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Abstract
In the 3-players exactly-N problem the players need to decide whether x + y + z = N for inputs
x, y, z and fixed N . This is the first problem considered in the multiplayer Number On the Forehead
(NOF) model. Even though this is such a basic problem, no progress has been made on it throughout
the years. Only recently have explicit protocols been found for the first time, yet no improvement
in complexity has been achieved to date. The present paper offers the first improved protocol
for the exactly-N problem. This improved protocol has also interesting consequences in additive
combinatorics. As we explain below, it yields a higher lower bound on the possible density of
corner-free sets in [N ] × [N ].
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1 Introduction

The multiplayer Number On the Forehead (NOF) model of communication complexity was
introduced by Chandra, Furst and Lipton [9]. Given a function f : [N ]k → {0, 1}, the k

players in this scenario should jointly find out f(x1, . . . , xk). We think of xi as being placed
on player i’s forehead, so that each player sees the whole input bar one argument. Players
communicate by writing bits on a shared blackboard according to an agreed-upon protocol.
This model is intimately connected to several key problems in complexity theory. E.g.,
lower bounds on the size of ACC0 circuits for a natural function in P [23, 12], branching
programs, time-space tradeoffs for Turing machines [13], and proof complexity [5]. In addition,
progress in the NOF model, even for a specific problem and for k = 3, would have profound
implications in graph theory and combinatorics [14, 3].

Much of Chandra, Furst and Lipton’s seminal paper [9] is dedicated to the exactly-N
function f : [N ]k → {0, 1}, where f(x1, . . . , xk) = 1 iff

∑
xi = N . They discovered a

connection between the communication complexity of this function and well-known problems
in additive combinatorics and Ramsey theory. They used Ramsey’s theory to prove a
(rather weak) lower bound on the NOF communication complexity of this function. Using
the connection to additive number theory, they showed that a O(

√
log N) protocol exists,

although they have not made this protocol explicit.

∗ Our companion paper “Larger Corner-Free Sets from Better NOF Exactly-N Protocols” presents the
same results, emphasizing the combinatorial perspective.
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2:2 An Improved Protocol for the Exactly-N Problem

There are several reasons why it is highly significant to determine the communication
complexity of the exactly-N function, aside of the very fundamental nature of the problem:

Our poor understanding of this question is manifested by the huge gap between the
upper and lower bounds that we currently have on the communication complexity of this
problem. This gap is double exponential for three players, and is even worse for k > 3
players.
Despite the significance of the NOF model, we still know very little about it. The rich
web of mathematical and computational concepts surrounding the exactly-N function
suggests that it may open the gate to progress in understanding numerous other NOF
functions.
The k-player exactly-N function is a graph function [4]. For most functions in this class
the deterministic and randomized communication complexity differ substantially, but no
explicit function with a significant gap is presently known.
This problem is equivalent to corner theorems in additive combinatorics (e.g., [2]), and is
closely related to other important problems such as constructing Ruzsa-Szemerédi graphs
and the triangle removal lemma [14, 3].

Nevertheless, progress on the complexity of the NOF exactly-N problem has mostly been
made on the additive combinatorics side and includes several breakthrough results such as
Szemerédi’s regularity lemma [21], and its extension to hypergraphs [11, 17, 16]. Translated
back to the realm of NOF communication complexity, these advances bear on lower bounds
in communication complexity, yet there is essentially nothing concerning upper bounds. We
believe that the more promising line of attack is for advances in communication complexity to
shed light on questions in additive combinatorics by exploiting the power of new algorithmic
ideas.

As mentioned, the existence of a protocol for the exactly-N problem has already been
known since [9]. However, this was just an existential statement and no actual protocol was
provided. This lacuna was recently remedied with two protocols [14, 3] of the exact same
complexity as the one whose existence was proven in [9], namely of complexity1

2
√

2
√

log N + o(
√

log N) = 2.828...
√

log N + o(
√

log N). (1)

Here we give the first improved protocol for the exactly-N problem, and prove

▶ Theorem 1. There is an explicit protocol for NOF exactly-N of complexity

2
√

log e
√

log N + o(
√

log N) = 2.4022...
√

log N + o(
√

log N). (2)

Due to the connection between NOF complexity and additive combinatorics, our improved
protocol has interesting implications in that area that we briefly mention now. More details
are given in Section 3. Let ρ3(N) be the largest density of a subset of [N ] that contains no
3-term arithmetic progression. As Roth [18] showed, ρ3(N) = o(1). However, we still do not
know the rate at which ρ3(N) tends to 0. The upper bounds have gradually improved over
the years and the current “world record” found in 2020 by Bloom and Sisask [8] is

ρ3(N) ≤ (log N)−1−c for some absolute constant c > 0.

1 All logarithms in this paper are in base 2.
Also, unless otherwise specified, all asymptotic statements are taken with N → ∞.
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Much less has happened with the lower bound. Behrend’s construction [6] yields

ρ3(N) ≥ 2−2
√

2
√

log N+o(
√

log N) = 2−2.828...
√

log N+o(
√

log N).

But in the ensuing 75 years, only the little-oh term saw an improvement (Elkin [10]).
A corner in N2 is a triple of points (x, y), (x + δ, y), (x, y + δ) for some δ ̸= 0. Let ρ∠

3 (N)
be the largest density of a subset of [N ] × [N ] that contains no corner. Ajtai and Szemerédi’s
corner theorem [2] shows that ρ∠

3 (N) = o(1). This readily implies Roth’s theorem that
ρ3(N) = o(1).

The best previously known lower bound on ρ∠
3 (N) again comes from Behrend’s construc-

tion:

ρ∠
3 (N) ≥ 2−2

√
2
√

log N+o(
√

log N) = 2−2.828...
√

log N+o(
√

log N).

Our work gives the first improvement in decades, showing (Theorem 3)

ρ∠
3 (N) ≥ 2−2

√
log e

√
log N+o(

√
log N) = 2−2.4022...

√
log N+o(

√
log N).

2 Proof of Theorem 1

The three players in our protocol are called Px, Py and Pz. The inputs that they get to see
are (y, z), (x, z) and (x, y) respectively.
Here is a similar problem in the realm of vector addition. Given integers q, d > 1, define
g = gq,d(α, β, γ) to be 1 if α+β = γ and 0 otherwise. Here α, β ∈ [q]d, γ ∈ [2q]d and addition
is vector addition in Rd. The following one-round protocol [3] for g is correct because the
inequality ∥2α − γ∥2 + ∥2β − γ∥2 ≥ 2∥α − β∥2 holds always and is an equality iff γ = α + β.

▶ Protocol 1. A protocol for gq,d

1. Pz computes ∥α − β∥2
2, and writes the result on the board.

2. Py writes 1 iff ∥α − β∥2
2 = ∥2α − γ∥2

2.
3. Px writes 1 iff ∥α − β∥2

2 = ∥2β − γ∥2
2.

The cost of this protocol is 2 + log dq2.
The above is an efficient method to decide high-dimensional vector addition, but our

objective is to decide the integer addition relation X + Y + Z = N . We let x = X, y = Y

and z = N − Z, so the relation we need to consider is x + y = z.
Our protocol to decide whether x + y = z builds on the protocol for gq,d. It is the issue of

carry bits in integer addition that makes this decision problem harder. The integers q, d > 1
are chosen so that

2qN > qd ≥ 2N. (3)

the specific choice is made below so as to minimize the cost of the protocol.
We denote by wq the vector that corresponds to the base q representation of the integer w.

As usual, ei is the d-dimensional vector with 1 in the i-th coordinate and zeros elsewhere.
Let C(x, y) ∈ {0, 1}d be the carry vector when x and y are added in base q. The relation
x + y = z among integers is equivalent to the vector relation

xq + yq = ζ,

where the i-th coordinate of ζ is

ζi = zi + q · C(x, y)i − C(x, y)i−1

(Here C(x, y)0 = 0).

CCC 2021
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The protocol from [3] now suggests itself: Pz posts C(x, y), and Protocol 1 is used to
decide the relation xq + yq = ζ. This yields again the estimate (1).

The alternative approach that we adopt here considers instead the equivalent vector
relation

xq + η = zq

where

η = (x + y)q − xq.

Concretely, the i-th coordinate of η is:

ηi = yi − q · C(x, y)i + C(x, y)i−1.

In order to run Protocol 1, Pz needs to know η and xq, which he does. The situation with Py

is even simpler, since he needs to know xq and zq which are his inputs. The only difficulty is
with Px who needs to know zq (which he does) and η. The latter is not part of his input and
Pz fills in the missing information for him.

The obvious solution is for Pz to reveal C to Px using d bits of information. However, we
can save communication by exploiting the fact that Px and Pz share some information, i.e.,
they both know y for every y ̸= 0.

By a standard argument in this area which we detail below (Proposition 2), a protocol
that works for typical pairs x, y can be easily modified to work in all cases. So, let us pick x

and y uniformly at random from among the d-digit numbers in base q and think of C, the
vector of carry bits as a random variable on this probability space. The number of bits that
Pz needs to post so that Px gets to know C, and therefore know η, is H(C|y), the entropy of
C given y. The gain is clear, since H(C) ≥ H(C|y).

It remains to estimate H(C|y). Fix some integers s ≥ t ≥ 0, and let X be the random
variable that is a uniformly sampled subset of [s] of cardinality ≥ t. It is easily verified that
H(X) = (1 + os(1)) · s · h(t/s), where h(·) is the univariate entropy function. The entropy of
X is the same also if we sample subsets of [s] of cardinality < t. Let r be an integer in the
range d ≫ r ≫ 1, e.g., r ≈

√
d. For j = 1, . . . , r, let

Sj = {i | qj

r
> yi ≥ q(j − 1)

r
},

where q > yi ≥ 0 is the i-th digit of y. A carry occurs in digit i ∈ Sj only if xi > q(r−j)
r ,

where xi is the i-th digit of x. Then

H(C|y) ≤ (1 + or(1))
r∑

j=1

|Sj |
d

h( j

r
).

Since y is chosen at random, |Sj | ≤ (1 + or(1)) d
r , and so

H(C|y) ≤ (1 + or(1))
r∑

j=1

1
r

h( j

r
).

The limit of this expression as r → ∞ is

λ =
∫ 1

0
h(u)du = log e

2 = 0.721...
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It is left to optimize on q and d. The complexity of our protocol is

λd + log dq2 + 2,

where recall that 2qN > qd ≥ 2N . It is not hard to verify that choosing

d =
√

2
λ

log 2N q = 2
√

λ
2 log 2N , (4)

we get a protocol with complexity

2
√

2λ log N + o(
√

log N),

and this is asymptotically optimal in our setting.
To sum up, here is the protocol which proves Theorem 1:

▶ Protocol 2. A protocol for exactly-N , for typical pairs x, y

For d, q as in Equation (4)
1. Pz publishes the vector η = (x + y)q − xq in a way that Px can read.
2. The players run protocol 1 for gq,d on inputs xq, η, zq. That is:

a. Pz writes ∥η − xq∥2
2 on the board

b. Py writes 1 iff ∥η − xq∥2
2 = ∥2xq − zq∥2

2.
c. Px writes 1 iff ∥η − xq∥2

2 = ∥2η − zq∥2
2.

▶ Proposition 2. Let P be an NOF protocol for the exactly-N that works correctly for an
Ω(1)-fraction of the input pairs x, y (and every z) with communication complexity Φ(N).
Then there is an NOF protocol that works for all inputs with communication complexity
Φ(N) + O(log log N).

Proof. Let S ⊆ [N ] × [N ] be the set of input pairs x, y on which P succeeds. We claim that
there is a collection F of O(log N) vectors ∆ ∈ [N ] × [N ] such that

∪∆∈F (S + ∆) ⊇ [N ] × [N ].

In the modified protocol, Pz sees x, y and announces the index of some ∆ = (∆1, ∆2) ∈ F

for which (x − ∆1, y − ∆2) ∈ S. Then the players run Protocol 2 with inputs (x − ∆1, y −
∆2, z − ∆1 − ∆2).

The construction of F uses a standard fact about the set-cover problem. For a family of
finite sets X ⊆ 2Ω we denote by c(X ) the least number of members in X whose union is Ω.
Also c∗(X ) is the minimum cost of a fractional cover. Namely,

c∗(X ) = min
∑
X

ωX, where ωX ≥ 0 for every X ∈ X and
∑
x∈X

ωX ≥ 1 for every x ∈ Ω.

Then

c(X ) ≤ log(|Ω|) · c∗(X )

(e.g., Lovász [15]) and actually the greedy algorithm yields a set cover that meets this bound.
In our case Ω = [N ] × [N ], and

X = {(S + ∆) ∩ ([N ] × [N ]) | ∆ ∈ [−N, N ] × [−N, N ]}.

It is easily verified that the weights ωx = 10
N2 constitute a fractional cover, so that c∗(X ) ≤ 40

and hence c(X ) ≤ 80 log N , as claimed. ◀

CCC 2021
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3 Applications in additive combinatorics

In this section we briefly explain the connections and implications in additive combinatorics.
Van der Waerden’s well known theorem [22] states that for every r, k and every large

enough N , if the elements of [N ] := {1, . . . , N} are colored by r colors, then there must exist
a length-k monochromatic arithmetic progression. Erdős and Turán introduced the density
version of this theorem. Let ρk(N) be the largest density of a subset of [N ] without an
arithmetic progression of length k. Szemerédi’s famous theorem [21] shows that ρk(N) = o(1)
for every k ≥ 3.

Extending van der Waerden’s theorem, Gallai proved that in every finite coloring of Z2

some color contains arbitrarily large monochromatic square subarrays. In search of a density
version of Gallai’s theorem, Erdős and Graham asked about the largest density of a subset of
the integer grid [N ] × [N ] without a corner, i.e., a triple (x, y), (x + δ, y), (x, y + δ) for some
δ ̸= 0. Denote this quantity by ρ∠

3 (N).
Ajtai and Szemerédi [2] proved the first corners theorem, showing that ρ∠

3 (N) = o(1).
Namely, for every ε > 0 and large enough N , every subset of [N ] × [N ] of cardinality εN2

must contain a corner. This theorem easily yields that ρ3(N) = o(1), namely, the k = 3
case of Szemerédi’s theorem (a result of Roth [18], proved two decades before Szemerédi’s
theorem). Later on, Solymosi [20] showed how to derive Ajtai and Szemerédi’s corners
Theorem from the Triangle Removal Lemma [19].

The quantitative aspects of all these results: Szemerédi’s theorem, the corner theorem,
and the triangle removal lemma remain unfortunately poorly understood. In particular, we
know very little concerning the lower bounds in these problems. Behrend [6] has famously
constructed a large subset of [N ] without a 3-term arithmetic progression. This construction
implies that

ρ3(N) ≥ 2−2
√

2
√

log N+o(
√

log N).

Using similar tools Elkin [10] improved Behrend’s construction. However, his construction
only improves the little-o term. Behrend’s construction also yields the previously best known
lower bounds on ρ∠

3 (N), viz.

ρ∠
3 (N) ≥ 2−2

√
2
√

log N+o(
√

log N) = 2−2.828...
√

log N+o(
√

log N). (5)

As mentioned in the introduction, the NOF communication complexity of f is closely
related to corners theorems. Our Theorem 1 immediately implies,

▶ Theorem 3.

ρ∠
3 (N) ≥ 2−2

√
log e

√
log N+o(

√
log N) = 2−2.4022...

√
log N+o(

√
log N).

There is an explicit corner-free subset of [N ] × [N ] of size

N2/22
√

log e
√

log N+o(
√

log N).

The derivation of Theorem 3 from Theorem 1 is an easy consequence of the following claim.

▷ Claim 4 ([9], implicit).
1. There is an optimal one-round protocol for the addition problem.
2. Let T = T(x, y) be the message that the Pz sends on inputs (x, y) in a one-round protocol

for the addition problem. Then the set

S(T ) = {(x, y) : T(x, y) = T}

is corner-free.
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See [9, 7, 1, 14, 3] for more details about the above claim and the relation between commu-
nication complexity and additive combinatorics. The same comments and corollaries above
apply also verbatim to the (6, 3) Theorem (e.g., [19]) and to the quantitative version of the
triangle removal lemma.

4 Discussion

The strong relation between the exactly-N problem in the NOF model and questions in
additive combinatorics has been discovered decades ago, in the seminal paper of Chundra,
Furst and Lipton [9]. However, this subject remains under-developed. We believe that there
is a lot to be done here, and many interesting avenues of research that this study can take.
One obvious candidate for improvement is the addition problem. We conjecture:

▶ Conjecture 5. The NOF communication complexity of exactly-N is o(
√

log N). Possibly
it is much smaller, even as small as (log log N)O(1).

In the realm of additive combinatorics these conjectures translate to:

▶ Conjecture 6.

ρ∠
3 (N) ≥ 2−o(

√
log N).

and possibly even

ρ∠
3 (N) ≥ 2−(log log N)O(1)

.

References
1 A. Ada, A. Chattopadhyay, O. Fawzi, and P. Nguyen. The NOF multiparty communication

complexity of composed functions. computational complexity, 24(3):645–694, 2015.
2 M. Ajtai and E. Szemerédi. Sets of lattice points that form no squares. Stud. Sci. Math.

Hungar, 9(1975):9–11, 1974.
3 N. Alon and A. Shraibman. Number on the forehead protocols yielding dense ruzsa–szemerédi

graphs and hypergraphs. Acta Mathematica Hungarica, 161(2):488–506, 2020.
4 P. Beame, M. David, T. Pitassi, and P. Woelfel. Separating deterministic from randomized nof

multiparty communication complexity. In Proceedings of the 34th International Colloquium On
Automata, Languages and Programming, Lecture Notes in Computer Science. Springer-Verlag,
2007.

5 P. Beame, T. Pitassi, and N. Segerlind. Lower bounds for Lovász-Schrijver systems and
beyond follow from multiparty communication complexity. SIAM Journal on Computing,
37(3):845–869, 2006.

6 F. A. Behrend. On sets of integers which contain no three terms in arithmetical progression.
Proceedings of the National Academy of Sciences, 32(12):331–332, 1946.

7 R. Beigel, W. Gasarch, and J. Glenn. The multiparty communication complexity of Exact-T:
Improved bounds and new problems. In International Symposium on Mathematical Foundations
of Computer Science, pages 146–156. Springer, 2006.

8 T. F. Bloom and O. Sisask. Breaking the logarithmic barrier in Roth’s theorem on arithmetic
progressions. arXiv preprint, 2020. arXiv:2007.03528.

9 A. Chandra, M. Furst, and R. Lipton. Multi-party protocols. In Proceedings of the 15th ACM
Symposium on the Theory of Computing, pages 94–99. ACM, 1983.

10 M. Elkin. An improved construction of progression-free sets. In Proceedings of the twenty-first
annual ACM-SIAM symposium on Discrete Algorithms, pages 886–905. Society for Industrial
and Applied Mathematics, 2010.

CCC 2021

http://arxiv.org/abs/2007.03528


2:8 An Improved Protocol for the Exactly-N Problem

11 W. T. Gowers. Hypergraph regularity and the multidimensional szemerédi theorem. Annals
of Mathematics, pages 897–946, 2007.

12 J. Håstad and M. Goldmann. On the power of small-depth threshold circuits. Computational
Complexity, 1:113–129, 1991.

13 E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.
14 N. Linial, T. Pitassi, and A. Shraibman. On the communication complexity of high-dimensional

permutations. In 10th Innovations in Theoretical Computer Science Conference, ITCS San
Diego, California, USA, volume 124, pages 54:1–54:20, 2019.

15 L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathematics,
13:383–390, 1975.

16 B. Nagle, V. Rödl, and M. Schacht. The counting lemma for regular k-uniform hypergraphs.
Random Structures & Algorithms, 28(2):113–179, 2006.

17 V. Rödl and J. Skokan. Regularity lemma for k-uniform hypergraphs. Random Structures &
Algorithms, 25(1):1–42, 2004.

18 K. F. Roth. On certain sets of integers. Journal of the London Mathematical Society, 1(1):104–
109, 1953.

19 I. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles.
Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai, 18:939–945, 1978.

20 J. Solymosi. Note on a generalization of Roth’s theorem. Discrete and Computational Geometry:
The Goodman-Pollack Festschrift, pages 825–827, 2003.

21 E. Szemerédi. On sets of integers containing no k elements in arithmetic progression. Acta
Arith, 27(199-245):2, 1975.

22 B. L. van der Waerden. Beweis einer Baudetschen Vermutung. Nieuw Arch. Wiskunde,
15:212–216, 1927.

23 A. Yao. On ACC and threshold circuits. In Proceedings of the 31st IEEE Symposium on
Foundations of Computer Science, pages 619–627. IEEE, 1990.


	1 Introduction
	2 Proof of Theorem 1
	3 Applications in additive combinatorics
	4 Discussion

