts can be easily
expressed as a function of the Hamming weight |x| of the input:

w(∆Gx(Vi)) = τn/10,

w(∆Gx
(V1 ∪ V3)) = w(∆Gx

(V2 ∪ V4)) = 2τn/10,

w(∆Gx
(V1 ∪ V2)) = w(∆Gx

(V3 ∪ V4)) = 2|x|,
w(∆Gx

(V1 ∪ V4)) = w(∆Gx
(V2 ∪ V3)) = 2(τn/10− |x|).

It is clear that all minimum weight cuts will be among these cuts, and the lemma easily
follows. ◀

Using this lemma we can prove the following theorem.

▶ Theorem 40. Let τ, n ∈ N be such that 1 ≤ τ ≤ 5n/8 and τn/20 ∈ N. There exists
a family of n-vertex graphs G′ with Ω(n2) edges, all of which have edge weights in {1, τ},
such that any quantum algorithm that for every graph G′ ∈ G′ computes with probability at
least 2/3 the weight of a minimum cut in G′ must make Ω(nτ) queries in the adjacency
array model. Similarly, any quantum algorithm that for every graph G′ ∈ G′ computes with
probability at least 2/3 the shores (X, X) of a cut realizing the minimum weight must make
Ω(nτ) queries in the adjacency array model.

Proof. First consider the set of strings X ⊆ {0, 1}τn/10 with Hamming weight

|x| = ⌊τn/100⌉ ± 1 < τn/20.

By Lemma 39 the graph Gx, x ∈ X , has a unique minimum cut with shores (V1 ∪V2, V3 ∪V4)
and weight 2|x|. Now let G′ = {Gx : x ∈ X} and assume the existence of a quantum
algorithm that for every Gx ∈ G′ computes with probability at least 2/3 the weight 2|x| of
a minimum cut in G′ with at most q queries to the adjacency array of Gx. By Lemma 38
this is equivalent to outputting the Hamming weight |x| with probability at least 2/3 for any
x ∈ X while making only q queries to x. Using Theorem 34 this implies the lower bound
q ∈ Ω(τn).

S. Apers and T. Lee 28:29

Next consider the set of strings X ′ ⊆ {0, 1}τn/10 that have Hamming weight |x| =
τn/20 ± 1. By Lemma 39 the graph Gx, x ∈ X ′, again has a unique minimum cut. If
|x| = τn/20 − 1 then its shores are (V1 ∪ V2, V3 ∪ V4), while if |x| = τn/20 + 1 then its
shores are (V1 ∪ V4, V2 ∪ V3). Now assume that there exists a quantum algorithm that with
probability at least 2/3 returns the shores of a minimum weight cut of Gx with at most
q queries to the adjacency array of Gx. By Lemma 38 this is equivalent to distinguishing
|x| = τn/20 − 1 from |x| = τn/20 + 1 with probability at least 2/3 for any x ∈ X while
making only q queries to x. Using Theorem 34 this implies the lower bound q ∈ Ω(τn). ◀

References

1 Andris Ambainis and Robert Špalek. Quantum algorithms for matching and network flows. In
Proceedings of the Annual Symposium on Theoretical Aspects of Computer Science (STACS),
pages 172–183. Springer, 2006.

2 Simon Apers and Ronald de Wolf. Quantum speedup for graph sparsification, cut approximation
and Laplacian solving. In Proceedings of the 61st Annual Symposium on Foundations of
Computer Science (FOCS), pages 637–648. IEEE, 2020.

3 Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsifiers.
SIAM J. Comput., 41(6):1704–1721, 2012. doi:10.1137/090772873.

4 Aleksandrs Belovs, Andrew M Childs, Stacey Jeffery, Robin Kothari, and Frédéric Magniez.
Time-efficient quantum walks for 3-distinctness. In International Colloquium on Automata,
Languages, and Programming, pages 105–122. Springer, 2013.

5 András A. Benczúr and David R. Karger. Randomized approximation schemes for cuts and
flows in capacitated graphs. SIAM J. Comput., 44(2):290–319, 2015. doi:10.1137/070705970.

6 Nalin Bhardwaj, Antonio M. Lovett, and Bryce Sandlund. A simple algorithm for minimum
cuts in near-linear time. In Proceedings of the 17th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT), volume 162 of LIPIcs, pages 12:1–12:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.SWAT.2020.12.

7 Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Manaswi Paraashar. Query complexity of
global minimum cut. CoRR, abs/2007.09202, 2020. arXiv:2007.09202.

8 Rodrigo A. Botafogo. Cluster analysis for hypertext systems. In Proceedings of the 16th
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, page 116–125, New York, NY, USA, 1993. Association for Computing Machinery.
doi:10.1145/160688.160704.

9 Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplifica-
tion and estimation. Quantum computation and quantum information: A millennium volume,
305, 2002.

10 Harry Buhrman, Richard Cleve, Ronald de Wolf, and Christof Zalka. Bounds for small-
error and zero-error quantum algorithms. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science (FOCS), pages 358–368. IEEE, 1999.

11 Christoph Dürr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla. Quantum query complexity
of some graph problems. SIAM J. Comput., 35(6):1310–1328, 2006. doi:10.1137/050644719.

12 Christoph Dürr and Peter Høyer. A quantum algorithm for finding the minimum. CoRR,
quant-ph/9607014, 1996. arXiv:quant-ph/9607014.

13 Lester R. Ford and Delbert R. Fulkerson. Flows in Networks. Princeton University Press,
1962. URL: http://www.jstor.org/stable/j.ctt183q0b4.

14 Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Panigrahi. A
general framework for graph sparsification. SIAM J. Comput., 48(4):1196–1223, 2019. doi:
10.1137/16M1091666.

15 Harold N. Gabow. A matroid approach to finding edge connectivity and packing arborescences.
J. Comput. Syst. Sci., 50(2):259–273, 1995. doi:10.1006/jcss.1995.1022.

CCC 2021

https://doi.org/10.1137/090772873
https://doi.org/10.1137/070705970
https://doi.org/10.4230/LIPIcs.SWAT.2020.12
http://arxiv.org/abs/2007.09202
https://doi.org/10.1145/160688.160704
https://doi.org/10.1137/050644719
http://arxiv.org/abs/quant-ph/9607014
http://www.jstor.org/stable/j.ctt183q0b4
https://doi.org/10.1137/16M1091666
https://doi.org/10.1137/16M1091666
https://doi.org/10.1006/jcss.1995.1022

28:30 Quantum Complexity of Minimum Cut

16 Paweł Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in O(m log2 n) time. In
Proceedings of the 47th International Colloquium on Automata, Languages, and Programming
(ICALP), volume 168 of LIPIcs, pages 57:1–57:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.57.

17 Paweł Gawrychowski, Shay Mozes, and Oren Weimann. A note on a recent algorithm for
minimum cut. In Symposium on Simplicity in Algorithms (SOSA), pages 74–79. SIAM, 2021.

18 Ralph E. Gomory and Te C. Hu. Multi-terminal network flows. Journal of the Society
for Industrial and Applied Mathematics, 9(4):551–570, 1961. URL: http://www.jstor.org/
stable/2098881.

19 Lov Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev.
Lett., 78:325–328, 1997.

20 Monika R. Henzinger and Valerie King. Randomized dynamic graph algorithms with polylog-
arithmic time per operation. In Proceedings of the 27th annual ACM symposium on Theory of
computing (STOC), pages 519–527, 1995.

21 Monika R. Henzinger, Satish Rao, and Di Wang. Local flow partitioning for faster edge
connectivity. SIAM J. Comput., 49(1):1–36, 2020. doi:10.1137/18M1180335.

22 Monika R. Henzinger and David P. Williamson. On the number of small cuts in a graph. Inf.
Process. Lett., 59(1):41–44, 1996. doi:10.1016/0020-0190(96)00079-8.

23 Peter Høyer, Troy Lee, and Robert Špalek. Negative weights make adversaries stronger. In
Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), pages
526–535. ACM, 2007. doi:10.1145/1250790.1250867.

24 David R. Karger. Random sampling in cut, flow, and network design prob-
lems. Mathematics of Operations Research, 24(2):383–413, 1999. URL: http:
//ezproxy.lib.uts.edu.au/login?url=https://www-proquest-com.ezproxy.lib.uts.
edu.au/scholarly-journals/random-sampling-cut-flow-network-design-problems/
docview/212675010/se-2?accountid=17095.

25 David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000. doi:
10.1145/331605.331608.

26 Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic edge connectivity in near-linear
time. J. ACM, 66(1):4:1–4:50, 2019. doi:10.1145/3274663.

27 Jason Li. Deterministic mincut in almost-linear time. In Proceedings of the 53rd annual ACM
symposium on Theory of computing (STOC), 2021.

28 On-Hei S. Lo, Jens M. Schmidt, and Mikkel Thorup. Compact cactus representations of all
non-trivial min-cuts. Discrete Applied Mathematics, 2020. doi:10.1016/j.dam.2020.03.046.

29 David W. Matula. A linear time 2+epsilon approximation algorithm for edge connectivity. In
Vijaya Ramachandran, editor, Proceedings of the 4th Annual ACM/SIGACT-SIAM Symposium
on Discrete Algorithms (SODA), pages 500–504. ACM/SIAM, 1993. URL: http://dl.acm.
org/citation.cfm?id=313559.313872.

30 Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-query,
and streaming algorithms. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 496–509, 2020.

31 Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multigraphs and
capacitated graphs. SIAM J. Discret. Math., 5(1):54–66, 1992. doi:10.1137/0405004.

32 Ashwin Nayak and Felix Wu. The quantum query complexity of approximating the median and
related statistics. In Proceedings of the 31st annual ACM symposium on Theory of computing
(STOC), pages 384–393, 1999.

33 Jean-Claude Picard and Maurice Queyranne. Selected applications of minimum cuts in
networks. INFOR: Information Systems and Operational Research, 20(4):394–422, 1982.
doi:10.1080/03155986.1982.11731876.

34 Ben Reichardt. Reflections for quantum query algorithms. In Proceedings of the 22nd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 560–569. SIAM, 2011.
doi:10.1137/1.9781611973082.44.

https://doi.org/10.4230/LIPIcs.ICALP.2020.57
http://www.jstor.org/stable/2098881
http://www.jstor.org/stable/2098881
https://doi.org/10.1137/18M1180335
https://doi.org/10.1016/0020-0190(96)00079-8
https://doi.org/10.1145/1250790.1250867
http://ezproxy.lib.uts.edu.au/login?url=https://www-proquest-com.ezproxy.lib.uts.edu.au/scholarly-journals/random-sampling-cut-flow-network-design-problems/docview/212675010/se-2?accountid=17095
http://ezproxy.lib.uts.edu.au/login?url=https://www-proquest-com.ezproxy.lib.uts.edu.au/scholarly-journals/random-sampling-cut-flow-network-design-problems/docview/212675010/se-2?accountid=17095
http://ezproxy.lib.uts.edu.au/login?url=https://www-proquest-com.ezproxy.lib.uts.edu.au/scholarly-journals/random-sampling-cut-flow-network-design-problems/docview/212675010/se-2?accountid=17095
http://ezproxy.lib.uts.edu.au/login?url=https://www-proquest-com.ezproxy.lib.uts.edu.au/scholarly-journals/random-sampling-cut-flow-network-design-problems/docview/212675010/se-2?accountid=17095
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/3274663
https://doi.org/10.1016/j.dam.2020.03.046
http://dl.acm.org/citation.cfm?id=313559.313872
http://dl.acm.org/citation.cfm?id=313559.313872
https://doi.org/10.1137/0405004
https://doi.org/10.1080/03155986.1982.11731876
https://doi.org/10.1137/1.9781611973082.44

S. Apers and T. Lee 28:31

35 Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing exact minimum cuts
without knowing the graph. In Proceedings of the 9th Innovations in Theoretical Computer
Science Conference (ITCS), pages 39:1–39:16. LIPICS, 2018. doi:10.4230/LIPIcs.ITCS.2018.
39.

36 Robert E. Tarjan and Uzi Vishkin. Finding biconnected components and computing tree
functions in logarithmic parallel time. In Proceedings of the 25th Annual Symposium on
Foundations of Computer Science (FOCS), pages 12–20. IEEE, 1984.

A Karger’s theorem

In this appendix we prove a slight generalization of Karger’s theorem [25, Theorem 4.1]
which is needed for our time-efficient algorithm. We begin by introducing some needed tools.

A.1 Tools
Matula [29] gave an O(m/ε) time deterministic algorithm to compute a (2+ε)-approximation
to the edge connectivity of a simple graph (or multigraph). The algorithm can also be adapted
to give a constant factor approximation to the weight of a minimum cut in an integer-weighted
graph in time O(m log2(n)), see Appendix A of [16].

▶ Lemma 41 (Matula’s approximation algorithm [29, 16]). Let G = (V, w) be an integer-
weighted graph with m edges and n vertices. There is a constant c and a deterministic
algorithm that in time O(m log2(n)) outputs a value λ̃ such that λ̃/c ≤ λ(G) ≤ λ.

To efficiently construct a tree-packing we will also need to use random sampling. The
following lemma is the heart of Karger’s skeleton construction [24]. We recommend the
presentation in [6, Lemma 14].

▶ Lemma 42 ([24]). Let G be an unweighted multigraph with m edges. For an integer d ≥ 2
and real numbers ε, γ with ε ≤ 1/3, let p = 3d(ln n)/(ελ(G)). In time O(pm log(n)) we can
randomly sample ⌈pm⌉ edges of G. With probability 1− 1/nd the resulting graph H has the
properties that
1. The minimum cut of H is within a (1 + ϵ) factor of pλ(G) = 3d ln(n)/ε2.
2. For every X ⊆ V we have (1− ε)w(∆G(X)) ≤ w(∆H(X)) ≤ (1 + ε)w(∆G(X)).

Another very useful tool we use is the Nagamochi-Ibaraki construction which shows that
for an integer-weighted graph G with m edges, in time O(m log(n)) one can construct a
graph G′ whose total edge weight is nc and which preserves all cuts of G of weight at most c.

▶ Lemma 43 ([31]). Let G = (V, w) be an n-vertex integer-weighted graph with m edges.
For any positive integer c there is a deterministic algorithm that in time O(m log n) produces
an integer-weighted graph G′ = (V, w′) with total edge weight O(cn) such that for all X ⊆ V

with ∆G(X) ≤ c it holds that w(e) = w′(e) for all e ∈ ∆G(X). Thus in particular ∆G(X) =
∆G′(X) and w(∆G(X)) = w′(∆G′(X)) for all X with ∆G(X) ≤ c.

We combine the tools of Matula’s approximation algorithm, random sampling, and the
sparse certificate of Nagamochi-Ibaraki into the following lemma.

▶ Lemma 44. Let G = (V, w) be an integer-weighted graph and let 0 < δ < 1 be a parameter.
There is an O(m log2(n) + n log(n)) time randomized algorithm to create a weighted graph
H = (V, wH) such that
1. H has O(n log(n)/ε2) edges.
2. The minimum cut of H has value λ(H) = O(log n).
3. If X ⊆ V is such that w(∆(X)) ≤ (1 + δ)λ(G) then wH(∆(X)) ≤ (1 + 3δ)λ(H).

CCC 2021

https://doi.org/10.4230/LIPIcs.ITCS.2018.39
https://doi.org/10.4230/LIPIcs.ITCS.2018.39

28:32 Quantum Complexity of Minimum Cut

Proof. First, by Lemma 41, in time O(m log2(n)) we can find a constant factor approximation
λ̃ satisfying λ̃/c ≤ λ(G) ≤ λ̃ . Next we apply the Nagamochi-Ibaraki algorithm to G with
threshold t = (1 + δ)λ̃. In O(m log(n)) time this produces an integer-weighted graph G2 =
(V, w′) with total edge weight O(tn) such that for every X ⊆ V with w(∆G(X)) ≤ (1 + δ)λ̃
it holds that w(∆G(X)) = w′(∆G(X)).

We now view G2 as an unweighted multigraph with O(tn) edges and apply Lemma 42.
Let p = ln(n)/λ̃. We randomly choose ⌈pE(G2)⌉ = O(n ln(n)) edges of G2 and let the
resulting graph be H. This can be done in time O(n log(n)). By Lemma 42 the graph has
the stated properties. The total running time is O(m log2(n) + n log(n)). ◀

A.2 Tree packing
With these preliminaries in place we now turn to actually constructing a tree packing. We
first need the definition, and a lemma of Karger.

▶ Definition 45 (Weighted tree packing). Let G = (V, w) be an integer-weighted graph. A
weighted tree packing is a set of spanning trees of G, each with an assigned weight, such
that the total weight of trees containing any edge e ∈ E(G) is at most w(e). The value of the
packing is the total weight of trees in it.

▶ Lemma 46 ([25, Lemma 2.3]). Given a weighted tree packing of value βc and a cut of
value αc, at least a (3− α/β)/2 fraction of the trees by weight 2-constrain the cut.

Gabow gives an algorithm to construct a near optimal tree packing in an unweighted
multigraph. The following is an easy adaptation to an integer-weighted graph.

▶ Lemma 47 ([15]). Let G = (V, w) be an integer-weighted graph with n vertices and m

edges. There is a deterministic algorithm that finds an integer-weighted tree packing of G of
value at least λ(G)/2 in time O(m(λ(G)2 log(n) + log2(n))).

Proof. For a multigraph H with n vertices and m′ edges, Gabow [15] gives a deterministic
algorithm that finds a tree packing of weight λ(H)/2 in time m′λ(H) log(n). The only
difference with our case is that G is an integer-weighted graph instead of a multigraph. We
can of course view G as a multigraph but it becomes too expensive to run Gabow’s algorithm
if this significantly blows up the number of edges.

Thus we first use Lemma 41 to compute λ̃ such that λ̃/c ≤ λ(G) ≤ λ̃ in time O(m log2(n)).
Then we make a pass through the edges of G and form a graph G′ where any edge of weight
larger than λ̃ in G is thresholded down to λ̃. Thus when viewed as a multigraph G′ will only
have O(mλ(G)) edges. Any tree packing of G is also a tree packing of G′ as the value of any
tree packing is at most λ(G) ≤ λ̃. We can then apply Gabow’s algorithm to G′ to obtain the
theorem. ◀

We are finally ready to prove the slight generalization of Karger’s theorem that we require.

▶ Theorem 24 ([25, Theorem 4.1]). Let G = (V, w) be a weighted graph with n vertices
and m edges. There is a randomized algorithm that in time O(m log2(n) + n log4(n)) time
constructs a set of O(log n) spanning trees such that every (1 + 1/16)-near minimum cut of
G 2-respects 1/4 of them with high probability.

S. Apers and T. Lee 28:33

Proof. In O(m) time we can find the minimum weight α of an edge of G. Multiplying all
edge weights by 1/α we obtain a graph where all edge weights are at least 1 and that has
the same set of (1 + 1/16)-near minimum cuts as G. Thus without loss of generality now
assume that G has all edge weights at least 1.

In O(m) time we create the integer-weighted graph G′ = (V, w′) where w′(e) = ⌊100w(e)⌉.
Note that as we assume that every edge of G has weight at least 1, for any X ⊆ V we have

0.995w(∆G(X)) ≤ w(∆G′(X))
100 ≤ 1.005w(∆G(X)) . (1)

Thus if ∆G(X) is a (1 + ε)-near minimum cut of G then ∆G′(X) is a (1 + ε)(1.005)2-near
minimum cut of G′. With ε = 1/16 it follows that ∆G′(X) is a 1 + 1/12-near minimum cut
of G′.

Next we apply Lemma 44 to G′ to in time O((m + n) log2(n)) create a graph H with the
properties specified there. We then use Lemma 47 to find a tree packing of weight at least
λ(H)/2 and which contains O(log(n)) trees since λ(H) = O(log(n)). Now let ∆G(X) be a
(1 + 1/16)-near minimum cut of G. Then ∆G′(X) is a (1 + 1/12)-near mincut of G′ and by
Lemma 44, ∆H(X) is a 1 + 1/4-near mincut of H. Therefore by Lemma 46 at least 1/4 of
the trees in the packing will 2-respect ∆H(X). These trees must also 2-respect ∆G(X) since
it has the same shore X. ◀

CCC 2021

On the Complexity of Evaluating Highest Weight
Vectors
Markus Bläser #

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Julian Dörfler #

Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus, Germany

Christian Ikenmeyer1 #

University of Liverpool, UK

Abstract
Geometric complexity theory (GCT) is an approach towards separating algebraic complexity classes
through algebraic geometry and representation theory. Originally Mulmuley and Sohoni proposed
(SIAM J Comput 2001, 2008) to use occurrence obstructions to prove Valiant’s determinant vs
permanent conjecture, but recently Bürgisser, Ikenmeyer, and Panova (Journal of the AMS 2019)
proved this impossible. However, fundamental theorems of algebraic geometry and representation
theory grant that every lower bound in GCT can be proved by the use of so-called highest weight
vectors (HWVs). In the setting of interest in GCT (namely in the setting of polynomials) we prove
the NP-hardness of the evaluation of HWVs in general, and we give efficient algorithms if the
treewidth of the corresponding Young-tableau is small, where the point of evaluation is concisely
encoded as a noncommutative algebraic branching program! In particular, this gives a large new
class of separating functions that can be efficiently evaluated at points with low (border) Waring
rank. As a structural side result we prove that border Waring rank is bounded from above by the
ABP width complexity.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Mathe-
matics of computing → Mathematical software

Keywords and phrases Algebraic complexity theory, geometric complexity theory, algebraic branching
program, Waring rank, border Waring rank, representation theory, highest weight vector, treewidth

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.29

Related Version Previous Version: https://arxiv.org/abs/2002.11594

Funding Christian Ikenmeyer : DFG grant IK 116/2-1.

1 Introduction

Geometric complexity theory (GCT) is an approach towards the separation of algebraic
complexity classes using algebraic geometry and representation theory [45, 46, 17]. Let
peri :=

∑
π∈Si

∏i
j=1 xj,π(j) be the permanent polynomial. Valiant asked for the smallest

size of a matrix A whose entries are affine linear polynomials such that det(A) = peri and his
famous VBP ̸= VNP conjecture (also known as the “determinant vs permanent conjecture”)
states that this size is not polynomially bounded. Mulmuley and Sohoni strengthened the
conjecture by allowing peri to be approximated arbitrarily closely, i.e., VNP ̸⊆ VBP. This
question can be attacked with GCT.

In the GCT approach, we set m := d2 and let the group GLm := GL(Cm) act on a the space
of homogeneous degree d polynomials in m variables by linear transformation of the variables.
The Mulmuley–Sohoni conjecture can be rephrased as “eventually xd−i

11 peri /∈ GLm detd” if

1 part of this research was done when CI was at the Max Planck Institute for Software Systems, Germany,
and the Simons Institute for the Theory of Computing, United States

© Markus Bläser, Julian Dörfler, and Christian Ikenmeyer;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 29; pp. 29:1–29:36

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mblaeser@cs.uni-saarland.de
mailto:jdoerfler@cs.uni-saarland.de
https://orcid.org/0000-0002-0943-8282
mailto:christian.ikenmeyer@liverpool.ac.uk
https://doi.org/10.4230/LIPIcs.CCC.2021.29
https://arxiv.org/abs/2002.11594
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 On the Complexity of Evaluating Highest Weight Vectors

d grows polynomially in i. Now we try to attack this problem by representation theoretic
methods, so-called obstructions. A first crucial insight is that xd−i

11 peri ∈ GLm detd iff
GLm(xd−i

11 peri) ⊆ GLm detd. Thus, we compare two varieties and we want to disprove that
the orbit closure of the padded permanent is contained in the orbit closure of the determinant
for polynomially large d. To to so, an important object to study are so-called highest
weight vectors (HWVs) of weight λ ∈ Nm. They are homogeneous degree n polynomials
in the coefficients of homogeneous degree d polynomials in m variables, satisfying two
properties (see Sec. 5). Their dimension is called the plethysm coefficient. The dimension
of their restriction to a GLm-variety X is called the multiplicity multλC[X] of λ in the
coordinate ring C[X] 2. They are important, because if multλC[X] > multλC[Y], then
Schur’s lemma implies that X ̸⊆ Y . In this case, λ is called a multiplicity obstruction.
If additionally multλC[X] > 0 = multλC[Y], then λ is called an occurrence obstruction.
Even more fundamentally, the properties of the representation theory of GLm imply that
if xd−i

11 peri /∈ GLm detd, then there exists a HWV f such that f(GLm detd) = {0} and for
a random g ∈ GLm we have f(g(xd−i

11 peri)) ̸= 0. So this separation is always provable by
HWVs. This follows from the fact that HWVs uniquely classify the irreducible representations
of GLm.

Bürgisser et al. [16] proved that occurrence obstructions are not sufficient to prove
Mulmuley and Sohoni’s conjecture. Hence, multiplicity obstructions are a focus of recent
research [25, 36]. To compute multiplicities, it is import to understand the complexity of the
evaluation of highest weight vectors.

To calculate a multiplicity multλC[X], a common approach is to generate a basis of all
HWVs of weight λ and evaluate them at enough points from X (points from all GLm-varieties
in GCT are efficiently samplable) and observe the dimension of their linear span, which
equals multλC[X]. For this to work, one needs an algorithm to evaluate HWVs at points.
An evaluation algorithm is even more important to make the following approach work: We
know that if X ̸⊆ Y , then there exists a HWV f of some weight λ such that f(Y) = {0}
and f(x) ̸= 0 for almost all points x ∈ X [8, Cor. 11.4.2]. This evaluation is a challenging
problem in algebraic geometry that is related to deep combinatorics, see [40, 20, 2].

The reader unfamiliar with Young tableaux or highest weight vectors finds their definitions
at the beginning of Section 5, see also [16, §4].

2 Our contributions

To our best knowledge, we systematically study the complexity of evaluating highest weight
vectors for the first time. In Section 5 we first present a known combinatorial method of
exactly evaluating HWVs without expanding all the monomials explicitly which has been
used to to evaluate HWVs at points of small Waring rank as in [2, 15]. Additionally there
have been attempts to improve the running time for evaluating at products of linear forms –
the so called Chow variety – via dynamic programming [25]. We generalize both approaches
in Section 6 to allow evaluation on all points with partial derivative spaces of small dimension,
i.e., small noncommutative algebraic branching program width complexity.

▶ 6.2 Theorem (informal). The evaluation of a degree n highest weight vector fT̂ (given
by a Young tableau T̂ with r rows) at a homogeneous degree d polynomial p in m vari-
ables whose noncommutative ABP width complexity is at most w can be computed in time
O(wn+r poly(n, d, m)).

2 This defines multλC[X] without defining C[X]. The coordinate ring C[X] is the polynomial ring
quotiened by the ideal of polynomials vanishing on X.

M. Bläser, J. Dörfler, and C. Ikenmeyer 29:3

In particular, by Theorem 4.2 this includes for the first time all points of small border Waring
rank:

▶ 4.2 Theorem (informal). For all polynomials f the noncommutative ABP width of f is
less or equal to the border Waring rank of f . This also holds for commutative ABP width
complexity.

Theorem 4.2 is proved using the noncommutative algebraic branching program width com-
plexity as a tool, which shows that it is not just a notion useful for algorithmic purposes,
but a natural notion of independent interest. Note that our algorithms are particularly
useful, because the noncommutative algebraic branching program width complexity can be
determined in polynomial time, whereas determining the Waring rank of a polynomial is
NP-hard, even when it is given explicitly as a list of coefficients, see [54].

A HWV can be encoded as a linear combination of Young tableaux, see e.g. [49, §3.9] or
[34, Sec. 4.3]. All current evaluation algorithms have a running time exponentially dependent
on the size of the Young tableau. We improve this in Section 7 and establish an algorithm
that only depends exponentially on the treewidth of the Young tableau:

▶ 7.2 Theorem (informal). The evaluation of a degree n highest weight vector fT̂ given by a
Young tableau T̂ at a homogeneous degree d polynomial p in m variables with noncommutative
ABP width complexity w can be computed in time wω(τ+1) poly(n, d, m, |T |), where T is a
tree decomposition of T̂ of width τ and size |T | and ω is the matrix multiplication exponent.

Our paper is the first that formally connects the running time of algorithms in represen-
tation theory with a graph parameter. An implementation of the algorithm in Theorem 7.2
might make it possible to compute the multiplicities for examples that were out of reach before,
which is potentially useful for implementing the geometric complexity theory approach.

Lastly we show in Section 8 that this dependency is basically optimal as we show two
lower bounds under the exponential time hypothesis. A lower bound of 2o(n) for the vanishing
evaluation decision problem when the HWV f ∈ SymnSymdV is given by an arbitrary two
row Young tableau and a lower bound of 2o(

√
n) when it is given by a semistandard Young

tableau. Additionally we show NP-hardness for both versions of the decision problem and
even #P-hardness for exact evaluations.

▶ 8.1 Theorem (informal) (HWVs from two-row tableaux). Deciding whether a degree n

highest weight vector fT̂ (given by a two-row Young tableau T̂) evaluates to zero at a point
of constant degree at least 8 and of Waring rank 3 is NP-hard. Assuming ETH no 2o(n)

algorithm for this evaluation can exist.

▶ 8.9 Theorem (informal) (HWVs from semistandard tableaux). Deciding whether or not
the evaluation of a degree n highest weight vector fT̂ (given by a 5-row semistandard Young
tableau T̂) vanishes at a point of constant degree d ≥ 16 with 16 | d and of Waring rank 5 is
NP-hard. Additionally this evaluation can not be computed in time 2o(

√
n) unless ETH fails.

▶ 8.2 Theorem (informal) (#P-hardness). Evaluating a highest weight vector fT̂ (given by a
two-row Young tableau T̂) at a point of Waring rank 3 and degree d ≥ 18 is #P-hard.

We remark that it is quite surprising that these results can be obtained using points of small
constant Waring rank.

CCC 2021

29:4 On the Complexity of Evaluating Highest Weight Vectors

3 Related work

The approach to lower bounds via evaluating HWVs was used in [13, 14] in the tensor
setting to obtain lower bounds on the border rank of matrix multiplication. This also led
to multiplicity obstructions (even occurrence obstructions). Our complexity results can be
interpreted as limitations on how far such an approach via explicit evaluations can be pushed.

Combinatorics on tableaux for describing highest weight vectors has a rich history dating
back to the early invariant theory. This tableau calculus is equivalent to the classical
Feynman diagram calculus explained in [1], see also [49]. Highest weight vectors of a GLm-
representation W are also called covariants, since they correspond to the invariants of
W ⊗ (SλCm)∗, see e.g. [48, Def. 3.9]. Recently, these methods have been applied in various
areas, see [39, 3, 50, 24, 44, 2, 15, 21], to name a few. If we restrict ourselves to two-row
Young diagrams, then inheritance principles from representation theory [34, Sec. 5.3] let us
replace V with C2. Then SymdC2 is the space of homogeneous degree d polynomials in 2
variables. This is the Hilbert space corresponding to a system of d indistinguishable photons
distributed among two modes, which is used in the study of 2-mode linear optical circuits on
d indistinguishable particles.

Waring rank and border Waring rank are classical notions studied in algebraic geometry
in the language of higher secant varieties [41]. More generally, border complexity is classically
studied in algebraic geometry, see [42]. Bini et al [7] (see also [6]) used it in their construction
of fast matrix multiplication algorithms. Studying border complexity in algebraic circuit
complexity started with [11, 45] and recently caught momentum [31, 9, 38].

Kronecker coefficients and plethysm coefficients are the dimensions of specific highest
weight vector spaces. Algorithms for their computation or theorems about their positivity and
value that depend heavily on the shape of the input Young tableau have a long history. For
example, if the number of rows of all parameters is constant, then the Kronecker coefficient
can be computed in polynomial time [22]. A similar statement is true for plethysm coefficients,
see [27]. The software LiE [43] performs all representation theoretic computations with a
fixed number of rows. In [35], positivity of Kronecker coefficients depends on comparing
Young diagrams with respect to the dominance order, and in [4] the main parameter is the
so-called Durfee size of the Young diagram, which is the side length of largest square that
can be embedded into the Young diagram, see also the very recent [5]. The shape of the
Young diagram also plays a crucial role in the recent breakthrough proof of Stembridge’s
stability conjecture [52]. For two-row Young diagrams much additional structure is known,
for example Hermite’s classical reciprocity law for plethysm coefficients [32], which makes
our lower bound for two-row Young tableaux quite surprising.

Treewidth has been intensely studied by Robertson and Seymour and has been applied
numerous times to construct faster graph algorithms for cases where the treewidth is bounded
by a function o(n), most notably some algorithms for NP-hard problems restricted to planar
graphs, for example 3-coloring. See [23] for an introduction to treewidth algorithms.

4 Border Waring rank and Algebraic Branching Programs

In this section we introduce noncommutative ABP width complexity for polynomials and
use it to prove Theorem 4.2. Noncommutative ABP width complexity will play a central
role in Sections 6 and 7.

An algebraic branching program (ABP) is a layered directed acyclic graph (the vertex
set is partitioned into numbered layers and edges only go from the i-th layer to the (i + 1)-th
layer) with two distinguished nodes, the source and the sink, and the edges are labeled

M. Bläser, J. Dörfler, and C. Ikenmeyer 29:5

with homogeneous linear polynomials. The weight w(P) of a path P with edge labels
ℓ1, . . . , ℓd is defined as the product w(P) := ℓ1 · · · ℓd. We say that the ABP computes the
sum

∑
source-sink-path P w(P). We can view the same ABP both over commuting variables or

noncommuting variables. If we interpret it over noncommuting variables, we call it an ncABP.
If we want to stress that the variables commute, we call it a cABP. The size of an ABP is
the number of its vertices. The width of an ABP is the largest number of vertices in any
layer. For a homogeneous degree d polynomial let the ABP width complexity w(f) be defined
as the smallest width of a cABP computing f . A sequence (fn) of polynomials is called a
p-family if the number of variables and the degree of each fn are polynomially bounded in
n. p-families are the object of study in Valiant’s algebraic complexity framework. Let VBP
denote the set of all p-families (fi) with polynomially bounded ABP width complexity w(fi).

The Waring rank WR(f) of a homogeneous degree d polynomial is the smallest r such
that f can be written as a sum of r powers of homogeneous linear polynomials. Let VWaring
be the set of all p-families with polynomially bounded Waring rank.

Clearly, w(f) ≤ WR(f), because from a Waring rank r decomposition we can construct a
width r cABP that computes f in the straightforward way: The cABP contains exactly r

disjoint source-sink-paths (vertex-disjoint up to source and sink) so that on each path all
edges have the same label. Therefore VWaring ⊆ VBP.

There is a natural way to associate to every algebraic complexity measure a corresponding
border complexity measure: We define the border Waring rank WR(f) as the smallest r

such that f can be approximated arbitrarily closely (coefficient-wise) by polynomials with
WR(f) ≤ r, or equivalently, the smallest r such that f lies in the closure (Zariski closure
and Euclidean closure coincide) of the set {f | WR(f) ≤ r}. Clearly WR(f) ≤ WR(f).
Let VWaring denote the set of sequences of polynomials with polynomially bounded border
Waring rank. Clearly VWaring ⊆ VWaring.

Analogously we can define the border ABP width complexity w(f) from w. Clearly
w(f) ≤ w(f). Let VBP be the set of polynomials with polynomially bounded border ABP
width complexity. Clearly VBP ⊆ VBP.

For noncommutative polynomials we define the analogous versions ncw and ncw. It
follows from Nisan’s work [47] that ncw(f) = ncw(f).

In general, it is unknown by how much an algebraic complexity class grows when applying
the closure. In particular, it is open whether VWaring = VWaring or whether VBP = VBP.
But the following result in this direction is known.

▶ Theorem 4.1. VWaring ⊆ VBP.

The rest of this section is used to sketch the standard proof of Theorem 4.1, then to
introduce the notion of ncABPs computing polynomials, and then to prove our sharp version
of Theorem 4.1, Theorem 4.2, with a very short proof. This shows how natural the concepts
are that we introduce. The standard proof of Theorem 4.1 is just given for comparison and
is not needed in the rest of this paper.

We quickly sketch the standard proof of Theorem 4.1. We will need the following concept
only for this proof. A read-once oblivious ABP is a layered ABP whose edge labels have
univariate polynomials in xi on each edge in layer i. The first step in the proof is Saxena’s
duality trick [53, Lemma 1]:

If f ∈ C[x1, . . . , xm]d has WR(f) ≤ s, then there is a read-once oblivious ABP
computing f with width at most s · (md + d + 1).

CCC 2021

29:6 On the Complexity of Evaluating Highest Weight Vectors

The proof uses a power series argument. The next crucial step is to use a variant of Nisan’s
result [47] to see that the border read-once oblivious ABP width equals the read-once oblivious
ABP width, so approximations can be removed [29, Sec. 4.5.2]:

If f ∈ C[x1, . . . , xm]d has WR(f) ≤ s, then there is an read-once oblivious ABP
computing f with width at most s · (md + d + 1).

We can unfold this read-once oblivious ABP, i.e., replace each edge (remember, each label is
a univariate degree ≤ d polynomial) with a (non-layered) ABP computing it, where each
edge has an affine linear label. If done properly, this requires d − 1 additional vertices per
edge. Making the ABP layered and homogeneous blows up the ABP’s width by a factor of
d + 1. We conclude:

For all f ∈ C[x1, . . . , xm]d we have w(f) ≤ WR(f) · (md + d + 1) · (d + 1). (4.1)

Eq. (4.1) proves Theorem 4.1 when we assume that m and d are polynomially bounded
(which is usually assumed). We now strengthen eq. (4.1) with the following clean statement
that is independent of m and d.

▶ Theorem 4.2. For all f ∈ C[x1, . . . , xm]d we have w(f) ≤ WR(f).

In fact, we prove w(f) ≤ ncw(f) ≤ WR(f), but we have not yet defined what we mean by an
ncABP computing a polynomial. The rest of Section 4 is devoted to the proof of Theorem 4.2
and to this definition. We start with introducing several main multilinear algebra concepts
of this paper. The actual proof of Theorem 4.2 is then very short and natural.

When talking about homogeneous multivariate noncommutative polynomials, we use the
standard language of multilinear algebra: An order d tensor in ⊗dCm is a d-dimensional
m×m×· · ·×m array of numbers. There is a canonical vector space isomorphism between the
vector space of m-variate homogeneous degree d noncommutative polynomials C⟨x1, . . . , xm⟩d

and ⊗dCm, which is defined on monomials as

xi1xi2 · · · xid

∼−→ Ei1,...,id
,

where Ei1,...,id
is the tensor that is 0 everywhere, but has a single 1 at position (i1, . . . , id).

Let (ei) be the standard basis of Cm. We use the notation ei1 ⊗ ei2 ⊗ · · · ⊗ eid
:= Ei1,...,id

.
More generally, for v1, . . . , vd ∈ Cm, we write v1 ⊗ v2 ⊗ · · · ⊗ vm to be the tensor whose entry
at position (i1, . . . , id) is the product (v1)i1 · (v2)i2 · · · (vd)id

.
A tensor T is called symmetric if Ti1,...,id

= Tiπ(1),...,iπ(d) for all permutations π ∈ Sd. Let
SymdCm ⊆ ⊗dCm denote the linear subspace of symmetric tensors. There is a canonical
vector space isomorphism between the vector space of m-variate homogeneous degree d

commutative polynomials C[x1, . . . , xm]d and SymdCm, which is defined on monomials as

xi1xi2 · · · xid

∼−→
∑

π∈Sd

1
d! Eπ(i1),...,π(id),

For example, the polynomial x2
1x2 corresponds to the tensor 1

3 (e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 +
e2 ⊗ e1 ⊗ e1). 3 We use ei and xi interchangeably.

It is crucial to note that noncommutative ABPs can compute symmetric tensors. An
example is given in Figure 1, where we used x := x1 and y := x2. As before with cABPs, it
is easy to see that every Waring rank r decomposition of f can be converted into a width

3 This tensor is called the W-state in quantum information theory.

M. Bläser, J. Dörfler, and C. Ikenmeyer 29:7

•

•

•

•

•

•

x

y

1
2 y

x

1 2
x

2
3 x

1
3
y

Figure 1 An ncABP computing the symmetric tensor 1
3 (x ⊗ x ⊗ y + x ⊗ y ⊗ x + y ⊗ x ⊗ x),

which corresponds to the polynomial x2y. If we reinterpret the ncABP as a cABP, it computes
1
3 (xxy + xyx + yxx) = x2y. Such ncABPs can be efficiently constructed using Nisan’s construction
technique [47]. Interestingly, in this example the width is only 2, while the Waring rank of x2y is 3.

r ncABP computing f in the straightforward way: The ncABP contains exactly r disjoint
source-sink-paths (vertex-disjoint up to source and sink) so that on each path all edges
have the same label. Every ncABP can be reinterpreted as a cABP by letting the variables
commute. If the ncABP computes a symmetric tensor, then clearly this cABP computes the
corresponding polynomial. Now we can prove Theorem 4.2 in a very natural and short way
as follows.

Given f with a border Waring rank s decomposition. We construct the corresponding
border ncABP with s many edge-disjoint source-sink-paths, so ncw(f) ≤ s. Using Nisan’s
result [47] that ncw = ncw, it follows ncw(f) ≤ s. This gives a width s ncABP that computes
f . Reinterpreting this ncABP as a cABP finishes our proof of Theorem 4.2.

5 Highest Weight Vectors and their combinatorial evaluation

Let V = Cm be a finite dimensional complex vector space with standard basis e1, e2, . . . , em.
There is a canonical action of g ∈ GL(V) on the tensor power ⊗dV via g(p1 ⊗ · · · ⊗ pd) :=
(gp1) ⊗ · · · ⊗ (gpd) and linear continuation. This action can be lifted to a linear action on
Symn ⊗d V via

(gf)(p) := f(gtp) for f ∈ Symn ⊗d V and p ∈ ⊗dV

Note that this makes Symn ⊗d V a GL(V)-representation. We denote by SymdV ⊆ ⊗dV the
vector space of symmetric tensors over V of order d and by p1⊙· · ·⊙pd :=

∑
π∈Sd

1
d! pπ(1)⊗· · ·⊗

pπ(d) the symmetric tensor product of p1, . . . , pd ∈ V . The linear subspace SymdV ⊆ ⊗dV is
closed under the action of GL(V). This action can be lifted to a linear action on SymnSymdV

via

(gf)(p) = f(gtp) for f ∈ SymnSymdV and p ∈ SymdV

Note that this makes SymnSymdV a GL(V)-representation.
We call a sequence λ = (λ1, λ2, . . .) a partition of N ∈ N if λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ 0 and∑

i≥1 λi = N . In our case we will usually have N = nd. We denote the transpose partition
λt by µ and define it as µi = |{j | λj ≥ i}|. Note that µ is also a partition of N . We will
write partitions as finite sequences and omit all the trailing zeros.

For any GLm representation W , a highest weight vector f ∈ W of type λ is a vector that
satisfies

CCC 2021

29:8 On the Complexity of Evaluating Highest Weight Vectors

1. f is invariant under the action of any g ∈ GLm when g is upper triangular with 1s on the
diagonal.

2. diag(α1, . . . , αm)f = αλ1
1 · · · · · αλm

m f where diag(α1, . . . , αm) is the diagonal matrix with
α1, . . . , αm ∈ C on the diagonal.

The highest weight vectors of type λ form a vector space which we call HWVλ(W). We
denote by HWV(W) the vector space of all HWVs in W without any weight restriction.

The smallest example is the discriminant polynomial b2 − 4ac in Sym2Sym2C2, see [8,
Exa. 9.1.4] for which we have g(b2 − 4ac) = det(g)2(b2 − 4ac).

We first derive a combinatorial description of the evaluation of highest weight vectors.
We follow [20, 15].

We can describe the highest weight vectors of SymnSymdV in terms of so-called Young
tableaux (see also [49, §3.9], [34], and [16, §4]).

▶ Definition 5.1. A Young tableau T of shape λ = (λ1, . . . , λr) where λ is a partition is a
left justified array of boxes where row i contains λi boxes and each box contains a positive
integer. If the tableau contains the numbers 1 through n each d times it is said to have
(rectangular) content n × d, for example

1 2 3 1
2 3 has content 3 × 2. A Young tableaux is said

to be semistandard if the entries are strictly increasing in each column and non-decreasing in
each row, for example

1 1 2 3
2 3 is semistandard, while

1 2 3 1
2 3 is not. A Young tableaux is said

to be standard if the entries are strictly increasing in each column and row and every entry
occurs exactly once. For example,

1 3 4 6 7 8
2 5 9 is standard.

Fix a tableau T of shape λ with content (nd)×1 and fix a tensor p =
∑r

i=1 ℓi,1⊗· · ·⊗ℓi,d ∈
⊗dCm. We use arithmetic modulo d with the system of representatives {1, . . . , d}, so a

mod d ∈ {1, . . . , d}. Each of the sets {1, . . . , d}, {d + 1, . . . , 2d}, . . . is called a block. We
define k(a) := ⌈a/d⌉. We define j(a) := a mod d, which gives the position of the element a

in its block. A placement

ϑ : {1, . . . , nd} → {(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ d}

is called proper if there is a map φ : {1, . . . , n} → {1, . . . , r} such that ϑ(a) = (φ(k(a)), j(a)).
Every ϑ induces a map

ϑ′ : {1, . . . , nd} → {ℓi,j | 1 ≤ i ≤ r, 1 ≤ j ≤ d}, ϑ′(a) := ℓϑ(a).

We define the determinant of a matrix that has more rows than columns as the determinant
of its largest top square submatrix.

We define the polynomial fT via its evaluation on p:

fT (p) :=
∑

proper ϑ

λ1∏
c=1

det ϑ,c with det ϑ,c := det (ϑ′(T (1, c)) . . . ϑ′(T (µc, c))) (5.1)

Pictorially φ chooses one of the rank 1 tensors for each block of d numbers and places
those onto T . Then we take the product of the columnwise determinants. The evaluation
f(p) is now the sum over all possible choices.

All our algorithms for efficient evaluation of HWVs in this paper rely on equation (5.1).
We illustrate equation (5.1) with an example. Let n = 3, d = 2, T = 1 2 3 5

4 6 , and let r = 2,
ℓ1,1 = e1, ℓ2,1 = e1, ℓ1,2 = e1, ℓ2,2 = e1 + e2, where e1 = (1

0) and e2 = (0
1). Hence

p = 2e1 ⊗ e1 + e1 ⊗ e2. The three blocks are {1, 2}, {3, 4}, and {5, 6}. The first few
proper placements ϑ : {1, . . . , 6} → {(1, 1), (1, 2), (2, 1), (2, 2)}, their corresponding maps
φ : {1, 2, 3} → {1, 2}, and the determinant calculations are as follows:

M. Bläser, J. Dörfler, and C. Ikenmeyer 29:9

proper ϑ φ summand in eq. (5.1)(
(1,1),(1,2),(1,1),(1,2),(1,1),(1,2)

)
(1,1,1) det (1 1

0 0) · det (1 1
0 0) · det (1) · det (1) = 0(

(1,2),(1,1),(1,1),(1,2),(1,1),(1,2)
)

(1,1,1) det (1 1
0 0) · det (1 1

0 0) · det (1) · det (1) = 0(
(1,1),(1,2),(1,2),(1,1),(1,1),(1,2)

)
(1,1,1) det (1 1

0 0) · det (1 1
0 0) · det (1) · det (1) = 0(

(1,2),(1,1),(1,2),(1,1),(1,1),(1,2)
)

(1,1,1) det (1 1
0 0) · det (1 1

0 0) · det (1) · det (1) = 0(
(1,1),(1,2),(1,1),(1,2),(1,2),(1,1)

)
(1,1,1) det (1 1

0 0) · det (1 1
0 0) · det (1) · det (1) = 0(

(1,2),(1,1),(1,1),(1,2),(1,2),(1,1)
)

(1,1,1) det (1 1
0 0) · det (1 1

0 0) · det (1) · det (1) = 0(
(1,1),(1,2),(1,2),(1,1),(1,2),(1,1)

)
(1,1,1) det (1 1

0 0) · det (1 1
0 0) · det (1) · det (1) = 0(

(1,2),(1,1),(1,2),(1,1),(1,2),(1,1)
)

(1,1,1) det (1 1
0 0) · det (1 1

0 0) · det (1) · det (1) = 0(
(2,1),(2,2),(1,1),(1,2),(1,1),(1,2)

)
(2,1,1) det (1 1

0 0) · det (1 1
1 0) · det (1) · det (1) = 0(

(2,2),(2,1),(1,1),(1,2),(1,1),(1,2)
)

(2,1,1) det (1 1
1 0) · det (1 1

0 0) · det (1) · det (1) = 0
...

It is a classical result from multilinear algebra that this construction yields a well-
defined polynomial of weight λ on ⊗dCm. If T is the column-standard tableau, then
fT ∈ HWVλ(Symn ⊗d Cm) is not hard to verify. Schur-Weyl duality states that ⊗n ⊗d Cm =⊕

λ Sλ(V) ⊗ [λ], where the sum goes over all partitions λ of nd into at most m parts, and
where Sλ(V) is the irreducible GLm-representation of type λ (called the Schur module) and
[λ] is the irreducible Sdn-representation of type λ (called the Specht module). Since a basis
of [λ] is given by the standard tableaux of shape λ, this immediately implies that

HWVλ(Symn ⊗d Cm) is the linear span of the fT , where T is standard of shape λ. (5.2)

See for example [49] or [8, Ch. 19] for a detailed exposition.
The following Lemmas 5.2 and 5.3 follow from eq. (5.1).

▶ Lemma 5.2. Let T and T ′ be Young tableaux of the same shape with content (nd) × 1 such
that T ′ can be obtained from T by performing permutations within the blocks. The functions
fT and fT ′ coincide after restricting their domains of definition from ⊗dCm to SymdCm.
Proof. If p is symmetric, then p has a Waring rank decomposition, i.e., there exists r ∈ N
and homogeneous linear forms p1, . . . , pr such that p =

∑r
i=1 p⊗d

i . Using this decomposition
for p, we see that the summands of fT (p) and fT ′(p) in (5.1) coincide. ◀

Lemma 5.2 implies that in order to define the restriction of fT to symmetric tensors we
only need to define the blocks in T , but not the internal structure of the blocks. Thus for a
tableau with content (nd) × 1 we define the tableau T̂ by replacing all entries a ∈ {1, . . . , nd}
by k(a). The resulting tableau T̂ has content n×d. For example, if n = 2, d = 4, T = 1 3 4 6 7 8

2 5 ,
then T̂ = 1 1 1 2 2 2

1 2 . For a tableau T̂ with content n × d we define fT̂ ∈ SymdSymnCm as the
restriction of fT to SymnCm.
▶ Lemma 5.3. Let T be a Young tableau that has a column in which there are two or more
entries from the same block. Then fT = 0.
Proof. Let c be the column in T in which there are two or more entries from the same block.
As in Lemma 5.2, consider the evaluation of fT at a point p in its Waring rank decomposition.
We observe that every summand in eq. (5.1) is zero, because the determinant corresponding
to the column c has a repeated column. ◀

In other words, Lemma 5.3 says that fT̂ = 0 if T̂ contains a column in which a number
appears at least twice. Combining this insight with eq. (5.2), we conclude that

HWVλ(SymnSymdCm) is the linear span of the fT̂ ,

where T̂ is semistandard of shape λ with content n × d. (5.3)

▶ Remark 5.4. From eq. 5.1 and writing p in its Waring rank decomposition, we immediately
get an O(WR(p)n · poly(n, d, m)) algorithm to evaluate fT̂ (p).

CCC 2021

29:10 On the Complexity of Evaluating Highest Weight Vectors

6 Non-commutative algebraic branching programs

For an in-depth formal study of ncABPs we now introduce additional notation (cp. Section 4).

▶ Definition 6.1. Let V be a vector space.
A non-commutative algebraic branching program (ncABP) A is an acyclic directed graph
with two distinguished nodes s and t and edges labeled with elements from V and every
path from s to t having the same length. This makes A layered, with layer k containing
all vertices of distance k from s.
The weight w(P) of a path P with edge labels ℓ1, . . . , ℓd ∈ V is defined as w(P) :=
ℓ1 ⊗ · · · ⊗ ℓd .

The tensor computed at a node v in A is ŵ(v) =
∑

s−v path P w(P) . By convention the
tensor computed at s is 1.
The tensor computed by A is the tensor computed at t.
The size of an ncABP is the number of vertices.
The width of an ncABP is the largest number of vertices in any layer.

In particular we will be looking at ncABPs computing symmetric tensors p and the evaluation
of highest weight vectors at p. An example is given in Figure 1.

Each node in layer k computes a tensor in V ⊗k. We show in Proposition 6.6 that there is
always a minimal ncABP where all these computed tensors are also symmetric and whose
size is exactly the size of the partial derivative space of p. An example is given in Figure 1.

We can now use the “overlapping structure of the paths through ncABPs” to our advantage
in evaluating HVWs by using dynamic programming.

▶ Theorem 6.2. The evaluation fT (p) of a highest weight vector fT ∈ SymnSymdCm given
by a Young tableau T with content (nd) × 1 and r rows and a symmetric tensor p ∈ SymdCm

given by an ncAPB of width w can be computed in time O(wn+r poly(n, d, m)).

Proof. Let A be an ncABP with edge set E(A), source s, sink t, and width w computing
a symmetric tensor p ∈ SymdCm. W.l.o.g. let the numbers i · d + 1, . . . , i · d + d occur in
order left to right in T for any i ∈ {0, . . . , n − 1}, see Lemma 5.2. Note that left to right is
a unique ordering since if one column contains multiple of these numbers we already know
fT = 0, see Lemma 5.3.

Combining eq. (5.1) with p = ŵ(t) =
∑

s−t path P w(P) (see Def. 6.1) we see that

fT (p) :=
∑

proper ϑ

λ1∏
c=1

det ϑ,c with det ϑ,c := det (ϑ′(T (1, c)) . . . ϑ′(T (µc, c))) , (6.1)

where here ϑ : {1, . . . , nd} → E(A) is called proper if there exists φ : {1, . . . , n} → {s −
t path P} such that ϑ(a) = the j(a)-th edge of φ(k(a)) and ϑ′(a) is the label of ϑ(a) (see
the definitions of j and k in Section 5).

We now calculate partial evaluations in a column by column fashion from right to left. In
order to do this we define a partial placement ϑ|≤k to be the restriction of ϑ to the boxes in
the first k columns of T .

We now observe a common factor for a fixed partial placement ϑ|≤k:

∑
proper ϑ extending ϑ|≤k

λ1∏
c=1

det ϑ,c =
(

k∏
c=1

det ϑ|≤k,c

) ∑
proper ϑ extending ϑ|≤k

λ1∏
c=k+1

det ϑ,c

︸ ︷︷ ︸

=:α(ϑ|≤k)

.

M. Bläser, J. Dörfler, and C. Ikenmeyer 29:11

Since each proper ϑ corresponds to a set of n many s − t paths, each ϑ|≤k defines a set of n

partial s − t paths all starting at s (of potentially different lengths, one path for each block),
where α(ϑ|≤k) only depends on the endpoints of these paths. These paths start at s and
go up to these endpoints due to the nature of T being ordered from left to right for each
block of n numbers. This crucial observation allows us to store and reuse these values of α

whenever two partial assignments correspond to lists of n paths ending in the same vertices
of A.

We can now calculate the evaluation as fT (p) = α(ϑ|≤0) = α(∅).
Since the length of each of the paths defined by any ϑ|≤k are fixed for fixed k, there

are at most wn possible different values for α that need to be computed. So in total this
evaluation algorithm has running time O(wn+r poly(n, d, m)). The wr term comes from all
the possibilities to extend a given ϑ|≤k by one column of T . ◀

▶ Remark 6.3. Note that Theorem 6.2 is a generalisation of the dynamic programming used
in [25] to evaluate HWVs at the Chow variety Chd

m. The Chow variety Chd
m consists of

products of d linear forms ℓ1 ⊙· · ·⊙ℓd ∈ SymdCm. Here the minimal ncABP A of ℓ1 ⊙· · ·⊙ℓd

corresponds to having subsets of {1, . . . , d} as vertices where two vertices U, V ⊆ {1, . . . n}
are connected by an edge labeled ℓi iff U \ V = {i} and U ⊃ V . Then A has size exactly 2d

and width
(

d
k

)
on layer k while layer k contains all the sets of size k.

We now give the connection between the width of ncABPs, and the dimension of the
partial derivative spaces of the symmetric tensors computed by the ncAPB. We additionally
show that ncABPs can efficiently compute partial derivatives.

First note that the following equivalence between partial derivatives and polynomial
contractions is well known for fields of characteristic 0, see for example [33, Equation 1.1.2]
and [16, §5(a)]. We reformulate this as an equivalence between partial derivatives and tensor
contractions instead. For V = Cm with standard basis e1, . . . , em the tensor contraction
⟨·, ·⟩ :

⊗r
V ×

⊗s
V →

⊗s−r
V is defined for any r < s on the basis vectors via

⟨ei1 ⊗ · · · ⊗ eir , ej1 ⊗ · · · ⊗ ejs⟩ =
{

ejr+1 ⊗ ejr+2 ⊗ · · · ⊗ ejs
if ik = jk for all 1 ≤ k ≤ r

0 otherwise

and extended via linear continuation in both parameters.

▶ Lemma 6.4. Let φ be the canonical isomorphism between SymdCm and C[x1, . . . , xm]d
defined via φ (ei1 ⊙ · · · ⊙ eid

) = xi1 ·· · ··xid
. The partial derivative ∂k

∂ℓ1···∂ℓk
: C[x1, . . . , xm]d →

C[x1, . . . , xm]d−k induces a linear map SymdCm → Symd−kCm via φ that we also call
∂k

∂ℓ1···∂ℓk
. Then the ∂k

∂ℓ1···∂ℓk
t of a symmetric tensor t ∈ SymdV is given by the tensor

contraction d!
(d−k)! ⟨ℓ1 ⊗ · · · ⊗ ℓk, t⟩.

Since t is symmetric the partial derivative ∂k

∂ℓ1···∂ℓk
t is also given by d!

(d−k)! ⟨ℓ1 ⊙ · · · ⊙ ℓk, t⟩.

Proof. It suffices to prove this for the case k = 1, since repeated tensor contraction is the
same as one big tensor contraction and the same holds for partial derivatives. Since both
tensor contraction and taking derivatives are linear operations in both parameters we can
restrict ourselves to the derivative ∂

∂ei
(ej1 ⊙ · · · ⊙ ejd

) and prove that ∂
∂ei

(ej1 ⊙ · · · ⊙ ejd
) =

d · ⟨ei, ej1 ⊙ · · · ⊙ ejd
⟩. The factor of d!

(d−k)! = d(d − 1)(d − 2) · · · (d − k + 1) is then the result
of repeatedly taking the derivative.

In case ei is not any of ej1 , . . . , ejd
clearly

∂

∂ei
(ej1 ⊙ · · · ⊙ ejd

) = 0 = d!
(d − k)! ⟨ei, ej1 ⊙ · · · ⊙ ejd

⟩

so w.l.o.g. we can now assume due to symmetry ej1 = ei.

CCC 2021

29:12 On the Complexity of Evaluating Highest Weight Vectors

We can write φ (ei ⊙ ej2 ⊙ ej3 ⊙ · · · ⊙ ejd
) = xh

i · q, h ≥ 1, for some monomial q ∈
C[x1, . . . , xm] not containing xi.

∂

∂ei
(φ (ei ⊙ ej2 ⊙ ej3 ⊙ · · · ⊙ ejd

)) = h · xh−1
i · q

= φ (h · ej2 ⊙ ej3 ⊙ · · · ⊙ ejd
)

= φ (⟨ei, h · ei ⊗ (ej2 ⊙ ej3 ⊙ · · · ⊙ ejd
)⟩)

= φ (⟨ei, d · ei ⊙ ej2 ⊙ ej3 ⊙ · · · ⊙ ejd
⟩)

The last equality follows from the fact that all terms of the symmetric tensor not containing
ei as the first component of the tensor vanish under the tensor contraction. ◀

▶ Lemma 6.5. If A is an ncABP computing a symmetric tensor p ∈ SymdV , then the k-th
derivatives are linear combinations of the tensors computed at the (d − k)-th layer of A.

Proof. As proven in Lemma 6.4 the derivatives are just tensor contractions. A tensor
contraction on an ncABP replaces the last k edges on each s-t path by constants4, thus
directly proving the claim. ◀

We will now characterize the minimal size of ncABPs via the dimension of the partial
derivative spaces. For this we denote by ∂=k(t) the partial derivative space of k-th order for
t ∈ SymdV :

∂=k(t) := {⟨q, t⟩ | q ∈ SymkV }

Analogously we define

∂≤k(t) := span
k⋃

i=0
∂=i(t) .

Note that the usage of tensor contractions instead of derivatives is just for simplicity.
For a list q ∈ {1, . . . , m}k let eq := eq1 ⊗ · · · ⊗ eqk

. For a tensor p ∈ ⊗dCm we define the
mk × md−k matrix Mk(p) whose rows are indexed by elements q ∈ {1, . . . , m}k and whose
columns are indexed by elements in q′ ∈ {1, . . . , m}d−k via

Mk(p)[q, q′] := the coefficient of eq ⊗ eq′ in p. (6.2)

These matrices are sometimes called flattenings of the tensor p.

▶ Proposition 6.6. If A is an ncABP computing a symmetric tensor p ∈ SymdV , then there
is an ncABP B with the following properties:
1. B also computes p.
2. Each layer of B has at most as many vertices as the same layer in A.
3. Each node of B computes a symmetric tensor.
4. The k-th layer of B has precisely dim ∂=k(p) many vertices which is the optimal width.

4 due to the symmetry of p we could even choose any k layers and all outgoing edges out of these chosen
layers would be replaced by constants for the derivative.

M. Bläser, J. Dörfler, and C. Ikenmeyer 29:13

Proof. We mainly follow Nisan [47] who constructed minimal ncABPs and extend this to also
compute symmetric tensors at each node and establishing the connection to the dimensions
of the partial derivative spaces. For an example of a minimal ncAPB with symmetric tensors
computed at each node can be seen in Figure 1.

Let v1, . . . , vt be the vertices in a fixed layer k. Let Mk[q, q′] := Mk(p)[q, q′] from eq. (6.2).
Note that the row of Mk corresponding to q is given precisely by the tensor contraction ⟨eq, p⟩
(columns are indexed by q′ and further contraction with eq′ gives the matrix entry) and it is
thus by Lemma 6.4 a partial derivative of k-th order. Therefore rank Mk = dim ∂=k(p).

Now we can construct two matrices Lk and Rk. Here Lk[q, i] for indices q ∈
{e1, . . . , edim V }⊗k is defined as the coefficient of q in ŵ(vi) and Rk[i, q′] for indices
q′ ∈ {e1, . . . , edim V }⊗(d−k) is defined as the coefficient of q′ in the tensor computed by
the restricted ncABP with source vi. It is easy to verify Mk = LkRk.

Hence if t > rank Lk there must be some vertices vi computing a linear combination of
the other vertices in the same layer, thus all outgoing edges of vi can be replaced by precisely
this linear combination, allowing us to remove vi. In this way we can remove some vi as long
as t > rank Rk.

After this process finishes we have t = rank Lk = rank Rk = rank Mk = dim ∂=k(p)
proving the claims on the width of the layers.

Since by Lemma 6.5 all the (d − k)-th partial derivatives are linear combinations of
restrictions of the ncABP to the first k levels we can now replace all vertices on the k-th
level by t vertices computing a symmetric tensor basis of the k-th partial derivatives thus
proving the remaining claim. ◀

From this characterization of ncABP size as the rank of the partial derivative matrices
we can also see that ncABP size is preserved under approximation. This was remarked by
Michael Forbes [28], but we give a proof for the sake of completeness.

▶ Corollary 6.7. Let p ∈ SymdV and (Ai)i∈N be ncABPs s.t. Ai computes pi ∈ ⊗dV and
has size si ≤ s and width wi ≤ w with limi→∞ pi = p. Then there is an ncABP A computing
p with size at most s and width at most w.

Proof. Let the matrices Mk,pi
:= Mk(pi) from eq. (6.2). We have

Mk,p = lim
i→∞

Mk,pi .

Since each Ai has width at most w, we know that rank Mk,pi
≤ wi ≤ w. This is characterized

by all determinants of (w + 1) × (w + 1) minors of Mk,pi
vanishing. So by continuity of

the determinant also all (w + 1) × (w + 1) minors of Mk,p vanish and thus dim ∂=k(p) =
rank Mk,p ≤ w and there is an ncABP A with width at most w by Proposition 6.6.

This constructed A directly has size at most s. For this we note that the partial derivatives
of different orders are linearly independent, so dim ∂≤d(p) =

∑d
j=0 dim ∂=j(p) = s. This is

the same as looking at the rank of the direct sum ⊕d
j=0Mj,p, so the bound on the size of A

follows from the same continuity argument. ◀

From this we can conclude an order of inclusion on the sets of symmetric tensors of small
Waring rank, small border Waring rank and small non-commutative ncABP size.

CCC 2021

29:14 On the Complexity of Evaluating Highest Weight Vectors

▶ Corollary 6.8. Let k ∈ N and

Wk,d := {p ∈ SymdV | WR(p) ≤ k} ,

Wk,d := {p ∈ SymdV | WR(p) ≤ k} ,

Bk,d := {p ∈ SymdV | ncw(p) ≤ k} .

Bk,d := {p ∈ SymdV | ncw(p) ≤ k} .

Then

Wk,d ⊆ Wk,d ⊆ Bk,d = Bk,d

and there exist k, d for which the inclusions are strict.

Proof. The inclusion Wk,d ⊆ Wk,d is trivial and Bk,d = Bk,d is proven in Corollary 6.7. To
show Wk,d ⊊ Wk,d is strict we refer to [19] showing that xd−1y has Waring rank d while it
is known5 that xd−1y = limε→0

1
εd ((x + εy)d − xd) and thus xd−1y has border Waring rank

at most 2. For the inclusion Wk,d ⊆ Bk,d we can embed the k summands ℓd
i of the Waring

rank decomposition as disjoint s − t paths in an ncABP of width k and depth d. Here every
edge on the path corresponding to ℓd

i has the label ℓi. Since Bk,d is closed this immediately
proves Wk,d ⊆ Bk,d. An example for Wk,d ̸= Bk,d is given by the 2 × 2 matrix multiplication
polynomial p = x3

1,1 + 3x1,1x1,2x2,1 + 3x1,2x2,2x2,1 + x3
2,2 that is studied in [21]: We have

ncw(p) = 4, but WR(p) ≥ 5, which can be seen using Young flattenings. This representation
theoretic technique is explained for example in [26]. The Macaulay2 code

loadPackage "PieriMaps"
MX = pieri ({4,3,2,2} , {1,2,4} , QQ [x11,x12,x21,x22])
p = x11*x11*x11 + 3*x11*x12*x21 + 3*x12*x22*x21 + x22*x22*x22
rank(diff(p,MX))/rank(diff(x11ˆ3,MX))

outputs 5, which is the lower bound on the border Waring rank. ◀

Note that the following is still unknown:

▶ 6.9 Question. Is there a polynomial q, such that Bk,d ⊆ Wq(k),d or Bk,d ⊆ Wq(k),d?

7 Treewidth of Young tableaux

Let S be an arbitrary Young tableau containing the numbers {1, . . . , n}. We can associate
with S the undirected graph GS = (VS , ES) where VS = {1, . . . , n} and {i, j} ∈ ES iff i and
j are contained in some common column in S, see Figure 2(a) and (b).

We are now going to study how we can use the graph parameter treewidth of GS to
speed up the evaluation of highest weight vectors. Treewidth has been intensely studied by
Robertson and Seymour and has been applied numerous times to construct faster graph
algorithms for cases where the treewidth is bounded by a function o(n), most notably some
algorithms for NP-hard problems restricted to planar graphs, for example 3-coloring. See [23]
for an introduction to treewidth algorithms.

5 Technically we need here that our base field is algebraically closed in order for this to be a border
Waring rank decomposition, but C satisfies this.

M. Bläser, J. Dörfler, and C. Ikenmeyer 29:15

▶ Definition 7.1. A tree decomposition of a graph G = (V, E) is a tree T with vertices
X1, X2, . . . , Xt called bags where Xi ⊆ V and the following properties hold:

∪t
i=1Xi = V

For every edge {u, v} ∈ E there is some bag Xi, s.t. {u, v} ⊆ Xi.
For every vertex v ∈ V the bags containing v form a subtree of T .

The width of a tree decomposition is the size of the largest bag minus one. The treewidth
of G is then the smallest possible width of a tree decomposition for G.

Often solving problems on graphs of bounded treewidth is easier then the general problem
and indeed this is also the case for evaluating the highest weight vector corresponding to a
graph if the graph GT̂ has bounded or low treewidth.

▶ Theorem 7.2. The evaluation fT̂ (p) for a highest weight vector fT̂ ∈ SymnSymdCm

given by a Young tableau T̂ with content n × d and a symmetric tensor p ∈ SymdCm given
by an ncABP A of width w can be computed in time wω(τ+1) poly(n, d, m, |T |) if a tree
decomposition T of GT̂ of width τ and size |T | is given and given that we can multiply two
matrices of size ≤ k × k in time O(kω).

Proof. We generalize the algorithm from Theorem 6.2, by using the tree-decomposition of
GT̂ to be able to reuse even more partial results in the evaluation of (5.1). Let A be a ncABP
with source vsource and sink vsink. The label on the edge from v to w shall be called A(v,w).

A tableau T̂ with its corresponding graph GT̂ is depicted in Figure 2(a) and (b). It is well
known that every clique of a graph is fully contained in some bag of its tree decomposition.
Every column c of T̂ corresponds to a clique in GT̂ , so there is some bag Xi of T which
contains all the vertices corresponding to the entries of c. We modify T by adding a new
vertex which is only adjacent to Xi. This vertex is from now on associated with the column
c and contains all the entries contained in c as its bag. An example is given in Figure 2(c).
Without loss of generality we can assume that if a vertex has only one child, then the vertex
has the same bag as the child. From now on we only need the structure of the subtree T ′ of
T whose leaves are the vertices associated with columns and every vertex removed that is not
on the path between two of these vertices. We interpret T ′ as an ordered binary tree rooted
at an arbitrary internal6 vertex r. In case any vertex v of T ′ has more than two children, we
replace v by a binary tree, where each added vertex has the same bag as v, see Figure 2(e).
Since T ′ is also a tree decomposition, for every vertex v with two children vleft and vright we
have

Xvleft ∩ Xvright ⊆ Xv. (7.1)

We start with a few observations. We sort the leaves of T ′ according to when they are
visited by depth-first search that always takes the left child first. In this way every leaf T ′

gets assigned an index from 1 to λ1, which we call the traversal index of the leaf. Let νi

denote the length of the column of λ with traversal index i. For any internal vertex v of
T ′ let leftmost(v) denote the traversal index of the leftmost leaf of the subtree rooted at v.
Analogously, let rightmost(v) denote the traversal index of the rightmost leaf of the subtree
rooted at v. For a leaf v we define leftmost(v) = rightmost(v) to be the traversal index of v.
For any internal vertex v of T ′ with two children vleft, vright by definition we have

leftmost(v) = leftmost(vleft) and rightmost(v) = rightmost(vright) (7.2)

6 i.e. a non-leaf

CCC 2021

29:16 On the Complexity of Evaluating Highest Weight Vectors

and

rightmost(vleft) = leftmost(vright) − 1. (7.3)

We define leaves(v) to be the set of leaves in T ′ with traversal index at least leftmost(v) and
at most rightmost(v).

For 1 ≤ i ≤ n, 0 ≤ t ≤ λ1, define κt(i) to be the number of times the number i appears
in columns with traversal index at most t. Figure 2(f) shows diamond separators that
mark the values for t so that κt(i) is the number of times the number i appears in columns
left of the diamond t. For an internal vertex v with children vleft and vright we define
mid(v) := rightmost(vleft). Pictorially, this is the number of the diamond separator between
the left and right subtree of v. If v only has one child w, then mid(v) = mid(w). Let the
ncABP A have layers L0, . . . , Ld, |L0| = |Ld| = 1. We assume that in A all edges between
any layers Li and Li+1 exist, hence we allow edges that are labelled with 0. For 0 ≤ t ≤ λ1
define

Ft := Lκt(1) × · · · × Lκt(n)

Let tstart ≤ tend and let Φstart ∈ Ftstart and Φend ∈ Ftend . A Φstart-Φend-multiwalk is defined
as a finite sequence

W := (Φtstart , Φtstart+1, Φtstart+2, . . . , Φtend)

such that each Φt ∈ Ft, and for all t, i with κt(i) = κt+1(i) we have Φt(i) = Φt+1(i). To
explain this notion more pictorially, we define a lazy walk in a digraph to be a walk that
as a step can remain at its vertex instead of advancing over an edge. If a digraph does not
have any loops, then for every finite lazy walk there is a corresponding walk on the digraph
that is obtained if we add all loops: Remaining at a vertex has the same effect as taking
the loop. This is also true in the reverse direction. The i-th walk of a Φstart-Φend-multiwalk
(Φtstart , Φtstart+1, . . . , Φtend) is defined as the sequence (Φtstart(i), Φtstart+1(i), . . . , Φtend(i)),
which is a lazy walk in A from Φtstart(i) to Φtend(i).

We now define the determinant det(W). Note that Φt and Φt+1 differ in exactly νt+1
positions. We define det W,t+1 as the determinant of the νt+1 × νt+1-matrix obtained from
taking the top µt+1 of the edge labels in A that connect Φt with Φt+1. We define det(W) as

det(W) :=
tend∏

c=tstart+1
det W,c

For Φstart ∈ Fleftmost(v)−1 and Φend ∈ Frightmost(v) we define

D[v, Φstart, Φend] :=
∑

Φstart-Φend-multiwalk W

det(W) (7.4)

Note that

D[v, Φstart, Φend] =
∑

Φstart-Φend-multiwalk W

rightmost(v)∏
c=leftmost(v)

det W,c. (7.5)

Recall that r is the chosen root. We claim that

fT̂ (p) = D[r, # »vsource, # »vsink], (7.6)

M. Bläser, J. Dörfler, and C. Ikenmeyer 29:17

where # »vsource = (vsource, vsource, . . . , vsource) and # »vsink = (vsink, vsink, . . . , vsink). To see this,
we observe that the ordering of the leaves of T ′ by their traversal index defines an ordering
on the columns of tableaux of shape λ. We call this ordering the leaf-ordering. Let T

be the following tableau of shape λ and content (nd) × 1 that is a preimage of T̂ under
the .̂-operation (see Section 5): We greedily go through the columns of T̂ from left to
right in the leaf-order and replace each entry i by the smallest still unused number from
{(i − 1) · d + 1, (i − 1) · d + 2, . . . , i · d}, see Figure 2(d) for an example. Then fT̂ (p) = fT (p)
is given as

fT (p) (5.1)=
∑

proper ϑ

λ1∏
c=1

det ϑ,c
(∗)= D[r, # »vsource, # »vsink] .

(∗) can be seen from the fact that there is a natural 1:1 correspondence between proper
ϑ and # »vsource- # »vsink-multiwalks W: A tensor assigned to the i-th block of T is given by an
vsource-vsink-path in A, which uniquely specifies the i-th path of the multiwalk W. If ϑ is
mapped to W under this bijection, then det(W) =

∏λ1
c=1 det ϑ,c. This proves (7.6).

We now explain how to compute D[r, # »vsource, # »vsink] recursively over the tree structure
of T ′. We separate the explanation into several claims. First, we claim that for every internal
vertex v ∈ T ′ with only one child v′ we have

D[v, Φstart, Φend] = D[v′, Φstart, Φend]. (7.7)

The right-hand side is well-defined, because leftmost(v) = leftmost(v′) and rightmost(v) =
rightmost(v′). The equality follows directly from the definition: (7.4). Next, we claim that
for every leaf vertex v ∈ T ′ with corresponding column c we have

D[v, Φstart, Φend] = det(A(Φstart(c1),Φend(c1)), A(Φstart(c2),Φend(c2)), · · · , A(Φstart(c|c|),Φend(c|c|))).
(7.8)

This follows from the fact that in this case there is exactly one Φstart-Φend-multiwalk W,
and leftmost(v) = rightmost(v) is the traversal index of v. The crucial claim is the following.
For any inner vertex v of T ′ with two children vleft, vright we claim

D[v, Φstart, Φend] =
∑

Φmid∈Fmid(v)

D[vleft, Φstart, Φmid] · D[vright, Φmid, Φend]. (7.9)

Before proving this, first note that D[vleft, Φstart, Φmid] on the right-hand side is well-defined,
as can be seen by combining (7.2) and (7.3) with the definition of mid(v). Analogously,
D[vright, Φmid, Φend] is well-defined.

The key tool in the proof of (7.9) is the bijection

{Φstart-Φend-multiwalk} ≃
⋃

Φmid∈Fmid(v)

({Φstart-Φmid-multiwalk} × {Φmid-Φend-multiwalk})

(7.10)

given by splitting the multiwalk into two multiwalks, where the inverse map is given by
contatenating two multiwalks. The union on the right-hand side is a disjoint union. (7.9) is
now proved by a direct calculation as follows.

CCC 2021

29:18 On the Complexity of Evaluating Highest Weight Vectors

∑
Φmid∈Fmid(v)

D[vleft, Φstart, Φmid] · D[vright, Φmid, Φend]

(7.5)=
∑

Φmid∈Fmid(v)

 ∑
Φstart-Φmid-multiwalk Wleft

rightmost(vleft)∏
cleft=leftmost(vleft)

det W,cleft

·

 ∑
Φmid-Φend-multiwalk Wright

rightmost(vright)∏
cright=leftmost(vright)

det W,cright

(7.10)=

∑
Φstart-Φend-multiwalk W

 rightmost(vleft)∏
cleft=leftmost(vleft)

det W,cleft

 rightmost(vright)∏
cright=leftmost(vright)

det W,cright

(7.3)=

∑
Φstart-Φend-multiwalk W

rightmost(vright)∏
c=leftmost(vleft)

det W,c

 (7.2),(7.5)= D[v, Φstart, Φend].

This proves (7.9).
Equations (7.7), (7.8), and (7.9) give us a procedure to compute D[r, #»s ,

#»
t] by induction

over the structure of the tree T ′. But we can improve the running time significantly as
follows (the procedure is illustrated in Figure 3).

We arbitrarily order the vertices within each layer such that every vertex v ∈ Lj has an
index ι(v) ∈ {1, . . . , |Lj |}. Of course the vertex v with ι(v) = 1 plays no special role, but v

is useful to find a normal form for paths from Lj to Lj of length 0: They go from v to v. A
vertex v with ι(v) = 1 is called a principal vertex.

For a set of X ⊆ N define the subset FX
t ⊆ Ft as

FX
t := {Φ ∈ Ft | for all i /∈ X : Φ(i) is principal}

For every Φ ∈ Ft define ΦX ∈ FX
t via

ΦX(i) :=
{

Φ(i) if i ∈ X

a principal vertex v otherwise.
(7.11)

Clearly # »vsource = # »vsource
Xr and # »vsink = # »vsink

Xr , hence we see D[r, # »vsource, # »vsink] =
D[r, # »vsource

Xr , # »vsink
Xr]. We claim that

D[v, Φstart, Φend] =
{

0 if there exists i /∈ Xv with ι(Φstart(i)) ̸= ι(Φend(i))
D[v, ΦXv

start, ΦXv

end] otherwise.

(7.12)

To see this, first assume that there is i /∈ Xv with ι(Φstart(i)) ̸= ι(Φend(i)). Since i /∈ Xv,
we either have all instances of i in leaves(vleft) or all instances of i in leaves(vright) or no
instance of i in leaves(v). The first two cases are impossible, because in those cases we
have ι(Φstart(i)) = 1 = ι(Φend(i)), because the first and last layer only have one vertex
each. In the third case, there is no Φstart-Φend-multiwalk, because the i-th path in the
multiwalk would have to start at a vertex and end at a different vertex without using
any edge. This proves the first case of (7.12). Now, assume that for all i /∈ Xv we have
ι(Φstart(i)) = ι(Φend(i)). We have a distinction into the same three cases as above. If i /∈ Xv

has all instances of i in leaves(vleft) or in leaves(vright), then ι(Φstart(i)) = 1 = ι(Φend(i)),

M. Bläser, J. Dörfler, and C. Ikenmeyer 29:19

which implies ΦXv
start(i) = Φstart(i) and ΦXv

end(i) = Φend(i). If i /∈ Xv has no instance of i in
leaves(v), then the value of ι(Φstart(i)) and ι(Φend(i)) does not affect D[v, Φstart, Φend], as
long as ι(Φstart(i)) = ι(Φend(i)), because the i-th path in any Φstart-Φend-multiwalk is unique
and of length 0. This proves (7.12).

We use the short notation ι(Φstart|Xv
) ̸= ι(Φend|Xv

) for the first condition in (7.12): The
ι-values of the vectors Φstart and Φend are different when restricted to the complement of Xv.

To compute D[v, ΦXv
start, ΦXv

end] recursively we observe the following.

D[v, ΦXv
start, ΦXv

end] =
∑

Φmid∈Fmid(v)

D[vleft, ΦXv
start, Φmid] · D[vright, Φmid, ΦXv

end] (7.13)

(7.12)=
∑
Φmid

D[vleft, ΦXv
start, Φmid] · D[vright, Φmid, ΦXv

end],

where the second sum is over all those Φmid ∈ Fmid(v) that satisfy both
• ΦXv

start(i) = Φmid(i) for all i /∈ Xvleft and
• ΦXv

end(i) = Φmid(i) for all i /∈ Xvright .
It follows from (7.11) that all these summation indices Φmid satisfy ι(Φmid(i)) = 1 for
all i ∈ (Xv ∩ Xvleft) ∪ (Xv ∩ Xvright), where the bar denotes the set complement. But
(Xv ∩ Xvleft) ∪ (Xv ∩ Xvright) = Xv ∪ (Xvleft ∩ Xvright), which equals Xv by (7.1). This implies
that Φmid ∈ FXv

mid(v). Therefore we can rewrite (7.13) as

D[v, ΦXv
start, ΦXv

end] =
∑

Φmid∈FXv
mid(v)

D[vleft, ΦXv
start, Φmid] · D[vright, Φmid, ΦXv

end]

(7.12)=
∑

Φmid∈FXv
mid(v)

(
0 if ι(ΦXv

start|Xvleft
) ̸= ι(Φmid|Xvleft

),

D[vleft, (ΦXv
start)Xvleft , ΦXvleft

mid] otherwise

)

·

0 if ι(Φmid|Xvright
) ̸= ι(ΦXv

end|Xvright
),

D[vright, Φ
Xvright
mid , (ΦXv

end)Xvright]

Using this equality we can compute the |FXv | × |FXv | matrix D[v, FXv , FXv] as the

product of two matrices of dimensions |FXv | × |FXv | whose entries can be computed
recursively: They are either 0 or an entry in D[w, FXw , FXw], where w is a child of v. The
entries in D[w, FXw , FXw] are not computed individually, but recursively as a product of
matrices. For vertices that have only one child we use the assumption that they have the
same bag, so that we can apply (7.7). Leaves are treated via (7.8).

If we can multiply two matrices of size ≤ k × k in time O(kω), then the total running
time to compute D[r, FXr , FXr] is wω(τ+1) poly(n, d, m, |T |). Note that D[r, FXr , FXr] is a
1 × 1 matrix whose entry is the desired D[r, # »vsource, # »vsink]. ◀

▶ Remark 7.3. Even though only the size of the largest bag of the tree decomposition
influences the asymptotic running time, it is advisable for an actual implementation of this
algorithm to minimize the size of the individual bags. This can be achieved by removing
each number from any bag which is not on a direct path between columns that contain that
particular number or even splitting bags in some cases.

This dependency on the treewidth instead of n is significant, since for example the graphs
of semistandard Young tableaux with only two rows are planar and thus have a treewidth
of O(

√
n). Additionally this dependency is tight: we can construct semistandard Young

tableaux with two rows and rectangular content which induce multigraph versions of the
n × n grid-graphs and thus have treewidth Ω(

√
n). We prove both these observations in

Proposition 7.5.

CCC 2021

29:20 On the Complexity of Evaluating Highest Weight Vectors

1 1 2 3 5
2 4 4 5
3

(a) The tableau T̂ .

4
1

2
3 5

(b) The graph GT̂ .

124 123 35

1
2
3

1
4

2
4

3
5

5

(c) The tree decomposition T of width
2 with the attached vertices for the
columns of T̂ .

1 2 4 6 9
3 8 7 10
5

(d) The computed tableau T .

123

123

124 35

1
2
3

1
4

2
4

3
55

(e) The computation tree T ′

used for the dynamic program.

123

123

124 35

1
2
3

1
4

2
4

3
55

0 1 2 3 4 5

(f) T ′ with diamond separators for 0 ≤
t ≤ 5.

Figure 2 An example execution of the preparation of the algorithm of Theorem 7.2 for the Young
tableau T̂ .

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

• •

•

•

•

••

•

•

•

• •

•

•

•

••

•

•

•

•

Figure 3 An example of an ABP of width 3 and depth 2 and the multi-walks that are obtained
from a 5-tuple of s-t-paths (visible at the root) when decomposed according to Figure 2. Formally,
the fat colored vertices correspond to principal vertices, even though they are drawn in different
heights in layers.

M. Bläser, J. Dörfler, and C. Ikenmeyer 29:21

Let p be given as a Waring rank decomposition of rank r. From this we can easily
construct an ncABP of width w = r, in the same way we did to prove Theorem 4.2.
Therefore the evaluation algorithm in Theorem 7.2 now takes time O(wω(τ+1))·poly(n, d, m) =
O(rω(τ+1)) · poly(n, d, m). Comparing this to the naive algorithm in Remark 5.4, we get a
faster evaluation in the case τ ∈ o(n), which for example is achieved for all semistandard
tableaux with two rows which we will now prove.

As a first step, we will prove that in this case the corresponding graphs are always planar.

▶ Proposition 7.4. Let S be a semistandard Young tableau with two rows. Then GS is
planar.

Proof. Let S contain the numbers {1, . . . , n}. We first start by constructing a different
graph G′

S = (LS∪̇RS , E′
S) which is a bipartite graph consisting of two copies of vertices

LS = {1L, . . . , nL}, RS = {1R, . . . , nR}. LS and RS can be realized in the plane on two
parallel vertical line segments, where the vertex indices increase from top to bottom. Now
{iL, jR} ∈ E′

S iff i
j

is a column in S. Here the vertical order in S matters, so due to S being
semistandard we know i < j. We will now prove that G′

S is outerplanar and can be drawn
with straight lines. So let {i, j}, {k, l} ∈ E′

S be two different edges where the column i
j

appears to the left of the column k
l

in T . Due to T being semistandard this implies i ≤ k

and j ≤ l, which means those two edges do not cross. Since the edges were arbitrary no two
edges intersect and G′

S is outerplanar.
Because both sets of vertices are ordered in ascending order we can now continuously

rotate both vertex sets by 180 degrees and move them on top of each other, in this way
unifying both copies of each vertex while still keeping the graph planar (the edges are not
straight lines anymore, but they have the shape of a spiral). This resulting graph is precisely
GS , thus proving the claim. ◀

Now we can commence to prove the upper bound on the treewidth of Young tableaux
with two rows. Additionally we prove that this bound is tight.

▶ Proposition 7.5.
1. Let Sn be a semistandard Young tableau with two rows containing the numbers {1, . . . , n}.

Then GSn
has treewidth at most O(

√
n).

2. Additionally there is a family (S′
n) of semistandard Young tableaux with two rows con-

taining the numbers {1, . . . , n} exactly 4 times each and GS′
n

having treewidth Ω(
√

n).

Proof. Let Sn be a semistandard Young tableau with 2 rows containing the numbers
{1, . . . , n}. Then GSn

is a planar graph with n vertices by Proposition 7.4. The fact that
planar graphs on n vertices have treewidth bounded by O(

√
n) follows directly from the

famous planar excluded grid theorem [51].
We now prove the second part. W.l.o.g. we can restrict n to be of the form (2k)2 with

k ∈ N \ {0}, since we can always extend the tableau without increasing the treewidth by
appending four columns containing only a single cell with the number i + 1 to the end of S′

i

to get S′
i+1. This change corresponds to adding a new isolated vertex to GS′

i
. We repeat

this until N = (2k)2, which scales n up by at most a factor of 8.
Every layered multigraph G = (V, E) with the following properties is the graph GS

corresponding to some two row semistandard tableaux S where each number i appears
exactly as often as the degree of i in G:

CCC 2021

29:22 On the Complexity of Evaluating Highest Weight Vectors

1

2

3

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Figure 4 The grid graphs ⊞2,⊞4 and ⊞6 after doubling the correct edges around the border
and relabeling the vertices. The layers in ⊞2 are {1}, {2, 3}, {4}. The layers in ⊞4 are {1},
{2, 3}, {4, 5, 6}, {7, 8, 9, 10}, {11, 12, 13}, {14, 15}, {16}. The layers in ⊞6 are {1}, {2, 3}, {4, 5, 6},
{7, 8, 9, 10}, {11, 12, 13, 14, 15}, {16, 17, 18, 19, 20, 21}, {22, 23, 24, 25, 26}, {27, 28, 29, 30}, {31, 32, 33},
{34, 35}, {36}.

1. V = {1, . . . , n}
2. Edges in G only go from one layer to the next.
3. Edges between any two layers can be drawn with straight lines without crossing when

the vertices in each layer are placed in ascending order.
4. All vertices in any layer j are labeled smaller than those in layer j + 1 and each form a

consecutive sequence of integers.
Some examples are provided in Figure 4. This can be shown constructively and separately
for every pair of layers j and j + 1. Since the edges between two layers are not crossing, there
is a unique ordering on the set of edges from left to right. Adding columns corresponding to
the edges in exactly this order to S forms exactly the wanted semistandard tableaux: For
{u, v} ∈ E we add the column u

v
to S. Thus the entries corresponding to layer j are only in

the first row while those corresponding to layer j + 1 only appear in the second row. Because
of property (4) the columns of edges from layer j to layer j + 1 can directly be concatenated
to the columns of edges from layer j + 1 to layer j + 2 without violating the property of
being semistandard. Clearly S contains each number i exactly once for each incident edge of
i in G.

We now take the 2k × 2k grid ⊞2k = (V2k, E2k) where

V2k = {(x, y) | x, y ∈ {1, . . . , 2k}}
E2k = {{(x1, y1), (x2, y2)} | |x1 − x2| + |y1 − y2| = 1}

This graph is known to have treewidth exactly 2k [23]. We now create a multigraph by
doubling all the edges {(1, 2i − 1), (1, 2i)}, {(2k, 2i − 1), (2k, 2i)}, {(2i − 1, 1), (2i, 1)} and
{(2i − 1, 2k), (2i, 2k)} for every i ∈ {1, . . . , k} which results in each vertex having degree
exactly 4 while not changing the treewidth. To now apply the previous observations we
now treat each diagonal {(x, y) | x + y = j + 1} as layer j and label them by increasing
x, thus proving the claim of the lower bound. The resulting graphs are also visualized in
Figure 4. ◀

M. Bläser, J. Dörfler, and C. Ikenmeyer 29:23

▶ 7.6 Question. It is open whether the bound of O(
√

n) on the treewidth can be extended
to any other constant number of rows, but starting at 3 rows GS becomes non-planar7, so
another approach to solving this problem would be needed. Additionally, if the number of rows
is arbitrary GS can contain an arbitrarily big clique, so it can have arbitrarily high treewidth.
For example for any S with a first column with n distinct entries the graph GS contains a
clique on n vertices and thus has treewidth at least n − 1.

8 Hardness of evaluation

We will show that deciding whether a highest weight vector fT̂ of SymnSymdCm vanishes
at a point in SymdCm of Waring rank k for suiting parameters n, d, m, k is NP-hard. In
particular we prove the NP-hardness of evaluating highest weight vectors given by Young
tableaux with two rows in Theorem 8.1.

We can prove a similar – slightly weaker – result in Theorem 8.9, when the tableau T̂ is
restricted to be semistandard. In this case we have to increase the number of rows, the inner
degree of the symmetric tensors and the Waring rank of the points of evaluation. Furthermore
we don’t prove hardness for all constant d in this case, but only for those divisible by 16. This
still rules out polynomial evaluation algorithms which allow d to be part of the input under
P ̸= NP. These reductions also yield more explicit lower bounds under the exponential time
hypothesis (ETH) in Theorems 8.1 and 8.9. As a reminder, the exponential time hypothesis
states, that 3SAT can not be solved in time 2o(n). Finally we show in Theorem 8.2 that if
we want to calculate the exact value of the evaluation we can even prove #P-hardness for
evaluating highest weight vectors given as Young tableaux.

Most of these reductions start with the same base that deciding whether a graph admits
a proper 3-coloring a graph is NP-hard even when restricted to planar graphs of maximum
degree 4. This was originally proven by Garey, Johnson and Stockmeyer [30] and a modified
version can be found in Lemmas 8.6 and 8.7.

▶ Theorem 8.1. Deciding whether a highest weight vector fT̂ of SymnSymdCm given as a
Young tableau T̂ evaluates to zero at a fixed point p = pd ∈ SymdCm of Waring rank 3 is
NP-hard for constant d ≥ 8, m ≥ 2.

Assuming ETH no 2o(n) algorithm for this evaluation can exist.

Proof. We use the NP-hardness of 3-coloring graphs of maximum degree at most 4, see [30]
or Lemma 8.6.

Let G = (V, E) be a graph of maximum degree at most 4. Assume w.l.o.g. that V =
{1, . . . , n}. We now construct a Young tableau T with content n × d as follows: For every
edge {u, v} ∈ E we add two columns of the form u

v
to T̂ . Now for every vertex v ∈ V add

d − 2 · deg(v) single-box columns v to T̂ . It is easy to see that T̂ has content n × d and is
not necessarily semistandard.

We now choose to evaluate the highest weight vector fT̂ at p = ℓd
1 + ℓd

2 + ℓd
3 with

ℓ1 = (1, 0, 0, . . .), ℓ2 = (1, 1, 0, . . .), ℓ3 = (1, 2, 0, . . .) ∈ Cm. Note that the determinant of any
two distinct linear forms of these is a real number, so its square is a positive real number.

7 For example, GS is the complete graph on 5 vertices for S =
1 1 1 3 3
2 2 2 4 4
3 4 5 5 5

.

CCC 2021

29:24 On the Complexity of Evaluating Highest Weight Vectors

Recall from (5.1) that

fT̂ (p) =
∑

proper ϑ

λ1∏
c=1

det ϑ,c.

We now show a 1-to-1 correspondence between summands of the evaluation and arbitrary –
not necessarily proper – 3-colorings of G. A summand will be non-zero iff the corresponding
3-coloring is proper. Due to evaluating at p in its Waring decomposition, ϑ will be proper
iff boxes with the same number j get assigned the same ℓi. We interpret this as vertex
j receiving color i. Additionally every 3-coloring of G corresponds to some placement in
this way.

We now take the product of determinants for each column. Since each column with
two boxes is repeated twice, this product is a product of squares, and hence will always be
positive iff none of the determinants is zero. This idea was first used in [12]. A determinant
is non-zero iff different vectors ℓi and ℓj are chosen for both of the boxes, corresponding to
coloring both vertices of this column with different colors. So a summand will be non-zero iff
ϑ corresponds to a proper 3-coloring of G.

Note that any algorithm deciding whether fT̂ (p) is non-zero in time 2o(n) can now be
used to decide whether G allows for a proper 3-coloring in time poly(|V |)2o(|V |) which is a
contradiction unless ETH fails as proven in [37]. ◀

Note that our algorithms for evaluation described in Theorems 6.2 and 7.2 both achieve
a running time of 2O(n) for evaluations at points of constant Waring rank with constant m

and d. So Theorem 8.1 gives a matching lower bound under ETH.
The proof for #P-hardness is pretty similar and reduces from counting the number of

3-colorings of a graph with maximum vertex degree 3 which is known to be #P-complete [10].
The main idea is to use a more carefully chosen point of evaluation to ensure that every
summand that corresponds to a proper 3-coloring will be exactly 1.

▶ Theorem 8.2. Evaluating a highest weight vector fT̂ of SymnSymdCm given as a Young
tableau T̂ at a point p ∈ SymdCm of Waring rank 3 is #P-hard for constant d ≥ 18, m ≥ 2.

Proof. We reduce from counting the number of 3-colorings of a graph G = (V, E) where
every vertex has degree at most 3 which is known to be #P-complete [10]. We proceed
in a similar manner as in the NP-hardness proof in Theorem 8.1. We construct T̂ by
adding the columns u

v
for {u, v} ∈ E 6-times each and for every vertex v ∈ V add

d − 6 · deg(v) columns v to T̂ . This time we evaluate fT̂ at p = ℓd
1 + ℓd

2 + ℓd
3 with

ℓ1 = (1, 0, 0, . . .), ℓ2 = (1, e
iπ
3 , 0, . . .), ℓ3 = (1, e

2iπ
3 , 0, . . .) ∈ Cm. Note that the determinant

of any two distinct linear forms of these is a 6-th root of unity, so its 6-th power is always
exactly 1. If we now analyse the summands of the evaluation again we see that each term
contributes exactly 1 if it corresponds to a proper 3-coloring and 0 otherwise. Thus the
evaluation fT̂ (p) counts exactly the number of 3-colorings of G. ◀

Extending this result to semistandard Young tableaux now proceeds in multiple steps,
which we devote the rest of this section towards.

We first extend the NP-hardness of 3-coloring to a subclass of planar graphs which we
call grid-like layered graphs. More specifically we prove NP-hardness for 8-regular, i.e. each
vertex has degree exactly 8, grid-like layered graphs in Lemma 8.5, while we show a lower
bound of 2o

(√
|V |
)

under ETH using Lemma 8.8.

M. Bläser, J. Dörfler, and C. Ikenmeyer 29:25

1 2 3

4 5

6 7

L1

L2

L3

Figure 5 Example of a grid-like layered graph with 3 layers. Edges between layers are drawn as
solid lines and edges inside layers as dotted lines.

▶ Definition 8.3. We call a planar multigraph G = (V, E) grid-like layered if there are
disjoint layers L1, . . . , Lk ⊆ V of vertices and an embedding e : V → N × {1, . . . , k}, s.t.
1. e is injective.
2. For every i ∈ {1, . . . , k} we have e−1(N × {i}) = Li

3. Edges between layers only exist between layer Li and Li+1 for all i ∈ {1, . . . , k − 1}.
4. Edges inside layers only exist for vertices v, u ∈ Li where e(v) = e(u) ± (1, 0) for some

i ∈ {1, . . . , k}.
5. All edges can be drawn as straight lines without crossing when vertices are placed according

to e in R2 and the graph is treated as being simple.
6. Every vertex has a neighbour in a different layer.
Note that grid-like layered graphs are not necessarily subgraphs of a grid-graph, see Figure 5
for an example. The crucial property about grid-like layered graphs is, that they can be
decomposed into two graphs over the same vertices each corresponding to a semistandard
Young tableau with two rows. This decomposition is essential to encode the 3-coloring of
such graphs into a single combined semistandard Young tableau.

Recall the definition of the graph GT̂ for a semistandard tableau T̂ from Section 7.

▶ Lemma 8.4. Let G = (V, E) be a grid-like layered graph. Then G = (V, E(GT̂↔
) ∪ E(GT̂↕

))
for two semistandard tableaux T̂↔, T̂↕ for some relabeling of the vertices V . Additionally T̂↕
contains every number from 1 to |V | at least once.

Proof. Let e be the embedding of G. We relabel the vertices in increasing order inside each
layer according to e and then increasing order from layer Li to layer Li+1 for every i, like in
Figure 5. Let E↕ now be the edges between different layers and E↔ those inside the layers,
see Figure 6. Clearly E↔ ∪ E↕ = E and every vertex is incident to some edge in E↕ by
condition 8.3.6, so if we can construct semistandard tableaux T̂↔, T̂↕ with E↔ = E(GT̂↔

)
and E↕ = E(GT̂↕

) we are done.
We start with T̂↕. Since the labeling of the vertices is increasing from one layer to the

next it suffices to show that we can create T̂↕ for a single pair of consecutive layers and
afterwards concatenate them. Condition 8.3.5 gives a unique order of the edges between
these layers from left to right. So for the edge {u, v} ∈ E↕ with u < v we add the column u

v

to T̂↕. Assume two columns u

v
and u′

v′
would violate the semistandard property. Then either

u′ < u in which case the edge {u′, v′} would start left of {u, v} or v′ < v in which case the
edge {u′, v′} would end left of {u, v}, both a contradiction to our unique ordering from left
to right. So T̂↕ is semistandard.

We continue with T̂↔. Again we only have to consider T̂↔ for a single layer as we can
just concatenate the resulting tableaux afterwards. If we direct the edges in E↔ to only go
from the smaller vertex to the larger one we see with condition 8.3.4 that each vertex can

CCC 2021

29:26 On the Complexity of Evaluating Highest Weight Vectors

1 2 3

4 5

6 7

1 2 3

4 5

6 7

1 2 6
2 3 7

1 1 2 3 5 5
4 5 5 5 6 7

Figure 6 Example of T̂↔ and T̂↕ and the two graphs GT̂↔
and GT̂↕

according to Lemma 8.4 for
the grid-like layered graph given in Figure 5.

only be the first vertex of an edge once, and those edges have the form {v, v + 1}. So the
only columns in T̂↔ are of the form v

v+1
. Those can clearly just be combined in order to

make T̂↔ semistandard.
Note that since G is a multigraph we add every column to the tableaux k times if the

edge appears with multiplicity k in G. ◀

We can now give an elegant proof of the NP-hardness of deciding whether a given 8-regular
grid-like layered graph G = (V, E) admits a proper 3-coloring. With this elegance comes the
caveat, that this proof only yields a lower bound of 2o

(
4
√

|V |
)

under ETH, which we improve
to 2o

(√
|V |
)

with a more technical proof in Lemma 8.8.
For this we need the notion of a graph minor model. We call a collection of subsets of

vertices (Vh)h∈V (G) a graph minor model of embedding a graph G into a graph H if the
Vh ⊆ V (H) induce disjoint non-empty connected subgraphs of H for every h ∈ V (G) and if
for every edge {u, v} ∈ V (G) there is an edge between some vertices of Vu and Vv. See [23,
Section 6.3] for a more detailed introduction to graph minors.

▶ Lemma 8.5. Deciding whether a given graph G = (V, E) admits a proper 3-coloring is
NP-hard, even if the graph is restricted to be grid-like layered and 8-regular.

Unless ETH fails, 3-coloring doesn’t admit an 2o
(

4
√

|V |
)

time algorithm for grid-like
layered graphs.

Proof. For this we reduce from the decision problem whether a planar graph G admits a
proper 3-coloring.

In order to achieve this we find a graph minor model (Vh)h∈V (G) of embedding G into a
grid ⊞ with O(|V (G)|2) vertices in linear time [55]. Let G1 be the grid ⊞ after removing any
vertices and edges which do not correspond to vertices or edges in G, i.e.

V (G1) =
⋃

h∈V (G)

Vh

and

E(G1) =
⋃

h∈V (G)

E(⊞[Vh]) ∪
⋃

uv∈E(G)

E(⊞[Vu ∪ Vv])

where ⊞[V] denotes the subgraph of ⊞ induced by the vertices V .
We can now transform any 3-coloring of G into a 3-coloring of G1 by coloring every

vertex in Vh with the same color as h for every h ∈ V (G). The property of a coloring of
G being proper now translates to enforcing that for each h ∈ V (G) all the vertices inside
the component Vh are colored with the same color and vertices in neighbouring components
Vu, Vv for {u, v} ∈ E(G) are colored with different colors.

M. Bläser, J. Dörfler, and C. Ikenmeyer 29:27

v1 v2 v2

v1

v1 v2 v2

v1

Figure 7 The equality and inequality gadgets H=
1 , H=

2 and H ̸=
1 , H ̸=

2 used in Lemma 8.5.

v1 v2

a

a

6-a 2

2

2

2

6-b
b

b
v1 v2

a

a

6-a 2

2

4

2

2
6-b

b

b

Figure 8 The nearly 8-regular versions of the gadgets H=
1 and H ̸=

1 used in Lemma 8.5. The edge
labels denote the multiplicity of the edges in the multigraph and 2a = deg(v1) and 2b = deg(v2).

In order to enforce these constraints on G1 we construct a new graph G2 by replacing
each edge inside any Vh by the equality gadgets H=

1 or H=
2 and replacing each edge between

neighbouring components Vu, Vv by the inequality gadgets H ̸=
1 or H ̸=

2 . These gadgets are
shown in Figure 7. If an edge is horizontal in the canonical embedding of G1 into the plane
we choose variant 1 of the gadgets. If an edge is vertical we choose variant 2.

It can be easily checked that the only way to properly 3-color these gadgets is such that
the colors of v1 and v2 are the same for the equality gadgets and different for the inequality
gadgets.

Clearly G is now properly 3-colorable iff G2 is properly 3-colorable.
Secondly all those gadgets are designed as grid-like layered graphs. It can be easily

checked that replacing all edges in a subgraph of a grid yields a grid-like layered graph, so
G2 is grid-like layered.

So the only thing remaining to do is make the graph 8-regular by adding copies of existing
edges to the graph. In order to achieve this it is sufficient to show that multigraph versions
of H=

1 , H=
2 , H ̸=

1 and H ̸=
2 exist which are 8-regular except for the vertices v1 and v2, which

can independently have a degree of 2, 4, 6 or 8 each. This is sufficient since every vertex of
the grid graph has a degree between 1 and 4, so it has between 1 and 4 of these gadgets
attached to it. The multigraph variations of the gadgets are shown for H=

1 and H ̸=
1 in Figure

8, for the other two gadgets these are constructed similarly.
Note that ⊞ has O(|V (G)|2) many vertices so we can conclude that G2 also has O(|V (G)|2)

many vertices. If we can decide whether the 8-regular grid-like layered graph G2 allows for a
proper 3-coloring in time 2o

(
4
√

|V (G2)|
)

we can decide via this reduction whether the planar
graph G allows for a proper 3-coloring in time poly(|V (G)|) · 2o

(√
|V (G)|

)
. This contradicts

that planar 3-coloring is not solveable in time 2o
(√

|V (G)|
)

unless ETH fails which was
essentially observed by Cai and Juedes [18] and is also mentioned in [23, Theorem 14.9]. ◀

Looking at the reduction from 3-satisfiability to 3-coloring more closely we can improve
the ETH lower bound of the previous proof. The fourth root was necessary because first
embedding the 3SAT formula into a planar graph and then into a grid graph each resulted
in quadratic blow-up. By abusing the structure of the intermediate graphs more closely we
reduce the size of the grid graph to be only quadratic in the number of variables of the 3SAT
formula and thus show a better lower bound in Lemma 8.8.

CCC 2021

29:28 On the Complexity of Evaluating Highest Weight Vectors

⊥

⊤
z z

xi

xi

l1

l2

l3

⊥

Figure 9 The gadgets H1, H2 and H3 used in the proof of Lemma 8.6.

The proof uses similar gadgets to the standard textbook reduction of 3SAT to 3-coloring,
which we show again for reference.

▶ Lemma 8.6. Deciding whether a given graph G = (V, E) admits a proper 3-coloring is
NP-hard.

Proof. We reduce from 3-satisfiability. So let ϕ = C1 ∧ . . . ∧ Cm be a formula in 3-CNF on n

variables x1, . . . , xn. We construct a graph G as follows. We start with the graph H1 shown
in Figure 9 (left) and call the three vertices ⊤, ⊥, and z. Then for each 1 ≤ i ≤ n we add a
vertex xi and a vertex xi and add three edges: {xi, xi}, {xi, z}, {xi, z}. This is depicted in
Figure 9 (middle). For each 1 ≤ j ≤ m we now add 6 vertices and connect them with the
existing vertices as shown in Figure 9 (right): The vertices labeled l1, l2, l3 in the figure
stand for the vertices corresponding to the three literals (elements in {x1, . . . , xn, x1, . . . , xn})
in the clause Cj .

We now analyze potential proper 3-colorings of G. Our colors will conveniently be called
⊤, ⊥, and z and we assume from now on w.l.o.g. that the three vertices in H1 are colored
according to their names. It follows from H2 that in every proper 3-coloring the vertices
corresponding to literals are colored with ⊤ or ⊥, but never with z. It is easy to see that H3
has no proper 3-coloring if l1, l2, and l3 all are colored with ⊥. Moreover, if at least one of
l1, l2, and l3 is colored with ⊤ and the others are colored with ⊥, then a proper 3-coloring of
H3 exists.

Hence from a proper 3-coloring of G we can easily reconstruct a satisfying assignment of
ϕ and vice versa. ◀

In Lemma 8.5 we then proceeded with a planar version of this theorem due to [30]
and embedded these resulting graphs as minors of a grid. In essence we used a variant
of 3-coloring where the graph is a subset of a grid graph and every edge can either be an
equality or inequality edge, i.e. vertices connected by an equality edge have to be colored by
the same color and vertices connected by an inequality edge have to be colored with different
colors. We already implicitly showed NP-hardness of this variant which we call relational
3-coloring on subgraphs of grids in the proof of Lemma 8.5.

Note that equality edges are a necessity, since any subgraph of a grid graph is bipartite
and thus can be 2-colored.

▶ Lemma 8.7. Unless ETH fails, relational 3-coloring on subgraphs G of grids can not be
solved in time 2o

(√
|V (G)|

)
.

Proof. We reduce from 3-satisfiability. So let ϕ = C1 ∧ . . . ∧ Cm be a formula in 3-CNF on
n variables x1, . . . , xn.

We again start with the color choosing gadget H ′
1 from Figure 10 and assume that each

vertex of H ′
1 is colored with its label to simplify the analysis. Note that vertices with the

same labels will be connected by a path of equality edges, so they have the same color in
each proper 3-coloring. H ′

1 forms a border of width ≤ 2 around the rest of the graph.

M. Bläser, J. Dörfler, and C. Ikenmeyer 29:29

Connected to the vertices labeled with z are the variable gadgets H ′
2. The vertices with

labels xi and xi corresponding to the literals of ϕ appear exactly as often as each of the
literals appears in ϕ. Connected to the bottom vertices ⊥ are the clause gadgets H ′

3. Both
of these gadgets can be found in Figure 10.

The only thing left is connecting the vertices corresponding to literals in the clause
gadgets to those in the variable gadgets via an equality edge. Unfortunately this would make
the graph not be a subgraph of a grid, so we need the crossing gadget H ′

4 from Figure 11
which is an embedding of the crossing gadget used in [30]. In H ′

4 the vertices pairs labeled
a, a′ and b, b′ each have the same color in every proper 3-coloring. Additionally there is a
proper 3-coloring for every choice of colors of a and b.

We now need to “sort” the vertices corresponding to literals into the order
(l1,1, l1,2, l1,3, l2,1, l2,2, l2,3, . . . , lm,1, lm,2, lm,3) where Ci = li,1 ∨ li,2 ∨ li,3. We do this via
an iterative procedure. We add the crossing gadget H ′

4 between every two consecutive
vertices li, lj which are in the wrong order in each step. In case some vertices could be part
of multiple swaps choose the pairs in a way that maximizes the number of possible swaps
per iteration. We connect li to the vertex a of H ′

4 via an equality edge and similarly lj to b.
The vertices a′ and b′ now form the next step in the ordering process and have essentially
swapped adjacent li and lj . All the vertices li which do not change their position will be
extended via paths made out of equality edges to be on the same layer as the outlets of the
crossing gadgets. After at most O(m) of these steps the vertices are sorted in our desired
order and can be directly connected to the corresponding vertices of the clause gadgets.

We call this resulting graph G. Note that H ′
4 enforces a finer subdivision of the grid than

H ′
1, H ′

2 and H ′
3, but we can always split an equality edge into two equality edges connected

by a vertex or split vertices into two vertices connected by an equality edge to stretch these
gadgets, so G is a subgraph of a grid graph.

It can be easily checked that H ′
1, H ′

2 and H ′
3 behave in exactly the same way as their

counterparts in the proof of Lemma 8.6, so the correctness of this reduction can easily be
seen with the same reasoning as there together with the properties of H ′

4.
G is a subgraph of an O(m)×O(m) grid, so |V (G)| = O(m2). If we could decide relational

3-colorability on subgraphs of grids in size 2o
(√

|V (G)|
)

we could thus decide 3-satisfiability
in time 2o(m) which is a contradiction unless ETH fails, see [37] for this lower bound for
3-satisfiability. ◀

▶ Lemma 8.8. Unless ETH fails, 3-coloring doesn’t admit an 2o
(√

|V |
)

time algorithm for
8-regular grid-like layered graphs G = (V, E).

Proof. We reduce from relational 3-coloring on subgraphs of grids. Let G = (V, E) be a
subgraph of a grid. We proceed in the same way as Lemma 8.5 did except that ⊞ is replaced
by G, each equality edge is replaced by the corresponding equality gadget and each inequality
edge is replaced by the corresponding inequality gadget.

Note that the obtained graph G2 now has O(|V (G)|) many vertices. If we can decide
whether the 8-regular grid-like layered graph G2 allows for a proper 3-coloring in time
2o
(√

|V (G2)|
)

we can decide via this reduction whether G allows for a relational 3-coloring in
time poly(|V (G)|) · 2o

(√
|V (G)|

)
, contradicting Lemma 8.7 unless ETH fails. ◀

We now have all the necessary intermediate results to prove that even evaluation of
highest weight vectors given by semistandard tableaux is NP-hard. We use the same general
idea of coloring the cells of the Young tableau s.t. all cells with the same number receive the

CCC 2021

29:30 On the Complexity of Evaluating Highest Weight Vectors

⊤ ⊤

z z z⊥

⊥

⊥

⊥ ⊥ ⊥ ⊥

. . .

. . .

...

z z z z

xi xi xi xi

.

.

l1 l2 l3

⊥

Figure 10 The gadgets H ′
1, H ′

2 and H ′
3 used in the proof of Lemma 8.7. Double lines denote

equality edges and single lines denote inequality edges. Vertices corresponding to other gadgets are
visualized with dashed outline to show how to connect the gadgets.

a b

b′ a′

Figure 11 The gadget H ′
4 used in the proof of Lemma 8.7. Double lines denote equality edges

and single lines denote inequality edges.

same color. Additionally each column of the Young tableau has to be repeated often enough
that any summands are guaranteed to be positive iff each column is colorful, i.e. does not
contain any color multiple times and zero otherwise.

▶ Theorem 8.9. The evaluation of highest weight vectors fT̂ of SymnSymdCm is NP-hard
for any constant d ≥ 16 with 16 | d and m ≥ 5, when fT̂ is given as a semistandard Young
tableau T̂ . This even holds if evaluation is restricted to points of Waring rank 5 and the
algorithm only has to decide whether the evaluation is non-zero.

Additionally this evaluation can not be computed in time 2o(
√

n) unless ETH fails.

Proof. We reduce from checking whether an 8-regular grid-like layered graph allows for a
proper 3-coloring which was proven in Lemma 8.5 to be NP-hard.

Let G = (V, E↔ ∪E↕) be an 8-regular grid-like layered graph where E↔ denotes the edges
inside layers and E↕ denotes edges between layers. W.l.o.g. the vertex set V are the numbers
1, . . . , |V | assigned in a layer by layer and left to right fashion, given by the embedding of
G. To ease the description of the constructed semistandard tableaux T̂ we will describe it
in 5 parts T1, . . . , T5 over the symbolic entries ai, bi, ci, di, ei. For better readability we will
colorcode each of the symbolic entries in the constructions of this theorem. The point of
evaluation is now p =

∑5
i=1 ℓd

i with ℓi = (1, i, i2, i3, . . . , im) Then any determinants arising
in the evaluation are determinants of Vandermonde matrices and thus are well known to be
non-zero.

M. Bläser, J. Dörfler, and C. Ikenmeyer 29:31

T1,1 . . . T1,r
T2

T3,1

T3,2

T4 T5

Figure 12 The general structure of the 5 row Young tableau T̂ constructed in Theorem 8.9.

p is a point of Waring rank 5, so analogously to Theorem 8.1 the summands of the
evaluation will consist of assigning one of the 5 linear forms to each number and will be
non-zero iff no column contains the same linear form twice. Since all vectors are real, any
occuring determinants in the evaluation will also be real and hence every summand will be
either 0 or positive due to every column being repeated an even number of times.

The general structure of T̂ can be seen in Figure 12 and we will first describe the main
idea of each part. The parts T3 and T5 both encode the actual 3-coloring restrictions of the
edge sets E↕ and E↔ respectively, in the entries ei in the same way as in Theorem 8.1. To
ensure that only 3 colors can be used for the graph coloring, the entries ci are added into T3
to use up the remaining colors. The consistency of the ci, i.e. that exactly two colors are
used by all of the ci, is then ensured in T1 with the help of the entries ai and bi. Everything
else, i.e. the di and the tableaux T2 and T4 are only used in order to make T̂ semistandard
and with rectangular content.

T̂ is then the concatenation T1T2 . . . T5 where we assign increasing numbers starting from
1 first to all the ai, then to all the bi, ci, di and ei in order, increasing inside each group of
symbolic entries with increasing index. This ensures that each of the Ti individually, but
also the concatenation T̂ will be semistandard. The latter can be seen by looking at the
symbolic entries at the left and right borders of the Ti in the following descriptions.

We first describe the construction of all the Ti: T1 is built as a concatenation of smaller
tableaux T1,1, . . . T1,r for r = ⌈ |E↕|−1

24 ⌉. The construction of T1,1 and of T1,i for 1 < i ≤ r can
be seen in Figure 13. T2 and T4 are always the same and are given in Figure 14. T3 is given
as a left aligned vertical concatenation of T3,1 and T3,2, where T3,1 consists of the columns
c1
c2 ,

c3
c4 , . . .,

c8r−3
c8r−2 each repeated 12 times and

c8r−1
c8r repeated 14 times. T3,2 is obtained

from T̂↕ of Lemma 8.4 by doubling every column. Lastly T5 is constructed in the exact same
way as T3,2, but is obtained from T̂↔ of Lemma 8.4.

We first prove that T is a semistandard Young tableau of rectangular content. T1 fulfils
the following properties which are easy to prove via induction:

a1, . . . , a3r all appear exactly 16 times each in T1.
b1 and b2 appear exactly twice in T1.
c1, . . . , c8r−2 all appear exactly 4 times in T1.
c8r−1 and c8r appear exactly twice in T1.
If we replace the symbolic entries as previously described then T1 is semistandard.

The only important properties of T2 and T4 are that b1, b2, d1, d2 all appear exactly 14
times in T2 and d1 and d2 each appear twice in T4, while both are clearly semistandard.

The properties of T3 are now:
c1, . . . , c8r−2 all appear 12 times in T3.
c8r−1 and c8r appear exactly 14 times in T3.
If we replace the symbolic entries as previously described, T3 is semistandard.

CCC 2021

29:32 On the Complexity of Evaluating Highest Weight Vectors

T3,1 has at least as many columns as T3,2 by our choice of r = ⌈ |E↕|−1
24 ⌉. T3,1 has

(4r − 1) · 12 + 14 ≥
(|E↕| − 1

6 − 1
)

· 12 + 14 = 2 · |E↕|

columns while T3,2 has exactly 2 · |E↕| columns.
The last property of T3 is important in order for T3 and thus T̂ to be a of proper shape for a
Young tableau, i.e. have non-decreasing row lengths.

Combining all the properties we see that T̂ contains every entry exactly 16 times each and
is semistandard after replacing the symbolic entries. Additionally each column is repeated
an even number of times, so no summands of the evaluation can be negative. In case d > 16
we repeat every column of T d

16 times in order to get the representation of a highest weight
vector of SymnSymdCm as a semistandard Young tableau.

Next we look at the effects of the gadgets on the possible non-zero summands of the
evaluation.

Any further considerations will now assume w.l.o.g. that a1, a2, a3 get assigned the first
three linear forms of p, all other cases are symmetric. These three entries all occur together
in the very first column of T1, so they have to be pairwise different in order to be part of a
non-zero summand. T1,1 then enforces c1, . . . , c8 to all be assigned the last two linear forms
of p. Since T1,i and T1,i+1 share the entries of c8i−1 and c8i, inductively all of ai, . . . , a3r

will be assigned the first three linear forms of p in some order and all of c1, . . . , c8r will be
assigned the last two linear forms of p in some order.

The last important property is, that e1, . . . , e|V | all appear at least once in T3 since every
vertex of a grid-like layered graph is incident to an edge going to another layer. This means
that all the linear forms being chosen for any e1, . . . , e|V | can only be the first three linear
forms of p since the remaining two are already used for the ci of which two appear in every
column.

Now assume G admits a proper 3-coloring with the colors 1, 2, 3. We can now construct
a placement of the linear forms onto the entries of T̂ as follows:

The entries a3i+j get assigned the linear form ℓj for every i ∈ {0, . . . , r − 1} and j ∈
{1, 2, 3}.
The entries b1 and b2 get assigned the linear forms ℓ4 and ℓ5 respectively.
The entries c2i+j get assigned the linear form ℓ3+j for every i ∈ {0, . . . , 4r − 1} and
j ∈ {1, 2}.
The entries d1 and d2 get assigned the linear forms ℓ1 and ℓ2 respectively.
The entries ei get assigned the linear form ℓj if vertex i was colored with color j in G.

It is now easy to check that in T1, T2 and T4 no column contains any linear form twice. To
see that the same holds for T3 and T5 note that the only way any column could contain the
same linear form twice would be for two entries eu and ev to appear in the same column and
be assigned the same linear form. That would mean that u and v got colored the same in G,
but by our construction there is also an edge {u, v} ∈ E↕ ∪ E↔, a contradition to G being
properly 3-colored. Since no column contains a repeated linear form this summand is strictly
positive, making the whole evaluation fT̂ (p) non-zero.

Conversely assume that the evaluation of fT̂ (p) is non-zero. Thus there must be a non-zero
summand, placing linear forms on each entry. As by the previous discussion there are only 3
different linear forms being placed on all of the ei, directly inducing a 3-coloring of G. This
3-coloring is proper since every column can never contain the same linear form twice and
every edge of G is represented by a column.

M. Bläser, J. Dörfler, and C. Ikenmeyer 29:33

T1,1 =

a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1
a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2
a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3
b1 b1 c1 c1 c1 c1 c3 c3 c3 c3 c5 c5 c5 c5 c7 c7
b2 b2 c2 c2 c2 c2 c4 c4 c4 c4 c6 c6 c6 c6 c8 c8

T1,i =

a3i−2 a3i−2 a3i−2 a3i−2 a3i−2 a3i−2 a3i−2 a3i−2 a3i−2 a3i−2 a3i−2 a3i−2 a3i−2 a3i−2 a3i−2 a3i−2
a3i−1 a3i−1 a3i−1 a3i−1 a3i−1 a3i−1 a3i−1 a3i−1 a3i−1 a3i−1 a3i−1 a3i−1 a3i−1 a3i−1 a3i−1 a3i−1
a3i a3i a3i a3i a3i a3i a3i a3i a3i a3i a3i a3i a3i a3i a3i a3i

c8i−9 c8i−9 c8i−7 c8i−7 c8i−7 c8i−7 c8i−5 c8i−5 c8i−5 c8i−5 c8i−3 c8i−3 c8i−3 c8i−3 c8i−1 c8i−1
c8i−8 c8i−8 c8i−6 c8i−6 c8i−6 c8i−6 c8i−4 c8i−4 c8i−4 c8i−4 c8i−2 c8i−2 c8i−2 c8i−2 c8i c8i

Figure 13 The Young tableaux T1,1 and T1,i from the proof of Theorem 8.9.

T2 =

b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1

b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2

d1 d1 d1 d1 d1 d1 d1 d1 d1 d1 d1 d1 d1 d1

d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 T4 =
d1 d1

d2 d2

Figure 14 The Young tableaux T2 and T4 from the proof of Theorem 8.9.

To now show that this evaluation is not possible in time 2o(√
n) unless ETH fails, notice

that if G has |V | vertices, then T̂ has n = O(|V |) many different entries. So any evaluation
in time 2o(√

n) would decide whether G admits a proper 3-coloring in time 2o
(√

|V |
)
, which

is a contradiction to Lemma 8.88 unless ETH fails. ◀

▶ Remark 8.10. All these hardness results also hold if the highest weight vectors are given as
a Young tableau T with content (nd) × 1 opposed to T̂ with content n × d by replacing the
entries containing 1 in T̂ by 1, . . . , d and 2 by d + 1, . . . , 2d and so on in a left-to-right, top-to-
bottom fashion. This corresponds to undoing the projection of ⊗nSymdV onto SymnSymdV .
In the cases when T̂ is semistandard T is standard.

References
1 Abdelmalek Abdesselam. Feynman diagrams in algebraic combinatorics. Séminaire

Lotharingien de Combinatoire [electronic only], 49:B49c, 45 p., electronic only–B49c, 45
p., electronic only, 2002. URL: http://eudml.org/doc/123420.

2 Abdelmalek Abdesselam, Christian Ikenmeyer, and Gordon Royle. 16,051 formulas for
Ottaviani’s invariant of cubic threefolds. Journal of Algebra, 447:649–663, 2016.

3 Daniel J. Bates and Luke Oeding. Toward a Salmon conjecture. Experimental Mathematics,
20(3):358–370, 2011. doi:10.1080/10586458.2011.576539.

4 Christine Bessenrodt and Christiane Behns. On the Durfee size of Kronecker products of
characters of the symmetric group and its double covers. Journal of Algebra, 280(1):132–144,
2004.

5 Christine Bessenrodt, Chris Bowman, and Rowena Paget. The classification of multiplicity-free
plethysms of Schur functions, 2020. arXiv:2001.08763.

6 D. Bini. Relations between exact and approximate bilinear algorithms. applications. CALCOLO,
17(1):87–97, January 1980. doi:10.1007/BF02575865.

8 or Lemma 8.5 for a weaker lower bound of 2o(4√n)

CCC 2021

http://eudml.org/doc/123420
https://doi.org/10.1080/10586458.2011.576539
http://arxiv.org/abs/2001.08763
https://doi.org/10.1007/BF02575865

29:34 On the Complexity of Evaluating Highest Weight Vectors

7 Dario Bini, Milvio Capovani, Francesco Romani, and Grazia Lotti. O(n2.7799) complexity
for n × n approximate matrix multiplication. Inf. Process. Lett., 8(5):234–235, 1979. doi:
10.1016/0020-0190(79)90113-3.

8 Markus Bläser and Christian Ikenmeyer. Introduction to geometric complexity theory, 2018. lec-
ture notes, summer 2017 at Saarland University, http://people.mpi-inf.mpg.de/~cikenmey/
teaching/summer17/introtogct/gct.pdf, version from July 25, 2018.

9 Karl Bringmann, Christian Ikenmeyer, and Jeroen Zuiddam. On algebraic branching programs
of small width. J. ACM, 65(5), 2018. doi:10.1145/3209663.

10 Russ Bubley, Martin E. Dyer, Catherine S. Greenhill, and Mark Jerrum. On approximately
counting colorings of small degree graphs. SIAM J. Comput., 29(2):387–400, 1999. doi:
10.1137/S0097539798338175.

11 Peter Bürgisser. The complexity of factors of multivariate polynomials. In 42nd IEEE
Symposium on Foundations of Computer Science (Las Vegas, NV, 2001), pages 378–385. IEEE
Computer Soc., Los Alamitos, CA, 2001.

12 Peter Bürgisser, Matthias Christandl, and Christian Ikenmeyer. Even partitions in plethysms.
Journal of Algebra, 328(1):322–329, 2011.

13 Peter Bürgisser and Christian Ikenmeyer. Geometric complexity theory and tensor rank.
Proceedings 43rd Annual ACM Symposium on Theory of Computing 2011, pages 509–518,
2011.

14 Peter Bürgisser and Christian Ikenmeyer. Explicit lower bounds via geometric complexity
theory. Proceedings 45th Annual ACM Symposium on Theory of Computing 2013, pages
141–150, 2013.

15 Peter Bürgisser and Christian Ikenmeyer. Fundamental invariants of orbit closures. Journal
of Algebra, 477(Supplement C):390–434, 2017.

16 Peter Bürgisser, Christian Ikenmeyer, and Greta Panova. No occurrence obstructions in
geometric complexity theory. Journal of the American Mathematical Society, 32:163–193, 2019.
A conference version appeared in: Proceedings IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS 2016), 386–395.

17 Peter Bürgisser, J.M. Landsberg, Laurent Manivel, and Jerzy Weyman. An overview of
mathematical issues arising in the Geometric complexity theory approach to VP v.s. VNP.
SIAM J. Comput., 40(4):1179–1209, 2011.

18 Liming Cai and David Juedes. Subexponential parameterized algorithms collapse the w-
hierarchy. In International Colloquium on Automata, Languages, and Programming, pages
273–284. Springer, 2001.

19 Enrico Carlini, Maria Virginia Catalisano, and Anthony V Geramita. The solution to the
Waring problem for monomials and the sum of coprime monomials. Journal of algebra,
370:5–14, 2012.

20 Man-Wai Cheung, Christian Ikenmeyer, and Sevak Mkrtchyan. Symmetrizing tableaux and
the 5th case of the Foulkes conjecture. Journal of Symbolic Computation, 80:833–843, 2017.

21 Luca Chiantini, Jonathan D. Hauenstein, Christian Ikenmeyer, Joseph M. Landsberg, and
Giorgio Ottaviani. Polynomials and the exponent of matrix multiplication. Bulletin of the
London Mathematical Society, 50(3):369–389, 2018. doi:10.1112/blms.12147.

22 Matthias Christandl, Brent Doran, and Michael Walter. Computing multiplicities of lie group
representations. In Proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations
of Computer Science, FOCS ’12, page 639–648, USA, 2012. IEEE Computer Society. doi:
10.1109/FOCS.2012.43.

23 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 4(8).
Springer, 2015.

24 Noah Daleo, Jonathan Hauenstein, and Luke Oeding. Computations and equations for Segre-
Grassmann hypersurfaces. Portugaliae Mathematica, 73, August 2014. doi:10.4171/PM/1977.

https://doi.org/10.1016/0020-0190(79)90113-3
https://doi.org/10.1016/0020-0190(79)90113-3
http://people.mpi-inf.mpg.de/~cikenmey/teaching/summer17/introtogct/gct.pdf
http://people.mpi-inf.mpg.de/~cikenmey/teaching/summer17/introtogct/gct.pdf
https://doi.org/10.1145/3209663
https://doi.org/10.1137/S0097539798338175
https://doi.org/10.1137/S0097539798338175
https://doi.org/10.1112/blms.12147
https://doi.org/10.1109/FOCS.2012.43
https://doi.org/10.1109/FOCS.2012.43
https://doi.org/10.4171/PM/1977

M. Bläser, J. Dörfler, and C. Ikenmeyer 29:35

25 Julian Dörfler, Christian Ikenmeyer, and Greta Panova. On geometric complexity theory:
Multiplicity obstructions are stronger than occurrence obstructions. In 46th International
Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras,
Greece., pages 51:1–51:14, 2019. journal version accepted for publication in SIAM J Appl Alg
Geom (SIAGA). doi:10.4230/LIPIcs.ICALP.2019.51.

26 Cameron Farnsworth. Koszul–young flattenings and symmetric border rank of the determinant.
Journal of Algebra, 447:664–676, 2016. doi:10.1016/j.jalgebra.2015.11.011.

27 Nick Fischer and Christian Ikenmeyer. The computational complexity of plethysm coefficients.
computational complexity, 29(2):8, November 2020. doi:10.1007/s00037-020-00198-4.

28 Michael Forbes. Some concrete questions on the border complexity of polynomials. Talk pre-
sented at the Workshop on Algebraic Complexity Theory, WACT 2016, Tel Aviv, 2016. video
available at https://www.cs.tau.ac.il/~shpilka/wact2016/videos/index.php accessed
10/17/2019. URL: https://www.cs.tau.ac.il/~shpilka/wact2016/videos/index.php.

29 Michael Andrew Forbes. Polynomial Identity Testing of Read-Once Oblivious Algebraic
Branching Programs. PhD thesis, MIT, 2014. URL: https://dspace.mit.edu/handle/1721.
1/89843.

30 M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified np-complete graph
problems. Theor. Comput. Sci., 1(3):237–267, 1976. doi:10.1016/0304-3975(76)90059-1.

31 Joshua A. Grochow, Ketan D. Mulmuley, and Youming Qiao. Boundaries of VP and VNP.
In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi,
editors, 43rd International Colloquium on Automata, Languages, and Programming (ICALP
2016), volume 55 of Leibniz International Proceedings in Informatics (LIPIcs), pages 34:1–
34:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.ICALP.2016.34.

32 Charles Hermite. Sur la theorie des fonctions homogenes à deux indéterminées. Cambridge
and Dublin Mathematical Journal, 9:172–217, 1854.

33 Anthony Iarrobino and Vassil Kanev. Power sums, Gorenstein algebras, and determinantal
loci. Springer Science & Business Media, 1999.

34 Christian Ikenmeyer. Geometric Complexity Theory, Tensor Rank, and Littlewood-Richardson
Coefficients. PhD thesis, Institute of Mathematics, University of Paderborn, 2012. URL:
http://nbn-resolving.de/urn:nbn:de:hbz:466:2-10472.

35 Christian Ikenmeyer. The Saxl conjecture and the dominance order. Discrete Mathematics,
338(11):1970–1975, 2015.

36 Christian Ikenmeyer and Umangathan Kandasamy. Implementing geometric complexity theory:
On the separation of orbit closures via symmetries. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, page 713–726, New York, NY,
USA, 2020. Association for Computing Machinery. doi:10.1145/3357713.3384257.

37 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

38 Mrinal Kumar. On top fan-in vs formal degree for depth-3 arithmetic circuits, 2018. URL:
https://eccc.weizmann.ac.il/report/2018/068/revision/1/download.

39 Shrawan Kumar. A study of the representations supported by the orbit closure of the determi-
nant. Compositio Mathematica, 151, September 2011. doi:10.1112/S0010437X14007660.

40 Shrawan Kumar and J.M. Landsberg. Connections between conjectures of Alon-Tarsi,
Hadamard-Howe, and integrals over the special unitary group. Discrete Math., 338(7):1232–
1238, 2015. doi:10.1016/j.disc.2015.01.027.

41 J. M. Landsberg. Geometric complexity theory: an introduction for geometers. Annali
dell’Università di Ferrara, 61(1):65–117, 2015. doi:10.1007/s11565-014-0202-7.

42 Joseph Landsberg. Tensors: Geometry and Applications, volume 128 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, Rhode Island, 2011.

CCC 2021

https://doi.org/10.4230/LIPIcs.ICALP.2019.51
https://doi.org/10.1016/j.jalgebra.2015.11.011
https://doi.org/10.1007/s00037-020-00198-4
https://www.cs.tau.ac.il/~shpilka/wact2016/videos/index.php
https://www.cs.tau.ac.il/~shpilka/wact2016/videos/index.php
https://dspace.mit.edu/handle/1721.1/89843
https://dspace.mit.edu/handle/1721.1/89843
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.4230/LIPIcs.ICALP.2016.34
https://doi.org/10.4230/LIPIcs.ICALP.2016.34
http://nbn-resolving.de/urn:nbn:de:hbz:466:2-10472
https://doi.org/10.1145/3357713.3384257
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://eccc.weizmann.ac.il/report/2018/068/revision/1/download
https://doi.org/10.1112/S0010437X14007660
https://doi.org/10.1016/j.disc.2015.01.027
https://doi.org/10.1007/s11565-014-0202-7

29:36 On the Complexity of Evaluating Highest Weight Vectors

43 M.A.A. Leeuwen, van, A.M. Cohen, and B. Lisser. Lie : a package for Lie group computations.
Centrum voor Wiskunde en Informatica, 1992.

44 Laurent Manivel and Mateusz Michałek. Effective constructions in plethysms and Weintraub’s
conjecture. Algebras and Representation Theory, 17(2):433–443, April 2014. doi:10.1007/
s10468-012-9402-y.

45 K.D. Mulmuley and M. Sohoni. Geometric Complexity Theory. I. An approach to the P vs.
NP and related problems. SIAM J. Comput., 31(2):496–526 (electronic), 2001.

46 K.D. Mulmuley and M. Sohoni. Geometric Complexity Theory. II. Towards explicit obstructions
for embeddings among class varieties. SIAM J. Comput., 38(3):1175–1206, 2008.

47 Noam Nisan. Lower bounds for non-commutative computation. In Proceedings of the 23rd
ACM Symposium on Theory of Computing, ACM Press. Citeseer, 1991.

48 Luke Oeding and Claudiu Raicu. Tangential varieties of Segre-Veronese varieties. Collectanea
Mathematica, 65, November 2011. doi:10.1007/s13348-014-0111-1.

49 Giorgio Ottaviani. Five lectures on projective invariants, lecture notes for trento school,
september 2012, 2013. arXiv:1305.2749, to appear in Rendiconti del Seminario Matematico,
Torino.

50 Claudiu Raicu. 3 × 3 minors of catalecticants. Mathematical Research Letters, 20, July 2013.
doi:10.4310/MRL.2013.v20.n4.a10.

51 Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar graph. J.
Comb. Theory, Ser. B, 62(2):323–348, 1994. doi:10.1006/jctb.1994.1073.

52 Steven Sam and Andrew Snowden. Proof of stembridge’s conjecture on stability of Kronecker
coefficients. Journal of Algebraic Combinatorics, 43:1–10, 2016.

53 Nitin Saxena. Diagonal circuit identity testing and lower bounds. In Automata, Languages
and Programming, pages 60–71, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

54 Yaroslav Shitov. How hard is the tensor rank?, 2016. arXiv:1611.01559.
55 Roberto Tamassia and Ioannis G Tollis. Planar grid embedding in linear time. IEEE

Transactions on circuits and systems, 36(9):1230–1234, 1989.

https://doi.org/10.1007/s10468-012-9402-y
https://doi.org/10.1007/s10468-012-9402-y
https://doi.org/10.1007/s13348-014-0111-1
https://arxiv.org/abs/1305.2749
https://doi.org/10.4310/MRL.2013.v20.n4.a10
https://doi.org/10.1006/jctb.1994.1073
http://arxiv.org/abs/1611.01559

On Query-To-Communication Lifting for Adversary
Bounds
Anurag Anshu #

EECS & Challenge Institute for Quantum Computation,
University of California, Berkeley, CA, USA
Simons Institute for the Theory of Computing, Berkeley, CA, USA

Shalev Ben-David #

University of Waterloo, Canada

Srijita Kundu #

Centre for Quantum Technologies, National University of Singapore, Singapore

Abstract
We investigate query-to-communication lifting theorems for models related to the quantum adversary
bounds. Our results are as follows:
1. We show that the classical adversary bound lifts to a lower bound on randomized communication

complexity with a constant-sized gadget. We also show that the classical adversary bound is
a strictly stronger lower bound technique than the previously-lifted measure known as critical
block sensitivity, making our lifting theorem one of the strongest lifting theorems for randomized
communication complexity using a constant-sized gadget.

2. Turning to quantum models, we show a connection between lifting theorems for quantum
adversary bounds and secure 2-party quantum computation in a certain “honest-but-curious”
model. Under the assumption that such secure 2-party computation is impossible, we show that
a simplified version of the positive-weight adversary bound lifts to a quantum communication
lower bound using a constant-sized gadget. We also give an unconditional lifting theorem which
lower bounds bounded-round quantum communication protocols.

3. Finally, we give some new results in query complexity. We show that the classical adversary
and the positive-weight quantum adversary are quadratically related. We also show that the
positive-weight quantum adversary is never larger than the square of the approximate degree.
Both relations hold even for partial functions.

2012 ACM Subject Classification Theory of computation → Communication complexity; Theory of
computation → Quantum complexity theory

Keywords and phrases Quantum computing, query complexity, communication complexity, lifting
theorems, adversary method

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.30

Related Version Full Version: https://arxiv.org/abs/2012.03415

Funding Anurag Anshu: Supported by the NSF QLCI program through grant number OMA-
2016245. Part of this work was done when A.A. was affiliated to the Department of Combinatorics
& Optimization and Institute for Quantum Computing, University of Waterloo, as well as to the
Perimeter Institute for Theoretical Physics.
Shalev Ben-David: Supported in part by the Natural Sciences and Engineering Research Council of
Canada (NSERC), DGECR-2019-00027 and RGPIN-2019-048041.
Srijita Kundu: Supported by the National Research Foundation, including under NRF RF Award No.
NRF-NRFF2013-13, the Prime Minister’s Office, Singapore; the Ministry of Education, Singapore,
under the Research Centres of Excellence program and by Grant No. MOE2012-T3-1-009; and in
part by the NRF2017-NRF-ANR004 VanQuTe Grant. Part of this work was done when S.K. was
visiting the Institute of Quantum Computing, University of Waterloo.

1 Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada
(CRSNG), DGECR-2019-00027 et RGPIN-2019-04804.

© Anurag Anshu, Shalev Ben-David, and Srijita Kundu;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 30; pp. 30:1–30:39

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anuraganshu@berkeley.edu
mailto:shalev.b@uwaterloo.ca
mailto:srijita.kundu@u.nus.edu
https://doi.org/10.4230/LIPIcs.CCC.2021.30
https://arxiv.org/abs/2012.03415
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 On Query-To-Communication Lifting for Adversary Bounds

Acknowledgements We thank Rahul Jain and Dave Touchette for helpful discussions related to the
QICZ(G) > 0 conjecture. We thank Robin Kothari for helpful discussions related to the adversary
bounds. We thank Anne Broadbent for helpful discussions related to quantum secure 2-party
computation. We thank Mika Göös for helpful discussions regarding critical block sensitivity and
its lifting theorem. We thank Jevgēnijs Vihrovs and the other authors of [6] for helpful discussions
regarding the classical adversary method, and particularly Krišjānis Prūsis for the proof of Lemma 27.

1 Introduction

Communication complexity is an important model of computation with deep connections
to many parts of theoretical computer science [29]. In communication complexity, two
parties, called Alice and Bob, receive inputs x and y from sets X and Y respectively, and
wish to compute some joint function F : X × Y → {0, 1} on their inputs. Alice and Bob
cooperate together, and their goal is to minimize the number of bits they must exchange
before determining F (x, y).

Recently, a lot of attention has been devoted to connections between communication
complexity and query complexity. In particular, query-to-communication “lifting” theorems
are powerful tools which convert lower bounds in query complexity into lower bounds in
communication complexity in a black-box manner. Since query lower bounds are typically
much easier to prove than communication lower bounds, these tools are highly useful for
the study of communication complexity, and often come together with new communication
complexity results (such as separations between different communication complexity models).
For example, see [21, 22, 23, 25, 16].

Lifting theorems are known for many models of computation, including deterministic
[23] and randomized [25] algorithms. Notably, however, a lifting theorem for quantum query
complexity is not known; the closest thing available is a lifting theorem for approximate
degree (also known as the polynomial method), which lifts to approximate logrank [37]. This
allows quantum query lower bounds proved via the polynomial method to be turned into
quantum communication lower bounds, but a similar statement is not known even for the
positive-weight quantum adversary method [5, 39].

In this work, we investigate lifting theorems for the adversary method and related
models. We prove a lifting theorem for a measure called the classical adversary bound. For
the quantum adversary method, we show that there is a surprising connection with the
cryptographic notion of secure 2-party computation. Specifically, we show that a lifting
theorem for a simplified version of the positive-weight adversary method follows from a
plausible conjecture regarding the impossibility of secure 2-party computation in a certain
“honest but curious” quantum model. We also prove an unconditional lifting theorem which
lower bounds bounded-round quantum algorithms.

Finally, we prove some query complexity results that may be of independent interest:
first, a quadratic relationship between the positive-weight adversary bound and the classical
adversary bound; and second, we show that the positive-weight adversary bound can never be
larger than the square of the approximate degree. This means that the (positive) adversary
method can never beat the polynomial method by more than a quadratic factor. These
results hold even for partial functions.

A. Anshu, S. Ben-David, and S. Kundu 30:3

1.1 Lifting theorems
The statement of a lifting theorem typically has the following form:

Mcc(f ◦ G) = Ω(M(f)).

Here G : X × Y → {0, 1} is a (fixed) communication complexity function, called a “gadget”,
which typically has low communication cost; f : {0, 1}n → {0, 1} is an arbitrary Boolean
function; M(·) is a measure in query complexity, representing the cost of computing the
function f in query complexity; and Mcc(·) is a measure in communication complexity.
The notation f ◦ G denotes the block-composition of f with G. This is a communication
complexity function defined as follows: Alice gets input (x1, x2, . . . , xn) ∈ X n, Bob gets input
(y1, y2, . . . , yn) ∈ Yn, and they must output f(G(x1, y1), G(x2, y2), . . . , G(xn, yn)). Hence
f ◦ G is a function with signature X n × Yn → {0, 1}.

There are two primary types of lifting theorems: those that work with a constant-sized
gadget G (independent of f), and those that work with a gadget G whose size logarithmic
in the input size n of f . 2 The latter type tend to be much more prevalent; recent lifting
theorems for deterministic and randomized communication complexities all use log-sized or
larger gadgets [23, 42, 17, 25, 16]. We remark, however, that even with log-sized or larger
gadgets, lifting theorems are highly nontrivial to prove: a lifting theorem for BPP, which
lifts randomized query lower bounds to randomized communication lower bounds, was only
established in the last few years, while an analogous result for BQP remains an open problem.

Lifting theorems which work with a constant-sized gadget are even harder to prove, but
often turn out to be much more useful. The reason is that common function families, like
disjointness (which we denote Disjn) 3 or inner product (which we denote IPn) 4, are universal.
This means for every communication function G : X × Y → {0, 1}, its communication matrix
(that is, its truth table) is a submatrix of the communication matrix of a sufficiently large
instance of the Disj function. In other words, every communication function is a sub-function
of Disjk and IPk for sufficiently large k. If the size of G is constant, then it is necessarily
contained in a Disj function of constant size (and similarly for IP). Hence lifting with
any constant-sized gadget G is enough to guarantee a lifting theorem with a constant-sized
disjointness gadget and constant-sized inner product gadget (and similarly for every other
universal function family). In short, lifting with a constant-sized gadget implies lifting with
almost any gadget of your choice.

In particular, a lifting theorem with a constant-sized gadget immediately implies a lower
bound for Disjn and IPn themselves. To see this, suppose we had a lifting theorem

Mcc(f ◦ G) = Ω(M(f))

for all Boolean functions f and a fixed (constant-sized) communication gadget G. Then G is a
sub-function of Disjk and of IPk for some constant k. Note that Disjn = ORn/k ◦Disjk and
that IPn = Parityn/k ◦ IPk. Hence we get Mcc(Disjn) = Ω(M(ORn/k)) and Mcc(IPn) =
Ω(M(Parityn/k)). Since k is constant, this can potentially give lower bounds on Mcc(Disjn)
and on Mcc(IPn) that are tight up to constant factors, depending on the measures Mcc(·)
and M(·).

2 Sometimes, lifting theorems use a gadget G which is large – polynomial in n – but which can still be
computed using O(log n) communication.

3 In the disjointness function, Alice and Bob receive n-bit strings x and y and must output 1 if and only
if there exists an index i ∈ [n] such that xi = yi = 1.

4 In the inner product function, Alice and Bob receive n-bit strings x and y, and must compute inner
product of those strings over F2.

CCC 2021

30:4 On Query-To-Communication Lifting for Adversary Bounds

There have only been a handful of lifting theorems which work with constant-sized
gadgets. One such result follows from Sherstov’s work for approximate degree and related
measures [37]. The part of that work which is most relevant to us is the lifting of approximate
degree to lower bounds on approximate logrank, and hence on the quantum communication
complexity of the lifted function. Sherstov’s work means that if one can prove a quantum
lower bound for a query function f using the polynomial method [9], then this lower bound
will also apply to the quantum communication complexity of f ◦ G, where G is a constant
sized gadget. Such a lifting theorem is not known to hold for the adversary methods [5, 39],
however (not even with a log-sized gadget).

Another lifting theorem with a constant-sized gadget appears in [27, 24]. There, a
query measure called critical block sensitivity [27] is lifted to a lower bound on randomized
communication complexity.

1.2 Adversary methods
The quantum adversary bounds are extremely useful methods for lower bounding quantum
query complexity. The original adversary method was introduced by Ambainis [5]. It was
later generalized in several ways, which were shown to all be equivalent [39], and are known
as the positive-weight adversary bound, denoted Adv(f). This bound has many convenient
properties: it has many equivalent formulations (among them a semidefinite program), it
is reasonably easy to use in practice, and it behaves nicely under many operations, such
as composition. The positive-weight adversary bound is one of the most commonly used
techniques for lower bounding quantum query complexity.

A related measure is called the negative-weight adversary bound, introduced in [26],
which we denote by Adv±(f). This is a strengthening of the positive adversary bound, and
satisfies Adv±(f) ≥ Adv(f) for all (possibly partial) Boolean functions f . Surprisingly, in
[35, 32], it was shown that the negative-weight adversary is actually equal to quantum query
complexity up to constant factors.

The quantum adversary methods have no known communication complexity analogues.
However, that by itself does not rule out a lifting theorem: one might still hope to lift
Adv(f) or Adv±(f) to lower bounds on quantum communication complexity, similar to how
critical block sensitivity cbs(f) was lifted to a lower bound on randomized communication
complexity [27, 24]. Unfortunately, no such lifting theorems are currently known, not even
for the positive-weight adversary method, and not even with a large gadget size.

Interestingly, it is possible to define a lower bound technique for randomized algorithms
which is motivated by the (positive) quantum adversary method. This measure was first
introduced in [1, 30], and different variants of it have been subsequently studied [6]. Here,
we use the largest of these variants, which we denote by CAdv(f) (in [6], it was denoted by
CMM(f)). In [6], it was shown that for total functions f , CAdv(f) is (up to constant factors)
equal to a measure called fractional block sensitivity, which we denote fbs(f). However, for
partial functions, there can be a large separation between the two measures. For more on
fractional block sensitivity, see [2, 28].

1.3 Our contributions

Lifting the classical adversary
Our first contribution is a lifting theorem for the classical adversary bound CAdv(f). We lift
it to a lower bound on randomized communication complexity using a constant-sized gadget.

A. Anshu, S. Ben-David, and S. Kundu 30:5

▶ Theorem 1. There is an explicitly given function G : X × Y → {0, 1} such that for any
(possibly partial) Boolean function or relation f ,

RCC(f ◦ G) = Ω(CAdv(f)).

Here RCC(f ◦ G) denotes the randomized communication complexity of f ◦ G with shared
randomness. We note that [27, 24] provided a lifting theorem that has a similar form, only
with the measure cbs(f) in place of CAdv(f). To compare the two theorems, we should
compare the two query measures. We have the following theorem.

▶ Lemma 2. For all (possibly partial) Boolean functions or relations f , CAdv(f) = Ω(cbs(f)).
Moreover, there is a family of total functions f for which CAdv(f) = Ω(cbs(f)3/2).

Lemma 2 says that CAdv(f) is a strictly stronger lower bound technique than cbs(f),
and hence Theorem 1 is stronger than the lifting theorem of [24]. A proof of Lemma 2 follows
from our proof that CAdv(f) ≥ cfbs(f)/2 in Lemma 26, together with the known power 3/2
separation between fbs(f) and bs(f) for total functions [20].5 This makes Theorem 1 one of
the strongest known lifting theorems for randomized communication complexity which works
with a constant-sized gadget.6

We note that the lifting theorem of [24] for the measure cbs(f) also works when f is
a relation, which is a more general setting than partial functions; indeed, most of their
applications for the lifting theorem were for relations f rather than functions. We extend
Theorem 1 to relations as well, and also show that CAdv(f) = Ω(cbs(f)) for all relations. In
fact, it turns out that for partial functions, CAdv(f) is equal to a fractional version of cbs(f),
which we denote cfbs(f); however, for relations, CAdv(f) is a stronger lower bound technique
than cfbs(f) (which in turn is stronger than cbs(f)). We also note that our techniques for
lifting CAdv(f) are substantially different from those of [27, 24].

Lifting quantum measures
Our first quantum result says that CAdv(f) lifts to a lower bound on bounded-round quantum
communication protocols. This may seem surprising, as CAdv(f) does not lower bound
quantum algorithms in query complexity; however, one can show that CAdv(f) does lower
bound non-adaptive quantum query complexity, or even quantum query algorithms with
limited adaptivity. This motivates the following result.

▶ Theorem 3. There is an explicitly given function G : X × Y → {0, 1} such that for any
(possibly partial) Boolean function or relation f ,

QCCr(f ◦ G) = Ω(CAdv(f)/r2).

Here QCCr(·) denotes the quantum communication complexity for an r-round quantum
protocol with shared entanglement.

We note that since any r-round protocol has communication cost at least r, we actually
get a lower bound of CAdv(f)/r2 + r. Minimizing over r yields a lower bound of CAdv(f)1/3

even on unbounded-round protocols. This may not seem very useful, since CAdv(f)1/3 is

5 For total functions, we have fbs(f) = cfbs(f) and cbs(f) = bs(f).
6 Sherstov’s lifting theorem for approximate degree [37] also works with a constant-sized gadget, and is

incomparable to our result as a lower bound technique for randomized communication complexity.

CCC 2021

30:6 On Query-To-Communication Lifting for Adversary Bounds

smaller than d̃eg(f), a measure we know how to lift [37]. However, we can generalize this
result to relations. For relations, we do not know how to compare CAdv(f)1/3 to d̃eg(f),
and therefore our lifting theorem gives something new, even in the unbounded-round setting.

▶ Corollary 4. There is an explicitly given function G : X × Y → {0, 1} such that for any
(possibly partial) Boolean function or relation f ,

QCC(f ◦ G) = Ω(CAdv(f)1/3),

where QCC denotes the quantum communication complexity with shared entanglement.

We next turn our attention to lower bounding unbounded-round quantum communication
protocols by lifting a quantum adversary method. Instead of aiming for the positive-weight
adversary bound, we work with a simplified version, studied in [3], which we denote Adv1(f).
This measure is a restriction of Adv to a pairs of inputs with a single bit of difference.

We have Adv1(f) ≤ Adv(f), and [3] showed that Adv1(f) = O(d̃eg(f)). However, their
proof of the latter is tricky, and we do not use it here; we give a direct lifting of Adv1(f)
(under a certain assumption), and we argue that the techniques we use are likely to generalize
to lifting Adv(f) in the future.

We prove the following theorem, which lifts Adv1(f) but has a dependence on a new
complexity measure QICZ(G) that we introduce.

▶ Theorem 5. For any (possibly partial) Boolean function or relation f and any communic-
ation function G which contains both AND2 and OR2 as subfunctions, we have

QCC(f ◦ G) = Ω(Adv1(f) QICZ(G)).

At first glance, this theorem might look very strong: not only does it lift the simplified
adversary bound for a single gadget G, it even does so for all G and gives an explicit
dependence on G. Unfortunately, there is a catch: the measure QICZ(G) may be 0 for some
communication functions G. In fact, we cannot rule out the possibility that QICZ(G) = 0
for all communication functions G, in which case Theorem 5 does not say anything. On the
other hand, note that if QICZ(G) > 0 for even a single function G, then Theorem 5 gives a
lifting theorem for Adv1(f) with a constant-sized gadget, which works even for relations.

We give an interpretation of the measure QICZ(G) in terms of a cryptographic primitive
called secure 2-party computation. In such a primitive, Alice and Bob want to compute
a function G on their inputs x and y, but they do not want to reveal their inputs to the
other party. Indeed, Alice wants to hide everything about x from Bob and Bob wants to
hide everything about y from Alice, with the exception of the final function value G(x, y)
(which they are both expected to know at the end of the protocol). We also seek information-
theoretic security: there are no limits on the computational power of Alice and Bob. Since
we are interested in a quantum version, we will allow Alice and Bob to exchange quantum
communication rather than classical communication, potentially with shared entanglement.

Secure 2-party computation is known to be impossible in general, even quantumly
[33, 18, 14, 19, 36]. However, in our case, we care about an “honest but curious” version of
the primitive, in which Alice and Bob trust each other to execute the protocol faithfully,
but they still do not trust each other not to try to learn the others’ input. In the quantum
setting, it is a bit difficult to define such an honest-but-curious model: after all, if Alice and
Bob are honest, they might be forbidden by the protocol from ever executing intermediate
measurements, and the protocol might even tell them to “uncompute” everything except
for the final answer, to ensure all other information gets deleted. Hence it would seem that
honest parties can trivially do secure 2-party computation.

A. Anshu, S. Ben-David, and S. Kundu 30:7

The way we will define quantum secure two-party computation in the honest-but-curious
setting will be analogous to the information-based classical definition (see, for example, [13]).
Classically, the information leak that Alice and Bob must suffer in an honest execution of
the best possible protocol is captured by IC(G), the information cost of the function G. The
measure IC(G) is the amount Alice learns about Bob’s input plus the amount Bob learns
about Alice’s input, given the best possible protocol and the worst possible distribution over
the inputs; we note that this measure includes the value of G(x, y) as part of what Alice
and Bob learn about each others’ inputs, whereas secure two-party computation does not
count learning G(x, y) as part of the cost, but this is only a difference of at most 2 bits of
information (one on Alice’s side and one on Bob’s side); hence, up to an additive factor of 2,
IC(G) captures the information leak necessary in a two-party protocol computing G.

For a quantum version of this, we will use QIC, a measure which is a quantum analogue
of IC and which was introduced in [41]. However, we note that if Alice and Bob send the
same bit G(x, y) back and forth n times, this will add Θ(n) to the value of QIC for that
protocol, due to subtleties in the definition of QIC (this does not occur classically with IC).
Hence, in the quantum setting, QIC does not capture the two-party information leak as
cleanly as IC did classically.

Instead, we modify the definition of QIC to a measure we denote QICZ(G). For this
measure, Alice and Bob want a protocol Π such that for any distribution µ that has
support only on 0-inputs or only on 1-inputs, QIC(Π, µ) is small. In other words, if we
use QIC 0(Π) to denote the quantum information cost of Π against 0-distributions and
QIC 1(Π) to denote the quantum information cost of Π against 1-distributions, then we
define QICZ(Π) = max{QIC 0(Π), QIC 1(Π)}.

When QICZ(Π) is near zero, it means that Alice and Bob learn nothing about each
others’ inputs when conditioned on the output of the function. The two-party secure
computation question then becomes: does such a secure protocol Π exists for computing any
fixed communication function G?

Intuitively, we believe that the answer should be no, at least for some communication
functions G. This would align with the known impossibility of various types of secure 2-party
quantum computation, though none of those impossibility results seem to apply to our setting.
Interestingly, we have the following lemma, which follows directly form the way we define
QICZ(G).

▶ Lemma 6. Suppose that our version of secure 2-party quantum computation is impossible
for a communication function G which contains both AND and OR as sub-functions. Then
QICZ(G) > 0, and hence Adv1(·) lifts to a quantum communication lower bound with the
gadget G.

We hope that future work can extend this lemma to a lifting theorem for the positive-
weight quantum adversary Adv(·); if so, the problem of lifting the positive quantum adversary
bound will reduce to the problem of ruling out secure 2-party quantum computation in the
model we outlined above.

New query relations
Finally, our study of the classical adversary bound led to some new relations in query
complexity that are likely to be of independent interest.

▶ Theorem 7. For all (possibly partial) Boolean functions f ,

Adv(f) = O(d̃eg(f)2).

CCC 2021

30:8 On Query-To-Communication Lifting for Adversary Bounds

Here d̃eg(f) is the approximate degree of f to bounded error.7 This relationship is
interesting, as it says that the positive-weight adversary method can never beat the polynomial
method by more than a quadratic factor. Conceivably, this can even be used as a lower
bound technique for the approximate degree of Boolean functions (which is a measure that is
often of interest even apart from quantum lower bounds). In fact, we prove a strengthening
of Theorem 7.

▶ Theorem 8. For all (possibly partial) Boolean functions f ,

d̃egϵ(f) ≥
√

(1 − 2ϵ) CAdv(f)
π

.

This version of the theorem is stronger, since Adv(f) ≤ CAdv(f). Finally, we prove a
quadratic relationship between the classical and quantum (positive-weight) adversary bounds.

▶ Theorem 9. For all (possibly partial) Boolean functions f ,

Adv(f) ≤ CAdv(f) ≤ 2 Adv(f)2.

We note that all of these new relations hold even for partial functions. This is unusual in
query complexity, where most relations hold only for total functions, and where most pairs
of measures can be exponentially separated in the partial function setting.

1.4 Our Techniques
We introduce several new techniques that we believe will be useful in future work on adversary
methods in communication complexity.

A lifting framework for adversary methods
One clear insight we contribute in this work is that lifting theorems for adversary method
can be fruitfully attacked in a “primal” way, and using information cost. To clarify, our
approach is to take a protocol Π for the lifted function f ◦ G, and to convert it into a solution
to the primal (i.e. minimization) program for the target adversary bound of f .

The primal program for an adversary method generally demands a non-negative weight
q(z, i) for each input string z ∈ {0, 1}n and each index i ∈ [n], such that a certain feasibility
constraint is satisfied for each pair (z, w) with f(z) ̸= f(w), and such that

∑
i∈[n] q(z, i) is

small for each input z. Our approach is to use an information cost measure to define q(z, i),
where the information is measured against a distribution µz over n-tuples of inputs to G

that evaluate to z, and where we only measure the information transmitted by the protocol
about the i-th input to G, conditioned on the previous bits.

We show that this way of getting a solution to the (minimization version of) the adversary
bound for f using a communication protocol for f ◦G suffices for lifting CAdv to a randomized
communication lower bound (with a constant-sized gadget), and that it also suffices for
getting some quantum lifting theorems. Our information cost approach is similar to the
approach taken in [7] to lower bound the information complexity of the AND function against
the uniform distribution over 0-inputs.

7 This is the minimum degree of an n-variate real polynomial p such that |p(x)| ∈ [0, 1] for all x ∈ {0, 1}n

and such that |p(x) − f(x)| ≤ 1/3 for all x in the domain of f .

A. Anshu, S. Ben-David, and S. Kundu 30:9

Product-to-sum reduction
One of the main tools we use in the proof of the lifting theorem for Adv1 is what we call
a product-to-sum reduction for quantum information cost. We show that if there is a
protocol Π which computes some communication function F such that the geometric mean√

QIC(Π, µ0) · QIC(Π, µ1) is small (where µ0 and µ1 are distributions over 0- and 1-inputs to
F), then there is also a protocol Π′ which also computes F and for which the arithmetic mean
1
2 (QIC(Π′, µ0) + QIC(Π′, µ1)) is small. In particular, a lower bound for the latter measure
implies a lower bound for the former. This is useful because the sum (or maximum) of the
two quantum information costs is a natural operation on quantum information measures
to which lower bound tools may apply, while the product is not; yet the product of these
information measures arises naturally in the study of adversary methods for a lifted query
function.

To prove our product-to-sum reduction, we employ a chain of reductions. First, we show
that if one of QIC(Π, µ0) or QIC(Π, µ1) is much smaller than the other, then we can use Π
to get a low-information protocol for OR ◦ F , the composition of the OR function with F .
Next, we use an argument motivated by [11]: we use Belov’s algorithm for the combinatorial
group testing problem [10] to use the low-information cost protocol for OR ◦ F to get a
low-information cost protocol for the task of computing n copies of F . Finally, we use an
argument from [41] to get a low-information cost protocol for F itself.

Connection to secure two-party computation
Another insight important for this work is that lifting theorems for quantum adversary
methods are related to quantum secure two-party computation, a cryptographic primitive.
This connection comes through the measure QICZ(G): for communication gadgets G for
which QICZ(G) > 0, we know that secure two-party computation of G is impossible (in an
“honest-but-curious” setting, where we require information-theoretic security); yet for such G,
we can then lift Adv1(f) to a lower bound on QCC(f ◦ G). We believe this result is likely to
extend to lifting theorems for other adversary methods in the future, though the dependence
on QICZ(G) > 0 may still remain.

We provide a minimax theorem for QICZ(G), giving an alternate characterization of the
measure. This minimax theorem is used in our lifting theorem, and may also be useful for a
future lower bound on QICZ(G) for some communication function G, which we view as an
interesting open problem.

Insights into query complexity
Our results for query complexity follow from the following insights. First, we show that
for partial functions, CAdv(f) is equivalent to the measure cfbs(f) (a fractional version of
critical block sensitivity [27]) by converting the primal versions of the two programs to each
other; this is not difficult to do, and the main contribution comes from (1) using the correct
definition of CAdv(f) (out of the several definitions in [6], which are not equivalent to each
other for partial functions), and (2) using the correct definition of cfbs(f) (which is a new
definition introduced in this work). We attribute one direction of this conversion to Krišjānis
Prūsis (personal communication).

Second, we show that the positive-weight adversary method Adv(f) is smaller than, but
quadratically related to, CAdv(f). Once again, this result is not difficult, but relies on
using the correct definition of CAdv(f) and on using the primal versions (i.e. minimization

CCC 2021

30:10 On Query-To-Communication Lifting for Adversary Bounds

versions) of both programs. (Indeed, we use only the primal form of all the adversary methods
throughout this paper; one of our insights is that this primal form is more convenient for
proving structural properties of the adversary methods, including lifting theorems.)

Finally, we show that d̃eg(f) = Ω(
√

cfbs(f)), and hence d̃eg(f) = Ω(
√

Adv(f)), and this
holds even for partial functions. We do this by essentially reducing it to the task of showing
d̃eg(f) = Ω(

√
fbs(f)). The latter is already known [28]; however, it was only known for

total functions, whereas we need it to hold for partial functions as well. The problem is that
the previous proof relied on recursively composing f with itself, an operation which turns
the fractional block sensitivity fbs(f) into the block sensitivity bs(f); unfortunately, this
trick works only for total Boolean functions. Instead, we use a different trick for turning
fbs(f) into bs(f): we compose f with the promise-OR function, and show that the block
sensitivity of f ◦ PrOR is proportional to the fractional block sensitivity of f . We then
convert an arbitrary polynomial approximating f into a polynomial approximating f ◦PrOR
by composing it with a Chebyshev-like polynomial computing PrOR; finally, we appeal to
the known result that the square root of block sensitivity lower bounds approximate degree
to finish the proof.

2 Preliminaries

2.1 Distance & information measures
We define all the distance and information measures for quantum states. The classical
versions can be obtained by making the corresponding registers classical.

The ℓ1 distance between two quantum states ρ and σ is defined as

∥ρ − σ∥1 = Tr
√

(ρ − σ)†(ρ − σ).

The entropy of a quantum state ρA on register A is defined as

H(A)ρ = − Tr(ρ log ρ).

For a state ρAB on registers AB, the conditional entropy of A given B is

H(A|B)ρ = H(AB)ρ − H(B)ρ.

Conditional entropy satisfies the following continuity bound [4]: if ρ and σ on registers AB

satisfy ∥ρ − σ∥1 ≤ ϵ, then

|H(A|B)ρ − H(A|B)σ| ≤ 4ϵ log |A| + 2h(ϵ)

where h(.) is the binary entropy function. For ρABC , we define the mutual information and
conditional mutual information as

I(A : B)ρ = H(A)ρ − H(A|B)ρ I(A : B|C) = H(A|C)ρ − H(A|BC)ρ.

Mutual information satisfies

0 ≤ I(A : B|C)ρ ≤ min{log |A|, log |B|}

and the chain rule

I(A : BC)ρ = I(A : B)ρ + I(A : C|B)ρ.

A. Anshu, S. Ben-David, and S. Kundu 30:11

2.2 Query complexity
In query complexity, the primary object of study are Boolean functions, which are functions
f : {0, 1}n → {0, 1} where n is a positive integer. Often, we will actually study partial
Boolean functions, which are defined on only a subset of {0, 1}n. We will use Dom(f) to
denote the domain of f ; this is a subset of {0, 1}n.

For a (possibly partial) Boolean function f , we use D(f), R(f), and Q(f) to denote
its deterministic query complexity, randomized query complexity (to bounded error), and
quantum query complexity (to bounded error), respectively. For the definition of these
measures, see [15], though we won’t use these definitions in this work.

2.2.1 Block sensitivity and its variants
We will use the following definitions.

Block notation. For a Boolean string x ∈ {0, 1}n and a set B ⊆ [n], we let xB denote the
string with the bits in B flipped; that is, xB

i = xi for all i /∈ B and xB
i = 1 − xi for all i ∈ B.

The set B is called a block.

Sensitive block. For a (possibly partial) Boolean function f on n bits and an input
x ∈ Dom(f), we say that a set B ⊆ [n] is a sensitive block for x (with respect to f) if
xB ∈ Dom(f) and f(xB) ̸= f(x).

Block sensitivity. The block sensitivity of a string x ∈ {0, 1}n with respect to a (possibly
partial) Boolean function f satisfying x ∈ Dom(f) is the maximum integer k such that there
are k blocks B1, B2, . . . , Bk ⊆ [n] which are all sensitive for x and which are all disjoint. This
is denoted bs(x, f).

Block sensitivity of a function. The block sensitivity of a (possibly partial) Boolean function
f is the maximum value of bs(x, f) over x ∈ Dom(f). This is denoted bs(f). Block sensitivity
was originally introduced by Nisan [34], and is discussed in the survey by Buhrman and de
Wolf [15].

Fractional block sensitivity. The fractional block sensitivity of a string x ∈ {0, 1}n with
respect to a (possibly partial) Boolean function f satisfying x ∈ Dom(f) is the maximum
possible sum of weights

∑
B wB, where the weights wB ≥ 0 are assigned to each sensitive

block of x and must satisfy
∑

B:i∈B wB ≤ 1 for all i ∈ [n]. This is denoted by fbs(x, f). The
fractional block sensitivity of a function f , denoted fbs(f), is the maximum value of fbs(x, f)
over x ∈ Dom(f). Fractional block sensitivity was defined by [2], but see also [28].

Critical block sensitivity. For a (possibly partial) Boolean function f , we say that a total
Boolean function f ′ is a completion of f if f ′(x) = f(x) for all x ∈ Dom(f). The critical
block sensitivity of f , denoted cbs(f), is defined as

min
f ′

max
x∈Dom(f)

bs(x, f ′),

where the minimum is taken over completions f ′ of f . This measure was defined by [27]. It
equals bs(f) for total functions, but may be larger for partial functions.

CCC 2021

30:12 On Query-To-Communication Lifting for Adversary Bounds

Critical fractional block sensitivity. For a (possibly partial) Boolean function f , we define
its critical fractional block sensitivity, denoted cfbs(f), as

min
f ′

max
x∈Dom(f)

cfbs(x, f ′),

where the minimum is taken over completions f ′ of f . This measure has not previously
appeared in the literature.

2.2.2 Adversary bounds
Positive adversary bound. For a (possibly partial) Boolean function f , we define the
positive-weight adversary bound, denoted Adv(f), as the minimum of the following program.
We will have one non-negative weight q(x, i) for each x ∈ Dom(f) and each i ∈ [n]. We call
such a weight scheme feasible if, for all x, y ∈ Dom(f) with f(x) ̸= f(y), we have∑

i:xi ̸=yi

√
q(x, i)q(y, i) ≥ 1.

Then Adv(f) is defined as the minimum of maxx∈Dom(f)
∑

i∈[n] q(x, i) over feasible weight
schemes q(·, ·). A different version of the positive-weight adversary bound was defined in
[5], though the version we’ve currently defined appears in [30] and [39] (in the latter, our
definition is equivalent to MM(f)).

Classical adversary bound. For a (possibly partial) Boolean function f , we define the
classical adversary bound, denoted CAdv(f), as the minimum of the following program. We
will have one non-negative weight q(x, i) for each x ∈ Dom(f) and each i ∈ [n], as before.
We call such a weight scheme feasible if, for all x, y ∈ Dom(f) with f(x) ̸= f(y), we have∑

i:xi ̸=yi

min{q(x, i), q(y, i)} ≥ 1.

Then CAdv(f) is defined as the minimum of maxx∈Dom(f)
∑

i∈[n] q(x, i) over feasible weight
schemes q(·, ·). Observe that this definition is the same as that of Adv(f), except that the
feasibility constraint sums up the minimum of q(x, i) and q(y, i) instead of the geometric
mean. This feasibility constraint is harder to satisfy, and hence we have CAdv(f) ≥ Adv(f).
A different version of the classical adversary was defined in [1], though the version we’ve
currently defined appears in [30] and [6] (in the latter, our definition is equivalent to CMM(f)).

Singleton adversary bound. [3] introduced a simplified version of the quantum adversary
bound, which we denote Adv1(f). As in the other adversaries, this will be the minimum
over a program that has one non-negative weight q(x, i) for each pair of input x ∈ Dom(f)
and index i ∈ [n]. The objective value will once again be maxx∈Dom(f)

∑
i∈[n] q(x, i). The

only difference is the constraints: instead of placing a constraint for each x, y ∈ Dom(f)
with f(x) ̸= f(y), we only place this constraint for such x, y that have Hamming distance
exactly 1. Observe that this is a relaxation of the constraint in the definition of Adv(f), and
hence Adv1(f) ≤ Adv(f) for all (possibly partial) Boolean functions f .

2.3 A generalization to relations
So far, we’ve defined our query measures for partial Boolean functions. However, in many
cases we will be interested in studying relations, which are a generalization of partial Boolean
functions.

A. Anshu, S. Ben-David, and S. Kundu 30:13

In query complexity, a relation is a subset of {0, 1}n × Σ, where Σ is some finite output
alphabet. We will equate a relation f ⊆ {0, 1}n × Σ with a function that maps {0, 1}n to
subsets of Σ, so that for a string x ∈ {0, 1}n, the notation f(x) denotes {σ ∈ Σ : (x, σ) ∈ f}.
An algorithm which computes a relation f to error ϵ must have the guarantee that for inputs
x ∈ {0, 1}n, the algorithm outputs a symbol in f(x) with probability at least 1 − ϵ.

Relations are generalizations of partial functions. This is because we can represent a
partial function f with domain Dom(f) ⊆ {0, 1}n by a relation f ′ such that f ′(x) = {f(x)}
for x ∈ Dom(f) and f ′(x) = {0, 1} for x /∈ Dom(f). In other words, the relational version
f ′ of the partial function f will accept all input strings (it will be a total function), but it
will consider every output symbol to be valid when given an input not in Dom(f). This
essentially makes the inputs not in Dom(f) become trivial, and hence makes the relation f ′

intuitively equivalent to the partial function f .
We will generalize several of our query measures to relations.

Critical (fractional) block sensitivity. The original definition of cbs(f) from [27] actually
defined it for relations. We say that a total function f ′ : {0, 1}n → Σ is a completion of a
relation f ⊆ {0, 1}n ×Σ if (x, f ′(x)) ∈ f for all x ∈ {0, 1}n. In other words, f ′ is a completion
if it gives a fixed, valid output choice for each input to f . Next, we say an input x ∈ {0, 1}n

is critical if it has a unique valid output symbol in f ; that is, if |f(x)| = 1. We let crit(f)
denote the set of all critical inputs to f . (Note that if f is the relational version of a partial
function, then crit(f) is equal to the domain of the partial function.) We then define

cbs(f) := min
f ′

max
x∈crit(f)

bs(x, f ′)

cfbs(f) := min
f ′

max
x∈crit(f)

fbs(x, f ′),

where the minimizations are over completions f ′ of f . Observe that if f is the relational
version of a partial function, these definitions match the previous ones.

Adversary bounds. The adversary bounds easily generalize to relations: both the positive
adversary bound and the classical adversary bound will still be minimizations over weight
schemes q(x, i), with a non-negative weight assigned to each pair of input in {0, 1}n and
i ∈ [n]. The objective value to be minimized is the same as before: maxx∈{0,1}n

∑
i∈[n] q(x, i).

As for the constraints, we previously had one constraint for each pair of inputs x, y with
f(x) ̸= f(y). For relations, we will replace this condition with the condition f(x) ∩ f(y) = ∅
(that is, x and y have disjoint allowed-output-symbol sets). Hence the new constraint for
Adv(f) becomes that for all pairs x, y ∈ {0, 1}n with f(x) ∩ f(y) = ∅, we have∑

i:xi ̸=yi

√
q(x, i)q(y, i) ≥ 1.

Similarly, the constraint for CAdv(f) is that for all pairs x, y ∈ {0, 1}n with f(x) ∩ f(y) = ∅,
we have∑

i:xi ̸=yi

min{q(x, i), q(y, i)} ≥ 1,

and the constraint for Adv1(f) is similar.

CCC 2021

30:14 On Query-To-Communication Lifting for Adversary Bounds

2.3.1 Degree measures
Degree of a function. For a (possibly partial) Boolean function f , we define its degree to
be the minimum degree of a real polynomial p which satisfies p(x) = f(x) for all x ∈ Dom(f)
as well as p(x) ∈ [0, 1] for all x ∈ {0, 1}n. We denote this by deg(f).

Approximate degree. For a (possibly partial) Boolean function f , we define its approximate
degree to error ϵ to be the minimum degree of a real polynomial p which satisfies |p(x)−f(x)| ≤
ϵ for all x ∈ Dom(f) as well as p(x) ∈ [0, 1] for all x ∈ {0, 1}n. We denote this by d̃egϵ(f).
When ϵ = 1/3, we omit it and write d̃eg(f).

These measures are both defined and discussed in the survey by Buhrman and de Wolf [15].
We note that for partial functions, some authors do not include the requirement that the
polynomial approximating the function is bounded outside of the promise set. Without
this requirement, one gets a smaller measure. In this work we will only use degree and
approximate degree to refer to the bounded versions of these measures.

We also note that approximate degree can be amplified: if a polynomial p approximates
a function f to error ϵ, then we can modify p to get a polynomial q which approximates f to
error ϵ′ < ϵ and which has degree that is at most a constant factor larger than the degree of
p (this constant factor will depend on ϵ and ϵ′).

2.3.2 Known relationships between measures
See Figure 1 for a summary of relationships between these measures (for partial functions).

cfbs

fbs cbs

bs

= CAdv

Adv

Adv1

R

√
CAdv

d̃eg

Q deg

Figure 1 Relations between query complexity measures used in this work, applicable to partial
functions. An upwards line from M1(f) to M2(f) means that M1(f) = O(M2(f)) for all (possibly
partial) Boolean functions f . Red indicates new relationships proved in this work. We warn that
some of these relationships are false for relations; in particular, CAdv may be strictly larger than
cfbs and its square root may be incomparable to d̃eg for relations.

It is not hard to see that bs(f) is the smallest of the block sensitivity measures, and
cfbs(f) is the largest. We know [2, 27] that fbs(f) and cbs(f) both lower bound R(f) for
all (possibly partial) Boolean functions f ; in Section 6, we show that cfbs(f) is also a lower
bound.

We know [30, 39, 6] that Q(f) = Ω(Adv(f)) and R(f) = Ω(CAdv(f)). Although this it
not ordinarily stated for relations, both lower bounds hold when f is a relation as well. In
Section 6, we show that CAdv(f) = Θ(cfbs(f)) for all partial functions f , and we also show
that CAdv(f) = O(Adv(f)2) which holds for both partial functions and relations.

Approximate degree lower bounds quantum query complexity: Q(f) = Ω(d̃eg(f)). It is
known [9] that approximate degree is lower-bounded by

√
bs(f). Tal [40] showed that for

total functions, d̃eg(f) = Ω(
√

fbs(f)). In Section 6, we extend this result to partial functions,
and also prove that d̃eg(f) = Ω(

√
cfbs(f)).

A. Anshu, S. Ben-David, and S. Kundu 30:15

In conclusion, CAdv(f) turns out to be the same as cfbs(f) for partial functions, and its
square root lower bounds both Adv(f) and d̃eg(f), both of which are lower bounds on Q(f).
Without taking square roots, CAdv(f) is a lower bound on R(f) but not on Q(f).

When we move from partial functions to relations, the measure CAdv(f) appears to get
stronger in comparison to the other measures: it is strictly larger than cfbs(f), and appears
to be incomparable to d̃eg(f) (though defining the latter for relations is a bit tricky, and we
don’t do so in this work).

2.4 Communication complexity
In the communication model, two parties, Alice and Bob, are given inputs x ∈ X and
y ∈ Y respectively, and in the most general case the task is to jointly compute a relation
f ⊆ X × Y × Z by communicating with each other. In other words, on input (x, y), Alice
and Bob must output a symbol z ∈ Z such that (x, y, z) ∈ f . Without loss of generality, we
can assume Alice sends the first message, and Bob produces the output of the protocol.

In the classical randomized model, Alice and Bob are allowed to use shared randomness
R (and also possibly private randomness RA and RB) in order to achieve this. The cost of
a communication protocol Π, denoted by CC(Π) is the number of bits exchanged between
Alice and Bob. The randomized communication complexity of a relation f with error ϵ,
denoted by RCC

ϵ (f), is defined as the minimum CC(Π) of a randomized protocol Π that
computes f with error at most ϵ on every input.

Classical information complexity. The information complexity of a protocol with inputs
X, Y according to µ, shared randomness R and transcript Π is given by

IC(Π, µ) = I(X : Π|Y R)µ + I(Y : Π|XR)µ.

For any µ we have, IC(Π, µ) ≤ CC(Π).

Quantum communication complexity. In a quantum protocol Π, Alice and Bob initially
share an entangled state on registers A0B0, and they get inputs x and y from a distribution
µ. The global state at the beginning of the protocol is

|Ψ0⟩ =
∑
x,y

√
µ(x, y) |xxyy⟩

XX̃Y Ỹ
⊗ |Θ0⟩A0B0

where the registers X̃ and Ỹ purify X and Y and are inaccessible to either party. In the
t-th round of the protocol, if t is odd, Alice applies a unitary Ut : A′

t−1Ct−1 → A′
tCt, on

her input, her memory register A′
t−1 and the message Ct−1 from Bob in the previous round

(where A′
0 = XA0 and C0 is empty), to generate the new message Ct, which she sends to

Bob, and new memory register A′
t. Similarly, if t is even, then Bob applies the unitary

Ut : B′
t−1Ct−1 → B′

tCt and sends Ct to Alice. It is easy to see that B′
t = B′

t−1 for odd t, and
A′

t = A′
t−1 for even t. We can assume that the protocol is safe, i.e., for all t, A′

t = XAt and
B′

t = Y Bt, and Ut uses X or Y only as control registers. The global state at the t-th round
is then

|Ψt⟩ =
∑
x,y

√
µ(x, y) |xxyy⟩

XX̃Y Ỹ
⊗ |Θt⟩AtBtCt|xy .

[31] (Proposition 9) showed that making a protocol safe does not decrease its QIC (defined
below), so we shall often work with protocols of this form.

CCC 2021

30:16 On Query-To-Communication Lifting for Adversary Bounds

The quantum communication cost of a protocol Π, denoted by QCC(Π), is the total
number of qubits exchanged between Alice and Bob in the protocol, i.e.,

∑
t log |Ct|. The

quantum communication complexity of f with error ϵ, denoted by QCC(f), is defined as the
minimum QCC(Π) of a quantum protocol Π that computes f with error at most ϵ on every
input.

Quantum information complexity. Given a quantum protocol Π as described above with
classical inputs distributed as µ, its quantum information complexity is defined as

QIC(Π, µ) =
∑

t odd
I(X̃Ỹ : Ct|Y B′

t)Ψt +
∑

t even
I(X̃Ỹ : Ct|XA′

t)Ψt .

The Holevo quantum information complexity is defined as

HQIC(Π, µ) =
∑

t odd
I(X : B′

tCt|Y)Ψt +
∑

t even
I(Y : A′

tCt|X)Ψt

=
∑

t odd
I(X : BtCt|Y)Ψt +

∑
t even

I(Y : AtCt|X)Ψt (for safe protocols).

For brevity, we shall often only use the classical input distribution µ as the subscript, or
drop the subscript entirely, for these information quantities.

It was proved in [31], that for an r-round protocol Πr, HQIC and QIC satisfy the following
relation:

QIC(Πr, µ) ≥ 1
r

HQIC(Πr, µ) ≥ 1
2r

QIC(Πr, µ).

Moreover, for any µ, QIC(Π, µ) ≤ QCC(Π).

3 Lifting the classical adversary

3.1 The gadget and its properties
The gadget we use is the same one used in [24], called VER in that work. This is the function
VER : {0, 1}2 × {0, 1}2 → {0, 1} defined by G(x, y) = 1 if and only if x + y is equivalent to 2
or 3 modulo 4, where x, y ∈ {0, 1}2 are interpreted as binary representations of integers in
{0, 1, 2, 3}. This gadget has the property of being versatile, which means that it satisfies the
following three properties:
1. Flippability: given any input (x, y), Alice and Bob can perform a local operation on their

respective inputs (without communicating) to get (x′, y′) such that G(x′, y′) = 1−G(x, y).
2. Random self-reducibility: given any input (x, y), Alice and Bob can use shared random-

ness (without communicating) to generate (x′, y′) which is uniformly distributed over
G−1(G(x, y)). That is, Alice and Bob can convert any 0-input into a random 0-input and
any 1-input into a random 1-input, without any communication. More formally, if the
domain of G is X × Y , we require a probability distribution νG over pairs of permutations
in SX ×SY such that for each (x, y) ∈ X ×Y , sampling (σA, σB) from νG and constructing
the pair (σA(x), σB(y)) gives the uniform distribution over G−1(G(x, y)).

3. Non-triviality: the function G contains AND2 as a sub-function (and by flippability, it
also contains OR2 as a sub-function).

These three properties were established in [24] for the function VER; a gadget which
satisfies them is called versatile. Our lifting proof will work for any versatile gadget G. We
will need the following simple lemma, which allows us to generate n-tuples of inputs to G that

A. Anshu, S. Ben-David, and S. Kundu 30:17

evaluate to either a string s ∈ {0, 1}n or its complement ŝ ∈ {0, 1}n. We use the notation
G−1(s) to denote the set of all n-tuples of inputs to G that together evaluate to s ∈ {0, 1}n;
this abuses notation slightly (we would technically need to write (G⊕n)−1(s), where G⊕n is
the function we get by evaluating n independent inputs to G).

▶ Lemma 10. Let s ∈ {0, 1}m be a given string and G be a versatile gadget. Then there is a
protocol with no communication using shared randomness between Alice and Bob, who receive
inputs (a, b) in the domain of G such that

If G(a, b) = 0, Alice and Bob produce output strings (x, y) that are uniformly distributed
in G−1(s)
If G(a, b) = 1, Alice and Bob produce output strings (x, y) that are uniformly distributed
in G−1(ŝ) = G−1(s ⊕ 1m).

Proof. Alice and Bob share independent instances of the permutations νG, σA and σB as
randomness. Applying independent instances of νG, Alice and Bob can produce (x′, y′)
that are uniformly distributed in G−1((G(a, b))m): this is done by applying m independent
instances of σA and σB from νG to a and b respectively. Now Alice and Bob know where s

differs from 0m. By applying independent instances of the local flipping operation on x′ and
y′ at these locations, they can negate the output of G. It is clear the resultant string (x, y)
is uniformly distributed in G−1(s) if G(a, b) = 0 and in G−1(ŝ) if G(a, b) = 1. ◀

We additionally have the following lemma, which uses the non-triviality property of a
versatile gadget.

▶ Lemma 11. If G is a constant-sized non-trivial gadget (containing AND2 and OR2 as
subfunctions), and µ0 and µ1 are uniform distributions over its 0- and 1-inputs, then any
classical protocol Π for computing G with bounded error has IC(Π, µ0), IC(Π, µ1) = Ω(1).

Proof. G contains the AND2 function, and µ0 puts uniform Ω(1) weight on the 0-inputs
of the AND2 subfunction. [8] showed that any protocol computing the AND2 function
must have Ω(1) information cost with respect to the distribution that puts 1/3 weight on all
0-inputs of the AND2 function. Hence any protocol for G must also have IC(Π, µ0) = Ω(1).
Similarly, by considering the fact that G contains the OR2 function, we can show that
IC(Π, µ1) = Ω(1). ◀

Although we only need a single versatile gadget, such as VER, we will briefly remark
that there is actually an infinite family of versatile gadgets, and that this family is universal
(i.e. every communication function is a sub-function of some gadget in the family).

▶ Lemma 12. There is a universal family of versatile gadgets.

Proof. For ease of notation, let G denote VER. For each n ∈ N+, we define Gn to
be Parityn ◦ G. Note that Gn has the signature {0, 1}2n × {0, 1}2n → {0, 1}. We
observe that Gn is versatile for each n ∈ N+. This is because, given a single input
((x1, x2, . . . , xn), (y1, y2, . . . , yn)) to Gn with xi, yi ∈ {0, 1, 2, 3} for each i ∈ [n], Alice and
Bob can locally generate the uniform distribution over all inputs with the same Gn-value.
They can do this by first negating a random subset of the positions i of even size (using the
flippability property of VER), and then converting each of the n resulting inputs to G into
a random input to G with the same G-value.

Suppose z is the n-bit string with zi = G(xi, yi). Then flipping a random even subset of
the bits of z is equivalent to generating a random string w that has the same parity as z.
It follows that the above procedure generates a random input to Gn that has the same Gn

CCC 2021

30:18 On Query-To-Communication Lifting for Adversary Bounds

value as the original input, meaning that Gn is random self-reducible. By flipping any single
gadget G within Gn, we can negate Gn, so it is also flippable. Finally, since Gn contains G

as a sub-function, it also contains AND as a sub-function, so Gn is versatile for each n ∈ N+.
It remains to show that {Gn}n is universal. We note that since G contains AND as a

sub-function, and since Gn = Parityn ◦ G, the function Gn contains Parityn ◦ AND as a
sub-function. The latter is the inner product function IPn on n bits, which is well-known to
be universal. Hence Gn is also universal. ◀

3.2 The lifting theorem

▶ Theorem 13. Let G be a constant-sized versatile gadget such as VER, and let f : {0, 1}n →
Σ be a relation. Then RCC(f ◦ G) = Ω(CAdv(f)).

Proof. Let Π be a randomized protocol for f ◦G which uses T rounds of communication (with
one bit sent each round), and successfully computes f ◦ G with probability at least 1 − ϵ/2 for
each input. Consider inputs XY distributed according to µz = µz1 ⊗ . . . ⊗ µzn

, where each
µzi

is the uniform distribution over (xi, yi) in G−1(zi). Suppose Π uses public randomness
R which is independent of the inputs XY . We introduce the dependency-breaking random
variables D and U [8] in the following way: D is independent of X, Y, R and is uniformly
distributed on {0, 1}n. For each i ∈ [n], if Di = 0, then Ui = Xi, and if Di = 1, then
Ui = Yi. Defined this way, given DiUi, Xi and Yi are independent under µz. We shall use
this algorithm to give a weight scheme q′(z, i):

q′(z, i) = I(Xi : Π|X<iY DUR)µz + I(Xi : Π|Y<iXDUR)µz

where X<i denotes X1 . . . Xi−1, and similarly for Y<i. Clearly q is non-negative, and we
shall show that∑

i:zi ̸=wi

min{q′(z, i), q′(w, i)} = Ω(1)

for all z, w such that f(z) ∩ f(w) = ∅, where the constant in the Ω(1) is universal. Using
this constant to normalize q′(z, i), we get q(z, i) which is a valid weight scheme. Since for
any fixed value of DU = du, I(X : Π|Y R)µzdu

is an information cost,∑
i∈[n]

q′(z, i) = I(X : Π|Y DUR)µz + I(Y : Π|XDUR)µz ≤ CC(Π),

we have for any protocol Π,

CC(Π) ≥ Ω

∑
i∈[n]

q(z, i)

 ≥ Ω

 min
{q(z,i)}

∑
i∈[n]

q(z, i)

where the minimization is over all valid weight schemes. This proves the result.

Let z and w be two inputs to f such that f(z) ∩ f(w) = ∅. Suppose z and w differ on
indices in the block B. Let B1 be the subset of indices in B where min{q′(z, i), q′(w, i)} is
achieved by q′(z, i), and B2 be the subset where the minimum is achieved by q′(w, i). For
an index i ∈ B1, let B1

i denote B1 ∩ [i − 1], and B2
i denote B2 ∩ [i − 1]. We also use B1,c to

denote [n] \ B1, and B1,c
i to denote [i − 1] \ B1

i . Then,

A. Anshu, S. Ben-David, and S. Kundu 30:19

∑
i:zi ̸=wi

min {q′(z, i), q′(w, i)}

=
∑
i∈B1

(I(Xi : Π|X<iY DUR)µz
+ I(Yi : Π|Y<iXDUR)µz

)

+
∑
i∈B2

(I(Xi : Π|X<iY DUR)µw + I(Yi : Π|Y<iXDUR)µw)

(1)= 1
2
∑
i∈B1

(I(Xi : Π|X<iY D−iU−iR)µz + I(Yi : Π|Y<iXD−iU−iR)µz)

+ 1
2
∑
i∈B2

(I(Xi : Π|X<iY D−iU−iR)µw + I(Yi : Π|Y<iXD−iU−iR)µw)

(2)
≥ 1

2
∑
i∈B1

(I(Xi : Π|XB1
i
YB1DB1,cUB1,cR)µz

+ I(Yi : Π|YB1
i
XB1DB1,cUB1,cR)µz

)

+ 1
2
∑
i∈B2

(I(Xi : Π|XB2
i
YB2DB2,cUB2,cR)µw + I(Yi : Π|YB2

i
XB2DB2,cUB2,cR)µw

)

= 1
2(I(XB1 : Π|YB1DB1,cUB1,cR)µz + I(YB1 : Π|XB1DB1,cUB2,cR)µz)

+ 1
2(I(XB2 : Π|YB2DB2,cUB2,cR)µw

+ I(YB2 : Π|XB2DB2,cUB2,cR)µw
). (1)

Above, equality (1) follows by using the definition of DiUi. The inequality (2) follows from
the fact that given Yi, Xi is independent of all other Xj , Yj Dj and Uj under both the z

and w distributions, hence I(Yi : Π|Y<iX(DU)−iR)µz ≥ I(Yi : Π|YB1
i
XB1(DU)B1,cR)µz , and

equivalent inequalities hold for the other terms.
Consider v ∈ {0, 1}n which agrees with w on the bits in B1, with z on the bits in B2, and

with both of them outside B. Since f(z) and f(w) are disjoint, at least one of the following
must be true:
1. Pr(x,y)∼µv

[Π(x, y) ∈ f(z)] ≤ 1
2

2. Pr(x,y)∼µv
[Π(x, y) ∈ f(w)] ≤ 1

2 .
In case 1, we shall give a protocol Π′ that computes G correctly with probability at least
1 − ϵ in the worst case, such that

IC(Π′, µ0) = O(I(XB1 : Π|YB1DB1,cUB1,cR)µz
+ I(YB1 : Π|XB1DB1,cUB1,cR)µz

).

Similarly, in case 2, we can use Π to give a protocol Π′′ for G, such that

IC(Π′′, µ1) = O(I(XB2 : Π|YB2DB2,cUB2,cR)µw
+ I(YB2 : Π|XB2DB2,cUB2,cR)µw

).

Due to equation (1) and Lemma 11, this proves the theorem.
In fact we only show how to construct the protocol Π′ in case 1; the construction of

Π′′ is identical. Since z is in the domain of f and Π has worst case correctness for f ◦ G,
we must have Pr(x,y)∼µz

[Π(x, y) ∈ f(z)] ≥ 1 − ϵ/2. Therefore, in case 1, Π can distinguish
between samples from µz and µv on average: on getting a sample from µz or µv, we can run
Π to see if it gives an output in f(z) or not, and output z or v accordingly. This average
distinguishing probability can be boosted by running Π multiple times.

In Π′, Alice and Bob will share RDB1,cUB1,cRARB as randomness, where we use RA and
RB to denote Alice and Bob’s part of the shared randomness from Lemma 10, required to
generate zB1 if G(a, b) = 0 and vB1 if G(a, b) = 1. On input (a, b) to G, Alice and Bob do
the following k times for k = 2

ϵ2 ln(1/ϵ) :

CCC 2021

30:20 On Query-To-Communication Lifting for Adversary Bounds

Alice sets xB1 = RA(a) and Bob sets yB1 = RB(b).
Alice samples xB1,c and Bob yB1,c from private randomness, so that G|B1,c|(xB1,c , yB1,c)
= zB1,c . They can do this since given (DU)B1,c , XB1,c and YB1,c are independent under
µz and µv.
They run Π on this (x, y) and generate the corresponding output.

(There are k independent instances of the D, U, RA, RB variables for each run above, but we
denote all of them the same way for brevity.) The final output of Π′ is 1 if the number of
runs which have given an output in f(z) is at least (1 − ϵ)k, and 0 otherwise.

Clearly if G(a, b) = 0, then (x, y) generated this way is uniformly distributed in the
support of µz, and if G(a, b) = 1, then (x, y) is uniform in the support of µv. Calling the
protocol in the i-th round of Π′, Πi, notice that the transcript of each Πi is independent
of ARA, where A is the random variable for Alice’s input, given the generated XB1 (and
this holds true even conditioned on BRBDB1,cUB1,cR). Moreover, both XB1 and Πi are
independent of BRB given YB1 and of YB1 given BRB (even conditioned on DB1UB1R).
Let µ0,z denote the distribution of ABRARB(DU)B1,c when G(a, b) = 0, which induces the
distribution µzB1 on XB1YB1 . Hence,

I(A : Πi|BRARB(DU)B1R)µ0,z
≤ I(ARA : Πi|BRB(DU)B1,cR)µ0,z

(1)
≤ I(XB1 : Πi|BRB(DU)B1,cR)µ0,z

(2)
≤ I(XB1 : Πi|YB1BRB(DU)B1,cR)µ0,z

(3)= I(XB1 : Πi|YB1(DU)B1,cR)µ0,z

(4)= I(XB1 : Π|YB1(DU)B1,cR)µz
.

where inequality (1) follows from the fact that I(U ′ : V |W) ≤ I(U : V |W) if U ′ is independent
of V given UW , (2) follows from the fact that I(U : V |W) ≤ I(U : V |WW ′) if V is
independent of W ′ given W , and (3) follows from I(U : V |WW ′) = I(U : V |W ′) if U and V

are both independent of W given W ′. Finally, (4) follows from the definition of Πi and the
the fact that the variables AB don’t appear in the expression, so we can switch from µ0,z to
µz. Similarly,

I(B : Πi|ARARB(DU)B1,cR)µ0,z ≤ I(YB1 : Π|XB1(DU)B1,cR)µz ,

which lets us conclude that

IC(Πi, µ0) ≤ I(XB1 : Π|YB1(DU)B1,cR)µz + I(YB1 : Π|XB1(DU)B1,cR)µz .

Thus IC(Π′, µ0) is at most k(I(XB1 : Π|YB1(DU)B1,cR)µz +I(YB1 : Π|XB1(DU)B1,cR)µz).
Now let us analyze the worst case error made by Π′. Since the output of Πi on (a, b)

is expected output of Π on (x, y) uniformly sampled from either µz or µv, Πi produces an
output in f(z) on (a, b) such that G(a, b) = 0 with probability at least 1 − ϵ/2, and on
(a, b) such that G(a, b) = 1 with probability at most 1

2 . Hence by the Hoeffding bound, the
probability of (1 − ϵ)k many 0 outputs in the first case is at least

1 − e−ϵ2k/2 ≥ 1 − ϵ

and in the second case is at most

e−2(1/2−ϵ)2k ≤ ϵ.

Hence the probability of error on either input is at most ϵ. ◀

A. Anshu, S. Ben-David, and S. Kundu 30:21

4 Quantum bounded-round lifting

The following result, analogous to Lemma 11 except with round dependence, holds in the
quantum case.

▶ Lemma 14. Let G be a constant-sized gadget which contains AND2 and OR2 as sub-
functions, and µ0 and µ1 be uniform distributions over its 0- and 1-inputs. Then any r-round
quantum protocol Π for computing G with bounded error has QIC(Π, µ0), QIC(Π, µ1) =
Ω̃(1/r).

The lemma has a similar proof to the classical case, and invokes the near-optimal lower
bound for the quantum information cost of the AND2 and OR2 functions due to [12].

▶ Theorem 15. If G is a constant-sized versatile gadget, then QCCr(f ◦G) = Ω̃(CAdv(f)/r2).

Proof. For an r-round quantum protocol Π that computes f ◦ G to error at most ϵ/2, we
define

q′(z, i) =
∑

t odd
I(Xi : BtCt|X<iY DU)µz +

∑
t even

I(Yi : AtCt|Y<iXDU)µz

where the the distribution µz and correlation-breaking variables DU are as in the classical
case. Clearly,

1
r

n∑
i=1

q′(z, i) = 1
r

∑
t odd

I(X : BtCt|Y DU)µz
+
∑

t even
I(Y : AtCt|XDU)µz

= 1
r

HQIC(Π, µz) ≤ QIC(Π, µz) ≤ QCC(Π).

Clearly q′(z, i) is non-negative, and for all z, w such that f(z) ∩ f(w) = ∅, we shall show
that ∑

i:zi ̸=wi

min{q′(z, i), q′(w, i)} = Ω̃(1/r). (2)

Thus, defining q(z, i) as our weight scheme by normalizing q′(z, i) with the r factor, we get
the required result.

Showing (2) proceeds very similar to the classical case. For two inputs z, w to f such
that f(z) ∩ f(w) = ∅, which differ on the bits in block B, let B1 ⊆ B be the indices where
min{q′(z, i), q′(w, i)} is achieved by q′(z, i), and B2 ⊆ B be the indices where it is achieved
by q′(w, i). By the same chain of inequalities as in the classical case, we have∑

i:zi ̸=wi

min{q′(z, i), q′(w, i)}

≥ 1
2

(∑
t odd

I(XB1 : BtCt|YB1DB1,cUB1,c)µz
+
∑

t even
I(YB1 : AtCt|XB1DB1,cUB2,c)µz

)

+ 1
2

(∑
t odd

I(XB2 : BtCt|YB2DB2,cUB2,c)µw
+
∑

t even
I(YB2 : AtCt|XB2DB2,cUB2,c)µw

)
.

Note that if we had used a QIC-based definition, instead of an HQIC-based definition, for
q′(z, i), where we conditioned on the Bt, At registers, the above chain of inequalities would
not have been valid, since Xi is not independent of XjYjDjUj at j ̸= i conditioned on Bt,
and the same holds for Yi.

Define the hybrid input v which agrees with w on the bits in B1, with z on the bits in B2

and with both outside B. At least one of the following is true of v:

CCC 2021

30:22 On Query-To-Communication Lifting for Adversary Bounds

1. Pr(x,y)∼µv
[Π(x, y) ∈ f(z)] ≤ 1

2
2. Pr(x,y)∼µv

[Π(x, y) ∈ f(w)] ≤ 1
2 .

In case 1, we shall give a protocol Π′ that computes G correctly with probability at least
1 − ϵ in the worst case, such that

HQIC(Π′, µ0)

= O

(∑
t odd

I(XB1 : BtCt|YB1DB1,cUB1,c)µz
+
∑

t even
I(YB1 : AtCt|XB1DB1,cUB1,c)µz

)
.

Similarly, in case 2, we can use Π to give a protocol Π′′ for G, such that

HQIC(Π′′, µ1)

= O

(∑
t odd

I(XB2 : BtCt|YB2DB2,cUB2,c)µw +
∑

t even
I(YB2 : AtCt|XB2DB2,cUB2,c)µw

)
.

The number of rounds in Π′ and Π′′ will be kr, for k = 2
ϵ2 ln(1/ϵ). This proves the theorem

due to Lemma 14, and the fact that HQIC(Π′, µ) = Ω(QIC(Π′, µ)) for any µ.
We only describe the protocol Π′. In Π′, Alice and Bob will share the initial entangled

state of Π, as well as DB1,cUB1,cRARB as randomness, where RA and RB are Alice and Bob’s
parts of the shared randomness from Lemma 10. Note that sharing randomness is equivalent
to sharing an entangled state whose Schmidt coefficients are equal to the square roots of the
corresponding probabilities, and locally measuring this state to get classical variables to use.
We denote the inputs of Π′ by (x′, y′) here to avoid confusion with the memory registers. On
input (x′, y′), Alice and Bob do the following k times in Π′:

Alice sets xB1 = RA(x′) and Bob sets yB1 = RB(y′).
Alice samples xB1,c and Bob samples yB1,c from private randomness (this can be done
unitarily), so that G|B1,c|(xB1,c , yB1,c) = zB1,c . They can do this since given (DU)B1,c ,
XB1,c and YB1,c are independent under µz and µv.
They run Π on this (x, y) and generate the corresponding output.

The final output of Π′ is 1 if the number of runs which have given an output in f(z) is at
least (1 − ϵ)k, and 0 otherwise.

Let µ0,z denote the distribution of X ′Y ′RARB(DU)B1,c when G(x′, y′) = 0, which induces
µzB1 on XB1YB1 . Let Ct,i denote the message and At,i, Bt,i the memory registers of the i-th
run of Π in Π′, which we denote by Πi. (There are also independent D, U, RA, RB variables
for each run, but we drop the i dependence here.) For every i, and an odd round t, we have
similar to the classical case,

I(X ′ : Bt,iCt,i|Y ′RARB(DU)B1,c)µ0,z
≤ I(XB1 : BtCt|YB1(DU)B1,c)µz

Similarly, for even t,

I(Y ′ : At,iCt,i|X ′RARB(DU)B1,c)µ0,z
≤ I(YB1 : AtCt|XB1(DU)B1,c)µz

which gives us

HQIC(Πi, µ0) ≤
∑

t odd
I(XB1 : BtCt|YB1(DU)B1,c)µz

+
∑

t even
I(YB1 : AtCt|XB1(DU)B1,c)µz

.

Finally, HQIC(Π′, µ0) = k HQIC(Πi, µ0).
Since z is in the domain of f and Π is correct for f ◦ G with probability at least 1 − ϵ/2,

we have Pr(x,y)∼µz
[Π(x, y) ∈ f(z)] ≥ 1 − ϵ/2, and the probability when (x, y) is sampled

according to µv instead is at most 1
2 . Therefore, by the definition of Π′ and the Hoeffding

bound, Π′ is correct for G with probability at least 1 − ϵ. This completes the proof. ◀

A. Anshu, S. Ben-David, and S. Kundu 30:23

5 Towards a full quantum adversary lifting theorem

In this section, we will prove a conditional lifting theorem for a somewhat weak quantum
adversary method, Adv1. The goal of this section is primarily to introduce some tools that we
believe will be helpful in eventually proving a lifting theorem for the positive-weight quantum
adversary method (hopefully with a constant-sized gadget such as the VER). Specifically, we
prove a product-to-sum reduction for quantum information cost in Section 5.2, which should
be helpful for handling the

√
q(z, i)q(w, i) terms that occur in the positive-weight adversary

method; indeed, we use this product-to-sum reduction for our Adv1 lifting theorem. We
also show how lifting theorems for quantum adversary methods are related to 2-party secure
communication.

We now introduce the definition of QICZ(G), our measure of the information leak that
must happen in any purported 2-party secure computation of G.

▶ Definition 16. Let G : X × Y → {0, 1} be a communication function. Let P be the set of
all communication protocols which solve G to worst-case error 1/3. Let ∆0 be the set of all
probability distributions over G−1(0), and let ∆1 be the set of all probability distributions
over G−1(1). We define

QICZ(G) := inf
Π∈P

sup
µ∈∆0∪∆1

QIC(Π, µ).

We note that since QIC(Π, ·) is a continuous function of distributions [12], the inner
supremum is actually attained as a maximum. We can now state our lifting theorem, as
follows.

▶ Theorem 17. Let f : {0, 1}n → Σ be a relation (where n ∈ N+ and Σ is a finite alphabet)
and let G : X × Y → {0, 1} be a communication function which contains both AND2 and
OR2 as subfunctions. Then

QCC(f ◦ G) = Ω̃(Adv1(f) QICZ(G)).

5.1 A minimax for QICZ
Before attacking the proof of Theorem 17, we first prove a minimax theorem for the measure
QICZ(G), giving an alternate characterization of it. To do so, we invoke Sion’s minimax
theorem [38].

▶ Fact 18 (Sion’s minimax). Let V1 and V2 be real topological vector spaces, and let X ⊆ V1
and Y ⊆ V2 be convex. Let α : X × Y → R be semicontinuous and saddle. If either X or Y

is compact, then

inf
x∈X

sup
y∈Y

α(x, y) = sup
y∈Y

inf
x∈X

α(x, y).

To understand the statement of this theorem, we need a few definitions:

1. A real-valued function ϕ is convex if ϕ(λx1 + (1 − λ)x2) ≤ λϕ(x1) + (1 − λ)ϕ(x2) for all
x1, x2 ∈ Dom(ϕ) and all λ ∈ (0, 1).

2. A real-valued function ϕ is concave if ϕ(λx1 + (1 − λ)x2) ≥ λϕ(x1) + (1 − λ)ϕ(x2) for all
x1, x2 ∈ Dom(ϕ) and all λ ∈ (0, 1).

3. A function α : X × Y → R is saddle if α(·, y) is convex as a function of x for each fixed
y ∈ Y , and if α(x, ·) is concave as a function of y for each fixed x ∈ X.

CCC 2021

30:24 On Query-To-Communication Lifting for Adversary Bounds

4. A real-valued function ϕ is upper semicontinuous at a point x if for any ϵ > 0, there
exists a neighborhood U of x such that for all x′ ∈ U , we have ϕ(x′) < ϕ(x) + ϵ.

5. A real-valued function ϕ is lower semicontinuous at a point x if for any ϵ > 0, there exists
a neighborhood U of x such that for all x′ ∈ U , we have ϕ(x′) > ϕ(x) − ϵ.

6. A function α : X × Y → R is semicontinuous if α(·, y) is lower semicontinuous over all of
X for each y ∈ Y and if α(x, ·) is upper semicontinuous over all of Y for each x ∈ X.

We now use Sion’s minimax theorem to prove a minimax theorem for QICZ.

▶ Theorem 19. Fix a communication function G. Let P be the set of all protocols which
solve G to worst-case error 1/3, let ∆0 be the set of probability distributions over 0-inputs to
G, and let ∆1 be the set of probability distributions over 1-inputs to G. Then

1
2 max

µ0∈∆0
µ1∈∆1

inf
Π∈P

QIC(Π, µ0) + QIC(Π, µ1) ≤ QICZ(G) ≤ max
µ0∈∆0
µ1∈∆1

inf
Π∈P

QIC(Π, µ0) + QIC(Π, µ1).

Moreover, the maximum is attained.

Proof. We will aim to use Sion’s minimax theorem [38]. To this end, we start with a bit of
formalism. The set P of protocols is, of course, an infinite set, and has somewhat complicated
structure. In order to apply a minimax theorem, however, we want to switch over to a convex
subset of a real topological vector space. To do so, we first consider the free real vector space
over P , which we denote by V (P). This is the real vector space consisting of all formal
(finite) linear combinations of elements in P ; the set P is a basis of this vector space. We
further consider the 1-norm on this space, where we define the 1-norm of a formal (finite)
linear combination as the sum of absolute values of coefficients in the linear combination.
This norm induces a topology over V (P), making it a real topological vector space.

Our set of algorithms will be the subset of V (P) consisting of vectors with norm 1 that
have non-negative coefficients in the linear combination; we denote this subset by R. It is not
hard to see that the elements of R are simply all the finite-support probability distributions
over protocols in P . We observe that R is a convex set. This will be the set over which we
take the infimum in Sion’s minimax theorem.

Observe that since the input set Dom(G) of G is finite, the sets ∆0 and ∆1 are both
convex, compact subsets of the real vector space R| Dom(G)|, which has a standard topology.
It follows that the set ∆0 × ∆1 is also convex and compact (as a subset of the real topological
vector space R2| Dom(G)|). This will be the set over which we take the supremum in Sion’s
minimax.

Let A ∈ R. This is a finite-support probability distribution over protocols in P ; however,
it is always possible to use shared randomness to construct a single protocol ΠA ∈ P

whose behavior exactly matches that of A (that is, in ΠA, Alice and Bob will sample a
protocol from A using shared randomness, and then run that protocol). Finally, we define
α : R × (∆0 × ∆1) → [0, ∞) by setting

α(A, (µ0, µ1)) := QIC(ΠA, µ0) + QIC(ΠA, µ1).

This will be the function on which we apply Sion’s minimax.
It remains to show that α is semicontinuous and quasisaddle. It is not hard to see that

the sum of two semicontinuous functions (on the same domain) is semicontinuous, and that
the sum of two saddle functions is saddle. It will therefore be sufficient to show that QIC is
semicontinuous and saddle.

A. Anshu, S. Ben-David, and S. Kundu 30:25

In [41] (Lemma 5), it was shown that QIC(·, µ) is linear (and hence convex) for each µ.
In [41] (Lemma 6), it was shown that QIC(Π, ·) is concave. Hence QIC is saddle, and
therefore so is α. In [12] (Lemma 4.8), it was shown that QIC(Π, ·) is continuous.

It remains to show the lower semicontinuity of QIC(·, µ). More explicitly, for each fixed
distribution µ, each A ∈ R and each ϵ > 0, there exists δ > 0 such that for all A′ ∈ R with
∥A − A′∥1 < δ, we have QIC(ΠA′ , µ) > QIC(ΠA, µ) − ϵ.

We can write A = (1−p)B+pC and A′ = (1−p)B+pC ′ where B, C, C ′ ∈ R, and (C, C ′) is
a pair of distributions with disjoint support. In other words, B is the probability distribution
consisting of the (normalized) overlap between A and A′, while C and C ′ are the probability
distributions we get from subtracting out the overlap from A and from A′ respectively.
If ∥A − A′∥1 < δ, we must have p < δ/2. Now, by the linearity of QIC(·, µ), we have
QIC(ΠA, µ) = (1 − p) QIC(ΠB , µ) + p QIC(ΠC , µ) and QIC(ΠA′ , µ) = (1 − p) QIC(ΠB , µ) +
p QIC(ΠC′ , µ). We want to choose δ so that QIC(ΠA′ , µ) > QIC(ΠA, µ) − ϵ, or equivalently,
so that QIC(ΠC′ , µ) > QIC(ΠC , µ) − ϵ/p. This rearranges to wanting ϵ/p > QIC(ΠC , µ) −
QIC(ΠC′ , µ); hence it is sufficient to choose δ so that 2ϵ/δ > QIC(ΠC , µ) − QIC(ΠC′ , µ). It
is clear that such δ can always be chosen, as QIC(ΠC , µ) must be finite.

We conclude that QIC(·, µ) is lower semicontinuous. Sion’s minimax theorem (Fact 18)
then gives

inf
A∈R

sup
(µ0,µ1)∈∆0×∆1

QIC(ΠA, µ0) + QIC(ΠA, µ1)

= sup
(µ0,µ1)∈∆0×∆1

inf
A∈R

QIC(ΠA, µ0) + QIC(ΠA, µ1).

Since R contains P as a subset, and since every protocol in R can be converted into an
equivalent protocol in P , taking an infimum over A ∈ R is the same as taking an infimum
over Π ∈ P . It is then clear that the left hand side is at least QIC(G) (since the latter has
only one QIC(Π, µ0) or QIC(Π, µ1) term instead of both), but no more than twice QIC(G)
(since the maximum of QIC(Π, µ0) and QIC(Π, µ1) is at least the average of the two). Hence
the desired result follows. The attainment of the maximum comes from the fact that an upper
semicontinuous function on a nonempty compact set attains is maximum, combined with the
fact that a pointwise infimum of upper semicontinuous functions is upper semicontinuous. ◀

5.2 Product-to-sum reduction for quantum information
In order to prove Theorem 17, we will need a way to bound the product of quantum
information cost on the “0-input” side and the quantum information cost on the “1-input”
side. We start with the following definition.

▶ Definition 20. Let G be a communication function. We say a distribution µ is nontrivial
for G if for any protocol Π computing G (to bounded error against worst-case inputs), it
holds that QIC(Π, µ) > 1/ poly(r), where r is the number of rounds of Π. (In particular, it
should not be possible to achieve QIC(Π, µ) = 0 if µ is nontrivial.)

Using this definition, we state the following theorem, which is the main result of this
subsection.

▶ Theorem 21. Let G be a gadget, let µ0 and µ1 be nontrivial 0- and 1-distributions for G,
and let Π be a protocol solving G (to bounded error against worst-case inputs). Then there is
a protocol Π′ which also solves G (to bounded error against worst-case inputs) which satisfies

QIC(Π′, µ0) + QIC(Π′, µ1) = O
(√

QIC(Π, µ0) QIC(Π, µ1) · polylog r
)

,

where r is the number of rounds of Π and where the constant in the big-O is universal.
Moreover, the number of rounds of Π′ is polynomial in that of Π.

CCC 2021

30:26 On Query-To-Communication Lifting for Adversary Bounds

Before we prove this, we will need a few lemmas. In the following, we will use G⊕n to denote
the direct sum of n copies of G; that is, if G : X ×Y → {0, 1}, then G⊕ : (X n)×(Yn) → {0, 1}n

is the function that takes in n separate copies to G and outputs n separate outputs from G.

▶ Lemma 22. Let (G, µ0, µ1) be any gadget, 0-distribution, and 1-distribution, let n ∈ N+,
and let Π be a protocol which solves G⊕n (to bounded error against worst-case inputs). Then
there is a protocol Π′ which solves G (to bounded error against worst-case inputs) which
satisfies

QIC(Π′, µ0) + QIC(Π′, µ1)
2 ≤ 1

n
· max

z∈{0,1}n
QIC (Π, µz) .

Proof. Let for z ∈ {0, 1}n, let Πi,z be the protocol which: takes an input to G; artificially
generates n − 1 inputs from µzj for j ̸= i for all the gadgets G except at position i; places
the true input at position i; runs Π on the resulting input to G⊕n; traces out all the outputs
except for position i; and returns the result. Note that Πi,z does not depend on the value of
zi, but depends on the rest of z. If we use zi to denote the string x with i flipped, we have
Πi,z = Πi,zi for all x and i.

[41] (Lemma 4) showed that for all x ∈ {0, 1}n,
n∑

i=1
QIC(Πi,z, µzi

) = QIC (Π, µz) .

Let Π′ := 1
n

1
2n

∑n
i=1
∑

x∈{0,1}n Πi,z. Again by [41] (Lemma 5),

QIC(Π′, µ0) + QIC(Π′, µ1)
2 = 1

n2n

n∑
i=1

∑
z∈{0,1}n

QIC(Πi,z, µ0) + QIC(Πi,z, µ1)
2

= 1
n2n

n∑
i=1

∑
z∈{0,1}n

QIC(Πi,z, µzi
) + QIC(Πi,z, µzi

i
)

2

= 1
n2n

n∑
i=1

∑
z∈{0,1}n

QIC(Πi,z, µzi
) + QIC(Πi,zi , µzi

i
)

2

= 1
n2n

n∑
i=1

∑
z∈{0,1}n

QIC(Πi,z, µzi
)

= 1
n2n

∑
z∈{0,1}n

QIC (Π, µz)

≤ 1
n

· max
z∈{0,1}n

QIC (Π, µz) . ◀

▶ Lemma 23. Let G1, G2, . . . , Gn be any sequence of communication tasks, and for each
i ∈ [n] let Πi be a protocol which solves Gi (to bounded error against worst-case inputs).
Let F be a (possibly partial) query function on n bits, and let Q be a T -query quantum
query algorithm computing F (to bounded error against worst-case inputs). Then there is a
protocol Π′ computing F ◦ {Gi}i (to bounded error against worst-case inputs) such that for
any z ∈ Dom(F) and any distribution µz supported on (G1 ⊕ G2 ⊕ · · · ⊕ Gn)−1(z), we have

QIC(Π′, µz) = Õ

(
T log log n · max

i∈[n]
QIC(Πi, µi

z)
)

,

where µi
z is the marginal of µz on gadget number i.

A. Anshu, S. Ben-David, and S. Kundu 30:27

Proof. Let Π̂i be the amplified and purified version of Πi, reducing its worst-case error on G

to δ/T 10 log n and using the uncomputing trick to clean up garbage (δ will be chosen later).
Then the information cost of Π̂i against any fixed distribution increases by a factor of at
most O(log T + log log n + log 1/δ) compared to Πi. Next, Π′ be the protocol where Alice
runs the query algorithm for F , and whenever she needs to make a query i, she sends i to
Bob and they compute gadget number i using Π̂i. Since F succeeds with bounded error on
worst-case inputs and since Π̂i has such a low probability of error, the protocol Π′ correctly
computes F ◦ G on worst-case inputs.

Fix z ∈ Dom(F) and µz supported on (G⊕n)−1(z). We will expand out QIC(Π′, µz). In
round t ≤ T of the query algorithm, there are two types of messages between Alice and
Bob: one message from Alice to Bob containing a copy Et of the query register Dt for step
t ≤ T , which Alice knows from her simulation of the algorithm Q for F ; and all the messages
between Alice and Bob implementing Π̂i. Denote those messages by Ct,j . Note that Et also
gets passed back from Bob to Alice at the end of each round for cleanup purposes.

We name the rest of the registers. Let the input registers be X and Y , and let Alice hold
register Dt specifying the position to query at round t, a work register Ãt related to the
implementation of the algorithm Q for f (which stays untouched for all j), and register At,j

related to the implementation of the Π̂i protocols for round t. Bob holds query register Et

(passed from Alice, untouched for all j) as well as work register Bt,j for the implementation
of the Π̂i protocols. Let R be the purification register. Then using r to denote the index of
the last round of the Π̂i, we have

QIC(Π′, µz) =
T∑

t=1
I(X̃Ỹ : Et|Y Bt,0)Ψt

z
+

T∑
t=1

I(X̃Ỹ : Et|XAt,rÃtDt)Ψt
z

+
T∑

t=1

∑
j odd

I(X̃Ỹ : Ct,j |Y Bt,jEt)Ψt,j
z

+
T∑

t=1

∑
j even

I(X̃Ỹ : Ct,j |XAt,jDtÃt)Ψt,j
z

.

For the terms I(X̃Ỹ : Et|Y Bt,0)Ψt
z

and I(X̃Ỹ : Et|XAt,rÃtDt)Ψt
z
, we note that Bt,0 and

At,r are the start state on Bob’s side and the end state on Alice’s side for Π̂, and can be
assumed to be independent of all other registers. Hence we shall ignore the registers Bt,0 and
At,r in the conditioning systems. Let |Φt⟩ that is obtained by replacing the ÃtDtEt registers
of |Ψt

z⟩ with the state of the query algorithm for f after t queries (with the query register
Dt duplicated). |Φt⟩ÃtDtEt|zxy depends on x and y only through z, which is fixed. Hence
I(X̃Ỹ : Et|Y)Φt

z
and I(X̃Ỹ : Et|XÃt)Φt

z
are both 0. Clearly, Φt

z is the state the protocol
would have been in if Π̂i were run with 0 error. Since the protocol runs of Π̂i make very
small error instead, we have instead ∥|Ψt⟩z − |Φt⟩z∥1 ≤ ϵ, where ϵ = O(δ/ poly(T) log n).
This implies

I(X̃Ỹ : Et|Y)Ψt
z

= H(Et|Y)Ψt
z

− H(Et|X̃Ỹ Y)Ψt
z

≤ H(Et|Y)Φt
z

− H(Et|X̃Ỹ Y)Φt
z

+ 8ϵ log |Et| + 4h(ϵ)
= 8ϵ + 4h(ϵ).

The total sum of I(X̃Ỹ : Et|Y Bt,0)Ψt
z

over all t is therefore at most δ/2, and the same applies
to I(X̃Ỹ : Et|XÃt)Ψt

z
.

CCC 2021

30:28 On Query-To-Communication Lifting for Adversary Bounds

We then have

QIC(Π′, µz) ≤ δ +
T∑

t=1

∑
j odd

I(X̃Ỹ : Ct,j |Y Bt,jEt)Ψt
z

+
∑

j even
I(X̃Ỹ : Ct,j |XAt,jDtÃt)Ψt

z

= δ +

T∑
t=1

n∑
i=1

Pr[Dt = i]

∑
j odd

I(X̃Ỹ : Ct,j |Y Bt,j)Ψt
z,Dt=i

+
∑

j even
I(X̃Ỹ : Ct,j |XAt,jÃt)Ψt

z,Dt=i

= δ +

T∑
t=1

n∑
i=1

Pr[Dt = i] QIC(Π̂i, µi
z)

≤ δ + T max
i

QIC(Π̂i, µi
z)

≤ δ + O(T (log T + log log n + log 1/δ) max
i

QIC(Πi, µi
z)).

Setting δ = T maxi QIC(Πi, µi
z), but ensuring ϵ ≤ 1/3 (since we can’t amplify a negative

amount), we get

QIC(Π′, µz) = O

(
T max

i
QIC(Πi, µi

z) log
(

2 + T 10 log n

maxi QIC(Πi, µi
z)

))
. ◀

▶ Lemma 24. Let G be a gadget, let µ0 and µ1 be a 0-distribution and a 1-distribution for G,
let n ∈ N+, and let Π be a protocol computing ORn ◦ G (to bounded error against worst-case
inputs). Then there is a protocol Π′ computing G⊕n (to bounded error against worst-case
inputs) such that

max
z∈{0,1}n

QIC (Π′, µz) = Õ

(√
n · max

z∈{0,1}n
QIC (Π, µz)

)
.

Proof. Consider the following task: the goal is to output a hidden string z ∈ {0, 1}n, and
the allowed queries are subset-OR queries, meaning that for each subset S ⊆ [n] there is
a query which returns OR(zS) (which equals 1 if zi = 1 for some i ∈ S, and returns 0
otherwise). We can model this task as a query function F on a promise set P ⊆ {0, 1}2n .
Each string in P is a long encoding u(z) ∈ {0, 1}2n of some string z ∈ {0, 1}n, with the long
encoding u(z) being a string with (u(z))S = OR(zS) for all S. In other words, u is a function
u : {0, 1}n → {0, 1}2n . The function F is defined by F (u(z)) = z for all z ∈ {0, 1}n, where
Dom(F) = {u(z) : z ∈ {0, 1}n}. It is not hard to verify that this function is well-defined.

The function f is sometimes called the combinatorial group testing problem. We have
D(F) ≤ n, since we can query u(z){i} for all i ∈ [n] to get the bits zi one by one and then
output all of z. (Note that the input size to F is of length N = 2n, so n does not represent
the input size here.) Belovs [10] showed that Q(F) = O(

√
n). This result will play a key role

in our analysis here, which is motivated by [11] (where this algorithm of Belovs was similarly
used to reduce direct-sum computations to OR computations).

Now, observe that F ◦ u is the identity function on n bit strings. The protocol Π′ for
G⊕ will be a protocol for F ◦ u ◦ G. We use Lemma 23 on the query function F and the
communication tasks u(G⊕n)1, u(G⊕n)2, . . . , u(G⊕n)2n . The query algorithm for F makes

A. Anshu, S. Ben-David, and S. Kundu 30:29

T = O(
√

n) queries. Each of the communication tasks is of the following form: take as input
n copies to G, and output the OR of a fixed subset S of the copies of G. To solve this task,
which we denote FS , we describe a protocol ΠS . In this protocol, Alice and Bob will use
their shared randomness to replace the inputs in positions i /∈ S by independent samples
from µ0. They will then run Π to compute the OR of the n copies of G.

The correctness of Π′ is clear, so we analyze its information cost. Fix z ∈ {0, 1}n, and
denote by zS the string satisfying (zS)i = zi if i ∈ S and (zS)i = 0 if i ∈ S. In order to
upper bound QIC(Π′, µz) using Lemma 23, we let µ′

z be the distribution on strings of length
{0, 1}n2n that we get by sampling a string from µz and making 2n copies of it. We observe
that that the behavior of Π′ when acting on µz is exactly the composed behavior of the query
algorithm for F composed with the protocols ΠS acting on the distribution µ′

z; Lemma 23
therefore gives us

QIC(Π′, µz) = O

(√
n · max

S
QIC(ΠS , µz) log

(
2 + n5 log N

maxS QIC(ΠS , µz)

))
(where we used the more precise bound given in the proof of Lemma 23). Recall that ΠS

replaces the samples of µz that correspond to bits i /∈ S with freshly-generated samples from
µ0, and then runs Π; hence QIC(ΠS , µz) = QIC(ΠS , µzS

) ≤ QIC(Π, µzS
). The maximum

over sets S of QIC(Π, µzS
) is clearly at most the maximum over w ∈ {0, 1}n of QIC(Π, µw).

Using log N = n, we can therefore write

QIC(Π′, µz) = O

(√
n · max

w
QIC(Π, µw) log

(
2 + n6

maxw QIC(Π, µw)

))
. ◀

▶ Lemma 25. Let G be a gadget, let µ0 and µ1 be a 0-distribution and a 1-distribution for G,
and let Π be a protocol computing G (to bounded error against worst-case inputs). Then for
any n ∈ N+, there is a protocol Π′ computing ORn ◦ G (to bounded error against worst-case
inputs) such that

max
z∈{0,1}n

QIC (Π′, µz) = O(n QIC(Π, µ0) + log n · QIC(Π, µ1)).

Proof. In order to compute ORn ◦ G, the protocol Π′ will simply compute each copy of G

one at a time, stopping as soon as a 1 has been found. The idea is that this will ensure the
number of computations of 0-inputs to G is at most O(n) while the number of computations
of 1-inputs to G is Õ(1).

To be more formal, we consider a cleaned up version Π̂ of Π, which will have error O(1/n)
and which cleans up all the garbage and resets Alice and Bob’s states to their initial states
after the computation is complete. The protocol Π′ will run Π̂ on each input to G, in
sequence, stopping when an output 1 has been found. To implement this, we will name the
registers: suppose the protocol Π̂ uses registers A and OA on Alice’s side and registers B

and OB on Bob’s side, where OA and OB store the final output of Π̂. At the beginning of Π̂,
the registers are expected to be |0⟩A |0⟩B |0⟩OA

|0⟩OB
. The guarantee of Π̂ is that at the end

of the algorithm, the registers will be in the state |0⟩A |0⟩B |b⟩OA
|b⟩OB

, where b is close to
the output of G on that input. We now implement Π′ by adding an additional register on
each side, denoted SA and SB , which stores the strings of outputs of all the runs of Π̂. These
registers are each initialized to 0n. At the end of run i of Π̂ (which computes gadget i), Alice
and Bob will each swap the register OA with the i-th bit of SA; this resets the registers used
by Π̂ to be all zero, and it stores the output of the i-th run of Π̂ so that Π′ has access to it.
It also preserves the property that SA = SB throughout the algorithm.

CCC 2021

30:30 On Query-To-Communication Lifting for Adversary Bounds

The final detail is that in Π′, Alice and Bob only run Π̂ on gadget i if they see that all
the previous runs resulted in output 0; that is, they control the implementation of Π̂ on the
registers SA and SB being equal to 0n. This will ensure that once a 1 is found, no further
information will be exchanged between Alice and Bob. The final output of Π′ will be 0 if SA

and SB are 0n, and it will be 1 otherwise.
The correctness of Π′ (to worst-case bounded error) is clear, so we analyze its information

cost against µz for a fixed string z ∈ {0, 1}n. The information cost QIC(Π′, µz) is a sum
of information exchanged over all rounds; let QICi(Π′, µz) denote the sum of information
exchanged only in the rounds corresponding to the computation of the i-th copy of G, so
that QIC(Π′, µz) =

∑n
i=1 QICi(Π′, µz).

Let T be the number of rounds used by Π̂. Let SA,i and SB,i be the registers SA and SB

during the computation of the i-th copy of G. Use X and Y to denote Alice and Bob’s inputs
respectively, with Xi and Yi being the inputs to copy i of G and with X̃ and Ỹ denoting
their purifications, and let C be the register passed back and forth between Alice and Bob in
Π̂. Then

QICi(Π′, µz) =
∑

t≤T odd
I(X̃Ỹ : Ct|Y BtSB,i) +

∑
t≤T even

I(X̃Ỹ : Ct|XAtSA,i).

We note that the register SB,i in the odd terms is classical, as is the register SA,i. Hence
the conditional mutual information conditioned on SB,i is the expectation of the conditional
mutual information conditioned on the events SB,i = w for each string w ∈ {0, 1}n (see, for
example, [12], end of Section 3.1). In other words,

I(X̃Ỹ : Ct|Y BtSB,i)

= Pr[SB,i = 0n]I(X̃Ỹ : Ct|Y Bt)SB,i=0n + Pr[SB,i ̸= 0n]I(X̃Ỹ : Ct|Y Bt)SB,i ̸=0n .

Note that by the construction of Π′, in the second term we have I(X̃Ỹ : Ct|Y Bt)SB,i≠=0n = 0,
since the registers Ct are all 0 as Alice and Bob do not run Π̂ at all when SB,i ̸= 0n. The
term I(X̃Ỹ : Ct|Y Bt)SB,i=0n is just I(X̃iỸi : Ct|YiBt), since the run of Π̂ ignores everything
outside of the input to the i-th copy of G. Hence we have

QICi(Π′, µz)

= Pr[SB,i = 0n]
∑

t≤T odd
I(X̃iỸi : Ct|YiBt) + Pr[SA,i = 0n]

∑
t≤T even

I(X̃iỸi : Ct|XiAt)

= Pr[SA,i = 0] QIC(Π̂, µzi
).

From this, it follows that

QIC(Π′, µz) =
n∑

i=1
Pr[SA,i = 0n] QIC(Π̂, µzi

).

To upper bound this, we note that the total sum of all the terms Pr[SA,i = 0n] QIC(Π̂, µzi
)

for i such that zi = 0 is at most n QIC(Π̂, µ0), where we’ve upper bounded Pr[SA,i = 0n] ≤ 1.
For i such that zi = 1, we split into two cases: in the case where i is the first index such that
zi = 1, we upper bound Pr[SA,i = 0n] QIC(Π̂, µzi) ≤ QIC(Π̂, µ1). In contrast, for all i such
that zi = 1 and for which there was a previous index j < i with zj = 1, we note that the 1/n

error guarantee of Π̂ ensures that Pr[SA,i = 0n] ≤ 1/n; hence these terms are individually at
most (1/n) QIC(Π̂, µ1), and the sum of all of them is at most QIC(Π̂, µ1). We conclude that

QIC(Π′, µz) ≤ n QIC(Π̂, µ0) + 2 QIC(Π̂, µ1).

A. Anshu, S. Ben-David, and S. Kundu 30:31

Finally, we note that Π̂ simply repeats Π O(log n) times and takes a majority votes in order
to amplify (and then runs this in reverse to clean up garbage). Hence we have

QIC(Π̂, µ0) = O(log n · QIC(Π, µ0)),

QIC(Π̂, µ1) = O(log n · QIC(Π, µ1)).

This gives the upper bound on QIC(Π′, µz) of O(n log n · QIC(Π, µ0) + log n · QIC(Π, µ1)).
Finally, we sketch how to shave the log factor from the QIC(Π, µ0) term. To do so, we

avoid amplifying Π̂. Instead, we simply run Π̂ on each input. If the output is 1, we run
Π̂ again on the same copy of G. We do so until the number of 0 outputs outnumbers the
number of 1 outputs. If O(log n) repetitions happened and the number of 1-outputs is still
larger than the number of 0 inputs, we finally “believe” that this gadget evaluates to 1 and
halt. Otherwise, if the 0s outnumber the 1s before that point, then we assume the gadget
evaluated to 0 and move on to the next one.

By analyzing this as the “monkey on a cliff” problem, it is not hard to see that a 1
gadget is correctly labelled as such with constant probability. The total number of runs of Π̂
on 0-inputs will, on expectation, be at most O(n), while the total number of runs of Π̂ on
1-inputs will be at most O(log n) on expectation; since we avoided the O(log n) loss from
amplification, this protocol is more efficient, and we shave a log factor from the QIC(Π, µ0)
dependence.8 ◀

We are now ready to prove Theorem 21.

Proof. (of Theorem 21.) Using Lemma 25, we get a protocol Π2 computing ORn ◦ G

such that for any z ∈ {0, 1}n, QIC(Π2, µz) = O(n QIC(Π, µ0) + log n · QIC(Π, µ1)). Using
Lemma 24, we get a protocol Π3 computing G⊕n such that for any z ∈ {0, 1}n,

QIC(Π3, µz)

= O
(

(n3/2 · QIC(Π, µ0) +
√

n log n · QIC(Π, µ1))·

log
(

2 + n6

n QIC(Π, µ0) + log n · QIC(Π, µ1)

))
.

Finally, using Lemma 22, we get a protocol Π4 computing G such that

QIC(Π4, µ0) + QIC(Π4, µ1)

= O

((√
n · QIC(Π, µ0) + log n√

n
· QIC(Π, µ1)

)
·

log
(

2 + n6

n QIC(Π, µ0) + log n · QIC(Π, µ1)

))
.

Moreover, by negating the output of G, such a protocol Π4 also exists with the µ0 and µ1
reversed.

Now, assume without loss of generality that QIC(Π, µ0) ≤ QIC(Π, µ1). Let ℓ be the
ratio QIC(Π, µ1)/ QIC(Π, µ0) ≥ 1 (here we use the assumption that QIC(Π, µ0) > 0 and
that QIC(Π, µ1) > 0). Let n ∈ N+ be ⌈2ℓ log 2ℓ⌉. Note that n is at most 3ℓ log 2ℓ, so
n = Θ(ℓ log 2ℓ) and log n = Θ(log 2ℓ). Using this value of n, we get Π′ such that

8 We thank Thomas Watson and Mika Göös for pointing out this “monkey on a cliff” strategy for
computing OR on a noisy oracle.

CCC 2021

30:32 On Query-To-Communication Lifting for Adversary Bounds

QIC(Π′, µ0) + QIC(Π′, µ1)

= O

(√
QIC(Π, µ0) QIC(Π, µ1) log1/2 QIC(Π, µ0) + QIC(Π, µ1)√

QIC(Π, µ0), QIC(Π, µ1)
· log(2 + α)

)
,

where

α = (QIC(Π, µ0) + QIC(Π, µ1))11

QIC(Π, µ0)6 QIC(Π, µ1)6 .

If µ0 and µ1 are nontrivial, so that we have (say) QIC(Π, µ0) > 1/r10 and QIC(Π, µ1) >

1/r10, this can be simplified to

QIC(Π′, µ0) + QIC(Π, µ1) = O(
√

QIC(Π, µ0) QIC(Π, µ1) log3/2 r).

Finally, since n is at most polynomial in r, it is not hard to check that each of these reductions
increases the number of rounds by only a polynomial factor in r, so the final protocol Π′ has
number of rounds poly(r). ◀

5.3 Proving the lifting theorem
▶ Theorem 17. Let f : {0, 1}n → Σ be a relation (where n ∈ N+ and Σ is a finite alphabet)
and let G : X × Y → {0, 1} be a communication function which contains both AND2 and
OR2 as subfunctions. Then

QCC(f ◦ G) = Ω̃(Adv1(f) QICZ(G)).

Proof. Let µ′
0 and µ′

1 be the distributions for G provided by Theorem 19. Let µ0 be the
equal mixture of µ′

0 and the uniform distribution over 0-inputs to the AND2 gadget inside of
G, and let µ1 be the equal mixture of µ′

1 and the uniform distribution over the 1-inputs to the
OR2 gadget inside of G. We note that for any protocol Π, QIC(Π, µ0) ≥ QIC(Π, µ′

0)/2 and
QIC(Π, µ1) ≥ QIC(Π, µ′

1)/2. By [12], if Π has r rounds, QIC(Π, µ0), QIC(Π, µ1) = Ω(1/r).
So µ0 and µ1 are nontrivial for G.

Let Π be a protocol computing f ◦ G to error ϵ, and let r be the number of rounds used
by Π, and let T be the communication cost of Π. For z ∈ {0, 1}n, we define

q′(z, i) :=
∑

t odd
I(X̃iỸi : Ct|X̃<iỸ<iB

′
t)µz +

∑
t even

I(X̃iỸi : Ct|X̃>iỸ>iA
′
t)µz

where Ct is the message in the t-th round of Π and A′
t, B′

t are Alice and Bob’s memory
registers (which don’t necessarily have safe copies of their inputs). By the chain rule of
mutual information, we have

n∑
i=1

q′(z, i) = QIC(Π, µz) ≤ T

for all z ∈ {0, 1}n. A feasible weight scheme q(z, i) for Adv1(f) will be defined by normalizing
q′(z, i).

Let z, w ∈ {0, 1}n be such that f(z) and f(w) are disjoint, and such that their Hamming
distance is 1. Let i ∈ [n] be the bit on which they disagree, so that zi = w (where zi denotes
the string z with bit i flipped). Suppose without loss of generality that zi = 1 and wi = 0.
In order to lower bound q′(z, i) · q′(w, i), we will use the protocol Π for f ◦ G to construct a
protocol Π′ for G.

A. Anshu, S. Ben-David, and S. Kundu 30:33

The protocol Π′ is given by [41] (Lemma 4). Alice and Bob start with the shared entangled
state of Π, as well the X̃−iX−iỸ−iY−i registers of their inputs and purification according to
µz−i

(=µw−i
) in Π, with Alice holding A0X̃<iỸ<iX−i and Bob holding B0X̃>iỸ>iY−i (here

X−i denotes X1 . . . Xi−1Xi+1 . . . Xn and the same is true for other variables). They will
embed their inputs for Π′, which we call X ′, Y ′ (with purifications X̃ ′Ỹ ′), into the i-th input
register for Π (with X̃ ′, Ỹ ′ being embedded as X̃i, Ỹi), and use their shared entanglement for
the rest of the input registers, to run Π. After running Π, they will output 1 if Π outputs a
symbol in f(z) (outputting 0 otherwise). Note that since Π outputs a symbol in f(z) with
probability at least 1 − ϵ when given an input from (G⊕n)−1(z) and with probability at most
ϵ when given an input from (G⊕n)−1(w) (since f(w) ∩ f(z) = ∅), it follows that Π′ succeeds
to error ϵ on worst-case inputs to G.

We now analyze the information cost of Π′. Against the distribution µ0,

QIC(Π′, µ0) =
∑

t odd
I(X̃iỸi : Ct|X̃<iỸ<iB

′
t)µw−i

⊗µwi

+
∑

t even
I(X̃iỸi : Ct|X̃>iỸ>iA

′
t)µw−i

⊗µwi

=
∑

t odd
I(X̃iỸi : Ct|X̃<iỸ<iB

′
t)µw

+
∑

t even
I(X̃iỸi : Ct|X̃>iỸ>iA

′
t)µw

= q′(w, i).

Similarly, QIC(Π′, µ1) = q(z, i), so we have√
q′(z, i)q′(w, i) =

√
QIC(Π′, µ0) QIC(Π′, µ1).

By Theorem 21, there is a protocol Π′′ such that√
q′(z, i)q′(w, i) = Ω

(
QIC(Π′′, µ0) + QIC(Π′′, µ1)

polylog r

)
.

By the choice of µ0 and µ1, we therefore have√
q′(z, i)q′(w, i) = Ω(QICZ(G)/ polylog r),

and hence by taking q(z, i) = O(polylog r/ QICZ(G)) · q′(z, i), we get q(z, i)q(w, i) ≥ 1. If
we start with a protocol Π with number of rounds r at most QCCϵ(f ◦ G), we conclude

QCCϵ(f ◦ G) = Ω̃(Adv1(f) QICZ(G)),

as desired. ◀

6 New query relations

In this section, we prove our new relationships in query complexity. We start by showing
that cfbs(f) is equivalent to CAdv(f) for partial functions. To do so, we will first need the
well-known dual form for the fractional block sensitivity at a specific input, fbs(x, f). This
dual form can be derived by writing the weight scheme defining fbs(x, f) as a linear program,
and taking the dual; this gives a minimization program in which fbs(x, f) is the minimum,
over weight schemes q(i) ≥ 0 assigned to each i ∈ [n] that satisfy

∑
i∈B q(i) ≥ 1 for each

sensitive block B ⊆ [n] of x (with respect to f), of the sum
∑

i∈[n] q(i). See any of [2, 40, 28]
for a formal proof.

CCC 2021

30:34 On Query-To-Communication Lifting for Adversary Bounds

▶ Lemma 26. cfbs(f) ≤ 2 CAdv(f).

Proof. Let q(x, i) be a feasible weight scheme for CAdv(f) with objective value equal to
CAdv(f). We construct a completion f ′ of f as follows. For each z /∈ Dom(f), let z′ ∈ Dom(f)
be the input in the domain of f which minimizes

∑
i:z′

i
̸=zi

q(z′, i). Set f ′(z) = f(z′). Now
let x be any input in Dom(f); we wish to upper bound fbs(x, f ′).

To this end, we pick weights q(i) = 2q(x, i), and claim that they are a feasible solution to
the fractional block sensitivity for f ′ at x. Let B be any sensitive block for x with respect
to f ′. Then xB is some input z which disagrees with x exactly on the bits in B, and which
satisfies f ′(z) ̸= f(x). Let z′ be the input in Dom(f) which minimizes

∑
i:z′

i
̸=zi

q(z′, i), so
that f ′(z) = f(z′). Then f(z′) ̸= f(x), and in fact z′ must be closer to z than to x; hence∑

i∈B

q(i) =
∑

i:xi ̸=zi

2q(x, i)

≥
∑

i:xi ̸=zi

q(x, i) +
∑

i:z′
i
̸=zi

q(z′, i)

≥
∑

i:xi ̸=zi

min{q(x, i), q(z′, i)} +
∑

i:z′
i
̸=zi

min{q(x, i), q(z′, i)}

≥
∑

i:xi ̸=z′
i

min{q(x, i), q(z′, i)} ≥ 1.

We conclude that q(i) is feasible. Its objective value is
∑

i∈[n] q(i) =
∑

i∈[n] 2q(x, i) ≤
2 CAdv(f), and hence cfbs(f) ≤ 2 CAdv(f), as desired. ◀

▶ Lemma 27 (Krišjānis Prūsis, personal communication). CAdv(f) ≤ cfbs(f).

Proof. Let f ′ be a completion of f for which fbs(x, f ′) ≤ cfbs(f) for all x ∈ Dom(f). For
each x ∈ Dom(f), let qx(i) be a feasible weight scheme for the minimization problem of
fbs(x, f ′) which satisfies

∑
i∈[n] qx(i) ≤ fbs(x, f ′) ≤ cfbs(f) and for each sensitive block B of

f ′,
∑

i∈B qx(i) ≥ 1.
We construct a weight scheme for CAdv(f) by setting q(x, i) = qx(i) for all x ∈ Dom(f).

We claim this weight scheme is feasible. To see this, let x, y ∈ Dom(f) be such that
f(x) ̸= f(y). Define the input z ∈ {0, 1}n such that zi = xi if xi = yi, and otherwise, zi = xi

if q(x, i) ≥ q(y, i) and zi = yi if q(y, i) > q(x, i). Suppose that f ′(z) ̸= f(x). Then∑
i:xi ̸=yi

min{q(x, i), q(y, i)} =
∑

i:xi ̸=zi

min{q(x, i), q(y, i)} +
∑

i:yi ̸=zi

min{q(x, i), q(y, i)}

≥
∑

i:xi ̸=zi

q(x, i) +
∑

i:yi ̸=zi

q(y, i) ≥ 1. ◀

▶ Lemma 28. For any (possibly partial) Boolean function f , we have

d̃egϵ(f) ≥
√

2
π

√
(1 − 2ϵ) fbs(f).

Proof. Let x ∈ Dom(f) be such that fbs(x, f) = fbs(f). By negating the input bits of f if
necessary, we may assume that x = 0n (note that negating input bits does not affect fbs(f)
or d̃eg(f)). By negating the output of f if necessary, we can further assume that f(0n) = 0.
Let p be a polynomial of degree d̃egϵ(f) which approximates f to error ϵ.

Let PrORk be the promise problem on k bits whose domain contains all the strings of
Hamming weights 0 or 1, and which outputs 0 given 0k and outputs 1 given an input of
Hamming weight 1.

A. Anshu, S. Ben-David, and S. Kundu 30:35

We give an exact polynomial representation of this function. To do so, let Td be the
Chebyshev polynomial of degree d; this is the single-variate real polynomial satisfying
Td(cos θ) = cos(dθ). This polynomial is bounded in [−1, 1] on the interval [−1, 1]. Moreover,
it satisfies Td(1) = 1 and Td(cos(π/d)) = −1. Hence the polynomial r(t) = (1 − Td(1 − (1 −
cos(π/d))t))/2 evaluates to 0 at t = 0 and to 1 at t = 1. Moreover, since this Td is bounded
in [−1, 1] on the interval [−1, 1], we conclude that r(t) is bounded in [0, 1] on the interval
[0, 2/(1 − cos(π/d))]. Since cos(z) ≥ 1 − z2/2, we have 2/(1 − cos(π/d)) ≥ 4d2/π2. Hence
r(t) is bounded in [0, 1] on the interval [0, 4d2/π2]. If we pick d such that 4d2/π2 ≥ k, that
is, d at least ⌈π

√
k/2⌉, then we would know that r(t) is bounded on [0, k]. In that case, the

k-variate polynomial q(x) = r(x1 + x2 + · · · + xk) would exactly compute PrORk, and it
would have degree at most ⌈π

√
k/2⌉ ≤ π

√
k/2 + 1.

Next, consider the function f ◦ PrORk. We can approximate this function to error ϵ

simply by plugging in n independent copies of the polynomial q into the variables of the
polynomial p. This means that the approximate degree of f ◦ PrORk to error ϵ is at most
d̃egϵ(f) · (π

√
k/2 + 1).

On the other hand, we now claim that for appropriate choice of k, we have bs(0kn, f ◦
PrORk) ≥ k fbs(0n, f), and hence bs(f ◦ PrORk) ≥ k fbs(f). To see this, let {wB}B be an
optimal weight scheme for the fractional block sensitivity of 0n with respect to f , so that∑

B:i∈B wB ≤ 1 and
∑

B wB = fbs(f). Note that since fractional block sensitivity is a linear
program, the optimal solution can be taken to be rational; let L be a common denominator
of all the weights, so that LwB is an integer for each sensitive block B. Now take k to be
an integer multiple of L. For each sensitive block B of 0n with respect to f , we define kwB

different sensitive blocks of 0kn with respect to f ◦ PrORk, such that all of the new blocks
are mutually disjoint. To do so, we simply use a different bit in each copy of PrORk for
each block. Since the sum of weights wB for blocks that use bit i of the input to f is at most
1, the total number of new blocks we will generate that use copy i of PrORk is at most k,
and hence we can give each block a different bit of that copy of PrORk. The total number
of disjoint blocks will then be k

∑
B wB = k fbs(f).

We conclude that bs(f ◦ PrORk) ≥ k fbs(f) as long as k is a multiple of a certain integer
L. Now, by a standard result [9, 15], we know that the approximate degree to error ϵ of a
(possibly partial) Boolean function is at least the square root of its block sensitivity; more
explicitly, we have

d̃egϵ(f ◦ PrORk) ≥

√
1 − 2ϵ

2(1 − ϵ) bs(f ◦ PrORk) ≥

√
1 − 2ϵ

2(1 − ϵ)k fbs(f).

Combined with our upper bound on this degree, we have

d̃egϵ(f) · (π
√

k/2 + 1) ≥

√
1 − 2ϵ

2(1 − ϵ)k fbs(f),

and since k can go to infinity, we must have

d̃egϵ(f) ≥
√

2
π

√
(1 − 2ϵ)

1 − ϵ
fbs(f),

from which the desired result follows. ◀

▶ Theorem 29. For all (possibly partial) Boolean functions f , we have

d̃egϵ(f) ≥
√

(1 − 2ϵ) cfbs(f)
π

.

CCC 2021

30:36 On Query-To-Communication Lifting for Adversary Bounds

Proof. Let p be a polynomial which approximates f to error ϵ. Then p(x) ∈ [0, 1] for all
x ∈ {0, 1}n, so define f ′(x) by f ′(x) = 1 if p(x) ≥ 1/2 and f ′(x) = 0 if p(x) < 1/2. It is
clear that f ′(x) = f(x) for all x ∈ Dom(f), so f ′ is a completion of f . Let x ∈ Dom(f) be
an input so that fbs(x, f ′) ≥ cfbs(f). To complete the proof, it will suffice to lower bound
the degree of p by Ω(

√
fbs(x, f ′)).

Suppose without loss of generality that f(x) = 0 (otherwise, negate f and f ′ and
replace p with 1 − p). Then we know that p(x) ∈ [0, ϵ], and that for any y ∈ {0, 1}n

such that f ′(x) ̸= f ′(y), we have p(y) ∈ [1/2, 1]. This means that the polynomial q(z) =
(2p(z) + 1 − 2ϵ)/(3 − 2ϵ) has the same degree as p, is bounded in [0, 1] on {0, 1}n, and
approximates f ′ to error 1/(3 − 2ϵ) on the input x and on all inputs y ∈ {0, 1}n such that
f ′(x) ̸= f ′(y). In other words, consider the partial function f ′

x which is the restriction of
f ′ to the promise set {x} ∪ {y ∈ {0, 1}n : f ′(y) ̸= f ′(x)}. Then q approximates f ′

x to error
1/(3 − 2ϵ), and has the same degree as p. Now, it is not hard to see that fbs(f ′

x) = fbs(x, f ′).
Hence it suffices to lower bound the degree of q by Ω(

√
fbs(f ′

x)). Such a lower bound follows
from Lemma 28; indeed, we conclude that the degree of p is at least

1
π

√
1 − 2ϵ

1 − ϵ
cfbs(f). ◀

▶ Theorem 30. For all (possibly partial) Boolean functions f ,

CAdv(f) ≤ 2 Adv(f)2.

Proof. Let f be a (possibly partial) Boolean function, and q(x, i) be a feasible weight scheme
for Adv(f) that has

∑
i∈[n] q(x, i) ≤ Adv(f) for all i. Fix any x, y ∈ Dom(f) such that

f(x) ̸= f(y). Then

1 ≤
∑

i:xi ̸=yi

√
q(x, i)q(y, i) =

∑
i:xi ̸=yi

√
min{q(x, i), q(y, i)} max{q(x, i), q(y, i)}

≤
√ ∑

i:xi ̸=yi

min{q(x, i), q(y, i)} ·
∑

i:xi ̸=yi

max{q(x, i), q(y, i)}.

Note that max{q(x, i), q(y, i)} ≤ q(x, i) + q(y, i), and we know the sum over i of q(x, i) and
q(y, i) are each at most Adv(f). Hence we get∑

i:xi ̸=yi

max{q(x, i), q(y, i)} ≤ 2 Adv(f),

and hence∑
i:xi ̸=yi

min{q(x, i), q(y, i)} ≥ 1
2 Adv(f) .

This means that if we scale the weights q(x, i) up by a uniform factor of 2 Adv(f), the
resulting weight scheme q′(x, i) will be feasible for CAdv(f). The objective value of this new
weight scheme will then be the maximum over x of∑

i∈[n]

q′(x, i) = 2 Adv(f)
∑
i∈[n]

q(x, i) ≤ 2 Adv(f)2,

so CAdv(f) ≤ 2 Adv(f)2, as desired. ◀

A. Anshu, S. Ben-David, and S. Kundu 30:37

References
1 Scott Aaronson. Lower bounds for local search by quantum arguments. SIAM Journal

on Computing, 35(4):804–824, 2006. Previous version in STOC 2004. doi:10.1137/
s0097539704447237.

2 Scott Aaronson. Quantum certificate complexity. Journal of Computer and System Sciences,
74(3):313–322, 2008. Previous version in CCC 2003. doi:10.1016/j.jcss.2007.06.020.

3 Scott Aaronson, Shalev Ben-David, Robin Kothari, Shravas Rao, and Avishay Tal. Degree vs.
approximate degree and quantum implications of huang’s sensitivity theorem, 2020. Preprint,.
arXiv:2010.12629.

4 R Alicki and M Fannes. Continuity of quantum conditional information. Journal of Physics
A: Mathematical and General, 37(5):L55–L57, 2004. doi:10.1088/0305-4470/37/5/l01.

5 Andris Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer and
System Sciences, 64(4):750–767, 2002. Previous version in STOC 2000. doi:10.1006/jcss.
2002.1826.

6 Andris Ambainis, Martins Kokainis, Krišjānis Prūsis, and Jevgēnijs Vihrovs. All classical
adversary methods are equivalent for total functions. In Proceedings in the 35th Symposium
on Theoretical Aspects of Computer Science (STACS). Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik GmbH, Wadern/Saarbruecken, Germany, 2018. doi:10.4230/LIPICS.STACS.
2018.8.

7 Ziv Bar-Yossef, T.S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. In The 43rd Annual IEEE Symposium
on Foundations of Computer Science, 2002. Proceedings., pages 209–218, 2002. doi:10.1109/
SFCS.2002.1181944.

8 Ziv Bar-Yossef, T.S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. Journal of Computer and System
Sciences, 68(4):702–732, 2004. Previous version in FOCS 2002. doi:10.1016/j.jcss.2003.
11.006.

9 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald De Wolf. Quantum
lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001. Previous version in
FOCS 1998. doi:10.1145/502090.502097.

10 Aleksandrs Belovs. Quantum algorithms for learning symmetric juntas via the adversary
bound. Computational Complexity, 24(2):255–293, 2015. Previous version in CCC 2014.
doi:10.1007/s00037-015-0099-2.

11 Shalev Ben-David, Adam Bouland, Ankit Garg, and Robin Kothari. Classical lower bounds from
quantum upper bounds. In Proceedings of the 59th Annual IEEE Symposium on Foundations
of Computer Science (FOCS). IEEE, 2018. doi:10.1109/focs.2018.00040.

12 Mark Braverman, Ankit Garg, Young Kun Ko, Jieming Mao, and Dave Touchette. Near-
optimal bounds on the bounded-round quantum communication complexity of disjointness.
SIAM Journal on Computing, 47(6):2277–2314, 2018. Previous version in FOCS 2015. doi:
10.1137/16m1061400.

13 Mark Braverman and Omri Weinstein. An interactive information odometer and applications.
In Proceedings of the 47th Annual ACM SIGACT Symposium on Theory of Computing (STOC).
ACM Press, 2015. doi:10.1145/2746539.2746548.

14 Harry Buhrman, Matthias Christandl, and Christian Schaffner. Complete insecurity of
quantum protocols for classical two-party computation. Physical Review Letters, 109(16), 2012.
doi:10.1103/physrevlett.109.160501.

15 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
a survey. Theoretical Computer Science, 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)
00144-X.

16 Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and Toniann Pitassi. Query-to-
communication lifting for BPP using inner product. In Proceedings of the 46th International
Colloquium on Automata, Languages, and Programming (ICALP). Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany, 2019. doi:10.4230/LIPICS.
ICALP.2019.35.

CCC 2021

https://doi.org/10.1137/s0097539704447237
https://doi.org/10.1137/s0097539704447237
https://doi.org/10.1016/j.jcss.2007.06.020
http://arxiv.org/abs/2010.12629
https://doi.org/10.1088/0305-4470/37/5/l01
https://doi.org/10.1006/jcss.2002.1826
https://doi.org/10.1006/jcss.2002.1826
https://doi.org/10.4230/LIPICS.STACS.2018.8
https://doi.org/10.4230/LIPICS.STACS.2018.8
https://doi.org/10.1109/SFCS.2002.1181944
https://doi.org/10.1109/SFCS.2002.1181944
https://doi.org/10.1016/j.jcss.2003.11.006
https://doi.org/10.1016/j.jcss.2003.11.006
https://doi.org/10.1145/502090.502097
https://doi.org/10.1007/s00037-015-0099-2
https://doi.org/10.1109/focs.2018.00040
https://doi.org/10.1137/16m1061400
https://doi.org/10.1137/16m1061400
https://doi.org/10.1145/2746539.2746548
https://doi.org/10.1103/physrevlett.109.160501
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.4230/LIPICS.ICALP.2019.35
https://doi.org/10.4230/LIPICS.ICALP.2019.35

30:38 On Query-To-Communication Lifting for Adversary Bounds

17 Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay. Simulation
theorems via pseudo-random properties. Computational Complexity, 28(4):617–659, 2019.
doi:10.1007/s00037-019-00190-7.

18 Roger Colbeck. Impossibility of secure two-party classical computation. Physical Review A,
76(6), 2007. doi:10.1103/physreva.76.062308.

19 Serge Fehr, Jonathan Katz, Fang Song, Hong-Sheng Zhou, and Vassilis Zikas. Feasibility
and completeness of cryptographic tasks in the quantum world. In Proceedings of the 10th
Theory of Cryptography Conference (TCC), pages 281–296. Springer Berlin Heidelberg, 2013.
doi:10.1007/978-3-642-36594-2_16.

20 Justin Gilmer, Michael Saks, and Sudarshan Srinivasan. Composition limits and separating
examples for some boolean function complexity measures. Combinatorica, 2016. Previous
version in CCC 2013. doi:10.1007/s00493-014-3189-x.

21 Mika Göös. Lower bounds for clique vs. independent set. In Proceedings of the 56th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 1066–1076. IEEE, 2015.
doi:10.1109/FOCS.2015.69.

22 Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rectangles
are nonnegative juntas. SIAM Journal on Computing, 45(5):1835–1869, 2016. Previous version
in STOC 2015. doi:10.1137/15M103145X.

23 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition
number. SIAM Journal on Computing, 2018. Previous version in FOCS 2015. doi:10.1137/
16M1059369.

24 Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity.
SIAM Journal on Computing, 47(5):1778–1806, 2018. Previous version in STOC 2014. doi:
10.1137/16m1082007.

25 Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting for BPP.
SIAM Journal on Computing, 49(4):FOCS17–441–FOCS17–461, 2020. Previous version in
FOCS 2017. doi:10.1137/17m115339x.

26 Peter Høyer, Troy Lee, and Robert Špalek. Negative weights make adversaries stronger. In
Proceedings of the 39th Annual ACM SIGACT Symposium on Theory of Computing (STOC),
pages 526–535, 2007. doi:10.1145/1250790.1250867.

27 Trinh Huynh and Jakob Nordstrom. On the virtue of succinct proofs. In Proceedings of the
44th Annual ACM SIGACT Symposium on Theory of Computing (STOC). ACM Press, 2012.
doi:10.1145/2213977.2214000.

28 Raghav Kulkarni and Avishay Tal. On fractional block sensitivity. Chicago Journal of
Theoretical Computer Science, 2016. doi:10.4086/cjtcs.2016.008.

29 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1996. doi:10.1017/cbo9780511574948.

30 Sophie Laplante and Frédéric Magniez. Lower bounds for randomized and quantum query
complexity using Kolmogorov arguments. SIAM Journal on Computing, 2008. Previous version
in CCC 2004. doi:10.1137/050639090.

31 Mathieu Laurière and Dave Touchette. The flow of information in interactive quantum
protocols: the cost of forgetting. In Proceedings of the 8th Innovations in Theoretical Computer
Science Conference (ITCS). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH,
Wadern/Saarbruecken, Germany, 2017. doi:10.4230/LIPICS.ITCS.2017.47.

32 Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario Szegedy. Quantum
query complexity of state conversion. In Proceedings of the 52nd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 344–353, 2011. doi:10.1109/FOCS.2011.75.

33 Hoi-Kwong Lo. Insecurity of quantum secure computations. Physical Review A, 56(2):1154–
1162, 1997. doi:10.1103/physreva.56.1154.

34 Noam Nisan. Crew prams and decision trees. SIAM Journal on Computing, 20(6):999–1007,
1991. Previous version in STOC 1989. doi:10.1137/0220062.

https://doi.org/10.1007/s00037-019-00190-7
https://doi.org/10.1103/physreva.76.062308
https://doi.org/10.1007/978-3-642-36594-2_16
https://doi.org/10.1007/s00493-014-3189-x
https://doi.org/10.1109/FOCS.2015.69
https://doi.org/10.1137/15M103145X
https://doi.org/10.1137/16M1059369
https://doi.org/10.1137/16M1059369
https://doi.org/10.1137/16m1082007
https://doi.org/10.1137/16m1082007
https://doi.org/10.1137/17m115339x
https://doi.org/10.1145/1250790.1250867
https://doi.org/10.1145/2213977.2214000
https://doi.org/10.4086/cjtcs.2016.008
https://doi.org/10.1017/cbo9780511574948
https://doi.org/10.1137/050639090
https://doi.org/10.4230/LIPICS.ITCS.2017.47
https://doi.org/10.1109/FOCS.2011.75
https://doi.org/10.1103/physreva.56.1154
https://doi.org/10.1137/0220062

A. Anshu, S. Ben-David, and S. Kundu 30:39

35 Ben W. Reichardt. Reflections for quantum query algorithms. In Proceedings of the 22nd
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 560–569. SIAM, 2011. doi:
10.1137/1.9781611973082.44.

36 Louis Salvail, Christian Schaffner, and Miroslava Sotáková. Quantifying the leakage of quantum
protocols for classical two-party cryptography. International Journal of Quantum Information,
13(04):1450041, 2014. doi:10.1142/s0219749914500415.

37 Alexander A. Sherstov. The pattern matrix method. SIAM Journal on Computing, 40(6):1969–
2000, 2011. Previous version in STOC 2008. doi:10.1137/080733644.

38 Maurice Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(1):171–176,
1958. doi:10.2140/pjm.1958.8.171.

39 Robert Špalek and Mario Szegedy. All quantum adversary methods are equivalent. Theory of
Computing, 2, 2006. Previous version in ICALP 2005. doi:10.4086/toc.2006.v002a001.

40 Avishay Tal. Properties and applications of boolean function composition. In Proceedings of
the 4th Innovations in Theoretical Computer Science Conference (ITCS), pages 441–454, 2013.
doi:10.1145/2422436.2422485.

41 Dave Touchette. Quantum information complexity. In Proceedings of the 47th Annual ACM
SIGACT Symposium on Theory of Computing (STOC). ACM Press, 2015. doi:10.1145/
2746539.2746613.

42 Xiaodi Wu, Penghui Yao, and Henry Yuen. Raz-mckenzie simulation with the inner product
gadget, 2017. Preprint. arXiv:2017/010.

CCC 2021

https://doi.org/10.1137/1.9781611973082.44
https://doi.org/10.1137/1.9781611973082.44
https://doi.org/10.1142/s0219749914500415
https://doi.org/10.1137/080733644
https://doi.org/10.2140/pjm.1958.8.171
https://doi.org/10.4086/toc.2006.v002a001
https://doi.org/10.1145/2422436.2422485
https://doi.org/10.1145/2746539.2746613
https://doi.org/10.1145/2746539.2746613
http://arxiv.org/abs/2017/010

Hardness of Constant-Round Communication
Complexity
Shuichi Hirahara #

National Institute of Informatics, Tokyo, Japan

Rahul Ilango #

Massachusetts Institute of Technology, Cambridge, MA, USA

Bruno Loff #

INESC-Tec and University of Porto, Portugal

Abstract
How difficult is it to compute the communication complexity of a two-argument total Boolean
function f : [N] × [N] → {0, 1}, when it is given as an N × N binary matrix? In 2009, Kushilevitz
and Weinreb showed that this problem is cryptographically hard, but it is still open whether it is
NP-hard.

In this work, we show that it is NP-hard to approximate the size (number of leaves) of the
smallest constant-round protocol for a two-argument total Boolean function f : [N] × [N] → {0, 1},
when it is given as an N × N binary matrix. Along the way to proving this, we show a new
deterministic variant of the round elimination lemma, which may be of independent interest.

2012 ACM Subject Classification Theory of computation → Communication complexity; Theory of
computation → Problems, reductions and completeness

Keywords and phrases NP-completeness, Communication Complexity, Round Elimination Lemma,
Meta-Complexity

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.31

Related Version Full Version: https://eccc.weizmann.ac.il/report/2021/030/

Funding Shuichi Hirahara: This work was partly carried out during a visit supported by ACT-I,
JST.
Rahul Ilango: During this work, this author was funded by an Akamai Presidential Fellowship and
by NSF Grants CCF-1741615 and CCF-1909429.
Bruno Loff : This project was financed by the Portuguese funding agency, FCT - Fundação para a
Ciência e a Tecnologia, within project UIDB/50014/2020. This work was partly carried out during a
research visit conducted with support from DIMACS in association with its Special Focus on Lower
Bounds.

Acknowledgements The authors would like to thank Ryan Williams for his support, and for several
discussions and suggestions, without which this paper would not have existed. The authors would
also like to thank Igor Oliveira for helpful conversations about hardness of communication complexity.

© Shuichi Hirahara, Rahul Ilango, and Bruno Loff;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 31; pp. 31:1–31:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s_hirahara@nii.ac.jp
mailto:rilango@mit.edu
mailto:bruno.loff@gmail.com
https://doi.org/10.4230/LIPIcs.CCC.2021.31
https://eccc.weizmann.ac.il/report/2021/030/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Hardness of Constant-Round Communication Complexity

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Our Results . 3
1.3 Meta-Complexity . 5

1.3.1 Previous work . 6
1.4 Outline of the Paper . 7
1.5 Sketch of Lemma 3 . 7
1.6 Concluding remarks and open problems . 9

2 Preliminaries 9

3 Warmup: deterministic 3-round protocols, large output alphabet 11

4 Hardness for deterministic 3-round protocols 14

5 From 3-rounds to multiple rounds using deterministic round elimination 16

6 Hardness for randomized 3-round protocols 19

7 From 3-rounds to multiple rounds using round elimination 24

1 Introduction

Suppose you are given a N × N Boolean matrix representing a (total) two-player communica-
tion problem. How difficult is it to determine the (deterministic) communication complexity
of this matrix?

In 2009, Kushilevitz and Weinreb [39] studied this question and showed that, under a
cryptographic assumption, no polynomial-time algorithm can compute the communication
complexity of a given total two-player function. They left open the question of whether this
problem is NP-hard.

Our main result is that the problem of determining the minimum number of leaves in an
d-round communication protocol for a given (total, two player) function is NP-hard, for all
integer constants d ≥ 3.

1.1 Motivation
Determining the difficulty of computing communication complexity is an interesting, basic
question in its own right. However, the aforementioned paper of Kushilevitz and Weinreb –
which gave the first non-trivial results on this problem – was also motivated by the broader
implications this question could have for communication complexity. This fits into an
even broader motif that has become prominent in recent years: using “meta-questions” to
investigate various aspects of complexity theory.

For example, Kushilevitz and Weinreb argue that understanding the intractability of
computing communication complexity can help “explain the difficulty of analyzing the
communication complexity of certain functions.” Towards this end, their cryptographic
hardness result exhibits a family of functions whose communication complexity we are
unlikely to ever gain a complete understanding of (since determining their communication
complexity is crytographically hard).

S. Hirahara, R. Ilango, and B. Loff 31:3

Kushilevitz and Weinreb also used the meta-complexity lens to shed light on one of the
oldest questions in communication complexity: the log-rank conjecture of Lovasz and Saks
[41]. If the log-rank conjecture is true, then it yields a simple polynomial-time approximation
algorithm for computing communication complexity (simply output the logarithm of the
rank of the input matrix). A natural question is whether one can get a better approximation
algorithm. Kushilevitz and Weinreb introduced a plausible conjecture that would imply that
the log-rank conjecture, if true, yields an optimal polynomial-time approximation. On the
other hand, a strong enough hardness of approximation result could actually disprove the
log-rank conjecture (conditioned on P ̸= NP). Thus, understanding the inapproximability
of computing communication complexity seems closely related to resolving the log-rank
conjecture.

Finally, Kushilevitz and Weinreb’s paper also introduced a remarkable new technique,
showing for the first time how one could devise a total two-player Boolean function whose
communication complexity was strongly tied to the Boolean-formula complexity of another,
related function. Prior to their work, connections had only been known between Boolean-
formula complexity and the communication complexity of search problems [35] and were not
known for decision problems.

Thus, it is plausible that proving NP-hardness results for computing communication
complexity could reveal further insights in communication complexity and lead to the
development of useful new techniques. Indeed, our constant-round NP-hardness result
led us to prove an interesting new direct-sum/round-elimination result in deterministic
communication complexity, which we state in the following section.

1.2 Our Results
In order to state our results formally, we fix some notation. If f : [a] × [b] → {0, 1} is a
two-player Boolean-valued function, then

CA
d (f) denotes its d-round deterministic communication complexity, namely, the smallest

number of bits communicated in a d-round protocol that computes f , where Alice speaks
in the first round,
LA

d (f) denotes the minimum number of leaves in a d-round protocol that computes f

where Alice speaks first,
CB

d (f) and LB
d (f) denote the analogous notions where Bob speaks first, and

CA
d,ε(f), CB

d,ε(f), LA
d,ε(f) and LB

d,ε(f) denote the analogous notions but where the protocol
is probabilistic, and is allowed to err with probability ≤ ε.

Our first result shows that computing 3-round deterministic communication complexity
is NP-hard. We construct a reduction from the chromatic number problem to the problem
of computing 3-round deterministic communication complexity. Our reduction attains the
following hardness:

▶ Theorem 1 (Informal version of Theorem 18). It is NP-hard to approximate LA
3 (f) to within

a factor of N1/8, and CA
3 (f) to within an additive term of 1

8 log N ,1 when given a function
f : [N] × [N] → {0, 1}.

We then work to prove NP hardness for all constants d ≥ 3 by induction on d, using
Theorem 1 as a base case. Thus, in our inductive step, our goal is to show that computing
d-round communication complexity reduces to computing (d + 1)-round communication
complexity.

1 Since CA
3 (f) ≤ log N + 1, this implies it is hard to approximate CA

3 (f) to within a multiplicative factor
of 1 + 1

8 .

CCC 2021

31:4 Hardness of Constant-Round Communication Complexity

A natural approach would be to use the round elimination lemma [46, 62]. This lemma
says that given a two-player function f , one can create a new function F such that the
(d+1)-round communication complexity of F is closely related to the d-round communication
complexity of f .

There are a few difficulties in using round elimination. For one, going from f to F in
round elimination requires a dramatic blow up of the input size of the function. As a result,
any reduction based on typical round elimination seems to require a superpolynomial running
time.

A more significant issue is that round elimination only works for probabilistic protocols,
not deterministic protocols. So, in order to use round elimination, we would actually need a
much stronger version of Theorem 1 for our base case: that it is hard to distinguish protocols
that have small three-round deterministic communication complexity from protocols that
require large three-round randomized communication complexity. As it turns out, we can
“almost” prove such a result (see Section 6):

▶ Theorem 2. There exist positive constants γ and δ such that the following holds. There
exists a deterministic quasipolynomial-time algorithm that, on input x ∈ {0, 1}∗, outputs a
communication matrix M ∈ {0, 1}N×N and a number k ∈ N, with k ≤ N = |x|O(1), such that
1. if x is a YES instance of SAT, then LB

3 (M) ≤ O(k) and CB
3 (M) ≤ log k + O(1), and

2. if x is a NO instance of SAT, then LB
3,N−δ (M) ≥ Ω(Nγ · k) and CB

3,N−δ (M) ≥ log k + γ ·
log N − O(1).

Unfortunately, the hardness parameters we obtain are not enough to make the round-
elimination approach work. If in the above theorem we could have chosen γ ≥ c · δ for an
arbitrarily large constant c, then we would be able to use round elimination to show that
CA

d (f) is NP-hard for any constant number of rounds d, under subexponential-time reductions
(this is proven in Section 7). If we could make the error parameter constant instead of N−δ,
then we would be able to show that CA

d (f) is NP-hard under quasipolynomial-time reductions.
We leave proving a version of Theorem 2 with these stronger parameters as an open problem.

In light of these difficulties, a natural question is whether there exists an alternative to
round elimination that works with deterministic protocols. Ideally, this alternative method
would also avoid introducing a subexponential blowup. Towards this end, we prove a new
result in deterministic communication complexity that gives us a tight relation between the
minimum number of leaves in a d-round protocol for f , and the minimum number of leaves
in a (d + 1)-round protocol for a related function F . This function F is a kind of “direct sum”
of f with the “XOR-equality” function. It should be remarked that the direct-sum property
is known to fail for general deterministic protocols [56], so we cannot, for example, replace
XOR-equality with another arbitrary function with the same communication complexity.
The formal statement of our result is as follows:

▶ Lemma 3. Let d ≥ 3. Given an arbitrary two-player total Boolean function f : [a] × [b] →
{0, 1}, define the function F : ([k] × [a]) × ([k] × [b] × {0, 1} × {0, 1}) → {0, 1} given by

F (x0, x1; y0, y1, z, i) =
{

XorEqk(x0; y0, z) , if i = 0
f(x1; y1) , if i = 1,

where, in turn, XorEqk : [k] × ([k] × {0, 1}) → {0, 1} is given by

XorEqk(x; y, z) =
{

z if x ̸= y

1 − z if x = y.

Then

min{4k, 2k − 2 + LB
d (f)} ≤ LA

d+1(F) ≤ 2k + LB
d (f).

S. Hirahara, R. Ilango, and B. Loff 31:5

The last two inequalities can be seen as saying that LA
d+1(F)−2k is a good approximation

of LB
d (f), for k ≥ LB

d (f). Thus, it is natural to view Lemma 3 not just as a direct-sum-type
result, but also as a kind of round elimination lemma, since it relates the (d + 1)-round
communication complexity of F with the d-round communication complexity of f .

Lemma 3 has a few significant differences from the classical round elimination lemma.
First, while the classical lemma only applies to probabilistic protocols, Lemma 3 works in
the deterministic case.

Second, Lemma 3 is more efficient in the number of inputs of F relative to f . Using
the classical round elimination lemma would require at least a quasipolynomial blowup in
going from f to F , but a quadratic blowup suffices for Lemma 3. This allows us to build a
polynomial-time NP-hardness reduction instead of the superpolynomial-time reduction that
would follow from the randomized round-elimination approach.

Third, our proof of Lemma 3 looks very different than the classical proof of the round
elimination lemma, which is almost entirely information-theoretic.2 Our proof is instead
more combinatorial and builds on a fooling set argument. We sketch the proof of Lemma 3
in Section 1.5.

Using Theorem 1 and Lemma 3, we obtain our main theorem:

▶ Theorem 4. For any d ≥ 3 there exists a constant ∆d > 0 such that the following holds. If
there exists a polynomial-time algorithm which, when given a total two-player Boolean-valued
function f : [N] × [N] → {0, 1} represented as a Boolean matrix of dimensions N × N ,
approximates LA

d (f) within a factor of 1 + ∆d, then P = NP.

1.3 Meta-Complexity
Our work fits into a now well-established theme in computational complexity theory of
studying “meta-complexity questions.” Historically, this kind of question was first studied
by Soviet cyberneticians beginning in the 1950s, who were particularly interested in the
problem of circuit minimization: the (“meta-complexity”) task of computing the smallest
circuit for a prescribed Boolean function [63]. At the time, this was considered to be among
the least likely computational task to have better-than-brute-force algorithms. Reportedly,
Levin delayed the publication of his work on NP-completeness, because he was hoping to
show the NP-hardness of this problem [12].

Since then, meta-complexity questions have become so pervasive, that there are few
unsolved problems in computational complexity which are not touched by meta-complexity
results. For example:

The relativization barrier [14], and related algebrization barrier [1], imply that a number
of proof techniques will be insufficient to settle most uniform complexity-class separation
questions.
The natural proofs barrier [60, 50] also immediately excludes us from considering many
properties which might, at a first glance, plausibly imply hardness of a given Boolean
function for circuit classes above TC0.
It is known that the complexity measures we are interested in understanding, such as the
number of leaves in Boolean formulae, are inherently non-convex [34] and non-submodular
[59], and thus cannot, for example, be approximated by convex programming or by certain
rank-based measures.

2 Indeed, using information theoretic techniques, like the chain rule and Pinsker’s inequality, seems to
require a superpolynomial blowup.

CCC 2021

31:6 Hardness of Constant-Round Communication Complexity

Lower-bounds that mildly improve classic lower-bounds (e.g. super-linear lower-bounds
against NC1 [11], lower-bounds against one-pass streaming algorithms [44]) or lower-
bounds for certain problems (e.g. k-vertex cover [54, 55]) against complexity classes for
which we already have lower-bounds, could be “magnified” to solve longstanding open
problems.
Just recently, the existence of one-way functions is now known to be equivalent to the
average-case hardness of computing polytime-bounded Kolmogorov complexity [40].

In this paper, we contribute to one of the lines of research inscribed in this theme.
Generically, fixing a complexity measure C, we can define a “meta”-problem MPC where a
task T is the input to the problem MPC , and the problem MPC is to compute C(T), namely,
the C-complexity of T . The “meta”-question is then: what is the computational complexity
of MPC?

1.3.1 Previous work
This meta-question has been studied in many previous works. Most of these works deal
with the case where T is the truth table of a Boolean function and the complexity measure
C = SIZE is the size of the smallest circuit computing T ; in this case MPSIZE is denoted
MCSP, which stands for “Minimum Circuit-Size Problem.” The question originally posed
by Levin is whether MCSP is NP-complete, and this is the main unresolved question in this
area.

We seem far from settling this question, but MCSP is known to be hard for various other
classes [54, 22, 54, 5, 6]. It is also known that MCSP is not NP-hard under various weak
reductions [48, 33, 48, 27, 26, 8, 10]. MCSP has many natural connections to other areas, such
as cryptography [57, 61], natural proofs [61], hardness magnification [53, 45], learning [18],
and proof complexity [37, 47]). A few variants of MCSP are known to be NP-hard, including
some relativized versions of MCSP [9, 26, 31], a conditional version of MCSP [28], and MCSP
for multi-output functions [30]. For more information on recent research, see Allender’s
recent survey [4] and the references therein.

Thus far, relatively few works have focused on proving the NP-hardness of computing
other complexity measures. The NP-hardness of computing the size of the smallest DNF for
a given function (given as a truth table) was first established by Masek, already in 1978 [43].
A series of subsequent works later improved this result to give near-optimal hardness-of-
approximation [19, 64, 21, 7, 36]. More recently, it was shown to be NP-hard to compute
the size of the smallest DNF-of-XORs [25]. Other works have established NP-hardness of
the task of finding an optimal algorithm, such as finding the smallest decision tree for a
given partial function [23], finding the weights of a neural network (with a fixed topology)
that computes a given function [32, 16], or finding the smallest straight-line program for
computing a given linear form [17].

A special reference should be made to the previous work by one of the authors [29], where
it was shown that it is NP-hard to approximate the size of the smallest AC0-formula of a total
function given as a truth-table, with an approximation factor of 1±∆d, where ∆d depends on
the depth d. Our paper is inspired by this earlier paper, and our work can be seen as proving
an analogous result for constant-round protocols for total Boolean functions, to the result
proven in [29] for constant-round protocols for Karchmer–Wigderson games. The high-level
idea of the proof is similar, as well: we first prove hardness for constant depth, and then show
how to reduce the depth-d problem to the depth-(d + 1) problem. However, the required
techniques are completely different, both for establishing the base case and the inductive
step. The depth 2 problem is already hard in the case of minimizing Boolean formulas, but it

S. Hirahara, R. Ilango, and B. Loff 31:7

can be solved in polynomial time in the case of communication complexity. Hence, our first
hard case is the depth 3 case. Our proof of the inductive depth-d to depth-(d + 1) reduction
is also very different, and we further discuss the differences in Section 1.5.

1.4 Outline of the Paper
Our proofs take the approach of starting with simple cases and building up to more
complicated cases. We begin in Section 3 by showing the NP-hardness of approximating
the 3-round communication complexity of total, multi-output functions, i.e., total two-player
functions f : [a] × [b] → [ℓ]. This problem has a nice combinatorial interpretation (see
Proposition 11), and it turns out to be NP-hard to approximate by a simple reduction from
graph coloring. The proof is an interesting combination of an NP-hardness reduction with a
communication-complexity lower-bound argument.

We then prove in Section 4 that 3-round communication complexity is also hard to
approximate for Boolean functions f : [a] × [b] → {0, 1}. The reduction is inspired by the
multi-output case, but it requires us to devise a particular kind of gadget. The existence of
such a gadget can be proven using the probabilistic method, but this only yields a randomized
reduction. We show the probabilistic construction can instead be derandomized using efficient
constructions of universal sets [51], and this results in a deterministic reduction. So this
result combines an NP-hardness reduction, a communication complexity lower bound, and a
derandomization result.

After proving hardness for 3 round protocols, it is natural to use the classical round-
elimination technique to prove the result for any number of rounds. However, in order to use
round-elimination, we need hardness of approximation for 3 round randomized communication
complexity. We do show, in Section 6, that it is hard to approximate the 3-round randomized
communication complexity in a low error regime, but the parameters we obtain are just shy
of what would be necessary to show hardness of approximation for d-round communication
complexity, for any d. We still conjecture that better parameters can be obtained, and we
show in Section 7 that our conjecture would imply that d-round communication complexity
is NP-hard to approximate, by a reduction from the (d − 1)-round case. Improving the
parameters in our lower bound is left as an open problem.

In Section 5, we finish the proof of our main theorem. There we show our deterministic
round-elimination lemma (Lemma 3), and use it to show that the smallest number of leaves
in a constant-round communication protocol is NP-hard to approximate.

1.5 Sketch of Lemma 3
In this subsection we sketch the proof of our deterministic round-elimination lemma, Lemma 3.
Let us restate it here:

▶ Lemma 3. Let d ≥ 3. Given an arbitrary two-player total Boolean function f : [a] × [b] →
{0, 1}, define the function F : ([k] × [a]) × ([k] × [b] × {0, 1} × {0, 1}) → {0, 1} given by

F (x0, x1; y0, y1, z, i) =
{

XorEqk(x0; y0, z) , if i = 0
f(x1; y1) , if i = 1,

where, in turn, XorEqk : [k] × ([k] × {0, 1}) → {0, 1} is given by

XorEqk(x; y, z) =
{

z if x ̸= y

1 − z if x = y.

Then

min{4k, 2k − 2 + LB
d (f)} ≤ LA

d+1(F) ≤ 2k + LB
d (f).

CCC 2021

31:8 Hardness of Constant-Round Communication Complexity

The upper bound is the easy direction (it follows from XorEqk having a 2k leaf 2-round
Alice-first protocol), so here we focus on how to prove the lower bound.

High Level Ideas. At a high level, our lower bound proof works by showing that any
protocol for computing F must do one of two things:

compute XorEqk “twice,” or
compute XorEqk “once” and (mostly) separately compute f in d rounds.

These two scenarios correspond to the 4k and 2k − 2 + LB
d (f) parts of the lower bound

respectively.
It is worth noting that an approach similar to this was used in [29] to prove a lower bound

that related the depth-d and depth-(d + 1) formula complexity of two functions. Indeed,
our proof was partly inspired by the proof in [29]. We note, however, that the proof in [29]
differs significantly in how it implements this high level approach. We highlight a few of
these differences:

The proof of the lower bound in [29] is based on the probabilistic method (in particular,
showing that some random subformulas have nice properties). Our lower bound does not
involve the probabilistic method and is instead based on fooling sets.
[29] relies on a complicated formalization of computing g “twice” that involves computing
a large one-sided approximation of g with a non-deterministic formula. On the other
hand, our formalization of computing XorEqk “twice” is to contain twice as many leaves
as it would take to compute XorEqk exactly in a three-round protocol.
[29] uses a random function g instead of the XorEqk function.
Our lemma is tight up to an additive 2 term, while the lower bound in [29] is only known
to be tight up to a multiplicative (1 ± o(1)) factor.

Another important aspect of our proof is how we make use of the XorEqk function. The
key property used about the XorEqk function is that it has a tight fooling set lower bound:
i.e., a fooling set lower bound that shows it requires exactly 2k leaves to compute. (The
equality function has a tight fooling set lower bound for its 1-leaves, but not for its 0-leaves.
XorEqk is a modification of the equality function that “symmetrizes” the function enough
that we get a tight fooling set for both the 1 and 0 leaves.) This tight fooling set severely
limits the structure of monochromatic combinatorial rectangles in F , which we use in both
cases of our proof.

Proof Sketch. Suppose that π is a (d + 1)-round Alice-first protocol for F . We split into
cases depending on how Alice partitions her inputs in the first round of the protocol.

Recall that Alice gets an input (x0, x1) ∈ [k] × [a]. Let P = {P1, . . . , P|P|} be Alice’s
partition of her inputs [k] × [a] in the first round of the protocol. We say that P is good if
there exists a x⋆

0 ∈ [k] such that {x0} × [a] ⊆ Pq for some q. (The reason behind choosing
this to be our definition of good is that it implies that one can obtain a round d protocol for
solving f by considering the subprotocol of π obtained by restricting x0 = x⋆

0).
If P is not good, then for each x0 ∈ [k] there are distinct x′

1, x′′
1 ∈ [a] such that (x0, x′

1)
and (x0, x′′

1) are contained in different parts in Alice’s partition. Consequently, any leaf in
π that contains an input where Alice’s input is (x0, x′

1) must be distinct from any leaf in
π that contains an input where Alice’s input is (x0, x′′

1). We combine this “distinct leaves”
property with the fooling set for XorEqk in order to show that the protocol must spend twice
as many leaves as is optimal for computing XorEqk. Intuitively, this is because when i = 0,
F computes XorEqk(x0; y0, z), which doesn’t depend on the value of x1. Thus, every element
(x0; y0, z) of a fooling set for XorEqk can be used to produce two distinct leaves in π: one leaf
for when Alice gets the input (x0, x′

1) and one leaf for when Alice gets the input (x0, x′′
1).

S. Hirahara, R. Ilango, and B. Loff 31:9

On the other hand, suppose P is good. Then {x⋆
0} × [a] ⊆ Pq for some q. As a result, the

d round Bob-first subprotocol of π, given when Alice is restricted to an input in Pq, computes
f when we set x0 = x⋆

0 and i = 1. This implies that π must have at least LB
d (f) leaves.

In fact, the goodness of P implies a stronger statement: that π contains at least LB
d (f)

many leaves which contain an input where x0 = x⋆
0. This is crucial because only two elements

of the fooling set for XorEqk satisfy x0 = x⋆
0. Consequently, one can show that, in order to

compute XorEqk when i = 0, π must have 2k − 2 leaves that do not contain any input where
x0 = x⋆

0. Putting the two bounds together, we get a 2k − 2 + LB
d (f) lower bound on the

number of leaves in π.

1.6 Concluding remarks and open problems
In this work we make a significant step towards showing that computing communication
complexity is NP-hard, by proving it is hard to compute the smallest size of a constant-round
protocol for a given function.

There are a few natural open questions suggested by our paper. The biggest question
is whether the unbounded-round case is also NP-hard. But even in the constant-round
setting, we would like to prove better hardness of approximation for protocol size, and we
would like to prove unconditionally that communication complexity is NP-hard. Proving
Conjecture 33 would give us both of these results for subexponential-time reductions. Can
we get such hardness using polynomial-time reductions, as well? On the other hand, one can
also ask: do there exist non-trivial polynomial-time approximation algorithms for computing
constant-round communication complexity? It is worth noting that the log-rank conjecture
gives a candidate approximation algorithm for computing communication complexity with
no bound on the number of rounds.

A crucial ingredient in our hardness result is a deterministic version of the round
elimination lemma, which is proved using entirely different techniques than the original
version. Does this deterministic version have other applications? Can the new ideas in our
proof be used to prove other interesting statements?

2 Preliminaries

For a positive integer n, we let [n] denote the set {1, . . . , n}.

Binomial Coefficients and Projections. The binomial coefficient
(

n
k

)
equals the number of

distinct subsets of [n] with exactly k elements. Similarly,
(

n
≤k

)
denotes the number of distinct

subsets of [n] that have at most k elements. Finally,
([n]

k

)
denotes the set of all subsets of [n]

with exactly k elements.
If x ∈ {0, 1}n and S = {i1, . . . , ik} ⊆

([n]
k

)
, then xS ∈ {0, 1}k denotes the projection of x

to S, given by xS = xi1 . . . xik
.

Entropy, Mutual Information, Pinsker’s inequality. We describe the notation we will use
for various information-theoretic quantities, and some basic facts about them. We will not
define the notions here, or prove the basic facts. See [58] for a reference that uses these
notions in the context of communication complexity. Given a random variable x ∈ X, we
denote its entropy by H(x). Given random variables x, y, z, we will denote the mutual
information between x and y, given z, by I(x : y | z). It always holds that I(x : y) ≤ H(y). If
we have random variables x1, . . . , xn, y, we then have the chain rule:

I(x1, . . . , xn : y) =
n∑

i=1
I(xi : y | x<i),

CCC 2021

31:10 Hardness of Constant-Round Communication Complexity

where x<i = x1, . . . , xi−1. If two random-variables x and y have I(x : y) ≤ 2ε2, then
Pinsker’s inequality implies (by concavity) that if we compute the average, over the choice y

for y, statistical distance between the distribution of x, and the distribution of x conditioned
on y = y, then this average is less than ε.

Communication complexity. We assume basic familiarity with communication complexity
[38]. We write the definitions here for clarity.

▶ Definition 5 (Protocol). Let A, B, Z be finite sets. A deterministic protocol π over
A × B × Z is a rooted tree:

Each node v is associated with a rectangle π−1(v) = A × B, with A ⊆ X and B ⊆ Y.
Each non-leaf node v, associated with a rectangle π−1(v) = A × B, is labeled by either (a)
a partition A =

⋃
· c∈Pv

Ac of A, in which case we say it is Alice’s node or (b) a partition
B =

⋃
· c∈Pv

Bc of B, in which case we say it is Bob’s node.
Each leaf node is labeled by an element of the output domain Z
The rectangle associated with the root is the input domain A × B.
If a non-leaf node v of Alice is associated with rectangle π−1(v) = A × B and (a) labeled
by a partition A =

⋃
· c∈Pv

Ac of A, then for each c ∈ Pv there will be one child vc of v,
which will be associated with the rectangle π−1(vc) = Ac × B; similarly for Bob’s nodes.

We let the leaf complexity of π, written L(π), be the number of leaf nodes of π. We let the
round complexity of π, written R(π), be the height of π, i.e., the maximum number of edges
in any root-to-leaf path of π.

A root-to-leaf path v1 → · · · → vk+1 is said to have communication length
∑k

i=1⌈log |Pvi
|⌉

(where |Pvi |, as defined above, is the number of parts in the partition of A or B associated
with node vi). We then let the communication complexity of π, written C(π), be the maximum
communication length of any root-to-leaf path of π.

Given (a, b) ∈ A × B, we let π(a, b) denote the (unique) leaf v of π having (a, b) ∈ π−1(v).
For z ∈ Z, we may write π(a, b) = z to mean that the leaf π(a, b) is labeled by z.

A randomized protocol over A × B × Z is a distribution over deterministic protocols over
A × B × Z. We will use a boldface Greek letter, such as π, to denote a protocol sampled from
this distribution. We then let L(π) be the maximum L(π) over all π in the support of π, and
likewise for R(π) and C(π).

▶ Definition 6. A function f : A × B → Z is said to be computed by a deterministic protocol
π over A × B × Z if we have f(a, b) = π(a, b) for every (a, b) ∈ A × B. Furthermore, if
ε ∈ [0, 1], then f is said to be computed with error ε by a randomized protocol π if, for every
(a, b) ∈ A × B, Pr[π(a, b) = f(a, b)] > 1 − ε (the probability is over the choice of π).

We may then define:
LA

d (f) is the minimum leaf complexity L(π) among all deterministic protocols π that
compute f , and have round complexity R(π) ≤ d, and such that the root node of π is
Alice’s. LB

d (f) is defined likewise, but for protocols where the root node is Bob’s.
LA

d,ε(f) is the minimum L(π) among all randomized protocols π that compute f with error
ε, and have R(π) ≤ d, and such that the root node of π is (always) Alice’s. LB

d,ε(f) is
defined likewise for randomized protocols where the root node is (always) Bob’s.
CA

d , CB
d , CA

d,ε, CB
d,ε are defined analogously where the communication complexity C(π)

replaces the leaf complexity L(π).
Since the communication transcript of a given run of protocol determines the leaf, it must
follow that:

S. Hirahara, R. Ilango, and B. Loff 31:11

▶ Proposition 7. For any protocol π, log L(π) ≤ C(π).

Chromatic number. All our NP-hardness reductions are from the chromatic number
problem:

▶ Definition 8 (Chromatic number). A coloring of an undirected graph G, is a partition of
the vertices such that no edge has both endpoints in the same part. The chromatic number of
a graph G, denoted χ(G), is the smallest number of parts in a coloring of G.

The NP-hardness of approximating the chromatic number has been established by a series
of results [42, 24, 20], culminating in a paper by Zuckerman [65], where the following was
proven:

▶ Theorem 9 (Hardness For Chromatic Number). For every ϵ > 0, there is a deterministic
polynomial time algorithm that on an input x ∈ {0, 1}∗ outputs a graph G on n vertices such
that

if x is a YES instance of SAT, then χ(G) ≤ nϵ, and
if x is a NO instance of SAT, then χ(G) ≥ n1−ϵ.

3 Warmup: deterministic 3-round protocols, large output alphabet

In this section, we show that it is NP-hard to approximate the deterministic 3-round
communication complexity of a given matrix over a large alphabet.

We start by observing that deterministic 3-round communication complexity may be
approximated by a very simple combinatorial quantity.

▶ Definition 10. Let A, B, Z be finite sets, and let M be an A × B matrix over Z. Let
P = {Pi}i∈[k] be a partition of (the columns) B for some k ∈ N. (That is, ∅ ≠ Pi ⊆ B,⋃

i∈[k] Pi = B and Pi ∩ Pj = ∅ for every i ̸= j.) For a subset P ⊆ B of columns, we denote
by CostM (P) the number of distinct rows of M restricted to columns in P , i.e.,

CostM (P) = |{xP ∈ ZP | x ∈ ZB is a row of M}|.

We further define CostM (P) to be
∑k

i=1 CostM (Pi).

▶ Proposition 11. Let f : A × B → Z be a function and M be the A × B communication
matrix (with entries in Z) that corresponds to f . Let q ∈ N be the maximum number of
distinct values in a single row of M . We then have

L ≤ LB
3 (f) ≤ L · q, where L = min

P
CostM (P),

and where the minimum is taken over all partitions P of B. Furthermore we have that

log L ≤ CB
3 (f) ≤ log L + log q + O(1).

Proof. It may be easily seen that LA
2 (f) is lower-bounded by the number of distinct rows

in the communication matrix of f . Because if Alice’s partition of the rows includes a part
with two different rows, then Bob’s ensuing partition of the columns cannot avoid having
a non-monochromatic column. It then follows that, if we have a 3-round protocol π where
Bob speaks first, and P is Bob’s partition of the columns in the first round, then CostM (P)
is a lower-bound on smallest number of leaves that π needs to use to compute f , and thus
LB

3 (f) ≥ L. The lower-bound on CB
3 (f) now follows from Proposition 7.

CCC 2021

31:12 Hardness of Constant-Round Communication Complexity

Conversely, it is also easy to see that LA
2 (f) is upper-bounded by q times the number of

distinct rows in the communication matrix of f . The protocol that achieves this bound has
Alice tell which kind of row she has, and now in each rectangle the rows are all equal, hence
Bob can just tell Alice the color of his column in this row, of which there are q possibilities.
Thus LB

3 (f) ≤ L · q, and the same protocol shows that CB
3 (f) ≤ log L + log q + O(1). ◀

In general, the approximate factor q of Proposition 11 can be as large as |Z|. However,
in the following construction, we will construct a matrix where each row has at most q = 3
distinct values; in this case, Proposition 11 guarantees that minP CostM (P) provides a
3-factor approximation of L3(M).

▶ Theorem 12. Given an undirected graph G = ([n], E) with n vertices and |E| = m > 0
edges, one may construct in deterministic polynomial time a function fG : [a] × [n] →
{0, 1, . . . , ℓ}, with ℓ = m2n, k =

√
nℓ = mn and a = ℓ + m · k2, such that

χ(G) · ℓ ≤ LB
3 (fG) ≤ χ(G) · 6ℓ.

Furthermore, we also have

log χ(G) + log ℓ ≤ CB
3 (fG) ≤ log χ(G) + log ℓ + O(1).

Proof. We let Aℓ denote the ℓ × 1 column vector,

Aℓ =

1
...
ℓ

 .

We let Bk and Ck denote the k2 × 1 column vectors

Bk =

1
...
1
...
k
...
k

, Ck =

1
...
k
...
1
...
k

,

where each value i ∈ [k] appears k times. Given an edge {v, w} ∈ [n] × [n], with v < w, we
define the k2 × n matrix M so that

M{v,w} =
[

0 . . . 0 Bk 0 . . . 0 Ck 0 . . . 0
]

,

where Bk appears in the v-th column and Ck in the w-th column. Finally, let E = {e1, . . . , em}
denote the edges of G; then we define the a × n communication matrix fG so that

fG =

Aℓ · · · Aℓ

Me1
...

Mem

 ∈ {0, 1, . . . , ℓ}a×n,

S. Hirahara, R. Ilango, and B. Loff 31:13

where a = ℓ + m · k2. Observe that each row of fG has at most q = 3 distinct values;
thus, Proposition 11 provides a 3-factor approximation. We now show the stated inequality,
namely, that

χ(G) · ℓ ≤ LB
3 (fG) ≤ χ(G) · 2qℓ.

The upper-bound is easy to see. Given a coloring of G into χ(G) colors, we may take the
3-round protocol π where Bob first tells Alice which color his vertex has. This partitions
the columns by a partition P = {Pc}c∈[χ(G)] formed of the various color classes of our
coloring. Fix any color c and consider CostfG

(Pc). Since Pc is an independent set of G, the
Ck and Bk columns of each Mei sub-matrix will always be placed in different parts; therefore,
CostfG

(Pc) ≤ ℓ + mk, where the first term counts the number of rows in Aℓ and the second
term counts the number of distinct rows in Mei

restricted to columns of Pc for each i ∈ [m].
Using Proposition 11, we obtain

LB
3 (fG)/q ≤ CostfG

(P) =
∑

c

CostfG
(Pc) ≤ χ(G) · (ℓ + mk) = χ(G) · 2ℓ,

and Proposition 11 also gives us

CB
3 (fG) ≤ log χ(G) + log ℓ + O(1).

For the other direction, let π be any 3-round protocol for fG. The first round of π

partitions the columns of fG, which is to say, it partitions the vertices of G by some partition
P = {Pi}i∈I . We claim that χ(G) · ℓ ≤ CostfG

(P) by analyzing the following two cases.
1. If the partition P does not form a coloring of G, then there must exist an edge {v, w}

such that the v-th column and the w-th column of G are placed in the same part Pi.
This means that the Ck and Bk columns of the M{v,w} sub-matrix are both placed in Pi.
In this case, we have CostfG

(Pi) ≥ k2 ≥ n · ℓ ≥ χ(G) · ℓ, and thus the lower bound holds.
2. Otherwise, suppose that the partition P does form a coloring of G. Then the number of

parts is ≥ χ(G), and so just the contribution from the first ℓ rows gives us CostfG
(P) ≥

χ(G) · ℓ.
The lower-bounds on LB

3 (fG) and CB
3 (fG) then follow from Proposition 11. ◀

The following corollary shows that it is NP-hard to approximate LB
3 (f), for a given total two

player function f : [N] × [N] → [N], with an approximation ratio better than (roughly) N
1
5 .

▶ Corollary 13. For every L ⊆ {0, 1}∗ in NP and every constant ε > 0, there exists a
polynomial-time algorithm that, on input x ∈ {0, 1}∗, outputs a communication matrix
M ∈ [N]N×N such that if x ∈ L then LB

3 (M) ≤ N , and if x /∈ L then LB
3 (M) > N

6
5 −ε.

Proof. We compose the hardness of approximation result for chromatic number in Theorem 9
with the reduction of Theorem 12, padding the communication matrix with all-0 columns to
make it square (since Bob speaks first, this adds at most one leaf), so the communication
matrix of f is an N × N matrix with N = a = Θ(n5). The parameters then come from the
fact that n = Θ(N 1

5). ◀

Using the bounds on CB
3 instead of the bounds on LB

3 from Theorem 12, we conclude that it
is NP-hard to approximate CB

3 (f), for a given total two player function f : [N] × [N] → [N],
with an approximation ratio better than (roughly) 6

5 . More precisely:

▶ Corollary 14. For every L ⊆ {0, 1}∗ in NP and every ε > 0, there exists a polynomial-time
algorithm that, on input x ∈ {0, 1}∗, outputs a communication matrix M ∈ [N]N×N such
that if x ∈ L then CB

3 (M) ≤ log N , and if x /∈ L then CB
3 (M) > (6

5 − ε) log N .

CCC 2021

31:14 Hardness of Constant-Round Communication Complexity

4 Hardness for deterministic 3-round protocols

Building on the proof ideas presented in Section 3, in this section, we prove NP-hardness
of approximating the communication complexity of deterministic 3-round protocols. A key
building block is to use the notion of universal set.

▶ Definition 15 (Universal set). Let r, c, k ∈ N, and let M ∈ {0, 1}r×c be a matrix whose
columns are M (1), . . . , M (c). We say that M is (c, k)-universal if, for every set {y1, . . . , yk} ⊆
[c] of k columns of M , the matrix[

M (y1) . . . M (yk)]
has 2k distinct rows. The set of all the rows of M is called a (c, k)-universal set.

We use the explicit construction of a universal set due to [49].

▶ Lemma 16 (Naor, Schulman and Srinivasan [51]). There exists a deterministic algorithm
that, given c and k ∈ N, outputs a (c, k)-universal matrix M ∈ {0, 1}r×c such that r =
2k+O(log k)2 · log c in time a polynomial in c and 2k.

Now we state the main result of this section.

▶ Theorem 17. Let ϵ > 0 be an arbitrary constant. Given an undirected graph G = ([n], E)
with n vertices and |E| = m > 0 edges, one may construct in deterministic polynomial time
a function fG : [a] × [b] → {0, 1} and a number ℓ ∈ N, with a, b, ℓ = O(n8), such that

χ(G) · ℓ ≤ LB
3 (fG) ≤ χ(G) · ℓ1+ϵ

and

log χ(G) + log ℓ ≤ CB
3 (fG) ≤ log χ(G) + (1 + ϵ) · log ℓ.

The idea of the proof is to build upon the reduction in the proof of Theorem 12, by
replacing each column with entries from [ℓ] with a block of columns that have entries from
{0, 1}. The difficulty in making this work is that a partition of the columns might not respect
our blocks and could place columns from the same block into different parts. We solve this
by thinking as follows. Either the partition is large, meaning it has many parts, so the
protocol also has many leaves, which proves our lower bound, or otherwise for any block Cv

of columns the part Pi which has most columns from Cv has many columns from Cv; we
may then act as if “Cv was placed in Pi”.

Proof. Let t, k, c ∈ N be parameters chosen later. Let A ∈ {0, 1}r×c and M ∈ {0, 1}s×c be
the (c, t)-universal and (c, k)-universal matrices, respectively, that are constructed by the
polynomial-time deterministic algorithm of Lemma 16; then we have r = 2(1+o(1))·t · log c

and s = 2(1+o(1))·k · log c.
Let x1, . . . , xs be the rows of M . We then let B and C denote the s2 × c matrices

B =

x1
...

x1
...

xs

...
xs

, C =

x1
...

xs

...
x1
...

xs

,

S. Hirahara, R. Ilango, and B. Loff 31:15

where a row xi appears s times for each i ∈ [s]. Given an edge {v, w} ∈ [n] × [n], with v < w,
we define the s2 × c · n matrix:

M{v,w} =
[

0 . . . 0 B 0 . . . 0 C 0 . . . 0
]

,

where B appears in the v-th block of c columns and C in the w-th block of c columns.
Finally, let E = {e1, . . . , em} denote the edges of G; then we define the (r + m · s2) × c · n

communication matrix fG so that

fG =

A . . . A

Me1
...

Mem

 ∈ {0, 1}(r+m·s2)×c·n.

Let ℓ := 2t. Let P be a partition of the columns of fG that minimizes CostfG
(P). We

now show that, for a suitable choice of t, k and c,

χ(G) · ℓ ≤ CostfG
(P) ≤ χ(G) · ℓ1+o(1).

This will complete the proof, because Proposition 11 shows that, for a binary matrix fG,
CostfG

(P) is a 2-factor approximation of LB
3 (fG) and log CostfG

(P) is an approximation of
CB

3 (fG) up to an additive O(1) term. We will choose the parameters t, k and c so that the
following conditions are satisfied.
1. Condition 1. r + ms ≤ ℓ1+o(1).
2. Condition 2. c ≥ nℓ · max{t, k}.
3. Condition 3. 22k ≥ nℓ.

Given that Condition 1 is satisfied, the complexity upper-bounds are easy to see. Let P
be a coloring of G that partitions the vertex set into χ(G) parts. Since no class contains an
edge, the C and B sub-matrices of each Mei sub-matrix will always be placed in different
parts, and we thus have

Cost(P) ≤ χ(G) · (r + ms) ≤ χ(G) · ℓ1+o(1).

For the other direction, we will lower-bound Cost(P) for every partition P. To begin, if
the number of parts is |I| ≥ nℓ, then we must conclude that Cost(P) ≥ nℓ ≥ χ(G) · ℓ, as
desired.

Otherwise, |I| ≤ nℓ. Then for every block of columns v ∈ [n] there must exist a part
Pi(v) which contains at least c/|I| ≥ c/nℓ columns from the v-th block. Observe that
c/nℓ ≥ max{t, k} by Condition 2.

Now, either the mapping v 7→ i(v) is a valid coloring of G or not. First, suppose that the
mapping v 7→ i(v) is not a valid coloring of G, meaning that there exists an edge {v, w} ∈ E

such that i = i(v) = i(w). Then the v-th column block and the w-th column block each
have at least max{t, k} columns in the same part Pi. This will mean that the C and B

sub-matrices of the M{v,w} sub-matrix each have at least k columns in Pi. But then, since
M is (c, k)-universal, it follows from Condition 3 that Cost(P) ≥ Cost(Pi) ≥ 22k ≥ nℓ.

Next, suppose that i : [n] → P does form a coloring of G. Then there exist at least
χ(G) parts Pi each receiving at least t columns from some column block, and so, since A is
(c, t)-universal, the contribution from the A columns give us Cost(P) ≥ χ(G) · 2t = χ(G) · ℓ.

CCC 2021

31:16 Hardness of Constant-Round Communication Complexity

This will give us the theorem, and all we are left to do is ensure that the various
conditions can be met: We define t so that ℓ = 2t satisfies that ℓ ≤ (nm2)1+ϵ/2 < 2ℓ. To meet
Condition 3, let k be the smallest integer satisfying that nℓ ≤ 22k. Let c := nℓ · max{t, k} so
that Condition 2 is satisfied. Finally, observe that Condition 1 is satisfied because

r + ms ≤ ℓ1+o(1) · log c + m · 2(1+o(1))·k · log c ≤ ℓ1+o(1) + m(nℓ) 1
2 +o(1) · log c ≤ ℓ1+ϵ,

where the last inequality holds for all large n, m. ◀

We can now prove that LA
3 and CA

3 are hard to approximate, also for Boolean functions.

▶ Theorem 18. For every constant ε > 0, there exists a deterministic quasipolynomial-time
algorithm that, on input x ∈ {0, 1}∗, outputs a communication matrix M ∈ {0, 1}N×N and a
number k ∈ N, with k ≤ N = |x|O(1), such that
1. if x is a YES instance of SAT, then LB

3 (M) ≤ k and CB
3 (M) ≤ log k, and

2. if x is a NO instance of SAT, then LB
3 (M) ≥ N

1
8 −ε · k and CB

3 (M) ≥ log k + (1
8 − ε) log N .

Proof. We combine the two reductions of Theorems 9 and 17, which we invoke with the same
parameter ε. Fix any input x and let G be an n-vertex graph that is produced by the reduction
of Theorem 9 on input x. Let M ∈ {0, 1}a×b be the communication matrix of fG, and
ℓ ∈ N, be given by the reduction of Theorem 17 on input G, and set N = max(a, b) = O(n8),
k = nε · ℓ1+ε. We may assume that a = b without loss of generality, since otherwise we may
pad M with all-0 rows or all-0 columns, and this changes the leaf complexity by at most a
factor of 2, and the communication complexity by at most 1 bit, so this change makes no
difference to the result.

We verify that the inequalities are satisfied for M : If x ∈ L, then we have LB
3 (M) ≤

χ(G) · ℓ1+ϵ ≤ nε · ℓ1+ϵ = k. If x ̸∈ L, then we have LB
3 (M) ≥ χ(G) · ℓ ≥ n1−ϵ · ℓ ≥ N

1
8 −O(ϵ) · k.

Similar inequalities hold for CB
3 (M). Since ε can be arbitrarily small, we may ignore the

constant factors. ◀

5 From 3-rounds to multiple rounds using deterministic round
elimination

In this section we show how we can use an oracle for computing LB
d+1 in order to compute LA

d .
The gadget in our reduction involves a special function, XorEqk, which is a small modification
of the standard Equality function.

▶ Definition 19. The function XorEqk : [k] × ([k] × {0, 1}) → {0, 1} is given by

XorEqk(x; y, z) =
{

z if x ̸= y.

1 − z if x = y.

The key property of XorEqk is that it has a fooling set lower bound that is tight. In
particular, {(x; y, z) : x = y} is a fooling set of cardinality 2k, and there is a 2-round protocol
for solving XorEqk with 2k leaves (where Alice just sends her full input to Bob, and he replies
with the output).

S. Hirahara, R. Ilango, and B. Loff 31:17

▶ Lemma 20 (Fooling set lower-bound for XorEqk). Let π be a protocol for solving the function
f : ([k] × [a]) × ([k] × {0, 1}) → {0, 1} given by f(x0, x1; y, z) = XorEqk(x0; y, z).3 Then

π(x0, x1; y, z) ̸= π(x′
0, x′

1; y′, z′)

if either
y = x0 ̸= x′

0, or
y = x0 = x′

0 and z ̸= z′.

Proof. First, suppose for contradiction that π(x0, x1; y, z) = π(x′
0, x′

1; y′, z′) and y = x0 ̸= x′
0.

Since leaves are combinatorial rectangles, we can infer that π(x′
0, x′

1; y, z) = π(x0, x1; y, z).
But since y = x0 ̸= x′

0, we know that

f(x0, x1; y, z) = 1 − z ̸= z = f(x′
0, x′

1; y, z)

so this contradicts that π(x0, x1; y, z) is a monochromatic leaf.
Similarly, if y = x0 = x′

0 and z ≠ z′, then we have f(x0, x1; y, z) ̸= f(x′
0, x′

1; y′, z′), so
π(x0, x1; y, z) ̸= π(x′

0, x′
1; y′, z′) by monochromaticness. ◀

The main technical portion of our reduction is the following deterministic variant of the
round-elimination lemma.

▶ Lemma 21 (Restatement of Lemma 3). Let d ≥ 3. Let f : [a] × [b] → {0, 1}. Let
F : ([k] × [a]) × ([k] × [b] × {0, 1} × {0, 1}) → {0, 1} be given by

F (x0, x1; y0, y1, z, i) =
{

XorEqk(x0; y0, z) , if i = 0
f(x1; y1) , if i = 1.

Then we have

min{4k, 2k − 2 + LB
d (f)} ≤ LA

d+1(F) ≤ 2k + LB
d (f).

Proof. The upper bound comes from the protocol where Alice skips the first round of
communication, Bob sends i to Alice and begins running the best d-round Bob-first protocol
for XorEqk or f , based on whether i = 0 or i = 1. In particular, we have that

LA
d+1(F) ≤ LB

d (XorEqk) + LB
d (f) ≤ 2k + LB

d (f),

where the last upper bound uses that d ≥ 3.
We now argue the lower bound. Suppose π is a (d + 1)-round Alice-first protocol for F .

Let L = {ℓ1, . . . , ℓL(π)} denote the set of leaves of π.
Our arguments split into two cases depending on whether there is a good input x0 ∈ [k].

We say an input x0 ∈ [k] is good if all of Alice’s inputs that begin with x0 are placed in
a single partition. More formally, let P = {P1, . . . , P|P|} be the partition of Alice’s inputs
corresponding to the first round of π. We say x0 ∈ [k] is good if there exists a q ∈ [|P|] such
that {x0} × [a] ⊆ Pq.

3 In our definition of f , the input x1 does not affect the output of the function. The fact that this lemma
holds even when there is an extraneous input like x1 will be used later.

CCC 2021

31:18 Hardness of Constant-Round Communication Complexity

Case 1: There is a good input. Suppose that there exists a good input x⋆
0 ∈ [k] such that

{x⋆
0} × [a] ⊆ Pq for some q. Let Lx⋆

0
be the set of leaves of π that contain an input where

x0 = x⋆
0, that is,

Lx⋆
0

= {ℓ ∈ L : ∃(x1, y0, y1, z, i) with π(x∗
0, x1; y0, y1, z, i) = ℓ}

and let Lx⋆
0

denote the complementary set of leaves, that is Lx⋆
0

= L \ Lx⋆
0
. We will show

that |Lx⋆
0
| ≥ LB

d (f) and that |Lx⋆
0
| ≥ 2k − 2. As a result, we get that

L(π) ≥ |Lx⋆
0
| + Lx⋆

0
≥ LB

d (f) + 2k − 2,

as desired.
First, we show that |Lx⋆

0
| ≥ LB

d (f). Let π′ be the d-round Bob-first subprotocol of π given
when Alice says that her input is in Pq at the first round. Since {x⋆

0} × [a] ⊆ Pq, it follows
that π′ computes f(x1, y1) on input (x⋆

0, x1; y0, y1, 0, 1) for all x1 ∈ [a] and y1 ∈ [b]. This
yields a d-round Bob-first protocol for computing f , and therefore, the number of leaves in
π′ containing the input x⋆

0 must be at least LB
d (f). Hence, |Lx⋆

0
| ≥ LB

d (f).
Next, we argue that |Lx⋆

0
| ≥ 2k − 2. Consider the set of leaves given by

{π(x0, x1; y0, y1, z, i) : i = 0, x0 = y0 ∈ [k] \ {x⋆
0}, y1 = 1, z ∈ {0, 1}}.

If we consider the restriction of π to the inputs y1 = 1 and i = 0, we can apply Lemma 20 to
conclude that all 2k − 2 leaves in this set are in Lx⋆

0
and are pairwise distinct.

Case 2: No good input. Now we consider the case where there is no good input. For each
x0 ∈ [k], we define a set Ax0 ⊆ [a] of cardinality 2 as follows. Since x0 ∈ [k] is not good,
there exists a pair (x1, x′

1) ∈ [a]2 such that π(x0, x1; y0, y1, z, i) ̸= π(x0, x′
1; y0, y1, z, i) for all

y0, y1, z and i. Let Ax0 = {x1, x′
1}. This completes our definition of Ax0 .

We claim that the 4k inputs in the following set are all in pairwise distinct leaves:

W = {(x0, x1, y0, y1, z, i) : x0 = y0 ∈ [k], i = 0, x1 ∈ Ax0 , y1 = 1, z ∈ {0, 1}}.

To see this, suppose that w ̸= w′ for some w, w′ ∈ W . Let w = (x0, x1; y0, y1, z, i) and
w′ = (x′

0, x′
1; y′

0, y′
1, z′, i′). We prove π(w) ̸= π(w′) by considering the following three cases.

1. If x0 = x′
0 and x1 ̸= x′

1, then we know that {x1, x′
1} = Ax0 . By the construction of Ax0 ,

we can conclude that π(w) ̸= π(w′).
2. If x0 = x′

0 and x1 = x′
1, then we must have x0 = y0 = x′

0 and z ̸= z′ since w ̸= w′; using
Lemma 20, we conclude that π(w) ̸= π(w′).

3. Lastly, suppose that x0 ̸= x′
0. If we consider the restriction of π to the inputs y1 = 1 and

i = 0, we can apply Lemma 20 to conclude that π(w) ̸= π(w′). ◀

Using this lower bound, we show one can approximately compute round-d complexity
given an oracle that approximately computes round-(d + 1) complexity. We consider the
following notion of approximation.

▶ Definition 22. For every constant ϵ > 0, we say that an oracle O is a (1+ϵ)-approximation
of a function L(·) if there exists a constant c such that, for all g in the domain of L(·),

L(g) ≤ O(g) ≤ (1 + ϵ) · L(g) + c.

▶ Corollary 23. Let 0 < ϵ < 1
8 . Given an oracle computing a (1 + ϵ)-approximation of

LA
d+1(·) and a function f : [a] × [b] → {0, 1}, one can deterministically compute a (1 + 4ϵ)-

approximation of LB
d (f) in time (ab)O(1)

S. Hirahara, R. Ilango, and B. Loff 31:19

Proof. First, we give the reduction algorithm and then we prove its correctness. Suppose O
is an oracle that computes an approximation of LA

d+1(·) satisifying, for all functions g,

LA
d+1(g) ≤ O(g) ≤ (1 + ϵ)LA

d+1(g) + O(1).

For a positive integer k, let Fk : ([k] × [a]) × ([k] × [b] × {0, 1} × {0, 1}) → {0, 1} be given by

Fk(x0, x1; y0, y1, z, i) =
{

XorEqk(x0; y0, z) , if i = 0
f(x1; y1) , if i = 1.

The reduction computes

v := max{O(Fk) − 2(1 + ϵ)k : k ∈ [ab]},

and outputs v′ := (v + 2)/(1 − 2ϵ). It is easy to see that this reduction runs in time (ab)O(1).
To prove the correctness of the reduction, we claim that

LB
d (f) ≤ v′ ≤ (1 + 4ϵ) · LB

d (f) + O(1)

for all functions f .
From Lemma 21, we know that for all k

O(Fk) − 2(1 + ϵ)k ≤ (1 + ϵ)LA
d+1(Fk) − 2(1 + ϵ)k + O(1) ≤ (1 + ϵ)LB

d (f) + O(1)

so we have that

v′ = v + 2
1 − 2ϵ

≤ 1 + ϵ

1 − 2ϵ
· LB

d (f) + O(1) ≤ (1 + 4ϵ) · LB
d (f) + O(1),

where the last inequality holds because ϵ < 1/8.
On the other hand, if k = LB

d (f), we have from Lemma 21 that

O(Fk) − 2(1 + ϵ)k ≥ LA
d+1(Fk) − 2(1 + ϵ)k

≥ min{4k, 2k − 2 + LB
d (f)} − 2(1 + ϵ)k

= min{4LB
d (f), 3LB

d (f) − 2} − 2(1 + ϵ)LB
d (f)

= 3LB
d (f) − 2 − 2(1 + ϵ)LB

d (f)
≥ (1 − 2ϵ)LB

d (Fk) − 2.

Since k = LB
d (f) ≤ ab, we conclude that v′ = (v + 2)/(1 − 2ϵ) ≥ LB

d (Fk). ◀

Combining Corollary 23 with the hardness result for the d = 3 case in Theorem 18, we
get that computing Ld is NP-hard (under a polynomial-time truth-table reduction).

▶ Corollary 24. For any integer d ≥ 3, there exists an ϵ > 0 such that given access to an
oracle that computes a (1 + ϵ)-approximation of LA

d , one can compute any language in NP in
polynomial time.

6 Hardness for randomized 3-round protocols

In this section we prove that it is NP-hard to distinguish whether a function having short
deterministic 3-round communication protocols, from a function needs long randomized
3-round protocols with a small error.

CCC 2021

31:20 Hardness of Constant-Round Communication Complexity

▶ Definition 25. The (normalized) Hamming distance of two strings m1, m2 ∈ {0, 1}c,
denoted ∆(m1, m2) is the fraction of bit-positions where m1 and m2 differ.

▶ Definition 26. Let r, c ∈ N, and let M ∈ {0, 1}r×c be a matrix whose columns are
M (1), . . . , M (c). Then M is called a (t, k, ε)-gadget if for every set S = {s1, . . . , st} ⊆ [c] of
t (distinct) columns of M , the matrix

MS =
[
M (s1) . . . M (st)]

has at least k rows which are pairwise ε-far in Hamming distance. Meaning, there are k rows
m1, . . . , mk ∈ {0, 1}t of MS such that ∆(mi, mj) ≥ ε for all i, j ∈ [k], i ̸= j.

▶ Lemma 27. Let 10 log r ≤ c ≪ 2 r
10 ; then a uniformly random matrix M ∈ {0, 1}r×c is a

(10 log r, 2
3 r, 1/10)-gadget.

Proof. The proof is a standard use of the probabilistic method [13], but let us check the
parameters. We choose each entry of M uniformly at random, and we wish to prove that
M is a (t, k, 1/10)-gadget with high probability. Fix any set S of t = 10 log r columns –
there are

(
c
t

)
many such sets. Imagine we choose r rows sequentially, uniformly at random.

Whenever we pick a new row, we call “good” row if it is 1
10 -far, in Hamming distance, of

any of the previously picked rows. If this does not hold, we call the row “bad”. We wish to
upper-bound the probability of seeing fewer than k = 2

3 r good rows. Notice that the number
of t-bit strings in the 1

10 -Hamming-ball around the rows we have seen so far, is less than

p = r

(
t

≤ t/10

)
2 t

10 ≤ r · 2(H2(1
10)+ 1

10)·t ≤ r · 20.57·t ≤ r7,

where H2(p) is the binary entropy function. So the probability of seeing another bad row is
less than p · 2−t ≤ r−3. Hence, the probability of seeing more than r

3 bad rows, is less than
(r−3) r

3 = r−r. It then follows by a union bound that M will fail to be a (t, k, 1
10)-gadget,

with probability no greater than(
c

t

)
r−r

which is close to 0 provided that c ≪ 2 r
10 . ◀

We now make the observation that it is possible for a constant-depth to decide, in an
approximate sense, whether a given matrix is a good enough gadget. Since there exists an
explicit pseudorandom generator for AC0 with polylog seed length [52], a good gadget can
be found in deterministic quasi-polynomial time.

▶ Corollary 28. Let 10 log r ≤ c ≪ 2 r
11 . One can obtain a matrix M ∈ {0, 1}r×c which is a

(10 log r, 2
3 r, 1/10)-gadget, via a deterministic algorithm running in time 2polylog(r·c).

Proof. We will show that there exists a constant-depth circuit C of size quasipolynomial in r

and c, having r×c inputs, with the property that every matrix M ∈ {0, 1}r×c with C(M) = 1
is a (10 log r, 2

3 r, 1/10)-gadget, and such that Pr[C(M) = 1] = 1 − o(1). Corollary 28 follows
because there exists an explicit pseudorandom generator G = {Grc : {0, 1}(log rc)O(1) →
{0, 1}r×c}r,c∈N for AC0 [52].

The circuit checks that every set S of t = 10 log r columns has at least 2
3 r good rows, in

the same sense as described in the proof of Lemma 27. This is strong enough to ensure that
the input is a (t, k, 1

10)-gadget, and it suffices to present a quasipolynomial-size circuit to
check this property, since the number of such sets S is itself quasipolynomial.

S. Hirahara, R. Ilango, and B. Loff 31:21

We cannot check this property exactly, but we can check this property approximately.
Using approximate counting [2, 3], a polynomial-size constant-depth circuit D may, given
two strings x, y ∈ {0, 1}t, give us D(x, y) = 1 if ∆(x, y) ≥ 1

10 + ε, and D(x, y) = 0 if
∆(x, y) ≤ 1

10 , where ε > 0 can be chosen to be any arbitrarily small constant. A row xi will
be called good if D(xi, xj) = 1 for all previous rows xj with j < i. Again using approximate
counting, and letting MS denote the sub-matrix of M restricted to the columns in S, we
may construct a circuit TS with TS(M) = 1 if at least (2

3 + ε)r of the rows of MS are good,
and with TS(M) = 0 if fewer than 2

3 r of the rows of MS are good. The extra ε will still
allow for the previous probability bounds to hold, and if TS(M) = 1 for all S, then M is a
(t, k, 1

10)-gadget. ◀

We now show that a simple lower bound on two round communication complexity.

▶ Lemma 29. If M ∈ {0, 1}r×c is a matrix containing r rows x1, . . . , xr ∈ {0, 1}c, all pairs
of which are ε-far in Hamming distance, then for δ = ε

8

LA
2,δ(M) ≥ 1

2r,

and the hard distribution witnessing this is uniform over the rows and columns of M .

Proof. Let us take an arbitrary matrix M ∈ {0, 1}r×c, and think about its LB
1 -complexity.

We first observe that the LB
1 -protocol for M which has the smallest possible error is the

single-bit protocol where Bob sends the majority of his column to Alice, meaning, he sends 1
if and only if half or more of the entries in his column are 1. Hence, the smallest error which
a deterministic LB

1 -protocol can make when computing M under the uniform distribution is
precisely the error of this smallest-error protocol, which is

Err(M) = min
z∈{0,1}c

1
r

r∑
i=1

∆(xi, z).

Indeed, the z giving the minimum is the column-wise majority of M .
Now, suppose ∆(xi, xj) ≥ ε for all i, j ∈ [r], i ̸= j. If we have an LA

2 -protocol π for M

which partitions the rows of F into fewer than r
2 parts, then there must exist r

2 rows of M

which get placed in a part that contains at least one other row of M . If we have a part
which has p rows placed together, then by the triangle inequality this means that, for any
z ∈ {0, 1}c, we must have ∆(xi, z) ≥ ε

2 for at least p − 1 values of i (if z is ε
2 -close to one of

the xi, it must be ε
2 -far from all other xi in the same part, since they are pairwise distant).

Hence if M ′ is any part of M in the partition, having more than one row, we have

Err(M ′) ≥ p − 1
p

ε

2 ≥ ε

4

But since 1/2 of the rows get placed together with other rows, the total error incurred by π

on M is at least ε
8 . ◀

We now show the following hardness result.

▶ Theorem 30. Let 0 < δ < 1 be given. Given an undirected graph G = ([n], E) with n

vertices and |E| = m > 0 edges, one may construct in deterministic quasipolynomial time a
function fG : [a] × [b] → {0, 1} and a number ℓ ∈ N, with a, b, ℓ = O(n27), such that

LB
3,n−δ (fG) = Ω(n δ

16 −1 · χ(G) · ℓ),
CB

3,n−δ (fG) ≥ δ
16 log n + log χ(G) − log n + log ℓ − O(1),

LB
3 (fG) = O(χ(G) · ℓ), and

CB
3 (fG) = log χ(G) + log ℓ + O(1).

CCC 2021

31:22 Hardness of Constant-Round Communication Complexity

Proof. The construction is the same as in Theorem 17, but where use (t, k, ε)-gadgets instead
of universal sets, and Lemma 29 instead of Proposition 11. The function fG is defined exactly
as in the proof of Theorem 17, but we use the gadgets from Corollary 28, namely, we set
ℓ = m4n4 and c = n2ℓ2, and we choose A ∈ {0, 1}r×c to be an (O(log r), 2

3 r, 1/10)-gadget,
and we choose B, C ∈ {0, 1}s×c to be an (O(log s), 2

3 s, 1/10), where r = ℓ = m4n4 and
s = m3n3. This choice obeys the two conditions:
1. Condition 1. r + ms = O(ℓ).
2. Condition 2.

√
c/2 ≥ n · ℓ.

The upper-bound is given by the same protocol as in the proof of Theorem 17, where
Condition 1 gives us improved parameters. We are left to prove the lower-bound. This is
proven via Yao’s principle. The hard distribution µ for fG is chosen as follows:

With probability 1/2 we will let the input (x, y) be a uniformly chosen row x among
the first r rows, and a uniformly chosen column. I.e. a uniform entry of the [A . . . A]
sub-matrix of fG.
And with probability 1/2 we choose an edge {v, w} uniformly at random from the edges
of G, and then choose a uniform entry among the B and C sub-matrices of the M{u,v}
sub-matrix of fG.

Now suppose we are given a deterministic LB
3 -protocol π with L leaves, which computes

fG with error ≤ n−δ under the distribution µ. We will then show that one of two things must
happen: either (1) π has L ≫ nℓ leaves, or (2) π gives us a coloring of G with ≤ 3

ℓ n1− 1
16 δL

colors. In both cases it must follow that L = Ω(n δ
16 −1 · χ(G) · ℓ).

Indeed, we will show that either (1) π has L ≫ nℓ leaves, or (2’) π gives us a coloring of
a graph G′, which has ≤ 1

ℓ L colors, where G′ is obtained from G by removing ≤ n− 1
8 δ|E|

edges. We will then make use of the following:

▷ Claim 31. If G′ is obtained from G by removing ≤ n−δ · |E| edges, then any coloring of
G′ with C colors will induce a coloring of G with 3n1− δ

2 C colors.

Proof. Let N = n−δ/2 · n. Split the vertices of G into two sets: V1 contains those vertices of
G where we have removed ≥ N edges, and V2 contains the remaining vertices. We have that
|V1| ≤ 2N , otherwise too many edges would have been removed.

So let α′ : [n] → [C] be a C-coloring of G′. We then construct a coloring α : [n] →
[2N + C · (N + 1)], as follows. We first color each vertex of V1 by its own color. Then
we greedily color each vertex v ∈ V2 by a color α(v) = (α′(v), β(v)), such that the second
coordinate β(v) ∈ [N + 1] does not appear as the second coordinate of any neighbours w ∈ V2
of v which we have already colored. There will always exist such a β because the number of
new neighbors of v, when going from G′ to G, is ≤ N . This is a coloring of G with ≤ 3C · N

colors, as promised. ◁

Now, look at the marginal distribution of µ over the columns of fG. Then each block of
columns of fG corresponding to a vertex v gets probability mass exactly:

1
2n

+ 1
2

deg(v)
2|E|

. (∗)

Let us now remove high-error columns, as follows. We first remove from fG all column blocks
v where the error probability of π, conditioned on Bob’s input being a column of v, is greater
than n−δ/2. Since the error probability of π is ≤ n−δ, then by Markov’s inequality, the total
probability mass removed in this way is less than n−δ/2. By (∗), removing all such vertices v

from G will remove fewer than n−δ/2 · 4|E| ≤ 4n−δ/2n edges in total.

S. Hirahara, R. Ilango, and B. Loff 31:23

Now we do similarly inside each block. For each surviving column block v we know that
the error probability inside it (i.e. conditioned on getting a column inside the block) is
≤ n−δ/2. Let us then remove every column y where the error probability of π, conditioned
on Bob’s input being y, is greater than 2n−δ/2. Notice that, within each block, every column
gets the same probability. Hence, again by Markov’s inequality, by removing these high-error
y we have removed fewer than 1

2 c columns from each block. We are left with a sub-matrix of
fG where, in each column, π has error probability less than n−δ/4, and where each surviving
column block v has ≥ 1

2 c columns.
We now remove some further columns, which we will call leftover columns. To begin,

we remove enough columns from each surviving block so that there are exactly 1
2 c columns

in each block. We do this so we don’t have to think about having a different number of
surviving columns among different blocks.

Now let P = {P1, . . . , P|P|} be the partition of the surviving columns of fG which is
induced by the first round of π. If |P| ≥

√
c/2 ≫ nℓ (by Condition 2), then we have

established (1). Otherwise, we must show (2’). If |P| ≤
√

c/2, then for each column block v

there exists a part Pi(v) of P having at least
√

c/2 columns from the v-th block. Let us then
remove from Pi(v) more columns from the v-th block, so that, for every surviving v, Pi(v)
always contains exactly

√
c/2 columns from the v-th block.

We then consider the partition P ′ containing exactly the parts Pi(v) for surviving v,
but without any of the columns we have removed thus far, namely, without the high-error
columns and without the leftover columns. Let f ′

G equal to fG, but restricted to the surviving
columns. Since the error probability of π was ≤ 2n−δ/2 on every surviving column, then π

will still have error probability ≤ 2n−δ/2 on f ′
G.

We now remove high-error rows. We first remove each row-block M{v,w} such that the
error of π on M{v,w} is greater than 2n−δ/4. Again by Markov’s inequality, in doing so we
remove ≤ n−δ/4|E| more edges.

Now let E′ be the set of surviving edges {v, w} such that i(v) = i(w) (i.e. E′ contains
the low-error edges which violate the coloring constraint). Fix any edge {v, w} ∈ E′, and
let L be the number of leaves in the 2-round sub-protocol inside part Pi(v) = Pi(w). If
L ≥ 1

2 s2 = Ω(nℓ), we then have proven that π has Ω(nℓ) leaves, and we are done; otherwise,
suppose L < 1

2 s2 leaves. Now notice that, by the gadget property, the surviving columns of
the B and C sub-matrices of any such block each have 2

3 s rows which are pairwise 1
10 -distant

in Hamming distance; hence the sub-matrix [BC] within M{u,v} containing the surviving
columns, must have at least (2

3 s)2 rows which are 1
20 -distant in Hamming distance. It then

follows from Lemma 29 that the probability of error within M{u,v} is ≥ 1/20
8 = 1

160 . And
this would happen for every edge {u, v} ∈ E′.

It then follows that E′ is small. Indeed, if we had |E′| > n−δ/8 · |E|, then the total error
of π on the surviving sub-matrix would be ≥ Ω(n−δ/8), and since this sub-matrix has Ω(1) of
the total mass of the original matrix, this would contradict π’s claimed overall error bound.
So we are forced to conclude that |E′| ≤ n−δ/8 · |E|.

We may then remove all the sub-matrices M{v,w} corresponding to edges {v, w} ∈ E′.
It then follows that the partition P ′ is a coloring of the resulting sub-graph G′. Hence
|P ′| ≥ χ(G′), which by Claim 31 means |P ′| ≥ n

δ
16 −1χ(G). Now, within each part Pi of

P ′, the corresponding A sub-matrix still needs to be solved by an LA
2 -protocol with error

≤ 2n−δ/4, which can only be done with ℓ leaves, again by Lemma 29. Hence the total number
of leaves is Ω(n δ

16 −1χ(G)ℓ). ◀

CCC 2021

31:24 Hardness of Constant-Round Communication Complexity

We can then improve upon Theorem 18, and prove that it is NP-hard, under quasipolynomial-
time reductions, to distinguish whether a given communication matrix has small deterministic
communication complexity, versus large low-error randomized communication complexity. In
the next section, we will show that a small improvement of the parameters of the following
corollary4 would be enough to show strong hardness-of-approximation for any number of
rounds.

▶ Corollary 32. There exist positive constants γ and δ such that the following holds. There
exists a deterministic quasipolynomial-time algorithm that, on input x ∈ {0, 1}∗, outputs a
communication matrix M ∈ {0, 1}N×N and a number k ∈ N, with k ≤ N = |x|O(1), such that
1. if x is a YES instance of SAT, then LB

3 (M) ≤ O(k) and CB
3 (M) ≤ log k + O(1), and

2. if x is a NO instance of SAT, then LB
3,N−δ (M) ≥ Ω(Nγ · k) and CB

3,N−δ (M) ≥ log k + γ ·
log N − O(1).

Proof. We will choose δ3 = δ > 0 to be a sufficiently small constant. We combine the two
reductions of Theorems 9 and 30, which we invoke with parameter ε = δ/64. Fix any input
x and let G be an n-vertex graph that is produced by the reduction of Theorem 9 on input
x. We have n = |x|O(1) since the reduction of Theorem 9 is polytime. Let M ∈ {0, 1}a×b be
the communication matrix of fG, and ℓ ∈ N, be given by the reduction of Theorem 17 on
input G, and set N = max(a, b) = O(n27), k = nε · ℓ. We may assume that a = b without
loss of generality, since otherwise we may pad M with all-0 rows or all-0 columns, and this
changes the leaf complexity by at most a factor of 2, and the communication complexity by
at most 1 bit, while leaving the error parameter intact.

We verify that the inequalities are satisfied for M : If x ∈ L, then we have LB
3 (M) =

O(χ(G) · ℓ) = O(k). If x ̸∈ L, then we have

LB
3,n−δ (M) = Ω(n δ

16 −1χ(G) · ℓ)

= Ω(n δ
16 −ε · ℓ)

= Ω(n δ
16 −2ε · k)

= Ω(n δ
32 · k)

= Ω(N
δ

32×27 · k)

Similar inequalities hold for CB
3 (M). So we set γ = δ

32×27 . ◀

7 From 3-rounds to multiple rounds using round elimination

We would now like to prove that constant-round communication complexity is NP-hard, for
any number of rounds. However, the result we proved in Corollary 32 is not enough. We
conjecture that the parameters in that result can be improved, as follows

▶ Conjecture 33. For any constant C ≥ 1, there exist positive constants γ, δ ∈ (0, 1] with
γ ≥ C · δ such that the following holds. There exists a deterministic quasipolynomial-time
algorithm that, on input x ∈ {0, 1}∗, outputs a communication matrix M ∈ {0, 1}N×N and a
number k ∈ N, with k ≤ N = |x|O(1), such that
1. if x is a YES instance of SAT, then LB

3 (M) ≤ O(k) and CB
3 (M) ≤ log k + O(1), and

2. if x is a NO instance of SAT, then LB
3,N−δ (M) ≥ Ω(Nγ · k) and CB

3,N−δ (M) ≥ log k + γ ·
log N − O(1).

4 As we will see, it would be enough if γ could be made arbitrarily larger than δ.

S. Hirahara, R. Ilango, and B. Loff 31:25

Let us devise notation that will help us better understand the difference. We may now
define the following problems:

▶ Definition 34. In the problem MPLA(d, ε, ϕ, N), defined for each natural number d ≥ 3,
all ε ∈ [0, 1], ϕ ≥ 1, and N ∈ N, we are given as input an N × N Boolean matrix M , and a
natural number 1 ≤ k ≤ N , with the promise that

either LA
d (M) ≤ k,

or LA
d,ε(M) ≥ ϕ · k

and we wish to decide which is the case. We define MPLB in the same way.
In the problem MPCA(d, ε, ϕ, K, N), defined for each natural number d ≥ 3, all ε, ϕ ∈ [0, 1],

and all K, N ∈ N, we are given as input an N × N Boolean matrix M , and a natural number
1 ≤ k ≤ K, with the promise that

either LA
d (M) ≤ k,

or LA
d,ε(M) ≥ k + ϕ · K

and we wish to decide which is the case. We define MPCB analogously.

Then Corollary 32 and Conjecture 33 tell us that these approximation problems are NP-
hard, for different parameters. In this notation we may restate Corollary 32 and Conjecture 33
as follows:

(Corollary 32) There exist positive constants γ and δ such that MPLA(3, N−δ, Nγ , N)
and MPCA(3, N−δ, γ, log N, N) are NP-hard under deterministic quasipolynomial-time
many-one reductions.
(Conjecture 33) For any constant C ≥ 1, there exist positive constants γ, δ ∈ (0, 1] with
γ ≥ C · δ such that, MPLA(3, N−δ, Nγ , N) and MPCA(3, N−δ, γ, log N, N) are NP-hard
under deterministic quasipolynomial-time many-one reductions.

In the rest of this section, we will use Conjecture 33 and the round elimination lemma to
prove that quasipolynomial-time algorithms for computing constant-round communication
complexity would place all of NP in subexponential time.

We begin by recalling the round-elimination lemma, which was originally proven by
Miltersen, Nisan, Safra, and Wigderson [46] and later improved and simplified by Sen and
Venkatesh [62], using an information-theoretic argument. Sen and Venkatesh’s proof is
already information-theoretic in flavor, but it can be made significantly shorter by using a
nowadays-standard combination of the chain rule and Pinsker’s inequality (see [15, 58]). We
include this shortened proof here, on the one hand so that we can confirm that it works for
leaf complexity, and not just communication complexity, and on the other hand so we can
extract the exact parameters.

▶ Theorem 35 (Round Elimination Lemma [46, 62]). Let 3 ≤ d ∈ N and let α > 0. Given a
Boolean function f : [a] × [b] → {0, 1} and a parameter β > 0, we may construct a Boolean
function F : [a]m × ([m] × [b]) → {0, 1}, with m = 1

4β2 (⌈log min(a, b)⌉ + 1), such that

LA
d+1(F) ≤ m · LB

d (f), LA
d+1,α(F) ≤ m · LB

d,α(f), LB
d,α(f) ≤ LA

d+1,α−β(F),

and also

CA
d+1(F) ≤ CB

d (f)+⌈log m⌉ CA
d+1,α(F) ≤ CB

d,α(f)+⌈log m⌉ CB
d,α(f) ≤ CA

d+1,α−β(F).

Proof. We define F (x1, . . . , xm; i, y) = f(xi; y). Meaning, Alice is given m Alice-side inputs
x1, . . . , xm ∈ [a] for f , and Bob is given an index i ∈ [m] and a Bob-side input y ∈ [b] for f ,
and they wish to compute f(xi; y).

CCC 2021

31:26 Hardness of Constant-Round Communication Complexity

The upper-bounds on LA
d+1 and CA

d+1 are simple to see. Indeed, a d + 1 round protocol
where Alice begins to speak may have Alice send nothing in her first round, after which Bob
sends i to Alice and then the players may compute f(x; yi) by executing a d-round protocol
for f . This works whether or not the protocol for f is randomized.

Now to prove the lower-bounds on LA
d+1 and CA

d+1. To prove the lower-bound on the leaf
complexity, we may assume that LA

d+1,α−β(F) ≤ 2 min(a, b), and to prove the lower-bound
on the communication complexity, we may assume that CA

d+1,α−β(F) ≤ ⌈log min(a, b)⌉ + 1,
since otherwise the respective inequalities are trivial. Let µ be the hard distribution for f .
Construct a distribution µ′ for F by choosing i ∈ [m] uniformly at random, sampling (xi, y)
according to µ, and then sampling each xj with j ̸= i from the x-marginal of µ. Now suppose
we are given a deterministic Alice-first (d+1)-round protocol π′ for F with L(π′) ≤ 2 min(a, b)
leaves and communication complexity C(π′) ≤ ⌈log min(a, b)⌉ + 1, and which makes α − β

error (or less) when the input is sampled according to µ′, and let us construct a deterministic
Bob-first d-round protocol π for f having L(π) ≤ L(π′) leaves and communication complexity
C(π) ≤ C(π′), which makes α error when the input is sampled according to µ.

Let (x1, . . . , xm; i, y) denote random variables sampled according to the distribution µ′,
and let t = t(x1, . . . , xm) be the message sent in the first round of π′. Let T denote either
log L(π′) or C(π′), so that T ≤ ⌈log min(a, b)⌉ + 1. We then have, by the chain rule,

T ≥ H(t) ≥ I(x1, . . . , xm : t) =
m∑

i=1
I(xi : t | x<i) = m · I(xi : t | i, x<i)

Hence there exists a setting i = i such that

I(xi : t | i = i, x<i) ≤ 1
m

T ≤ 2β2.

Let us then fix some setting x<i = x<i which attains the above bound, so that

I(xi : t | i = i, x<i = x<i) ≤ 2β2

By Pinsker’s inequality, this implies that the average, over choices t for t, statistical distance
between xi and xi conditioned on t = t, is at most β. On the other hand, the average error
(of π on µ′) over choices of t for t is at most α − β. By linearity of expectation, the average
sum of the error plus statistical distance is at most α. Let us then fix a choice t for t where
this sum is at most α.

We may then consider the Bob-first d-round protocol π̃ that executes the last d-rounds of
π, for the case when the first message of π is t, where x<i has been fixed to x<i, and each
coordinate of x>i is chosen at random from the x-marginal of µ. Such a protocol will incur a
total error ≤ α, and has fewer leaves ans smaller communication complexity than π′. ◀

The round-elimination lemma can be used to reduce the computation of complexity on d

rounds to the computation of complexity on d + 1 rounds, as follows.

▶ Corollary 36. We may reduce MPLA(d, ε, ϕ, N) to MPLA(d + 1, ε
2 , ϕ

m , Nm), and we may
reduce MPCA(d, ε, ϕ, K, N) to MPCA(d + 1, ε

2 , ϕ − 2 log m
K , K + log m, Nm), where m =

32ε−2 log N , by a many-one reduction computable in time NO(m).

Proof. The reduction is given an N × N communication matrix M , which corresponds
to a Boolean function f : [N] × [N] → {0, 1}, and a number k ≤ N . Let F given by
Theorem 35, with parameters m = 32ε−2 log N , α = ε and β = ε

2 . Then the output is a
matrix M ′ ∈ {0, 1}N ′×N ′ where N ′ ≤ Nm, obtained from the communication matrix of F

padded with extra 0-columns to make it into a square matrix.

S. Hirahara, R. Ilango, and B. Loff 31:27

Then if LA
d (M) ≤ k, we will also have LA

d+1(M ′) ≤ mk. On the other hand, if LA
d,α(M) =

LA
d,ε(M) ≥ ϕ · k, then LA

d+1, ε
2
(M ′) = LA

d+1,α−β ≥ LA
d,ε(M) ≥ ϕ · k = ϕ

m · mk.
Furthermore if CA

d (M) ≤ k, we will also have CA
d+1(M ′) ≤ k + log m. On the other hand,

if CA
d,α(M) = CA

d,ε(M) ≥ k + ϕ · K, then CA
d+1, ε

2
(M ′) = CA

d+1,α−β ≥ CA
d,ε(M) ≥ k + ϕ · K, and

k + ϕ · K = k + log m +
(

ϕ − (1 + ϕ) log m

K + log m

)
· (K + log m)

≥ k + log m +
(

ϕ − 2 log m

K

)
· (K + log m). ◀

We can now show that if communication complexity CA (and not just leaf complexity
LA) can be computed in quasipolynomial time and Conjecture 33 holds, then all of NP can
be solved in subexponential time, i.e., time 2nε , for any choice ε > 0. A similar result can be
proven for leaf complexity, with better hardness-of-approximation than what is obtained in
Section 5, but we will omit the proof here, because it is very similar, and we already have
the results of Section 5. If the error parameter in Conjecture 33 can be made into a constant,
instead of N−δ, then the same proof will give us quasipolynomial NP-hardness instead of
subexponential. We also omit this proof.

▶ Theorem 37. If Conjecture 33 holds and CA can be computed in quasipolynomial time,
then all of NP can be computed in subexponential time.

Proof. Conjecture 33 says that a SAT instance of size n reduces to MPCA(3, N−δ, γ, log N, N)
with N = nO(1), for any choice of γ, δ, where δ can be chosen to be arbitrarily small, and γ

can be chosen to be as many times higher than δ as needed. We may now apply Corollary 36
repeatedly. We are only aiming for rough parameters, and so for simplicity, in the first
application, we replace log N factors with N δ, and in all applications, we replace the 32 factor
with N δ, as well. We can do this because N δ ≫ log N , and MPCA(d, ε, ϕ, K, N) reduces to
MPCA(d, ε, ϕ′, K, N ′) whenever ϕ′ ≤ ϕ and N ′ ≥ N .

We then find that MPCA(3, N−δ, γ, log N, N) reduces to

MPCA(4,
1
2N−δ, γ − 8δ, (1 + 4δ) log N, 2N5δ

),

which reduces to

MPCA(5, 2−2 · N−δ, γ − 16δ, 2N13δ

),

etc, which reduces to

MPCA(d, C1 · N−δ, γ − C2δ, (1 + C3δ) log N, 2NC4δ

)

for some positive constants C1, C2, C3, C4 that depend only on df . This problem in turn
reduces to computing CA(f) exactly, on instances f : [N ′] × [N ′] → {0, 1}, for N ′ = 2NC4δ .
Now suppose we could compute CA(f) exactly in time quasipolynomial in N ′ = 2NC4δ , i.e.,
in time 2NO(C4δ) . Then by choosing δ to be sufficiently small, given that N = nO(1), we could
then solve SAT in time 2nε , for any ε > 0 of our choosing. ◀

References
1 Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. ACM

Transactions on Computation Theory, 1(1):2, 2009.
2 Miklós Ajtai. Σ1

1-formulae on finite structures. Annals of pure and applied logic, 24(1):1–48,
1983.

CCC 2021

31:28 Hardness of Constant-Round Communication Complexity

3 Miklós Ajtai and Michael Ben-Or. A Theorem on Probabilistic Constant Depth Computations.
In Proceedings of the Symposium on Theory of Computing (STOC), pages 471–474, 1984.

4 Eric Allender. The new complexity landscape around circuit minimization. In Alberto Leporati,
Carlos Martín-Vide, Dana Shapira, and Claudio Zandron, editors, Language and Automata
Theory and Applications (LATA), volume 12038 of Lecture Notes in Computer Science, pages
3–16. Springer, 2020.

5 Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. In International
Symposium on Mathematical Foundations of Computer Science (MFCS), pages 25–32, 2014.

6 Eric Allender, Joshua A. Grochow, Dieter van Melkebeek, Cristopher Moore, and Andrew
Morgan. Minimum circuit size, graph isomorphism, and related problems. SIAM Journal on
Computing, 47(4):1339–1372, 2018.

7 Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks. Minimizing
disjunctive normal form formulas and AC0 circuits given a truth table. SIAM Journal on
Computing, 38(1):63–84, 2008.

8 Eric Allender and Shuichi Hirahara. New insights on the (non-)hardness of circuit minimization
and related problems. In International Symposium on Mathematical Foundations of Computer
Science (MFCS), pages 54:1–54:14, 2017.

9 Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum oracle circuit size
problem. Computational Complexity, 26(2):469–496, 2017.

10 Eric Allender, Rahul Ilango, and Neekon Vafa. The non-hardness of approximating circuit
size. In International Computer Science Symposium in Russia (CSR), pages 13–24, 2019.

11 Eric Allender and Michal Kouckỳ. Amplifying lower bounds by means of self-reducibility.
Journal of the ACM, 57(3):1–36, 2010.

12 Eric Allender, Michal Kouckỳ, Detlef Ronneburger, and Sambuddha Roy. The pervasive reach
of resource-bounded Kolmogorov complexity in computational complexity theory. Journal of
Computer and System Sciences, 77(1):14–40, 2011.

13 Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2016.
14 Theodore Baker, John Gill, and Robert Solovay. Relativizations of the p=?np question. SIAM

Journal on computing, 4(4):431–442, 1975.
15 Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive

communication. SIAM Journal on Computing, 42(3):1327–1363, 2013.
16 Avrim L. Blum and Ronald L. Rivest. Training a 3-node neural network is np-complete. Neural

Networks, 5(1):117–127, 1992.
17 Joan Boyar, Philip Matthews, and René Peralta. On the shortest linear straight-line program

for computing linear forms. In International Symposium on Mathematical Foundations of
Computer Science (MFCS), pages 168–179, 2008.

18 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning algorithms from natural proofs. In Conference on Computational Complexity (CCC),
pages 10:1–10:24, 2016.

19 Sebastian Lukas Arne Czort. The complexity of minimizing disjunctive normal form formulas.
Master’s thesis, University of Aarhus, 1999.

20 Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. Journal of Computer
and System Sciences, 57(2):187–199, 1998.

21 Vitaly Feldman. Hardness of approximate two-level logic minimization and PAC learning with
membership queries. In Symposium on Theory of Computing (STOC), pages 363–372, 2006.

22 Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina
Kolokolova, and Avishay Tal. ac0[p] lower bounds against mcsp via the coin problem. In
Colloquium on Automata, Languages, and Programming (ICALP), volume 132, page 66, 2019.

23 Thomas R. Hancock, Tao Jiang, Ming Li, and John Tromp. Lower bounds on learning decision
lists and trees. Information and Computation, 126(2):114–122, 1996.

24 Johan Hastad. Clique is hard to approximate within n1−ε. In Symposium on Foundations of
Computer Science (FOCS), pages 627–636, 1996.

S. Hirahara, R. Ilango, and B. Loff 31:29

25 Shuichi Hirahara, Igor Carboni Oliveira, and Rahul Santhanam. NP-hardness of minimum
circuit size problem for OR-AND-MOD circuits. In Computational Complexity Conference
(CCC), pages 5:1–5:31, 2018.

26 Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem as oracle. In
Conference on Computational Complexity (CCC), pages 18:1–18:20, 2016.

27 John M. Hitchcock and Aduri Pavan. On the NP-completeness of the minimum circuit size
problem. In Foundation of Software Technology and Theoretical Computer Science (FSTTCS),
pages 236–245, 2015.

28 Rahul Ilango. Approaching MCSP from above and below: Hardness for a conditional variant
and ac0[p]. In Thomas Vidick, editor, Innovations in Theoretical Computer Science Conference
(ITCS), volume 151 of LIPIcs, pages 34:1–34:26. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

29 Rahul Ilango. Constant depth formula and partial function versions of MCSP are hard. In
Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 424–433.
IEEE, 2020.

30 Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. Np-hardness of circuit minimization for
multi-output functions. In Shubhangi Saraf, editor, Computational Complexity Conference
(CCC), volume 169 of LIPIcs, pages 22:1–22:36. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

31 Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The Power of Natural Properties
as Oracles. In Computational Complexity Conference (CCC), volume 102, pages 7:1–7:20,
2018.

32 J. Stephen Judd. Learning in networks is hard. In International Conference on Neural
Networks (ICNN), volume 2, pages 685–692, 1987.

33 Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Symposium on Theory
of Computing (STOC), pages 73–79, 2000.

34 Mauricio Karchmer, Eyal Kushilevitz, and Noam Nisan. Fractional covers and communication
complexity. SIAM Journal on Discrete Mathematics, 8(1):76–92, 1995.

35 Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. In Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC ’88, page 539–550. Association for Computing Machinery, 1988.

36 Subhash Khot and Rishi Saket. Hardness of minimizing and learning DNF expressions. In
Symposium on Foundations of Computer Science (FOCS), pages 231–240, 2008.

37 Jan Krajícek. Forcing with Random Variables and Proof Complexity. Cambridge University
Press, 2011.

38 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1997.

39 Eyal Kushilevitz and Enav Weinreb. On the complexity of communication complexity. In
Symposium on Theory of Computing (STOC), pages 465–474, 2009.

40 Yanyi Liu and Rafael Pass. On one-way functions and kolmogorov complexity. arXiv preprint,
2020. arXiv:2009.11514.

41 L. Lovasz and M. Saks. Lattices, mobius functions and communications complexity. In
Symposium on Foundations of Computer Science (FOCS), SFCS ’88, page 81–90, USA, 1988.
IEEE Computer Society.

42 Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization
problems. Journal of the ACM, 41(5):960–981, 1994.

43 William J. Masek. Some NP-complete set covering problems. Unpublished Manuscript, 1979.
44 Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak lower bounds on resource-

bounded compression imply strong separations of complexity classes. In Symposium on Theory
of Computing (STOC), STOC 2019, page 1215–1225, New York, NY, USA, 2019. Association
for Computing Machinery.

CCC 2021

http://arxiv.org/abs/2009.11514

31:30 Hardness of Constant-Round Communication Complexity

45 Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak lower bounds on resource-
bounded compression imply strong separations of complexity classes. In Symposium on Theory
of Computing (STOC), 2019.

46 Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures and
asymmetric communication complexity. Journal of Computer and System Sciences, 57(1):37–49,
1998.

47 Moritz Müller and Ján Pich. Feasibly constructive proofs of succinct weak circuit lower bounds.
Annals of Pure and Applied Logic, 171(2), 2020.

48 Cody D. Murray and Richard Ryan Williams. On the (non) NP-hardness of computing circuit
complexity. In Conference on Computational Complexity (CCC), pages 365–380, 2015.

49 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM journal on computing, 22(4):838–856, 1993.

50 Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. Journal of the ACM, 51(2):231–262, 2004.

51 Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and Near-Optimal
Derandomization. In Symposium on Foundations of Computer Science (FOCS), pages 182–191,
1995.

52 Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70,
1991.

53 Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near state-of-
the-art lower bounds. In Conference on Computational Complexity (CCC), 2019.

54 Igor Carboni Oliveira and Rahul Santhanam. Conspiracies between learning algorithms, circuit
lower bounds, and pseudorandomness. In Computational Complexity Conference (CCC), pages
18:1–18:49, 2017.

55 Igor Carboni Oliveira and Rahul Santhanam. Hardness magnification for natural problems. In
Symposium on Foundations of Computer Science (FOCS), pages 65–76, 2018.

56 Denis Pankratov. Direct sum questions in classical communication complexity. Master’s thesis,
University of Chicago, 2012.

57 Leonard Pitt and Leslie G. Valiant. Computational limitations on learning from examples.
Journal of the ACM, 35(4):965–984, 1988.

58 Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications. Cambridge
University Press, 2020.

59 Alexander A Razborov. On submodular complexity measures. Boolean Function Complexity,(M.
Paterson, Ed.), pages 76–83, 1992.

60 Alexander A Razborov and Steven Rudich. Natural proofs. Journal of Computer and System
Sciences, 55(1):24–35, 1997.

61 Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer and System
Sciences, 55(1):24–35, 1997.

62 Pranab Sen and Srinivasan Venkatesh. Lower bounds for predecessor searching in the cell
probe model. Journal of Computer and System Sciences, 74(3):364–385, 2008.

63 Boris A Trakhtenbrot. A survey of Russian approaches to perebor (brute-force search)
algorithms. Annals of the History of Computing, 6(4):384–400, 1984.

64 Christopher Umans, Tiziano Villa, and Alberto L. Sangiovanni-Vincentelli. Complexity of
two-level logic minimization. IEEE Transactions on CAD of Integrated Circuits and Systems,
25(7):1230–1246, 2006.

65 David Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and
Chromatic Number. Theory of Computing, 3(1):103–128, 2007.

Polynomial Time Algorithms in Invariant Theory
for Torus Actions
Peter Bürgisser #

Institut für Mathematik, Technische Universität Berlin, Germany

M. Levent Doğan #

Institut für Mathematik, Technische Universität Berlin, Germany

Visu Makam #

Institute for Advanced Study, Princeton, NJ, CA
School of Mathematics and Statistics, University of Melbourne, Australia

Michael Walter #

Korteweg-de Vries Institute for Mathematics,
Institute for Theoretical Physics, Institute for Logic, Language and Computation,
University of Amsterdam, The Netherlands

Avi Wigderson #

Institute for Advanced Study, Princeton, NJ, USA

Abstract
An action of a group on a vector space partitions the latter into a set of orbits. We consider three
natural and useful algorithmic “isomorphism” or “classification” problems, namely, orbit equality,
orbit closure intersection, and orbit closure containment. These capture and relate to a variety of
problems within mathematics, physics and computer science, optimization and statistics. These
orbit problems extend the more basic null cone problem, whose algorithmic complexity has seen
significant progress in recent years.

In this paper, we initiate a study of these problems by focusing on the actions of commutative
groups (namely, tori). We explain how this setting is motivated from questions in algebraic
complexity, and is still rich enough to capture interesting combinatorial algorithmic problems. While
the structural theory of commutative actions is well understood, no general efficient algorithms were
known for the aforementioned problems. Our main results are polynomial time algorithms for all
three problems. We also show how to efficiently find separating invariants for orbits, and how to
compute systems of generating rational invariants for these actions (in contrast, for polynomial
invariants the latter is known to be hard). Our techniques are based on a combination of fundamental
results in invariant theory, linear programming, and algorithmic lattice theory.

2012 ACM Subject Classification Computing methodologies → Algebraic algorithms; Theory of
computation → Algebraic complexity theory

Keywords and phrases computational invariant theory, geometric complexity theory, orbit closure
intersection problem

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.32

Related Version Full Version: https://arxiv.org/abs/2102.07727

Funding Peter Bürgisser : ERC under the European Union’s Horizon 2020 Research and Innovation
Programme (grant agreement no. 787840).
M. Levent Doğan: ERC under the European Union’s Horizon 2020 Research and Innovation
Programme (grant agreement no. 787840).
Visu Makam: University of Melbourne and NSF grant CCF-1900460.
Michael Walter : NWO Veni grant no. 680-47-459 and NWO grant OCENW.KLEIN.267.
Avi Wigderson: NSF Grant CCF-1900460.

© Peter Bürgisser, M. Levent Doğan, Visu Makam, Michael Walter, and
Avi Wigderson;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 32; pp. 32:1–32:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pbuerg@math.tu-berlin.de
mailto:dogan@math.tu-berlin.de
mailto:visu@umich.edu
mailto:m.walter@uva.nl
mailto:avi@ias.edu
https://doi.org/10.4230/LIPIcs.CCC.2021.32
https://arxiv.org/abs/2102.07727
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Polynomial Time Algorithms in Invariant Theory for Torus Actions

1 Introduction

Consider the following two problems, which on the face of it have nothing to do with each
other:
1. Will the cue ball’s trajectory on a billiards table ever end up in a pocket?
2. Given a bipartite graph G, and two functions w, w′ assigning weights to edges, is it the

case that they assign the same weight to every perfect matching M of G?
Both turn out to be orbit problems for torus actions, and exemplify the class of problems we
study in this paper.

As our introduction is somewhat long, we break it up as follows. We start with general
background to algorithmic invariant theory in §1.1 and discuss general orbit problems in §1.2.
In §1.3 we define torus actions, discuss our main results, and explain their motivation from
the perspective of algebraic complexity. In §1.4, we give examples of how these orbit problems
for torus actions arise in and capture natural problems in physics and optimization. In §1.5,
we discuss the organization of the paper and logical structure of our results.

1.1 Algorithms in invariant theory
Computational invariant theory is a subject whose origins can be traced back to “masters
of computation” in the 19th century such as Boole, Gordan, Sylvester and Cayley among
others. The second half of the 20th century injected a major impetus to both structural and
computational aspects of these mathematical areas. On the one hand, the advent of digital
computers allowed mathematicians means to study much larger such algebraic structures
than could be accessed by hand. On the other, the parallel development of computational
complexity provided a mathematical theory with precise computational models for algorithms
and their efficiency analysis. This combination has injected many new ideas and questions
into invariant theory and related fields, leading to the development of algorithmic techniques
such as Gröbner bases and many others, which supported faster and faster algorithms. Texts
on this large body of work can be found, for example, in the books [17, 60, 14]. While
the computational complexity put focus on polynomial time as the staple of efficiency, it
also provided means to argue the likely impossibility of such fast algorithms for certain
tasks, through the Cook-Karp-Levin theory [13, 44, 48] of NP-completeness (for Boolean
computation) and Valiant’s theory of VNP-completeness.

More recently, a further surge in collaboration between algebraists and complexity theorists
on these algorithmic questions in invariant theory and representation theory arose from two
(related) sources starting in the turn of this century. Both imply that these very algorithmic
questions in algebra are deeply entwined with the core complexity questions of P vs. NP
and VP vs. VNP. Not surprisingly, new enriching connections between these two research
directions are newly found as they develop, providing an exciting collaboration.

The first source is Mulmuley and Sohoni’s Geometric Complexity Theory (GCT) [53],
which highlights the inherent symmetries of complete problems of these complexity classes,
and through these suggests concrete invariant theoretic and representation theoretic attacks
on the questions above. This has lead to many new questions, techniques, and much faster
algorithms (see, for example, [52, 26, 7, 51]).

The second source is the work of Impagliazzo and Kabanets [42], using Valiant’s com-
pleteness theory for VP and VNP to again attack these major complexity problems directly
through the development of efficient deterministic algorithms for the basic PIT (Polynomial
Identity Testing) problem. This problem, which (again, thanks to Valiant’s completeness) has
natural symmetries, is very similar to basic invariant theory problems. Major progress was

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 32:3

recently made on resolving such related algorithmic problems, starting with [33, 27, 40, 41, 19].
Many others continue to follow, see, for example, [21, 1, 28, 10, 9, 11, 8]. We refer to [8] for
a recent description of the state-of-art.

1.2 Orbit problems
We now briefly describe the basic setting and problems of interest, postponing some of
the technical details to later sections for the sake of brevity. A group homomorphism
ρ : G → GL(V), where V is a vector space (always complex and finite-dimensional) is called
a representation of G. One can think of this as a (linear) action of G on V , i.e., a map
G × V → V where (g, v) 7→ ρ(g)v satisfies the usual axioms of a group action. For us, groups
will always be algebraic and representations rational, that is, morphisms of algebraic groups.
We will denote ρ(g)v by gv or g · v.

For v ∈ V , we define its orbit Ov := {gv | g ∈ G} (denoted OG,v if the group is not
clear from context) to be the subset of points that can be reached from v by applying a
group element. We denote by Ov the topological closure of Ov. These notions are extremely
basic and in many concrete instances very familiar. One simple example is the action of
GLn × GLn on n×n matrices by left and right multiplication: clearly, the orbit of a matrix A

consists of the matrices having the same rank as A; moreover, the orbit closure of A is the set
of matrices whose rank is at most the rank of A. Another example is the conjugation action
of GLn on n × n matrices, where the orbits are characterized by Jordan normal forms.1

Understanding the space of orbits of a given group action is perhaps the most basic task
of invariant theory. The following three basic algorithmic problems will be the focus of this
paper.

▶ Problem 1.1. Let ρ : G → GL(V) be a representation of a group G. Given v, w ∈ V :
1. Orbit equality: Decide if Ov = Ow;
2. Orbit closure intersection: Decide if Ov ∩ Ow ̸= ∅;
3. Orbit closure containment: Decide if w ∈ Ov.2

As we will discuss the computational complexity of algorithms for these problems, one
needs to specify how inputs are given and how we measure their size. We will discuss this,
but for now it suffices to think of n = dim(V), the degree of ρ (assuming it is a polynomial
function), and the bit-length of the input vectors v, w as the key size parameters.

The aforementioned problems capture and are related to a natural class of “isomorphism”
or “classification” problems across many domains in mathematics, physics and computer
science. Examples include the graph isomorphism problem [16], non-commutative rational
identity testing [27, 41], equivalence problems on quiver representations [18, 20], matrix
and tensor scaling [10, 9], classification of quantum states [4] and module isomorphism
problems [6].

To briefly hint at the role of invariant theory, let us take a closer look at problem (2),
that is, the problem of orbit closure intersection. We denote by C[V] the ring of polynomial
functions on V . A polynomial function f on V is called invariant if it is constant along

1 The orbit closures of two matrices intersect if and only if the matrices have the same eigenvalues (counted
with multiplicity).

2 The special case of w = 0 is called the null cone membership problem. In fact, many of the recent
algorithmic advances mentioned above efficiently solve the null cone problem for specific group actions,
see [8] and references therein. The motivation of this paper is to extend that understanding to these
more general problems.

CCC 2021

32:4 Polynomial Time Algorithms in Invariant Theory for Torus Actions

orbits, i.e., f(gv) = f(v) for all g ∈ G and v ∈ V . The collection of all invariant polynomials
forms a subring C[V]G, called the invariant ring. Since polynomials are continuous, invariant
polynomials are constant along orbit closures. In particular, two points v and w are
indistinguishable by invariant polynomials when their orbit closures intersect. Amazingly,
the converse is also true for a large class of group actions thanks to a result due to Mumford:
if the orbit closures of v and w do not intersect, then they can always be distinguished by an
invariant polynomial. See Theorem 2.1 for a precise statement.

Mumford’s theorem suggests an approach to orbit closure intersection – test if f(v) = f(w)
for all invariant polynomials f . For this strategy to be effective, one needs a computational
handle on invariant polynomials. Naively there are infinitely many polynomials, but a
foundational result of Hilbert helps tackle this issue. A system of generating polynomial
invariants is a collection of invariant polynomials {f1, . . . , fr} such that any other invariant
polynomial can be written as a polynomial in the fi’s. In particular, to test for orbit closure
intersection it suffices to test whether each of the fi take the same value on both points.
Hilbert showed the existence of a finite system of generating polynomial invariants and also
gave an algorithm to produce them [36]. Since then, many improvements on the complexity
of such algorithms were developed, but even today this task is, in general, infeasible. One
basic obstacle is the very description of such a system of generating invariants, coming both
from the size of this set and the degree of each polynomial in it.

Nearly a century later, a (singly) exponential bound (in n) on the degrees of a system of
generating polynomial invariants was achieved for a very general class of group actions [15],
which is unfortunately the best possible in this generality, see [22]. A singly exponential
bound is necessary to capture a polynomial with a poly-sized (in n) arithmetic circuit, but is
by no means sufficient.3 Another issue that one has to deal with is the number of invariants
in a system of generating polynomial invariants, and it is often the case that there are
exponentially many in any system.4 This led Mulmuley [52] to suggest the notion of a
succinct circuit as a way to capture a system of generating polynomial invariants with a
view towards using them for orbit closure intersection. Unfortunately, this approach does
not seem to be computationally feasible either. See [29] where Mulmuley’s conjecture [52,
Conjecture 5.3] on the existence of succinct circuits was disproved under natural complexity
assumptions. What is perhaps most surprising is that this already happens for a commutative
group action, namely when G is a torus. Further, an example of a group action was given
where any system of generating polynomial invariants must contain a VNP-hard polynomial.

The negative result above seem to suggest that the algorithmic tasks at hand are infeasible,
even for torus actions, i.e., groups of the form (C×)d. The main results of our paper show
the opposite: all of them are efficiently solvable for torus actions!

The main novelty on our approach is using rational invariants instead of polynomial
invariants. A rational invariant is a quotient of polynomials that is invariant, see Section 1.3
for a precise definition. This is a bit unexpected since Mumford’s theorem simply does not
extend to rational invariants: it is easy to construct examples where two points whose orbit
closures intersect are distinguished by a rational invariant. Yet, for representations of tori, we
show that (a certain special collection of) rational invariants can be used (in a delicate way)
to capture not just orbit closure intersection, but orbit closure containment and orbit equality
as well. Moreover, we show that rational invariants are computationally easy in this case, in
stark contrast with the aforementioned hardness results for polynomial invariants [29].

3 For example, the permanent of an n × n matrix, which has degree n, is believed to require exponential
circuit size. This is essentially the content of Valiant’s proof that the permanent is complete for the
class VNP, combined with the hypothesis that VNP ̸= VP.

4 This is already the case for the matrix scaling action discussed in Section 1.4.

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 32:5

Inspired by the connections to the P vs. NP problem, the GCT program makes several
predictions in invariant theory. The setting in which most of the predictions and conjectures
are formulated is the setting of rational representations of connected reductive groups (which
we will define later). Here, we want to point out that among connected reductive groups,
the class of commutative groups happen to be precisely tori. Thus, our main results should
be viewed as conclusively verifying several predictions of GCT in the commutative case.
Moreover, the barrier result on the computational efficiency of polynomial invariants [29]
along with our results on rational invariants suggest that a more thorough investigation of
rational invariants is needed in the case where the acting group is non-commutative, e.g., SLn.

1.3 Torus actions and main results
We now discuss the main contributions of our paper in more detail and precision. Our results
concern torus actions, so we specialize the discussion of the preceding section and consider
a d-dimensional complex torus T = (C×)d as the acting group G. The group law is just
pointwise multiplication, i.e., (t1, . . . , td) · (s1, . . . , sd) = (t1s1, . . . , tdsd).

Any linear action of a torus can be described by an integer matrix M ∈ Matd,n(Z) called
the weight matrix (where Matd,n(Z) denotes the space of d × n integer matrices). The
representation ρM : T → GLn(C) corresponding to a weight matrix M = (mij) looks as
follows:

ρM (t) =

∏d

i=1 tmi1
i

. . . ∏d
i=1 tmin

i

 (1)

Thus any torus action can be viewed as a scaling action, where each coordinate is scaled
separately according to a Laurent monomial.5 The weight matrix (up to reordering of
columns) determines the representation. Despite the simple description of commutative torus
actions, they as well capture fundamental notions, and the associated orbits can be quite
complex. One example is the matrix scaling problem, where the orbits capture weights of
perfect matchings (see Problem 1.7).

In this paper, we will assume that a torus action is given by specifying the weight matrix.
Thus the bit-length of the entries of the weight matrix are included in the input size of the
problems. Moreover, we will allow complex number inputs. These can be described up to
finite precision by elements in the field of Gaussian rationals Q(i) = {s + it | s, t ∈ Q}, which
will be encoded in the standard way; see, e.g., [52].6 The following theorem captures the
main results of our paper.

▶ Theorem 1.2. Given as input a weight matrix M ∈ Matd,n(Z) as well as vectors v, w ∈
Q(i)n, denote by b the maximal bit-length of the entries of v, w, and M . Then we can in
time poly(d, n, b):
1. decide whether Ov = Ow;
2. decide whether Ov ∩ Ow ̸= ∅;
3. decide whether w ∈ Ov.
In other words, for rational representations of tori, there are polynomial time algorithms for
orbit equality, orbit closure intersection, and orbit closure containment.

5 We can also describe this action as follows: Identify v ∈ Cn with a Laurent polynomial∑n

j=1 vj z
m1j

1 · · · z
mdj

d ; then the action of T corresponds precisely to rescaling the variables z1, . . . , zd [34].
6 In fact, our results hold more generally when the elements in Q(i) are given in a “floating point” format,

namely in the form (s + it)2p, with s, t ∈ Q and p ∈ Z encoded in binary in the standard way. The
same is true for input of the form 2p, with p ∈ Q encoded in binary. See Remark 5.5.

CCC 2021

32:6 Polynomial Time Algorithms in Invariant Theory for Torus Actions

We note that the null cone membership problem mentioned earlier, namely Prob-
lems 1.1 (2)/(3) when the input vector w is the 0 vector, was known to have a polynomial
time algorithm by a simple reduction to linear programming.7 There is no known way
of doing the same for the orbit problems above, and indeed our theorem above takes an
alternative route.

While one might hope for efficient algorithms for Problems 1.1 (1) and (2) in much more
general situations than for tori (for general reductive group actions), our efficient algorithm
for orbit closure containment is in stark contrast to the known NP-hardness of the general
orbit closure containment problem [5]. Our work points to a key difference: namely, for torus
group actions, one can use one-parameter subgroups combined with linear programming
techniques to reduce orbit closure containment to orbit equality, while this is impossible in
this form for general actions. See Section 7 for more details.

A common core underlying all our results is an efficient algorithm for computing invariant
Laurent polynomials for torus actions. The key idea is the following. Invariant polynomials
for torus actions can be quite complicated. However, suppose that we restrict to vectors of
some fixed support, i.e., “nonzero pattern” of the coordinates. This restriction is without loss
of generality, since two vectors can only be in the same orbit when their supports coincide.
However, it allows us to study a richer class of functions, namely Laurent polynomials instead
of ordinary polynomials. Allowing for negative exponents makes an important difference:
while polynomial invariants naturally form a semigroup, invariant Laurent polynomials form
a lattice, isomorphic to the integral vectors in the kernel of the weight matrix. Lattices are
much better behaved than semigroups, for example they have small bases which can be found
efficiently.

Before describing our results, let us define invariant Laurent polynomials more precisely.
For a representation ρ : G → GL(V) of a group G, we have an action of G on the polynomial
ring C[V] defined by (g · f)(v) := f(ρ(g)−1v). When V = Cn, we can identify C[V] =
C[x1, . . . , xn] with the polynomial ring in n variables. Now consider the set of vectors with
nonzero coordinates in S ⊆ [n]:

XS = {v ∈ Cn | vj ̸= 0 if and only if j ∈ S}.

The Laurent polynomials in the variables xj for j ∈ S form the natural class of functions
on XS (since we can always divide by the nonzero coordinates). Accordingly, we will denote
their collection by C[XS].8 Now, for a torus action of the form (1), the group T acts on
any monomial xc = xc1

1 · · · xcn
n by a simple rescaling. Accordingly, we also have an action

of T on the algebra of Laurent polynomials C[XS]. A Laurent polynomial f is called
invariant if g · f = f for all g ∈ G. Clearly, if f is invariant, then so are all the Laurent
monomials occurring in f . The collection of all invariant Laurent polynomials forms the
subalgebra C[XS]G of invariant Laurent polynomials. A collection of invariant Laurent
polynomials f1, . . . , fr is called a system of generating invariant Laurent polynomials in
the variables {xj}j∈S if they generate C[XS]G as an algebra. For torus actions, these can
always be taken to be Laurent monomials, in which case we call them a system of generating
invariant Laurent monomials. We can then state our key result:

7 Namely, a vector v is in the null cone if and only if the convex hull of the weights corresponding to the
nonzero coordinates of v does not contain the origin.

8 In the language of algebraic geometry, these are the “regular” functions on XS .

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 32:7

▶ Theorem 1.3. Let M ∈ Matd,n(Z) define an n-dimensional representation of T = (C×)d,
and let S ⊆ [n]. Assume that the bit-lengths of the entries of M are bounded by b. Then,
in poly(d, n, b)-time, we can construct an arithmetic circuit with division C whose output
gates compute a system of generating invariant Laurent monomials f1, . . . , fr in the variables
{xj}j∈S, where r ≤ n.

Here we recall the notion of an arithmetic circuit with division, which is a directed acyclic
graph as follows. Every node of indegree zero is called an input gate and is labeled by either
a variable or a rational (complex) number. Nodes of indegree one and outdegree one are
labeled by −1 and are called division gates. Nodes of indegree two and outdegree one and is
labeled either + or ×; in the first case it is a sum gate and in the second a product gate.
The only other nodes allowed are output gates which have indegree one and outdegree zero.
Given an arithmetic circuit with division, it computes a rational function at each output
node in the obvious way. The bit size of such an arithmetic circuit is the total number of
nodes plus the total bit-length of the specification of all rational numbers computed in all of
its gates. The notion of (division free) arithmetic circuits is obtained by disallowing division
gates. They compute polynomials in the obvious way.

We emphasize that the number of generators produced by Theorem 1.3 is at most n (in
particular, independent of the bit-length b), in stark contrast to the situation for monomial
invariants. Moreover, the bit-length of C is polynomially bounded.

As a consequence of Theorem 1.3, we are also able to construct arithmetic circuits that
compute a generating set of rational invariants. For a representation ρ : G → GL(V), the
action of G on the polynomial ring C[V] always extends to an action on its field of rational
functions, the rational functions C(V). A rational function f ∈ C(V) is called invariant if
g · f = f for all g ∈ G. The collection of all rational invariants forms the sub-field C(V)G of
rational invariants. A collection of rational invariants f1, . . . , fr ∈ C(V) is called a system of
generating rational invariants if they generate C(V)G as a field extension of C. Note that
any invariant Laurent polynomial is a rational invariant, but the converse is not necessarily
true. Nevertheless:

▶ Corollary 1.4. Let M ∈ Matd,n(Z) define an n-dimensional representation of T = (C×)d.
Assume that the bit-lengths of the entries of M are bounded by b. Then, in poly(d, n, b)-time,
we can construct an arithmetic circuit with division C whose output gates compute a system
of generating rational invariants f1, . . . , fr ∈ C(x1, . . . , xn)T , where r ≤ n.

This result is in distinct contrast to the impossibility of finding succinct circuits for
generating polynomial invariants under natural complexity assumptions [29].

Furthermore, we can complement Theorem 1.2 in the following way: if two orbit closures
do not intersect, Ov ∩ Ow ̸= ∅, then we can construct in polynomial time an arithmetic
circuit computing a separating invariant monomial that can serve as a “witness” of the
non-intersection.

▶ Corollary 1.5. Let M ∈ Matd,n(Z) define an n-dimensional representation of T = (C×)d.
Let v, w ∈ Q(i) be such that Ov ∩ Ow = ∅. Assume the bit-lengths of the entries of v, w and
M are bounded by b. Then, in poly(d, n, b)-time, we can construct an arithmetic circuit of
bit-length poly(d, n, b), which computes an invariant monomial f such that f(v) ̸= f(w).

So far, we have discussed orbit problems for complex tori T = (C×)d. It is interesting to ask
to which extent our results hold for “compact” tori, which are groups of the form K = (S1)d,
where S1 = {z ∈ C× | |z| = 1}.9 Besides the fundamental algorithmic interest in this

9 Note that K is indeed compact, and a subgroup of T . Moreover, any commutative compact connected

CCC 2021

32:8 Polynomial Time Algorithms in Invariant Theory for Torus Actions

setting, such group actions are important in several areas. For example, the time evolution of
periodic systems in Hamiltonian mechanics are naturally given by S1-actions, and important
symmetries in classical and quantum physics are given by compact group actions.

In fact, the results discussed so far can also be used to give an efficient solution for
orbit problems for compact tori. Any (continuous) finite-dimensional representation of (S1)d

extends to a representation of (C×)d, so representations are specified as before by a weight
matrix M ∈ Matd,n(Z). Moreover, the compactness implies that orbits OK,v = {kv | k ∈ K}
are closed and so all three problems mentioned in Problem 1.1 coincide. Therefore, the
following corollary solves all three problems for compact tori:

▶ Corollary 1.6. Let the weight matrix M ∈ Matd,n(Z) define an n-dimensional representation
of T = (C×)d and put K = (S1)d. Further, let v, w ∈ Q(i)n and assume that the bit-lengths
of the entries of v, w and M are bounded by b. Then, in poly(d, n, b)-time, we can decide if
OK,v = OK,w.

To give additional context to this result, we briefly mention some recent results achieving
polynomial time algorithms for orbit closure intersection of specific group actions. For the
left-right action (of SLn × SLn on m-tuples of n × n matrices), one approach to solving
the orbit closure intersection problem is to (approximately) reduce to the orbit equality
problem for the maximal compact subgroup (which happens to be SU(n) × SU(n), where
SU(n) denotes the group of n × n unitary matrices with determinant 1), see[1]. This was
achieved by using a geodesic convex optimization algorithm. Given the recent advances
in this area (see, e.g., [8] and references therein), it is natural to ask if a similar approach
could be useful for general reductive group actions. For torus actions, interestingly, we can
also go in the other direction. Namely, our result for the orbit equality problem for the
maximal compact subgroup, Corollary 1.6, is derived from our main result for complex tori,
i.e., Theorem 1.2. More generally, we observe that for arbitrary reductive group actions,
the orbit equality problem for the maximal compact subgroup is always equivalent to an
orbit closure intersection (or equality) problem for a related action of the larger group, see
Theorem 8.2 for a precise statement.

The results in this paper warrant the investigation of several interesting directions that
we leave for future work, some of which we will discuss in Section 9.

1.4 Further motivation and algorithmic applications
As we saw above, orbit problems are related to a great number of applications. Despite
significant progress, for general reductive group actions it is still an open problem to design
fast algorithms for these problems. Our results fully resolve the situation in the case of
torus actions and also show how to overcome barriers that had previously been pointed
out in the literature [39, 29]. Apart from its fundamental complexity theoretic interest,
there are also several algorithmic applications where torus actions arise naturally. One
particular application in [37] shows how one can use torus invariants to simplify a system of
differential equations with scaling symmetries. We provide and discuss in more detail some
other concrete applications to combinatorial optimization and to dynamical systems, which
were already mentioned briefly at the beginning of the introduction.

We first explain a link to combinatorial optimization. Consider edge weights w for the
complete bipartite graph on 2n labeled vertices (n on each side): the weight w(e) of an
edge e is assumed to be a rational number, encoded in binary. We define the weight w(M)
of a perfect matching M of G as the sum of the weights of the edges occurring in M .

Lie group is of this form.

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 32:9

▶ Problem 1.7. Given edge weights w and w′ as above, decide whether they assign the same
weight to every perfect matching M of G.

Perhaps surprisingly, this problem can be reformulated as an orbit intersection problem
for a torus action (see below). Therefore, Theorem 1.2 implies that Problem 1.7 can be
solved in polynomial time. This insight seems far from being obvious!

The relevant torus action here results from from matrix scaling, which has been widely
studied and has many applications; see [58] and [12] for more recent developments. Consider
STn := {(t1, . . . , tn) ∈ C× | t1 · · · tn = 1}, which is isomorphic to the algebraic torus (C×)n−1.
We let STn × STn act on Matn(C) by left-right multiplication as follows:

((t1, . . . , tn), (s1, . . . , sn)) · (vij) := (tivijsj)ij . (2)

Moreover, we shall identify the edge weights wij , where i, j ∈ [n], with the matrix vw =
(2wij) ∈ Matn(C).10 Then one can show that the answer to Problem 1.7 is affirmative if and
only if the orbit closures of vw and vw′ in Matn(C) intersect. This follows from Mumford’s
theorem mentioned earlier, along with the fact that the invariant polynomials for this action
are generated by the perfect matchings, namely the monomials fπ = x1,π(1) · · · xn,π(n) where
π ∈ Sn ranges over the permutations [47, Theorem 3]. Indeed, multiplying entries of vw is
the same as summing the corresponding edge weights in the exponent, hence fπ(vw) = 2w(M),
where M is the perfect matching defined by the permutation π.

We briefly comment on the 3-dimensional generalization of this action. STn × STn × STn

acts on 3-tensors in Cn ⊗ Cn ⊗ Cn in the natural way:

((t1, . . . , tn), (s1, . . . , sn), (u1, . . . , un)) · (vijk) = (tisjukvijk)ijk.

In this case, any system of generating polynomial invariants must include the (maximum)
3-dimensional matching monomials fπ,τ = x1,π(1),τ(1) · · · x1,π(n),τ(n) for π, τ ∈ Sn, which led
to the barrier result for torus actions in [29]. Of course, in this case there are additional
generating invariants, see, e.g., [49]. Our results show that the corresponding orbit problems
can nevertheless be solved in polynomial time! Moreover, it is possible to efficiently exhibit
separating polynomial invariants (whenever they exists) as well as to construct systems of
generating invariant Laurent polynomial or rational invariants.

Our second example concerns a connection to dynamical systems. Consider a (massless)
cue ball on a billiard table (assumed to be square to simplify the discussion). We can ask:

▶ Problem 1.8. If we hit the cue ball at a given angle, will its trajectory end up in a pocket?

It is well-known, and easy to see, that one can map trajectories on an ordinary billiard with
reflecting boundaries to a billiard of twice the size with periodic boundaries, say (R/2πZ)2.
The trajectory of the ball depends fundamentally on the angle or slope. If the slope is
irrational, then the trajectory will be dense, so the answer to Problem 1.8 is trivially yes.
Otherwise, the trajectory will be periodic and the problem is nontrivial. We can model it as
an orbit problem as follows. Let the compact torus S1 act on C2 by

t · (x, y) := (tpx, tqy),

where s = q
p is the slope by which we hit the ball. We can identify points (θ, ν) on the

periodic billiard with points (eiθ, eiν) ∈ C2. In this way, Problem 1.8 reduces to a constant
number of orbit equality problems for this action (one for each pocket). While the problem is

10 As explained in footnote 6, our results also hold for input of this form, where the wij are specified in
binary.

CCC 2021

32:10 Polynomial Time Algorithms in Invariant Theory for Torus Actions

certainly easy to solve by a variety of methods, one can ask analogous questions for billiards
in n > 2 dimensions and by allowing a d-dimensional hyperplane worth of allowed cue
directions. Such generalizations similarly correspond to orbit problems for compact tori (S1)d

on some Cn, and they can all be solved in polynomial time by using Corollary 1.6.

1.5 Organization of the paper
In Section 2, we give an introduction to basic results in invariant theory that we will need to
establish our results. In Section 3, we focus on tori, their representations, and their invariants.
In particular, we will show that the faces of a natural convex polyhedral “Newton cone” are
in one-to-one correspondence with the orbits in an orbit closure, which will be an important
ingredient later on.

In Section 4, we discuss the definition and computation of suitable rational invariants. As
mentioned above, our key result is that for fixed support, a small generating set of invariant
Laurent monomials can be computed efficiently. This result, which is Theorem 1.3, is at
the heart of our algorithms, and also of independent interest. We achieve this using Smith
normal forms. As an easy consequence, this also implies that we can efficiently compute a
small generating set of rational invariants for a given representation, that is, Corollary 1.4.

In Section 5, we explain how to use the results of the preceding section to solve the
orbit equality problem in polynomial time. This establishes part (1) of Theorem 1.2. Here
we rely on known results for testing if a given Laurent monomial (of possibly exponential
degree) evaluates to the same value on two given vectors, and we present a brief sketch for
completeness.

In Sections 6 and 7, we show how to solve the orbit closure intersection and containment
problems by reducing them to orbit equality. This establishes parts (2) and (3) of Theorem 1.2.
Here we use the polyhedral description of the structure of orbit closures as furnished by
the Newton cone. Furthermore, we show that given two points whose orbit closures do not
intersect, we can efficiently construct a separating monomial invariant as a “witness”. This
proves Corollary 1.5.

In Section 8, we show how to solve the orbit equality problem for compact tori. This
establishes Corollary 1.6. We also give, for general reductive groups G, a reduction from
orbit equality for a maximally compact subgroup K ⊆ G to orbit equality and orbit closure
intersection for G.

In Section 9, we summarize our results and discuss some important open problems and
future directions.

Conventions

In this paper, sometimes we work with monomials and sometimes with Laurent monomials.
Unless we use the prefix “Laurent”, by a monomial, we mean

∏
j x

cj

j where cj ∈ Z≥0, i.e.,
all exponents are non-negative. Whenever exponents are allowed to be negative, we will be
careful to specify that it is a Laurent monomial.

2 Preliminaries of invariant theory

We will briefly recall the main results in invariant theory that are relevant for us (see [46,
23, 17, 55] for details). We will take our ground field to be C, the field of complex numbers,
for simplicity. However, much of this theory works for any algebraically closed field. For
a (finite-dimensional) vector space V , we denote by C[V] the ring of polynomial functions
on V . For our purposes, if V is the standard vector space Cn, then C[V] = C[x1, . . . , xn], the
polynomial ring in n variables, where xi is to be interpreted as the ith coordinate function.

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 32:11

Let G be an algebraic group, i.e., it has the structure of an algebraic variety (not
necessarily irreducible) such that the multiplication map m : G × G → G and the inverse
map ι : G → G are morphisms of varieties.11 A morphism of algebraic groups ρ : G → GL(V)
is called a rational representation of G.12 We write gv or g · v for ρ(g)v. For a point v ∈ V ,
its orbit Ov (or OG,v when the group is not clear from context) is the set of all points that
can be reached from v by the action of an element of the group, i.e.,

Ov := {gv | g ∈ G}.

We denote by Ov the closure of the orbit Ov. The closure is to be taken either with respect
to the Euclidean topology or the Zariski topology. Indeed, the closures in both topologies
coincide, a well-known fact that relies on a fundamental result in algebraic geometry due
to Chevalley (see [54, I.§10]). A polynomial function f ∈ C[V] is called invariant if it is
oblivious to the group action, i.e., f(gv) = f(v) for all g ∈ G, v ∈ V . The collection of all
invariant polynomials forms a subring

C[V]G := {f ∈ C[V] | ∀ g ∈ G, v ∈ V f(gv) = f(v)}.

One key observation is that invariant functions are constant along orbits and hence constant
along orbit closures as well. Hence, if the orbit closures of two points intersect, then they
cannot be distinguished by an invariant function. The converse was proved by Mumford
for a special class of groups called reductive groups [55] (see also [17, Corollary 2.3.8]).
An algebraic group G is called reductive if every rational representation is a direct sum
of irreducible representations, wherein a representation is called irreducible if it has no
non-trivial subrepresentations. Examples of reductive groups include SLn, GLn, Spn, On,
finite groups, and most importantly for us, tori (which we define formally in the next section),
as well as direct products thereof.13 Reductive groups have played a central role for a number
of mathematical fields for over a century. A particularly important result in the invariant
theory of reductive groups is that invariant rings are finitely generated [36, 35, 62].

To state Mumford’s result in the generality we need, we will define rational actions on
varieties (a notion that naturally generalizes rational representations). Let X be an algebraic
variety and let C[X] denote the ring of regular functions on X. A rational action of an
algebraic group G on X is a morphism of varieties G × X → X, (g, x) 7→ g · x satisfying
g · (g′ · x) = (gg′) · x and e · x = x for all x ∈ X, g, g′ ∈ G. As in the vector space case, we
denote the orbit of a vector v ∈ X by Ov.

▶ Theorem 2.1 (Mumford, [55]). Let G be a reductive group. Let X be an algebraic variety
and suppose we have a rational action of G on X. For v, w ∈ X we have Ov ∩ Ow = ∅ if
and only if there exists f ∈ C[X]G such that f(v) ̸= f(w).

Another well-known important structural result states that every orbit closure Ov contains
a unique closed orbit.

11 A morphism of varieties simply means that in local coordinates the map is given by ratios of polynomials.
For concreteness, the reader may simply think of an algebraic group as a matrix group, i.e., a subgroup
of GLn(C) that is described as the zero locus of a collection of polynomials.

12 One can interpret this action as the action of the subgroup ρ(G) ⊆ GL(V) on V by matrix-vector
multiplication, where ρ(G) is parametrized algebraically by an algebraic group G.

13 The group Bn of upper triangular n × n invertible matrices is a typical example of a group that is not
reductive.

CCC 2021

32:12 Polynomial Time Algorithms in Invariant Theory for Torus Actions

▶ Theorem 2.2. Let ρ : G → GL(V) be a rational representation of a reductive group G.
Then:
1. For any v ∈ V , the orbit closure Ov contains a unique closed orbit, that we denote by O

ṽ
.

2. If v, w ∈ V , then

Ov ∩ Ow ̸= ∅ ⇐⇒ O
ṽ

= O
w̃

.

Proof. (1) The first assertion is [17, Theorem 2.3.6].
(2) For the second assertion, if the orbit closures Ov and Ow are disjoint, then so are

the orbits O
ṽ

and O
w̃

, which therefore must be different. Conversely, suppose O
ṽ

̸= O
w̃

.
Since these orbits are closed, by Theorem 2.1, there is an invariant f ∈ C[V]G such that
f(ṽ) ̸= f(w̃). By continuity, f(v) = f(ṽ) ̸= f(w̃) = f(w), which implies Ov ∩ Ow = ∅ by
another application of Theorem 2.1. ◀

Part(2) of this theorem shows that the orbit closure intersection problem can be reduced
to the orbit equality problem, provided we can compute the unique closed orbit O

ṽ
contained

in Ov. We will see in Section 6 that if the group G is a torus, this can be achieved in
polynomial time.

Another key result in understanding orbit closures is the Hilbert–Mumford criterion.
A one-parameter subgroup of G is a morphism of algebraic groups σ : C× → G. For a
representation of G on a vector space V , we say that a subset S ⊆ V is G-stable if g · s ∈ S

for all g ∈ G, s ∈ S.

▶ Theorem 2.3 (Hilbert–Mumford criterion, [35, 55]). Let ρ : G → GL(V) be a rational
representation of a reductive group G. Suppose S ⊆ V is a G-stable closed subvariety of V

and let v ∈ V such that Ov ∩ S ̸= ∅. Then there exists a one-parameter subgroup σ : C× → G

such that limϵ→0 σ(ϵ) · v ∈ S.

A particular use of the above theorem is to take S = {0} or S = Oṽ. When G is a torus,
the set of one-parameter subgroups has the structure of a Z-lattice. We will discuss this
further in the next section.

We end this section by introducing a key notion in invariant theory called the null cone,
whose significance will become clear in later sections. For a collection F of polynomials in
C[V], we denote by V(F) their common zero locus in V .

▶ Definition 2.4 (Null cone). Let ρ : G → GL(V) be a rational representation of a reductive
group G. Then the null cone is defined as

NG(V) := N (ρ) := {v ∈ V | 0 ∈ Ov}.

It can also be defined as the common zero locus of all invariant polynomials without constant
part:

NG(V) := N (ρ) := V(
⋃
d>0

C[V]Gd),

where C[V]Gd denotes the space of invariant polynomials that are homogeneous of degree d.
The equivalence of the two definitions of the null cone follows from Theorem 2.1.

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 32:13

3 Invariants and orbit closures of torus actions

Invariant theory for general reductive groups can get very complicated. However, for
representations of tori, that is, commutative connected reductive groups, a lot of the theory
can be viewed as a combination of linear algebra and the study of convex polytopes. We will
collect important results regarding torus actions in this section and refer the reader to [61, 17]
for more details. All the results in this section are already known or can be deduced from
the existing literature, and we provide proof sketches for completeness. Note that tori are
reductive groups, so the results of the previous section hold in this setting.

We will first briefly recall torus actions and the notions of characters/weights, one-
parameter subgroups and how weight matrices define a representation. Then, we give a linear
algebraic description of invariant rings by determining the monomials that are invariant.
Then, we describe a polyhedral perspective on orbits. In particular given a point v in the
vector space of the representation, we define a polyhedral cone, called the Newton cone. The
Newton cone can be used to determine whether v is in the null cone and moreover we give
a correspondence between the faces of the Newton cone to orbits in the orbit closure of v,
which is crucial in understanding the orbit closure containment problem.

For this entire section, fix a torus T = (C×)d.14

3.1 Representations and invariants

As described in Section 1.3, any representation of a torus T is a “scaling” action (after
identifying V with Cn by an appropriate choice of basis). Namely, each coordinate of
v ∈ Cn is multiplied by some (Laurent) monomial

∏d
i=1 tλi

i for integers λi ∈ Z. These
monomials (succinctly described by the so-called weight matrix, see below) together specify
the representation. We now make this more precise.

A 1-dimensional (rational) representation is called a character or a weight. Let X (T)
denote the set of weights of T , which forms a group where the binary operation is (pointwise)
multiplication of functions. To each λ = (λ1, . . . , λd) ∈ Zd, we associate a weight, also
denoted λ by slight abuse of notation, namely

λ : T → C×, λ(t) =
d∏

i=1
tλi
i ,

which gives an identification of abelian groups Zd ∼= X (T).
Let ρ : T → GL(V) be a (rational) representation of T where V is an n-dimensional vector

space. We can choose a basis of V consisting of weight vectors, wherein a vector v ∈ V

is called a weight vector of weight λ ∈ X (T) if t · v = λ(t)v for all t ∈ T . Once we have
chosen a weight basis, using the identification X (T) ∼= Zd, the corresponding n weights can
be collected into a d × n matrix with integer entries, which we call the weight matrix of
the representation. Up to permutation of the columns, it is independent of the choice of
weight basis, and it classifies the representation up to isomorphism. Concretely, a matrix
M = (mij) ∈ Matd,n(Z) describes the representation ρM : T → GLn(C) defined in (1). That
is, for t = (t1, . . . , td) and v = (v1, . . . , vn) ∈ Cn, we have

14 Any commutative connected reductive group is isomorphic to some (C×)d. Important examples include
Td, the group of diagonal d × d invertible matrices and its subgroup STd consisting of diagonal matrices
with determinant 1.

CCC 2021

32:14 Polynomial Time Algorithms in Invariant Theory for Torus Actions

t · v = ρM (t)v =
((

d∏
i=1

tmi1
i

)
v1,

(
d∏

i=1
tmi2
i

)
v2, . . . ,

(
d∏

i=1
tmin
i

)
vn

)
.

The matrix M is the weight matrix for this action. The jth standard basis vector ej is a
weight vector of weight m(j) = (m1j , m2j , . . . , mdj) ∈ Zd = X (T). Note that m(j) is the jth

column vector of M .
For the rest of this section, we fix an n-dimensional representation ρM : T → GLn(C)

of the torus T = (C×)d given by a weight matrix M ∈ Matd,n(Z) with columns m(j) for
j ∈ [n]. The following well-known result describes the invariant ring of this action (see, e.g.,
[22, Section 3]):

▶ Proposition 3.1.
1. Let c ∈ Zn

≥0. A monomial xc =
∏

j x
cj

j is invariant if and only if
∑

j cjm(j) = 0;
2. The invariant ring C[x1, . . . , xn]T is spanned as a vector space by the invariant monomials.

Proof. For the action ρ of G on V , there is a natural induced action of G on the ring of
polynomial functions C[V] defined by the formula g · f(v) := f(ρ(g)−1v). Applying this
for the action ρM , we get an induced action of T on C[x1, . . . , xn]. It is easy to compute
this action: for a monomial xc and t ∈ T , we have t · xc = λ(t)−1 xc, where λ ∈ X (T) is
the character corresponding to

∑
j cjm(j) ∈ Zd. It follows that the monomials which are

invariant are precisely the ones for which
∑

j cjm(j) = 0, the trivial character, proving the
first part. The second part follows from the observation that a polynomial is invariant if and
only if each monomial that occurs in it is invariant. ◀

Part (1) of Proposition 3.1 shows that the invariant monomials are in one-to-one corres-
pondence with the nonnegative integer vectors in the kernel of the weight matrix. Accordingly,
they form a semigroup. In general, such semigroups can have a large number of generators,
which explains the difficulty of using polynomial invariants [24]. Our key idea to obtain
efficient algorithms will be to instead consider invariant Laurent monomials, which form a
lattice rather than a semigroup. We will return to this in Section 4.

In turns out that the weights lead to a strong link to convex polyhedral geometry, which
in turn characterizes the orbits in an orbit closure. For this, we make the following definitions.
The support of a vector v ∈ Cn is defined as

supp(v) := {j ∈ [n] | vj ̸= 0}.

Let us record some of the properties of the support. By dimension (of an orbit, orbit closure,
algebraic group, etc), we mean the dimension of the underlying variety.

▶ Lemma 3.2. For v, w ∈ Cn we have:
1. If Ov = Ow, then supp(v) = supp(w).
2. If supp(v) = supp(w), then dim Ov = dim Ow.
3. If w ∈ Ov, then supp(w) ⊆ supp(v). This inclusion is strict if and only if w ∈ Ov \ Ov.

Proof. (1) is clear, since each coordinate simply gets rescaled by a nonzero number by the
group action. For (2) we note that the stabilizer group stab(v) of v only depends on supp(v).
The claim follows using dim Ov = d − dim stab(v). For (3), the inclusion of supports holds
since taking limits can never increase the support. Finally, it is known [38, §8.3] that Ov \ Ov

is a Zariski closed subset of dimension strictly less than dim Ov. Hence w ∈ Ov \ Ov implies
dim Ow < dim Ov and therefore supp(w) ⊊ supp(v) by part (2). ◀

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 32:15

3.2 Newton cone and orbit closures
We define the Newton cone C(v) of a vector v ∈ Cn to be the rational polyhedral cone
generated by the weights corresponding to the indices in the support, that is,

C(v) :=
{ ∑

j∈supp(v)

cjm(j) | cj ≥ 0
}

⊆ Rd.

The lineality space of the cone C(v) is defined as L(v) := C(v) ∩ (−C(v)). Clearly, it is
the largest linear subspace contained in C(v). The cone C(v) is called pointed iff L(v) = 0.
(Compare [57] for the structure of polyhedral cones.)

These notions are standard in geometric programming, which essentially studies optimiz-
ation problems associated with torus actions, albeit often with a different representation and
motivation; see, e.g., [11] and references therein. The connection is particularly apparent and
useful in the study of polynomial capacities which have important applications to approximate
counting [50, 34].

We will see that the Newton cone contains all the information about the orbits contained
in an orbit closure. To start, we show that membership in the null cone can be characterized
as follows. Define the essential support of a vector v ∈ V as

e-supp(v) := {j ∈ supp(v) | m(j) ∈ L(v)}. (3)

▶ Lemma 3.3. Let k ∈ supp(v). We have k ∈ e-supp(v) if and only if there exists an
invariant monomial

∏
j∈supp(v) x

cj

j with cj ∈ Z≥0 such that ck > 0.

Proof. It is easy to see that m(k) ∈ L(v) if and only if there is a non-negative integral linear
combination

∑
j∈supp(v) cjm(j) = 0 with ck > 0. By Proposition 3.1, this is equivalent to the

existence of an invariant monomial
∏

j∈supp(v) x
cj

j with cj ∈ Z≥0 such that ck > 0. ◀

▶ Corollary 3.4. We have that v is in the null cone N (ρM) if and only if e-supp(v) = ∅.

Equivalently, v is in the null cone if and only if C(v) is pointed and m(j) ≠ 0 for all
j ∈ supp(v).

In fact, much more can be said. Let us first recall the notion of faces of polyhedral cones.
If C(v) is contained in a closed halfspace H+ of Rd bounded by a linear hyperplane H, then
we call the intersection F = H ∩ C(v) a face of C(v) when it is non-empty. The cone itself
is also considered a face of C(v): by definition, it is the largest face of C(v). On the other
hand, each face of C(v) must contain the lineality space L(v), which is therefore the smallest
face of C(v).

We will see shortly that the faces of C(v) are in bijective correspondence with the
orbits contained in Ov. For this, we need to introduce some more notation. For a subset
J ⊆ supp(v), we define the restriction v|J to be the vector with entries

(v|J)j =
{

vj if j ∈ J,

0 otherwise,

as its j-th coordinate. Let now F be a face of C(v) defined by a closed half-space H+ = {y ∈
Rd | ν · y ≥ 0} for some ν ∈ Rd, that is,

F = {y ∈ C(V) | ν · y = 0}.

CCC 2021

32:16 Polynomial Time Algorithms in Invariant Theory for Torus Actions

Since C(v) is rational, we may assume that ν has integer components. We assign to F the
subset of indices

SF := {j ∈ supp(v) | m(j) ∈ F}

and define vF := v|SF
. Let us check that the orbit OvF

of vF is contained in Ov. The
one-parameter subgroup σ : C× → T given by σ(ϵ) = (ϵν1 , . . . , ϵνd) satisfies

σ(ϵ) · v = ρM (σ(ϵ))v = (ϵν·m(1)
v1, . . . , ϵν·m(n)

vn). (4)

It follows that limϵ→0 σ(ϵ) · v = vF and hence vF ∈ Ov. The same reasoning shows that
vF ∈ OvF ′ if F is a face contained in the face F ′.

The following result is well known, see e.g., [56, Example 1.3], but we sketch a proof for
completeness.

▶ Proposition 3.5. The map F 7→ OvF
is a bijection between the set of faces of C(v) and

the set of orbits contained in Ov. Moreover, we have

F ⊆ F ′ ⇐⇒ OvF
⊆ OvF ′ .

The proof of surjectivity relies on a strengthening of the Hilbert–Mumford criterion
(Theorem 2.3). Recall this states that if we consider a closed subset S that is stable under the
group action and intersects the orbit closure of some point v, then there is a one-parameter
subgroup that will drive v to a point in S in the limit. However, a subtle point is that this
requires S to be closed. In general, orbits are not closed, so a point w could be in the orbit
closure of a point v, but the orbit of w may not be closed. In this case, Theorem 2.3 does
not apply to S = Ow, and indeed the orbit of w need not be reachable from v by a limit
of a one-parameter subgroup. The following theorem shows that for torus actions such a
phenomenon does not happen. This crucial fact will also prove useful for us algorithmically
in Section 7.

▶ Theorem 3.6 ([46], Kapitel III.2.2). Let ρ : T → GL(V) be a rational representation.
Suppose v, w ∈ V are such that w ∈ Ov. Then there exists a one-parameter subgroup
σ : C× → T such that

lim
ϵ→0

σ(ϵ) · v ∈ Ow.

Before we prove Proposition 3.5, we discuss a bit about the structure of one-parameter
subgroups. For each ν ∈ Zd, we define a one-parameter subgroup of T , namely σ : C× → T

defined by σ(ϵ) = (ϵν1 , . . . , ϵνd). Any one-parameter subgroup of T is of this form. This
gives an identification of abelian groups Zd ∼= Y(T), where Y(T) denotes the collection of all
one-parameter subgroups of T .

We leave the proof of the following well known lemma to the reader.

▶ Lemma 3.7. Let σ : C× → T be a one-parameter subgroup, so σ(ϵ) = (ϵν1 , . . . , ϵνd) for
some ν ∈ Zd, and let v ∈ Cn.
1. The limit limt→0 σ(t) · v exists if and only if m(j) · σ ≥ 0 for all j ∈ supp(v).
2. If the limit exists, then limt→0 σ(t) · v = v|S, where S = {j ∈ supp(v) | m(j) · σ = 0}.

Proof of Proposition 3.5. We have already verified that OvF
is an orbit contained in Ov,

hence F 7→ OvF
is well-defined as a map from the set of faces of C(v) to the set of

orbits contained in Ov. To see that it is injective, note that F is the cone generated by

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 32:17

supp(vF) = SF . For surjectivity, let Ow be an orbit contained in Ov and σ : C× → T be a
one-parameter subgroup as in Theorem 3.6. There is ν ∈ Zd such that σ(ϵ) = (ϵν1 , . . . , ϵνd).
By Lemma 3.7, the existence of limϵ→0 σ(ϵ) · v means that ν · m(j) ≥ 0 for all j ∈ supp(v).
In other words, C(v) is contained in the halfspace {y ∈ Rd | ν · y ≥ 0}. Moreover, the limit
equals vF , where F is the face F := {y ∈ C(v) | ν · y = 0} of C(v). Therefore, vF ∈ Ow,
hence OvF

= Ow, and we have shown surjectivity.
In order to show the remaining equivalence, recall that we argued below (4) that if F ⊆ F ′

then vF ∈ OvF ′ . The preceding argument also implies the converse. ◀

As an immediate consequence of Proposition 3.5, we get the following result, which not
only reproves Lemma 3.3 but also characterizes the closed orbit in an orbit closure. For this,
define

ṽ := v|L(v) = v|e-supp(v).

▶ Corollary 3.8. The orbit Oṽ corresponding to the lineality space L(v) is contained in every
orbit closure contained in Ov. Therefore, it is the unique closed orbit contained in Ov.

In particular, the orbit Ov is closed if and only if C(v) = L(v), i.e., C(v) equals its linear
span. Moreover, v is in the null cone if and only if e-supp(v) = ∅.

4 Generating Laurent polynomials and rational invariants

In this section, we discuss the computation of suitable rational invariants, which is the heart
of our algorithms, and the main novelty of this paper. As explained in the introduction, the
starting point is the simple observation that two orbits can only be equal when they have
the same support (Lemma 3.2). But once we restrict to vectors of fixed support, it is natural
to consider a larger class of invariants, namely Laurent polynomials, which are polynomials
that can also have negative exponents. In Section 4.1 we will see that the invariant Laurent
polynomials for a given support naturally form a lattice that can be computed from the
weight matrix. This allows us to give an efficient algorithm for computing small sets of
generators. As a consequence, we can also efficiently compute a system of generating rational
invariants.

For the rest of this section, we fix an n-dimensional representation ρM : T → GLn(C) of
the torus T = (C×)d given by a weight matrix M ∈ Matd,n(Z) with columns m(j) for j ∈ [n].

4.1 Invariant Laurent polynomials
For S ⊆ [n], consider the set of vectors with support S, that is, the variety

XS = {v ∈ Cn | supp(v) = S} = {v ∈ Cn | vj ̸= 0 if and only if j ∈ S}. (5)

The ring of regular functions on XS , denoted C[XS], is naturally identified with the ring of
Laurent polynomials in variables {xj}j∈S . That is,

C[XS] = C[xj , x−1
j | j ∈ S].

We observe that ρM restricts to an action of T on XS , and induces an action on C[XS]. The
proposition below shows that the algebra C[XS]T of invariant Laurent polynomials can be
succinctly described in terms of the lattice

LS =
{

c ∈ ZS |
∑
j∈S

cjm(j) = 0
}

= ker(MS) ∩ Z|S|, (6)

where ZS := {c ∈ Rn | cj = 0 for all j ̸∈ S} ∼= Z|S|, and MS denotes the submatrix of the
weight matrix M , obtained by removing all columns except those labeled by S.

CCC 2021

32:18 Polynomial Time Algorithms in Invariant Theory for Torus Actions

▶ Proposition 4.1.
1. Let c ∈ ZS. A Laurent monomial xc =

∏
j∈S x

cj

j is invariant if and only if c ∈ LS.
2. The algebra of invariant Laurent polynomials C[XS]T is spanned as a vector space by the

invariant Laurent monomials.
3. If {c(1), c(2), . . . , c(r)} is a lattice basis of LS, then C[XS]T is generated as an algebra by

the invariant Laurent monomials {xc(1)
, . . . , xc(r)}.

Proof. The first two parts are shown using an argument similar to the proof of Proposition 3.1.
The third statement is an immediate consequence. ◀

It is instructive to compare this with the discussion below Proposition 3.1, where we
saw that the invariant polynomials are similarly described by the semigroup of nonnegative
vectors in the kernel of the weight matrix. By working with vectors of fixed support, we
instead obtain a natural lattice structure, which simplifies the situation considerably. For
example, the lattice LS and hence the algebra of invariant Laurent polynomials C[XS]T have
at most |S| ≤ n generators – in stark contrast to the situation for invariant polynomials.

We now discuss how to compute lattice bases as in Proposition 4.1. It is well known
that every integer matrix M can be diagonalized by multiplying from left and right with
unimodular matrices. This is known as the Smith normal form [59]. The Smith normal form
can be computed in polynomial time [43]. We record these facts in the following theorem.

▶ Theorem 4.2 (Smith normal form). Let M ∈ Matd,n(Z). Then, there exist unimodular
matrices U ∈ Matd,d(Z), W ∈ Matn,n(Z) such that

UMW =

α1 0 0 . . . 0
0 α2 0 . . . 0

0 0
. . . 0

αr

...
...

... 0
. . .

0 0 0 . . . 0

and the diagonal elements satisfy αi | αi+1 for i = 1, 2, . . . , r − 1, where r equals the rank of
M . The matrix UMW is unique and called the Smith normal form of M .

Moreover, if the bit-lengths of the entries of M are bounded by b, then the matrices U ,
W , and UMW can be computed in poly(d, n, b)-time.

Using the Smith normal form it is easy to compute a basis of the lattice LS . We state
this in the following algorithm and corollary.

Algorithm 1 Computation of a basis of the lattice of invariant Laurent monomials.

Input M ∈ Matd,n(Z) and S ⊆ [n].
Step 1 Compute the submatrix MS of M obtained by deleting all columns except those

in S.
Step 2 Compute the Smith normal form UMSW of MS (as in Theorem 4.2).
Step 3 Return {w(r+1), w(r+2), . . . , w(n)}, where w(j) denotes the jth column of W .

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 32:19

▶ Corollary 4.3. Let M ∈ Matd,n(Z) and S ⊆ [n], and suppose the bit-lengths of the entries
of M are bounded by b. Then Algorithm 1 computes a basis for the lattice LS defined in (6)
in poly(d, n, b)-time. In particular, each w(j) has bit-length poly(d, n, b).

Alternatively, one can use lattice algorithms; we refer the interested reader to [31,
Corollary 5.4.10].
▶ Remark 4.4. It is easy to see that given an exponent vector c = (c1, . . . , cn) ∈ Zn

≥0,
where the bit-lengths of the cis are bounded by b, an arithmetic circuit computing the
monomial xc of size poly(n, b) can be constructed in poly(n, b)-time. Similarly, if c ∈ Zn, an
arithmetic circuit with division computing the Laurent monomial xc can be constructed in
poly(n, b)-time.

Proof of Theorem 1.3. This follows from Proposition 4.1, Corollary 4.3, and Remark 4.4.
◀

4.2 Rational invariants
In the remainder of this section we will discuss rational invariants. For V = Cn, recall that
C[V] = C[x1, . . . , xn] is the polynomial ring in n variables. Let C(V) = C(x1, . . . , xn) the
field of rational functions (its fraction field). In other words, any element in C(V) is a ratio
of two polynomials. The action of T on C[V] extends to C(V). Then C(V)T is the field of
rational invariants. Clearly, any invariant Laurent polynomial is a rational invariant, but the
converse need not be the case.

Nevertheless, we can show that the invariant Laurent polynomials in all variables (that
is, for support S = [n]) generate the rational invariants as a field.

▶ Proposition 4.5. Let A := C[X[n]] = C[x1, x−1
1 , . . . , xn, x−1

n]T denote the algebra of
invariant Laurent polynomials, and let F := C(x1, . . . , xn)T denote the field of rational
invariants. Then, A generates F as a field, i.e., the field of fractions of A is F .

Proof. Let f ∈ F × and write f = p
q , where p, q ∈ C[x1, . . . , xn] have no common factors.

Since f is invariant, we have for any t ∈ T that

t · p

t · q
= t · f = f = p

q
.

Accordingly, t · p = α(t)p and t · q = α(t)q for some α(t) ∈ C×. Thus, p and q span
one-dimensional representations. This in turn implies that α : T → C× is a character, as
discussed in Section 3.1, and further that p (and also q) is a sum of monomials with the
same weight, i.e., p =

∑
e pexe such that t · xe = α(t)xe for pe ̸= 0. In particular, fe = q

xe is
a Laurent polynomial invariant if pe ̸= 0, and we can write

f = p

q
=
∑

e

pe
xe

q
=
∑

e

pe
1
fe

,

which concludes the proof. ◀

As a direct consequence, any system of generating invariant Laurent polynomials (as an
algebra) also serves as a system of generating rational invariants (as a field extension of C).
Thus we obtain:

Proof of Corollary 1.4. This follows from Theorem 1.3 (with S = [n]) and Proposition 4.5.
◀

CCC 2021

32:20 Polynomial Time Algorithms in Invariant Theory for Torus Actions

5 Orbit equality problem

In this section, we will give a polynomial time algorithm for the orbit equality problem. Given
two points, the strategy is to compute a small collection of invariant Laurent monomials
(using the result of Section 4) whose evaluations at the two given points will determine
whether the two points are in the same orbit. The efficient testing of whether two Laurent
monomials evaluate to the same value actually requires an idea: this has already been studied
in the literature and we briefly sketch in Section 5.1 how to do this.

We still assume an n-dimensional representation ρM : T → GLn(C) of the torus T = (C×)d

given by a weight matrix M ∈ Matd,n(Z) with columns m(j) for j ∈ [n].
In general, invariants can only decide orbit closure intersection, not orbit equality. However,

the crucial point is that in the varieties (5) consisting of vectors of fixed support any T -orbit
is closed.

▶ Proposition 5.1. Let S ∈ [n], XS be the variety defined in (5), and v ∈ XS. Then the
orbit Ov is a closed subset of XS.

Proof. By Lemma 3.2 (3) we have Ov = Ov ∩ XS which implies that the orbits are closed in
XS . ◀

Orbit equality in V can always be reduced to orbit equality in some XS , since equality of
supports is a necessary condition (Lemma 3.2 (1)). The importance of the above result is
that the latter orbit equality and orbit closure intersection are equivalent in XS . Together
with Theorem 2.1 we obtain the following result.

▶ Corollary 5.2. Suppose supp(v) = supp(w) = S. Then, Ov ̸= Ow if and only if there is an
invariant Laurent monomial f =

∏
j∈S x

cj

j such that f(v) ̸= f(w).

Thus, we obtain the following algorithm for the orbit equality problem.

Algorithm 2 Deciding orbit equality.

Input M ∈ Matd,n(Z) and v, w ∈ Q(i)n.
Step 1 Check if supp(v) = supp(w). If not, Ov ̸= Ow, so we can stop.
Step 2 Use Algorithm 1 to compute a lattice basis B for the lattice LS defined in (6).
Step 3 For each e ∈ B, we check if ve = we (as described in Section 5.1 below).

If they are all equal, then Ov = Ow. Else, Ov ̸= Ow.

Proof of Theorem 1.2, part (1). The correctness of Algorithm 2 follows from Proposi-
tion 4.1 and Corollary 5.2. We now analyze its runtime. Clearly, the first step can be
implemented efficiently. For the second step, we can appeal to Corollary 4.3. For step 3, we
first observe that, again by Corollary 4.3, the exponents e have bit-length poly(d, n, b). Then
Proposition 5.4 below shows that this step can also be implemented in time poly(d, n, b). ◀

5.1 Laurent monomial equivalence
We now discuss how to test if a Laurent monomial xe evaluates to the same value at two points
v and w. In our context, where each component ej of the exponent vector e = (e1, . . . , en)
has poly-sized bit-lengths, it is unreasonable to evaluate the Laurent monomials explicitly,
because the answer may very well require exponentially large bit-length. Yet, it is possible

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 32:21

to check if ve = we efficiently. We describe a simple algorithm based on g.c.d.’s, which has
appeared before (see, for example, [25]) in the case where the entries of v and w are in Z
(or equivalently Q). The result is much older; for example, it follows from the results in [3],
as mentioned in [30], which gives a generalization to number fields.15 Here we present a
short self-contained proof and then follow up with the rather simple extension to Gaussian
rationals.

▶ Lemma 5.3. Suppose a1, . . . , ak, b1, . . . , br ∈ Q and e1, . . . , ek, f1, . . . , fr ∈ Z have bit-
lengths at most s. Then, in poly(k, r, s)-time, we can decide if

∏k
i=1 aei

i =
∏r

j=1 b
fj

j .

Proof. By clearing denominators, we may assume that a1, . . . , ak, b1, . . . , br are integers. By
moving terms to the other side, we can further assume w.l.o.g.that all ei, fj ≥ 0. Pick some
al and some bm that are not coprime. Then, consider d = gcd(al, bm) ≥ 2. W.l.o.g., we can
assume el ≥ fm. Then, test if del−fm(a′

l)el
∏

i̸=l aei
i = (b′

m)fm
∏

j ̸=m b
fj

j , where a′
l = al/d

and b′
m = bm/d. This is an iterative procedure which stops when each ai is coprime to bj .

At which point, unless all ai’s and bj ’s are equal to 1, both sides cannot be equal.
The question is how long does such an iterative procedure take. Consider the quantity

P := |a1 · · · akb1 · · · br|. After applying one step, the resulting quantity P ′ satisfies P ′ =
P/d2 ≤ P/4. Since initially, P is 2poly(k,r,s)-sized, there are at most a polynomial number of
iterative steps. Hence, the entire procedure takes poly(k, r, s)-time. ◀

An analogous result with the same proof holds for the ring Z[i] of Gaussian integers and
its quotient field Q(i) of Gaussian rationals, using that this ring has unique factorization
into irreducible elements. In the following proposition, we assume that a Gaussian rational
a = α + iβ ∈ Q(i) is described by giving the encodings of α and β in binary.

▶ Proposition 5.4. Suppose a1, . . . , ak, b1, . . . , br ∈ Q(i) and e1, . . . , ek, f1, . . . , fr ∈ Z all
have bit-lengths bounded by s. Then, in poly(k, r, s)-time, we can decide if

∏k
i=1 aei

i =∏r
j=1 b

fj

j .

▶ Remark 5.5. For computational purposes, in many instances, numbers are described by
their “floating point” representations. The floating point description of a Gaussian rational
a ∈ Q(i) is described by giving the binary encodings of α, β ∈ Q and p ∈ Z such that
a = (α + iβ)2p. If we assume that a1, . . . , ak, b1, . . . , br ∈ Q(i) in the proposition above
are given by their floating point descriptions, we can still decide monomial equivalence in
polynomial time. Indeed, if we write each aj = (αj + iβj)2pj and bj = (γj + iδj)2qj , then
deciding whether

∏k
j=1 a

ej

j =
∏r

j=1 b
fj

j simplifies to deciding if k∏
j=1

(αj + iβj)ej

 · 2
∑k

j=1
ejpj =

 r∏
j=1

(γj + iδj)fj

 · 2
∑r

j=1
fjqj ,

which can again be interpreted as an instance of Proposition 5.4 and hence can be checked
in polynomial time. Since all other computations in our algorithms only involve supports of
vectors, it follows that all results in this paper generalize to this input model, as claimed in
footnote 6.

An even easier special case arises for numbers of the form a = 2p, with p ∈ Q specified by
its binary encoding, as in the perfect matching application discussed in Section 1.4. Indeed,
if aj = 2pj and bj = 2qj for j ∈ [n], then deciding whether

∏k
j=1 a

ej

j =
∏r

j=1 b
fj

j simply
amounts to verifying whether

∑n
j=1 pjej =

∑n
j=1 qjfj , which is clearly possible in polynomial

time.

15 In particular Ge’s result [30] implies that Theorem 1.2 extends to the case where the entries of v and w
are taken from some algebraic number field.

CCC 2021

32:22 Polynomial Time Algorithms in Invariant Theory for Torus Actions

6 Orbit closure intersection and explicit separating invariants

In this section, we discuss how to solve the orbit closure intersection problem in polynomial
time by efficiently reducing it to the orbit equality problem. The problem of orbit closure
intersection has a manifestly analytic point of view, but also an algebraic point of view by
Mumford’s theorem, Theorem 2.1. In other words, when orbit closures of two points do not
intersect, there is an invariant polynomial that takes different values on both points, serving
as a “witness” to the fact that the orbit closures do not intersect. Accordingly, given two
vectors whose orbit closures do not intersect, we also explain how to efficiently construct an
arithmetic circuit which computes an invariant monomial separating the two vectors.

6.1 Reduction to orbit equality
The key idea is the following. Recall from Theorem 2.2 that any orbit closure Ov contains as
unique closed orbit Oṽ, and that two orbit closures intersect if and only if they contain the
same closed orbit. In Corollary 3.8, we showed that the unique closed orbit has a concrete
polyhedral characterization: we can take ṽ = v|e-supp(v), the restriction of the vector v

to its essential support. Accordingly, the map v 7→ ṽ provides a reduction of the orbit
closure intersection problem for ρM to the the orbit equality problem for ρM . The following
lemma shows that the essential support (and hence the reduction map) can be computed in
polynomial time by using linear programming.
▶ Lemma 6.1. Let M ∈ Matd,n(Z) define an n-dimensional representation of T = (C×)d,
and let v ∈ Cn. For k ∈ supp(v), we have k ∈ e-supp(v) if and only if there is a non-
negative linear combination

∑
j∈supp(v) cjm(j) = 0 such that ck > 0. If the bit-lengths of the

entries of M are bounded by b, the latter can be decided in poly(d, n, b)-time by using linear
programming.
Proof. The characterization follows from Proposition 3.1 and Lemma 3.3. It amounts to
a basic decisional problem of linear programming, which is well known to be solvable in
polynomial time, see [31]. ◀

The above proof also shows that a nonvanishing invariant monomial as in Lemma 6.1 can
be computed in polynomial time. As explained above, we arrive at the following algorithm
and results.

Algorithm 3 Reduction of orbit closure intersection to orbit equality.

Input M ∈ Matd,n(Z), v, w ∈ Q(i)n.
Step 1 Compute e-supp(v) in the following way: For each k ∈ supp(v), use linear program-

ming to determine if there is a non-negative linear combination
∑

j∈supp(v) cjm(j) = 0
with ck > 0. The set e-supp(v) consists of all k ∈ supp(v) for which this is the case.

Step 2 Compute e-supp(w) in the same way.
Step 3 Return ṽ = v|e-supp(v) and w̃ = w|e-supp(w).

▶ Corollary 6.2. Let M ∈ Matd,n(Z) describe an n-dimensional representation of T = (C×)d.
Further, let v, w ∈ Q(i)n and assume the bit-lengths of the entries of M, v, and w are
bounded by b. Then there is a poly(d, n, b)-time reduction that reduces the problem of deciding
Ov ∩ Ow ̸= ∅ to the problem of deciding if O

ṽ
= O

w̃
, where ṽ and w̃ have bit-lengths bounded

by b.
Proof of Theorem 1.2, part (2). This follows from part (1), combined with Corollary 6.2.

◀

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 32:23

6.2 Explicit separating invariant
For torus actions, our reduction of orbit closure intersection to orbit equality will give us an
invariant Laurent monomial that takes different values on the two points. But a separating
invariant Laurent monomial itself does not serve as a witness (at least not naively, one needs
further properties about the support of the Laurent monomial for it to serve as a witness). We
now prove Corollary 1.5, which asserts that given two vectors we can nevertheless efficiently
construct an arithmetic circuit which computes an invariant monomial separating them.

Proof of Corollary 1.5. We already noted that, by linear programming, we can compute the
essential supports of v and w in poly(d, n, b)-time. We distinguish two cases.

Case 1: e-supp(v) ̸= e-supp(w)

Suppose k ∈ e-supp(v) \ e-supp(w) without loss of generality. By Lemma 3.3 there is an
invariant monomial f =

∏
j∈supp(v) x

cj

j such that ck > 0. Let us verify that f(v) ̸= f(w).
We clearly have f(v) ̸= 0. On the other hand, f(w) = f(w̃) = 0, since w̃ ∈ Ow, but k is not
contained in supp(w̃) = e-supp(w). So we indeed have f(v) ̸= f(w). In addition, we can find
(c1, . . . , cn) in poly(d, n, b)-time by linear programming (Lemma 6.1), so we can construct an
arithmetic circuit for f in poly(d, n, b)-time by Remark 4.4.

Case 2: e-supp(v) = e-supp(w)

Let S := e-supp(v) = e-supp(w). We assume that Ov∩Ow = ∅, which implies O
ṽ
∩O

w̃
= ∅.

Thus, by Corollary 5.2, there is an invariant Laurent monomial f = xe with the property
that f(ṽ) ̸= f(w̃), and hence f(v) ̸= f(w). Just like in Algorithm 2, we can in poly(d, n, b)-
time compute such an exponent vector e ∈ Zn, with bit-length of the ei bounded above by
poly(d, n, b).

Our goal is to produce an invariant monomial that separates v and w, so we need
to modify f so as to get rid of the negative exponents. In the process, we must ensure
that the bit-length of the circuit does not explode. By Lemma 3.3, for each k ∈ S, there
exists c(k) ∈ Zn

≥0 such that
∑

j∈supp(v) c
(k)
j m(j) = 0 and c

(k)
k > 0. We can compute c(k) in

poly(d, n, b)-time by linear programming. Let mk = xc(k) denote the corresponding invariant
monomial. Put S− := {j ∈ S | ej < 0}. If mj(v) ̸= mj(w) for some j ∈ S−, then mj is
an explicit separating invariant monomial and we are done by Remark 4.4. Assume now
mj(v) = mj(w) for all j ∈ S−. Then f̃ := xd := f ·

∏
j∈S−

m
−ej

j is a Laurent monomial that
separates v and w. We verify now that the exponent vector d has non-negative entries. By
construction, we have for k ∈ S−,

dk = ek + (−ek)c(k)
k +

∑
j∈S−,j ̸=k

(−ej) · c
(j)
k ≥ 0,

since ek < 0 and ej < 0 for all j ∈ S−, while c
(k)
k ≥ 1, and c

(j)
k ≥ 0. For k ∈ [n] \ S−, we have

dk = ek +
∑

j∈S−

(−ej) · c
(j)
k ≥ 0,

since ek ≥ 0 for k ∈ S \ S− and ek = 0 for k ̸∈ S, while ej < 0 for j ∈ S−. Altogether,
we have shown that indeed all components of d are non-negative. We finally note that d

can be computed in polynomial time, in particular, it has bit-length poly(d, n, b). So by
Remark 4.4, we can construct an arithmetic circuit of size poly(d, n, b) that computes f̃ in
poly(d, n, b)-time. ◀

CCC 2021

32:24 Polynomial Time Algorithms in Invariant Theory for Torus Actions

7 Orbit closure containment

In this section, we discuss how to solve the the orbit closure containment problem in
polynomial time by efficiently reducing it to the orbit equality problem.

The notion of orbit closure containment is in general quite tricky to capture. Polynomial
invariants do not suffice, since two orbit closures can intersect (hence all polynomial invariants
agree) with neither being contained in the other – this is precisely the difference between the
orbit closure intersection and the orbit closure containment problem. Instead, the key idea
for the reduction comes from one-parameter subgroups. We already discussed in Section 3
that if w ∈ Ov then Ow can be reached from v by a one-parameter subgroup. The following
proposition gives a concrete polyhedral description of the relevant one-parameter subgroups.

▶ Lemma 7.1. Let M ∈ Matd,n(Z) define an n-dimensional representation of T = (C×)d,
and let v, w ∈ Cn. Then w ∈ Ov if and only if there exists a one-parameter subgroup
σ : C× → T , so σ(ϵ) = (ϵν1 , . . . , ϵνd) for some ν ∈ Zd, such that
1. {j ∈ supp(v) | m(j) · ν = 0} = supp(w) and m(k) · ν > 0 for all k ∈ supp(v) \ supp(w);
2. O(v|supp(w)) = Ow.

Proof. If w ∈ Ov, then by Theorem 3.6, we know that there is a one-parameter subgroup σ

such that limt→0 σ(t)v ∈ Ow. In particular this implies that limt→0 σ(t)v has the same
support as w and has the same orbit as w. Now, both (1) and (2) follow from Lemma 3.7.

For the converse, note that, again by Lemma 3.7, (1) implies that limt→0 σ(t)v =
v|supp(w) ∈ Ov, hence it follows that Ow = O(v|supp(w)) ⊆ Ov by (2). ◀

Now, we can give our algorithm to test if w is in the orbit closure of v.

Algorithm 4 Orbit closure containment.

Input M ∈ Matd,n(Z) and v, w ∈ Q(i)n.
Step 1 Check if supp(w) ⊆ supp(v). If not, w /∈ Ov, so we can stop.
Step 2 Using linear programming, determine whether there exists a solution y ∈ Rd to the

collection of linear equalities m(j) · ν = 0 for each j ∈ supp(w) and linear inequalities
m(k) · ν > 0 for all k ∈ supp(v) \ supp(w). If there is no solution, then w /∈ Ov, so we can
stop.

Step 3 Use Algorithm 2 check whether O(v|supp(w)) = Ow. If yes, then w ∈ Ov. Else, it is
not.

Proof of Theorem 1.2, part (3). The correctness of Algorithm 4 follows from Lemma 7.1.
Indeed, condition (1) in the lemma is satisfied if and only if the algorithm passes the first
two steps, and then condition (2) is tested in the last step.

We still need to argue about the efficiency of the algorithm. Clearly, Step 1 can be
done in linear time. Step 2 can be done in poly(d, n, b)-time by linear programming. Step 3
appeals to the orbit equality problem, which by part (1) of the theorem can be done in
poly(d, n, b)-time. ◀

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 32:25

8 Orbit problems for compact tori

So far, we have studied orbit problems for algebraic tori, that is, groups of the form T = (C×)d.
In this section we consider the groups K = (S1)d, where S1 = {z ∈ C× | |z| = 1}. Such
groups are often called compact tori. Indeed, any commutative compact connected Lie
group is of this form. Besides the fundamental algorithmic interest in this setting, it is also
important in applications. For example, in physics, symmetries are often given by compact
group actions, such as compact tori [32, 2]. We give further complexity-theoretic motivation
below.

The compactness implies that orbits are closed and so the three problems in Problem 1.1
coincide. In this section, we show how to solve the orbit equality problem for a compact
torus by reducing it to orbit equality for the corresponding algebraic torus. Subsequently,
we give an alternative reduction that works not only for tori but in fact for any connected
reductive group such as SLn.

To start, we note that it is known that any (continuous) finite-dimensional representation
of K = (S1)d extends to a representation of T = (C×)d [62]. In particular, representations
can be specified as before by a weight matrix M ∈ Matd,n(Z). Then we have the following
result:

▶ Proposition 8.1. Let M ∈ Matd,n(Z) define an n-dimensional representation of T = (C×)d

and K = (S1)d. Let v, w ∈ Cn. Then, OK,v = OK,w if and only if OT,v = OT,w and
|vj | = |wj | for all j.

Proof. Since K ⊆ T , it is clear that if OK,v = OK,w, then OT,v = OT,w and |vj | = |wj | for
all j.

Conversely, suppose OT,v = OT,w and |vj | = |wj | for all j. Then, there is some t ∈ T

such that t · v = w. Write t = (t1, . . . , td) and write each ti = ri · eiθi , with ri > 0 and θi ∈ R.
Then, it is easy to see that we must have (eiθ1 , . . . , eiθd) · v = w. Thus v and w are in the
same K-orbit. ◀

Proof of Corollary 1.6. We are given M ∈ Matd,n(Z) and v, w ∈ Q(i)n. By the above
proposition, we need to check if OT,v = OT,w and if |vj | = |wj | for all j. The former can be
done in polynomial time by Theorem 1.2 and the latter can clearly be done in polynomial
time. ◀

Before proceeding we give some further context and motivation. Algorithms for the null
cone membership problem (given a rational representation ρ : G → GL(V) of a reductive
group G and v ∈ V , decide if 0 ∈ Ov) based on optimization methods have emerged in recent
years. They take advantage of the fact that 0 ∈ Ov if and only if one can drive the norm
to 0 along the orbit Ov. This can be viewed as an optimization problem where one tries
to minimize (infimize) the norm along the orbit. While this is not a convex optimization
problem, it is geodesically convex by the Kempf-Ness theory [45], which allows for many
of the ideas to be modified appropriately. As far as the orbit closure intersection problem
is concerned, the natural extension of this idea is as follows: Given v, w ∈ V , first use an
optimization algorithm to approximately find a point in each orbit closure with minimal
norm; let us call these points v̌, w̌. Then, appealing to the Kempf-Ness theory again, we
have that Ov ∩ Ow ̸= ∅ if and only if v̌ and w̌ are in the same orbit for a maximal compact
subgroup K of G. In this way, the orbit closure intersection problem for G can be reduced to
the orbit equality problem for the maximal compact subgroup K. In fact, for the so-called
left-right action of SLn × SLn on matrix-tuples, this idea was carried out successfully to
obtain a polynomial-time algorithm for orbit closure intersection [1]. This further emphasizes
the importance of the orbit equality problem for compact Lie group actions.

CCC 2021

32:26 Polynomial Time Algorithms in Invariant Theory for Torus Actions

Here we report on an interesting phenomenon, which provides a kind of converse to the
strategy explained above. Namely, for any action of a connected reductive group G, the
orbit equality problem for the maximal compact subgroup K ⊆ G is equivalent to an orbit
intersection (or equality) problem for a related action of G! As this result is not crucial to
the rest of the paper and requires significantly different background, we will be brief in our
explanations. We denote by V ∗ the contragredient or dual representation of V .

▶ Theorem 8.2. Let ρ : G → GL(V) be a finite-dimensional representation of a connected
reductive group G. Let K be a maximal compact subgroup of G, and ⟨·, ·⟩ be a K-invariant
Hermitian inner product on V . For v ∈ V , let v̂ ∈ V ∗ be defined by v̂(w) := ⟨v, w⟩. Then,
for v, w ∈ V , the following are equivalent:
1. OK,v = OK,w;
2. O

G,(v,̂v) = O
G,(w,ŵ) in V ⊕ V ∗;

3. The G-orbit closures of (v, v̂) and (w, ŵ) in V ⊕ V ∗ intersect.

Proof. Let Lie(G) ⊆ L(V) denote the Lie algebra of G. For any linear action of G on a
vector space U , we get an induced action of Lie(G) on U . Given a K-invariant Hermitian
form ⟨·, ·⟩ on U , we define the so-called moment map µU : U → Lie(G)∗ by the formula
µU (u)(X) = ⟨u, X · u⟩ for u ∈ U and X ∈ Lie(G) (up to a scalar which is not relevant for
our purposes). The celebrated Kempf-Ness theorem says that if µU (u) = 0 then the G-orbit
of u is closed. Moreover, it asserts that if u′ ∈ U is another point such that µU (u′) = 0, then
OG,u = OG,u′ if and only if OK,u = OK,u′ .

Applying the preceding to (v, v̂) and (w, ŵ) in U = V ⊕ V ∗, a simple calculation shows
that the moment map vanishes at either point, so the two orbits are closed. This shows the
equivalence between (2) and (3). The equivalence between (1) and (2) follows immediately
from the second part of the Kempf-Ness theorem, using that kv̂ = k̂v for any k ∈ K, since
K acts unitarily. ◀

9 Concluding remarks, future directions, and open problems

To better understand the context of our results and their potential impact on future progress,
we briefly discuss some results in literature and then suggest further research directions.
In very high level, we feel that the following aspects are highlighted by this work: the
relative power and interplay between algebraic and analytical algorithms, the importance
of understanding commutative actions as a stepping stone towards understanding general
actions, the role of rational (as opposed to polynomial) invariants, and the subtlety of “no
go” results, which evidently can be surpassed.

There has been an explosion of interest over the last decade in understanding invariant
theory from a complexity theoretic perspective (we survey some of this literature in the
introduction). This rapidly developing field can be seen as an endeavour to classifying
computational problems in invariant theory according to their difficulty, finding efficient
algorithms whenever possible, as well as connecting to applications in mathematics, physics,
optimization, and statistics.

Invariant theory in the setting of a rational representation of a connected reductive group
is the most relevant for complexity theory. The commutative case of tori is an important
special case. Despite the well-understood structural simplicity of the corresponding invariant
theory, even basic algorithmic problems are non-trivial. Null cone membership, arguably the
most basic problem, has long been known to have an efficient algorithm, as it reduces to
linear programming, which non-trivially admits polynomial-time algorithms. The problems

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 32:27

of orbit equality, orbit closure intersection, and orbit closure containment have polynomial
time algorithms, as shown in this paper. We stress that while efficient algorithms for linear
programming are “continuous” or “analytic” in nature, our algorithms use a combination
of both analytic and algebraic techniques. The more general problem of succinct circuits
for generating polynomial invariants, which is one of the basic challenges proposed in [52],
has recently shown to be impossible under natural complexity assumptions [29]. Yet, in this
paper, we bypass this negative result, and see that rational invariants for torus actions can
be captured in a computationally efficient way without the need for succinct circuits. It is an
interesting open problem to determine if there are succinct circuits for separating invariants
or null cone definers, see [29, Problems 1.14, 1.15].

The invariant theory of non-commutative groups has a different flavor from, and is
far more complex than, the commutative case, see, for example, [38]. Many interesting
problems in computational invariant theory remain open in the non-commutative case. We
list a few. First and foremost, the results in this paper motivate the investigation of the
computational efficiency of systems of generating rational invariants. Further, it is natural
to wonder if rational invariants can help capture orbit closure intersection and orbit equality
for non-commutative group actions. Another open problem is to give any polynomial time
algorithm for orbit closure intersection (and the subproblem of null cone membership). An
intermediate challenge is to ascertain whether null cone membership is in NP ∩ co-NP. Note
that in [5] it is shown that the general orbit closure containment problem is NP-hard.

References
1 Zeyuan Allen-Zhu, Ankit Garg, Yuanzhi Li, Rafael Oliveira, and Avi Wigderson. Operator

scaling via geodesically convex optimization, invariant theory and polynomial identity testing.
In STOC’18—Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, pages 172–181. ACM, New York, 2018. doi:10.1145/3188745.3188942.

2 Michele Audin. Torus actions on symplectic manifolds, volume 93. Birkhäuser, 2012.
3 Eric Bach, James R. Driscoll, and Jeffrey O. Shallit. Factor refinement. In David S. Johnson,

editor, Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms,
22-24 January 1990, San Francisco, California, USA, pages 201–211. SIAM, 1990. URL:
http://dl.acm.org/citation.cfm?id=320176.320199.

4 Charles H Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and
William K Wootters. Teleporting an unknown quantum state via dual classical and Einstein-
Podolsky-Rosen channels. Physical review letters, 70(13):1895, 1993.

5 Markus Bläser, Christian Ikenmeyer, Vladimir Lysikov, Anurag Pandey, and Frank-Olaf
Schreyer. Variety membership testing, algebraic natural proofs, and geometric complexity
theory. arXiv, 2020. arXiv:1911.02534.

6 Peter A. Brooksbank and Eugene M. Luks. Testing isomorphism of modules. Journal of Algebra,
320(11):4020–4029, 2008. Computational Algebra. doi:10.1016/j.jalgebra.2008.07.014.

7 Peter Bürgisser, Matthias Christandl, Ketan D. Mulmuley, and Michael Walter. Membership
in moment polytopes is in NP and coNP. SIAM J. Comput., 46(3):972–991, 2017. doi:
10.1137/15M1048859.

8 Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Mendes de Oliveira, Michael Walter, and Avi
Wigderson. Towards a theory of non-commutative optimization: geodesic first and second order
methods for moment maps and polytopes. In 60th Annual IEEE Symposium on Foundations
of Computer Science—FOCS 2019, pages 845–861. IEEE Computer Soc., Los Alamitos, CA,
2019. arXiv:1910.12375.

9 Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson.
Efficient algorithms for tensor scaling, quantum marginals, and moment polytopes. In 59th
Annual IEEE Symposium on Foundations of Computer Science—FOCS 2018, pages 883–897.
IEEE Computer Soc., Los Alamitos, CA, 2018. doi:10.1109/FOCS.2018.00088.

CCC 2021

https://doi.org/10.1145/3188745.3188942
http://dl.acm.org/citation.cfm?id=320176.320199
http://arxiv.org/abs/1911.02534
https://doi.org/10.1016/j.jalgebra.2008.07.014
https://doi.org/10.1137/15M1048859
https://doi.org/10.1137/15M1048859
http://arxiv.org/abs/1910.12375
https://doi.org/10.1109/FOCS.2018.00088

32:28 Polynomial Time Algorithms in Invariant Theory for Torus Actions

10 Peter Bürgisser, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson. Alternating
minimization, scaling algorithms, and the null-cone problem from invariant theory. In 9th
Innovations in Theoretical Computer Science, volume 94 of LIPIcs. Leibniz Int. Proc. Inform.,
pages Art. No. 24, 20. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018.

11 Peter Bürgisser, Yinan Li, Harold Nieuwboer, and Michael Walter. Interior-point methods for
unconstrained geometric programming and scaling problems. arXiv, 2020. arXiv:2008.12110.

12 Michael B Cohen, Aleksander Madry, Dimitris Tsipras, and Adrian Vladu. Matrix scaling and
balancing via box constrained Newton’s method and interior point methods. In Proceedings
of the Symposium on Foundations of Computer Science (FOCS 2017), pages 902–913. IEEE,
2017. arXiv:1704.02310.

13 Stephen A. Cook. The complexity of theorem proving procedures. In Proc. 3rd ACM STOC,
pages 151–158, 1971.

14 David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms - an introduction
to computational algebraic geometry and commutative algebra (2. ed.). Undergraduate texts in
mathematics. Springer, 1997.

15 Harm Derksen. Polynomial bounds for rings of invariants. Proc. Amer. Math. Soc., 129(4):955–
963, 2001. doi:10.1090/S0002-9939-00-05698-7.

16 Harm Derksen. The graph isomorphism problem and approximate categories. J. Symb.
Comput., 59:81–112, 2013. doi:10.1016/j.jsc.2013.06.002.

17 Harm Derksen and Gregor Kemper. Computational invariant theory, volume 130 of Encyc-
lopaedia of Mathematical Sciences. Springer, Heidelberg, enlarged edition, 2015. With two
appendices by Vladimir L. Popov, and an addendum by Norbert A’Campo and Popov, Invariant
Theory and Algebraic Transformation Groups, VIII. doi:10.1007/978-3-662-48422-7.

18 Harm Derksen and Visu Makam. Generating invariant rings of quivers in arbitrary character-
istic. J. Algebra, 489:435–445, 2017. doi:10.1016/j.jalgebra.2017.06.035.

19 Harm Derksen and Visu Makam. Polynomial degree bounds for matrix semi-invariants. Adv.
Math., 310:44–63, 2017. doi:10.1016/j.aim.2017.01.018.

20 Harm Derksen and Visu Makam. Degree bounds for semi-invariant rings of quivers. J. Pure
Appl. Algebra, 222(10):3282–3292, 2018. doi:10.1016/j.jpaa.2017.12.007.

21 Harm Derksen and Visu Makam. Algorithms for orbit closure separation for invariants
and semi-invariants of matrices. Algebra Number Theory, 14(10):2791–2813, 2020. doi:
10.2140/ant.2020.14.2791.

22 Harm Derksen and Visu Makam. An exponential lower bound for the degrees of invariants of
cubic forms and tensor actions. Adv. Math., 368:107136, 25, 2020. doi:10.1016/j.aim.2020.
107136.

23 Igor Dolgachev. Lectures on invariant theory, volume 296 of London Mathematical So-
ciety Lecture Note Series. Cambridge University Press, Cambridge, 2003. doi:10.1017/
CBO9780511615436.

24 Arnaud Durand, Miki Hermann, and Laurent Juban. On the complexity of recognizing the
Hilbert basis of a linear Diophantine system. Theoret. Comput. Sci., 270(1-2):625–642, 2002.
doi:10.1016/S0304-3975(01)00017-2.

25 Kousha Etessami, Alistair Stewart, and Mihalis Yannakakis. A note on the complexity of
comparing succinctly represented integers, with an application to maximum probability parsing.
ACM Trans. Comput. Theory, 6(2):9:1–9:23, 2014. doi:10.1145/2601327.

26 Michael A. Forbes and Amir Shpilka. Explicit Noether normalization for simultaneous conjug-
ation via polynomial identity testing. In Approximation, randomization, and combinatorial
optimization, volume 8096 of Lecture Notes in Comput. Sci., pages 527–542. Springer, Heidel-
berg, 2013. doi:10.1007/978-3-642-40328-6_37.

27 Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. A deterministic polynomial
time algorithm for non-commutative rational identity testing. In 57th Annual IEEE Symposium
on Foundations of Computer Science—FOCS 2016, pages 109–117. IEEE Computer Soc., Los
Alamitos, CA, 2016. doi:10.1109/FOCS.2016.95.

http://arxiv.org/abs/2008.12110
http://arxiv.org/abs/1704.02310
https://doi.org/10.1090/S0002-9939-00-05698-7
https://doi.org/10.1016/j.jsc.2013.06.002
https://doi.org/10.1007/978-3-662-48422-7
https://doi.org/10.1016/j.jalgebra.2017.06.035
https://doi.org/10.1016/j.aim.2017.01.018
https://doi.org/10.1016/j.jpaa.2017.12.007
https://doi.org/10.2140/ant.2020.14.2791
https://doi.org/10.2140/ant.2020.14.2791
https://doi.org/10.1016/j.aim.2020.107136
https://doi.org/10.1016/j.aim.2020.107136
https://doi.org/10.1017/CBO9780511615436
https://doi.org/10.1017/CBO9780511615436
https://doi.org/10.1016/S0304-3975(01)00017-2
https://doi.org/10.1145/2601327
https://doi.org/10.1007/978-3-642-40328-6_37
https://doi.org/10.1109/FOCS.2016.95

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 32:29

28 Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. Operator scaling:
theory and applications. Found. Comput. Math., 20(2):223–290, 2020. doi:10.1007/
s10208-019-09417-z.

29 Ankit Garg, Christian Ikenmeyer, Visu Makam, Rafael Mendes de Oliveira, Michael Walter,
and Avi Wigderson. Search problems in algebraic complexity, GCT, and hardness of generators
for invariant rings. In Shubhangi Saraf, editor, 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of
LIPIcs, pages 12:1–12:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.CCC.2020.12.

30 Guoqiang Ge. Testing equalities of multiplicative representations in polynomial time (extended
abstract). In 34th Annual Symposium on Foundations of Computer Science, Palo Alto,
California, USA, 3-5 November 1993, pages 422–426. IEEE Computer Society, 1993. doi:
10.1109/SFCS.1993.366845.

31 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and com-
binatorial optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin,
second edition, 1993. doi:10.1007/978-3-642-78240-4.

32 Victor Guillemin and Shlomo Sternberg. Symplectic techniques in physics. Cambridge university
press, 1990.

33 Leonid Gurvits. Classical complexity and quantum entanglement. J. Comput. Syst. Sci.,
69(3):448–484, 2004. doi:10.1016/j.jcss.2004.06.003.

34 Leonid Gurvits. Combinatorial and algorithmic aspects of hyperbolic polynomials. arXiv
preprint, 2004. arXiv:math/0404474.

35 D. Hilbert. Über die vollen Invariantensysteme. Math. Ann., 42:313–373, 1893. URL:
http://eudml.org/doc/157652.

36 David Hilbert. Über die Theorie der algebraischen Formen. Math. Ann., 36(4):473–534, 1890.
doi:10.1007/BF01208503.

37 Evelyne Hubert and George Labahn. Scaling invariants and symmetry reduction of dy-
namical systems. Foundations of Computational Mathematics, 13, 2013. doi:10.1007/
s10208-013-9165-9.

38 James E. Humphreys. Linear algebraic groups. Springer-Verlag, New York-Heidelberg, 1975.
Graduate Texts in Mathematics, No. 21.

39 Christian Ikenmeyer, Ketan D Mulmuley, and Michael Walter. On vanishing of Kronecker
coefficients. Computational Complexity, 26(4):949–992, 2017.

40 Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Non-commutative Edmonds’
problem and matrix semi-invariants. Comput. Complexity, 26(3):717–763, 2017. doi:10.1007/
s00037-016-0143-x.

41 Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Constructive non-commutative
rank computation is in deterministic polynomial time. Comput. Complexity, 27(4):561–593,
2018. doi:10.1007/s00037-018-0165-7.

42 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. doi:10.1007/
s00037-004-0182-6.

43 Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing the Smith
and Hermite normal forms of an integer matrix. SIAM J. Comput., 8(4):499–507, 1979.
doi:10.1137/0208040.

44 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of computer
computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y.,
1972), pages 85–103, 1972.

45 George Kempf and Linda Ness. The length of vectors in representation spaces. In Algebraic
geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), volume 732 of
Lecture Notes in Math., pages 233–243. Springer, Berlin, 1979.

CCC 2021

https://doi.org/10.1007/s10208-019-09417-z
https://doi.org/10.1007/s10208-019-09417-z
https://doi.org/10.4230/LIPIcs.CCC.2020.12
https://doi.org/10.4230/LIPIcs.CCC.2020.12
https://doi.org/10.1109/SFCS.1993.366845
https://doi.org/10.1109/SFCS.1993.366845
https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.1016/j.jcss.2004.06.003
http://arxiv.org/abs/math/0404474
http://eudml.org/doc/157652
https://doi.org/10.1007/BF01208503
https://doi.org/10.1007/s10208-013-9165-9
https://doi.org/10.1007/s10208-013-9165-9
https://doi.org/10.1007/s00037-016-0143-x
https://doi.org/10.1007/s00037-016-0143-x
https://doi.org/10.1007/s00037-018-0165-7
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1137/0208040

32:30 Polynomial Time Algorithms in Invariant Theory for Torus Actions

46 Hanspeter Kraft. Geometrische Methoden in der Invariantentheorie. Aspects of Mathematics,
D1. Friedr. Vieweg & Sohn, Braunschweig, 1984. doi:10.1007/978-3-322-83813-1.

47 David B Leep and Gerry Myerson. Marriage, magic, and solitaire. The American Mathematical
Monthly, 106(5):419–429, 1999.

48 L. A. Levin. Universal enumeration problems. Problemy Peredači Informacii, 9(3):115–116,
1973.

49 Nathan Linial and Zur Luria. On the vertices of the d-dimensional Birkhoff polytope. Discrete
& Computational Geometry, 51(1):161–170, 2014.

50 Nathan Linial, Alex Samorodnitsky, and Avi Wigderson. A deterministic strongly polynomial
algorithm for matrix scaling and approximate permanents. Combinatorica, 20(4):545–568,
2000.

51 Visu Makam and Avi Wigderson. Singular tuples of matrices is not a null cone (and, the
symmetries of algebraic varieties). CoRR, abs/1909.00857, 2019. arXiv:1909.00857.

52 Ketan D. Mulmuley. Geometric complexity theory V: Efficient algorithms for Noether normal-
ization. J. Amer. Math. Soc., 30(1):225–309, 2017. doi:10.1090/jams/864.

53 Ketan D Mulmuley and Milind Sohoni. Geometric complexity theory I: An approach to the P
vs. NP and related problems. SIAM Journal on Computing, 31(2):496–526, 2001.

54 David Mumford. The red book of varieties and schemes, volume 1358 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 1988. doi:10.1007/978-3-662-21581-4.

55 David Mumford, John Fogarty, and Frances Kirwan. Geometric invariant theory, Third
Edition, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, 1994.

56 Vladimir L Popov. Two orbits: When is one in the closure of the other? Proceedings of the
Steklov Institute of Mathematics, 264(1):146–158, 2009.

57 Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience Series
in Discrete Mathematics. John Wiley & Sons, Ltd., Chichester, 1986. A Wiley-Interscience
Publication.

58 R. Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matrices.
The Annals of Mathematical Statistics, 35:876–879, 1964.

59 Henry J. Stephen Smith. On systems of linear indeterminate equations and congruences.
Philosophical Transactions of the Royal Society of London, 151:293–326, 1861. URL: http:
//www.jstor.org/stable/108738.

60 Bernd Sturmfels. Algorithms in Invariant Theory. Texts & Monographs in Symbolic Compu-
tation. Springer, 2008. doi:10.1007/978-3-211-77417-5.

61 David Wehlau. Constructive invariant theory for tori. Annales de l’institut Fourier, 43(4):1055–
1066, 1993. URL: http://eudml.org/doc/75025.

62 Hermann Weyl. The Classical Groups. Their Invariants and Representations. Princeton
University Press, Princeton, N.J., 1939.

https://doi.org/10.1007/978-3-322-83813-1
http://arxiv.org/abs/1909.00857
https://doi.org/10.1090/jams/864
https://doi.org/10.1007/978-3-662-21581-4
http://www.jstor.org/stable/108738
http://www.jstor.org/stable/108738
https://doi.org/10.1007/978-3-211-77417-5
http://eudml.org/doc/75025

Pseudodistributions That Beat All Pseudorandom
Generators (Extended Abstract)
Edward Pyne #

Harvard University, Cambridge, MA, USA

Salil Vadhan #

Harvard University, Cambridge, MA, USA

Abstract
A recent paper of Braverman, Cohen, and Garg (STOC 2018) introduced the concept of a weighted
pseudorandom generator (WPRG), which amounts to a pseudorandom generator (PRG) whose
outputs are accompanied with real coefficients that scale the acceptance probabilities of any potential
distinguisher. They gave an explicit construction of WPRGs for ordered branching programs whose
seed length has a better dependence on the error parameter ε than the classic PRG construction of
Nisan (STOC 1990 and Combinatorica 1992).

In this work, we give an explicit construction of WPRGs that achieve parameters that are
impossible to achieve by a PRG. In particular, we construct a WPRG for ordered permutation
branching programs of unbounded width with a single accept state that has seed length Õ(log3/2 n)
for error parameter ε = 1/ poly(n), where n is the input length. In contrast, recent work of Hoza et
al. (ITCS 2021) shows that any PRG for this model requires seed length Ω(log2 n) to achieve error
ε = 1/ poly(n).

As a corollary, we obtain explicit WPRGs with seed length Õ(log3/2 n) and error ε = 1/ poly(n)
for ordered permutation branching programs of width w = poly(n) with an arbitrary number of
accept states. Previously, seed length o(log2 n) was only known when both the width and the
reciprocal of the error are subpolynomial, i.e. w = no(1) and ε = 1/no(1) (Braverman, Rao, Raz,
Yehudayoff, FOCS 2010 and SICOMP 2014).

The starting point for our results are the recent space-efficient algorithms for estimating random-
walk probabilities in directed graphs by Ahmadenijad, Kelner, Murtagh, Peebles, Sidford, and
Vadhan (FOCS 2020), which are based on spectral graph theory and space-efficient Laplacian solvers.
We interpret these algorithms as giving WPRGs with large seed length, which we then derandomize
to obtain our results. We also note that this approach gives a simpler proof of the original result of
Braverman, Cohen, and Garg, as independently discovered by Cohen, Doron, Renard, Sberlo, and
Ta-Shma (these proceedings).

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases pseudorandomness, space-bounded computation, spectral graph theory

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.33

Related Version Full Version: https://eccc.weizmann.ac.il/report/2021/019/ [28]

Funding Edward Pyne: Supported by NSF grant CCF-1763299.
Salil Vadhan: Supported by NSF grant CCF-1763299 and a Simons Investigator Award.

Acknowledgements We thank Jack Murtagh and Sumegha Garg for insightful discussions, and Oded
Goldreich and the CCC ‘21 reviewers for feedback that improved our presentation.

1 Introduction

The notion of a pseudorandom generator (PRG) [7, 35, 26] is ubiquitous in theoretical
computer science, with vast applicability in cryptography and derandomization. (See the
texts [17, 34] for more background on pseudorandomness.) A recent work of Braverman,
Cohen, and Garg [9] introduced the following intriguing generalization of a PRG, in which
we attach real coefficients to the outputs of the generator:

© Edward Pyne and Salil Vadhan;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 33; pp. 33:1–33:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:epyne@college.harvard.edu
mailto:salil_vadhan@harvard.edu
https://doi.org/10.4230/LIPIcs.CCC.2021.33
https://eccc.weizmann.ac.il/report/2021/019/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Pseudodistributions That Beat All Pseudorandom Generators

▶ Definition 1. Let B be a class of boolean functions B : {0, 1}n → {0, 1}. An ε-weighted
pseudorandom generator (WPRG) for B is a function (G, ρ) : {0, 1}s → {0, 1}n × R
such that for every B ∈ B,∣∣∣∣ E

x←U{0,1}n

[B(x)] − E
x←U{0,1}s

[ρ(x) · B(G(x))]
∣∣∣∣ ≤ ε.

The value s is the seed length of the WPRG, and n is the output length of the WPRG.
We say that the WPRG is (mildly)1 explicit if given x, G(x) and ρ(x) are computable in
space O(s), and ρ(x) has absolute value at most 2O(s).

Above and throughout, we use the standard definition of space-bounded complexity, which
counts the working, read-write memory of the algorithm, and does not include the length of
the read-only input or write-only output, which can be exponentially longer than the space
bound.

In the original work of Braverman, Cohen, and Garg [9] and previous versions of this pa-
per [28], generators as above were called pseudorandom pseudodistributions (PRPDs).
The terminology of weighted pseudorandom generators (WPRGs) was introduced by Cohen
et al. [14], and we find it more intuitive (and it avoids the double use of the “pseudo-” prefix).

With Definition 1, a PRG is a special case of a WPRG with ρ(x) = 1. The power
of WPRGs comes from allowing the coefficients to be negative, which yields cancellations.
Indeed, an explicit ε-WPRG with seed length s in which all of the coefficients are nonnegative
can be converted into an explicit O(ε)-PRG with seed length O(s + log(1/ε)). A general
WPRG can be converted into a linear combination of two unweighted generators. That
is, for every explicit WPRG (G, ρ) : {0, 1}s → {0, 1}n × R, there are explicit generators
G+ : {0, 1}s′ → {0, 1}n and G− : {0, 1}s′ → {0, 1}n with seed length s′ = O(s + log(1/ε))
and coefficients ρ+, ρ− ∈ R such that for every function B : {0, 1}n → {0, 1}, we have:

E
x
[ρ(x) · B(G(x))] = ρ+ · E

x
[G+(x)] − ρ− · E

x
[G−(x)] ± ε.

The motivation for WPRGs is that they can be used to derandomize algorithms in the
same way as a PRG: we can estimate the acceptance probability of any function B ∈ B
by enumerating over the seeds x of the WPRG (G, ρ) and calculating the average of the
values ρ(x) · B(G(x)). Furthermore, [9] observe that if (G, ρ) is an ε-WPRG for a model
then G is an ε-hitting set generator (HSG). That is, if B is any function in B with
Pr[B(Un) = 1] > ε, then there exists an x ∈ {0, 1}s such that B(G(x)) = 1.

Given this motivation, it is natural to ask whether WPRGs are more powerful than
PRGs. That is, can ε-WPRGs achieve a shorter seed length than ε-PRGs for a natural
computational model B? (There are simple constructions of artificial examples.) As discussed
below, Braverman, Cohen, and Garg [9] gave an explicit construction of WPRGs achieving
a shorter seed length than the best known construction of PRGs for ordered branching
programs, but not beating the best possible seed length for that model (given by a non-
explicit application of the Probabilistic Method). In this work, we give an explicit construction
of WPRGs for a natural computational model (ordered permutation branching programs of
unbounded width) with a seed length that beats all possible PRGs for that model.

1 We consider this definition to correspond to mild explicitness because requiring that the generator be
computable in space linear in its seed length only implies that it is computable in time exponential in
its seed length (i.e. time polynomial in the size of its truth table), which is mildly explicit according to
the terminology in [34]. Strong explicitness, in contrast, would require that each bit of the truth table is
computable in time polynomial in s.

E. Pyne and S. Vadhan 33:3

1.1 Ordered Branching Programs
The work of Braverman, Cohen, and Garg [9], as well as our paper, focuses on WPRGs for
classes B of functions computable by ordered branching programs, a nonuniform model that
captures how a space-bounded randomized algorithm accesses its random bits.

▶ Definition 2. An (ordered) branching program B of length n and width w computes
a function B : {0, 1}n → {0, 1}. On an input σ ∈ {0, 1}n, the branching program computes
as follows. It starts at a fixed start state v0 ∈ [w]. Then for r = 1, . . . , n, it reads the next
symbol σr and updates its state according to a transition function Br : [w] × {0, 1} → [w] by
taking vt = Br(vt−1, σt). Note that the transition function Br can differ at each time step.

The branching program accepts σ, denoted B(σ) = 1, if vn ∈ Vacc, where Vacc ⊆ [w]
is the set of accept states, and otherwise it rejects, denoted B(σ) = 0. Thus an ordered
branching program is specified by the transition functions B1, . . . , Bn, the start state v0 and
the set Vacc of accept states.

An ordered branching program of length n and width w can compute the output of an
algorithm that uses log w bits of memory and n random bits, by taking the state at each
layer as the contents of memory at that time. We note that we can convert any ordered
branching program into one with a single accept state by collapsing all of Vacc to a single
state.

Using the probabilistic method, it can be shown that there exists an ε-PRG for ordered
branching programs of length n and width w with seed length s = O(log(nw/ε)). The classic
construction of Nisan [25] gives an explicit PRG with seed length s = O(log n · log(nw/ε)),
and this bound has not been improved except for extreme ranges of w, namely when w

is at least quasipolynomially larger than (n/ε) [27, 5, 22] or when w ≤ 3 [8, 32, 19, 24].
Braverman, Cohen, and Garg [9] gave an explicit construction of a WPRG that achieves
improved dependence on the error parameter ε, with seed length

s = Õ (log n · log(nw) + log(1/ε)) .

In particular, for error ε = n− log n and width w = poly(n), their seed length improves Nisan’s
from O(log3 n) to Õ(log2 n). Chatthopadhyay and Liao [12] gave a simpler construction
of WPRGs with a slightly shorter seed length than [9], with an additive dependence on
O(log(1/ε)) rather than Õ(log(1/ε)).

1.2 Permutation Branching Programs
Due to the lack of progress in constructing improved PRGs for general ordered branching
programs as well as some applications, attention has turned to more restricted classes of
ordered branching programs. In this work, our focus is on permutation branching programs:

▶ Definition 3. An (ordered) permutation branching program is an ordered branching
program B where for all t ∈ [n] and σ ∈ {0, 1}, Bt(·, σ) is a permutation on [w].

This can be thought of as the computation being time-reversible on any fixed input σ. We
note that we cannot assume without loss of generality that a permutation branching program
has a single accept state, as merging a set of accept states will destroy the permutation
property. Nevertheless, ordered permutation branching programs with a single accept state
can compute interesting functions, such as testing whether a

∑
i∈S xi ≡ 0 (mod m), for any

m ≤ w and any S ⊆ [n]. An ordered permutation branching program with a single accept
state can also test whether x|T = π(x|S) for any permutation π : {0, 1}ℓ → {0, 1}ℓ and any
two subsets S, T ⊆ [n] of size ℓ such that all elements of T are larger than all elements of S,
provided that w ≥ 2ℓ [20].

CCC 2021

33:4 Pseudodistributions That Beat All Pseudorandom Generators

Previous works on various types of PRGs for permutation branching programs [30, 29,
10, 23, 15, 33, 20] have achieved seed lengths that are logarithmic or nearly logarithmic in
the length n of the branching program, improving the log2 n bound in Nisan’s generator.
In particular, Braverman, Rao, Raz, and Yehudayoff [10] gave a PRG for the more general
model of regular branching programs (with an arbitrary number of accept states) with seed
length

s = O (log n · (log w + log(1/ε) + log log n)) .

For getting a HSG, they also showed how how to eliminate the log log n and log(1/ε) terms
at the price of a worse dependence on w,2 achieving a seed length of

s ≤ log(n + 1) · w.

For the specific case of permutation branching programs, Koucký, Nimbhorkar, and
Pudlák [23], De [15], and Steinke [33] showed how to remove the log log n term in the
Braverman et al. PRG at the price of a worse dependence on w, achieving seed length

s = O(log n · (poly(w) + log(1/ε))).

Most recently, Hoza, Pyne, and Vadhan [20] showed that the dependence on the width w

could be entirely eliminated if we restrict to permutation branching programs with a single
accept state, constructing a PRG with seed length

s = O(log n · (log log n + log(1/ε)).

In particular, they show that this seed length is provably better than what is achieved by
the Probabilistic Method; that is, a random function with seed length o(n) fails to be a
PRG for unbounded-width permutation branching programs with high probability. Like
the prior PRGs for bounded-width permutation branching programs, the seed length has a
term of O(log n · log(1/ε)). However, in contrast to the bounded-width case, this cannot be
improved to O(log(n/ε)) by a non-explicit construction. Hoza et al. prove that seed length
Ω(log n·log(1/ε)) is necessary for any ε-PRG against unbounded-width permutation branching
programs. For hitting-set generators (HSGs), they show that seed length O(log(n/ε)) is
possible via the Probabilistic Method, thus leaving an explicit construction as an open
problem.

1.3 Our Results
In this paper, we construct an explicit WPRG for permutation branching programs of
unbounded width and a single accept state that beats the aforementioned lower bounds for
PRGs:
▶ Theorem 4. For all n ∈ N and ε ∈ (0, 1/2), there is an explicit ε-WPRG (and hence
ε-HSG) for ordered permutation branching programs of length n, arbitrary width, and a single
accept state, with seed length

s = O
(

log(n)
√

log(n/ε)
√

log log(n/ε) + log(1/ε) log log(n/ε)
)

.

In particular, when ε = 1/ poly(n), we achieve seed length Õ(log3/2 n), while a PRG requires
seed length Ω(log2 n) [20].

2 The lack of dependence on ε can be explained by the observation of Braverman et al. that any regular
branching program that has nonzero acceptance probability has acceptance probability at least 1/2w−1,
so WLOG ε > 1/2w, i.e. w > log(1/ε).

E. Pyne and S. Vadhan 33:5

As noted in [20], an ε-WPRG for branching programs with a single accept state is also
an (a · ε)-WPRG for branching programs with at most a accept states. For bounded-width
permutation branching programs, we can take a = w and obtain:

▶ Corollary 5. For all n, w ∈ N and ε ∈ (0, 1/2), there is an explicit ε-WPRG (and hence
ε-HSG) for ordered permutation branching programs of length n and width w (and any
number of accept states), with seed length

s = O
(

log(n)
√

log(nw/ε)
√

log log(nw/ε) + log(w/ε) log log(nw/ε)
)

.

In particular for w = poly(n) and ε = 1/ poly(n), we achieve seed length Õ(log3/2 n). Note
that the previous explicit PRGs (or even HSGs) for permutation branching programs (as
mentioned in Subsection 1.2) achieved seed length o(log2 n) only when both w = no(1) and
ε = 1/no(1). With seed length o(log2 n), Corollary 5 can handle width as large as w = nΩ̃(log n)

and error as small as ε = 1/n−Ω̃(log(n)). We summarize these results in a table.

Citation Type Model Seed Length
Non-explicit (folklore) PRG General Θ(log(nw/ε)

[25, 21] PRG General O(log n · log(nw/ε))
[10] PRG Regular Õ(log n · log(w/ε))
[10] HSG Regular log(n + 1) · w

[23, 15, 33] PRG Permutation O(log n · (poly(w) + log(1/ε))
[9, 12, 28] WPRG General Õ(log n · log nw + log(1/ε))

[20] PRG Permutation (1 accept) Θ̃(log n · log(1/ε))
Non-explicit [20] HSG Permutation (1 accept) O(log(n/ε))

Theorem 4 WPRG Permutation (1 accept) Õ(log n
√

log(n/ε) + log(1/ε))
Corollary 5 WPRG Permutation Õ(log n

√
log(nw/ε) + log(w/ε))

2 Overview of Proofs

The starting point for our results are the recent space-efficient algorithms for estimating
random-walk probabilities in directed graphs by Ahmadenijad, Kelner, Murtagh, Peebles,
Sidford, and Vadhan [2], which are based on spectral graph theory and space-efficient
Laplacian solvers. We interpret these algorithms as giving WPRGs with large seed length,
which we then derandomize to obtain our results.

The specific problem considered by Ahmadenijad et al. is the following: given a directed
graph G = (V, E), two vertices s, t ∈ V , a walk-length k ∈ N, and an error parameter ε > 0,
estimate the probability that a random walk of length k started at s ends at t to within ±ε.
Such an algorithm can be applied to the following graph in order to estimate the acceptance
probability of an ordered branching program:

▶ Definition 6. Given a length n, width w branching program B with transition functions
(B1, . . . , Bn) with start vertex v0 ∈ [w], and a single accept vertex vacc, the (layered) graph
associated with B is the graph G with vertex set {0, 1, . . . , n} × [w] and directed edges from
(i − 1, v) to (i, Bi(v, 0)) and (i, Bi(v, 1)) for every i = 1, . . . , n and v ∈ [w].

Applying the algorithms of Ahmadenijad et al. to the graph G with s = (0, v0), t = (n, vacc),
and k = n, we obtain an estimate of the acceptance probability of B to within ±ε, just like
an ε-WPRG for B would allow us to obtain. But a WPRG (G, ρ) is much more constrained
than an arbitrary space-efficient algorithm, which can directly inspect the graph. Instead,

CCC 2021

33:6 Pseudodistributions That Beat All Pseudorandom Generators

a WPRG is limited to generating S = 2s walks of length n in the layered graph, described
by sequences G(x1), . . . , G(xS) ∈ {0, 1}n of edge labels, and then combining the indicators
B(G(x1)), . . . , B(G(xn)) of whether the walks ended at t via a linear combination with fixed
coefficients ρ(x1), . . . , ρ(xS) ∈ R.

Note that if B is a permutation branching program, then the graph G above is 2-regular
(except for layer 0 which has no incoming edges and layer n which has no outgoing edges).
Thus, the basis for Theorem 4 is the (main) result of Ahmadenijad et al., which applies
to regular (or more generally, Eulerian) directed graphs G. However, they also give a
new algorithm for estimating random-walk probabilities in arbitrary directed graphs. This
algorithm is not as space-efficient as the ones for regular graphs, but is significantly simpler,
so we begin by describing how to obtain a WPRG based on that algorithm. The resulting
WPRG matches the parameters of the WPRG of Braverman, Cohen, and Garg [9], but has a
significantly simpler proof (and is also simpler than the construction of Chatthopadhyay and
Liao [12]). A similar construction was independently discovered by Cohen, Doron, Renard,
Sberlo, and Ta-Shma [14].

2.1 WPRG for Arbitrary Ordered Branching Programs
Let B be an arbitrary width w, length n ordered branching program, with associated
layered graph G as in Definition 6. The algorithm of Ahmadenijad et al. starts with the
(n + 1)w × (n + 1)w random-walk transition matrix W of G, which has the following block
structure:

W =

0 B1 0 · · · 0
0 0 B2 · · · 0
...

. . .
...

0 0 0
. . . Bn

0 0 0 · · · 0

Here entry ((i, u), (j, v)) is the probability that taking one random step in G from vertex
(i, u) ends at (j, v). Thus Bi is the w × w transition matrix for the random walk from layer
i − 1 to i in the branching program. (Note that the matrix W is not quite stochastic due to
layer n having no outgoing edges.)

Ahmadenijad et al. consider the Laplacian L = I(n+1)w − W. Its inverse L−1 =
(I(n+1)w − W)−1 = I(n+1)w + W + W2 + W3 + · · · sums up random-walks of all lengths in
G, and thus has the following form:

L−1 =

B0...0 B0...1 B0...2 · · · B0...n

0 B1...1 B1...2 · · · B1...n

...
. . .

...

0 0 0
. . . Bn−1...n

0 0 0 · · · Bn...n

 ,

where

Bi...j = Bi+1Bi+2 · · · Bj .

In particular, the (0, n)’th block of L−1 gives the random-walk probabilities from layer 0
to layer n, and thus the acceptance probability of G is exactly the (v0, vacc)’th entry of the
(0, n)’th block of L−1. Therefore, the task reduces to producing a sufficiently good estimate
of L−1.

E. Pyne and S. Vadhan 33:7

Ahmadenijad et al. estimate L−1 in two steps. First, they observe that the Saks–
Zhou derandomization of logspace [31] can be used to produce, in deterministic space
O(log(nw)

√
log(n)), approximations B̃i...j of the blocks Bi...j to within entrywise error

1/ poly(nw), resulting in an approximate pseudoinverse

L̃−1 =

B̃0...0 B̃0...1 B̃0...2 · · · B̃0...n

0 B̃1...1 B̃1...2 · · · B̃1...n

...
. . .

...

0 0 0
. . . B̃n−1...n

0 0 0 · · · B̃n...n

, (1)

with the property that∥∥∥I(n+1)w − L̃−1L
∥∥∥

1
≤ 1/nw,

where ∥ · ∥1 denotes the ℓ1 operator norm on row vectors, ie ∥M∥1 = supx ̸=0 ∥xM∥1/∥x∥1.
Next, Ahmadenijad et al. reduce the approximation error to an arbitrary ε < 1/(nw)O(1)

by using preconditioned Richardson iterations, as captured by the following lemma:

▶ Lemma 7 (preconditioned Richardson iteration, [2] Lemma 6.2). Let ∥·∥ be a submultiplicative
norm on N × N real matrices. Given matrices A, P0 ∈ RN×N such that ∥IN − P0A∥ ≤ α

for some constant α > 0, let Pm =
∑m

i=0(IN − P0A)iP0. Then ∥IN − PmA∥ ≤ αm+1.

Setting N = (n + 1)w, A = L, P0 = L̃−1, and α = 1/nw, and m = O(lognw(1/ε)), we
obtain L̃ε = Pm such that ∥IN − L̃εL∥1 ≤ ε/(nw)O(1), which implies that L̃ε and L−1 are
entrywise equal up to ±ε, for

L̃ε =
m∑

i=0
(IN − L̃−1L)iL̃−1 (2)

In particular, the (v0, vacc)’th entry of the (0, n)’th block of L̃ε is an estimate of the acceptance
probability of the branching program to within ±ε. Computing L̃ε from L and L̃−1 can be
done in space O((log nw) · log m), yielding Ahmadenijad et al.’s space bound of

O(log(nw)
√

log(n) + (log nw) · log lognw(1/ε)).

Now we show how, with appropriate an modification, we can interpret this algorithm
of Ahmadenijad et al. as a WPRG (albeit with large seed length). We replace the use of
the Saks–Zhou algorithm (which requires looking at the branching program) with Nisan’s
pseudorandom generator. Specifically, we take B̃i...j to be the matrix whose (u, v)’th entry
is the probability that, if we start at state u in the the i’th layer and use a random output of
Nisan’s pseudorandom generator to take j − i steps in the branching program, we end at
state v in the j’th layer. For B̃i...j to approximate Bi...j to within error ±1/ poly(nw) as
above, Nisan’s pseudorandom generator requires seed length

sNisan = O(log(j − i) · log nw) = O(log n · log nw).

Observe that for every i, B̃i...i = Iw = Bi...i. Without loss of generality, we may also assume
that ˜B(i−1)...i = B(i−1)...i, since taking one step only requires one random bit.

CCC 2021

33:8 Pseudodistributions That Beat All Pseudorandom Generators

Next, we observe from Equation 2 that the matrix L̃ε is a polynomial of degree 2m + 1
in the matrices L and L̃−1. In particular the (0, n)’th block of L̃ε is a polynomial of degree
at most 2m + 1 in the matrices B̃i...j . Specifically, using the upper-triangular structure of
the matrices L and L̃−1 and noting that the product of d (n + 1) × (n + 1) block matrices
expands into a sum of (n + 1)d−1 terms, each of which is a product of d individual blocks,
we show:

▶ Observation 8. The (0, n)’th block of L̃ε is equals the sum of at most (n + 1)O(m) terms,
each of which is of the form

±B̃i0···i1B̃i1···i2 · · · ˜Bir−1···ir , (3)

where 0 = i0 < i1 < i2 < · · · < ir = n and r ≤ 2m + 1.

Notice that, up to the sign, each term as expressed in Equation (3) is the transition
matrix for a pseudorandom walk from layer 0 to layer n of the branching program, where we
use r ≤ m + 1 independent draws from Nisan’s generator, with the j’th draw being used to
walk from layer ij−1 to layer ij . In particular, the (v0, vacc) entry of Equation (3) equals the
acceptance probability of the branching program on such a pseudorandom walk (up to the ±
sign). Thus the algorithm now has the form required of a WPRG.

The seed length for the WPRG is the sum of the seed length ssum needed to select a
random term in the sum (using the coefficients of the WPRG to rescale the sum into a
expectation) and the seed length sterm to generate a walk for the individual term. To select
a random term in the sum requires a seed of length

ssum = log nO(m) = O(m · log(n)) = O(lognw(1/ε) · log(n)) = O(log(1/ε)).

The seed length needed for an individual term is at most

sterm = O(m) · sNisan = O(lognw(1/ε) · log(n) · log nw) = O(log(1/ε) · log(n)).

The latter offers no improvement over Nisan’s PRG. (Recall that ε < 1/nw.) To obtain a
shorter seed length, we just need to derandomize the product in Equation (3). Instead of
using r independent seeds, we use dependent seeds generated using the Impagliazzo–Nisan–
Wigderson pseudorandom generator [21]. Specifically, we can produce a pseudorandom walk
that approximates the product to within entrywise error ±γ using a seed of length

s′term = sNisan + O((log r) · log(rw/γ)).

The entrywise error of γ in each term may accumulate over the nO(m) terms, so to achieve a
WPRG error of O(ε), we should set γ = ε/nO(m) = 1/εO(1). Recalling that r ≤ 2m + 1 =
O(lognw(1/ε)), we attain a seed length of

ssum + s′term = O(log(1/ε)) + O(log n · log nw) + O(log lognw(1/ε) · log(1/ε))
= O(log n · log nw + log(1/ε) · log lognw(1/ε)),

which slightly improves over the bound of Braverman, Cohen, and Garg [9], and is incompar-
able to that of Chattopadhyay and Liao [12]. Specifically, our first term of O(log n · log nw) is
better than [12] by a factor of log log(nw), but our second term of O(log(1/ε) · log lognw(1/ε))
is worse by a factor of log lognw(1/ε).

E. Pyne and S. Vadhan 33:9

2.2 WPRG for Permutation Branching Programs

Now we give an overview of our WPRG for permutation branching programs, as stated in
Theorem 4. This is based on the the algorithm of Ahmademnijad et al. that estimates
random-walk probabilities in regular (or even Eulerian) digraphs with better space complexity
than the algorithm described in Subsection 2.1. As before, we will review their algorithm as
applied to the ((n + 1) · w)-vertex graph G associated with an ordered branching program B

of length n and width w. Since we assume that the branching program B is a permutation
program, the graph G will be 2-regular at all layers other than 0 and n. For the spectral
graph-theoretic machinery used by Ahmadenijad et al., it is helpful to work with random-walk
matrices that correspond to strongly connected digraphs, so we also add a complete bipartite
graph of edges from layer n back to layer 0, resulting in the following modified version of the
matrix W:

W0 =

0 B1 0 · · · 0
0 0 B2 · · · 0
...

. . .
...

0 0 0
. . . Bn

Jw 0 0 · · · 0

 , (4)

where the Jw in the lower-left corner is the w × w matrix in which every entry is 1/w

(corresponding to the complete bipartite graph we added). Notice that the matrix Jw is
identically zero when applied to any vector that is orthogonal to the uniform distribution, so
it is not very different than having 0 in the lower-left block as we had before. Indeed, the
powers of W look as follows:

W2
0 =

0 0 B0..2 0 0
... 0 0

. . . 0

0
... Bn−2..n

Jw 0 0 · · · 0
0 Jw 0 · · · 0

 , . . . , Wn
0 =

0 0 · · · 0 B0..n

Jw 0 0

0
. . . 0

... 0 Jw 0 0
0 0 0 Jw 0

 (5)

where

Bi...j = Bi+1Bi+2 · · · Bj .

Notice in particular that Wn+1
0 will be a block-diagonal matrix with Jw’s on the diagonal

(i.e. Wn+1
0 = In+1 ⊗ Jw), and thus has no dependence on the branching program B.

Now the Laplacian I(n+1)w −W0 is no longer invertible (the uniform distribution is in the
kernel). In [2], they instead estimate the Moore-Penrose pseudoinverse of I(n+1)w − W0. We
instead scale W0 by a factor c = 1−1/(n+1), and consider the Laplacian L0 = I(n+1)w −cW0.
Looking ahead, this scaling factor ensures that the condition number of L0 depends only on
n, allowing us to obtain a seed length independent of w. Then, by the expressions above for
the powers of W0, it can be shown that from

L−1
0 = I(n+1)w + cW0 + c2W2

0 + c3W3
0 + . . .

we can compute B0..n, which appears in Wn
0 with a scaling factor cn ≥ 1/4.

CCC 2021

33:10 Pseudodistributions That Beat All Pseudorandom Generators

So again to estimate the acceptance probability of B, it suffices to compute a sufficiently
good approximation to L−1

0 . As before, it suffices to compute a matrix L̃−1
0 such that

∥IN − L̃−1
0 L0∥ ≤ α for some constant α < 1 and a submultiplicative matrix norm ∥ · ∥,

because then we can use preconditioned Richardson iterations (Lemma 7) to estimate L0 to
within arbitrary entrywise accuracy.

Unfortunately, we don’t know how to directly obtain such an initial approximation L̃−1
0

efficiently enough for our result. Instead, following Ahmadenijad et al., we tensor W0 with a
sufficiently long directed cycle. Specifically, we let Ci be the directed cycle on 2i vertices,
and consider Cq for q = log(n + 1) (which we assume is an integer WLOG). We consider the
cycle lift, whose transition matrix is

Cq ⊗ W0 =

0 W0 0 · · · 0
0 0 W0 · · · 0
...

. . .
...

0 0 0
. . . W0

W0 0 0 · · · 0

 ,

Then, we seek to invert the Laplacian L = I2qN − cCq ⊗ W0. Similarly to the above, we
have:

L−1 = (I2qN − cCq ⊗ W0)−1

=
(
I2qN − cn+1Cn+1

q ⊗ Wn+1
0

)−1 ·
(
I2qN + cCq ⊗ W0 + c2C2

q ⊗ W2
0 + · · · cnCn

q ⊗ Wn
0
)

=
(
I2qN − cn+1Cn+1

q ⊗ (In+1 ⊗ Jw)
)−1 ·

(
I2qN + cCq ⊗ W0 + c2C2

q ⊗ W2
0 + · · · cnCn

q ⊗ Wn
0
)

.

Thus, letting

M = I2qN − cn+1Cn+1
q ⊗ (In+1 ⊗ Jw) = I2qN − cn+1I2q ⊗ (In+1 ⊗ Jw),

which has no dependence on the branching program, we have:

M · L−1 = I2qN + cCq ⊗ W0 + c2C2
q ⊗ W2

0 + · · · cnCn
q ⊗ Wn

0

=

IN cW0 c2W2
0 · · · cnWn

0
cnWn

0 IN cW0 · · · cn−1Wn−1
0

...
. . .

...

c2W2
0 c3W3

0 c4W4
0

. . . cW0
cW1

0 c2W2
0 c3W3

0 · · · IN

Thus, if we can accurately estimate L−1, we can obtain an accurate estimate of Wn

0 ,
whose upper-right block equals B0..n and thus contains the acceptance probability of the
branching program.

To compute an approximate inverse of L = I2qN − cCq ⊗ W0, Ahmadenijad et al. provide
a recursive formula expressing (I2qN − cCq ⊗ W0)−1 in terms of (I2q−1N − c2Cq−1 ⊗ W2

0)−1

and some applications of the matrix W0. That is, computing the inverse of the Laplacian of
the cycle lift of W0 reduces to computing the inverse of the Laplacian of a cycle lift of W2

0
with a cycle of half the length. At the bottom of the recursion (after q levels of recursion),
we need to compute the inverse of

IN − c2q

W2q

0 = IN − cn+1Wn+1
0 = IN − cn+1In+1 ⊗ Jw,

E. Pyne and S. Vadhan 33:11

which is easy (and does not depend on the branching program). The resulting formula for
(I2qN − cCq ⊗ W0)−1 is a polynomial in W0, W2

0, W4
0, . . . , W2q−1

0 . However, computing
these high powers of W0 exactly is too expensive in space usage.

Thus, instead Ahmadenijad et al. use the derandomized square [30] which allows for
computing a sequence W0, W1, . . . , Wq where Wi a sparsification of W2

i−1 with the property
that Wq can be constructed in deterministic space

O(log nw + q · log(1/δ))

for an error parameter δ, rather than the space O(q · log nw) of exact repeated squaring.
They also introduce a new notion of spectral approximation, called unit-circle approximation,
and show that the derandomized square Wi is a unit-circle approximation of W2

i−1 to within
error δ. Using repeated derandomized squaring in the recursion, Ahmadenijad et al. obtain
an approximate inverse L̃−1 with the properties that:
1. The N × N blocks of M · L̃−1 are each of the form Wi1Wi2 · · · Wir

where r = O(q)
2. There is a submultiplicative matrix norm ∥ · ∥F such that ∥I2qN − L̃−1L∥F = O(q2δ).

Moreover, achieving an ε/ poly(n) approximation in F-norm implies an ε approximation
of M · L−1 in max-norm. Ahmadenijad et al. actually lose a factor of poly(nw) in moving
from F-norm to approximation in max-norm, but we improve this bound to poly(n) by
our choice of scaling factor c = 1 − 1/(n + 1).

Item 1 allows for constructing M · L̃−1 from W0, W1, . . . , Wq in space

O(log q · log nw).

By Item 2, if we take δ < 1/O(q2), we can apply preconditioned Richardson iterations
(Lemma 7) with degree m = O(log(n/ε)/ log(1/qδ)) to obtain L̃ε = Pm such that M · L̃ε

approximates ML−1 to within entrywise error ε. The preconditioned Richardson iterations
have an additive space cost of:

O(log m · log nw).

Taking δ = 1/O(q2) and recalling that q = log(n + 1), the final space complexity is

O(log(nw)+q log q)+O(log q · log nw)+O(log log(n/ε) · log nw) = O(log nw · log log(n/ε)).

To view this algorithm as a WPRG for permutation branching programs, we use the
equivalence between the Impagliazzo–Nisan–Wigderson (INW) generator on permutation
branching programs and the derandomized square of the corresponding graph, as established
in [30, 20]. Using this correspondence, the matrix Wi has the same structure as W2i (see
Equation 5), except that each block of the form Bj..j+2i is replaced with a matrix B̃j..j+2i

that is the transition matrix of a pseudorandom walk from layer j of the branching program
to layer j + 2i using the INW generator. The seed length to generate this pseudorandom
walk is

sINW = O(q log(q/δ)),

which, as highlighted in [20], is independent of the width w of the branching program. This
is the place where we use the fact that B is a permutation branching program rather than a
regular branching program. Even though the algorithm Ahmadenijad et al. works for regular
directed graphs (and hence regular branching programs), the derandomized square operations
used in that case can no longer be viewed as being obtained by using a pseudorandom
generator to derandomize walks in the graph.

Then, again assuming without loss of generality that ˜B(j−1)...j = B(j−1)...j for j = 1, . . . , n,
we have the following analogue of Observation 8:

CCC 2021

33:12 Pseudodistributions That Beat All Pseudorandom Generators

▶ Observation 9. The upper-right w × w block of M · L̃ε equals the sum of at most nO(m)

terms, each of which is of the form

±B̃i0···i1B̃i1···i2 · · · ˜Bir−1···ir
, (6)

where 0 = i0 < i1 < i2 < · · · < ir = n and r = O(qm).

As in Subsection 2.1, the algorithm now has the form required of a WPRG and our only
remaining challenge is to keep the seed length small. The seed length for the WPRG is the
sum of the seed length needed to select a random term in the sum (using the coefficients of
the WPRG to rescale the sum into a expectation) and the seed length to generate a walk for
the individual term. To select a random term in the sum requires a seed of length

ssum = log(nO(m)).

The seed length needed for an individual term is at most

sterm = O(qm) · sINW,

which again would be too expensive for us. To derandomize the product in Equation (6),
we again use the INW generator, but rely on the analysis in [20] for permutation branching
programs to maintain a seed length that is independent of the width. Specifically, we can
produce a pseudorandom walk that approximates the product to within entrywise error ±γ

using a seed of length

s′term = sINW + O((log r) · log(log(r)/γ)) = sINW + O(log qm · log(log(qm)/γ)).

The entrywise error of γ in each term may accumulate over the nO(m) terms, so to achieve a
WPRG error of O(ε), we should set γ = ε/nO(m), which means that s′term ≥ ssum.

All in all, we attain a seed length of

ssum + s′term = O(m log n) + sINW + O((log qm) · log(log(qm)/γ))
= O(q log(q/δ)) + Õ(m log n) + O(log qm · log(n/ε))

= Õ

(
log n · log(1/δ) + log(n/ε)

log(1/(δ log n)) · log n + log log(n/ε) · log(n/ε)
)

Optimizing the choice of δ as δ = exp(−Θ̃(
√

log(n/ε))), we get a seed length of

Õ(log n
√

log(n/ε) + log(1/ε)).

Note that the choice of δ here is much smaller than in the Ahmadenijad et al. algorithm,
which used δ = 1/ polylog(n). The reason we need the smaller choice of δ is to reduce the
effect of the log(nO(m)) price we pay in ssum and s′term, which does not have an analogue in
the algorithm of Ahmadenijad et al.

2.3 Perspective
Some intuition for the ability of WPRGs to beat the parameters of PRGs can come from the
study of samplers [16]. A sampler for a class F of functions f : {0, 1}m → R is randomized
algorithm Samp that is given oracle access to a function f ∈ F and, with probability at
least 1 − δ, outputs an estimate of E[f(Un)] to within additive error ±ε. Most often, the
class F is taken to be the class of all bounded functions f : {0, 1}m → [0, 1], but some works

E. Pyne and S. Vadhan 33:13

have considered the general definition and other classes, such as the class F of unbounded
functions f such that the random variable f(Un) has subgaussian tails [6, 1]. Two key
complexity parameters of a sampler are its randomness complexity (the number of coin tosses
it uses, typically as a function of m, δ, and ε) and its sample complexity (the number of
queries it makes to oracle f). An averaging sampler is one that has a restricted form, where
it uses its coin tosses to generate (possibly correlated) samples x1, . . . , xS , and then outputs
the average of f on the samples, i.e. (f(x1) + · · · + f(xS))/S.

As noted by Cheng and Hoza [13], PRGs and WPRGs can be viewed as deterministic
averaging samplers (i.e. with randomness complexity and failure probability zero). Specifically,
a PRG G : {0, 1}s → {0, 1}m for a class F is a deterministic averaging sampler for the class
F with sample complexity S = 2s. Indeed, the sampler simply outputs the set of all S = 2s

outputs of G. A WPRG as a more general form of a nonadaptive deterministic sampler for
the class F , one that is restricted to output a linear combination of the function values.

So comparing the power of PRGs vs. WPRGs is a special case of the more general
problem of comparing the power of averaging samplers vs. more general nonadaptive
samplers. In this more general framing, there are some natural examples of classes F where
nonadaptive samplers can have smaller sample complexity than any averaging sampler.
Specifically, if we consider the class F of unbounded functions f : {0, 1}m → R with bounded
variance, i.e. Var[f(Un)] ≤ 1, then the best sample complexity for an averaging sampler
is Θ(min{1/ε2δ, 2m}). (Essentially, Chebychev’s Inequality is tight for such functions.)
However, there is a nonadaptive sampler with sample complexity O(log(1/δ)/ε2), namely
the median-of-averages sampler, which outputs the median of O(log(1/δ)) averages, with
each average being on O(1/ε2) samples.

This example suggests two areas of investigation. First, can we gain further benefits
in seed length by considering further generalizations of PRGs that are allowed to estimate
acceptance probability with more general functions than linear combinations (or possibly
even with adaptive queries)? Some examples are the line of work on converting hitting-set
generators for circuits [3, 4, 11, 18] or ordered branching programs [13] into deterministic
samplers. Second, is there a benefit in the study of samplers in restricting attention to ones
that output linear combinations like WPRGs? Perhaps these still retains some of the useful
composition properties and connections to other pseudorandom objects that are enjoyed by
averaging samplers (cf. [36, 34, 1]), while allowing for gains in sample and/or randomness
complexity.

References

1 Rohit Agrawal. Samplers and extractors for unbounded functions. In Dimitris Achlioptas and
László A. Végh, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2019, September 20-22, 2019, Massachusetts
Institute of Technology, Cambridge, MA, USA, volume 145 of LIPIcs, pages 59:1–59:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.APPROX-RANDOM.2019.
59.

2 AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh, John Peebles, Aaron Sidford,
and Salil P. Vadhan. High-precision estimation of random walks in small space. In 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020, pages 1295–1306. IEEE, 2020. doi:10.1109/FOCS46700.2020.00123.

3 Alexander E. Andreev, Andrea E. F. Clementi, and José D. P. Rolim. A new general
derandomization method. Journal of the ACM, 45(1):179–213, 1998. doi:10.1145/273865.
273933.

CCC 2021

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.59
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.59
https://doi.org/10.1109/FOCS46700.2020.00123
https://doi.org/10.1145/273865.273933
https://doi.org/10.1145/273865.273933

33:14 Pseudodistributions That Beat All Pseudorandom Generators

4 Alexander E. Andreev, Andrea E. F. Clementi, José D. P. Rolim, and Luca Trevisan. Weak
random sources, hitting sets, and BPP simulations. SIAM Journal on Computing, 28(6):2103–
2116 (electronic), 1999.

5 Roy Armoni. On the derandomization of space-bounded computations. In Randomization
and approximation techniques in computer science (Barcelona, 1998), volume 1518 of Lecture
Notes in Comput. Sci., pages 47–59. Springer, Berlin, 1998.

6 Jaroslaw Blasiok. Optimal streaming and tracking distinct elements with high probability.
In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages
2432–2448. SIAM, 2018. doi:10.1137/1.9781611975031.156.

7 Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of
pseudorandom bits. SIAM Journal on Computing, 13(4):850–864, 1984. doi:10.1137/0213053.

8 Andrej Bogdanov, Zeev Dvir, Elad Verbin, and Amir Yehudayoff. Pseudorandomness for width
2 branching programs. Electronic Colloquium on Computational Complexity (ECCC), 16:70,
2009. URL: http://eccc.hpi-web.de/report/2009/070.

9 Mark Braverman, Gil Cohen, and Sumegha Garg. Hitting sets with near-optimal error for
read-once branching programs. In Ilias Diakonikolas, David Kempe, and Monika Henzinger,
editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 353–362. ACM, 2018. doi:
10.1145/3188745.3188780.

10 Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom generators
for regular branching programs. In FOCS, pages 40–47. IEEE Computer Society, 2010.
doi:10.1109/FOCS.2010.11.

11 Harry Buhrman and Lance Fortnow. One-sided two-sided error in probabilistic computation.
In STACS 99 (Trier), volume 1563 of Lecture Notes in Comput. Sci., pages 100–109. Springer,
Berlin, 1999.

12 Eshan Chattopadhyay and Jyun-Jie Liao. Optimal error pseudodistributions for read-once
branching programs. In Shubhangi Saraf, editor, 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of
LIPIcs, pages 25:1–25:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.CCC.2020.25.

13 Kuan Cheng and William M. Hoza. Hitting sets give two-sided derandomization of small space.
In Shubhangi Saraf, editor, 35th Computational Complexity Conference, CCC 2020, July 28-31,
2020, Saarbrücken, Germany (Virtual Conference), volume 169 of LIPIcs, pages 10:1–10:25.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CCC.2020.10.

14 Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma. Error reduction
for weighted prgs against read once branching programs. In 36th Computational Complexity
Conference, CCC 2021, July 19-23, 2021, Toronto, Ontario (Virtual Conference), 2021. To
appear.

15 Anindya De. Pseudorandomness for permutation and regular branching programs. In IEEE
Conference on Computational Complexity, pages 221–231. IEEE Computer Society, 2011.
doi:10.1109/CCC.2011.23.

16 Oded Goldreich. A sample of samplers - a computational perspective on sampling (survey).
Electronic Colloquium on Computational Complexity (ECCC), 4(20), 1997. URL: http:
//eccc.hpi-web.de/eccc-reports/1997/TR97-020/index.html.

17 Oded Goldreich. A primer on pseudorandom generators, volume 55 of University Lecture
Series. American Mathematical Society, Providence, RI, 2010.

18 Oded Goldreich, Salil Vadhan, and Avi Wigderson. Simplified derandomization of bpp using a
hitting set generator. In Studies in Complexity and Cryptography. Miscellanea on the Interplay
of Randomness and Computation, volume 6650 of Lecture Notes in Computer Science, pages
59–67. Springer, 2011.

https://doi.org/10.1137/1.9781611975031.156
https://doi.org/10.1137/0213053
http://eccc.hpi-web.de/report/2009/070
https://doi.org/10.1145/3188745.3188780
https://doi.org/10.1145/3188745.3188780
https://doi.org/10.1109/FOCS.2010.11
https://doi.org/10.4230/LIPIcs.CCC.2020.25
https://doi.org/10.4230/LIPIcs.CCC.2020.25
https://doi.org/10.4230/LIPIcs.CCC.2020.10
https://doi.org/10.1109/CCC.2011.23
http://eccc.hpi-web.de/eccc-reports/1997/TR97-020/index.html
http://eccc.hpi-web.de/eccc-reports/1997/TR97-020/index.html

E. Pyne and S. Vadhan 33:15

19 Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil Vadhan. Better
pseudorandom generators via milder pseudorandom restrictions. In Proceedings of the 53rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS ‘12). IEEE, 20–23
October 2012.

20 William M. Hoza, Edward Pyne, and Salil P. Vadhan. Pseudorandom generators for unbounded-
width permutation branching programs. In James R. Lee, editor, 12th Innovations in The-
oretical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference,
volume 185 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ITCS.2021.7.

21 Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of
Computing, pages 356–364, Montréal, Québec, Canada, 23–25 May 1994.

22 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. Revisiting norm estimation in data
streams. CoRR, abs/0811.3648, 2008. arXiv:0811.3648.

23 Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák. Pseudorandom generators for group
products: extended abstract. In Lance Fortnow and Salil P. Vadhan, editors, STOC, pages
263–272. ACM, 2011. doi:10.1145/1993636.1993672.

24 Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3
branching programs. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, pages 626–637. ACM, 2019.

25 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

26 Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, October 1994.

27 Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer and
System Sciences, 52(1):43–52, February 1996.

28 Edward Pyne and Salil Vadhan. Pseudodistributions that beat all pseudorandom generators.
ECCC preprint TR21-019, 2021.

29 Omer Reingold, Luca Trevisan, and Salil Vadhan. Pseudorandom walks in regular digraphs
and the RL vs. L problem. In Proceedings of the 38th Annual ACM Symposium on Theory
of Computing (STOC ‘06), pages 457–466, 21–23 May 2006. Preliminary version as ECCC
TR05-22, February 2005.

30 Eyal Rozenman and Salil Vadhan. Derandomized squaring of graphs. In Proceedings of the 8th
International Workshop on Randomization and Computation (RANDOM ‘05), number 3624
in Lecture Notes in Computer Science, pages 436–447, Berkeley, CA, August 2005. Springer.

31 Michael Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of Computer and
System Sciences, 58(2):376–403, 1999.

32 Jirí Síma and Stanislav Zák. Almost k-wise independent sets establish hitting sets for width-
3 1-branching programs. In Alexander S. Kulikov and Nikolay K. Vereshchagin, editors,
CSR, volume 6651 of Lecture Notes in Computer Science, pages 120–133. Springer, 2011.
doi:10.1007/978-3-642-20712-9_10.

33 Thomas Steinke. Pseudorandomness for permutation branching programs without the group
theory. Technical Report TR12-083, Electronic Colloquium on Computational Complexity
(ECCC), July 2012. URL: http://eccc.hpi-web.de/report/2012/083/.

34 Salil P Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012.

35 Andrew C. Yao. Theory and applications of trapdoor functions (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, pages 80–91, Chicago, Illinois, 3–5
November 1982. IEEE.

36 David Zuckerman. Randomness-optimal oblivious sampling. Random Structures & Algorithms,
11(4):345–367, 1997.

CCC 2021

https://doi.org/10.4230/LIPIcs.ITCS.2021.7
http://arxiv.org/abs/0811.3648
https://doi.org/10.1145/1993636.1993672
https://doi.org/10.1007/978-3-642-20712-9_10
http://eccc.hpi-web.de/report/2012/083/

GSF-Locality Is Not Sufficient For
Proximity-Oblivious Testing
Isolde Adler #

School of Computing, University of Leeds, UK

Noleen Köhler #

School of Computing, University of Leeds, UK

Pan Peng #

Department of Computer Science, University of Sheffield, UK

Abstract
In Property Testing, proximity-oblivious testers (POTs) form a class of particularly simple testing
algorithms, where a basic test is performed a number of times that may depend on the proximity
parameter, but the basic test itself is independent of the proximity parameter.

In their seminal work, Goldreich and Ron [STOC 2009; SICOMP 2011] show that the graph
properties that allow constant-query proximity-oblivious testing in the bounded-degree model are
precisely the properties that can be expressed as a generalised subgraph freeness (GSF) property
that satisfies the non-propagation condition. It is left open whether the non-propagation condition
is necessary. Indeed, calling properties expressible as a generalised subgraph freeness property
GSF-local properties, they ask whether all GSF-local properties are non-propagating. We give a
negative answer by exhibiting a property of graphs that is GSF-local and propagating. Hence in
particular, our property does not admit a POT, despite being GSF-local. We prove our result by
exploiting a recent work of the authors which constructed a first-order (FO) property that is not
testable [SODA 2021], and a new connection between FO properties and GSF-local properties via
neighbourhood profiles.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Finite Model Theory

Keywords and phrases Property testing, proximity-oblivous testing, locality, first-order logic, lower
bound

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.34

1 Introduction

Graph property testing is a framework for studying sampling-based graph algorithms. Given
a graph property P, the goal is to design a (randomised) algorithm, called tester, that
distinguishes between graphs that satisfy P from those that are “far” from satisfying P,
where the notion “being far” depends on the underlying query access model and is always
parametrised by a proximity parameter ε > 0. The query model also specifies the class of
graphs and the types of queries allowed by the algorithm. The two most well known models
for graph property testing are the dense graph model and the bounded-degree graph model
(see [9]). Towards an understanding of which graph properties are testable with a constant
number of queries in each model, much progress has been made since the framework of
property testing was introduced [24, 10]. To illustrate, a full characterization of the properties
that are testable with a constant number of queries in the dense graph model has been
obtained by Alon, Fischer, Newman, and Shapira [2].

© Isolde Adler, Noleen Köhler, and Pan Peng;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 34; pp. 34:1–34:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:I.M.Adler@leeds.ac.uk
mailto:scnk@leeds.ac.uk
mailto:p.peng@sheffield.ac.uk
https://orcid.org/0000-0003-2700-5699
https://doi.org/10.4230/LIPIcs.CCC.2021.34
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 GSF-Locality Is Not Sufficient For Proximity-Oblivious Testing

Typical property testers make decisions regarding the global property of the graph from
the local views. In the extreme case, a tester could make local views independent of the
distance to a predetermined set of graphs. Motivated by this, Goldreich and Ron [13] initiated
the study of (one-sided error) proximity-oblivious testers (POTs) for graphs, where a tester
simply repeats a basic test for a number of times that depends on the proximity parameter,
and the basic tester is oblivious of the proximity parameter. They gave characterizations of
graph properties that can be tested with constant query complexity by a POT in both dense
graph model and the bounded-degree model. In each model, it is known that the class of
properties that have constant-query POTs is a strict subset of the class of properties that
are testable (by standard testers).

In this paper, we focus on the bounded-degree graph model [12]. In this model, the
algorithm is given query access to an input graph with maximum degree bounded by d, where
d is some constant. For any specified query v and an index i ≤ d, the algorithm can obtain
the i-th neighbor of v if it exists, and a special symbol ⊥ otherwise. Given a proximity
parameter ε > 0, an n-vertex graph with maximum degree at most d is said to be ε-far from
a property P if one needs to add and/or delete more than εdn edges to make it satisfy P . A
property is said to be testable if there exists a tester that makes only a constant number of
queries to the input graph G, and distinguishes if G satisfies the property P or is ε-far from
satisfying P, with success probability at least 2

3 . Here the constant is a number that might
depend on ε and d, but is independent of the size of the input graph. It has been known that
many properties are testable, such as subgraph-freeness, k-edge connectivity, cycle-freeness,
being Eulerian, degree-regularity [12], minor-freeness [3, 16, 20], hyperfinite properties [22],
k-vertex connectivity [25, 7], and subdivision-freeness [19].

Turning to POTs, informally, a (one-sided error) POT for a property P is a tester
that always accepts a graph G if it satisfies P, and rejects G with probability that is a
monotonically increasing function of the distance of G from the property P. We say P is
proximity-oblivious testable if such a tester exists for P with constant query complexity. To
characterise the class of proximity-oblivious testable properties in the bounded-degree model,
Goldreich and Ron [13] introduced a notion of generalized subgraph freeness (GSF), that
extends the notions of induced subgraph freeness and (non-induced) subgraph freeness. A
graph property is called a GSF-local property if it is expressible as a GSF property. It has
been shown in [13] that a graph property is constant-query proximity-oblivious testable if
and only if it is a GSF-local property that satisfies a so-called non-propagation condition.
Informally, a GSF-local property P is non-propagating if repairing a graph G that does not
satisfy P does not trigger a global “chain reaction” of necessary modifications. We refer
Section 2.3 for formal definitions.

A major question that is left open is whether every GSF-local property satisfies the
non-propagation condition.

1.1 Our contribution
In this paper, we resolve the aforementioned open question raised in [13] by showing the
following negative result.

▶ Theorem 1 (Main result). There exists a GSF-local property that is not testable in the
bounded-degree graph model. Thus, not all GSF-local properties are non-propagating.

We expect our result would shed some light on a full characterization of testable properties in
the bounded degree model. Indeed, in the recent work by Ito, Khoury and Newman [18], the
authors gave a characterization of testable monotone graph properties and testable hereditary

I. Adler, N. Köhler, and P. Peng 34:3

graph properties with one-sided error in the bounded-degree graph model; and they asked the
open question “is every property that is defined by a set of forbidden configurations testable?”
Since their definition of a property defined by a set of “forbidden configuration” is equivalent
to a GSF-local property, our main result also gives a negative answer to their question.

1.2 Proof outline

The starting point of our proof is a recent result of the authors that there exists a first-order
(FO) property that is not testable in the bounded degree graph model [1], where a property
P is said to be an FO property if it can be expressed by an FO formula, i. e. a quantified
formula whose variables represent graph vertices, with predicates for equality and adjacency.
Intuitively, each structure in the property given in [1] is a hybridization of a sequence of
expander graphs and a tree structure, where the expander graphs are recursively constructed
by the zig-zag product introduced by Reingold et al. [23]. Here each level of the tree structure
forms one member of the recursive sequence of expander graphs. It was shown that this
property is both an FO property and a family of expanders, and the latter implies it is not
testable (see e. g. [6]). We refer to Section 4 and [1] for a detailed description of the property.

By Gaifman’s locality theorem [8], it is known that FO can only express local properties.
Indeed, Hanf’s Theorem [15] implies that we can understand this locality as prescribing
upper and lower bounds for the occurrence of certain local neighbourhood (isomorphism)
types.

On the other hand, a GSF-local property as defined in [13] refers to the freeness of some
constant-size marked graphs, where a mark graph F specifies an induced subgraph and how
it “interacts” with the rest of the graph (see Definition 3). Intuitively, such a property just
specifies a condition that the local neighbourhoods of a graph G should satisfy, i.e., certain
types of local neighbourhoods cannot not occur in G, or equivalently, these types have 0
occurrences.

Building upon the above observations, we establish a formal connection between FO
properties and GSF-local properties. We first encode the possible bounds on occurrences
of local neighbourhood types into what we call neighbourhood profiles, and characterise FO
definable properties of bounded degree relational structures as finite unions of properties
defined by neighbourhood profiles (Lemma 9). We then show that every FO formula defined
by a non-trivial finite union of properties which in turn is defined by a so-called 0-profiles, i. e.
the prescribed lower bounds are all 0, is GSF-local (Theorem 11). Given the fundamental
roles of local properties in graph theory, graph limits [21], we believe this new connection is
of independent interest.

For technical reasons, we make use of a property P z of relational structures that can
be expressed by some FO formula while it is not testable in the bounded-degree model,
instead of directly using the non-testable graph property from [1]. We further prove that
a minor variant of the relational structure property P z , which we denote by P ′

z , can be
defined by 0-profiles (Lemma 20). Finally, we construct a non-testable graph property Pgraph
by a local reduction from the σ-structure property P ′

z (Lemma 24). In the reduction we
maintain being definable by 0-profiles which proves GSF-locality of the graph property Pgraph
(Lemma 25). Intuitively, the property Pgraph encodes the property P z in undirected graphs.
Again, Pgraph is a family of expanders (which guarantees non-testability), where in addition
the local neighbourhoods satisfy the aforementioned features which guarantee that it is an
FO property and also GSF-local.

CCC 2021

34:4 GSF-Locality Is Not Sufficient For Proximity-Oblivious Testing

1.3 Other related work
The notion of POT was implicitly defined in [4]. Goldreich and Shinkar [14] studied two-sided
error POTs for both dense graph and bounded-degree graph models. Goldreich and Kaufman
[11] investigated the relation between local conditions that are invariant in an adequate
sense and properties that have a constant-query proximity-oblivious testers. Fichtenberger et
al. [6] showed that every testable property is either finite or contains an infinite hyperfinite
subproperty.

2 Preliminaries

2.1 Graphs, relational structures and first-order logic
We will briefly introduce structures and first-order logic and point the reader to [5] for a more
detailed introduction. A (relational) signature is a finite set σ = {R1, . . . , Rℓ} of relation
symbols Ri. Every relation symbol Ri has an arity ar(Ri) ∈ N>0. A σ-structure is a tuple
A = (U(A), R1(A), . . . , Rℓ(A)), where U(A) is a finite set, called the universe of A and
Ri(A) ⊆ U(A)ar(Ri) is an ar(Ri)-ary relation on U(A). Note that if σ = {E1, . . . , Eℓ} is a
signature where each Ei is a binary relation symbol, then σ-structures are directed graphs
with ℓ edge-colours. Let σgraph := {E} be a signature with one binary relation symbol E.
Then we can understand undirected graphs as σgraph-structures for which the relation E is
symmetric (every undirected edge is represented by two tuples). Using this we can transfer
all notions defined below for graphs. Typically we name graphs G,H,F , we denote the set
of vertices of a graph G by V (G), the set of edges by E(G) and vertices are typically named
u, v, w, u′, v′, w′, In contrast when we talk about a general relational structure we use
A,B and a, b, a′, b′, . . . to denote elements from the universe.

In the following we let σ be a relational signature. Two σ-structures A and B are
isomorphic if there is a bijective map from U(A) to U(B) that preserves all relations. For
a σ-structure A and a subset S ⊆ U(A), we let A[S] denote the substructure of A induced
by S, i. e. A[S] has universe S and R(A[S]) := R(A) ∩ Sar(R) for all R ∈ σ. The degree
of an element a ∈ U(A) denoted by degA(a) is defined to be the number of tuples in A

containing a. We define the degree of A, denoted by deg(A), to be the maximum degree of its
elements. Given a signature σ and a constant d, we let Cσ,d be the class of bounded-degree d
σ-structures and Cd the set of all bounded-degree d graphs. Note that the degree of a graph
differs by exactly a factor 2 from the degree of the corresponding σgraph-structure.

Syntax and semantic of FO is defined in the usual way (see e. g. [5]). We use ∃≥mxφ

(and ∃=mxφ, ∃≤mxφ, respectively) as a shortcut for the FO formula expressing that the
number of witnesses x satisfying φ is at least m (exactly m, at most m, respectively). We
say that a variable occurs freely in an FO formula if at least one of its occurrences is not
bound by any quantifier. We use φ(x1, . . . , xk) to express that the set of variables which
occur freely in the FO formula φ is a subset of {x1, . . . , xk}. For a formula φ(x1, . . . , xk), a
σ-structure A and a1, . . . , ak ∈ U(A) we write A |= φ(a1, . . . , ak) if φ evaluates to true after
assigning ai to xi, for 1 ≤ i ≤ k. A sentence of FO is a formula with no free variables. For
an FO sentence φ we say that A is a model of φ or A satisfies φ if A |= φ.

The Gaifman graph of a σ-structure A is the undirected graph G(A) = (U(A), E), where
{v, w} ∈ E, if v ̸= w and there is an R ∈ σ and a tuple a = (a1, . . . , aar(R)) ∈ R(A), such that
v = aj and w = ak for some 1 ≤ k, j ≤ ar(R). We use G(A) to apply graph theoretic notions
to relational structures. Note that for any graph the Gaifman graph of the corresponding
symmetric σgraph-structure is the graph itself. For two elements a, b ∈ U(A), we define the

I. Adler, N. Köhler, and P. Peng 34:5

distance between a and b in A, denoted by distA(a, b), as the length of a shortest path form
a to b in G(A), or ∞ if there is no such path. For r ∈ N and a ∈ U(A), the r-neighbourhood
of a is the set NA

r (a) := {b ∈ U(A) : distA(a, b) ≤ r}. We define NA
r (a) := A[NA

r (a)] to
be the substructure of A induced by the r-neighbourhood of a. For r ∈ N an r-ball is a
tuple (B, b), where B is a σ-structure, b ∈ U(B) and U(B) = NB

r (b), i. e. B has radius r and
b is the centre. Note that by definition (NA

r (a), a) is an r-ball for any σ-structure A and
a ∈ U(A). Two r-balls (B, b), (B′, b′) are isomorphic if there is an isomorphism of σ-structure
from B to B′ that maps b to b′. We call the isomorphism classes of r-balls r-types. For an
r-type τ and an element a ∈ U(A) we say that a has (r-)type τ if (NA

r (a), a) ∈ τ . Moreover,
given such an r-type τ , there is a formula φτ (x) such that for every σ-structure A and for
every a ∈ U(A), A |= φτ (a) iff (NA

r (a), a) ∈ τ . A Hanf-sentence is a sentence of the form
∃≥mxφτ (x), for some m ∈ N>0, where τ is an r-type. An FO sentence is in Hanf normal
form, if it is a Boolean combination1 of Hanf sentences. Two formulas φ(x1, . . . , xk) and
ψ(x1, . . . , xk) of signature σ are called d-equivalent, if they are equivalent on Cσ,d, i. e. for all
A ∈ Cσ,d and (a1, . . . , ak) ∈ U(A)k we have A |= φ(a, . . . , ak) iff A |= ψ(a1, . . . , ak). Hanf’s
locality theorem for first-order logic [15] implies the following.

▶ Theorem 2 (Hanf [15]). Let d ∈ N. Every sentence of first-order logic is d-equivalent to a
sentence in Hanf normal form.

2.2 Property testing

In the following, we give definitions of two models for property testing - the bounded-degree
model for graphs and the bounded-degree model for relational structures. For notational
convenience, C will either denote a class of graphs of bounded-degree d, or a class of σ-
structures of bounded-degree d for some signature σ and some d ∈ N. We will further refer
to both graphs and σ-structures as structures. A property P in C is a subset of C which is
closed under isomorphism. We say that a structure A has property P if A ∈ P . For ϵ ∈ (0, 1)
we say that a structure A on n vertices/elements is ϵ-close to P if there is a structure A′ ∈ P
such that A and A′ differ in at most ϵdn edges/tuples. We say that A ∈ C is ϵ-far from P if
A is not ϵ-close to P.

A property tester accesses a structure via oracle queries. A query to a σ-structure A of
bounded-degree d has the form (a, i) for an element a ∈ U(A), i ∈ {1, . . . , d} and is answered
by ans(a, i) := (R, a1, . . . , aar(R)) where (a1, . . . , aar(R)) is the i-th tuple containing a and
(a1, . . . , aar(R)) ∈ R(A). A query to a graph G of bounded-degree d has the form (v, i) for
v ∈ V (G), i ∈ {1, . . . , d} and is answered by ans(v, i) := w where w is the i-th neighbour
of v.

Let Pn be the subset of P with n vertices/elements. Thus P = ∪n∈NPn. We give the
formal definitions of standard property testing and proximity-oblivious testing in Appendix A.

2.3 Generalised subgraph freeness

Now we present the formal definition of generalised subgraph freeness, GSF-local properties
and the notion of non-propagation, which were introduced in [13].

1 By Boolean combination we always mean finite Boolean combination.

CCC 2021

34:6 GSF-Locality Is Not Sufficient For Proximity-Oblivious Testing

▶ Definition 3 (Generalized subgraph freeness (GSF)). A marked graph is a graph with each
vertex marked as either “full” or “semifull” or “partial”. An embedding of a marked graph
F into a graph G is an injective map f : V (F) → V (G) such that for every v ∈ V (F) the
following three conditions hold.
1. If v is marked “full”, then NG

1 (f(v)) = f(NF
1 (v)).

2. If v is marked “semifull”, then NG
1 (f(v)) ∩ f(V (F)) = f(NF

1 (v)).
3. If v is marked “partial”, then NG

1 (f(v)) ⊇ f(NF
1 (v)).

The graph G is called F -free if there is no embedding of F into G. For a set of marked graphs
F , a graph G is called F-free if it is F -free for every F ∈ F .

Based on the above definition of GSF, we can define GSF-local properties.

▶ Definition 4 (GSF-local properties). Let P = ∪n∈NPn be a graph property where Pn =
{G ∈ P | |V (G)| = n} and F = (Fn)n∈N a sequence of sets of marked graphs. P is called
F -local if there exists an integer s such that for every n the following conditions hold.
1. Fn is a set of marked graphs, each of size at most s.
2. Pn equals the set of n-vertex graphs that are Fn-free.
P is called GSF-local if there is a sequence F = (Fn)n∈N of sets of marked graphs such that
P is F-local.

The following notion of non-propagating condition of a sequence of sets of marked graphs
was introduced to study constant-query POTs.

▶ Definition 5 (Non-propagating). Let F = (Fn)n∈N be a sequence of sets of marked graphs.
For a graph G, a subset B ⊂ V (G) covers Fn in G if for every marked graph F ∈ Fn
and every embedding of F in G, at least one vertex of F is mapped to a vertex in B.
The sequence F is non-propagating if there exists a (monotonically non-decreasing)
function τ : (0, 1] → (0, 1] such that the following two conditions hold.

1. For every ϵ > 0 there exists β > 0 such that τ(β) < ϵ.
2. For every graph G and every B ⊂ V (G) such that B covers Fn in G, either G is

τ(|B|/n)-close to being Fn-free or there are no n-vertex graphs that are Fn-free.
A GSF-local property P is non-propagating if there exists a non-propagating sequence F
such that P is F-local.

In the above definition, the set B can be viewed as the set involving necessary modifications
for repairing a graph G that does not satisfy the property P that is F -local, and the second
condition says we do not need to modify G “much beyond” B. In particular, it implies we can
repair G without triggering a global “chain reaction”. Goldreich and Ron gave the following
characterization for the proximity-oblivious testable properties in the bounded-degree graph
model.

▶ Theorem 6 (Theorem 5.5 in [13]). A graph property P has a constant-query proximity-
oblivious tester if and only if P is GSF-local and non-propagating.

The following open question was raised in [13].

▶ Open Question 7 (Are all GSF-local properties non-propagating?). Is it the case that for every
GSF-local property P = ∪n∈NPn, there is a sequence F = (Fn)n∈N that is non-propagating
and P is F-local?

I. Adler, N. Köhler, and P. Peng 34:7

3 Relating different notions of locality

In this section we define properties by prescribing upper and lower bounds on the number of
occurrence of neighbourhood types. These bounds are given by neighbourhood profiles which
we will define formally below. We use these properties to give a natural characterization of FO
properties of bounded-degree structures in Lemma 9, which is a straightforward consequence
of Hanf’s Theorem (Theorem 2). We use this characterization to establish links between FO
definability and GSF-locality. This connection is the key ingredient in the proof of our main
theorem.

Observe that for fixed r, d ∈ N and σ, there are only finitely many r-types in structures in
Cσ,d. For any signature σ and d, r ∈ N we let nd,r,σ ∈ N be the number of different r-types of
σ-structures of degree at most d. Assuming that for all d, r ∈ N the r-neighbourhood-types of
σ-structures of degree at most d are ordered, we let τ id,r,σ denote the i-th such neighbourhood
type, for i ∈ {1, . . . , nd,r,σ}. With each σ-structure A ∈ Cσ,d we associate its r-histogram
vector vd,r,σ(A), given by

(vd,r,σ(A))i := |{a ∈ U(A) | NA
r (a) ∈ τ id,r,σ}|.

We let

I := {[k, l], [k,∞) | k ≤ l ∈ N}

be the set of all closed or half-closed, infinite intervals with natural lower/upper bounds.

▶ Definition 8. Let σ be a signature and d, r ∈ N.
1. An r-neighbourhood profile of degree d is a function ρ : {1, . . . , nd,r,σ} → I.
2. For a structure A ∈ Cσ,d, we say A obeys ρ, denoted by A ∼ ρ, if

(vd,r,σ(A))i ∈ ρ(i) for all i ∈ {1, . . . , nd,r,σ}.

Let Pρ be the set of structures A that obey ρ, i.e., Pρ = {A ∈ Cσ,d | A ∼ ρ}.
3. We say that a property P is defined by a finite union of neighbourhood profiles if there is

k ∈ N such that P =
⋃

1≤i≤k Pρi where ρi is an ri-neighbourhood profile and ri ∈ N for
every i ∈ {1, . . . , k}.

We let nd,r := nd,r,σgraph denote the total number of r-type of undirected graphs of
degree at most d, and let τ id,r := τ id,r,σgraph

be the i-th r-type of bounded degree d, for any
i ∈ {1, . . . , nd,r}. Further, for a graph G let vd,r(G) denote the r-histogram vector of G. Note
that for any type τ id,r where the edge relation is not symmetric we have that (vd,r(G))i = 0
and therefore in any r-neighbourhood profile ρ for graphs we have ρ(i) = [0, 0] for any type
τ id,r which is not symmetric.

We now give a lemma showing that bounded-degree FO properties can be equivalently
defined as finite unions of properties defined by neighbourhood profiles. Here the technicalities
that arise are due to Hanf normal form not requiring the locality-radius of all Hanf-sentences
to be the same. The proof of Lemma 9 is deferred to Appendix C.

▶ Lemma 9. For every non-empty property P ⊆ Cσ,d, P is FO definable on Cσ,d if and only
if P can be obtained as a finite union of properties defined by neighbourhood profiles.

CCC 2021

34:8 GSF-Locality Is Not Sufficient For Proximity-Oblivious Testing

3.1 Relating FO properties to GSF-local properties
We now prove that FO properties which arise as unions of neighbourhood profiles of a
particularly simple form are GSF-local. For this let

I0 := {[0,∞), [0, k] | k ∈ N} ⊂ I.

We call any neighbourhood profile ρ with codomain I0 a 0-profile, as all lower bounds for
the occurrence of types are 0.

▶ Observation 10. Let ρ be a 0-profile. If two structures A,A′ ∈ Cσ,d satisfy (vd,r,σ(A))i ≤
(vd,r,σ(A′))i for every i ∈ {1, . . . , nd,r,σ} and A′ ∼ ρ, then A ∼ ρ.
In particular, the existence of an r-type cannot be expressed by a 0-profile.

▶ Theorem 11. Every finite union of properties defined by 0-profiles is GSF-local.

Proof. We prove this in two parts (Claim 12 and Claim 13). We first argue that every
property Pρ defined by some 0-profile ρ : {1, . . . , nd,r,σ} → I0 is GSF-local. For this it
is important to note that we can express a forbidden r-type τ by a forbidden generalised
subgraph. For (B, b) ∈ τ , the set of all graphs with no vertex of neighbourhood type τ is the
set of all B-free graphs where every vertex in V (B) of distance less than r to b is marked
“full” and every vertex in V (B) of distance r to b is marked “semifull”. Since a profile of
the form ρ : {1, . . . , nd,r,σ} → I0 can express that some neighbourhood type τ can appear
at most k times for some fixed k ∈ N, we need to forbid all marked graphs in which type τ
appears k + 1 times. We will formalise this in the following claim.

▷ Claim 12. For every r-neighbourhood profile ρ : {1, . . . , nd,r} → I0, there is a finite set F
of marked graphs such that Pρ is exactly the property of F -free graphs.

Proof. Assume τ is an r-type and k ∈ N>0. Then we say that a marked graph F is a
k-realisation of τ if F has the following properties.
1. There are k distinct vertices v1, . . . , vk in F such that (NF

r (vi), vi) ∈ τ for every i =
1, . . . , k.

2. Every vertex v in F has distance less or equal to r to at least one vertex vi.
3. Every vertex v in F of distance less than r to at least one vi is marked as “full”.
4. Every vertex v in F of distance greater or equal to r to every vi is marked as “semifull”.
We denote by Sk(τ) the set of all k-realisations of τ .

Now we can define the set F of forbidden subgraphs to be

F :=
⋃

k∈N,1≤i≤nd,r,σ :ρ(i)=[0,k]

Sk+1(τ id,r).

Let P be the property of all F -free graphs. We first prove that the property P is contained
in Pρ. Towards a contradiction assume that G ∈ Cd is F -free but not contained in Pρ. As G
is not contained in Pρ there must be an index i ∈ {1, . . . , nd,r} such that (vd,r(G))i /∈ ρ(i).
Since ρ(i) ∈ I0 there is k ∈ N such that ρ(i) = [0, k] and hence (vd,r(G))i > k. Hence
there must be k + 1 vertices v1, . . . , vk+1 in G such that (NG

r (vi), vi) ∈ τ id,r. We define the
marked graph F to be the subgraph of G induced by the r-neighbourhoods of v1, . . . , vk+1,
i. e. G[∪1≤i≤k+1N

G
r (vi)], in which every vertex of distance less than k to at least one of

the vi is marked as “full” and every other vertex is marked as “semifull”. Then F is by
definition a (k + 1)-realisation of τ id,r and hence F ∈ F . We now argue that F can be
embedded into G. Since F is an induced subgraph of G the identity map gives us a natural

I. Adler, N. Köhler, and P. Peng 34:9

embedding f : F → G. Let v be any vertex marked “full” in F . Then by construction of
F , there is i ∈ {1, . . . , k + 1} such that f(v) is of distance less than r to vi in G. But then
NG

1 (f(v)) is a subset of NG
r (vi). As F without the marking is the subgraph of G induced

by ∪1≤i≤k+1N
G
r (vi) this implies that f(NF

1 (v)) = NG
1 (f(v)). Furthermore, assume v is a

vertex marked “semifull” in F . Then f(NF
1 (v)) = NG

1 (f(v)) ∩ f(V (F)) holds as F without
the markings is an induced subgraph of G. This proves that G is not F -free by Definition 3.
This is a contradiction to our assumption that G is F -free and F ∈ F .

Similarly, we can show that Pρ ⊆ P by assuming G ∈ Cd is in Pρ but not F-free, and
showing that the embedding of any graph of F into G yields an amount of vertices of a
certain type contradicting containment in Pρ. ◁

Next we prove that classes defined by excluding finitely many marked graphs are closed
under finite unions.

▷ Claim 13. Let F1,F2 be two finite sets of marked graphs. For i ∈ {1, 2}, let Pi be the
property of Fi-free graphs. Then there is a set F of generalised subgraphs such that P1 ∪ P2
is the property of F -free graphs.

Proof. We say that a marked graph F is a (not necessarily disjoint) union of marked graphs
F1, F2 if
1. there is an embedding fi of Fi into the graph F without its markings as in Definition 3

for every i ∈ {1, 2}.
2. for every vertex v in F there is i ∈ {1, 2} and a vertex w in Fi such that fi(w) = v.
3. every vertex v in F is marked “full”, if there is i ∈ {1, 2} and a “full” vertex w in Fi such

that fi(w) = v.
4. every vertex v in F is marked “semifull”, if there is i ∈ {1, 2} and a “semifull” vertex w

in Fi such that fi(w) = v and fi(u) ̸= v for every i ∈ {1, 2} and every “full” vertex u.
5. every vertex v in F is marked “partial” if fi(u) ̸= v for every i ∈ {1, 2} and every “full”

or “semifull” vertex u.
We define S(F1, F2) to be the set of all possible (not necessarily disjoint) unions of F1, F2.
We can now define the set F to be

F :=
⋃

F1∈F1,F2∈F2

S(F1, F2).

Let P be the property of all F-free graphs. Now we prove P ⊆ P1 ∪ P2. Towards a
contradiction assume G is F -free but G is in neither P1 nor in P2. Then for every i ∈ {1, 2}
there is a graph Fi ∈ Fi such that G is not Fi-free. It is easy to see that there is a union F∪
of F1 and F2 such that G is not F∪-free, which contradicts that G is F -free.

Conversely, in order to prove P1 ∪ P2 ⊆ P , if G is Fi free for some i ∈ {1, 2} then G must
be F -free by construction of F . ◁

Combining the two claims above proves the Theorem 11. ◀

Further discussion of the relation between FO and GSF-locality

First let us remark that it is neither true that every FO definable property is GSF-local, nor
that every GSF-local property is FO definable.

▶ Example 14. The property of bounded-degree graphs containing a triangle is FO definable
but not GSF-local.

CCC 2021

34:10 GSF-Locality Is Not Sufficient For Proximity-Oblivious Testing

partial partial

partial

partial full full

G1 G2 G3

Figure 1 Marked graphs for Example 16.

Indeed, the existence of a fixed number of vertices of certain neighbourhood types can
be expressed in FO, while in general, this cannot be expressed by forbidding generalised
subgraphs. If a formula has a 0-profile (and hence does not require the existence of any
types) then the property defined by that formula is GSF-local, as shown in Theorem 11.

▶ Example 15. The class of all bounded-degree graphs with an even number of vertices is
GSF-local but not FO definable.

Let us remark that Theorem 11 combined with Lemma 9 proves that every finite union of
properties definable by 0-profiles is both FO definable and GSF-local. Hence it is natural to
ask whether the intersection of FO definable properties and GSF-local properties is precisely
the set of finite unions of properties definable by 0-profiles. However, this is not the case.
The following example shows that there are properties which are both FO definable and
GSF-local but cannot be expressed by 0-profiles.

▶ Example 16. We let d ≥ 2 and let B1 := ({v}, {}), B2 = ({v, w}, {{v, w}}) be two graphs.
We further let τ1, τ2 be the 1-types of degree d such that (B1, v) ∈ τ1 and (B2, v) ∈ τ2.
Consider the property P defined by the following FO formula

φ := ¬∃x(x = x) ∨ ∃=1x
(
φτ1(x) ∧ ∀y(x ̸= y → φτ2(y))

)
.

P contains, besides the empty graph, unions of an arbitrary amount of disjoint edges and
one isolated vertex. To define a sequence of forbidden subgraphs we let G1, G2, G3 be the
marked graphs in Figure 1. Let Feven := {G1} and Fodd := {G2, G3} and let F = (Fn)n∈N
where Fi = Feven if i is even and Fi = Fodd if i is odd. Note that every graph on more
than one vertex with an odd number of vertices which is Fodd-free must contain a vertex
of neighbourhood type τ1, and that the set of Feven-free graphs contains only the empty
graph. Hence P is F-local. Now assume towards a contradiction that P = ∪1≤i≤kPρi

for
0-profiles ρi. Let Gm be the graph consisting of m disjoint edges and one isolated vertex
and Hm the graph consisting of m disjoint edges. Since Gm ∈ P there is i ∈ {1, . . . , k} such
that Gm ∼ ρi. By choice of Gm and Hm we have 0 ≤ (vd,r(Hm))j ≤ (vd,r(Gm))j ∈ ρi(j) for
every j ∈ {1, . . . , nd,r}. Since additionally ρi(j) ∈ I0 this implies that (vd,r(Hm))j ∈ ρi(j).
But then Hm ∼ ρi which yields a contradiction as Hm /∈ P . Hence P can not be defined as
a finite union of 0-profiles.

Figure 2 gives a schematic overview of all classes of properties discussed here and their
relationship.

I. Adler, N. Köhler, and P. Peng 34:11

GSF-local

FO
POT

0-profiles

Pgraph

P16

P15

P14

Cd

Figure 2 Overview of the classes of properties, here Pi refers to the property from Example i,
Cd refers to the property of all graphs of bounded degree d and Pgraph is the property defined in
Section 4.2.

4 Proof of the main theorem

In this section we prove Theorem 1. We start by describing a property of relational structures,
similar to a property in [1], which is not testable. We then show that the property can be
expressed by a union of 0-profiles, and hence by Theorem 11 it is GSF-local.

Let σ be the signature, d ∈ N and P z be the property of d σ-structures of bounded-degree
from [1].

Brief Description of the property P z

P z is the property of all bounded-degree d σ-structures, which satisfy some first-order logic
formula φ z . On a high level, each structure A in the property P z is a hybridization of a
sequence of expander graphs and a tree structure, where the expander graphs are constructed
by the zig-zag product that was introduced in [23]. Slightly more precisely, each model of
φ z is a rooted k-ary complete tree for some constant k, where the vertices on each level
form an expander. In terms of logic language, for some constant D > 1, we considered

σ := {{Ei,j}i,j∈[D]2 , {Fk}k∈([D]2)2 , R, {Lk}k∈([D]2)2},

where Ei,j , Fk, R and Lk are binary relation symbols for i, j ∈ [D]2 and k ∈ ([D]2)2. We
further use F and E as an abbreviation to denote

⋃
i,j∈[D]2 Ei,j and

⋃
k∈([D]2)2 Fk. We

defined an FO formula φ z such that

φ z := φtree ∧ φrotationMap ∧ φbase ∧ φrecursion, and P z := {A ∈ Cσ,d | A |= φ z },

where φtree, φrotationMap, φbase, φrecursion are FO formulas which encode the tree structure (and
degree regularity), rotation maps, base graph (with constant size) and recursive construction
of expander graphs (via the zig-zag product). Note that for the construction we use some
base graph H which is given by its rotation map ROTH : ([D]2)2 × [D] → ([D]2)2 × [D],
which is a special type of an encoding of a graph.

The precise formula is given in Appendix B. We will restate parts of the formula, whenever
they are relevant in the proofs below.

CCC 2021

34:12 GSF-Locality Is Not Sufficient For Proximity-Oblivious Testing

4.1 Characterisation by neighbourhood profiles
Our aim in this section is to prove that a minor variation of property P z of relational
structures can be written as a finite union of properties defined by 0-profiles of radius 2. As
the existence of a certain vertex cannot be expressed with a 0-profile (see Observation 10)
and φ z demands the existence of a certain vertex (the root vertex), the property P z cannot
be expressed in terms of 0-profiles. However we define a slight variation of the formula φ z
which, as we will see later, can be expressed by 0-profiles. Let

φ′
z := φ′

tree ∧ φrotationMap ∧ φbase ∧ φrecursion,

where we obtain φ′
tree from φtree by replacing the subformula ∃=1xφroot(x) by ∃≤1xφroot(x),

where φroot(x) := ∀y¬F (y, x). We define the property

P ′
z := {A ∈ Cσ,d | A |= φ′

z }.

We denote the empty structure by A∅ (i. e. U(A∅) = ∅).

▶ Lemma 17. The properties P ′
z and P z ∪ {A∅} are equal.

To prove this we use the following lemma [1, Lemma 3.5].

▶ Lemma 18 ([1]). For A ∈ Cσ,d let GAF be the graph with vertex set U(A) and edge set
{{a, b} | (a, b) ∈ F (A)}. If A |= φ z then GAF is connected.

Proof of Lemma 17. We fist prove that P ′
z ⊆ P z ∪{A∅}. Consider the formula φ̃ z which

is obtained from φ z by removing the subformula ∃=1xφroot(x). We use the following simple
observation, which we will prove in Appendix D.

▷ Claim 19. Satisfying φ̃ z is closed under disjoint unions on Cσ,d.

Since A∅ ∈ P z ∪ {A∅} it is sufficient to consider only non-empty structures in the following.
Therefore assume that there exists A ∈ Cσ,d with U(A) ̸= ∅ such that A |= φ′

z and A

contains no element a for which A |= φroot(a). Let A′ ∈ Cσ,d be any model of φ z with
U(A) ∩ U(A′) = ∅. Then A ∪A′ |= φ̃ z by Claim 19. Furthermore, A ∪A′ |= ∃=1xφroot(x),
which implies A∪A′ |= φ z . By construction GA∪A′

F has more than one connected component
as both U(A) ̸= ∅ and U(A′) ̸= ∅ and A ∪ A′ is a disjoint union of A and A′. Hence we
obtain a contradiction to Lemma 18. Therefore every non-empty structure satisfying φ′

z
must satisfy ∃=1xφroot(x), and hence also φ z .

Conversely, if A ∈ Cσ,d is a model of φ z then A |= ∃=1xφroot(x). This implies directly
that A |= ∃≤1xφroot(x) and hence A |= φ′

z . Furthermore, A∅ ∈ P ′
z as A |= ∃≤1xφroot(x)

and A |= φ̃ z as φ̃ z is a conjunction of universally quantified formulas. Hence P z ∪ {A∅} ⊆
P ′

z . ◀

We now define the 0-profiles which express the property P ′
z . For all σ-structures in P z

(all σ-structure in P ′
z but A∅) it is crucial that they are allowed to contain precisely one

root element. Hence the neighbourhood profile describing P ′
z must restrict the number of

occurrences of the 2-type of the root element. But since in P z , the root elements in different
structures may have different 2-types, we partition P z into parts P1, . . . ,Pm by the 2-type

I. Adler, N. Köhler, and P. Peng 34:13

of the root element. Note that the number m of parts is constant as there are at most nd,2,σ
2-types in total. For each of these parts we then define a neighbourhood profile ρk such that
Pk ∪ {A∅} = Pρk

. We would like to remark here that the roots of all but one structure in
P z actually have the same 2-types. However, proving this requires a detailed insight into
the construction of P z , so we avoid this here and use the partition into finitely many parts
instead. We now define the parts and corresponding profiles formally.

Assume without loss of generality that the 2-types τ1
d,2,σ, . . . , τ

nd,2,σ

d,2,σ of degree d are
ordered in such a way that for (B, b) ∈ τkd,2,σ, it holds that B |= φroot(b) if and only if
k ∈ {1, . . . ,m} for some m ≤ nd,2,σ. For k ∈ {1, . . . ,m}, let

Pk := {A ∈ P z | there is a ∈ U(A) such that (NA
2 (a), a) ∈ τkd,2,σ}.

Since every A ∈ P z satisfies ∃=1xφroot(x) we get that

P ′
z =

⋃
1≤k≤m

Pk ∪ {A∅}

and this union is disjoint. Furthermore, for k ∈ {1, . . . ,m}, let Ik ⊆ {1, . . . , nd,2,σ} be the
set of indices j such that there is a structure A ∈ Pk and a ∈ U(A) with (NA

2 (a), a) ∈ τ jd,2,σ.
For every k ∈ {1, . . . ,m} we define the 2-neighbourhood profile ρk : {1, . . . , nd,2,σ} → I0 by

ρk(i) :=

[0, 1] if i = k,

[0,∞) if i ∈ Ik \ {k},
[0, 0] otherwise.

To prove that these 0-profiles of radius 2 define the property P ′
z , the crucial observation

is that for every element a of some structure in Cσ,d, the FO-formula φ′
z only talks about

elements of distance at most 2 to a (i. e. φ′
z is 2-local). Hence the 2-histogram vector of a

structure already captures whether the structure satisfies φ′
z . We will now formally prove

this.

▶ Lemma 20. It holds that P ′
z =

⋃
1≤k≤m Pρk

.

Proof. We first prove that P ′
z ⊆

⋃
1≤k≤m Pρk

. First note that trivially A∅ ∈
⋃

1≤k≤m Pρk
.

Now assume A ∈ P z . This implies that there is k ∈ {1, . . . ,m} such that A ∈ Pk. By
construction we have that for every a ∈ A, there is i ∈ Ik such that (NA

2 (a), a) ∈ τ id,2,σ.
Furthermore, since A |= φ z , we have that A |= ∃=1xφroot(x), and that there can be at most
one a ∈ U(A) such that (NA

2 (a), a) ∈ τkd,2,σ. Therefore A ∈ Pρk
.

To prove
⋃

1≤k≤m Pρk
⊆ P ′

z , we prove that every structure in
⋃

1≤k≤m Pρk
must satisfy

φ′
z . We will prove that every A ∈

⋃
1≤k≤m Pρk

satisfies φrecursion, and refer for the proof
that A satisfies φ′

tree ∧φrotationMap ∧φbase to Claim 30, Claim 31 and Claim 32 in Appendix D.
Note that A∅ |= φ′

z by Lemma 17 and hence we exclude A∅ in the following.

▷ Claim 21. Every structure A ∈
⋃

1≤k≤m Pρk
\ {A∅} satisfies φrecursion.

CCC 2021

34:14 GSF-Locality Is Not Sufficient For Proximity-Oblivious Testing

Proof. Let A ∈
⋃

1≤k≤m Pρk
\ {A∅}. Then there is a k ∈ {1, . . . ,m} such that A ∈ Pρk

.
By definition, φrecursion := ∀x∀z

(
φ(x, z) ∨ ψ(x, z)

)
(see Appendix B), where

φ(x, z) :=¬∃yF (x, y) ∧ ¬∃yF (z, y) and

ψ(x, z) :=
∧

k′
1,k

′
2∈[D]2

ℓ′
1,ℓ

′
2∈[D]2

(
∃y

[
Ek′

1,ℓ
′
1
(x, y) ∧ Ek′

2,ℓ
′
2
(y, z)

]
→

∧
i,j,i′,j′∈[D],k,ℓ∈([D]2)2

ROTH (k,i)=((k′
1,k

′
2),i′)

ROTH ((ℓ′
2,ℓ

′
1),j)=(ℓ,j′)

∃x′∃z′[Fk(x, x′) ∧ Fℓ(z, z′) ∧ E(i,j),(j′,i′)(x′, z′)
])
.

Let a, c ∈ U(A). Assume first that there is b ∈ U(A) with (a, b) ∈ F (A). Hence A ̸|= φ(a, c).
Since φrecursion := ∀x∀z

(
φ(x, z)∨ψ(x, z)

)
we aim to prove A |= ψ(a, c). By construction of ρk,

there is an i ∈ Ik such that (NA
2 (a), a) ∈ τ id,2,σ. Therefore there is a structure Ã |= φ z and

ã ∈ U(Ã) such that (NA
2 (a), a) ∼= (N Ã

2 (ã), ã). Let f be an isomorphism from (NA
2 (a), a) to

(N Ã
2 (ã), ã). Since b ∈ NA

2 (a), we get that f(b) is defined. Since f is an isomorphism mapping
a onto ã, we have that (a, b) ∈ F (A) implies that (ã, f(b)) ∈ F (Ã). Hence Ã ̸|= φ(ã, c̃), for
every c̃ ∈ U(Ã). But since Ã |= φrecursion, as Ã |= φ z , this shows that Ã |= ψ(ã, c̃) for every
c̃ ∈ U(Ã).

Let k′
1, k

′
2 ∈ [D]2 and ℓ′

1, ℓ
′
2 ∈ [D]2 be indices such that there is b′ ∈ U(A) with (a, b′) ∈

Ek′
1,ℓ

′
1
(A) and (b′, c) ∈ Ek′

2,ℓ
′
2
(A). Since b′, c ∈ NA

2 (a), by assumption we get that f(b′)
and f(c) are defined. Furthermore, (a, b′) ∈ Ek′

1,ℓ
′
1
(A) and (b′, c) ∈ Ek′

2,ℓ
′
2
(A) imply that

(ã, f(b′)) ∈ Ek′
1,ℓ

′
1
(Ã) and (f(b′), f(c)) ∈ Ek′

2,ℓ
′
2
(Ã), since f is an isomorphism mapping a

onto ã. We proved in the previous paragraph that Ã |= ψ(ã, f(c)). Hence we can conclude
that for all indices i, j, i′, j′ ∈ [D], k, ℓ ∈ ([D]2)2 for which ROTH(k, i) = ((k′

1, k
′
2), i′) and

ROTH((ℓ′
2, ℓ

′
1), j) = (ℓ, j′), there are elements ã′, c̃′ ∈ U(Ã) such that (ã, ã′) ∈ Fk(Ã),

(f(c), c̃′) ∈ Fℓ(Ã), and (ã′, c̃′) ∈ E(i,j),(j′,i′)(Ã). Since ã′, c̃′ ∈ N Ã
2 (ã), we get that a′ :=

f−1(ã′) and c′ := f−1(c̃′) are defined. Furthermore, we get that (a, a′) ∈ Fk(A), (c, c′) ∈
Fℓ(A) and (a′, c′) ∈ E(i,j),(j′,i′)(A). This proves that A |= ψ(a, c).

In the case that there is b ∈ U(A) with (c, b) ∈ F (A), we can prove similarly that
A |= ψ(a, c), by considering that there exist Ã |= φ z and c̃ ∈ U(Ã) such that (NA

2 (a), c) ∼=
(N Ã

2 (c̃), c̃) by construction of ρk. Finally if there is no b ∈ U(A) such that (a, b) ∈ F (A) or
(c, b) ∈ F (A) then A |= φ(a, c). Since this covers every case we get that A |= φrecursion. ◁

Assume A ∈
⋃

1≤k≤m Pρk
. As proved in Claims 30, 31, 32 and 21 this implies that A |= φ′

tree,
A |= φrotationMap, A |= φbase and A |= φrecursion. Since φ′

z is a conjunction of these formulas,
we get A |= φ′

z and hence A ∈ P ′
z . ◀

4.2 A local reduction from relational structures to graphs

In this section we will define our graph property Pgraph by giving a reduction from the
property P ′

z and argue that Pgraph is GSF-local while not testable. To do so, we show that
this reduction is “local” which preserves the testability of these two properties.

I. Adler, N. Köhler, and P. Peng 34:15

Local reduction

We first introduce the following notion of local reduction between two property testing models.
In the following, when the context is clear, we will use C to denote both a class of structure
and the corresponding property testing model, which can be either the bounded-degree model
for graphs or bounded-degree model for relational structures.

▶ Definition 22 (Local reduction). Let C, C′ be two property testing models and let P ⊆ C,
P ′ ⊆ C′ be two properties. We say that a function f : C → C′ is a local reduction from P to
P ′ if there are constants c1, c2 ∈ N≥1 such that for every X ∈ C the following properties hold.
1. If X ∈ P then f(X) ∈ P ′.
2. If X is ϵ-far from P then f(X) is (ϵ/c1)-far from P ′.
3. For every query to f(X) we can adaptively2 compute c2 queries such that the answer to

the query to f(X) can be computed from the answers to the c2 queries to X.
The following lemma is known.

▶ Lemma 23 (Theorem 7.14 in [9]). Let C, C′ be two property testing models, P ⊆ C, P ′ ⊆ C′

be two properties and f a local reduction from P to P ′. If P ′ is testable then so is P.

Construction of the graph property

Now we construct a property Pgraph from the property P ′
z . We obtain this graph property

as f(P ′
z) by defining a map f : Cσ,d → Cd. To define f we introduce a distinct arrow-graph

gadget for every relation in σ (i. e. for every edge colour). The map f then replaces every
tuple in a certain relation (every coloured edge) by the respective arrow-graph gadget. We
further prove that this replacement operation defines a local reduction f from P ′

z to Pgraph.
Recall that a local reduction is a function maintaining distance that can be simulated locally
by queries. Since by Lemma 23 local reductions preserve testability, we use the local reduction
from P ′

z to Pgraph to obtain non-testability of the property Pgraph from the non-testability
of P ′

z . We will now define f formally.
Let ℓ be the number of relations (the number of edge colours) in σ. We first introduce

the different types of arrow-graph gadgets we need to define the local reduction. For
1 ≤ k ≤ ℓ, we let Hk be the graph with vertex set V (Hk) := {a1, . . . , a2ℓ+2, b1, b2} and
edge set E(Hk) := {{ai, ai+1} | 1 ≤ i ≤ 2ℓ+ 1} ∪ {{aℓ+1+k, bj} | j ∈ {1, 2}}. We call Hk a
k-arrow. For any graph G and vertices v, w ∈ V (G), we say that there is a k-arrow from
v to w, denoted v

k−→ w, if there are 2ℓ + 2 vertices v2, . . . , v2ℓ+1, w1, w2 ∈ V (G) and an
isomorphism g : Hk → NG

1 (v2, . . . , v2ℓ+1, w1, w2) such that g(a1) = v and g(a2ℓ+2) = w.
We now define a second arrow gadget. For 1 ≤ k ≤ ℓ, we let Lk be the graph with vertex
set V (Lk) := {a1, . . . , aℓ+1, b} and edge set E(Lk) := {{ai, ai+1} | 1 ≤ i ≤ ℓ} ∪ {{ak, b}}.
We call Lk a k-loop. For any graph G and vertex v ∈ V (G), we say that there is a k-loop
at v, denoted v

k−→ v, if there are ℓ + 1 vertices v1, . . . , vℓ, w ∈ V (G) and an isomorphism
g : Lk → NG

1 (v1, . . . , vℓ, w) such that g(aℓ+1) = v. Finally we let H⊥ be the graph with vertex
set V (H⊥) := {a1, . . . , aℓ+1, b} and edge set E(H⊥) := {{ai, ai+1} | 1 ≤ i ≤ ℓ} ∪ {{ai, b} |
i ∈ {1, 2}}. We call H⊥ a non-arrow. For any graph G and vertex v ∈ V (G), we say that
there is a non-arrow at v, denoted v ̸→, if there are ℓ+ 1 vertices v1, . . . , vℓ, w ∈ V (G) and
an isomorphism g : H⊥ → NG

1 (v1, . . . , vℓ, w) such that g(aℓ+1) = v.

2 By adaptively computing queries we mean that the selection of the next query may depend on the
answer to the previous query.

CCC 2021

34:16 GSF-Locality Is Not Sufficient For Proximity-Oblivious Testing

a vℓa,i v2
a,i

v1
a,i

wa,i

(a) Case ans(a, i) = ⊥.

a vℓa,i vka,i v1
a,i

wa,i

(b) Case ans(a, i) = (k, a, a).

a vℓa,i v1
a,i

wa,i

bv1
b,j vkb,j vℓb,j

wb,j

(c) Case ans(a, i) = ans(b, j) = (k, a, b).

Figure 3 Different types of arrows in GA.

We now define a function f : Cσ,d → Cd by f(A) := GA, where GA is the graph on vertex
set V (GA) := U(A) ∪ {vka,i, wa,i | 1 ≤ i ≤ d, a ∈ U(A), 1 ≤ k ≤ ℓ} and edge set

E(GA) :=
{

{a, vℓa,i} | a ∈ U(A), 1 ≤ i ≤ d
}

∪
{

{vka,i, vk+1
a,i } | 1 ≤ k ≤ ℓ− 1, a ∈ U(A), 1 ≤ i ≤ d

}
∪

{
{vkb,j , wb,j}, {vkb,j , wa,i}, {vℓa,i, vℓb,j} | a ̸= b, ans(a, i) = ans(b, j) = (k, a, b)

}
∪

{
{vka,i, wa,i} | ans(a, i) = (k, a, a)

}
∪

{
{v1
a,i, wa,i}, {v2

a,i, wa,i} | ans(a, i) = ⊥
}
,

where ans(a, i) = (k, a, b) denotes that the i-th tuple of a is (a, b) and is in the k-th relation.
Hence GA is defined in such a way that if (a, b) is a tuple in the k-th relation of σ in A, then
a
k−→ b in GA, and a has a non-arrow for every i satisfying that ans(a, i) = ⊥ for every k. For

illustration see Figure 3.
Now we define property Pgraph := {f(A) | A ∈ P ′

z } ⊆ Cd.

▶ Lemma 24. The map f is a local reduction from P ′
z to Pgraph.

Proof. First note that for any A ∈ P ′
z , we have that f(A) ∈ Pgraph by definition.

Now let c1 = 2d+ 2d2ℓ. We prove that if A ∈ Cσ,d is ϵ-far from P ′
z then f(A) is ϵ/c1-far

from Pgraph by contraposition. Therefore assume that f(A) =: GA is not ϵ/c1-far from
Pgraph for some A ∈ Cσ,d. Then there is a set E ⊆ {e ⊆ V (GA) | |e| = 2} of size at most
ϵd|V (GA)|/c1, and a graph G ∈ Pgraph such that G is obtained from GA by modifying the
tuples in E. By definition of Pgraph, there is a structure AG ∈ P ′

z such that f(AG) = G.
First note that |U(AG)| = |U(A)|, as (1 + dℓ)|U(A)| = |V (GA)| = |V (G)| = (1 + dℓ)|U(AG)|.
Hence there must be a set R of tuples that need to be modified to make A isomorphic to AG.
First note that R cannot contain a tuple (a, b) where {a, vka,i, wa,i, b, vkb,i, wb,i | 1 ≤ i ≤ d, 1 ≤

I. Adler, N. Köhler, and P. Peng 34:17

k ≤ ℓ}∩e = ∅ for every e ∈ E. This is because if (a, b) is a tuple in A, then a k−→ b for some k in
GA. But since {a, vka,i, wa,i, b, vkb,i, wb,i | 1 ≤ i ≤ d, 1 ≤ k ≤ ℓ}∩e = ∅ for every e ∈ E, we have
that a k−→ b in G. But then (a, b) must be a tuple in AG, and hence (a, b) cannot be in R. The
same argument works when assuming that (a, b) is a tuple in AG. Since for every e ∈ E, there
are at most 2d tuples (a, b) such that {a, vka,i, wa,i, b, vkb,i, wb,i | 1 ≤ i ≤ d, 1 ≤ k ≤ ℓ} ∩ e ̸= ∅,
we get that

|R| ≤ 2dϵd|V (GA)|/c1 = 2d(1 + dℓ)ϵd|U(A)|/c1 = ϵd|U(A)|.

Hence A is not ϵ-far to being in P ′
z .

Let c2 := d+ 1. Let A ∈ Cσ,d and GA := f(A). Note that any a ∈ U(A) is adjacent in GA
to vℓa,i, for every 1 ≤ i ≤ d. Hence any neighbour query in GA to a can be answered without
querying A. Assume v ∈ {vka,i, wa,i | 1 ≤ k ≤ ℓ} for some a ∈ U(A) and some 1 ≤ i ≤ d.
Then we can determine all neighbours of v by querying (a, i) and further if ans(a, i) ̸= ⊥
and ans(a, i) = (k, a, b), then we need to query (b, j) for every 1 ≤ j ≤ d. Hence we can
determine the answer to any query to GA by making c2 queries to A. This proves that f is a
local reduction from P ′

z to Pgraph. ◀

We remark that Pgraph is a simpler version of the simple graph property defined in [1] where
extra care had to be taken to define degree-regular graphs.

4.3 The graph property is GSF-local
Let Pgraph be the graph property as defined in Section 4.2. We now show that Pgraph is
GSF-local.

▶ Lemma 25. The graph property Pgraph is GSF-local.

Proof. For this we will prove that Pgraph is equal to a finite union of properties defined
by 0-profiles, and then use Theorem 11 to prove that Pgraph is GSF-local. We define the
0-profiles for Pgraph in a very similar way to the relational structure case, and then use
the description of P ′

z by 0-profiles shown in Lemma 20. To this end, assume that the

4ℓ+ 2-types τ1
d,4ℓ+2, . . . , τ

nd,4ℓ+2
d,4ℓ+2 are ordered in such a way that (N f(B)

4ℓ+2 (b), b) ∈ τkd,4ℓ+2, for
every k ∈ {1, . . . ,m} and (B, b) ∈ τkd,2,σ, where m is the number of parts of the partition of
P z defined in Subsection 4.1. For k ∈ {1, . . . ,m}, let Îk be the set of indices i such that there

is A ∈ Pk, and v ∈ V (f(A)) for which (N f(A)
4ℓ+2 (v), v) ∈ τ id,4ℓ+2. Let ρ̂k : {1, . . . , nd,4ℓ+2} → I0

be defined by

ρ̂k(i) :=

[0, 1] if i = k,

[0,∞) if i ∈ Îk \ {k},
[0, 0] otherwise.

▷ Claim 26. It holds that Pgraph =
⋃

1≤k≤m Pρ̂k
.

Proof. First we prove Pgraph ⊆
⋃

1≤k≤m Pρ̂k
. Assume G ∈ Pgraph and let A ∈ P ′

z be a
structure such that G = f(A). If A = A∅ then clearly G ∈

⋃
1≤k≤m Pρ̂k

. Hence assume
A ̸= A∅. Then A ∈ Pk for some k ∈ {1, . . . ,m}. By the construction of Îk we know that for

CCC 2021

34:18 GSF-Locality Is Not Sufficient For Proximity-Oblivious Testing

every v ∈ V (G) we have (NG
4ℓ+2(v), v) ∈ τ id,4ℓ+2 for some i ∈ Îk. Furthermore, since A ∈ Pk

there is at most one a ∈ U(A) with (NA
2 (a), a) ∈ τkd,2,σ. This implies directly that there can

be at most one vertex v ∈ V (G) with (NG
4ℓ+2(v), v) ∈ τkd,4ℓ+2 and hence G ∈ Pρ̂.

Now we prove that
⋃

1≤k≤m Pρ̂k
⊆ Pgraph. Let G ∈

⋃
1≤k≤m Pρ̂k

and let k ∈ {1, . . . ,m}
be an index such that G ∈ Pρ̂k

.
First note that every model of φ z is d regular for some large d. Then for any A |= φ z ,

every vertex in f(A) has either degree ≤ 4 or degree d . Since every structure in P ′
z apart

from the empty structure A∅ is a model of φ z , this implies that every vertex in any graph
G′ ∈ Pgraph has degree ≤ 4 or degree d. Since for every i for which ρ̂(i) ̸= [0, 0], there is a
graph G′ ∈ Pgraph and v ∈ V (G′) such that (NG′

4ℓ+2(v), v) ∈ τ id,4ℓ+2, we get that every vertex
in G has to have degree ≤ 4 or degree d. Using this argument further, we get that every
vertex v ∈ V (G) of degree ≤ 4 has to be contained in the (ℓ+ 1)-neighbourhood of a vertex
of degree d, and that the (2ℓ + 1)-neighbourhood of every vertex v ∈ V (G) of degree d is
the union of k-arrows, k-loops and non-arrows which are disjoint apart from their endpoints.
Hence there is a σ-structure A such that f(A) ∼= G. Let g be an isomorphism from f(A) to
G.

Now we argue that A ∈ Pρk
. First assume that there are two elements a, b with

(NA
2 (a), a) ∈ τkd,2,σ and (NA

2 (b), b) ∈ τkd,2,σ. By definition, we get that (N f(A)
4ℓ+2 (a), a) ∈ τkd,4ℓ+2

and (N f(A)
4ℓ+2 (b), b) ∈ τkd,4ℓ+2. Since g is an isomorphism, the restriction of g to N

f(A)
4ℓ+2(a)

must be an isomorphism from N f(A)
4ℓ+2 (a) to NG

4ℓ+2(g(a)), and hence (NG
4ℓ+2(g(a)), g(a)) ∼=

(N f(A)
4ℓ+2 (a), a) ∈ τkd,4ℓ+2. But the same holds for the (4ℓ + 2)-ball of g(b), and hence we

contradict the assumption that G ∈ Pρ̂k
since ρ̂k(k) = [0, 1]. Let us further assume that

there is an a ∈ U(A) such that (NA
2 (a), a) ∈ τ id,2,σ for some i /∈ Ik. Let j be the index

such that (N f(A)
4ℓ+2 (a), a) ∈ τ jd,4ℓ+2. Additionally note that a must have degree d in f(A) by

construction of f . As g is an isomorphism, we get that (NG
4ℓ+2(g(a)), g(a)) ∈ τ jd,4ℓ+2, and

g(a) has degree d. But then by construction of ρ̂k, there must be G′ ∈ Pgraph, and a vertex
v ∈ V (G′) of degree d such that (NG′

4ℓ+2(v), v) ∈ τ jd,4ℓ+2. By construction of Pgraph, there is
a structure A ∈ P ′

z such that f(A′) = G′. Since v has degree d, it must be an element in A′.

Furthermore (NA′

2 (v), v) ∈ τ id,2,σ by choice of i and j. Hence A′ /∈ Pρk
. But this contradicts

Lemma 20.
Hence we have shown that A ∈ Pρk

. Then by Lemma 20 A ∈ P ′
z , and by construction

G ∈ Pgraph. ◁

Since by Claim 26 we can express Pgraph as a finite union of properties each defined by a
0-profile, Theorem 11 implies that Pgraph is GSF-local. ◀

4.4 Putting everything together
Now we prove our main theorem.

Proof of Theorem 1. Let the property P ′
z of relational structures be as defined above.

Note that P ′
z is not testable, as P z is not testable [1, Theorem 4.4] and P ′

z only differs
from P z by the empty structure. By Lemma 24 and Lemma 23, the graph property Pgraph

that is locally reduced from P ′
z is not testable. Lemma 25 shows that Pgraph is also a

GSF-local property. Hence there exists a GSF-local property of bounded-degree graphs which
is not testable. Furthermore, since having a POT implies being testable, this proves that
there is a GSF-local property which has no POT. By Theorem 6 this implies that not all
GSF-local properties are non-propagating. ◀

I. Adler, N. Köhler, and P. Peng 34:19

References
1 Isolde Adler, Noleen Köhler, and Pan Peng. On testability of first-order properties in bounded-

degree graphs. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1578–1597. SIAM, 2021.

2 Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial characterization
of the testable graph properties: it’s all about regularity. SIAM Journal on Computing,
39(1):143–167, 2009.

3 Itai Benjamini, Oded Schramm, and Asaf Shapira. Every minor-closed property of sparse
graphs is testable. Advances in mathematics, 223(6):2200–2218, 2010.

4 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of computer and system sciences, 47(3):549–595, 1993.

5 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Perspectives in Mathematical
Logic. Springer, 1995.

6 Hendrik Fichtenberger, Pan Peng, and Christian Sohler. Every testable (infinite) property
of bounded-degree graphs contains an infinite hyperfinite subproperty. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 714–726. Society for
Industrial and Applied Mathematics, 2019.

7 Sebastian Forster, Danupon Nanongkai, Thatchaphol Saranurak, Liu Yang, and Sorrachai
Yingchareonthawornchai. Computing and testing small connectivity in near-linear time and
queries via fast local cut algorithms. SODA, 2020.

8 Haim Gaifman. On local and non-local properties. In Studies in Logic and the Foundations of
Mathematics, volume 107, pages 105–135. Elsevier, 1982.

9 Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.
10 Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its connection to

learning and approximation. Journal of the ACM (JACM), 45(4):653–750, 1998.
11 Oded Goldreich and Tali Kaufman. Proximity oblivious testing and the role of invariances. In

Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness
and Computation, pages 173–190. Springer, 2011.

12 Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2002. doi:10.1007/s00453-001-0078-7.

13 Oded Goldreich and Dana Ron. On proximity-oblivious testing. SIAM Journal on Computing,
40(2):534–566, 2011. Preliminary version appeared at Proceedings of the 41st Annual ACM
Symposium on Theory of Computing (STOC 2009).

14 Oded Goldreich and Igor Shinkar. Two-sided error proximity oblivious testing. Random
Structures & Algorithms, 48(2):341–383, 2016.

15 William Hanf. The Theory of Models, chapter Model-theoretic methods in the study of
elementary logic, pages 132–145. North Holland, 1965.

16 Avinatan Hassidim, Jonathan A Kelner, Huy N Nguyen, and Krzysztof Onak. Local graph
partitions for approximation and testing. In 2009 50th Annual IEEE Symposium on Foundations
of Computer Science, pages 22–31. IEEE, 2009.

17 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
BULL. AMER. MATH. SOC., 43(4):439–561, 2006.

18 Hiro Ito, Areej Khoury, and Ilan Newman. On the characterization of 1-sided error strongly
testable graph properties for bounded-degree graphs. Computational Complexity, 29(1):1–45,
2020.

19 Ken-ichi Kawarabayashi and Yuichi Yoshida. Testing subdivision-freeness: property testing
meets structural graph theory. In Proceedings of the forty-fifth annual ACM symposium on
Theory of computing, pages 437–446. ACM, 2013.

20 Akash Kumar, C Seshadhri, and Andrew Stolman. Random walks and forbidden minors ii: a
poly (d ε-1)-query tester for minor-closed properties of bounded degree graphs. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 559–567, 2019.

CCC 2021

https://doi.org/10.1007/s00453-001-0078-7

34:20 GSF-Locality Is Not Sufficient For Proximity-Oblivious Testing

21 László Lovász. Large Networks and Graph Limits, volume 60 of Colloquium Publications.
American Mathematical Society, 2012.

22 Ilan Newman and Christian Sohler. Every property of hyperfinite graphs is testable. SIAM
Journal on Computing, 42(3):1095–1112, 2013.

23 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders. Annals of mathematics, pages 157–187, 2002.

24 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

25 Yuichi Yoshida and Hiro Ito. Property testing on k-vertex-connectivity of graphs. Algorithmica,
62(3-4):701–712, 2012.

A Formal definitions of property testers and POTs

Now we give the formal definitions of standard property testing and proximity-oblivious
testing.

▶ Definition 27 ((Standard) property testing). Let P = ∪n∈NPn be a property. An ϵ-tester
for Pn is a probabilistic algorithm which, given query access to a structure A ∈ C with n

vertices/elements,
accepts A with probability 2/3 if A ∈ Pn.
rejects A with probability 2/3 if A is ϵ-far from Pn.

We say that a property P is testable if for every n ∈ N and ϵ ∈ (0, 1), there exists an
ϵ-tester for Pn that makes at most q = q(ϵ, d) queries. We say the property P is testable with
one-sided error if the ϵ-tester always accepts A if A ∈ P.

We introduce below the formal definition of proximity-oblivious testers.

▶ Definition 28 ((One-sided error) proximity-oblivious testing). Let P = ∪n∈NPn be a property.
Let η : (0, 1] → (0, 1] be a monotone function. A proximity-oblivious tester (POT) with
detection probability η for Pn is a probabilistic algorithm which, given query access to a
structure A ∈ C with n vertices/elements,

accepts A with probability 1 if A ∈ Pn.
rejects A with probability at least η(dist(A,Pn)) if A /∈ Pn, where dist(A,Pn) is the
minimum fraction of different edges between A and any other A′ ∈ Pn.

We say that a property P is proximity-oblivious testable if for every n ∈ N, there exists a
POT for Pn of constant query complexity with detection probability η.

B The FO formula

For the construction of the formula φ z we use a recursively defined sequence (Gm)m∈N>0

of edge expanders [17, Proposition 9.2]. Using this sequence we define the formula φ z in
such a way that any model restricted to relation F forms a rooted complete D4-ary tree.
Furthermore, the formula enforces that restricted to the vertices of level i of the tree the
relation E encodes the rotation map of the expander Gi. The formula φ z is the conjunction
of the following formulas. For a more detailed explanation and a proof of the precise form of
the models of φ z see [1].

We use the following formula

φroot(x) := ∀y¬F (y, x),

I. Adler, N. Köhler, and P. Peng 34:21

which expresses that vertex x is a root vertex, i. e. has no incoming F -edges. We then define
the formula φtree which expresses that the structure restricted to the relation F locally looks
like a tree. More precisely, the formula expresses that there is precisely one root vertex,
that every other vertex has one incoming F -edge and every vertex either has no F -children
or has precisely D4 F -children. We furthermore attach a R-self-loop to the root and D4

L-self-loops to the leaves. This was important in [1] to make structures degree regular, but
is of no relevance to this proof.

φtree := ∃=1xφroot(x)∧

∀x
((
φroot(x) ∧R(x, x)

)
∨

(
∃=1yF (y, x) ∧ ¬∃yR(x, y) ∧ ¬∃yR(y, x)

))
∧

∀x
([

¬∃yF (x, y) ∧
∧

k∈([D]2)2

Lk(x, x) ∧ ∀y
(
y ̸= x →

∧
k∈([D]2)2

¬Lk(x, y)∧

∧
k∈([D]2)2

¬Lk(y, x)
)]

∨
[
¬∃y

∨
k∈([D]2)2

(
Lk(x, y) ∨ Lk(y, x)

)
∧

∧
k∈([D]2)2

∃yk

(
x ̸= yk ∧ Fk(x, yk) ∧ (

∧
k′∈([D]2)2

k′ ̸=k

¬Fk′ (x, yk)) ∧ ∀y(y ̸= yk → ¬Fk(x, y))
)])

.

We define formula φrotationMap which expresses that the edge relations restricted to the
relations E encode a rotation map.

φrotationMap := ∀x∀y
(∧
i,j∈[D]2

(Ei,j(x, y) → Ej,i(y, x))
)

∧

∀x
(∧
i∈[D]2

(∨
j∈[D]2

(
∃=1yEi,j(x, y) ∧

∧
j′∈[D]2

j′ ̸=j

¬∃yEi,j′(x, y)
)))

The formula φbase expresses that the children of the root vertex form the basis of the recursive
construction of expanders. The basis of the recursive construction is the square of some
D regular graph H on D4 vertices with edge expansion ratio 1/4. Explicit constructions
of graphs with such properties are given in [23]. We assume that this graph is given by a
rotation map ROTH , which is an encoding of H.

φbase :=∀x
(
φroot(x) →

[∧
i,j∈[D]2

(
Ei,j(x, x) ∧ ∀y

(
x ̸= y →

(
¬Ei,j(x, y) ∧ ¬Ei,j(y, x)

)))
∧

∧
ROTH2 (k,i)=(k′,i′)

k,k′∈([D]2)2

i,i′∈[D]2

∃y∃y′(Fk(x, y) ∧ Fk′(x, y′) ∧ Ei,i′(y, y′)
)])

We define the formula φrecursion which expresses the recursive construction of the sequence
(Gm)m∈N>0 . This formula also depends on the base graph H.

φrecursion :=∀x∀z
[(

¬∃yF (x, y) ∧ ¬∃yF (z, y)
)

∨∧
k′

1,k
′
2∈[D]2

ℓ′
1,ℓ

′
2∈[D]2

(
∃y

[
Ek′

1,ℓ
′
1
(x, y) ∧ Ek′

2,ℓ
′
2
(y, z)

]
→

∧
i,j,i′,j′∈[D],k,ℓ∈([D]2)2

ROTH (k,i)=((k′
1,k

′
2),i′)

ROTH ((ℓ′
2,ℓ

′
1),j)=(ℓ,j′)

∃x′∃z′[Fk(x, x′) ∧ Fℓ(z, z′) ∧ E(i,j),(j′,i′)(x′, z′)
])]

CCC 2021

34:22 GSF-Locality Is Not Sufficient For Proximity-Oblivious Testing

C Deferred proofs from Section 3

Proof of Lemma 9. For the first direction assume φ is an FO-sentence. Then by Hanf’s
Theorem (Theorem 2) there is a sentence ψ in Hanf normal form such that Pφ = Pψ.

We will first convert ψ into a sentence in Hanf normal form where every Hanf sentence
appearing has the same locality radius. Let r ∈ N be the maximum locality radius appearing
in ψ, and let φ≥m

τ := ∃≥mxφτ (x) be a Hanf sentence, where τ is an r′-type for some r′ ≤ r.
Let τ1, . . . , τk be a list of all r-types of bounded degree d for which (NB

r′ (b), b) ∈ τ for
(B, b) ∈ τi, for every 1 ≤ i ≤ k. Let Π be the set of all partitions of m into k parts. Let

φ̃≥m
τ :=

∨
(m1,...,mk)∈Π

k∧
i=1

∃≥mixφτi
(x).

▷ Claim 29. φ≥m
τ is d-equivalent to φ̃≥m

τ .

Proof. Assume that A ∈ Cd satisfies φ≥m
τ , and assume that a1, . . . , am are m distinct elements

with (NA
r′ (aj), aj) ∈ τ , for every 1 ≤ j ≤ m. Let τ̃j be the r-type for which (NA

r (aj), aj) ∈ τ̃j .
By choice of τ1, . . . , τk, we get that there are indices i1, . . . , im such that τ̃j = τij . For
i ∈ {1, . . . , k} let mi = |{j ∈ {1, . . . ,m} | ij = i}|. Hence A |=

∧k
i=1 ∃≥mixφτi(x) and since

additionally (m1, . . . ,mk) ∈ Π this implies A |= φ̃≥m
τ .

On the other hand, let A ∈ Cd satisfy φ̃≥m
τ , and let (m1, . . . ,mk) ∈ Π be a partition of

m such that A |=
∧k
i=1 ∃≥mixφτi

(x). For every 1 ≤ i ≤ k, let ai1, . . . , aimi
be mi distinct

elements such that (NA
r (aij), aij) ∈ τi, for every 1 ≤ j ≤ mi. By choice of τ1, . . . , τk, we get

that (NA
r′ (aij), aij) ∈ τ , for every pair 1 ≤ i ≤ k, 1 ≤ j ≤ mi. But since m1 + · · · +mk = m

this implies that A |= φ≥m
τ . This proves that φ≥m

τ and φ̃≥m
τ are d-equivalent. ◁

Let ψ′ be the formula in which every Hanf-sentence φ≥m
τ for which τ is an r′-type for some

r′ < r gets replaced by φ̃≥m
τ . By a simple inductive argument using Claim 29, we get that

ψ is d-equivalent to ψ′, and hence Pφ = Pψ = Pψ′ . Furthermore since φ̃≥m
τ is a Boolean

combination of Hanf-sentences for every φ≥m
τ , and any Boolean combination of Boolean

combinations is a Boolean combination itself, ψ′ is in Hanf normal form. Furthermore, every
Hanf-sentence appearing in ψ′ has locality radius r by construction.

Since any Boolean combination can be converted into disjunctive normal form, we can
assume that ψ′ is a disjunction of sentences ξ of the form

ξ =
k∧
j=1

∃≥mjxφτj (x) ∧
ℓ∧

j=k+1
¬∃≥mjxφτj (x),

where ℓ ∈ N≥1, 1 ≤ k ≤ ℓ, mi ∈ N≥1 and τi is an r-type for every 1 ≤ i ≤ ℓ. We can
further assume that every sentence in the disjunction ψ′ is satisfiable by some A ∈ Cd, as
any sentence with no bounded degree d model can be removed from ψ′.

Let τ̃1, . . . , τ̃t be a list of all r-types of bounded degree d in the order we fixed. Let
ki := max({mj | 1 ≤ j ≤ k, τj = τ̃i}∪{0}) and ℓi := min({mj | k+1 ≤ j ≤ ℓ, τj = τ̃i}∪{∞})
for every i ∈ {1, . . . , t}. Since ξ has at least one bounded degree model ki ≤ ℓi for every
i ∈ {1, . . . , t}. Let ρ : {1, . . . , t} → I be the neighbourhood profile defined by ρ(i) := [ki, ℓi]
if ℓi < ∞ and ρ(i) := [ki, ℓi) otherwise. Then by construction, we get that Pρ = Pξ. Since
ψ′ is a disjunction of formulas, each of which defines a property which can be defined by
some neighbourhood profile, we get that Pψ′ must be a finite union of properties defined by
some neighbourhood profile.

I. Adler, N. Köhler, and P. Peng 34:23

On the other hand, for every r-neighbourhood profile ρ of degree d, τ1, . . . , τt a list of all
r-types of bounded degree d in the order fixed and the formula

φρ :=
∧

i∈{1,...,t},
ρ(i)=[ki,ℓi]

(
∃≥kixφτi

(x) ∧ ¬∃≥ℓi+1xφτi
(x)

)
∧

∧
i∈{1,...,t},

ρ(i)=[ki,∞)

∃≥kixφτi
(x)

it clearly holds that Pρ = Pφρ
. Hence every finite union of properties defined by neigh-

bourhood profiles can be defined by the disjunction of the formulas φρ of all ρ in the finite
union. ◀

D Deferred proofs from Section 4

Proof of Claim 19. Let A,A′ ∈ Cσ,d such that A |= φ̃ z and A′ |= φ̃ z , where φ̃ z was the
formula obtained from φ z by removing the subformula ∃=1xφroot(x). Our aim is to prove
that A∪A′ |= φ̃ z where A∪A′ denotes the disjoint union of A and A′. For this we essentially
prove that for any two elements a ∈ U(A) and b ∈ U(A′) the formula φ̃ z does not require a
tuple containing a and b.

Let us define formulas

φ := ∀x
((
φroot(x) ∧R(x, x)

)
∨

(
∃=1yF (y, x) ∧ ¬∃yR(x, y) ∧ ¬∃yR(y, x)

))
,

ψ(x) := ¬∃yF (x, y) ∧
∧

k∈([D]2)2

Lk(x, x)∧

∀y
(
y ̸= x →

∧
k∈([D]2)2

¬Lk(x, y) ∧
∧

k∈([D]2)2

¬Lk(y, x)
)

and

χ(x) := ¬∃y
∨

k∈([D]2)2

(
Lk(x, y) ∨ Lk(y, x)

)
∧

∧
k∈([D]2)2

∃yk

(
x ̸= yk ∧ Fk(x, yk) ∧ (

∧
k′∈([D]2)2

k′ ̸=k

¬Fk′ (x, yk)) ∧ ∀y(y ̸= yk → ¬Fk(x, y))
)
.

Then φ̃ z := φ ∧ ∀x(ψ(x) ∨ χ(x)) ∧ φrotationMap ∧ φbase ∧ φrecursion. Hence it is sufficient to
prove that A ∪ A′ |= φ, A ∪ A′ |= ∀x(ψ(x) ∨ χ(x)), A ∪ A′ |= φrotationMap, A ∪ A′ |= φbase
and A ∪A′ |= φrecursion.

We first argue that A ∪A′ |= φ. Let a ∈ U(A ∪A′) be arbitrary and assume without loss
of generality that a ∈ U(A). Assume that A ∪ A′ ̸|= φroot(a) ∧ R(a, a). Since φroot(x) :=
∀y¬F (y, x) this implies that A ̸|= φroot(a) ∧ R(a, a). Since A |= φ we get that A |=
∃=1yF (y, a) ∧ ¬∃yR(a, y) ∧ ¬∃yR(y, a). Hence there is an element b ∈ U(A) such that
(b, a) ∈ F (A). Furthermore, for every b′ ∈ U(A), b′ ≠ b we have (b′, a) /∈ F (A), (a, b′) /∈ R(A)
and (b′, a) /∈ R(A). But because a cannot be in a tuple with any element in U(A′) we get
that A ∪A′ |= ∃=1yF (y, a) ∧ ¬∃yR(a, y) ∧ ¬∃yR(y, a). Hence A ∪A′ |= φ.

Next we prove that A∪A′ |= ∀x(ψ(x)∨χ(x)). Let a ∈ U(A∪A′) be arbitrary and assume
without loss of generality that a ∈ U(A). First assume that (a, b) /∈ F (A ∪ A′) for every
b ∈ U(A∪A′). Since A is a substructure of A∪A′ this means that A |= ¬∃yF (a, y). But then
A ̸|=

∧
k∈([D]2)2 ∃yk

(
a ̸= yk ∧Fk(a, yk)

)
which implies A ̸|= χ(a). Since A |= ∀x(ψ(x) ∨χ(x))

this implies that A |= ψ(a). Hence for every k ∈ ([D]2)2 we have (a, a) ∈ Lk(A) and for
every b ∈ U(A), b ≠ a we have (a, b), (b, a) /∈ Fk(A). Since there are no tuples containing
both elements from A and A′ this directly implies that A ∪A′ |= ψ(a).

CCC 2021

34:24 GSF-Locality Is Not Sufficient For Proximity-Oblivious Testing

On the other hand, assume that there is b ∈ U(A∪A′) such that (a, b) ∈ F (A∪A′). Since
we are considering the disjoint union of A and A′ this implies that b must be an element
from A. Hence A ̸|= ψ(a). Since A |= ∀x(ψ(x) ∨ χ(x)) this implies that A |= χ(a). Then for
every k ∈ ([D]2)2 there is an element b ∈ U(A) such that (a, b) ∈ Fk(A), (a, b) /∈ Fk′(A) for
every k′ ∈ ([D]2)2, k′ ̸= k and (a, b′) /∈ Fk(A) for every b′ ∈ U(A), b′ ≠ b. But since in A∪A′

there are no tuples containing both elements from A and A′ this implies that A ∪A′ |= χ(a).
In conclusion we proved that A ∪A′ |= ∀x(ψ(x) ∨ χ(x)).

We now prove A∪A′ |= φrotationMap. Hence assume a, b ∈ U(A∪A′) are arbitrary elements.
First consider the case that a, b are either both from U(A) or both from U(A′). Then if
for some i, j ∈ [D]2 we have that (a, b) ∈ Ei,j(A ∪ A′) then (b, a) ∈ Ej,i(A ∪ A′) because
A |= φrotationMap and A′ |= φrotationMap. Now consider the case that |{a, b} ∩ U(A)| = 1.
Then (a, b) /∈ Ei,j(A∪A′) and (b, a) /∈ Ej,i(A∪A′) and hence A∪A′ |=

∧
i,j∈[D]2(Ei,j(a, b) →

Ej,i(b, a)). Therefore A ∪A′ |= ∀x∀y
(∧

i,j∈[D]2(Ei,j(x, y) → Ej,i(y, x))
)

.
Now consider an arbitrary element a ∈ U(A ∪ A′) and any i ∈ [D]2. Without loss of

generality assume a ∈ U(A). Since A |= φrotationMap there must be an index j ∈ [D]2 and
an element b ∈ U(A) such that (a, b) ∈ Ei,j(A). Furthermore, for every b′ ∈ U(A), b′ ̸= b

we have (a, b′) /∈ Ei,j(A) and for every j′ ∈ [D]2, j′ ̸= j and every b̃ ∈ U(A) we have
(a, b̃) /∈ Ei,j′(A). But since a ∈ U(A) it also holds that (a, b′) /∈ Ei,j′(A) for every b′ ∈ U(A′)
and every j′ ∈ [D]2. Hence A∪A′ |=

∨
j∈[D]2

(
∃=1yEi,j(a, y) ∧

∧
j′∈[D]2

j′ ̸=j
¬∃yEi,j′(a, y)

)
. This

concludes the proof of A ∪A′ |= φrotationMap.

We now prove A ∪ A′ |= φbase. Assume a ∈ U(A ∪ A′) is an arbitrary element such
that A ∪ A′ |= φroot(a). Without loss of generality assume a ∈ U(A). Since φroot(x) :=
∀y¬F (y, x) and A ∪ A′ |= φroot(a) we get that A |= φroot(a). Since A |= φbase this means
that for every i, j ∈ [D]2 we have (a, a) ∈ Ei,j(A) and (a, b), (b, a) /∈ Ei,j(A) for every
b ∈ U(A), b ̸= a. Since further (a, b), (b, a) /∈ Ei,j(A ∪ A′) for every b ∈ U(A′) this
implies that A ∪ A′ |=

∧
i,j∈[D]2

(
Ei,j(a, a) ∧ ∀y

(
a ≠ y →

(
¬Ei,j(a, y) ∧ ¬Ei,j(y, a)

)))
.

Furthermore, since A |= φbase and A |= φroot(a) for every k, k′ ∈ ([D]2)2, i, i′ ∈ [D]2 for
which ROTH2(k, i) = (k′, i′) there are b, b′ ∈ U(A) such that (a, b) ∈ Fk(A), (a, b′) ∈ Fk′(A)
and (b, b′) ∈ Ei,i′(A). Since A is a substructure of A ∪A′ this proves that A ∪A |= φbase.

Finally we prove A∪A′ |= φrecursion. Hence assume a, c ∈ U(A∪A′) are arbitrary elements.
Assume A∪A′ ̸|= ¬∃yF (a, y)∧¬∃yF (c, y) and assume without loss of generality that there is
ã ∈ U(A∪A′) such that (a, ã) ∈ F (A∪A′). Since there are no tuples containing both elements
from A and A′ we get that a, ã are from the same structure. Without loss of generality
assume a, ã ∈ U(A). Assume that for indices k′

1, k
′
2 ∈ [D]2, ℓ′

1, ℓ
′
2 ∈ [D]2 and some element

b ∈ U(A∪A′) we have (a, b) ∈ Ek′
1,ℓ

′
1
(A∪A′) and (b, c) ∈ Ek′

2,ℓ
′
2
(A∪A′). As b also has to be

in U(A) and A |= φrecursion this implies that for every i, j, i′, j′ ∈ [D], k, ℓ ∈ ([D]2)2 for which
ROTH(k, i) = ((k′

1, k
′
2), i′) and ROTH((ℓ′

2, ℓ
′
1), j) = (ℓ, j′) there are elements a′, c′ ∈ U(A∪A′)

such that (a, a′) ∈ Fk(A ∪A′), (c, c′) ∈ Fℓ(A ∪A′) and (a′, c′) ∈ E(i,j),(j′,i′)(A ∪A′). Hence
A ∪A′ |= φrecursion. ◁

▷ Claim 30. Every structure A ∈
⋃

1≤k≤m Pρk
\ {A∅} satisfies φ′

tree.

Proof. Let A ∈
⋃

1≤k≤m Pρk
\ {A∅}. Then there is k ∈ {1, . . . ,m} such that A ∈ Pρk

.
By definition, φ′

tree := ∃≤1xφroot(x) ∧ φ ∧ ∀x(ψ(x) ∨ χ(x)), where

φ := ∀x
((
φroot(x) ∧R(x, x)

)
∨

(
∃=1yF (y, x) ∧ ¬∃yR(x, y) ∧ ¬∃yR(y, x)

))
,

I. Adler, N. Köhler, and P. Peng 34:25

ψ(x) := ¬∃yF (x, y) ∧
∧

k∈([D]2)2

Lk(x, x)∧

∀y
(
y ̸= x →

∧
k∈([D]2)2

¬Lk(x, y) ∧
∧

k∈([D]2)2

¬Lk(y, x)
)

and

χ(x) := ¬∃y
∨

k∈([D]2)2

(
Lk(x, y) ∨ Lk(y, x)

)
∧

∧
k∈([D]2)2

∃yk

(
x ̸= yk ∧ Fk(x, yk) ∧ (

∧
k′∈([D]2)2

k′ ̸=k

¬Fk′ (x, yk)) ∧ ∀y(y ̸= yk → ¬Fk(x, y))
)
.

Thus, it is sufficient to prove that A |= ∃≤1xφroot(x), A |= φ and A |= ∀x(ψ(x) ∨ χ(x)).
To prove A |= ∃≤1xφroot(x) we note that by construction of ρk we have A ̸|= φroot(a) for

any a ∈ U(A) for which (NA
2 (a), a) /∈ τkd,2,σ. Since ρk restricts the number of occurrences of

elements of neighbourhood type τkd,2,σ to at most one, this proves that there is at most one
a ∈ U(A) with A |= φtree(a) and hence A |= ∃≤1xφroot(x).

To prove A |= φ, let a ∈ U(A) be an arbitrary element. Since A ∈ Pρk
, there is an

i ∈ Ik such that (NA
2 (a), a) ∈ τ id,2,σ. But then by definition, there exist Ã |= φ z and

ã ∈ U(Ã) such that (NA
2 (a), a) ∼= (N Ã

2 (ã), ã). Assume f is an isomorphism from (NA
2 (a), a)

to (N Ã
2 (ã), ã). First consider the case that A |= φroot(a) := ∀y¬F (y, a). Assume there is

b̃ ∈ U(Ã) such that (b̃, ã) ∈ F (Ã). Since b̃ ∈ N Ã
2 (ã), there must be an element b ∈ NA

2 (a)
such that f(b) = b̃. Since f is an isomorphism mapping a to ã, this implies (b, a) ∈ F (A),
which contradicts A |= φroot(a). Hence Ã |= φroot(ã). Since Ã |= φ′

tree, it holds that
Ã |= φ, which means that (ã, ã) ∈ R(Ã). But since f is an isomorphism mapping a onto
ã, this implies (a, a) ∈ R(A). Now consider the case that A ̸|= φroot(a). Then there is
b ∈ U(A) with (b, a) ∈ F (A). Since f is an isomorphism, this implies (f(b), ã) ∈ F (Ã).
Hence Ã |= ∃=1yF (y, ã) ∧ ¬∃yR(ã, y) ∧ ¬∃yR(y, ã), as Ã |= φ. Now assume that there
is b′ ̸= b such that (b′, a) ∈ F (A). Then f(b) ̸= f(b′) and (f(b), ã), (f(b′), ã) ∈ F (Ã).
Since this contradicts Ã |= ∃=1yF (y, ã) we have A |= ∃=1yF (y, a). Furthermore, assume
that there is b′ ∈ U(A) such that either (a, b′) ∈ R(A) or (b′, a) ∈ R(A). Then either
(ã, f(b′)) ∈ R(Ã′) or (f(b′), ã) ∈ R(Ã), which contradicts Ã |= ¬∃R(ã, y) ∧ ¬∃yR(y, ã).
Therefore A |= ¬∃R(a, y) ∧ ¬∃yR(y, a) which completes the proof of A |= φ.

We prove A |= ∀x(ψ(x) ∨ χ(x)) by considering the two cases A |= ¬∃yF (a, y) and
A |= ∃yF (a, y) for each element a ∈ U(A). For this, let a ∈ U(A) be any element. By
the construction of ρk there is Ã |= φ z and ã ∈ U(Ã) such that (NA

2 (a), a) ∼= (N Ã
2 (ã), ã).

Let f be an isomorphism from (NA
2 (a), a) to (N Ã

2 (ã), ã). First consider the case that
A |= ¬∃yF (a, y). If there was b̃ ∈ U(Ã) with (ã, b̃) ∈ F (Ã) then (a, f−1(b̃)) ∈ F (A)
contradicting our assumption. Hence Ã |= ¬∃yF (ã, y) which implies that Ã ̸|= χ(ã). But
since Ã |= φ z , it holds that Ã |= ∀x(ψ(x) ∨ χ(x)), which implies that Ã |= ψ(ã). Hence
(ã, ã) ∈ Lk(Ã) for every k ∈ ([D]2)2. Since f is an isomorphism and f(a) = ã, it holds that
(a, a) ∈ Lk(A) for every k ∈ ([D]2)2, and hence A |=

∧
k∈([D]2)2 Lk(a, a). Furthermore, assume

that there is b ∈ U(A), b ̸= a and k ∈ ([D]2)2 such that either (a, b) ∈ Lk(A) or (b, a) ∈ Lk(A).
Since f is an isomorphism this implies that either (ã, f(b)) ∈ Lk(Ã) or (f(b), ã) ∈ Lk(Ã) which
contradicts Ã |= χ(ã). Hence A |= ∀y

(
y ≠ a →

∧
k∈([D]2)2 ¬Lk(a, y) ∧

∧
k∈([D]2)2 ¬Lk(y, a)

)
proving that A |= ψ(a).

CCC 2021

34:26 GSF-Locality Is Not Sufficient For Proximity-Oblivious Testing

Now consider the case that there is an element b ∈ U(A) such that (a, b) ∈ F (A). Since
this implies that (ã, f(b)) ∈ F (Ã), we get that Ã ̸|= ψ(ã), and hence Ã |= χ(ã). Now assume
that there is b ∈ U(A) and k ∈ ([D]2)2 such that either (a, b) ∈ Lk(A) or (b, a) ∈ Lk(A). But
then either (ã, f(b)) ∈ Lk(Ã) or (f(b), ã) ∈ Lk(Ã), which contradicts Ã |= χ(ã). Hence A |=
¬∃y

∨
k∈([D]2)2

(
Lk(a, y) ∨ Lk(y, a)

)
. For each k ∈ ([D]2)2, let b̃k ∈ U(Ã) be an element such

that Ã |= ã ̸= b̃k∧Fk(ã, b̃k)∧(
∧
k′∈([D]2)2,k′ ̸=k ¬Fk′(ã, b̃k))∧∀y(y ̸= b̃k → ¬Fk(ã, y)). Since f

is an isomorphism, this implies that a ̸= bk := f−1(b̃k), (a, bk) ∈ Fk(A) and (a, bk) /∈ Fk′(A),
for each k′ ∈ ([D]2)2, k′ ̸= k. Furthermore, assume there is b ∈ U(A), b ̸= bk such that
(a, b) ∈ Fk(A). Since f is an isomorphism, this implies f(b) ̸= f(bk) = b̃k and (ã, b̃) ∈ Fk(Ã),
which contradicts Ã |= ∀y(y ̸= b̃k → ¬Fk(ã, y)). Hence A |= ∀y(y ̸= bk → ¬Fk(a, y)) and
therefore concluding that A |= χ(a). This proves that in either case A |= ψ(a) ∨ χ(a) and
therefore A |= ∀x(ψ(x) ∨ χ(x)). ◁

▷ Claim 31. Every structure A ∈
⋃

1≤k≤m Pρk
\ {A∅} satisfies φrotationMap.

Proof. Let A ∈
⋃

1≤k≤m Pρk
\ {A∅}. Then there is a k ∈ {1, . . . ,m} such that A ∈ Pρk

.
By definition, φrotationMap = φ ∧ ψ, where

φ := ∀x∀y
(∧
i,j∈[D]2

(Ei,j(x, y) → Ej,i(y, x))
)

and

ψ := ∀x
(∧
i∈[D]2

(∨
j∈[D]2

(
∃=1yEi,j(x, y) ∧

∧
j′∈[D]2

j′ ̸=j

¬∃yEi,j′(x, y)
)))

.

Thus, it is sufficient to prove that A |= φ and A |= ψ.
To prove A |= φ, assume towards a contradiction that there are a, b ∈ U(A) such that for

some pair i, j ∈ [D]2, we have that (a, b) ∈ Ei,j(A), but (b, a) /∈ Ej,i(A). By construction of
Pρk

, there is a structure Ã |= φ z and ã ∈ U(Ã) such that (NA
2 (a), a) ∼= (N Ã

2 (ã), ã). Assume
f is an isomorphism from (NA

2 (a), a) to (N Ã
2 (ã), ã). Note that f(b) is defined since b is in

the 2-neighbourhood of a. Furthermore since f is an isomorphism, (a, b) ∈ Ei,j(A) implies
(ã, f(b)) ∈ Ei,j(Ã), and (b, a) /∈ Ej,i(A) implies (f(b), ã) /∈ Ej,i(Ã). Hence Ã ̸|= φ, which
contradicts Ã |= φrotationMap.

To prove A |= ψ, assume towards a contradiction that there is an a ∈ U(A) and i ∈ [D]2
such that A ̸|= ∃=1yEi,j(a, y) ∧

∧
j′∈[D]2

j′ ̸=j
¬∃yEi,j′(a, y) for every j ∈ [D]2. We know that

there is a structure Ã |= φ z and ã ∈ U(Ã) such that (NA
2 (a), a) ∼= (N Ã

2 (ã), ã). Let f
be an isomorphism from (NA

2 (a), a) to (N Ã
2 (ã), ã). Since Ã |= ψ, there must be j ∈ [D]2

such that Ã |= ∃=1yEi,j(ã, y) ∧
∧
j′∈[D]2

j′ ̸=j
¬∃yEi,j′(ã, y). Hence there must be b̃ ∈ U(Ã)

such that (ã, b̃) ∈ Ei,j(Ã), which implies that (a, f−1(b̃)) ∈ Ei,j(A). Since we assumed
that A ̸|= ∃=1yEi,j(a, y) ∧

∧
j′∈[D]2

j′ ̸=j
¬∃yEi,j′(a, y), there must be either b ̸= f−1(b̃) with

(a, b) ∈ Ei,j(A), or there must be j′ ∈ [D]2, j′ ̸= j and b′ ∈ U(A) such that (a, b′) ∈ Ei,j′(A).
In the first case (ã, f(b)) ∈ Ei,j(Ã), since f is an isomorphism. But then Ã ̸|= ∃=1yEi,j(ã, y),
which is a contradiction. In the second case, we get that (ã, f(b′)) ∈ Ei,j′(Ã). But then
Ã ̸|=

∧
j′∈[D]2

j′ ̸=j
¬∃yEi,j′(ã, y), which is a contradiction. Hence A |= φ ∧ ψ. ◁

▷ Claim 32. Every structure A ∈
⋃

1≤k≤m Pρk
\ {A∅} satisfies φbase.

Proof. Let A ∈
⋃

1≤k≤m Pρk
\ {A∅}. Then there is a k ∈ {1, . . . ,m} such that A ∈ Pρk

.

I. Adler, N. Köhler, and P. Peng 34:27

By definition, φbase := ∀x
(
φroot(x) → (φ(x) ∧ ψ(x))

)
, where

φ(x) :=
∧

i,j∈[D]2

(
Ei,j(x, x) ∧ ∀y

(
x ̸= y →

(
¬Ei,j(x, y) ∧ ¬Ei,j(y, x)

)))
and

ψ(x) :=
∧

ROTH2 (k,i)=(k′,i′)
k,k′∈([D]2)2

i,i′∈[D]2

∃y∃y′(Fk(x, y) ∧ Fk′(x, y′) ∧ Ei,i′(y, y′)
)
.

Thus, it is sufficient to prove that A |= φ(a) and A |= ψ(a) for every a ∈ U(A) for which
A |= φroot(a). Therefore assume a ∈ U(A) is any element such that A |= φroot(a). Because
A ∈ Pρk

there is an i ∈ Ik such that (NA
2 (a), a) ∈ τ id,2,σ. Then by definition there is

a structure Ã |= φ z and ã ∈ U(Ã) such that (NA
2 (a), a) ∼= (N Ã

2 (ã), ã). Let f be an
isomorphism from (NA

2 (a), a) to (N Ã
2 (ã), ã). Assume that there is an element b̃ ∈ U(Ã) such

that (b̃, ã) ∈ F (Ã). Since f is an isomorphism and b̃ ∈ N Ã
2 (ã) we get that (f−1(b̃), a) ∈ F (A)

which contradicts that A |= φroot(a) as φroot(x) := ∀y¬F (y, x). Hence there is no element
b̃ ∈ U(Ã) such that (b̃, ã) ∈ F (Ã) which implies that Ã |= φroot(ã). But since Ã |= φ z we
have that Ã |= φbase and hence Ã |= φ(ã) and Ã |= ψ(ã).

To prove A |= φ(a) first observe that (a, a) ∈ Ei,j(A) for every i, j ∈ [D]2 since Ã |= φ(ã)
implies that (ã, ã) ∈ Ei,j(Ã) for every i, j ∈ [D]2 and f is an isomorphism mapping a onto
ã. Assume that there is an element b ∈ U(A), b ̸= a and indices i, j ∈ [D]2 such that either
(a, b) ∈ Ei,j(A) or (b, a) ∈ Ei,j(A). Since b ∈ NA

2 (a) and f is an isomorphism we get that
f(b) ̸= f(a) = ã and either (ã, f(b)) ∈ Ei,j(Ã) or (f(b), ã) ∈ Ei,j(Ã). But this contradicts
Ã |= φ(ã) and hence A |= φ(a).

We now prove A |= ψ(a). Let k, k′ ∈ ([D]2)2 and i, i′ ∈ [D]2 such that ROTH2(k, i) =
(k′, i′). Since Ã |= ψ(ã) there must be elements b̃, b̃′ ∈ U(Ã) such that (ã, b̃) ∈ Fk(Ã), (ã, b̃′) ∈
Fk′(Ã) and (b̃, b̃′) ∈ Ei,i′(Ã). But since b̃, b̃′ ∈ N Ã

2 (ã) we get that f−1(b̃) and f−1(b̃′) are
defined and since f is an isomorphism we get that (a, f−1(b̃)) ∈ Fk(A), (a, f−1(b̃′)) ∈ Fk′(A)
and (f−1(b̃), f−1(b̃′)) ∈ Ei,i′(A). Hence A |= ∃y∃y′(Fk(a, y) ∧ Fk′(a, y′) ∧ Ei,i′(y, y′) for any
k, k′ ∈ ([D]2)2 and i, i′ ∈ [D]2 such that ROTH2(k, i) = (k′, i′) which implies that A |= ψ(a).

◁

CCC 2021

Hardness of KT Characterizes Parallel
Cryptography
Hanlin Ren # Ñ

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China

Rahul Santhanam #

University of Oxford, UK

Abstract
A recent breakthrough of Liu and Pass (FOCS’20) shows that one-way functions exist if and only if
the (polynomial-)time-bounded Kolmogorov complexity, Kt, is bounded-error hard on average to
compute. In this paper, we strengthen this result and extend it to other complexity measures:

We show, perhaps surprisingly, that the KT complexity is bounded-error average-case hard if
and only if there exist one-way functions in constant parallel time (i.e. NC0). This result crucially
relies on the idea of randomized encodings. Previously, a seminal work of Applebaum, Ishai, and
Kushilevitz (FOCS’04; SICOMP’06) used the same idea to show that NC0-computable one-way
functions exist if and only if logspace-computable one-way functions exist.

Inspired by the above result, we present randomized average-case reductions among the NC1-
versions and logspace-versions of Kt complexity, and the KT complexity. Our reductions preserve
both bounded-error average-case hardness and zero-error average-case hardness. To the best
of our knowledge, this is the first reduction between the KT complexity and a variant of Kt

complexity.

We prove tight connections between the hardness of Kt complexity and the hardness of (the
hardest) one-way functions. In analogy with the Exponential-Time Hypothesis and its variants,
we define and motivate the Perebor Hypotheses for complexity measures such as Kt and KT. We
show that a Strong Perebor Hypothesis for Kt implies the existence of (weak) one-way functions
of near-optimal hardness 2n−o(n). To the best of our knowledge, this is the first construction of
one-way functions of near-optimal hardness based on a natural complexity assumption about a
search problem.

We show that a Weak Perebor Hypothesis for MCSP implies the existence of one-way functions,
and establish a partial converse. This is the first unconditional construction of one-way functions
from the hardness of MCSP over a natural distribution.

Finally, we study the average-case hardness of MKtP. We show that it characterizes cryp-
tographic pseudorandomness in one natural regime of parameters, and complexity-theoretic
pseudorandomness in another natural regime.

2012 ACM Subject Classification Theory of computation → Cryptographic primitives; Theory
of computation → Problems, reductions and completeness; Theory of computation → Circuit
complexity

Keywords and phrases one-way function, meta-complexity, KT complexity, parallel cryptography,
randomized encodings

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.35

Related Version Full Version: https://eccc.weizmann.ac.il/report/2021/057/

Acknowledgements The first author is grateful to Lijie Chen, Mahdi Cheraghchi, and Yanyi Liu for
helpful discussions. The second author thanks Yuval Ishai for a useful e-mail discussion. We would
like to thank anonymous CCC reviewers for helpful comments that improve the presentation of this
paper.

© Hanlin Ren and Rahul Santhanam;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 35; pp. 35:1–35:58

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rhl16@mails.tsinghua.edu.cn
https://hanlin-ren.github.io
https://orcid.org/0000-0002-7632-7574
mailto:rahul.santhanam@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.CCC.2021.35
https://eccc.weizmann.ac.il/report/2021/057/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Hardness of KT Characterizes Parallel Cryptography

1 Introduction

1.1 Backgrounds and Motivation

1.1.1 Meta-Complexity
Let µ be a complexity measure, such as the circuit size of a Boolean function or the time-
bounded Kolmogorov complexity of a string. Traditional complexity theory studies the
complexity measure on fixed functions, e.g. the AC0 complexity of the Parity function. In
contrast, we study the meta-complexity problem associated with µ: given an input function,
what is its µ value?

Meta-complexity problems are fundamental to theoretical computer science and have been
studied since the very beginning of the discipline [81]. They have connections to several areas
of theoretical computer science, including circuit lower bounds, learning, meta-mathematics,
average-case complexity, and cryptography. However, our knowledge about them is still very
limited compared to our knowledge of other fundamental problems such as the Satisfiability
problem.

Some of the basic complexity questions about meta-complexity include:
Is computing a given measure µ complete for some natural complexity class? For example,
is the Minimum Circuit Size Problem (MCSP, [58]) NP-complete?
Can we show unconditional circuit lower bounds for computing µ, at least for weak circuit
classes? Can we distinguish truth tables with 2o(n)-size circuits from random truth tables
by a small AC0[2] circuit?
Is deciding whether µ is at least some parameter k robust to the choice of the parameter
k? Let MCSP[s(n)] denote the problem of whether an input function (represented as
a truth table) has circuit complexity at most s(n); are MCSP[2n/2] and MCSP[2n/3]
computationally equivalent?
How do low-level definitional issues affect the complexity of µ? Does the complexity
of the time-bounded version of Kolmogorov complexity (“Kt”) depend on the universal
Turing machine that defines it?
For which pairs of measures µ and µ′ can we show that the problem of computing µ

reduces to the problem of computing µ′? Can we reduce computing the time-bounded
version of Kolmogorov complexity to computing circuit complexity?

There has been much interest in recent years in these questions. While there has been some
progress on answering these questions affirmatively for specific measures [4, 48, 3, 6, 72, 43, 34,
40, 46, 47], there are also barriers to understanding these questions better, such as our inability
to prove circuit lower bounds [58, 66] and the magnification phenomenon [73, 71, 65, 22].
Many of the above questions such as the NP-completeness of MCSP remain wide open.

1.1.2 Cryptography
A fundamental question in cryptography is whether one-way functions exist. We have been
quite successful at basing one-way functions on the hardness of specific problems, such as
factoring [75], discrete logarithm [25], and some lattice problems [1]. One problem with this
approach, however, is that we have little complexity-theoretic evidence for the hardness of
these problems (for example, they are unlikely to be NP-hard). The most compelling evidence
for their hardness so far is simply that we have not been able to find efficient algorithms
for them.

H. Ren and R. Santhanam 35:3

Can we base the existence of one-way functions on firm complexity-theoretic assumptions?
A “holy-grail” in this direction would be to construct one-way functions assuming (only)
NP ̸⊆ BPP [25]. This goal remains elusive, and there are several obstacles to its resolution:

Unless PH collapses, non-adaptive “black-box” reductions cannot transform worst-case
hardness of NP into average-case hardness of NP [17]. As the latter is necessary for
one-way functions, this barrier result demonstrates limits of such “black-box” reductions
on basing one-way function from worst-case assumptions such as NP ̸⊆ BPP. For the
task of constructing one-way functions (instead of just a hard-on-average problem in NP),
stronger barrier results are known [2, 67].

Even the seemingly easier task of basing one-way functions from average-case hardness of
NP remains elusive. Indeed, Impagliazzo [50] called a world “Pessiland” where NP is hard
on average but one-way functions do not exist. It is not hard to construct a relativized
Pessiland [87], therefore a relativization barrier exists even for this “easier” task.

1.1.3 The Liu-Pass Result

Very recently, in a breakthrough result, Liu and Pass [62] showed an equivalence between the
existence of one-way functions and the bounded-error average-case hardness of computing the
Kt complexity (the Kolmogorov complexity of a string with respect to a given polynomial
time bound t) over the uniform distribution. This result is significant for several reasons.

From the perspective of cryptography, it establishes the first equivalence between the
existence of one-way functions and the average-case complexity of a natural problem
over a natural distribution. Such an equivalence result bases cryptography on firmer
complexity-theoretic foundations.

From the perspective of meta-complexity, it enables robustness results for the complexity of
Kt in the average-case setting. Indeed, [62] proved that approximating the Kt complexity
of a string or finding an optimal description for a string are both equivalent to the problem
of computing the Kt complexity.

More generally, such connections suggest the possibility of new and non-trivial average-
case reductions between natural problems on natural distributions, which is by itself an
important goal in average-case complexity theory. Several of the most basic questions in
this area remain open: Is random 3-SAT as hard as random 4-SAT (or vice versa)? Is
the decision version of Planted Clique as hard as its search version?1

Given these motivations, it is natural to ask if the main result of [62] can be extended to
other meta-complexity problems. For example, is the average-case hardness of MCSP also
equivalent to the existence of one-way functions? There is a “Kolmogorov-version” of circuit
complexity, named KT, which is more “fine-grained” than circuit complexity [4]. Maybe this
problem is also closely related to the existence of one-way functions? What about Levin’s Kt
complexity [60]?2

1 The decision version of Planted Clique is to distinguish Erdős-Rényi random graphs from graphs with a
planted clique; the search version is to find the planted clique.

2 See Definition 14 for the precise definitions of Kt, KT, and Kt.

CCC 2021

35:4 Hardness of KT Characterizes Parallel Cryptography

1.2 Our Contributions
We give strong positive answers to the above questions. We show somewhat surprisingly
that the average-case hardness of KT complexity is equivalent to the existence of one-way
functions computable in fast parallel time.3 For MCSP, we obtain weaker results: exponential
hardness of computing circuit size over the uniform distribution implies the existence of
one-way functions, and there is a partial converse. Bounded-error average-case complexity of
Kt complexity turns out to be equivalent to the existence of one-way functions in one natural
setting of parameters (despite the fact that computing Kt in the worst case is EXP-hard [4]),
and equivalent to the existence of complexity-theoretic pseudorandom generators in another
natural setting of parameters.

We also extend the connection between the hardness of Kt complexity and one-way
functions to the high end of the parametric regime – this yields one-way functions of almost
optimal hardness from plausible assumptions about the hardness of Kt complexity. We define
and motivate the Perebor Hypotheses4, which are average-case analogues of the Exponential-
Time Hypothesis and its variants for meta-complexity problems, stating that there is no
better way to solve meta-complexity problems than brute force search. This is a conceptual
contribution of this work, and we expect these hypotheses to have further applications to
cryptography, average-case complexity, and fine-grained complexity.

We now describe our results in more detail.

1.2.1 Connections between Meta-Complexity and One-Way Functions
Our main result is an equivalence between “parallel cryptography” and the average-case
hardness of MKTP:

▶ Theorem 1 (Main Result; Informal). There is a one-way function computable in uniform
NC1 if and only if KT is bounded-error hard on average.

The class “uniform NC1” in the above theorem is somewhat arbitrary since [11] proved
that the existence of one-way functions in ⊕L implies the existence of one-way functions in
NC0.5

For comparison, Liu and Pass [62] showed an equivalence between (“sequential”) crypto-
graphy and the average-case hardness of time-bounded Kolmogorov complexity (Kt).

▶ Theorem 2 (Main Result of [62]). There is a one-way function if and only if for some
polynomial t, Kt is bounded-error hard on average.

Theorem 2 shows that the one-way function defined based on hardness of Kt is a natural
universal one-way function.6 Similarly, Theorem 1 shows that the one-way function we define
based on the hardness of KT is a natural universal one-way function in NC1.

3 Due to a result in [11], the “fast parallel time” here can be interpreted as either NC0 or NC1. We
also point the reader to Benny Applebaum’s book Cryptography in Constant Parallel Time [8], which
inspired the title of the current paper.

4 Our terminology is inspired by Trakhtenbrot’s survey [81] on work in the former Soviet Union aiming to
show that various meta-complexity problems require brute force search to solve. “Perebor” roughly
means “by exhaustive search” in Russian.

5 ⊕L is the class of problems solvable by a parity Turing machine with O(log n) space. This class contains
both NC1 and L (log-space).

6 An artificial universal one-way function can be defined by enumerating uniform algorithms and concat-
enating their outputs [61, 30].

H. Ren and R. Santhanam 35:5

As a corollary, the classical open question of whether polynomial-time computable one-
way functions imply one-way functions in NC0 is equivalent to the question of whether
average-case hardness of Kt implies average-case hardness of KT.

Results for MCSP. The KT complexity was defined as a variant of Kolmogorov-complexity
that resembles circuit complexity [4]. Therefore, it is natural to ask whether our equivalence
also holds for circuit complexity.

It turns out that circuit complexity is less convenient to deal with. Nevertheless, we still
proved non-trivial analogues of Theorem 1, as follows:

▶ Theorem 3 (Informal). The following are true:
If MCSP is exponentially hard on average, then there is a (super-polynomially hard)
one-way function.
If there is an exponentially hard weak one-way function in NC0, then MCSP is (exponen-
tially) hard on average.
For the technical difficulties of handling circuit complexity, the reader is referred to

Section 6 (and in particular Remark 76).

Results for MKtP. We also observe that the existence of (polynomial-time computable)
one-way functions can be characterized by the bounded-error average-case complexity of Kt.

▶ Theorem 4. There is a one-way function if and only if Kt is bounded-error hard on
average.

This result may seem surprising as computing Kt is EXP-hard under polynomial-size
reductions [4]. This is true even for any oracle that is a zero-error heuristic for computing
Kt. In contrast, we show that the bounded-error average-case complexity of Kt is captured
by one-way functions, a notion that seems much “easier” than EXP.

The harder direction in Theorem 4 is to construct a one-way function from hardness of Kt.
How could we construct a one-way function from merely a hard problem in exponential time?
The crucial insight is as follows: For most strings x ∈ {0, 1}n whose optimal Kt complexity is
witnessed by a machine d and a time bound t where Kt(x) = |d|+ log t, we have t ≤ poly(n).
We refer the reader to Section 2.1.2 and Section 7 for more details.

Note that Theorem 4 can also be seen as a characterization of cryptographic pseu-
dorandomness, by the known equivalence between one-way functions and cryptographic
pseudorandomness [38]. In a different regime of parameters, average-case hardness of Kt
turns out to capture the existence of complexity-theoretic pseudorandom generators, which
are pseudorandom generators with non-trivial seed length computable in exponential time.
Thus the average-case complexity of a single problem (Kt) can be used to capture both
cryptographic pseudorandomness and complexity-theoretic pseudorandomness!

▶ Theorem 5 (Informal). For each ϵ > 0, there is a pseudo-random generator from nϵ bits to
n bits computable in time 2nϵpoly(n) secure against poly(n) size circuits iff for each c > 1/2
there are no polynomial-size circuits solving Kt on more than 1− 2−cn fraction of inputs of
length n.

1.2.2 Application in Meta-Complexity: Robustness Theorems
We exploit the connection between MKTP and parallel cryptography to establish more
robustness results for meta-complexity. It is known that parallel cryptography is extremely
robust: L-computable one-way functions exist, if and only if NC1-computable one-way

CCC 2021

35:6 Hardness of KT Characterizes Parallel Cryptography

functions exist, if and only if NC0-computable one-way functions exist [11]. We define L- and
NC1-variants of Kt complexity, and translate the result in [11] to the following robustness
theorem:

▶ Theorem 6 (Bounded-Error Robustness of Meta-Complexity; Informal). The following
statements are equivalent:

KT is bounded-error hard on average.
For t1(n) := n10, the search version of NC1-Kt1 is bounded-error hard on average.
For t2(n) := 5n, L-Kt2 is bounded-error hard on average to approximate, within an
additive error of 100 log n.

It is natural to ask whether the above theorem can be interpreted as a reduction. Somewhat
surprisingly, we show the answer is yes! We discover an average-case reduction from L-Kt to
MKTP, as follows:

▶ Theorem 7 (Informal). Let n, t be parameters, m := poly(n, t). There is a randomized
reduction Red(x) that maps a length-n input to a length-m input, and satisfies the following
property:

Given a uniform random input x of length n, Red(x) produces a uniform random string
of length m.
Given a string x such that L-Kt(x) is small, for every possible randomness used in Red,
the KT complexity of Red(x) is also small.

To the best of our knowledge, this is the first reduction from a variant of Kt complexity to
a variant of KT complexity. The only special property of L that we use is that L-computable
functions have perfect randomized encodings [11]. If polynomial-time computable functions
have such perfect randomized encodings, then our techniques imply an average-case reduction
from the (standard) Kt complexity to the KT complexity.

We have focused on the bounded-error average-case complexity of meta-complexity
problems so far. However, Theorem 7 also implies robustness in the zero-error regime. Here,
let MKTP[s] be the problem of determining whether the input x satisfies KT(x) ≤ s(|x|),
and let MINKt[s] be the problem of determining whether the input x satisfies Kt(x) ≤ s(|x|).

▶ Theorem 8 (Zero-Error Robustness of Meta-Complexity; Informal). Among the following
items, we have (1) ⇐⇒ (2), and both items are implied by (3).
1. There is a constant c > 0 such that NC1-MINKt1 [n−c log n] is zero-error easy on average.
2. There is a constant c > 0 such that L-MINKt2 [n− c log n] is zero-error easy on average.
3. There is a constant c > 0 such that MKTP[n− c log n] is zero-error easy on average.

1.2.3 Application in Cryptography: Maximally Hard One-Way Functions
How hard can a one-way function be? The standard definition of one-way functions only
requires that no polynomial-time adversary inverts a random output except with negligible
probability. However, it is conceivable that some one-way function requires 2n/poly(n) time
to invert (say, on a constant fraction of inputs)!

The results of [62] opens up the possibility to characterize the hardest one-way functions
by the meta-complexity of Kolmogorov complexity. In particular, the existence of maximally
hard one-way functions may be equivalent to the “Perebor” hypothesis, i.e. some meta-
complexity problem requires brute force to solve.

In this work, we tighten the connection between weak one-way functions (for which it is
hard to invert a random instance w.p. 1 − 1/poly(n)) and the hardness of Kt complexity.
We managed to show a very tight result:

H. Ren and R. Santhanam 35:7

▶ Theorem 9 (Informal). For every constant α > 0, there exists a weak one-way function
with hardness 2(1−o(1))αn if and only if Kt complexity is hard on average for algorithms of
size 2(1−o(1))αn.

Note that the two α’s in the exponent (1− o(1))αn are the same. That is, we essentially
construct the best (weak) one-way functions from the hardness of Kt complexity.

We also attempted to strengthen the relationship between one-way functions in NC0 and
the hardness of KT complexity. Our result is that exponentially-hard weak one-way functions
in NC0 imply exponential hardness of KT.

▶ Theorem 10 (Informal). If there is a weak one-way function in NC0 with hardness 2Ω(n),
then KT requires 2Ω(n) size to solve on average.

Finally, we put forward a few Perebor Hypotheses. These hypotheses assert brute-force
search is unavoidable for solving meta-complexity problems such as Kt and KT, and are
closely related to the maximum hardness of (weak) one-way functions. See Section 5.5 for
more details.

1.3 Related Work
There have been several previous works connecting meta-complexity to cryptography. Im-
pagliazzo and Levin [51] show that the existence of one-way functions is equivalent to the
hardness of a certain learning task related to time-bounded Kolmogorov complexity. Oliveira
and Santhanam [72] show a dichotomy between learnability and cryptographic pseudorandom-
ness in the non-uniform setting: there is a non-trivial non-uniform learner for polynomial-size
Boolean circuits iff there is no exponentially secure distribution on functions computable
by polynomial-size circuits. Santhanam [76] proves an equivalence between the existence
of one-way functions and the non-existence of natural proofs under a certain universality
assumption about succinct pseudorandom distributions. We note here that the non-existence
of natural proofs is equivalent to the zero-error average-case hardness of MCSP.

None of the above results gives an unconditional equivalence between the average-case
hardness of a natural decision problem and the existence of one-way functions. This was
finally achieved by Liu and Pass [62], who showed that the weak hardness of Kpoly over the
uniform distribution is equivalent to the existence of one-way functions. [62] leaves open
whether there are similar connections between one-way functions and the hardness of other
meta-complexity problems such as KT and MCSP over the uniform distribution. In this
work, we show such connections to parallel cryptography, i.e., to the existence of one-way
functions in NC1, which by [11] is equivalent to the existence of one-way functions in NC0.

There is an extensive literature on parallel cryptography, beginning with the work of [11].
We refer to [8] and [9] for further information.

Our work also relates to average-case meta-complexity, which was first studied explicitly
in [43]. [43] essentially observe that the identity reduction trivially reduces µ to µ′ over
the uniform distribution in a zero-error average-case sense, where µ and µ′ are any two
meta-complexity measures such that µ′(x) ≤ µ(x) ≤ |x|+ O(log(|x|)) for all x. In this work
(particularly Sections 4.3 and 4.4), we give several non-trivial examples of zero-error and
bounded-error average-case reductions between meta-complexity problems.

Concurrent works of [63] and [5]. We now discuss the relationship of our work with the
concurrent works of [63] and [5], which overlap in some respects with ours.

CCC 2021

35:8 Hardness of KT Characterizes Parallel Cryptography

Liu and Pass [63] show an equivalence between the bounded-error weak average-case
hardness of Kt over the uniform distribution and the existence of one-way functions - this
is essentially the same as our Theorem 4. They also show that the zero-error average-case
hardness of Kt over the uniform distribution is equivalent to EXP ̸= BPP. In contrast, our
Theorem 5 gives an equivalence between the bounded-error average-case hardness of Kt
over the uniform distribution in a different parametric regime and the worst-case hardness
of EXP, where the hardness in each case is with respect to non-uniform adversaries. The
somewhat surprising message of both sets of results is the same: a minor variation on an
average-case complexity assumption that is equivalent to the worst-case hardness of EXP
implies the existence of one-way functions.

[63] also give characterizations of parallel cryptography but they do this using space-
bounded Kolmogorov complexity and the conditional version thereof. Their work does not
contain any results relating to the hardness of KT or MCSP.

Allender, Cheraghchi, Myrisiotis, Tirumala, and Volkovich [5] relate the average-case
hardness of the conditional version of KT complexity over the uniform distribution to the
existence of one-way functions. They show that if the conditional version is hard on a
polynomial fraction of instances, then one-way functions exist. They also give a weak
converse: if one-way functions exist, then the conditional version of KT is hard on an
exponential fraction of instances. In contrast, we characterize parallel cryptography by the
average-case hardness of KT.

1.4 Organization
Section 2 presents some of our main ideas and techniques. Section 3 provides basic definitions
and preliminaries.

The equivalence between the existence of NC0-computable one-way functions and the
hardness of KT complexity is proved in Section 4. We prove our robustness results in
Section 4.3 and 4.4. In Section 5, we present the tight connection between the hardness of
Kt complexity and maximally hard one-way functions. To motivate future study, we put
forward a few Perebor Hypotheses in Section 5.5, which are closely related to the existence of
maximally-hard one-way functions. The results related to MCSP are proved in Section 6, and
the results related to MKtP are proved in Section 7. Finally, we leave a few open questions
in Section 8.

2 Intuitions and Techniques

For strings s1, s2, . . . , sn, we use s1 ◦ s2 ◦ · · · ◦ sn to denote their concatenation.

2.1 Parallel Cryptography and the Hardness of KT
Our proof of Theorem 1 builds on [62]. However, it turns out that we need new ideas for
both directions of the equivalence.

2.1.1 Hardness of KT from One-Way Functions in NC0

We first review how Liu and Pass [62] proved that one-way functions imply average-case
hardness of Kt.

H. Ren and R. Santhanam 35:9

Any cryptographically-secure PRG G implies zero-error hardness of Kt [74, 58, 4]. Roughly
speaking, the outputs of G have “non-trivial” Kt complexity, but random strings are likely to
have “trivial” Kt complexity.7 If there is a polynomial-time (zero-error) heuristic for Kt, this
heuristic will recognize most random strings as “trivial”, but recognize every output of G as
“non-trivial”. Thus, we can use it as a distinguisher for G, contradicting the security of G.

It is crucial in the above argument that our heuristic does not make mistakes. If the
outputs of G are “sparse” and our heuristic has two-sided error, our heuristic could also
recognize the outputs of G as “non-trivial”. (Here, a PRG G with output length n is sparse
if the number of possible outputs of G is significantly smaller than 2n.) In this case, the
heuristic may still be correct on most length-n strings, but fail to distinguish the outputs of
G from true random strings.

Why not make G dense? This is the core idea of Liu and Pass. In particular, from an
arbitrary one-way function f , they constructed a dense PRG G,8 and used G to argue that
Kt is bounded-error average-case hard. Roughly speaking, if the outputs of G occupy a
1/poly(n) fraction of {0, 1}n, then any bounded-error heuristic for Kt with error probability
1/nω(1) is a distinguisher for G. It follows from the security of G that Kt is bounded-error
hard on average.

What about KT? Recall that the KT complexity of a string x is the minimum of |d|+ t

over programs d and integers t such that x can be generated implicitly from d in at most t

steps, i.e., the universal machine computes the i-th bit xi of x correctly in at most t steps
with oracle access to d. When we use the above framework to analyze the hardness of KT
complexity, there is a problem: the outputs of G might have “trivial” KT complexity.

Let t be the running time of G (which is a large polynomial). Let out := G(seed) be any
output of G, we can see that Kt(out) is indeed non-trivial, as we can describe seed and the
code of G with |seed|+ O(1) < n bits. Given this description, we can “decompress” out in
t(n) steps by computing G on seed. However, KT(out) is the sum of the description length
and the running time, which is |seed|+ O(log n) + t(n) ≫ n. This is even worse than the
trivial description for out whose complexity is n + O(log n).

One attempt is to pad both the seed and the output by a random string of length
poly(t(n)), so that G becomes sublinear-time computable. That is, G′(seed ◦ r) = out ◦ r

where r is a long string. Still, we only have KT(out ◦ r) ≤ |seed|+ |r|+ t(n), but the trivial
upper bound for KT(out ◦ r) is only |out|+ |r|. If t(n) is larger than the stretch of G (i.e.,
|out| − |seed|), then we do not have non-trivial KT-complexity upper bounds on outputs
of G.

This problem is inherent as we need G to be dense. Suppose that the number of possible
outputs of G is 2n/poly(n), then there must be an output of G whose Kolmogorov complexity
is at least n−O(log n). That is, the seed length of G has to be n−O(log n), even if we place
no restrictions on the complexity of G! Now, if we want the outputs of G to have non-trivial
KT complexity, we only have O(log n) time to compute each output bit of G. Therefore, G

is a PRG in constant parallel time.9

7 Here, the Kt (or KT) complexity of a length-n string is “non-trivial”, if it is at most n − Ω(log n). Most
length-n strings have complexity at least n − Ω(log n); every length-n string has complexity at most
n + O(log n) (justifying the word “trivial”).

8 The input distribution of their PRG is not the uniform distribution, which is different from standard
PRGs; see Definition 24. We ignore this difference in the informal exposition.

9 Due to low-level issues in the computational models, the “constant time” in [8] actually corresponds to
O(log n) time in this paper. See Section 3.1 for details.

CCC 2021

35:10 Hardness of KT Characterizes Parallel Cryptography

We discovered that the (bounded-error) average-case complexity of KT is related to
cryptography in NC0. Now it is easy to see that NC0-computable dense PRGs imply bounded-
error hardness of KT complexity. We can construct such a PRG from NC0-computable
one-way functions, as follows.10 We first use [62] to construct a dense PRG G. This PRG
is not necessarily in NC0, as [62] needs some more complex primitives (e.g. extractors).
Nevertheless, we can apply the randomized encodings in [11] to compile G into a PRG
in NC0.

2.1.2 One-Way Functions in NC0 from Hardness of KT

It is straightforward to construct a one-way function from hardness of KT, using techniques
of [62, Section 4]. Roughly speaking, the one-way function f receives two inputs d, t, where
d is the description of a machine, and t is a time bound. Let x be the string such that for
each i ∈ [n], xi is equal to the output bit of d(i) for t steps. We define f(d, t) := (|d|+ t, x).
An inverter, on input (ℓ, x), is required to find a description of x with complexity at most ℓ,
thus it needs to solve MKTP. (All one-way functions in this section are weak, meaning they
cannot be inverted efficiently on a 1− 1/poly(n) fraction of inputs.)

There is one problem: f is not in NC0. By [11], it suffices to construct a one-way function
in ⊕L, but f is also not in ⊕L (unless ⊕L = P).

Our idea is to only consider typical inputs, and throw away the atypical ones. In particular,
for most strings x, the values of t in the optimal description of KT(x) = |d|+ t are small.
(We have t = O(log n) for every string x with Kolmogorov complexity at least n−O(log n).)
We call an input typical if its value of t is at most O(log n). If KT is (bounded-error) hard
on average, then it is also hard on average conditioned on the input being typical.

Therefore, we place the restriction that t ≤ c log n in our one-way function f , where c is
a constant depending on the hardness of KT. We can still base the hardness of f on the
hardness of KT. More importantly, f is computable in space complexity O(c log n), and we
obtain a one-way function in NC0 by [11].

2.2 Applebaum-Ishai-Kushilevitz as a Reduction

For any “reasonable” circuit class C, we can use [62] to show that the existence of one-way
functions computable in C is equivalent to the hardness of C-Kt. (The precise definition of
C-Kt is beyond the scope of this paper, but NC1-Kt and L-Kt are defined in Definition 15.)
Now, let us review the main results of [11]: ⊕L-computable one-way functions exist if and
only if NC0-computable one-way functions exist. In other words, ⊕L-Kt is hard on average if
and only if NC0-Kt is hard on average!11

It is natural to ask whether there is a reduction between ⊕L-Kt and NC0-Kt. It turns out
that the answer is yes! In this section, we describe this reduction without using the language
of one-way functions. This reduction is randomized, reduces any string with non-trivial
⊕L-Kt complexity to a string with non-trivial NC0-Kt complexity, and reduces a random
string to a random string. Although it may not be a worst-case reduction, it establishes
non-trivial equivalence results between average-case complexities of ⊕L-Kt and NC0-Kt.

10 Note that this is different from [38, 37]. The PRG we construct is dense, but its input distribution is
not uniform. In contrast, [38, 37] constructs a PRG (on uniformly random inputs) from an arbitrary
one-way function, but the PRG is not necessarily dense.

11 NC0 may not be reasonable in the above sense, but the reduction we present in this section is correct.

H. Ren and R. Santhanam 35:11

The property that enables our reduction is resamplability [26]. For now, think of “easy”
as being NC0-computable and “hard” as otherwise. A hard function f is resamplable, if given
an input x and random coins r, there is an easy procedure (the “resampler”) that produces
a uniform random input of f whose answer is the same as x.

▶ Example 11. The parity function PARITY(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn is hard (i.e., not
computable in NC0). Given n input bits x1, x2, . . . , xn and n−1 random bits r1, r2, . . . , rn−1,
we can produce a uniform random input whose answer is the same as x, as follows:

(x1 ⊕ r1, x2 ⊕ r1 ⊕ r2, x3 ⊕ r2 ⊕ r3, x4 ⊕ r3 ⊕ r4, . . . , xn−1 ⊕ rn−2 ⊕ rn−1, xn ⊕ rn−1).

Note that the resampler is easy (i.e., in NC0), thus parity is resamplable.

The reduction. We will use a ⊕L-complete problem named DCMD that is resamplable (see
Section 3.7). Our reduction is very simple: given an input x ∈ {0, 1}n, we choose a large
enough N = poly(n), and replace every bit xi by a random length-N instance of DCMD
whose answer is xi. Our reduction outputs the concatenation of these n instances.

Since DCMD is balanced (i.e., the number of 0-instances and 1-instances are the same),
our reduction maps a random instance to a random instance.

Now assume that ⊕L-Kt(x) = n− γ is non-trivial, and d is a ⊕L machine of description
length n− γ that “computes” x. Since DCMD is ⊕L-complete (under NC0-reductions), for
each i, the computation of xi can be reduced to a DCMD-instance si of length N such that
DCMD(si) = xi. Moreover, given the description d, we can produce s1 ◦ s2 ◦ · · · ◦ sn in NC0.

We use the resamplability of DCMD. The resampler for DCMD only uses N − 1 random
bits (which is optimal). Consider the following NC0 circuit. It receives d and r1, r2, . . . , rn

as inputs, where each ri is a random string of length N − 1. It computes s1, s2, . . . , sn

from d, and for each i, feeds si and ri to the resampler to obtain a uniform random
DCMD instance whose answer is the same as si. When ri are random bits, the output
distribution of this NC0 circuit is identical to the distribution of NC0-Kt instances we reduced
x to. Moreover, the NC0-Kt complexity of every string in this distribution is at most
(n− γ) + (N − 1)n + O(log n) = Nn− γ + O(log n), which is non-trivial.12

As a consequence, we also obtain an (average-case) reduction from ⊕L-Kt to KT.

2.3 Tighter Connections
To obtain a tight relationship between hardness of Kt and hardness of weak one-way functions,
we optimize the construction from one-way functions to PRGs in [62]. Suppose that given a
one-way function f with input length n, we could construct a PRG with output length m′.
Then solving Kt on length m′ is (roughly) as hard as inverting f on length n. Therefore, we
need m′ to be as close to n as possible. As the PRG is dense, its output length m′ is close to
its input length m, thus we only need m to be close to n.

It turns out that the input of the PRG consists of the input of f and the seeds of a few
pseudorandom objects.

One object is an extractor Ext(X , r) [70, 68], which given a “somewhat random” distribu-
tion X and a truly random seed r, outputs a distribution that is statistically close to the
uniform random distribution.
We use the near-optimal explicit extractors with O(log2 n) seed length [36].

12 The additive factor here is O(log n) since in our computational model, each memory access requires
Θ(log n) time. See Section 3.1 for details.

CCC 2021

35:12 Hardness of KT Characterizes Parallel Cryptography

Another object is a hardcore function HC(x, r) [32]. Let f be a one-way function, x be
a random input, and r be a random seed. Given f(x) ◦ r, it should be infeasible to
distinguish between HC(x, r) and a uniformly random string. Note that HC(x, r) needs
to have multiple output bits; in contrast, a hardcore predicate (also defined in [32]) only
has one output bit.
We use the observation, implicit in [82, 79], that any seed-extending “black-box” pseu-
dorandom generator is a good hardcore function. We use the direct product generator
[42, 41] as our hardcore function, which has O(log2 n) seed length, and very small “advice
complexity.” The advice complexity turns out to be related to the overhead of our
reduction.

There is another problem: [62] needs a strong one-way function to start with, but we only
have a weak one-way function. (A strong one-way function is infeasible to invert on almost
every input, but a weak one-way function is only infeasible to invert on a non-trivial fraction
of inputs.) Yao [92] showed how to “amplify” a weak one-way function to a strong one-way
function, but the overhead of this procedure is too large. In particular, Yao’s hardness
amplification does not preserve exponential hardness, and it is open whether exponentially-
hard weak one-way functions imply exponentially-hard strong one-way functions.

Our idea is to use Impagliazzo’s hardcore lemma [49] instead. The hardcore lemma states
that for any weak one-way function f , there is a “hardcore” distribution on which f becomes
a strong one-way function. We (and [62]; see Footnote 8) allow the input distribution of our
PRG to be arbitrary, as long as the output distribution is pseudorandom. Such “PRGs” still
imply hardness of Kt. The hardcore lemma has small complexity overhead, which allows us
to prove tight results.

Now, from a weak one-way function of input length n, we can construct a PRG with
output length n+O(log2 n). This construction allows us to transform the hardness of one-way
function to the hardness of Kt at almost no cost.

Tighter connections between MKTP and one-way functions in NC0. Here, the problem
becomes to construct NC0-computable PRGs from NC0-computable one-way functions. We
use a construction of universal hash functions in NC0 with linear seed length by Applebaum
[10]. Such hash functions are both good extractors (by the leftover hash lemma) and good
hardcore functions (proved in [15, 44]). As the hash functions require linear seed length, from
an NC0-computable one-way function with input length n, we obtain an NC0-computable
PRG with output length O(n). It follows that if the one-way function is hard against
2Ω(n)-size adversaries, then MKTP is also hard against 2Ω(n)-size algorithms.

2.4 MCSP-Related Results
One-way functions from hardness of MCSP. We use the straightforward construction:
our one-way function receives a circuit C, and outputs |C| and tt(C), where |C| is the size of
C and tt(C) is the truth table of C. The inverter, on input (s, tt), is required to find a size-s
circuit whose truth table is tt, thus needs to solve MCSP.

One problem with this construction is that if we sample a uniform circuit (according to
some distribution), the induced distribution over truth tables may not be uniform. In the
case of Kt (and KT), we can show that for every string of length n, its optimal description
is sampled (in the one-way function experiment) w.p. at least 2−n/poly(n), therefore we
can “transfer” the hardness of Kt over a random truth table to the hardness of inverting the
one-way function over a random description.

H. Ren and R. Santhanam 35:13

Using the best bounds on the maximum circuit complexity of n-bit Boolean functions [28],
we can still prove that for every truth table of length N , its optimal circuit is sampled
w.p. at least 2−N /2η, where η < o(N). This means that starting from exponential hardness
of MCSP, we can still obtain non-trivial one-way functions.

We conjecture that hardness of MCSP actually implies one-way functions in NC0; see
Remark 76 for details.

Hardness of MCSP from one-way functions in NC0. To argue about the hardness of
MCSP, we need a PRG whose outputs have non-trivial circuit complexity. As before, we use
the hash functions in [10] to construct an exponentially-hard PRG. We would like to argue
that all outputs of the PRG have non-trivial circuit complexity. In order to do this, we use
the mass production theorem of Uhlig [83, 84] to generate a circuit of size (1 + o(1))2n/n

that evaluates a given function on multiple inputs. (If our PRG has locality d, i.e., each
output bit depends on d input bits, then we need a size-(1 + o(1))2n/n circuit that evaluates
d inputs in parallel.) However, Uhlig’s theorem only gives us non-trivial circuit size if our
PRG has linear stretch, i.e., stretch ϵn for some constant ϵ > 0. This is why we need the
hardness of the one-way function in our assumption to be at least poly(2ϵn).

2.5 Using Hardness of Kt to Capture Cryptographic and
Complexity-Theoretic Pseudorandomness

To show Theorem 4, we use ideas similar to those in Section 2.1.2. Suppose we try to define
a one-way function by computing the string corresponding to an optimal description with
respect to Kt complexity. An obvious issue is that such strings might require exponential
time to compute, while the one-way function needs to be evaluated efficiently. However,
we observe that typical inputs only require polynomial time to generate from their optimal
descriptions. Here, the typical inputs are those with Kolmogorov complexity n−O(log n).
In their optimal descriptions Kt(x) = |d|+ log t, we have t ≤ poly(n). Our one-way function
receives two inputs d, t, where d is the description of a machine, and t ≤ poly(n) is a time
bound. We simply simulate the machine d for t steps and output what it outputs. The
proof that this gives a one-way function is closely analogous to the proof of the reverse
implication in Theorem 1. The proof that one-way functions imply the average-case hardness
of Kt complexity mimics the proof of the corresponding implication in Theorem 2, since the
outputs of a cryptographic PRG with stretch λ log n have non-trivial Kt complexity when λ

is large enough compared to the time required to compute the PRG.
To show Theorem 5, we use the Nisan-Wigderson generator [69] in a way similar to how

it is used by [4] to show that Kt is complete for exponential time under polynomial-size
reductions. The interesting direction is to show that the Nisan-Wigderson generator implies
the average-case hardness of Kt for the range of parameters in the statement of Theorem 5.
We use the fact that the Nisan-Wigderson generator can be made seed-extending without
loss of generality. We truncate the output of the generator so that the stretch is (1 + ϵ)n for
some small ϵ > 0 – this implies that the outputs of the generator on all seeds have non-trivial
Kt complexity. Since the generator is seed-extending, the output has high entropy, hence
a strong enough average-case algorithm for Kt can distinguish random strings (which have
trivial Kt complexity) from the outputs of the PRG. Here we take advantage of the stretch
being small rather than large: this gives us better parameters for our average-case hardness
result.

CCC 2021

35:14 Hardness of KT Characterizes Parallel Cryptography

3 Preliminaries

We use Un to denote the uniform distribution over length-n binary strings. For a distribution
D, we use x ← D to denote that x is a random variable drawn from D. A function
negl : N → [0, 1] is negligible if for every constant c, negl(n) ≤ 1/nc for large enough
integers n.

Let D : {0, 1}n → {0, 1} be a function, X and Y be two random variables over {0, 1}n.
For ϵ > 0, we say D ϵ-distinguishes X from Y if

|Pr[D(X) = 1]− Pr[D(Y) = 1]| ≥ ϵ.

Otherwise we say X and Y are ϵ-indistinguishable by D.
We often consider ensemble of functions in this paper. For example, a function f : {0, 1}⋆

to {0, 1}⋆ can be interpreted as an ensemble f = {fn : {0, 1}n → {0, 1}⋆}, and each fn is
the n-th slice of f . Similarly, we also consider ensemble of distributions D = {Dn} as input
distributions for a function f , where each Dn is a distribution over {0, 1}n.

3.1 Computational Model and Uniformity
We need a computational model with random access to inputs. We consider a Turing machine
that accesses the length-n input x via an “address” tape and a length-O(1) “answer” tape.
Whenever the machine enters a particular “address” state, let i be the binary number written
in the address tape. After one step, the content of the answer tape becomes xi, and the
address tape is cleared. (In other words, the Turing machine treats x as the truth table of
an oracle.)

We also assume that the address tape has length ⌈log n⌉. In particular, there are two
special markers at the address tape, and there are ⌈log n⌉ cells strictly between them. The
machine can only modify this portion of ⌈log n⌉ cells; the rest of the address tape is read-
only. For sub-linear time Turing machines, this can be viewed as a mechanism to provide
information about n (i.e., the length of x; up to a factor of 2). We also require that whenever
the machine enters the “address” state, all the ⌈log n⌉ cells between the two markers are
non-empty, so we can interpret the concatenation of these cells as a (binary) address.

Every bit operation takes one step. Therefore, it takes Θ(log n) time to write down an
address. Note that we clear the address tape after each access, which means when we access
another input bit, we have to spend another Θ(log n) time to write down the address from
scratch. This definition ensures that in O(log n) time we can only access a constant number
of input bits, so DLOGTIME becomes a natural uniform analogue of NC0.

In addition to the address tape and the answer tape, we also have a constant number of
work tapes. In the case that our Turing machine computes a multi-output function f , we
also provide an input tape that contains an index i (note that our real input is the “oracle”
x), which means our Turing machine outputs the i-th bit of f(x). We use Mx(i) to denote
the output of the machine M on input i, given oracle access to the string x. To measure the
space complexity of our Turing machine, we assume the input tape is read-only and we only
count the total length of work tapes.

▶ Definition 12. Let c > 0 be a constant, p(·) be a polynomial, and F = {Fn : {0, 1}n →
{0, 1}p(n)} be an ensemble of functions. We say F ∈ TIME[c log n] if there is a Turing
machine M with running time c log n such that, for every x ∈ {0, 1}n and 1 ≤ i ≤ p(n),
Mx(n, i) outputs the i-th bit of Fn(x).

Let DLOGTIME =
⋃

c≥1 TIME[c log n].

H. Ren and R. Santhanam 35:15

▶ Definition 13. Let c > 0 be a constant, p(·) be a polynomial, and F = {Fn : {0, 1}n →
{0, 1}p(n)} be an ensemble of functions.

We say F is in ATIME[c log n], if there is an alternating Turing machine M of O(log n)
running time such that, for every x ∈ {0, 1}n, 1 ≤ i ≤ p(n), and b ∈ {0, 1, ⋆}, Mx(n, i, b) = 1
if the i-th bit of Fn(x) is b.

We say F is in SPACE[c log n], if there is a Turing machine M of space complexity c log n

that satisfies the above requirement. We say F is in uniform ⊕SPACE[c log n], if there is a
parity Turing machine M of space complexity c log n that satisfies the above requirement.

Let ALOGTIME = NC1 =
⋃

c≥1 ATIME[c log n]. (That is, in this paper, we use
ALOGTIME and NC1 interchangeably.) We also define L =

⋃
c≥1 SPACE[c log n], and

⊕L =
⋃

c≥1⊕SPACE[c log n].

For the readers not familiar with parity Turing machines, we provide an alternative
definition of ⊕L by its complete problems; see Section 3.7.

3.2 Resource-Bounded Kolmogorov Complexity
We define some variants of resource-bounded Kolmogorov complexity. In particular, we define
the plain Kolmogorov complexity K, the KT complexity [4], the time-bounded Kolmogorov
complexity Kt [59], and Levin’s Kt complexity [60]. Then we define the NC1- and L-versions
of Kt.

▶ Definition 14. Let U be a Turing machine, x be a string. Artificially let x|x|+1 = ⋆.
KU (x) is the minimum |d| over the description d ∈ {0, 1}⋆, such that for every 1 ≤ i ≤
|x|+ 1 and b ∈ {0, 1, ⋆}, Ud(i, b) accepts if and only if xi = b.
KTU (x) is the minimum value of |d|+ t over the pairs (d, t), such that for every 1 ≤ i ≤
|x|+ 1 and b ∈ {0, 1, ⋆}, Ud(i, b) accepts in t steps if and only if xi = b.
KtU (x) is the minimum value of |d| + log t over the pairs (d, t), such that for every
1 ≤ i ≤ |x|+ 1 and b ∈ {0, 1, ⋆}, Ud(i, b) accepts in t steps if and only if xi = b.
Let t : N→ N be a resource bound. Kt

U (x) is the minimum value of |d| such that for every
1 ≤ i ≤ |x|+ 1 and b ∈ {0, 1, ⋆}, Ud(i, b) accepts in t(|x|) steps if and only if xi = b.

▶ Definition 15. Let Ua be an alternating Turing machine, and Us be a (space-bounded)
Turing machine. Let x be a string and artificially let x|x|+1 = ⋆.

Let t : N→ N be a resource bound. NC1-Kt
Ua

(x) is the minimum value of |d| such that
for every 1 ≤ i ≤ |x|+ 1 and b ∈ {0, 1, ⋆}, Ud

a (i, b) accepts in alternating time log t(|x|) if
and only if xi = b.
Let t : N→ N be a resource bound. L-Kt

Us
(x) is the minimum value of |d| such that for

every 1 ≤ i ≤ |x|+ 1 and b ∈ {0, 1, ⋆}, Ud
s (i, b) accepts in space log t(|x|) if and only if

xi = b.

Our results hold for every efficient enough universal Turing machine U . Therefore, in
this paper, we drop the subscript U and simply write KT, Kt, etc.

We also define the circuit complexity of a truth table:

▶ Definition 16. Let N = 2n, tt ∈ {0, 1}N be a truth table that corresponds to a function
f : {0, 1}n → {0, 1}. We define Size(tt) as the size (number of gates) of the smallest circuit
that computes f .

Given a complexity measure µ, the Minimum µ Problem is the language {(x, 1k) : µ(x) ≤
k}. In particular:

CCC 2021

35:16 Hardness of KT Characterizes Parallel Cryptography

▶ Definition 17. We define the following problems:
(Minimum KT Problem) MKTP := {(x, 1k) : KT(x) ≤ k}.
(Minimum Time-Bounded Kolmogorov Complexity Problem) MINKT := {(x, 1t, 1s) :
Kt(x) ≤ s}.
(Minimum Circuit Size Problem) MCSP := {(tt, 1s) : Size(tt) ≤ s}.

There are natural search versions for the problems above. The search version for MKTP
is to find an optimal description d for x, such that x can be generated from d implicitly in
time at most k − |d|. The search version for MINKT is to find an optimal description d of
size at most s for x such that x can be generated from d in time at most t. The search
version for MCSP is to find a circuit of size at most s for the Boolean function whose truth
table is tt.

We need a “trivial” upper bound on these complexity measures. We only state the upper
bound for KT complexity.

▶ Fact 18 ([4, Proposition 13]). There is an absolute constant c′ > 0 such that KT(x) ≤
|x|+ c′ log |x| for every string x.

We need the fact that most strings have large Kolmogorov complexity.

▶ Fact 19. Let n be an integer, s ≤ n− 1, then

Pr
x←Un

[K(x) ≤ s] ≤ 2−(n−s−1).

Proof Sketch. The number of strings x such that K(x) ≤ s is at most
∑s

i=0 2i = 2s+1−1. ◀

3.3 Basic Information Theory

We also need some basic concepts in information theory. The Shannon entropy of a random
variable X, denoted as H(X), is defined as

H(X) := E
x←X

[− log Pr[X = x]].

The min-entropy of a random variable X, denoted as H∞(X), is the largest real number
k such that for every x in the support of X,

Pr[X = x] ≤ 2−k.

Let X, Y be two random variables defined over a set S. The statistical distance between
X and Y , denoted as SD(X, Y), is defined as

SD(X, Y) := 1
2

∑
s∈S
|Pr[X = s]− Pr[Y = s]|.

An equivalent definition is as follows: SD(X, Y) is the maximum value of ϵ such that there is
a (possibly unbounded) distinguisher D that ϵ-distinguishes X from Y :

SD(X, Y) := max
D:S→{0,1}

|Pr[D(X) = 1]− Pr[D(Y) = 1]|.

H. Ren and R. Santhanam 35:17

3.4 Bounded-Error Average-Case Hardness
We define the (bounded-error) average-case hardness of a function f . (Think of f = KT or
Kt.) In the cryptographic setting, we require that any algorithm with an arbitrary polynomial
run time fails to solve a fixed-polynomial fraction of inputs.

▶ Definition 20. Let f : {0, 1}⋆ → N be a function.
We say that f is (bounded-error) hard on average if the following is true. There is a
constant c > 0 such that for every PPT13 machine A and every large enough input length
n,

Pr
x←Un

[A(x) = f(x)] ≤ 1− 1
nc

.

Let d be a constant. We say that f is (bounded-error) hard on average to (d log n)-
approximate if the following is true. There is a constant c > 0 such that for every PPT
machine A and every large enough input length n,

Pr
x←Un

[f(x) ≤ A(x) ≤ f(x) + d log n] ≤ 1− 1
nc

.

3.5 One-Way Functions
We recall the standard definition of one-way functions and weak one-way functions.

▶ Definition 21 (One-Way Functions). Let f : {0, 1}⋆ → {0, 1}⋆ be a polynomial-time
computable function. We say f is a one-way function if for every PPT adversary A, it
inverts a random output of f with negligible probability. That is, for every n ∈ N,

Pr
x←Un

[A(f(x)) ∈ f−1(f(x))] ≤ negl(n).

One-way functions are also called strong one-way functions, as no PPT adversary could
invert it non-trivially. We also consider weak one-way functions, where no PPT adversary
could invert it on a 1− negl(n) fraction of inputs.

▶ Definition 22 (Weak One-Way Functions). Let f : {0, 1}⋆ → {0, 1}⋆ be a polynomial-time
computable function. We say f is a weak one-way function if there is a polynomial p(·) such
that the following holds. For every PPT adversary A, it inverts a random output of f with
probability at most 1− 1/p(n). That is, for every n ∈ N,

Pr
x←Un

[A(f(x)) ∈ f−1(f(x))] ≤ 1− 1
p(n) .

By a standard padding trick (see e.g., [30]), we can assume that (weak or strong) one-way
functions are length-preserving, i.e. for every input x ∈ {0, 1}⋆, |f(x)| = |x|. In this paper,
we will implicitly assume that every one-way function is length-preserving.

Yao showed that every weak one-way function can be amplified into a strong one-way
function.

▶ Theorem 23 ([92, 30]). If there exists a weak one-way function, then there exists a strong
one-way function.

In particular, let f be a weak one-way function. Then there is a polynomial k(·), such
that the following function fk is a strong one-way function.

fk(x1, x2, . . . , xk(n)) = f(x1) ◦ f(x2) ◦ · · · ◦ f(xk(n)),

where x1, x2, . . . , xk(n) are length-n inputs.

13 PPT stands for probabilistic polynomial-time.

CCC 2021

35:18 Hardness of KT Characterizes Parallel Cryptography

3.6 Conditionally Secure Entropy-Preserving PRGs
Here we define conditionally secure entropy-preserving PRGs (condEP-PRGs), introduced
in [62].

A pseudorandom generator, according to the standard definition, is a polynomial-time
computable function G : {0, 1}n → {0, 1}m (where m > n), such that G(Un) and Um

are computationally indistinguishable. Compared with standard PRGs, a condEP-PRG
G : {0, 1}n → {0, 1}m has three differences:

The input distribution of G is not Un. Instead, it is the uniform distribution over a subset
of inputs En, called the condition. (We will use En to denote both the subset and the
uniform distribution over this subset.)
G is entropy-preserving, meaning that G(En) has large (information-theoretic) entropy.
(Note that log |En| ≤ n ≤ m. As a consequence, log |En| cannot be too small compared to
m.)
Finally, G only (1/p(n))-fools PPT adversaries for a fixed polynomial p(·). For comparison,
a standard PRG is required to (1/p(n))-fool PPT adversaries for every polynomial p(·).
This difference is mostly technical.

▶ Definition 24 (Conditionally Secure Entropy-Preserving PRG, abbr. condEP-PRG, [62]). Let
γ > 0 be a constant, and p(·) be a polynomial. Consider a polynomial-time computable
ensemble of functions G = {Gn : {0, 1}n → {0, 1}n+γ log n}. We say G is a condEP-PRG, if
there is a family of subsets E = {En ⊆ {0, 1}n} (called the “events” or “conditions”), such
that the following are true.
1. (Pseudorandomness) Gn(En) is (1/p(n))-indistinguishable from Un+γ log n by PPT ad-

versaries. That is, for every PPT A and every integer n,∣∣∣∣ Pr
x←Un+γ log n

[A(x) = 1]− Pr
x←Gn(En)

[A(x) = 1]
∣∣∣∣ < 1/p(n).

2. (Entropy-Preservation) There is a constant d such that for every large enough n,
H(Gn(En)) ≥ n− d log n.

We say the stretch of G is γ log n, and the security of G is 1/p(n).

▶ Theorem 25 ([62]). There is a function EP-PRG computable in ALOGTIME, such that the
following holds. For any one-way function f : {0, 1}⋆ → {0, 1}⋆ and any constant γ > 0, let
G(x, z) = EP-PRG(γ, x, f(x), z), then G is a condEP-PRG with stretch γ log n and security
1/nγ .

▶ Remark 26. It is important that the machine EP-PRG is fixed and does not depend on the
constant γ. Suppose there is an absolute constant c > 0 such that for every γ > 0, there is a
PRG Gγ that runs in TIME[c log n] and stretches n bits into n + γ log n bits. The outputs of
Gγ will always have KT complexity at most n+ c log n+ O(1) < n + γ log n, hence a heuristic
for MKTP can always distinguish the outputs of Gγ from truly random strings. It follows
that we can use such Gγ to argue about the hardness of MKTP. On the other hand, if the
time complexity of Gγ depends on γ, it does not necessarily imply any hardness of MKTP.

3.7 Complete Problems for ⊕L
We introduce the ⊕L-complete problems, called Connected Matrix Determinant (CMD) and
Decomposed Connected Matrix Determinant (DCMD), that will be crucial to us. Originally
motivated by secure multi-party computation [54, 55], these problems have found surprisingly
many applications in cryptography and complexity theory [11, 33, 26, 43, 23].

Let n be any integer, define ℓCMD(n) := n(n + 1)/2 and ℓDCMD(n) := n3(n + 1)/2.

H. Ren and R. Santhanam 35:19

▶ Definition 27 (See e.g., [23]). An instance of CMD is an n× n matrix over GF(2) where
the main diagonal and above may contain either 0 or 1, the second diagonal (i.e., the one
below the main diagonal) contains 1, and other entries are 0. In other words, the matrix is
of the following form (where ∗ represents any element in GF(2)):

∗ ∗ ∗ · · · ∗ ∗
1 ∗ ∗ · · · ∗ ∗
0 1 ∗ · · · ∗ ∗
0 0 1 · · · ∗ ∗
...

...
...

. . .
...

...
0 0 0 · · · 1 ∗

.

The instance is an (n(n + 1)/2)-bit string specifying elements on and above the main diagonal.
We define x ∈ CMD if and only if the determinant (over GF(2)) of the matrix corresponding
to x is 1.

An instance of DCMD is a string of length n3(n + 1)/2. For an input x, DCMD(x) is
computed as follows: we partition x into blocks of length n2, let yi(1 ≤ i ≤ n(n + 1)/2) be
the parity of the i-th block, and define DCMD(x) := CMD(y1 ◦ y2 ◦ · · · ◦ yn(n+1)/2).

The precise definitions of CMD and DCMD are not important here, but we need the
following important facts about them.

▶ Theorem 28 ([11]). Let n be an integer. There is a function PCMD : {0, 1}ℓCMD(n) ×
{0, 1}ℓDCMD(n)−1 → {0, 1}ℓDCMD(n), computable in DLOGTIME, such that the following hold.
For any input x ∈ {0, 1}ℓCMD(n), the distribution of PCMD(x,UℓDCMD(n)−1) is equal to the
uniform distribution over {y : y ∈ {0, 1}ℓDCMD(n) : DCMD(y) = CMD(x)}.

Note that PCMD only uses ℓDCMD(n)− 1 random bits, which is optimal. It also implies:

▶ Corollary 29. DCMD is balanced. In other words, for every integer n, the number of Yes
instances and No instances of DCMD on input length ℓDCMD(n) are the same.

Proof. Fix any Yes instance x ∈ {0, 1}n of CMD, then {PCMD(x, r) : r ∈ {0, 1}ℓDCMD(n)−1}
contains every Yes instance of DCMD. It follows that there are at most 2ℓDCMD(n)−1 Yes
instances of DCMD on input length ℓDCMD(n). The same upper bound can also be obtained
for No instances. Since there are 2ℓDCMD(n) strings of length ℓDCMD(n), there must be exactly
2ℓDCMD(n)−1 Yes instances and exactly 2ℓDCMD(n)−1 No instances of length ℓDCMD(n). ◀

▶ Theorem 30 ([54, 55]). CMD is ⊕L-complete under projections.14

In other words, a language L is in ⊕L if and only if there is a polynomial t(·) and a
DLOGTIME-computable projection p : {0, 1}n → {0, 1}ℓCMD(t(n)), such that for every input
x ∈ {0, 1}n, x ∈ L if and only if CMD(p(x)) = 1.

▶ Remark 31. A proof of Theorem 30 can be found in [23, Section B.1]. However, the
proof in [23] does not show that the projections are DLOGTIME-uniform. In particular,
the reduction needs to calculate the topological order of the underlying (parity) branching
program (σ1, σ2, . . . , σm in [23, Section B.1]), which may not be computable in DLOGTIME.

14 A projection is a (multi-output) function where each output bit either is a constant, or only depends on
one input bit.

CCC 2021

35:20 Hardness of KT Characterizes Parallel Cryptography

We can fix this issue by adding a clock to the log-space Turing machine; a state of
the Turing machine appears earlier in the topological order if its clock value is smaller.
Equivalently, let G = (V, E) be the old branching program. The new branching program
Gnew has a vertex (i, v) for every 0 ≤ i ≤ |V | and v ∈ V , and has edges from (i, u) to (i + 1, v)
for every edge (u, v) ∈ G and every 0 ≤ i < |V |. Let V = {v1, . . . , vn}, then

(0, v1), . . . , (0, vn), (1, v1), . . . , (1, vn), . . . , (|V |, v1), . . . , (|V |, vn)

is a valid topological ordering of Gnew. Now we can use [23, Section B.1] to reduce the
computation of Gnew to CMD by a DLOGTIME-uniform projection.

We would like to thank Yanyi Liu for pointing out this issue.
Theorem 28 and 30 implies the following beautiful result in [11].

▶ Theorem 32 ([11]). Suppose there is a one-way function computable in ⊕L. Then there is
a one-way function computable in DLOGTIME.

Proof Sketch. Let f be a one-way function in ⊕L. There is a DLOGTIME-computable
function p(·, i) that maps n input bits to poly(n) output bits, such that for every integer
i and every string x, the i-th output bit of f(x) is CMD(p(x, i)). Consider the following
function:

g(x, y, i) := PCMD(p(x, i), y).

It turns out that the function g(x, y) = g(x, y, 1) ◦ · · · ◦ g(x, y, n) is still one-way. ◀

4 KT Complexity and Parallel Cryptography

In this section, we characterize the existence of one-way functions in DLOGTIME by the
average-case hardness of MKTP. Recall that the seminal work of [11] showed that the
existence of one-way functions in DLOGTIME is also equivalent to the existence of one-way
functions in uniform NC1, L, or ⊕L.

▶ Theorem 1 (Main Result; Informal). There is a one-way function computable in uniform
NC1 if and only if KT is bounded-error hard on average.

4.1 One-Way Functions in NC0 from Hardness of MKTP
▶ Theorem 33. Suppose that the search version of KT is bounded-error hard on average.
Then there is a one-way function computable in DLOGTIME.

Proof. We show that there is a weak one-way function computable in logarithmic space.
Then by Theorem 23, there is a one-way function in logarithmic space, and by Theorem 32,
there is a one-way function in DLOGTIME.

Suppose KT is bounded-error hard on average. By Definition 20, there is a constant
c > 0 such that for every PPT algorithm A and every large enough n, the probability that
A solves the search version of KT on a random length-n input is at most 1− 1/nc.

For a string x, we define t(x) to be the parameter t in the definition of KT(x) (Defini-
tion 14). Formally, t(x) is the smallest integer t such that there is a description d of length
KT(x)− t, such that for every 1 ≤ i ≤ |x| and b ∈ {0, 1, ⋆}, Ud(i, b) accepts in t steps if and
only if xi = b. We can see that most strings have small t(x). In what follows, let c1 be the
absolute constant in Fact 18, such that for every x ∈ {0, 1}n, KT(x) ≤ |x|+ c1 log |x|.

H. Ren and R. Santhanam 35:21

▷ Claim 34. For all but an 1/nc+1 fraction of strings x ∈ {0, 1}n, we have t(x) ≤
(c + c1 + 2) log n.

Proof of Claim 34. By Fact 18, for every x ∈ {0, 1}n, KT(x) ≤ n + c1 log n. By Fact 19, all
but a 1/nc+1 fraction of strings x ∈ {0, 1}n satisfies that K(x) > n− (c + 1) log n− 1. For
such strings x, we have t(x) ≤ KT(x)−K(x) ≤ (c + c1 + 2) log n. ◁

For convenience, we say a pair (d, t) outputs the string x, if (d, t) is a valid “witness” for
KT(x), i.e. for every 1 ≤ i ≤ |x|+ 1 and b ∈ {0, 1, ⋆}, Ud(i, b) accepts in time t if and only if
xi = b. Let Output(d, t) be the (unique) string that (d, t) outputs; if (d, t) does not output
any (finite) string, let Output(d, t) = ⊥.

We define a weak one-way function f as follows.

Algorithm 1 Weak OWF in L from Average-Case Hardness of MKTP.

1: function f(ℓ, t, M)
2: The input consists of integers ℓ ∈ [n + c1 log n], t ∈ [(c + c1 + 2) log n], and a string

M ∈ {0, 1}n+c1 log n.
3: M ′ ← the first ℓ bits of M

4: out← Output(M ′, t)
5: if |out| = n then
6: return the concatenation of ℓ, t, and out

7: else
8: return ⊥

Since t ≤ O(log n), we can always compute Output(M ′, t) in logarithmic space. It follows
that f is computable in logarithmic space.

Let Dowf be the output distribution of f on uniform inputs. In other words, to sample
from Dowf , we sample two integers ℓ ← [n + c1 log n], t ← [(c + c1 + 2) log n] and a string
M of length n + c1 log n, and output f(ℓ, t, M). We prove that Dowf almost dominates the
uniform distribution over {0, 1}n, in the following sense.

▷ Claim 35. Let n be a large enough integer. For every string x such that t(x) ≤ (c + c1 +
2) log n, the probability that a random sample from Dowf is equal to (KT(x)− t(x), t(x), x)
is at least 1

2nn2+c1 .

Proof of Claim 35. For a large enough n, with probability at least 1
n2 , the sampler for Dowf

samples t = t(x) and ℓ = KT(x) − t(x). Then, with probability 1
2ℓ ≥ 1

2nnc1 , the sampler
samples a description M ′ such that Output(M ′, t) = x. It follows that w.p. at least 1

2nn2+c1

the sampler outputs (KT(x)− t(x), t(x), x). ◁

Now, we can prove the security of the weak OWF f . Let Aowf be a candidate PPT
adversary trying to invert f . We construct a polynomial-time algorithm AKT that attempts
to solve (the search version of) MKTP as in Algorithm 2.

Note that for a fixed input x, AKT(x) fails to output a valid witness for KT(x) only if
Aowf fails to invert the output (KT(x)− t(x), t(x), x). Let pfail(x) be the probability (over
the internal randomness of Aowf) that Aowf fails to invert (KT(x)− t(x), t(x), x), then we
have

E
x←Un

[pfail(x)] ≥ Pr
x←Un

[AKT(x) fails on input x] ≥ 1
nc

. (1)

Let p be the probability that Aowf fails to invert a random input of f . Then

CCC 2021

35:22 Hardness of KT Characterizes Parallel Cryptography

Algorithm 2 Bounded-Error Heuristic AKT for MKTP from Inverter Aowf for f .

1: function AKT(x)
2: n← |x|; Opt← +∞; Witness← ⊥
3: for ℓ ∈ [n + c1 log n] and t ∈ [(c + c1) log n] do
4: (ℓ′, t′, M)← Aowf(ℓ, t, x)
5: M ′ ← the first ℓ′ bits of M

6: if Output(M ′, t′) = x and Opt > |M ′|+ t′ then
7: Opt← |M ′|+ t′

8: Witness← (M ′, t′)
9: return (Opt, Witness)

p ≥
∑

x∈{0,1}n

t(x)≤(c+c1+2) log n

Pr
y←Dowf

[y = (KT(x)− t(x), t(x), x)] · pfail(x)

≥
∑

x∈{0,1}n

t(x)≤(c+c1+2) log n

1
2nn2+c1

· pfail(x) (Claim 35)

≥ 1
2nn2+c1

 ∑
x∈{0,1}n

pfail(x)− 2n

nc+1

 (Claim 34)

≥ 1
n2+c1

(
E

x←Un

pfail(x)
)
− 1

nc+c1+3

≥ 1
n2+c1+c

− 1
nc+c1+3 . By (1)

Let c′ = c + c1 + 4, then every PPT adversary Aowf fails to invert a random input of f

w.p. at least 1
nc′ . It follows that f is a weak OWF. ◀

4.2 Hardness of MKTP from One-Way Functions in ⊕L
In this section, we prove the following theorem.

▶ Theorem 36. Suppose there is a one-way function computable in ⊕L. Then for every
constant λ > 0, KT is bounded-error hard on average to approximate within an additive
factor of λ log n.

Let f be a one-way function in ⊕L. The proof consists of three steps:
First, we use f to build a condEP-PRG G. If f is computable in ⊕L, then G is also
computable in ⊕L. This step is the same as in [62], and follows directly from Theorem 25.
Second, we construct the randomized encoding G̃ of G. We argue that G̃ is also a
condEP-PRG. Moreover, G̃ is computable in DLOGTIME. This step is implemented in
Lemma 37.
Last, as every output of G̃ has small KT complexity, we use the security of G̃ to show
that MKTP is bounded-error hard on average. This step is implemented in Lemma 39.

4.2.1 CondEP-PRG in DLOGTIME
In this section, we prove the following lemma that constructs a DLOGTIME-computable
condEP-PRG from a ⊕L-computable condEP-PRG.

H. Ren and R. Santhanam 35:23

▶ Lemma 37. Suppose there is a constant c > 0 such that for every constant λ > 0, there is a
condEP-PRG G with stretch λ log n and security 1/nλ that is computable in ⊕SPACE[c log n].

Then there is a constant c′ > 0 such that for every constant λ > 0, there is a condEP-PRG
G̃ with stretch λ log n and security 1/nλ that is computable in TIME[c′ log n].

Proof. Fix an input length n. Let λ′ be a constant that depends on λ, we will fix λ′ later.
Let G be a condEP-PRG with stretch λ′ log n and security 1/nλ′ that is computable in
⊕SPACE[c log n]. We denote the n-th slice of G as Gn : {0, 1}n → {0, 1}ℓ, where ℓ :=
n + λ′ log n.

Let N := nc. Since G ∈ ⊕SPACE[log N], there are projections

Gproj
1 , Gproj

2 , . . . , Gproj
ℓ : {0, 1}n → {0, 1}ℓCMD(N),

such that the i-th output bit of G(x) is equal to CMD(Gproj
i (x)). Let r1, r2, . . . , rℓ be random

strings of length ℓDCMD(N)− 1. Let PCMD be the DLOGTIME-computable function defined
in Theorem 28, then the i-th output bit of G(x) is equal to DCMD(PCMD(Gproj

i (x), ri)). We
define

G̃(x, r1, . . . , rℓ) = PCMD(Gproj
1 (x), r1) ◦ PCMD(Gproj

2 (x), r2) ◦ · · · ◦ PCMD(Gproj
ℓ (x), rℓ).

(G̃ is the “randomized encoding” of G in the sense of [11].)
It is easy to see that there is a constant cg depending only on c, such that G̃ ∈

TIME[cg log n]. Note that the input length of G̃ is nin := n + ℓ · (ℓDCMD(N) − 1), the
output length of G̃ is nout := ℓ · ℓDCMD(N), and nout = nin + (ℓ− n) = nin + λ′ log n. Here,
we fix λ′ large enough such that λ′ ≥ λ log nin

log n .

▷ Claim 38. G̃ is a condEP-PRG with stretch λ log nin and security 1/(nin)λ.

Proof. Clearly, the stretch of G̃ is λ′ log n ≥ λ log nin.
Suppose E = {En ⊆ {0, 1}n} is a sequence of events such that G and E satisfy Definition 24.

Let Ẽ := {Ẽnin} where Ẽnin := En × {0, 1}ℓ·(ℓDCMD(N)−1). We verify that G̃ and Ẽ satisfy
Definition 24.

Pseudorandomness. Suppose, for the sake of contradiction, that there is a PPT adversary
A′ such that

Pr[A′(G̃(Ẽnin))]− Pr[A′(Unout)] ≥ 1/(nin)λ.

Consider an adversary A that distinguishes G(En) from Uℓ as follows. On input y, for
every 1 ≤ i ≤ ℓ, let ri be a uniformly random length-ℓDCMD(N) input of DCMD such that
DCMD(ri) = yi. We concatenate them as r = r1 ◦ r2 ◦ · · · ◦ rℓ, and let A(y) = A′(r).

Suppose y ← G(En), then the distribution of r is exactly G̃(Ẽnin). On the other hand,
suppose y ∼ Uℓ, then the distribution of r is exactly Unout . As A′ distinguishes G̃(Ẽnin) from
Unout with advantage ≥ 1/(nin)λ, we can see that A also distinguishes G(En) from Uℓ with
advantage ≥ 1/(nin)λ ≥ 1/nλ′ , contradicting the security of G.

Entropy-preservation. Consider the above experiment, where we first sample y← G(En),
then sample a uniform string ri of length ℓDCMD(N) such that DCMD(ri) = yi for every
1 ≤ i ≤ ℓ, and finally concatenate them as r = r1 ◦ r2 ◦ · · · ◦ rℓ. The distribution of r is
exactly G̃(Ẽnin). Therefore,

H(G̃(Ẽnin)) = H(G(En)) + ℓ · (ℓDCMD(N)− 1)
≥ n− Ω(log n) + ℓ · (ℓDCMD(N)− 1)
≥ nin − Ω(log nin). ◁

CCC 2021

35:24 Hardness of KT Characterizes Parallel Cryptography

We have only defined G̃ and Ẽ on input lengths of the form

nin(n) = n + (n + λ′ log n)(ℓDCMD(nc) + 1).

However, it is straightforward to define G̃ and Ẽ on every input length. Let m be an input
length, m′ = nin(n) be the largest number of the form nin(n) such that m′ ≤ m. On input
x ∈ {0, 1}m, let x1 be the length-m′ prefix of x and x2 be the rest of x (i.e., x = x1 ◦ x2),
and we can define G̃(x) = G̃(x1) ◦ x2. Similarly, we could define Ẽm = Ẽm′ ×{0, 1}m−m′ . ◀

4.2.2 Hardness of MKTP
▶ Lemma 39. Suppose there is a constant c > 0 such that for every constant λ > 0, there is
a condEP-PRG G with stretch λ log n and security 1/nλ that is computable in TIME[c log n].

Then for every constant λ > 0, KT is bounded-error hard on average to approximate
within an additive error of λ log n.

Proof. Let λ′ := λ + c1 + 2 for a constant c1 defined later, and G be a condEP-PRG with
stretch λ′ log n and security 1/nλ′ that is computable in TIME[c log n]. Fix an input length
n, and let ℓ := n + λ′ log n.

We note that the KT complexity of every output of G is nontrivial. Let c1 be a large
enough constant that only depends on c. Since G ∈ TIME[c log n], there is a description d of
constant length such that the following holds: For every input x ∈ {0, 1}n, every 1 ≤ i ≤ ℓ+1,
and every b ∈ {0, 1, ⋆}, Ud,x(i, b) accepts in (c1 − 1) log n time if and only if the i-th bit of
G(x) is equal to b. It follows that for every x ∈ {0, 1}n,

KT(G(x)) ≤ n + (c1 − 1) log n + O(1) < ℓ− (λ′ − c1) log n.

Suppose, for the sake of contradiction, that KT is bounded-error easy on average to
approximate, within an additive factor of λ log n. For a large constant ckt that we fix later,
there is a PPT machine A such that

Pr
y←Uℓ

[KT(y) ≤ A(y) ≤ KT(y) + λ log n] ≥ 1− 1
nckt

. (2)

It is natural to consider the following adversary A′: On input y ∈ {0, 1}ℓ, A′ outputs
1 if A(y) ≥ ℓ− 2 log n, and outputs 0 otherwise. We will prove the following two lemmas,
showing that A′ distinguishes G(En) from Uℓ with good advantage.

▶ Lemma 40. Pry←Uℓ
[A′(y) = 1] ≥ 1− 1

n2 − 1
nckt .

Proof. By Fact 19, all but a 1
n2 fraction of strings y ∈ {0, 1}ℓ satisfies that K(y) ≥ ℓ− 2 log n.

Therefore, for all but a
(1

n2 + 1
nckt

)
fraction of strings y ∈ {0, 1}ℓ, we have A(y) ≥ KT(y) ≥

K(y) ≥ ℓ− 2 log n. On these strings y we have A′(y) = 1. ◁

▶ Lemma 41. Pry←G(En)[A′(y) = 1] ≤ 1− 1
n .

Proof. Let H := H(G(En)). Let d be the constant such that ℓ−H ≤ d log n. The constant d

does not depend on ckt, which means we can set ckt := d + 15.
Consider the set of outputs of G that is outputted with probability at most 21−H . We

say these inputs are good. Let Good be the set of good inputs, i.e.,

Good :=
{

y ∈ {0, 1}ℓ : 0 < Pr[G(En) = y] ≤ 21−H
}

.

H. Ren and R. Santhanam 35:25

We can see that there are many good strings. Actually, let p := Pry←G(En)[y ∈ Good],
then

H = H(G(En)) ≤ p · n + (1− p) · (H − 1),

which implies that p ≥ 1
n−H+1 .

Let Err be the subset of Good on which A fails to produce a good approximation of KT.
(In case that A is a randomized algorithm, it fails w.p. at least 1/n4.) That is,

Err :=
{

y ∈ Good : Pr[KT(y) ≤ A(y) ≤ KT(y) + λ log n] ≤ 1− 1/n4}
.

By Equation (2), |Err| ≤ 2ℓ/nckt−4. Therefore,

Pr
y←G(En)

[y ∈ Err] ≤ (2ℓ/nckt−4) · 21−H ≤ 2 · nd+4−ckt ≤ 1/n4.

Note that for every y in the range of G(En), if A is correct on y, we have A(y) <

ℓ− (λ′−c1) log n+λ log n = ℓ−2 log n. Therefore for every y ∈ Good\Err, we have A′(y) = 0
w.p. at least 1− 1/n4 over the internal randomness of A′. It follows that

Pr
y←G(En)

[A′(y) = 1] ≤ (1− p) + Pr
y←G(En)

[y ∈ Err] + 1
n4

≤ 1− 1
n−H + 1 + 1

n4 + 1
n4

≤ 1− 1
n

. ◁

From the pseudorandomness of the condEP-PRG G, we conclude that KT is hard on
average to approximate within an additive error of λ log n.

Note that we have only proved the hardness of MKTP on input lengths of the form
n+λ′ log n, but it is straightforward to extend the argument to every input length m. Let m′

be the largest number of the form m′ = n + λ′ log n such that m′ ≤ m, then m−m′ ≤ O(1).
For every x ∈ {0, 1}m, let x1 be the length-m′ prefix of x. There is an absolute constant
d such that KT(x1) − d log m ≤ KT(x) ≤ KT(x1) + d log m. It follows that if we can
approximate MKTP on input length m′, then we can also approximate MKTP on input
length m. ◀

4.2.3 Proof of Theorem 36
▶ Theorem 36. Suppose there is a one-way function computable in ⊕L. Then for every
constant λ > 0, KT is bounded-error hard on average to approximate within an additive
factor of λ log n.

Proof. Let c be a constant such that there is a one-way function f computable in
⊕SPACE[c log n]. Let EP-PRG be the Turing machine guaranteed in Theorem 25. For
every constant λ > 0, let G(x, z) = EP-PRG(λ, x, f(x), z). Then there is a constant c1 only
depending on c (not on λ) such that G is computable in ⊕SPACE[c1 log n]. Moreover, G is a
condEP-PRG with stretch λ log n and security 1/nλ.

By Lemma 37, there is a constant c2 only depending on c such that for every constant
λ > 0, there is a condEP-PRG with stretch λ log n and security 1/nλ that is computable
in TIME[c2 log n]. By Lemma 39, for every constant λ > 0, KT is bounded-error hard on
average to approximate within an additive error of λ log n. ◀

CCC 2021

35:26 Hardness of KT Characterizes Parallel Cryptography

4.3 Bounded-Error Average-Case Robustness of Meta-Complexity
Our techniques also show that the meta-complexity of (resource-bounded) Kolmogorov
complexity is “robust”, i.e. a slight change in the underlying computation model has little effect
on their hardness. Actually, for many resource-bounded variants of Kolmogorov complexity,
such as KT, NC1-Kt, and L-Kt, either all of them admit bounded-error polynomial-time
heuristics, or none of them do. (See Section 3.2 for their definition.)

▶ Theorem 42. The following are equivalent:
1. There is a one-way function computable in ⊕L.
2. There is a one-way function computable in DLOGTIME.
3. The search version of KT is hard on average.
4. For every constant λ > 0, KT is hard on average to approximate within an additive error

of λ log n.
5. There is a polynomial t(·) such that the search version of NC1-Kt is hard on average.
6. For every constant λ > 0 and polynomial t(·) such that t(n) > 2n, NC1-Kt is hard on

average to approximate within an additive error of λ log n.
7. There is a polynomial t(·) such that the search version of L-Kt is hard on average.
8. For every constant λ > 0 and polynomial t(·) such that t(n) > 2n, L-Kt is hard on average

to approximate within an additive error of λ log n.

Proof Sketch. (2) =⇒ (1), (4) =⇒ (3), (6) =⇒ (5), and (8) =⇒ (7) are trivial.
(3) =⇒ (2): Directly from Theorem 33.
(5) =⇒ (2) and (7) =⇒ (2): The construction from [62, Section 4] gives a one-way

function computable in ALOGTIME (i.e., uniform NC1), based on the hardness of NC1-Kt.
By Theorem 32, there is a one-way function computable in DLOGTIME. The same argument
works for L-Kt.

(1) =⇒ (4): Directly from Theorem 36.
(1) =⇒ (6): Consider the condEP-PRG G computable in TIME[c log n] that we

constructed in the proof of Theorem 36, where c is some constant. Let t′(n) := nO(c), for
every x ∈ {0, 1}n that in the range of G, NC1-Kt′(x) ≤ n−Θ(log n). It follows that there is
a polynomial t′ such that NC1-Kt′ is hard on average to approximate.

To prove that NC1-Kt is hard on average to approximate for every polynomial t, we
use a padding trick. (See also [62, Theorem 5.6].) Let ϵ > 0 be a small enough constant,
and n1 = nϵ. Consider the generator G′(x, r) = G(x) ◦ r, where |x| = n1 and |r| = n− n1.
It is easy to see that if G is a condEP-PRG, then G′ is also a condEP-PRG. For every
x ∈ {0, 1}n that is in the range of G′, if we take ϵ to be a small enough constant, we
have NC1-Kt(x) ≤ n−Θ(log n). Since G′ is pseudorandom, NC1-Kt is hard on average to
approximate.

(1) =⇒ (8): The same argument as in (1) =⇒ (6) also works for L-Kt. ◀

4.4 Zero-Error Average-Case Reductions
Our techniques actually imply reductions among MKTP, NC1-MINKT, and L-MINKT. A
closer look at these reductions reveals that they are not only two-sided error average-case
reductions, but also zero-error ones! This allows us to prove new relations between the
zero-error average-case complexity of variants of MINKT and MKTP.

The standard definition of an average-case complexity class, such as AvgZPP, is a class of
pairs (L,D) where L is a language, and D is a distribution ensemble over inputs. (See, e.g.,
[12, Chapter 18].) In this section, we only deal with the uniform distribution as the input
distribution. Therefore, for simplicity, we define AvgZPP as a class of languages rather than
(language, distribution) pairs.

H. Ren and R. Santhanam 35:27

▶ Definition 43. Let L be a language and δ > 0 be a constant. We say L ∈ AvgδZPP
if there is a zero-error PPT heuristic H, such that the following are true: (To emphasize
that H is a randomized heuristic, we use H(x; r) to denote the output of H on input x and
randomness r.)

For every input x ∈ {0, 1}⋆ and r ∈ {0, 1}poly(|x|), H(x; r) ∈ {L(x),⊥}.
For every integer n, Prx←Un,r←Upoly(n) [H(x; r) ̸= ⊥] ≥ δ.

Let AvgΩ(1)ZPP :=
⋃

δ>0 AvgδZPP.

We consider the parameterized versions of MKTP and MINKT in this section. Let
t(n) ≤ poly(n) be a time bound, and s(n) ≤ n be a size parameter. We define MKTP[s] =
{x : KT(x) ≤ s(|x|)}, and MINKt[s] = {x : Kt(|x|)(x) ≤ s(|x|)}. The problems NC1-MINKt[s]
and L-MINKt[s] are defined similarly.

A language L is sparse if for every integer n, Prx←Un
[x ∈ L] ≤ o(1). From Fact 19, for

every unbounded function f(n) = ω(1), MKTP[n − f(n)] and MINKpoly(n)[n − f(n)] are
sparse. In general, to solve a sparse problem L on average, it suffices to design a heuristic
that distinguishes every instance in L from the random instances. Therefore, the following
notion of reductions will be convenient for studying the zero-error average-case complexity of
sparse problems:

▶ Definition 44. Let L1, L2 be two problems. We say there is a one-sided mapping reduction
from L1 to L2, if there are polynomials p(·), m(·), and a randomized polynomial-time mapping
Red : {0, 1}n × {0, 1}p(n) → {0, 1}m(n), such that the following holds.

For every x ∈ L1 ∩ {0, 1}n and r ∈ {0, 1}p(n), it holds that Red(x; r) ∈ L2.
The distribution of Red(Un;Up(n)) is equal to Um(n).

▶ Remark 45. Here we require that the reduction maps the uniform distribution to the
uniform distribution exactly. In some cases, this requirement is too strong, and we only need
that Um(n) dominates Red(Un;Up(n)). (See [12, Definition 18.6].) Nevertheless, thanks to the
perfect randomized encodings [11], we are able to design reductions as strong as Definition 44.

In short, a one-sided mapping reduction (among sparse problems) maps a Yes instance to
a Yes instance, and maps a random instance to a random instance. It is easy to see that
such reductions preserve the property of being in AvgΩ(1)ZPP.

▶ Fact 46. Let L1, L2 be two sparse problems. Suppose that there is a one-sided mapping
reduction Red from L1 to L2. If there is a constant δ2 > 0 such that L2 ∈ Avgδ2

ZPP, then
there is a constant δ1 > 0 such that L1 ∈ Avgδ1ZPP.

For every s1(n) ≤ s2(n), there is a one-sided mapping reduction from MKTP[s1(n)]
to MKTP[s2(n)]. (The identity mapping is a valid reduction [43].) Similarly, for every
s1, t1, s2, t2 such that an alternating machine of description length s1 and (alternating) time
log t1 can be compiled into a deterministic machine of description length s2 and space log t2,
there is a one-sided mapping reduction from NC1-MINKt1 [s1] to L-MINKt2 [s2]. (Again, the
identity mapping is a valid reduction.)

Now we present a one-sided mapping reduction from L-MINKT to MKTP. Actually, the
reduction we present is from L-MINKT to MINKt′

, where t′(n) = λ log n for some absolute
constant λ > 0.

▶ Theorem 47. For every polynomial t(·) and integer c > 0, there is a constant c′ >

0 such that there is a one-sided mapping reduction Red from L-MINKt[n − c′ log n] to
MINKt′

[n− c log n].

CCC 2021

35:28 Hardness of KT Characterizes Parallel Cryptography

Proof. For convenience, denote s(n) := n − c′ log n. Let x ∈ {0, 1}n be an input to
L-MINKt[s].

The reduction is simple. It fixes N := poly(t(n)), and reduces a length-n input to a
length-Ñ input, where Ñ := n · ℓDCMD(N). For every bit xi (1 ≤ i ≤ n), it samples a
uniformly random string si ∈ {0, 1}ℓDCMD(N), conditioned on that DCMD(si) = xi. Finally,
it outputs the concatenation of s1, s2, . . . , sn.

Since DCMD is balanced (Corollary 29), the reduction maps a random instance to a
random instance. Now it remains to show that it maps a Yes instance to a Yes instance.

Suppose x is a Yes instance. Denote Red(x; r) := s1 ◦ s2 ◦ · · · ◦ sn, where r is the random
coins that our reduction uses. For t′(n) = λ log n, we want to prove that Kt′(Red(x; r)) ≤
Ñ − c log Ñ .

Let U be the universal Turing machine we consider, then there is a description d of length
at most s(n), such that for every 1 ≤ i ≤ n + 1 and every b ∈ {0, 1, ⋆}, Ud(i, b) accepts in
space log t(n) if and only if xi = b. Since CMD is L-hard under projections (Theorem 30),
for N = poly(t(n)), there is a DLOGTIME-computable projection

px : {0, 1}s(n) × [n + 1]× {0, 1, ⋆} → {0, 1}ℓCMD(N),

such that for every 1 ≤ i ≤ n + 1 and b ∈ {0, 1, ⋆}, xi = b if and only if CMD(px(d, i, b)) = 1.
The description of Red(x; r) contains the string d, and n strings s′1, s′2, . . . , s′n of length

ℓDCMD(N) − 1 each. Let PCMD be the DLOGTIME-computable projection in Theorem 28.
The string s′i is chosen such that PCMD(px(d, i, 1), s′i) = si. (Note that CMD(px(d, i, 1)) =
DCMD(si), so each s′i exists and is unique.)

Let 1 ≤ i ≤ |Red(x; r)|. To compute the i-th bit of Red(x; r), we first “locate” i by
computing k := ⌊ i−1

ℓDCMD(N)⌋+ 1, and j := i− ℓDCMD(N)(k−1). Now, the i-th bit of Red(x; r)
is the j-th bit of sk. We can simply calculate the j-th bit of PCMD(p(d, i, 1), s′i), which takes
λ log Ñ time for some absolute constant λ > 0.

It follows that whenever L-Kt(x) ≤ n− c′ log n, regardless of the random bits r we choose,
there is a description that allows us to quickly retrieve each bit of Red(x; r). Moreover, the
description has length n− c′ log n + n(ℓDCMD(N)− 1) = Ñ − c′ log n. If the constant c′ is
big enough compared with c, then Red(x; r) is a Yes instance of MINKt′

[Ñ − c log Ñ]. ◀

Note that for c > λ, MINKt′
[n − c log n] reduces to MKTP[n − (c − λ) log n] via the

identity mapping. (See the proof of Theorem 48.) Therefore, Theorem 47 shows a one-sided
mapping reduction from some version of MINKT to some version of MKTP. To the best of
our knowledge, this reduction is the first result of its kind.

Moreover, Theorem 47 demonstrates the robustness of meta-complexity w.r.t. the zero-
error average-case complexity. In particular:

▶ Theorem 48. Let t(·) be a fixed polynomial such that t(n) > 2n. The following are
equivalent:
1. There is a constant c > 0 such that NC1-MINKt[n− c log n] ∈ AvgΩ(1)ZPP.
2. There is a constant c > 0 such that L-MINKt[n− c log n] ∈ AvgΩ(1)ZPP.
3. There is a constant c > 0 such that MINKt′

[n − c log n] ∈ AvgΩ(1)ZPP, where t′(n) =
λ log n is defined above.

Moreover, the above items are implied by the following items:
4. There is a constant c > 0 such that MKTP[n− c log n] ∈ AvgΩ(1)ZPP.

H. Ren and R. Santhanam 35:29

Proof. (4) =⇒ (3): It suffices to show that for every c > 0, the identity mapping
reduces MINKt′

[n− c′ log n] to MKTP[n− c log n], where c′ = c + λ. Let x ∈ MINKt′
[n−

c′ log n] ∩ {0, 1}n, and d be a description of length n − c′ log n witnessing the fact that
Kt′(x) ≤ n − c′ log n. Since (d, t′(n)) is also a witness that KT(x) ≤ n − c log n. we have
x ∈ NC1-MKTP[n− c log n].

(3) =⇒ (2): By Theorem 47 and Fact 46.
(3) =⇒ (1): Note that the only property of L used in the proof of Theorem 47 is that

CMD is hard for L. (In other words, L ⊆ ⊕L.) As CMD is also hard for NC1, the proof of
Theorem 47 is also true for L-MINKT replaced by NC1-MINKT.

(2) =⇒ (3): Every machine that runs in t′(n) time also runs in t′(n) space. Therefore,
for every c > 0, the identity mapping reduces MINKt′

[n− c′ log n] to L-MINKt1 [n− c log n],
where t1(n) = 2O(t′(n)). We can use a padding trick [62, Theorem 5.6] to reduce L-MINKt1

to L-MINKt.
(1) =⇒ (3): The same argument as (2) =⇒ (3) also works for NC1-Kt. ◀

5 Tighter Connections between Meta-Complexity and One-Way
Functions

In this section, we present a tighter connection between the hardness of MINKT (or MKTP)
and the maximum security of weak one-way functions. We first define the security of weak
one-way functions.

▶ Definition 49. Let f : {0, 1}n → {0, 1}n be a function. We say f is a weak one-way
function with security S(n), if there is a polynomial p(·) such that for every circuit C of size
S(n),

Pr
x←Un

[C(f(x)) ∈ f−1(f(x))] ≤ 1− 1
p(n) .

Our main results are as follows.

▶ Theorem 50. Let S(n) be any monotone function such that S(n + O(log2 n)) ≤ S(n) ·
nO(log n). The following are equivalent:
(a) There is a weak one-way function with security S(n) · nΘ(log n).
(b) There are polynomials p, t such that the search version of Kt requires S(n) · nΘ(log n) size

to compute on a 1− 1/p(n) fraction of inputs.
(c) For every constant λ > 0, there are polynomials p, t, such that Kt requires S(n) ·nΘ(log n)

size to (λ log n)-approximate on a 1− 1/p(n) fraction of inputs.

▶ Theorem 51. Suppose there is a weak one-way function f with security 2Ω(n) computable
in DLOGTIME. Then there is a polynomial p such that KT requires 2Ω(n) size to compute on
a 1− 1/p(n) fraction of inputs.
▶ Remark 52. A few remarks are in order.

In this section, we only consider non-uniform adversaries. The reason is that we will
use Impagliazzo’s hardcore lemma (Lemma 84) in the proof of Theorem 57, which only
works for non-uniform adversaries. We remark that there are hardcore lemmas that
also work for uniform adversaries: if there is no time-t′ algorithm that inverts a weak
one-way function on a 1− o(1) fraction of inputs, then there is no time-t algorithm that
non-trivially inverts every hardcore of the same one-way function. However, we do not
know whether the dependence of t′ on t is tight. Theorem 4.5 of [86] achieves t′ = poly(t),
but we need t′ = t · polylog(t). We leave this issue for future work.

CCC 2021

35:30 Hardness of KT Characterizes Parallel Cryptography

Our equivalence only holds for weak one-way functions. Indeed, it is an open problem
whether the existence of exponentially-hard weak one-way functions is equivalent to the
existence of exponentially-hard strong one-way functions [31]. Yao’s hardness amplification
theorem (Theorem 23) blows up the input length by a polynomial factor, therefore given a
2Ω(n)-hard weak one-way function, it only produces a 2nΩ(1) -hard strong one-way function.
Our result for KT (Theorem 51) is weaker than our result for Kt. In particular, suppose
the one-way function has security 2αn, we can only show that KT requires 2βn size on
average, for some constant β that is much smaller than α.
The best seed length of known explicit extractors that extract all min-entropy is O(log2 n)
[36]. This is why we see an nΘ(log n) factor in Theorem 50.

We rely on the construction of condEP-PRGs from weak one-way functions in [93, 62],
thus we structure this section as follows. In Section 5.1, we define extractors and hardcore
functions, which are technical building blocks of the construction. In Section 5.2, we describe
the construction in [93, 62]. (The correctness of this construction is proved in Appendix A.)
The proofs of Theorem 50 and 51 appear in Section 5.3 and 5.4 respectively.

5.1 Technical Building Blocks
5.1.1 Extractors
▶ Definition 53. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ϵ)-extractor if for
every random variable X over {0, 1}n such that H∞(X) ≥ k, the statistical distance between
Ext(X,Ud) and Um is at most ϵ.

Moreover, Ext is a strong (k, ϵ)-extractor if for every random variable X as above, the
statistical distance between Ext(X,Ud) and Um is at most ϵ, even conditioned on the seed.
That is, the statistical distance between the following two distributions is at most ϵ:

D1 := (r ◦ Ext(x, r) | r← Ud, x← X), and D2 := Ud+m.

5.1.2 Hardcore Functions
▶ Definition 54. Let ϵ = ϵ(n) > 0, L = L(n) ≤ poly(n), HC : {0, 1}n × {0, 1}d → {0, 1}m be
a function, and R be a probabilistic oracle algorithm. We say HC is a hardcore function with
reconstruction algorithm R, distinguishing probability ϵ, and list size L, if the following holds.

On every oracle O, RO outputs a list of L strings of length n.
For every string x and every oracle O that ϵ-distinguishes Ud ◦ HC(x,Ud) from Ud+m, x

is in the list output by RO w.p. ≥ 1/2.

Our definition of hardcore functions indeed implies the standard definition in [32]:

▶ Fact 55. Let HC : {0, 1}n × {0, 1}d → {0, 1}m be a hardcore function with a poly(n)-time
reconstruction algorithm, distinguishing probability ϵ = 1/poly(n), and list size L ≤ poly(n).

Let f be any one-way function, x← Un, and r← Ud. No polynomial-size adversary can
2ϵ-distinguish the distribution f(x) ◦ r ◦ HC(x, r) from the distribution f(x) ◦ r ◦ Um.

Proof. Let A be an adversary of size poly(n) that 2ϵ-distinguishes the distribution f(x) ◦ r ◦
HC(x, r) from f(x) ◦ r ◦ Um. Say x ∈ {0, 1}n is good if A can ϵ-distinguish f(x) ◦ r ◦HC(x, r)
from f(x) ◦ r ◦ Um. Then by a Markov bound, at least an ϵ fraction of inputs x are good.
We will use A to invert f(x) on every good input x in probabilistic polynomial time. Our
inversion algorithm will have success probability 1/2 on a good x; as (ϵ/2) > 1/poly(n), this
contradicts the one-wayness of f .

H. Ren and R. Santhanam 35:31

On input y = f(x), where x is good, define the oracle

O(z) := A(y, z).

Then O can ϵ-distinguish Ud ◦ HC(x,Ud) from Ud+m. The reconstruction algorithm RO

outputs a list of size poly(n) which contains x. We could easily find any element x′ in this
list such that f(x′) = y, and output x′. With probability 1/2 over the internal randomness
of R, we invert y successfully. ◀

5.2 CondEP-PRGs from Weak One-Way Functions
In this section, we present the following construction from weak one-way functions to
condEP-PRGs.

▶ Construction 56 ([93, 62]). Let 0 < ϵ < 1
10n2 be the desired security parameter of the

condEP-PRG (i.e., it should be O(ϵ)-indistinguishable from uniformly random strings).
Let δ > 0, and f be a weak one-way function that is hard to invert on a (1− δ) fraction
of inputs. Let α > 0 be the desired stretch of our condEP-PRG. Suppose we have the
following objects:

For every k, a strong (k, ϵ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with optimal
output length, where d := dExt(n, ϵ) and m := k − 2 log(1/ϵ)−O(1). We write the
extractor as Ext(k) if we need to emphasize the min-entropy parameter k.
For kHC := α + log(n/δ) + 4 log(1/ϵ) + O(1), a hardcore function HC : {0, 1}n ×
{0, 1}d′ → {0, 1}kHC with poly(n/ϵ)-time reconstruction algorithm R, distinguishing
probability ϵ, and list size L ≤ poly(n/ϵ), where d′ := dHC(n, kHC, ϵ).

Let Gn,r : {0, 1}n × {0, 1}d × {0, 1}d × {0, 1}d′ → {0, 1}n+2d+d′+α be the following
construction:

Gn,r(x, z1, z2, z3) := z1◦Ext(r−1)(x, z1)◦z2◦Ext(⌊n−r−log(2n/δ)⌋)(f(x), z2)◦z3◦HC(x, z3).

▶ Theorem 57. Let ϵ, δ, α, f be defined as in Construction 56. If ϵ ≥ 1/poly(n) and
L ≤ poly(n), then there is a function r : N→ N such that G = {Gn,r(n)}n∈N is a condEP-
PRG with stretch α and security 4ϵ.

More precisely, let ñ = n + 2d + d′. Suppose that for every subset D ⊆ {0, 1}ñ such that
H(G(D)) ≥ ñ− Ω(log(n

δϵ)) and every k, there is an adversary of size s that 4ϵ-distinguishes
Gn,k(D) from the uniform random distribution. Then there is an adversary of size s ·
poly(nL/ϵ) that inverts f on a 1− δ fraction of inputs.

The proof basically follows from [62], and we present a self-contained proof in Appendix A.
However, there are two major differences between our proof and the proof in [62]:

We replace the extractors and hardcore functions with better constructions. In particular,
our extractors and hardcore functions in Section 5.3 requires only O(log2 n) random bits.
More importantly, in the very beginning, we need to transform the weak one-way function
into a strong one. [62] uses hardness amplification (Theorem 23) to implement this
step. However, Theorem 23 does not preserve exponential security, therefore we use
Impagliazzo’s hardcore lemma [49] instead. We only obtain a strong one-way function on
a “hardcore” distribution of inputs (instead of the uniform distribution), but this already
suffices for our purpose.

CCC 2021

35:32 Hardness of KT Characterizes Parallel Cryptography

5.2.1 Warm-Up: Proof of Theorem 25
Theorem 57 immediately implies Theorem 25.

▶ Theorem 25 ([62]). There is a function EP-PRG computable in ALOGTIME, such that the
following holds. For any one-way function f : {0, 1}⋆ → {0, 1}⋆ and any constant γ > 0, let
G(x, z) = EP-PRG(γ, x, f(x), z), then G is a condEP-PRG with stretch γ log n and security
1/nγ .

We first introduce the (very simple) extractors and hardcore functions used in [93, 62].

The extractors are derived from the leftover hash lemma [38]. (See also [85, Theorem
6.18].) Let h : {0, 1}n × {0, 1}d → {0, 1}m be a pairwise independent family of hash
functions, where d = O(n + m), then for every k, ϵ such that m = k− 2 log(1/ϵ), h is also
a strong (k, ϵ)-extractor.
We instantiate the pairwise independent hash family by Toeplitz matrices.15 More
precisely, our keys will have length d := n + m − 1, and every key ∈ {0, 1}n+m−1

corresponds to a Toeplitz matrix. For every 1 ≤ i ≤ m and every input x ∈ {0, 1}n, the
i-th output of H(x, key) is the inner product of x and keyi∼(i+n−1) (the substring of key

from the i-th bit to the (i + n− 1)-th bit) in GF(2). In other words, Ext(x, key) is the
concatenation of ⟨x, keyi∼(i+n−1)⟩ for each i, where ⟨·, ·⟩ denotes inner product.
Let GL : {0, 1}n × {0, 1}d → {0, 1}k be the Goldreich-Levin hardcore function.
In [32], GL is defined in terms of Toeplitz matrices (again). Let d := n + k − 1. For
every x ∈ {0, 1}n, r ∈ {0, 1}d and 1 ≤ i ≤ k, the i-th output bit of GL(x, r) is the inner
product of x and ri∼(i+n−1) in GF(2). Also, it is shown in [32] that for every ϵ > 0, GL
is a hardcore function with distinguishing probability ϵ and list size poly(n · 2k/ϵ).

Proof Sketch of Theorem 25. We can plug the parameters ϵ := 1
4nγ , α := γ log n, δ := 1/2

into Theorem 57. The list size of GL is L ≤ poly(n). Theorem 57 gives us a function
r : N→ N such that {Gn,r(n)} is a condEP-PRG with stretch γ log n and security 1/nγ . We
can easily construct a uniform condEP-PRG with essentially the same stretch and security:
We parse the input as an integer r ≤ n, a string x of length n, and some garbage w. Then
we output Gn,r(x) ◦ w.

Now we implement EP-PRG in alternating time c log n, for some absolute constant c > 0
independent of γ. On input (γ, x, f(x), z, i), we want to compute the i-th output bit of our
condEP-PRG. This bit is either equal to some input bit, or the inner product of two length-n
sub-strings of the input. It is easy to implement either case in alternating O(log n) time. ◀

5.3 Proof of Theorem 50
To prove Theorem 50, we replace the leftover hash lemma and GL by extractors and hardcore
functions with very short seed length:

▶ Theorem 58 ([36, Theorem 5.14]). Let dExt(n, ϵ) := O(log n · log(n/ϵ)), then for every
1 ≤ k ≤ n and ϵ > 0, there is a strong (k, ϵ)-extractor Ext : {0, 1}n×{0, 1}dExt(n,ϵ) → {0, 1}m,
where m = k − 2 log(1/ϵ)−O(1) is optimal.

15 An n × m matrix M is Toeplitz if Mi,j = Mi+1,j+1 holds for every 1 ≤ i < n, 1 ≤ j < m. We can
represent a Toeplitz matrix by n + m − 1 elements, namely the elements in the first row and the first
column.

H. Ren and R. Santhanam 35:33

We observe that the “k-wise direct product generator” used in [42, 41] is a good hardcore
function:

▶ Theorem 59. Let dHC(n, k, ϵ) := O(k log(n/ϵ)), then there is a hardcore function HC :
{0, 1}n × {0, 1}dHC(n,k,ϵ) → {0, 1}k with a poly(n2k/ϵ)-time reconstruction algorithm R,
distinguishing probability ϵ, and list size L ≤ 2k · poly(k/ϵ).

Proof Sketch. Consider the function DP : {0, 1}n × {0, 1}d → {0, 1}d+k defined in [41,
Theorem 7.1]. The first d bits of DP(x, z) is always equal to z, and we let HC(x, z) be the
remaining k bits of DP(x, z).

In [41], the reconstruction algorithm is stated as RO : {0, 1}a × {0, 1}r → {0, 1}n. Here,
a ≤ k + O(log(k/ϵ)) is the “advice complexity” of DP, the first a input bits correspond to
the advice, and the remaining r = poly(n/ϵ) input bits are random coins used by R. For
every x ∈ {0, 1}n and every oracle O that ϵ-distinguishes DP(x,Ud) from Ud+k, we have

Pr
w←Ur

[∃α ∈ {0, 1}a, RO(α, w) = x] ≥ 3/4.

Our reconstruction algorithm simply samples a random w← Ur, and outputs RO(α, w)
for every α ∈ {0, 1}a. It follows that the list size is L(n, k, ϵ) ≤ 2a ≤ 2kpoly(k/ϵ). ◀

Now we use Construction 56 to prove Theorem 50.

▶ Theorem 50. Let S(n) be any monotone function such that S(n + O(log2 n)) ≤ S(n) ·
nO(log n). The following are equivalent:
(a) There is a weak one-way function with security S(n) · nΘ(log n).
(b) There are polynomials p, t such that the search version of Kt requires S(n) · nΘ(log n) size

to compute on a 1− 1/p(n) fraction of inputs.
(c) For every constant λ > 0, there are polynomials p, t, such that Kt requires S(n) ·nΘ(log n)

size to (λ log n)-approximate on a 1− 1/p(n) fraction of inputs.

Proof Sketch. (c) =⇒ (b) is trivial.
(b) =⇒ (a): Suppose that the search version of Kt requires S(n) ·nΘ(log n) size to solve on

a 1/p(n) fraction of inputs, where p is a polynomial. The construction in [62, Section 4] shows
that there is a weak one-way function f , such that every adversary of size S(n) · nΘ(log n)

only inverts an 1− 1/q(n) fraction of inputs, where q(n) := O(n · p(n)2).
(a) =⇒ (c): Suppose there is a constant λ > 0 such that, for every polynomial p, there

is an algorithm of size S(n) · nΘ(log n) that approximates Kt on a 1 − 1/p(n) fraction of
inputs, within an additive error of λ log n. Let f be a candidate weak one-way function,
δ := 1/q(n) for any polynomial q, and ϵ := 1/n2. Let α := (λ + C) log n be the stretch of
the condEP-PRG we construct, where C is a large absolute constant. Let r : N → N be
any function. Consider the function Gn,r(n) in Construction 56, where the input length of
Gn,r(n) is

ñ := n + 2dExt(n, ϵ) + dHC(n, O(log(n/(δϵ))), ϵ) = n + O(log2 n).

Suppose G runs in t(ñ) time, then every output y of G satisfies Kt(|y|)(y) ≤ ñ−(λ+2) log ñ.
Consider any sequence of subsets E = {En ⊆ {0, 1}n} such that H(Gn,r(n)(En)) ≥

ñ− Ω(log n). The same argument as in Lemma 39 shows that there is an adversary of size

S(ñ) · ñΘ(log ñ) ≤ S(n) · nΘ(log n)

that 4ϵ-distinguishes Gn,r(n)(En) from the uniform distribution. It follows that there is an
adversary of size S(n) · nΘ(log n) that inverts f on a 1− δ fraction of inputs. Therefore, there
is no weak one-way function with hardness S(n) · nΘ(log n). ◀

CCC 2021

35:34 Hardness of KT Characterizes Parallel Cryptography

5.4 Proof of Theorem 51
To prove Theorem 51, we need a family of universal hash functions that admit very efficient
randomized encodings, constructed in [56, 10]. In [10], it was also proved that such hash
functions are good extractors (by the leftover hash lemma) and hardcore functions (based on
previous works [44, 15]).

In the construction of [11], for a (Boolean) function computable by a parity branching
program of size S, its randomized encoding needs at least Ω(S2) additional random input
bits. Even worse, if such a function has m output bits, the randomized encoding requires
Ω(mS2) random input bits. However, to prove Theorem 51, we need to preserve exponential
hardness of our one-way function, which means our extractors and hardcore functions can
only have O(n) random input bits. This is exactly what [10] does. In particular, for a “skew”
circuit C of size S and possibly many outputs, the randomized encoding of C in [10] only
requires O(S) additional random inputs. Such circuits of linear size can already compute
many powerful objects, e.g. universal hash functions [56].

5.4.1 Randomized Encodings for Skew Circuits
We introduce the randomized encodings in [10] in more detail.

We consider circuits that consist of AND and XOR gates of fan-in 2, with multiple
output gates. Let C be such a circuit, X be a subset of input variables. (For example, let
C : {0, 1}n × {0, 1}d → {0, 1}m, we may think of X as the last d input variables.) We say
C is skew with respect to X, if every AND gate in C has at least one child labeled by a
constant or a variable in X. In particular, this implies that if we substitute the variables in
X by (arbitrary) constants, the function that C computes is a linear function on variables
not in X – each output bit is simply the XOR of a subset of these variables.

Let C : {0, 1}n × {0, 1}d → {0, 1}d+m be a skew circuit w.r.t. the last d inputs, such that
the first d outputs of C is always equal to the last d inputs of C.16 Let s be the number of
internal (i.e. non-input, non-output) gates of C. The randomized encoding of C, denoted as
C̃, is a function C̃ : {0, 1}n × {0, 1}d+s → {0, 1}d+m+s defined as follows:

The inputs of C̃ are x ∈ {0, 1}n, w ∈ {0, 1}d, and r ∈ {0, 1}s.
For each (input, internal, or output) gate g ∈ C, we associate a bit r(g) with it. Each
input gate is associated with its input value (i.e. r(g) = xi or wi), the i-th internal gate
is associated with r(g) = ri, and every output gate is associated with r(g) = 0.
The first d outputs of C̃ are simply w. The remaining m + s outputs correspond to
the internal gates and output gates of C. Let the i-th such gate be gi = gj▽gk (where
▽ ∈ {AND, XOR}), then the i-th output is r(gi) XOR (r(gj)▽r(gk)).

5.4.2 Highly-Uniform Linear-Size Hash Functions
As we are dealing with KT complexity, we will need the randomized encoding to be computable
in DLOGTIME. Therefore, our skew circuits need to be very uniform. We state our definition
of uniform skew circuits as follows; it is easy to see that if a family of skew circuits {Cn} is
uniform, then their randomized encodings can indeed be computed in DLOGTIME.

16 That is, we pad the last d inputs at the beginning of our outputs, and the remaining m output bits are
the “real” outputs of C. This is a technical restriction on C to ensure its randomized encoding exists.

H. Ren and R. Santhanam 35:35

▶ Definition 60 (Uniform Skew Circuits). Let C = {Cn : {0, 1}n × {0, 1}d(n) → {0, 1}s(n)} be
a family of skew circuits, where d(n) and s(n) are computable in time O(log n). Moreover,
assume that the fan-out of every gate is at most 2, and the last s(n) gates (i.e., gates with
the largest indices) are output gates.

We say that C is a uniform family of skew circuits, if there is an algorithm A with time
complexity linear in its input length, that on inputs n, i (in binary), outputs the information
about the i-th gate in Cn. This includes the gate type (input, AND, or XOR), indices of its
input gates (if they exist), and indices of the (at most 2) gates it feeds to.

▶ Remark 61. It may seem strange that we need to output not only predecessors but also
successors of each gate. The reason is that in [56], we will need to reverse each wire when
we transform an encoding circuit to an “exposure resilient function”. In particular, after
that construction, the predecessors of each gate will become their previous successors. See
Appendix B.4 for details.

We need a family of universal hash functions H = {hn,m : {0, 1}n × {0, 1}k → {0, 1}m}
in [56], where k = O(n + m). This family has the following important property: H can be
computed by a family of linear-size uniform circuits that are skew w.r.t. the second argument
(i.e. the last k bits).

▶ Theorem 62. For every integer n, m where m = O(n), there exists an integer k = O(n),
and a family of universal hash functions {hn,m : {0, 1}n×{0, 1}k → {0, 1}m}, such that hn,m

can be computed by a uniform family of linear-size circuits that are skew w.r.t. the second
argument.

In [56], the authors showed that H can be computed by a family of linear-size skew
circuits, but they did not show that the circuits are uniform. Therefore, we include a proof
sketch of Theorem 62 in Appendix B, with an emphasis on the uniformity of these circuits.

By the leftover hash lemma of [38], {hn,m} is a strong (k, ϵ)-extractor whenever m =
k− 2 log(1/ϵ). It was proved by [15] (based on [44]) that {hn,m} are good hardcore functions:

▶ Lemma 63. For every ϵ > 0, hn,m is a hardcore function with distinguishing probability
ϵ and a reconstruction algorithm of poly(2m · n/ϵ) time. (As a result, the list size is also
poly(2m · n/ϵ).)

5.4.3 Proof of Theorem 51
▶ Theorem 51. Suppose there is a weak one-way function f with security 2Ω(n) computable
in DLOGTIME. Then there is a polynomial p such that KT requires 2Ω(n) size to compute on
a 1− 1/p(n) fraction of inputs.

Proof Sketch. Let δ = 1/poly(n) such that f is hard to invert on a (1 − δ) fraction of
inputs. We plug the hash functions h (which are also extractors and hardcore functions)
into Construction 56, to build a condEP-PRG G : {0, 1}n1 → {0, 1}n1+α with stretch
α := O(log n) and security 4ϵ ≤ 1/n10. Here, since the seed length of h is O(n), we have
n1 = O(n). Moreover, by Theorem 57, the condEP-PRG is 4ϵ-indistinguishable from the
uniform distribution by 2Ω(n)-size adversaries.

As the hash functions admit a uniform family of skew circuits, the following is true:
There is a (uniform) circuit C such that G(x, z) = C(x, f(x), z), and C is a size-O(n) skew
circuit w.r.t. the z argument. We replace C by its randomized encoding to obtain another
condEP-PRG G̃ : {0, 1}n2 → {0, 1}n2+α, which is computable in DLOGTIME. Here, since the
size of C is O(n), we have n2 = O(n). As every output of G̃ has non-trivial KT complexity,
and G̃ is 4ϵ-indistinguishable from the uniform distribution by 2Ω(n)-size adversaries, we can
see that KT is hard on average. ◀

CCC 2021

35:36 Hardness of KT Characterizes Parallel Cryptography

5.5 The Perebor Hypotheses
We mention some Perebor hypotheses as further research directions. Each hypothesis states
that to some extent, “Perebor,” or brute-force search, is unavoidable to solve a certain
meta-complexity problem. In this paper, we only consider the (bounded-error) average-
case complexity of these problems, but similar hypotheses for the worst-case or zero-error
average-case complexity can also be made. We only state these hypotheses against (uniform)
randomized algorithms; the corresponding hypotheses against non-uniform algorithms (i.e.,
circuits) will be called “non-uniform Perebor hypotheses” accordingly.

These hypotheses are inspired by, and parallel to, the “exponential time hypotheses”
for satisfiability [52, 53, 20]. The exponential time hypothesis (ETH) asserts that 3-SAT
requires 2ϵn time to solve, where ϵ > 0 is some absolute constant and n is the number of
variables. The strong exponential time hypothesis (SETH) asserts that for any constant
ϵ > 0, CNF-SAT requires 2(1−ϵ)n time to solve. There is a large body of work on these
two hypotheses and their variants; in particular, SETH has been a central hypothesis in
fine-grained complexity [91].

We believe that the future study of these Perebor hypotheses will bring us more insights
into complexity theory, similar to what the study of ETH and SETH has brought us.

The weak Perebor hypotheses. We introduce the following two hypotheses for Kt and KT:

▶ Hypothesis 64 (Weak Perebor Hypothesis for Kt). There is a polynomial t(n) ≥ 2n and an
absolute constant c ≥ 1 such that the following holds. Every randomized algorithm that runs
in 2n/c time and attempts to solve Kt fails w.p. at least 1/nc over a uniformly random input.

▶ Hypothesis 65 (Weak Perebor Hypothesis for KT). There is an absolute constant c ≥ 1 such
that the following holds. Every randomized algorithm that runs in 2n/c time and attempts to
solve KT fails w.p. at least 1/nc over a uniformly random input.

Theorem 50 shows that the non-uniform version of Hypothesis 64 is equivalent to the
existence of exponentially-hard weak one-way functions (against non-uniform adversaries).
Theorem 51 shows that the non-uniform version of Hypothesis 65 is implied by the existence
of exponentially-hard weak one-way function computable in DLOGTIME (also against non-
uniform adversaries).

The strong Perebor hypotheses. We start with the following hypothesis:

▶ Hypothesis 66 (Strong Perebor Hypothesis for Kt). There are polynomials t(n) ≥ 2n and
p(n), such that for every constant ϵ > 0, every probabilistic algorithm that runs in 2(1−ϵ)n

time and attempts to solve Kt fails w.p. at least 1/p(n) over a uniformly random input.

By Theorem 50, the non-uniform version of Hypothesis 66 is equivalent to the existence
of weak one-way functions with hardness 2(1−o(1))n (against non-uniform adversaries).

However, Building on Hellman [39], Fiat and Naor [27] showed that no such one-way
function exists in the non-uniform RAM model. In particular, for any function f : {0, 1}n →
{0, 1}n, there is an algorithm that runs in 23n/4 time, with random access to an advice tape
of length 23n/4, and inverts f at any point. It is conceivable that a similar attack could also
be implemented in circuits, i.e. every function f could be inverted by a circuit of size 299n/100

in the worst-case. This gives strong evidence that the non-uniform version of Hypothesis 66
is false. To the best of our knowledge, (the uniform version of) Hypothesis 66 seems secure.

H. Ren and R. Santhanam 35:37

Following [16, Section 1.1], if we still want (non-uniform) maximum hardness, we can
consider collections of one-way functions, which corresponds to the conditional (time-bounded)
Kolmogorov complexity.

Fix a universal Turing machine U , let x, y be two strings and t be a time bound. Define
cKt(x | y) as the length of the smallest description d, such that for every 1 ≤ i ≤ |x|+ 1 and
b ∈ {0, 1, ⋆}, Ud,y(i, b) accepts in time t if and only if xi = b. Note that the universal Turing
machine is given random access to y (for free), hence d is a description of x conditioned on y.
We assume that the default input distribution of cKt consists of a random string x and a
random string y, both of input length n. Hence in the hypothesis below, we actually state
that no non-uniform algorithm of 2(1−ϵ)n size can solve cKt on input length 2n.

▶ Hypothesis 67 (Strong Perebor Hypothesis for cKt; Non-uniform Version). There are
polynomials t(n) ≥ 2n and p(n), such that for every constant ϵ > 0, the following holds.
Every non-uniform algorithm of 2(1−ϵ)n size that attempts to solve cKt fails on a 1/p(n)
fraction of inputs.

6 MCSP-Related Results

In this section, we generalize Theorem 1 to the case of MCSP. Throughout this section, we
maintain the convention that our input is the truth table of a function f : {0, 1}n → {0, 1},
and N = 2n is the input length. We use tt to denote an input truth table. Recall that
Size(tt) is the circuit complexity of tt. The size of a circuit is always measured in gates. We
consider circuits over the B2 basis, i.e., a gate can compute any function over its 2 inputs.

▶ Theorem 3 (Informal). The following are true:
If MCSP is exponentially hard on average, then there is a (super-polynomially hard)
one-way function.
If there is an exponentially hard weak one-way function in NC0, then MCSP is (exponen-
tially) hard on average.
Ideally, we would like to prove that MCSP is bounded-error hard on average if and only

if there is a one-way function in DLOGTIME. However, we could only prove weaker results,
since we do not have good understandings of the circuit complexity of a random Boolean
function.

For KT complexity, we know that a random string x of length N is likely to satisfy that
KT(x) ∈ [N −O(log N), N + O(log N)]. That is, N is a good estimate of the KT complexity
of a random string, within additive error η := O(log N). It turns out that the overhead
of [62] is 2O(η), which is polynomial in N .

What about MCSP? For the maximum circuit complexity function, we only know that:

▶ Theorem 68 ([28]). There is a constant c such that the following is true. Let C(n) be
the maximum circuit complexity of any function f : {0, 1}n → {0, 1}, then Clb(n) ≤ C(n) ≤
Cub(n), where

Clb(n) = 2n

n

(
1 + log n

n
− c

n

)
, and Cub(n) = 2n

n

(
1 + 3 log n

n
+ c

n

)
.

Therefore, given a random truth table tt of length N = 2n, we could use any value
between Clb(n) and Cub(n) as an estimate of Size(tt). However, we could only prove that
our additive error is η := (Cub(n)− Clb(n)) ·O(n) = O(2n log n/n).17 The overhead in [62]
would be

17 The extra O(n) factor is because we measure η by bit-complexity instead of gate-complexity, and every
gate in the (maximum) circuit needs O(n) bits to describe.

CCC 2021

35:38 Hardness of KT Characterizes Parallel Cryptography

2O(η) = 2O(N log log N
log N).

Nevertheless, as η = o(N) is non-trivial, we can still achieve non-trivial results for MCSP.

▶ Remark 69. Ilango encountered a similar issue in his search-to-decision reduction for
MFSP (Minimum Formula Size Problem) [46]. The additive error for formula complexity is
η := O(N/ log log N), thus Ilango only managed to show an (average-case) reduction with
time complexity 2O(η) unconditionally.

Comparing [46] and our work, the 2O(η) factor comes from different reasons. Ilango’s
algorithm runs in time poly(t) where t is the number of “near-optimal” formulas for the
input truth table; the current best upper bound of t for a random truth table is 2O(η). In our
paper, we need to sample a uniformly random circuit (w.r.t. some encoding), and let p be
the probability that the truth table of a sampled circuit is equal to a given one; the current
best lower bound of p is 2−N−O(η). (See Section 6.2.) It is an interesting open problem to
improve either estimate.

6.1 Preliminaries

6.1.1 Extreme Hardness Amplification for One-Way Functions

We will construct a one-way function fMCSP based on the assumption that MCSP is exponen-
tially hard on average. However, we are only able to prove that fMCSP is hard to invert on
an inverse-sub-exponential fraction (2−o(N)) of inputs. We will need the following variant of
Theorem 23, that constructs a strong one-way function (of super-polynomial hardness) from
such a one-way function that is “exponentially hard” but also “(sub)exponentially weak”.

▶ Theorem 70. Let p(n) = 2o(n), f be a length-preserving function that is exponentially
hard to invert on a 1/p(n) fraction of inputs. In other words, there is a constant ϵ > 0 such
that for every integer n and every randomized algorithm A that runs in 2ϵn time,

Pr
x←Un

[
A(f(x)) ∈ f−1(f(x))

]
≤ 1− 1/p(n).

Then there exists a one-way function.

Proof Sketch. We verify that the standard proof for Theorem 23 also works in our setting.
We use notations in [30, Theorem 2.3.2]. Let f be a candidate weak one-way function, and
m(n) := n2 · p(n) < 2o(n). By [30, Theorem 2.3.2], we can construct a function g on m(n)
inputs bits, such that the following holds. Given any adversary B that inverts g w.p. 1/q(m),
we can construct an adversary that makes a(n) := 2n2p(n)q(m(n)) calls to B on input length
m(n), and inverts f w.p. 1− 1/p(n).

Suppose that g is not a one-way function. Then there is a polynomial q and an adversary
B that runs in q(m) time and inverts g w.p. 1/q(m). We can invert f w.p. 1− 1/p(n) by an
adversary of time complexity

O(a(n) · q(m(n))) < 2o(n),

contradicting the hardness of f . ◀

H. Ren and R. Santhanam 35:39

6.1.2 Maximum Circuit Complexity
It will be convenient to fix an encoding of circuits into binary strings, so that we can sample
a uniformly random circuit with a certain description length. Fortunately, such an encoding
scheme naturally occurs in the lower bound proofs for the maximum circuit complexity, which
usually use a counting argument [77, 28]: If every circuit of size LB(n) can be encoded as a
string of length 2n − 1, then there must exist an n-bit Boolean function without size-LB(n)
circuits.

In particular, in the lower bound proof of [28], the authors represented a circuit as a
stack program. For a detailed description of stack programs, the reader is referred to [28].
We only need the following property of them:

▶ Theorem 71. There is a constant c such that every size-s circuit on n inputs can be
encoded into a stack program of bit-length (s + 1)(c + log(n + s)).

We also need the fact that given the description of a stack program, we can compute its
truth table (the truth table of the circuit corresponding to it) in polynomial time.

We define

C ′ub(n) := (Cub(n) + 1)(log(n + Cub(n)) + O(1)) ≤ 2n

(
1 + 2 log n

n
+ O(1)

n

)
.

By Theorem 71, every Boolean function over n inputs has a stack program of bit-length
C ′ub(n).

We also need the following theorem, which says that for any Boolean function f on n

input bits, there is a circuit of size roughly 2n/n that computes f simultaneously on multiple
inputs.

▶ Theorem 72 ([83, 84]; see also [88, p. 304]). Let f : {0, 1}n → {0, 1} be any Boolean
function, r be a constant. There is a circuit C of size at most (1 + o(1))2n/n such that for
every x1, x2, . . . , xr ∈ {0, 1}n, C(x1, x2, . . . , xr) = f(x1) ◦ f(x2) ◦ · · · ◦ f(xr).

6.2 One-Way Functions from Hardness of MCSP
In this section, we construct a one-way function assuming MCSP is (exponentially) hard on
average.

▶ Theorem 73. Suppose that MCSP is exponentially hard on average. In particular, there
is a constant ϵ > 0 and a function q(N) = 2o(N), such that for every randomized algorithm
A running in 2ϵN time,

Pr
tt←UN

[A(tt) = Size(tt)] ≤ 1− 1/q(N).

Then there exists a one-way function.

Proof. By Theorem 70, it suffices to construct a length-preserving function f that satisfies
the following one-wayness property: There is a function p(Ñ) = 2o(Ñ), such that for every
integer Ñ and every randomized algorithm A that runs in 2ϵÑ/10 time,

Pr
x←UÑ

[A(f(x)) ∈ f−1(f(x))] ≤ 1− 1/p(Ñ). (3)

Let Ñ be the input length of f , n be the largest integer such that n + C ′ub(n) ≤ Ñ .
(Recall that every Boolean function over n inputs can be represented by a circuit, or stack
program, of bit-length C ′ub(n).) The first n bits of the input denote an integer s ≤ Cub(n),

CCC 2021

35:40 Hardness of KT Characterizes Parallel Cryptography

and the next C ′ub(n) bits denote a circuit C of size at most s. If the input is invalid (e.g., if
s > Cub(n) or the size of C is strictly larger than s), our function outputs ⊥. Otherwise it
outputs s and tt(C), where tt(C) is the length-2n truth table of C. In other words, our weak
one-way function is defined as follows:

f(s, C) = s ◦ tt(C).

Let Aowf be any candidate adversary that tries to invert f . We will construct an algorithm
AMCSP based on Aowf as in Algorithm 3. In particular, AMCSP attempts to solve MCSP
on truth tables of length N := 2n, using Aowf that attempts to invert f on input length Ñ .
For large enough n, we have Ñ ≤ 2N , thus if Aowf runs in 2ϵÑ/10 time, then AMCSP runs in
2ϵN time. Then, by the hardness of MCSP, AMCSP does not compute the circuit complexity
correctly on a significant fraction of truth tables. Based on that, we can show that Aowf
satisfies Equation (3).

Algorithm 3 Bounded-Error Heuristic AMCSP for MCSP from Inverter Aowf for f .

1: function AMCSP(tt)
2: opt← +∞
3: for s ∈ [Cub(n)] do
4: (s′, C)← Aowf(s, tt)
5: if tt(C) = tt then
6: opt← min{opt, |C|}
7: return opt

Let Err be the set of truth tables tt ∈ {0, 1}N on which AMCSP fails to output the correct
answer w.p. ≥ 1/2q(N). By the hardness of MCSP and a Markov bound, we have

|Err|/2N ≥ 1− 1− 1/q(N)
1− 1/2q(N) ≥

1
2q(N)− 1 .

We can see that Aowf fails on every input of the form (Size(tt), tt) where tt ∈ Err, also
w.p. ≥ 1/2q(N). Every such input is generated in the OWF experiment w.p. at least
1/2C′

ub(n)+n. That is:

Pr[f(UÑ) = (Size(tt), tt)] ≥ 1/2C′
ub(n)+n.

It follows that

Pr
x←UÑ

[Aowf(f(x)) ̸∈ f−1(f(x))] ≥ (|Err|/2C′
ub(n)+n) · (1/2q(N))

≥ (|Err|/2N+O(N log log N
log N)) · (1/2q(N))

≥ 1
(2q(N)− 1)2q(N)2O(N log log N

log N) .

Let p(Ñ) := (2q(N) − 1)2q(N)2O(N log log N
log N). It is indeed the case that p(Ñ) = 2o(Ñ),

since N = 2n ≥ Ω(Ñ), and q(N) = 2o(N). We can see that every adversary Aowf that runs
in 2ϵÑ/10 time fails to invert a random output of f w.p. ≥ p(Ñ). ◀

6.3 Hardness of MCSP from DLOGTIME One-Way Functions
We establish a weak converse of Theorem 73. We show that if there is an exponentially hard
weak one-way function in DLOGTIME, then MCSP is (also exponentially) hard on average.

H. Ren and R. Santhanam 35:41

▶ Theorem 74. Suppose that there is a weak one-way function f computable in DLOGTIME
with security 2Ω(N). (See Definition 49.) Then, no nonuniform algorithm of size 2o(N) can
solve MCSP on a 1− 2−o(N) fraction of inputs.

Proof. Fix an input length M . Let δ := 1/poly(M), so there is a constant κ1 such that
every adversary of size 2κ1M fails to invert f on a 1 − δ fraction of inputs. We construct
a condEP-PRG G according to Construction 56. The stretch of G is α := κ2M for some
small enough constant κ2 > 0. Its outputs are 4ϵ-indistinguishable from true random strings,
where ϵ := 1/M10. We use the hash functions in Section 5.4 as the extractors and hardcore
functions. Note that the list size of the hardcore function is L := 2O(α). Still, for some
positive constant κ3 = κ1 −O(κ2) > 0, no adversary of size 2κ3M could 4ϵ-distinguish the
outputs of G from random strings.

Let G̃ denote the randomized encoding of G (as in Section 5.4.1). Then, G̃ is a DLOGTIME-
computable condEP-PRG that maps KM input bits to (K + κ2)M input bits, where K is
some absolute constant. W.l.o.g. we may assume that KM is a power of 2 (by padding a
random string to both the input and output of G̃). Again, no adversary of size 2κ3M could
4ϵ-distinguish the outputs of G̃ from random strings. It suffices to prove that the outputs
of G̃, when viewed as truth tables (and padded to length 2KM), have non-trivial circuit
complexity. (As a result, if MCSP can be solved by a size-2o(M) circuit on average, then G̃

is not exponentially secure.)
Now, let N := KM , n := log N , and κ4 := κ2

K , then G̃ is a condEP-PRG that maps N

input bits to (1 + κ4)N input bits. Let ttin ∈ {0, 1}N be an input, ttout ∈ {0, 1}2N be the
string whose first (1 + κ4)N bits are G̃(ttin), and other bits are zero.

▷ Claim 75. Size(ttout) ≤ (1 + o(1))2n/n.

Proof. Let r be a constant such that G̃ is a non-adaptive function that makes r queries
to its input. That is, on input i, G̃(ttin) computes the indices q(i, 1), q(i, 2), . . . , q(i, r),
queries (ttin)q(i,j) for each 1 ≤ j ≤ r, and computes (ttout)i based on these answers. Note
that every DLOGTIME machine making r adaptive queries is equivalent to a DLOGTIME
machine making 2r non-adaptive queries, thus it is without loss of generality to assume G̃ is
non-adaptive.

By Theorem 72, there is a circuit C of size (1 + o(1))2n/n that on input (x1, x2, . . . , xr),
outputs the concatenation of (ttin)x1 , (ttin)x2 , . . . , (ttin)xr . We design a circuit for ttout as
follows.

On input i, if i > (1 + κ4)N , then output 0.
Otherwise we simulate G̃(i) to obtain the indices q(i, j) for every 1 ≤ j ≤ r. This step
takes O(n) time, and thus can be implemented in size poly(n).
Use the circuit C of size (1 + o(1))2n/n to obtain (ttin)q(i,j) for every 1 ≤ j ≤ r.
Finally, we can simulate G̃(i) to obtain (ttout)i. Again, this step can be implemented in
size poly(n).

It follows that the circuit complexity of ttout is at most (1 + o(1))2n/n. ◁

On the other hand, let r ∈ {0, 1}(1+κ4)N be a truly random string. We also append zeros
in the end of r to make it a truth table of length 2N . Denote Size(r) the circuit complexity
of this length-2N truth table. Let κ5 := κ4/10, and s := (1 + κ5)2n/n. By Theorem 71, the
number of strings r such that Size(r) ≤ s is at most

2(s+1)(O(1)+log(n+s)) ≤ 2(1+2κ5)N ≪ 2(1+κ4)N .

CCC 2021

35:42 Hardness of KT Characterizes Parallel Cryptography

It follows that with overwhelming probability, for a random string r ∈ {0, 1}(1+κ4)N ,
Size(r) ≥ (1 + κ5)2n/n. If we can solve MCSP by a nonuniform algorithm of size 2o(N), then
G̃ would not be a secure condEP-PRG. ◀

▶ Remark 76. Theorem 73 and 74 are not exactly converses of each other, as there are two
gaps. First, there is a loss of 2O(N log log N

log N). Second, Theorem 73 only produces a (polynomial-
time computable) one-way function, but Theorem 74 requires a DLOGTIME-computable
one-way function to start with.

The first gap seems unavoidable given current knowledge about the maximum circuit
complexity. However, we believe that the second gap can be eliminated. In particular,
exponential average-case hardness of MCSP should imply a one-way function in DLOGTIME.

If there is a ⊕L heuristic algorithm for evaluating the truth table of a stack program,
then it is indeed true that exponential hardness of MCSP implies a one-way function in
DLOGTIME. Note that this heuristic only needs to succeed on most stack programs.18 For
example, if the circuit that corresponds to a uniformly random description has depth at most
O(log n) with high probability, then a ⊕L heuristic can evaluate the circuit up to a particular
depth, and still be correct on most inputs. We believe that a random stack program should
represent a shallow circuit (w.h.p.), but we are unable to prove it.
▶ Remark 77 (Results for MFSP). It is possible to extend Theorem 73 to the case of MFSP
(Minimum Formula Size Problem). In particular, suppose that MFSP is exponentially hard on
average, then there is a (super-polynomially hard) one-way function. Moreover, we only need
to compute truth tables of formulas to evaluate this one-way function, which is in ALOGTIME
[19], hence this one-way function is in ALOGTIME, and we obtain DLOGTIME-computable
one-way functions from Theorem 32. We omit the proof here, as it is essentially the same as
Theorem 73 except that it uses the best bounds for maximum formula complexity (see [57]
and references therein).

However, we are not aware of any “mass production theorem” (Theorem 72) for formulas.
Therefore we are not able to prove an MFSP-version of Theorem 74.

7 The Average-Case Complexity of MKtP

7.1 Characterizing One-Way Functions Using MKtP
We recall the main result of [62] showing an equivalence between the average-case hardness
of Kp for some polynomial p and the existence of one-way functions.

▶ Theorem 78 ([62]). The following are equivalent:
1. There is a polynomial p such that Kp is bounded-error hard on average.
2. One-way functions exist.
3. For every polynomial p(n) ≥ 2n and constant λ > 0, Kp is bounded-error hard on average

to approximate within an additive factor of λ log n.

Somewhat counter-intuitively, we show that a similar equivalence between the average-
case hardness of Kt and the existence of one-way functions. (Note that Kt is known to be
EXP-hard in the worst case under polynomial-size reductions [4].) The proof is very closely
analogous to the proofs in Section 4, exploiting the fact that “typical” strings of high Kt
complexity can be generated from their optimal descriptions in polynomial time. Hence we
just provide a sketch.

18 If this heuristic is always true (i.e. it is a worst-case algorithm), then ⊕L = P.

H. Ren and R. Santhanam 35:43

▶ Theorem 79. The following are equivalent:
1. Kt is bounded-error hard on average.
2. One-way functions exist.
3. For every constant λ > 0, Kt is bounded-error hard on average to approximate within an

additive factor of λ log n.

Proof Sketch. (3) =⇒ (1) is trivial.
(1) =⇒ (2): the proof closely follows the proof of Theorem 33.
Suppose that there is a constant c such that every PPT algorithm computes Kt complexity

correctly on at most a 1−1/nc fraction of inputs. We observe that for all but a 1/n2c fraction
of inputs x ∈ {0, 1}n, optimal pairs (d, t) such that d + log t = Kt(x) have the property
that t ≤ O(n2c+1). Actually, for all but a 1/n2c fraction of inputs, K(x) ≥ n− 2c log n− 1,
while for all inputs x we have Kt(x) ≤ n + log n + O(1). Hence for all strings x with
K(x) ≥ n− 2c log n− 1, x can be generated from its optimal description in time O(n2c+1).

We define a weak one-way function f as follows. It takes as input a triple (ℓ, k, M), where
ℓ ∈ [n + log n], k ∈ [(2c + 1) log n], and M ∈ {0, 1}n+log n, and outputs (ℓ, k, out). Here out

is the result of running UM ′ for at most 2k steps, where M ′ is the ℓ-bit prefix of M . Just as
in Claim 35, the output distribution of f on a uniformly chosen input “almost dominates”
the uniform distribution. Assume there is an inverter for f , a heuristic algorithm for the
search version of Kt(x) can cycle over all possible ℓ and k, and find the optimal description
of x. As Kt is bounded-error hard on average, our candidate one-way function f is secure.

(2) =⇒ (3): We use Theorem 25 to construct a condEP-PRG G with stretch γ log n

and security 1/nγ from the presumed one-way function. Here, let c be a constant such that
G is computable in time nc, we choose γ = λ + c + 2.

We use an argument closely analogous to that of Lemma 39 to show that Kt is bounded-
error hard on average to approximate within an additive factor of λ log n. The idea is simple:
every output of the condEP-PRG has Kt complexity at most n + c log n + O(1), while a
random string of length n + γ log n is likely to have Kt complexity close to n + γ log n. Hence,
for our choice of parameters, an efficient heuristic algorithm that approximates Kt complexity
within an additive factor of λ log n can distinguish the outputs of G from random. ◀

Theorem 78 and Theorem 79 yield the following corollary.

▶ Corollary 80. Kt is bounded-error hard on average iff there is a polynomial p such that
Kp is bounded-error hard on average.

Corollary 80 gives a new non-trivial connection between meta-complexity problems that
seems hard to argue without using one-way functions as an intermediate notion.

7.2 A Complexity Theoretic Analogue
Theorem 79 shows that the weak average-case hardness of Kt is equivalent to the existence
of cryptographic pseudo-random generators. We next show that for a slightly different
setting of parameters, the average-case hardness of Kt is equivalent to the existence of
complexity-theoretic pseudo-random generators against non-uniform adversaries. Thus
average-case complexity of a single natural problem, namely Kt, can be used to characterize
both cryptographic pseudorandomness and complexity-theoretic pseudorandomness.

Recall that cryptographic PRGs are required to be computable in fixed polynomial time
but to be secure against adversaries that can run within any polynomial time bound. In
contrast, complexity-theoretic PRGs are allowed to use more resources than the adversary.

CCC 2021

35:44 Hardness of KT Characterizes Parallel Cryptography

▶ Definition 81. Given functions t : N→ N, ℓ : N→ N (satisfying ℓ(n) ≤ n for each n) and
s : N→ N, we say that a family of functions {Gn}, where Gn : {0, 1}ℓ(n) → {0, 1}n is a time
t pseudo-random generator (PRG) with seed length ℓ against size s if G(z) is computable in
time t(|z|) and for each n, Gn(Uℓ(n)) is 1/s(n)-indistinguishable from Un by size s(n) circuits.
The PRG is said to be seed-extending if z is a prefix of G(z) for each seed z.

Nisan and Wigderson [69, 13] showed how to base seed-extending complexity-theoretic
PRGs on the hardness of E (exponential-time). The parameters in the following theorem
statement are implicit in their main result.

▶ Theorem 82 ([69, 13]). If DTIME(2npoly(n)) ̸⊆ P/poly, then for each ℓ such that ℓ(n) =
nΩ(1), there is a seed-extending time 2ℓpoly(ℓ) PRG with seed length ℓ against polynomial
size.

We use Theorem 82 to derive an equivalence between the worst-case hardness of Kt,
the existence of complexity-theoretic PRGs with non-trivial seed length, and very mild
average-case hardness of Kt, where the hardness is against non-uniform adversaries. The
idea of the proof is similar to that of [4], who showed that computing Kt complexity is hard
for exponential-time under polynomial-size reductions.

▶ Theorem 83. The following are equivalent:
1. EXP ̸⊆ P/poly.
2. For each ϵ > 0, there is a time 2ℓpoly(ℓ) PRG with seed length nϵ against polynomial

size.
3. There are no polynomial size circuits for Kt.
4. For each ϵ > 0, there is a seed-extending time 2ℓpoly(ℓ) PRG with seed length nϵ against

polynomial size.
5. For any constant δ > 1/2, there are no polynomial size circuits computing Kt on a

1− 1/2δn fraction of inputs.

Proof. (1) ⇐⇒ (3) is shown in [4].
(1) ⇐⇒ (2) is shown in [69, 13].
(5) =⇒ (3) is trivial.
(3) =⇒ (4): We use Theorem 82. Kt can be computed in time O(2npoly(n)), and we

can define a decision version of Kt that is equivalent to the search version and computable in
time 2npoly(n) as follows: For x ∈ {0, 1}n and k ∈ [n + log n], (x, k) is a Yes instance of the
decision version of Kt iff Kt(x) ≤ k. By Theorem 82, the hardness of the decision version
implies that for each ϵ > 0, there is a seed-extending time 2mpoly(m) PRG with seed length
nϵ against polynomial size.

(4) =⇒ (5): Consider a seed-extending 2mpoly(m) time PRG G = {Gn} with seed
length γn, where 1/2 > γ > 1 − δ. Such a PRG is implied by a PRG with smaller seed
length, simply by truncating the output. Since the seed length is γn and the PRG is
computable in time 2γnpoly(n), we have that each output of the PRG has Kt complexity at
most 2γn + O(log n) < n− log n. On the other hand, a uniformly chosen input of length n

has Kt complexity very close to n, with high probability.
Suppose that there are polynomial size circuits {Cn} computing Kt on a 1−1/2δn fraction

of inputs. By our choice of δ, this means that they are correct on at least a 2/3 fraction
of strings Gn(z) for seed z of length γn. Now we can define a distinguisher D as follows:
D computes Cn(x) and accepts iff Cn(x) ≤ n− log(n). D accepts with probability 2/3 on
Gn(z) for uniformly chosen z, but with probability at most 1/3 on x for uniformly chosen x

of length n, since all but a o(1) fraction of strings have Kt(x) > n− log(n) and Cn answers
correctly on all but a o(1) fraction of these strings with high Kt complexity. Therefore D is
a distinguisher of polynomial size, contradicting the assumption that G is a PRG. ◀

H. Ren and R. Santhanam 35:45

8 Open Problems

We conclude this paper with a few open questions.

Perebor hypotheses. How plausible are the Perebor hypotheses in Section 5.5? We believe
it is within reach to refute the non-uniform version of Hypothesis 66, by e.g. implementing
the inverter in [27] as circuits.

It would be exciting to refute the other Strong Perebor Hypotheses. Let t(n) be a
polynomial (say t(n) = 10n for simplicity). Is there a (probabilistic) algorithm running in
2n/nω(1) time that computes Kt in the worst-case? What about the average-case? Does
such algorithm imply new circuit lower bounds, as in the case of SAT algorithms [90] and
learning algorithms [72]? Is there a circuit family of 2n/nω(1) size that computes cKt (on
input length 2n = n + n)?

The Strong Exponential Time Hypothesis is used extensively in fine-grained complexity.
Conditioning on SETH, we can prove many polynomial lower bounds for problems in P
(e.g. the Orthogonal Vectors problem requires n2−o(1) time [89]). Do the Strong Perebor
Hypotheses imply non-trivial conditional lower bounds for natural problems in P?

Random circuits. Due to our limited knowledge about circuit complexity, the relations
presented in Section 6 are not tight. We point out a few questions whose resolution would
tighten the relationship between MCSP and one-way functions.

First, is there an efficiently samplable distribution over circuits, such that for most truth
table tt ∈ {0, 1}N , the probability that the optimal circuit for tt is sampled is at least
2−N /poly(N)? Such a distribution would imply a one-way function from super-polynomial
hardness of MCSP. The trivial solution as presented in Section 6.2 is to sample a uniformly
random circuit according to some encoding. The probability that the optimal circuit is
sampled is 2−N /2O(N log log N

log N).
Second, is there a ⊕L heuristic algorithm for evaluating a random circuit, that succeeds

on most circuits? Of course, this depends on the exact definition of “random” circuits. Such
a heuristic implies a DLOGTIME-computable one-way function from hardness of MCSP,
establishing a tighter converse of Theorem 74.

Last, does the existence of DLOGTIME-computable one-way functions imply the hardness
of MFSP? The main technical difficulty is that we do not have a formula version of
Theorem 72.

Other cryptographic primitives? Meta-complexity can characterize the existence of one-way
functions [62] and one-way functions in NC0 (this paper). Is there a similar characterization for
other cryptographic primitives, such as public-key encryption [75, 25], or indistinguishability
obfuscation [14]?

Is there a meta-complexity characterization of exponentially-hard strong one-way func-
tions? This would bring new insights to the old question of hardness amplification for one-way
functions that preserve exponential security [31].

References
1 Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In Proc.

28th Annual ACM Symposium on Theory of Computing (STOC), pages 99–108, 1996. doi:
10.1145/237814.237838.

2 Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On basing one-way
functions on NP-hardness. In Proc. 38th Annual ACM Symposium on Theory of Computing
(STOC), pages 701–710, 2006. doi:10.1145/1132516.1132614.

CCC 2021

https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/1132516.1132614

35:46 Hardness of KT Characterizes Parallel Cryptography

3 Eric Allender. When worlds collide: Derandomization, lower bounds, and Kolmogorov
complexity. In Proc. 21st Foundations of Software Technology and Theoretical Computer
Science (FSTTCS), volume 2245 of Lecture Notes in Computer Science, pages 1–15, 2001.
doi:10.1007/3-540-45294-X_1.

4 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneburger.
Power from random strings. SIAM Journal of Computing, 35(6):1467–1493, 2006. doi:
10.1137/050628994.

5 Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya Volkovich.
One-way functions and a conditional variant of MKTP. Electronic Colloquium on Computa-
tional Complexity (ECCC), 2021. URL: https://eccc.weizmann.ac.il/report/2021/009/.

6 Eric Allender and Shuichi Hirahara. New insights on the (non-)hardness of circuit minimization
and related problems. ACM Transactions on Computation Theory, 11(4):27:1–27:27, 2019.
doi:10.1145/3349616.

7 Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Construction of
asymptotically good low-rate error-correcting codes through pseudo-random graphs. IEEE
Transactions on Information Theory, 38(2):509–516, 1992. doi:10.1109/18.119713.

8 Benny Applebaum. Cryptography in Constant Parallel Time. Information Security and
Cryptography. Springer, 2014. doi:10.1007/978-3-642-17367-7.

9 Benny Applebaum. Cryptographic hardness of random local functions - survey. Computational
Complexity, 25(3):667–722, 2016.

10 Benny Applebaum. Exponentially-hard Gap-CSP and local PRG via local hardcore functions.
In Proc. 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
836–847, 2017. doi:10.1109/FOCS.2017.82.

11 Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM Journal
of Computing, 36(4):845–888, 2006. doi:10.1137/S0097539705446950.

12 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

13 László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computatioanl Complexity, 3:307–318,
1993. doi:10.1007/BF01275486.

14 Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. Journal of the ACM, 59(2):6:1–
6:48, 2012. doi:10.1145/2160158.2160159.

15 Joshua Baron, Yuval Ishai, and Rafail Ostrovsky. On linear-size pseudorandom generators
and hardcore functions. Theoretical Computer Science, 554:50–63, 2014. doi:10.1016/j.tcs.
2014.06.013.

16 Eli Biham, Yaron J. Goren, and Yuval Ishai. Basing weak public-key cryptography on strong
one-way functions. In Proc. 5th Theory of Cryptography Conference (TCC) , volume 4948 of
Lecture Notes in Computer Science, pages 55–72, 2008. doi:10.1007/978-3-540-78524-8_4.

17 Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for NP problems.
SIAM Journal of Computing, 36(4):1119–1159, 2006. doi:10.1137/S0097539705446974.

18 J. L. Bordewijk. Inter-reciprocity applied to electrical networks. Applied Scientific Research,
Section A, pages 1–74, 1957. doi:10.1007/BF02410413.

19 Samuel R. Buss. The Boolean formula value problem is in ALOGTIME. In Proc. 19th
Annual ACM Symposium on Theory of Computing (STOC), pages 123–131, 1987. doi:
10.1145/28395.28409.

20 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiability
of small depth circuits. In Parameterized and Exact Computation, 4th International Workshop,
(IWPEC) 2009, volume 5917 of Lecture Notes in Computer Science, pages 75–85. Springer,
2009. doi:10.1007/978-3-642-11269-0_6.

https://doi.org/10.1007/3-540-45294-X_1
https://doi.org/10.1137/050628994
https://doi.org/10.1137/050628994
https://eccc.weizmann.ac.il/report/2021/009/
https://doi.org/10.1145/3349616
https://doi.org/10.1109/18.119713
https://doi.org/10.1007/978-3-642-17367-7
https://doi.org/10.1109/FOCS.2017.82
https://doi.org/10.1137/S0097539705446950
https://doi.org/10.1007/BF01275486
https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1016/j.tcs.2014.06.013
https://doi.org/10.1016/j.tcs.2014.06.013
https://doi.org/10.1007/978-3-540-78524-8_4
https://doi.org/10.1137/S0097539705446974
https://doi.org/10.1007/BF02410413
https://doi.org/10.1145/28395.28409
https://doi.org/10.1145/28395.28409
https://doi.org/10.1007/978-3-642-11269-0_6

H. Ren and R. Santhanam 35:47

21 Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai. Exposure-
resilient functions and all-or-nothing transforms. In Advances in Cryptology - EUROCRYPT
2000, International Conference on the Theory and Application of Cryptographic Techniques,
volume 1807 of Lecture Notes in Computer Science, pages 453–469, 2000. doi:10.1007/
3-540-45539-6_33.

22 Lijie Chen, Ce Jin, and R. Ryan Williams. Hardness magnification for all sparse NP languages.
In Proc. 60th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
1240–1255, 2019. doi:10.1109/FOCS.2019.00077.

23 Lijie Chen and Hanlin Ren. Strong average-case lower bounds from non-trivial derandomization.
In Proc. 52nd Annual ACM Symposium on Theory of Computing (STOC), pages 1327–1334,
2020. doi:10.1145/3357713.3384279.

24 Benny Chor, Oded Goldreich, Johan Håstad, Joel Friedman, Steven Rudich, and Roman
Smolensky. The bit extraction problem or t-resilient functions (preliminary version). In Proc.
26th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 396–407,
1985. doi:10.1109/SFCS.1985.55.

25 Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976. doi:10.1109/TIT.1976.1055638.

26 Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. On beating the
hybrid argument. Theory of Computing, 9:809–843, 2013. doi:10.4086/toc.2013.v009a026.

27 Amos Fiat and Moni Naor. Rigorous time/space trade-offs for inverting functions. SIAM
Journal of Computing, 29(3):790–803, 1999. doi:10.1137/S0097539795280512.

28 Gudmund Skovbjerg Frandsen and Peter Bro Miltersen. Reviewing bounds on the circuit
size of the hardest functions. Information Processing Letters, 95(2):354–357, 2005. doi:
10.1016/j.ipl.2005.03.009.

29 Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized superconcentrators. Journal of
Computer and System Sciences, 22(3):407–420, 1981. doi:10.1016/0022-0000(81)90040-4.

30 Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques. Cambridge
University Press, 2001. doi:10.1017/CBO9780511546891.

31 Oded Goldreich, Russell Impagliazzo, Leonid A. Levin, Ramarathnam Venkatesan, and
David Zuckerman. Security preserving amplification of hardness. In Proc. 31st Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 318–326, 1990. doi:
10.1109/FSCS.1990.89550.

32 Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
Proc. 21st Annual ACM Symposium on Theory of Computing (STOC), pages 25–32, 1989.
doi:10.1145/73007.73010.

33 Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum.
Verifying and decoding in constant depth. In Proc. 39th Annual ACM Symposium on Theory
of Computing (STOC), pages 440–449, 2007. doi:10.1145/1250790.1250855.

34 Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina Ko-
lokolova, and Avishay Tal. AC0[p] lower bounds against MCSP via the coin problem. In Proc.
46th International Colloquium on Automata, Languages and Programming (ICALP), volume
132 of LIPIcs, pages 66:1–66:15, 2019. doi:10.4230/LIPIcs.ICALP.2019.66.

35 Venkatesan Guruswami and Piotr Indyk. Expander-based constructions of efficiently decodable
codes. In Proc. 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 658–667, 2001. doi:10.1109/SFCS.2001.959942.

36 Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced expanders and
randomness extractors from Parvaresh-Vardy codes. Journal of the ACM, 56(4):20:1–20:34,
2009. doi:10.1145/1538902.1538904.

37 Iftach Haitner, Omer Reingold, and Salil P. Vadhan. Efficiency improvements in constructing
pseudorandom generators from one-way functions. SIAM Journal of Computing, 42(3):1405–
1430, 2013. doi:10.1137/100814421.

CCC 2021

https://doi.org/10.1007/3-540-45539-6_33
https://doi.org/10.1007/3-540-45539-6_33
https://doi.org/10.1109/FOCS.2019.00077
https://doi.org/10.1145/3357713.3384279
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.4086/toc.2013.v009a026
https://doi.org/10.1137/S0097539795280512
https://doi.org/10.1016/j.ipl.2005.03.009
https://doi.org/10.1016/j.ipl.2005.03.009
https://doi.org/10.1016/0022-0000(81)90040-4
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1109/FSCS.1990.89550
https://doi.org/10.1109/FSCS.1990.89550
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.4230/LIPIcs.ICALP.2019.66
https://doi.org/10.1109/SFCS.2001.959942
https://doi.org/10.1145/1538902.1538904
https://doi.org/10.1137/100814421

35:48 Hardness of KT Characterizes Parallel Cryptography

38 Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal of Computing, 28(4):1364–1396, 1999.
doi:10.1137/S0097539793244708.

39 Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Information
Theory, 26(4):401–406, 1980. doi:10.1109/TIT.1980.1056220.

40 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In Proc.
59th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 247–258,
2018. doi:10.1109/FOCS.2018.00032.

41 Shuichi Hirahara. Characterizing average-case complexity of PH by worst-case meta-complexity.
In Proc. 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
50–60, 2020. doi:10.1109/FOCS46700.2020.00014.

42 Shuichi Hirahara. Unexpected hardness results for Kolmogorov complexity under uniform
reductions. In Proc. 52nd Annual ACM Symposium on Theory of Computing (STOC), pages
1038–1051, 2020. doi:10.1145/3357713.3384251.

43 Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of MCSP and its
variants. In Proc. 32nd Computational Complexity Conference (CCC), volume 79 of LIPIcs,
pages 7:1–7:20, 2017. doi:10.4230/LIPIcs.CCC.2017.7.

44 Thomas Holenstein, Ueli M. Maurer, and Johan Sjödin. Complete classification of bilinear
hard-core functions. In Proc. 24th Annual International Cryptology Conference (CRYPTO),
volume 3152 of Lecture Notes in Computer Science, pages 73–91. Springer, 2004. doi:
10.1007/978-3-540-28628-8_5.

45 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applica-
tions. Bulletin of the American Mathematical Society, pages 439–561, 2006. doi:10.1090/
S0273-0979-06-01126-8.

46 Rahul Ilango. Connecting perebor conjectures: Towards a search to decision reduction for
minimizing formulas. In Proc. 35th Computational Complexity Conference (CCC), volume 169
of LIPIcs, pages 31:1–31:35, 2020. doi:10.4230/LIPIcs.CCC.2020.31.

47 Rahul Ilango. Constant depth formula and partial function versions of MCSP are hard. In
Proc. 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
424–433, 2020. doi:10.1109/FOCS46700.2020.00047.

48 Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. NP-hardness of circuit minimization for
multi-output functions. In Proc. 35th Computational Complexity Conference (CCC), volume
169 of LIPIcs, pages 22:1–22:36, 2020. doi:10.4230/LIPIcs.CCC.2020.22.

49 Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In Proc. 36th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 538–545, 1995.
doi:10.1109/SFCS.1995.492584.

50 Russell Impagliazzo. A personal view of average-case complexity. In Proc. 10th Annual Structure
in Complexity Theory Conference, pages 134–147, 1995. doi:10.1109/SCT.1995.514853.

51 Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP instances
than picking uniformly at random. In Proc. 31st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 812–821, 1990. doi:10.1109/FSCS.1990.89604.

52 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

53 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

54 Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In Proc. 41st Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 294–304, 2000. doi:10.1109/SFCS.2000.
892118.

https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1109/TIT.1980.1056220
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1109/FOCS46700.2020.00014
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.1007/978-3-540-28628-8_5
https://doi.org/10.1007/978-3-540-28628-8_5
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.4230/LIPIcs.CCC.2020.31
https://doi.org/10.1109/FOCS46700.2020.00047
https://doi.org/10.4230/LIPIcs.CCC.2020.22
https://doi.org/10.1109/SFCS.1995.492584
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1109/FSCS.1990.89604
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1109/SFCS.2000.892118
https://doi.org/10.1109/SFCS.2000.892118

H. Ren and R. Santhanam 35:49

55 Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In Proc. 29th International Colloquium on Automata, Languages
and Programming (ICALP), pages 244–256, 2002. doi:10.1007/3-540-45465-9_22.

56 Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with constant
computational overhead. In Proc. 40th Annual ACM Symposium on Theory of Computing
(STOC), pages 433–442, 2008. doi:10.1145/1374376.1374438.

57 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms
and combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.

58 Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In Proc. 32nd Annual
ACM Symposium on Theory of Computing (STOC), pages 73–79, 2000. doi:10.1145/335305.
335314.

59 Ker-I Ko. On the complexity of learning minimum time-bounded Turing machines. SIAM
Journal of Computing, 20(5):962–986, 1991. doi:10.1137/0220059.

60 Leonid A. Levin. Randomness conservation inequalities; information and independence in math-
ematical theories. Information and Control, 61(1):15–37, 1984. doi:10.1016/S0019-9958(84)
80060-1.

61 Leonid A. Levin. The tale of one-way functions. Problems of Information Transmission,
39(1):92–103, 2003.

62 Yanyi Liu and Rafael Pass. On one-way functions and Kolmogorov complexity. In Proc. 61st
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 1243–1254,
2020. doi:10.1109/FOCS46700.2020.00118.

63 Yanyi Liu and Rafael Pass. On the possibility of basing cryptography on EXP ̸= BPP.
Electronic Colloquium on Computational Complexity (ECCC), 28:56, 2021. URL: https:
//eccc.weizmann.ac.il/report/2021/056.

64 G. A. Margulis. Explicit constructions of concentrators. Probl. Peredachi Inf., pages 71–80,
1973.

65 Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak lower bounds on resource-
bounded compression imply strong separations of complexity classes. In Proc. 51st Annual
ACM Symposium on Theory of Computing (STOC), pages 1215–1225, 2019. doi:10.1145/
3313276.3316396.

66 Cody D. Murray and R. Ryan Williams. On the (non) NP-hardness of computing circuit
complexity. Theory of Computing, 13(1):1–22, 2017. doi:10.4086/toc.2017.v013a004.

67 Mikito Nanashima. On basing auxiliary-input cryptography on NP-hardness via nonadaptive
black-box reductions. In Proc. 12th Conference on Innovations in Theoretical Computer Science
(ITCS), volume 185 of LIPIcs, pages 29:1–29:15, 2021. doi:10.4230/LIPIcs.ITCS.2021.29.

68 Noam Nisan. Extracting randomness: How and why. A survey. In Proc. 11th Annual IEEE
Conference on Computational Complexity (CCC), pages 44–58, 1996. doi:10.1109/CCC.1996.
507667.

69 Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, 1994. doi:10.1016/S0022-0000(05)80043-1.

70 Noam Nisan and David Zuckerman. More deterministic simulation in logspace. In Proc.
25th Annual ACM Symposium on Theory of Computing (STOC), pages 235–244, 1993. doi:
10.1145/167088.167162.

71 Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near state-of-
the-art lower bounds. In Proc. 34th Computational Complexity Conference (CCC), volume
137 of LIPIcs, pages 27:1–27:29, 2019. doi:10.4230/LIPIcs.CCC.2019.27.

72 Igor Carboni Oliveira and Rahul Santhanam. Conspiracies between learning algorithms, circuit
lower bounds, and pseudorandomness. In Proc. 32nd Computational Complexity Conference
(CCC), volume 79 of LIPIcs, pages 18:1–18:49, 2017. doi:10.4230/LIPIcs.CCC.2017.18.

73 Igor Carboni Oliveira and Rahul Santhanam. Hardness magnification for natural problems.
In Proc. 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
65–76, 2018. doi:10.1109/FOCS.2018.00016.

CCC 2021

https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1145/1374376.1374438
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1145/335305.335314
https://doi.org/10.1145/335305.335314
https://doi.org/10.1137/0220059
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1109/FOCS46700.2020.00118
https://eccc.weizmann.ac.il/report/2021/056
https://eccc.weizmann.ac.il/report/2021/056
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.4086/toc.2017.v013a004
https://doi.org/10.4230/LIPIcs.ITCS.2021.29
https://doi.org/10.1109/CCC.1996.507667
https://doi.org/10.1109/CCC.1996.507667
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1145/167088.167162
https://doi.org/10.1145/167088.167162
https://doi.org/10.4230/LIPIcs.CCC.2019.27
https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.1109/FOCS.2018.00016

35:50 Hardness of KT Characterizes Parallel Cryptography

74 Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer and System
Sciences, 55(1):24–35, 1997. doi:10.1006/jcss.1997.1494.

75 Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.
doi:10.1145/359340.359342.

76 Rahul Santhanam. Pseudorandomness and the minimum circuit size problem. In Proc. 11th
Conference on Innovations in Theoretical Computer Science (ITCS), volume 151 of LIPIcs,
pages 68:1–68:26, 2020. doi:10.4230/LIPIcs.ITCS.2020.68.

77 Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell System technical
journal, 28(1):59–98, 1949. doi:10.1002/j.1538-7305.1949.tb03624.x.

78 Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723–1731, 1996. doi:10.1109/18.556668.

79 Amnon Ta-Shma and David Zuckerman. Extractor codes. IEEE Transactions on Information
Theory, 50(12):3015–3025, 2004. doi:10.1109/TIT.2004.838377.

80 Roei Tell. Quantified derandomization of linear threshold circuits. In Proc. 50th Annual ACM
Symposium on Theory of Computing (STOC), pages 855–865, 2018. doi:10.1145/3188745.
3188822.

81 Boris A. Trakhtenbrot. A survey of Russian approaches to perebor (brute-force searches)
algorithms. IEEE Annals of the History of Computing, 6(4):384–400, 1984. doi:10.1109/
MAHC.1984.10036.

82 Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(4):860–879,
2001. doi:10.1145/502090.502099.

83 D. Uhlig. On the synthesis of self-correcting schemes from functional elements with a small
number of reliable elements. Mathematical notes of the Academy of Sciences of the USSR,
15:558–562, 1974. doi:10.1007/BF01152835.

84 D. Uhlig. Zur parallelberechnung boolescher funktionen. TR Ing.hochsch. Mittweida, 1984.
85 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,

7(1-3):1–336, 2012. doi:10.1561/0400000010.
86 Salil P. Vadhan and Colin Jia Zheng. A uniform min-max theorem with applications in crypto-

graphy. In Proc. 33rd Annual International Cryptology Conference (CRYPTO), volume 8042 of
Lecture Notes in Computer Science, pages 93–110, 2013. doi:10.1007/978-3-642-40041-4_6.

87 Hoeteck Wee. Finding Pessiland. In Proc. 3rd Theory of Cryptography Conference (TCC)
, volume 3876 of Lecture Notes in Computer Science, pages 429–442, 2006. doi:10.1007/
11681878_22.

88 Ingo Wegener. The complexity of Boolean functions. Wiley-Teubner, 1987. URL: http:
//ls2-www.cs.uni-dortmund.de/monographs/bluebook/.

89 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

90 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
Journal of Computing, 42(3):1218–1244, 2013. doi:10.1137/10080703X.

91 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.
In Proc. of the ICM, volume 3, pages 3431–3472, 2018.

92 Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract).
In Proc. 23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
80–91, 1982. doi:10.1109/SFCS.1982.45.

93 Yu Yu, Xiangxue Li, and Jian Weng. Pseudorandom generators from regular one-way functions:
New constructions with improved parameters. Theoretical Computer Science, 569:58–69, 2015.
doi:10.1016/j.tcs.2014.12.013.

https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1145/359340.359342
https://doi.org/10.4230/LIPIcs.ITCS.2020.68
https://doi.org/10.1002/j.1538-7305.1949.tb03624.x
https://doi.org/10.1109/18.556668
https://doi.org/10.1109/TIT.2004.838377
https://doi.org/10.1145/3188745.3188822
https://doi.org/10.1145/3188745.3188822
https://doi.org/10.1109/MAHC.1984.10036
https://doi.org/10.1109/MAHC.1984.10036
https://doi.org/10.1145/502090.502099
https://doi.org/10.1007/BF01152835
https://doi.org/10.1561/0400000010
https://doi.org/10.1007/978-3-642-40041-4_6
https://doi.org/10.1007/11681878_22
https://doi.org/10.1007/11681878_22
http://ls2-www.cs.uni-dortmund.de/monographs/bluebook/
http://ls2-www.cs.uni-dortmund.de/monographs/bluebook/
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1137/10080703X
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1016/j.tcs.2014.12.013

H. Ren and R. Santhanam 35:51

A Proof of Theorem 57

▶ Theorem 57. Let ϵ, δ, α, f be defined as in Construction 56. If ϵ ≥ 1/poly(n) and
L ≤ poly(n), then there is a function r : N→ N such that G = {Gn,r(n)}n∈N is a condEP-
PRG with stretch α and security 4ϵ.

More precisely, let ñ = n + 2d + d′. Suppose that for every subset D ⊆ {0, 1}ñ such that
H(G(D)) ≥ ñ− Ω(log(n

δϵ)) and every k, there is an adversary of size s that 4ϵ-distinguishes
Gn,k(D) from the uniform random distribution. Then there is an adversary of size s ·
poly(nL/ϵ) that inverts f on a 1− δ fraction of inputs.

For convenience, we only consider non-uniform adversaries in this section. (See also Re-
mark 52.) Recall that we sometimes use a (multi-)set S to represent the uniform distribution
over S, and we assume that every one-way function is length-preserving.

A.1 Impagliazzo’s Hardcore Lemma
▶ Lemma 84 ([49]; see e.g., [12]). Let f be a candidate (weak) one-way function, ϵ, δ > 0.
Suppose for every E ⊆ {0, 1}n with |E| ≥ δ

2 · 2
n, there is a circuit C of size s(n) such that

Pr
x←E

[C(f(x)) ∈ f−1(f(x))] ≥ ϵ.

Then there is a circuit of size O(s(n) · nϵ−2) that inverts f on a 1− δ fraction of inputs.

A.2 Step I: Making f Strong and Regular
Let f be a weak one-way function. The first step is to transform f into a strong and regular
one-way function, but only under a certain input distribution. In particular, we will define
a sequence of subsets X = {Xn} (that is not necessarily easy to sample), such that on the
uniform distribution over Xn, f is both strong and regular. Here:

We say f is strong on X , if every polynomial-size adversary A fails to invert f(X) except
with negligible probability. (For comparison, we are only given that f is a weak one-way
function on a uniform random input: No PPT adversary inverts f on a (1−1/nc) fraction
of inputs, for some fixed constant c > 0.)
For a function r : N → N, we say f is r-regular on X , if for every n ∈ N and every
y ∈ fn(Xn), we have |f−1

X (y)| ∈ [2r(n)−1, 2r(n)]. Here, f−1
X (y) = {x ∈ X : f(x) = y}, and

|f−1
X (y)| denotes the size of the above set.

As discussed in Section 5.2, we use the hardcore lemma to find a subset of inputs on
which f is strong. In particular, applying Lemma 84, we have:

▷ Claim 85. There is a sequence of subsets X ′ = {X ′n ⊆ {0, 1}n} with |X ′n| ≥ 2n/poly(n),
such that for every polynomial-size adversary A,

Pr
x←X ′

n

[A(f(x)) ∈ f−1(f(x))] < negl(n).

More precisely, suppose that for every subset X ′n ⊆ {0, 1}n with |X ′n| ≥ δ
2 · 2

n, there is an
adversary of size s that inverts fn(X ′n) w.p. at least ϵ. Then there is an adversary of size
O(s · nϵ−2) that inverts f on a 1− δ fraction of inputs. ◀

CCC 2021

35:52 Hardness of KT Characterizes Parallel Cryptography

Now, for every string y ∈ {0, 1}n, let |f−1
X ′ (y)| denote the number of inputs x ∈ X ′n

such that f(x) = y. Let r ∈ [1, n], Wr be the number of strings x ∈ X ′n such that
|f−1
X ′ (f(x))| ∈ [2r−1, 2r]. Then we have

∑n
r=1 Wr ≥ |X ′n|. By averaging, there is an integer

r ∈ [1, n] such that Wr ≥ |X ′n|/n. We denote r(n) to be this integer r, and

Xn := {x ∈ X ′n : |f−1
X ′ (f(x))| ∈ [2r−1, 2r]}.

By definition, f is r-regular on X := {Xn}. Since |Xn| ≥ |X ′n|/n, any adversary that
inverts Xn on an ϵ fraction of inputs also inverts X ′n on an ϵ/n fraction of inputs. To
summarize:

▷ Claim 86. There is a function r(n) ≤ n and a sequence of subsets X = {Xn} with
|Xn| ≥ 2n/poly(n), such that f is r-regular on X , and for every polynomial-size adversary A,

Pr
x←Xn

[A(f(x)) ∈ f−1(f(x))] < negl(n).

More precisely, suppose that for every function r : N → N and sequence of subsets
X = {Xn} such that |Xn| ≥ δ

2n · 2
n and f is r-regular on X , there is an adversary of size

s that inverts fn(Xn) w.p. at least ϵ. Then there is an adversary of size s · poly(n/ϵ) that
inverts f on a 1− δ fraction of inputs. ◀

A.3 Step II: An Intermediate Function
We define another function ensemble f̃ = {f̃n}n∈N. Let k1 = r− 1, k2 = ⌊n− r− log(2n/δ)⌋,
and d = dExt(n, ϵ). We need the following two extractors:

a strong (k1, ϵ)-extractor Ext1 : {0, 1}n×{0, 1}d → {0, 1}m1 , where m1 := k1−2 log(1/ϵ)−
O(1);
a strong (k2, ϵ)-extractor Ext2 : {0, 1}n×{0, 1}d → {0, 1}m2 , where m2 := k2−2 log(1/ϵ)−
O(1).

The function f̃n : {0, 1}n × {0, 1}2d → {0, 1}m1+m2+2d is defined as follows.

f̃n(x, z1, z2) := z1 ◦ Ext1(x, z1) ◦ z2 ◦ Ext2(x, z2).

Denote ℓ(n) := m1 + m2 + 2d. The following lemma summarizes the properties of f̃n we
need:

▶ Lemma 87. For every integer n, the function f̃n satisfies the following properties:
1. (Uniformity) For every integer n, SD(f̃n(Xn,U2d),Uℓ(n)) ≤ 2ϵ.
2. (Hiding) For every polynomial-size adversary A and every integer n,

Pr
x←Xn

[
A(f̃n(x,U2d)) = x

]
≤ negl(n).

More precisely, if there is an adversary A of size s that on input f̃n(Xn,U2d), guesses Xn

with success probability γ, then there is an adversary A′ of size O(s) that inverts fn(Xn)
w.p. at least O(γ/ϵ2).

Proof. (Uniformity) A sample from Xn can be obtained from two steps. First, we sample a
string y0 with probability p(y0) := Prx←Xn

[fn(x) = y0]. Then we sample a string x0 with
probability p(x0 | y0) := Prx←Xn

[x = x0 | fn(x) = y0].
Suppose y0 is fixed. Since f is r-regular, we have |f−1

X (y0)| ≥ 2r−1. Therefore, conditioned
on y0, the min-entropy of the distribution of x0 is at least r − 1 ≥ k1.

H. Ren and R. Santhanam 35:53

Let x← Xn and z1 ← Ud. Since Ext1 is a strong (k1, ϵ)-extractor, we have

SD(z1 ◦ Ext1(x, z1),Ud+m1 | f(x)) ≤ ϵ.

Now, for every y0 ∈ fn(Xn), since |f−1
X (y0)| ≤ 2r, the probability that a sample of fn(Xn)

is equal to the particular y0 is at most 2r/|Xn|. It follows that the min-entropy of the
distribution of y0 is at least log(|Xn|/2r) ≥ n− r + log(δ/2n) ≥ k2. Since Ext2 is a strong
(k2, ϵ)-extractor, we have

SD(z2 ◦ Ext2(f(x), z2),Ud+m2) ≤ ϵ.

It follows that

SD(z1 ◦ Ext1(x, z1) ◦ z2 ◦ Ext2(f(x), z2),Uℓ(n))
≤ SD(z1 ◦ Ext1(x, z1) ◦ z2 ◦ Ext2(f(x), z2),Ud+m1 ◦ z2 ◦ Ext2(f(x), z2))
+ SD(Ud+m1 ◦ z2 ◦ Ext2(f(x), z2),Uℓ(n))
≤ ϵ + ϵ = 2ϵ.

(Hiding) Let A be any adversary that violates the Hiding property. Suppose that

Pr
x←Xn

[A(f̃n(x,U2d)) = x] ≥ γ.

We will use A to build an algorithm A′ that inverts f(Xn) w.p. O(γ/ϵ2).
Let x← Xn be a hidden string, and y = fn(x) be the input of A′. We sample z1, z2 ← Ud.

We also “guess” a string z ← Um1 , with the hope that Ext1(x, z1) = z. Then we output
A′(y) := A(z1 ◦ z ◦ z2 ◦ Ext2(y, z2)).

Conditioned on Ext1(x, z1) = z, the distribution of z1 ◦ z ◦ z2 ◦ Ext2(y, z2) is exactly
f̃n(Xn,U2d). Therefore,

Pr[A′(y) = x] ≥ γ · Pr[Ext1(x, z1) = z] = γ · 2−m1 .

Note that besides y = f(x), A′ does not know any information about x. Therefore, for
every x′ ∈ f−1(y), the probability that A′(y) = x′ should also be at least γ · 2−m1 . We have

Pr
y=f(Xn)

[A′(y) ∈ f−1(y)] ≥ γ · 2−m1 · |f−1
X (y)|

≥ γ · 2r−1−m1 = O(γ/ϵ2). ◀

A.4 Step III: Appending a Hardcore Function
Note that the output length of f̃n is τ := log(n/δ) + 4 log 1

ϵ + O(1) bits shorter than the
input length of f̃n. In this section, we append a hardcore function at the end of f̃n, making
it a pseudorandom generator with stretch α > 0. In particular, we need:

a hardcore function HC : {0, 1}n × {0, 1}d′ → {0, 1}k with distinguishing probability ϵ,
where k := τ + α, and d′ := dHC(n, k, ϵ). Let R be the reconstruction algorithm of this
hardcore function, and L := L(n, k, ϵ) be the list size.

Let ñ := n + 2d + d′. Recall that Gn,r : {0, 1}ñ → {0, 1}ñ+α is defined as

Gn,r(x, z1, z2, z3) := z1 ◦ Ext1(x, z1) ◦ z2 ◦ Ext2(f(x), z2) ◦ z3 ◦ HC(x, z3).

Let Eñ := Xn × {0, 1}2d+d′ . In other words, a uniform random string from Eñ can be
sampled as x ◦ z, where x← Xn and z← U2d+d′ . We will show that Gn,r is a condEP-PRG
whose “condition” is Eñ. In particular, Lemma 88 shows that Gn,r(Eñ) is pseudorandom,
and Lemma 89 shows that Gn,r(Eñ) is entropy-preserving.

CCC 2021

35:54 Hardness of KT Characterizes Parallel Cryptography

▶ Lemma 88. Every polynomial-size adversary A fails to 4ϵ-distinguish Gn,r(Eñ) from
Uℓ(n)+d′+k.

More precisely, if there is an adversary A of size s that 4ϵ-distinguishes Gn,r(Eñ) from
Uℓ(n)+d′+k, then there is an adversary A′ of size s · poly(n/ϵ) that on input f̃n(Xn,U2d),
guesses Xn with success probability ϵ/2L.

Proof. Suppose A is an adversary that 4ϵ-distinguishes Gn,r(Eñ) from Uℓ(n)+d′+k.
Since SD(f̃n(Xn,U2d),Uℓ(n)) ≤ 2ϵ, it must be the case that A could 2ϵ-distinguish Gn,r(Eñ)

from f̃n(Xn,U2d) ◦ Ud′+k. Equivalently, let x← Xn, then given the information of f̃(x,U2d),
A could 2ϵ-distinguish Ud′ ◦HC(x,Ud′) from Ud′+k. We say a string w := (x, z1, z2) is good if
A could ϵ-distinguish f̃n(w) ◦ Ud′ ◦HC(x,Ud′) from f̃n(w) ◦ Ud′+k. Then by a Markov bound,
a random w← Xn ◦ U2d is good w.p. at least ϵ.

The adversary A′ that violates the (Hiding) property of f̃n simply follows from the
reconstruction algorithm R. In particular, on input f̃n(w) = f̃n(x, z1, z2), A′ constructs the
following oracle:

O(r) := A(f̃n(w) ◦ r),

runs the algorithm RO to obtain a list of size L, and outputs a random element in the list.
We analyze A′. Suppose A′ is given f̃n(w) for a good w, then O indeed ϵ-distinguishes

Ud′ ◦ HC(x,Ud′) from Ud′+k. Therefore, w.p. ≥ 1/2, x is in the list outputted by RO. If this
is the case, we will correctly output x w.p. ≥ 1/L. It follows that on input f̃n(x,U2d) where
x← Xn, A′ outputs x w.p. ≥ ϵ/2L. Finally, as R is a polynomial-size oracle circuit (actually
a PPT oracle machine), the size of A′ is s(n) · poly(n/ϵ). ◀

▶ Lemma 89. Suppose that ϵ < 1
10n2 . Then H(Gn,r(Eñ)) ≥ ñ− τ − 2.

Proof. Since SD(f̃n(Xn,U2d),Uℓ(n)) ≤ 2ϵ < 1
ℓ(n)2 , by [62, Lemma 2.2], we have

H(f̃n(Xn,U2d)) ≥ ℓ(n)− 2. It follows that H(Gn,r(Eñ)) ≥ (ℓ(n)− 2) + d′ ≥ ñ− τ − 2. ◀

A.5 Putting It Together
Proof of Theorem 57. Suppose that for every X = {Xn} that satisfies the premise of
Claim 86, and Eñ defined above, there is an adversary of size s(n) that 4ϵ-distinguishes
Gn,r(Eñ) from the uniform distribution. Then:

By Lemma 88, there is an adversary of size s(n) · poly(n/ϵ) that on input f̃(Xn,Ud1+d2),
guesses Xn w.p. ≥ ϵ/2L.
By Lemma 87, there is an adversary of size s(n) ·poly(n/ϵ) that inverts fn(Xn) w.p. ≥ 1

2ϵL .

It follows from Claim 86 that there is an adversary of size s · poly(nL/ϵ) that inverts f

on a 1− δ fraction of inputs. ◀

B Proof of Theorem 62

In this section, we briefly review the universal hash functions in [56] that are computable
by linear-size circuits, with an emphasis on the uniformity of these circuits. Throughout
this section, a circuit family is uniform if it satisfies Definition 60. An XOR-circuit is a
(multi-output) circuit that only uses XOR gates of fan-in 2. To match Definition 60, we also
require that every gate in an XOR-circuit has fan-out at most 2.

For convenience, we denote [n] = {0, 1, . . . , n− 1}, and (n) = {0, 1}n.

H. Ren and R. Santhanam 35:55

Outline. Our start point is the strongly explicit family of expanders by [64, 29]. Spielman [78]
showed that these expanders imply asymptotically optimal error-correcting codes (i.e., with
constant rate and constant relative distance). Using an expander walk trick, for any constant
ϵ > 0, one could construct error-correcting codes with relative distance 1− ϵ, constant rate,
and constant alphabet size. By the construction of [56], such codes imply universal hash
functions.

B.1 Strongly Explicit Expanders
We use the following construction due to [64, 29]. (See also [45, Construction 8.1].) For every
integer n, we have a graph Gn with n2 vertices such that every vertex has degree 8. The
vertex set of Gn is Zn × Zn. Each vertex v = (x, y) is adjacent to the following vertices

γ1(v) = (x + 2y, y), γ2(v) = (x + 2y + 1, y), γ3(v) = (x, y + 2x), γ4(v) = (x, y + 2x + 1).

Here the additions are modulo n. Note that γ1, . . . , γ4 are bijections, and the other four
neighbors of v are simply γ−1

1 (v), . . . , γ−1
4 (v). The graph might contain self-loops or parallel

edges.

▶ Theorem 90 ([29]). For every integer n ≥ 1, the second largest eigenvalue of the adjacency
matrix of Gn is at most 5

√
2 < 8.

In our construction, we need the degree of the expanders to be a large enough constant.
We can simply pick a large enough constant k and take the k-th power of Gn. Let Gk

n be the
k-th power of Gn, i.e., for every u, v ∈ V (Gn), the number of (parallel) edges between u and
v in Gk

n is equal to the number of length-k paths between u and v in Gn. Then the degree of
Gk

n is d := 8k, and the second largest eigenvalue of the adjacency matrix of Gk
n is at most

(5
√

2)k < d.
▶ Remark 91. It will be convenient to define an explicit mapping (bijection) between E(Gk

n)
and [dn2/2]. Note that each edge (u, v) ∈ Gk

n can be represented by a start vertex u and a
string σ1σ2 . . . σk where each σi ∈ Σ := {γ1, γ2, γ3, γ4, γ−1

1 , γ−1
2 , γ−1

3 , γ−1
4 }. The meaning of

this representation is that (σ1 ◦ σ2 ◦ · · · ◦ σk)(u) = v. Each edge has two representations:
(u, σ1σ2 . . . σk) or (v, σ−1

k σ−1
k−1 . . . σ−1

1). We arbitrarily choose a size-(d/2) subset S of Σk

such that for each σ1, σ2, . . . , σk ∈ Σ, exactly one of σ1σ2 . . . σk and σ−1
k σ−1

k−1 . . . σ−1
1 is in

S. We fix and hardcode a bijection between [d/2] and S. Given an integer i ∈ [dn2/2],
we interpret i as a pair of v ∈ V (Gk

n) and σ1σ2 . . . σk ∈ S, and the edge corresponding to
i is represented as (v, σ1σ2 . . . σk). This bijection and its inverse are computable in time
O(log n).

B.2 Error-Reduction Codes
An intermediate step in [78] is to construct error-reduction codes, which are weaker primitives
compared to error-correcting codes.

Let r, δ, ϵ > 0 be constants. Recall that we defined (n) = {0, 1}n for convenience. An
error-reduction code of rate r, error reduction ϵ and reducible distance δ is a function
C : (rn)→ ((1− r)n) mapping rn “message” bits into (1− r)n “check” bits, such that the
following holds. The codeword of a message x is x ◦ C(x). For any message x, if we are given
a corrupted codeword that differs from x ◦ C(x) with at most v ≤ δn message bits and at
most t ≤ δn check bits, then we can recover a codeword that differs from x ◦ C(x) in at most
ϵt bits. (We will not be particularly interested in the complexity of recovery or decoding
algorithms.)

CCC 2021

35:56 Hardness of KT Characterizes Parallel Cryptography

▶ Lemma 92. For some absolute constants ϵ < 1 and δ > 0, there is a family of error-
reduction codes R = {Rn : (n)→ (⌊n/2⌋)} with error-reduction ϵ and reducible distance δ.
Moreover, the sequence of functions {Rn} can be computed by a uniform family of linear-size
XOR-circuits.

Proof Sketch. First, let m be the smallest integer such that dm2/2 ≥ n. Note that m can
be computed in O(log n) time. Let r = 9/10, then for large enough n, dm2(1− r)/r ≤ n/2.
It suffices to construct an error-reduction code with dm2/2 message bits and dm2(1− r)/r

check bits.
We use [78, Definition 16], where B is the edge-vertex incidence graph of Gk

m, and S is a
good (linear) error-correcting code on d-bit messages that has rate r. (Since d is a constant,
we can hardcode S in our algorithm. on the other hand, since d is large enough, S exists.)

An equivalent formulation is as follows. We assign a message bit to every edge of Gk
m.

For each vertex v ∈ V (Gk
m), let b1b2 . . . bd be the bits on the d incident edges of v. This

vertex outputs d(1 − r)/r check bits which are the check bits of S on message b1b2 . . . bd.
Concatenating the outputs of each vertex, we obtain an error-reduction code of dm2/2
message bits and dm2(1− r)/r check bits. By [78, Lemma 18], for some absolute constants
ϵ < 1 and δ > 0, this error-reduction code has error-reduction ϵ and reducible distance δ.

Computing the i-th gate of the encoding circuit reduces to computing the indices of
the incident edges of a vertex v ∈ V (Gk

m). By Remark 91, this is computable in O(log n)
time. ◀

We actually need error-reduction codes with error-reduction ϵ = 1/2. We can simply
iterate the code in Lemma 92 for O(1) times. The encoding circuit is still uniform. Therefore,
we have:

▶ Corollary 93. Lemma 92 holds for ϵ = 1/2.

B.3 Error-Correcting Codes
The construction in [78, Section II] transforms an error-reduction code into an error-correcting
code. Here we only review its encoding algorithm and check that they can be implemented
by uniform XOR circuits. The correctness of this error-correcting code is proved in [78].

▶ Lemma 94. There is a constant n0 > 1 and a family C =
{
Ck : (n02k−2)→ (n02k)

}
of error-correcting codes with constant relative distance. Moreover, C can be encoded by a
uniform family of linear-size XOR circuits.

Proof Sketch. We recursively define Ck as follows. First, C0 : (n0/4) → (n0) is any good
enough error-correcting code. Since n0 is a constant, our algorithm can hardcode C0.

Now, let k ≥ 1, we define Ck as follows. Let x ∈ (n02k−2) be the inputs of Ck.
The first n02k−2 outputs of Ck will always be x itself.19 Note that we require the fan-out
of gates to be at most 2, therefore we need to make a copy of x. Similarly, we may need
to copy the Ak, Bk, Ck defined below. The circuit size is still linear in 2k.
We pick an error-reduction code Rk−2 : (n02k−2)→ (n02k−3), and output Ak := Rk−2(x).
Let Ck−1 : (n02k−3)→ (n02k−1) be the error-correcting code we recursively defined. Let
Ak ◦Bk := Ck−1(Ak), and we output Bk. (Recall that the first n02k−3 outputs of Ck−1 is
equal to its inputs, i.e., Ak.)
We pick an error-reduction code Rk−1 : (n02k−1) → (n02k−2), and output Ck :=
Rk−1(Ak ◦Bk).

19 We can assume this is also true for C0.

H. Ren and R. Santhanam 35:57

The required error-reduction codes are constructed in Corollary 93. The total number of
output bits of Ck is |x|+ |Ak|+ |Bk|+ |Ck| which is indeed n02k.

The i-th gate of the encoding circuit of Ck−1 can be computed as follows. Let c2k be the
circuit complexity of the first, second, and fourth bullet. (That is, circuit complexity of Ck

not counting the recursive part for Ck−1.) We may assume c is a power of 2. The encoding
circuit for Ck has |C0|+

∑k
i=1 c2i = |C0|+ c(2k+1 − 1) gates. Taking the (base-2) logarithm

of (i− |C0|)/c, we can find the “level of recursion” that the i-th gate is constructed. Then
the problem reduces to computing the encoding circuit of Rj for some integer j, which is
computable in O(log n) time. ◀

For every constant ϵ > 0, the construction of [56] needs a code with relative distance
1− ϵ and constant alphabet size. As in [7, 35], we can “amplify” the code in Lemma 94 by
an expander:

▶ Lemma 95. For every constant ϵ > 0, there is a constant D > 0 and a family of error-
correcting codes {C′k : (n02k−2)→ [2D]O(2k)} that has relative distance 1− ϵ. Moreover, if we
interpret [2D] as length-D strings, then C′k can be encoded by a uniform family of linear-size
XOR circuits.

Proof Sketch. Recall that {Gn} is the expander family constructed in Theorem 90, and
{Ck : (n02k−2)→ (n02k)} is the family of error-correcting codes constructed in Lemma 94.
Let m be the smallest integer such that m2 ≥ n02k. We pad zeros to the outputs of Ck, thus
Ck can be regarded as a code that outputs m2 bits. We assign an output bit of Ck to each
vertex in Gm. The relative distance of Ck is still lower bounded by an absolute constant
δ > 0.

We will pick a large enough constant p, such that Gp
m has good expansion property: Every

subset of V (Gp
m) with size at least δ · m2 has at least (1 − ϵ)m2 neighbors. (See e.g. [7,

Corollary 1].) Let D := 8p, so every vertex in Gp
m has degree D. On input x ∈ (n02k−2), recall

that we assigned each vertex in V (Gp
m) a bit of the codeword Ck(x). For every v ∈ V (Gp

m),
the vertex v will output the concatenation of the bits assigned to its neighbor, which can be
interpreted as an element in [2D]. The code C′k(x) simply concatenates the outputs of each
vertex v ∈ V (Gp

m) together.
Consider the encoding circuits of C′k. As we need each gate to have fanout at most 2, we

make D copies of the encoding circuit of Ck. For every σ = σ1σ2 . . . σk ∈ Σk, we have a copy
of Ck denoted as Cσ

k . For each vertex v, and each σ ∈ Σk, let u be the σ-th neighbor of v.
The σ-th bit of the output of v is the u-th output of the circuit Cσ

k . We can see this encoding
circuit is uniform. ◀

▶ Remark 96. Lijie Chen (personal communication) suggested a similar approach based on
expander random walks [80, Proposition 6.6]. As the p-th power of an expander graph G

consists of length-p walks in G, the two approaches are essentially the same.

B.4 Universal Hash Functions
Finally, we are ready to verify that the universal hash functions in [56] are uniform.

▶ Theorem 62. For every integer n, m where m = O(n), there exists an integer k = O(n),
and a family of universal hash functions {hn,m : {0, 1}n×{0, 1}k → {0, 1}m}, such that hn,m

can be computed by a uniform family of linear-size circuits that are skew w.r.t. the second
argument.

CCC 2021

35:58 Hardness of KT Characterizes Parallel Cryptography

Proof Sketch. Let n1 := cn for a large enough constant c, ϵ be a small enough constant,
and D be the constant in Lemma 95 depending on ϵ. We need three ingredients:

An ℓ-exposure resilient function (ERF) ERF : {0, 1}n1D → {0, 1}m [21]. It is shown in [24]
that for any (linear) error-correcting code C : {0, 1}m → {0, 1}n with generator matrix G

and minimum distance d, the transpose matrix GT mapping n input bits to m output
bits is a perfect ℓ-ERF where ℓ := n− d + 1.
For an XOR-circuit C that computes the linear transform G over GF(2), we can obtain a
circuit computing the linear transform GT, by exchanging the input gates and output
gates and reversing the directions of every wire [18, 56]. In particular, every gate g ∈ C

whose output feeds to the gates g1, g2, . . . , gk becomes, in the new circuit, an XOR gate g

whose inputs are g1, g2, . . . , gk.
Therefore, Lemma 94 shows that an ℓ-ERF ERF : {0, 1}n1D → {0, 1}m is computable by
a uniform family of linear-size XOR circuits.
An error-correcting code C′k : {0, 1}n → [2D]n1 with relative distance 1−ϵ, as in Lemma 95.
A hash family H : {0, 1}D×{0, 1}2D−1 → {0, 1}D, computable by a skew circuit w.r.t. the
second argument. As D is a constant, we can simply hardcode this hash family. (See
e.g. Section 5.2.1 for an instantiation based on Toeplitz matrices.)

The construction of [56] goes as follows. On input x ∈ {0, 1}n, we first compute
C′(x) ∈ [2h+1]n1 . Next, we receive n1 keys k1, k2, . . . , kn1 ∈ {0, 1}2h+1 which are the keys for
our hash function. Let t ∈ [2h+1]n1 be the following message: ti := H(C′(x)i, ki). We treat t

as a string of length m(h + 1), and the output of our hash function is ERF(t).
It is easy to see that this family is uniform. ◀

On the Pseudo-Deterministic Query Complexity of
NP Search Problems
Shafi Goldwasser #

University of California, Berkeley, CA, USA

Russell Impagliazzo #

University of California, San Diego, CA, USA

Toniann Pitassi #

University of Toronto, Canada
Columbia University, New York, NY, USA
Institute of Advanced Study, Princeton, NJ, USA

Rahul Santhanam #

University of Oxford, UK

Abstract
We study pseudo-deterministic query complexity – randomized query algorithms that are required to
output the same answer with high probability on all inputs. We prove Ω(

√
n) lower bounds on the

pseudo-deterministic complexity of a large family of search problems based on unsatisfiable random
CNF instances, and also for the promise problem (FIND1) of finding a 1 in a vector populated with
at least half one’s. This gives an exponential separation between randomized query complexity and
pseudo-deterministic complexity, which is tight in the quantum setting. As applications we partially
solve a related combinatorial coloring problem, and we separate random tree-like Resolution from
its pseudo-deterministic version. In contrast to our lower bound, we show, surprisingly, that in the
zero-error, average case setting, the three notions (deterministic, randomized, pseudo-deterministic)
collapse.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Oracles and decision trees; Theory of computation → Proof complexity

Keywords and phrases Pseudo-determinism, Query complexity, Proof complexity

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.36

Funding Shafi Goldwasser : Research supported in part by DARPA under Contract No.
HR001120C0015.
Russell Impagliazzo: Research supported by NSF and the Simons Foundation.
Toniann Pitassi: Research supported by NSERC, the IAS School of Mathematics and NSF Grant
No. CCF-1900460.

Acknowledgements We thank Ofer Grossman, Ran Raz, Avi Wigderson and Ryan Williams for
helpful discussions. The quantum query upper bound for FIND1 was pointed out to the fourth
author by Igor Oliveira. We also thank the anonymous CCC reviewers for very helpful comments.

1 Introduction

The natural and beautiful notion of pseudo-determinism which formalizes random search
algorithms that are required on every input, to output the same solution with high probability,
was introduced by Gat and Goldwasser in [12]. A motivating example is the problem of
finding an n-bit prime number in time polynomial in n. Since primality testing is in P, and
the primes are dense within the natural numbers, we can efficiently find a prime with high
probability by repeatedly selecting a random number, test it for primality, and halt if a prime
is found. In contrast the fastest deterministic algorithm for finding primes is exponential

© Shafi Goldwasser, Russell Impagliazzo, Toniann Pitassi, and
Rahul Santhanam;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 36; pp. 36:1–36:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shafi.goldwasser@berkeley.edu
mailto:russell@cs.ucsd.edu
mailto:toni@cs.toronto.edu
mailto:rahul.santhanam@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.CCC.2021.36
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 On Pseudo-Deterministic Query Complexity

in n. A pseudo-deterministic algorithm lies between a randomized search algorithm (which
on each input may output a large number of different solutions as we vary the random coins),
and a deterministic algorithm. Here we are allowed unlimited use of randomness, but the
search algorithm is required to output a canonical answer f(x) on each input x (with very
high probability).

Pseudodeterminism is important, both because of the intrinsic nature of the underlying
questions that it raises, and because of its strong connections to other phenomena. First,
it relates to the reproducibility question in science – empirical research has unavoidable
randomness in many phases of research, from data generation/collection, to experiment
design and testing. Pseudodeterministic algorithms correspond to reproducible experiments
where the same (or a very similar) outcome will usually be obtained if the experiment
is reproduced under a different set of (random) conditions [12, 22]. Pseudodeterminism
also is related to the notion of global stability in machine learning, which is closely tied to
generalization in machine learning

Starting with [12], a growing body of research has laid much of the groundwork for a
theory of pseudo-deterministic complexity theory, establishing the power and limitations of
pseudo-determinism for a variety of computational models (See for example [12, 13, 22, 14,
15, 16].) Assuming P = BPP, polynomial-time pseudo-deterministic search is equivalent to
deterministic polynomial-time search. This implies for example that finding an n-bit prime is
in polytime assuming P = BPP, but this is far from giving a efficient deterministic or pseudo-
deterministic algorithm that generates primes. Oliveira and Santhanam [30] demonstrated
the power of pseudo-determinism by proving unconditionally that finding primes could be
carried out (for infinitely many n) in subexponential-time.

1.1 Our Results
In this paper we study the power of pseudo-determinism in the context of query complexity,
which was first defined and studied by Goldreich, Goldwasser and Ron [13]. We focus on
search problems with solutions that can be verified easily by deterministic query algorithms,
similarly to the complexity class FNP, and that have an abundance of solutions1. In other
words, we consider search problems where a solution can be found randomly simply by
guessing and then verifying the guess, but for which deterministically finding a solution
is difficult. The most natural problems we consider are promise problems, but we prove
lower bounds for these via reduction to problems which have the above property on the full
domain, i.e., we prove lower bounds for the analogs of TFNP problems with an abundance of
witnesses.

This scenario is of central importance in complexity theory, where many longstanding open
problems are closely connected to explicit constructions of objects that exist in abundance.
For example, explicit constructions of rigid matrices imply circuit lower bounds, and explicit
constructions of functions that are hard to compute (or approximate) imply derandomization.

1. We define an elementary promise search problem, FIND1: given an n bit string with
the promise that it contains at least n/2 1’s, output a coordinate i such that xi = 1.
FIND1 is easy for randomized query complexity, and we observe (Section 3) that FIND1
is complete for easily verifiable search problems with randomized query algorithms. 2

1 In contrast, the linear query lower bounds of [13] are not for a problem with easily verifiable solutions.
2 A similar problem titled Find-Support-Elem was considered in the context of studying the space

complexity of pseudo-deterministic streaming algorithms [17]

S. Goldwasser, R. Impagliazzo, T. Pitassi, and R. Santhanam 36:3

2. We prove (Section 4) a lower bound of Ω(
√

n) on the pseudo-determinsitic query complexity
of a broad class of search problems associated with random unsatisfiable CNF formulas,
a problem in the query analog of TFNP. As a corollary we prove the same lower bound
for FIND1, thus separating randomized from pseudo-deterministic query complexity for
a problem in the analog of FNP. Our lower bound also holds in the quantum setting
where a simple binary search plus Grover’s result shows that our lower bound is tight.
A key idea in our proof is to look at a different structured family of search problems
associated with highly unsatisfiable CNF formulas. Our lower bound for these structured
search problems follows by combining Huang’s Sensitivity Theorem with known linear
lower bounds on the Nullstellensatz/SOS degree for refuting random unsatisfiable CNF
instances.

3. Applications. We study two questions related to our lower bound in Section 5. First as
a corollary, we obtain a lower bound for a related combinatorial coloring problem that
we define and find independently interesting. Secondly, we extend our results to give
an exponential separation between the size of randomized decision trees and the size of
pseudo-deterministic decision trees. Our size separation in turn implies an exponential
separation between pseudo-deterministic tree-like Resolution refutations and random
tree-like Resolution refutations (defined in [7]).

4. In contrast to our lower bounds which expose the limitations of pseudo-deterministic
query algorithms, we prove (Section 6) that in the zero-error average setting, the three
notions (deterministic, randomized, and pseudo-deterministic) collapse.

1.2 Our Ideas
We discuss our results and the ideas behind them at a high level.

Our observation that FIND1 is a canonical problem for pseudo-deterministic query
complexity for problems in FNP follows from the fact that every randomized query algorithm
can be assumed to have as support a linear-size set B of deterministic decision trees. Assume
that FIND1 has an efficient pseudodeterministic query algorithm, and let S be a problem in
FNP. We define a pseudodeterministic algorithm for S by simulating the protocol for FIND1.
Every time the protocol for FIND1 queries a bit, we run the corresponding decision tree in
the linear-size set B and return 1 iff the decision tree returns a valid solution to S. Note
that since S is in FNP, we can check that a solution is valid efficiently. When the protocol
for FIND1 concludes and outputs an index j of a bit, we simulate the corresponding decision
tree in B and return the solution for S that it outputs.

Our lower bound for a TFNP problem is for the search problem associated with a randomly
chosen k-CNF formula ϕ of linear size. The main property we require from this formula is
that the factor graph is a strong enough expander. The search problem associated with ϕ is
to return the index of an unsatisfied clause, given an assignment to the variables. We choose
the size of the CNF large enough so that for each assignment to variables, a constant fraction
of clauses are violated. Thus there is a trivial randomized protocol for the search problem
with cost O(1): output a random clause.

We show that any pseudo-deterministic query algorithm for this problem requires Ω(
√

n)
queries, using a novel connection to proof complexity. We use the known result [21, 6, 3]
that the random CNFs we consider require linear degree to refute in the Nullstellensatz proof
system to show a lower bound on the Fourier degree of the search problem associated with
these CNFs. We then use the recent breakthrough of Huang on the Sensitivity Conjecture [25]
to lower bound the sensitivity by Ω(

√
n), and show that the pseudo-deterministic query

complexity is lower bounded by the sensitivity. By using the very recent result of [2] instead

CCC 2021

36:4 On Pseudo-Deterministic Query Complexity

of [25], we can even lower bound the pseudodeterministic quantum query complexity by
Ω(

√
n). For quantum query complexity, this is actually tight, as a matching upper bound

follows from combining binary search with Grover’s algorithm.
Our quest for an improved linear lower bound for FIND1 raises an interesting combinatorial

question: given any coloring of the hypercube (omitting the all zeroes vertex) with n colors
such that each vertex is colored with the index of one of its 1s, must there be vertex with a
constant fraction of 1s so that a constant fraction of its neighbours are colored differently
from it? If the answer to this question is yes, we would be able to show that FIND1 requires
linear pseudo-deterministic query complexity. The question above is about the sensitivity of
a coloring; we can ask an analogous question for block-sensitivity and in this case, it turns
out that we can prove an Ω(

√
n) lower bound, which also implies our Ω(

√
n) lower bound for

FIND1.
Our proof of a pseudo-deterministic query lower bound uses ideas from proof complex-

ity. We show that there is a connection in the reverse direction too, by defining pseudo-
deterministic versions of propositional proof systems such as Resolution. A broad question in
proof complexity is whether we can use proof systems to capture the behaviour of randomized
algorithms. Motivated in part by this and in part by a question about bounded-depth Frege
proof systems, [7] defined Random Resolution: a randomized version of Resolution. This
is quite a powerful system which even refutes random k-CNFs in constant size, contrary to
our intuition that random k-CNFs should be hard to solve. We define pseudo-deterministic
Resolution and pseudo-deterministic Tree Resoluton, and we show that pseudo-deterministic
Tree Resolution is efficiently verifiable, suggesting that it is a more viable candidate for
capturing the behaviour of randomized algorithms. We apply the ideas of our separation
between randomized query complexity and pseudo-deterministic query complexity to get a
strong separation between Random Tree Resolution and pseudo-deterministic Tree Resolution:
random k-CNFs can be refuted in linear size in Random Tree Resolution but require 2Ω(

√
n)

size in pseudo-deterministic Tree Resolution.
Finally, we turn our attention from lower bounds to algorithms. We show that perhaps

surprisingly, there is a close connection between randomized query complexity and pseudo-
deterministic query complexity on average. Specifically, for zero-error algorithms (where the
query algorithm is not allowed to make a mistake), we show that over any distribution D,
the randomized, pseudo-deterministic and deterministic query complexity are all within a
polylogarithmic factor of each other. Similarly, we show that for any approximation problem
(such as the problem of approximating the Hamming weight of an input considered in [13],
for which there is a constant-query randomized algorithm) and distribution D, there is
an efficient bounded-error pseudo-deterministic query algorithm which asks few queries on
average over D. Note that we require the algorithm to be pseudo-deterministic on every
input, which is a pretty strong guarantee.

As a toy problem for our result on zero-error query algorithms, consider the FIND1
problem, which does have a very efficient zero-error randomized algorithm. Given any
distribution D, we can use an averaging argument to identify a small set of decision trees
from the support of our randomized query algorithm such that at least one of the trees from
this set outputs a correct solution with probability at least 1 − 1/n over the distribution.
We can also efficiently check if this is indeed the case. If not, we simply query every bit, and
this doesn’t cost too much on average because this case happens with very low probability.

Generalizing to efficient average-case zero-error algorithms is somewhat more involved,
and requires an interleaving simulation of decision trees together with a Markov argument at
different scales. We use similar ideas for our bounded-error pseudo-deterministic algorithms -
the challenge is to meet the pseudo-determinsitic guarantee on every input.

S. Goldwasser, R. Impagliazzo, T. Pitassi, and R. Santhanam 36:5

1.3 Related Work
Optimal query separations were already proven by [13] but their search problem is not in FNP
– that is, for the problem that they studied, solutions are not verifiable with a polylogarithmic
number of queries. In particular, they studied the search problem of estimating the number
of ones in a binary string to within an additive ϵn. They proved that this search problem has
low randomized query complexity, but requires linear pseuododeterministic query complexity.

2 Definitions

▶ Definition 1. A search problem over domain X and range O is defined to be a relation
S ⊆ X × O. For x ∈ X , the feasible solutions for S on x are the elements o ∈ O such that
(x, o) ∈ S. S is total if there is at least one feasible solution for every x ∈ X . A function
f : X → O solves the search problem S if for every x ∈ X with at least one feasible solution
for S, (x, f(x)) ∈ O.

Deterministic Query Complexity. Let X = {0, 1}n. A determininistic decision tree T over
x1, . . . , xn with outputs from O is a binary tree where each internal node is labelled with a
variable xi, and with outedges labelled by xi = 0 and xi = 1. Each leaf of the tree is labelled
with some o ∈ O. A deterministic decision tree T computes f : {0, 1}n → O if for every
input x ∈ {0, 1}n, the (unique) path in T consistent with x has leaf label f(x). Let Pdt(f)
be the minimum depth of a deterministic decision tree computing f . 3 For a search problem
S ⊆ {0, 1}n × O, The (deterministic) query complexity of S, Pdt(S) is the minimum of Pdt(f)
over all functions f solving S.

Randomized and Quantum Query Complexity. A randomized decision tree over x1, . . . , xn

with outputs from O is a distribution T over deterministic decision trees. A randomized
decision tree T computes f : {0, 1}n → O with error at most ϵ if for every input x, the
probability (over T drawn from T) that T (x) ouputs f(x) is at least 1−ϵ. The bounded-error
randomized query complexity of search problem S, denoted by BPPdt(S), is the minimum
over all functions f computing S of the depth of a randomized decision tree computing f

with error 1/3.
We can also define zero-error randomized query complexity for f and S. In this case T is

a distribution over decision trees, but with the property that for every x, the probability
that T (x) = f(x) is one. Whereas before the depth was defined to be the maximum depth
over all decision trees in the distribution, in the zero-error case, we define the depth to be
the expected depth. The quantum query complexity for functions and search problems is
defined analogously. (e.g., see [9].)

Nondeterministic Query Complexity. Let S ⊆ {0, 1}n × [m] be a search problem. A
verification decision tree for f is a decision tree T over the Boolean variables x1, . . . , xn,
y1, . . . , ylog m with outputs {0, 1} such that for every input pair (x, y) ∈ {0, 1}n × [m],
T (x, y) = 1 if and only if (x, y) ∈ S. The verification query complexity of S is the minimum
depth over all verification decision trees for S. A search problem S ⊆ {0, 1}n × [m] with
m = O(n) is an NP-search problem if there is a verification decision tree for S of depth
polynomial in log m.

3 We note that since f may not be Boolean, FPdt(f) is a more accurate notation, but we slightly abuse
notation and use Pdt to be consistent with prior work/notation.

CCC 2021

36:6 On Pseudo-Deterministic Query Complexity

Pseudodeterministic Query Complexity. Finally we define the bounded-error and zero-
error pseudo-deterministic query complexity for total search problems S. A bounded-error
pseudo-deterministic decision tree for S is a distribution over decision trees with the following
property: For every input x, there is a canonical value o ∈ O such that with probability
at least 2/3, T (x) = o. In other words, T is a bounded-error randomized decision tree
for a particular function f that solves S. Let psPdt(S) denote the (bounded-error) pseudo-
deterministic query complexity of S. Similarly let psQdt(S) denote the pseudo-deterministic
bounded-error quantum query complexity of S.

We note that for bounded-error randomized and pseudo-determinstic query algorithms,
by repeatedly running the query algorithm O(log(1/δ)) times, we can amplify the success
probability from 2/3 to 1 − δ.

Sensitivity and Block Sensitivity. Let f : {0, 1}n → O. A block B ⊆ [n] is sensitive for f

on input x if f(x ⊕ 1B) ̸= f(x), where 1B is the n-bit string that is 1 on bits in B and 0
otherwise. In other words, if we change x by flipping all of the bits in B to get xB, then
the value of f changes (so f(x) ̸= f(xB)). The block sensitivity of x with respect to f ,
bsx(f), is the maximal number of disjoint blocks that are all sensitive for x. We define
bs(f) = maxx∈{0,1}nbsx(f).

A bit i ∈ [n] is sensitive for x with respect to f if the block {i} is sensitive for x. The
sensitivity of x with respect to f , sx(f), is the maximal number of sensitive bits for x, and
s(f) = maxx∈{0,1}nsx(f).

Degree. A polynomial q ∈ R[x1, . . . , xn] is said to represent the function f : {0, 1}n → {0, 1}
if q(x) = f(x) for all x ∈ {0, 1}n. The (Fourier) degree of f , d(f) is the degree of the (unique)
polynomial representing f . A multioutput function f : {0, 1}n → [m], induces a partition of
{0, 1}n into m classes, where the ith class contains those inputs that are mapped to i (i.e.,
those x such that f(x) = i). Thus we can define m associated Boolean functions, f i, i ∈ [m],
where f i(x) is 1 if and only if f(x) = i. The Fourier degree of f : {0, 1}n → [m] is defined as
maxi∈[m]d(f i), and the Fourier degree of a total search problem S is the minimum of d(f)
over all functions f solving the search problem S.

Known Relationships. Pioneering work of Nisan [28], Nisan and Szegedy [29] and Beals-et-al
[4] studied the above query measures and showed that nearly all of them are polynomially
equivalent. (See [5] for a nice exposition.) The two exceptions are pseudo-deterministic
complexity (which was defined later) and sensitivity, which remained a longstanding open
problem for thirty years. In recent breakthrough work, Huang [25] resolved the conjecture
by proving s(f) ≥ deg(f)1/2. The exact quantitative relationships between the measures
has been intensively studied; a table summarizing the state-of-the-art pairwise relationsihps
(pre-Huang) is given in [1]. Post-Huang, [2] improved the relationships between deterministic
query complexity, quantum query complexity and degree to near-optimal (ignoring polylog
factors).

We summarize here the relationships that will be important for us. First, the following
basic relationships are known:

Qdt(f) = O(BPPdt(f)) = O(Pdt(f))

d(f) = O(Pdt(f))

s(f) = O(bs(f)) = O(BPPdt(f)).

S. Goldwasser, R. Impagliazzo, T. Pitassi, and R. Santhanam 36:7

The following nontrivial relationships have recently been proven using Huang’s theorem [2]:

d(f) = O(Qdt(f)2)

Pdt(f) = O(Qdt(f)4).

These results are know to be tight within polylog factors. Before these results the best known
(pre-Huang) was d(f), Pdt(f) = O(Qdt(f)6).

We now consider the relationship between the pseudo-deterministic, deterministic and
randomized query classes. Let S be a FNP search problem, we have the easy inclusions:

Pdt(S) ≥ psBPPdt(S) ≥ BPPdt(S)

Pdt(S) ≥ psQdt(S) ≥ Qdt(S).

3 Search Problems in TFNP

We define TFNPdt, the query analog of TFNP to be the class of all search problems
f : {0, 1}n → [m] that admit a nondeterministic decision tree of complexity polylog(n).
(Equivalently, f can be written as a polylog(n)-width DNF.)

▶ Definition 2. Let X = {x ∈ {0, 1}n, | |x| ≥ n/2} where |x| is the number of 1’s in x. The
search problem FIND1 ⊆ X × [n] is defined by: (x, i) ∈ FIND1 if and only if x ∈ X and
xi = 1.

It is not hard to see that the deterministic query complexity of FIND1 is Ω(n), but the
randomized query complexity (and therefore also the quantum query complexity) is constant.
Here we show that for any search problem in TFNPdt for which solutions are verifiable using
few queries, a gap between randomized and pseudo-deterministic query complexity implies a
gap between randomized and pseudo-deterministic query for FIND1.

Call a function f : N → N reasonable if f(Θ(n)) = Θ(f(n)). Note that functions such as
f(n) = nϵ for ϵ < 1, f(n) = log(n) and f(n) = O(1), which often occur as bounds on query
complexity, are all reasonable.

▶ Theorem 3. Let r, q, v : N → N be reasonable functions. Let S be a search problem verifiable
with v(n) queries such that BPPdt(S) ≤ r(n) and psPdt(S) ≥ q(n). Then psPdt(FIND1) =
Ω(q(n)/(r(n) + v(n)).

Proof. Since S has randomized decision tree complexity at most r(n), there is a family
F of deterministic decision trees of depth r(n) such that for each x ∈ I of length n, a
uniformly chosen tree from F solves S on x with probability at least 3/4. If we uniformly
and independently pick a subfamily F ′ of cn trees from F for large enough constant c, it
follows using Chernoff bounds and a union bound that with positive probability over the
choice of F ′, for each x ∈ X of length n, a uniformly chosen tree from F ′ solves S on x

with probability at least 2/3. Hence, by the probabilistic method, there must exist such a
subfamily F ′. Fix such a subfamily, and let T1 . . . Tm be an arbitrary enumeration of the
decision trees in F ′, where m = cn.

Assume that FIND1 can be solved pseudo-deterministically with at most p(m) queries on
inputs of length m. We show how to solve S pseudo-determistically on inputs of length n

with at most p(m)(r(n) + v(n)) queries. The pseudo-deterministic query algorithm A for S
on input x of length n is as follows. We simulate the pseudo-deterministic query algorithm
A′ for FIND1 that makes at most p(m) queries. If A′ asks whether bit i ∈ [m] is 1 in the

CCC 2021

36:8 On Pseudo-Deterministic Query Complexity

input to FIND1, we run the query algorithm for S corresponding to tree Ti. By assumption,
at most r(n) queries are made, and some output y is produced. We verify that (x, y) ∈ S
by using the v(n) query verification algorithm for the search problem S. If the verification
succeeds, we assume the answer to the query made by A′ is 1 and proceed, otherwise we
proceed with the simulation of A assuming that the answer is 0. When we finish simulating
A′, some index j ∈ [m] is output. We proceed to run the query algorithm corresponding to
Tj on x and return the output z of this algorithm.

The cost of this query algorithm A is at most p(m)(r(n) + v(n)) since the simulation of
each query of A′ has cost at most r(n) + v(n), and there are at most p(m) queries along
any computation path. It remains to argue that A pseudo-deterministically solves S. By
assumption, a uniformly chosen tree from F ′ solves S on x with probability at least 2/3 -
this implies that for at least 2/3 fraction of indices i ∈ [m], the simulation of a query made
by A′ to i returns 1. By assumption, A′ pseudo-deterministically solves FIND1, hence there
is a fixed j ∈ [m] for which the query made by A′ to j returns 1 such that A′ outputs j with
probability at least 2/3. But since Tj solves S correctly, this means that A outputs a fixed
solution to the search problem S with probability at least 2/3.

Thus we have that p(m) ≥ q(n)/(r(n) + v(n)) This implies that p(m) = Ω(q(m)/(r(m) +
v(m)) using m = Θ(n) and our assumption that the functions r, q, v are all reasonable. ◀

4 Lower Bounds for Pseudo-deterministic Query Complexity

▶ Theorem 4. There is a
√

n gap between the randomized and pseudo-deterministic query
complexity of FIND1:
(1) BPPdt(FIND1) = O(1), and therefore Qdt(FIND1) = O(1) as well;
(2) psQdt(FIND1) = Ω(

√
n) and thus psPdt(FIND1) = Ω(

√
n) as well.

The proof of the above theorem follows from Theorem 3 together with our main theorem
below which proves a

√
n separation between randomized and pseudo-deterministic quantum

query complexity for a broad family of TFNPdt search problems that are associated with
expanding unsatisfiable CNF formulas.

▶ Definition 5. Let C = C1 ∧ . . . ∧ Cm be an unsatisfiable k-CSP problem over Boolean
variables x1, . . . , xn, where each Ci is a constraint involving at most k variables. The search
problem associated with C, SC ⊆ {0, 1}n×[m], consists of all pairs (x, i) such that x ∈ {0, 1}n,
and Ci(x) = 0. A query algorithm for SC on input x outputs a constraint Ci that is falsified
by x.

SC has been studied extensively in proof complexity and communication complexity,
where lower bounds on its deterministic query complexity have been used to obtain, via lifting,
exponential lower bounds on the monotone circuit size of a monotone function associated
with C. Similarly, these search problems play a prominent role in lower bounds in proof
complexity and extended formulations (e.g., [10, 8, 11]).

▶ Definition 6. Let C = C1 ∧ . . . ∧ Cm be a k-CSP over Boolean variables x1, . . . , xn.
Consider the bipartite graph with m left vertices (one for each constraint) and n right vertices
(one for each variable), such that (i, j) is an edge if and only if variable xj occurs in constraint
Ci. C is (r, s)-expanding if for every subset S ⊆ [m] of left vertices, |S| ≤ r, the set of right
elements adjacent to S, N(S), has size at least s.

▶ Theorem 7. Let C be a k-CNF or k-XOR over x1, . . . , xn, that is (ϵn, c)-expanding for
ϵ = 1/100, c ≥ k/2. Then psQdt(SC) = Ω(

√
n).

S. Goldwasser, R. Impagliazzo, T. Pitassi, and R. Santhanam 36:9

▶ Corollary 8. Let k ≥ 3, c = c(k) a sufficiently large constant, n sufficiently large and
m = cn. Let Cm

n be the distribution over random k-CNF (k-XOR) formulas with m constraints,
where each constraint is chosen uniformly at random from the set of all size-k clauses (size-k
XOR formulas). Then with probability 1 − o(1), a random C drawn from Cm

n will have
BPPdt(SC) ∈ O(1), and psQdt(SC) ∈ Ω(

√
n).

Proof of Corollary 8. For c = c(k) a sufficiently large constant, with high probability a
random k-CNF from Cm

n will have the property that every assignment x falsifies a constant
fraction of the clauses of C. Assuming that C drawn from Cm

n satisfies this property, there is
a constant depth randomized query algorithm for SC . Namely, pick a random subset S of
O(1) clauses from C, and query all of the variables underlying these clauses. Output the
first clause from S that is falsified, if one exists, and otherwise output error. Since every
assignment falsifies a constant fraction, ϵ, of clauses, the probability that all clauses in S are
satisfied (so the algorithm errs) is at most (1 − ϵ)|S|, so we can choose |S| to be a sufficiently
large constant so that the probability of error is at most 1/3. Therefore with probability
1 − o(1), BPPdt(SC) = O(1). For the lower bound, a standard calculation shows that a
random k-CNF (or k-XOR) formula will be (n/100, k/2) expanding with high probability.
Therefore by Theorem 7, psQdt(SC) = Ω(

√
n). ◀

Our lower bound proceeds by first proving linear lower bounds on the Fourier degree of
SC , by a reduction to known lower bounds on the Nullstellensatz degree of refuting C. With
this linear degree bound at hand, we obtain our lower bound by applying Huang’s sensitivity
theorem (showing that sensitivity and degree are quadratically related) together with the
fact that sensitivity lower bounds randomized query complexity.

A alternative proof which also gives us the
√

n quantum pseudo-deterministic lower
bound can be obtained by combining our linear degree bound for SC with the result of [2],
showing that quantum query complexity is quadratically related to degree. We begin with
the definition of Nullstellensatz degree.

▶ Definition 9. For C = C1 ∧ . . . ∧ Cm be an unsatisfiable k-CNF formula, we define the
standard representation of C by a set of m + n polynomial equations (each of degree at most
k) such that C is satisfiable if and only if there is an assignment such that all polynomials
evaluate to zero. For a clause Ci, let C+

i denote the set of variables occurring positively in
Ci and let C−

i denote the set of variables occurring negatively in Ci; with this notation we
can write Ci =

∨
xj∈C+

i
xj ∨

∨
xj∈C−

i
xj. From Ci define the polynomial

Q(Ci) = Πxj∈C+
i

(1 − xj)Πxj∈C−
i

xj .

Let Q(C) = {Q1, . . . , Qm+n} denote the set of polynomials {Q(Ci) : Ci ∈ C} ∪ {x2
i − xi :

i ∈ [n]}.

▶ Definition 10. Let C be an unsatisfiable k-CNF formula and let Q(C) be the associated
set of polynomials as in Definition 9. A Nullstellensatz refutation of C (over a field F) is a
set of polynomials {Pi}, i = 1 . . . m + n such that∑

i∈[m+n]

PiQi = 1

holds over the ring F [x1 . . . xn]. Any such sequence {Pi} is called a Nullstellensatz refutation
of C, and the degree of the refutation is maxi∈[m+n]d(Pi). The Nullstellensatz degree of C,
NS(C), is the minimum degree over all Nullstellensatz refutations of C.

CCC 2021

36:10 On Pseudo-Deterministic Query Complexity

We will use the following linear lower bounds on the Nullstellensatz degree for random
formulas.

▶ Theorem 11 ([21, 6, 3]). Let C = C1 ∧ . . . ∧ Cm be a k-CNF or k-XOR formula over
x1, . . . , xm, with m = O(n) and such that C is (ϵn, k/2)-expanding. Then NS(C) = Ω(n)
(over any field).

The next lemma shows that d(SC) is lower bounded by Nullstellensatz degree (over any
field).

▶ Lemma 12. Let C be an unsatisfiable k-CNF formula, and let f be any function solving the
search problem SC. Then NS(C) ≤ d(f). Conversely, for any finite field F, O(d(SC) log n) ≤
NS(C) ≤ d(SC).

Proof of Lemma 12. Suppose that f : {0, 1}m → [m] solves the search problem for C, and
let d = d(f) = maxi d(f i). Consider the polynomial

∑
i∈[m] f iQi. First, we claim that

the polynomial
∑

i∈[m] f iQi evaluates to 1 on all inputs in {0, 1}n. Since the functions
{f i | i ∈ [m]} form a partition of {0, 1}n, for every α ∈ {0, 1}n, there is exactly one i ∈ [m]
such that f i(α) = 1, and for all other j ≠ i, f j(α) = 0. Since f i(α) = 1 implies Ci(α) = 0,
it follows that Qi(α) = 1. Thus,

∑
i∈[m] f iQi evaluates to 1 for all α ∈ {0, 1}n as claimed.

Now using the axioms {Qm+1, . . . , Qm+n} = {x2
i − xi | i ∈ [n]}, we can derive the identically

1 polynomial as:∑
i∈[m]

f iQi +
∑

i∈[m+1,m+n]

hiQi,

where each hi is of degree at most d. Thus we have a degree d Nullstellsatz refutation of C,
so NS(C) ≤ d(f).

In the other direction, let Q(C) be the set of polynomials associated with C, and
assume that we have degree-d polynomials P1, . . . , Pm such that

∑
i PiQi = 1(mod2), where

F = GF (2). (A similar argument works over any finite field.) We want to define polynomials
f i such that: f i(α) = 1 implies that Ci(α) = 1 and for all Cj , j < i, Cj(α) = 0. For any α,
we know that

∑
i Pi(α)Qi(α) = 1. In order to determine whether or not f i(α) = 1, we want

to do a binary search in order to find a term Pi(α)Qi(α) that evaluates to 1. For example
suppose that m = 16. Then since

∑16
i=1 Pi(α)Qi(α) is odd either (a)

∑8
i=1 PiQi is odd, or

(b)
∑16

i=9 PiQi is odd. If (a) is odd, then we recurse on the left (smaller) side and otherwise
if (a) is even then we recurse on the right side. Viewing the binary search as a decision tree,
at the root we query

∑8
i=1 PiQi and if it evaluates to 1 we go left and otherwise we go right.

This gives a height log m decision tree where internal vertices are labelled with degree d

polynomials, and the leaves are labelled with the index i ∈ [m] such that Pi(α) = 1. Let pi

be the path from the root to the leaf labelled by i. We can define a polynomial f i associated
with pi which is the product of log m polynomials (along the path) such that f i(α) = 1 if
and only if α is consistent with the path pi. Thus the f i’s solve the search problem SC and
have degree d log m. ◀

Proof of Theorem 7. Let C = C1 ∧ . . . ∧ Cm be a k-CNF or k-XOR CSP over x1, . . . , xn

that is (ϵn, k/2) expanding, where m = O(n). By Theorem 11, NS(C) = Ω(n), and thus by
Theorem 12, d(SC) = Ω(n).

Assume that T is a pseudo-deterministic query algorithm for SC . Then for every
input x ∈ {0, 1}n, there is a canonical solution f(x) such that T (x) outputs f(x) with
probability at least 2/3. Thus T is a randomized query algorithm for f . By Nisan [28]
s(f) = O(BPPdt(f)), and by Huang [25], s(f) ≥

√
d(f). Thus since d(SC) = Ω(n), it follows

that BPPdt(f) = Ω(
√

n), and thus psPdt(SC) = Ω(
√

n). ◀

S. Goldwasser, R. Impagliazzo, T. Pitassi, and R. Santhanam 36:11

Proof of Theorem 4. This follows from Theorem 7 and Theorem 3. We apply Theorem 3
to the search problem SC . By Theorem 7, we have that r(n) = O(1) and q(n) = Ω(

√
n).

Also v(n) = O(1) since we can verify a solution to SC by just querying the variables in the
clause that is the candidate solution. Clearly, r, q, v are all reasonable, hence it follows from
Theorem 3 that FIND1 has pseudo-deterministic query complexity Ω(

√
n). ◀

We observe that our Ω(
√

n) separation between pseudo-deterministic quantum query
complexity and quantum query complexity is tight. Grover [23] discovered a quantum query
algorithm of complexity O(

√
n) for solving the following search problem: Given an n-bit

binary string x, the goal is to find a coordinate i such that xi = 1 (or to indicate that no
such i exists). (See e.g., [9] for a survey.) This implies that FIND1 has pseudo-deterministic
quantum query complexity Õ(

√
n), using a simple binary search algorithm to find the

lexicographically first 1. For the quantum lower bound, we combine the result of [2] that
quantum query complexity is at least

√
deg(f) with Theorem 7.

5 Applications

5.1 A Related Combinatorial Problem
Our pseudo-deterministic query lower bound is related to a natural problem in extremal graph
theory, which states that any proper coloring of the hypercube has high (block) sensitivity.

▶ Definition 13. A proper coloring of the m-dimensional Boolean cube is any function
c : {0, 1}m − {0m} → [m] such that for all β ∈ {0, 1}m − {0m}, βc(β) = 1.

▶ Theorem 14. Let c be any proper coloring of the Boolean cube. Then there must exist
β ∈ {0, 1}m such that: (i) β contains at least a constant fraction of 1’s, and (ii) β has block
sensitivity d = Ω(

√
m). That is, there are d disjoint blocks of inputs, B1, . . . , Bd such that

for all i ∈ [d], c(β) ̸= c(βBi).

We remark that the above theorem implies a lower bound of Ω(
√

n) on the pseudo-
deterministic query complexity of FIND1.

Proof. At a high level, we will convert our sensitivity lower bound for the search problem
associated with a random unsat k-XOR formula into a block sensitivity lower bound for the
above coloring problem. Fix an expanding k-XOR formula C with m = O(n) constraints
and n variables such that for any assignment α ∈ {0, 1}n, at least a constant fraction of the
parity constraints are falsified by α. Further we will assume that the constraint-to-variable
graph is expanding and in particular, for any subset S ⊆ [n], there exists a large subset
S′ ⊆ S, |S′| = O(|S|) such that for all i ≠ j ∈ S′, the constraints containing xi are disjoint
from the constraints containing xj .

First, we define a simple transformation that maps each input α ∈ {0, 1}n to an associated
m-dimensional Boolean vector, β(α) ⊆ {0, 1}m.

▶ Definition 15. Let α ∈ {0, 1}n. The constraint vector, β(α) ∈ {0, 1}m associated with α

is defined as follows. For each j ∈ [m], β(α)m = 1 if and only if Cj(α) = 0. That is, the
constraint vector associated with α has a 1 in coordinate j exactly when the jth constraint of
C is falsified by α. Let S(C) denote the image of this map; that is, S(C) ⊆ {0, 1}m is the
set of all length m vectors that are constraint vectors for some α ∈ {0, 1}n.

CCC 2021

36:12 On Pseudo-Deterministic Query Complexity

Since C has the property that every assignment falsifies a constant fraction of the
constraints in C, it follows that for every α, β(α) contains at least a constant fraction of
1’s. Now consider a pair of adjacent assignments α and αi where αi is obtained from α

by toggling the value of xi, i ∈ [n]. Let B(xi) ⊆ [m] denote the set of coordinates j such
that constraint Cj in C contains xi. Because the constraints in C are all parity constraints,
the constraint vector, β(αi) associated with αi can be obtained from β(α) by toggling the
coordinates in B(xi). Thus for every α ∈ {0, 1}n and i ∈ [n], we have:

β(αi) = (β(α))B(xi),

where β(α)B(xi) is obtained by starting with β(α) and flipping the coordinates in B(xi).
Now suppose that c : {0, 1}m → [m] is a proper coloring of the m-dimensional Boolean

hypercube. Then c restricted to the constraint vectors S(C) defines a function fc : {0, 1}n →
[m] that solves the search problem associated with C. By the proof of Theorem 7, any
function that solves the search problem for C has sensitivity Ω(

√
n). Let α ∈ {0, 1}n be an

input of maximal sensitivity, and let S ⊆ [n], |S| = Ω(
√

n), be the set of sensitive coordinates:
for all i ∈ S, fc(α) ̸= fc(αi).

By our assumption on C (which follows by expansion), there exists a subset S′ ⊆ S of
size at least ϵ|S| such that the sets of coordinates/constraints, {B(xi) | i ∈ S′} are pairwise
disjoint. Now we claim that β(α) ∈ {0, 1}m has block sensitivity |S′|, where the sensitive
blocks are: {B(xi) | i ∈ S′}.

First, by construction the blocks are pairwise disjoint. Secondly we want to show that
for each i ∈ [S′], c(β(α)) ̸= c(β(α)B(xi)). Since the constraints of C are parity constraints,
flipping the value of any variable xi flips the value of each constraint containing xi. That is, the
assignment αi corresponds to the constraint vector β(αi) = β(α)B(xi). Since i is a sensitive
coordinate for fc with respect to α, fc(α) ̸= fc(αi), and therefore c(β(α)) ̸= c(β(α)B(xi)). ◀

We leave open the following conjecture which is a strengthening of the above theorem.

▶ Conjecture 16. Let c be any proper coloring of the Boolean cube. Then there exists an
assignment β ∈ {0, 1}m such that β has at least a constant fraction of 1’s and such that β

has Ω(n) sensitivity.

We also state another conjecture that strengthens the theorem in a different way. A vector
β ∈ {0, 1}m is b-colorful with respect to a proper coloring c if the set of colors associated
with β plus all of the neighbors of β is at least b.

▶ Conjecture 17. Let c be any proper coloring of the m-dimensional Boolean hypercube. then
there exists β ∈ {0, 1}m such that β has a constant fraction of 1’s, and β is Ω(n)-colorful.

5.2 Size Lower Bounds and Pseudo-deterministic Resolution
The rich theory of TFNP and its subclasses (PPA, PPAD, PLS, etc) are defined based on the
underlying combinatorial axiom required to prove the totality of functions in the class. Thus
it is not surprising that there are strong connections between many TFNP subclasses and
corresponding proof systems. For example it is known that FP is complete for the bounded
arithmetic theory S1

2 (in the sense that the TFNP problems definable in S1
2 are the functions

in FP), and similarly PLS is complete for the theory T 1
2 .

The query complexity of subclasses of TFNP corresponds to studying the subclasses
relative to an oracle. In the query world FP becomes Pdt and PLS becomes PLSdt. The
corresponding relativized systems of bounded arithmetic, S1

2(R) and T 1
2 (R), are uniform

versions of the propositional proof systems TreeRes (Tree-like Resolution) and Res (dag-like
Resolution).

S. Goldwasser, R. Impagliazzo, T. Pitassi, and R. Santhanam 36:13

For many weak propositional proof systems, there is an equivalence between minimal-size
proofs of unsatisfiable formulas C and the query complexity of solving the search problem
SC in a corresponding query model. In this section we will use this equivalence to define
pseudo-deterministic Resolution – a new notion that lies between ordinary Resolution and
the much stronger notion of Random Resolution. Building on our pseudo-deterministic
query lower bound, we exponentially separate pseudo-deterministic tree-like Resolution from
Random Resolution.

5.2.1 Pseudo-deterministic Resolution
We start by defining some dag-like query models and review the known equivalences between
Resolution and its common subsystems and their query model counterparts.

▶ Definition 18 (Conjunction DAGs). Consider the n-bit input domain {0, 1}n and let F be
the set of all conjunctions of literals over the n input variables. An F-DAG, Π, solving a
search problem S ⊆ {0, 1}n × [m] ∈ TFNPdt is a directed acyclic graph of fanout at most two,
where each node v is associated with a function fv ∈ F . (The set f−1

v (1) is called the feasible
set for v) and satisfying the following conditions:

There is a distinguished root node r and fr = 1 (the constant 1 function).
For each non-leaf node v with children u, u′, we have f−1

v (1) ⊆ f−1
u (1) ∪ f−1

u′ (1).
Each leaf node v is labelled with an output ov ∈ [m] such that f−1

v (1) ⊆ S−1(ov).
The size of Π is the number of vertices in the dag. The width of Π is the maximum width of
a conjunction associated with a node of Π.

▶ Theorem 19. Let C be an unsatisfiable k-CNF formula and let SC be the associated search
problem. The following equivalences hold:
1. The minimum width Resolution refutation of C is equivalent (to within constant factors)

to the minimum width of a conjuction-DAG for SC [31, 32].
2. The minimum size Resolution refutation of C is equivalent (to within constant factors)

to the minimum size conjunction-DAG for SC . [31, 32].
3. The minimum size Regular Resolution refutation of C is equivalent to the minimum-size

read-once Branching program for SC [27].
4. The minimum size tree-like Resolution refutation of C is equivalent to the minimum size

deterministic decision tree for SC .

With these equivalences in hand, we easily obtain natural pseudo-deterministic versions
of these proof systems, stated next for Resolution and its common subsystems.

▶ Definition 20. Let C be an unsatisfiable k-CNF formula. A pseudo-deterministic tree-like
Resolution refutation of C is a pseudo-deterministic decision tree for SC . Let the minimal-
size pseudo-deterministic TreeRes refutation for C be equal to psPdt(SC). Similarly the
pseudo-deterministic regular Resolution complexity of C is the pseudo-deterministic read-once
branching program size for SC , and the pseudo-deterministic Resolution complexity of C is
the pseudo-deterministic dag-like query complexity of SC .

It is not hard to see that pseudo-deterministic TreeRes, Res refutations are sound, and at
least for TreeRes, pseudo-deterministic proofs can be efficiently verified. We want to compare
pseudo-deterministic Resolution (and its subsystems) to Random Resolution (defined in [7]
(following a suggestion by S. Danchev), where it was motivated by the open problem of
proving a strict depth hierarchy for bounded-depth Frege systems.

CCC 2021

36:14 On Pseudo-Deterministic Query Complexity

▶ Definition 21. A random Resolution refutation (RR) of an unsat CNF formula F over
x1, . . . , xn is a distribution π on pairs (wi, Ei), i ∈ [q] such that:
1. Each Ei is a CNF formula in x1, . . . , xn;
2. For each i ∈ [q], wi is a Resolution refutation of F ∧ Ei;
3. For all α ∈ {0, 1}n, Pri∼π[Ei(α) = 1] ≥ 3/4

The size of the proof is
∑

i(|wi| + size(Ei)).

Similarly one can define random tree-like and regular) Resolution proofs, where now
each wi is a tree-like (regular) Resolution refutation of F ∧ Ei. Random Cutting Planes
refutations were also defined in a similar manner by Sokolov [32].

Random Resolution turns out to be quite powerful, as is evidenced by the fact that random
unsatisfiable k-CNF formulas have short RR refutations, and even short random tree-like
refutations. For a random k-CNF with sufficiently many clauses, every assignment will falsify
a constant fraction of the clauses and thus we can create the distribution {(wi, Ei), i ∈ [q]}
to mimic the randomized strategy for finding a violated clause: for each clause Ci in F , let
Ei be the negation of Ci. Clearly each formula F ∧ Ei is unsatisfiable and has a very short
tree-like proof, since Ci together with Ei is contradictory. Secondly since every assignment
is falsified by 1 − ϵ fraction of clauses, Pri[Ei(α) = 1] ≥ 1 − ϵ. Using this fact together with
the PCP theorem, Pudlak and Thapen [7] observed that no polynomial-time verifier, or even
a randomized verifier, can check a RR refutation (or even a tree-like refutation) efficiently
unless P = NP (or BPP = NP).

The following theorem shows that a natural random distribution of formulas exponentially
separates pseudo-deterministic TreeRes size from random TreeRes size.

▶ Theorem 22. For all constant k ≥ 3, there exists a family of k-CNF (k-XOR) formulas
{Fn}n∈N} such that:

The formulas Fn admit linear-size random TreeRes refutations;
For n sufficiently large and m = O(n) sufficiently large, any pseudo-deterministic TreeRes
refutation of Fn requires size exp(Ω(

√
n)).

Proof. The formula Fn will be obtained by two steps. First we will choose a k/2-CNF
(k/2-XOR) formula, fn, such that its clause variable graph is expanding. For example a
random formula chosen with m = O(n) clauses (XOR equations) will suffice. Secondly we
obtain Fn by composing fn with a 2-bit gadget g. That is, each variable xi will be replaced
by g(xa

i , xb
i), where xa

i , xb
i are twin variables replacing xi. For fn an expanding CNF formula,

we define the gadget g to be the parity function, g(a, b) = a ⊕ b and for fn an XOR formula,
g(a, b) = a ∨ b. We then rewrite fn ◦ gn as a k-CNF, clause-by-clause. Since fn is a k/2-CNF
formula with n variables and m clauses, Fn will be a k-CNF formula with 2n variables and
m · 2k clauses.

Fix n sufficiently large, and let T be a pseudo-deterministic TreeRes refutation of Fn,
where each tree Ti ∈ T has size at most s. Define size(T) to be the sum of the sizes of all
trees in T . First we remark that by Newman’s theorem, we can assume that the number of
trees (i.e. the amount of randomness required) is polynomial in the size of each tree, and
thus counting the total size of all trees combined, rather than the max tree size, is justified.

Let R ⊆ {0, 1, ∗}2n be the uniform distribution over the family of restrictions ρ such that:
for all i ∈ n, exactly one variable in the pair (xa

i , xb
i) is set to 0 or 1 and the other variable

in the pair is set to ∗. That is, (xa
i |ρ, xb

i |ρ) ⊆ {(∗, 0), (∗, 1), (0, ∗), (1, ∗)}. Let T be a size s

pseudo-deterministic TreeRes refutation of Fn. Let terms(T) be the set of all terms (partial
assignments) associated with all paths in all trees, Ti, and let wide ⊆ terms(T) be those
terms in terms(T) of width at least w, w = O(

√
n).

S. Goldwasser, R. Impagliazzo, T. Pitassi, and R. Santhanam 36:15

For a fixed term t ∈ wide(T), the probability that a random ρ ∈ R does not set t to zero
is at most (3/4)w. By the union bound, the probability that there exists ρ ∈ R that sets all
wide terms to zero is at least 1 − s(3/4)w which is greater than zero for log s = O(w). Thus
there exists a restriction setting all wide terms of T to zero.

Applying ρ to T , and to Fn, we obtain a pseudo-deterministic TreeRes refutation T ′ of
Fn|ρ of size at most n and of depth at most w. Since Fn|ρ is just a copy of fn, by the expansion
properties of fn, we can apply Theorem 7 which states that any pseudo-deterministic decision
tree for fn must have depth Ω(

√
n), and thus s = Ω(exp(

√
n)). ◀

5.2.2 Pseudo-deterministic Algebraic Proofs
By the relationship between low-degree polynomials solving SC and low-degree Nullstellensatz
refutations of C given in Lemma 12, we can define pseudo-deterministic Nullstellensatz
refutations to be pseudo-deterministic polynomials solving SC .

▶ Definition 23. Let C be an unsatisfiable k-CNF and let SC be the corresponding search
problem. Then a pseudo-deterministic degree d Nullstellensatz refutation over F is a distribu-
tion over polynomials P = {P 1, . . . P q} over F such that each P i : {0, 1}n → [m] has degree
at most d and such that there exists a function f solving SC such that P probabilistically
computes f : for all inputs x ∈ {0, 1}n, Pri∈[q][P i(x) = f(x)] ≥ 3/4.

We note that the degree of Nullstellensatz refutations of C over F2 have also been shown
to be equivalent to the PPAdt query complexity of SC [19]. (Intuitively there is a degree-d
PPAdt query algorithm for S if there is a depth-d decision tree reduction from S to an instance
of PPA. See [19] for a formal definition.)

Over the reals, Ω(nϵ) lower bounds for pseudo-deterministic Nullstellensatz refutations
follow from our pseudo-deterministic query lower bound for SC for random C. This is because
a family of polynomials computing a function f that solves the search problem implies the
existence of an approximate polynomial of the same degree for solving f (that is, polynomials
pi that pointwise are within ϵ of f i(x) for all x.) And polynomial degree is polynomially
related to approximate-degree for Boolean functions over the reals [29].

It is interesting to study similar relationships for other, stronger algebraic proof systems
such as Sherali Adams (SA) and Sum-of-Squares. Can low degree proofs be characterized or
lower bounded by the complexity of a family of pseudo-deterministic algebraic objects for
solving the associated search problem?

6 Average Case Pseudo-deterministic Simulations

In this section, we study pseudo-deterministic simulations of randomized query algorithms
in the average-case setting. We first show that for any search problem S, the existence of
zero-error randomized algorithms with low query complexity on average over a distribution
D implies the existence of deterministic algorithms with low query complexity on average
over D (and hence also of zero-error pseudo-deterministic algorithms). In the bounded-error
setting, we show that for any search problem S solving an approximation problem, the
existence of bounded-error randomized algorithms with low query complexity implies that for
any D, there is a bounded-error pseudo-deterministic algorithm with low query complexity
on average over D.

We first define what it means to solve search problems efficiently on average by a
pseudo-deterministic algorithm. We adopt the strongest reasonable definition of average-case
solvability: the algorithm must be pseudo-deterministic and solve the problem correctly on

CCC 2021

36:16 On Pseudo-Deterministic Query Complexity

every input, and must have low query complexity on average over the distribution on inputs
(and randomness of the algorithm). Adopting a strong notion of solvability makes our results
stronger, as our results are mainly simulation results.

▶ Definition 24. Let D be a distribution over X ⊆ {0, 1}n. We say that a search problem S
over domain X is solvable on average over D by a bounded-error pseudo-deterministic query
algorithm with complexity q if there is a randomized query algorithm A that is bounded-error
pseudo-deterministic and solves S correctly with probability ≥ 2/3 on each input in X , and
moreover the expected number of queries of A (over the randomness of A and the distribution
D) is at most q. Similarly, we say that a search problem S over domain X is solvable on
average over D by a zero-error pseudo-deterministic query algorithm with complexity q if
there is a randomized query algorithm A that is zero-error pseudo-deterministic and solves S
correctly with probability 1 on each input in X , and moreover the expected number of queries
of A (over the randomness of A and the distribution D) is at most q. If A is deterministic, we
say that S is solvable on average over D by a deterministic query algorithm with complexity q.

We first show that the canonical problem FIND1 (which is solvable efficiently by zero-error
query algorithms) has low average-case deterministic query complexity over any distribution.

▶ Proposition 25. Let D be any distribution on the domain of FIND1 restricted to n-
bit inputs. FIND1 is solvable on average over D by a deterministic query algorithm with
complexity log(n) + 1.

Proof. Let D be any distribution on the domain of FIND1 restricted to n-bit inputs. Let R

be a subset of [n] of size log(n) where R is chosen uniformly at random over all such subsets.
Since FIND1 is defined over inputs x with |x| ≥ n/2, we have that for each x in the domain
of FIND1, the probability that there is a j ∈ R such that xj = 1 is at least 1 − 1/n. By
averaging, there is a subset B of [n] of size log(n) such that with probability at least 1 − 1/n

over D, xj = 1 for some j ∈ B when x is chosen from D.
Consider the following deterministic query algorithm A. A queries the indices in B in

lexicographic order, and outputs the first such index j for which xj = 1, if such an index
exists. If no such index exists, A queries the indices in [n] \ B in lexicographic order, and
outputs the first index j for which xj = 1. Since FIND1 is only defined over n-bit inputs with
at least one 1, this query algorithm is correct. Call an input x in the domain of FIND1 “good”
if there is a j ∈ B such that xj = 1. With probability at least 1−1/n over x chosen from D, x

is good and the query algorithm A uses at most log(n) queries. When x is not good, A uses at
most n queries. Thus the query complexity is at most (1 − 1/n) · log(n) + n · 1/n ≤ log(n) + 1
on average over D. ◀

Next we significantly generalize Proposition 25 and show that efficient average-case
solvability by zero-error randomized algorithms is in fact equivalent to efficient average-case
solvability by deterministic algorithms (and hence also by zero-error pseudo-deterministic
algorithms).

▶ Theorem 26. Let S be a total search problem over domain X ⊆ {0, 1}n, D a distribution
over X , and q : N → N a function. The following are equivalent:
1. S is solvable on average over D by a zero-error query algorithm with complexity

O(q(n)polylog(n)).
2. S is solvable on average over D by a zero-error pseudo-deterministic query algorithm

with complexity O(q(n)polylog(n)).
3. S is solvable on average over D by a deterministic query algorithm with complexity

O(q(n)polylog(n)).

S. Goldwasser, R. Impagliazzo, T. Pitassi, and R. Santhanam 36:17

Proof. The third item trivially implies the second, and the second item trivially implies the
first. We show that the first item implies the third.

Suppose S is solvable on average over D by a zero-error query algorithm with complexity
r(n) = O(q(n)polylog(n)). This implies that there is a distribution D′ over deterministic
query algorithms such that for every input x in X , a query algorithm A chosen from D′

solves S with probability at least 2/3 over D′, and moreover the expected number of queries
over A chosen from D′ and x chosen from D is at most r(n). Without loss of generality,
we can assume that D′ is uniform over a multi-set Y of deterministic query algorithms. If
this multi-set has size K, sampling from D′ is equivalent to sampling uniformly from [K].
From now on, we assume a bijection between [K] and Y , and also assume without loss of
generality that K ≥ 4 log(n).

For positive integral t, define an input x ∈ X to be t-good if it is the case that with
probability at least 1/6 over choice of A from D′, A solves S correctly on x making at most
2tr(n) queries. We argue that for each t, x chosen from D is t-good with probability at
least 1 − 1/t. The proof is by contradiction. Suppose this were not the case. Then for some
positive integer t, with probability greater than 1/t over x chosen from D, x is not t-good. If
x is not t-good, then with probability at least 5/6 over choice of A from D′, A either does
not return a solution for S or makes more than 2tr(n) queries. Since for any x ∈ X , A solves
x with probability at least 2/3, it must be the case that with probability at least 1/2 over
choice of A from D′, A makes more than 2tr(n) queries on x when x is not t-good. Since
the probability over D that x is not t-good is greater than 1/t, this implies that when x is
sampled from D and A from D′, the expected number of queries is greater than r(n), in
contradiction to the assumption that the zero-error query algorithm corresponding to D′ has
complexity at most r(n).

Now consider a t-good x ∈ X . Say that k ∈ [K] is t-suitable for x if running the k’th
deterministic query algorithm from Y on x succeeds in solving S on x while making at
most 2tr(n) queries. Since x is t-good, k chosen uniformly from [K] is suitable for x with
probability at least 1/6. Let R be a subset of [K] of size 4 log(n) chosen uniformly at random
from all subsets of this size. With probability at least 1 − 1/n, R contains j ∈ [K] such that
j is t-suitable for x. Say that R is t-suitable for x if this is the case.

Let µ(x) be the smallest positive integer t such that x is t-good. For any x, we have that
µ(x) ≤ n.

By averaging, there is a subset B of [K] of size 4 log(n) such that with probability at
least 1 − 1/n over x sampled from D, B is µ(x)-suitable for x. Consider the query algorithm
A that works as follows. It runs the query algorithms corresponding to the elements of B

in an interleaving fashion. Namely, if the elements of B are b1 . . . b4 log(n), it makes the first
query of the bj ’th algorithm for each j ∈ [4 log(n)] in order, then the second query for each
of these algorithms, and so on until it has made enough queries for a given algorithm so that
the algorithm outputs an answer. Naturally, it never repeats a query that it has already
been made. Note that A halts after making at most 8µ(x) log(n)r(n) queries.

We bound the expected number of queries made by A for x chosen from distribution
D. With probability at most 1/n, B is not µ(x)-suitable for x, and in this case A makes
at most n queries on x. When B is µ(x)-suitable, A halts and outputs a correct solution
for S on x after making at most 8µ(x) log(n)r(n) queries. For each integer i ∈ [⌈log(n)⌉],
we have that the probability over x sampled from D that µ(x) ≤ 2i is at least 1 − 1/2i.
Computing the expectation of the running time of A by summing over 1 ≤ i ≤ log(n)
such that 2i < µ(x) ≤ 2i+1, we have that the contribution to the expectation when B is
µ(x)-suitable is at most (1/2 · 2 + 1/4 · 4 + . . .)8 log(n)r(n) ≤ 16(log(n))2r(n). Thus, the
total expectation is at most 16(log(n))2r(n) + 1 = O(q(n)polylog(n)), as desired. ◀

CCC 2021

36:18 On Pseudo-Deterministic Query Complexity

Next, we turn to bounded-error average-case solvability. We show that the ϵ-HWE
problem of approximating the Hamming weight of a string to within an additive term ϵ

is solvable efficiently on average by bounded-error pseudo-deterministic query algorithms.
We note that Goldreich, Goldwasser and Ron [13] showed an Ω(n) query lower bound for
worst-case bounded-error pseudo-deterministic algorithms solving this problem.

▶ Theorem 27. For any distribution D and any constant ϵ > 0, ϵ-HWE is solvable on
average over D by bounded-error pseudo-deterministic algorithms of complexity O(log(n)/ϵ2).

Proof. We use the fact that, on any x, if we take a random sample of bits of size q =
O(log(n)/ϵ2), the empirical average of ones of this sample differs from that of x by ϵ/4 with
probability at most 1/5n, using a standard Chernoff-Hoeffding bound. By averaging, for
every distribution D there must be some fixed such subset of bits with this property, when
we take the expectation over random x from D. Call this subset A, and let dA(x) be the
empirical estimate of the density of x based on the bits in A. Let B represent a uniform
random subset of bits of size q, and let dB(x) represent the empirical estimate of the density
of x based on the bits in B. Let d(x) represent the actual density of x.

Let p(x) be the function : p(x) = dA(x) if ProbB[|dB(x) − dA(x)| ≤ ϵ/2] > 1/5, and
p(x) = d(x) otherwise. p(x) is a fixed function of x, and it is always a good approximation
to d(x), since if it is not literally d(x), it is ϵ/2 close to dB(x) for most B, and a random B

has dB(x) ϵ/2 close to d(x) .
Consider the following algorithm for computing p(x):

1. Compute dA(x).
2. Choose a random B of size q.
3. Compute dB(x)
4. If |dB(x) − dA(x)| ≤ ϵ/2, return dA(x)
5. Otherwise, query all bits of x, and compute p(x). Return p(x).

We claim that this algorithm returns p(x) on any x except with probability at most 1/5.
Case 1: If ProbB[|dB(x) − dA(x)| ≤ ϵ/2] > 1/5, then p(x) = dA(x). Then we either return
the correct value in step 4, or we go on to compute the correct value in step 5. Either way,
the algorithm is always correct.

Case 2: If ProbB [|dB(x) − dA(x)| ≤ ϵ/2] ≤ 1/5, then by definition, we return a value in
step 4 with probability at most 1/5. Thus, on such an input, with probability at least 4/5,
we go on to compute and return p(x) by brute force in step 5.

Finally, we bound the expected number of bits queried by the algorithm over a random
x from D. Over such random x, with probability 1 − 1/5n, |dA(x) − d(x)| ≤ ϵ/4, and for
any x, with the same probability over B, |dB(x) − d(x)| ≤ ϵ/4. If both of these happen,
|dA(x) − dB(x)| ≤ ϵ/2 and the algorithm terminates in line 4 after making 2q queries. So
the expected number of queries is at most 2q + 2/5n · n = O(q). ◀

We observe that Theorem 27 generalizes to yield an efficient bounded-error pseudo-
deterministic algorithm on average for any approximation problem with low bounded-error
randomized query complexity. Given a metric ∆ on a space O and a function f : X → O, a
search problem S with domain X ⊂ {0, 1}n and range O is said to be the ϵ-approximation prob-
lem for f if the solutions to S on input x ∈ X are all points y ∈ O for which ∆(y, f(x)) ≤ ϵ.

▶ Theorem 28. Let ϵ be a constant, O be a space with metric ∆ and f : X → O be a function
such that there is a randomized query algorithm with complexity q to ϵ/4-approximate f .
Then for any distribution D over X there is a pseudo-deterministic query algorithm A that
ϵ-approximates f with query complexity O(q log(n)) on average over D.

S. Goldwasser, R. Impagliazzo, T. Pitassi, and R. Santhanam 36:19

The proof is a straightforward generalization of the proof of Theorem 27, and we therefore
omit it.

We note that unlike with zero-error randomized query complexity, efficient bounded-error
query algorithms are not in general efficiently simulated on average by deterministic query
algorithms.

▶ Proposition 29. Let D be any distribution assigning positive weight to every n-bit input.
For any ϵ < 1/2, ϵ-HWE has zero-error average-case query complexity Ω(n) over D.

Proof. Let A be any zero-error query algorithm solving ϵ-HWE on average over D. A is a
distribution over deterministic query algorithms. We note that for any deterministic query
algorithm in the support of A, there is no path of length < (1 − 2ϵ)n with an output. If
there were such a path, then the output would not be a correct ϵ-approximation either for
the input on which all unqueried bits are 0 or for the input on which all unqueried bits are 1.
Since both of these inputs have positive probability according to D, this would imply that A

is not a correct zero-error algorithm for ϵ-HWE.
Now for any input x, since A is a correct zero-error query algorithm, it must return an

output with probability at least 2/3. By the previous paragraph, this means that the average
number of queries over D is Ω(n). ◀

7 Open Problems

Here we record some open problems and directions that we leave open.
First, our lower bound is tight for pseudo-deterministic quantum query complexity. We

conjecture that the bound for both FIND1 and SC can be improved to Ω(n) for pseudo-
determnistic query complexity. Such an improvement would have to bypass sensitivity (and
approximate degree) since both incur a quadratic loss. Secondly, we leave open the question
of proving superpolynomial or exponential lower bounds for pseudo-deterministic Resolution
refutations.

More generally, it is very interesting to study pseudo-determinism in the realm of
communication complexity. A pseudo-deterministic communication protocol for a search
problem S = {0, 1}n × {0, 1}n × [m] is a distribution Π = {π1, . . . , πq} over deterministic
protocols with the property that there exists a function fΠ : {0, 1}n × {0, 1}n → [m] solving
S, where Π is a randomized protocol for f . That is, for every input (x, y) ∈ {0, 1}n × {0, 1}n,
Pri∈[q][πi(x, y) = f(x, y)] ≥ 3/4.

Pseudo-deterministic communication complexity is interesting for several reasons. For
Boolean functions an exciting body of work has culminated in what is now a nearly complete
understanding of many query/degree measures and their pairwise relationships. In turn these
query measures for Boolean functions have natural analogs in communication complexity,
and lifting theorems give a way to lift query upper and lower bounds to their communication
counterparts. However for search problems, we lack a good understanding of query measures
and the relationships between them, and this in turn leads to a lack of clarity with respect
to their communication analogs. For example, what is the analog of sensitivity and block-
sensitivity for search problems? In [26] a notion called critical block sensitivity was defined,
and used in [20, 18] to prove strong lower bounds on dynamic SOS and extended formulations
on the exact compution of certain functions. Unfortunately critical block sensitivity is only
defined for search problems containing inputs with a unique solution and therefore these
tools cannot be used to prove inapproximability results. As a second example, extended
formulation lower bounds have been proven by lifting semialgebraic degree lower bounds, but

CCC 2021

36:20 On Pseudo-Deterministic Query Complexity

applying the lifting framework to prove inapproximability lower bounds is quite subtle, in large
part due to a lack of relaxed/approximate/pseudo-deterministic notions of query complexity
for search problems (e.g., approximate notions of Sherali-Adams (SA) and Sum-of-Squares
(SOS) degree.) Since pseudo-deterministic algorithms are just randomized algorithms for
computing some function solving the search problem, they are central to the study of relaxed
query measures for search problems.

Secondly, the pseudo-determinism communication complexity of Karchmer-Wigderson
search problems is particularly interesting. It is well known that deterministic communication
complexity lower bounds on the KW search problems associated with a Boolean function
is equivalent to formula size lower bounds (and dag-like communication lower bounds are
equivalent to circuit lower bounds). This equivalence has been quite successful for proving
lower bounds in monotone models of computation where lifting theorems in communication
complexity have been applied to prove a variety of state-of-the art lower bounds for monotone
formulas, monotone span programs, monotone circuits, as well as extended formulations
(which are also a monotone model as they relate to nonnegative rank).

An exciting direction towards proving nonmonotone circuit/formula lower bounds is to
further develop lower bound techniques for monotone models to apply to more functions –
such as slice functions or all small “perturbations” of the function [24]. Related to this, we
note that the communication complexity of monotone KW games is quite different than that
of non-monotone KW games: whereas the (nonmonotone) KW game for any f has a trivial
O(log n) pseudo-deterministic protocol, the monotone KW game (for monotone f) in general
appears to be hard pseudo-deterministically.

A reasonable approach for separating pseudo-determininistic from randomized communic-
ation is lifting. We conjecture that the lifted/composed functions FIND1 ◦ gn and SC ◦ gn

require large pseudo-deterministic communication complexity for good choices of g (such
as the index function). We note that standard lifting theorems won’t work in a black-box
way since the pseudo-deterministic protocol can have different canonical solutions for dif-
ferent inputs (x⃗, y⃗), (x⃗′, y⃗′) such that gn(x⃗, y⃗) = gn(x⃗′y⃗′). Nonetheless, pseudo-deterministic
communication lower bounds should be possible by combining lifting (in a non-blackbox
way) with the right pseudo-deterministic query lower bound argument. In this respect we
view our pseudo-deterministic query lower bounds as a first step towards obtaining a similar
separation in communication complexity.

.

References

1 Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity using
cheat sheets. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 863–876. ACM, 2016. doi:10.1145/2897518.2897644.

2 Scott Aaronson, Shalev Ben-David, Robin Kothari, and Avishay Tal. Quantum implications
of huang’s sensitivity theorem. CoRR, abs/2004.13231, 2020. arXiv:2004.13231.

3 Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calculus:
Non-binomial case. In 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 190–199, 2001.

4 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. J. ACM, 48(4):778–797, 2001. doi:10.1145/502090.502097.

5 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci., 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)00144-X.

https://doi.org/10.1145/2897518.2897644
http://arxiv.org/abs/2004.13231
https://doi.org/10.1145/502090.502097
https://doi.org/10.1016/S0304-3975(01)00144-X

S. Goldwasser, R. Impagliazzo, T. Pitassi, and R. Santhanam 36:21

6 Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps
between degrees for the polynomial calculus modulo distinct primes. J. Comput. Syst. Sci.,
62(2):267–289, 2001.

7 Samuel R. Buss, Leszek Aleksander Kolodziejczyk, and Neil Thapen. Fragments of approximate
counting. J. Symb. Log., 79(2):496–525, 2014. doi:10.1017/jsl.2013.37.

8 Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. Approximate constraint
satisfaction requires large LP relaxations. J. ACM, 63(4):34:1–34:22, 2016. doi:10.1145/
2811255.

9 Richard Cleve. An introduction to quantum complexity theory. Quantum Computation and
Quantum Information Theory, page 103–127, January 2001. doi:10.1142/9789810248185_
0004.

10 Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and efficient
algorithm design. Found. Trends Theor. Comput. Sci., 14(1-2):1–221, 2019. doi:10.1561/
0400000086.

11 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower
bounds from resolution. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors,
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pages 902–911. ACM, 2018. doi:10.1145/
3188745.3188838.

12 Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and
their cryptographic applications. Electron. Colloquium Comput. Complex., 18:136, 2011. URL:
http://eccc.hpi-web.de/report/2011/136.

13 Oded Goldreich, Shafi Goldwasser, and Dana Ron. On the possibilities and limitations
of pseudodeterministic algorithms. In 4th Innovations in Theoretical Computer Science
Conference, ITCS, pages 127–138, 2013.

14 Shafi Goldwasser and Ofer Grossman. Bipartite perfect matching in pseudo-deterministic NC.
In 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017,
July 10-14, 2017, Warsaw, Poland, pages 87:1–87:13, 2017.

15 Shafi Goldwasser, Ofer Grossman, and Dhiraj Holden. Pseudo-deterministic proofs. In 9th
Innovations in Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018,
Cambridge, MA, USA, pages 17:1–17:18, 2018.

16 Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff. Pseudo-
deterministic streaming. CoRR, abs/1911.11368, 2019. arXiv:1911.11368.

17 Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff. Pseudo-
deterministic streaming. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer
Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume
151 of LIPIcs, pages 79:1–79:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.ITCS.2020.79.

18 Mika Göös, Rahul Jain, and Thomas Watson. Extension complexity of independent set
polytopes. SIAM J. Comput., 47(1):241–269, 2018. doi:10.1137/16M109884X.

19 Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in monotone
complexity and TFNP. In Avrim Blum, editor, 10th Innovations in Theoretical Computer
Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, volume
124 of LIPIcs, pages 38:1–38:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ITCS.2019.38.

20 Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity.
SIAM J. Comput., 47(5):1778–1806, 2018. doi:10.1137/16M1082007.

21 Dima Grigoriev. Tseitin’s tautologies and lower bounds for nullstellensatz proofs. In 39th
Annual Symposium on Foundations of Computer Science, FOCS ’98, November 8-11, 1998,
Palo Alto, California, USA, pages 648–652, 1998.

CCC 2021

https://doi.org/10.1017/jsl.2013.37
https://doi.org/10.1145/2811255
https://doi.org/10.1145/2811255
https://doi.org/10.1142/9789810248185_0004
https://doi.org/10.1142/9789810248185_0004
https://doi.org/10.1561/0400000086
https://doi.org/10.1561/0400000086
https://doi.org/10.1145/3188745.3188838
https://doi.org/10.1145/3188745.3188838
http://eccc.hpi-web.de/report/2011/136
http://arxiv.org/abs/1911.11368
https://doi.org/10.4230/LIPIcs.ITCS.2020.79
https://doi.org/10.1137/16M109884X
https://doi.org/10.4230/LIPIcs.ITCS.2019.38
https://doi.org/10.1137/16M1082007

36:22 On Pseudo-Deterministic Query Complexity

22 Ofer Grossman and Yang P. Liu. Reproducibility and pseudo-determinism in log-space. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages 606–620, 2019.

23 Lov K. Grover. A fast quantum mechanical algorithm for database search. In Gary L.
Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 212–219. ACM, 1996.
doi:10.1145/237814.237866.

24 Pavel Hrubes. On ϵ-sensitive monotone computations. Comput. Complex., 29(2):6, 2020.
doi:10.1007/s00037-020-00196-6.

25 Hao Huang. Induced subgraphs of hypercubes and a proof of the sensitivity conjecture. CoRR,
abs/1907.00847, 2019. arXiv:1907.00847.

26 Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: amplifying communica-
tion complexity hardness to time-space trade-offs in proof complexity. In Howard J. Karloff
and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 233–248. ACM, 2012.
doi:10.1145/2213977.2214000.

27 László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. Search problems in the decision
tree model. SIAM J. Discret. Math., 8(1):119–132, 1995. doi:10.1137/S0895480192233867.

28 Noam Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing, 20(6):999–1007,
1991.

29 Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials.
Comput. Complex., 4:301–313, 1994. doi:10.1007/BF01263419.

30 Igor Carboni Oliveira and Rahul Santhanam. Pseudodeterministic constructions in subexpo-
nential time. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pages 665–677. ACM, 2017. doi:10.1145/3055399.3055500.

31 A. A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of bounded
arithmetic. Izvestiya RAN. Ser. Mat., pages 201–224, 1995.

32 Dmitry Sokolov. Dag-like communication and its applications. In Pascal Weil, editor, Computer
Science - Theory and Applications - 12th International Computer Science Symposium in Russia,
CSR 2017, Kazan, Russia, June 8-12, 2017, Proceedings, volume 10304 of Lecture Notes in
Computer Science, pages 294–307. Springer, 2017. doi:10.1007/978-3-319-58747-9_26.

https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/s00037-020-00196-6
http://arxiv.org/abs/1907.00847
https://doi.org/10.1145/2213977.2214000
https://doi.org/10.1137/S0895480192233867
https://doi.org/10.1007/BF01263419
https://doi.org/10.1145/3055399.3055500
https://doi.org/10.1007/978-3-319-58747-9_26

A Simple Proof of a New Set Disjointness with
Applications to Data Streams
Akshay Kamath #

University of Texas at Austin, TX, USA

Eric Price #

University of Texas at Austin, TX, USA

David P. Woodruff #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
The multiplayer promise set disjointness is one of the most widely used problems from communication
complexity in applications. In this problem there are k players with subsets S1, . . . , Sk, each drawn
from {1, 2, . . . , n}, and we are promised that either the sets are (1) pairwise disjoint, or (2) there
is a unique element j occurring in all the sets, which are otherwise pairwise disjoint. The total
communication of solving this problem with constant probability in the blackboard model is Ω(n/k).

We observe for most applications, it instead suffices to look at what we call the “mostly” set
disjointness problem, which changes case (2) to say there is a unique element j occurring in at least
half of the sets, and the sets are otherwise disjoint. This change gives us a much simpler proof of an
Ω(n/k) randomized total communication lower bound, avoiding Hellinger distance and Poincare
inequalities. Our proof also gives strong lower bounds for high probability protocols, which are much
larger than what is possible for the set disjointness problem. Using this we show several new results
for data streams:

1. for ℓ2-Heavy Hitters, any O(1)-pass streaming algorithm in the insertion-only model for detecting
if an ε-ℓ2-heavy hitter exists requires min(1

ε2 log ε2n
δ

, 1
ε
n1/2) bits of memory, which is optimal up

to a log n factor. For deterministic algorithms and constant ε, this gives an Ω(n1/2) lower bound,
improving the prior Ω(log n) lower bound. We also obtain lower bounds for Zipfian distributions.

2. for ℓp-Estimation, p > 2, we show an O(1)-pass Ω(n1−2/p log(1/δ)) bit lower bound for outputting
an O(1)- approximation with probability 1 − δ, in the insertion-only model. This is optimal, and
the best previous lower bound was Ω(n1−2/p + log(1/δ)).

3. for low rank approximation of a sparse matrix in Rd×n, if we see the rows of a matrix one at a
time in the row-order model, each row having O(1) non-zero entries, any deterministic algorithm
requires Ω(

√
d) memory to output an O(1)-approximate rank-1 approximation.

Finally, we consider strict and general turnstile streaming models, and show separations between
sketching lower bounds and non-sketching upper bounds for the heavy hitters problem.

2012 ACM Subject Classification Theory of computation → Lower bounds and information com-
plexity

Keywords and phrases Streaming algorithms, heavy hitters, communication complexity, information
complexity

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.37

Funding Eric Price: NSF grant CCF-1751040 (CAREER).
David P. Woodruff : NSF grant No. CCF-1815840 and a Simons Investigator Award.

Acknowledgements The authors would like to thank the anonymous reviewers of a previous version
of this paper for helpful suggestions that significantly improved the presentation.

© Akshay Kamath, Eric Price, and David P. Woodruff;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 37; pp. 37:1–37:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kamath@cs.utexas.edu
mailto:ecprice@cs.utexas.edu
mailto:dwoodruf@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.CCC.2021.37
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 A Simple Proof of a New Set Disjointness with Applications to Data Streams

1 Introduction

Communication complexity is a common technique for establishing lower bounds on the
resources required of problems, such as the memory required of a streaming algorithm.
The multiplayer promise set disjointness is one of the most widely used problems from
communication complexity in applications, not only in data streams [3, 5, 18, 39, 48, 49, 19],
but also in compressed sensing [67], distributed functional monitoring [77, 78], distributed
learning [32, 52, 11], matrix-vector query models [71], voting [60, 61], and so on. We shall
restrict ourselves to the study of set disjointness in the number-in-hand communication model,
described below, which covers all of the above applications. Set disjointness is also well-studied
in the number-on-forehead communication model, see, e.g., [38, 72, 7, 56, 21, 6, 69, 70],
though we will not discuss that model here.

In the number-in-hand multiplayer promise set disjointness problem there are k players
with subsets S1, . . . , Sk, each drawn from {1, 2, . . . , n}, and we are promised that either:
1. the Si are pairwise disjoint, or
2. there is a unique element j occurring in all the sets, which are otherwise pairwise disjoint.
The promise set disjointness problem was posed by Alon, Matias, and Szegedy [3], who
showed an Ω(n/k4) total communication bound in the blackboard communication model,
where each player’s message can be seen by all other players. This total communication
bound was then improved to Ω(n/k2) by Bar-Yossef, Jayram, Kumar, and Sivakumar [5],
who further improved this bound to Ω(n/k1+γ) for an arbitrarily small constant γ > 0 in
the one-way model of communication. These bounds were further improved by Chakrabarti,
Khot, and Sun to Ω(n/(k log k)) in the general communication model and an optimal Ω(n/k)
bound for 1-way communication. The optimal Ω(n/k) total communication bound for general
communication was finally obtained in [39, 49].

To illustrate a simple example of how this problem can be used, consider the streaming
model. The streaming model is one of the most important models for processing massive
datasets. One can model a stream as a list of integers i1, . . . , im ∈ [n] = {1, 2, . . . , n}, where
each item i ∈ [n] has a frequency xi which denotes its number of occurrences in the stream.
We refer the reader to [4, 66] for further background on the streaming model of computation.

An important problem in this model is computing the p-th frequency moment Fp =∑n
j=1 xp

j . To reduce from the promise set disjointness problem, the first player runs a
streaming algorithm on the items in its set, passes the state of the algorithm to the next
player, and so on. The total communication is k · s, where s is the amount of memory of the
streaming algorithm. Observe that in the first case of the promise we have Fp ≤ n, while
in the second case we have Fp ≥ kp. Setting k = (2n)1/p therefore implies an algorithm
estimating Fp up to a factor better than 2 can solve promise set disjointness and therefore
k · s = (2n)1/ps = Ω(n/(2n)1/p), that is, s = Ω(n1−2/p). For p > 2, this is known to be best
possible up to a constant factor [14].

Notice that nothing substantial would change in this reduction if one were to change the
second case in the promise to instead say: (2) there is a unique element j occurring in at
least half of the sets, and the sets are otherwise disjoint. Indeed, in the above reduction, in
one case we have Fp ≥ (k/2)p, while in the second case we have Fp ≤ n. This recovers the
same Ω(n1−2/p) lower bound, up to a constant factor. We call this new problem “mostly”
set disjointness (MostlyDISJ).

While it is seemingly inconsequential to consider MostlyDISJ instead of promise set
disjointness, there are some peculiarities about this problem that one cannot help but wonder
about. In the promise set disjointness problem, there is a deterministic protocol solving the

A. Kamath, E. Price, and D. P. Woodruff 37:3

problem with O(n/k log k + k) bits of communication – we walk through the players one
at a time, and each indicates if its set size is smaller than n/k. Eventually we must reach
such a player, and when we do, that player posts its set to the blackboard. We then ask one
other player to confirm an intersection. Notice that there always must exist a player with a
set of size at most n/k by the pigeonhole principle. On the other hand, for the MostlyDISJ
problem, it does not seem so easy to achieve a deterministic protocol with O(n/k log k + k)
bits of communication. Indeed, in the worst case we could have up to k/2 players posting
their entire set to the blackboard, and still be unsure if we are in Case (1) or Case (2).

More generally, is there a gap in the dependence on the error probability of algorithms
for promise set disjointness versus MostlyDISJ? Even if one’s main interest is in constant
error probability protocols, is there anything that can be learned from this new problem?

1.1 Our Results
We more generally define MostlyDISJ so that in Case (2), there is an item occurring in
l = Θ(k) of the sets, though it is still convenient to think of l = k/2. Our main theorem is
that MostlyDISJ requires Ω(n) communication to solve deterministically, or even with failure
probability e−k.

▶ Theorem 1. MostlyDISJ with n elements, k players, and l = ck for an absolute constant
c ∈ (0, 1) requires Ω(min(n, n log(1/δ)

k)) bits of communication for failure probability δ.

This result does not have any restriction on the order of communication, and is in the
“blackboard model” where each message is visible to all other players. We note that as
c→ 1, our lower bound goes to 0, but for any absolute constant c ∈ (0, 1), we achieve the
stated Ω(min(n, n log(1/δ)

k)) lower bound. We did not explicitly compute our lower bound as
a function of c, as c→ 1.

Notice that for constant δ, Theorem 1 recovers the Ω(n/k) total communication bound
for promise set disjointness, which was the result of a long sequence of work. Our proof of
Theorem 1 gives a much simpler proof of an Ω(n/k) total communication lower bound, avoiding
Hellinger distance and Poincare inequalities altogether, which were the main ingredients in
obtaining the optimal Ω(n/k) lower bound for promise set disjointness in previous work.
Moreover, as far as we are aware, an Ω(n/k) lower bound for the MostlyDISJ problem suffices
to recover all of the lower bounds in applications that promise set disjointness has been
applied to. Unlike our work, however, existing lower bounds for promise set disjointness do
not give improved bounds for small error probability δ. Indeed, it is impossible for them
to do so because of the deterministic protocol described above. We next use this bound
in terms of δ to obtain the first lower bounds for deterministic streaming algorithms and
randomized δ-error algorithms for a large number of problems.

We note that other work on deterministic communication lower bounds for streaming,
e.g., the work of Chakrabarti and Kale [17], does not apply here. They study multi-party
equality problems and it is not clear how to use their fooling set arguments to prove a lower
bound for MostlyDISJ. One of the challenges in designing a fooling set is the promise, namely,
that a single item occurs on a constant fraction of the players and all remaining items occur
on at most one player. This promise is crucial for the applications of MostlyDISJ.

We now formally introduce notation for the data stream model. In the streaming model,
an integer vector x is initialized to 0n and undergoes a sequence of L = poly(n) updates. The
streaming algorithm is typically allowed one (or a few) passes over the stream, and the goal
is to use a small amount of memory. We cannot afford to store the entire stream since n and
L are typically very large. In this paper, we mostly restrict our focus to the insertion-only

CCC 2021

37:4 A Simple Proof of a New Set Disjointness with Applications to Data Streams

model where the updates to the vector are of the form x← x + δ where δ ∈ {e1, . . . , en} is a
standard basis vector. There are also the turnstile data stream models in which x← x + δ

where δ ∈ {e1, . . . , en,−e1, . . . ,−en}. In the strict turnstile model it is promised that x ≥ 0n

at all times in the stream, whereas in the general turnstile model there are no restrictions on
x. Therefore, an algorithm in the general turnstile model works also in the strict turnstile
model and insertion-only models.

Finding Heavy Hitters

Finding the heavy hitters, or frequent items, is one of the most fundamental problems
in data streams. These are useful in IP routers [29], in association rules and frequent
itemsets [1, 68, 73, 44, 42] and databases [30, 9, 41]. Finding the heavy hitters is also
frequently used as a subroutine in data stream algorithms for other problems, such as
moment estimation [46], entropy estimation [16, 43], ℓp-sampling [65], finding duplicates [37],
and so on. For surveys on algorithms for heavy hitters, see, e.g., [25, 76].

In the ϵ-ℓp-heavy hitters problem, for p ≥ 1, the goal is to find a set S which contains
all indices i ∈ [n] for which |xi|p ≥ ϵp ∥x∥p

p, and contains no indices i ∈ [n] for which
|xi|p ≤ ϵp

2 ∥x∥
p
p.

The first heavy hitters algorithms were for p = 1, given by Misra and Gries [64], who
achieved O(ϵ−1) words of memory, where a word consists of O(log n) bits of space. Inter-
estingly, their algorithm is deterministic, i.e., the failure probability δ = 0. This algorithm
was rediscovered by Demaine, López-Ortiz, and Munro [27], and again by Karp, Shenker,
and Papadimitriou [53]. Other than these algorithms, which are deterministic, there are a
number of randomized algorithms, such as the Count-Min sketch [26], sticky sampling [62],
lossy counting [62], space-saving [63], sample and hold [29], multi-stage bloom filters [15],
and sketch-guided sampling [54]. One can also achieve stronger residual error guarantees [8].

An often much stronger notion than an ℓ1-heavy hitter is an ℓ2-heavy hitter. Consider
an n-dimensional vector x = (

√
n, 1, 1, . . . , 1). The first coordinate is an ℓ2-heavy hitter with

parameter ϵ = 1/
√

2, but it is only an ℓ1 heavy hitter with parameter ϵ = 1/
√

n. Thus,
the algorithms above would require at least

√
n words of memory to find this heavy hitter.

In [20] this problem was solved by the CountSketch algorithm, which provides a solution
to the ϵ-ℓ2-heavy hitters problem, and more generally to the ℓp-heavy hitters problem for
any p ∈ (0, 2]1, in 1-pass and in the general turnstile model using O

(1
ϵp log(n/δ)

)
words of

memory. For insertion-only streams, this was recently improved [13, 12] to O
(1

ϵp

)
words of

memory for constant δ, and O
(1

ϵp log(1/δ)
)

in general. See also work [55] on reducing the
decoding time for finding the heavy hitters from the algorithm’s memory contents, without
sacrificing additional memory.

There is also work establishing lower bounds for heavy hitters. The works of [28, 50]
establish an Ω

(1
ϵp log n

)
word lower bound for any value of p > 0 and constant δ, for any

algorithm in the strict turnstile model. This shows that the above algorithms are optimal
for constant δ. Also for p > 2, it is known that solving the ϵ-ℓp-heavy hitters problem
even with constant ϵ and δ requires Ω(n1−2/p) words of memory [5, 39, 49], and thus p = 2
is often considered the gold standard for space-efficient streaming algorithms since it is
the largest value of p for which there is a poly(log n) space algorithm. For deterministic
algorithms computing linear sketches, the work of [31] shows the sketch requires Ω(n2−2/p/ϵ2)
dimensions for p ≥ 1 (also shown for p = 2 by [23]). This also implies a lower bound for
general turnstile algorithms for streams with several important restrictions; see also [57, 51].
There is also work on the related compressed sensing problem which studies small δ [36].

1 For p < 1 the quantity ∥x∥p is not a norm, but it is still a well-defined quantity.

A. Kamath, E. Price, and D. P. Woodruff 37:5

Despite the work above, for all we knew it could be entirely possible that, in the insertion-
only model, an ϵ-ℓ2-heavy hitters algorithm could achieve O

(1
ϵ2

)
words of memory and solve

the problem deterministically, i.e., with δ = 0. In fact, it is well-known that the above Ω(n)
lower bound for ϵ-ℓ2-heavy hitters for linear sketches does not hold in the insertion-only
model. Indeed, by running a deterministic algorithm for ϵ-ℓ1-heavy hitters, we have that if
x2

i ≥ ϵ2∥x∥2
2, then xi ≥ ϵ∥x∥2 ≥ ϵ√

n
∥x∥1, and consequently one can find all ℓ2-heavy hitters

using O
(√

n
ϵ

)
words of memory. Thus, for constant ϵ, there is a deterministic O (

√
n) words

of memory upper bound, but only a trivial Ω (1) word lower bound. Surprisingly, this factor√
n gap was left wide open, and the main question we ask about heavy hitters is:

Can one deterministically solve ϵ-ℓ2-heavy hitters in insertion-only streams in constant
memory?

One approach to solve MostlyDISJ would be for each player to insert their elements into
a stream and apply a heavy hitters algorithm. For example, if k =

√
n, there will be a

Θ(1)-ℓ2-heavy hitter if and only if the MostlyDISJ instance is a YES instance. For a space-S
streaming algorithm, this uses Sk communication to pass the structure from player to player.
Hence S ≳ n/k =

√
n. In general:

▶ Theorem 21. Given ε ∈ (1
n1/p , 1

2) and p ≥ 1, any δ-error r-pass insertion-only streaming
algorithm for ε-ℓp-heavy hitters requires Ω(min(n1−1/p

rε , n1−2/p log(1/δ)
rε2)) bits of space.

Most notably, setting δ = 0 and p = 2 and r = O(1), this gives an Ω(
√

n/ε) bound for
deterministic ℓ2 heavy hitters. The FrequentElements algorithm [64] matches this up to
a factor of log n (i.e., it uses this many words, not bits). For n−.1 > δ > 0, the other term
(log(1/δ)

rε2) is also achievable up to the bit/word distinction, this time by CountSketch. For
larger δ, we note that it takes Ω(1

ε2 log ε2n) bits already to encode the output size. As a
result, we show that the existing algorithms are within a log n factor of optimal.

One common motivation for heavy hitters is that many distributions are power-law or
Zipfian distributions. For such distributions, the i-th most frequent element has frequency
approximately proportional to i−ζ for some constant ζ, typically ζ ∈ (0.5, 1) [22]. Such
distributions have significant ℓ1/ζ-heavy hitters. Despite our lower bound for general heavy
hitters, one might hope for more efficient deterministic/very high probability insertion-only al-
gorithms in this special case. We rule this out as well, getting an Ω(min(n1−ζ , n1−2ζ log(1/δ)))
lower bound for finding the heavy hitters of these distributions (see Theorem 24). This
again matches the upper bounds from FrequentElements or CountSketch up to a
logarithmic factor.

To extend our lower bound to power-law distributions, we embed our hard instance as
the single largest and n/2 smallest entries of a power-law distribution; we then insert the
rest of the power-law distribution deterministically, so the overall distribution is power-law
distributed. Solving heavy hitters will identify whether this single largest element exists or
not, solving the communication problem.

Frequency Moments

We next turn to the problem of estimating the frequency moments Fp, which in our reduction
from the MostlyDISJ problem, just corresponds to estimating ∥x∥p

p =
∑n

i=1 |xi|p. Our hard
instance for MostlyDISJ immediately gives us the following theorem:

CCC 2021

37:6 A Simple Proof of a New Set Disjointness with Applications to Data Streams

▶ Theorem 2. For any constant ϵ ∈ (0, 1) and p ≥ 2, any δ-error r-pass
insertion-only streaming algorithm for ε-Fp-estimation must have space complexity of
Ω(min(n1−1/p

r , n1−2/p log(1/δ)
r)) bits.

The proof of Theorem 2 follows immediately by setting the number of players in MostlyDISJ
to be Θ((ϵn)1/p), and performing the reduction to Fp-estimation described before Section 1.1.
This improves the previous Ω((n1−2/p + log(1/δ))/r) lower bound, which follows from [5, 49],
as well as a simple reduction from the Equality function [3], see also [17]. It matches an upper
bound of [14] for constant ϵ, by repeating their algorithm independently O(log(1/δ)) times.
Our lower bound instance shows that to approximate ∥x∥∞ = maxi |xi| of an integer vector,
with O(log n)-bit coordinates in n dimensions, up to an additive Θ(

√
∥x∥2) deterministically,

one needs Ω(
√

n) memory. This follows from our hard instance. Approximating the ℓ∞ norm
is an important problem in streaming, and its complexity was asked about in Question 3
of [24].

Low Rank Approximation

Our ℓ2-heavy hitters lower bound also has applications to deterministic low rank approx-
imation in a stream, a topic of recent interest [59, 35, 75, 34, 33, 45]. Here we see rows
A1, A2, . . . , An of an n × d matrix A one at a time. At the end of the stream we should
output a projection P onto a rank-k space for which ∥A − AP∥2

F ≤ (1 + ϵ)∥A − Ak∥2
F ,

where Ak is the best rank-k approximation to A. A natural question is if the deterministic
FrequentDirections algorithm of [34] using O(dk/ϵ) words of memory can be improved when
the rows of A are O(1)-sparse. The sparse setting was shown to have faster running times in
[33, 45], and more efficient randomized communication protocols in [10]. Via a reduction
from our MostlyDISJ problem, we show a polynomial dependence on d is necessary.

▶ Theorem 25. Any 1-pass deterministic streaming algorithm outputting a rank-k projection
matrix P providing a (1 + ϵ)-approximate rank-k low rank approximation requires Ω(

√
d) bits

of memory, even for k = 1, ϵ = Θ(1), and when each row of A has only a single non-zero
entry.

Algorithms and Lower Bounds in Other Streaming Models

We saw above that deterministic insertion-only ℓ2 heavy hitters requires Θ̃(
√

n) space for
constant ε. We now consider turnstile streaming and linear sketching.

The work of [31, 23] shows that Ω(n) space is needed for general deterministic linear
sketching, but the corresponding hard instances have negative entries. We extend this in
two ways: when negative entries are allowed, an Ω(n) lower bound is easy even in turnstile
streaming (for heavy hitters, but not the closely related ℓ∞/ℓ2 sparse recovery guarantee; see
Remark 27). If negative entries are not allowed, we still get an Ω(n) bound on the number
of linear measurements for deterministic linear sketching (see Theorem 20).

A question is if we can solve ℓ2 heavy hitters deterministically in the strict turnstile model
in o(n) space. In some sense the answer is no, due to the near equivalence between turnstile
streaming and linear sketching [31, 58, 2], but this equivalence has significant limitations.
Recent work has shown that with relatively mild restrictions on the stream, such as a bound
on the length L, significant improvements over linear sketching are possible [47, 51]. Can
we get that here? We show that this is indeed possible: streams with O(n) updates can be
solved in O(n2/3) space. While this does not reach the

√
n lower bound from insertion-only

streams (Theorem 22), it is significantly better than the Ω(n) for linear sketches. In general,
we show:

A. Kamath, E. Price, and D. P. Woodruff 37:7

▶ Theorem 26. There is a deterministic ℓ2 heavy hitters algorithm for length-L strict
turnstile streams with ±1 updates using O((L/ε)2/3) words of space.

Our algorithm for short strict turnstile streams is a combination of FrequentElements
and exact sparse recovery. With space S, FrequentElements (modified to handle negative
updates) gives estimation error L/S, which is good unless ∥x∥2 ≪ L/S. But if it is not good,
then ∥x∥0 ≤ ∥x∥2

2 ≪ (L/S)2. Hence in that case (L/S)2-sparse recovery will recover the
vector (and hence the heavy hitters). Running both algorithms and combining the results
takes S + (L/S)2 space, which is optimized at L2/3.

1.2 Our Techniques

Our key lemma is that solving MostlyDISJ on n elements, k items, and l = ck with probability
1 − e−k has Ω(n) conditional information complexity for any constant c ∈ (0, 1). It is
well-known that the conditional information complexity of a problem lower bounds its
communication complexity (see, e.g., [5]).

This can then be extended to δ ≫ e−Θ(k) using repetition, namely, we can amplify the
success probability of the protocol to 1− e−Θ(k) by independent repetition, apply our Ω(n)
lower bound on the new protocol with δ = e−Θ(k), and then conclude a lower bound on
the original protocol. Indeed, this is how we obtain our total communication lower bound
of Ω(n/k) for constant δ, providing a much simpler proof than that of the Ω(n/k) total
communication lower bound for promise set disjointness in prior work.

Our bound is tight up to a log k factor. It can be solved deterministically with O(n log k)
communication (for each bit, the first player with that bit publishes it), and with probability
1 − (1 − ε)l−1 using O(εn log k) communication (only publish the bit with probability ε).
Setting ε = o(1), any e−o(k) failure probability is possible with o(n log k) communication.

We lower bound MostlyDISJ using conditional information complexity. Using the direct
sum property of conditional information cost, analogous to previous work (see, e.g., [5]), it
suffices to get an Ω(1) conditional information cost bound for the n = 1 problem Fk: we have
k players, each of whom receives one bit, and the players must distinguish (with probability
1 − e−k) between at most one player having a 1, and at least Ω(k) players having 1s. In
particular, it suffices to show for correct protocols π that

E
i∈[t]

dTV(π0, πei) = Ω(1) (1)

where π0 is the distribution of protocol transcripts if the players all receive 0, and πei
is

the distribution if player i receives a 1. The main challenge is therefore in bounding this
expression.

Consider any protocol that does not satisfy (1). We show that, when dTV(π0, πei
)≪ 1,

player i can be implemented with an equivalent protocol for which the player usually does
not even observe its input bit. That is, if every other player receives a 0, player i will only
observe its bit with probability dTV(π0, πei). This means that most players only have a small
probability of observing their bit. The probability that any two players i, i′ observe their bits
may be correlated; still, we show that this implies the existence of a large set S of ck players
such that the probability – if every player receives a zero – that no player i ∈ S observes
their bit throughout the protocol is above e−k. But then dTV(π0, πeS

) < 1 − e−k, so the
protocol cannot distinguish these cases with the desired probability. We now give the full
proof.

CCC 2021

37:8 A Simple Proof of a New Set Disjointness with Applications to Data Streams

2 Preliminaries

We use the following measures of distance between distributions in our proofs.

▶ Definition 3. Let P and Q be probability distributions over the same countable universe
U . The total variation distance between P and Q is defined as: dTV(P, Q) = 1

2 ∥P −Q∥1 .

In our proof we also use the Jensen-Shannon divergence and Kullback-Liebler divergence.
We define these notions of divergence here:

▶ Definition 4. Let P and Q be probability distributions over the same discrete universe U .
The Kullback-Liebler divergence or KL-divergence from Q to P is defined as: DKL(P, Q) =∑

x∈U P (x) log(P (x)
Q(x)). This is an asymmetric notion of divergence. The Jensen-Shannon

divergence between two distributions P and Q is the symmetrized version of the KL divergence,
defined as: DJS(P, Q) = 1

2 (DKL(P, Q) + DKL(Q, P).

From Pinsker’s inequality, for any two distributions P and Q, DKL(P, Q) ≥ 1
2 d2

TV(P, Q).
In the multiparty communication model we consider k-ary functions F : L → Z where

L ⊆ X1 × X2 × · · · × Xk. There are k parties(or players) who receive inputs X1, . . . , Xk

which are jointly distributed according to some distribution µ. We consider protocols in
the blackboard model where in any protocol π players speak in any order and each player
broadcasts their message to all other players. So, the message of player i is a function of the
messages they receive, their input and randomness i.e., mi = Mi(Xi, mi−1, Ri). The final
player’s message is the output of the protocol.

The communication cost of a multiparty protocol π is the sum of the lengths of the
individual messages ∥π∥ =

∑
|Mj |. A protocol π is a δ-error protocol for the function f if

for every input x ∈ L, the output of the protocol equals f(x) with probability 1− δ. The
randomized communication complexity of f , denoted Rδ(f), is the cost of the cheapest
randomized protocol that computes f correctly on every input with error at most δ over the
randomness of the protocol.

The distributional communication complexity of the function f for error parameter δ is
denoted as Dδ

µ(f). This is the communication cost of the cheapest deterministic protocol
which computes the function f with error at most δ under the input distribution µ. By Yao’s
minimax theorem, Rδ(f) = maxµ Dδ

µ(f) and hence it suffices to prove a lower bound for a
hard distribution µ. In our proofs, we bound the conditional information complexity of a
function in order to prove lower bounds on Rδ(f). We define this notion below.

▶ Definition 5. Let π be a randomized protocol whose inputs belong to K ⊆ X1×X2 . . .×Xk.
Suppose ((X1, X2, . . . , Xk), D) ∼ η where η is a distribution over K × D for some set D.
The conditional information cost of π with respect to η is defined as: cCostη(π) =
I(X1, . . . , Xk; π(X1, . . . , Xk) | D).

▶ Definition 6. The δ-error conditional information complexity of f with respect to
η, denoted CICη,δ(f) is defined as the minimum conditional information cost of a δ-error
protocol for f with respect to η.

In [5] it was shown that the randomized communication complexity of a function is at
least the conditional information complexity of the function f with respect to any input
distribution η.

▶ Proposition 7 (Corollary 4.7 of [5]). Let f : K → {0, 1}, and let η be a distribution over
K ×D for some set D. Then, Rδ(f) ≥ CICη,δ(f).

A. Kamath, E. Price, and D. P. Woodruff 37:9

Direct Sum

Per [5], conditional information complexity obeys a Direct Sum Theorem condition under
various conditions. The Direct Sum Theorem of [5] allows us to reduce a t-player conditional
information complexity problem with an n-dimensional input to each player to a t-player
conditional information complexity with a 1-dimensional input to each player. This theorem
applies when the function is “decomposable” and the input distribution is “collapsing”. We
define both these notions here.

▶ Definition 8. Suppose L ⊆ X1 ×X2 × . . .×Xt and Ln ⊆ Ln. A function f : Ln → {0, 1}
is g-decomposable with primitive h : L → {0, 1} if it can be written as:

f(X1, . . . , Xt) = g(h(X1,1, . . . , X1,t), . . . , h(Xn,1, . . . , Xn,t))

for g : {0, 1}n → {0, 1}.

▶ Definition 9. Suppose L ⊆ X1×X2×. . .×Xt and Ln ⊆ Ln. A distribution η over Ln is a col-
lapsing distribution for f : Ln → {0, 1} with respect to h : L → {0, 1} if for all Y1, . . . , Yn

in the support of η, for all y ∈ L and for all i ∈ [n], f(Y1, . . . , Yi−1, y, Yi+1, . . . , Yn) = h(y).

We state the Direct Sum Theorem for conditional information complexity below. The proof
of this theorem in [5] applies to the blackboard model of multiparty communication. We
state this in the most general form here and then show that it may be applied to the hard
distribution η0 which we choose in Section 3.

▶ Theorem 10 (Multiparty version of Theorem 5.6 of [5]). Let L ⊆ X1 ×X2 × . . .Xt and let
Ln ⊆ Ln. Suppose that the following conditions hold:

(i) f : Ln → {0, 1} is a decomposable function with primitive h : L → {0, 1},
(ii) ζ is a distribution over L ×D, such that for any d ∈ D the distribution (ζ | D = d) is

a product distribution,
(iii) η = ζn is supported on Ln ×Dn, and
(iv) the marginal probability distribution of η over Ln is a collapsing distribution for f with

respect to h.
Then CICη,δ(f) ≥ n · CICζ,δ(h).

3 Communication Lower Bound for Mostly Set Disjointness

Let [n] = {1, 2, . . . , n}. We let H(X) denote the entropy of a random variable X, and
I(X; Y) = H(X)−H(X|Y) be the mutual information.

3.1 The Hard Distribution
▶ Definition 11. Denote by MostlyDISJn,l,t, the multiparty Mostly Set-Disjointness problem
in which each player j ∈ [t] receives an n-dimensional input vector Xj = (Xj,1, . . . , Xj,n)
where Xj,i ∈ {0, 1} and the input to the protocol falls into either of the following cases:

NO: For all i ∈ [n],
∑

j∈[t] Xj,i ≤ 1
YES: There exists a unique i ∈ [n] such that

∑
j∈[t] Xj,i = l and for all other i′ ≠

i,
∑

j∈[t] Xj,i′ ≤ 1.
The final player must output 1 if the input is in the YES case and 0 in the NO case.

CCC 2021

37:10 A Simple Proof of a New Set Disjointness with Applications to Data Streams

Let L ⊂ {0, 1}t be the set of valid inputs along one index in [n] for MostlyDISJn,l,t, i.e., the
set of elements in x ∈ {0, 1}t with

∑
j∈[t] xj ≤ 1 or

∑
j∈[t] xj = l. Let Ln ⊂ Ln denote the

set of valid inputs to the MostlyDISJn,l,t function.
Then MostlyDISJn,l,t : Ln → {0, 1} is defined as: MostlyDISJn,l,t(X1, . . . , Xt) =∨

i∈[n] Fl,t(X1,i, . . . , Xt,i) for the function Fl,t : L → {0, 1} defined as: Fl,t(x1, . . . , xt) =∨
S⊆[t]
|S|=l

∧
j∈S xj . This means that MostlyDISJn,l,t is OR-decomposable into n copies of Fl,t

and we may hope to apply a direct sum theorem with an appropriate distribution over the
inputs.

In order to prove a lower bound on the conditional information complexity, we need to
define a “hard” distribution over the inputs to MostlyDISJn,l,t. We define the distribution η

over Ln ×Dn where D = [t] as follows:
For each i ∈ [n] pick Di ∈ [t] uniformly at random and sample XDi,i uniformly from
{0, 1} and for all j′ ̸= Di set Xj′,i = 0.
Pick I ∈ [n] uniformly at random and Z ∈ {0, 1}
if Z = 1, pick a set S ⊆ [t] such that |S| = l uniformly at random and for all j ∈ S set
Xj,I = 1 and for all j /∈ S, set Xj,I = 0

Let µ0 denote the distribution for each i ∈ [n] conditioned on Z = 0. For any d ∈ [t],
when D = d, the conditional distribution over L is the uniform distribution over {0, ed} and
hence a product distribution. Let η0 be the distribution η conditioned on Z = 0. Clearly,
η0 = µn

0 .
This definition of MostlyDISJn,l,t and the hard distribution η0 allows us to apply the

Direct Sum theorem (Theorem 10) of [5]. Note that: (i) MostlyDISJn,l,t is OR-decomposable
by Fl,t, (ii) µ0 is a distribution over L × [t] such that the marginal distribution (µ0 | D = d)
over L is uniform over {0, ed}(and hence a product distribution), (iii) η0 = µn

0 , and (iv) since
MostlyDISJn,l,t is OR-decomposable and η0 has support only on inputs in the NO case, η0 is
a collapsing distribution for MostlyDISJn,l,t with respect to Fl,t. Hence:

CICη0,δ(MostlyDISJn,l,t) ≥ n · CICµ0,δ(Fl,t) (2)

3.2 Information Cost for a Single Bit

A key lemma for our argument is that the players can be implemented so that they only
“observe” their input bits with small probability. The model here is that each player’s input
starts out hidden, but they can at any time choose to observe their input. Before they observe
their input, however, all their decisions (including messages sent and choice of whether to
observe) depend on the transcript and randomness, but not the player’s input.

In this section we use π to denote the protocol in consideration and abuse notation slightly
by using πx to denote the distribution of the transcript of the protocol π on input x.

▶ Definition 12. Any (possibly multi-round) communication protocol involving n players,
where each player receives one input bit, is defined to be a “clean” protocol with respect to
player i if, in each round,
1. if player i has previously not “observed” his input bit, he “observes” his input bit with

some probability that is a function only of the previous messages in the protocol,
2. if player i has not observed his input bit in this round or any previous round, then his

message distribution depends only on the previous messages in the protocol but not his
input bit, and

A. Kamath, E. Price, and D. P. Woodruff 37:11

3. if player i has observed his input bit in this round or any previous round, then – for a
fixed value of the previous messages in the protocol – his distribution of messages on input
0 and on input 1 are disjoint.

D0 D1

1
1−αD0 (1− δ)D

δD′1
c(α, δ)D′0

Figure 1 An illustration of Lemma 13, given a parameter α and pair of distributions (D0, D1).
We set (1 − δ)D to be the overlap between D1 and 1

1−α
D0, then D′

0 and D′
1 to be proportional to

the remainder of 1
1−α

D0 and D1, respectively. These D′
0 and D′

1 are disjoint.

We start off by proving a lemma about decomposing any two arbitrary distributions into
one “common” distribution and two disjoint different distributions. This lemma will enable
us to show that any communication protocol can be simulated in a clean manner.

▶ Lemma 13. Let D0,D1 be two distributions, and α ∈ [0, 1]. There exist three distributions
D,D′

0,D′
1 and a parameter δ ∈ (0, 1) such that: D0 = (1 − α)(1 − δ)D + (1 − (1 − α)(1 −

δ))D′
0,D1 = (1− δ)D + δD′

1, and D′
0 has a disjoint support from D′

1.

We refer the reader to Figure 1 for an illustration corresponding to Lemma 13.

Proof. We begin with two special cases. If α = 1, then setting δ = 0 allows us to set
D′

0 = D0, D = D1. D′
1 may be any arbitrary distribution that has disjoint support from D′

0.
If supp(D0) ∩ supp(D1) = ∅, we may set δ = 1, D′

0 = D0 and D′
1 = D1.

So it suffices to consider the case where α < 1 and supp(D0)∩ supp(D1) ̸= ∅. Let D and
δ be such that D(x) = 1

1−δ min(1
1−αD0(x),D1(x)) is a distribution over the support of D0.

Then, it suffices to define:

D′
0(x) =

{
0 if 1

1−αD0(x) ≤ D1(x)
1

1−(1−α)(1−δ) (D0(x)− (1− α)D1(x)) otherwise

and we define:

D′
1(x) =

{
0 if 1

1−αD0(x) ≥ D1(x)
1
δ (D1(x)− D0(x)

1−α) otherwise

If α = 1, we set D′
0 = D0, D(x) = 1

1−δ min(D1(x),D0(x)) where δ is a scaling term which
ensures that D(x) is a valid distribution. ◀

▶ Lemma 14. Consider any (possibly multi-round) communication protocol π where each
player receives one input bit. Then for any player i, the protocol can simulated in a manner
that is “clean” with respect to that player.

CCC 2021

37:12 A Simple Proof of a New Set Disjointness with Applications to Data Streams

Proof. Let b denote player i’s bit. We use “round r” to refer to the rth time that player i

is asked to speak. Let mr be the transcript of the protocol just before player i speaks in
round r, and let m+

r denote the transcript immediately after player i speaks in round r. Let
Db

mr
be the distribution of player i’s message the rth time he is asked to speak, conditioned

on the transcript so far being mr and on player i having the bit b. We will describe an
implementation of player i that produces outputs with the correct distribution Db

mr
such

that the implementation only looks at b with relatively small probability.
In the first round, given m1, player i looks at b with probability dTV(D0

m1
,D1

m1
). If

he does not look at the bit, he outputs each message m with probability proportional to
min(D0

m1
(m),D1

m1
(m)); if he sees the bit b, he outputs each message m with probability

proportional to max(0,Db
m1

(m) − D1−b
m1

(m)). His output is then distributed according to
Db

mr
. Note also that, for any message m, it is not possible that the player can send m both

after reading a 0 and after reading a 1.
In subsequent rounds r, given mr, player i needs to output a message with distribution

Db
mr

. Let p0 denote the probability that the player has already observed his bit in a previous
round, conditioned on mr and b = 0; let p1 be analogous for b = 1. We will show by induction
that min(p0, p1) = 0 for all mr. That is, any given transcript may be compatible with having
already observed a 0 or a 1 but not both. As noted above, this is true for r = 2.

Without loss of generality, suppose p1 = 0. We apply Lemma 13 to D0
mr

and D1
mr

with
α = p0, obtaining three distributions (D,D0,D1) such that D0

mr
= (1− p0)(1− δ)D + (1−

(1− p0)(1− δ))D0 and D1
mr

= (1− δ)D + δD1, and D0 is disjoint from D1.
Player i behaves as follows: if he has not observed his bit already, he does so with

probability δ. After this, if he still has not observed his bit, he outputs a message according
to D; if he has observed his bit b, he outputs according to Db.

The resulting distribution is Db
mr

regardless of b, and the set of possible transcripts where
a 1 has been observed is disjoint from those possible where a 0 has been observed. By
induction, this holds for all rounds r. Thus, this is a simulation of the original protocol that
is “clean” with respect to player i. ◀

▶ Lemma 15. Consider any (possibly multiround) communication protocol π where each
player receives one bit. Each player i can be implemented such that, if every other player
receives a 0 input, player i only observes his input with probability dTV(πei , π0).

Proof. Using Lemma 14, we know that player i can be implemented such that the protocol
is clean with respect to that player.

We may now analyze the probability p∗ that player i ever observes his bit, assuming that
all other players receive the input zero. For every possible transcript m let p0(m) denote the
probability, conditioned on the transcript being m and player i’s bit being 0, that player i

observes his bit at any point during the protocol; let p1(m) be analogous for the bit being 1.
Because the choice of player i to observe his input bit in a clean protocol is independent of
the bit, we have that p∗ =

∑
m Prπ0 [m]p0(m) =

∑
m Prπei

[m]p1(m). Moreover, because the
protocol is independent of the bit if it is not observed,

(1− p0(m)) Pr
π0

[m] = (1− p1(m)) Pr
πei

[m]

for all m. By the definition of a clean protocol, the last message player i sends can be
consistent with him observing a 0 or a 1 but not both; therefore p0(m) = 0 or p1(m) = 0 for
all m. Now, define S := {m | p0(m) > 0} = {m | Prπ0(m) > Prπei

(m)}. Therefore

dTV(π0, πei
) =

∑
m∈S

Pr
π0

[m]− Pr
πei

[m] =
∑
m∈S

p0(m) Pr
π0

[m] = p∗

as desired. ◀

A. Kamath, E. Price, and D. P. Woodruff 37:13

Lemma 15 will be used to show that each player has a decent chance of not reading their
input. But to get a lower bound for MostlyDISJ, we need a large set of players that have a
nontrivial chance of all ignoring their input at the same time. We show the existence of such
a set, despite the players not being independent. For any c ∈ (0, 1), define

γc := 1
c log(e/c) (3)

We have

▶ Lemma 16. Let c ∈ (0, 1), p ∈ (0, 1−c
2), and γc as in (3). For a set of 0-1 random

variables Y1, . . . , Yk such that E[
∑

i Yi] = pk, there exists S ⊂ {1, 2, . . . , n} of size ck such
that Pr[∀j ∈ S, Yj = 0] > e−k/γc−1.

Proof. We wish to show that there exists a set S such that Yi = 0 for all i ∈ S with nontrivial
probability. Observe that if S were chosen uniformly at random,

E
S:|S|=ck

Pr[∀j ∈ S, Yj = 0] ≥ 1(
k
ck

) Pr[wt(Y) ≤ k − ck] ≥
(

c

e

)ck

· (1 − p

1 − c
) ≥ e−1−kc log(e/c).

where the first inequality considers the existence of such a set, the second inequality uses(
a
b

)
≤ (e·a

b)b and Markov’s inequality, and wt(Y) denotes the Hamming weight of Y , i.e.,
number of non-zero entries of the vector Y . Therefore there exists a set S of size Ω(ck) such
that Pr[YS = 0] ≥ e−1−kc log(e/c). ◀

We can now bound the 1-bit communication cost of our problem.

▶ Lemma 17. Given 0 < δ, c < 1, γc as in (3), and k ≤ γc log(1
2eδ), for any δ-error protocol

for Fck,k we have that cCostµ0,δ(π) = Ω((1− c)2).

Proof. Let π be a protocol for Fck,k. Let πx is the distribution of the transcript of the
protocol on input x. We start by establishing a connection between conditional information
cost and total variation distances. First observe that due to the choice of distribution µ0, we
may write the conditional mutual information as:

cCostµ0,δ(π) = I(π(X1, . . . , Xk); X1, . . . , Xk | D) = E
i∈[k]

[I(Xi; π0,0,0,...Xi,...0,0,0)].

Since Xi is uniformly picked from {0, 1}, this mutual information is a Jensen-Shannon
divergence (see, for example, Wikipedia [74] or Proposition A.6 of [5]):

I(Xi; π0,0,0,...Xi,...0,0,0) = DJS(π0, πei) = 1
2

(
DKL(π0,

1
2(π0 + πei)) + DKL(πei ,

1
2(π0 + πei))

)
From Pinsker’s inequality, DKL(P, Q) ≥ 1

2 d2
TV(P, Q), so:

cCostµ0,δ(π) ≥ 1
4 E

i∈[k]
[d2

TV(π0,
1
2(π0 + πei)) + d2

TV(1
2 (π0 + πei), πei)] = 1

8 E
i∈[k]

[d2
TV(π0, πei)].

(4)

This is similar to the connection established in Lemma 6.2 of [5] between conditional
information cost and squared Hellinger distance (it is weaker but simpler to show).

Suppose, for the sake of contradiction, that
∑

i dTV(πei
, π0) = kp where p < 1−c

2 . Suppose
for each player i ∈ [k], that dTV(πei

, π0) = pi. By Lemma 15, this implies that each player
in the protocol can be equivalently implemented in a manner such that – if everyone else
receives a 0 – player i only looks at their input with probability pi. If a player does not look
at his bit, it means the player’s messages are independent of his input. Let Yi denote the
indicator random variable for the event that player i looks at his input in this equivalent
protocol.

CCC 2021

37:14 A Simple Proof of a New Set Disjointness with Applications to Data Streams

For the input X = 0, we have E[
∑

i Yi] =
∑

pi = kp. Observe, that for any set S, if
Yi = 0 for all i ∈ S, the players do not see their input. So if ES denotes the event that
∀i ∈ S, Yi = 0, then

dTV(πeS , π0) = Pr[ES] · dTV(πeS | ES , π0 | ES) + Pr[ES]dTV(πeS | ES , π0 | ES) ≤ Pr[ES]

Since E[
∑

i Yi] = kp for p < 1−c
2 , this means by Lemma 16 that there exists a set S with

|S| = ck such that Pr[ES] ≥ e−k/γc−1. Since k ≤ γc log(1
2eδ), we have Pr[ES] > 2δ. For this

S, we have that dTV(πeS
, π0) < 1− 2δ and this means that the protocol errs with probability

> δ. This is a contradiction. So, we must have
∑

i dTV(πei , π0) > 1−c
2 k. By (4) and Jensen’s

inequality, this gives

cCostµ0,δ(π) ≥ 1
8 E

i∈[k]
[d2

TV(πei
, π0)] ≥ 1

8 E
i∈[k]

[dTV(πei
, π0)]2 ≥ (1− c)2

32 . ◀

3.3 Finishing it Off
We prove a lower bound on the randomized communication complexity of MostlyDISJ.

▶ Theorem 18. Given 0 < δ, c < 1 and k ≤ γc log(1
2eδ) for γc as in (3),

Rδ(MostlyDISJn,ck,k) = Ω((1− c)2n).

To prove this, it suffices to prove Lemma 17 where we show a lower bound on the conditional
information cost of δ-error protocols for Fck,k. This implies a lower bound on the conditional
information complexity of Fck,k which together with (2) implies the desired result.

Proof. Combining Proposition 7, Equation (2), and Lemma 17 gives:

Rδ(MostlyDISJn,ck,k) ≥ CICη0,δ(MostlyDISJn,ck,k) ≥ n · CICµ0,δ(Fck,k) ≳ n(1− c)2

as desired. ◀

In the Lemma 17 we showed that for any protocol for Fck,k with input drawn from µ0, if the
conditional information cost is o(1), there exists an input on which it errs with probability
> δ. This implies a lower bound on the conditional information complexity of Fck,k.

For algorithms that have large error probability, the success probability can be amplified
by using independent copies of the algorithm and taking the majority vote. We use this
observation to obtain a lower bound for algorithms with error probability larger than e−k.

▶ Theorem 1. MostlyDISJ with n elements, k players, and l = ck for an absolute constant
c ∈ (0, 1) requires Ω(min(n, n log(1/δ)

k)) bits of communication for failure probability δ.

Proof. For the absolute constant γc, when k < γc log(1/δ) (or δ < e−k/γc), Theorem 18
gives us a lower bound of Ω(n). Now, consider the case where δ > e−k/γc . Suppose π is a
protocol whose communication cost is C. Then, we may amplify the success probability of
this protocol. We create a new protocol π′ which runs r independent copies of π in parallel
and outputs the majority vote across these copies. The probability of failure for this new
protocol is: Pr[≥ r/2 copies of π fail] ≤

(
r

r/2
)
δr/2 ≤ (4δ)r/2. This achieves failure probability

e−k/γc for r = Oc(k
log(1/δ)). The lower bound of Ωc(n) on the communication complexity

of e−k/γc-error protocols implies that the communication cost of π is lower bounded by
Ω(n log(1/δ)

k) in this case. ◀

A. Kamath, E. Price, and D. P. Woodruff 37:15

4 Lower Bounds for ℓ2-Heavy Hitters

In this section, we will prove lower bounds for certain variants of the ℓ2 heavy hitters problem
in the insertion-only model. Our first lower bound follows from some simple observations
and the lower bounds that follow use reductions from the Mostly Set Disjointness problem
and the lower bound proved in the previous section.

▶ Definition 19. Given p > 1, in the ε-ℓp-heavy hitters problem, we are given ε ∈ (0, 1)
and a stream of items a1, . . . , am where ai ∈ [n]. If fi denotes the frequency of item i in the
stream, the algorithm should output all the elements j ∈ [n] such that:

|fj | ≥ ε ∥f∥p

▶ Theorem 20. Given ε ∈ (0, 1
4], any deterministic linear sketching algorithm for the

ε-ℓ2-heavy hitters problem must use at least Ω(n) bits of space even for nonnegative vectors.

Proof. Assume for the sake of contradiction that r = o(n) and M ∈ Rr×n is the sketching
matrix which is associated with a deterministic algorithm for 1/4-ℓ2 heavy hitters. We may
assume that M has orthonormal rows (else there is an orthonormal r × n matrix whose
sketch is linearly related to the sketch in the algorithm and we consider that matrix).

Since M is orthonormal we have
∑

i∈[n]
∥∥MT Mei

∥∥2
2 ≤ r. So, there must exists an i∗ ∈ [n]

such that
∥∥MT Mei∗

∥∥2
2 ≤ r/n. Consider the vector v = ei∗ −MT Mei∗ which lies in the

kernel of M . Observe that v2
i∗ ≥ (1 − r/n)2 ≥ 1/2 and ∥v∥2

2 ≤ 1 since I −MT M is a
projection.

Now, let us define w ∈ Rn such that for all j ̸= i∗, wj = |vj | and wi∗ = 0. Observe that
w +v is a non-negative vector and that i∗ is a heavy hitter in (w +v) because (w +v)2

i∗ ≥ 1/2
and ∥w + v∥2

2 ≤ (2 ∥v∥2)2 ≤ 4. Since v is in the kernel of M , M(w + v) = Mw and the
algorithm must give the same output for both (w + v) and w. However, i∗ is a heavy hitter
in (w + v) and is not a heavy hitter in w. Hence, by contradiction, r = Ω(n). ◀

In Theorem 21, we prove a lower bound on the space complexity of δ-error r-pass streaming
algorithm for ε-ℓp-heavy hitters through a reduction from Mostly Set Disjointness.

▶ Theorem 21. Given ε ∈ (1
n1/p , 1

2) and p ≥ 1, any δ-error r-pass insertion-only streaming
algorithm for ε-ℓp-heavy hitters requires Ω(min(n1−1/p

rε , n1−2/p log(1/δ)
rε2)) bits of space.

Proof. Let A be a δ-error r-pass streaming algorithm for ε-ℓp-heavy hitters in the insertion-
only model. We describe a multiparty protocol to deterministically solve the Mostly Set
Disjointness problem i.e., MostlyDISJ

n,ε(4n)
1
p ,2ε(4n)

1
p

that uses the A. The players simulate a
stream which updates a vector x ∈ R2n. Instead of starting with 02n (as is the case with
most streaming algorithms), the protocol starts off with a vector

f0 =

0
...
0
1
...
1

 n

 n

CCC 2021

37:16 A Simple Proof of a New Set Disjointness with Applications to Data Streams

Each player performs an update f ← f + δi to the vector and passes the state of A to the
next player. The update vector δi that is processed by player i is just their input xi padded
to length 2n.

δ =

xi

0
...
0

Observe that if the input to the players is a NO-instance of MostlyDISJn,ε(4n)1/p,2ε(4n)1/p ,
then the final vector f ′ in the turnstile stream consists of 0-1 entries with at least n 1-s. So,
∥f ′∥p

p ≥ n and since ε ≥ n1/p, no element is a ε-ℓp heavy hitter.
If the input is a YES-instance, then the final vector f ′ consists of ≤ 2n− 1 entries that

are 1 and one entry at which is ε(4n)
1
p . Since 4εpn ≥ εp(2n + 4εpn), that entry is a ε-heavy

hitter. Using the lower bound of Theorem 1, we know that the total communication in the
protocol is Ω(min(n, n log(1/δ)

εn1/p)). Since the number of messages sent over r rounds in the
protocol is r · 2ε(4n)1/p, there exists at least one player whose communication is:

Ω
(

min
(n1− 1

p

rε
,

n1− 2
p log(1/δ)
rε2

))
bits and this is a lower bound on the space complexity of A. ◀

A deterministic lower bound follows as a consequence of this lower bound.

▶ Theorem 22. For any ε ∈ (1
n1/p , 1

2) and p ≥ 1, any r-pass deterministic insertion-only
streaming algorithm for ε-ℓp-heavy hitters must have a space complexity of Ω(n1−1/p

rε) bits.

In real world applications, one is concerned with lower bounds for naturally occurring
frequency vectors. One such naturally occurring frequency distribution is a power law
frequency distribution where the ith most frequent element has frequency ∝ 1

iζ where ζ

typically lies in (0.5, 1]. Formally:

▶ Definition 23. Let f ∈ Rn be a vector such that
∣∣f(1)

∣∣ ≥ ∣∣f(2)
∣∣ ≥ . . .

∣∣f(n)
∣∣. We say that

this vector is power law distributed with parameter ζ if for all i ∈ [n],∣∣f(i)
∣∣ = Θ(f(1) · i−ζ) + O(1)

In the next theorem, we prove a lower bound on the space complexity of streaming
algorithms for ℓp-heavy hitters when the frequency vector is power law distributed. We
denote Hm =

∑∞
i=1 i−m which is finite when m > 1.

▶ Theorem 24. Given p ≥ 1, ζ ∈ (1
p , 1] and ε ∈ (1

nζ , 1
(2+2·Hpζ)1/p), any δ-error r-pass

streaming algorithm for the ε-ℓp-heavy hitters problem where the frequency vector is power
law distributed with parameter ζ must have space complexity of Ω(min(n1−ζ , n1−2ζ log(1/δ))).

Proof. Let A be a one-pass deterministic streaming algorithm for ℓ2 heavy hitters when the
frequency vector is power law distributed with parameter ζ. We will use a reduction similar
to the Theorem 21 to deterministically solve MostlyDISJn,nζ ,2nζ using A.

Instead of padding the initial vector f0 with 1’s as in Theorem 22, we pad with 2nζ

iζ for
i ∈ [2, n].

A. Kamath, E. Price, and D. P. Woodruff 37:17

f0 =

0
0
...
0

2nζ · 2−ζ

2nζ · 3−ζ

...
2

 n

 n

Now, suppose the players pass this frequency vector and successively perform updates to
obtain the final frequency vector f ′. In the YES instance, there exists one index i ∈ [n] such
that |f ′

i |
p = npζ and in the NO instance for all i ∈ [n], we have |f ′

i | ≤ 1. In the NO case, we
have ∥f ′∥p

p ≥
∑

i∈[2,n+1] 2npζ · i−pζ ≥ npζ and in the YES case

∥f ′∥p
p =

∑
i∈[2n]

(f ′
i)p

≤ npζ + n +
∑

i∈[2,n+1]

2npζ · i−pζ

≤ npζ + n + Hpζ2npζ

< (2 + 2Hpζ)npζ .

So, in the YES instance, the heavy element is a ε-ℓp-heavy hitter since εp < 1
2(1+Hpζ)

and in the NO instance all the ℓp-heavy hitters are indices in [n + 1, 2n]. Now, the final
player runs the ℓp-heavy hitter algorithm and if any element from [1, n] is a heavy hitter they
output YES and they output NO otherwise.

So, we have described a reduction from ℓp heavy hitters for power law distributed vectors
to Mostly Set Disjointness. Using Theorem 1, the total communication here is lower bounded
by Ω(n, n1−ζ log(1/δ)). Since there are nζ players, the space complexity lower bound for the
streaming algorithm is Ω(n1−ζ , n1−2ζ log(1/δ)). ◀

5 Application to Low Rank Approximation

As an application of our deterministic ℓ2-heavy hitters lower bound in insertion streams, we
prove a lower bound for the low rank approximation problem in the standard row-arrival
model in insertion streams: we see rows A1, A2, . . . , An each in Rd, one at a time. At
the end of the stream we should output a projection P onto a rank-k space for which
∥A − AP∥2

F ≤ (1 + ϵ)∥A − Ak∥2
F , where Ak is the best rank-k approximation to A. The

FrequentDirections algorithm provides a deterministic upper bound of O(dk/ϵ) words of
memory (assuming entries of A are O(log(nd)) bits and a word is O(log(nd)) bits) was shown
in [59, 35], and a matching lower bound of Ω(dk/ϵ) words of memory was shown in [75].
See also [34] where the upper and lower bounds were combined and additional results for
deterministic algorithms were shown.

A natural question is if FrequentDirections can be improved when the rows of your matrix
are sparse. Indeed, the sparse setting was shown to have faster running times in [33, 45].
Assuming there are n rows and each row has s non-zero entries, the running time was shown
to be O(sn(k + log n) + nk3 + d(k/ϵ)3), significantly improving the nd time required for dense

CCC 2021

37:18 A Simple Proof of a New Set Disjointness with Applications to Data Streams

matrices. Another question is if one can improve the memory required in the sparse setting.
The above lower bound has an Ω(d) term in its complexity because of the need to store
directions in Rd. However, it is well-known [40] that any matrix A contains O(k/ϵ) rows
whose row-span contains a rank-k projection P for which ∥A−AP∥2

F ≤ (1 + ϵ)∥A−Ak∥2
F .

Consequently, it is conceivable in the stream one could use O(sk/ϵ) words of memory in the
sparse setting, which would be a significant improvement if s ≪ d. Indeed, in the related
communication setting, this was shown to be possible in [10], whereby assuming the rows
have at most s non-zero entries it is possible to find such a P with communication only
O(sk/ϵ) words per server, improving upon the O(dk/ϵ) words per server bound for general
protocols, at least in the randomized case. It was left open if the analogous improvement was
possible in the streaming setting, even for deterministic algorithms such as FrequentDirections.

Here we use our deterministic lower bound to show it is not possible to remove a polynomial
dependence on d in the memory required in streaming setting for deterministic algorithms.

▶ Theorem 25. Any 1-pass deterministic streaming algorithm outputting a rank-k projection
matrix P providing a (1 + ϵ)-approximate rank-k low rank approximation requires Ω(

√
d) bits

of memory, even for k = 1, ϵ = Θ(1), and when each row of A has only a single non-zero
entry.

Proof. Recall in one instantiation of our hard communication problem, the players have
sets S1, . . . , S√

d ⊆ {1, 2, . . . , d} each of size
√

d/2 and either the sets are pairwise disjoint or
there exists a unique element i∗ occurring in at least 2/3 fraction of the sets. We associate
each element i in each set Sℓ with a row of A which the standard unit vector ei which is 1
in position i and 0 in all remaining positions. The stream is defined by seeing all the rows
corresponding to elements in S1, then in S2, and so on.

Suppose we have seen the first 1/2 fraction of sets in the stream. In this case, the row i∗

must have occurred in at least 1/2− 1/3 = 1/6 fraction of sets. Thus, at this point in the
stream, the top singular value of A is

√
d/6 and all remaining singular values of A equal 1.

Now, the algorithm outputs a rank-1 projection P from its internal memory state. Suppose
P = vvT for a unit vector v. Then

∥A−AvvT ∥2
F = ∥A∥2

F − ∥Av∥2
2 ≥ ∥A∥2

F − 1 + (d/36)v2
i∗ .

Consequently, to obtain a C-approximation for a sufficiently small constant C > 1, we must
have v2

i∗ = Ω(1). Since ∥v∥2
2 = 1, there is a set T of size O(1) which contains all indices j for

which v2
j = Ω(1).

Now, since we have only observed a 1/2 fraction of sets in the stream, the element i∗

must occur in at least 2/3− 1/2 = 1/6 fraction of sets in the remaining half of the stream.
Thus, for each element in the set T , we can check if it occurs at all in the second half of the
stream. However, if there is such an element i∗, it must be the only element in T occurring
in the second half of the stream. In case the sets in our hard instance are pairwise disjoint,
no element in T will occur in the second half of the stream. Thus, we can deterministically
distinguish which of the two cases we are in.

Note that the maximum communication of this reduction is the memory size of the
streaming algorithm, together with an additional additive O(log d) bits of memory to
store T . Thus, we get that the memory required of our streaming algorithm is at least
Ω(
√

d)−O(log d) = Ω(
√

d) bits. ◀

A. Kamath, E. Price, and D. P. Woodruff 37:19

6 Algorithm for bounded-length turnstile streams

In this section we show that ℓ2 heavy hitters on turnstile streams of length O(n) can be solved
in O(n2/3) space. This is intermediate between the O(

√
n) possible in the insertion-only

model and the Ω(n) necessary in linear sketching.

▶ Theorem 26. There is a deterministic ℓ2 heavy hitters algorithm for length-L strict
turnstile streams with ±1 updates using O((L/ε)2/3) words of space.

Proof. Let S be a parameter to be determined later. We run three algorithms in parallel:
space-O(S) FrequentElements on the positive updates to x; space-O(S) FrequentEle-
ments on the negative updates to x (with sign flipped to be positive); and a linear sketching
algorithm for exact S-sparse recovery (e.g., Reed-Solomon syndrome decoding).

Let P, N be the number of positive/negative updates, respectively, so L = P + N .
Let x+ and x− be the sum of positive/negative updates, so x = x+ − x−. The two
FrequentElements sketches give us estimates x̂+ and x̂−, respectively, such that for
each i:

x+
i − P/S ≤ x̂+

i ≤ x+
i x−

i −N/S ≤ x̂−
i ≤ x−

i

Therefore x̂ := x̂+ − x̂− satisfies

∥x̂− x∥∞ ≤ max(P/S, N/S) ≤ L/S.

Second, the S-sparse recovery algorithm gives us a ŷ such that, if ∥x∥0 ≤ S, ŷi = xi for all i.
For a strict turnstile stream, we can compute ∥x∥1 = P −N . Our algorithm outputs the

ε-heavy hitters of ŷ if ∥x∥1 ≤ S, and otherwise outputs the entries of x̂ larger than 3L/S.
Since ∥x∥0 ≤ ∥x∥1, the output is exactly correct when ∥x∥1 ≤ S. Otherwise, ∥x∥2 ≥√
∥x∥1 ≥

√
S, so for S ≥ (L/ε)2/3,

∥x̂− x∥∞ ≤ L/S ≤ ε
√

S ≤ ε∥x∥2.

Therefore the algorithm will output all 4ε-heavy hitters and only 2ε-heavy hitters. Rescaling
ε by 4 gives the standard ℓ2 heavy hitters guarantee. ◀

▶ Remark 27. For non-strict turnstile streams, one can still achieve the ℓ∞/ℓ2 guarantee

∥ẑ − x∥∞ ≤ ε∥x∥2

with the same space, but the ℓ2 heavy hitters guarantee (of outputting all ε-heavy hitters
and only ε/2-heavy hitters) requires Ω(min(n, L)) space.

Proof. To achieve the ℓ∞/ℓ2 guarantee, we combine x̂ and ŷ in the above algorithm slightly
differently: if ∥ŷ − x̂∥∞ ≤ L/S, output ŷ; else, output x̂. Call this output ẑ. We have that
∥ẑ − x∥∞ ≤ ∥ẑ − x̂∥∞ + ∥x̂ − x∥∞ ≤ 2L/S unconditionally, and ẑ = x if ∥x∥0 ≤ S. The
algorithm outputs ẑ.

So when ∥x∥0 ≤ S, this algorithm recovers x exactly and certainly finds the heavy hitters.
On the other hand, when ∥x∥0 ≥ S, we have ∥x∥2 ≥

√
S. Therefore for S ≥ 2(L/ε)2/3,

∥ẑ − x∥∞ ≤ 2L/S ≤ ε
√

S ≤ ε∥x∥2

as desired.

CCC 2021

37:20 A Simple Proof of a New Set Disjointness with Applications to Data Streams

For the lower bound, it suffices to consider L = Θ(n) [otherwise, restrict to the first Θ(L)
coordinates/do nothing interesting after the first O(n) updates]. We can solve Equality
on b = n/10 bits as follows: using a constant-distance, constant-rate code, associate each
input y ∈ {0, 1}b with a codeword Cy ∈ {0, 1}n−1, such that ∥Cy − Cy′∥1 > n/10 for all
y ≠ y′. Alice, given the input y, inserts x1 = 1, then inserts Cy on the remaining coordinates.
She sends the sketch of the result to Bob, who subtracts his Cy′ from coordinates 2, . . . , n

and asks for the ε-heavy hitters of the result. For any 1 > ε > 10/
√

n, this list will contain
coordinate 1 if and only if y = y′, solving equality, giving the desired Ω(n) bound. [And
since ε-heavy hitters exactly reconstructs binary vectors on 1/ε2 coordinates, an Ω(n) bound
for ε ≤ O(1/

√
n) is trivial.] ◀

References
1 Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in

large databases. In VLDB’94, Proceedings of 20th International Conference on Very Large
Data Bases, September 12-15, 1994, Santiago de Chile, Chile, pages 487–499, 1994.

2 Yuqing Ai, Wei Hu, Yi Li, and David P Woodruff. New characterizations in turnstile streams
with applications. In LIPIcs-Leibniz International Proceedings in Informatics, volume 50.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

3 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

4 Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models
and issues in data stream systems. In Proceedings of the Twenty-first ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 3-5, Madison, Wisconsin, USA,
pages 1–16, 2002.

5 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–732,
2004. doi:10.1016/j.jcss.2003.11.006.

6 Paul Beame and Trinh Huynh. Multiparty communication complexity and threshold circuit
size of \sfacˆ0. SIAM Journal on Computing, 41(3):484–518, 2012.

7 Paul Beame, Toniann Pitassi, Nathan Segerlind, and Avi Wigderson. A strong direct product
theorem for corruption and the multiparty communication complexity of disjointness. Compu-
tational Complexity, 15(4):391–432, 2006.

8 Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J. Strauss. Space-optimal heavy
hitters with strong error bounds. ACM Trans. Database Syst., 35(4):26, 2010. doi:10.1145/
1862919.1862923.

9 Kevin S. Beyer and Raghu Ramakrishnan. Bottom-up computation of sparse and iceberg cubes.
In SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of
Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA., pages 359–370, 1999.

10 Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal component
analysis in distributed and streaming models. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pages 236–249, 2016.

11 Mark Braverman, Ankit Garg, Tengyu Ma, Huy L Nguyen, and David P Woodruff. Commu-
nication lower bounds for statistical estimation problems via a distributed data processing
inequality. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing,
pages 1011–1020, 2016.

12 Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang, and
David P. Woodruff. Bptree: an ℓ2 heavy hitters algorithm using constant memory. CoRR,
abs/1603.00759, 2016.

13 Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, and David P. Woodruff. Beating
countsketch for heavy hitters in insertion streams. STOC, 2016.

https://doi.org/10.1016/j.jcss.2003.11.006
https://doi.org/10.1145/1862919.1862923
https://doi.org/10.1145/1862919.1862923

A. Kamath, E. Price, and D. P. Woodruff 37:21

14 Vladimir Braverman, Jonathan Katzman, Charles Seidell, and Gregory Vorsanger. An optimal
algorithm for large frequency moments using o(nˆ(1-2/k)) bits. In Approximation, Randomiz-
ation, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2014, September 4-6, 2014, Barcelona, Spain, pages 531–544, 2014.

15 Yousra Chabchoub, Christine Fricker, and Hanene Mohamed. Analysis of a bloom filter
algorithm via the supermarket model. In 21st International Teletraffic Congress, ITC 2009,
Paris, France, September 15-17, 2009, pages 1–8, 2009.

16 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal algorithm for
estimating the entropy of a stream. ACM Transactions on Algorithms, 6(3), 2010.

17 Amit Chakrabarti and Sagar Kale. Strong fooling sets for multi-player communication with
applications to deterministic estimation of stream statistics. In IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA, pages 41–50, 2016.

18 Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on the
multi-party communication complexity of set disjointness. In 18th IEEE Annual Conference
on Computational Complexity, 2003. Proceedings., pages 107–117. IEEE, 2003.

19 Ho-Leung Chan, Tak-Wah Lam, Lap-Kei Lee, Jiangwei Pan, Hing-Fung Ting, and Qin Zhang.
Edit distance to monotonicity in sliding windows. In International Symposium on Algorithms
and Computation, pages 564–573. Springer, 2011.

20 Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Theor. Comput. Sci., 312(1):3–15, 2004.

21 Arkadev Chattopadhyay and Anil Ada. Multiparty communication complexity of disjointness.
arXiv preprint, 2008. arXiv:0801.3624.

22 Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law distributions in
empirical data. SIAM review, 51(4):661–703, 2009.

23 A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best k-term approximation.
J. Amer. Math. Soc, 22(1):211–231, 2009.

24 Graham Cormode. Open problem in data streams and related topics. IITK Workshop on
Algorithms for Data Streams, 2006.

25 Graham Cormode and Marios Hadjieleftheriou. Finding frequent items in data streams.
PVLDB, 1(2):1530–1541, 2008.

26 Graham Cormode and S Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

27 Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. Frequency estimation of internet
packet streams with limited space. In Algorithms—ESA 2002, pages 348–360. Springer, 2002.

28 Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff. Lower bounds for sparse
recovery. CoRR, abs/1106.0365, 2011.

29 Cristian Estan and George Varghese. New directions in traffic measurement and accounting:
Focusing on the elephants, ignoring the mice. ACM Trans. Comput. Syst., 21(3):270–313,
2003.

30 Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, and Jeffrey D.
Ullman. Computing iceberg queries efficiently. In VLDB’98, Proceedings of 24rd International
Conference on Very Large Data Bases, August 24-27, 1998, New York City, New York, USA,
pages 299–310, 1998.

31 Sumit Ganguly. Deterministically estimating data stream frequencies. In Ding-Zhu Du,
Xiaodong Hu, and Panos M. Pardalos, editors, Combinatorial Optimization and Applica-
tions, Third International Conference, COCOA 2009, Huangshan, China, June 10-12, 2009.
Proceedings, volume 5573 of Lecture Notes in Computer Science, pages 301–312. Springer,
2009.

32 Ankit Garg, Tengyu Ma, and Huy Nguyen. On communication cost of distributed statistical
estimation and dimensionality. In Advances in Neural Information Processing Systems, pages
2726–2734, 2014.

CCC 2021

http://arxiv.org/abs/0801.3624

37:22 A Simple Proof of a New Set Disjointness with Applications to Data Streams

33 Mina Ghashami, Edo Liberty, and Jeff M Phillips. Efficient frequent directions algorithm
for sparse matrices. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 845–854, 2016.

34 Mina Ghashami, Edo Liberty, Jeff M Phillips, and David P Woodruff. Frequent directions:
Simple and deterministic matrix sketching. SIAM Journal on Computing, 45(5):1762–1792,
2016.

35 Mina Ghashami and Jeff M Phillips. Relative errors for deterministic low-rank matrix
approximations. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms, pages 707–717. SIAM, 2014.

36 Anna C Gilbert, Hung Q Ngo, Ely Porat, Atri Rudra, and Martin J Strauss. L2/l2-foreach
sparse recovery with low risk. arXiv preprint, 2013. arXiv:1304.6232.

37 Parikshit Gopalan and Jaikumar Radhakrishnan. Finding duplicates in a data stream. In
Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 402–411, 2009.

38 Vince Grolmusz. The bns lower-bound for multiparty protocols is nearly optimal. Information
and computation, 112(1):51–54, 1994.

39 André Gronemeier. Asymptotically optimal lower bounds on the nih-multi-party information
complexity of the and-function and disjointness. In Susanne Albers and Jean-Yves Marion,
editors, 26th International Symposium on Theoretical Aspects of Computer Science, STACS
2009, February 26-28, 2009, Freiburg, Germany, Proceedings, volume 3 of LIPIcs, pages
505–516. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009.

40 Venkatesan Guruswami and Ali Kemal Sinop. Optimal column-based low-rank matrix re-
construction. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 1207–1214. SIAM, 2012.

41 Jiawei Han, Jian Pei, Guozhu Dong, and Ke Wang. Efficient computation of iceberg cubes
with complex measures. In Proceedings of the 2001 ACM SIGMOD international conference
on Management of data, Santa Barbara, CA, USA, May 21-24, 2001, pages 1–12, 2001.

42 Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate generation.
In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data,
May 16-18, 2000, Dallas, Texas, USA., pages 1–12, 2000.

43 Nicholas J. A. Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and streaming entropy
via approximation theory. In 49th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 489–498, 2008.

44 Christian Hidber. Online association rule mining. In SIGMOD 1999, Proceedings ACM
SIGMOD International Conference on Management of Data, June 1-3, 1999, Philadelphia,
Pennsylvania, USA., pages 145–156, 1999.

45 Zengfeng Huang. Near optimal frequent directions for sketching dense and sparse matrices. In
International Conference on Machine Learning, pages 2048–2057, 2018.

46 Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency moments of
data streams. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing
(STOC), pages 202–208, 2005.

47 Rajesh Jayaram and David P Woodruff. Data streams with bounded deletions. In Proceedings
of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Prin ciples of Database Systems,
pages 341–354. ACM, 2018.

48 Thathachar S Jayram and David P Woodruff. The data stream space complexity of cascaded
norms. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages
765–774. IEEE, 2009.

49 TS Jayram. Hellinger strikes back: A note on the multi-party information complexity of
and. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 562–573. Springer, 2009.

50 Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers, finding
duplicates in streams, and related problems. In Maurizio Lenzerini and Thomas Schwentick,
editors, Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2011, June 12-16, 2011, Athens, Greece, pages 49–58. ACM, 2011.

http://arxiv.org/abs/1304.6232

A. Kamath, E. Price, and D. P. Woodruff 37:23

51 John Kallaugher and Eric Price. Separations and equivalences between turnstile streaming
and linear sketching. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, pages 1223–1236, 2020.

52 Ravi Kannan, Santosh Vempala, and David Woodruff. Principal component analysis and
higher correlations for distributed data. In Conference on Learning Theory, pages 1040–1057,
2014.

53 Richard M Karp, Scott Shenker, and Christos H Papadimitriou. A simple algorithm for finding
frequent elements in streams and bags. ACM Transactions on Database Systems (TODS),
28(1):51–55, 2003.

54 Abhishek Kumar and Jun (Jim) Xu. Sketch guided sampling - using on-line estimates of flow
size for adaptive data collection. In INFOCOM 2006. 25th IEEE International Conference on
Computer Communications, Joint Conference of the IEEE Computer and Communications
Societies, 23-29 April 2006, Barcelona, Catalunya, Spain, 2006.

55 Kasper Green Larsen, Jelani Nelson, Huy L. Nguyen, and Mikkel Thorup. Heavy hitters via
cluster-preserving clustering. Commun. ACM, 62(8):95–100, 2019.

56 Troy Lee and Adi Shraibman. Disjointness is hard in the multiparty number-on-the-forehead
model. Computational Complexity, 18(2):309–336, 2009.

57 Yi Li, Huy L Nguyen, and David P Woodruff. Turnstile streaming algorithms might as well
be linear sketches. In Proceedings of the forty-sixth annual ACM symposium on Theory of
computing, pages 174–183, 2014.

58 Yi Li, Huy L. Nguyen, and David P. Woodruff. Turnstile streaming algorithms might as well
be linear sketches. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA,
May 31 - June 03, 2014, pages 174–183, 2014. doi:10.1145/2591796.2591812.

59 Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 581–588,
2013.

60 Debmalya Mandal, Ariel D. Procaccia, Nisarg Shah, and David P. Woodruff. Efficient and
thrifty voting by any means necessary. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14
December 2019, Vancouver, BC, Canada, pages 7178–7189, 2019.

61 Debmalya Mandal, Nisarg Shah, and David P. Woodruff. Optimal communication-distortion
tradeoff in voting. In EC ’20: The 21st ACM Conference on Economics and Computation,
Virtual Event, Hungary, July 13-17, 2020, pages 795–813, 2020.

62 Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data streams.
In Proceedings of the 28th international conference on Very Large Data Bases, pages 346–357.
VLDB Endowment, 2002.

63 Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation of frequent
and top-k elements in data streams. In Proceedings of the 10th International Conference
on Database Theory, ICDT’05, pages 398–412, Berlin, Heidelberg, 2005. Springer-Verlag.
doi:10.1007/978-3-540-30570-5_27.

64 Jayadev Misra and David Gries. Finding repeated elements. Sci. Comput. Program., 2(2):143–
152, 1982.

65 Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error Lp-sampling with ap-
plications. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1143–1160, 2010.

66 Shanmugavelayutham Muthukrishnan. Data streams: Algorithms and applications. Now
Publishers Inc, 2005.

67 Eric Price and David P Woodruff. Lower bounds for adaptive sparse recovery. In Proceedings
of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages 652–663.
SIAM, 2013.

68 Ashok Savasere, Edward Omiecinski, and Shamkant B. Navathe. An efficient algorithm for
mining association rules in large databases. In VLDB’95, Proceedings of 21th International
Conference on Very Large Data Bases, September 11-15, 1995, Zurich, Switzerland., pages
432–444, 1995.

CCC 2021

https://doi.org/10.1145/2591796.2591812
https://doi.org/10.1007/978-3-540-30570-5_27

37:24 A Simple Proof of a New Set Disjointness with Applications to Data Streams

69 Alexander A Sherstov. The multiparty communication complexity of set disjointness. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages 525–548,
2012.

70 Alexander A Sherstov. Communication lower bounds using directional derivatives. Journal of
the ACM (JACM), 61(6):1–71, 2014.

71 Xiaoming Sun, David P. Woodruff, Guang Yang, and Jialin Zhang. Querying a matrix through
matrix-vector products. In 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, pages 94:1–94:16, 2019.

72 Pascal Tesson. Computational complexity questions related to finite monoids and semigroups,
2003.

73 Hannu Toivonen. Sampling large databases for association rules. In VLDB’96, Proceedings
of 22th International Conference on Very Large Data Bases, September 3-6, 1996, Mumbai
(Bombay), India, pages 134–145, 1996.

74 Wikipedia contributors. Jensen–Shannon divergence – Wikipedia, the free encyclopedia,
2020. [Online; accessed 06-November-2020]. URL: https://en.wikipedia.org/w/index.php?
title=Jensen%E2%80%93Shannon_divergence&oldid=980081721.

75 David Woodruff. Low rank approximation lower bounds in row-update streams. In Advances
in Neural Information Processing Systems, pages 1781–1789, 2014.

76 David P Woodruff. New algorithms for heavy hitters in data streams. arXiv preprint, 2016.
arXiv:1603.01733.

77 David P. Woodruff and Qin Zhang. Tight bounds for distributed functional monitoring. In
Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New
York, NY, USA, May 19 - 22, 2012, pages 941–960, 2012.

78 David P Woodruff and Qin Zhang. An optimal lower bound for distinct elements in the
message passing model. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on
Discrete algorithms, pages 718–733. SIAM, 2014.

https://en.wikipedia.org/w/index.php?title=Jensen%E2%80%93Shannon_divergence&oldid=980081721
https://en.wikipedia.org/w/index.php?title=Jensen%E2%80%93Shannon_divergence&oldid=980081721
http://arxiv.org/abs/1603.01733

Toward Better Depth Lower Bounds:
The XOR-KRW Conjecture
Ivan Mihajlin #

St. Petersburg Department of Steklov Mathematical Institute of
Russian Academy of Sciences, Russia

Alexander Smal # Ñ

St. Petersburg Department of Steklov Mathematical Institute of
Russian Academy of Sciences, Russia

Abstract
In this paper, we propose a new conjecture, the XOR-KRW conjecture, which is a relaxation of the
Karchmer-Raz-Wigderson conjecture [10]. This relaxation is still strong enough to imply P ̸⊆ NC1

if proven. We also present a weaker version of this conjecture that might be used for breaking n3

lower bound for De Morgan formulas. Our study of this conjecture allows us to partially answer an
open question stated in [5] regarding the composition of the universal relation with a function. To
be more precise, we prove that there exists a function g such that the composition of the universal
relation with g is significantly harder than just a universal relation. The fact that we can only prove
the existence of g is an inherent feature of our approach.

The paper’s main technical contribution is a new approach to lower bounds for multiplexer-type
relations based on the non-deterministic hardness of non-equality and a new method of converting
lower bounds for multiplexer-type relations into lower bounds against some function. In order to do
this, we develop techniques to lower bound communication complexity in half-duplex and partially
half-duplex communication models.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases communication complexity, KRW conjecture, circuit complexity, half-duplex
communication complexity, Karchmer-Wigderson games, multiplexer relation, universal relation

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.38

Related Version Full Version: https://eccc.weizmann.ac.il/report/2020/116/

Acknowledgements We would like to thank the anonymous reviewers who have done a tremendous
job carefully reading our paper and whose detailed comments helped us significantly improve the
text of the paper and make it more readable.

1 Introduction

1.1 Background
Proving lower bounds on the Boolean formula complexity is one of the classical problems of
computational complexity theory. For over 40 years, the researchers had been developing
the methods for proving lower bounds – starting with the works of Subbotovskaya [17]
and Khrapchenko [12] all the way to the celebrated work of Håstad [6]. As a result, the
researchers managed to achieve a cubic lower bound on the formula complexity of an explicit
Boolean function (Andreev’s function). This lower bound has been unbeaten for over 20
years (up to lower order terms, see. [18] for more information).

Karchmer, Raz, and Wigderson [10] suggested an approach for proving superpolynomial
formula size lower bound for Boolean functions from class P. The suggested approach is to
prove lower bounds on the formula depth of the block-composition of two arbitrary Boolean
functions.

© Ivan Mihajlin and Alexander Smal;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 38; pp. 38:1–38:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ivmihajlin@gmail.com
mailto:smal@pdmi.ras.ru
https://logic.pdmi.ras.ru/~smal/
https://orcid.org/0000-0002-8241-5503
https://doi.org/10.4230/LIPIcs.CCC.2021.38
https://eccc.weizmann.ac.il/report/2020/116/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Toward Better Depth Lower Bounds: The XOR-KRW Conjecture

▶ Definition 1. Let f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1} be Boolean functions. The
block-composition f ⋄ g : ({0, 1}n)m → {0, 1} is defined by

(f ⋄ g)(x1, . . . , xm) = f(g(x1), . . . , g(xm)),

where x1, . . . , xm ∈ {0, 1}n.

Let D(f) denotes the minimal depth of De Morgan formula for function f . It is easy to show
that D(f ⋄g) ≤ D(f) + D(g) by constructing a formula for f ⋄g by substituting every variable
in a formula for f with a copy of the formula for g. Karchmer, Raz, and Wigderson [10]
conjectured that this upper bound is roughly optimal.

▶ Conjecture 2 (The KRW conjecture). Let f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1} be
non-constant functions. Then

D(f ⋄ g) ≈ D(f) + D(g).

If the conjecture is true then there is a polynomial-time computable function that does not
have De Morgan formula of polynomial size, and hence P ̸⊆ NC1. Consider the function
h : {0, 1}n × {0, 1}n → {0, 1}, which interprets its first input as a truth table of a function
f : {0, 1}log n → {0, 1} and computes the value of the block-composition of log n/ log log n

functions f on its second input:

h(f, x) = (f ⋄ · · · ⋄ f︸ ︷︷ ︸
log n/ log log n

)(x).

It is not hard to see that h ∈ P. To show that h ̸∈ NC1, let f̃ be a function with
maximal depth complexity. By Shannon’s counting argument f̃ has depth complexity roughly
log n. Assuming the KRW conjecture, the function f̃ ⋄ · · · ⋄ f̃ has depth complexity roughly
log n · (log n/ log log n) = ω(log n), and hence f̃ ⋄ · · · ⋄ f̃ ̸∈ NC1. Any formula for h must
compute f̃ ⋄ · · · ⋄ f̃ if we hard-wire f = f̃ in it, so h ̸∈ NC1. This argument is especially
attractive since it does not seem to break any known meta mathematical barriers such as the
concept of “natural proofs” by Razborov and Rudich [16] (the function h is very special, so the
argument does not satisfy “largeness” property). It worth noting that the proof would work
even assuming some weaker version of the KRW conjecture, like D(f ⋄ g) ≥ D(f) + ϵ · D(g)
or D(f ⋄ g) ≥ ϵ · D(f) + D(g) for some ϵ > 0.

The seminal work of Karchmer and Wigderson [11] established a correspondence between
De Morgan formulas for non-constant Boolean function f and communication protocols for
the Karchmer-Wigderson game for f .

▶ Definition 3. The Karchmer-Wigderson game (KW game) for Boolean function f :
{0, 1}n → {0, 1} is the following communication problem: Alice gets an input x ∈ {0, 1}n

such that f(x) = 0, and Bob gets as input y ∈ {0, 1}n such that f(y) = 1. Their goal is to find
a coordinate i ∈ [n] such that xi ̸= yi. The KW game can be considered as a communication
problem for the Karchmer-Wigderson relation for f :

KWf = {(x, y, i) | x, y ∈ {0, 1}n, i ∈ [n], f(x) = 0, f(y) = 1, xi ̸= yi}.

Karchmer and Wigderson showed that the communication complexity of KWf is exactly equal
to the depth formula complexity of f . This correspondence allows us to use communication
complexity methods for proving formula depth lower bounds. In fact, Conjecture 2 can be
reformulated in terms of communication complexity of the Karchmer-Wigderson game for

I. Mihajlin and A. Smal 38:3

the block-composition of two arbitrary Boolean functions. Let CC(R) denotes deterministic
communication complexity of a relation R. For convenience, we also define a block-composition
for KW relations, so that the following equality holds: KWf⋄g = KWf ⋄ KWg. This leads to
the following reformulation of the KRW conjecture.

▶ Conjecture 4 (The KRW conjecture (reformulation)). Let f : {0, 1}m → {0, 1} and
g : {0, 1}n → {0, 1} be non-constant functions. Then

CC(KWf ⋄ KWg) ≈ CC(KWf) + CC(KWg).

The study of Karchmer-Wigderson games had already been shown to be a potent tool in
the monotone setting – the monotone KW games were used to separate the monotone
counterparts of classes NC1 and NC2 [11]. Therefore, there is a reason to believe that
the communication complexity perspective might help to prove new lower bounds in the
non-monotone setting.

In a series of works [4, 7, 5, 3, 13, 1] several steps were taken towards proving the
KRW conjecture. In the first two works [4, 7] the authors proved the similar bound for the
block-composition of two universal relations.

▶ Definition 5. The universal relation of length n,

Un = {(x, y, i) | x, y ∈ {0, 1}n, i ∈ [n], xi ̸= yi} ∪ {(x, x, ⊥) | x ∈ {0, 1}n}.

A communication problem for the universal relation is a generalization of the Karchmer-
Wigderson games: Alice and Bob are given n-bit distinct strings and their goal is to find a
coordinate i ∈ [n] such that xi ̸= yi. In contrast to KW games, in this game Alice and Bob
can be given the same input string – in that case, they have to output a special symbol ⊥
to indicate that the promise is broken. Intuitively, the universal relation is a more complex
communication problem than KW game because the players do not have proof that their inputs
are different. For any non-constant f : {0, 1}n → {0, 1}, there is a natural reduction from
KWf to Un: given inputs (x, y) for KWf the players follow a protocol for Un, the protocol
outputs some i such that xi ̸= yi, the players output i as it is a correct output for KWf . The
block-composition of the universal relations generalizes the block-composition of KW games
in the same manner. A similar reduction uses a protocol for the block-composition of the
universal relations to solve the block-composition KW games. Thus, proving lower bounds for
the universal relations seems to be a natural first step.

In the subsequent works [5, 13], the authors proved a lower bound on the block-composition
of the Karchmer-Wigderson relation for an arbitrary function and the universal relation.
This result is presented in terms of the number of leaves rather than formula depth. In [3],
the authors presented an alternative proof for the block-composition of an arbitrary function
with the parity function in the framework of the Karchmer-Wigderson games (this result
was originally proved in [6] using an entirely different approach). Their result gives an
alternative proof of the cubic lower bound for Andreev’s function [6]. In the most recent
paper [1] of the series, the authors extended the range of inner functions that can be handled
in the monotone version of the KRW conjecture to all functions whose depth complexity
can be lower bounded via query-to-communication lifting theorem. They also introduce an
intermediate semi-monotone setting where only inner function is monotone and show a lower
bound on the composition of the (non-monotone) universal relation with every monotone
inner function for which a lower bound can be proved using a lifting theorem.

In the last section of [4], the authors introduced the same function multiplexer commu-
nication game, that is very similar to the Karchmer-Wigderson game for the multiplexer
function.

CCC 2021

38:4 Toward Better Depth Lower Bounds: The XOR-KRW Conjecture

▶ Definition 6. The multiplexer function of size n is a function Mn : {0, 1}2n × {0, 1}n →
{0, 1} with two arguments, such that Mn(f, x) = fx. It is convenient to interpret the string
f as a truthtable of some function f : {0, 1}n → {0, 1}, so we can say that Mn(f, x) = f(x).

In the KW game for Mn, Alice gets a function f : {0, 1}n → {0, 1} and x ∈ {0, 1}n, such
that f(x) = 0, Bob gets a function g : {0, 1}n → {0, 1} and y ∈ {0, 1}n, such that g(y) = 1.
Their goal is to find a coordinate i ∈ [2n + n] such that (f, x)i ̸= (g, y)i. The authors of [4]
suggest to consider a version of this game where players are given the same function, i.e.,
f = g, so they only need to find the differing coordinate between x and y.

▶ Definition 7. In the same function multiplexer communication game (the multiplexer
game) MUXn, Alice gets a function f : {0, 1}n → {0, 1} and x ∈ {0, 1}n such that f(x) = 0,
Bob gets the same function g : {0, 1}n → {0, 1} and y ∈ {0, 1}n such that g(y) = 1. Their
goal is to find a coordinate i ∈ [n] such that xi ̸= yi, or output ⊥ if f ̸= g (if x ̸= y and
f ̸= g then both outputs are possible).

The same function multiplexer communication game can be considered as a generalization of
the Karchmer-Wigderson games for Boolean functions on n bits. Indeed, solving the KW
game for any g : {0, 1}n → {0, 1} can be reduced to the same function multiplexer game:
Alice and Bob are given g and the corresponding x and y. Given that we already have a lower
bound on f ⋄ Un [5, 13], it looks natural to study the block-composition of the KW game for
an arbitrary function and the same function multiplexer game. The detailed explanation
how a lower bound on the block-composition of the KW game for an arbitrary function and
the same function multiplexer might be used to separate P and NC1, see [15] for details (to
the best of our knowledge, this result was independently proved by Russell Impagliazzo).
▶ Remark 8. The KW game for Mn can also be considered as a generalization of KW games
using the same reduction. On the other hand, it is unclear whether lower bounds on the
block-composition with it implies any new results. Moreover, the following lower bound
applies. Let L(f) denotes the minimal size of De Morgan formula computing f .

▶ Theorem 9. For any m, n ∈ N with n ≥ 6 log m, and any non-constant function f :
{0, 1}m → {0, 1},

CC(KWf⋄Mn
) ≥ log L(f) + n − O(log∗ n).

The proof is given in Appendix B.

1.2 The XOR-KRW conjecture
As an alternative to the block-composition, we define a new composition operation.

▶ Definition 10. For any n, m, k ∈ N with k | n, and functions f : {0, 1}n → {0, 1} and
g : {0, 1}k → {0, 1}k the XOR-composition f ⊞m g : ({0, 1}n)m → {0, 1} is defined by

(f ⊞m g)(x1,1, . . . , xn/k,m) = f
(
g(x1,1) ⊕ · · · ⊕ g(x1,m), . . . , g(xn/k,1) ⊕ · · · ⊕ g(xn/k,m)

)
,

where xi,j ∈ {0, 1}k for all i ∈ [n/k] and j ∈ [m], and ⊕ denotes bit-wise XOR.

This composition becomes a stronger version of the block composition if we consider case
of n = m = k. In this case, both compositions are mapping an n × n matrix into a vector
and then applying a function to it. But in the XOR-composition every bit of the vector
depends on the entire matrix rather than just one row. However we will focus on the case of
constant m as we believe it might be sufficient for our goals.

We suggest the following generalization of the KRW conjecture.

I. Mihajlin and A. Smal 38:5

▶ Conjecture 11 (The XOR-KRW conjecture). There exist m ∈ N and ϵ > 0, such that for
all natural n, k ∈ N with k | n, and every non-constant f : {0, 1}n → {0, 1}, there exists
g : {0, 1}k → {0, 1}k,

D(f ⊞m g) ≥ D(f) + ϵk.

Using the ideas from [10] one can show that XOR-KRW implies P ̸= NC1.

▶ Theorem 12. If Conjecture 11 is true then P ̸= NC1.

Proof. Suppose Conjecture 11 is true. Let f be any non-constant function from {0, 1}log n

to {0, 1}, and let m ∈ N be provided by Conjecture 11. For every t ∈ N, consider a function
ht defined by:

ht(x, g1, g2, . . . gt) = (f ⊞m g1 ⊞m g2 ⊞m · · · ⊞m gt)(x),

where x ∈ {0, 1}mt log n and gi : {0, 1}log n → {0, 1}log n for all i ∈ [t]. Conjecture 11 implies
that there exist m ∈ N and g1, . . . , gt : {0, 1}log n → {0, 1}log n, such that D(f ⊞m g1 ⊞m

g2 ⊞m · · · ⊞m gt) = D(ht) ≥ ϵt log n − O(t). For t = log n that gives us

D(hlog n) ≥ ϵ log2 n − O(log n).

Now lets estimate the size of the input to hlog n. Each gi requires n log n bits of description,
x requires mlog n log n = nlog m log n = nO(1). So, the size of the input to hlog n is N = nO(1)

bits, and D(hlog n) ≥ ϵ log2 n − O(log n) = Ω(log2 N). Thus, hlog n ̸∈ NC1. On the other
hand, we can compute hlog n in a natural way in P. ◀

The idea behind the XOR-KRW conjecture is influenced by the constructions used in the
areas of pseudorandomness and cryptography, where bit-wise xor is used to achieve better
results. The proof of hardness of the composition of the universal relations is based on the
idea that any protocol that makes progress solving the top relation of the composition is
leaking very little information about the actual inputs of the composition. We hope that the
additional entanglement provided by taking entry-wise xor of multiple copies of a gadget
function g will make it possible to use the same kind of argument about the composition of
functions.

In this paper we will focus on specific case of k = n. In this case, f ⊞m g has the same
number of inputs as f . This is not the regime we need for the KRW conjecture in order to
separate P and NC1, as the proof of the Theorem 12 uses KRW for the case of k ≪ n. But let
us scale our ambitions down a bit. One of the current major challenges of circuit complexity
is to beat the Ω(n3) lower bound for a specific formula. As we already have mentioned, this
bound was proved by Håstad in [6] and was not improved rather than by lower terms since
then. If we only aim to prove a supercubic lower bound for a specific formula then we can
only focus on the case k = n. For k = n, the definition of the XOR-composition a bit simpler.

▶ Definition 13 (A special case of Definition 10 for k = n). For n, m ∈ N and functions
f : {0, 1}n → {0, 1} and g : {0, 1}n → {0, 1}n the XOR-composition f ⊞m g : ({0, 1}n)m →
{0, 1} is defined by

(f ⊞m g)(x1, . . . , xm) = f (g(x1) ⊕ · · · ⊕ g(xm)) ,

where xi ∈ {0, 1}n for all i ∈ [m].

This definition allows us to formulate a weak version of the XOR-KRW conjecture.

CCC 2021

38:6 Toward Better Depth Lower Bounds: The XOR-KRW Conjecture

▶ Conjecture 14 (The weak XOR-KRW conjecture). There exists m ∈ N and ϵ > 0, such that
for all n ∈ N, for any non-constant functions f : {0, 1}n → {0, 1} and g : {0, 1}n → {0, 1}n:

D(f ⊞m g) ≥ D(f) + ϵn.

We also introduce a version of this conjecture for a formula size rather than depth.
Proving that this conjecture is true would allow us to beat Ω(n3) formula size lower bound.

▶ Conjecture 15 (The weak XOR-KRW conjecture for formula size). There exists m ∈ N and
ϵ > 0, such that for all n ∈ N, for any non-constant function f : {0, 1}n → {0, 1} there exists
a non-constant function g : {0, 1}n → {0, 1}n:

L(f ⊞m g) ≥ 2ϵn · L(f).

The weak XOR-KRW conjecture implies the existence of a function h = f ⊞m g for
some f : {0, 1}log n → {0, 1}, g : {0, 1}log n → {0, 1}log n and m ∈ N, such that CC(KWh) ≥
(1 + ϵ) log n. In order to prove a cubic lower bound for the Andreev’s function one needs
to hardwire a hard function into it’s description. We define a modified Andreev’s function
that takes the XOR-composition of functions instead. Note that there are nlog n+1 pairs of
functions f : {0, 1}log n → {0, 1} and g : {0, 1}log n → {0, 1}log n. That means that one can
encode h with θ(n log n) bit.

▶ Definition 16. For n ∈ N that is a power of two, any m ∈ N, and any functions
f : {0, 1}log n → {0, 1} and g : {0, 1}log n → {0, 1}log n the XOR-composed Andreev’s function
Andr⊞m is defined by

Andr⊞m(f, g, x1, . . . , xm log n) = (f ⊞m g)
(
⊕n(x1), · · · , ⊕n(xm log n)

)
,

where xi ∈ {0, 1}n for i ∈ [m log n], and ⊕n(x) denotes the sum of all bits of x modulo 2.

The input size of Andr⊞m is Θ(n log n). It is also important that there is a natural
polynomial time algorithm for Andr⊞m.

▶ Theorem 17. Conjecture 15 implies that L(Andr⊞m) = Ω(n3+ϵ) for some m ∈ N.

The proof of this theorem is identical to the original proof of Håstad with only difference
that we can now hardwire functions f and g for some hard f and g provided by the conjecture.

As the main result of this paper we show that some form of XOR-KRW conjecture holds
for XOR-composition of the universal relation and the KW game for some hard function. It
would be interesting to see if our techniques could be extended to handle the case of k < n.
It feels that this setting is significantly more sensitive and would require more intricate proof.
In this paper, we focused on the regime of k = n since this is the regime that is useful for
super-cubic formula lower bounds, but the regime of smaller k’s would be useful for other
applications.

1.3 Techniques and Results
The paper’s main technical contribution is a new approach to lower bounds for multiplexer-
type relations based on the non-deterministic hardness of non-equality and a new method
of converting lower bounds for multiplexer-type relations into lower bounds against some
function. We define two communication problems based on the XOR-composition and prove
lower bounds on it: a XOR-composition of the universal relation with the KW game for
some function g, we denote it Un ⊞KWg, and the XOR-composition of the universal relation

I. Mihajlin and A. Smal 38:7

with the multiplexer relation, we denote it Un ⊞ MUXn. Both communication problems are
based on the XOR-composition for m = 2. Our proofs also allow to get a lower bound for
the standard block composition of the universal relation and a function (see Appendix A).

Further in this section we discuss a special case of Definition 10 for m = 2, which is
sufficient for our purposes. Then we will discuss the problem Un ⊞ KWg, which is a relaxed
version of the weak KRW-conjecture, and describe our main result, which is a lower bound
for this problem. Next, we discuss an even more relaxed version of the problem Un ⊞MUXn,
and describe our second result, which is a lower bound to that problem. Finally, we describe
how the second result is proved, and how we use it to derive the first result.

▶ Definition 18 (Special case of Definition 13 for m = 2). For functions f : {0, 1}n → {0, 1}
and g : {0, 1}n → {0, 1}n the XOR-composition f ⊞ g is defined by

(f ⊞ g)(x, y) = f(g(x) ⊕ g(y)),

where x, y ∈ {0, 1}n.

In the definitions of the problems below, we are going to use a communication problem
that is a generalization of the Karchmer-Wigderson game for non-Boolean functions. So, it
is convenient to extend the definition of the KW game to handle the case of multioutput
functions.

▶ Definition 19. The Karchmer-Wigderson game for function g : {0, 1}n → {0, 1}k is
the following communication problem: Alice gets an input x ∈ {0, 1}n, Bob gets as input
y ∈ {0, 1}n. Their goal is to find a coordinate i ∈ [n] such that xi ≠ yi. If g(x) = g(y) then
the players are allowed to output ⊥.

Recall that our ultimate goal is to prove a lower bound for f ⊞ g. As an intermediate
problem, we consider a version of this game f replaced with the universal relation. In a
communication game for KWf⊞g, Alice is given xa, ya ∈ {0, 1}n, such that (f⊞g)(xa, ya) = 0,
and Bob is given xb, yb ∈ {0, 1}n, such that (f ⊞ g)(xb, yb) = 1. Their goal is to find i ∈ [2n]
such that (xa ◦ ya)i ≠ (xb ◦ yb)i. We now replace f with Un, so the players only know that
g(xa) ⊕ g(ya) ̸= g(xb) ⊕ g(yb).

▶ Definition 20. Let g : {0, 1}n → {0, 1}n. A communication game Un ⊞ KWg is the
XOR-composition of Un and KWg in the following way: Alice is given xa, ya ∈ {0, 1}n and
Bob is given xb, yb ∈ {0, 1}n. Their goal is to find i ∈ [2n] such that (xa ◦ ya)i ̸= (xb ◦ yb)i.
If g(xa) ⊕ g(ya) = g(xb) ⊕ g(yb) they can output ⊥.

The trivial upper bound for CC(Un ⊞ KWg) is CC(KWg) + n + O(log n) ≤ 2n + O(log n):
Alice sends xa to Bob, and Bob compares it with xb. If he finds a difference then he sends
the answer to Alice using O(log n) bits of communication. Otherwise, they simulate the
shortest protocol for KWg on ya and yb that outputs some index j. If (ya)j ̸= (yb)j then they
output n + j, otherwise they output ⊥. We are going to prove that there exists a function
g : {0, 1}n → {0, 1}n such that CC(Un ⊞ KWg) ≥ 1.5n − O(log n).

▶ Theorem 21. For all n ∈ N, there exists g : {0, 1}n → {0, 1}n such that

CC(Un ⊞ KWg) ≥ 1.5n − O(log n).

This theorem partially answer an open question from [5] showing a lower bound for the
XOR-composition of the universal relation with a function. The answer is partial because the
original open question was to prove a composition result for U ⋄ KWg for every function g,

CCC 2021

38:8 Toward Better Depth Lower Bounds: The XOR-KRW Conjecture

and we prove that there exists some hard function g for which a composition result holds. We
also only focus on the case where both U and g have the same input length. A corresponding
result for the block-composition follows from our proof. See Appendix A for details.

In order to prove the result on Un ⊞ KWg, we will consider a similar communication
problem where the function g is given to the players as a part of the input rather than being
hardwired into definition of the problem.

▶ Definition 22. In a communication problem Un ⊞ MUXn Alice is given xa, ya ∈ {0, 1}n

and ga : {0, 1}n → {0, 1}n, Bob is given xb, yb ∈ {0, 1}n and gb : {0, 1}n → {0, 1}n. Their
goal is to find i ∈ [2n] such that (xa ◦ ya)i ̸= (xb ◦ yb)i. If ga(xa) ⊕ ga(ya) = gb(xb) ⊕ gb(yb)
or ga ̸= gb they can output ⊥.

In some sense, the communication problem Un ⊞ MUXn contains an instance of Un ⊞ KWg

for every g as a special case where Alice and Bob receive g as a part of the input. So, on the
one hand, it might be easier to prove a lower bound for it as it is a more complex problem.
On the other hand, it seems that there is a natural way of arguing that a lower bound on
Un ⊞ MUXn implies a lower bound on Un ⊞ KWg for some g: if the problem is hard in
common, then it has to be hard in some of the special cases.

The trivial upper bound for CC(Un ⊞ MUXn) is 2n + O(log n): Alice sends xa and ya

to Bob, he compares it with xb and yb, and then he either finds a difference or realizes
that they are allowed to output ⊥. At the end, Bob sends the answer to Alice using
O(log n) bits of communication. We prove the following lower bound using a reductions from
non-deterministic communication complexity.

▶ Theorem 23. For all n ∈ N, CC(Un ⊞ MUXn) ≥ 1.5n − o(n).

After we prove this lower bound for Un ⊞ MUXn, we will translate it to a lower bound
on Un ⊞KWg for some g. The problem Un ⊞KWg is a special case of Un ⊞MUXn for fixed
g. The intuition suggests that if Un ⊞ MUXn is hard then there should be some function g

such that Un ⊞ KWg is hard. Thus, to get a lower bound for Un ⊞ KWg for some g from
a lower bound on Un ⊞ MUXn, we need to show that Un ⊞ MUXn is at most as hard as
Un ⊞ KWg for the “hardest” function that we can feed to the players, and hence we can
hard-wire this “hardest” function in Un ⊞ MUXn to get Un ⊞ KWg. Let’s forget about the
outer Un for a bit, and consider MUXn. It seems almost obvious that the complexity of
MUXn is equal to the complexity of the hardest function: given some function g in the
MUXn game the players can use the optimal protocol for KWg, hence the complexity of
MUXn is upper bounded by the complexity of the hardest KWg. The same idea should work
for the composed problems like Un ⊞ MUXn. However, this argument is incorrect. In the
argument we assume that the players choose a protocol depending on the function g they
have got as a part of the input. This is not possible in the classical model of communication
complexity. Suppose that in the best protocol for KWg1 Alice sends the first message, while
in the best protocol for KWg2 for g2 ≠ g2 the first message is sent by Bob. Then it is not
clear who sends first in the protocol for MUXn. There is a natural workaround – we can
consider only alternating protocols where Alice sends every odd message and Bob sends every
even message [15]. The drawback of this approach is that all the lower bounds in this setting
have to be multiplied by 1/2 when translated to the unrestricted case, that might make them
useless for proving non-trivial bounds. This obstacle motivated the study of half-duplex
communications models [9, 2]. In half-duplex communication models, every player can send
messages in every round, but if both players send simultaneously, then their messages get
lost. Thus, if we use half-duplex communication model instead of the classical one, then the

I. Mihajlin and A. Smal 38:9

described problem will not arise, and we can show that the complexity of Un ⊞ MUXn is
at most the complexity of Un ⊞ KWg for some function g. Using a technique that employs
half-duplex communication, we translate the lower bound of Theorem 23 to Un ⊞ KWg.

1.4 Organization of this paper
In Section 2, we review the required preliminaries. In Section 3, we prove a lower bound
for the XOR-composition of the universal relation with the multiplexer relation using a
reduction from non-deterministic communication complexity (Theorem 23). In Section 4,
we prove a lower bound for the XOR-composition of the universal relation with the KW
game for some function using the same ideas together with the results from half-duplex
communication complexity (Theorem 21). Section 5 contains a conclusion and open problems.
In Appendix A, we show the block-composition analogue of Theorem 21. In Appendix B, we
prove Theorem 9.

2 Preliminaries

2.1 Notation
Let us mention the notation used in this paper. We use [k] as a shortcut for {1, . . . , k},
B as a shortcut for {0, 1} and ◦ to denote concatenation of binary strings. Working with
binary strings we use ⊕ for entry-wise xor: ∀u, v ∈ Bk : (v ⊕ u)i = vi ⊕ ui. For a set of
tuples S we use πi(S) to denote the projection of S on the ith coordinate: πi(S) = {ei |
(e1, e2, . . . , ei, . . .) ∈ S}.

2.2 Communication complexity
We expect that the reader is familiar with the standard definitions of communication
complexity that can be found in [14]. It will be important to understand how the nodes of
communication protocol relate to combinatorial rectangles of the input matrix. Throughout
the paper whenever we discuss rectangles we always mean the rectangles of the input matrix
of the communication problem under consideration. If some rectangle has equal sides, i.e., it
is equal to A × A for some set A, then we call it a square.

We are going to use the following simple theorem that is a generalization of the well-known
lower bound for the equality function. For any non-empty finite set S, the equality on S is a
function EQS : S × S → B, such that for all a, b ∈ S, EQS(a, b) = 1 ⇐⇒ a = b.

▶ Theorem 24. For any non-empty finite set S, CC(EQS) ≥ log |S|.

Proof. For any a, b ∈ S, a ̸= b, a communication transcript on input (a, a) must be different
from a transcript on input (b, b), otherwise the same transcript would correspond to (a, b)
and (b, a). Thus, the length of the longest transcript is at least log |S|. ◀

For convenience, we are going to use some basic results from non-deterministic commu-
nication complexity. Let X and Y be non-empty finite sets.

▶ Definition 25. We say that a function f : X ×Y → B has non-deterministic communication
protocol of complexity d if there are two functions A : X × Bd → B and B : Y × Bd → B
such that

∀(x, y) ∈ f−1(1) ∃w ∈ Bd : A(x, w) = B(y, w) = 1,
∀(x, y) ∈ f−1(0) ∀w ∈ Bd : A(x, w) ̸= 1 ∨ B(y, w) ̸= 1.

The non-deterministic communication complexity of f , denoted NCC(f), is the minimal
complexity of a non-deterministic communication protocol for f .

CCC 2021

38:10 Toward Better Depth Lower Bounds: The XOR-KRW Conjecture

In contrast to deterministic case, the definition of non-deterministic complexity is asymmetric
and hence the complexity of a function and its negation might be different. We will use the
following lower bound for the negation of the equality function. For any non-empty finite set
S the non-equality on S is a function NEQS : S × S → B, such that

NEQS(a, b) = 1 − EQS(a, b).

▶ Theorem 26. For any non-empty finite set S, NCC(NEQS) ≥ log log |S|.

Proof. Assume, for the sake of contradiction, that for some S, NCC(NEQS) = d ≤
log log |S| − 1. Then the following deterministic protocol solves EQS : Alice sends A(x, w)
for all possible w ∈ Bd, Bob replies with 1 if and only if there is some w ∈ Bd : A(x, w) =
B(x, w) = 1. The complexity of this protocol is

2d + 1 ≤ 2log log |S|−1 + 1 = 1
2 log |S| + 1 < log |S|

that contradicts Theorem 24. ◀

Notable property of non-deterministic communication complexity is that it does not
involve any communication at all. For our purposes it will be easier for us to think about
the following alternative definition of non-deterministic communication, which is implicitly
mentioned in the classical book by Nisan and Kushilevich [14].

▶ Definition 27. We say that a function f : X × Y → B has privately non-deterministic
communication protocol of complexity d if there is a function f̂ : (X × B∗) × (Y × B∗) → B
of (deterministic) communication complexity at most d such that

∀(x, y) ∈ f−1(1) ∃wx, wy ∈ B∗ : f̂((x, wx), (y, wy)) = 1,
∀(x, y) ∈ f−1(0) ∀wx, wy ∈ B∗ : f̂((x, wx), (y, wy)) = 0.

The privately non-deterministic communication complexity of f , denoted NCC′(f), is the
minimal depth of a privately non-deterministic communication protocol for f .

This alternative definition of non-deterministic communication uses private witnesses
instead of a public one, and hence the players need to communicate. Let us prove the
equivalence of these definitions.

▶ Theorem 28. For any function f : X × Y → B,

NCC(f) + 2 ≥ NCC′(f) ≥ NCC(f).

Proof. To prove the first inequality, we suppose that there is a non-deterministic protocol of
complexity d for f defined by functions A and B. Lets show that there is a privately non-
deterministic protocol for f of complexity d+2. We define a function f̂ : (X×B∗)×(Y ×B∗) →
B such that

f̂((x, wx), (y, wy)) = 1 ⇐⇒ |wx| = |wy| = d ∧ A(x, wx) = B(y, wy) = 1 ∧ wx = wy.

This function has a deterministic protocol with d + 2 bits of communication: given some
x Alice privately guesses wx ∈ Bd and sends wx ◦ A(x, wx) to Bob, Bob privately guesses
wy ∈ Bd and replies with 1 if and only if A(x, wx) = B(y, wy) = 1 and wx = wy, otherwise
he replies with 0.

Now we show the second inequality by constructing a non-deterministic protocol of
complexity d given a privately non-deterministic protocol of complexity d. Let f̂ defines
the privately non-deterministic protocol for f , and let Π is a (deterministic) protocol for

I. Mihajlin and A. Smal 38:11

f̂ of depth d. In the non-deterministic protocol for f Alice and Bob interpret the public
non-deterministic witness w as a transcript of Π on ((x, wx), (y, wy)) for some (unknown)
wx and wy. We define a function A(x, w) such that A(x, w) = 1 if and only if there exists
wx ∈ B∗ such that w is a valid transcript for (x, wx) leading to output 1. Similarly, we define
function B(y, w) such that B(y, w) = 1 if and only if there exists wy ∈ B∗ such that w is a
valid transcript for (y, wy) leading to output 1. The resulting non-deterministic protocol for
f defined by A and B has complexity d. ◀

▶ Corollary 29. For any non-empty finite set S, NCC′(NEQS) ≥ log log |S|.

2.3 Half-duplex communication complexity
The essential property of the classical model of communication complexity proposed by Yao
is that in every round of communication one player sends some bit and the other one receives
it. In [9], the authors suggest a generalization of the classical communication model, the
half-duplex model, where the players are allowed to speak simultaneously. Lets assume that
the players have some synchronising mechanism, e.g., synchronised clock, that allows then
understand when each round begins. Every round each player chooses one of three actions:
send 0, send 1, or receive. There are three different types of rounds.

If one player sends some bit and the other one receives then communication works like in
the classical case, we call such rounds normal or classical.
If both players send bits during the round then these bits get lost (the same happens if
two persons try to speak via a “walkie-talkie” simultaneously), these rounds are called
wasted.
If both players receive, these rounds are called silent.

In [9], the authors consider three variations of this model based on what happens in silent
rounds. We are going to focus on one of the models – half-duplex communication with
adversary, where in silent round both players receive some bits. In order to solve a commu-
nication problem in half-duplex communication model with adversary the players have to
devise a protocol that is correct for any bits that were received in silent rounds (the protocol
must give a correct answer even if these bits were chosen by an adversary).

In the classical case, a protocol is a binary rooted tree that describes the communication
of players on all possible inputs: every internal node corresponds to a state of communication
and defines which of the players sends in this round. Unlike the classical case in half-
duplex communication player does not always know what the other’s player action was –
the information about it can be “lost”, i.e., in wasted rounds a player do not know what
the other player’s action was. It means that a player might not know what node of the
protocol corresponds to the current state of communication. The protocol for half-duplex
communication can be described by a pair of rooted trees of arity 4 that describe how Alice
and Bob communicate on all possible inputs and for any bits they receive in silent rounds.
The arity 4 stands for four possible events: send 0, send 1, receive 0, and receive 1. However,
in this paper, it will be convenient for us to talk about the half-duplex protocol being a single
tree that describes all the actions of players from the point of view of an external observer.

We can also think about half-duplex communication in a following way. In the classical
communication protocol player’s action (send or receive) is always defined by the previous
communication. In half-duplex communication player’s action can also depend on the
input. We will also consider an intermediate model where player’s action depends on the
previous communication and a part of the input. We call such a model partially half-duplex
communication model. In partially half-duplex communication problems the players receive

CCC 2021

38:12 Toward Better Depth Lower Bounds: The XOR-KRW Conjecture

inputs divided in two parts: Alice receives (f, x), Bob receives (g, y). They can use half-duplex
protocols but with a restriction: if f = g then the communication must have no non-classical
rounds.

Let P be a communication problem with classical communication complexity k. It is not
hard to see that half-duplex communication complexity is bounded between k/2 and k –
classical protocol can be used in the half-duplex model and every half-duplex protocol can
be simulated by a classical protocol of double depth where Alice sends only in even rounds
and Bob sends only in odd rounds. In [9, 2], a series of non-trivial bounds were proved for
various functions and KW relations.

We use CChd to denote the half-duplex communication complexity a communication
problem with adversary.

▶ Theorem 30 ([9]). For any non-empty finite set S, CChd(EQS) ≥ log |S|/ log 2.5.

The main motivation to study half-duplex communication comes from the following
lemma.

▶ Lemma 31. For all n ∈ N, there exist a function f : Bn → B such that

CC(KWf) ≥ CChd(MUXn) − O(log n).

The statement of this lemma seems almost trivial since it is easy to prove that there exists
a function f such that CC(KWf) ≥ n − O(log n), and at the same time CChd(MUXn) ≤
n + O(log n). Nevertheless, we are going to prove it as a warm-up toward the proof of the
main result to demonstrate how the half-duplex complexity comes into play. In the proof,
Alice and Bob use the shortest protocols for given functions, and hence the lower bound
on MUXn would imply the existence of a hard function. Later when we will consider a
multiplexer as a part of a XOR-composition with the universal relation, we will still be able
to use the same argument to show the existence of a hard function.

Proof. Suppose that CC(KWf) ≤ d for all f : Bn → B. Consider the following half-duplex
protocol for MUXn. For every f : Bn → B let Πf be the shortest (classical) protocol for
KWf . Alice, who is given f and x, follows the protocol Πf using x as her input. Meanwhile
Bob, who is given g and y, follows the protocol Πg using y as his input. If f is different
from g they might use different protocols, which is fine because we are in the half-duplex
communication model.

When Alice reaches some leaf of Πf she starts listening until the end of round d. Bob
does the same. After d rounds of communication Alice has a candidate i for xi ̸= yi, which
is a valid output if f = g. Bob has a candidate j for xj ̸= yj , that is equal to i if f = g.
Now Alice and Bob just need to check that indeed xi ̸= yj and i = j, which can be done in
O(log n). They output i if both conditions are true and ⊥ otherwise. The total number of
rounds of this half-duplex protocol for MUXn is d + O(log n). ◀

This lemma shows that if we had a good understanding of half-duplex complexity we could
translate lower bounds for multiplexer into the existence of a hard function. Unfortunately we
will need to use a couple more tricks. Let CCphd denotes partially half-duplex communication
complexity of a communication problem with adversary.

▶ Lemma 32. For all n ∈ N, there exists a function f : Bn → B such that

CC(KWf) ≥ CCphd(MUXn) − O(log n).

I. Mihajlin and A. Smal 38:13

Proof. The proof follows from proof of Lemma 31 by observing that the protocol for MUXn

in there is partially half-duplex: if f = g the the players in fact follow the same classical
protocol for KWf . ◀

Now we are going to demonstrate how to prove lower bounds for partially half-duplex
protocols.

▶ Lemma 33. For all n ∈ N, CCphd(MUXn) ≥ n − O(log n).

Proof. Let NEQ2n be a shortcut for non-equality on B2n . We will show that CCphd(MUXn) =
d implies NCC(NEQ2n) ≤ d + O(log n). Let Π be a partially half-duplex protocol for MUXn.
The main idea is that in partially half-duplex protocols for MUXn any non-classical round
indicates that the given functions are different. The non-deterministic protocol for NEQ2n

goes as follows: the players guess a number t ≤ d, a bit string T ∈ Bt, and two bits b1, b2 ∈ B.
The players interpret T as a transcript of the first t rounds of Π such that it has only
classical rounds (so, the communication can be described by t bits). Then they check that
this transcript leads to a leaf marked with ⊥ or to a non-classical round. To be more more
precise, suppose Alice and Bob are given f ∈ B2n and g ∈ B2n , respectively, as inputs for
NEQ2n . The players guess a quadruple (t, T, b1, b2) as described. They have to check that
1. there exist x ∈ f−1(0) and y ∈ g−1(1) such that T is a valid transcript of the first t

rounds of the protocol for MUXn on input ((f, x), (g, y)) assuming that all rounds are
classical,

2. if b1 = 0 then T is a transcript that ends up at a leaf labeled with ⊥,
3. if b1 = 1 and b2 = 0 then both players were supposed to receive in round t + 1,
4. if b1 = 1 and b2 = 1 then both players were supposed to send in round t + 1.
Alice verifies that there exists x such that f(x) = 0 and T correctly describes first t rounds of
communication on input (f, x). In addition, Alice checks the second condition and partially
checks the last two conditions (i.e., if the third condition applies then Alice checks that she
was supposed to receive in round t + 1, and if the fourth condition applies then she checks
that she was supposed to send). Bob does the symmetric thing for y such that g(y) = 1. If
there exist x and y that pass all the checks then the protocol for MUXn on ((f, x), (g, y))
either returns ⊥ or contains a non-classical round. In both cases this is sufficient proof that
f ̸= g. Moreover, such a witness exists if and only if f ̸= g. The size of the witness is
d + log d + 2 = d + O(log n).

The described protocol can be used to non-deterministically solve non-equality on binary
strings of length 2n. Theorem 26 implies NCC(NEQ2n) ≥ n, so we can conclude that
d ≥ n − O(log n). ◀

The proof of this Lemma illustrates the important idea of reducing an instance of NEQ
to the problem under consideration. Further in the paper, we will repeatedly use similar
reductions.

3 Lower bound for Un ⊞ MUXn

Let P be a set of all permutations of Bn, and N = 2n. Consider the following domain

X = P × Bn × Bn.

We are going to prove the following lower bound for Un ⊞MUXn on the rectangle R = X ×X

CC(Un ⊞ MUXn) ≥ CCR(Un ⊞ MUXn) ≥ 1.5n − O(log n),

and hence get the desired lower bound for Un ⊞ MUXn.

CCC 2021

38:14 Toward Better Depth Lower Bounds: The XOR-KRW Conjecture

▶ Theorem 23. For all n ∈ N, CC(Un ⊞ MUXn) ≥ 1.5n − o(n).

To simplify our life a bit more we will stop applying g to one of the arguments inside
Un ⊞ MUXn. Consider the following communication problem (where g(x) ⊕ g(y) is replaced
with x ⊕ g(y)).

▶ Definition 34. In a communication problem Un ⊞ MUX′
n Alice is given xa, ya ∈ Bn and

ga : Bn → Bn, Bob is given xb, yb ∈ Bn and gb : Bn → Bn. Their goal is to find i ∈ [2n] such
that (xa ◦ ya)i ̸= (xb ◦ yb)i. If xa ⊕ ga(ya) = xb ⊕ gb(yb) or ga ̸= gb they can output ⊥.

If we can prove a lower bound for Un ⊞ MUX′
n for it will also imply a lower bound

for Un ⊞ MUXn. The same argument works for classical communication, for half-duplex
communication and for partially half-duplex communication.

▶ Lemma 35. For all n ∈ N,

CC∗(Un ⊞ MUXn) ≥ CC∗(Un ⊞ MUX′
n) − O(1),

where CC∗ is one of CC, CChd, or CCphd.

Proof. Suppose that CC∗(Un ⊞ MUXn) ≤ h(n). Consider the following protocol for Un ⊞
MUX′

n. Alice is given xa, ya and ga. Alice defines x′
a = 0 ◦ xa, y′

a = 1 ◦ ya, and

g′
a(b ◦ z) =

{
0 ◦ z, b = 0,

0 ◦ ga(z), b = 1.

Bob is given xb, yb and gb. He defines x′
b, y′

b and g′
b in the same manner. Now the players can

simulate the best protocol for Un+1 ◦ MUXn+1 of complexity at most h(n + 1) ≤ h(n) + O(1)
(this inequality is due to the linear upper bound on the complexity of Un ⊞ MUXn). Hence,
CC∗(Un ⊞ MUX′

n) ≤ h(n) + O(1). ◀

The proof consists of two stages. At the first stage we go down the protocol tree and find
a node at depth almost n (more precisely at depth n − 3) such that its rectangle contains
many inputs that could be given to both to Alice and to Bob. Then we show that solving
the problem on any large square requires depth about n

2 . For the first stage we will use the
following general lemma.

▶ Lemma 36. Let P be a communication problem such that on a square S × S every
monochromatic rectangle A × B has |A ∩ B| ≤ |S|

2r for some r ≥ 1. Then for every d ≤ r,
every protocol that solves P on S × S has a node at depth d with rectangle A × B such that
|A ∩ B| ≥ |S|

2d .

Proof. Proof by induction: the base case d = 0 is obvious. Now suppose that there exists
a node at depth d − 1 with a rectangle A′ × B′ such that |A′ ∩ B′| ≥ |S|

2d−1 . As d − 1 < r

we know that A′ × B′ is not monochromatic, and hence this node is not a leaf. W.l.o.g,
assume that this node corresponds to Alice speaking. Let A0 × B′ and A1 × B′ be the
children’s rectangles, where A′ = A0 ∪ A1 and A0 ∩ A1 = ∅. So, for some i ∈ {0, 1} we have
|Ai ∩ B′| ≥ 1

2 |A′ ∩ B′| ≥ |S|
2d . Which concludes the proof. ◀

We derive the following lemma from Lemma 36.

▶ Lemma 37. For all natural d ≤ n, any protocol tree that solves Un ⊞ MUX′
n on R has a

node at depth d with a corresponding rectangle A×B such that |A∩B| ≥ |X |/2d = N2 ·|P|/2d.

I. Mihajlin and A. Smal 38:15

Proof. Every monochromatic rectangle A × B of Un ⊞MUX′
n is labeled with either an index

or ⊥. In the first case, |A ∩ B| = 0. In the second case, for any a = (ga, xa, ya) ∈ A and
b = (gb, xb, yb) ∈ B we have ga ̸= gb or xa ⊕ ga(ya) = xb ⊕ gb(yb). We can subdivide all the
elements of C = A ∩ B into 2n disjoint groups C =

⋃
z∈Bn Cz, such that (g, x, y) ∈ Cz if

and only if x ⊕ g(y) = z. For every two distinct z1, z2 ∈ Bn and inputs (g1, x1, y1) ∈ Cz1 ,
(g2, x2, y2) ∈ Cz2 , the permutations g1 and g2 are different (otherwise, ⊥ would not be the
correct output on this pair of inputs). Therefore, every permutation g ∈ P appear in at most
one group. For fixed g ∈ P and z ∈ Bn, there are only 2n pairs (x, y) : x ⊕ g(y) = z. That
gives an upper bound on the number of elements in C, |C| ≤ 2n · |P| = |X |/2n. Application
of Lemma 36 for d ≤ n concludes the proof. ◀

For the second lemma it is convenient to define the following combinatorial object that
helps to understand the structure of a subset of inputs.

▶ Definition 38. For a subset of inputs S ⊆ X we define a domain graph to be a bipartite graph
GS = (US , VS , ES), such that US ⊆ P, VS ⊆ Bn×Bn, and (g, (x, y)) ∈ ES ⇐⇒ (g, x, y) ∈ S.

The statement of the next lemma seems to be very technical. The high-level idea is the
following. We consider a large enough subset of inputs S ⊆ X with two additional properties
saying that every function in S is defined on sufficiently many inputs and that for fixed
g ∈ P and y ∈ Bn there are only a few x ∈ Bn such that (g, x, y) ∈ S. The first property
is easy to achieve and the second comes from the proof of Theorem 23. The lemma shows
that from such S we can extract a large set of functions H that will allow us reduce solving
non-deterministic communication problem NEQH to solving (deterministic) communication
problem Un ⊞ MUX′

n on S × S. So, we will be able to translate a lower bound of log log |H|
on the non-deterministic complexity of NEQH to a lower bound on deterministic complexity
of Un ⊞ MUX′

n on S × S.

▶ Lemma 39. Let S ⊆ X be a subset of inputs such that |S| ≥ N · N !, and let GS =
(US , VS , ES) be a domain graph of S. If ming∈US

{degGS
(g)} ≥ 4N and

∀g ∈ P , ∀y ∈ Bn,
∣∣{x | (g, (x, y)) ∈ ES}

∣∣ ≤
√

N, (1)

then there is a set H ⊆ US of size 2Ω(
√

N) such that for all distinct g1, g2 ∈ H, there exist
(x, y): (g1, x, y), (g2, x, y) ∈ S, and g1(y) ̸= g2(y).

Before we prove this lemma, lets look how it is used in the proof of Theorem 23.

Proof of Theorem 23. We start with applying Lemma 37 for d = n − 3 to find a rectangle
A×B such that |A∩B| ≥ 8NN !. Let S = A∩B and GS = (US , VS , ES) be a domain graph of
S. Average degree of the vertices in US is at least 8NN !/N ! = 8N . To increase the minimum
degree we throw out all the vertices of low degree. Let S′ = S \ {(g, x, y) | degGS

(g) < 4N}.
The size of |S′| > |S| − 4N · |P| = 4NN !. Let GS′ = (US′ , VS′ , ES′) be a domain graph of S′.

If there is g ∈ P and y ∈ Bn such that
∣∣{x | (g, (x, y)) ∈ ES′}

∣∣ >
√

N then the
protocol for Un ⊞ MUX′

n on S′ × S′ can be used to solve the equality problem on a set
Wg,y = {x | (g, (x, y)) ∈ ES′}. Given inputs xa, xb ∈ Wg,y, Alice and Bob simulate the
protocol for Un ⊞MUX′

n on S′ × S′ for inputs (g, xa, y) and (g, xb, y). If the protocol outputs
⊥ then the players output 1, otherwise they output 0. For for inputs (g, xa, y) and (g, xb, y),
the protocol outputs ⊥ if and only if xa = xb, so this reduction gives a correct protocol
for EQWg,y

of the same depth. By Theorem 24 any protocol for EQWg,y
has depth at least

log |Wg,y| ≥ log(
√

N) = n/2. By the reduction, the same lower bound applies for the protocol
for Un ⊞ MUX′

n on S′ × S′.

CCC 2021

38:16 Toward Better Depth Lower Bounds: The XOR-KRW Conjecture

Otherwise we apply Lemma 39 to construct a set H of size 2Ω(
√

N). We are going to
show that the protocol for Un ⊞MUX′

n on S′ × S′ can be used to non-deterministically solve
NEQH . Suppose that Alice and Bob are given g1 ∈ H and g2 ∈ H respectively, and they
want to non-deterministically verify that g1 ̸= g2 using a privately non-deterministic protocol.
Alice privately guesses (xa, ya) such that (g1, xa, ya) ∈ S′ and k ∈ [n], Bob privately guesses
(xb, yb) such that (g2, xb, yb) ∈ S′. At first, the players verify that xa ⊕ ga(ya) ̸= xb ⊕ gb(xb):
Alice sends k together with the k-th bit of xa ⊕ ga(ya) and Bob compares it with the k-th
bit of xb ⊕ gb(yb). If the bits are equal then they reject (i.e., the function defining the
privately non-deterministic protocol on these inputs equals 0). Otherwise, the players run
the protocol for Un ⊞ MUX′

n on S′ × S′. If the protocol outputs ⊥ then the private guesses
give a valid proof of g1 ̸= g2. Otherwise, if the protocol outputs some i ∈ [2n] such that
(xa, ya)i ̸= (xb, yb)i then the players reject. By Lemma 39, such private guesses exist for all
distinct g1, g2 ∈ H . On the other hand, the statement of the problem Un ⊞MUX′

n guarantees
that if xa ⊕ ga(ya) ̸= xb ⊕ gb(xb) then the protocol can output ⊥ only if g1 ≠ g2. Thus, the
depth of the protocol for Un ⊞ MUX′

n on S′ × S′ is at least

NCC′(NEQH) − O(log n) = log log |H| − O(log n) ≥ n/2 − O(log n).

Finally, we use Lemma 35 to translate the lower bound for Un⊞MUX′
n to Un⊞MUXn. ◀

Now it is time to prove Lemma 39.

Proof of Lemma 39. We are going to construct a rooted tree T (S) such that
each leaf ℓ is labeled with a set of functions Fℓ ⊆ US ,
each internal node v is labeled with a pair (xv, yv) ∈ VS ,
for every leaf ℓ labeled with Fℓ and every it’s ancestor labeled with (x, y) there exists
a ∈ Bn such that ∀g ∈ Fℓ, g(y) = a and (g, x, y) ∈ S.
for every two leaves labeled with F1 and F2, and their lowest common ancestor labeled
with (x, y): F1 ∩ F2 = ∅ and for all g1 ∈ F1, g2 ∈ F2, such that g1(y) ̸= g2(y),
the number of leaves is a least 3

√
N

N .
Having such a tree, the set H is constructed by taking one function from every leaf. Indeed,
the structure of the tree guarantees that for every g1, g2 ∈ H, g1 ̸= g2, there exist (x, y), the
label of the least common ancestor of corresponding leaves, such that (g1, x, y), (g2, x, y) ∈ S,
and g1(y) ̸= g2(y).

The tree is defined recursively. For a set Z ⊆ S, let T (Z) be a (non-empty) rooted
tree. Let GZ = (UZ , VZ , EZ) be a domain graph of Z. If ming∈UZ

{degGZ
(g)} ≥ 2N

then the rooted tree T (Z) consists of a root node labelled with (xZ , yZ), where (xZ , yZ)
is a vertex of maximal degree in VZ , and a set of subtrees – for every a ∈ Bn such that
∃g ∈ UZ : (g, xZ , yZ) ∈ Z, g(yZ) = a there is a subtree T (Za) attached to the root node,
where

Za = {(g, x, y) | (g, x, y) ∈ Z, y ̸= yZ , g(yZ) = a}

Otherwise T (Z) consists of one leaf node labeled with UZ .
We are going to lower bound the number of leaves in T (S) by lower bounding the number

of nodes at depth
√

N +1. Let z be some node of T (S) at depth d ≤
√

N labeled with (xZ , yZ)
corresponding to a root node of a subtree T (Z) for some Z ⊆ S. Let GZ = (UZ , VZ , EZ)
be a domain graph of Z. Due to the condition (1) the minimal degree of vertices in UZ

can be lower bounded by 4N − d
√

N ≥ 3N . At the same time |VZ | ≤ N(N − d). Let
T (Za1), . . . , T (Zak

) – be the subtrees attached to z. Note that π1(Zai
) ∩ π1(Zaj

) = ∅ for

I. Mihajlin and A. Smal 38:17

all i ̸= j, so the number of functions appearing in Za1 , . . . , Zak
is exactly the number of

functions in Z defined on (xZ , yZ). Given that (xZ , yZ) is a vertex of maximal degree in VZ ,
the number of functions in the subtrees can be lower bounded as follows,

∣∣π1(Za1) ⊔ · · · ⊔ π1(Zak
)
∣∣ ≥ |EZ |

|VZ |
≥ 3N |UZ |

N(N − d) = 3|UZ |
N − d

.

Thus by induction the total number of functions that appear in the sets at depth d + 1 is at
least

3d · |US |
N(N − 1) · · · (N − d) = 3d · |US | · (N − d − 1)!

N ! ,

where the size of US is at least |S|/N2 ≥ N !/N . Now we are ready to lower bound the
number of nodes at depth d + 1. Note that the number of permutations with k values fixed
is (N − k)!, and hence a node at depth d + 1 has at most (N − d − 1)! functions in its set.
The number of nodes at depth d + 1 is at least the total number of functions at depth d + 1
divided by the upper bound on the number of functions in one node, that is

3d · |US | · (N − d − 1)!
N ! /(N − d − 1)! ≥ 3d

N
.

For d =
√

N + 1 we get the desired lower bound 3
√

N

N = 2Ω(
√

N) on the number of leaves. ◀

4 Lower bound for Un ⊞ KWg

Our final goal is to show hardness of Un ⊞ g for some function g : Bn → Bn. Showing the
lower bound for Un ⊞ MUXn was the first step in this direction. As we discussed it earlier,
it might be tempting to try to show that that hardness of multiplexer implies existence of
a hard function. Unfortunately, the question whether that is true has remained open for
decades. To get around this issue we will gradually extend the lower bound for Un ⊞ MUXn

using results from half-duplex communication complexity.
We start with extending the lower bound for Un ⊞ MUXn to the half-duplex model.

▶ Theorem 40. For all n ∈ N,

CChd(Un ⊞ MUXn) ≥
(

1
log 5

2
+ 1

4

)
n − O(1) ≥ 1.006n − O(1).

The proof of this theorem mimics the proof for the classical case (Theorem 23). During
the first stage, given a protocol for Un ⊞ MUX′

n we will find a large enough square S × S,
such that it is significantly easier to solve Un ⊞ MUX′

n on this square. Then we will show
that on every big square the problem is still hard. Finally, we apply Lemma 35 to get a result
for Un ⊞ MUXn. The following lemma lower bounds the size of a square for the first stage.

▶ Lemma 41. Let Π be a half-duplex protocol of length d that solves a communication problem
on a rectangle U × U . For every t ≤ d there exist a subset S ⊂ U of size at least (2

5)t · |U |,
and a half-duplex protocol Π′ of length d − t that gives the same output as Π for all inputs
from S × S.

Proof. In [8, Theorem 22], it is shown for t = 1. The general case follows by induction. ◀

Now we are ready to proof Theorem 40.

CCC 2021

38:18 Toward Better Depth Lower Bounds: The XOR-KRW Conjecture

Proof of Theorem 40. Suppose CChd(Un ⊞ MUX′
n) = d and let t = n−3

log 2.5 . According to
Lemma 41 there is a subset S ⊂ X of size

|S| ≥
(

2
5

)t

· |X | = 8
N

· N2N ! = 8NN !,

and a half-duplex protocol length d − n−3
log 2.5 that can solve Un ⊞ MUX′

n on S × S. Any
half-duplex protocol can be transformed into a classical one while at most doubling the
length [9]. Then there is a length 2(d − n−3

log 2.5) classical protocol that solves Un ⊞ MUX′
n on

S × S.
We apply the same argument as in the proof of Theorem 23 where we used Lemma 39 to

solve NEQH using privately non-deterministic protocol, and we get

2
(

d − n − 3
log 2.5

)
≥ n

2 .

Which gives us the following lower bound

d ≥
(

1
log 2.5 + 1

4

)
n − O(1) > 1.006n − O(1).

Finally, we use Lemma 35 to translate this lower bound for Un ⊞MUX′
n to Un ⊞MUXn. ◀

Out next step is to relate the complexities of problems Un ⊞ KWg and Un ⊞ MUXn.

▶ Lemma 42. There exists g : Bn → Bn such that

CC(Un ⊞ KWg) ≥ CChd(Un ⊞ MUXn) − O(log n).

The proof is almost identical to the proof of Lemma 31. Note that, in contrast to Lemma 31,
the statement of this Lemma does not seem to be trivial.

Proof. Suppose that CC(Un ⊞ KWg) ≤ d for all g : Bn → Bn. Consider the following
half-duplex protocol for Un ⊞MUXn. For every g : Bn → Bn let Πg be the shortest (classical)
protocol for Un ⊞ KWg. Alice, who is given xa, ya and ga, follows protocol Πga

on input
(xa, ya). Meanwhile Bob, who is given xb, yb and gb, follows protocol Πgb

on input (xb, yb).
If ga is different from gb they might use different protocols, which is fine because we are in
the half-duplex communication model.

When Alice reaches some leaf of Πga
she starts listening until the end of round d. Bob does

the same. After d rounds of communication Alice has a candidate i for (xa ◦ ya)i ̸= (xb ◦ yb)i,
which is a valid output if ga = gb. Bob has a candidate j for (xa ◦ ya)j ̸= (xb ◦ yb)j , that is
equal to i if ga = gb. Now Alice and Bob need to check that indeed (xa ◦ ya)i ̸= (xb ◦ yb)j

and i = j, which can be done in O(log n). They output i if both conditions are true and
⊥ otherwise. The total number of rounds of this half-duplex protocol for Un ⊞ KWg is
d + O(log n). ◀

Immediately we get the following theorem.

▶ Theorem 43. There exists g : Bn → Bn such that

CC(Un ⊞ KWg) ≥ 1.006n.

To improve this bound we will have to look deeper into the protocol structure and use
the fact that it is partially half-duplex.

I. Mihajlin and A. Smal 38:19

▶ Definition 44. A half-duplex protocol for Un ⊞ MUXn is called partially half-duplex if it
has the following property: whenever Alice and Bob are given the same function they are not
allowed to perform non-classical communication. In other words, in a partially half-duplex
protocol Alice and Bob never send or listen simultaneously if ga = gb.

We are going to need the following analogue of Lemma 42.

▶ Lemma 45. There exists g : Bn → Bn such that

CC(Un ⊞ KWg) ≥ CCphd(Un ⊞ MUXn) − O(log n).

Proof. Note that the protocol for Un ⊞ MUXn in the proof of Lemma 42 is partially half-
duplex (i.e., it has only classical rounds unless ga ̸= gb). The rest of the proof is identical to
the proof of Lemma 42. ◀

Next Lemma proves a lower bound on the partially half-duplex complexity of Un⊞MUXn.

▶ Lemma 46. Any partially half-duplex protocol for Un ⊞ MUXn has depth at least 3
2 n −

O(log n).

Together with Lemma 42, this lemma immediately implies our main result that the
XOR-KRW holds for a composition of the universal relation with the KW-game for some
function.

▶ Theorem 21. For all n ∈ N, there exists g : Bn → Bn such that

CC(Un ⊞ KWg) ≥ 1.5n − O(log n).

Once again we are going to split the proof of Lemma 46 in two parts. In the first part,
instead of finding one large subrectangle we will find a collection of subrectangles. All the
nodes corresponding to these subrectangles will have equal partial transcripts. In the classical
communication model, a partial transcript of a node of the protocol is a bit string consisting
of all the messages that are sent on the path from the root to this node. For a partially
half-duplex protocol we can also define a partial transcript of a node in the same way if all
the preceding communication of the node is classical. An important difference is that in the
classical model a partial transcript uniquely defines a node. In the half-duplex model the
same partial transcript of length d can correspond to at most 2d nodes of the protocol, e.g.
a partial transcript “00” can correspond to 4 different nodes: a node where both messages
were sent by Alice, a node where both messages were send by Bob, and two nodes where
both players sent messages in different order.

▶ Lemma 47. For any partially half-duplex protocol Π for Un ⊞MUX′
n, there exists a subset

of inputs S ⊂ X , |S| ≥ 8NN !, and a string T ∈ Bn−3, such that if Alice and Bob are given
the same input from S then the transcript of the first n − 3 rounds is equal to T .

Proof. Let D = {((g, x, y), (g, x, y)) | (g, x, y) ∈ X } be a subset of inputs where Alice’s and
Bob’s inputs are identical. First, we need to notice that if Alice and Bob are given inputs
from D, then they perform only classical communication. Consider the first n − 3 rounds of
communication. There are at most 2n−3 different transcripts of length n − 3, so there is a
transcript T that corresponds to at least |D|/2n−3 = 8NN ! inputs from D. Let S be the set
of all these inputs. ◀

CCC 2021

38:20 Toward Better Depth Lower Bounds: The XOR-KRW Conjecture

The difference from what we have seen before is that the set S constructed here is not
consolidated in a single node of the protocol. All the elements of S have the same transcript
of the first n − 3 rounds but these transcripts do not include the information who sends each
of the messages, so in fact the same transcripts can correspond to different nodes of the
protocol. Note that any two inputs from S with the same function g necessarily belong to
the same node of the protocol as all the rounds are classical.

Now we will prove Lemma 46 by showing that if Un ⊞ MUX′
n has a short protocol then

we can use it to solve either equality or non-equality more efficiently than it is possible using
a dichotomy similar to one from the proof of Theorem 23.

Proof of Lemma 46. Suppose that Π is a partially half-duplex protocol for Un ⊞ MUX′
n of

depth d. Let S be the set provided by Lemma 47. Let S′ = S \ {(g, x, y) | degGS
(g) < 4N},

so |S′| > 4NN !. Let GS′ = (US′ , VS′ , ES′) be a domain graph of S′. The minimal degree of
the vertices in US′ is at least 4N .

Suppose that there is g ∈ P and y ∈ Bn such that
∣∣{x | (g, (x, y)) ∈ ES′}

∣∣ >
√

N . Let
Sg,y = {(g, x, y) | (g, (x, y)) ∈ ES′}. We can extract from Π a classical protocol of depth
at most d − n − 3 that solves Un ⊞ MUX′

n on Sg,y × Sg,y. This follows from the fact that
Π s partially half-duplex, so it has only classical rounds for inputs from Sg,y × Sg,y. To
solve Un ⊞ MUX′

n on Sg,y × Sg,y the players would have to solve the equality problem for
Wg,y = {x | (g, (x, y)) ∈ ES′} that requires at least log |Wg,u| ≥ log(

√
N) = n/2. The

reduction is the same as in the proof of Theorem 23. Thus, we have d ≥ 1.5n − 3.
Otherwise we apply Lemma 39 to construct a set H of size at least 2Ω(2n/2). Then the

protocol for Un ⊞ MUX′
n on S′ × S′ can be used to non-deterministically solve NEQH with

additive overhead of O(log n). The reduction from NEQH to Un ⊞ MUX′
n is similar to the

one we have seen in the proof of Theorem 23 with just a few twists.
Let’s first see what are the necessary and sufficient conditions for ga, gb ∈ H to be not

equal. Let Rga,gb
= {((ga, xa, ya), (gb, xb, yb)) ∈ S′ × S′ | xa ⊕ ga(ya) ̸= xb ⊕ gb(yb)}.

On elements of D = {((g, x, y), (g, x, y)) | (g, x, y) ∈ S′} that contain ga and gb, the
protocol Π performs differently during the first n − 3 rounds. The partial transcript T of
the first n − 3 rounds of Π on elements of D is fixed by Lemma 47, but it does not include
an information about who sends each message, so the same transcript can be produced
by different rounds. Such a difference can only exists if ga ̸= gb – for every fixed ga = gb

the protocol has only classical rounds, and hence a partial transcript uniquely defines
who sends in each round.
The protocol Π performs a non-classical round on some input from Rga,gb

. If ga = gb

then Π can only perform classical rounds by the definition of partially half-duplex
communication.
Π performs classically on some input from Rga,gb

and returns ⊥.

We can argue that one of this conditions is satisfied iff ga ≠ gb. Indeed, suppose that
ga ≠ gb. If the first or the second condition is satisfied we are done, so let’s assume that
it is not. The first n − 3 rounds of Π on inputs from Rga,gb

are already known, so we can
skip them and only consider the rounds of Π after that. We also know that all the next
rounds are going to be classical. By construction of H there exists x, y, such that (ga, x, y)
and (gb, x, y) belong to S′, and also x ⊕ ga(y) ̸= x ⊕ gb(y). By the definition of Un ⊞ MUX′

n

the protocol Π has to output ⊥, and hence satisfy the third condition.
Now suppose that ga = gb. Then neither of the conditions could be satisfied. The first

condition fails as in this case a partial transcript uniquely defines who sends in each round.
The second condition fails by the definition of partially half-duplex protocol. The third one
fails by definition of the Un ⊞ MUX′

n.

I. Mihajlin and A. Smal 38:21

Now we can use this property to solve NEQH . Alice and Bob guess which of the condition
is satisfied, guess a proof of it, and then verify it.

To prove the first condition the players guess the difference in the first n − 3 rounds.
Verification requires only log n bits of communication.
For the second condition the players guess a number t ∈ [d − n + 3], a string s ∈ Bt, a
number k ∈ [n], and bits b, p. Then they verify that there exist pairs (xa, ya) and (xb, yb)
such that:

p = (xa ⊕ ga(ya))k ̸= (xb ⊕ gb(yb))k = 1 − p,
both players are consisted with s being an extension of the partial transcript T on
inputs ((ga, xa, ya), (gb, xb, yb)), meaning that if a player wants to send a bit in some
round, this bit is equal to corresponding bit in s,
in the next round after the rounds described in s, the protocol Π performs a non-classical
round: either both send (in case b = 1) or both receive (in case b = 0).

All together the size of the witness in this case is d − n + O(log n).
For the third condition the players guess a string s ∈ Bd−n+3, a number i ∈ [n], and a bit
p. Then they verify that there exist pairs (xa, ya) and (xb, yb) such that:

p = (xa ⊕ ga(ya))k ̸= (xb ⊕ gb(yb))k = 1 − p,
both players are consisted with s being an extension of the partial transcript T on
inputs ((ga, xa, ya), (gb, xb, yb)), meaning that if a player wants to send a bit in some
round, this bit is equal to corresponding bit in s,
the transcript ends in a leaf marked labeled ⊥.

All together the size of the witness in this case is d − n + O(log n).

This reduction shows that NEQH can be non-deterministically solved with a protocol of
size d − n + O(log n). Thus, the depth of the protocol for Un ⊞ MUX′

n is at least

n + NCC(NEQH) − O(log n) ≥ n + log log |H| − O(log n)

≥ n + log
√

N − O(log log(N)) = 1.5n − O(log n).

Finally, we use Lemma 35 to translate this lower bound for Un ⊞MUX′
n to Un ⊞MUXn. ◀

5 Conclusion

In this paper we presented a lower bound for Un ⊞ KWg for some function g. Our result
complements the result from [5] where a lower bound for KWg ⋄ Un was shown. It remains
to understand if the techniques from these two papers can be forced to work in harmony. We
are very optimistic about it: the structure of our proof reminds of the first results regarding
Um ⋄ Un from [4]: we maintain the symmetry for as long as possible and then show that some
of the hardness still remains in the problem. The proof from [5] shows how to substitute the
symmetry with some hardness measure and hopefully the same magic can be applied to this
instance.

Open questions
1. Is there a generic ways to convert lower bounds for classical communication into half-duplex

and partially half-duplex?
2. Is there another proof of the results from this paper, that doesn’t rely on non-classical

models?

CCC 2021

38:22 Toward Better Depth Lower Bounds: The XOR-KRW Conjecture

3. Prove lower bound of 2n − o(n) for Un ⊞ MUXn in classical, partially half-duplex or
half-duplex model.

4. Prove that for some f, g : Bn → Bn, CC(KWf⊞g) ≥ (1 + ϵ)n.

References
1 Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, and Robert Robere.

KRW composition theorems via lifting. In 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 43–49.
IEEE, 2020. doi:10.1109/FOCS46700.2020.00013.

2 Yuriy Dementiev, Artur Ignatiev, Vyacheslav Sidelnik, Alexander Smal, and Mikhail Ushakov.
New bounds on the half-duplex communication complexity. In SOFSEM 2021: Theory and
Practice of Computer Science - 47th International Conference on Current Trends in Theory
and Practice of Computer Science, SOFSEM 2021, Bolzano-Bozen, Italy, January 25-29, 2021,
Proceedings, volume 12607 of Lecture Notes in Computer Science, pages 233–248. Springer,
2021. doi:10.1007/978-3-030-67731-2_17.

3 Irit Dinur and Or Meir. Toward the KRW composition conjecture: Cubic formula lower
bounds via communication complexity. Comput. Complex., 27(3):375–462, 2018. doi:10.
1007/s00037-017-0159-x.

4 Jeff Edmonds, Russell Impagliazzo, Steven Rudich, and Jirí Sgall. Communication complexity
towards lower bounds on circuit depth. Comput. Complex., 10(3):210–246, 2001. doi:
10.1007/s00037-001-8195-x.

5 Dmitry Gavinsky, Or Meir, Omri Weinstein, and Avi Wigderson. Toward better formula
lower bounds: The composition of a function and a universal relation. SIAM J. Comput.,
46(1):114–131, 2017. doi:10.1137/15M1018319.

6 Johan Håstad. The shrinkage exponent of de morgan formulas is 2. SIAM J. Comput.,
27(1):48–64, 1998. doi:10.1137/S0097539794261556.

7 Johan Håstad and Avi Wigderson. Composition of the universal relation. In Jin-Yi Cai, editor,
Advances In Computational Complexity Theory, Proceedings of a DIMACS Workshop, New
Jersey, USA, December 3-7, 1990, volume 13 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 119–134. DIMACS/AMS, 1990. URL: http://dimacs.
rutgers.edu/Volumes/Vol13.html, doi:10.1090/dimacs/013/07.

8 Kenneth Hoover, Russell Impagliazzo, Ivan Mihajlin, and Alexander Smal. Half-duplex
communication complexity. Electronic Colloquium on Computational Complexity (ECCC),
25:89, 2018. URL: https://eccc.weizmann.ac.il/report/2018/089.

9 Kenneth Hoover, Russell Impagliazzo, Ivan Mihajlin, and Alexander V. Smal. Half-duplex
communication complexity. In Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao, editors,
29th International Symposium on Algorithms and Computation, ISAAC 2018, December 16-19,
2018, Jiaoxi, Yilan, Taiwan, volume 123 of LIPIcs, pages 10:1–10:12. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ISAAC.2018.10.

10 Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth lower bounds
via the direct sum in communication complexity. Computational Complexity, 5(3/4):191–204,
1995. doi:10.1007/BF01206317.

11 Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. In Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 539–550. ACM, 1988.
doi:10.1145/62212.62265.

12 Valeriy Mihailovich Khrapchenko. Complexity of the realization of a linear function in the
class of II-circuits. Mathematical Notes of the Academy of Sciences of the USSR, 9(1):21–23,
1971.

https://doi.org/10.1109/FOCS46700.2020.00013
https://doi.org/10.1007/978-3-030-67731-2_17
https://doi.org/10.1007/s00037-017-0159-x
https://doi.org/10.1007/s00037-017-0159-x
https://doi.org/10.1007/s00037-001-8195-x
https://doi.org/10.1007/s00037-001-8195-x
https://doi.org/10.1137/15M1018319
https://doi.org/10.1137/S0097539794261556
http://dimacs.rutgers.edu/Volumes/Vol13.html
http://dimacs.rutgers.edu/Volumes/Vol13.html
https://doi.org/10.1090/dimacs/013/07
https://eccc.weizmann.ac.il/report/2018/089
https://doi.org/10.4230/LIPIcs.ISAAC.2018.10
https://doi.org/10.1007/BF01206317
https://doi.org/10.1145/62212.62265

I. Mihajlin and A. Smal 38:23

13 Sajin Koroth and Or Meir. Improved Composition Theorems for Functions and Relations.
In Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2018), volume 116 of Leibniz International Proceedings in Informatics (LIPIcs), pages
48:1–48:18, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.APPROX-RANDOM.2018.48.

14 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1997.

15 Or Meir. Toward better depth lower bounds: Two results on the multiplexor relation. Comput.
Complex., 29(1):4, 2020. doi:10.1007/s00037-020-00194-8.

16 Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer and System
Sciences, 55(1):24–35, 1997.

17 Bella Abramovna Subbotovskaya. Realization of linear functions by formulas using ∧, ∨, ¬.
In Doklady Akademii Nauk, volume 136-3, pages 553–555. Russian Academy of Sciences, 1961.

18 Avishay Tal. Shrinkage of de morgan formulae by spectral techniques. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014, pages 551–560. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.65.

A Lower bound for a block-composition of a universal relation and a
function

▶ Definition 48. Let g : {0, 1}m → {0, 1} be a Boolean function. The block-composition of
a universal relation with a function U ⋄ g is the following relation:

Un ⋄ gm = {(A, B, (i, j)) | A[i, j] ̸= B[i, j]} ∪ {(A, B, ⊥) | ∀i ∈ [n] : g(A[i]) = g(B[i])},

where A, B ∈ {0, 1}n×m.

▶ Theorem 49. There exists f : {0, 1}n → {0, 1}, such that: CC(Un ⋄ fn) ≥ 1.5n − O(log n).

In order to prove this, we need to argue that the result in Theorem 21 also holds for the
following version of Un ⊞ KWg.

▶ Definition 50. Let g : Bn → Bn. In a communication game Un ⊞ KW′
g: Alice is

given xa, ya ∈ Bn and Bob is given xb, yb ∈ Bn. Their goal is to find i ∈ [2n] such that
(xa ◦ ya)i ̸= (xb ◦ yb)i. If xa ⊕ g(ya) = xb ⊕ g(yb) they can output ⊥.

This problem relates to Un ⊞ KWg as Un ⊞ MUX′
n relates to Un ⊞ MUXn. If fact, if we do

not use Lemma 35 in the proof of Theorem 21 then we prove the following lower bound.

▶ Theorem 51. For all n ∈ N, there exists g : Bn → Bn such that

CC(Un ⊞ KW′
g) ≥ 1.5n − O(log n).

Now we are ready to prove the lower bound for the block-composition.

Proof of Theorem 49. We prove this Theorem by a reduction from Un ⊞ KW′
g. Let g :

{0, 1}n → {0, 1}n be such that

CC(Un ⊞ KW′
g) ≥ 1.5n − O(log n).

Let f : {0, 1}n+log n+1 → {0, 1} be a function that treats it’s input x as a n-bit string x′, a
number ix ∈ [n] and a bit bx. In these terms

f(x) = bx ⊕ g(x′)[ix].

CCC 2021

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.48
https://doi.org/10.1007/s00037-020-00194-8
https://doi.org/10.1109/FOCS.2014.65

38:24 Toward Better Depth Lower Bounds: The XOR-KRW Conjecture

Given xa, ya Alice constructs a matrix A as follows: in the i-th row she puts ya as the first
n bits, then she puts i in binary as the next log n bits and she adds xa[i] as the last bit.
Then she adds log n + 1 rows with zeroes. As a result she gets a matrix A ∈ {0, 1}l×l for
l = n + log n + 1. Bob does the symmetric thing and gets a matrix B. Now it is not hard
to see that for every i ∈ [n], (xa ⊕ g(ya))[i] = f(A[i]). Thus, if we have solved Ul ⋄ fl on
(A, B) and the result was ⊥ then ⊥ is the correct answer for Un ⊞ KW′

g. Now suppose that
A[i, j] ̸= B[i, j]. If i = n + log n + 1 then xa[j] ̸= xb[j]. If i ≤ n then ya[i] ̸= yb[i]. That
gives us

CC(Ul ⋄ fl) ≥ CC(Un ⊞ KW′
g) ≥ 1.5n − O(log n),

and hence

CC(Un ⋄ fn) ≥ 1.5n − O(log n). ◀

B Proof of Theorem 9

▶ Theorem 9. For any m, n ∈ N with n ≥ 6 log m, and any non-constant function f :
{0, 1}m → {0, 1},

CC(KWf⋄Mn) ≥ log L(f) + n − O(log∗ n).

Proof. First of all, we show that for any non-constant function f : Bm → B,

CC(KWf⋄Mn
) ≥ CC(KWf ⋄ Un) − O(log n)

by reducing KWf ⋄ Un to KWf⋄Mn
, and then we apply the lower bound on CC(KWf ⋄ Un)

proved in [5, 13].
Consider a communication game KWf ⋄ Un: Alice and Bob are given (x, X) and (y, Y)

respectively, where x ∈ f−1(0), y ∈ f−1(1), X, Y ∈ Bm×n, and they want to find a position
where X and Y differ. The following construction describes a reduction from this game to
KWf⋄Mn

. Given x and X Alice defines functions s1, . . . , sn:

si(r) =
{

x[i], r = Xi

0, otherwise,

where Xi is the i-th row of X. Given y and Y Bob defines functions t1, . . . , tn in the same
way. The reduction guarantees that

(f ⋄ Mn)(s1, X1, . . . , sm, Xm) = 0 and (f ⋄ Mn)(t1, Y1, . . . , tm, Ym) = 1,

and hence the players can simulate the KW game for f ⋄ Mn on these inputs. There are two
possible outcomes of such a game: Alice and Bob find a difference between either some rows
Xi and Yi or some functions si and ti.

In the first case, they are done – the players have found a difference between X and Y .
In the second case, Alice and Bob find a position where two functions si and ti differ for
some i ∈ [m], i.e., at the end of the protocol they both know some r such that si(r) ̸= ti(r).
Then either r = Xi or r = Yi. Using two extra bits of communication Alice and Bob can
find out which of these two cases applies. If r = Xi ̸= Yi then Bob can find a position where
r = Xi and Yi differ, and send it to Alice using log n bits. The other case is symmetric.

The reduction shows that

CC(KWf ⋄ Un) ≤ CC(KWf⋄Mn
) + O(log n).

To complete the proof we use the following bound from [13]:

CC(KWf ⋄ Un) ≥ log L(f) + n − O(log∗ n). ◀

Fourier Growth of Parity Decision Trees
Uma Girish # Ñ

Princeton University, NJ, USA

Avishay Tal # Ñ

University of California at Berkeley, CA, USA

Kewen Wu # Ñ

University of California at Berkeley, CA, USA

Abstract
We prove that for every parity decision tree of depth d on n variables, the sum of absolute values of
Fourier coefficients at level ℓ is at most dℓ/2 · O(ℓ · log(n))ℓ. Our result is nearly tight for small values
of ℓ and extends a previous Fourier bound for standard decision trees by Sherstov, Storozhenko, and
Wu (STOC, 2021).

As an application of our Fourier bounds, using the results of Bansal and Sinha (STOC, 2021),
we show that the k-fold Forrelation problem has (randomized) parity decision tree complexity
Ω̃
(
n1−1/k

)
, while having quantum query complexity ⌈k/2⌉.

Our proof follows a random-walk approach, analyzing the contribution of a random path in
the decision tree to the level-ℓ Fourier expression. To carry the argument, we apply a careful
cleanup procedure to the parity decision tree, ensuring that the value of the random walk is bounded
with high probability. We observe that step sizes for the level-ℓ walks can be computed by the
intermediate values of level ≤ ℓ − 1 walks, which calls for an inductive argument. Our approach
differs from previous proofs of Tal (FOCS, 2020) and Sherstov, Storozhenko, and Wu (STOC, 2021)
that relied on decompositions of the tree. In particular, for the special case of standard decision
trees we view our proof as slightly simpler and more intuitive.

In addition, we prove a similar bound for noisy decision trees of cost at most d – a model that
was recently introduced by Ben-David and Blais (FOCS, 2020).

2012 ACM Subject Classification Theory of computation → Oracles and decision trees; Theory of
computation → Communication complexity; Theory of computation → Quantum complexity theory

Keywords and phrases Fourier analysis of Boolean functions, noisy decision tree, parity decision
tree, query complexity

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.39

Funding Uma Girish: Research supported by the Simons Collaboration on Algorithms and Geometry,
by a Simons Investigator Award and by the National Science Foundation grant No. CCF-1714779.

Acknowledgements We thank anonymous reviewers for helpful comments.

1 Introduction

A common theme in the analysis of Boolean functions is proving structural results on classes
of Boolean devices (e.g., decision trees, bounded-depth circuits) and then exploiting the
structure to: (i) devise pseudorandom generators fooling these devices, (ii) prove lower
bounds, showing that some explicit function cannot be computed by such Boolean devices of
certain size, or (iii) design learning algorithms for the class of Boolean devices in either the
membership-query model or the random-samples model. Such structural results can involve
properties of the Fourier spectrum of Boolean functions associated with Boolean devices,
like concentration on low-degree terms or concentration on a few terms (i.e., “approximate
sparsity”).

© Uma Girish, Avishay Tal, and Kewen Wu;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 39; pp. 39:1–39:36

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ugirish@cs.princeton.edu
https://www.cs.princeton.edu/~ugirish
https://orcid.org/0000-0003-3055-9406
mailto:avishay.tal@gmail.com
http://www.avishaytal.org
https://orcid.org/0000-0002-0375-6554
mailto:shlw_kevin@hotmail.com
https://shlw.github.io/
https://orcid.org/0000-0002-5894-822X
https://doi.org/10.4230/LIPIcs.CCC.2021.39
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Fourier Growth of Parity Decision Trees

In this work, we investigate the Fourier spectrum of parity decision trees. A parity
decision tree (PDT) is an extension of the standard decision tree model. A PDT is a binary
tree where each internal node is marked by a linear function (modulo 2) on the input variables
(x1, . . . , xn), with two outgoing edges marked with 0 and 1, and each leaf is marked with
either 0 or 1. A PDT naturally describes a computational model: on input x = (x1, . . . , xn),
start at the root and at each step query the linear function specified by the current node on
the input x and continue on the edge marked with the value of the linear function evaluated
on x. Finally, when reaching a leaf, output the value specified in the leaf. PDTs naturally
generalize standard decision trees that can only query the value of a single input bit in each
internal node.

PDTs were introduced in the seminal paper of Kushilevitz and Mansour [21]. Aligned
with the aforementioned theme, Kushilevitz and Mansour proved a structural result for PDTs
and used it to design learning algorithms for PDTs. They showed that every PDT of size s

computing a Boolean function f : {0, 1}n → {0, 1} has

L1(f) ≜
∑

S⊆[n]

∣∣∣f̂(S)
∣∣∣ ≤ s,

where f̂(S) are the Fourier coefficients of f (see Subsection 2.1 for a precise definition). Then,
they gave a learning algorithm in the membership-query model, running in time poly(t, n)
that can learn any function f with L1(f) ≤ t. Combining the two results together, they
obtained a poly(s, n)-time algorithm for learning PDTs of size s.

Parity decision trees were also studied in relation to communication complexity and the
log-rank conjecture [26, 39, 40, 38, 35, 31, 13, 20, 18, 33, 23]. Suppose Alice gets input
x ∈ {0, 1}n, Bob gets input y ∈ {0, 1}n and they want to compute some function f(x, y).
When f is an XOR-function, namely f(x, y) = g(x⊕ y) for some g : {0, 1}n → {0, 1}, then
any PDT for g of depth d can be translated into a communication protocol for f at cost 2d:
Alice and Bob simply traverse the PDT together, both exchanging the parity of their part
of the input to simulate each query in the PDT. With this view, parity decision trees can
be thought of as special cases of communication protocols for XOR functions. A surprising
result by Hatami, Hosseini, and Lovett [18], shows that this is not far from the optimal
strategy for XOR functions. Namely, if the communication cost for computing f is c, then
the parity decision tree complexity of g is at most poly(c). Due to this connection, the
log-rank conjecture for XOR-functions reduces to the question of whether Boolean functions
with at most s non-zero Fourier coefficients can be computed by PDTs of depth polylog(s)
[26, 39]. The best known upper bound is that such functions can be computed by PDTs of
depth O(

√
s) [38] (or even non-adaptive PDTs of depth ‹O(

√
s) [33]).

While having small L1(f) norm implies learning algorithms and also simple pseudorandom
generators fooling f [27], this property can be quite restrictive. In particular, very simple
functions (e.g., the Tribes function) have L1(f) exponential in n. Such examples motivated
Reingold, Steinke, and Vadhan [32] to study a more refined notion measuring for a given
level ℓ, the sum of absolute values of Fourier coefficients of sets S of size exactly ℓ, i.e, to
study

L1,ℓ(f) ≜
∑

S⊆[n]:|S|=ℓ

∣∣∣f̂(S)
∣∣∣ .

In particular, for ℓ = 1, the measure L1,1(f) is tightly related to the total influence of f

(and equals to it if f is monotone). The idea behind this more refined notion is that Fourier
coefficients of different levels behave differently under standard manipulations to the function

U. Girish, A. Tal, and K. Wu 39:3

like random restrictions or noise operators. For example, when applying a noise operator
with parameter γ, level-ℓ coefficients are multiplied by γℓ. This motivates to establish a
bound of the form L1,ℓ(f) ≤ tℓ for some parameter t and all ℓ = 1, . . . , n. If f satisfies such
a bound, we say that f ∈ L1(t).1

Reingold, Steinke, and Vadhan [32] showed that for read-once permutation branching
programs of width w, while L1(f) could be exponential in n (even for w = 3), it nevertheless
holds that L1,ℓ(f) ≤ (2w2)ℓ for all ℓ = 1, . . . , n. Then, they constructed a pseudorandom
generator that fools any class of read-once branching programs for which f ∈ L1(t) using
only t · polylog(n) random bits. This result was significantly generalized to a pseudorandom
generator that fools any class of functions f ∈ L1(t) using only t2 · polylog(n) random bits [9].
Further results established pseudorandom generators assuming L1,ℓ bounds only on the first
few levels [11, 8].

It turns out that read-once permutation branching programs are just one example of
many well-studied Boolean devices with non-trivial L1,ℓ bounds. The following classes of
Boolean functions are other examples:
1. Width-w CNF and width-w DNF formulae are in L1(O(w)) [24].
2. AC0 circuits of size s and depth d are in L1

(
O(log(s))d−1) [36].

3. Boolean functions with max-sensitivity at most s are in L1(O(s)) [17]
4. Read-once branching programs of width w are in L1 (O(log(n))w)[11]
5. Deterministic and randomized decision trees of depth d are in L1

(
O
(√

d log(n)
))

[37, 34].
6. If f(x, y) is a function computed by communication protocol exchanging at most c bits,

then h(z) = Ex[f(x, x⊕ z)] satisfies h ∈ L1(O(c)) [15, 16].
7. Polynomials f over GF(2) of degree d have L1,ℓ(f) ≤

(
23d · ℓ

)ℓ [9].
8. Product tests, i.e., the XOR of multiple Boolean functions operating on disjoint sets of at

most m bits each, are in L1(O(m)) [22].
We remark that Items 1, 2, 4, 5 and 8 are essentially tight, Item 3 can be potentially improved
polynomially [28, 30], Item 6 can be potentially improved quadratically [15] and Item 7 can
be potentially improved exponentially [10]. Indeed, improving Item 7 exponentially would
imply that AC0[⊕] in L1(polylog(n)) and would give the first poly-logarithmic pseudorandom
generators for this well-studied class of Boolean circuits [10].

The most relevant result to our work is the recent tight bounds on the L1,ℓ of decision
trees of depth d. Sherstov, Storozhenko and Wu [34] recently proved that for any randomized
decision tree of depth d computing a function f , it holds that L1,ℓ(f) ≤

√(
d
ℓ

)
·O(log(n))ℓ−1.

Their bound is nearly tight (see [37, Section 7] and [29, Chapter 5.3] for tightness examples).
One motivation for showing such a bound for decision trees is that it demonstrates a stark
difference between quantum algorithms making few queries and randomized algorithms making
a few queries. Indeed, the Fourier spectrum associated with quantum query algorithms
making a few queries can be far from being approximately sparse (in the sense that its L1,ℓ

is quite large). Based on that difference, both [34] and [2] showed that there are partial
functions, either k-fold Forrelation or k-fold Rorrelation, that can be correctly computed with
probability at least 1/2 + Ω(1) by quantum algorithms making ⌈k/2⌉ queries, but require
Ω̃
(
n1−1/k

)
queries for any randomized algorithm. Moreover, due to the result of Aaronson

and Ambainis [1] this is the largest possible separation between the two models.

1 Note that if f ∈ L1(t) then after applying noise operator with γ = 1/(2t), the noisy-version of f has
total L1-norm at most O(1) which makes it is quite easy to fool using small-biased distributions [27].

CCC 2021

39:4 Fourier Growth of Parity Decision Trees

Indeed, as suggested in [37], one can show that any function with sufficiently good bounds
on its L1,ℓ, for all ℓ = 1, . . . , n, cannot solve the k-fold Rorrelation, and such bounds were
obtained by [34] for randomized decision trees of depth n1−1/k/polylog(n). Independently,
Bansal and Sinha obtained the same separation but only relying on the L1,ℓ bounds for
ℓ ∈ {k, k+1, . . . , k2}. With this additional flexibility, they were able to obtain their separation
for the simpler and explicit function called k-fold Forrelation.

For parity decision trees, the work of Blais, Tan, and Wan [4] established a tight bound
of O

(√
d
)

on the first level ℓ = 1. To the best of our knowledge, bounds on higher levels
were not considered previously in the literature (in fact, even for standard decision trees,
such bounds were not considered prior to [37]).

1.1 Our Results
We prove level-ℓ bounds for any parity decision tree of depth d.

▶ Theorem 1 (Informal). Let T be a depth-d parity decision tree on n variables. Then the
sum of absolute Fourier coefficients at level ℓ is bounded by dℓ/2 ·O(ℓ · log(n))ℓ.

See Theorem 32 and Theorem 39 for a precise statement taking into account the probability
that T accepts a uniformly random input. Theorem 1 extends the result of [34] from
standard decision trees to parity decision trees at the cost of an (ℓ · log(n))O(ℓ) multiplicative
factor. We remark that even for standard decision tree there is a lower bound of L1,ℓ(f) ≥√(

d
ℓ

)
· (log(n))ℓ−1 [37, Section 7] for constant ℓ and L1,ℓ(f) ≥ 1

poly(ℓ) ·
√(

d
ℓ

)
for all ℓ [29,

Chapter 5.3]. Thus, our bounds are tight up to polylog(n) factors for constant ℓ, and they
deteriorate as ℓ grows. Nevertheless, our main application relies on the bounds for small
values of ℓ (constant or at most log2 n).

Noisy Decision Trees

We also investigate the Fourier spectrum of noisy decision trees. Noisy decision trees are
a different generalization of the standard model; here in each internal node v we query a
noisy version of an input bit, that equals the true bit with probability (1 + γv)/2. Any such
query costs γ2

v . We say that a noisy decision tree has cost at most d if the total cost in any
root-to-leaf path is at most d. Recent work studied this model and established connections
to the question of how randomized decision tree complexity behaves under composition [3].

We prove level-ℓ bounds for any noisy decision tree of cost at most d. See Theorem 42
for a precise statement.

▶ Theorem 2 (Informal). Let T be a noisy decision tree of cost at most d on n variables. Then
the sum of absolute Fourier coefficients at level ℓ is bounded by O(d)ℓ/2 · (ℓ · log(n))(ℓ−1)/2.

Extension to Randomized Query Models

It is simple to verify that if f is a convex combination of Boolean functions f1, . . . , fm each
with L1,ℓ(fi) ≤ tℓ then also f satisfy L1,ℓ(f) ≤ tℓ. Thus, if we take a distribution over PDTs
of depth d (resp., noisy decision trees of cost d) we get the same bounds on their L1,ℓ as
those in Theorem 1 (resp., Theorem 2). This is captured in the following corollary.

U. Girish, A. Tal, and K. Wu 39:5

▶ Corollary 3. Let T be a randomized parity decision tree of depth at most d on n variables.
Then,

∀ℓ ∈ [n] : L1,ℓ(T) ≤ dℓ/2 ·O(ℓ · log(n))ℓ.

Let T ′ be a randomized noisy decision tree of cost at most d on n variables. Then,

∀ℓ ∈ [n] : L1,ℓ(T ′) ≤ O(d)ℓ/2 · (ℓ · log(n))(ℓ−1)/2.

1.2 Applications
Quantum versus Randomized Query Complexity

Let k ≤ log(n). Bansal and Sinha [2] gave a ⌈k/2⌉ versus Ω̃
(
n1−1/k

)
separation between

the quantum and randomized query complexity of k-fold Forrelation (defined by [1]). For
our purposes just think of k-fold Forrelation as a partial Boolean function on n input bits.
Our main application is an extension of Bansal and Sinha’s lower bound for the model of
randomized parity decision trees. This follows from their main technical result and Theorem 1.

▶ Theorem 4 (Restatement of [2, Theorem 3.2]). Let f : {0, 1}n → [0, 1] such that f and all
its restrictions satisfy L1,ℓ(f) ≤ tℓ for ℓ = {k, . . . , k(k − 1)}. Let δ = 2−5k. Suppose f is
δ-close to the value of k-fold Forrelation of x for all x on which k-fold Forrelation is defined.
Then, t ≥ Ω

(
n(1−1/k)/2

k15

)
.

▶ Corollary 5. If T is a randomized parity decision tree of depth d computing k-fold Forrelation
with success probability 1

2 + γ, then d ≥ γ2 · n1−1/k

poly(k) log2 n
.

Proof. We can amplify the success probability of the randomized parity decision tree from
1/2+γ to 1−2−5k by repeating the query algorithm O(k/γ2) times independently and taking
majority. This results in a randomized parity decision tree T ′ of depth d′ = O(d ·k/γ2). Now,
Corollary 3 gives L1,ℓ(T ′) ≤ (d′)ℓ/2 ·O(ℓ · log(n))ℓ for all ℓ. In particular, L1,ℓ(T ′) ≤ tℓ for
all ℓ ≤ k(k − 1) where t = O

(√
d′ · k(k − 1) · log(n)

)
. This is also true for any restriction of

T ′, since fixing variables to constants yields another randomized parity decision tree of depth
at most d′. Combining the bounds on L1,ℓ(T ′) for ℓ ∈ {k, . . . , k(k − 1)} with Theorem 4
gives d′ ≥ n1−1/k

O(k34)·log2(n) and thus d ≥ γ2 · n1−1/k

O(k35)·log2(n) . ◀

For constant k and γ = 2−O(k), we get a ⌈k/2⌉ versus Ω̃
(
n1−1/k

)
separation between

the quantum query complexity and the randomized parity query complexity of k-fold
Forrelation. We remark that separations in the reverse direction are also known: for the
n-bit parity function, the (randomized) parity query complexity is 1 whereas the quantum
query complexity is Ω(n) [25].

Similarly, we can obtain the following corollary for noisy decision trees.

▶ Corollary 6. If T is a randomized noisy decision tree of cost at most d computing k-fold
Forrelation with success probability 1

2 + γ, then d ≥ γ2 · n1−1/k

poly(k) log(n) .

Towards Communication Complexity Lower Bounds

We recall an open question from [15], which, if true, would demonstrate that the randomized
communication complexity of the Forrelation problem composed with the XOR gadget is
Ω̃(n1/2). The simultaneous quantum communication complexity of this problem is polylog(n)
and the best known randomized lower bound is Ω̃(n1/4) due to [15].

CCC 2021

39:6 Fourier Growth of Parity Decision Trees

▶ Conjecture 7. Let f : {0, 1}n×{0, 1}n → {0, 1} computed by a deterministic communication
protocol of cost at most c. Let h : {0, 1}n → [0, 1] defined by h(z) = Ex[f(x, x⊕ z)]. Then,
L1,2(h) ≤ c · polylog(n).

We view Theorem 1 as a first step towards this conjecture. Indeed, for communication
protocols that follow a parity decision tree strategy according to some tree T , it is simple to
verify that h = T (as functions), and thus L1,2(h) = L1,2(T) ≤ c · polylog(n).

We remark that there is a separation of polylog(n) versus Ω̃(n1/2) between simultaneous
quantum communication complexity and two-way randomized communication complexity
due to [14]. We also know a separation of O(k log n) versus Ω̃(n1−1/k) between two-way
quantum communication complexity and two-way randomized communication complexity.
This can be obtained by combining the optimal quantum versus classical query complexity
separations of [2] and [34] and the query-to-communication lifting theorems [7] using the
inner product gadget.

Application to Expander Random Walk

Recently, [12] showed that expander random walks fool symmetric functions and also general
functions in L1(t). To be more precise, assume f ∈ L1(t). Let G be an expander, with
second eigenvalue λ≪ 1

t4 , where half of G’s vertices are labeled by 0 and the rest are labeled
by 1. Then the expected value of f on bits sampled by an (m− 1)-step random walk on G is
approximately the value it would get on a uniformly random string in {0, 1}m. Combined
with our results, this shows that if f can be computed by low-depth parity decision trees
then f can be fooled by the expander random walk.

Fourier Bounds for Small-size Parity Decision Trees

By a simple size-to-depth reduction we obtain Fourier bounds for parity decision trees of
bounded size. We defer the simple proof to Appendix A.

▶ Corollary 8. Let T be a parity decision tree of size at most s > 1 on n variables. Then,

∀ℓ ∈ [n] : L1,ℓ(f) ≤ (log(s))ℓ/2 ·O(ℓ · log(n))1.5ℓ.

1.3 Technical Overview
For the rest of the paper we consider Boolean functions as functions from {±1}n to {0, 1}.
This is for convenience, since most of our calculations become easier under this representation.
Observe that under this view, a parity decision tree queries at each internal node the product∏

i∈S xi for some S ⊆ [n] and goes left/right depending on whether
∏

i∈S xi = 1 or −1.
Let ℓ ∈ N+. For simplicity of notation, we use ‹Oε (dm) to denote

(
d · polylog

(
nℓ/ε

))m for
m, n, d ∈ N+ and ε ∈ (0, 1/2]. When we omit the subscript ε, it is understood that ε = 1. As
per this notation, we show a bound of ‹O (dℓ/2) on the level-ℓ Fourier mass of parity decision
trees of depth d. We first describe the proof for standard decision trees and then show how
to generalize to parity decision trees.

Standard Decision Trees

Let T be a decision tree and for simplicity, assume that every leaf is of depth d. Let v0, . . . , vd

be a random root-to-leaf path in T and v(0), . . . , v(d) ∈ {−1, 0, 1}n denote the sequence of
partial assignments, i.e., for j ∈ [n] and i ∈ {0, . . . , d}, let

U. Girish, A. Tal, and K. Wu 39:7

v
(i)
j =

1 if xj is fixed to 1 before reaching vi,
−1 if xj is fixed to −1 before reaching vi,
0 otherwise.

(1)

For u ∈ Rn, we use uS to denote
∏

j∈S uj . Let aS = sgn
(“T (S)

)
for |S| = ℓ and 0 otherwise.

Note that

∑
S:|S|=ℓ

∣∣∣“T (S)
∣∣∣ =

∑
S:|S|=ℓ

aS
“T (S) =

∑
S:|S|=ℓ

aS E
vd

[
T (vd)v(d)

S

]
= E

vd

T (vd)
∑

S:|S|=ℓ

aSv
(d)
S

 . (2)

Thus, to bound
∑

S:|S|=ℓ |“T (S)| it suffices to show that
∣∣∣∑S:|S|=ℓ aS · v(d)

S

∣∣∣ is bounded

by ‹O(dℓ/2) in expectation. Denote by X(i) :=
∑

S:|S|=ℓ aS · v(i)
S for i = 0, 1, . . . , d. We write

X(d) as a telescoping sum X(d) =
∑d

i=1
(
X(i) −X(i−1)). To analyze the difference sequence,

observe that in the expression

X(i) −X(i−1) =
∑

S:|S|=ℓ

aS ·
(

v
(i)
S − v

(i−1)
S

)
,

if set S contributes to the sum, then S must include the bit queried at the (i− 1)-th step of
the path. Conditioning on v0, . . . , vi−1, let xj be the variable queried in vi−1, then we have

X(i) −X(i−1) =
∑

S:|S|=ℓ,j∈S

aS · v(i)
S = xj ·

 ∑
S:|S|=ℓ,j∈S

aS · v(i−1)
S\{j}

 .

Furthermore, we observe that the sum
∑

S:|S|=ℓ,j∈S aS · v(i−1)
S\{j} is determined by vi−1; thus

conditioning on v0, . . . , vi−1 the value of X(i) −X(i−1) is a random coin in {±1} multiplied
by some fixed integer. In other words, we get that X(0), . . . , X(d) is a martingale with varying
step sizes.

Recall that Azuma’s inequality provides concentration bounds for martingales with
bounded step sizes, thus now we need to bound

∣∣∣∑S:|S|=ℓ,j∈S aS · v(i−1)
S\{j}

∣∣∣, which is similar
to our initial goal. Put differently, we wish to analyze the sum∑

S′⊆[n]\{j}:|S′|=ℓ−1

aS′∪{j} · v
(i−1)
S′ ,

which calls for an inductive argument on ℓ. In addition, since we eventually apply a union
bound on all steps, we need to show that

∣∣∣∑S′ aS′∪{j}v
(i−1)
S′

∣∣∣ is bounded with high probability
(and not just in expectation).

More generally, to carry an inductive argument we define for any set T ⊆ [n], |T | ≤ ℓ and
any i ∈ {0, . . . , d}, the random variable

X
(i)
T :=

∑
S⊇T :|S|=ℓ

aS · v(i)
S\T =

∑
S′⊆T :|S′|=ℓ−|T |

aS′∪T · v(i)
S′ .

Note that our initial goal was to bound
∣∣∣X(d)

∅

∣∣∣ =
∣∣X(d)

∣∣, which is analyzed by (reverse)
induction on |T | going from larger sets to smaller sets as Lemma 9.

CCC 2021

39:8 Fourier Growth of Parity Decision Trees

▶ Lemma 9. For all t ∈ {0, . . . , ℓ} and ε > 0, the probability that there exist i ∈ {0, . . . , d}
and T ⊆ [n] of size at least t such that

∣∣∣X(i)
T

∣∣∣ ≥ ‹Oε

(
d(ℓ−t)/2) is at most ε · (ℓ− t).

The main observation for the proof is that X
(0)
T , X

(1)
T , . . . , X

(d)
T is a martingale whose difference

sequence consists of terms of the form X
(i−1)
T ′ where T ⊊ T ′. To see this, if we are querying

xj at vi−1, then

X
(i)
T −X

(i−1)
T =

0 j ∈ T,

xj ·

(∑
j /∈S⊆T

aS∪T ∪{j} · v
(i−1)
S

)
= xj ·X(i−1)

T ∪j j /∈ T.

Note that X
(i−1)
T ∪j depends only on the history until vi−1, and xj is a uniformly random bit

independent of this history, thus X
(i)
T is a martingale. The inductive hypothesis implies that

with at least 1− ε · (ℓ− t− 1) probability,
∣∣∣X(i−1)

T ∪j

∣∣∣ ≤ ‹Oε

(
d(ℓ−t−1)/2) for all T of size t and

j ∈ [n] \ T . Whenever this happens, Azuma’s inequality implies that2 with probability at
least 1− ε/ (d · nt), we have

∣∣∣X(i)
T

∣∣∣ ≤ 2
√

log(d · nt/ε) ·

√√√√ d∑
i=1

‹Oε (dℓ−t−1) = ‹Oε

(
d(ℓ−t)/2

)
.

This, along with a union bound over T of size t and i ∈ {0, . . . , d} completes the inductive
step. The Fourier bound for noisy decision trees can be proved using a similar approach.

Parity Decision Trees

The basic approach is as before. Let T be a parity decision tree. As in (1), we use vi and
v(i) to denote the random walk and the partial assignments to the variables respectively. We
say vi is k-clean if

∀S ⊆ [n], |S| ≤ k, v
(i)
S =

1 if xS is fixed to 1 before reaching vi,
−1 if xS is fixed to −1 before reaching vi,
0 otherwise.

(3)

For (2) to be true, we need that at least vd is ℓ-clean. Note that this is not always true,3 but
it is useful as it simplifies the study of high-level Fourier coefficients. To address this issue,
we define a cleanup process for parity decision trees in which we make additional queries
to ensure that certain key nodes are k-clean. We do this by recursively cleaning nodes in a
top-down fashion so that for every node v in the original tree T , any node v′ in the new tree
T ′ obtained at the end of the cleanup step for v is k-clean.

The cleanup process is simple to describe: Let v1, . . . , vd be any root-to-leaf path in T .
Assume we have completed the cleanup process for v1, . . . , vi−1. We then query the parity
at vi. While there exists a (minimal) set S violating (3), we pick and query an arbitrary

2 Technically this is not true, since a martingale after conditioning may not still be a martingale. We
handle this by truncating the martingale when a bad event happens instead of conditioning on the good
event.

3 For example, let S = {1, 2} and consider the parity decision tree whose only query is x1x2. At any leaf,
the value of x1x2 is fixed, however, the values of x1 and x2 are free, hence S violates (3).

U. Girish, A. Tal, and K. Wu 39:9

coordinate in S. Once (3) is satisfied, we proceed to the cleanup process for vi+1. This
process increases the depth by a factor of at most k. We set k = Θ(ℓ · log(n)) and work with
the new tree T ′ of depth D ≤ k · d.

Let v0, . . . , vD be a random root-to-leaf path in T ′ and Ii, i ∈ [D] be the set of coordinates
fixed due to the query at vi−1. Note that this set might be of size larger than 1.4 It follows
from simple linear algebra that

∑D
i=1 |Ii| ≤ D. Since vD is k-clean, (2) holds. Defining X

(i)
T

exactly as before, our goal is to prove Lemma 9 with D instead of d. The proof is still by
induction on ℓ− t. It turns out that X

(0)
T , X

(1)
T , . . . , X

(D)
T is no longer a martingale; instead,

X
(i)
T −X

(i−1)
T = Yi + Zi where

Yi :=
∑

∅̸=J⊆Ii∩T
|J| is even

xJ ·X(i−1)
J∪T and Zi :=

∑
∅̸=J⊆Ii∩T
|J| is odd

xJ ·X(i−1)
J∪T . (4)

and Zi (resp., Yi) is an odd (resp., even) polynomial of degree at most ℓ over the newly
fixed variables {xj | j ∈ Ii}. Conditioning on vi−1, every pair of random bits (xj , xj′) from
{xj | j ∈ Ii} is either identical (xj ≡ xj′) or opposite (xj ≡ −xj′), which means Yi is a
constant and Zi can be written as zi · |Zi| where |Zi| is a constant and zi ∼ {±1}.

For now, let us ignore Yi and assume that we have a martingale X
(i)
T such that X

(i)
T −

X
(i−1)
T = zi · |Zi|, where zi ∼ {±1} is a uniformly random bit independent of z0, . . . , zi−1

and |Zi| depends only on vi−1. Combined with an adaptive version of Azuma’s inequality,
we only need to show the sum of squares of step sizes

∑D
i=1 |Zi|2 is ‹Oε

(
Dℓ−t

)
to prove∣∣∣X(i)

T

∣∣∣ = ‹Oε

(
D(ℓ−t)/2). By the induction hypothesis, with probability at least 1−ε ·(ℓ− t−1)

the coefficients of Zi are bounded appropriately. Since
∑D

i=1 |Ii| ≤ D and in particular
|Ii| ≤ D, we have

|Zi| ≤
∑

odd j≥1

(
|Ii|
j

)
· max
|T ′|=j+t

∣∣∣X(i−1)
T ′

∣∣∣ ≤ ℓ−t∑
j≥1

(
|Ii|
j

)
·‹Oε

(
D(ℓ−j−t)/2

)
= ‹Oε

(
|Ii| ·D(ℓ−t−1)/2

)
and thus

∑D
i=1 |Zi|2 ≤ D2 · ‹Oε

(
Dℓ−t−1). This is too loose for our purpose.

We instead try to bound the sum of squares of step sizes with high probability. Imagine
for now that vi−1 is 2-clean.5 Then, the variables {xj | j ∈ Ii} are 2-wise independent
conditioning on vi−1. This gives

E
[
|Zi|2

∣∣∣ vi−1

]
≤

∑
odd j≥1

(
|Ii|
j

)
· max

|T ′|=j+t

∣∣∣X(i−1)
T ′

∣∣∣2
≤

ℓ−t∑
j≥1

(
|Ii|
j

)
· ‹Oε

(
Dℓ−j−t

)
= ‹Oε

(
|Ii| ·Dℓ−t−1)

and thus E
[∑D

i=1 |Zi|2
]
≤ ‹Oε

(
Dℓ−t

)
. To show this bound holds with high probability, we

use concentration properties of degree-ℓ polynomials under k-wise independent distributions
for k ≫ ℓ.

4 For example, suppose we query x1x2, x1x3, x1x4 and finally x1. Then, the last query reveals 4
coordinates.

5 This assumption immediately implies that |Ii| ≤ 1 and trivially proves our inequality, however, this
type of reasoning doesn’t generalize to the case when vi−1 is not 2-clean.

CCC 2021

39:10 Fourier Growth of Parity Decision Trees

In the actual proof, we proceed by conditioning on C(vi−1), the nearest ancestor of vi−1
that is k-clean, instead of conditioning on vi−1, which allows to remove the assumption that
vi−1 is 2-clean. This is because the queries within a cleanup step are non-adaptive, thus Zi

depends only on C(vi−1) and not on vi−1.
Meanwhile, although X

(i)
T is not quite a martingale sequence (due to Yi) and the step sizes

(i.e., |Zi|) are adaptive and not always bounded, we are nonetheless able to prove an adaptive
version of Azuma’s inequality of the form Pr

[
maxi∈[D]

∣∣∣X(i)
T

∣∣∣ ≥ µ + t · σ
]
≤ e−Ω(t2) + ε

provided Pr
[(∑D

i=1 |Yi| ≤ µ
)
∧
(∑D

i=1 |Zi|2 ≤ σ2
)]
≥ 1 − ε. Then it suffices to bound∑D

i=1 |Yi| similarly to
∑D

i=1 |Zi|2 above.

1.4 Related Work
We remark that our proof for level-ℓ Fourier growth (even when specialized to the case of
standard decision trees) differs from the proofs appearing in [37] and [34]. There, the results
were based on decompositions of decision trees. We view our martingale approach as natural
and intuitive. We wonder if one can obtain the tight results from [34] using this approach. It
seems that the main bottleneck is a union bound on events related to all sets T ⊆ [n] of size
at most ℓ.

Our bounds for level-1 improve those obtained by [4]. They prove that L1,1(T) ≤ O(
√

p · d)
when p = Prx[T (x) = 1], whereas we obtain a bound of

L1,1(T) ≤ O
(

p
√

d · log(1/p)
)

.

In particular, our bound is almost quadratically better for small values of p. It remains open
whether the bound can be further improved to O

(
p
√

d · log(1/p)
)

, which is the optimal
bound for standard decision trees.

We remark that our cleanup technique is inspired by [4], which used cleanup to prove
their level-1 bound. However, our proof strategies and the way we use the cleanup procedure
is quite different than that of [4].

Organization

We make formal definitions in Section 2. We state and prove the necessary concentration
inequalities in Section 3. We present the cleanup process in Section 4. We present the Fourier
bounds for parity decision trees in Section 5 and for noisy decision trees in Section 6.

2 Preliminaries

We use log(·) to denote the logarithm with base 2. We use [n] to denote {1, 2, . . . , n}; and([n]
k

)
(resp.,

([n]
≤k

)
) to denote the set of all size-k (resp., size-at-most-k) sets from [n]. If S is a

set from universe U , then we write S for U \S. We use Un to denote the uniform distribution
over {±1}n. We use sgn(value) ∈ {−1, 0, 1} to denote the sign of value, i.e., sgn(value) equals
−1 if value < 0, 1 if value > 0, and 0 if value = 0.

We use F2 = {0, 1} to denote the binary field, Span ⟨vectors⟩ to denote the subspace
spanned by vectors over F2. For a distribution D we use x ∼ D to represent that x is
a random variable sampled from D. For a finite set X we use x ∼ X to denote that x

is a random variable sampled uniformly from X . We use the standard notion of k-wise
independent distribution over {±1}n.

U. Girish, A. Tal, and K. Wu 39:11

▶ Definition 10 (k-wise independence). A distribution D over {±1}n is k-wise independent if
for x ∼ D and any k-indices 1 ≤ i1 < i2 < . . . < ik ≤ n, the random variables (xi1 , . . . , xik

)
are uniformly distributed over {±1}k.

2.1 Boolean Functions
Here we recall definitions in the analysis of Boolean functions (see [29] for a detailed
introduction). Let f : {±1}n → R be any Boolean function. For any p > 0, the p-norm of
f is defined as ∥f∥p = (Ex∼Un [|f(x)|p])1/p. For any subset S ⊆ [n], xS denotes

∏
i∈S xi (in

particular, x∅ = 1). It is a well-known fact that we can uniquely represent f as a linear
combination of {xS}S⊆[n]:

f(x) =
∑

S⊆[n]

f̂(S)xS ,

where the coefficients
{

f̂(S)
}

S⊆[n]
are referred to as the Fourier coefficients of f and are

given by f̂(S) = Ex∼Un
[f(x)xS]. The above representation expresses f as a multilinear

polynomial and is called the Fourier representation of f . We say that f is of degree at most
d if its Fourier representation is a polynomial of degree at most d, i.e., if f̂(S) = 0 for all
S ⊆ [n], |S| > d.

2.2 Parity Decision Trees
Here we formally define parity decision trees (with Boolean outputs).

▶ Definition 11 (Parity decision tree). A parity decision tree T is a representation of a
Boolean function f : {±1}n → {0, 1}. It consists of a rooted binary tree in which each internal
node v is labeled by a non-empty set Qv ⊆ [n], the outgoing edges of each internal node are
labeled by +1 and −1, and the leaves are labeled by 0 and 1.

On input x ∈ {±1}n, the tree T constructs a computation path P from the root to a leaf.
Specifically, when P reaches an internal node v we say that T queries Qv; then P follows
the outgoing edge labeled by

∏
i∈Qv

xi. We require that Qv is not implied by its ancestors’
queries. The output of T (and hence f) on input x is the label of the leaf reached by the
computation path. Conversely, we say x is consistent with the path P if P is the computation
path (possibly ending before reaching a leaf) for x.

We make a few more remarks on a parity decision tree T : {±1}n → {0, 1}.
A node v in T can be either an internal node or a leaf, and we use T (v) ∈ {0, 1} to
denote the label on v when v is a leaf. Meanwhile, we use Tv to denote the sub parity
decision tree starting with node v.
The depth of a node is the number of its ancestors (e.g., the root has depth 0) and the
depth of T is the maximum depth over all its leaves.
We say that two parity decision trees T and T ′ are equivalent (denoted by T ≡ T ′) if
they compute the same function.

2.3 Noisy Decision Trees
▶ Definition 12 (Noisy oracle). A noisy query to a bit b ∈ {±1} with correlation γ ∈ [−1, 1]
returns a bit b′ ∈ {±1} where

b′ =
{

b with probability (1 + γ)/2,

−b with probability (1− γ)/2.

The cost of a noisy query with correlation γ is defined to be γ2.

CCC 2021

39:12 Fourier Growth of Parity Decision Trees

▶ Definition 13 (Noisy decision tree). A noisy decision tree T is a rooted binary tree in
which each internal node v is labeled by an index qv ∈ [n] and a correlation γv ∈ [−1, 1]. The
outgoing edges are labeled by +1 and −1 and the leaves are labeled by 0 and 1.

On input x ∈ {±1}n, the tree T constructs a computation path P from the root to
leaf as follows. When P reaches an internal node v, it makes a noisy query to xqv

with
correlation γv and follows the edge labeled by the outcome of this noisy query. The output of
the tree is defined by sampling a root-to-leaf path and returning the label of the leaf. Since the
computation path P is probabilistic, this is an inherently randomized model of computation.
We use T (x) ∈ {0, 1} to denote the (probabilistic) output of T on input x. We also use
T (v) ∈ {0, 1} to denote the label on v when v is a leaf. We do not require that the indices qv

queried along a path P are distinct. The cost of any path is the sum of costs of the noisy
queries along that path; and the cost of T is the maximum cost of any root-to-leaf path.

We remark that for any noisy decision tree T , its Fourier coefficient “T (S) is given by
E [T (x)xS] where the expectation is over the randomness of both x ∼ Un and T .

3 Useful Concentration Inequalities

We describe useful concentration inequalities in this section.

3.1 Low Degree Polynomials
We use the fact that low degree polynomials satisfy strong concentration properties under
k-wise independent distributions. We will find the following hypercontractive inequality
useful.

▶ Theorem 14 ([5], see also [29, (2, q)-hypercontractivity]). Let f : {±1}n → R be a degree-d
polynomial. Then for any q ≥ 2, we have ∥f∥q ≤ (q − 1)d/2 ∥f∥2.

▶ Lemma 15. Let f : {±1}n → R be a degree-d polynomial. Let D be a 2k-wise independent
distribution over {±1}n, where k ≥ d. Let µ = Ex∼D [f(x)] and σ2 = Ex∼D

[
(f(x)− µ)2].

Then for any α > 0 and any integer 1 ≤ ℓ ≤ k/d, we have

E
x∼D

[
(f(x)− µ)2ℓ

]
≤ σ2ℓ · (2ℓ− 1)d·ℓ

.

In particular we have

Pr
x∼D

[|f(x)− µ| ≥ α · σ] ≤ α2 ·
(

2k

d · α2/d

)k

.

Proof. Observe that (f(x) − µ)2ℓ is a polynomial of degree at most 2ℓ · d ≤ 2k. Thus its
expectation under D is the same as its expectation under the uniform distribution over
{±1}n. By Theorem 14, we have

∥f − µ∥2ℓ ≤ (2ℓ− 1)d/2 ∥f − µ∥2 = σ · (2ℓ− 1)d/2.

Hence by Markov’s inequality, we have

Pr
x∼D

[|f(x)− µ| ≥ α · σ] ≤
Ex∼D

[
(f(x)− µ)2ℓ

]
(α · σ)2ℓ

=
∥f − µ∥2ℓ

2ℓ

(α · σ)2ℓ
≤ (2ℓ− 1)ℓ·d

α2ℓ
.

Now we derive the second bound. We only need to focus on the case α ≥ 1 since otherwise
the RHS is at least 1. Then by setting ℓ = ⌊k/d⌋, we have

Pr
x∼D

[|f(x)− µ| ≥ α · σ] ≤ (2⌊k/d⌋ − 1)⌊k/d⌋·d

α2⌊k/d⌋ ≤ (2k/d)k

α2(k/d−1) = α2 ·
(

2k

d · α2/d

)k

. ◀

U. Girish, A. Tal, and K. Wu 39:13

3.2 Martingales
We show an adaptive version of Azuma’s inequality for martingales. The proof is similar to
the inductive proof of the standard Azuma’s inequality and thus deferred to Appendix B.

▶ Lemma 16 (Adaptive Azuma’s inequality). Let X(0), . . . , X(D) be a martingale and
∆(1), . . . , ∆(D) be a sequence of magnitudes such that X(0) = 0 and X(i) = X(i−1) + ∆(i) · z(i)

for i ∈ [D], where if conditioning on z(1), . . . , z(i−1),
(1) z(i) is a mean-zero random variable and

∣∣z(i)
∣∣ ≤ 1 always holds;

(2) ∆(i) is a fixed value.
If there exists some constant U ≥ 0 such that

∑D
i=1
∣∣∆(i)

∣∣2 ≤ U always holds, then for any
β ≥ 0 we have

Pr
[

max
i=0,1,...,D

∣∣∣X(i)
∣∣∣ ≥ β ·

√
2U

]
≤ 2 · e−β2/2.

Next, we generalize Lemma 16 as follows.

▶ Lemma 17. Let m ≥ 1 be an integer. For each t ∈ [m], let X
(0)
t , . . . , X

(D)
t be a sequence

of random variables and ∆(1)
t , . . . , ∆(D)

t be a sequence of magnitudes such that X
(0)
t = 0 and

X
(i)
t = X

(i−1)
t + ∆(i)

t · z
(i)
t + µ

(i)
t for i ∈ [D], where if conditioning on z

(1)
t , . . . , z

(i−1)
t ,

(1) z
(i)
t is a mean-zero random variable and

∣∣∣z(i)
t

∣∣∣ ≤ 1 always holds;

(2) ∆(i)
t is a fixed value and µ

(i)
t is a random variable.

If there exist some constants U, V ≥ 0 and η ∈ [0, 1] such that

Pr
[
∃t ∈ [m],

(
D∑

i=1

∣∣∣∆(i)
t

∣∣∣2 > U

)
∨

(
D∑

i=1

∣∣∣µ(i)
t

∣∣∣ > V

)]
≤ η,

then for any β ≥ 0 we have

Pr
[
∃t ∈ [m], max

i=0,1,...,D

∣∣∣X(i)
t

∣∣∣ ≥ V + β ·
√

2U

]
≤ η + 2m · e−β2/2.

Proof. We divide the proof into the following two cases.

Case η = 0. Let “X(i)
t = X

(i)
t −

∑i
j=1 µ

(j)
t for each t and i. Then

∣∣∣X(i)
t

∣∣∣ =∣∣∣“X(i)
t +

∑i
j=1 µ

(j)
t

∣∣∣ ≤ V +
∣∣∣“X(i)

t

∣∣∣. By a union bound, it suffices to show for any fixed t,
we have

Pr
[

max
i=0,1,...,D

∣∣∣“X(i)
t

∣∣∣ ≥ β ·
√

2U

]
≤ 2 · e−β2/2,

which follows from Lemma 16.

Case η ≥ 0. Consider ‹X(0)
t , . . . , ‹X(D)

t defined by setting ‹X(0)
t = 0 and ‹X(i)

t = ‹X(i−1)
t +‹∆(i)

t · z
(i)
t + µ̃

(i)
t , where‹∆(i)

t =

∆(i)
t

∑i
j=1

∣∣∣∆(j)
t

∣∣∣2 ≤ U,

0 otherwise,
and µ̃

(i)
t =

µ
(i)
t

∑i
j=1

∣∣∣µ(j)
t

∣∣∣ ≤ V,

0 otherwise.

Then Item (1) and (2) hold for
(‹X(i)

t

)
t,i

and
(‹∆(i)

t

)
t,i

,
(

µ̃
(i)
t

)
t,i

.

CCC 2021

39:14 Fourier Growth of Parity Decision Trees

Note that Pr
[
∃t ∈ [m], i ∈ {0, 1 . . . , D} , ‹X(i)

t ̸= X
(i)
t

]
≤ η and

∑D
i=1

∣∣∣‹∆(i)
t

∣∣∣2 ≤ U,∑D
i=1

∣∣∣µ̃(i)
t

∣∣∣ ≤ V always. Hence from the previous case, we have

Pr
[
∃t ∈ [m], max

i=0,1,...,D

∣∣∣X(i)
t

∣∣∣ ≥ V + β ·
√

2U

]
≤ Pr

[
∃t ∈ [m], i ∈ {0, 1 . . . , D} , ‹X(i)

t ̸= X
(i)
t

]
+ Pr

[
∃t ∈ [m], max

i=0,1,...,D

∣∣∣‹X(i)
t

∣∣∣ ≥ V + β ·
√

2U

]
≤ η + 2m · e−β2/2. ◀

4 How to Clean Up Parity Decision Trees

In this section we show how to clean up the given parity decision tree to make it easier to
analyze.

4.1 k-cleanness
It will be useful to identify Fn

2 with {±1}n by Enc : (x1, . . . , xn) 7→ ((−1)x1 , . . . , (−1)xn).
For a subset X ⊆ Fn

2 we will denote Enc(X) = {Enc(x) : x ∈ X}. Thus, we may think of
Boolean functions also as f : Fn

2 → {0, 1}. We observe that under this representation of the
input, a parity decision tree T : Fn

2 → {0, 1} indeed queries parity functions (i.e., linear
functions over F2) of the input bits x ∈ Fn

2 and decides whether to go left or right based on
their outcome. Thus, the set of all possible inputs in Fn

2 that reach a given node in a parity
decision tree is an affine subspace of Fn

2 .
We introduce some notation.

▶ Notation 18. Let T : {±1}n → {0, 1} be a parity decision tree and let v be a node in it.
We use Pv ⊆ {±1}n to denote the set of all points reaching node v. Note that Pv =
Enc(Hv + a) where Hv is a linear subspace of Fn

2 of dimension n− depth(v) and a ∈ Fn
2 .

For any S ⊆ [n], we define P̂v(S) = Ex∼Pv
[xS].

We use Sv to denote all fully correlated sets with Pv, i.e., Sv =
{

S ⊆ [n]
∣∣∣ P̂v(S) ∈ {±1}

}
.

We observe that if Pv = Enc(Hv + a), then Sv = H⊥
v . Additionally, if the queries on the

path from root to v are Qv0 , . . . , Qvi−1 , then Sv = Span⟨{Qv0 , . . . , Qvi−1}⟩.
If v is an internal node, then define J(v) as the set of newly fixed coordinates after
querying Qv, i.e., i ∈ J(v) iff {i} /∈ Sv but {i} ∈ Span ⟨Sv ∪ {Qv}⟩.

The following simple fact shows that there is no “somewhat” correlated set.

▶ Fact 19. For any parity decision tree T and any node v in T , P̂v(S) ∈ {+1, 0,−1} holds
for any set S.

Proof. Since Pv = Enc(Hv + a) where Hv + a is an affine subspace, Pv falls into one of the
following 3 cases: (a) all points in Pv satisfy χS(x) = 1, (b) all points satisfy χS(x) = −1,
(c) exactly half of the points satisfy χS(x) = 1. ◀

Let S ⊆ Fn
2 be a subspace and S ⊆ [n]. For simplicity, we write S ∈ S iff the indicator

vector of S is contained in S. Now we describe the desired property: k-clean.

U. Girish, A. Tal, and K. Wu 39:15

▶ Definition 20 (k-clean subspace and mess-witness). Let k be a positive integer. A subspace
S is k-clean if for any set S ∈ S such that |S| ≤ k, we have that {i} ∈ S holds for any i ∈ S.

Moreover, when S is not k-clean, we say i is a mess-witness if there exists some S ∋
i, |S| ≤ k such that S ∈ S but {i} /∈ S.

▶ Definition 21 (k-clean parity decision tree). A parity decision tree T is k-clean if the
following holds:

For any internal node v, either (a) Sv is k-clean, or (b) Qv = {i} where i is a mess-
witness for Sv. Moreover, we say v is k-clean if (a) holds; and we say v is cleaning if (b)
holds.
For any leaf v, Sv is k-clean (in such a case, we say that v is k-clean).
For any k-clean internal node v, Tv starts with ℓ(v) non-adaptive queries6 where ℓ(v) ≥ 1.
In addition, for any i ∈ {1, . . . , ℓ(v)− 1}, any node of depth i in Tv is cleaning; and all
node of depth ℓ(v) are k-clean.7

▶ Example 22. If T is a decision tree (i.e., |Qv| ≡ 1 for any internal node v) then it is
k-clean for any k, where each internal node is k-clean.

If T is the depth-1 parity decision tree for T (x) = x1x2x3 (i.e., T only has a root v0
querying Qv0 = {1, 2, 3}), then it is 2-clean but not 3-clean, since for either leaf v we have
{1, 2, 3} ∈ Sv but {1} /∈ Sv.

The benefit of having a k-clean parity decision tree is that it makes the expression of
Fourier coefficients simpler.

▶ Lemma 23. Let T : {±1}n → {0, 1} be a k-clean parity decision tree and let S be a set of
size ℓ ≤ k. Let v0, . . . , vd be a random root-to-leaf path. Define v(0), . . . , v(d) ∈ {−1, 0, +1}n

by setting v
(i)
j = P̂vi(j) for each i, j. Recall that v

(d)
S =

∏
j∈S v

(d)
j . Then we have“T (S) = E

v0,...,vd

[
T (vd) · v(d)

S

]
.

Proof. Observe that for any j ∈ J(vi) ⊆ J , the j-th coordinate is fixed after querying Qvi
.

Therefore we have“T (S) = E
y∼Un

[T (y) · yS] = E
v0,...,vd

[
T (vd) · E

y∼Pvd

[yS]
]

= E
v0,...,vd

[
T (vd) · “Pvd

(S)
]

By Fact 19, “Pvd
(S) ̸= 0 iff S ∈ Svd

, which, due to ℓ ≤ k and vd being a k-clean leaf, is
equivalent to all coordinates in S being fixed along this path. Hence “Pvd

(S) =
∏

j∈S v
(d)
j . ◀

4.2 Cleanup Process
We first analyze the cleanup process for a subspace.8

6 This means for any i ∈ {0, 1 . . . , ℓ(v) − 1}, all nodes of depth i in Tv make the same query.
7 This “leveled adaptive” condition is required just for convenience of proofs. In fact, one can show that

the first few queries in Tv can be rearranged to make sure they are non-adaptive until we reach a k-clean
node. See Lemma 24.

8 The k = 2 case of Lemma 24 is essentially [4, Proposition 3.5]. However there is a gap in their proof.
For example, if the parity decision tree non-adaptively queries x1x2x3x4, x1x5, x2x6 in order, then their
analysis fails.

CCC 2021

39:16 Fourier Growth of Parity Decision Trees

▶ Lemma 24 (Clean subspace). Let k ≥ 2 be an integer and S be a subspace of rank at most
d. We construct a new subspace S ′ (initialized as S) as follows: while S ′ is not k-clean, we
continue to update S ′ ← Span ⟨S ′ ∪ {{i}}⟩ with some mess-witness i. Then rank(S ′) ≤ d · k
and any update choice of mess-witnesses will result in the same final subspace S ′.

Proof. Assume S is a subspace of Fn
2 . Then first note that the number of updates is finite,

since we can update for at most n times.
Next we show that the number of updates and the final S ′ does not depend on the choice

of mess-witnesses. We do so by an exchange argument. Let i1, . . . , ir and i′
1, . . . , i′

r′ be two
rounds of execution using different mess-witnesses. Then there exists some t < min {r, r′} such
that ij = i′

j for all j ≤ t, but it+1 ̸= i′
t+1. Let St = Span ⟨S ∪ {{i1} , . . . , {it}}⟩. Then there

exist S ∋ it+1 and S′ ∋ i′
t+1 (possibly S = S′) such that S, S′ ∈ St but {it+1} ,

{
i′
t+1
}

/∈ St.
Since the final subspace is k-clean, we know there exists some T ≥ t such that

{it+1} /∈ Span ⟨S ∪ {{i′
1} , . . . , {i′

T }}⟩ but {it+1} ∈ Span
〈
S ∪

{
{i′

1} , . . . ,
{

i′
T +1

}}〉
,

which means
{

i′
T +1, it+1

}
∈ Span ⟨S ∪ {{i′

1} , . . . , {i′
T }}⟩. Hence we can safely replace i′

T +1
with it+1, and then swap it+1 with i′

t+1. We can perform this process as long as (i1, . . . , ir) ̸=
(i′

1, . . . , i′
r′), which means r = r′ and the final S ′ is always the same.

For any subspaceH, we define rank1(H) = |{i | {i} ∈ H}| and thus rank(H)−rank1(H) ≥ 0.
Now we analyze the following particular way to construct S ′: We initialize S ′ as S. While S ′

is not k-clean, we find a minimal S = {i1, . . . , is} ∈ S ′ such that i1 is a mess-witness; then
we update S ′ ← Span ⟨S ′ ∪ {{i1} , . . . , {is−1}}⟩. Note that before the update, 1 < s ≤ k

and {ij} /∈ S ′ holds for each j ∈ [s], since S is minimal and S ′ is not k-clean. Thus
after the update, rank(S ′) grows by s− 1 ≤ k − 1 and rank1(S ′) grows by s, which means
rank(S ′)− rank1(S ′) shrinks by 1. Hence we have at most rank(S)− rank1(S) ≤ d updates
before S ′ is k-clean; and the final S ′ has rank at most rank(S) + (k − 1) · d ≤ d · k. ◀

We now show how to convert an arbitrary parity decision tree into a k-clean parity
decision tree which still has a small depth and fixes a small number of variables along each
path. The latter quantity is in fact bounded by the depth as shown in Fact 25.

▶ Fact 25. Let T be a depth-d parity decision tree. Let v0, . . . , vd′ be any root-to-leaf path.
Then we have

∑d′−1
i=0 |J(vi)| ≤ d′.

Proof. Observe that
∑d′−1

i=0 |J(vi)| =
∣∣∣{i
∣∣∣ {i} ∈ Span

〈
Qv0 , . . . , Qvd′−1

〉}∣∣∣ ≤ d′. ◀

▶ Corollary 26. Let T be a depth-D k-clean parity decision tree. Let v0, . . . , vD′ be any root-to-
leaf path where at most d of the nodes v0, . . . , vD′−1 are k-clean. Then

∑
i:|J(vi−1)|>1 |J(vi)| ≤

2d.

Proof. By Fact 25 we have
∑D′−1

i=0 |J(vi)| − 1 ≤ 0. Since any vi with J(vi) = ∅ is not
cleaning and therefore must be k-clean. Thus∑

i:|J(vi)|>1

|J(vi)| − 1 ≤ |{i : J(vi) = ∅}| ≤ d.

For |J(vi)| > 1, we have |J(vi)| − 1 ≥ |J(vi)|/2 and thus
∑

i:|J(vi)|>1 |J(vi)| ≤ 2d. ◀

▶ Lemma 27 (Clean parity decision tree). Let k ≥ 2 be an integer. Let T be an arbitrary
depth-d parity decision tree. Then there exists a k-clean parity decision tree T ′ of depth at
most d · k equivalent to T . Moreover, any root-to-leaf path in T ′ has at most d nodes that
are k-clean.

U. Girish, A. Tal, and K. Wu 39:17

Algorithm 1 Clean parity decision tree: build T ′ from T .

Input: an arbitrary depth-d parity decision tree T
Output: a parity decision tree T ′ with desired properties

1 r ← root of T
2 Initialize the root of T ′ as r′

3 Build(r, r′, 1)
4 Procedure Build(v, v′, ℓ)

/* (v, v′) are the current nodes on (T , T ′); ℓ is the recursion depth.
*/

5 if v is a leaf then Label v′ with the label of v

6 else
7 (v−, v+)← the left and right child of v

8 if ”Pv′(Qv) = −1 then Build(v−, v′, ℓ + 1)

9 else if ”Pv′(Qv) = +1 then Build(v+, v′, ℓ + 1)

10 else /* ”Pv′(Qv) = 0 due to Fact 19 */
11 Qv′ ← Qv

12 (v′
−, v′

+)← the left and right child of v′

13 Initialize O ← ∅
14 while Span ⟨Sv′ ∪ {Qv′} ∪O⟩ is not k-clean do
15 Update O ← O ∪ {{i}}, where i is a mess-witness
16 end
17 T ′ non-adaptively queries every set (which is a singleton) in O under v′ in

arbitrary order
18 foreach leaf v̂ under v′

− do Build(v−, v̂, ℓ + 1)
19 foreach leaf v̂ under v′

+ do Build(v+, v̂, ℓ + 1)
20

21 end
22 end

Proof. We build T ′ by the following recursive algorithm. An example of the algorithm is
provided in Figure 1

We now prove the correctness of Algorithm 1, which is guaranteed by the following claims.
For any internal node v′ ∈ T ′, Qv′ is not implied by its ancestors’ queries. By Fact 19,
this is equivalent to Qv′ /∈ Sv′ , which follows from the conditions in Line 8/9/13.
The depth of T ′ is at most d · k. Let v0, . . . , vd′ be any root-to-leaf path of T and let
P ′ be its corresponding path in T ′. Then the construction process of P ′ corresponds
to the cleanup process for Span

〈
Qv0 , . . . , Qvd′−1

〉
in Lemma 24; hence the depth of T ′

equals rank(S ′) ≤ d′ · k ≤ d · k where S ′ is the k-clean subspace produced by applying
Lemma 24.
T ≡ T ′ and any root-to-leaf path in T ′ has at most d k-clean nodes. This is because
T ′ only refines T by inserting cleaning nodes.
Whenever we call Build(·, v′, ·), v′ is k-clean. We prove by induction on ℓ. The
base case Line 3 is obvious. For Line 8/9, we recurse on the same v′, which is k-clean
by induction. For Line 17/18, note that Sv̂ = Span ⟨Sv′ ∪ {Qv′} ∪O⟩; hence from the
condition in Line 13, it is k-clean.
Nodes created in Line 16 are cleaning. Let o = |O| and let i1, i2, . . . , io be the query

CCC 2021

39:18 Fourier Growth of Parity Decision Trees

x1x2

x2 x4

x3

1 1 0

0 1

x1x2

x1 x1

x3 x4 x4

1

0 1 1 0 1 0

Figure 1 An example of the cleanup process with k = 2 where the LHS is T and the RHS is
T ′. All the left (resp., right) outgoing edges are labeled with −1 (resp., +1). Red nodes and leaves
are k-clean, and blue nodes are cleaning (i.e., non-adaptive queries). Nodes connected with dashed
curves are invoked by Build.

order. For any j ∈ [o], let v′
j be any one of the nodes created for ij , then

Sv′
j

= Span ⟨Sv′ ∪ {Qv′} ∪ {{i1} , . . . , {ij−1}}⟩ ,

which is not k-clean by Line 13; hence v′
j is cleaning by the condition in Line 13. ◀

5 Fourier Bounds for Parity Decision Trees

Our goal in this section is to prove Theorem 1 with detailed bounds provided.

5.1 Level-1 Bound
We first prove the concentration result for level-1. We start with the following simple bound
for general parity decision trees.

▶ Lemma 28. Let T : {±1}n → {0, 1} be a depth-D parity decision tree. Let v0, . . . , vD′ be
any root-to-leaf path. Define v(0), . . . , v(D′) ∈ {−1, 0, +1}n by setting v

(i)
j = P̂vi

(j) for each
0 ≤ i ≤ D′ and j ∈ [n]. Then for any a1, . . . , an ∈ {−1, 0, 1}, we have

∣∣∣∑n
j=1 aj · v(D′)

j

∣∣∣ ≤
D′ ≤ D.

Proof. Note that the set of non-zero coordinates in v(D′) is exactly
⋃D′−1

i=0 J(vi). Hence by
Fact 25, we have∣∣∣∣∣∣

n∑
j=1

aj · v(D′)
j

∣∣∣∣∣∣ ≤
n∑

j=1

∣∣∣v(D′)
j

∣∣∣ =
D′−1∑
i=0
|J(vi)| ≤ D′ ≤ D. ◀

Now we give an improved bound for k-clean parity decision trees. To do so, we need one
more notation which will be crucial in our analysis.

▶ Notation 29. Let T be a k-clean parity decision tree. For any node v, we define C(v) as
the nearest ancestor of v (including itself) that is k-clean.

U. Girish, A. Tal, and K. Wu 39:19

▶ Lemma 30. There exists a universal constant κ ≥ 1 such that the following holds. Let
T : {±1}n→ {0, 1} be a depth-D 2k-clean parity decision tree where k ≥ 1 and any root-to-leaf
path has at most d nodes that are 2k-clean.

Let v0, . . . , vD′ be a random root-to-leaf path. Define v(0), . . . , v(D′) ∈ {−1, 0, +1}n by
setting v

(i)
j = P̂vi

(j) for each 0 ≤ i ≤ D′ and j ∈ [n]. Then for any a1, . . . , an ∈ {−1, 0, 1}
and any ε ≤ 1/2, we have Pr

[∣∣∣∑n
j=1 aj · v(D′)

j

∣∣∣ ≥ R(D, d, k, ε)
]
≤ ε, where

R(D, d, k, ε) = κ ·

√√√√(D + dk

(
1
ε

) 1
k

)
log
(

1
ε

)
.

In the proof of Lemma 30 we will use the following simple claim.

▶ Fact 31. Let p1, . . . , pn be a sub-probability distribution, i.e., pi ≥ 0 and
∑n

i=1 pi ≤ 1. Let
a1, . . . , an ∈ R. Then for any k ∈ N, we have

∑n
i=1 pia

2k
i ≥

(∑n
i=1 pia

2
i

)k.

Proof. We add pn+1 = 1 − (
∑n

i=1 pi) and an+1 = 0 so p is a probability distribution.
Then the claim follows from E[Xk] ≥ E[X]k, where random variable X gets value a2

i with
probability pi. ◀

Proof of Lemma 30. Extend v(D′+1) = · · · = v(D) to equal v(D′). For each 0 ≤ i ≤ D, let
X(i) =

∑n
j=1 aj · v(i)

j . We define δ(i) = 0 for D′ < i ≤ D. For 1 ≤ i ≤ D′, we let

δ(i) = X(i) −X(i−1) =
n∑

j=1
aj ·

(
v

(i)
j − v

(i−1)
j

)
=

∑
j∈J(vi−1)

aj · v(i)
j ,

where J(vi−1) depends only on C(vi−1) since TC(vi−1) performs non-adaptive queries before
(and possibly even after) reaching vi. Note that for the two possible outcomes of querying
Qvi

, v
(i)
j is fixed to ±1 respectively for each j ∈ J(vi−1). Thus δ(i) = ∆(i) · z(i) where ∆(i)

is a fixed value given z(1), . . . , z(i−1) and z(1), . . . , z(D′) are independent unbiased coins in
{±1}.

Since C(vi−1) is 2k-clean, the collection of random variables
{

v
(i)
j

∣∣∣ j ∈ J(vi−1)
}

is 2k-wise
independent conditioning on C(vi−1). Note that δi is a linear function and

E
[
δ(i)

∣∣∣C(vi−1)
]

= 0 and E
[(

δ(i)
)2
∣∣∣∣C(vi−1)

]
=

∑
j∈J(vi−1)

a2
j ≤ |J(vi−1)| .

By the first bound in Lemma 15, we have

E
[(

δ(i)
)2k

∣∣∣∣C(vi−1)
]
≤ (2k − 1)k · |J(vi−1)|k , (5)

and
∣∣δ(i)

∣∣ ≤ |J(vi−1)| always. Our first goal is to bound Pr
[∑D

i=1
(
δ(i))2

> D + 2α2d
]
.

Observe that whenever the event
∑D

i=1
(
δ(i))2

> D + 2α2d happens, it must be the case that∑
i:|J(vi−1)|>1

(
δ(i))2

> 2α2d. Thus,

CCC 2021

39:20 Fourier Growth of Parity Decision Trees

Pr
[

D∑
i=1

(
δ(i)
)2

> D + 2α2d

]
≤ Pr

 ∑
i:|J(vi−1)|>1

(
δ(i)
)2

> 2α2d

= Pr

 ∑
i:|J(vi−1)|>1

|J(vi−1)|
2d

·
(
δ(i))2

|J(vi−1)| > α2

≤ Pr

 ∑
i:|J(vi−1)|>1

|J(vi−1)|
2d

·
(
δ(i))2k

|J(vi−1)|k > α2k

(by Fact 31 and Corollary 26)

= Pr

 ∑
i:|J(vi−1)|>1

(
δ(i))2k

|J(vi−1)|k−1 > 2d · α2k

≤ E

 ∑
i:|J(vi−1)|>1

(
δ(i))2k

|J(vi−1)|k−1

 · 1
2d · α2k

.

(by Markov’s inequality)

On the other hand,

E

 ∑
i:|J(vi−1)|>1

(
δ(i))2k

|J(vi−1)|k−1

 =
D∑

i=1
E

C(vi−1)

[1|J(vi−1)|>1

|J(vi−1)|k−1 · E
[(

δ(i)
)2k

∣∣∣∣C(vi−1)
]]

≤
D∑

i=1
E

C(vi−1)

[
1|J(vi−1)|>1 · (2k − 1)k · |J(vi−1)|

]
(by (5))

= (2k − 1)k · E

 ∑
i:|J(vi−1|>1

|J(vi−1)|

≤ (2k − 1)k · 2d. (by Corollary 26)

Overall, we have

Pr
[

D∑
i=1

(
δ(i)
)2

> D + 2α2d

]
≤ (2k − 1)k

α2k
.

Then by Lemma 17 with m = 1, we have

Pr

∣∣∣X(D)
∣∣∣ =

∣∣∣∣∣∣
n∑

j=1
aj · v(D)

j

∣∣∣∣∣∣ ≥ β
√

2 · (D + 2α2d)

 ≤ 2 · e−β2/2 + (2k − 1)k

α2k
.

The desired bound follows from setting

α =
(

2
ε

) 1
2k √

2k − 1, and β = Θ
(√

log
(

1
ε

))
. ◀

Now we prove the complete level-1 bound for parity decision trees.

U. Girish, A. Tal, and K. Wu 39:21

▶ Theorem 32. Let T : {±1}n → {0, 1} be a depth-d parity decision tree. Let p =
Pr [T (x) = 1] ∈

[
2−d, 1/2

]
.9 Then we have

n∑
j=1

∣∣∣“T (j)
∣∣∣ ≤ p ·min

{
d, O

(√
d · log

(
1
p

))}
= O

(√
d
)

.

Proof. For any i ∈ [n], let ai = sgn
(“T (i)

)
. Now we prove the two bounds separately.

First Bound. Let v0, . . . , vd′ be a random root-to-leaf path in T . Define v(0), . . . , v(d′) ∈
{−1, 0, +1}n by setting v

(i)
j = P̂vi(j) for each 0 ≤ i ≤ d′ and j ∈ [n]. Since T is 1-clean in

itself, by Lemma 23 we have

n∑
j=1

∣∣∣“T (j)
∣∣∣ =

n∑
j=1

ai · “T (j) = E
v0,...,vd′

T (vd′) ·
n∑

j=1
aj · v(d′)

j

 ≤ E
v0,...,vd′

[T (vd′) · |V |] , (6)

where V =
∑n

j=1 aj · v(d′)
j . Hence by Lemma 28, we have (6) ≤ d · E [T (vd′)] = p · d.

Second Bound. By Lemma 27, we construct a 2k-clean parity decision tree T ′ of depth
D ≤ 2d · k equivalent to T , where k = Θ(log(1/p)). Let U =

∑n
j=1 aj ·u(D′)

j . Then we have

n∑
j=1

∣∣∣“T (j)
∣∣∣ =

n∑
j=1

∣∣∣T̂ ′(j)
∣∣∣ = E

u0,...,uD′

T ′(uD′) ·
n∑

j=1
aj · u(D′)

j

 ≤ E
u0,...,uD′

[T ′(uD′) · |U |] . (7)

Lemma 30 implies that for all ε > 0, Pr [|U | ≥ R(ε)] ≤ ε where

R(ε) = R(D, d, k, ε) = O

√dk ·
(

1
ε

) 1
k

· log
(

1
ε

) .

For integer i ≥ 1, let Ii =
[
R
(
p/2i

)
, R
(
p/2i+1)] and I0 = [0, R(p/2)] be intervals. Then for

each i ≥ 1, Pr [|U | ∈ Ii] ≤ p/2i. We also know that Eu0,...,uD′ [T ′(uD′)] ≤ p. Thus,

(7) = E
u0,...,uD′

[
T ′(uD′) · |U | ·

+∞∑
i=0

1|U |∈Ii

]

≤ R
(p

2

)
· E

u0,...,uD′
[T ′(uD′)] +

+∞∑
i=1

R
(p

2i+1

)
· E

u0,...,uD′

[
1|U |∈Ii

]
≤

+∞∑
i=0

R
(p

2i+1

)
· p

2i

=
+∞∑
i=0

O

p ·

√
dk ·

(
2i+1

p

) 1
k

·
(

log
(

1
p

)
+ i + 1

) · 1
2i

= O

(
p ·

√
dk · log

(
1
p

))
= O

(
p ·
√

d · log
(

1
p

))
. ◀

9 If p < 2−d, then p = 0 and T ≡ 0. If p > 1/2, we can consider ‹T = 1 − T by symmetry.

CCC 2021

39:22 Fourier Growth of Parity Decision Trees

5.2 Level-ℓ Bound
Now we turn to the general levels.

▶ Lemma 33. There exists a universal constant τ ≥ 1 such that the following holds. Let
ℓ ≥ 1 be an integer. Let T : {±1}n → {0, 1} be a depth-D 2k-clean parity decision tree
where k ≥ 4 · ℓ and n ≥ max {τ, k, D} and any root-to-leaf path has at most d nodes that are
2k-clean.

Let v0, . . . , vD′ be a random root-to-leaf path. Define v(0), . . . , v(D′) ∈ {−1, 0, +1}n by
setting v

(i)
j = P̂vi(j) for each 0 ≤ i ≤ D′ and j ∈ [n]. Extend v(D′+1) = · · · = v(D) to equal

v(D′). Then for any sequence aS ∈ {−1, 0, 1} , S ∈
([n]

ℓ

)
, any ε ≤ 1/2 and t ∈ {0, . . . , ℓ}, we

have

Pr

∃t′ ∈ {0, . . . , t}, ∃T ∈
(

[n]
ℓ− t′

)
, ∃i ∈ [D],

∣∣∣∣∣∣
∑

S⊆T ,|S|=t′

aS∪T · v(i)
S

∣∣∣∣∣∣≥M(D, d, k, ℓ, t′, ε)

≤ ε·t,

where we recall that v
(i)
S =

∏
j∈S v

(i)
j and where

M(D, d, k, ℓ, t′, ε) =
(

τ · (D + dk) ·
(

nℓ

ε

) 6
k

log
(

nℓ

ε

))t′/2

.

Proof. We prove the bound by induction on t = 0, 1, . . . , ℓ and show τ = 104 suffices. The
base case t = 0 is trivial, since for any fixed T and i, we always have

∣∣∣aT · v(i)
∅

∣∣∣ ≤ 1 =
M(D, d, k, ℓ, 0, ε).

Now we focus on the case where 1 ≤ t ≤ ℓ. For each 0 ≤ i ≤ D and T ∈
([n]

ℓ−t

)
, let

X
(i)
T =

∑
S⊆T ,|S|=t

aS∪T · v(i)
S .

For 1 ≤ i ≤ D′, we have

X
(i)
T −X

(i−1)
T =

∑
S⊆T ,|S|=t,S∩J(vi−1)̸=∅

aS∪T · v(i)
S

=
t∑

r=1

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
V ⊆T ∪J(vi−1),

|U |+|V |=t

aT ∪U∪V · v(i)
V

=
t∑

r=1

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
V ⊆T ∪J(vi−1),

|U |+|V |=t

aT ∪U∪V · v(i−1)
V

(since v
(i)
j = v

(i−1)
j for all j /∈ J(vi−1))

=
t∑

r=1

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
V ⊆T ∪U,

|U |+|V |=t

aT ∪U∪V · v(i−1)
V

︸ ︷︷ ︸
A(T,r,i)

.

(since v
(i−1)
j = 0 for all j ∈ J(vi−1))

Observe that conditioning on vi−1,

U. Girish, A. Tal, and K. Wu 39:23

if r is an even number, then A(T, r, i) is a fixed value independent of v(i);

if r is an odd number, then A(T, r, i) is an unbiased coin with magnitude independent of
v(i).

Therefore, trying to apply Lemma 17, we write X
(i)
T − X

(i−1)
T = µ

(i)
T + ∆(i)

T · z
(i)
T , where

z
(1)
T , . . . , z

(D)
T are independent unbiased coins in {±1} and µ

(i)
T = ∆(i)

T = 0 for D′ < i ≤ D

and

µ
(i)
T =

t∑
r=2,
even

A(T, r, i) and ∆(i)
T =

∣∣∣∣∣∣∣
t∑

r=1,
odd

A(T, r, i)

∣∣∣∣∣∣∣ for 1 ≤ i ≤ D′. (8)

First Bound on A(T, r, i). Let E1 be the following event:

E1 = “ ∃t̂ ∈ {0, . . . , t− 1} , ∃T ′ ∈
(

[n]
ℓ− t̂

)
, ∃i′ ∈ [D],

∣∣∣X(i′)
T ′

∣∣∣ ≥M
(
D, k, ℓ, t̂, ε

)
”.

By the induction hypothesis, we have

Pr [E1] ≤ (t− 1) · ε. (9)

We first derive a simple bound, that will be effective for small values of |J(vi−1)|.

▷ Claim 34. When E1 does not happen, |A(T, r, i)| ≤ |J(vi−1)|r ·M(D, d, k, ℓ, t− r, ε) holds
for all r ∈ [t], i ∈ [D], T ∈

([n]
ℓ−t

)
.

Proof. Since E1 does not happen, by union bound we have

|A(T, r, i)| =

∣∣∣∣∣∣∣∣∣
∑

U⊆J(vi−1)∩T ,
|U |=r

v
(i)
U

∑
V ⊆T ∪U,

|U |+|V |=t

aT ∪U∪V · v(i−1)
V

∣∣∣∣∣∣∣∣∣ ≤ |J(vi−1)|r max
U⊆T ,|U |=r

∣∣∣X(i−1)
T ∪U

∣∣∣
≤ |J(vi−1)|r ·M(D, d, k, ℓ, t− r, ε). ◁

Second Bound on A(T, r, i). The second bound requires a more refined decomposition on
A(T, r, i).

Assume that c(i− 1) is the index of C(vi−1) in v0, . . . , vD′ , i.e., vc(i−1) = C(vi−1). This
means that vc(i−1) is the closest ancestor to vi−1 that is 2k-clean. Then define

L(vi−1) =
⋃

c(i−1)≤i′<i−1

J(vi′).

The elements of L(vi−1) are precisely the coordinates fixed by the queries from Qvc(i−1) to
Qvi−1 , excluding the latter. Since TC(vi−1) makes non-adaptive queries before (and possibly
even after) reaching vi, L(vi−1) and J(vi−1) depend only on C(vi−1) and i. We now expand
A(T, r, i) by also grouping terms based on the number of coordinates in L(vi−1) as follows:

CCC 2021

39:24 Fourier Growth of Parity Decision Trees

A(T, r, i) =
∑

U⊆J(vi−1)∩T ,
|U |=r

v
(i)
U

∑
V ⊆T ∪U,

|U |+|V |=t

aT ∪U∪V · v(i−1)
V

=
t−r∑
r′=0

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
W ⊆L(vi−1)∩T ,

|W |=r′

v
(i−1)
W

∑
W ′⊆T ∪U∪L(vi−1)

|W ′|=t−r−r′

aT ∪U∪W ∪W ′ · v(i−1)
W ′

=
t−r∑
r′=0

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
W ⊆L(vi−1)∩T ,

|W |=r′

v
(i−1)
W

∑
W ′⊆T ∪U∪L(vi−1)

|W ′|=t−r−r′

aT ∪U∪W ∪W ′ · vc(i−1)
W ′

(since v
(i−1)
j = v

c(i−1)
j for all j /∈ L(vi−1))

=
t−r∑
r′=0

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
W ⊆L(vi−1)∩T ,

|W |=r′

v
(i−1)
W

∑
W ′⊆T ∪U∪W
|W ′|=t−r−r′

aT ∪U∪W ∪W ′ · vc(i−1)
W ′

(since v
c(i−1)
j = 0 for all j ∈ L(vi−1))

=
t−r∑
r′=0

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
W ⊆L(vi−1)∩T ,

|W |=r′

v
(i−1)
W ·Xc(i−1)

T ∪U∪W

︸ ︷︷ ︸
Γ(i)

T
(r,r′)

.

Since C(vi−1) is 2k-clean, by Fact 19, the collection of random variables{
v

(i)
j

∣∣∣ j ∈ J(vi−1)
}
∪
{

v
(i−1)
j

∣∣∣ j ∈ L(vi−1)
}

is 2k-wise independent conditioning on C(vi−1). Note that Γ(i)
T (r, r′) is a polynomial of

degree at most r + r′ ≤ ℓ < k, that E
[
Γ(i)

T (r, r′)
∣∣∣C(vi−1)

]
= 0, and

σ2
T (r, r′, C(vi−1), i) := E

[(
Γ(i)

T (r, r′)
)2
∣∣∣∣C(vi−1)

]
=

∑
U⊆J(vi−1)∩T ,

|U |=r

∑
W ⊆L(vi−1)∩T ,

|W |=r′

(
X

c(i−1)
T ∪U∪W

)2

≤ (|J(vi−1)|)r (|L(vi−1)|)r′
(

max
|T ′|=r+r′+ℓ−t,i′∈[D]

∣∣∣X(i′)
T ′

∣∣∣)2

≤ (|J(vi−1)|)r
Dr′

(
max

|T ′|=r+r′+ℓ−t,i′∈[D]

∣∣∣X(i′)
T ′

∣∣∣)2
.

(since |L(vi−1)| ≤ D by Fact 25)

We also have the following claim, the proof of which follows from Lemma 15 applied to the
low degree polynomial Γ(i)

T . The proof is deferred to Appendix C.

▷ Claim 35. Pr [E2] ≤ ε/3, where E2 is the following event: ∃T ∈
([n]

ℓ−t

)
, i, r, r′, such that

∣∣∣Γ(i)
T (r, r′)

∣∣∣ ≥ (100 min
{

k, log
(

nℓ

ε

)}
·
(

nℓ

ε

) 6
k

) r+r′
2

· σT (r, r′, C(vi−1), i).

U. Girish, A. Tal, and K. Wu 39:25

On the other hand, when E1 ∨ E2 does not happen, the following calculation holds for all
T ∈

([n]
ℓ−t

)
, i ∈ [D′], r ∈ [t], 0 ≤ r′ ≤ t− r:∣∣∣Γ(i)

T (r, r′)
∣∣∣

≤M (D, k, ℓ, t− r − r′, ε) ·

√(
100 min

{
k, log

(
nℓ

ε

)}
·
(

nℓ

ε

) 6
k

)r+r′

(|J(vi−1)|)r ·Dr′

≤M (D, k, ℓ, t− r − r′, ε) ·

√(
100 ·

(
nℓ

ε

) 6
k

)r+r′

(|J(vi−1)| · k)r ·
(

D · log
(

nℓ

ε

))r′

=

√(
τ(D + dk)

(
nℓ

ε

) 6
k log

(
nℓ

ε

))t−r−r′(
100

(
nℓ

ε

) 6
k

)r+r′

(|J(vi−1)| · k)r
(

D · log
(

nℓ

ε

))r′

≤

√(
τ(D + dk)

(
nℓ

ε

) 6
k log

(
nℓ

ε

))t (100
τ

)r+r′ (|J(vi−1)|
d·log(nℓ/ε)

)r

≤

√(
τ(D + dk)

(
nℓ

ε

) 6
k log

(
nℓ

ε

))t (200
τ

)r+r′ (|J(vi−1)|
2d

)r
1

log(nℓ/ε)

= M(D, d, k, ℓ, t, ε) ·
√(200

τ

)r+r′ (|J(vi−1)|
2d

)r
1

log(nℓ/ε) .

Hence we have a second bound on A(T, r, i).

▷ Claim 36. When E1 ∨ E2 does not happen, the following holds for all r ∈ [t], i ∈ [D], T ∈([n]
ℓ−t

)
:

|A(T, r, i)| ≤ M(D, d, k, ℓ, t, ε)√
log (nℓ/ε)

·

√(
800
τ

)r (|J(vi−1)|
2d

)r

.

Proof. Since E1 ∨ E2 does not happen, by union bound and noticing τ ≥ 800 we have

|A(T, r, i)|

≤
t−r∑
r′=0

∣∣∣Γ(i)
T (r, r′)

∣∣∣ ≤ M(D, d, k, ℓ, t, ε)√
log (nℓ/ε)

·

√(
200
τ

)r (|J(vi−1)|
2d

)r

·
+∞∑
r′=0

(
200
τ

)r′/2

≤ M(D, d, k, ℓ, t, ε)√
log (nℓ/ε)

·

√(
800
τ

)r (|J(vi−1)|
2d

)r

. ◁

Final Bound on µ
(i)
T and δ

(i)
T . Combining Claim 34 and Claim 36, if E1 ∨ E2 does not

happen we have

|A(T, r, i)| ≤M(D, d, k, ℓ, t−r, ε)+ M(D, d, k, ℓ, t, ε)√
log (nℓ/ε)

·
√(800

τ

)r
(

|J(vi−1)|
2d

)r

·1|J(vi−1)|>1 (10)

To see this, if |J(vi−1)| ≤ 1, we use the bound from Claim 34 as the first term in (10).
Otherwise |J(vi−1)| > 1, in which case we use the bound from Claim 36 as the second term
in (10).

By Corollary 26, we can now bound
∑D

i=1

∣∣∣µ(i)
T

∣∣∣ and
∑D

i=1

∣∣∣∆(i)
T

∣∣∣2 as Claim 37. Its proof
is deferred in Appendix D.

CCC 2021

39:26 Fourier Growth of Parity Decision Trees

▷ Claim 37. When E1 ∨ E2 does not happen,
∑D

i=1

∣∣∣µ(i)
T

∣∣∣ ≤ R and
∑D

i=1

∣∣∣∆(i)
T

∣∣∣2 ≤ R2 hold
for all T ∈

([n]
ℓ−t

)
, where

R = M(D, d, k, ℓ, t, ε)
5 ·
√

log (nℓ/ε)
. (11)

Complete Induction. Let β =
√

2 · log (nℓ/ε) ≥ 1 and observe that

R + β ·
√

2 ·R ≤ β · 2
√

2 ·R (due to β ≥ 1)

= 2
√

2 ·
√

2 · log (nℓ/ε)
5 ·
√

log (nℓ/ε)
·M(D, d, k, ℓ, t, ε) (due to (11))

≤M(D, d, k, ℓ, t, ε).

Then we have

Pr
[
∃t′ ∈ {0, . . . , t} , ∃T ′ ∈

(
[n]

ℓ− t′

)
, ∃i ∈ [D],

∣∣∣X(i)
T

∣∣∣ ≥M (D, d, k, ℓ, t′, ε)
]

= Pr
[
E1
∨(

∃T ∈
(

[n]
ℓ− t

)
, ∃i ∈ [D],

∣∣∣X(i)
T

∣∣∣ ≥M (D, d, k, ℓ, t, ε)
)]

≤ Pr
[
(E1 ∨ E2)

∨(
∃T ∈

(
[n]

ℓ− t

)
, ∃i ∈ [D],

∣∣∣X(i)
T

∣∣∣ ≥ R + β ·
√

2 ·R
)]

≤ (t− 1) · ε + ε

3 + 2nℓ−t · e−β2/2 (due to (9), Claim 35, Lemma 17, and Claim 37)

≤ (t− 1) · ε + ε

3 + 1
3 · n

ℓ · e−β2/2

≤ t · ε. ◀

Before we prove the complete level-ℓ bound for parity decision trees, we first prove a
simple bound for the number of vectors with a given weight in a subspace.

▶ Lemma 38. Let ℓ ≥ 1 be an integer and S be a subspace of rank at most d. Let
U = {S | |S| = ℓ, S ∈ S}, then |U | ≤ min

{(
d·ℓ
ℓ

)
, 2d − 1

}
.

Proof. Let {S1, . . . , Sd′} be a maximal set of independent vectors in U . Then d′ ≤ d and
|Si| = ℓ holds for all i ∈ [d′]. Since U ⊆ Span ⟨S1, . . . , Sd′⟩ and ∅ /∈ U , we have

|U | ≤ |Span ⟨S1, . . . , Sd′⟩| − 1 = 2d′
− 1 ≤ 2d − 1.

On the other hand, observe that U ⊆
(

S1∪···∪Sd′
ℓ

)
, hence we also have

|U | ≤
∣∣∣∣(S1 ∪ · · · ∪ Sd′

ℓ

)∣∣∣∣ ≤ (d′ · ℓ
ℓ

)
≤
(

d · ℓ
ℓ

)
. ◀

We remark that in Lemma 38, it is conjectured the bound should be
(

d+1
ℓ

)
when d ≥ 2 · ℓ

[19, 6].

▶ Theorem 39. Let ℓ ≥ 1 be an integer. Let T : {±1}n → {0, 1} be a depth-d parity decision
tree where n ≥ max {d, ℓ}. Let p = Pr [T (x) = 1] ≥ 2−d.10 Then we have∑

S⊆[n]:|S|=ℓ

∣∣∣“T (S)
∣∣∣ ≤ p ·min

{(
d · ℓ

ℓ

)
, 2d − 1, O

(√
d · log

(
nℓ

p

))ℓ
}

= O
(√

d · ℓ · log(n)
)ℓ

.

10 If p < 2−d, then p = 0 and T ≡ 0.

U. Girish, A. Tal, and K. Wu 39:27

Proof. For any S ∈
([n]

ℓ

)
, let aS = sgn

(“T (S)
)

. Now we prove the bounds separately.

First Two Bounds. Let v0, . . . , vd′ be a random root-to-leaf path. Then by the definition of
P̂v and Sv and Fact 19, we have

∑
S

∣∣∣“T (S)
∣∣∣ =

∑
S

aS · “T (S) = E
v0,...,vd′

[
T (vd′) ·

∑
S

aS ·‘Pvd′ (S)
]

≤ E
v0,...,vd′

[
T (vd′) ·

∑
S

∣∣∣‘Pvd′ (S)
∣∣∣] = E

v0,...,vd′
[T (vd′) · |V |] , (12)

where aS = sgn
(“T (S)

)
and V =

{
S ∈

([n]
ℓ

) ∣∣∣S ∈ Svd′

}
. Note that

rank
(
Svd′

)
= rank

(
Span

〈
Qv0 , . . . , Qvd′−1

〉)
≤ d′ ≤ d.

Hence by Lemma 38, we have (12) ≤ min
{(

d·ℓ
ℓ

)
, 2d − 1

}
·E [T (vd′)] = p ·min

{(
d·ℓ
ℓ

)
, 2d − 1

}
.

Third Bound. By Lemma 27, we construct a 2k-clean parity decision tree T ′ of depth
D ≤ 2d · k equivalent to T , where k = Θ

(
log
(
nℓ/p

))
≥ 4 · ℓ. We also add dummy variables

to make sure n′ = max {τ, k, 6D, n}, where T ′ has n′ inputs and τ is the universal constant
in Lemma 33.

Let u0, . . . , uD′ be a random root-to-leaf path in T ′. Define u(0), . . . , u(D′) ∈ {−1, 0, +1}n

by setting u
(i)
j = P̂ui(j) for each 0 ≤ i ≤ D′ and j ∈ [n]. Then extend u(D′+1) = u(D′+2) =

· · · = u(D) to equal u(D′). By Lemma 23, we have

∑
S

∣∣∣“T (S)
∣∣∣ =

∑
S

∣∣∣T̂ ′(S)
∣∣∣ = E

u0,...,uD′

[
T (uD′) ·

∑
S

aS · u(D)
S

]
≤ E

u0,...,uD′
[T (uD′) · |U |] , (13)

where U =
∑

S aS · u(D)
S .

Now we apply Lemma 33 with t = ℓ, ε = Θ
(
p/dℓ/2) ≤ 1/2 to obtain the following bound11

M = M(D, d, k, ℓ, ℓ, ε) =
(

O
(√

d · log
(

nℓ

p

)))ℓ

such that Pr [|U | ≥M] ≤ ℓ · ε. Then, combining the first bound, we have

(13) = E
[
T (uD′) · |U | ·

(
1|U |<M + 1|U |≥M

)]
≤M · E [T (uD′)] + ℓ · ε ·

(
d · ℓ

ℓ

)
= p ·

(
O
(√

d · log
(

nℓ

p

)))ℓ

,

which is maximized at p = 1, hence (13) = O
(√

d · ℓ · log(n)
)ℓ

as desired. ◀

11 Since n ≥ max {ℓ, d}, we know k = Θ
(
log
(
nℓ/p

))
= O(n2) and D ≤ 2d · k = O(n3). Hence

n′ = max {τ, k, 6D, n} = O(n3). Also nℓ/ε ≤ nO(ℓ)/p and by our choice of k = Θ
(
log(nℓ/p)

)
we have(

nℓ/ε
)6/k = O(1).

CCC 2021

39:28 Fourier Growth of Parity Decision Trees

6 Fourier Bounds for Noisy Decision Trees

Let T be a noisy decision tree. By adding queries with zero correlation, we assume without
loss of generality each root-to-leaf path in the noisy decision tree is of the same length. Let
v be any node of T . We use Pv to denote the uniform distribution over {±1}n conditioning
on reaching v. Note that Pv is always a product distribution. As before, for any S ⊆ [n] we
define P̂v(S) = Ex∼Pv [xS].

▷ Claim 40. Let T : {±1}n → {0, 1} be a cost-d noisy decision tree. Let v0, . . . , vD be any
root-to-leaf path in T . Define v(0), . . . , v(D) ∈ [−1, 1]n by setting v

(i)
j = P̂vi

(j) for each
0 ≤ i ≤ D and j ∈ [n]. Then for any i ∈ {0, . . . , D− 1}, v

(i+1)
qvi

− v
(i)
qvi

is a mean-zero random
variable with magnitude bounded by 2 · |γvi

|.

Proof. Fix i ∈ {0, . . . , D − 1}. For convenience, let j = qvi , γ = γvi , and α = v
(i)
j . Suppose

|γ| = 1 then
∣∣∣v(i+1)

j − v
(i)
j

∣∣∣ ≤ 2 = 2 · |γvi
| as desired. Now we turn to the case |γ| < 1.

Note that for the distribution Pvi
, the measure of xj = 1 (resp., xj = −1) inputs is

(1 + α)/2 (resp., (1 − α)/2). The measure of xj = 1 (resp., xj = −1) inputs that follow
the edge labeled 1 is a := (1 + α)(1 + γ)/4 (resp., b := (1 − α)(1 − γ)/4). The total
measure of inputs that take the edge labeled 1 is a + b and the resulting node vi+1 satisfies
v

(i+1)
j = (a− b)/(a + b). This implies that

v
(i+1)
j =

{
α+γ

1+γ·α with probability 1+γ·α
2 ,

α−γ
1−γ·α with probability 1−γ·α

2 .

The above calculation implies

v
(i+1)
j − v

(i)
j =

{
γ · 1−α2

1+γ·α with probability 1+γ·α
2 ,

−γ · 1−α2

1−γ·α with probability 1−γ·α
2 ,

and thus v
(i+1)
j − v

(i)
j is a mean-zero random variable. Since α ∈ [−1, 1] and γ ∈ (−1, 1), we

have

max
{

1− α2

1− γ · α
,

1− α2

1 + γ · α

}
≤ 1− α2

1− |α| = 1 + |α| ≤ 2,

which implies
∣∣∣v(i+1)

j − v
(i)
j

∣∣∣ ≤ 2 · |γ|. ◁

We now prove the general Fourier bounds. As before, for any S ⊆ [n], let v
(i)
S be∏

j∈S v
(i)
j .

▶ Lemma 41. There exists a universal constant τ such that the following holds. Let ℓ ≥ 1
be an integer. Let T : {±1}n → {0, 1} be a cost-d noisy decision tree.

Let v0, . . . , vD be a random root-to-leaf path in T . Define v(0), . . . , v(D) ∈ [−1, 1]n by
setting v

(i)
j = P̂vi

(j) for each 0 ≤ i ≤ D and j ∈ [n]. Then for any sequence aS ∈
{−1, 0, 1} , S ∈

([n]
ℓ

)
, any ε ≤ 1/2 and t ∈ {0, . . . , ℓ}, we have

Pr

∃T ∈ ([n]
ℓ− t

)
, ∃i ∈ [D],

∣∣∣∣∣∣
∑

S⊆T ,|S|=t

aS∪T · v(i)
S

∣∣∣∣∣∣ ≥ S(d, ℓ, t, ε)

 ≤ ε · t,

where S(d, ℓ, 0, ε) = 1 and

S(d, ℓ, t, ε) =
√

(τ · d)t · log
(

nℓ−t

ε

)
· · · log

(
nℓ−1

ε

)
for t ∈ [ℓ].

U. Girish, A. Tal, and K. Wu 39:29

Proof. We prove the bound by induction on t and show τ = 32 suffices. The base case t = 0
is trivial, since for any T of size ℓ and any i, we have

∣∣∣aT · v(i)
∅

∣∣∣ ≤ 1 = S(d, ℓ, 0, ε).

Now we focus on the case 1 ≤ t ≤ ℓ. For any T ∈
([n]

≤ℓ

)
, define X

(0)
T , . . . , X

(D)
T by

X
(i)
T =

∑
S⊆T ,|S|+|T |=ℓ aS∪T · v(i)

S . Define δ
(i)
T for i ∈ [D] as follows:

δ
(i)
T = X

(i)
T −X

(i−1)
T =

∑
S⊆T ,|S|=t,S∋qvi−1

aS∪T ·
(

v
(i)
S − v

(i−1)
S

)
=
(

v(i)
qvi−1

− v(i−1)
qvi−1

)
·

∑
S′⊆T ∪{qvi−1 },|S′|=t−1

aS′∪{qvi−1}∪T · v
(i−1)
S

=
(

v(i)
qvi−1

− v(i−1)
qvi−1

)
·X(i−1)

T ∪{qvi−1 }.

Note that by Claim 40 and conditioning on vi−1, δ
(i)
T is a mean-zero random variable.

The induction hypothesis implies that with all but ε · (t− 1) probability, for all i ∈ [D]
and T ′ ∈

([n]
ℓ−t+1

)
, we have

∣∣∣X(i)
T ′

∣∣∣ ≤ S(d, ℓ, t− 1, ε). By Claim 40, we have∣∣∣δ(i)
T

∣∣∣ =
∣∣∣v(i)

qvi−1
− v(i−1)

qvi−1

∣∣∣ · ∣∣∣∣X(i−1)
T ∪{qvi−1}

∣∣∣∣ ≤ 2 ·
∣∣γvi−1

∣∣ · S(d, ℓ, t− 1, ε).

Denote by ∆(i)
T = 2·

∣∣γvi−1

∣∣·S(d, ℓ, t−1, ε). We can thus express X
(i)
T = X

(i−1)
T +∆(i)

T ·z
(i)
T where∣∣∣z(i)

T

∣∣∣ ≤ 1. Then we apply Lemma 17 to the family of martingales X
(0)
T , . . . , X

(D)
T , |T | ∈

([n]
ℓ−t

)
with difference sequence δ

(i)
T = ∆(i)

T · z
(i)
T satisfying

D∑
i=1

(
∆(i)

T

)2
= 4 · (S(d, ℓ, t− 1, ε))2 ·

D∑
i=1

∣∣γvi−1

∣∣2 ≤ 4d · (S(d, ℓ, t− 1, ε))2
.

Hence for any β ≥ 0, we have

Pr
[
∃T ∈

(
[n]

ℓ− t

)
, ∃i ∈ [D],

∣∣∣X(i)
T

∣∣∣ ≥ 2β ·
√

2d · S(d, ℓ, t− 1, ε)
]
≤ ε·(t−1)+2·nℓ−t ·e−β2/2.

Since ε ≤ 1/2, we can set β = 2 ·
√

log(nℓ−t/ε) so that 2 · nℓ−t · e−β2/2 ≤ ε, which completes
the induction by noticing

2β ·
√

2d · S(d, ℓ, t− 1, ε) =
√

32 · d · log
(

nℓ−t

ε

)
· S(d, ℓ, t− 1, ε) ≤ S(d, ℓ, t, ε). ◀

▶ Theorem 42. Let ℓ ≥ 1 and n ≥ max {ℓ, 2} be integers. Let T : {±1}n → {0, 1} be a
cost-d noisy decision tree. Let p = Pr[T (x) = 1] ∈ (0, 1/2].12 Then we have∑

S⊆[n],|S|=ℓ

∣∣∣“T (S)
∣∣∣ ≤ p ·O(d)ℓ/2 ·

√
log
(

1
p

)(
log
(

nℓ

p

))ℓ−1
= O(d)ℓ/2 ·

√
1 + (ℓ log(n))ℓ−1

.

Proof. For any S ∈
([n]

ℓ

)
, let aS = sgn

(“T (S)
)

. Let v0, . . . , vD be a random root-to-leaf path
in T . Note that∑

S

∣∣∣“T (S)
∣∣∣ =

∑
S

aS · “T (S) = E

[
T (vD) ·

∑
S

aS · v(D)
S

]
≤ E [T (vD) · |V |] , (14)

12 If p > 1/2, then we can consider ‹T = 1 − T by symmetry.

CCC 2021

39:30 Fourier Growth of Parity Decision Trees

where V =
∑

S aS ·S v
(D)
S . By Lemma 41, we know Pr [|V | ≥ S(ε)] ≤ ε · ℓ, where

S(ε) = S(d, ℓ, ℓ, ε) =
√

O(d)ℓ · log
(

nℓ−1

ε

)
· · · log

(
n0

ε

)
≤
√

O(d)ℓ ·
(

log
(

nℓ−1

ε

))ℓ−1
log
(1

ε

)
.

For integer i ≥ 1, let Ii =
[
S
(
p/
(
ℓ2i
))

, S
(
p/
(
ℓ2i+1))] and I0 = [0, S(p/ℓ)] be intervals.

Then for each i ≥ 1, Pr [|V | ∈ Ii] ≤ p/2i. We also know that Ev0,...,vD
[T (vD)] ≤ p. Thus,

(14) ≤ E
v0,...,vD

[
T (vD) · |V | ·

+∞∑
i=0

1|V |∈Ii

]

≤ S
(p

ℓ

)
· E [T (vD)] +

+∞∑
i=1

S
(p

ℓ · 2i+1

)
· E
[
1|V |∈Ii

]
≤

+∞∑
i=0

S
(p

ℓ · 2i+1

)
· p

2i

=
+∞∑
i=0

p ·
√

O(d)ℓ ·
(

log
(

nℓ−1·ℓ
p

)
+ i + 1

)ℓ−1
·
(

log
(

1
p

)
+ log(ℓ) + i + 1

)
· 1

2i

≤
+∞∑
i=0

p ·

√
O(d)ℓ ·

((
log
(

nℓ

p

))ℓ−1
+ (i + 1)ℓ−1

)
·
(

log
(

1
p

)
+ i + 1

)
· 1

2i

(since n ≥ ℓ, and (x + y)b ≤ 2b ·
(
xb + yb

)
and
√

x + y ≤
√

x +√y for x, y, b ≥ 0)

≤ p ·
√

O(d)ℓ · log
(

1
p

)(
log
(

nℓ

p

))ℓ−1
,

where the last inequality follows from p ≤ 1/2, n ≥ 2 and

+∞∑
i=0

(i + 1)ℓ/2 · 2−i = O(ℓ)ℓ/2 ≤ O(1)ℓ · ℓ(ℓ−1)/2 ≤ O(1)ℓ ·
(
log
(
nℓ/p

))(ℓ−1)/2
.

Note that p · (log(1/p))k ≤ O(k)k for p ∈ (0, 1) and k ≥ 0, thus

p ·
√

log
(

1
p

)(
log
(

nℓ

p

))ℓ−1
= p ·

√
log
(

1
p

)(
ℓ log(n) + log

(
1
p

))ℓ−1

≤ O(1)ℓ ·
(√

(ℓ log(n))ℓ−1 + ℓℓ/2
)

= O(1)ℓ ·
√

1 + (ℓ log(n))ℓ−1. ◀

References
1 Scott Aaronson and Andris Ambainis. Forrelation: A problem that optimally separates

quantum from classical computing. SIAM J. Comput., 47(3):982–1038, 2018.
2 Nikhil Bansal and Makrand Sinha. k-forrelation optimally separates quantum and classical

query complexity. Electron. Colloquium Comput. Complex., 27:127, 2020.
3 Shalev Ben-David and Eric Blais. A tight composition theorem for the randomized query

complexity of partial functions: Extended abstract. In FOCS, pages 240–246. IEEE, 2020.
4 Eric Blais, Li-Yang Tan, and Andrew Wan. An inequality for the fourier spectrum of parity

decision trees. CoRR, abs/1506.01055, 2015.
5 Aline Bonami. Étude des coefficients de fourier des fonctions de lp(g). Annales de l’institut

Fourier, 20(2):335–402, 1970. URL: http://eudml.org/doc/74019.

http://eudml.org/doc/74019

U. Girish, A. Tal, and K. Wu 39:31

6 Joseph Briggs and Wesley Pegden. Extremal collections of k-uniform vectors. arXiv preprint,
2018. arXiv:1801.09609.

7 Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and Toniann Pitassi. Query-to-
communication lifting for BPP using inner product. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132
of LIPIcs, pages 35:1–35:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ICALP.2019.35.

8 Eshan Chattopadhyay, Jason Gaitonde, Chin Ho Lee, Shachar Lovett, and Abhishek Shetty.
Fractional pseudorandom generators from any fourier level. CoRR, abs/2008.01316, 2020.
arXiv:2008.01316.

9 Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudorandom
generators from polarizing random walks. Theory Comput., 15:1–26, 2019.

10 Eshan Chattopadhyay, Pooya Hatami, Shachar Lovett, and Avishay Tal. Pseudorandom
generators from the second fourier level and applications to AC0 with parity gates. In ITCS,
volume 124 of LIPIcs, pages 22:1–22:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

11 Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. Improved pseudor-
andomness for unordered branching programs through local monotonicity. In STOC, pages
363–375. ACM, 2018.

12 Gil Cohen, Noam Peri, and Amnon Ta-Shma. Expander random walks: A fourier-analytic
approach. Electron. Colloquium Comput. Complex., 27:163, 2020.

13 Gil Cohen and Igor Shinkar. The complexity of DNF of parities. In ITCS, pages 47–58. ACM,
2016.

14 Dmitry Gavinsky. Entangled simultaneity versus classical interactivity in communication
complexity. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of
Computing, STOC ’16, page 877–884, New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2897518.2897545.

15 Uma Girish, Ran Raz, and Avishay Tal. Quantum versus randomized communication complex-
ity, with efficient players. In ITCS, volume 185 of LIPIcs, pages 54:1–54:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

16 Uma Girish, Ran Raz, and Wei Zhan. Lower bounds for XOR of forrelations. Electron.
Colloquium Comput. Complex., 27:101, 2020.

17 Parikshit Gopalan, Rocco A. Servedio, Avishay Tal, and Avi Wigderson. Degree and sensitivity:
tails of two distributions. Electron. Colloquium Comput. Complex., 23:69, 2016.

18 Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of protocols for XOR functions.
SIAM J. Comput., 47(1):208–217, 2018.

19 Joshua Brown Kramer. On the most weight w vectors in a dimension k binary code. Electron.
J. Comb., 17(1), 2010.

20 Raghav Kulkarni, Youming Qiao, and Xiaoming Sun. On the power of parity queries in
boolean decision trees. In TAMC, volume 9076 of Lecture Notes in Computer Science, pages
99–109. Springer, 2015.

21 Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum.
SIAM J. Comput., 22(6):1331–1348, 1993.

22 Chin Ho Lee. Fourier bounds and pseudorandom generators for product tests. In Computational
Complexity Conference, volume 137 of LIPIcs, pages 7:1–7:25. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019.

23 Nikhil S. Mande and Swagato Sanyal. On parity decision trees for fourier-sparse boolean
functions. In FSTTCS, volume 182 of LIPIcs, pages 29:1–29:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

24 Yishay Mansour. An o(nˆ(log log n)) learning algorithm for DNF under the uniform distribution.
J. Comput. Syst. Sci., 50(3):543–550, 1995.

CCC 2021

http://arxiv.org/abs/1801.09609
https://doi.org/10.4230/LIPIcs.ICALP.2019.35
https://doi.org/10.4230/LIPIcs.ICALP.2019.35
http://arxiv.org/abs/2008.01316
https://doi.org/10.1145/2897518.2897545

39:32 Fourier Growth of Parity Decision Trees

25 Ashley Montanaro, Harumichi Nishimura, and Rudy Raymond. Unbounded-error quantum
query complexity. Theor. Comput. Sci., 412(35):4619–4628, 2011. doi:10.1016/j.tcs.2011
.04.043.

26 Ashley Montanaro and Tobias Osborne. On the communication complexity of XOR functions.
CoRR, abs/0909.3392, 2009. arXiv:0909.3392.

27 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993.

28 Ryan O’Donnell. Open problems in analysis of boolean functions. CoRR, abs/1204.6447, 2012.
arXiv:1204.6447.

29 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
30 Ryan O’Donnell and Rocco A. Servedio. Learning monotone decision trees in polynomial time.

SIAM J. Comput., 37(3):827–844, 2007.
31 Ryan O’Donnell, John Wright, Yu Zhao, Xiaorui Sun, and Li-Yang Tan. A composition

theorem for parity kill number. In Computational Complexity Conference, pages 144–154.
IEEE Computer Society, 2014.

32 Omer Reingold, Thomas Steinke, and Salil P. Vadhan. Pseudorandomness for regular branching
programs via fourier analysis. In APPROX-RANDOM, volume 8096 of Lecture Notes in
Computer Science, pages 655–670. Springer, 2013.

33 Swagato Sanyal. Fourier sparsity and dimension. Theory Comput., 15:1–13, 2019.
34 Alexander A. Sherstov, Andrey A. Storozhenko, and Pei Wu. An optimal separation of

randomized and quantum query complexity. Electron. Colloquium Comput. Complex., 27:128,
2020.

35 Amir Shpilka, Avishay Tal, and Ben lee Volk. On the structure of boolean functions with
small spectral norm. Comput. Complex., 26(1):229–273, 2017.

36 Avishay Tal. Tight bounds on the fourier spectrum of AC0. In Computational Complexity
Conference, volume 79 of LIPIcs, pages 15:1–15:31. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017.

37 Avishay Tal. Towards optimal separations between quantum and randomized query complexities.
In FOCS, pages 228–239. IEEE, 2020.

38 Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and Shengyu Zhang. Fourier sparsity, spectral
norm, and the log-rank conjecture. In FOCS, pages 658–667. IEEE Computer Society, 2013.

39 Zhiqiang Zhang and Yaoyun Shi. Communication complexities of symmetric XOR functions.
Quantum Inf. Comput., 9(3&4):255–263, 2009.

40 Zhiqiang Zhang and Yaoyun Shi. On the parity complexity measures of boolean functions.
Theor. Comput. Sci., 411(26-28):2612–2618, 2010.

A Proof of Corollary 8

▶ Corollary (Corollary 8 restated). Let T be a parity decision tree of size at most s > 1 on n

variables. Then,

∀ℓ ∈ [n] : L1,ℓ(f) ≤ (log(s))ℓ/2 ·O(ℓ · log(n))1.5ℓ.

Proof. We approximate T with error ε = 1/nℓ by another parity decision tree T ′ of depth
d = ⌈log

(
s · nℓ

)
⌉, where we simply replace all nodes of depth d in T with leaves that return

0. Since there are at most s nodes in T , the probability that a random input would reach
one of the nodes of depth d is at most 2−d · s ≤ 1/nℓ. Hence Prx [T (x) ̸= T ′(x)] ≤ ε. This
implies that

∣∣∣“T (S)− T̂ ′(S)
∣∣∣ ≤ ε for any subset S ⊆ [n]. Thus,

L1,ℓ(T) =
∑

S:|S|=ℓ

∣∣∣“T (S)
∣∣∣ ≤ ∑

S:|S|=ℓ

(∣∣∣T̂ ′(S)
∣∣∣+ ε

)
≤ L1,ℓ(T ′) + 1.

Since T ′ is of depth at most d = ⌈log(s) + ℓ · log(n)⌉ = O (log(s) · ℓ · log(n)), we obtain our
bound. ◀

https://doi.org/10.1016/j.tcs.2011.04.043
https://doi.org/10.1016/j.tcs.2011.04.043
http://arxiv.org/abs/0909.3392
http://arxiv.org/abs/1204.6447

U. Girish, A. Tal, and K. Wu 39:33

B Proof of Lemma 16

We will use the definition of sub-Gaussian random variables.

▶ Definition 43 (Sub-Gaussian random variables). We say a random variable x is ∆-sub-
Gaussian if E [et·x] ≤ et2∆2 holds for all t ∈ R.

Now we prove the following sub-Gaussian adaptive Azuma’s inequality.

▶ Lemma 44 (Sub-Gaussian adaptive Azuma’s inequality). Let X(0), . . . , X(D) be a martingale
with respect to a filtration

(
F (i))D

i=0
13 and ∆(1), . . . , ∆(D) be a sequence of magnitudes such

that X(0) = 0 and X(i) = X(i−1) + δ(i) for i ∈ [D], where if conditioning on F (i−1), δ(i) is a
∆(i)-sub-Gaussian random variable and ∆(i) is a fixed value.

If there exists some constant U ≥ 0 such that
∑D

i=1
∣∣∆(i)

∣∣2 ≤ U always holds, then for
any β ≥ 0 we have

Pr
[

max
i=0,1,...,D

∣∣∣X(i)
∣∣∣ ≥ β ·

√
2U

]
≤ 2 · e−β2/2.

Proof. The bound holds trivially when β = 0, hence we assume β > 0 from now on. We
construct another martingale “X(0), . . . , “X(D) as follows:“X(i) =

{
X(i) 0 ≤ i ≤ d,

X(d) i > d,
where d = min {D}∪

{
i ∈ {0, 1 . . . , D}

∣∣∣ ∣∣∣X(i)
∣∣∣ ≥ β ·

√
2U
}

.

We write δ̂(i) = “X(i) − “X(i−1), then δ̂(i) = δ(i) for all i ≤ d; and δ̂(i) ≡ 0 for all i > d. Let“∆(i) = ∆(i) for all i ≤ d; and “∆(i) ≡ 0 for all i > d. Thus δ̂(i) is “∆(i)-sub-Gaussian given
F (i−1); and

D∑
i=1

∣∣∣“∆(i)
∣∣∣2 =

d∑
i=1

∣∣∣∆(i)
∣∣∣2 ≤ U.

Moreover, we have

Pr
[

max
i=0,1,...,D

∣∣∣X(i)
∣∣∣ ≥ β ·

√
2U

]
= Pr

[∣∣∣“X(D)
∣∣∣ ≥ β ·

√
2U
]

.

Let t > 0 be a parameter and we bound E
[
et·X̂(D)

]
as follows

E
[
et·X̂(D)

]
= E

F(D−1)

[
et·X̂(D−1)

· E
F(D)

[
et·(X̂(D)−X̂(D−1))

∣∣∣F (D−1)
]]

(15)

= E
F(D−1)

[
et·X̂(D−1)

· E
F(D)

[
et·δ̂(D)

∣∣∣F (D−1)
]]

(16)

13 F(0) ⊆ F(1) ⊆ · · · ⊆ F (D) is an increasing sequence of σ-algebra where each F(i) makes X(0), . . . , X(i+1)

measurable and E
[
X(i)

∣∣F(i−1)
]

= X(i−1). Intuitively, the filtration is the history of the martingale.

CCC 2021

39:34 Fourier Growth of Parity Decision Trees

≤ E
F(D−1)

[
et·X̂(D−1)

· et2(“∆(D))2]
(since δ̂(D) is “∆(D)-sub-Gaussian)

≤ E
F(D−1)

[
et·X̂(D−1)

· et2
(

U−(“∆(1))2−···−(“∆(D−1))2)]
≤ E

F(D−2)

[
et·X̂(D−2)

· et2
(

U−(“∆(1))2−···−(“∆(D−1))2)
et2(“∆(D−1))2

]
(similar to (15) and (16))

= E
F(D−2)

[
et·X̂(D−2)

· et2
(

U−(“∆(1))2−···−(“∆(D−2))2)]
≤ · · · ≤ E

F(D−k)

[
et·X̂(D−k)

· et2
(

U−(“∆(1))2−···−(“∆(D−k))2)]
≤ · · ·

≤ et2U . (17)

Setting t = β/
√

2U implies that

Pr
[“X(D) ≥ β ·

√
2U
]
≤

E
[
et·X̂(D)

]
et·β·

√
2U

≤ et2U

eβ2 = e−β2/2.

Similarly we can show Pr
[“X(D) ≤ −β ·

√
2U
]
≤ e−β2/2, which completes the proof by a

union bound. ◀

For our applications, we need the following fact.

▶ Fact 45. Let x be a mean-zero random variable and assume |x| ≤ ∆ always holds. Then
x is ∆-sub-Gaussian.

Proof. Note that et·x is convex for all t ∈ R. By Jensen’s inequality, we have

E
[
et·x] ≤ 1

2
(
e−t∆ + et∆) =

+∞∑
i=0

(t∆)2i

(2i)! ≤
+∞∑
i=0

(t∆)2i

i! = et2∆2
. ◀

As a corollary of Lemma 44 and Fact 45, we obtain Lemma 16.

▶ Corollary (Lemma 16 restated). Let X(0), . . . , X(D) be a martingale and ∆(1), . . . , ∆(D)

be a sequence of magnitudes such that X(0) = 0 and X(i) = X(i−1) + ∆(i) · z(i) for i ∈ [D],
where if conditioning on z(1), . . . , z(i−1),
(1) z(i) is a mean-zero random variable and

∣∣z(i)
∣∣ ≤ 1 always holds;

(2) ∆(i) is a fixed value.
If there exists some constant U ≥ 0 such that

∑D
i=1
∣∣∆(i)

∣∣2 ≤ U always holds, then for any
β ≥ 0 we have

Pr
[

max
i=0,1,...,D

∣∣∣X(i)
∣∣∣ ≥ β ·

√
2U

]
≤ 2 · e−β2/2.

C Proof of Claim 35

▷ Claim (Claim 35 restated). Pr [E2] ≤ ε/3, where E2 is the following event: ∃T ∈
([n]

ℓ−t

)
, i, r, r′,

such that

∣∣∣Γ(i)
T (r, r′)

∣∣∣ ≥ (100 min
{

k, log
(

nℓ

ε

)}
·
(

nℓ

ε

) 6
k

) r+r′
2

· σT (r, r′, C(vi−1), i).

U. Girish, A. Tal, and K. Wu 39:35

Proof. Let k′ = min
{

k,
⌈
6 log

(
nℓ/ε

)⌉}
≤ 12 min

{
k, log

(
nℓ/ε

)}
. Then T is also a depth-D

2k′-clean parity decision tree. Observe that

Pr
[∣∣∣Γ(i)

T (r, r′)
∣∣∣ ≥ (4k′

η2/k′

)(r+r′)/2
· σT (r, r′, C(vi−1), i)

]

≤ max
C(vi−1)

Pr
[∣∣∣Γ(i)

T (r, r′)
∣∣∣ ≥ (4k′

η2/k′

)(r+r′)/2
· σT (r, r′, C(vi−1), i)

∣∣∣∣∣C(vi−1)
]

≤ (4 · k′)r+r′

(2 · (r + r′))k′︸ ︷︷ ︸
≤1

· η2− 2(r+r′)
k′︸ ︷︷ ︸

≤η

(due to the second bound in Lemma 15 and k ≥ 4 · ℓ ≥ 4 · (r + r′))
≤ η.

Thus by union bound over all T ∈
([n]

ℓ−t

)
, i ∈ [D′], r ∈ [t], 0 ≤ r′ ≤ t− r, we have

Pr
[
∃T, i, r, r′,

∣∣∣Γ(i)
T (r, r′)

∣∣∣ ≥ (4k
η2/k

)(r+r′)/2
· σT (r, r′, C(vi−1), i)

]
≤ Dt2nℓ−t · η ≤ n3·ℓ·η

3 ,

where we use the fact n ≥ max {D, 3 · t} and t ≥ 1. By setting η = ε/n3·ℓ, we have

4k′

η2/k′ = 4k′
(

n3·ℓ

ε

) 2
k′

≤ 4k′
(

nℓ

ε

) 6
k′

≤ 4 · 12 min
{

k, log
(

nℓ

ε

)}
· 2
(

nℓ

ε

) 6
k

,

as desired. ◁

D Proof of Claim 37

We first need the following simple bound on M .

▶ Lemma 46. For any integer s ≥ 1, we have

t∑
r=s

M(D, d, k, ℓ, t− r, ε) ≤ 2 ·M(D, d, k, ℓ, t, ε)
(τD · log (nℓ/ε))s/2 .

Proof. We simply expand the formula of M as follows:∑t
r=s M(D, d, k, ℓ, t− r, ε)

M(D, d, k, ℓ, t, ε) =
t∑

r=s

(
τ · (D + dk) ·

(
nℓ

ε

)6/k

log
(

nℓ

ε

))−r/2

≤
+∞∑
r=s

(
τ · (D + dk) ·

(
nℓ

ε

)6/k

log
(

nℓ

ε

))−r/2

≤ 2 ·
(

τ · (D + dk) ·
(

nℓ

ε

)6/k

log
(

nℓ

ε

))−s/2

(due to τ ≥ 4 and s ≥ 1)

≤ 2 ·
(
τD · log

(
nℓ/ε

))−s/2
. ◀

Now we prove Claim 37.

CCC 2021

39:36 Fourier Growth of Parity Decision Trees

▷ Claim (Claim 37 restated). When E1 ∨ E2 does not happen,
∑D

i=1

∣∣∣µ(i)
T

∣∣∣ ≤ R and∑D
i=1

∣∣∣δ(i)
T

∣∣∣2 ≤ R2 hold for all T ∈
([n]

ℓ−t

)
, where

R = M(D, d, k, ℓ, t, ε)
5 ·
√

log (nℓ/ε)
.

Proof. We verify for each T ∈
([n]

ℓ−t

)
as follows:

D∑
i=1

∣∣∣µ(i)
T

∣∣∣
=

D′∑
i=1

∣∣∣µ(i)
T

∣∣∣ ≤ D′∑
i=1

t∑
r=2,
even

|A(T, r, i)| (due to (8))

≤
D′∑
i=1

t∑
r=2,
even

(
M(D, d, k, ℓ, t− r, ε) + M(D,d,k,ℓ,t,ε)√

log(nℓ/ε)
·
√(800

τ

)r
(

|J(vi−1)|
2d

)r

· 1|J(vi−1)|>1

)
(due to (10))

≤
D′∑
i=1

t∑
r=2,
even

(
M(D, d, k, ℓ, t− r, ε) + M(D,d,k,ℓ,t,ε)√

log(nℓ/ε)
·
(

|J(vi−1)|
2d

) (800
τ

)r/2 · 1|J(vi−1)|>1

)
(Since |J(vi−1)| ≤ 2d from Corollary 26)

≤ 2·M(D,d,k,ℓ,t,ε)
τ ·log(nℓ/ε) + 1.1·800·M(D,d,k,ℓ,t,ε)

τ ·
√

log(nℓ/ε)

(due to Lemma 46 and Corollary 26 and τ = 104)

≤ M(D,d,k,ℓ,t,ε)
5·
√

log(nℓ/ε)
= R

and with similar calculation, we have

D∑
i=1

∣∣∣δ(i)
T

∣∣∣2

≤
D′∑
i=1

 t∑
r=1,
odd

(
M(D, d, k, ℓ, t− r, ε) + M(D,d,k,ℓ,t,ε)√

log(nℓ/ε)
·
√

|J(vi−1)|
2d

(800
τ

)r/2 · 1|J(vi−1)|>1

)
2

≤
D′∑
i=1

(
2·M(D,d,k,ℓ,t,ε)√

τD·log(nℓ/ε)
+ 1.1·

√
800·M(D,d,k,ℓ,t,ε)

√
τ
√

log(nℓ/ε)
·
√

|J(vi−1)|
2d · 1|J(vi−1)|>1

)2

(due to τ = 104)

≤
(

M(D,d,k,ℓ,t,ε)√
log(nℓ/ε)

)2 D′∑
i=1

2 ·
(

4
τD

+ 968
τ ·

|J(vi−1)|
2d · 1|J(vi−1)|>1

)
(due to (a + b)2 ≤ 2(a2 + b2))

≤
(

2000·M(D,d,k,ℓ,t,ε)
τ ·
√

log(nℓ/ε)

)2
= R2. ◁

The Power of Negative Reasoning
Susanna F. de Rezende #

Institute of Mathematics of the Czech Academy of Sciences, Prague, Czech Republic

Massimo Lauria #

Sapienza Università di Roma, Italy

Jakob Nordström #

University of Copenhagen, Denmark
Lund University, Sweden

Dmitry Sokolov #

St. Petersburg State University, Russia
PDMI RAS, St. Petersburg, Russia

Abstract
Semialgebraic proof systems have been studied extensively in proof complexity since the late 1990s
to understand the power of Gröbner basis computations, linear and semidefinite programming
hierarchies, and other methods. Such proof systems are defined alternately with only the original
variables of the problem and with special formal variables for positive and negative literals, but there
seems to have been no study how these different definitions affect the power of the proof systems.
We show for Nullstellensatz, polynomial calculus, Sherali-Adams, and sums-of-squares that adding
formal variables for negative literals makes the proof systems exponentially stronger, with respect
to the number of terms in the proofs. These separations are witnessed by CNF formulas that are
easy for resolution, which establishes that polynomial calculus, Sherali-Adams, and sums-of-squares
cannot efficiently simulate resolution without having access to variables for negative literals.

2012 ACM Subject Classification Theory of computation → Proof complexity; Computing method-
ologies → Representation of polynomials

Keywords and phrases Proof complexity, Polynomial calculus, Nullstellensatz, Sums-of-squares,
Sherali-Adams

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.40

Funding Susanna F. de Rezende was supported by Knut and Alice Wallenberg grant KAW 2018.0371.
Jakob Nordström received funding from the Swedish Research Council grant 2016-00782 and the
Independent Research Fund Denmark grant 9040-00389B. Part of this work was carried out while
visiting the Simons Institute for the Theory of Computing.

Acknowledgements We thank Or Meir for fruitful discussions and the anonymous reviewers for
comments on the presentation.

1 Introduction

Given a set of polynomial equalities

pj = 0 j ∈ [m] (1)
and/or inequalities

rj ≥ 0 j ∈ [ℓ] (2)

in some field F (which should be ordered if ℓ > 0), the problem of determining whether
there exists solutions satisfying all constraints is a natural and well-known NP-hard problem.
If one includes among the equalities (1) also equations x2

i − xi = 0 for all variables xi,
then this setting can also be used to decide satisfiability of formulas in conjunctive normal

© Susanna F. de Rezende, Massimo Lauria, Jakob Nordström, and
Dmitry Sokolov;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 40; pp. 40:1–40:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rezende@math.cas.cz
mailto:massimo.lauria@uniroma1.it
mailto:jn@di.ku.dk
mailto:sokolov.dmt@gmail.com
https://doi.org/10.4230/LIPIcs.CCC.2021.40
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 The Power of Negative Reasoning

form (CNF). This is done by identifying 1 with true and 0 with false and then translating
disjunctive clauses like x1 ∨ x2 ∨ xk into equalities (1 − x1)x2(1 − x3) = 0 or inequalities
x1 + (1 − x2) + x3 ≥ 1 (using the multiplicative or additive translation, respectively).

For polynomial equalities as in (1), it follows from (a mild extension of) Hilbert’s
Nullstellensatz that there is no solution if and only if there are polynomials qj such that the
syntactic equality∑

j∈[m]

qjpj = 1 (3)

holds. Such Nullstellensatz certificates can be viewed as proof system in the sense of Cook
and Reckhow [15], and the study of this Nullstellensatz proof system was initiated in [7]. In
the polynomial calculus proof system introduced in [14] such certificates can be constructed
step by step by explicitly deriving polynomials in the ideal generated by { pj | j ∈ [m]}.
This can be seen to correspond to Gröbner basis computations, which can potentially yield
more concise certificates of unsatisfiability. When there are also inequalities (2), linear
combinations of polynomial products∑

j∈[m]

qjpj +
∑
j∈[ℓ]

sjrj = −1 (4)

for sj ≥ 0 with different syntactic restrictions yield proof systems such as Sherali-Adams [38]
and sums-of-squares (SOS) [30, 25], corresponding to linear and semidefinite programming
hierarchies.

By now there is a rich literature on upper and lower bounds for these proof systems. An
excellent general reference on proof complexity is [28]. For more details on Nullstellensatz
and polynomial calculus the reader can consult [13] and the references therein, and a recent
survey covering Sherali-Adams and sums-of-squares is [21].

1.1 Encoding of Variables and Literals
One slightly annoying aspect when translating CNF formulas to the algebraic setting described
above is that the translation is quite sensitive to the signs of the literals in clauses. Normally,
polynomials are represented as linear combinations of monomials, which means that a clause

x1 ∨ x2 ∨ · · · ∨ x3 (5a)

with k positive literals turns into a polynomial equation

k∏
i=1

(1 − xi) = 0 (5b)

with 2k monomials if we use the multiplicative translation. This problem does not immediately
arise for the additive translation, but it is still conceivable that it could be helpful to encode
polynomials of the form (5b) more concisely.

This problem was perhaps first addressed in [1], where a version of polynomial calculus
was defined with separate formal variables xi for negative literals, together with equations
xi + xi − 1 = 0 enforcing the intended meaning of negation. This proof system was called
polynomial calculus with resolution, or PCR for short, in [1], since the introduction of negative
literals can be seen to allow polynomial calculus to simulate the resolution proof system
efficiently, but in this paper we will refer to this flavour of the proof system as polynomial

S. F. de Rezende, M. Lauria, J. Nordström, and D. Sokolov 40:3

calculus with negative literals (as opposed to polynomial calculus without negative literals).
When the proof system has access to separate variables for positive and negative literals,
this ensures that lower bounds do not depend on the choice of signs for literals encoding
the input, but reflect more intrinsic properties of the problem under study. As far as we
are aware, essentially all lower bounds for polynomial calculus holds even when negative
literals are allowed (with the exception of some of the lower bounds in [20]), and to the best
of our knowledge there are no polynomial calculus upper bounds that are known to hold
only for polynomial calculus with negative literals and not for polynomial calculus without
them. Papers such as [5, 31, 11, 4] have studied the Sherali-Adams and sums-of-squares
proof systems both with and without variables for negative literals, but again without really
distinguishing between the two versions of the proof system thus obtained.

The purpose of this work is to understand if and how the introduction of formal variables
for negative literals affect the power of reasoning of (semi)algebraic proof systems. This is
arguably quite a natural question, and we find it somewhat surprising that nothing seems to
be known regarding how the two variants of these (semi)algebraic proof systems are related.

Somewhat intriguingly, this does not seem to be just a theoretical concern. For, e.g.,
Gröbner basis computations, one could expect that this whole question should be irrelevant,
since the basis reduction algorithm will immediately remove whichever literal over a given
variable that comes later in the order. This appears not to be the case, however, and papers
such as [36, 27] use “bit-flipping” (i.e., the introduction of formal variables for negated literals)
to try to avoid blow-ups in polynomial size during hardware circuit verification.

1.2 Our Results
We show that for all of the proof systems Nullstellensatz, polynomial calculus, Sherali-Adams,
and sums-of-squares, adding separate formal variables for negative literals results in an
exponential increase in power. Our main results can be summarized as follows (where we
refer to Section 2 for the missing formal definitions).

▶ Theorem 1. Let P be any of the proof systems Nullstellensatz or polynomial calculus (over
any field), or Sherali-Adams or sums-of-squares. Then there is a family of CNF formulas
{Fn}∞

n=1 of size polynomial in n such that the proof system P has polynomial size refutations
of Fn that use formal variables for negative literals, whereas P refutations of Fn requires
exponential size when such formal variables are not allowed.

We remark that, except for sums-of-squares, the separating formulas above are CNFs
of constant width. It is known from [1, 5] that polynomial calculus, Sherali-Adams, and
sums-of-squares over literals can simulate the resolution proof system efficiently. Since the
formulas in Theorem 1 are all easy for resolution, it follows that negative literals are necessary
for the simulation.

▶ Corollary 2. None of the proof systems polynomial calculus, Sherali-Adams, or sums-of-
squares can polynomially simulate resolution, unless formal variables for negative literals are
allowed.

For Nullstellensatz and polynomial calculus we also give some more refined separation
results involving size-degree trade-offs and space-degree trade-offs.

1.3 Outline of This Paper
In Section 2 we review the relevant preliminaries. In Section 3 we establish our separation
results for polynomial calculus. Analogous results for Sherali-Adams and sums-of-squares
are obtained in Section 4, and the separation for Sherali-Adams is sharpened somewhat in
Section 5. Our results for Nullstellensatz are presented in Section 6.

CCC 2021

40:4 The Power of Negative Reasoning

2 Preliminaries

We encode propositional variables as algebraic variables with {0, 1} values, with the intended
meaning that 1 represents true and 0 represents false. For each variable x we consider a
corresponding variable x that represents the logical negation of x, i.e., it holds that x = 1 − x.
We say that x is a positive literal and x is a negative literal . A (partial) boolean assignment ρ

is a mapping from some algebraic variables to {0, 1}, with the constraint that x ∈ dom(ρ)
if and only if x ∈ dom(ρ) and that in such case ρ(x) = 1 − ρ(x). Given a polynomial p the
restriction of p by ρ, denoted as p↾ρ, is the polynomial obtained from p by substituting in it
all variables x ∈ dom(ρ) with the corresponding value ρ(x). Given a set of polynomials S we
denote as S↾ρ the set of restricted polynomials. A random restriction is a distribution over
partial boolean assignments. A polynomial is multilinear if no variable appears with degree
larger than one and no monomial contains two opposite literals.

For a set S = {p1 = 0, . . . , pm = 0; r1 ≥ 0, . . . , rℓ ≥ 0} of polynomial equations and
inequalities we say that a boolean assignment satisfies S if it satisfies all the equations and
inequalities in it. We say that S implies an equation p = 0 when every boolean assignment
which satisfies S also satisfies p = 0. In the same way S implies an inequality r ≥ 0 when
every boolean assignment which satisfies S also satisfies r ≥ 0. We now discuss encodings of
a clause

x1 ∨ · · · ∨ xj ∨ ¬xj+1 ∨ · · · ∨ ¬xk (6a)
into polynomial constraints

(1 − x1) · · · (1 − xj) · xj+1 · · · xk = 0 , (6b)
x1 · · · xj · xj+1 · · · xk = 0 , and (6c)
x1 + · · · + xj + (1 − xj+1) + · · · + (1 − xk) ≥ 1 . (6d)

A clause (6a) is naturally encoded as the polynomial equation (6b), which has 2j monomials
of degree up to k. Using negative literals we get the more efficient encoding (6c) which has a
single monomial. We would like to stress that (6b) and (6c) are algebraic representations of
the same boolean function, even though they are syntactically different. For semi-algebraic
proofs, clauses are naturally represented as inequalities (6d).

We now define all proof systems discussed in this paper.

Resolution. We first introduce some basic notation. We denote the negation of a variable
x by ¬x or x. The width of a clause C is the number of literals in C. A CNF formula is a
conjunction of clauses and a width-k CNF formula, or simply a k-CNF formula, is a CNF
formula where every clause has width at most k. A resolution proof from a CNF formula F

of a clause C is a sequence of clauses (C1, . . . , Cτ) such that Cτ = C and, for each i ∈ [τ],
Ci is either a clause of F , or is some clause Cj ∨ D obtained by weakening a clause Cj , for
some j < i, or is derived from Cj and Cj′ , for some j, j′ < i by applying the resolution rule

B ∨ x D ∨ ¬x
B ∨ D

, (7)

where Cj = B ∨ x, Cj′ = D ∨ ¬x, and Ci = B ∨ D. When applying rule (7), we say
that we resolve on x. The size/length of a resolution proof (C1, . . . , Cτ) is τ and its width
is the maximum width of any clause in the proof. A resolution refutation (i.e., proof of
unsatisfiability) of F is a proof of the empty clause ⊥ from it.

S. F. de Rezende, M. Lauria, J. Nordström, and D. Sokolov 40:5

A resolution proof (C1, . . . , Cτ) can also be viewed as a DAG, with nodes [τ] and, for all
i, j ∈ [τ], a directed edge from j to i if Cj was used to derive Ci. The depth of a proof is the
length of the longest directed path in the underlying DAG. If the DAG is a tree the proof is
tree-like.

The following (semi-)algebraic proof systems reason about polynomial equations and/or
inequalities over {0, 1}, expressed in term of variables representing positive and negative
literals. To deal with CNF formulas we use the encodings (6), plus appropriate axioms
enforcing boolean values.

Nullstellensatz. Consider an initial set of polynomial equations S = {p1 = 0, . . . , pm =
0} over a field F and over variables x1, . . . , xn, x1, . . . , xn, where we require the set S to
include variable axioms x2

i − xi = 0, x2
i − xi = 0 and xi + xi − 1 = 0 for each i ∈ [n].

A Nullstellensatz (NS) proof of p = 0 from S is a set of polynomials {q1, . . . , qm} in
F[x1, . . . , xn, x1, . . . , xn] such that∑

j∈[m]

qjpj = p , (8)

where we stress that the equality is syntactical. Since all polynomials in S are zero by
hypothesis, the proof is sound. The (monomial) size of any such proof is the sum over
j ∈ [m] of the number of monomials occurring in each polynomial qjpj , when expanded out
as a linear combination of monomials. The degree of any such proof is the maximum degree
among all qjpj for j ∈ [m]. A refutation of S is a proof of the equation 1 = 0. A refutation
of a CNF formula F in NS is a refutation of a set S of polynomials containing the variable
axioms specified above plus the clauses of F encoded as in (6b), unless a different encoding
is specified.

▶ Proposition 3 (NS with negative literals simulates tree-like resolution). Let F be an unsat-
isfiable CNF formula that has a tree-like resolution refutation of F in size s and depth d.
Then the set of polynomial equations obtained by encoding each clause of F as in (6c) has an
NS refutation with negative literals in size 2s − 1 and degree d.

Polynomial calculus. As was the case for Nullstellensatz, we consider an initial set
of polynomial equations S = {p1 = 0, . . . , pm = 0} over a field F and over variables
x1, . . . , xn, x1, . . . , xn, and we require that S include variable axioms x2

i − xi = 0, x2
i − xi = 0

and xi + xi − 1 = 0 for each i ∈ [n]. A polynomial calculus (PC) proof of p = 0 from S is
a sequence of polynomials (q1, q2, . . . , qτ) in F[x1, . . . , xn, x1, . . . , xn] such that qτ = p and
each qt for 1 ≤ t ≤ τ is either

some polynomial pj with pj = 0 ∈ S;
a linear combination αqt1 + βqt2 for some α, β ∈ F and 1 ≤ t1, t2 < t;
a multiplication x · qt′ for some t′ < t and variable x = xi or x = xi.

When the equations in S are satisfied, all derived polynomials, p in particular, are zero.
The (monomial) size of such a proof is the sum over 1 ≤ t ≤ τ of the number of monomials
occurring in each polynomial qt, when written as a sum of monomials. The degree of such
a proof is the maximum degree among all qt for 1 ≤ t ≤ τ . A refutation of S is a proof of
1 = 0. A refutation of a CNF formula F in PC is a refutation of a set S of polynomials
containing the variable axioms specified above plus the clauses of F encoded as in (6b),
unless a different encoding is specified. It is a simple observation that when dealing with
CNF formulas of constant width, it is possible to efficiently deduce the representation (6b)
from the representation (6c) and vice versa.

We stress that all results proved here for NS and PC hold independently of the field F.

CCC 2021

40:6 The Power of Negative Reasoning

Sherali-Adams. We consider an initial set of polynomial equations and inequalities S =
{p1 = 0, . . . , pm = 0; r1 ≥ 0, . . . , rℓ ≥ 0} over the real field and over variables x1, . . . , xn, and
we require that the set S include, for each i ∈ [n], variable axioms x2

i − xi = 0, x2
i − xi = 0,

xi + xi − 1 = 0, xi ≥ 0, xi ≥ 0, 1 − xi ≥ 0, and 1 − xi ≥ 0. We also assume that S includes
the axiom 1 ≥ 0. We refer to an arbitrary product of factors of the form xi, xi, 1 − xi, 1 − xi

as a generalized monomial .1 A Sherali-Adams (SA) proof/derivation of r ≥ 0 from S is a set
of polynomials {q1, . . . , qm; s1, . . . , sℓ} such that∑

j∈[m]

qjpj +
∑
j∈[ℓ]

sjrj = r , (9)

where each sj is a positive linear combination of generalized monomials. That is, sj can be
written as sj =

∑
i αj,ihj,i for some αj,i’s that are positive real numbers and hj,i’s that are

generalized monomials. Under the assumption that all polynomial equations and inequalities
in S are satisfied, the addends qjpj are equal to zero and the addends sjrj are nonnegative;
hence r ≥ 0.

The (monomial) size of an SA proof is the sum over j ∈ [m] and j ∈ [ℓ] of the number of
monomials occurring in each summand in (9), when written as a sum of monomials. The
degree of an SA proof is the maximum degree among all qjpj for j ∈ [m] and all sjrj for
j ∈ [ℓ]. An SA refutation of S is an SA proof of −1 ≥ 0. A refutation of a CNF formula F in
SA is a refutation of a set S of polynomials containing the variable axioms specified above
plus the clauses of F encoded as in (6d), unless a different encoding is specified.

Sums-of-squares. As was the case for Sherali-Adams, we consider an initial set of polynomial
equations and inequalities S = {p1 = 0, . . . , pm = 0; r1 ≥ 0, . . . , rℓ ≥ 0} over the real field
and over variables x1, . . . , xn, and we require that S include, for each i ∈ [n], variable axioms
x2

i − xi = 0, x2
i − xi = 0, xi + xi − 1 = 0, xi ≥ 0, xi ≥ 0, 1 − xi ≥ 0, and 1 − xi ≥ 0, and

also the axiom 1 ≥ 0. A sum of squares (SOS) proof of r ≥ 0 from S is a set of polynomials
{q1, . . . , qm; s1, . . . , sℓ} in F[x1, . . . , xn, x1, . . . , xn] such that∑

j∈[m]

qjpj +
∑
j∈[ℓ]

sjrj = r , (10)

where each sj is a positive linear combination of squared polynomials, that is, sj can be
written as sj =

∑
i αj,ih

2
j,i for some αj,i’s that are positive real numbers and hj,i’s that are

polynomials. Under the assumption that all polynomial equations and inequalities in S are
satisfied, the summands qjpj are equal to zero and the summands sjrj are nonnegative;
hence, r ≥ 0.

The (monomial) size of an SOS proof is the sum over j ∈ [m] and j ∈ [ℓ] of the number
of monomials occurring in each summand in (10), when written as a sum of monomials. The
degree of an SOS proof is the maximum degree among all qjpj for j ∈ [m] and all sjrj for
j ∈ [ℓ]. An SOS refutation of S is an SOS proof of −1 ≥ 0. A refutation of a CNF formula
F in SOS is a refutation of a set S of polynomials containing the variable axioms specified
above plus the clauses of F encoded as in (6d), unless a different encoding is specified.

For the rest of the paper we say a proof in either NS, PC, SA, or SOS is without negative
literals if none of the variables x1, . . . , xn occur in any of the polynomials occurring in the
proof. Otherwise we say that the proof is with negative literals.

1 For instance (1 − x2)x3x4x5(1 − x9) is a generalized monomial. It is positive under the assumption that
all variables are between 0 and 1.

S. F. de Rezende, M. Lauria, J. Nordström, and D. Sokolov 40:7

▶ Proposition 4. Consider a CNF formula F with a resolution refutation of length L and
width w. It holds that

the clauses of F , encoded as in (6c), have a PC refutation with negative literals of size
O(L) and degree w + 1;
when F is a k-CNF formula with m clauses, its representation using encoding (6b) has a
PC refutation with negative literals of size O(2km + L) and degree w + 1;
the clauses of F , represented using encoding (6b), have a PC refutation without negative
literals of size O(2wL) and degree w + 1.

▶ Proposition 5 ([11]). Let S := {p1 = 0, . . . , pm = 0; r1 ≥ 0, . . . , rℓ ≥ 0} be a set of
polynomial equations and inequalities. If S has a Sherali-Adams refutation of degree d and
size N , then it has a sums-of-squares refutation of degree d + 1 and size N c for some c > 0.

The next lemma is a fundamental tool for the results in the next section.

▶ Lemma 6. Let S be a set of monomials over (positive) variables y1, . . . , yn and z1, . . . , zn.
There is a restriction ρ that for all i ∈ [n] sets exactly one of {yi, zi} to 0 and is such that
S↾ρ has degree at most log|S|.

Proof. We consider a random restriction ρ that for each i, chooses either yi or zi with
probability 1/2 and sets it to 0. Note that a monomial of degree d is set to 0 by ρ with
probability at least 1 − (1/2)d. Indeed, if the monomial contains both yi and zi for some
i ∈ [n], then it is set to 0 with probability 1; otherwise every variable is set to 0 independently
with probability 1/2 and thus the monomials is not set to 0 with probability (1/2)d. Therefore,
by union bound over all monomials in S we have that

Pr[S↾ρ has a monomial of degree > log|S|] ≤ |S| · (1/2)log|S|+1 < 1 . (11)

We conclude that there is some restriction ρ such that S↾ρ has degree at most log|S|. ◀

3 Negative literals and polynomial calculus

The main goal of this section is to exhibit a formula that has short refutations in resolution
but requires exponential size refutations in PC without negative literals. In particular, this
implies that not using negative literals can lead to an exponential blow-up in the size of
refutations. The starting point is the graph ordering principle, a formula introduced in [37]
that falsely claims that it is possible to partially order vertices of some finite graph such that
each vertex has at least one neighbour that is smaller (according to the ordering) than itself.

Consider a finite undirected graph G = (V, E). The graph ordering principle on G,
denoted as GOP(G), is a CNF formula defined on propositional variables xu,v for every two
distinct u, v ∈ V , with the intended meaning that xu,v is true when u is smaller than v in
the partial order. The clauses of GOP(G) are

xu,v ∨ xv,w ∨ xu,w for every three distinct u, v, w ∈ V , (12a)
xu,v ∨ xv,u for every two distinct u, v ∈ V , (12b)∨
u : {u,v}∈E

xu,v for every v ∈ V . (12c)

The graph ordering principle is a generalization of the ordering principle, considered for
the first time in [29]. The latter principle falsely claims that it is possible to partially order
a set of n element so that no element is minimal. The ordering principle, expressed as a

CCC 2021

40:8 The Power of Negative Reasoning

CNF formula, is often denoted by OPn, and is exactly the formula GOP(Kn), where Kn is
the complete graph over n vertices. Proposition 7 claims an upper bound that holds for any
graph, even the complete one. The degree lower bound in Proposition 8, however, holds only
for specific families of expander graphs.

▶ Proposition 7 ([39]). Given any graph G with n vertices and maximum degree d, the
formula GOP(G) is a d-CNF formula with Θ(n2) variables and Θ(n3) clauses. Furthermore,
GOP(G) has a resolution refutation of length Θ(n3) where every clause in the refutation
contains at most two negative literals.

▶ Proposition 8 ([23]). There exists a sequence of graphs {Gn}n such that each Gn has
Θ(n) vertices and constant maximum degree d, and any PC refutation of GOP(Gn) requires
polynomials of degree Ω(n).

The degree lower bound implies, in particular, that any resolution refutation of GOP(Gn)
must have width Ω(n) (due to Proposition 4). Given the resolution upper bound in Proposi-
tion 7, the simulation of resolution in Proposition 4 gives a small PC refutation of GOP(Gn)
only when using with negative literals. This suggests that negative literals are essential to
obtain small refutations of GOP(Gn). Is this really the case? A positive answer would give
us the separation we are looking for, but unfortunately we are not able to prove a size lower
bound for refuting GOP(Gn) in PC without negative literals. Instead, we compose GOP(Gn)
with the 2-bit OR function, thus obtaining a new formula that will remain easy for resolution
but will be provably hard for PC without negative literals.

Let us make this construction explicit. We denote by GOPOR(G) the CNF formula
obtained from GOP(G) by substituting each variable xu,v in GOP(G) by the disjunction of
two fresh variables, yu,v ∨ zu,v. In order to obtain a CNF formula, after the substitution
we must apply distributivity. This process transforms a clause of width k, with j negative
literals and k − j positive literals, into a set of 2j clauses with j negative literals and 2(k − j)
positive literals. For example, see how the substitution transforms this clause with 2 negative
literals

xu1,v1 ∨ xu2,v2 ∨ xu3,v3 ∨ xu4,v4 ∨ . . . ∨ xuk,vk
, (13)

into four clauses

yu1,v1 ∨ yu2,v2 ∨ yu3,v3 ∨ zu3,v3 ∨ yu4,v4 ∨ zu4,v4 ∨ . . . ∨ yuk,vk
∨ zuk,vk

(14a)
yu1,v1 ∨ zu2,v2 ∨ yu3,v3 ∨ zu3,v3 ∨ yu4,v4 ∨ zu4,v4 ∨ . . . ∨ yuk,vk

∨ zuk,vk
(14b)

zu1,v1 ∨ yu2,v2 ∨ yu3,v3 ∨ zu3,v3 ∨ yu4,v4 ∨ zu4,v4 ∨ . . . ∨ yuk,vk
∨ zuk,vk

(14c)
zu1,v1 ∨ zu2,v2 ∨ yu3,v3 ∨ zu3,v3 ∨ yu4,v4 ∨ zu4,v4 ∨ . . . ∨ yuk,vk

∨ zuk,vk
. (14d)

This transformation has not increased the size of the formula by much: GOPOR(G) has
Θ(n2) variables, Θ(n3) clauses, and the maximum width of its clauses is at most 2 times the
maximum width of a clause in GOP(G). Moreover, GOPOR(G) still admits short resolution
refutations.

▶ Lemma 9. For every graph G with n vertices, the formula GOPOR(G) has a resolution
refutation of length Θ(n3) where every clause in the refutations contains at most two negative
literals.

S. F. de Rezende, M. Lauria, J. Nordström, and D. Sokolov 40:9

Proof. The idea is to use the resolution refutation of GOP(G) from Proposition 7 as a
scheme for the refutation of GOPOR(G). Let C1, C2, . . . , Cτ be the sequence of clauses in
this refutation. For each Ci we consider the set Ci of at most four clauses that we get by
applying substitution (14) to it. Every clause in Ci has the same number of negative literals
as Ci, and that is at most two.

We show how to derive each Ci from GOPOR(G) by induction on i, assuming all previous
set Cj for j < i have already been derived. Furthermore, we show that each such derivation
takes a constant number of resolution steps.

If Ci is an initial clause of GOP(Gn) then all clauses of Ci are in GOPOR(G) by construction.
If Ci follows from Cj for some j < i by weakening, then each clause of Ci is a superset of some
clause in Cj and thus follows from it by weakening. The remaining case is when Ci is derived
by a resolution step from two previous clauses Cj and Ck. Without loss of generality, we
rewrite clause Cj as A ∨ xu,v, clause Ck as B ∨ xu,v, and clause Ci as A ∨ B. The structure
of sets Cj and Ck is as follows,

Cj : Ck :
A1 ∨ yu,v ∨ zu,v yu,v ∨ B1

A2 ∨ yu,v ∨ zu,v yu,v ∨ B2

A3 ∨ yu,v ∨ zu,v zu,v ∨ B1

A4 ∨ yu,v ∨ zu,v zu,v ∨ B2 ,

where A1, A2, A3, A4 and B1, B2 are the result of applying the substitution to A and B

respectively. These clauses may contain repetitions: if A does not contain negative literals
then A1, . . . , A4 are all the same. If A contains one negative literal then we get two clauses
repeated twice each. If A contains two negative literals then they are all different. Similarly
for B: if it contains no negative literals then B1 is equal to B2, otherwise it contains one
negative literal and B1 is different from B2. B cannot contain two negative literals.

By resolving on both variables yu,v and zu,v we obtain clauses Aµ ∨ Bν for µ ∈ {1, 2, 3, 4}
and ν ∈ {1, 2}. We can exclude the possibility that A contains two negative literals and
simultaneously B contains one, because otherwise A ∨ B would have three negative literals.
Therefore, the set of newly derived clauses has size at most four and is indeed the sequence
of clauses obtained by applying the substitution to A ∨ B. This concludes the induction and
gives us a refutation of GOPOR(G) since Cτ is the empty clause and, therefore, Cτ is the set
containing only the empty clause. ◀

▶ Lemma 10. There exists a sequence of graphs {Gn}n such that each Gn has Θ(n) vertices
and constant degree d, and any PC refutation of GOPOR(Gn) without negative literals requires
monomial size 2Ω(n).

Proof. Let {Gn}n be the sequence of graphs given by Proposition 8. Let P be a refutation
of GOPOR(Gn) in monomial size s. By Lemma 6, there is a restriction ρ that sets exactly
one of {yu,v, zu,v} to 0 and is such that all monomials in P↾ρ have degree at most log s. Note
that the formula GOPOR(Gn)↾ρ is an isomorphic copy GOP(Gn), where each variable xu,v

has been renamed either to yu,v or to zu,v, and thus, by Proposition 8, it requires refutations
of degree Ω(n). Since P↾ρ is a PC refutation of GOPOR(Gn)↾ρ, we conclude that log s ≥ Ω(n)
and the lemma follows. ◀

We collect the two lemmas in the following theorem.

CCC 2021

40:10 The Power of Negative Reasoning

▶ Theorem 11. There is a family of constant width CNF formulas {Fn}n of size Θ(n3) such
that Fn has a resolution refutation of length Θ(n3), but any PC refutation of Fn with no
negative literals must contain 2Ω(n) monomials.

▶ Remark 12. It is legitimate to ask whether the result holds when we reverse the encoding
of true and false and adopt the classic standard for PC literature, where 0 is true and 1 is
false. In this case, GOPOR(Gn) becomes easy for PC, but nevertheless we can get the same
separation by simply flipping the polarity of all literals in GOPOR(Gn), i.e., by substituting
each xu,v with yu,v ∨ zu,v instead of yu,v ∨ zu,v, and then changing the random restriction to
assign to true the variable chosen from each pair. Since in this case true is 0, monomials of
large degree will be set to zero with overwhelmingly high probability.

We end this section by presenting a family of formulas that have small size, small space
refutations in resolution – and, therefore, also in PC with negative literals – but exhibit a
strong size-space trade-off for PC without negative literals. To define the space of a refutation,
we think of it as a proof being presented on a blackboard. At each step we can either write
down an axiom of the formula being refuted or a new clause obtained by one of the derivation
rules of the proof system applied to what is already on the blackboard, or we can erase a line
from the blackboard. The resolution space of the refutation is then the maximum number of
clauses on the blackboard at any given moment, and the PC space of the refutation is the
maximum number of monomials on the blackboard at any given moment.

▶ Theorem 13. There exists a family of constant-width CNF formulas {Fn}n∈N of size Θ(n)
such that:
1. there is a resolution refutation of Fn in size O(n) and space O(1); but
2. any PC refutation without negative literals of Fn in monomial size t and space s must

satisfy s log t = Ω(n/ log n).

The CNF formulas we consider are lifted pebbling formulas as defined next. Let G = (V, E)
be a DAG. If (u, v) ∈ E we say that u is a predecessor of v and v a successor of u. We
write pred(v) to denote the set of all predecessors of v. A vertex with no predecessor (resp.
successor) is called a source (resp. sink).

The pebbling formula [9] over a DAG G = (V, E) with a single sink z, denoted PebG,
consists of the clauses xv ∨

∨
u∈pred(v) ¬xu for all v ∈ V (note that if v is a source, then

pred(v) = ∅) encoding that sources are true and truth propagates upwards, and the clause
¬xz encoding that the sink is false. We encode this formula by a set of polynomials in the
standard way. Given a set U ⊆ V , we denote by xU the monomial

∏
u∈U xu (in particular,

x∅ = 1). For every vertex v ∈ V , we have the polynomial equation

xpred(v) · (1 − xv) = 0 , (15)

and for the sink z we also have the polynomial equation

xz = 0 . (16)

The formulas that witness the trade-off separation of Theorem 13 are based on the family of
graphs defined by Gilbert and Tarjan [24]. These graphs have large pebbling cost Ω(n/ log n),
even in the stronger, so-called black-white pebbling model and were used in [8] to obtain a
space-degree trade-off for PC.

▶ Lemma 14 ([24, 8]). There is a family of graphs {Gn}n∈N with indegree 2 of size Θ(n)
such that any PC refutation, even with negative literals, of PebGn in space s and degree d

must satisfy sd = Ω(n/ log n).

S. F. de Rezende, M. Lauria, J. Nordström, and D. Sokolov 40:11

With this result, we are now ready to prove Theorem 13.

Proof of Theorem 13. Let {Gn}n∈N be the family of graphs given by Lemma 14 and let N be
the number of vertices of Gn. Let x1, . . . , xN be the variables of PebGn

in inverse topological
order. We define Fn = PebNOR

Gn
, that is, we substitute each variable xi by ¬(yi ∨ zi) and

rewrite the formula in CNF.
The linear size resolution refutation of PebNOR

Gn
in space O(1) can be described in rounds.

We start with the clause y1 ∨ z1. At the end of round i, we will have derived a clause∨
j∈Si

(yj ∨ zj) for some set Si ⊆ [i] such that Si forms a cut in Gn, that is, the sink of Gn

and the sources of Gn are not connected in Gn \ Si; and moreover every vertex in Si has at
least one predecessor not in Si. Furthermore, at each round, the cut Si moves towards the
sources, i.e., the set of vertices connected to the sink in Gn \ Si increases when i increases.

For round i+1, we first weaken
∨

j∈Si
(yj ∨zj) to

∨
j∈Si∪{i+1}(yj ∨zj). Now, for all v ∈ Si

such that both predecessors of v, say u and w, are in Si∪{i+1} we resolve
∨

j∈Si∪{i+1}(yj ∨zj)
with yu ∨ zu ∨ yw ∨ zw ∨ ȳv and then with yu ∨ zu ∨ yw ∨ zw ∨ z̄v, thus obtaining a clause∨

j∈Si+1
(yj ∨ zj) for some set Si+1 that satisfies the invariant. Finally, after round N , we

have derived
∨

j∈SN
(yj ∨ zj) where SN only contains sources. Thus, we can easily derive

contraction by resolving this with ȳj and z̄j for all j ∈ SN . Note that this refutation has
space 3 and size O(N) = O(n).

Now for proving item 2, let P be a PC refutation without negative literals of PebNOR
Gn

in monomial size t and space s. By Lemma 6, there is a restriction ρ that for all i ∈ [N]
sets exactly one of {yi, zi} to 0 and such that all monomials in P when restricted by ρ have
degree at most log t. Since space does note increase with restriction, we have that P↾ρ is a
refutation of PebNOR

Gn
↾ρ in space at most O(s) and degree at most log t.

We now argue that there is a PC refutation with negative literals of PebGn
in space O(s)

and degree O(log t) and, by Lemma 14, this will imply that s log t = Ω(n/ log n). Let H be
the formula PebNOR

Gn
↾ρ with any yi substituted by (1 − ȳi) and any zi by (1 − z̄i). Since H is

an isomorphic copy of PebGn
, where each variable xi has been substituted by either ȳi or z̄i,

it is enough to show that there is a PC refutation with negative literals of H in space O(s)
and degree O(log t). Indeed, this follows since we can derive each axiom of PebNOR

Gn
↾ρ from

an axiom of H and variable axioms in constant space and degree. ◀

4 Negative Literals and Semialgebraic Proofs

We show that allowing negative literals makes Sherali-Adams and sums-of-squares exponen-
tially stronger, too. The main result of this section is that there is a family of formulas
that have short resolution refutations but require exponential size SA and SOS refutations
without negative literals. This implies, in both systems, an exponential separation between
the power of proofs with and without negative literals.

The following auxiliary lemma states the well-known semantic completeness of SA.

▶ Lemma 15 (Folklore). If some multilinear inequalities S = {r1 ≥ 0, . . . , rℓ ≥ 0} on
variables x⃗ = (x1, . . . , xn) semantically imply a multilinear inequality r ≥ 0 then there is an
SA derivation of r from S in degree 2n and size 2O(n).

Proof. For a multilinear polynomial p, we define the sets S−
p := {α ∈ {0, 1}n | p(α) < 0}

and S+
p := {α ∈ {0, 1}n | p(α) ≥ 0}. The fact that inequality r ≥ 0 is semantically implied

by S means that S−
r ⊆

⋃
i S−

ri
.

CCC 2021

40:12 The Power of Negative Reasoning

Let Qi := S−
ri

\
i−1⋃
j=1

S−
rj

. Consider the polynomial

∑
i∈[ℓ]

 ∑
α∈Qi∩S−

r

|r(α)|
|ri(α)|ri(x⃗)χα(x⃗)

 +
∑

α∈S+
r

r(α)χα(x⃗) , (17)

where χα(x⃗) is the characteristic function of a point α. The polynomial (17) is pointwise
equivalent to r on the boolean cube because of the definition of the characteristic functions.
Moreover, (17) is a legal SA derivation from S because S−

r ⊆
⋃

S−
ri

implies that coefficients
|r(a)|
|ri(a)| in (17) are all positives.

The degree of the polynomial (17) is at most 2n by definition and size is at most 23n.
Since it is pointwise equivalent to r on the boolean it is enough to multilinearize to transform
it into r.

For multilinearization we apply the following procedure. Denote by h(x⃗) the polynomial
(17) after expanding brackets. While polynomial h(x⃗) has a term of the form xd

i t we subtract
a polynomial txd−2

i (x2
i − xi) from polynomial (17) where i ∈ [n] and d ≥ 2 is an integer.

In one step we reduce the individual degree of one variable in one term in the polynomial
h(x) and increase the size of polynomial (17) by 2. At the end of the process (17) is a
multilinear polynomial of degree at most 2n and size at most 2n23n, pointwise equal to r.
After expanding brackets it will be a multilinear polynomial that is pointwise equivalent to r

on the boolean cube. ◀

▶ Lemma 16. Consider two sets S1 := {p1 = 0, . . . , pm = 0; r1 ≥ 0, . . . , rℓ ≥ 0} and
S2 := {f1 = 0, . . . , fm′ = 0; g1 ≥ 0, . . . , gℓ′ ≥ 0}. If there is an SA (resp. SOS) refutation of
S2 in size N2 and degree d2 and each element fi ≥ 0, −fi ≥ 0, and gi ≥ 0 can be derived in
SA (resp. SOS) from S1 in size N1 and degree d1, then there is an SA (resp. SOS) refutation
of S1 in size N1N2 and degree d1d2 (resp. in size N1N

O(1)
2 and degree O(d1d2)).

Proof. First consider a set S2 without equations (i.e., m′ = 0). Let {h1, . . . , hd} be an SA
(or SOS) refutation of S2 in size N2 and degree d2, so that we have∑

i∈[ℓ′]

higi = −1 . (18)

For i ∈ [ℓ′], let {q1,i, . . . , qm,i; s1,i, . . . , sℓ,i} be an SA (or SOS) derivation of gi ≥ 0 from S1
in size N1 and degree d1, so that∑

j∈[m]

qj,ipj +
∑
j∈[ℓ]

sj,irj = gi . (19)

The composition of these derivations

−1 =
∑

i∈[ℓ′]

higi =
∑

i∈[ℓ′]

hi

 ∑
j∈[m]

qj,ipj +
∑
j∈[ℓ]

sj,irj

 (20)

=
∑

j∈[m]

 ∑
i∈[ℓ′]

hiqj,i

 pj +
∑
j∈[ℓ]

 ∑
i∈[ℓ′]

hisj,i

 rj (21)

gives us the desired refutation of S1 in size N1N2 and degree d1d2. Notice that (21) is a valid
SA (or SOS) refutation because polynomials hi and sj,i are valid multipliers for inequalities
and thus so are their products and sums of products.

S. F. de Rezende, M. Lauria, J. Nordström, and D. Sokolov 40:13

When S2 contains equations, we reduce to the case where m′ = 0, using the observation
that the set

S ′
2 := {−f1 ≥ 0, . . . , −fm′ ≥ 0; f1 ≥ 0, . . . , fm′ ≥ 0; g1 ≥ 0, . . . , gℓ′ ≥ 0} (22)

has an SA refutation of size N2 and degree d2 (or an SOS refutation of size N
O(1)
2 and

degree O(d2)). To see this, start from a refutation {e1, . . . , em; h1, . . . , hℓ} of S2 in size N2
and degree d2, so that we have∑

i∈[m′]

eifi +
∑

i∈[ℓ′]

higi = −1 . (23)

To make it a valid SA refutation of S ′
2, rewrite each eifi as e+

i (fi)+e−
i (−fi) where ei = e+

i −e−
i

and both e+ and e− are positive sums of monomials. Note that this operation does not
change neither size nor degree. To make it a valid SOS refutation of S ′

2, rewrite each eifi as(
ei+1

2
)2 · fi +

(
ei−1

2
)2 · (−fi). Note that this refutation has degree at most 2d2 and size at

most N2
2 . The result follows. ◀

Recall the ordering principle formula OPn, which is the graph ordering principle for-
mula (12) over the complete graph Kn. As mentioned in Section 2, for SA and SOS the
default encoding of CNF formulas is (6d). For OPn this enconding consists of inequalities:

(1 − xu,v) + (1 − xv,w) + xu,w − 1 ≥ 0 for any three distinct u, v, w ∈ [n], (24a)
(1 − xu,v) + (1 − xv,u) − 1 ≥ 0 for any two distinct u, v ∈ [n], (24b)∑
u∈[n]

xu,v − 1 ≥ 0 for any u, v ∈ [n]. (24c)

The reason we cannot use the graph ordering principle as we did in Section 3 is that we do
not know how to prove strong SA degree lower bounds for GOP. Instead we use OPn which
can be still encoded in low degree using inequalities, and for which we have degree lower
bounds.

For the separation we use the OPOR
n formula. We have already showed in Lemma 9 that

OPOR
n is easy for resolution. In the presence of negative literals, this transfers to SA by the

following known simulation result.

▶ Lemma 17 ([5]). If a CNF formula F has a resolution refutation of width w and length L,
then it has an SA refutation with negative literals of degree w + 1 and size O(w2L).

Since SOS can simulate SA we obtain the following upper bound.

▶ Lemma 18. The formula OPOR
n has SA and SOS refutations with negative literals of

size nO(1).

Proof. By Lemma 9 the formula OPOR
n has a resolution refutation of size O(n3). The width

of any resolution refutation cannot exceed the number of variables that appear in the formula,
hence the considered refutation has width at most O(n2). Together with Lemma 17, this
implies the desired result for SA. To conclude the proof it is enough to recall that, by
Proposition 5, SOS can simulate any SA proof with at most a polynomial blowup in size. ◀

We now proceed to prove the lower bounds for SA and SOS without negative literals.
The main idea is analogous to that of Lemma 10: we show that we can reduce any small SA
or SOS refutation without negative literals of OPOR

n to a low degree refutation of OPn. To
conclude the proof we then apply the following degree lower bounds.

CCC 2021

40:14 The Power of Negative Reasoning

▶ Lemma 19 ([16]). Any SA refutation of OPn has degree at least n − 2.

For SOS the lower bound we know holds for the following, slightly different encoding:

xu,vxv,w(1 − xu,w) = 0 for any three distinct u, v, w ∈ [n], (25a)
xu,vxv,u = 0 for any two distinct u, v ∈ [n], (25b)∑
u∈[n]

xu,v = 1 + z2
v for any u, v ∈ [n], (25c)

where zv are real valued extension variables.

▶ Lemma 20 ([35]). For any ε > 0, there is a constant cε > 0 such that any SOS proof of
the system of equations (25) has degree at least cεn1/2−ε.

We show that this result implies a degree lower bound for the standard encoding of OPn

as in (24).

▶ Corollary 21. For any ε > 0, there is a constant cε > 0 such that any SOS proof of the
OPn has degree at least cεn1/2−ε.

Proof. For the sake of completeness, let us argue a well known fact. If p = 0 is the product
encoding, as per (6b), of a clause C of width w, and r ≥ 0 is the additive encoding of C,
as per (6d), then there is an SA (and hence also SOS) derivation of r from p and boolean
axioms in degree w + 1. Indeed, this follows from Lemma 15 by noting that the product
encoding p = 0 is equivalent to the two inequalities p ≥ 0 and −p ≥ 0 that semantically
imply the inequality r ≥ 0.

By using the above fact we can derive inequalities (24a) and (24b) from the con-
straints (25a) and (25b) in degree 4. Finally, the inequality∑

u∈[n]

xu,v − 1 ≥ 0 (26)

can be derived in SOS from (25c) by adding the square z2
v and thus obtaining ∑

u∈[n]

xu,v − 1 − z2
v

 + z2
v =

∑
u∈[n]

xu,v − 1 . (27)

Therefore, if there an SOS refutation of (24) in degree d, then by Lemma 16 there is an SOS
refutation of (25) in degree O(d). Together with Lemma 20, this implies the desired lower
bound. ◀

We are now ready to prove the size lower bounds for SA and SOS.

▶ Lemma 22. Any SA refutation of OPOR
n without negative literals requires monomial size

2Ω(n). For any ε > 0 there is a constant cε > 0 such that any SOS refutation of OPOR
n without

negative literals requires monomial size 2cεn1/2−ε .

Proof. The proof is very similar to that of Lemma 10. Let yu,v, zu,v for u, v ∈ [n] be the
variables of OPOR

n , that is, OPOR
n is obtained by substituting in OPn each variable xu,v by

yu,v + zu,v. Let {p1 = 0, . . . , pm = 0; r1 ≥ 0, . . . , rℓ ≥ 0} is the encoding of OPOR
n and let

{q1, . . . , qm; s1, . . . , sℓ} be an SA refutation of OPOR
n without negative literals, so that∑

j∈[m]

qjpj +
∑
j∈[ℓ]

sjrj = −1 . (28)

S. F. de Rezende, M. Lauria, J. Nordström, and D. Sokolov 40:15

Let S be the monomial size of this refutation. By Lemma 6, there is a restriction ρ that
sets exactly one of {yu,v, zu,v} to 0 and is such that all monomials appearing in (28) when
restricted by ρ have degree at most log S. Note that the formula OPOR

n ↾ρ is an isomorphic
copy OPn, where each variable xu,v has been renamed either to yu,v or to zu,v, and thus, by
Lemma 19, it requires refutation of degree Ω(n). Since P↾ρ is an SA refutation of OPOR

n ↾ρ in
degree at most log S, we conclude that log S ≥ Ω(n) and the size lower bound for SA follows.

The proof of the size lower bound for SOS is analogous, except that we use Corollary 21
for the degree lower bound instead of Lemma 19. ◀

We collect Lemmas 9,18 and 22 in the following theorem.

▶ Theorem 23. There is a family of CNF formulas {Fn}n of size Θ(n3) such that Fn has
a resolution refutation and SA and SOS refutations with negative literals in monomial size
nO(1). But any SA refutation of Fn without negative literals requires monomial size 2Ω(n),
and for any ε > 0 there is a constant cε > 0 such that any SOS refutation of Fn without
negative literals requires monomial size 2cεn1/2−ε .

5 Pigeonhole and Sherali-Adams

In this section we improve the previous result for Sherali-Adams and show a separation
between SA with and without negative literals, using constant width formulas, and hence
independent of the encoding of the clauses. Note that, in contrast to the previous section,
this result does not give a corresponding separation for SOS.

We start with the formula that encodes the (negation of the) pigeonhole principle (PHP).
The formula is defined on propositional variables xi,j for i ∈ [n + 1] and j ∈ [n], with the
intended meaning that xi,j is true if and only if the i-th pigeon goes into hole j. The clauses
of PHP are:

Pi :=
∨

j∈[n]

xi,j for every i ∈ [n + 1], and (29a)

Hj
i,k := xi,j ∨ xk,j for every two distinct i, k ∈ [n + 1] and every j ∈ [n]. (29b)

In order to reduce the width of the formula we introduce extension variables ei,j for i ∈ [n+1]
and j ∈ [n] and replace the clauses (29a) by

EPi,j := ei,j−1 ∨ xi,j ∨ ei,j for every i ∈ [n + 1] and j ∈ [n], (30a)
EPi,0 := ei,0, EPi,n+1 := ei,n for every i ∈ [n + 1]. (30b)

Intuitively, the variable ei,j represents the disjunction of the variables xi,ℓ for ℓ ≤ j. We
denote this 3-CNF formula with extension variables by EPHP.

Similarly to previous cases, we substitute the variables in the formula by a 2-bit function.
In this case, however, we use NOR(y, z) := ¬(y ∨ z) which is equivalent to y ∧ z. We apply
this substitution to the formula EPHP, to obtain the formula EPHPNOR, by replacing each
variable xi,j with yi,j ∧ zi,j and each ei,j with ai,j ∧ bi,j and rewriting it in CNF.

It was shown in [16] that Sherali-Adams without negative literals can refute PHP in
polynomial size. We use this result to obtain a size upper bound for Sherali-Adams refutations
with negative literals of EPHPNOR.

▶ Lemma 24 ([16]). There is an SA refutation without negative literals of PHP of size O(n4).

▶ Lemma 25. There is an SA refutation with negative literals of EPHPNOR of size O(n5).

CCC 2021

40:16 The Power of Negative Reasoning

Proof. Let S be the set of polynomial inequalities encoding PHP as per (6d) plus the variable
axioms for each xi,j and let S ′ = {p1 = 0, . . . , pm = 0; r1 ≥ 0, . . . , rℓ ≥ 0} be the set of
polynomial inequalities obtained from S by replacing each variable xi,j by the product yi,jzi,j .

We want show that there is a small, namely size O(n), SA derivation with negative literals
from EPHPNOR of each of the inequalities pi ≥ 0, −pi ≥ 0 for i ∈ [m] and ri ≥ 0 for i ∈ [ℓ].
Suppose this is true. Then given a size O(n4) refutation of PHP, which is guaranteed to exist
by Lemma 24, we can replace each occurrence of xi,j by the product yi,jzi,j and obtain a
refutation of S ′ of exactly the same size. Composing this refutation with the derivation of S ′

from EPHPNOR, we obtain, by Lemma 16, a refutation of EPHPNOR of size O(n5).
We start by considering the hole axioms (29b) of PHP, that is, xi,j ∨xk,j , which is encoded

as (1 − xi,j) + (1 − xk,j) − 1 ≥ 0. After replacing the x variables in the polynomial inequality,
we obtain

(1 − yi,jzi,j) + (1 − yk,jzk,j) − 1 ≥ 0 , (31)

which is in S ′. Now, the formula EPHP also contains hole axioms (29b), and thus the
substituted formula EPHPNOR contains a set of inequalities encoding the formula (yi,j ∧
zi,j) ∨ (yk,j ∧ zk,j). Since this formula, and therefore also the inequalities encoding it,
semantically implies inequality (31), by Lemma 15 there is an SA derivation of (31) from
EPHPNOR in constant size.

We have a similar situation for the pigeon axioms (29a) of PHP, i.e.,
∨

j∈[n] xi,j , which is

encoded as
n∑

j=1
xi,j − 1 ≥ 0. Our goal is to derive the polynomial inequality

n∑
j=1

yi,jzi,j − 1 ≥ 0 (32)

from EPHPNOR. Again, by Lemma 15, each of the inequalities
(1 − ai,0bi,0) − 1 ≥ 0;
ai,j−1bi,j−1 + yi,jzi,j + (1 − ai,jbi,j) − 1 ≥ 0, for all j ∈ [n]; and
ai,nbi,n − 1 ≥ 0

has an SA derivation from EPHPNOR of the constant size, since they are semantically implied
by the clauses EPi,j with variables substitute by NOR. Note that the sum of these inequalities

(1−ai,0bi,0)−1+
n∑

j−1
(ai,j−1bi,j−1+yi,jzi,j+(1−ai,jbi,j)−1)+ai,nbi,n−1 =

n∑
j=1

yi,jzi,j−1 (33)

is a valid SA derivation of (32) in size O(n).
Finally, we note that the substituted variable axioms yi,jzi,j ≥ 0, 1 − yi,jzi,j ≥ 0,

(yi,jzi,j)2 − yi,jzi,j ≥ 0 and −(yi,jzi,j)2 + yi,jzi,j ≥ 0 can be easily derived in constant size
from the variable axioms for yi,j and zi,j . ◀

We now show that any Sherali-Adams refutation of EPHPNOR without negative literals
has exponential size. For this, we use the following degree lower bound.

▶ Lemma 26 ([5]). Any SA refutation of EPHP has a degree at least n − 2.

▶ Lemma 27. Any SA refutation of EPHPNOR without negative literals requires monomial
size 2Ω(n).

S. F. de Rezende, M. Lauria, J. Nordström, and D. Sokolov 40:17

Proof. The proof is very similar to that of Lemma 22. Consider an SA refutation of EPHPNOR

without negative literals, that is, a set of polynomials P = {q1, . . . , qm; s1, . . . , sℓ} such that∑
j∈[m]

qjpj +
∑
j∈ℓ

sjrj = −1 , (34)

where {p1 = 0, . . . , pm = 0; r1 ≥ 0, . . . , rℓ ≥ 0} is the polynomial encoding of EPHPNOR and
each sj is a positive linear combination of generalized monomials. Let S be the monomial
size of this refutation. By Lemma 6, there is a restriction ρ that sets exactly one of {yi,j , zi,j}
and exactly one of {ai,j , bi,j} to 0 and is such that all monomials appearing in (34) when
restricted by ρ have degree at most log S. Note that the formula EPHPNOR↾ρ is almost an
isomorphic copy of EPHP, except that:

each variable xi,j has been substituted by either (1 − yi,j) or by (1 − zi,j);
each variable ei,j has been substituted by either (1 − ai,j) or by (1 − bi,j).

It is not hard to see that this formula EPHPNOR↾ρ also requires degree n − 2 to be refuted in
SA, since otherwise we could obtain, by substituting each variable yi,j and zi,j by (1 − xi,j)
and each variable ai,j and bi,j by (1 − ei,j), a refutation of EPHP in degree less than n − 2
contradicting Lemma 19. Therefore, since P↾ρ is an SA refutation of EPHPNOR↾ρ in degree
at most log S, we conclude that log S ≥ Ω(n) and the size lower bound for SA follows. ◀

We collect Lemmas 25 and 27 in the following theorem.

▶ Theorem 28. There is a family of constant width CNF formulas {Fn}n of size Θ(n3)
such that Fn has an SA refutation with negative literals of monomial size O(n5), but any SA
refutation of Fn without negative literals must contain 2Ω(n) monomials.

6 Separating Nullstellensatz with and without negative literals

In this section we show that there are formulas that have linear size tree-like resolution
refutations – and, therefore, also linear size Nullstellensatz refutations if variables for negative
literals are allowed – but require nearly exponential size Nullstellensatz refutations if such
variables are not allowed.

▶ Theorem 29. There exists a family of constant width CNF formulas {Fn}n∈N of size Θ(n)
such that there are tree-like resolution refutations, and therefore also NS refutations with
negative literals, of Fn in size O(n), but any NS refutation without negative literals of Fn

must have size 2Ω(n/ log n).

A formula that witnesses a size separation of 2Ω̃(n) must necessarily require NS degree
Ω̃(n) since if there is a degree-d NS refutation, then there is an NS refutation without negative
literals in simultaneous degree d and size nO(d). In this sense, the separation in Theorem 29 is
nearly optimal. For smaller values of d, we can show a similar separation with the additional
property that NS with negative literals presents a smooth trade-off between degree and size
of refutations.

▶ Theorem 30. For any 0 < ϵ ≤ 1/4, any large enough n ∈ N and any 2 ≤ k ≤ nϵ/2, there
exists a constant width CNF formula Fk,n of size Θ(kn) such that:
1. there is an NS refutation with negative literals of Fk,n in linear size O(kn);
2. for any d satisfying 21+1/ϵk4 log n ≤ d ≤

√
n, there is an NS refutation with negative

literals of Fk,n in degree d and size nk(1+5ϵ)/d2k−3; and
3. any NS refutation without negative literals of Fk,n must have size 2k.

CCC 2021

40:18 The Power of Negative Reasoning

The CNF formulas we consider are lifted pebbling formulas. We will also use the relation
between the formulas and pebble games as defined next.

The reversible pebble game [10] is a single-player game that is played with a set of pebbles
on a DAG G. The goal of the game is to pebble (i.e., place a pebble on) each vertex of G at
least once. Initially, the graph contains no pebbles. At each round, the player is allowed to
place a pebble on any vertex of G such that all its predecessors are pebbled. In particular, the
player is always allowed to place a pebble on any source of G. Moreover, at any given round,
a pebble on a vertex v can be removed from G if all the predecessors of v are pebbled. Again,
this implies that it is always possible to remove a pebble from a source of G. A sequence of
pebbling moves that pebbles each vertex of G at least once according to these rules and ends
with the empty graph is called a reversible pebbling of G. The time of a reversible pebbling
is the number of rounds and the space is the maximum number of pebbles on G at any given
moment. The reversible pebbling cost of G is the minimum space required for any reversible
pebbling of G (independent of time). We sometime refer to the standard pebble game where
the rule for removing pebbles is relaxed so that any pebble can be removed at any point.

For our purpose, we note that pebbling formulas always have linear size NS refutations
(even without negative literals), while for some “hard” graphs the NS degree is necessarily
large. In order to prove the separations in this section, we use the following characterization of
NS degree and size, when negative literals are not allowed, in terms of reversible pebbling space
and time [19]. We would like to point out that for Theorem 29 the degree characterization
of [18], or even the not-so-tight bound of [12], would have be enough.

▶ Lemma 31 ([19]). Let G be a single-sink DAG. There is a Nullstellensatz degree d and
size t refutation without negative literals of PebG if and only if there is a reversible pebbling
of G in space d and time t − 1.

By this characterisation, it is easy to see that pebbling formulas always have linear size
NS refutations without negative literals. In order to obtain NS size lower bounds when
negative literals are not allowed we compose pebbling formulas with the not-or function
NOR, that is, we substitute each variable xi by ¬(yi ∨ zi). This is useful for proving NS lower
bounds since formulas lifted with NOR satisfy the following property.

▶ Lemma 32. Let F be an unsatisfiable CNF formula. If NS requires degree d to refute F ,
then NS without negative literals requires size 2d to refute F NOR.

Proof. Let n be the number of variables of F , and let y1, . . . , yn and z1, . . . , zn be the
variables of F NOR. Let S = {p1 = 0, . . . , pm = 0} be the set of polynomial equations
encoding F NOR (plus the variable axioms). Let {q1, . . . , qm} be an NS refutation without
negative literals of S, that is,∑

j∈[m]

qjpj = 1 , (35)

and let s be its monomial size. By Lemma 6, there is a restriction ρ that for all i ∈ [n]
sets exactly one of {yi, zi} to 0 and such that all monomials in qjpj for pj = 0 ∈ S when
restricted by ρ have degree less than log s. Note that F NOR↾ρ is almost an isomorphic copy
of F , except that variables xi have been substituted by either (1 − yi) or (1 − zi). It is not
hard to see that F NOR↾ρ also requires degree d refutations, since otherwise substituting every
yi or zi appearing in the refutation by (1 − xi) would give a refutation of F in degree less
than d. This implies that log s ≥ d. ◀

S. F. de Rezende, M. Lauria, J. Nordström, and D. Sokolov 40:19

While substituting variables in a formula with NOR can give NS size lower bounds if
negative literals are not allowed, for pebbling formulas this substitution does not make the
formula harder for NS if negative literals are allowed, and not even for tree-like resolution.

▶ Lemma 33. Let G be a DAG with n vertices. There is a tree-like resolution refutation of
PebNOR

G in size 4n + 1.

Proof. We describe a decision tree that solves the falsified clause search problem of PebNOR
G .

The idea is to query the variables in topological order, from the sources to the sink. Let
x1, . . . , xn be the variables of PebG, ordered topologically according to G from the sources
to the sink, and for i ∈ [n], let yi, zi be the lifted variables so that xi = ¬(yi ∨ zi). The
decision tree queries yi and zi, from i = 1 to n: if the result of the query is 0 it proceeds
to the next query, if it is 1 it has found a falsified axiom (since this implies there is a false
variable whose predecessors are true). Finally, if all vertices are 0, then the sink clause of
PebNOR

G , which states the sink is false, is falsified. This gives a decision tree of size 4n + 1
(and depth 2n). ◀

We also observe that if a CNF formula has small NS refutations without negative literals
in degree d, then the formula composed with NOR has small NS refutations with negative
literals in degree 2d.

▶ Lemma 34. Let F be a constant-width unsatisfiable CNF formula. If there is an NS
refutation without negative literals of F in size s and degree d then there is an NS refutation
with negative literals of F NOR in size O(s) and degree 2d.

Proof. Let x1, . . . , xn be the variables of F , and for i ∈ [n], let yi, zi be the lifted variables
so that xi = ¬(yi ∨ zi). For a clause (or a CNF) C, let C∗ be the polynomial translation
of C without negative literals, as per (6b). Moreover, for a polynomial p over x variables, let
p[ȳz̄] be the polynomial obtained by substituting in p each variable xi by the product ȳiz̄i.

Consider a clause C of F and denote by CNOR the CNF that is obtained by substituting
variables xi by ¬(yi ∨ zi). Since C has constant width, there is an NS derivation (with
negative literals) of C∗[ȳz̄] from the set of polynomials (CNOR)∗ in constant size and without
increasing the degree.

Let S = {p1 = 0, . . . , pm = 0} be the set of polynomial equations encoding F (plus the
variable axioms). Let {q1, . . . , qm} be an NS refutation without negative literals of S, that
is, ∑

j∈[m]

qjpj = 1 , (36)

in degree d and monomial size s. If we substitute every variable xi in
∑

j∈[m] qjpj by ȳiz̄i, we
have a polynomial that is syntactically equal to 1, has degree 2d and has monomials size s.
The lemma follows by the observation above that implies that there is an NS derivation
(with negative literals) of p[ȳz̄] from (F NOR)∗ in constant size and without increasing the
degree. ◀

The family of graphs we consider for the proof of Theorem 29 is the one defined by Paul
et al. [34] and also used by Gilbert and Tarjan [24]. It was shown in [34] that these graphs
have large standard pebbling cost, and thus also have large reversible pebbling cost.

▶ Theorem 35 ([34]). For every N ∈ N, there is a DAG of size Θ(N) that has reversible
pebbling cost Ω(N/ log N).

CCC 2021

40:20 The Power of Negative Reasoning

0000

0000

0001

0001

0010

0010

0011

0011

0100

0100

0101

0101

0110

0110

0111

0111

1000

1000

1001

1001

1010

1010

1011

1011

1100

1100

1101

1101

1110

1110

1111

1111

Figure 1 A 2-layer 4-bit-reversal permutation graph.

We are now ready to prove the first theorem of this section.

Proof of Theorem 29. Let GN be the DAG of size Θ(N) and pebbling cost Ω(N/ log N)
given by Theorem 35. We define FN = PebNOR

GN
. The upper bound follows directly from

Lemma 33. For the lower bound, note that Theorem 35 together with Lemma 31 imply
that NS requires degree Ω(N/ log N) to refute PebGN

and, therefore, by Lemma 32, any NS
refutation of FN must have size 2Ω(N/ log N). ◀

To prove Theorem 30 we consider another family of graphs, based on the so-called
bit-reversal permutation graphs. Let n be an integer. Given j ∈ {0, 1, . . . , 2n − 1} and
ℓ ∈ [n], we denote by jℓ the ℓth bit of j. Now let reverse(j) =

∑
ℓ∈[n] 2n−ℓjℓ be the integer in

{0, 1, . . . , 2n − 1} obtained by reversing the bit representation of j.
The k-layer n-bit-reversal permutation graph consists of k directed path graphs of length 2n,

where we consider vertices in each path to be numbered from 0 to 2n − 1, and in between
consecutive layers i and i + 1, for i ∈ [k − 1], there are edges from vertex j in layer i to vertex
reverse(j) in layer i + 1, for all j ∈ {0, 1, . . . , 2n − 1}. See Figure 1 for an illustration.

It was shown in [3] that these graphs exhibit a certain smooth time-space trade-off for
standard pebbling.

▶ Proposition 36 ([3]). Let G be a k-layer n-bit-reversal permutation graph, and let N = 2n.
For any s such that k + 1 ≤ s ≤

√
N/4 there exists a standard pebbling of G in space 2k2s + 2

and time 2k/2(Nk/s2k−3). Furthermore, every standard pebbling of G in space s requires
time 2−3k(Nk/s2k−3).

By a classical result of [10], which is analysed precisely in [32], we can translate, with
some loss both in time and in space, the upper bound in this trade-off to the reversible
pebble game.

▶ Proposition 37 ([10, 32]). Let G be an arbitrary DAG. If G has a standard pebbling in
space s and time t ≥ 2s, then for any ϵ > 0, G can be reversibly pebbled in simultaneous time
t1+ϵ/sϵ and space ϵ(21/ϵ − 1) s log(t/s).

▶ Corollary 38. Let 0 < ϵ ≤ 1/4, let G be a k-layer n-bit-reversal permutation graph and let
N = 2n. For any s such that k + 1 ≤ s ≤

√
N/4 there exists a reversible pebbling of G in

space s
k+1 21/ϵk4 log N and time 2k(Nk(1+ϵ)/s2k−3).

We are now ready to prove Theorem 30.

Proof of Theorem 30. Let 0 < ϵ ≤ 1/4, let G be a k-layer n-bit-reversal permutation graph
for k < 2ϵn/2, and let N = 2n. We define Fk,N to be PebNOR

G . Item 1 follows from Lemma 34
and the fact that any pebbling formula has linear size NS refutations.

S. F. de Rezende, M. Lauria, J. Nordström, and D. Sokolov 40:21

We argue that from Corollary 38 it follows that for any d such that 21/ϵk4 log N ≤ d ≤
√

N ,
the graph G can be reversibly pebbled in space d and time nk(1+5ϵ)/d2k−3. Item 2 then
follows from the correspondence between reversible pebbling and NS refutations (Lemma 31)
and Lemma 34. To see why the claim above holds, let

s := d(k + 1)
21/ϵk4 log N

, (37)

which is at least k + 1 and at most
√

N/4 by the bounds of d. Note, moreover, that

s ≥ d

21/ϵk3 log N
≥ 2d

N2ϵ
, (38)

where the last inequality holds for N large enough since k ≤ N ϵ/2. By Corollary 38 it then
follows that there is a reversible pebbling of G in space d and time

2k · Nk(1+ϵ)

s2k−3 ≤ 2k ·
(

N2ϵ

2

)2k−3

· Nk(1+ϵ)

d2k−3 ≤ nk(1+5ϵ)

d2k−3 , (39)

as claimed.
Item 3 follows by applying Lemma 32 with d = k. ◀

7 Concluding Remarks

Algebraic and semi-algebraic proof systems become more powerful when they can succinctly
represent negation of variables using additional formal variables. In some cases this advantage
results in exponentially smaller proofs. To witness these separations we built rather artificial
formulas. It would be interesting to understand whether this phenomenon occurs for formulas
encoding natural problems as well.

More importantly, is this just a theoretical advantage? Practical approaches based on
the naive computation of a Gröbner basis nullify any additional expressive power. Since the
polynomials xi = 1 − xi are in the ideal, any such computation eliminates one variable in
each pair, potentially causing an exponential blow-up in size along the way. In algebraic
circuit verification this is a concrete problem. Some works indeed use new variables for
negated literals and have either to avoid or to mitigate such blow-up [36, 27]. Any algorithm
that tests ideal membership and wants to make good use of negative literals should be more
adaptive than, say, the standard Buchberger’s algorithm. It should figure out when to reduce
between xi and xi, depending on the context.

Back to the theoretical aspects of this work, the separation formula for sums-of-squares
has unbounded width. Since we manage to get formulas of constant width for the others
proof systems, we would like to do the same for sums-of-squares. Is this possible? The issue
here is not so much our proof techniques, which has been more than enough for all the other
proof systems discussed in this paper, but the not so surprising fact that the lower bound
technology for sums-of-squares is quite behind the one for NS, PC and SA. It seems fair
to say that due to research progress that has happened during the last few years we now
have a situation where many of the open problems regarding algebraic proof system and how
they relate to one another have been resolved (see for example [11]). We know how different
complexity measures relate [26, 2, 23, 33, 22, 4] and whether these systems admit efficient
proof search [6, 17]. Yet the situation for sums-of-squares is far from being so positive. We
still do not understand the complexity of many important formulas in this proof systems.

CCC 2021

40:22 The Power of Negative Reasoning

References
1 Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space

complexity in propositional calculus. SIAM Journal on Computing, 31(4):1184–1211, 2002.
Preliminary version in STOC ’00.

2 Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calculus:
Non-binomial case. Proceedings of the Steklov Institute of Mathematics, 242:18–35, 2003.
Preliminary version in FOCS ’01.

3 Joël Alwen, Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. Cumulative space
in black-white pebbling and resolution. In Proceedings of the 8th Innovations in Theoretical
Computer Science Conference (ITCS ’17), volume 67 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 38:1–38:21, 2017.

4 Albert Atserias and Tuomas Hakoniemi. Size-degree trade-offs for Sums-of-Squares and
Positivstellensatz proofs. In Proceedings of the 34th Annual Computational Complexity
Conference (CCC ’19), volume 137 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 24:1–24:20, July 2019.

5 Albert Atserias, Massimo Lauria, and Jakob Nordström. Narrow proofs may be maximally
long. ACM Transactions on Computational Logic, 17(3):19:1–19:30, May 2016. Preliminary
version in CCC ’14.

6 Albert Atserias and Moritz Müller. Automating resolution is NP-hard. In Proceedings of
the 60th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’19), pages
498–509, November 2019.

7 Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, and Pavel Pudlák. Lower
bounds on Hilbert’s Nullstellensatz and propositional proofs. In Proceedings of the 35th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’94), pages 794–806, 1994.

8 Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-off results for polynomial
calculus. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(STOC ’13), pages 813–822, May 2013.

9 Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple. Journal
of the ACM, 48(2):149–169, March 2001. Preliminary version in STOC ’99.

10 Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM Journal on
Computing, 18(4):766–776, August 1989.

11 Christoph Berkholz. The relation between polynomial calculus, Sherali-Adams, and sum-of-
squares proofs. In Proceedings of the 35th Symposium on Theoretical Aspects of Computer
Science (STACS ’18), volume 96 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 11:1–11:14, 2018.

12 Joshua Buresh-Oppenheim, Matthew Clegg, Russell Impagliazzo, and Toniann Pitassi. Ho-
mogenization and the polynomial calculus. Computational Complexity, 11(3-4):91–108, 2002.
Preliminary version in ICALP ’00.

13 Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere,
Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 7, pages 233–350.
IOS Press, 2nd edition, February 2021.

14 Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm
to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium on Theory
of Computing (STOC ’96), pages 174–183, 1996.

15 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. Journal of Symbolic Logic, 44(1):36–50, 1979. Preliminary version in STOC ’74.

16 Stefan S. Dantchev, Barnaby Martin, and Martin Rhodes. Tight rank lower bounds for the
Sherali–Adams proof system. Theoretical Computer Science, 410(21–23):2054–2063, May 2009.

17 Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, and
Dmitry Sokolov. Automating algebraic proof systems is NP-hard. In Proceedings of the 53rd
Annual ACM Symposium on Theory of Computing (STOC ’21), June 2021. To appear.

S. F. de Rezende, M. Lauria, J. Nordström, and D. Sokolov 40:23

18 Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere, and
Marc Vinyals. Lifting with simple gadgets and applications to circuit and proof complexity.
In Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’20), pages 24–30, November 2020.

19 Susanna F. de Rezende, Jakob Nordström, Or Meir, and Robert Robere. Nullstellensatz
size-degree trade-offs from reversible pebbling. In Proceedings of the 34th Annual Computa-
tional Complexity Conference (CCC ’19), volume 137 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 18:1–18:16, 2019.

20 Yuval Filmus, Massimo Lauria, Jakob Nordström, Noga Ron-Zewi, and Neil Thapen. Space
complexity in polynomial calculus. SIAM Journal on Computing, 44(4):1119–1153, August
2015. Preliminary version in CCC ’12.

21 Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and efficient
algorithm design. Foundations and Trends in Theoretical Computer Science, 14(1–2):1–221,
December 2019.

22 Nicola Galesi, Leszek Kołodziejczyk, and Neil Thapen. Polynomial calculus space and resolution
width. In Proceedings of the 60th Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’19), pages 1325–1337, November 2019.

23 Nicola Galesi and Massimo Lauria. Optimality of size-degree trade-offs for polynomial calculus.
ACM Transactions on Computational Logic, 12(1):4:1–4:22, November 2010.

24 John R. Gilbert and Robert Endre Tarjan. Variations of a pebble game on graphs. Technical
Report STAN-CS-78-661, Stanford University, 1978. Available at http://infolab.stanford.
edu/TR/CS-TR-78-661.html.

25 Dima Grigoriev and Nicolai Vorobjov. Complexity of Null- and Positivstellensatz proofs.
Annals of Pure and Applied Logic, 113(1–3):153–160, 2001.

26 Russell Impagliazzo, Pavel Pudlák, and Jiří Sgall. Lower bounds for the polynomial calculus
and the Gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999.

27 Daniela Kaufmann, Armin Biere, and Manuel Kauers. From DRUP to PAC and back. In
Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE ’20),
pages 654–657, March 2020.

28 Jan Krajíček. Proof Complexity, volume 170 of Encyclopedia of Mathematics and Its Applica-
tions. Cambridge University Press, March 2019.

29 Balakrishnan Krishnamurthy. Short proofs for tricky formulas. Acta Informatica, 22(3):253–275,
1985.

30 Jean B. Lasserre. An explicit exact SDP relaxation for nonlinear 0-1 programs. In Proceedings
of the 8th International Conference on Integer Programming and Combinatorial Optimization
(IPCO ’01), volume 2081 of Lecture Notes in Computer Science, pages 293–303. Springer,
2001.

31 Massimo Lauria and Jakob Nordström. Tight size-degree bounds for sums-of-squares proofs.
Computational Complexity, 26(3):911–948, December 2017. Preliminary version in CCC ’15.

32 Robert Y. Levin and Alan T. Sherman. A note on Bennett’s time-space tradeoff for reversible
computation. SIAM Journal on Computing, 19(4):673–677, August 1990. doi:10.1137/
0219046.

33 Mladen Mikša and Jakob Nordström. A generalized method for proving polynomial calculus
degree lower bounds. In Proceedings of the 30th Annual Computational Complexity Conference
(CCC ’15), volume 33 of Leibniz International Proceedings in Informatics (LIPIcs), pages
467–487, June 2015.

34 Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a game on
graphs. Mathematical Systems Theory, 10:239–251, 1977.

35 Aaron Potechin. Sum of squares bounds for the ordering principle. In Shubhangi Saraf,
editor, 35th Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken,
Germany (Virtual Conference), volume 169 of LIPIcs, pages 38:1–38:37. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CCC.2020.38.

CCC 2021

http://infolab.stanford.edu/TR/CS-TR-78-661.html
http://infolab.stanford.edu/TR/CS-TR-78-661.html
https://doi.org/10.1137/0219046
https://doi.org/10.1137/0219046
https://doi.org/10.4230/LIPIcs.CCC.2020.38

40:24 The Power of Negative Reasoning

36 Amr Sayed-Ahmed, Daniel Große, Mathias Soeken, and Rolf Drechsler. Equivalence checking
using Gröbner bases. In Proceedings of the 16th Conference on Formal Methods in Computer-
Aided Design (FMCAD ’16), pages 169–176, 2016.

37 Nathan Segerlind, Samuel R. Buss, and Russell Impagliazzo. A switching lemma for
small restrictions and lower bounds for k-DNF resolution. SIAM Journal on Computing,
33(5):1171–1200, 2004. Preliminary version in FOCS ’02.

38 Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on Discrete
Mathematics, 3:411–430, 1990.

39 Gunnar Stålmarck. Short resolution proofs for a sequence of tricky formulas. Acta Informatica,
33(3):277–280, May 1996.

Matrix Rigidity Depends on the Target Field
László Babai # Ñ

University of Chicago, IL, USA

Bohdan Kivva # Ñ

University of Chicago, IL, USA

Abstract
The rigidity of a matrix A for target rank r is the minimum number of entries of A that need to be
changed in order to obtain a matrix of rank at most r (Valiant, 1977).

We study the dependence of rigidity on the target field. We consider especially two natural
regimes: when one is allowed to make changes only from the field of definition of the matrix (“strict
rigidity”), and when the changes are allowed to be in an arbitrary extension field (“absolute rigidity”).

We demonstrate, apparently for the first time, a separation between these two concepts. We
establish a gap of a factor of 3/2 − o(1) between strict and absolute rigidities.

The question seems especially timely because of recent results by Dvir and Liu (Theory of
Computing, 2020) where important families of matrices, previously expected to be rigid, are shown
not to be absolutely rigid, while their strict rigidity remains open. Our lower-bound method combines
elementary arguments from algebraic geometry with “untouched minors” arguments.

Finally, we point out that more families of long-time rigidity candidates fall as a consequence of
the results of Dvir and Liu. These include the incidence matrices of projective planes over finite
fields, proposed by Valiant as candidates for rigidity over F2.

2012 ACM Subject Classification Theory of computation; Theory of computation → Complexity
theory and logic

Keywords and phrases Matrix rigidity, field extension

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.41

Funding The work of the authors has been partially supported by L. Babai’s NSF Grant CCF
1718902. All statements made are solely due to the authors and have not been evaluated or endorsed
by the NSF.

Acknowledgements The senior author thanks Zeev Dvir and Allen Liu for clarifications regarding
their results. The authors thank an anomymous reviewer for pointing out the work of Samorodnitsky
et al.

1 Introduction

1.1 Matrix rigidity. Dependence on the field
Matrix rigidity was introduced by Leslie Valiant in his seminal paper [16] as a tool to prove
lower bounds on the complexity of linear arithmetic circuits (where each gate computes a
linear combination of its inputs). Such circuits compute linear functions x 7→ Ax for some
matrix A. Razborov [12] linked the rigidity concept to separating the polynomial hierarchy
in communication complexity.

▶ Definition 1 (Matrix rigidity). Let L/K be a field extension (K is a subfield of L) and
let A ∈ Kn×m. Denote by RL(A, r) the minimum number of non-zero entries in a matrix
Z ∈ Ln×m for which A+ Z has rank at most r. The function RL(A, ·) is called the matrix
rigidity function of A over L.

The definition of rigidity depends on a pair of fields: K, the field in which the matrix
lives, and the extension field L ⊇ K, over which the changes to A are to be made. There are
two natural regimes in which we especially propose to study matrix rigidity.

© László Babai and Bohdan Kivva;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 41; pp. 41:1–41:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:laci@cs.uchicago.edu
https://people.cs.uchicago.edu/~laci/
https://orcid.org/0000-0002-2058-685X
mailto:bkivva@uchicago.edu
https://math.uchicago.edu/~bkivva/
https://orcid.org/0000-0002-4044-3901
https://doi.org/10.4230/LIPIcs.CCC.2021.41
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Matrix Rigidity Depends on the Target Field

We say that K is the field of definition of a matrix A ∈ Fn×m (where F is a field) if K is
the smallest subfield of F containing all elements of A.

▶ Definition 2 (Strict rigidity). Let K denote the field of definition of the matrix A. We call
the function RK(A, ·) the strict rigidity function of A.

▶ Definition 3 (Absolute rigidity). We define the absolute rigidity of A as

R∗(A, r) = min
L
RL(A, r),

where the minimum ranges over all extension fields L of the field of definition of A.

The main result of this paper shows, apparently for the first time, that the notions of
strict and absolute rigidity are indeed different. We establish a gap of a factor of 3/2 − o(1)
between these quantities.

The degree of a field extension L/K is the dimension of L over K. Extensions of degree 2
are called quadratic extensions.

▶ Theorem 4. Let K be a field of characteristic zero and let L be a quadratic extension
of K. For every r there exists a 2r × 2r matrix Ar over K such that RL(Ar, r) ≤ 2r while
RK(Ar, r) ≥ 3r − 2.

Note that the second bound requires a lower-bound technique for rigidity.
We expect much larger gaps; indeed, larger gaps will be needed to show the depedence of

Valiant-rigidity on the field (see below).
We also point out that for any matrix A over a field K we have R∗(A, r) = RK(A, r),

where K denotes the algebraic closure of K (Sec. 4). In other words, for every matrix A,
absolute rigidity can be achieved over a finite extension of the field of definition of A (see
Cor. 55). However, effective bounds on the degree of this extension remain an open question.

A similar result holds for linear arithmetic circuits (Prop. 56).

1.2 Valiant-rigidity, non-rigidity results
While the distinction between strict and absolute rigidity seems natural and we find it
somewhat surprising that apparently it has not previously been addressed, unexpected recent
non-rigidity results give particular timeliness to this question.

To discuss these results, we need some asymptotic terminology.
We say that the order of an n×n matrix is n. We use the term “family of square matrices”

to mean a set of square matrices of unbounded order.

▶ Definition 5 (Valiant-rigid). Let F be a family of square matrices. For A ∈ F , let K(A)
denote the field of definition of A, and let L(A) be an extension field of K(A). We say that the
family F is Valiant-rigid over the extension fields L(A) if there exists ϵ > 0 such that for every
function r(n) = O(n/ log log n), for all matrices A in the family, RL(A)(A, r(nA)) = Ω(n1+ϵ

A),
where nA denotes the order of A.

It seems the term “Valiant-rigid” was introduced in [3] (but their definition did not consider
the effect of the field).

The terms “strictly” and “absolutely” Valiant-rigid should now be self-explanatory.
For one of the families, long believed to be rigid, the family of Walsh–Hadamard matrices,

Alman and Williams [2] proved that it is in fact not strictly Valiant-rigid.
Recently, Dvir and Liu [4] proved that no family of Discrete Fourier Transform (DFT)

matrices for abelian groups G and no family of G-circulant matrices (see Def. 57) is absolutely
Valiant-rigid. However, strict Valiant-rigidity of these families remains an open problem.

L. Babai and B. Kivva 41:3

Note that the Walsh–Hadamard matrices are the DFT matrices for elementary abelian
2-groups, yet the Dvir–Liu result does not fully reproduce the Alman–Williams result for
these matrices precisely because of the target field: while Dvir and Liu prove that these
matrices are not absolutely Valiant-rigid, Alman and Williams proved the stronger result
that these matrices are not strictly rigid.

In Section 5 we point out that the following families of long-time rigidity candidates also
fall as a consequence of the results of Dvir and Liu.

1. No family of Paley–Hadamard matrices is absolutely Valiant-rigid. (Note: The orders of
these Hadamard matrices are exponentially denser than the orders of the Walsh–Hadamard
matrices, shown not to be strictly Valiant-rigid by Alman and Williams [2].)

2. No family of point–hyperplane incidence matrices of Galois geometries (projective geo-
metries over finite fields) is strictly Valiant-rigid over any fixed finite field. (Note: The
incidence matrices of finite projective planes were proposed by Valiant [16] as candidates
for rigidity over F2.)

3. No family of point–hyperplane incidence matrices of Galois geometries is absolutely
Valiant-rigid in characteristic zero.

4. No family of Vandermonde matrices whose generators form a geometric progression is
absolutely Valiant-rigid.

We should remind the reader that absolute rigidity is a stronger property than strict
rigidity; and therefore the statement that a matrix is “not strictly rigid” is stronger than the
statement that it is “not absolutely rigid.”

We mention that Samorodnitsky et al. [13] proved rigidity lower bounds for the point-
hyperplane incidence matrices of Galois geometries (projective spaces over finite fields),
conditional on their conjecture that the set of normalized {0, 1}-vectors arising from an arbit-
rary low-dimensional subspace of Fn

2 admits non-trivial approximation by a low-dimensional
Euclidean space. They show that if their conjecture is true, then there exists δ > 0, such
that RF2(Vd, n

(2/d)+δ) ≥ n1−2/d, where Vd is the n× n point–hyperplane incidence matrix of
the d-dimensional Galois geometry PG(d, q). Our results do not refute their conjecture, as
we prove upper bounds for the target rank of an order n · exp(−(log n)c), while [13] aims at
a much smaller target rank, n(2/d)+δ.

1.3 Implications to complexity theory

This line of work may lead to peculiar consequences in complexity theory. Gaps between
strict and absolute rigidity raise the prospect that rational linear functions may be easier to
compute by arithmetic circuits over larger fields than over Q.

▶ Problem 6. Does there exist a family of square matrices A over Q such that the linear
functions x 7→ Ax can be computed by logarithmic-depth, linear-size circuits over C but not
over Q ?

While C can be replaced by a finite extension of Q without changing the topology of
the circuit (Prop. 56), a field extension of bounded degree will not create a gap in circuit
complexity. Indeed, if the degree of the extension L/K is k then operations in L can be
simulated by operations on vectors of length k over K. So our belief that strong separation
of rigidity may exist already for quadratic extensions (Conj. 9), if true, will not help.

CCC 2021

41:4 Matrix Rigidity Depends on the Target Field

1.4 Our construction

We make the following “standard assumption.”

(∗) Let K be a field of characteristic zero and let L/K be a quadratic extension.

We prove that under this assumption, the rigidity with respect to K in general does not
equal the rigidity with respect to L. In order to show this, for some A ∈ Kn×n and r, k ≥ 1
one needs to establish both an upper bound and a lower bound,

(UB) RL(A, r) ≤ k (LB) RK(A, r) > k.

It is clear that for all A ∈ Kn×n, the inequality RK(A, r) ≤ (n− r)2 is satisfied. In [16],
Valiant showed that for an infinite field K, almost all matrices A ∈ Kn×n have maximal
possible absolute rigidity R∗(A, r) = (n− r)2. In particular, this means that we should not
expect (UB) to hold, unless A is selected in some special way.

We take the following approach. In order to automatically satisfy (UB) we start with
a matrix M ∈ Ln×n of rank r that has at most k entries not in K. Then every matrix A,
obtained from M by replacing these entries with elements from K, satisfies (UB). Hence,
we only need to show that for a proper choice of M and for a proper choice of changes for
elements not in K, A satisfies (LB).

By our standard assumption (∗), we can write L = K[ω] for some ω ∈ L with ω2 ∈ K.
We focus on the following (algebraic) sets of matrices:

Dr(K, ω) = {M ∈ K2r×2r | rank(M + ωI) ≤ r}, (1)

Cr(K, ω) = {M +D ∈ K2r×2r | M ∈ Dr(K, ω), D ∈ K2r×2r is diagonal}. (2)

By definition, for every A ∈ Cr(K, ω), RL(A, r) ≤ 2r. Our main result is the following.

▶ Theorem 7. Let r ≥ 3. There exists a matrix A ∈ Cr(K, ω) with RK(A, r) ≥ 3r − 2.

As an immediate corollary, we establish the promised gap between the strict and the
absolute rigidities.

▶ Theorem 8. Let K and L satisfy the standard assumption (∗). Then, for every ε > 0
and all sufficiently large r there exists a square matrix M ∈ K2r×2r satisfying RK(M, r) ≥
(3/2 − ε)RL(M, r).

We conjecture that much larger separation is possible.

▶ Conjecture 9. Let L = Q[
√

2]. There exist ε > 0 and matrices M of arbitrarily large order
n = 2r such that RQ(M, r) ≥ n1+ε, while RL(M, r) ≤ O(n).

In particular, we expect that such matrices M can be found in Cr(Q,
√

2).
We also ask whether the maximum possible rigidity can be achieved for matrices in Cr.

▶ Problem 10. Is it true that for infinitely many r there exists a matrix A ∈ Cr(Q,
√

2) with
RQ(A, r) = r2?

L. Babai and B. Kivva 41:5

1.5 Known lower bounds on rigidity: untouched minors
Despite decades of effort, progress on proving lower bounds on rigidity for explicit families of
matrices has been limited. The best known general lower bound for a family of explicit n×n

matrices A has the form R∗(A, r) = Ω((n2/r) log(n/r)) [5, 14]. This lower bound is achieved
through the “untouched minors argument”: If all (r + 1) × (r + 1) minors of a matrix A

are non-singular, then to reduce the rank of A to r, one needs to change at least one entry
in every such minor. However, as discussed in [10], that is the best bound one can achieve
through this argument.

For some semi-explicit families of matrices, stronger lower bounds are known. For n× n

matrices whose entries are square roots of distinct prime numbers, Lokam [11] gives optimal,
Ω(n2) absolute rigidity for rank r ≤ n/17. This result uses an algebraic dimension concept
introduced by Shoup and Smolensky [15].

In the domain of reduced randomness, Goldreich and Tal [6] show that for random n× n

Toepliz matrices A over F2 the bound RF2(A, r) = Ω(n3/(r2 log n)) holds for r ≥
√
n.

1.6 Key steps of the proof of Theorem 7. Organization of the paper
First, observe that untouched minors arguments alone cannot answer our question; they
do not distinguish between entries from K and L. In order to prove the lower bound in
Theorem 7 we use a combination of the untouched minors argument and arguments based
on elements of algebraic geometry about the structure of Dr(K, ω).

We begin by noticing that for almost all matrices A ∈ Cr(K, ω), all (r + 1) × (r + 1)
minors are non-singular (Lemma 32). So, an untouched minors argument can be used to
show that if RK(A, r) ≤ 3r − 3, then the entries that are being changed have a “nice” layout
inside [2r] × [2r]. More precisely, we argue that then there are (r + 2) columns with at most
1 element changed in each of them (see Section 3.1).

Next, assume that for some M ∈ Dr(K, ω) and every diagonal matrix D we have
RK(M + D, r) ≤ 3r − 3. We can argue that since there are only finitely many choices for
3r − 3 entries in [2r] × [2r], there should be a fixed set π of 3r − 3 cells in [2r] × [2r], such
that for a “large” set of diagonal matrices D, the rank of M +D can be made ≤ r by only
changing entries inside π (see Section 3.2).

Finally, we exploit the geometry of the set Dr = Dr(K, ω) to show that for almost all
matrices M ∈ Dr no such fixed π exists. In order to do this, we show that among 2r2 entries
in arbitrary r columns of M ∈ Dr there is no algebraic dependence imposed by Dr (see
Section 2). Next, we consider a properly chosen set of r + 2 columns with at most one entry
from π in each of them, and exploit the fact that we have sufficiently many algebraic degrees
of freedom for the entries in these columns so that changing entries in π typically is not
sufficient to make the rank of these columns to be r (see Sections 3.3 - 3.5). This last step is
the hardest part of the proof and requires us to consider several cases.

We present the parts of the proof in a slightly different order than described above. The
geometry of the set Dr is studied in Section 2. Other parts of the proof are contained in
Section 3. We combine these parts into a complete proof of Theorem 7 in Section 3.5.

In Section 4 we show that finite extensions suffice for absolute rigidity. In Section 5 we
prove the refutation of rigidity candidates mentioned in Sec. 1.2.

We review some basic concepts from algebraic geometry over arbitrary fields in Appendix A.
The proofs omitted in Section 3.4 are provided in Appendix B. The model-theoretic reduction
to countable fields is outlined in Appendix C. In Appendix D we exhibit a concrete 5 × 5
matrix of strict rigidity 9 and absolute rigidity 8. Some open problems are raised in Sec. 1.7.

CCC 2021

41:6 Matrix Rigidity Depends on the Target Field

1.7 Open problems
The most intriguing question to come out of this work is Problem 6, the separation of the
linear arithmetic complexity of linear functions by the extension field permitted in the circuit.

Strong separation between strict and absolute rigidities is suggested in Conjecture 9.
For a matrix over a field K, absolute rigidity can be achieved over a finite extension of K

(Prop. 49). However, that result is not effective.

▶ Problem 11. Is there a computable function f that maps rational matrices to positive
integers, such that the absolute rigidity of any rational matrix A can be achieved over an
extension of Q of degree ≤ f(A) ? Can such an f be made a function of the dimensions of
the matrix A?

Recent non-rigidity results [2, 3, 4] inspire the following problems.
We remind the reader that by a family of square matrices we mean a set of square

matrices of unbounded order.
In our submission to this conference (Feb. 15, 2021) we proposed the following conjecture.

▶ Conjecture 12. Let F be a finite set of matrices over C. Let A denote the set of all
possible Kronecker products of these matrices (taking each member of F any number of
times). Then no subfamily of A is Valiant-rigid over C.

We stated that this would generalize the result that the DFT matrices for abelian groups of
bounded exponent are not absolutely Valiant rigid [2, 4].

On Feb. 24, 2021, a paper by Josh Alman appeared on arXiv [1] that raises the same
question and answers it in the positive in the case that all matrices in the family F
have the same order. This restriction was subsequently removed by one of us, confirming
Conjecture 12 [8]. That paper also exponentially improves Alman’s non-rigidity exponent.
Like Alman’s, our result establishes strict non-rigidity. We state the main result of [8].

▶ Theorem 13 (Kivva [8]). Given d ≥ 2 and ε > 0, there exists γ > 0 such that the following
holds for any sequence of matrices M1, . . . ,Mn of respective orders di ≤ d over the field F.
Let M = ⊗n

i=1Mi and N =
∏n

i=1 di. If N ≥ d1/γ then RF(M,N1−γ) ≤ N1+ϵ. Here γ can be

chosen to be γ = Ω
(

1
d3/2 log3(d)

· ε2

log2(1/ε)

)
.

The following problem remains open.

▶ Problem 14. Does there exist a strictly Valiant-rigid family of rational circulant matrices?

No such family is absolutely rigid by Dvir and Liu [4].

2 Basic properties of Dr

We continue to make our standard assumption (∗). Let L = K[ω] be a quadratic extension,
where ω2 ∈ K. F denotes an arbitrary infinite field (not necessarily of characteristic zero).

Additionally, we assume that L is a subfield of C. This assumption can be made without
loss of generality. Indeed, a simple model-theoretic argument shows that we can assume that
K is countable (Prop. 91). The proof of Prop. 91 can also be adapted to reducing Theorem 7
to countable fields.

Since K and ω are fixed, we use the notation Dr = Dr(K, ω) and Cr = Cr(K, ω). Recall
that these are algebraic sets in K2r × K2r.

L. Babai and B. Kivva 41:7

2.1 Matrices over L of low rank and with few entries outside K
We start by giving a short motivation for the family Dr. Recall the following elementary fact
from linear algebra.

▶ Fact 15. Let M ∈ Fn×n be a matrix of rank r. Let L ∈ Fn×r be a matrix consisting of r
linearly independent columns of M . Then there exists R ∈ Fr×n such that M = LR.

Let L ∈ K[ω]n×r and R ∈ K[ω]r×n. Denote the i-th row of L by ai + biω and j-th column
by xj + yjω, where ai, bi, xj , yj ∈ Kr.

▶ Definition 16. For x, y ∈ Kn define ⟨x, y⟩ =
n∑

i=1
xi · yi.

▶ Observation 17. (LR)ij ∈ K if and only if ⟨xj , bi⟩ + ⟨yj , ai⟩ = 0.

▶ Remark 18. For a field extension of degree k, a similar criterion consists of k − 1 linear
equations to be satisfied by components of R.

▶ Corollary 19. Take n = 2r. Then for every choice of 2r linearly independent vectors
(ai, bi) ∈ K2r there exists a unique choice of 2r vectors (xi, yi) such that LR is in Dr + ωI.

Note that if n ≥ 2r, and L is a generic n×r matrix, we should expect at least n(n−2r+1)
entries of LR to be from L \ K. At the same time, RK(LR, r) ≤ (n − r)2. We prefer the
quotient of these numbers to be as small as possible, which is achieved for n = 2r (if n ≥ 2r).

2.2 Geometry of Dr

In this section we study the geometry of the set Dr. See Appendix A for some basic definitions
and facts from algebraic geometry that are used in this paper.

▶ Definition 20 (projS). For a matrix A ∈ Fn×n and S ⊆ [n] define projS(A) to be the
matrix consisting of columns of A with indices in S.

▶ Definition 21 (Small set). We say that a set A ⊆ Kn is small (in Kn) if it is contained in
a proper algebraic subset in Kn.

▶ Definition 22 (σMτ). For permutations σ ∈ Sn , τ ∈ Sm and an n×m matrix M , define
σMτ to be the matrix obtained from M by permuting rows by σ and columns by τ .

Our first goal is to show that for S ⊆ [2r] with |S| = r only a small set of matrices from
K2r×r is not in the image of projS : Dr → K2r×r. Note that for every permutation σ ∈ S2r

and M ∈ Dr we have σMσ ∈ Dr. Thus, it is sufficient to study proj[r].

▶ Lemma 23. Let A1, A2 ∈ Kr×r. Assume that A2 is invertible. Then(
A1 −A2

1A
−1
2 + ω2A−1

2
A2 −A2A1A

−1
2

)
∈ Dr. (3)

Proof. Observe that(
A1 + Iω −A2

1A
−1
2 + ω2A−1

2
A2 −A2A1A

−1
2 + Iω

)
=

(
A1 + Iω

A2

)
·
(
I, −A1A

−1
2 +A−1

2 ω
)
. ◀

Next, we observe that a simple condition on M ∈ Dr guarantees that proj[r] is injective.

CCC 2021

41:8 Matrix Rigidity Depends on the Target Field

▶ Lemma 24. Let A1, A2 ∈ Kr×r and M ∈ Dr. Assume that proj[r](M +ωI) =
(
A1 + ωI

A2

)
has rank r (over L). Then, A2 is invertible, and M is uniquely determined by proj[r](M),
and we have

M = ϕ[r]

(
A1
A2

)
:=

(
A1 −A2

1A
−1
2 + ω2A−1

2
A2 −A2A1A

−1
2

)
.

Proof. Denote L = proj[r](M + ωI). Since rank(L) = r, M + ωI = LR for some R ∈ Lr×2r.
Let R = (X1 + Y1ω,X2 + Y2ω) for X1, Y1, X2, Y2 ∈ Kr×r. The inclusion M ∈ Dr imposes
the following constraints.

A1Y1 +X1 = I, A1Y2 +X2 = 0, A2Y1 = 0 and A2Y2 = I. (4)

The last equality implies that A2 is invertible. Therefore Y1 = 0, Y2 = A−1
2 , X1 = I and

X2 = −A1A
−1
2 . ◀

Define U[r] to be the set of X ∈ K2r×r such that the matrix formed by the last r rows
of X is non-singular. Note that ϕ[r] : U[r] → K2r×r defined in the lemma above is a regular
map according to Def. 82 (see Lemma 83).

Due to Lemma 24, it will be convenient to work with the following subset of Dr.

D′
r = {M ∈ Dr | ∀S ⊂ [2r], |S| = r : rank(projS(M + ωI)) = r}. (5)

Let I2r,r ∈ K2r×r be the identity matrix padded with r zero rows. Define

L = {L ∈ K2r×r | all r × r minors of L+ ωI2r,r are non-singular}. (6)

▶ Observation 25. L is an irreducible Zariski-open subset of K2r×r.

Proof. The set of L for which L + ωI2r,r has a singular r × r minor is a finite union of
proper Zariski-closed subsets of K2r×r. Since, K2r×r is irreducible, this union is a proper
Zariski-closed subset. Hence L is Zariski-open and it is irreducible, as a Zariski-open subset
of an irreducible set. ◀

Then, by Lemmas 23 – 24, for every L ∈ L there exists a unique matrix M ∈ Dr with
proj[r](M) = L. For ϕ[r] as in Lemma 24, define

D∗
r = {ϕ[r](L)T | L ∈ L}. (7)

▶ Lemma 26. The set D∗
r is an irreducible quasi-affine variety. Moreover, D∗

r ⊆ D′
r, and for

every S ⊆ [2r] with |S| = r only a small set of matrices in K2r×r is not in projS(D∗
r) ⊆ K2r×r.

Proof. Observe, that for L ∈ L and M = ϕ[r](L), any r distinct rows of M + ωI are linearly
independent. Therefore, MT ∈ D′

r, and so D∗
r ⊆ D′

r. The set L ⊆ K2r×r is a non-empty
Zariski-open irreducible set. Recall that Dr is an affine algebraic set. By Lemma 24, the set
D∗

r is equal to ψ−1
[r] (L) ∩ Dr, where ψ[r] : K2r×2r → K2r×r is defined by M 7→ proj[r](MT).

Since ψ[r] is regular, D∗
r is a quasi-affine algebraic set. The map (ϕ[r])T : L → K2r×2r is

regular, so D∗
r is irreducible (see Obs. 76).

For every S ⊆ [2r] with |S| = r, let ϕS : US → K2r×2r (defined similarly as in Lemma 24)
be an inverse function to projS , where US is a Zariski-open subset of K2r×r where ϕS is
well-defined. The map ϕS is regular and injective. Therefore, by Lemma 24, projS(D∗

r) =
(ϕS ◦ ψ[r])−1(L), and so it is a Zariski-open subset of K2r×r. Hence, only a small set of
matrices in K2r×r is not in projS(D∗

r) ⊆ K2r×r. ◀

L. Babai and B. Kivva 41:9

Def. 78 defines the notion of “almost all elements” of an irreducible quasi-variety. Since
we have not proved that Dr is irreducible, we need a special definition to formalize our
references to “almost all elements of Dr.”

▶ Definition 27 (Almost all elements of Dr). We shall say that some property holds for
almost all matrices in Dr if it holds for almost all elements of D∗

r .

We believe that, in fact, Dr is irreducible. If that is the case, Def. 27 remains consistent with
Def. 78.

By Obs. 79, if each of a finite number of properties holds for almost all elements of Dr,
then they all hold simultaneously for almost all elements of Dr.
▶ Remark 28. If A ⊆ D∗

r is such that for some S ⊆ [2r] with |S| = r the set projS(A) is
small in K2r×r, then by Lemma 26, almost all matrices in Dr are not in A.

▶ Definition 29 (D#
r). Let D#

r denote the set of matrices M ∈ D∗
r such that for all k ≤ r

every k × k minor of M is non-singular.

▶ Corollary 30. D#
r is a non-empty Zariski-open subset of D∗

r .

Proof. Let X be the Zariski-open subset of K2r×r consisting of matrices with all k × k

minors being non-singular for all k ≤ r. Then, D#
r =

⋂
S⊆[2r], |S|=r

(
D∗

r ∩ proj−1
S (X)

)
. ◀

▶ Definition 31 (Diag(Fn×m)). Define Diag(Fn×m) to be the set of matrices in Fn×m that
have non-zero entries only in the cells with indices {(i, i) | 1 ≤ i ≤ min(n,m)}.

▶ Lemma 32. For every M ∈ D#
r let LM be the set of D ∈ Diag(K2r×2r) ∼= K2r such that

some (r + 1) × (r + 1) minor of M + D is singular. Then LM is a proper Zariski-closed
subset of Diag(K2r×2r).

Proof. Let X be an (r + 1) × (r + 1) minor of M + D that involves k diagonal entries
of D: x1, x2, . . . , xk. Then k > 0. Moreover, det(X) is a polynomial over K in variables
{xi | i ∈ [k]} and the coefficient in front of x1x2 . . . xk is the determinant of a minor
formed by rows and columns of X that have no diagonal entries of D. Since M ∈ D#

r , this
coefficient is non-zero. Hence, the set of D for which det(X) = 0 is a proper Zariski-closed
set in Diag(K2r×2r). Since Diag(K2r×2r) ∼= K2r is irreducible, the finite union (over all
(r+ 1) × (r+ 1) minors) of proper Zariski-closed subsets is a proper Zariski-closed subset. ◀

3 A lower bound on the strict rigidity for a matrix in Cr

In this section we prove the following stronger version of Theorem 7.

▶ Theorem 33. Let r ≥ 3. For almost all matrices M ∈ Dr there exists a diagonal matrix
D ∈ Diag(K2r×2r) such that RK(M +D, r) ≥ 3r − 2.

▶ Definition 34 (F(π)). For π ⊆ [n]× [m] denote by F(π) the subset of matrices in Fn×m with
zero entries in every cell outside of π (we assume that n and m are clear from the context).

Assume RK(M + D, r) ≤ 3r − 3 for all diagonal matrices D. Intuitively, since there
are only finitely many subsets π ⊂ [2r] × [2r] of size 3r − 3, there should exist π such
that for a “large set” of diagonal matrices D there exists a corresponding Z ∈ K(π) with
rank(M +D + Z) ≤ r. In Section 3.2, we are going to make this intuitive argument precise.

Then, in order to prove Theorem 33 it is sufficient to show that for an arbitrary fixed π

of size 3r − 3 for almost all matrices M ∈ Dr there is no “large set” of diagonal matrices D
such that rank(M +D + Z) ≤ r for all D is this set and all Z ∈ K(π).

CCC 2021

41:10 Matrix Rigidity Depends on the Target Field

3.1 Structure of the subsets of [2r] × [2r] with at most 3r − 3 elements
We start the discussion towards the proof of Theorem 33 with the study of the structure of
the subsets of [2r] × [2r] with at most 3r − 3 elements.

▶ Definition 35 (Well-distributed). Let m ≥ r + 1. We say that π ⊆ [2r] × [m] is well-
distributed, if every (r + 1) × (r + 1) minor contains at least one element of π.

Note that if π is not well-distributed and all (r + 1) × (r + 1) minors of A ∈ C2r×2r are
non-singular, then for every Z ∈ C(π) we have rank(A+ Z) ≥ r + 1. By Lemma 32, for all
M ∈ D#

r , for a Zariski-open (so, “large”) set of diagonal matrices D all (r + 1) × (r + 1)
minors of M +D are non-singular.

Hence, we mainly need to concentrate on well-distributed sets π.

▶ Observation 36. Let π ⊆ [2r] × [m] be well-distributed. Then for any set of r+ 1 columns,
π contains elements in at least r distinct rows.

Proof. If not, we immediately find an (r + 1) × (r + 1) minor with no elements from π. ◀

▶ Lemma 37. Let π ⊆ [2r] × [2r] be well-distributed. For each i ∈ [2r], let ti be the number
of elements of π in the i-th column. Let t(j) be the j-th smallest number among {ti | i ∈ [2r]}.
1. Then, either t(r+2) = 1, or |π| ≥ 3r − 2.
2. If t(1) = 1, then either t(r+3) = 1, or |π| ≥ 3r − 2.

Proof. Assume t(r+2) ≥ 2. By Observation 36, r + 1 columns that contain the least number
of elements from π have at least r elements from π. The other r− 1 columns contain at least
2(r − 1) elements from π. Thus, in this case, |π| ≥ 3r − 2.

Finally, if t(1) = t(r+2) = 1, but t(r+3) ≥ 2, then |π| ≥ 2(r − 2) + r + 2 = 3r − 2. ◀

▶ Definition 38 (Matching). We say that π ⊆ [n] × [m] is a matching if the projections of π
on each of its two coordinates are injective.

▶ Lemma 39. Let r ≥ 3. Assume that π ⊆ [2r] × [r + 3] has precisely one element in every
column and is well-distributed, then π contains a matching of size r + 2.

Proof. Note that |π| = r + 3 and Observation 36 implies that π has elements in at least r
rows. Since 3r > r + 3 for r ≥ 3 there is at least one row with ≤ 2 elements. Considering
r + 1 columns that do not contain these elements, by Observation 36, we get that π has
elements in at least r + 1 distinct rows. Since 2r + 1 > r + 3 for r ≥ 3 there are at least
two rows with precisely one element in each. We match each of these rows to the unique
available column. Consider the set of the other r + 1 columns. By Observation 36, there
are at least r rows that have elements in these columns. Since every column has precisely 1
element, by picking one element in each row we will get a matching of size r + 2. ◀

3.2 Reduction to a fixed well-distributed π

▶ Definition 40 (Unbounded). For a subfield F ⊆ C we say that a set of points {xi}i∈I ⊆ F
is unbounded, if it is unbounded as a set in C.

▶ Definition 41 (Cr,π, C′
r,π). For π ⊆ [2r] × [2r] define

Cr,π = {A ∈ Cr | ∃Z ∈ C(π) : rank(A+ Z) ≤ r}, and

C′
r,π = {A ∈ Cr | ∃Z ∈ K(π) : rank(A+ Z) ≤ r}. (8)

L. Babai and B. Kivva 41:11

▶ Lemma 42. Let M ∈ Dr and P be a finite collection of subsets of [2r] × [2r]. Let ΩM

be a non-empty Zariski-open set in Diag(K2r×2r). Assume that for every diagonal matrix
D ∈ ΩM we have M + D ∈

⋃
π∈P

Cr,π. Then there exist unbounded sets E1, E2, . . . E2r ⊆ K

and π ∈ P such that for all diagonal D with Dii ∈ Ei for all i ∈ [2r] we have M +D ∈ Cr,π.

Proof. For π ∈ P , consider the algebraic set

WM (π) = {(D,Z) | D ∈ Diag(C2r×2r), Z ∈ C(π), rank(M +D + Z) ≤ r}.

Since Diag(C2r×2r) ∼= C2r, we can treat WM (π) as a subvariety of C2r ×C|π|. The projection
on the first coordinate p : (D,Z) 7→ D is regular, so by Chevalley’s Theorem (Theorem 87) the
image p(WM (π)) under this projection is a constructible set for every π. Since a constructible
set is an intersection of a closed and an open set, for every π, either p(WM (π)) is Zariski-open,
or there exists a non-trivial polynomial fπ that completely vanishes on p(WM (π)). If neither
of p(WM (π)) is Zariski-open, then there exists a nontrivial polynomial (e.g.,

∏
π∈P fπ)

that vanishes on
⋃

π∈P p(WM (π)), and so vanishes on ΩM . This is a contradiction, as
Diag(K2r×2r) ∼= K2r is irreducible and ΩM is non-empty Zariski-open.

Hence, there exists π ∈ P , such that p(WM (π)) is Zariski-open in Diag(C2r×2r), and so
Ω′

M = ΩM ∩ p(WM (π)) is Zariski-open in Diag(K2r×2r). Hence, the claim of the lemma
follows from Lemma 85. ◀

Note that in the definition of Cr,π we allow the entries of Z to be from C instead of K.
So if P contains a superset of {(i, i) | i ∈ [2r]} the lemma above gives a trivial statement.
Thus we shall consider two different regimes, when π is “close to containing the diagonal”
and when it is not.

More precisely, as we saw in Lemma 37, there exists a subset S′ ⊂ [2r] of size r + 2 such
that every column with index in S′ has at most one element of π. We will discuss how to
pick S′ in Section 3.5, if for π this choice is not unique. We distinguish two cases: (a) when
π restricted to columns in S′ is a subset of the diagonal and (b) when it is not.

In the case (a) we will show that for almost all M ∈ D#
r for all diagonal D ∈ Diag(K2r×2r)

we have A = M +D /∈ C′
r,π.

By applying Lemma 42 to the collection of all π from the case (b), we get that there exists
a π from case (b) and a “large” set of diagonal matrices D such that A = M +D ∈ Cr,π. We
will argue that this does not happen for almost all M ∈ D#

r .
Both in case (a) and in case (b) we only study the matrix B = projS′(A) and show that

for almost all M there is no change of entries inside π that allows to get a matrix of rank
≤ r from B.

3.3 Case when π in columns S′ coincides with the diagonal
In the next lemma we show that for almost all M ∈ Dr there is no Z ′ ∈ Diag(K2r×(r+2))
such that rank(proj[r+2](M) + Z ′) ≤ r.

In this and next section we use ei to denote the vector in Kr with entry 1 in coordinate i
and 0 in all other coordinates.

▶ Lemma 43. Let r ≥ 3. Consider A1 ∈ Kr×r and an invertible matrix A2 ∈ Kr×r. Define

vi = −A2
1A

−1
2 ei + ω2A−1

2 ei and wi = −A2A1A
−1
2 ei.

For a diagonal matrix Z ∈ Kr×r and z1, z2 ∈ K consider

T (Z, z1, z2) =
(
A1 + Z v1 v2
A2 w1 + z1e1 w2 + z2e2

)
.

CCC 2021

41:12 Matrix Rigidity Depends on the Target Field

The set of matrices (A1, A2) ∈ K2r2 for which there exist Z ∈ Diag(Kr×r), z1, z2 ∈ K s.t.
rank(T (Z, z1, z2)) ≤ r is small in K2r2 .

Proof. Assume rank(T (Z, z1, z2)) ≤ r. Since A2 is invertible, the last two columns of
T (Z, z1, z2) can be expressed as a linear combination of the first r columns. Let yi ∈ Kr

satisfy(
A1 + Z

A2

)
yi =

(
vi

wi + ziei

)
.

Then

yi = A−1
2 (wi + ziei) ⇒ (A1 + Z)A−1

2 (wi + ziei) = vi,

−A2
1A

−1
2 ei + ziA1A

−1
2 ei + Z(−A1A

−1
2 ei + ziA

−1
2 ei) = −A2

1A
−1
2 ei + ω2A−1

2 ei.

Let αi = A1A
−1
2 ei and βi = A−1

2 ei. Then for all k ∈ [r] we have

Zkk = ω2βik − ziαik

−αik + ziβik
.

Hence, for all k ∈ [r],

ω2β1k − z1α1k

−α1k + z1β1k
= ω2β2k − z2α2k

−α2k + z2β2k
. (9)

This can be rewritten as

α2k

(
ω2β1k − z1α1k

−α1k + z1β1k
− z2

)
= z2β2k

(
ω2β1k − z1α1k

−α1k + z1β1k

)
− ω2β2k. (10)

The coefficient in front of α2k is 0 if and only if

ω2β1k − z1α1k = −z2α1k + z2z1β1k ⇔ β1k = z1 − z2

ω2 − z1z2
α1k.

Unless z1 = z2 = ±ω, such equation can hold for at most one index k, or the set (A1, A2) ∈
K2r2 is small. If the coefficient in front of α2k is non-zero for some k, then α2k can be
expressed as a rational function of α1k, β1k, β2k and z1, z2. Hence, for every k either α2k is
a function of α1k, β1k, β2k and two parameters z1, z2, or β1k is a function of α1k and z1, z2.
In any case, for r ≥ 3 we see that the set (A1, A2) ∈ K2r2 that satisfy Eq. (9) is small. ◀

3.4 Case when π in columns S′ does not coincide with the diagonal
In the lemmas below we think of T as of a matrix obtained by permuting rows and columns
of projS′(M + D + Z ′) for M ∈ D#

r , D ∈ Diag(K2r×2r) and Z ′ ∈ Cπ. The variables xi

correspond to selected diagonal entries of D and the variables Z, zi correspond to entries of
Z ′.

Let Ĉ = C ∪ {∞} be the Riemann sphere, i. e., the one-point compactification of C with
respect to the usual complex norm.

▶ Observation 44. Let f : Ĉ → Ĉ be defined as f(x) = ax+ b

cx+ d
for a, b, c, d ∈ C. If

{f(xk)}∞
k=1 converges to y in Ĉ, then there exists x ∈ Ĉ such that f(x) = y.

Proof. If ad − bc ̸= 0, take x to be the limit of {xk}∞
k=1 in Ĉ. Else, pick an arbitrary

x ∈ Ĉ. ◀

L. Babai and B. Kivva 41:13

▶ Lemma 45. Let r ≥ 3. Let j1 /∈ {1, 2} and j2 /∈ {2, j1} be elements of [r]. Let E1, E2 ⊆ K
be unbounded sets. For v1, v2, w1, w2 ∈ Kr, A1 ∈ Kr×r, an invertible matrix A2 ∈ Kr×r,
x1, x2 ∈ K, z1, z2 ∈ C and a diagonal matrix Z ∈ Cr×r consider

T (x1, x2, Z, z1, z2) =
(
A1 + Z v1 v2
A2 w1 + z1e1 + x1ej1 w2 + z2e2 + x2ej2

)
.

The set of (A1, A2) ∈ K2r2 , for which there exist v1, v2, w1, w2, s.t. for all x1 ∈ E1, x2 ∈ E2
there exist Z ∈ Diag(Cr×r), z1, z2 ∈ C s.t. rank(T (x1, x2, Z, z1, z2)) ≤ r, is small in K2r2 .

Proof. Since A2 is invertible and the rank of T (x1, x2, Z, z1, z2) is ≤ r, ∀i ∈ {1, 2} we have

(A1 + Z)A−1
2 (wi + ziei + xieji) = vi,

A1A
−1
2 (ziei + xieji

) + ZA−1
2 (wi + ziei + xieji

) = vi −A1A
−1
2 wi.

Denote γi = vi −A1A
−1
2 wi, αi = A1A

−1
2 ei, βi = A−1

2 ei and ϕi = A−1
2 wi. Then

Zkk = γik − ziαik − xiαjik

ϕik + ziβik + xiβjik
, ∀k ∈ [r], ∀i ∈ {1, 2}, so (11)

γ1k − z1α1k − x1αj1k

ϕ1k + z1β1k + x1βj1k
= γ2k − z2α2k − x2αj2k

ϕ2k + z2β2k + x2βj2k
∀k ∈ [r]. (12)

Fix x2 ∈ E2. By passing to a subsequence for x1 ∈ E1 we may assume that
lim

E1∋x1→∞
z1(x1, x2)/x1 = c ∈ Ĉ is well-defined. For this subsequence,

lim
E1∋x1→∞

γ2k − z2α2k − x2αj2k

ϕ2k + z2β2k + x2βj2k
= −α1kc+ αj1k

β1kc+ βj1k
∀k ∈ [r].

Hence, using Observation 44, there exists z2 = z2(x2) such that

γ2k − z2α2k − x2αj2k

ϕ2k + z2β2k + x2βj2k
= −α1kc+ αj1k

β1kc+ βj1k
∀k ∈ [r].

By passing to a subsequence for x2 ∈ E2 we may assume that lim
E2∋x2→∞

z2(x2)/x2 = c′ ∈ Ĉ.
Then

lim
E2∋x2→∞

α1kc(x2) + αj1k

β1kc(x2) + βj1k
= c′α2k + αj2k

c′β2k + βj2k
∀k ∈ [r].

Hence, using Observation 44, there exists c′′ such that

α1kc
′′ + αj1k

β1kc′′ + βj1k
= c′α2k + αj2k

c′β2k + βj2k
∀k ∈ [r]. (13)

Since j2 ̸= 2, this gives a dependence for αj2k on other variables with last index k and 2
parameters c′, c′′, if c′ ̸= ∞. If c′ = ∞, we get a dependence for α2k on other variables with
last index k and a parameter c′′. Hence for r ≥ 3 the set of matrices (A1, A2) ∈ K2r2 that
satisfy Eq. (13) is small in K2r2 . ◀

The next two lemmas can be proved in a similar fashion, so we defer their proofs to
Appendix B.

CCC 2021

41:14 Matrix Rigidity Depends on the Target Field

▶ Lemma 46. Let r ≥ 3. Consider A1 ∈ Kr×r and an invertible matrix A2 ∈ Kr×r. Define

vi = −A2
1A

−1
2 ei + ω2A−1

2 ei and wi = −A2A1A
−1
2 ei

Let E2 ⊆ K be an unbounded set. For a diagonal matrix Z ∈ Cr×r and z1, z2 ∈ C, x2 ∈ K,
consider

T (x2, Z, z1, z2) =
(
A1 + Z v1 v2
A2 w1 + z1e1 w2 + z2e3 + x2e2

)
.

The set of matrices (A1, A2) ∈ K2r2 , such that for all x2 ∈ E2 there exist Z ∈ Diag(Cr×r),
and z1, z2 ∈ C such that rank(T (x2, Z, z1, z2)) ≤ r, is small in K2r2 .

Proof. See Appendix B, Lemma 88. ◀

▶ Lemma 47. Let r ≥ 3. Let j1 /∈ {1, 2} be an element of [r]. Let E1, E2 ⊆ K be unbounded
sets. For v1, v2, w1, w2 ∈ Kr, A1 ∈ Kr×r, an invertible matrix A2 ∈ Kr×r, x1, x2 ∈ K,
z1, z2 ∈ C and a diagonal matrix Z ∈ Cr×r consider

T (x1, x2, Z, z1, z2) =
(
A1 + Z v1 v2 + x2e1
A2 w1 + z1e1 + x1ej1 w2 + z2e2

)
.

The set of matrices (A1, A2) ∈ K2r2 , for which there exist v1, v2, w1, w2 ∈ Kr, s.t. for all
x1 ∈ E1 and x2 ∈ E2 there exist Z ∈ Diag(Cr×r), z1, z2 ∈ C s.t. rank(T (x1, x2, Z, z1, z2)) ≤
r, is small in K2r2 .

Proof. See Appendix B, Lemma 89. ◀

▶ Remark 48. Note that in Lemmas 43 and 46 we assume that v1, v2, w1 and w2 have
the specific form given by Lemma 24, while in Lemmas 45 and 47 we cannot make such
assumption. The reason is that Lemmas 45 and 47 treat matrices obtained from M ∈ Dr

after its rows and columns are permuted in the way that does not respect the diagonal. And
so, in this case, Lemma 24 cannot be applied.

3.5 Proof of Theorem 33
Finally, we are ready to prove Theorem 33.

Proof of Theorem 33. Let P denote the collection of the subsets of [2r] × [2r] with precisely
3r − 3 elements. Let P0 ⊂ P denote the set of well-distributed π ∈ P .

Recall that D#
r denotes the set of matrices M ∈ D∗

r such that for all k ≤ r every k × k

minor of M is non-singular.
Fix M ∈ D#

r . Assume that for every D ∈ Diag(K2r×2r) we have RK(M +D, r) ≤ 3r − 3.
This means that for every D ∈ Diag(K2r×2r) there exists π ∈ P and Z ∈ K(π) such that

rank(M +D + Z) ≤ r.

Let LM be the set of D ∈ Diag(K2r×2r) ∼= K2r such that some (r + 1) × (r + 1) minor
of M +D is singular. By Lemma 32, LM is a proper Zariski-closed subset of Diag(K2r×2r).
Define ΩM = Diag(K2r×2r) \ LM .

Observe that for all D ∈ ΩM , for all π ∈ P \ P0 and for all Z ∈ C(π) we have

rank(M +D + Z) ≥ r + 1.

L. Babai and B. Kivva 41:15

From now on we restrict ourself to taking D ∈ ΩM . Hence, in the rest of the proof we
may assume that π is well-distributed.

Let S ⊆ [2r] denote the set of indices of columns that have at most 1 element of π. Then,
by Lemma 37, |S| ≥ r + 2, and if there is no column with 0 elements, then |S| ≥ r + 3.

Now we want to pick a subset S′ of r + 2 indices from S. We use the following rules.
1. If there is a column with index in S that contains 0 elements of π, select S′ to be an

arbitrary subset of S of size r + 2 that contains this index.
2. Otherwise, every column with index in S has precisely 1 element of π and |S| ≥ r + 3.

a. If π = {(i, i) | i ∈ S} pick S′ to be an arbitrary subset of S of size r + 2.
b. If π disagrees with the diagonal in precisely 1 position, choose S′ to consist of columns

where π agrees with the diagonal.
c. If π disagrees with the diagonal in precisely 2 positions, choose S′ to contain only one

column where they disagree. Moreover, using Lemma 39, we can pick such S′ so that
π restricted to columns in S′ defines a matching.

d. Else, π has at least 3 elements not on the diagonal. We claim that it is always possible
to pick S′ so that
π defines a matching, when it is restricted to the columns in S′.
π disagrees with the diagonal in at least 2 positions when it is restricted to the
columns with indices in S′.
π contains an element with column index in S′ and row index not in S′.

To justify that, first shrink S to be of size r + 3 by preserving the condition that π
disagrees with the diagonal in at least 3 columns. If π is a matching on S, choose any
(i, j) ∈ π with i ̸= j and define S′ = S \ {i}. Otherwise, by Lemma 39, π contains a
matching of size r + 2, so there is precisely one row i with 2 elements in columns j1
and j2. Moreover, there is j ∈ S such that the row with index j has no element of π.
To get S′ delete from S any of the elements j1, j2 that is different from j. Such S′

satisfies all the desired properties.

Let π′ ⊆ [2r] × S′ denote the restriction of π to the columns in S′ and define a matrix
B = projS′(M). If there is a column of B with no element of π′ we add an element to π′ in
this column to the row that has no element of π′, and if possible, with an index not in S′.
Thus, we may assume that every column of B contains precisely one element of π′, and π′

defines a matching.
By permuting the rows and columns of M in a way that preserves the diagonal, we may

assume that S′ = [r + 2]. We also assume that coordinates in ΩM are permuted accordingly.
We want to show that for almost all M and all π ∈ P0 there is no “large set” (in the

sense of Lemma 42) of diagonal matrices D ∈ Diag(K2r×2r) such that for arbitrary D in this
set rank(M +D + Z) ≤ r for some Z ∈ K(π).

To do this, we show how to permute rows and columns of B in order to apply one of the
lemmas proved in Sections 3.3 and 3.4. We have three cases for π′.
(A) If π′ coincides with the diagonal, then by Lemma 43 for almost all matrices M ∈ D#

r

there is no diagonal matrix Y ∈ Diag(K2r×(r+2)) such that B + Y has rank at most r.
(B) If π′ disagrees with the diagonal in precisely one column, then by the choice of S′, π′ has

an element in a row that is not in S′ = [r+2]. We may permute the rows and the columns
of B, so that the diagonal is preserved and π′ = {(i, i) | i ∈ [r + 1]} ∪ {(r + 3, r + 2)}.
Then it follows from Lemma 46 that for almost all matrices M ∈ D#

r there are no
unbounded sets E1, E2, . . . , Er+2 such that for every matrix D ∈ Diag(C2r×r) with
Dii ∈ Ei for i ∈ [r + 2] there exists Y ∈ C(π′) for which B +D + Y has rank at most r.

CCC 2021

41:16 Matrix Rigidity Depends on the Target Field

(C) If π′ disagrees with the diagonal in at least 2 columns, then, by the choice of S′, there
is a row with index j1 > r + 2 that has an element of π′ in the column i1 ∈ S′ = [r + 2].
Moreover, there is at least one other column i2 with an element of π not on a diagonal.
Since π′ defines a matching, we can permute the rows and the columns of B so that
π′ becomes the diagonal and columns i1, i2 are mapped to columns r + 1 and r + 2.
Let σ ⊆ [2r] × [r + 2] be the the image of the diagonal after such permutation. By the
construction of π′, σ has the entry in column r + 1 in the row with index ≥ r + 3 and
the entry in column r + 2 in the row distinct from r + 2. If the entry of σ in the last
column is in the row with index ≤ r we can further permute the first r columns and
rows in the way that preserves the diagonal, so that the entry of σ in the last column
becomes in the first row.
Let E1, E2, . . . , Er+2 be unbounded subsets of K (which may depend on M) and let
σ′ = σ \ {(i, i) | i ∈ [r]}. Let D ∈ K(σ) be such that Dij ∈ Ej for all (i, j) ∈ σ and let
D′ be a part of D supported on σ′. Then, by Lemma 45 and Lemma 47, if for every
D there exists Y ∈ Diag(C2r×(r+2)) such that B +D + Y has rank at most r, then for
every D, proj[r](B) +D′ belongs to a proper Zariski-closed subset Bπ′ of K2r×r, which
depends only on π′.
This means that there exists a non-trivial polynomial f ∈ K[xij]i∈[2r], j∈[r] such that
f(proj[r](B) +D′) = 0. Consider this as a polynomial with variables dij , which are the
(i, j)-th entries of D′ with (i, j) ∈ σ′. Since every variable dij independently can take
infinitely many values we get that this is a trivial polynomial in variables dij . Since f is
non-trivial, we get that entries of B satisfy some non-trivial polynomial.
Therefore, for almost all M ∈ D#

r there are no unbounded sets E1, E2, . . . , Er+2 such
that for every matrix D ∈ Diag(C2r×r) with Dii ∈ Ei for i ∈ [r + 2] there exists
Y ∈ C(π′) for which B +D + Y has rank at most r.

We see from (A), that there is a set M of almost all matrices M ∈ D#
r , such that for

all D ∈ ΩM and all well-distributed π, for which π′ coincides with the diagonal, there is no
Z ∈ K(π) with rank(M +D + Z) ≤ r.

Let P1 ⊆ P0 be the set of well-distributed π ⊆ [2r] × [2r] for which the π′, constructed
by the rules above, does not end up in case (A), i.e. π′ does not coincide with the diagonal.

Assume that M ∈ M. Then for any D ∈ ΩM there should exists a π ∈ P1 and Z ∈ K(π)

such that rank(M +D + Z) ≤ r. Using Lemma 42, applied with P = P1, we deduce that
there exists a set π ∈ P1 and unbounded sets E1, E2, . . . , E2r ⊆ K, such that for any D ∈
Diag(K2r×2r) withDii ∈ Ei for every i ∈ [2r], there exists Z ∈ C(π) with rank(M+D+Z) ≤ r.
Let S′ be as above and B = projS′(M). Then rank(B+projS′(D)+projS′(Z)) ≤ r. However,
for almost all matrices M this gives a contradiction with (B) or (C).

Thus, for almost all M ∈ D#
r there is D ∈ Diag(K2r×2r) with RK(M+D, r) ≥ 3r−2. ◀

4 Field extension: avoiding transcendentals

In this section we prove that absolute rigidity can always be achieved over a finite extension.
Recall that a field extension L/K is finite if dimK L is finite. Recall also that we wrote
R∗(A, r) to denote the absolute rigidity of A for target rank r.

▶ Proposition 49. Let A be a matrix over the field K. Then there exists a finite extension
L/K such that for all r ≥ 0 we have R∗(A, r) = RL(A, r).

▶ Notation 50 (weight). For a matrix A, let w(A), the weight of A, denote the number of
nonzero entries of A.

L. Babai and B. Kivva 41:17

We begin with some simple observations.

▶ Observation 51. If L/K is a field extension and A is a matrix over K, then, for all r ≥ 0,
we have RK(A, r) ≥ RL(A, r). ◀

▶ Definition 52. For a field K let cl(K) denote the algebraic closure of the pure transcendental
extension of K of countably infinite transcendence degree.

▶ Observation 53. Let A be a matrix over the field K. Then for all r ≥ 0, we have
R∗(A, r) = Rcl(K)(A, r).

Proof. Fix r. By definition, R∗(A, r) ≤ Rcl(K)(A, r). We need to prove the reverse inequality.
Let L be an extension of K such that R∗(A, r) = RL(A, r). So there exists a matrix D

over L, of weight R∗(A, r), such that rank(A−D) ≤ r. Let M ⊆ L be the subfield generated
by K and the elements of D. Then RL(A, r) = RM(A, r). But M can be embedded in cl(K)
and therefore, by Obs. 51, RM(A, r) ≥ Rcl(K)(A, r). So R∗(A, r) = RL(A, r) = RM(A, r) ≥
Rcl(K)(A, r). ◀

We shall need the following well-known result, which is often the first step in the proof of
Hilbert’s Nullstellensatz. See, e. g., Cor. 1.2 in Chap. 9, §1 of [9].

▶ Fact 54. Let L/K be a field extension. Assume L is a finitely generated K-algebra. Then
the extension L/K is finite.

Proof of Proposition 49. We need to achieve RL(A, r) = Rcl(K)(A, r) for all r. For each r

we have a matrix Zr over cl(K) of weight ≤ R∗(A, r) such that rankcl(K)(A− Zr) ≤ r. Let
Z denote the set of elements of the matrices Zr, r ≥ 0. This is a finite set. (If r ≥ rk(A)
then Zr = 0.) Let B = K[Z] denote the K-algebra generated by Z. Let M be a maximal
ideal of B, and let L = B/M. So L is an extension field of K.

Let φ : B → L denote the natural epimorphism. So φ fixes all elements of K. Moreover,
for every matrix B we have w(φ(B)) ≤ w(B) and rank(φ(B)) ≤ rank(B) (because singular
minors are mapped to singular minors). Therefore rank(A − φ(Zr)) = rankφ(A − Zr) ≤
rank(A − Zr) ≤ r, and w(φ(Zr)) ≤ w(Zr). This proves that RL(A, r) ≤ R∗(A, r). The
reverse inequality holds by definition.

Finally we need to show that the extension L/K is finite. This is immediate from Fact 54,
given that L = K[φ(Z)] is a finitely generated K-algebra which is a field. ◀

We observe that Prop. 49 is equivalent to saying that absolute rigidity is achieved over
the algebraic closure of the field of definition of the matrix.

▶ Corollary 55. Let A be a matrix over the field K. Then R∗(A, r) = RK(A, r), where K
denotes the algebraic closure of K. Moreover, this statement is equivalent to Prop. 49.

Proof. Assume Prop. 49. Let L be a finite extension of K such that R∗(A, r) = RL(A, r).
Then L can be embedded in K, so a reference to Obs. 51 proves the Corollary.

Now suppose the Corollary is true. For every r, let Br be the matrix over K such that
rank(Br) ≤ r and w(A− Br) = R∗(A, r). Let S ⊂ K be the (finite) set of elements of the
matrices Br. Then, for all r, we have R∗(A, r) = RK[S](A, r). But K[S] is a finite extension,
proving Prop. 49. ◀

A similar result holds for linear arithmetic circuits.

CCC 2021

41:18 Matrix Rigidity Depends on the Target Field

▶ Proposition 56. Let E/K be a field extension. Let A be a linear arithmetic circuit over
the field E that computes a linear function x 7→ Ax over K (so A is a matrix over K). Then
A can be simulated by a linear arithmetic circuit A′ over a finite extension of K such that
A′ has the same set of nodes and wires as A.

Proof. Each node of A computes an E-linear combination of its inputs. Let Z denote the
set of all the coefficients occurring at nodes. Let B = K[Z] denote the K-algebra generated
by Z. Let M be a maximal ideal of B, and let L = B/M. So L is an extension field of K.
We shall define the linear arithmetic circuit A′ over L.

Let φ : B → L denote the natural epimorphism. So φ fixes all elements of K. Now keep
all nodes and links in A but replace each scalar a ∈ Z involved in A (as a coefficient of
a linear combination at a gate) by φ(a). So this circuit will compute the transformation
x 7→ φ(A)x. But φ(A) = A (since φ fixes K pointwise), so the simulation is complete.

Finally, as before, the extension L/K = K[φ(Z)]/K is finite by Fact 54. ◀

5 Refutation of more candidates for rigidity

In this section we show that, as corollaries to the results of Dvir and Liu [4], more long-running
candidates for rigidity fail.

▶ Definition 57 (G-circulants). Let G be a finite abelian group of order n, and let A = (aij)
be an n × n matrix over a domain D. Let the rows and columns of A be labeled by the
elements of G. We say that A is a G-circulant if there is a function f : G → D such that for
all i, j ∈ G we have aij = f(i− j). A circulant matrix is a G-circulant where G is the cyclic
group of order n.

Recall that by a family of square matrices we mean a set of square matrices of unbounded
order.

▶ Theorem 58 (Dvir–Liu).
(a) No family of G-circulants over C (for variable G) is Valiant-rigid over C.
(b) No family of circulants over a fixed finite field is strictly Valiant-rigid.

Part (a) is stated in [4, Theorem 1.5]. Part (b) is stated in [4, Theorem 7.27].

5.1 Point–hyperplane incidence matrices
Finite projective geometries of dimension d are defined by geometric axioms. “Desargues’
Theorem” is not one of the axioms; geometries satisfying this additional axiom are called De-
sarguesian. The Desarguesian finite projective geometries are precisely the Galois geometries
PG(d, q) constructed from finite fields (q is the order of the field).

In fact, for d ≥ 3, all projective spaces are Desarguesian. However, this is not the case for
d = 2 (finite projective planes), so we need to make this distinction. Here we are interested
only in Galois geometries.

Let q be a prime power and d ≥ 2. The points as well as the hyperplanes of the d-
dimensional Galois geometry PG(d, q) can be represented by equivalence classes of nonzero
vectors in Fd+1

q , where the equivalence relation is defined by scaling (one vector is a scalar
multiple of the other). In particular, there are N := (qd+1 − 1)/(q − 1) points and the
same number of hyperplanes in this geometry. Let a be a point represented by a vector
x ∈ Fd+1

q \ {0} and let b be a hypeplane represented by a vector y ∈ Fd+1
q \ {0}. Then a and

b are incident if and only if xT y = 0 (x and y are “orthogonal”). (We view x, y as column
vectors.)

L. Babai and B. Kivva 41:19

The incidence matrix of this geometry is the N × N (0, 1) matrix of which the rows
are labeled by the points, the columns are labeled by the hyperplanes, and an entry of 1
represents incidence.

▶ Lemma 59. Let q be a prime power and d ≥ 2. Under appropriate numbering of the points
and hyperplanes, the point–hyperplane incidence matrix of the Galois geometry PG(d, q) is a
circulant matrix.

Proof. This is a consequence of the existence of a Singer cycle in GL(d+ 1, q), i. e., a linear
transformation σ of Fd+1

q that cyclically permutes the nonzero vectors. The existence of such
a transformation follows from the fact that the muliplicative group of Fqd+1 is cyclic: View
Fd+1

q as the additive group of Fqd+1 and let σ be the multiplication by a generator of the
multiplicative group of Fqd+1 ; this is a linear transformation of Fd+1

q .
Any linear transformation of Fd+1

q preserves the “scaling” equivalence relation, so σ also
gives a cyclic permutation of the points and the hyperplanes.

Let A ∈ GL(d+ 1, q) be an invertible matrix and let let B denote its inverse-transpose.
Then, for any x, y ∈ Fd+1

q we have xT y = 0 if and only if (Ax)T (By) = 0. So in this sense,
the pair (A,B) preserves orthogonality.

Let now A be the matrix of a Singer cycle and let B denote its inverse-transpose. Let a0
be a point represented by the vector x ̸= 0 and b0 a hyperplane represented by the vector
y ̸= 0. For k ∈ Z, let ak be the point represented by Akx and let bk be the hyperplane
represented by the vector Bky. So ai = aj if and only if i ≡ j (mod N), and the same holds
for the bi. We also note by the foregoing that ai and bj are incident if and only if ai+1 and
bj+1 are incident. This means that arranging the points in the order a0, . . . , aN−1 and the
hyperplanes in the order b0, . . . , bN−1, the incidence matrix becomes a circulant. ◀

We obtain the following two corollaries from Theorem 58.

▶ Corollary 60. For no family of Galois geometries is the corresponding family of point–
hyperplane incidence matrices absolutely Valiant-rigid in characteristic zero.

▶ Corollary 61. For no family of Galois geometries is the corresponding family of point–
hyperplane incidence matrices strictly Valiant-rigid over any fixed finite field.

Galois planes are the Galois geometries PG(2, q). It follows from Corollary 61 that
for no family of Galois planes is the corresponding family of point-line incidence matrices
Valiant-rigid over F2. This is noteworthy because Valiant [16] suggested (without making a
distinction between Desarguesian and non-Desarguesian planes) that the incidence matrices
of finite projective planes might be candidates for rigidity over F2.

5.2 Vandermonde matrices
In this section we show that Vandermonde matrices of which the generators form a geometric
progression are not absolutely Valiant-rigid.

▶ Definition 62 (G-Hankel matrices). Let G be a finite abelian group of order n. Let f : G → F
be a function from G to a field F. We define the G-Hankel matrix corresponding to f as the
n× n matrix, whose rows and columns are labeled by the elements of G, and the element in
position (g, h) is f(g + h).

As pointed out in [4], by permuting the rows of a G-Hankel matrix one can get a
G-circulant matrix. Therefore such a pair of matrices has the same rigidity.

The classical Hankel matrices are the special case of G-Hankel matrices where G is the
cyclic group of order n.

CCC 2021

41:20 Matrix Rigidity Depends on the Target Field

▶ Observation 63. Let V be a Vandermonde matrix over a field K with generators that form
a geometric progression. Then there exist diagonal matrices D1 and D2 over K such that
D1V D2 is a Hankel matrix.

Proof. Assume that the generators of V are sai−1 for i = 1, 2, . . . , n. Then the (i, j)-th entry
of V is s(j−1)a(i−1)(j−1). Define a pair of diagonal matrices with entries

(D1)ii = ai(i−1)/2 and (D2)jj = s−(j−1)aj(j−1)/2.

Clearly, the entries of D1 and D2 belong to K. Moreover,

(D1V D2)ij = a1+(i+j)(i+j−3)/2.

Thus, D1V D2 is a Hankel matrix. ◀

This observation, combined with part (a) of Theorem 58 by Dvir and Liu, yields the
following corollary.

▶ Corollary 64. Let F be a family of Vandermonde matrices over fields of characteristic zero,
with generators that form a geometric progression. Then F is not absolutely Valiant-rigid.

Proof. Note that multiplication by a diagonal matrix with non-zero entries does not change
rigidity, so for D1 and D2 defined as above, RK(V, r) = RK(D1V D2, r). ◀

5.3 Paley–Hadamard matrices
Hadamard matrices have for decades been considered candidates for rigidity. To everyone’s
surprise, Alman and Williams [2] recently showed that the Walsh–Hadamard matrices are
not strictly Valiant-rigid.

In this section we remove a lot more Hadamard matrices from the list of rigidity candidates.

▶ Corollary 65. No family of Paley–Hadamard matrices is absolutely Valiant-rigid.

While the orders of the Walsh–Hadamard matrices are the powers of 2, the Paley–
Hadamard matrices are exponentially more frequent: for every prime power q ≡ −1 (mod 4)
there is a Paley–Hadamard matrix of order q + 1, and for every prime power q ≡ 1 (mod 4)
there is a Paley–Hadamard matrix of order 2q + 2.

Let q be an odd prime power and let χ : Fq → {0, 1,−1} ⊆ C denote the quadratic
character over Fq. So for x ∈ Fq, we have χ(x) = 0 if x = 0; χ(x) = 1 if x ≠ 0 is a square in
Fq and χ(x) = −1 if x is not a square.

▶ Definition 66 (Paley–Hadamard matrices). For an odd prime power q define a q× q matrix
Q with Qi,j = χ(i− j).

if q ≡ −1 mod 4, consider a matrix H = I +
(

0 1T

1 Q

)
, where 1 is an all-ones vector.

if q ≡ 1 mod 4, consider a matrix H obtained by replacing each entry of
(

0 1T

1 Q

)
with

a 2 × 2 matrix in the following way.

1. Each entry 0 is replaced with
(

1 −1
−1 −1

)
;

2. Each entry ±1 is replaced with ±
(

1 1
1 −1

)
.

The matrix H is a Hadamard matrix and is called a Paley–Hadamard matrix.

L. Babai and B. Kivva 41:21

▶ Observation 67. Let q be an odd prime power and let Q be the corresponding Paley–
Hadamard matrix.

If q ≡ −1 mod 4, then the lower right q × q submatrix of H is a G-circulant matrix,
where G is the additive group of Fq.
If q ≡ 1 mod 4, then the lower right 2q × 2q submatrix of H consists of 4 blocks that are
G-circulants for the additive group of Fq.

Proof. If q ≡ −1 mod 4, the statement immediately follows from the definition of the matrix
Q. If q ≡ 1 mod 4, denote by H0 the right-lower 2q × 2q submatrix. Note that the matrix
obtained from H0 by looking at the entries on the intersection of odd rows and odd columns
is Q+ I, and so is a circulant. Similarly, the matrices obtained by looking at the intersection
of even rows and even columns, odd rows and even columns, and even rows and odd columns
are circulants. ◀

This observation, combined with Theorem 58, proves Corollary 65.

References
1 Josh Alman. Kronecker products, low-depth circuits, and matrix rigidity. In Proc. 53rd

ACM Symp. on Theory of Computing (STOC’21), pages 772–785, 2021. arXiv:2102.11992.
doi:10.1145/3406325.3451008.

2 Josh Alman and Ryan Williams. Probabilistic rank and matrix rigidity. In Proc. 49th STOC,
pages 17:1–17:23. ACM Press, 2017. doi:10.1145/3055399.3055484.

3 Zeev Dvir and Benjamin Edelman. Matrix rigidity and the Croot-Lev-Pach lemma. Theory of
Computing, 15(8):1–7, 2019. doi:10.4086/toc.2019.v015a008.

4 Zeev Dvir and Allen Liu. Fourier and circulant matrices are not rigid. Theory of Computing,
16(20):1–48, 2020. doi:10.4086/toc.2020.v016a020.

5 Joel Friedman. A note on matrix rigidity. Combinatorica, 13(2):235–239, 1993. doi:10.1007/
BF01303207.

6 Oded Goldreich and Avishay Tal. Matrix rigidity of random Toeplitz matrices. Com-
put. Complexity, 27(2):305–350, 2018. Preliminary version in STOC’16. doi:10.1007/
s00037-016-0144-9.

7 Robin Hartshorne. Algebraic geometry. Graduate texts in mathematics (52) Springer, 1977.
8 Bohdan Kivva. Improved upper bounds for the rigidity of Kronecker products. arXiv, 2021.

arXiv:2103.05631.
9 Serge Lang. Algebra, volume 211 of Grad. Texts in Math. Springer, 3rd edition, 1996.

10 Satyanarayana V. Lokam. On the rigidity of Vandermonde matrices. Theoret. Comput. Sci.,
237(1–2):477–483, 2000. doi:10.1016/S0304-3975(00)00008-6.

11 Satyanarayana V. Lokam. Quadratic lower bounds on matrix rigidity. In Internat. Conf.
on Theory and Appl. of Models of Computation (TAMC’06), pages 295–307. Springer, 2006.
doi:10.1007/11750321_28.

12 Alexander Razborov. On Rigid Matrices. Technical report, Steklov Mathematical Institute,
1989.

13 Alex Samorodnitsky, Ilya Shkredov, and Sergey Yekhanin. Kolmogorov width of discrete linear
spaces: an approach to matrix rigidity. Computational Complexity, 25(2):309–348, 2016.

14 Mohammad Amin Shokrollahi, Daniel A. Spielman, and Volker Stemann. A remark on matrix
rigidity. Inform. Process. Lett., 64(6):283–285, 1997. doi:10.1016/S0020-0190(97)00190-7.

15 Victor Shoup and Roman Smolensky. Lower bounds for polynomial evaluation and interpolation.
Computational Complexity, 6(4):301–311, 1997.

16 Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Math. Found. Comp.
Sci. (MFCS’77), pages 162–176. Springer, 1977. doi:10.1007/3-540-08353-7_135.

CCC 2021

https://arxiv.org/abs/2102.11992
https://doi.org/10.1145/3406325.3451008
https://doi.org/10.1145/3055399.3055484
https://doi.org/10.4086/toc.2019.v015a008
https://doi.org/10.4086/toc.2020.v016a020
https://doi.org/10.1007/BF01303207
https://doi.org/10.1007/BF01303207
https://doi.org/10.1145/2897518.2897633
https://doi.org/10.1007/s00037-016-0144-9
https://doi.org/10.1007/s00037-016-0144-9
http://arxiv.org/abs/2103.05631
https://doi.org/10.1016/S0304-3975(00)00008-6
https://doi.org/10.1007/11750321_28
https://doi.org/10.1016/S0020-0190(97)00190-7
https://doi.org/10.1007/3-540-08353-7_135

41:22 Matrix Rigidity Depends on the Target Field

A Basic concepts of algebraic geometry

In this appendix we review basic notions of the algebraic geometry that are needed in this
paper. Our definitions follow [7], but, critically, we do not make the assumption that a field
is algebraically closed.

Let F be an infinite field. F[x1, x2, . . . , xn] denotes the ring of polynomials in variables
x1, x2, . . . , xn, with coefficients in F.

▶ Definition 68 (Affine algebraic set [7, p.2]). A set V ⊆ Fn is called an (affine) algebraic
set if it is the set of common zeros of a set of polynomials, P ⊆ F[x1, x2, . . . , xn].

▶ Theorem 69 (Hilbert basis theorem). Every affine algebraic set in Fn can be defined by a
finite set of polynomials in F[x1, x2, . . . , xn].

▶ Definition 70 (Irreduciblility). A topological space is irreducible if it is not a union of two
nonempty proper closed subsets.

▶ Observation 71. The intersection of a finite number of non-empty open subsets of an
irreducible topological space is non-empty (and open).

Proof. For two sets this is equivalent to the definition of irreducibility; the full statement
follows by induction. ◀

▶ Definition 72 (Zariski topology 1 [7, p.2]). The Zariski topology on Fn is the topology in
which the closed sets are precisely the affine algebraic sets of Fn.

▶ Proposition 73. The Zariski topology on Fn is a topology, and Fn is irreducible.

Proof. To prove irreducibility, let A1 and A2 be two Zariski-closed proper subsets of Fn. Let
the nonzero polynomial fi vanish on Ai. Let a ∈ Fn be a point at which (f1f2)(a) ̸= 0. It
follows that a /∈ A1 ∪A2. ◀

▶ Definition 74 (Locally closed set). In a topological space, a set is called locally closed if it
can be written as an intersection of an open set and a closed set.

▶ Definition 75 (Zariski topology 2). Let V ⊆ Fn be a locally closed set in the Zariski topology.
The Zariski topology on V is the restriction of the Zariski topology on Fn to V .

▶ Observation 76. Let V and W be topological spaces. Let f : V → W be a continuous
surjective map. If V is irreducible, then W is irreducible.

▶ Definition 77 ((Quasi-)affine variety [7, p.3]). An irreducible affine algebraic set is called
an affine variety. A Zariski-open subset of an affine variety is called a quasi-affine variety.

It is easy to see that a quasi-affine variety is irreducible by definition.

▶ Definition 78 (Almost all). We say that some property holds for almost all points in a
(quasi-)affine variety if it holds for some non-empty Zariski-open subset of the variety.

We now restate Obs. 71.

▶ Observation 79. If each of a finite number of properties holds for almost all points of a
quasi-variety V , then they all hold simultaneously for almost all points of V .

L. Babai and B. Kivva 41:23

▶ Definition 80 (Regular function [7, p.15]). Let V be a quasi-affine variety in Fn. A function
f : V → F is regular at a point p ∈ V if there exists a Zariski-open neighbourhood p ∈ U ⊂ V

and polynomials g, h ∈ F[x1, x2, . . . , xn] such that h is nowhere zero on U and f = g/h on
U . We say that f is regular on V if it is regular at every point of V .

▶ Lemma 81 ([7, Lemma 3.1]). A regular function f : V → F is continuous.

▶ Definition 82 (Morphism [7, p.15]). Let V,W be a pair of quasi-affine varieties. A morphism
(or a regular map) ϕ : V → W is a continuous map such that for every open set U ∈ W ,
and for every regular function f : U → F the function f ◦ ϕ : ϕ−1(U) → F is regular.

Clearly, the composition of two morphisms is a morphism.

▶ Lemma 83 ([7, Lemma 3.6]). Let X be a quasi-affine variety and Y ⊆ F be an affine
variety. A map (of sets) ϕ : X → Y is a morphism if and only if xi ◦ ϕ is a regular function
on X for each i, where x1, x2, . . . , xn are the coordinate functions on Fn.

▶ Observation 84. Let E1, E2, . . . , En be infinite subsets of F. Suppose the polynomial
f ∈ F[x1, x2, . . . , xn] vanishes on the Cartesian product E1 × · · · × En. Then f is the zero
polynomial.

▶ Lemma 85. Let U be a non-empty Zariski-open subset of Fn, where F is a subfield of C.
Then there exist E1, E2, . . . En ⊆ F such that E1 ×· · ·×En ⊆ U and each Ei is an unbounded
set in C.

Proof. Since U is Zariski-open, there exists a polynomial f ∈ F[x1, . . . , xn], such that if
f(a1, . . . an) ̸= 0, then (a1, . . . , an) ∈ U . Let E′

1, E
′
2, . . . E

′
n ⊆ F be finite sets, such that for

all ai ∈ E′
i, i ∈ [n] we have f(a1, a2, . . . , an) ̸= 0. Then it is easy to see that for an arbitrary

j there exists bj /∈ E′
j such that the same condition holds when E′

j is replaced with E′
j ∪ {bj}.

Moreover, such bj can be taken so that its complex norm is greater than 1 plus the maximum
of the norms of all elements that are currently in E′

j . Since we can in turn increment the
size of each Ei, the claim follows by passing to the limit. ◀

▶ Definition 86 (Constructible set). In a topological space, a set is called constructible if it
is a finite union of locally closed sets.

▶ Theorem 87 (Chevalley’s theorem). Let f : V → W be a regular map between algebraic
sets over F. Then f(V) is a constructible set in the Zariski topology on W .

B Omitted proofs

In this appendix we provide the proofs of Lemmas 46 and 47.

▶ Lemma 88. Let r ≥ 3. Consider A1 ∈ Kr×r and an invertible matrix A2 ∈ Kr×r. Define

vi = −A2
1A

−1
2 ei + ω2A−1

2 ei and wi = −A2A1A
−1
2 ei

Let E2 ⊆ K be an unbounded set. For a diagonal matrix Z ∈ Cr×r and z1, z2 ∈ C, x2 ∈ K
consider

T (x2, Z, z1, z2) =
(
A1 + Z v1 v2
A2 w1 + z1e1 w2 + z2e3 + x2e2

)
.

The set of matrices (A1, A2) ∈ K2r2 such that for all x2 ∈ E2 there exist Z ∈ Diag(Cr×r),
and z1, z2 ∈ C such that rank(T (x2, Z, z1, z2)) ≤ r is small in K2r2 .

CCC 2021

41:24 Matrix Rigidity Depends on the Target Field

Proof. Assume rank(T (x2, Z, z1, z2)) ≤ r. Since A2 is invertible, the last two columns of
B(x2, Z, z1, z2) can be expressed as a linear combination of the first r columns.

For convenience, define x1 = 0, j1 = 1 and j2 = 3. Let yi ∈ Kr satisfy(
A1 + Z

A2

)
yi =

(
vi

wi + zieji
+ xie2

)
.

Then

yi = A−1
2 (wi + zieji + xie2) ⇒ (A1 + Z)A−1

2 (wi + zieji + xie2) = vi,

−A2
1A−1

2 ei+ziA1A−1
2 eji +xiA1A−1

2 e2+Z(−A1A−1
2 ei+ziA

−1
2 eji +xiA

−1
2 e2) = −A2

1A−1
2 ei+ω2A−1

2 ei.

Let αi = A1A
−1
2 ei and βi = A−1

2 ei. Then for all k ∈ [r] we have

Zkk = ω2β1k − z1α1k

−α1k + z1β1k
and Zkk = ω2β2k − z2α3k − x2α2k

−α2k + z2β3k + x2β2k
.

Hence, for all k ∈ [r],

ω2β1k − z1α1k

−α1k + z1β1k
= ω2β2k − z2α3k − x2α2k

−α2k + z2β3k + x2β2k
. (14)

By passing to a subsequence for x2 ∈ E2 we may assume that lim
E2∋x2→∞

z2(x2)/x2 = c ∈ Ĉ

and lim
E2∋x2→∞

z1(x2) = c′ ∈ Ĉ are well-defined. Then we must have

ω2β1k − c′α1k

−α1k + c′β1k
= −cα3k + α2k

cβ3k + β2k
∀k ∈ [r].

If c ̸= ∞, for every k this gives a non-trivial rational equation for α2k in terms of other
variables αik, βik and c, c′. If c = ∞, for every k we get a nontrivial rational equation for α3k

in terms of other variables and c′. In any case, for r ≥ 3 the set of matrices (A1, A2) ∈ K2r2

that satisfy Eq. (14) is small in K2r2 . ◀

▶ Lemma 89. Let r ≥ 3. Let j1 /∈ {1, 2} be an element of [r]. Let E1, E2 ⊆ K be unbounded
sets. For v1, v2, w1, w2 ∈ Kr, A1 ∈ Kr×r, an invertible matrix A2 ∈ Kr×r, x1, x2 ∈ K,
z1, z2 ∈ C and a diagonal matrix Z ∈ Cr×r consider

T (x1, x2, Z, z1, z2) =
(
A1 + Z v1 v2 + x2e1
A2 w1 + z1e1 + x1ej1 w2 + z2e2

)
.

The set of matrices (A1, A2) ∈ K2r2 , for which there exist v1, v2, w1, w2 ∈ Kr, s.t. for all
x1 ∈ E1 and x2 ∈ E2 there exist Z ∈ Diag(Cr×r), z1, z2 ∈ C s.t. rank(T (x1, x2, Z, z1, z2)) ≤
r, is small in K2r2 .

Proof. Similarly, as in Lemma 45, Eq. (11) holds for i = 1. For the second column we get

(A1 + Z)A−1
2 (w2 + z2e2) = v2 + x2e1.

Denote γi = vi −A1A
−1
2 wi, αi = A1A

−1
2 ei, βi = A−1

2 ei and ϕi = A−1
2 wi, then

Zkk = γ2k − x21[k = 1] − z2α2k

ϕ2k + z2β2k
.

L. Babai and B. Kivva 41:25

Combining this with Eq. (11) for i = 1, we get

γ1k − z1α1k − x1αj1k

ϕ1k + z1β1k + x1βj1k
= γ2k − x21[k = 1] − z2α2k

ϕ2k + z2β2k
.

Similarly, as in Lemma 45, by fixing x2 ∈ E2 and passing to the subsequence for x1 ∈ E1, we
deduce that there exist c(x2) ∈ Ĉ and z2 = z2(x2) ∈ Ĉ such that

γ2k − x21[k = 1] − z2α2k

ϕ2k + z2β2k
= −α1kc(x2) + αj1k

β1kc(x2) + βj1k
∀k ∈ [r].

Again, as in Lemma 45, by passing to the subsequence for x2 ∈ E2 we may deduce that there
exist c′ and c′′ in Ĉ such that

1[k = 1] + c′α2k

c′β2k
= α1kc

′′ + αj1k

β1kc′′ + βj1k
∀k ∈ [r]. (15)

If c′′ ̸= 0, then α1k can be expressed through other variables αik, βik and c′, c′′. Since j1 ̸= 2,
if c′′ = 0, then αj1k can be expressed in terms of other variables αik, βik and c′. Thus, the
set of matrices (A1, A2) that satisfy Eq. (15) is small in K2r2 . ◀

C Reduction to countable fields

In this section we outline the basic model theory that allows us to consider countable fields
only for our main result.

▶ Proposition 90. Let us fix positive integers n, r, s. Let X = (xij) be an n× n matrix of
variables. Then there is a first-order formula φ(xij) in the language of fields that expresses,
over any field F, the statement that RF(X, r) = s.

Proof. Rank is first-order expressible (look at a finite number of determinants). There is a
finite number of s-tuples where the matrix can be changed. Combine these. ◀

Let us fix positive integers n, r, s, t. We wish to prove a statement of the following form:

(∗∗) If K is a field of characteristic zero and L/K is a quadratic extension then there
exists an n× n matrix A over K such that RK(A, r) ≥ s and RL(A, r) ≤ t.

▶ Proposition 91. If statement (∗∗) holds whenever K is countable then it always holds.

Proof. Let L = K[ω] where ω2 =: u ∈ K. Let us add a name for u as a constant to the
signature of rings, so we talk about the model (K, u). By the downward Löwenheim–Skolem
theorem, this model has a countable elementary submodel (K′, u). Let now L′ = K′[ω]. So
L′/K′ is a quadratic extension (because u ∈ K′).

Let us now apply (∗∗) to this extension. Let A be a matrix over K′ with the required
properties: RK′(A, r) ≥ s and RL′(A, r) ≤ t.

Now RL(A, r) ≤ t follows immediately because L′ ⊆ L. On the other hand, in the light
of Prop. 90, RK′(A, r) = RK(A, r), because K′ is an elementary submodel of K. ◀

CCC 2021

41:26 Matrix Rigidity Depends on the Target Field

D A 5 × 5 matrix with different strict and absolute rigidity

In this appendix we provide a concrete example of a matrix that shows a difference between
strict and absolute rigidity. Specifically, we exhibit a matrix A ∈ Q5×5 such that RQ(A, 2) = 9
and RQ[

√
2](A, 2) = 8. Consider the 5 × 2 and 2 × 5 matrices

L =

1 −

√
2√

2 −1
3 −

√
2 1

12 − 7
√

2 1
10 − 7

√
2 1 + 2

√
2

 and R =
(

1 0 2 +
√

2 3 + 2
√

2 1√
2 1 1 + 2

√
2 2 − 3

√
2 3 +

√
2

)
.

The product LR has 8 irrational entries:

L ·R =

−1 −

√
2 −2 9 −1 − 3

√
2

0 −1 1 2 + 6
√

2 −3
3 1 5 + 3

√
2 7 6

12 − 6
√

2 1 11 10 15 − 6
√

2
14 − 6

√
2 1 + 2

√
2 15 −8 17

The following matrix, A ∈ Q5×5, differs from LR in only these 8 entries.

A = 1
16

−16 34 −32 144 67

0 −16 16 −89 −48
48 16 43 112 96
137 16 176 160 −92
39 73 240 −128 272

 (16)

In other words,

A− LR =

0 ∗ 0 0 ∗
0 0 0 ∗ 0
0 0 ∗ 0 0
∗ 0 0 0 ∗
∗ ∗ 0 0 0

 , (17)

where each ∗ hides some non-zero entry. We selected every entry of A at positions marked
by ∗ independently uniformly at random from {−135/16,−134/16, . . . , 135/16}.

Note that Eq. (17) immediately implies that RQ[
√

2](A, 2) ≤ 8.
We use exhaustive computer search to verify that RQ(A, 2) > 8. We consider all the(25

8
)

= 1, 081, 575 combinations of 8 cells among the 5 × 5 cells. Having fixed a set of 8
cells, we introduce variables for their entries, and use Matlab to verify that the system of(5

3
)2 = 100 polynomial equations, saying that the determinant of every 3 × 3 minor is zero,

has no rational solutions. In fact, we obtain the following stronger result.

▶ Proposition 92. If a 5 × 5 complex matrix B of rank ≤ 2 differs from A in at most 8
positions then B is either LR or its algebraic conjugate (replace every occurrence of

√
2 by

−
√

2).

	p000-Frontmatter
	Preface
	Awards
	Conference Organization
	External Reviewers

	p001-Cohen
	1 Introduction
	1.1 Locally decodable codes and locally correctable codes
	1.2 Our contribution
	1.2.1 Rate amplification
	1.2.2 Query-efficient distance amplification

	2 Proof overview
	2.1 A characterization of non-adaptive linear LCC
	2.1.1 Dual SLR and their induced SLR

	2.2 Rate amplification for dual-induced SLR
	2.2.1 Axis evasive partitions
	2.2.2 Constructing axis-evasive partitions
	2.2.3 Rate amplification for dimension higher than two

	2.3 Query-efficient distance amplification

	3 Preliminaries
	3.1 Samplers
	3.2 Codes

	4 Rate amplification for dual-induced SLR
	4.1 Dual SLR and their induced SLR
	4.2 Rate amplification for dual-induced SLR
	4.3 Distance-efficient rate amplification
	4.4 Proofs of Theorem 3 and Corollary 4

	5 Axis-evasive partitions
	5.1 Existential proof
	5.2 Explicit constructions

	6 Query-efficient distance amplification
	6.1 The distance amplification procedure
	6.2 Analysis
	6.2.1 Proof of Theorem 5

	6.3 Relaxing the assumption on the sampler G
	6.4 Reduction to LDC with polynomially-small (and even smaller) distance
	6.4.1 Proofs of Corollary 6 and Corollary 7

	6.5 Proof of Corollary 8
	6.6 Explicit reduction to LDC with polynomially-small distance

	p002-Linial
	1 Introduction
	2 Proof of Theorem 1
	3 Applications in additive combinatorics
	4 Discussion

	p003-Itsykson
	1 Introduction
	1.1 Communication complexity of search problems
	1.2 Search problem Search(phi) o XOR
	1.3 Perfect matching principle in tree-like Res(XOR)
	1.4 Bit pigeonhole principle
	1.4.1 Bit pigeonhole principle with XOR-gadget
	1.4.2 Bit pigeonhole without XOR-gadget

	1.5 Open questions

	2 Preliminaries
	3 Communication protocols from tree-like Res(PC d) proofs
	4 Perfect matching
	5 Bit pigeonhole principle with parity gadget
	5.1 Warm-up example
	5.2 Proof of Theorem 18
	5.3 Constructions of Xi, alpha and beta
	5.4 Proof of Lemma 21
	5.5 Corollaries

	6 Bit pigeonhole principle
	6.1 Reduction from BPHP o XORk to BPHP
	6.2 Upper bound for communication complexity of Search(BPHP)
	6.3 Short Th(log n) proof of BPHP

	A Proof of Lemma 12

	p004-Kumar
	1 Introduction
	1.1 Computing with Determinants
	1.2 Previous work
	1.3 Our result
	1.4 Overview of the proof

	2 Preliminaries
	3 A lower bound on determinantal complexity
	3.1 Reducing the matrix M to a normal form
	3.2 Determinantal complexity of higher degree polynomial maps
	3.3 Completing the proof of Theorem 1

	p005-Braverman
	1 Introduction
	1.1 2-Prover-1-Round Games and Parallel Repetition
	1.2 A symmetric variant of Parallel Repetition
	1.3 Our results
	1.4 Significance of our results for symmetric parallel repetition
	1.5 Techniques

	2 Preliminaries
	2.1 Needles
	2.2 Basic useful properties of tiling bodies

	3 The lower bound: proof of Theorem 5
	3.1 Analyzing the energy along a random line
	3.2 Analyzing the expectation and variance of
	3.3 Finishing the argument

	4 The upper bound: proof of Theorem 6
	4.1 Reduction to constructing a rounding scheme
	4.2 The construction of
	4.2.1 Overview
	4.2.2 A basic scoring function

	4.3 Estimating on close points
	4.4 Analysis of the construction
	4.4.1 Analysis of case (B)
	4.4.2 Analysis of case (A)

	4.5 Case (A), Condition 1
	4.5.1 Contribution from some rare cases
	4.5.2 Analyzing the typical case

	5 The value of the -fold symmetric odd cycle game
	5.1 The upper bound: Theorem 7
	5.1.1 Disjoint Bernoulli steps
	5.1.2 Analyzing the potential function
	5.1.3 Finishing the argument

	5.2 The lower bound: proof of Theorem 8
	5.2.1 Tools
	5.2.2 Decisive boxes
	5.2.3 Proof of Theorem 8

	6 Open Problems
	A Deferred proofs
	A.1 Proof of Claim 30
	A.2 Proof of Proposition 33

	B From Noise Sensitivity to Surface Area

	p006-Fleming
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	3 Translating Stabbing Planes into Cutting Planes
	3.1 Equivalence of CP with Subsystems of SP
	3.2 Simulating SP* by CP

	4 Refutations of Linear Equations over a Finite Field
	5 Lower Bound on the Depth of Semantic CP Refutations
	5.1 Lifting Decision Tree Depth to Semantic CP Depth
	5.2 Semantic CP Depth Lower Bounds for Unlifted Formulas
	5.3 Proof of Lemma 21 and Lemma 22
	5.4 Applications

	6 Conclusion

	p007-Chatterjee
	1 Introduction
	1.1 Abecedarian Polynomials and Models That Compute Them
	1.2 Our Main Results
	1.3 Proof Overview
	1.4 Other Results: A Complete View of the Abecedarian World
	1.5 Structure of the Paper

	2 Preliminaries
	2.1 Abecedarian Polynomials
	2.2 Abecedarian Models of Computation
	2.3 Abecedarian ABPs and Formulas

	3 Structural Statements
	3.1 Depth Reduction for Non-Commutative Formulas
	3.2 Homogenisation

	4 Converting Computational Models into Abecedarian Ones
	4.1 Circuits
	4.2 Algebraic Branching Programs
	4.3 Formulas

	5 Separating Abecedarian ABPs and Abecedarian Formulas
	5.1 Some Simple Observations
	5.2 Proof of the Separation

	6 Proofs of the Remaining Statements
	6.1 Formula Lower Bounds from Structured Formula Lower Bounds
	6.2 Known Relations in the Non-Commutative Setting that Continue to Hold with the Abecedarian Restriction

	p008-Golovnev
	1 Introduction
	1.1 Our Contribution
	1.1.1 The Generalized Orthogonality Dimension of Kneser Graphs
	1.1.2 The Orthogonality Dimension of Generalized Kneser Graphs

	1.2 Outline

	2 The Generalized Orthogonality Dimension of Kneser Graphs
	2.1 Linear Algebra Lemma
	2.2 The case s = 2
	2.3 General s

	3 The Minrank of Generalized Kneser Graphs
	3.1 Applications
	3.1.1 The Odd Alternating Cycle Conjecture over Finite Fields
	3.1.2 Triangle-free Graphs and the Orthogonality Dimension over the Binary Field
	3.1.3 The Vector Chromatic Number vs. Minrank

	p009-Hrubes
	1 Introduction
	1.1 Why the plane?
	1.2 Extension complexity

	2 Tools
	2.1 Parametrized complexity
	2.2 Greedy polytopes
	2.3 Operations on polytopes
	2.4 Laurent polynomials

	3 Examples
	3.1 The hypercube
	3.2 Permutahedra
	3.3 Spanning trees
	3.4 Cliques
	3.5 More graph-based polytopes

	4 Projections
	5 Monotone computation
	5.1 Optimization problems
	5.2 Shadows and monotone computations
	5.3 Monotone formulas
	5.4 Lower bounds from extension complexity
	5.5 Monotone circuits
	5.6 Generalizations

	6 Divisions
	7 tau-Conjecture for Newton polygons
	8 An easy polynomial with many vertices
	9 Open problems

	p010-Chattopadhyay
	1 Introduction
	1.1 The Polarizing Random Walk Framework
	1.2 Our Contribution
	1.3 Overview of Our Approach
	1.4 Other Related Work

	2 Preliminaries
	2.1 Fourier Analysis
	2.2 (Fractional) Pseudorandom Generators

	3 Low-Degree Polynomial Approximations on Subcubes
	3.1 Lower Bounds via Chebyshev Polynomials

	4 From Polynomial Approximations to PRGs
	4.1 From Polynomial Approximations to Fractional PRGs
	4.2 From Fractional PRGs to PRGs

	5 Low-degree Polynomials over F_2
	6 Bounds on M_k(F) via Correlation with Shifted Majorities
	7 Discussion and Open Questions

	p011-Dutta
	1 Introduction: PIT & beyond
	1.1 Our results: An analytic detour to three PITs
	1.2 Proof ideas: A technical synopsis

	2 Preliminaries
	3 Proof of the main theorems
	3.1 Proof of Theorem 1
	3.2 Proof of Theorem 2

	4 Conclusion
	A Basic tools from algebraic complexity
	B Details for Section 3.1
	C Details for Section 3.2
	C.1 Technical Details for Theorem 2b

	D Proof sketch of Theorem 2a: Similar to Section 3.2
	E Algorithm for Theorem 1

	p012-Goldreich
	1 Introduction
	1.1 Robustly self-ordered bounded-degree graphs
	1.1.1 Our main results and motivation
	1.1.2 Techniques

	1.2 Robustly self-ordered dense graphs
	1.2.1 Our main results
	1.2.2 Techniques

	1.3 Perspective
	1.4 Roadmaps

	I The Case of Bounded-Degree Graphs
	2 The Edge-Colored Variant
	2.1 Transformation to standard (uncolored) version
	2.2 Application: Making the graph regular and expanding
	2.3 Local computability of the transformations

	3 The Direct Construction
	3.1 A sufficient condition for robust self-ordering of directed colored graphs
	3.2 From the directed variant to the undirected one

	4 The Three-Step Construction
	4.1 Existence
	4.2 Constructions
	4.3 Strong (i.e., local) constructions
	4.4 Local self-ordering

	5 Application to Testing Bounded-Degree Graph Properties
	6 Random Regular Graphs are Robustly Self-Ordered

	II The Case of Dense Graphs
	7 Existence and Transformation to Bounded-Degree Graphs
	8 Relation to Non-Malleable Two-Source Extractors
	8.1 The first construction
	8.2 The second construction
	8.3 Obtaining efficient self-ordering

	9 Application to Testing Dense Graph Properties
	10 The Case of Intermediate Degree Bounds
	Appendix: On Definitions of Non-Malleable Two-Source Extractor

	p013-Franks
	1 Introduction
	1.1 The commutative setting: matrix scaling and its relatives
	1.1.1 Diameter lower bounds
	1.1.2 Margins: the geometry of scaling problems
	1.1.3 Proof techniques for the commutative setting

	1.2 The noncommutative setting
	1.2.1 Diameter lower bound for noncommutative scaling
	1.2.2 Gaps: the geometry of noncommutative scaling problems
	1.2.3 Proof technique in the noncommutative case: Freeness

	1.3 Organization of the paper

	2 The geometry of commutative scaling problems
	2.1 Local dimension two: the hypercube
	2.2 3-tensors
	2.3 d-tensors
	2.4 Polynomial scaling

	3 Diameter bounds in the commutative case
	3.1 Proof outline
	3.2 The construction
	3.3 Proof of the properties of the construction

	4 The noncommutative case
	4.1 Moment maps and moment polytopes
	4.2 Free sets of weights
	4.3 Freeness for tensors
	4.4 Freeness for homogeneous polynomials
	4.5 Freeness and diameter bound
	4.6 A bound on weight margin and gap for quivers

	References
	A Notation
	B Representation theory background
	C Padding for tensor margin and tensor gap
	D Proof of Lemma 2.11
	E Padding and rounding for diameter bounds

	p014-Ball
	1 Introduction
	1.1 The Models
	1.2 Our Results
	1.3 Remotely Related Works

	2 Preliminaries
	2.1 Specific Background About Communication Complexity
	2.2 Specific Background About Randomness Extraction

	3 The Public-Randomness Model
	4 The Private-Randomness Model

	p015-Lee
	1 Introduction
	1.1 Techniques
	1.2 Open Problems
	1.3 Organization

	2 Preliminaries
	2.1 Graphs, cuts, sets
	2.2 Operations on graphs
	2.3 Query models

	3 Lower bounds on the linear query complexity of MINCUT
	4 The cut dimension is at most 2n-3
	4.1 Cardinality of a cross-free family of cuts
	4.2 Spanning

	5 Explicit construction of graphs with cut dimension 2n-3
	5.1 Tree representation
	5.2 Linear independence
	5.3 Constructing graphs with a cross-free set of mincuts

	6 Another proof using graph operations
	6.1 Two lemmas on graph operations
	6.2 The upper bound
	6.3 The lower bound
	6.4 On the tightness of Lemma 35

	7 l_1-approximate cut dimension
	7.1 l_1-approximate cut dimension of K_4
	7.2 Direct union of K_4 with itself

	8 The dimension of approximate mincuts
	A Jain's spanning lemma

	p016-Grochow
	1 Introduction
	1.1 Main results
	1.2 Main techniques and proof strategies
	1.2.1 Linear algebraic coloring gadgets
	1.2.2 Constructive Lazard Correspondence

	1.3 Organization of the paper

	2 Preliminaries
	3 Warm up: reducing Monomial Code Equivalence to Tensor Isomorphism
	4 Search-to-decision reduction by restricting to monomial groups
	4.1 The gadget restricting to the monomial group
	4.1.1 Application: reducing Graph Isomorphism to Alternating Matrix Space Isometry

	4.2 Search-to-decision reduction for Alternating Matrix Space Isometry
	4.3 A simply-exponential algorithm for monomial isometry of alternating matrix spaces

	5 Counting-to-decision reduction by restricting to diagonal groups
	5.1 Preliminaries
	5.2 Describing the gadget
	5.3 Construction and properties of the gadget
	5.3.1 Restricting to the diagonal group
	5.3.2 Using the gadget for counting-to-decision reduction
	5.3.3 Random H_i's satisfy the requirements when q = n^{Omega(1)}

	6 Application to p-Group Isomorphism, using constructive Baer and Lazard Correspondences
	6.1 Preliminaries
	6.2 Constructive Baer Correspondence and Theorems A and B
	6.3 Constructive Lazard's Correspondence and Theorem P
	6.3.1 Class reduction in p-group isomorphism testing

	7 Conclusion

	p017-Sofronova
	1 Introduction
	1.1 Search Problem and Proof Systems
	1.2 Our Results
	1.3 Technique

	2 Preliminaries
	2.1 Branching Programs

	3 Expanders
	4 Lower Bounds for (1,+k)-BP
	4.1 Hard Formulas
	4.1.1 Locally Consistent Assignments

	4.2 Proof of Theorem 2
	4.2.1 Construction of the Garland
	4.2.2 Unreachable Leaves
	4.2.3 Directing the Flow

	5 Cook–Reckhow Proof Systems
	5.1 Proof of Lemma 27

	6 Open Problems
	A Missed Lemmas
	A.1 Lemma 18
	A.2 Lemma 23

	B Garland in the Paths

	p018-Goos
	1 Introduction
	1.1 Our results
	1.2 Techniques: Leaf Lemma
	1.3 Other related work
	1.4 Open problems

	2 Query complexity basics
	3 Proof overview
	3.1 Statement of Leaf Lemma
	3.2 Proof of Theorem 3

	4 Proof of Leaf Lemma
	4.1 Distributional characterisation of R due to Blais–Brody
	4.2 Statement of Hard Side Lemma
	4.3 Proof of Hard Side Lemma

	5 Proof of Multileaf Lemma

	p019-Medini
	1 Introduction
	1.1 Basic definitions
	1.1.1 Notation
	1.1.2 Circuit classes
	1.1.3 Approximate complexity
	1.1.4 Hitting and interpolating sets
	1.1.5 k-independent maps
	1.1.6 Subgroups of the linear and affine groups and their actions

	1.2 Our results
	1.2.1 The continuant polynomial
	1.2.2 Orbits of read-once formulas
	1.2.3 Dense subclasses of Sigma Pi Sigma
	1.2.4 Robust hitting sets?

	1.3 Polynomial Identity Testing
	1.4 More related work
	1.5 Proof technique
	1.6 Discussion

	2 k-independent polynomial maps and their properties
	2.1 Proof of Theorem 48

	p020-Guo
	1 Introduction
	1.1 Variety Evasive Subspace Families
	1.2 Our Results
	1.2.1 Derandomizing Noether's Normalization Lemma
	1.2.2 Depth-4 Polynomial Identity Testing

	1.3 Proof Overview
	1.4 Other Related Work

	2 Preliminaries and Notations
	2.1 Black-Box PIT for Low Degree Polynomials
	2.2 Explicit Lossless Rank Condensers
	2.3 Preliminaries on Algebraic Geometry

	3 Proof of the Main Theorem
	3.1 Reducing to the Case of Equidimensional or Irreducible Varieties
	3.2 Chow Forms
	3.3 Explicit Constructions of Variety Evasive Subspace Families
	3.3.1 Simple Construction
	3.3.2 Improved Construction
	3.3.3 The Affine Case

	4 Lower Bound
	5 Applications
	5.1 Derandomization of Noether's Normalization Lemma
	5.2 Black-Box PIT for Non-SG Depth-4 Circuits

	6 Open Problems and Future Directions

	p021-Alekseev
	1 Introduction
	1.1 Our results
	1.2 Organization of the paper

	2 Preliminaries
	3 Lower bound
	4 Connection between Res-Lin, Ext-PC_{Q}^{surd} and Ext-PC_{Q}
	A Proof of the Claim 12
	B Induction form the Theorem 11
	C Proof of the Theorem 17
	D Proof of the theorem 22

	p022-Cohen
	1 Introduction
	1.1 A brief account of space-bounded derandomization
	1.2 Pseudorandom generators for ROBPs
	1.3 Pseudorandom pseudo-distributions for ROBPs
	1.4 The error parameter
	1.5 Our contribution
	1.6 An overview of our construction
	1.7 A comparison with BCG
	1.7.1 A brief overview of BCG
	1.7.2 Comparison with BCG
	1.7.3 Common aspects with HZ, CH

	2 Preliminaries
	2.1 Matrices, branching programs, and space complexity
	2.2 Known PRG constructions

	3 Richardson iteration
	4 The construction
	4.1 Black-box error reduction
	4.2 Correctness
	4.3 The final construction

	A Missing proofs
	B The space complexity of some pseudorandom objects
	B.1 Nisan's generator
	B.2 A high min-entropy extractor
	B.3 The INW generator

	p023-Kothari
	1 Introduction
	1.1 Results
	1.2 A non-pointwise complete SoS reduction from coloring to independent set
	1.3 Comparison with Tulsiani's framework
	1.4 Proof overview: coloring by repeated sampling
	1.5 Weak vs. strong formulation for coloring

	2 Reduction to SoS Lower Bounds for Independent Set
	2.1 Coloring degree of polynomials
	2.2 Proof of Theorem 2
	2.3 Proof of Lemma 6
	2.4 Proof of Lemma 7: hypercontractivity
	2.4.1 Proof of Lemma 8: eigenvalue lower bound for E~^{otimes k}

	3 Proof of Theorem 1: coloring lower bound
	A Satisfying the booleanity, edge and positivity constraints
	B Tightness of degree in Theorem 1

	p024-Iyer
	1 Introduction
	1.1 Tolerant Junta Testing
	1.2 Our Results
	1.3 Structure of this Paper

	2 Preliminaries
	2.1 Probability
	2.2 Boolean Functions
	2.3 Estimating Fourier Coefficients
	2.4 Random Restrictions

	3 Overview of Techniques
	3.1 Techniques for Establishing Theorem 4
	3.2 Techniques for Theorem 2

	4 Finding a Small(er) Set of Influential Coordinate Oracles
	4.1 Approximate Oracles to Influential Coordinates
	4.2 Implicit Access to an Underlying Junta
	4.3 Influential Coordinate Oracles
	4.4 Reducing the Number of Oracles to Consider
	4.5 Proof of Theorem 34

	5 A 2^{Tilde{O}(sqrt{k})}-query Tolerant Junta Tester
	5.1 Phase One: The Higher Levels
	5.2 Phase Two: The Lower Levels
	5.3 Proof of Theorem 40

	6 Conclusions and Open Problems
	A Maximum k-Subset Fourier Mass Approximation

	p025-Dutta
	1 Introduction
	1.1 Our contributions
	1.2 Limitations of known techniques
	1.3 Proof idea

	2 Preliminaries
	3 Division elimination in high-degree circuits
	3.1 Division of Univariate Polynomials
	3.2 Division of Multivariate Polynomials
	3.3 Division in border complexity

	4 Implications of division elimination in algebraic complexity
	5 Circuit complexity of rational function truncation
	5.1 Upper bounds for rational function truncation
	5.2 Hardness results for rational function truncation

	6 Hardness of Truncation of algebraic functions
	6.1 Hardness of truncation of algebraic functions and integer factoring
	6.2 Hardness of truncation of algebraic functions and complexity of multiple of n!

	7 Complexity of the truncation of transcendental power series
	7.1 The truncation of transcendental power series can be easy
	7.1.1 Transcendental series corresponding to the Stern Sequence is easy
	7.1.2 Transcendental power series whose coefficients are multiplicative

	7.2 The truncation of Transcendental power series can be hard

	8 SOS-complexity of truncation
	9 Constant-free complexity of and PosSLP
	10 Conclusion
	A Basics in Arithmetic circuit complexity
	B Basic mathematical tools
	C Monic transformation
	D Truncation is hard
	E Details for
	F Conditional hardness of
	G Integral power series: Details for
	H From hardness of algebraic functions to hardness of permanent in constant-free regime
	I Algorithm

	p026-Pang
	1 Introduction
	1.1 The problem and the proof system
	1.2 Previous work
	1.3 Results of the paper

	2 Key technical ideas
	2.1 The exact pseudo-expectation
	2.2 An Hadamard decomposition and Euler transform
	2.3 Recursive factorization: an extension
	2.4 Proving PSDness: encounter with Hankel matrices
	2.5 Ideas for Theorem 1.5
	2.6 Structure of the paper

	3 Pseudo-expectations
	3.1 Non-exact case: a new perspective
	3.1.1 zeta-function and Möbius inversion
	3.1.2 The non-exact pseudo-expectation

	3.2 The exact case
	3.3 The exact pseudo-expectation

	4 Preparations
	4.1 Homogenization for Exact Clique
	4.2 Concentration bound on polynomials
	4.3 Norm concentration of pseudo-random matrices
	4.4 Some general notions on graphs

	5 Non-exact case PSDness: a refresh
	5.1 Step 1: Diagonalization of E[M']
	5.2 Step 2: Mod-order analysis toward ``coarse'' diagonalization
	5.3 Recursive factorization
	5.3.1 More notion on graphs
	5.3.2 Recursive factorization: the machinery
	5.3.3 Apply the machinery

	6 PSDness of the exact pseudo-expectation
	6.1 An Hadamard product and Euler transform
	6.1.1 Hadamard product
	6.1.2 Euler transform

	6.2 The first-approximate factorization of M_c^{R}
	6.3 Recursive factorization: exact case
	6.4 Positiveness of the middle matrices: proof overview
	6.5 Positiveness of E[Q_{0,0}^R]
	6.6 Rest bounds: Q_{c,k}^Rs
	6.7 Last step

	7 Concluding remarks
	A Deductions in mod-order analysis (Section 5.2)
	A.1 Set-up recap
	A.2 Polarized solution

	p027-Jain
	1 Introduction
	1.1 Our results
	1.2 Proof overview
	1.2.1 Product distribution parallel repetition
	1.2.2 Product distribution direct product
	1.2.3 Anchored distribution parallel repetition
	1.2.4 Anchored distribution direct product
	1.2.5 Simplified anchored distribution parallel repetition
	1.2.6 From anchored distribution to worst case direct product

	2 Preliminaries
	2.1 Probability theory
	2.2 Quantum information
	2.3 Quantum communication & entangled games

	3 Proof of direct product theorem
	3.1 Setup
	3.2 Proof of Theorem 1
	3.3 Proof of Lemma 32

	4 Proof of parallel repetition theorem
	4.1 Setup
	4.2 Proof of Lemma 34

	p028-Apers
	1 Introduction
	1.1 Previous work
	1.2 Technical overview
	1.3 Open problems

	2 Preliminaries
	2.1 Graph basics and notation
	2.2 Atoms
	2.3 Quantum query and computational models
	2.4 Quantum algorithmic primitives
	2.5 Problems related to minimum cuts

	3 Number of edges in near-minimum cuts
	4 Query-efficient quantum algorithm for minimum cut
	5 Time-efficient quantum algorithm for minimum cut
	5.1 Tools
	5.1.1 2-respecting cuts and Karger's theorem
	5.1.2 Data structures

	5.2 Generating set for a single tree
	5.3 Time-Efficient quantum algorithm for LearnCutAtoms

	6 Lower bounds
	6.1 Adjacency matrix model
	6.2 Adjacency array model
	6.2.1 Constant edge-weight ratio
	6.2.2 Large edge-weight ratio

	A Karger's theorem
	A.1 Tools
	A.2 Tree packing

	p029-Blaser
	1 Introduction
	2 Our contributions
	3 Related work
	4 Border Waring rank and Algebraic Branching Programs
	5 Highest Weight Vectors and their combinatorial evaluation
	6 Non-commutative algebraic branching programs
	7 Treewidth of Young tableaux
	8 Hardness of evaluation

	p030-Anshu
	1 Introduction
	1.1 Lifting theorems
	1.2 Adversary methods
	1.3 Our contributions
	1.4 Our Techniques

	2 Preliminaries
	2.1 Distance & information measures
	2.2 Query complexity
	2.2.1 Block sensitivity and its variants
	2.2.2 Adversary bounds

	2.3 A generalization to relations
	2.3.1 Degree measures
	2.3.2 Known relationships between measures

	2.4 Communication complexity

	3 Lifting the classical adversary
	3.1 The gadget and its properties
	3.2 The lifting theorem

	4 Quantum bounded-round lifting
	5 Towards a full quantum adversary lifting theorem
	5.1 A minimax for QICZ
	5.2 Product-to-sum reduction for quantum information
	5.3 Proving the lifting theorem

	6 New query relations

	p031-Hirahara
	1 Introduction
	1.1 Motivation
	1.2 Our Results
	1.3 Meta-Complexity
	1.3.1 Previous work

	1.4 Outline of the Paper
	1.5 Sketch of deterministic round-elimination lemma
	1.6 Concluding remarks and open problems

	2 Preliminaries
	3 Warmup: deterministic 3-round protocols, large output alphabet
	4 Hardness for deterministic 3-round protocols
	5 From 3-rounds to multiple rounds using deterministic round elimination
	6 Hardness for randomized 3-round protocols
	7 From 3-rounds to multiple rounds using round elimination

	p032-Burgisser
	1 Introduction
	1.1 Algorithms in invariant theory
	1.2 Orbit problems
	1.3 Torus actions and main results
	1.4 Further motivation and algorithmic applications
	1.5 Organization of the paper

	2 Preliminaries of invariant theory
	3 Invariants and orbit closures of torus actions
	3.1 Representations and invariants
	3.2 Newton cone and orbit closures

	4 Generating Laurent polynomials and rational invariants
	4.1 Invariant Laurent polynomials
	4.2 Rational invariants

	5 Orbit equality problem
	5.1 Laurent monomial equivalence

	6 Orbit closure intersection and explicit separating invariants
	6.1 Reduction to orbit equality
	6.2 Explicit separating invariant

	7 Orbit closure containment
	8 Orbit problems for compact tori
	9 Concluding remarks, future directions, and open problems

	p033-Pyne
	1 Introduction
	1.1 Ordered Branching Programs
	1.2 Permutation Branching Programs
	1.3 Our Results

	2 Overview of Proofs
	2.1 WPRG for Arbitrary Ordered Branching Programs
	2.2 WPRG for Permutation Branching Programs
	2.3 Perspective

	p034-Adler
	1 Introduction
	1.1 Our contribution
	1.2 Proof outline
	1.3 Other related work

	2 Preliminaries
	2.1 Graphs, relational structures and first-order logic
	2.2 Property testing
	2.3 Generalised subgraph freeness

	3 Relating different notions of locality
	3.1 Relating FO properties to GSF-local properties

	4 Proof of the main theorem
	4.1 Characterisation by neighbourhood profiles
	4.2 A local reduction from relational structures to graphs
	4.3 The graph property is GSF-local
	4.4 Putting everything together

	A Formal definitions of property testers and POTs
	B The FO formula
	C Deferred proofs from Section 3
	D Deferred proofs from Section 4

	p035-Ren
	1 Introduction
	1.1 Backgrounds and Motivation
	1.1.1 Meta-Complexity
	1.1.2 Cryptography
	1.1.3 The Liu-Pass Result

	1.2 Our Contributions
	1.2.1 Connections between Meta-Complexity and One-Way Functions
	1.2.2 Application in Meta-Complexity: Robustness Theorems
	1.2.3 Application in Cryptography: Maximally Hard One-Way Functions

	1.3 Related Work
	1.4 Organization

	2 Intuitions and Techniques
	2.1 Parallel Cryptography and the Hardness of KT
	2.1.1 Hardness of KT from One-Way Functions in NC^0
	2.1.2 One-Way Functions in NC^0 from Hardness of KT

	2.2 Applebaum-Ishai-Kushilevitz as a Reduction
	2.3 Tighter Connections
	2.4 MCSP-Related Results
	2.5 Using Hardness of Kt to Capture Cryptographic and Complexity-Theoretic Pseudorandomness

	3 Preliminaries
	3.1 Computational Model and Uniformity
	3.2 Resource-Bounded Kolmogorov Complexity
	3.3 Basic Information Theory
	3.4 Bounded-Error Average-Case Hardness
	3.5 One-Way Functions
	3.6 Conditionally Secure Entropy-Preserving PRGs
	3.7 Complete Problems for oplus L

	4 KT Complexity and Parallel Cryptography
	4.1 One-Way Functions in NC^0 from Hardness of MKTP
	4.2 Hardness of MKTP from One-Way Functions in oplus L
	4.2.1 CondEP-PRG in DLOGTIME
	4.2.2 Hardness of MKTP
	4.2.3 Proof of Theorem 36

	4.3 Bounded-Error Average-Case Robustness of Meta-Complexity
	4.4 Zero-Error Average-Case Reductions

	5 Tighter Connections between Meta-Complexity and One-Way Functions
	5.1 Technical Building Blocks
	5.1.1 Extractors
	5.1.2 Hardcore Functions

	5.2 CondEP-PRGs from Weak One-Way Functions
	5.2.1 Warm-Up: Proof of Theorem 25

	5.3 Proof of Theorem 50
	5.4 Proof of Theorem 51
	5.4.1 Randomized Encodings for Skew Circuits
	5.4.2 Highly-Uniform Linear-Size Hash Functions
	5.4.3 Proof of Theorem 51

	5.5 The Perebor Hypotheses

	6 MCSP-Related Results
	6.1 Preliminaries
	6.1.1 Extreme Hardness Amplification for One-Way Functions
	6.1.2 Maximum Circuit Complexity

	6.2 One-Way Functions from Hardness of MCSP
	6.3 Hardness of MCSP from DLOGTIME One-Way Functions

	7 The Average-Case Complexity of MKtP
	7.1 Characterizing One-Way Functions Using MKtP
	7.2 A Complexity Theoretic Analogue

	8 Open Problems
	A Proof of Theorem 57
	A.1 Impagliazzo's Hardcore Lemma
	A.2 Step I: Making f Strong and Regular
	A.3 Step II: An Intermediate Function
	A.4 Step III: Appending a Hardcore Function
	A.5 Putting It Together

	B Proof of Theorem 62
	B.1 Strongly Explicit Expanders
	B.2 Error-Reduction Codes
	B.3 Error-Correcting Codes
	B.4 Universal Hash Functions

	p036-Goldwasser
	1 Introduction
	1.1 Our Results
	1.2 Our Ideas
	1.3 Related Work

	2 Definitions
	3 Search Problems in TFNP
	4 Lower Bounds for Pseudo-deterministic Query Complexity
	5 Applications
	5.1 A Related Combinatorial Problem
	5.2 Size Lower Bounds and Pseudo-deterministic Resolution
	5.2.1 Pseudo-deterministic Resolution
	5.2.2 Pseudo-deterministic Algebraic Proofs

	6 Average Case Pseudo-deterministic Simulations
	7 Open Problems

	p037-Kamath
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	3 Communication Lower Bound for Mostly Set Disjointness
	3.1 The Hard Distribution
	3.2 Information Cost for a Single Bit
	3.3 Finishing it Off

	4 Lower Bounds for l_2-Heavy Hitters
	5 Application to Low Rank Approximation
	6 Algorithm for bounded-length turnstile streams

	p038-Mihajlin
	1 Introduction
	1.1 Background
	1.2 The XOR-KRW conjecture
	1.3 Techniques and Results
	1.4 Organization of this paper

	2 Preliminaries
	2.1 Notation
	2.2 Communication complexity
	2.3 Half-duplex communication complexity

	3 Lower bound for U_n boxplus Mux_n
	4 Lower bound for U_n boxplus KW_g
	5 Conclusion
	5.1 Open questions

	A Lower bound for a block-composition of a universal relation and a function
	B Proof of Theorem 9

	p039-Girish
	1 Introduction
	1.1 Our Results
	1.2 Applications
	1.3 Technical Overview
	1.4 Related Work

	2 Preliminaries
	2.1 Boolean Functions
	2.2 Parity Decision Trees
	2.3 Noisy Decision Trees

	3 Useful Concentration Inequalities
	3.1 Low Degree Polynomials
	3.2 Martingales

	4 How to Clean Up Parity Decision Trees
	4.1 k-cleanness
	4.2 Cleanup Process

	5 Fourier Bounds for Parity Decision Trees
	5.1 Level-1 Bound
	5.2 Level-l Bound

	6 Fourier Bounds for Noisy Decision Trees
	A Proof of Corollary 1.8
	B Proof of Lemma 3.3
	C Proof of Claim 35
	D Proof of Claim 5.10

	p040-DeRezende
	1 Introduction
	1.1 Encoding of Variables and Literals
	1.2 Our Results
	1.3 Outline of This Paper

	2 Preliminaries
	3 Negative literals and polynomial calculus
	4 Negative Literals and Semialgebraic Proofs
	5 Pigeonhole and Sherali-Adams
	6 Separating Nullstellensatz with and without negative literals
	7 Concluding Remarks

	p041-Babai
	1 Introduction
	1.1 Matrix rigidity. Dependence on the field
	1.2 Valiant-rigidity, non-rigidity results
	1.3 Implications to complexity theory
	1.4 Our construction
	1.5 Known lower bounds on rigidity: untouched minors
	1.6 Key steps of the proof of Theorem 7. Organization of the paper
	1.7 Open problems

	2 Basic properties of D_r
	2.1 Matrices over L of low rank and with few entries outside K
	2.2 Geometry of D_r

	3 A lower bound on the strict rigidity for a matrix in C_r
	3.1 Structure of the subsets of [2r] x [2r] with at most 3r-3 elements
	3.2 Reduction to a fixed well-distributed pi
	3.3 Case when pi in columns S' coincides with the diagonal
	3.4 Case when pi in columns S' does not coincide with the diagonal
	3.5 Proof of Theorem 33

	4 Field extension: avoiding transcendentals
	5 Refutation of more candidates for rigidity
	5.1 Point–hyperplane incidence matrices
	5.2 Vandermonde matrices
	5.3 Paley–Hadamard matrices

	A Basic concepts of algebraic geometry
	B Omitted proofs
	C Reduction to countable fields
	D A 5 x 5 matrix with different strict and absolute rigidity

