
Proof Complexity of Natural Formulas via
Communication Arguments
Dmitry Itsykson #

St. Petersburg Department of Steklov Mathematical Institute of
Russian Academy of Sciences, Russia

Artur Riazanov #

St. Petersburg Department of Steklov Mathematical Institute of
Russian Academy of Sciences, Russia

Abstract
A canonical communication problem Search (φ) is defined for every unsatisfiable CNF φ: an

assignment to the variables of φ is partitioned among the communicating parties, they are to find a
clause of φ falsified by this assignment. Lower bounds on the randomized k-party communication
complexity of Search (φ) in the number-on-forehead (NOF) model imply tree-size lower bounds,
rank lower bounds, and size-space tradeoffs for the formula φ in the semantic proof system Tcc(k, c)
that operates with proof lines that can be computed by k-party randomized communication protocol
using at most c bits of communication [9]. All known lower bounds on Search (φ) (e.g. [1, 9, 13])
are realized on ad-hoc formulas φ (i.e. they were introduced specifically for these lower bounds).
We introduce a new communication complexity approach that allows establishing proof complexity
lower bounds for natural formulas.

First, we demonstrate our approach for two-party communication and apply it to the proof
system Res(⊕) that operates with disjunctions of linear equalities over F2 [14]. Let a formula PMG

encode that a graph G has a perfect matching. If G has an odd number of vertices, then PMG has a
tree-like Res(⊕)-refutation of a polynomial-size [14]. It was unknown whether this is the case for
graphs with an even number of vertices. Using our approach we resolve this question and show a
lower bound 2Ω(n) on size of tree-like Res(⊕)-refutations of PMKn+2,n .

Then we apply our approach for k-party communication complexity in the NOF model and
obtain a Ω

(
1
k

2n/2k−3k/2) lower bound on the randomized k-party communication complexity of
Search

(
BPHPM

2n

)
w.r.t. to some natural partition of the variables, where BPHPM

2n is the bit
pigeonhole principle and M = 2n +2n(1−1/k). In particular, our result implies that the bit pigeonhole
requires exponential tree-like Th(k) proofs, where Th(k) is the semantic proof system operating
with polynomial inequalities of degree at most k and k = O(log1−ϵ n) for some ϵ > 0. We also show
that BPHP2n+1

2n superpolynomially separates tree-like Th(log1−ϵ m) from tree-like Th(log m), where
m is the number of variables in the refuted formula.

2012 ACM Subject Classification Theory of computation → Proof complexity; Theory of computa-
tion → Communication complexity

Keywords and phrases bit pigeonhole principle, disjointness, multiparty communication complexity,
perfect matching, proof complexity, randomized communication complexity, Resolution over linear
equations, tree-like proofs

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.3

Related Version Full Version: https://eccc.weizmann.ac.il/report/2020/184/

Funding The research presented in Sections 3 and 4 is supported by Russian Science Foundation
(project 18-71-10042).

Acknowledgements The authors are grateful to Anastasia Sofronova, Svyatoslav Gryaznov, Danil
Sagunov, Petr Smirnov, Dmitry Sokolov, and Jakob Nordström for fruitful discussions and useful
comments. We also thank the anonymous referees for useful comments and corrections. Dmitry
Itsykson is a Young Russian Mathematics award winner and would like to thank sponsors and jury
of the contest.

© Dmitry Itsykson and Artur Riazanov;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 3; pp. 3:1–3:34

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dmitrits@pdmi.ras.ru
https://orcid.org/0000-0003-2680-4800
mailto:aariazanov@gmail.com
https://doi.org/10.4230/LIPIcs.CCC.2021.3
https://eccc.weizmann.ac.il/report/2020/184/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Proof Complexity of Natural Formulas via Communication Arguments

1 Introduction

Propositional proof complexity studies proof systems that allow proving the unsatisfiability
of Boolean CNF formulas. The main line of research in proof complexity is focused on
refutation size lower bounds for different proof systems. This research activity is motivated
by NP vs coNP question [3] as well as by studying properties of SAT-solvers. This paper
develops the communication complexity approach to proof complexity lower bounds.

1.1 Communication complexity of search problems
In the classical communication settings, several participants collaborate to compute a function
using a broadcast communication channel; each participant knows only a part of the input
and the goal is to compute the function with the minimum number of transmitted bits. In
the case of search problems, participants compute a relation R ⊆ X×Y instead of a function
in the following sense: an input x ∈ X is partitioned among the participants and they have
to find y ∈ Y such that (x, y) ∈ R. Analyzing the communication complexity of search
problems is usually much harder than analyzing the communication complexity of functions.
Unrestricted and monotone circuit depth of a Boolean function can be characterized in terms
of the communication complexity of an appropriate search problem [17].

Every unsatisfiable CNF-formula φ defines a search problem Search (φ): the values of
the variables of φ are partitioned between the parties of the protocol in some way, the
participants are to find a clause of φ that is falsified by the values of the variables. This
problem plays an important role in proof complexity.

One of the promising approaches for obtaining proof complexity lower bounds is the
investigation of dag-like communication protocols [20, 33]. This approach allows proving lower
bounds for proof systems operating with proof lines having small communication complexity
in the appropriate communication model. Every refutation of a formula φ of size S can be
translated to a dag-like communication protocol for Search (φ) of complexity S · C, where C
depends on the upper bound on the communication complexity of proof lines. Thus, lower
bounds on the complexity of dag-like communication protocols imply lower bounds on the size
of refutations. Nontrivial lower bounds on the size of dag-like protocols are currently known
only for two-party deterministic and two-party real communication models. There are two
known approaches for obtaining these lower bounds. The first is based on the correspondence
between dag-like protocols and monotone Boolean/real circuits [20, 33, 11]. The second
approach is lifting from the resolution width [7]. The mentioned lower bounds on dag-like
communication imply lower bounds for Resolution [20], OBDD-based proof systems [21] (via
deterministic protocols), and Cutting Planes [28, 10, 6, 7] (via real protocols).

Proving a superpolynomial lower bound for any of the models of dag-like communication
protocols listed in the left column of Table 1 seems to be a very challenging open question.
Such lower bounds would imply currently unknown superpolynomial lower bounds on the
corresponding proof systems in the right column of the table.

In this paper, we deal with classical (tree-like) communication protocols. A lower bound
on (tree-like) communication complexity of the problem Search (φ) in the model from the
left column of Table 1 implies a lower bound on the size of tree-like refutations of φ in the
corresponding proof system from the right column as well as a lower bound on the size of
dag-like refutation of φ using small space (a size-space tradeoff [9, 12]). The usual strategy
for obtaining lower bounds on the proof size via communication complexity is the following:
by a tree-like refutation of φ of size S (or by a realization of a dag-like refutation of φ in
size S within small space), one constructs a communication protocol for Search (φ) with

D. Itsykson and A. Riazanov 3:3

Table 1 Correspondence between communication models and proof systems.

Communication model Proof systems
Randomized two-
party protocols

Res(⊕) [15]. Proof lines in Res(⊕) are disjunctions of linear
equations over F2.

Real k-party
protocols in
the number-on-
forehead (NOF)
model

Semantic Th(k−1) [1]. Proof lines in Th(k−1) are inequalities of
the form f(x1, x2, . . . , xn) ≥ 0, where f is a polynomial of degree
at most k − 1 with integer coefficients and Boolean variables.

Randomized k-
party protocols in
the NOF model

Semantic Tcc(k, c). Proof lines in Tcc(k, c) are arbitrary predic-
ates that can be computed with k-party randomized communic-
ation cost at most c in the NOF model. Tcc(k, c) for small c
simulates Th(k − 1) and Res (PCk−1). Proof lines in Res (PCd)
[22, 19] are disjunctions of polynomial equalities of the form
p(x1, x2, . . . , xn) = 0, where p is a polynomial over F2 of degree
at most d. Notice that Res (PC1) coincides with Res(⊕).

communication complexity O(logS log logS · c)1 for an arbitrary partition of the variables
of φ between the parties, where c is an upper bound for communication complexity of a
proof line in the proof system in question. One then proceeds to prove a lower bound on the
communication complexity of Search (φ) for some fixed partition of variables between the
parties.

Proving lower bounds for the communication complexity of Search (φ) is not trivial since
a lower bound on Search (φ) in the two-party deterministic communication model implies
a lower bound on the monotone circuit depth for the corresponding monotone Boolean
function [9, 29]. However, in the tree-like case good enough lower bounds are known for
all models listed in the left column of Table 1. We discuss the strongest model, k-party
randomized communication. Typically lower bounds on the communication complexity of
Search (φ) are shown for artificial formulas φ that are constructed as follows: take a standard
formula ψ and replace each of its variables with a function g(y1, y2, . . . , ym) (also known as a
gadget), where y1, y2, . . . , ym are fresh variables; the result of this substitution is denoted
by ψ ◦ g. The variables of every gadget are partitioned among k parties. Beame, Pitassi
and Segerlind [1] have shown a lower bound on the randomized k-party communication
complexity of Search (T (G) ◦ ∧k), where T (G) is an unsatisfiable Tseitin formula based on a
special expander G and ∧k is the conjunction of k variables, and the ith party has the ith
argument of each instance of ∧k written on their forehead.

Huynh and Nordström [12] have introduced a method to obtain a two-party randomized
communication complexity lower bound for a search problem via lifting from search problems
with large critical block sensitivity. Göös and Pitassi [9] have simplified and generalized
this result to multiparty communication complexity and shown that if Search (φ) has large
critical block sensitivity and a gadget g has a versatile property, then Search (φ ◦ g) has large
randomized communication complexity. Although the construction of versatile functions is
somewhat tricky, the proof of the lower bound is much simpler than the proofs from [1, 12].

1 sometimes it can be improved to O (log S · c)

CCC 2021

3:4 Proof Complexity of Natural Formulas via Communication Arguments

There is an established stereotype that lower bounds on the randomized communication
complexity of search problems are rather complicated and the resulting lower bounds for
proof systems hold only for artificial formulas. In this paper, we break this stereotype and
suggest an approach that allows obtaining lower bounds for natural families of formulas by
reduction from randomized communication complexity. Moreover, our proofs are elementary.

In the first part of the paper, we demonstrate our method by proving an exponential lower
bound on the size of tree-like Res(⊕)-refutations of the perfect matching principle, while the
known lower bound techniques for tree-like Res(⊕) do not work for this formula. This lower
bound is based on two-party communication complexity. In the second part of the paper,
we apply our method to k-party communication complexity and prove a lower bound for
communication complexity of Search

(
BPHP2n+2n(1−1/k)

2n

)
, where BPHPM

2n denotes the bit
pigeonhole principle stating that there are M distinct n-bit strings s1, . . . , sM , every string
si for i ∈ [M] is partitioned into k almost equal sequential parts and the jth part of every
string is written on the forehead of the jth party. In particular, the latter result implies that
the bit pigeonhole principle is hard for tree-like Th(k), so it is the first natural hard instance.

1.2 Search problem ⊕kSearch (φ)
To achieve our results we use the parity gadget, one of the simplest and the most natural
gadgets. We then show how to get rid of this gadget using either properties of a proof system
or properties of a family of formulas.

For an unsatisfiable CNF formula φ we define a k-party communication problem
⊕kSearch (φ) (usually denoted as Search (φ) ◦ ⊕k) as follows: for every i ∈ [k], the ith
party has an assignment αi ∈ Fn

2 written on the forehead, where n is the number of variables
of φ. They are to find a clause of φ that is falsified by the assignment

∑k
i=1 αi.

It is easy to see that the communication complexity of Search (φ ◦ ⊕k) is at least the
communication complexity of ⊕kSearch (φ), where ⊕k is the parity of the sum of k bits.
However, the formula φ ◦ ⊕k may have exponential size if φ contains a wide clause.

In Section 3 we observe the following lemma.

▶ Lemma 1. If an unsatisfiable CNF-formula φ has a tree-like Res (PCd) refutation of size
S, then there exists a bounded-error randomized communication protocol for ⊕d+1Search (φ)
that transmits O(d logS) bits.

1.3 Perfect matching principle in tree-like Res(⊕)
One of the most important open questions in proof complexity is obtaining a superpolynomial
lower bound for bounded-depth Frege with parity gates. Res(⊕) is a special case of this system
and there are still no known superpolynomial lower bounds for its dag-like version. The first
exponential lower bounds for tree-like Res(⊕) were proved by Itsykson and Sokolov [14, 15].
Itsykson and Sokolov have shown a lower bound 2Ω(n) on size of tree-like Res(⊕) refutations
of Pigeonhole Principle (PHPm

n) for arbitrary m > n using generalized Prover-Delayer games.
Oparin in [26] has shown a tight upper bound 2O(n) for such refutations. A lower bound
2Ω(n) for functional pigeonhole principle (FPHPm

n) for m = O(n) can be shown using a
connection between the size of tree-like Res(⊕) refutations and the degree of polynomial
calculus refutations (over F2), observed by Garlik and Kolodziejczyk (see Section 7 of [8];
this method is described in details in [27]; an alternative explanation can be found in [19]).
It is also worth mentioning the result of Krajicek (Theorem 18.6.4 from [23]) that formulas
encoding Hall’s theorem about matchings in bipartite graphs require exponential-size tree-like
Res(⊕) refutations.

D. Itsykson and A. Riazanov 3:5

Let PMG for a graph G encode the existence of a perfect matching in G. Itsykson and
Sokolov [14, 15] have shown that for graphs with an odd number of vertices, PMG has a
polynomial-size tree-like Res(⊕) refutation. The question about graphs with an even number
of vertices remained open; we resolve it in this paper.

Let Km,n be the complete bipartite graphs with parts of size m and n respectively. In
Section 4 we prove the following theorem.

▶ Theorem 2. The size of a tree-like Res(⊕) refutation of PMKn+2,n is 2Ω(n).

Notice that since PHPm
n is a weakening of PMKm,n , Oparin’s upper bound for PHPm

n [26]
implies that the obtained lower bound is tight up to a constant in the exponent.

The formula PMKn+2,n (however, in a different encoding) has a constant-degree derivation
in Nullstellensatz over F2 [2]. PMKn+2,n

may be refuted as follows: compute the number of
edges in the matching modulo 4 in two different ways, on the one hand it is n mod 4 and on
the other hand it is (n+ 2) mod 4. This yields a low-degree Nullstellensatz refutation since
the function MOD4 has a representation as a polynomial of degree 3, see Lemma 8.7 of [2]
for details. Thus, Theorem 2 can not be proved via the same reduction to the Polynomial
Calculus degree as it can be done for FPHPm

n .
Since PMKn+2,n has a tree-like Cutting Planes refutation of polynomial size and with

polynomial coefficients, the problem Search
(
PMKn+2,n

)
has communication complexity

O(logn) for any partition and thus can not yield a superpolynomial lower bound on size
of tree-like Res(⊕) refutations. Therefore the methods previously used to establish tree-like
Res(⊕) lower bounds fail for PMKn+2,n

.
To establish this lower bound we employ an idea similar to the one used in [30] to show

monotone circuit depth lower bound for matching.

Proof sketch of Theorem 2. By Lemma 1 it is sufficient to show a lower bound Ω(n) on the
two-party bounded-error randomized communication complexity of ⊕2Search

(
PMKn+2,n

)
.

We show this lower bound via probabilistic reduction from the set disjointness problem.
Recall that in the set disjointness problem DISJn Alice and Bob have strings x, y ∈ {0, 1}n

respectively and they want to verify that there are no i ∈ [n] such that xi = yi = 1. It is
known that two-party bounded-error randomized communication complexity of DISJn is
Ω(n) [16]. Let G0(V,E1) and G1(V,E1) be graphs on the same set of vertices V ; we define
G0 ⊕G1 as a graph on V with edges E1 ⊕ E2, where ⊕ denotes the symmetric difference.

We now describe the reduction from DISJn to ⊕2Search
(
PMKn+2,n

)
. Before starting

the communication, each of the parties constructs two graphs: Alice constructs A(0) and
A(1), Bob constructs B(0) and B(1) that are shown in Figure 1. These four graphs are
bipartite graphs on 8 vertices, 4 vertices in each part and the parts coincide for all the
graphs. These graphs have the following property: for a, b ∈ {0, 1} the graph A(a)⊕B(b)
is a perfect matching iff at least one of a and b is zero. The graph A(1) ⊕ B(1) has two
connected components, the first component consists of a single vertex from the first part
connected with three vertices from the second part, the second connected component consists
of a single vertex from the second part connected with three vertices from the first part.

For each i ∈ [n] Alice and Bob create new 8 vertices; Alice builds the graph A(xi) on these
vertices and Bob builds the graph B(yi) on these vertices. Thus, Alice and Bob construct
two bipartite graphs GA and GB with 4n vertices in each part such that GA ⊕ GB is a
perfect matching iff DISJn(x, y) = 1. Additionally, Alice and Bob add three vertices to
the first part and one vertex to the second part of GA ⊕ GB connecting the latter with
the three vertices added to the first part. Let us denote the resulting graph by H. Let
H = HA ⊕HB, where HA is known to Alice and HB is known to Bob. An example of the

CCC 2021

3:6 Proof Complexity of Natural Formulas via Communication Arguments

A(0)

A(1)

B(0) B(1)

Figure 1 The graphs A(0), A(1),
B(0), and B(1) and their pairwise
symmetric differences. Only A(1) ⊕
B(1) is not a matching.

Alice

Bob

1 1 0

0 1 1

H

HA

HB

Figure 2 The construction of the graphs HA, HB and H

for x = (0, 1, 1); y = (1, 1, 0).

resulting graphs is shown in Figure 2. Alice and Bob shuffle the vertices in each part of
their graphs according to a permutation generated using public random bits and get graphs
H ′A and H ′B. As a result, in the shuffled graph H ′ = H ′A ⊕H ′B the violation of the perfect
matching principle artificially added by Alice and Bob is indistinguishable from a violation
that appears because of DISJn(x, y) = 0. After that Alice and Bob run the communication
protocol for ⊕2Search

(
PMK4n+3,4n+1

)
. If the protocol returns a clause corresponding to

the artificially added contradiction, Alice and Bob return 1; otherwise, they return 0. By
repeating the whole protocol multiple times one can reduce the error probability. ◀

1.4 Bit pigeonhole principle
1.4.1 Bit pigeonhole principle with ⊕-gadget
In Section 5 we apply our lower bound technique for k-party communication in the number-
on-forehead model. We consider the bit pigeonhole principle BPHPm

2ℓ that encodes in CNF
that there are m pairwise distinct strings from {0, 1}ℓ. This formula is unsatisfiable for
m > 2ℓ.

▶ Theorem 3. Let ℓ and k be natural numbers such that 2 ≤ k ≤ ℓ − 7. Then the
randomized communication complexity of ⊕kSearch

(
BPHP2ℓ+2k

2ℓ

)
in the k-party NOF model

is Ω
(

2ℓ/2

k23k/2

)
. For k = 2 the stronger bound Ω

(
2ℓ
)

holds.

Proof idea. The proof follows the same plan as the communication complexity lower bound
in Theorem 2. In Subsection 5.1 we consider a decision problem Distinctk,ℓ that is similar to
the search problem ⊕kSearch

(
BPHP2ℓ

2ℓ

)
. Let each of k parties have a 2ℓ × ℓ matrix over F2

on the forehead. The goal is to determine whether the rows of the sum of these matrices are
distinct. Recall that the unique disjointness UDISJk,n is the promise version of the k-party
set disjointness: the ith of k parties has a string x(i) from {0, 1}n on the forehead, they are
to verify that there is no j ∈ [n] such that x(i)

j = 1 for all i ∈ [k] under the promise that there
is at most one such index j. We describe a randomized reduction from UDISJk,2ℓ−k+1 to
⊕kSearch

(
BPHP2ℓ

2ℓ

)
and then use the known lower bound on the communication complexity

D. Itsykson and A. Riazanov 3:7

of the former problem [32]. First, we reduce UDISJk,2ℓ−k to the problem Distinctk,ℓ: the
ith of the parties of the UDISJ protocol generates a matrix Di of size 2ℓ × ℓ such that the
matrix

∑k
i=1 Di contains a pair of equal rows iff UDISJk,2ℓ−k evaluates to 0. Moreover, the

matrix
∑k

i=1 Di has additional properties:
each of the 2ℓ−k bits of UDISJ correspond to a block of 2k rows of the matrix

∑k
i=1 Di

such that any two rows from different blocks are distinct;
if the common 1-bit of the inputs of UDISJ has the index j ∈ [2ℓ−k], then the block
corresponding to the bit j contains each of its rows exactly twice (all the other blocks
have distinct rows).

In Subsections 5.2 and 5.3 we adapt this reduction for ⊕kSearch
(

BPHP2ℓ+2k

2ℓ

)
. We add an

additional (fake) block to each of the matrices Di such that the matrix
∑k

i=1 Di has the
following property: every row of this new block appears in it exactly twice and does not
appear anywhere else. Using randomization we make sure that the new artificially added
row collisions from the fake block are indistinguishable from the collisions coming from the
initial (genuine) blocks corresponding to the bits of UDISJ. Finally, if UDISJ evaluates to 1
then all the collisions are artificially added; if UDISJ evaluates to 0, then with a significant
probability the protocol solving ⊕kSearch

(
BPHP2ℓ+2k

2ℓ

)
finds a pair of equal rows coming

from a genuine block. ◀

Theorem 3 and Lemma 1 immediately imply the lower bound exp
(

Ω
(

2ℓ/2

k23k/2

))
on the

size of tree-like Res (PCk−1) refutations of BPHP2ℓ+2k

2ℓ (for k = 2 the stronger lower bound
Ω(2ℓ) holds).

1.4.2 Bit pigeonhole without ⊕-gadget
In Section 6 we present a pretty simple and nice reduction from ⊕kSearch (BPHPm

2n) to
Search

(
BPHPm·2(k−1)n

2kn

)
. Here we describe this reduction for k = 2. For a larger k the

proof is essentially the same. Let us reduce ⊕2Search (BPHPm
2n) to Search

(
BPHP2n·m

22n

)
.

We denote the input of Alice in ⊕2Search (BPHPm
2n) as a1, . . . , am ∈ Fn

2 and the input of
Bob as b1, . . . , bm ∈ Fn

2 . Their goal is to find a clause of BPHPm
2n falsified by the assignment

a1 + b1, . . . , am + bm. Observe that given i ̸= j ∈ [m] such that ai + bi = aj + bj they can
find a falsified clause transmitting additional O(n) bits. For each i ∈ [m], Alice and Bob
generate 2n strings from Fn

2 : Alice generates ai + z for each z ∈ Fn
2 and Bob generates bi + z

for each z ∈ Fn
2 . For each pair of strings ai + z and bi + z their sum coincides with ai + bi.

Alice and Bob run the protocol for Search
(

BPHP2n·m
22n

)
on an input where each line has the

form (ai + z, bi + z) for each i ∈ [m] and z ∈ Fn
2 . Given a falsified clause of BPHP2n·m

22n on
this input they determine the lines (ai + z, bi + z) and (aj + z′, bj + z′) that are equal to each
other. Then ai + bi = aj + bj and i ̸= j since each pair (i, z) ∈ [m]× Fn

2 is used by Alice and
Bob exactly once.

Together with Theorem 3 this yields the following theorem.
▶ Theorem 4. For n ≥ k(k + 7) the randomized k-party communication complexity of
Search

(
BPHP2n+2n+k−⌊n/k⌋

2n

)
is Ω

(1
k 2n/2k−3k/2), where every string of BPHP is partitioned

into k almost equal contiguous parts such that jth party has the jth part of every string on
its forehead. For k = 2 the bound can be improved up to Ω

(
2n/2).

In particular, Theorem 4 implies the lower bound exp
(
2Ω(n/k)) on the size of tree-like

Tcc(k, c) (and Th(k − 1)) refutations of BPHP2n+2n+k−⌊n/k⌋

2n .

CCC 2021

3:8 Proof Complexity of Natural Formulas via Communication Arguments

Hrubes and Pudlák [10] proved a lower bound on the complexity of dag-like two-party
real communication protocols for Search (BPHPm

2ℓ) with the same variable partition, where
m > 2ℓ is arbitrary. Formally their and our results are incomparable. On the one hand, the
result of Hrubes and Pudlák holds for dag-like protocols and arbitrary weak bit pigeonhole
principle, on the other hand, we use a stronger (randomized) model and the statement holds
for the multiparty communication as well.

In addition, we show an upper bound on the communication complexity of
Search (BPHPm

2ℓ). The gap between the upper and the lower bound for k > 2 is quad-
ratic. For k = 2 the bounds coincide up to a logarithmic factor.

▶ Proposition 5. For M > 2n and k ∈ {2, 3, . . . , n} there exists a deterministic NOF
communication protocol for Search

(
BPHPM

2n

)
with variables partitioned as in Theorem 4

transmitting O
(
2⌈n/k⌉ · logM

)
bits.

Our lower bound on the k-party communication complexity of Search (BPHPm
n) is non-

trivial for k ≤ log1−ε n for ε > 0. This lower bound implies a superpolynomial lower bound
on the size of tree-like Th(k)-refutations of BPHPm

n for such k. We show that there exists a
short tree-like Th(logn) refutation:

▶ Proposition 6. For m > 2ℓ there exists a tree-like Th(ℓ) refutation of BPHPm
2ℓ of size

O(m2 · 2ℓ).

Proposition 6 and the result of Hrubes and Pudlák [10] imply that tree-like Th(logn), where
n is the number of variables of the refuted formula can not be simulated by dag-like Th(1).
Theorem 4 and Proposition 6 imply that the bit pigeonhole principle BPHP2ℓ+1

2ℓ separates 2

tree-like Th(logn) from tree-like Th(k) for k ≤ log1−ε n.

1.5 Open questions

1. Is it possible to prove lower bounds on the randomized communication complexity of
⊕2Search (PMG) for constant-degree graphs G? An Ω(n) lower bound would improve the
best known Ω(n/ logn) lower bound on the two-party communication complexity of a
Search (φ) problem, where n is the number of variables.

2. Is it true that our results extend to Res (PCd) over arbitrary finite fields?
3. Is our lower bound for tree-like Th(k) refutation of BPHPm

2n tight? Such upper bound
would imply a superpolynomial separation between tree-like Th(k) and dag-like cutting
planes due to the lower bound by [10] as well as separations between tree-like Th(k) for
different values of k.

4. Can we show a lower bound on the communication complexity of the search problem for
weaker versions of BPHPM

2n , for example with M = 2n+1?

2 The formula BPHP2ℓ+1
2ℓ uses n = (2ℓ + 1)ℓ variables. By Proposition 6, there is a tree-like Th(log n)

refutation of size poly(n). By Theorem 4, the size of any tree-like Th(log1−ϵ n) refutation is at least
exp(exp(Ω(logϵ n))); the latter grows superpolynomially in n.

D. Itsykson and A. Riazanov 3:9

2 Preliminaries

Notations

We use the following notation: [n] = {1, 2, . . . , n}. Let Sn×m denote the set of matrices
of size n ×m with elements from S. We denote by 0n×m the zero matrix of size n ×m
and by 1n×m the matrix of the same size containing only ones. For square matrices
A1, . . . , Ak we denote a diagonal block matrix with blocks A1, . . . , Ak by diag(A1, . . . , Ak).
For x ∈ {0, 1, . . . , 2k−1} we denote a vector (a0, . . . , ak−1) ∈ {0, 1}k such that x =

∑k−1
i=0 ai2i

by bink(x), i.e. (a0, . . . , ak−1) is the reversed binary representation of x. For vectors
v1, . . . , vn from a vector space over a field F we denote their linear span by Span(v1, . . . , vn).We
use coordinate-wise comparison of strings from {0, 1}n, i.e. for x, y ∈ {0, 1}n we write x ≤ y
iff xi ≤ yi for each i ∈ [n]. We denote the set of variables of a CNF-formula φ by Vars(φ).

Communication complexity

We briefly recall some notions of communication complexity. For formal definition and details
we refer to [24].

In the classic two-party randomized communication protocol with public randomness,
Alice and Bob cooperate to compute a relation Q ⊆ X × Y × Z: Alice has an input x ∈ X
and Bob has an input y ∈ Y , their goal is to compute z ∈ Z such that (x, y, z) ∈ Q. We
assume that Alice and Bob have access to an arbitrary large random string of bits that
is common for Alice and Bob. Let for every x ∈ X and y ∈ Y , Rδ

pub(Q, x, y) denote the
minimal number of bits Alice and Bob need to transmit between each other so they both
find a z ∈ Z such that (x, y, z) ∈ Q with probability at least 1− δ taken over the values of
the common random string. And Rδ

pub(Q) := maxx∈X,y∈Y R
δ
pub(Q, x, y).

We also consider multiparty communication protocols in the number on forehead (NOF)
model that extends two-party protocols for an arbitrary number of parties. In this setting
k parties cooperate to compute a relation Q ⊆ X1 × X2 × . . . × Xk × Y . The ith party
has xi ∈ Xi written on their forehead so they know all xj for j ̸= i, their goal is to
compute y ∈ Y such that (x1, x2, . . . , xk, y) ∈ Q. The parties communicate by taking turns
broadcasting messages to all other parties until all parties learn the value of y ∈ Y such that
(x1, . . . , xk, y) ∈ Q. In this model we also assume that all parties have access to a common
random string of bits. Let Rδ

pub(Q, x1, . . . , xk) for x1 ∈ X1, . . . , xk ∈ Xk denote the minimal
total number of bits transmitted until each party learns y ∈ Y such that (x1, . . . , xk, y) ∈ Q
with probability at least 1− δ taken over the set of values of the random string of bits. Also,
let Rδ

pub(Q) := maxx1∈X1,...,xk∈Xk
Rδ

pub(Q, x1, . . . , xk).
Let f be a function from X1 × X2 × . . . × Xk → Y . Then Rδ

pub(f) denotes Rδ
pub(Qf),

where Qf = {(x1, x2, . . . , xk, y) | f(x1, . . . , xk) = y}.
We prove communication complexity lower bounds by reduction from different versions

of the set disjointness problem. DISJk,n is a function {0, 1}kn → {0, 1} such that for every

x1, . . . , xk ∈ {0, 1}n the following holds: DISJk,n(x1, . . . , xk) =
∧n

j=1 ¬

(
k∧

i=1
(xi)j

)
︸ ︷︷ ︸

NAND

.

Let us define the communication promise problem UDISJk,n in the k-party NOF model.
For each i ∈ [k] the string xi is written on the forehead of the ith party, it is guaranteed
that there exists at most one index j ∈ [n] such that for every i ∈ [k], (xi)j = 1. The goal is
to compute DISJk,n(x1, . . . , xk).

CCC 2021

3:10 Proof Complexity of Natural Formulas via Communication Arguments

▶ Theorem 7 ([31, 32]). R1/3
pub(UDISJk,n) = Ω

(√
n

2kk

)
.

For k = 2 we omit the first index: DISJn = DISJ2,n; in this case Theorem 7 may be
improved.

▶ Theorem 8 ([16]). R1/3
pub(DISJn) ≥ R1/3

pub(UDISJ2,n) = Ω(n).

Proof complexity

We consider refutational proof systems for the language of unsatisfiable CNF-formulas
UNSAT. A refutation of φ ∈ UNSAT in a proof system Π is a sequence of Boolean functions
(proof lines) such that each proof line either represents a clause of φ or derived from previous
proof lines in the sequence via some sound inference rules. The last line of the proof is
identically zero function. A proof system Π is defined by a representation of proof lines and
by a set of admissible inference rules. It is required that the inference rules are polynomially
verifiable i.e. there exists an algorithm that checks whether it is legitimate to derive a line
L0 from the lines L1, . . . , Lk.

For example, in the Resolution proof lines are represented by clauses and the only inference
rule is the resolution rule that allows deriving a clause A ∨ B from the clauses A ∨ x and
A ∨ ¬x.

The size of a proof is the total size of all representations of proof lines in the proof. The
length of a proof is the number of proof lines in it.

A tree-like proof is such a proof that every its line can be used as a premise of a rule at
most once. For each proof system, we can also consider its tree-like version where all proofs
are constrained to be tree-like.

We also consider semantic refutational proof systems, where we drop the requirement
for polynomial verification of inference rules i.e. we allow to derive any sound consequence
from the premises. For such systems it is crucial to bound fan-in i.e. the number of the
premises from which each proof line can be derived, otherwise, it would be possible to
derive a contradiction from the clauses of the initial formula immediately. For example, it
is well-known that Resolution is polynomially equivalent to a semantic proof system with
fan-in 2 operating with clauses.

A lower bound on the proof size in a semantic proof system implies a lower bound on the
proof size in its syntactic counterpart because a syntactic proof is always a semantic proof
that operates with the same class of proof lines.

We define semantic Res(⊕) as a semantic proof system with fan-in 2 that operates with
linear clauses. A linear clause is a disjunction of linear equations over F2:

∨k
i=1(fi = ai), where

fi is a linear form over F2 and ai ∈ F2. Notice that an ordinary clause
∨

i∈P xi ∨
∨

j∈N ¬xj

can be represented by the linear clause
∨

i∈P (xi = 1) ∨
∨

j∈N (xj = 0). For definition of
syntactic version of Res(⊕) we refer to [15]; it is also proved there that syntactic and semantic
Res(⊕) are polynomially equivalent.

We define semantic Res (PCd) as a semantic proof system with fan-in 2 that operates with
disjunctions of equations of type f = 0, where f is a degree-d polynomial over F2. Notice
that semantic Res (PC1) is exactly semantic Res(⊕). For the definition of the syntactic
version of Res (PCd) we refer to [19].

Following [1] we define Th(k) as a semantic proof system with fan-in 2 that operates
with polynomial inequalities g ≥ 0, where g is a polynomial of degree at most k with integer
coefficients and Boolean variables. A clause

∨
i∈P xi ∨

∨
j∈N ¬xj can be represented by an

inequality
∑

i∈P xi +
∑

j∈N (1− xj)− 1 ≥ 0.

D. Itsykson and A. Riazanov 3:11

Proof complexity and communication complexity

For an unsatisfiable CNF-formula φ we define the communication problem Search (φ).
Search (φ) is the following problem: given an assignment of the variables of the unsat-
isfiable CNF φ, find a clause that is falsified by this assignment. It is assumed that variables
of φ are somehow partitioned between the parties.

Following the paper [9] we consider a semantic proof system Tcc(k, c) that models many
interesting syntactic and semantic proof systems. The proof lines in Tcc(k, c) can be arbitrary
Boolean functions having the following property: for every proof line C and every partition
of variables of C between k parties, the NOF k-party randomized communication complexity
of C is at most c w.r.t. this partition. We also define a semantic proof system Tcc

os(k, c) that
is a subsystem of Tcc(k, c) with the restriction that a communication protocol for proof lines
must have a one-sided error: if the value of a proof line is zero, then the protocol should
return zero with probability 1.

For example, Tcc(2, 2) simulates Resolution; Tcc(2,O(1)) simulates Res(⊕) [22, 15];
Tcc(k,O(k3 log2 n)), where n is the number of variables in a refuted formula, simulates
Th(k − 1) [9]. In Section 3 we show that Tcc

os(d+ 1,O(1)) simulates Res (PCd) .
The following connection between the communication complexity of Search (φ) and

tree-like proof complexity of φ is known.

▶ Lemma 9 ([1, 9]). If a CNF formula φ has a tree-like Tcc(k, c) refutation of length ℓ

then, over any k-partition of the variables, there is a randomized bounded-error k-party NOF
protocol for Search (φ) with communication cost O(c · log ℓ log log ℓ).

In Section 3 we show that for Tcc
os(k, c) the bound can be improved, see Remark 14.

Basic formulas

A CNF formula PHPm
n encodes the pigeonhole principle; PHPm

n states that it is possible to
put m pigeons into n holes such that every pigeon flies to at least one hole and at most one
pigeon flies to each hole. PHPm

n depends on variables pi,j for i ∈ [m] and j ∈ [n] and pi,j = 1
iff the i-th pigeon flies to the j-th hole. PHPm

n is the conjunction of m(m−1)n
2 hole axioms and

m pigeons axioms. For every i ∈ [m] PHPm
n contains a pigeon axiom (pi,1 ∨ pi,1 ∨ · · · ∨ pi,n).

And for every j ∈ [n] and every k ̸= ℓ ∈ [n], PHPm
n contains a hole axiom (¬pk,j ∨ ¬pℓ,j).

PHPm
n is unsatisfiable iff m > n.

For an undirected graph G(V,E), the formula PMG encodes in CNF that G has a perfect
matching. The formula PMG has |E| variables, each of them corresponds to an edge of G,
xe is the variable corresponding to e ∈ E.

PMG =
∧

v∈V

(∨
e is incident to v

xe

)
∧

∧
e1 ̸=e2 are incident to v

(¬xe1 ∨ ¬xe2)

 .

PMG is unsatisfiable iff G does not have a perfect matching.

▶ Theorem 10 ([26]). Let G be a graph with n vertices, which has no perfect matching. Then
the formula PMG has a tree-like Res(⊕) refutation of size 2O(n).

▶ Proposition 11 ([14]). Let G be a graph with an odd number of vertices. Then the formula
PMG has a tree-like Res(⊕) refutation of size poly(n).

The binary pigeonhole principle BPHPm
2ℓ states that there are m different ℓ-bit binary

strings s1, s2, . . . , sm. BPHPm
2ℓ has mℓ variables corresponding to the bits of si for i ∈ [m].

Then BPHPm
2ℓ =

∧
i ̸=j∈[m] si ̸= sj , where the predicate si ̸= sj is encoded as a 2ℓ-CNF formula

CCC 2021

3:12 Proof Complexity of Natural Formulas via Communication Arguments

of size 2ℓ as follows:
∧

α∈{0,1}ℓ(si ≠ α ∨ sj ̸= α); notice that the predicate (si ̸= α ∨ sj ̸= α)
can be represented by a clause with 2ℓ literals. If m > 2ℓ, then the formula BPHPm

2ℓ is
unsatisfiable.

Let φ be a CNF formula with n variables, and g : {0, 1}k → {0, 1} be a Boolean function.
Then φ ◦ g denotes a CNF formula on kn variables that represents φ(g(−→x1), g(−→x2), . . . , g(−→xn)),
where −→xi denotes a vector of k new variables. φ◦g is constructed by applying the substitution
to every clause C of φ and converting the resulting function C ◦ g to CNF in some fixed way.

3 Communication protocols from tree-like Res (PCd) proofs

Let φ be an unsatisfiable CNF formula with n variables. Let us define the communication
problem ⊕kSearch (φ) with k parties as follows. Assume that the ith party has an assignment
αi ∈ {0, 1}n written on the forehead. They aim to find a clause of φ falsified by the assignment∑k

i=1 αi (all sums of boolean vectors are computed modulo 2).

▶ Lemma 1. Let φ be an unsatisfiable CNF formula. If there exists a tree-like Res (PCd)
proof of φ of length m, then R

1/3
pub(⊕d+1Search (φ)) = O(d · logm).

A slightly weaker version of the following lemma was implicitly proved in [15]:

▶ Lemma 12 (see proof of Theorem 3.11 from [15]). Let T be a binary tree with m vertices
such that the ith vertex is labeled with ai ∈ {0, 1} with the hereditary property: for each
inner vertex i with direct descendants c1 and c2, if ai = 1, then ac1 = 1 or ac2 = 1. We also
assume that if r is the root of T , then ar = 1. Assume that we have a one-sided bounded
error oracle access to ai i.e. if we request a value of ai and ai = 0 we get 1 with probability
at most 1

2 and 0 with probability at least 1
2 ; if ai = 1 we get 1 with probability 1. Then there

exists an algorithm A that with probability at least 2
3 returns a leaf ℓ of T with aℓ = 1 and

makes O(logm) oracle queries to a1, . . . , am.

Proof. See Appendix A. ◀

Proof of Lemma 1. Let F1, . . . , Fm be a tree-like Res (PCd)-refutation of φ with the under-
lying tree T , where vertices of T are identified with [m]. Then the leaves of T correspond to
the clauses of φ and m is the root of T .

Let α1, . . . , αd+1 be the assignments written on the foreheads of d + 1 parties. Let
α =

∑d+1
i=1 αi. Let ai = 1 iff α falsifies Fi for i ∈ [m]. Then am = 1 since Fm is identically

false. For any inner node v of T , if av = 1 then for the direct descendants of v, c1 and c2
either ac1 = 1 or ac2 = 1. In the next paragraphs we show that for any i ∈ [m] there exists a
NOF (d+ 1)-party protocol that computes ai given that for each j ∈ [d+ 1] the jth party
has αj written on their forehead such that

the protocol transmits O(d) bits;
the protocol has one-sided bounded error: if ai = 1 then the protocol returns 1 with
probability 1 and if ai = 0 the protocol returns 0 with probability at least 1

2 .
Then we use this protocol to compute ai as an oracle in the algorithm given by Lemma 12
and thus show that there is a NOF (d+ 1)-party protocol computing ⊕d+1Search (φ) with
communication cost O(d logm).

Now we show that for every ℓ ∈ [m], Fℓ(α) can be computed by a (d + 1)-party NOF
protocol with one-sided error using O(d) bits of communication. Let Fℓ =

∨t
j=1(fj = 1),

where f1, . . . , ft are polynomials over F2 of degree at most d. Let z1, . . . , zn be the variables
of φ. Let us introduce new variables y1,1, . . . , y1,n, . . . , yd+1,1, . . . , yd+1,n and assume that for

D. Itsykson and A. Riazanov 3:13

each i ∈ [d+1] the ith party has the value of variables yi,1, yi,2, . . . , yi,n written on the forehead
or in other words αi assigns values of yi,1, yi,2, . . . , yi,n. Let f̄j denote fj after substitution
zℓ := y1,ℓ + y2,ℓ + . . .+ yd+1,ℓ for ℓ ∈ [n]; j ∈ [t]. Since for all j ∈ [t], deg f̄j = deg fj ≤ d, we
can represent f̄j = f̄

(1)
j +. . .+f̄ (d+1)

j such that f̄ (s)
j does not contain variables ys,1, . . . , ys,n for

each s ∈ [d+ 1]. Then the ith party can compute f̄ (i)
1 (α1, . . . , αd+1), . . . , f̄ (i)

t (α1, . . . , αd+1).
Notice that Fℓ = ¬

(∧t
j=1(fj = 0)

)
.

The final step of the protocol exploits the idea used to construct a short randomized com-
munication protocol for equality. Take a random uniformly distributed vector (e1, . . . , et) ∈ Ft

2.

Then all parties compute
∑t

j=1 ejfj(α) =
∑d+1

i=1

t∑
j=1

ej f̄
(i)
j︸ ︷︷ ︸

ith party

with O(d) bits of communication

and the protocol halts.
To bound the error probability we use the following well-known statement:

▶ Proposition 13 (Random subsum principle). For any x ∈ Fk
2 \ {0k},

Pr
y←U(Fk

2)

[
k∑

i=1
yixi = 1

]
= 1

2 .

If Fℓ(α) = 1 then Pr
[∑t

j=1 ejfj(α) ̸= 0
]

= 1
2 by the random subsum principle. If

Fℓ(α) = 0, then Pr
[∑t

j=1 ejfj(α) = 0
]

= 1. ◀

▶ Remark 14. Similarly to the proof of Lemma 1 one can prove that if an unsatisfiable CNF
formula φ has a tree-like Tcc

os(k, c) refutation of length ℓ, then for any k-partition of the
variables, there is a randomized bounded-error k-party NOF protocol for Search (φ) with
communication cost O(c log ℓ). Thus, the bound from Lemma 9 can be slightly improved in
the case of one-sided error.

4 Perfect matching

In this section we prove the following theorem:

▶ Theorem 2. The size of any tree-like semantic Res(⊕) refutation of the formula PMKn+2,n

is 2Ω(n).

By Lemma 1, to prove Theorem 2 it is sufficient to show that
R

1/3
pub

(
⊕2Search

(
PMKn+2,n

))
= Ω(n).

Consider the communication problem ⊕PMm
n that is defined as follows: Alice and Bob

have matrices X and Y over F2 respectively, each of the matrices has size m × n, where
m ̸= n. Their goal is to find an all-zero row or column or two 1-cells in the same row or
column in the matrix X + Y .

▶ Proposition 15. R1/3
pub

(
⊕2Search

(
PMKn+2,n

))
≥ R1/3

pub(⊕PMn+2
n).

Proof. A Boolean matrix of size (n+ 2)× n naturally corresponds to a subset of edges of
Kn+2,n. A falsified clause encoding that a vertex must be covered by a matching corresponds
to an all-zero row or column of the matrix; a falsified clause, encoding that a vertex can not
be covered by a matching twice, corresponds to two ones in the same row or column. ◀

Theorem 2 follows from Proposition 15 and the following theorem.

CCC 2021

3:14 Proof Complexity of Natural Formulas via Communication Arguments

▶ Theorem 16. R1/3
pub(⊕PMn+2

n) = Ω(n).

Proof. We assume that n = 4m+ 1, where m is a non-negative integer. If the theorem is
true for all n with the residue 1 modulo 4, then it also holds for all other n. Indeed, the
protocol for ⊕PMn+3

n+1 can be used for ⊕PMn+2
n by adding to Alice’s matrix an extra column

and a row with exactly one 1-cell on their intersection and to Bob’s matrix an extra column
and a row with all zeros.

Let P0 be a protocol for ⊕PMn+2
n transmitting at most k bits. We are going to ap-

ply P0(X,Y) only to the instances where the matrix X + Y does not contain all-zero
rows or columns. Thus, we assume that with probability at least 2/3 P0 returns a tuple
(r1, c1, r2, c2) ∈ ([n + 2] × [n])2 such that (X + Y)r1,c1 = (X + Y)r2,c2 = 1 and either{
r1 = r2

c1 ̸= c2
or
{
r1 ̸= r2

c1 = c2
. With O(1) bits of communication Alice and Bob can verify

whether the answer of P0 is correct and return ⊥ (failure) if it is not. Also, we can reduce the
failure probability by the repetition of the protocol. Let P be a protocol for ⊕PMn+2

n under
the promise that X + Y does not contain all-zero rows and columns that uses O(k) bits of
communication and returns a correct answer with probability at least 99

100 and ⊥ otherwise.
We are going to construct a protocol for DISJm transmitting O(k) bits, where m = n−1

4 .
Since by Theorem 8 any protocol for DISJm transmits Ω(m) bits, we conclude that k = Ω(m).
Let Alice’s input for DISJm be a1, . . . , am and Bob’s input be b1, . . . , bm.

▶ Lemma 17. There exist matrices A(0), A(1), B(0), B(1) ∈ F4×4
2 such that A(x) +B(y) is

a permutation matrix iff x ∧ y is 0 and

A(1) +B(1) =


0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 . (1)

Proof. We simply present matrices that satisfy the conditions:

A(0) =


0 1 1 0
1 1 0 0
1 0 1 0
0 0 0 0

 ; A(1) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ;

B(0) =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 ; B(1) =


0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 . ◀

Notice that Lemma 17 immediately allows to reduce DISJm to the problem of check-
ing whether the sum of Alices and Bobs matrices is a permutation matrix. In order to
achieve that, Alice builds a matrix A = diag(A(a1), . . . , A(am)), Bob builds a matrix
B = diag(B(b1), . . . , B(bm)). It is easy to see that A + B is a permutation matrix iff
DISJm(a, b) = 1.

D. Itsykson and A. Riazanov 3:15

Let us describe the reduction of DISJm to ⊕PMn+2
n . Alice and Bob first construct

matrices X0 and Y0 of the following form:

X0 =


A 0(n−1)×1

01×(n−1) 1
01×(n−1) 1
01×(n−1) 1

 ; Y0 =


B 0(n−1)×1

01×(n−1) 0
01×(n−1) 0
01×(n−1) 0

 ,

then

X0 + Y0 =


A+ B 0(n−1)×1

01×(n−1) 1
01×(n−1) 1
01×(n−1) 1

 ,

where A+B is a permutation matrix iff DISJm(a, b) = 1. Then if P(X0, Y0) returns two cells
that do not belong to the column n we may conclude that DISJm(a, b) = 0. If P(X0, Y0)
returns two cells from the nth column, then the value of DISJm(a, b) can not be uniquely
determined. Notice that for X0 and Y0 constructed as above the protocol always returning
(n+ 1, n, n+ 2, n) solves ⊕PMn+2

n .
If DISJm(a, b) = 0, then the matrix X0 +Y0 contains at least two columns with three ones

and these columns are indistinguishable from each over. To make use of that, we randomly
shuffle rows and columns.

We are going to construct a protocol T for DISJm as follows: Alice and Bob choose
permutations π ∈ Sn, τ ∈ Sn+2 and a matrix ∆ ∈ F(n+2)×n

2 uniformly at random. We
define matrices Xτ,π

0 and Y τ,π
0 from Fn+2×n

2 such that for each i ∈ [n + 2] and j ∈ [n],
(Xτ,π

0)i,j = (X0)τ(i),π(j) and (Y τ,π
0)i,j = (Y0)τ(i),π(j). Alice and Bob run the protocol P for

inputs X = Xτ,π
0 + ∆, Y = Y τ,π

0 + ∆. Notice that X + Y = Xτ,π
0 + Y τ,π

0 , thus X + Y can
be obtained from X0 + Y0 by shuffling rows and columns. If P(X,Y) returns two cells from
the column π(n), Alice and Bob return 1, if P(X,Y) returns two cells from other column or
row, Alice and Bob return 0. If P(X,Y) returns ⊥, then Alice and Bob return ⊥.

First notice that if DISJm(a, b) = 1, then T returns a correct answer or ⊥ with probability
1 (and the probability of ⊥ is at most 1

100), since in that case X + Y has exactly one column
with three 1-cells, each of the other columns and rows contains exactly one 1-cell. Let us fix
a, b ∈ {0, 1}m such that DISJm(a, b) = 0. We denote p := Pr[T (a, b) = 0], we will show that
p ≥ 99

200 . We can then increase this probability to 2/3 by repeating the protocol twice (if
T (a, b) returns 0 at least once, we return 0, if T (a, b) always return ⊥, we return ⊥, otherwise
we return 1).

Let us describe random bits used by the constructed protocol T . First, we use random
bits r to run the protocol P. Second, we use random bits to generate π, τ , and ∆. Since
DISJm(a, b) = 0, we can fix i ∈ [m] such that ai = bi = 1. In that case the submatrix of
X0 + Y0 formed by rows and columns with the indices 4(i− 1) + 1, 4(i− 1) + 2, 4(i− 1) +
3, 4(i− 1) + 4 coincides with the matrix (1). Let us denote by col(j) for j ∈ [n] the set of
all tuples (x, j, y, j) ∈ ([n+ 2]× [n])2.

p = Pr
π,τ,∆,r

[Pr(X,Y) ̸∈ col(π(n))]−
=:p⊥

Pr
π,τ,∆,r

[Pr(X,Y) = ⊥]

= 1− Pr
π,τ,∆,r

[Pr(X,Y) ∈ col(π(n))]− p⊥

= 1−
∑

π0,τ0

Pr
r,∆

[Pr(Xτ0,π0
0 + ∆, Y τ0,π0

0 + ∆) ∈ col(π0(n))] Pr
π,τ

[π = π0, τ = τ0]− p⊥

CCC 2021

3:16 Proof Complexity of Natural Formulas via Communication Arguments

Observe that for fixed π0 and τ0 the random variable (Xτ0,π0
0 +∆, Y τ0,π0

0 +∆) is uniformly
distributed over the pairs of matrices with the sum Xτ0,π0

0 + Y τ0,π0
0 . Let α ∈ Sn be the

transposition swapping n and 4(i − 1) + 1. Let β ∈ Sn+2 be the permutation swapping
n and 4(i − 1) + 2, n + 1 and 4(i − 1) + 3, n + 2 and 4(i − 1) + 3 (i.e. β is a product
of three transpositions). By the construction of α and β, (X0 + Y0) = (Xβ,α

0 + Y β,α
0),

thus (Xτ,π
0 + Y τ,π

0) = (Xτ◦β,π◦α
0 + Y τ◦β,π◦α

0) for every π, τ . Thus the random variable
(Xτ0◦β,π0◦α

0 + ∆, Y τ0◦β,π0◦α
0 + ∆) has the same distribution with (Xτ0,π0

0 + ∆, Y τ0,π0
0 + ∆),

thus we can continue the sequence as follows:

p = 1 −
∑

π0,τ0

Pr
r,∆

[Pr(Xτ0◦β,π0◦α
0 + ∆, Y τ0◦β,π0◦α

0 + ∆) ∈ col(π0(n))] Pr
π,τ

[π = π0, τ = τ0] − p⊥

= 1 −
∑

π0,τ0

Pr
r,∆

[Pr(Xτ0,π0
0 + ∆, Y τ0,π0

0 + ∆) ∈ col(π0 ◦ α−1(n))] Pr
π,τ

[π = π0, τ = τ0] − p⊥

= 1 − Pr
π,τ,∆,r

[Pr(X, Y) ∈ col((π ◦ α−1)(n))] − p⊥

≥ 1 − Pr
π,τ,∆,r

[Pr(X, Y) ̸∈ col(π(n))] − p⊥ = 1 − p − p⊥

Thus, p ≥ 1− p− p⊥ and p ≥ 1−p⊥
2 = 99

200 . ◀

5 Bit pigeonhole principle with parity gadget

In this section, we prove the following theorem.

▶ Theorem 3. Let ℓ and k be natural numbers such that 2 ≤ k ≤ ℓ− 7. Then

R
1/3
pub

(
⊕kSearch

(
BPHP2ℓ+2k

2ℓ

))
= Ω

(
2ℓ/2

k23k/2

)
.

For k = 2 the stronger bound holds: R1/3
pub

(
⊕2Search

(
BPHP2ℓ+4

2ℓ

))
= Ω

(
2ℓ
)
.

We consider a combinatorial analogue of the communication problem ⊕kSearch (BPHPm
2ℓ).

Assume that each of k parties gets m binary strings from {0, 1}ℓ, where m > 2ℓ. The ith
party has numbers ai,1, . . . , ai,m ∈ {0, 1}ℓ on their forehead. Based on these strings we form
the following set of m vectors from Fℓ

2: x1, x2, . . . , xm, where xj =
∑k

i=1 ai,j . The goal of the
parties is to find a pair of different indices t, s ∈ [m] such that xt = xs. We denote this problem
by ⊕kBPHPm

2ℓ . It is straightforward that R1/3
pub (⊕kSearch (BPHPm

2ℓ)) ≥ R
1/3
pub (⊕kBPHPm

2ℓ),
hence it is sufficient to prove a lower bound on R

1/3
pub (⊕kBPHPm

2ℓ).

▶ Theorem 18. Let ℓ and k be natural numbers such that 2 ≤ k ≤ ℓ− 7. Then

R
1/3
pub

(
⊕kBPHP2ℓ+2k

2ℓ

)
= Ω

(
R

1/3
pub

(
UDISJk,2ℓ−k−1

)
− ℓ
)
.

▶ Corollary 19. R1/3
pub

(
⊕kBPHP2ℓ+2k

2ℓ

)
= Ω

(
2ℓ/2

k23k/2

)
. For k = 2 the stronger bound holds:

R
1/3
pub

(
⊕2BPHP2ℓ+4

2ℓ

)
= Ω

(
2ℓ
)
.

Proof of Corollary 19 . Follows from Theorem 18 and Theorem 7; for k = 2 we should apply
Theorem 8. ◀

Theorem 3 immediately follows from Corollary 19.

D. Itsykson and A. Riazanov 3:17

5.1 Warm-up example
We start with the simpler statement that, nonetheless, demonstrates the main idea of
Theorem 18. Consider the following communication problem Distinctk,ℓ: let each of k parties
have a matrix from F2ℓ×ℓ

2 on their forehead. The goal is to determine whether all rows of the
sum of all these matrices are distinct. A version of this problem without the xor-gadget is
referred to as Element Distinctness (ED) in the literature [25].

▶ Proposition 20. R1/3
pub (Distinctk,ℓ) ≥ R1/3

pub

(
UDISJk,2ℓ−k

)
.

Let Sk denote the set of matrices from {0, 1}2k×k with all distinct rows. Let Kk ∈
{0, 1}2k×k be a matrix such that its ith row equals bink(i−1− ((i−1) mod 2)), i.e. the rows
of Kk are bink(0), bink(0), bink(2), bink(2), . . . , bink(2k−1−2), bink(2k−1−2). Notice that
every row of Kk starts with zero and appears exactly twice.

In the proof of Proposition 20 as well as in the proof of Theorem 18 we will use the
following combinatorial lemma that we prove in Subsection 5.4.

▶ Lemma 21. There exist matrices A1(0), A1(1), . . . , Ak(0), Ak(1) ∈ F2k×k
2 such that∑k

i=1 Ai(1) = Kk and for all b1, b2 . . . , bk ∈ {0, 1}, if
∧k

i=1 bi = 0, then
∑k

i=1 Ai(bi) ∈ Sk.

Proof of Proposition 20. Let (xi,1, . . . , xi,2ℓ−k) be an input of the ith party of the problem
UDISJk,2ℓ−k . For all i ∈ [k] we construct a matrix Di of size 2ℓ× ℓ and put it on the forehead
of the ith party. Let Ai(b) for i ∈ [k], b ∈ {0, 1} be matrices of size 2k × k from Lemma 21.
Let Jt for t ∈ [1, . . . , 2ℓ−k] be a matrix of size 2k × (ℓ− k) such that all its rows are equal to
binℓ−k(t− 1).

Let us define

D1 :=



J1 A1(x1,1)
...

...
Jj A1(x1,j)
...

...
J2ℓ−k A1(x1,2ℓ−k)

 ; Di :=



02k×(ℓ−k) Ai(xi,1)
...

...
02k×(ℓ−k) Ai(xi,j)

...
...

02k×(ℓ−k) Ai(xi,2ℓ−k)

 for i ∈ {2, . . . , k}.

By Lemma 21, the matrix D1 +D2 + · · ·+Dk has the following property: for all j ∈ [2ℓ−k],
its submatrix formed by the rows with numbers from [2k · (j − 1) + 1, 2k · j] has two equal
rows if and only if x1,j = x2,j = . . . = xk,j = 1. Thus, the communication complexity of
UDISJk,2ℓ−k is at most the communication complexity of Distinctk,ℓ. ◀

5.2 Proof of Theorem 18
In order to prove Theorem 18 we modify the proof of Proposition 20 in order to reduce
UDISJk,2ℓ−k−1 to ⊕kBPHP2ℓ+2k

2ℓ by adding “fake” rows (such rows do not correspond to the
input of the unique disjointness) to matrices D1, D2, . . . , Dk. We also use some randomization
in order to hide “fake” rows among other rows.

Proof of Theorem 18. Let N > 2ℓ, consider a k-party communication problem ROW ⊕k

BPHPN
2ℓ , where ith party has a matrix Mi ∈ FN×ℓ

2 on their forehead and their goal is to
find the value of a row of M1 + · · · + Mk that appears in this matrix at least twice. The
difference with the problem ⊕kBPHPN

2ℓ is that we are looking for values of a repeated row
rather than numbers of equal rows.

CCC 2021

3:18 Proof Complexity of Natural Formulas via Communication Arguments

▷ Claim 22. If R1/3

(
⊕kBPHPN

2ℓ

)
≤ t, then there exists a communication protocol P for

ROW⊕k BPHPN
2ℓ using O(t+ ℓ) bits of communication such that P either returns the correct

answer or ⊥ (failure) and Pr[P(M1, . . . ,Mk) =⊥] ≤ 1
100 for all input matrices Mi, i ∈ [k].

Proof. P executes a randomized protocol for ⊕kBPHPN
2ℓ and verifies its answer by transferring

additional O(ℓ) bits. The probability of failure can be reduced by repetition. ◁

Let us describe a protocol for the problem UDISJk,2ℓ−k−1 that uses a protocol P for
ROW⊕k BPHP2ℓ+2k

2ℓ from Claim 22.
Let x1, . . . , xk ∈ {0, 1}2ℓ−k−1 be inputs of the communication problem UDISJk,2ℓ−k−1.

Let xi,j denote the jth bit of xi for i ∈ [k], j ∈ [2ℓ−k − 1]. Let −→x = (x1, x2, . . . , xk).

Important matrices

Let γ be a bijection from [2ℓ−k − 1] ∪ {∗} to {0, 1}ℓ−k, we define k matrices D1(x1, γ) and
D2(x2), D3(x3), . . . , Dk(xk) of size (2ℓ + 2k)× ℓ similar to Proposition 20.

Let Ai(b) for i ∈ [k], b ∈ {0, 1} be matrices of size 2k × k from Lemma 21. Let for every
t ∈ {0, 1}ℓ−k, Jt be a matrix of size 2k × (ℓ− k) such that all its rows are equal to t. Let W
be some fixed matrix from Sk.

We define

D1(x1, γ) :=



Jγ(1) A1(x1,1)
...

...
Jγ(j) A1(x1,j)

...
...

Jγ(2ℓ−k−1) A1(x1,2ℓ−k−1)
Jγ(∗) W

Jγ(∗) W


;

and for i ∈ [k] \ {1}

Di(xi) :=



02k×(ℓ−k) Ai(xi,1)
...

...
02k×(ℓ−k) Ai(xi,j)

...
...

02k×(ℓ−k) Ai(xi,2ℓ−k−1)
02k×(ℓ−k) 02k×k

02k×(ℓ−k) 02k×k


.

Notice that the submatrix of D1(x1, γ) formed by the last 2k+1 rows of the matrix
D1(x1, γ) contains every its row exactly two times.

We define H−→x (γ) := D1(x1, γ) +D2(x2) + · · ·+D(xk). By Lemma 21 the matrix H−→x (γ)
satisfies the following key property w.r.t. (γ,−→x) in the standard basis:

▶ Definition 23. Let M be a matrix from F(2k+2ℓ)×ℓ

2 , γ be a bijection from [2ℓ−k − 1] ∪ {∗}
to {0, 1}ℓ−k and e1, e2, . . . , eℓ be a basis in Fℓ.

We say that M satisfies the key property w.r.t (γ,−→x) in the basis (e1, e2, . . . , eℓ) if the
following properties hold:

D. Itsykson and A. Riazanov 3:19

If s is a row among the last 2k+1 rows of M , then
the first ℓ− k coordinates of s in the basis (e1, e2, . . . , eℓ) are γ(∗)1, . . . γ(∗)ℓ−k;
s appears in M exactly twice.

If s is a row of M among the rows with numbers [2k(i−1) + 1; 2ki] for i ∈ [2ℓ−k−1], then
the first ℓ− k coordinates of s in the basis (e1, e2, . . . , eℓ) are γ(i)1, . . . , γ(i)ℓ−k;
if
∧k

j=1 xi,j = 0, then s appears in M exactly once.
if
∧k

j=1 xi,j = 1, then s appears in M exactly twice and (ℓ− k + 1)th coordinate of s
in the basis (e1, e2, . . . , eℓ) is 0.

Consider an invertible matrix E ∈ Fℓ×ℓ
2 . Let e1, e2, . . . , eℓ be the rows of E. Since E

is invertible, e1, e2, . . . , eℓ form a basis. Let us define C−→x (γ,E) := H(−→x , γ)E. Rows of
C−→x (γ,E) can be viewed as vectors with coordinates in the basis e1, e2, . . . , eℓ corresponding
to the rows of H(−→x , γ). Hence, C−→x (γ,E) satisfies the key property w.r.t. (γ,−→x) in the basis
(e1, e2, . . . , eℓ).

For a bijection γ from [2ℓ−k − 1]∪ {∗} to {0, 1}ℓ−k and an invertible matrix E ∈ Fℓ×ℓ
2 we

define a set Fake(γ,E) ⊆ Fℓ
2 as a set of the last 2k+1 rows of the matrix C−→x (γ,E). Notice

that by the construction this set does not depend on −→x . By the key property rows from
Fake(γ,E) appear exactly twice in C−→x (γ,E).

Random variables

Our protocol uses the following public random variables. In order to distinguish random
variables from their values, we highlight random variables in bold.

γγγ is a random bijection from [2ℓ−k − 1] ∪ {∗} to {0, 1}ℓ−k distributed uniformly among
all such bijections.
EEE is a random invertible matrix from Fℓ×ℓ

2 distributed uniformly among all such matrices.
πππ is a random permutation of the set [2ℓ + 2k] and Mπππ is a permutation matrix of size
(2ℓ + 2k)× (2ℓ + 2k) corresponding to the permutation πππ (i.e. (Mπππ)i,j = 1 ⇐⇒ πππ(i) = j).
∆∆∆1,∆∆∆2, . . . ,∆∆∆k are random matrices from F(2ℓ+2k)×ℓ

2 distributed uniformly on the set of
all matrices ∆1,∆2, . . . ,∆k such that ∆1 + ∆2 + . . .+ ∆k is the zero matrix.

We define random matrices PPP 1,PPP 2, . . . ,PPP k as follows: PPP i = Mπππ ·Di(xi) ·EEE + ∆∆∆i for i ≥ 2
and PPP 1 = Mπππ ·D1(x1, γγγ) ·EEE + ∆∆∆1.

The addition of ∆∆∆i makes PPP i indistinguishable from the random matrix for every i ∈ [k].∑k
i=1PPP i = MπππC−→x (γγγ,EEE) and this matrix is obtained from C−→x (γγγ,EEE) by the permutation

πππ applied to its rows.

Recall that P is the protocol for ROW⊕k BPHP2ℓ+2k

2ℓ from Claim 22. Let N be a constant
to be chosen later. The protocol T solving UDISJk,2ℓ−k−1 is described by Algorithm 1.

Protocol analysis

Let us analyze the protocol T . Since it executes the protocol P a constant number of times,
T transmits O(t+ ℓ) bits. Assume that x1, x2, . . . , xk is a 1-instance of UDISJk,2ℓ+2k . Then
by the key property of C−→x (γγγ,EEE) all repeated rows of

∑k
i=1PPP i are in Fake(γγγ,EEE), hence the

protocol T returns either ⊥ or the correct answer. Since P is executed N times independently,
the probability that Z = {⊥} is at most 1

100N , hence T returns 1 with probability at least
1− 1

100N .
The rest of the proof is devoted to the analysis of the case, where x1, x2, . . . , xk is a

0-instance of UDISJk,2ℓ+2k . This is the most technically involved part of the proof. So it is
a good point to give a large scale overview of the further proof strategy. Our goal

CCC 2021

3:20 Proof Complexity of Natural Formulas via Communication Arguments

Algorithm 1 Protocol T solving UDISJk,2ℓ−k−1.

Input x1, x2, . . . , xk ∈ {0, 1}2ℓ−k−1; xi is written on the forehead of the ith party for every
i ∈ [k].
Z := ∅
loop repeat N times

Sample π ← πππ, E ← EEE, γ ← γγγ,
−→
∆ ←

−→
∆
−→
∆−→∆ ▷ Use fresh public random bits

P1 := Mπ ·D1(x1, γ) · E + ∆1 ▷ Can be computed by parties
2, 3, . . . , k

Pi := Mπ ·Di(xi) · E + ∆i for i ≥ 2 ▷ Can be computed by all parties ex-
cept the ith

z := P(P1, . . . , Pk) ▷ Use fresh random bits for P and as-
sume that Pi is written on the ith
party’s forehead.

Z := Z ∪ {z}
if Z = {⊥} then return ⊥
else if Z \ {⊥} ⊆ Fake(γ,E) then return 1 ▷ Intuitively this step means that most

likely there are no more repeated
rows in C−→x (γ,E) except Fake(γ,E)
and, hence, DISJ(x1, x2, . . . , xk) = 1
by the key property of C−→x (γ,E).

return 0

is to show that if x1, x2, . . . , xk is a 0-instance of UDISJk,2ℓ+2k , then the probability that
P(PPP 1, . . . ,PPP k) returns a value from Fake(γγγ,EEE) is bounded by some constant less than 1.
The random variable P(PPP 1, . . . ,PPP k) depends on random bits used by the protocol P and
on random bits needed for sampling PPP 1, . . . ,PPP k. Let R denote the set of all random strings
used by the protocol P (i.e. we assume that P sample a random string from R and use it as
public randomness) and S denote the set of all random strings used for sampling PPP 1, . . . ,PPP k.
We would like to construct two bijections α and β on the set S such that for every s ∈ S the
following two properties hold.
1. The three values of random variable (PPP 1, . . . ,PPP k) sampled using three strings s, α(s) and

β(s) as a random source, are the same.
2. Let (γ,E), (γα, Eα) and (γβ , Eβ) be values of the random variable (γγγ,EEE) that is sampled

using three strings s, α(s) and β(s) as a random source. Then Fake(γ,E)∩Fake(γα, Eα)∩
Fake(γβ , Eβ) = ∅.

Consider arbitrary strings r ∈ R and s ∈ S. The first property implies that for random
variables sampled using strings (r, s), (r, α(s)) and (r, β(s)) as a random source values of
P(P1P1P1, . . . ,PkPkPk) are the same. The second property implies that for at least one of this cases
this value does not belong to Fake(γγγ,EEE). Then, using that α and β are bijections, we get
Pr[P(P1P1P1, . . . ,PkPkPk) ∈ Fake(γγγ,EEE)] ≤ 2

3 .
Since we have many random variables, it is a tedious task to construct such α and β. In

order to simplify this task we slightly relax the properties. We will define bijections α and β
not on all strings S but only on the part of bits corresponding to sampling of γγγ and EEE. More
precisely we will define two bijections α and β on the set of values of the random variable
(γγγ,EEE). We relax the first property as follows:
1’. For every γ and E the three conditional distributions of the random variable (P1P1P1, . . . ,PkPkPk)

under the following three conditions coincide:

D. Itsykson and A. Riazanov 3:21

a. (γγγ,EEE) = (γ,E),
b. (γγγ,EEE) = α(γ,E) and
c. (γγγ,EEE) = β(γ,E).

Unfortunately, we were not able to construct such bijections on the set of all pairs (γ,E).
Thus we take a set Ξ consisting 1− δ fraction of all values of (γγγ,EEE) and we will claim that
α and β are bijections on Ξ. Such relaxation will weaken the bound of the probability up
to 2

3 + δ. We formalize the requirements to Ξ, α and β in Definition 24. Then we verify in
Claim 25 that these requirements are sufficient to bound Pr[P(P1P1P1, . . . ,PkPkPk) ∈ Fake(γγγ,EEE)].
The construction of Ξ, α and β is given in Subsection 5.3.

▶ Definition 24. Let x1, . . . , xk be a 0-instance of UDISJk,2ℓ−k−1 and 1 > δ ≥ 0 be an
arbitrary constant. Let Ξ be a set consisting of pairs (γ,E), where γ is a bijection from
[2ℓ−k − 1] ∪ {∗} to {0, 1}ℓ−k, E is an invertible matrix from Fℓ×ℓ

2 . Let α and β be bijections
from Ξ to Ξ. We say that (Ξ, α, β) forms a (1− δ)-symmetry randomness space for −→x if the
following conditions hold:

(Largeness) Pr[(γγγ,EEE) ∈ Ξ] ≥ 1− δ.
(Difference) For all (γ,E) ∈ Ξ, Fake(γ,E) ∩ Fake(α(γ,E)) ∩ Fake(β(γ,E)) = ∅.
(Symmetry) For all (γ,E) ∈ Ξ the matrices C−→x (γ,E), C−→x (α(γ,E)) and C−→x (β(γ,E))
differ only by a permutation of rows.

▷ Claim 25. Assume that x1, . . . , xk is a 0-instance of UDISJk,2ℓ−k−1, 1 > δ ≥ 0 is a
constant. Let (Ξ, α, β) form a (1− δ)-symmetry randomness space for −→x

Then

Pr [P (PPP 1,PPP 2, . . . ,PPP k) ∈ Fake(γγγ,EEE)] ≤ 2
3 + δ.

Proof. Let us denote
−→
PPP = (PPP 1,PPP 2, . . . ,PPP k),

−→
∆∆∆ = (∆∆∆1,∆∆∆2, . . . ,∆∆∆k) and −→D(−→x , γ) =

(D1(x1, γ), D2(x2), . . . , Dk(xk)).
−→
PPP = (∆∆∆1 +MπππD1(x1, γγγ)EEE,∆∆∆2 +MπππD2(x2)EEE, . . . ,∆∆∆k +MπππDk(xk)EEE), for brevity we use

the vector notation
−→
PPP =

−→
∆∆∆ +Mπππ(−→D(−→x ,γγγ)EEE).

Let p := Pr
[
P
(−→
PPP
)
∈ Fake(γγγ,EEE)

]
.

p =
∑
γ,E

Pr
[
P
(−→

∆∆∆ + Mπππ

(−→
D(−→x , γ) · E

))
∈ Fake(γ, E)

]
· Pr[γγγ = γ,EEE = E]

(Largeness)
≤

∑
(γ,E)∈Ξ

Pr
[
P
(−→

∆∆∆ + Mπππ ·
(−→

D(−→x , γ) · E
))

∈ Fake(γ, E)
]

· Pr[γγγ = γ,EEE = E] + δ

Notice that for fixed γ,E the random variable
−→
∆∆∆ + Mπππ ·

(−→
D(−→x , γ) · E

)
is distributed

uniformly on the set of tuples (L1, . . . , Lk) of k matrices from F(2ℓ+2k)×ℓ
2 such that

∑k
i=1 Li

differs from C−→x (γ,E) only by a permutation of rows. Let (γα−1 , Eα−1) = α−1(γ,E). By
the symmetry condition, matrices C−→x (γ,E) and C−→x (γα−1 , Eα−1) differ only by permutation
of rows. Thus, for every set A the probability Pr

[
P
(−→

∆∆∆ +Mπππ ·
(−→
D(−→x , γ) · E

))
∈ A

]
=

Pr
[
P
(−→

∆∆∆ +Mπππ ·
(−→
D(−→x , γα−1) · Eα−1

))
∈ A

]
. Hence,

CCC 2021

3:22 Proof Complexity of Natural Formulas via Communication Arguments

p ≤
∑

(γ,E)∈Ξ

Pr
[
P
(−→

∆∆∆ + Mπππ ·
(−→

D(−→x , γα−1) · Eα−1

))
∈ Fake(γ, E)

]
· Pr[γγγ = γ,EEE = E] + δ

=
∑

(γ,E)∈Ξ

Pr
[
P
(−→

∆∆∆ + Mπππ ·
(−→

D(−→x , γ) · E
))

∈ Fake(α(γ, E))
]

· Pr[(γγγ,EEE) = α(γ, E)] + δ

=
∑

(γ,E)∈Ξ

Pr
[
P
(−→

∆∆∆ + Mπππ ·
(−→

D(−→x , γ) · E
))

∈ Fake(α(γ, E))
]

· Pr[(γγγ,EEE) = (γ, E)] + δ

= Pr
[
P
(−→

PPP
)

∈ Fake(α(γγγ,EEE)), (γγγ,EEE) ∈ Ξ
]

+ δ.

Analogously, p ≤ Pr
[
P
(−→
PPP
)
∈ Fake(β(γγγ,EEE)), (γγγ,EEE) ∈ Ξ

]
+ δ. Also the inequality p ≤

Pr
[
P
(−→
PPP
)
∈ Fake(γγγ,EEE), (γγγ,EEE) ∈ Ξ

]
+ δ follows by the largeness condition. Then,

3(1− p) ≥Pr
[
P
(−→
PPP
)
̸∈ Fake(β(γγγ,EEE)) ∨ (γγγ,EEE) ̸∈ Ξ

]
+ Pr

[
P
(−→
PPP
)
̸∈ Fake(α(γγγ,EEE)) ∨ (γγγ,EEE) ̸∈ Ξ

]
+ Pr

[
P
(−→
PPP
)
̸∈ Fake(γγγ,EEE) ∨ (γγγ,EEE) ̸∈ Ξ

]
− 3δ

≥Pr
[
P
(−→
P
)
̸∈ Fake(γγγ,EEE) ∩ Fake(α(γγγ,EEE)) ∩ Fake(β(γγγ,EEE)) ∨ (γγγ,EEE) ̸∈ Ξ

]
− 3δ

=1− 3δ.

The last equality follows by the difference condition. Hence, 3(1−p) ≥ 1− 3δ, thus p ≤ 2
3 + δ.

◁

We prove the following lemma in Subsection 5.3

▶ Lemma 26. Let x1, . . . , xk be a 0-instance of UDISJk,2ℓ−k−1. Then for some δ < 1
3 −

1
100

there exists a (1− δ)-symmetry randomness space for −→x .

Lemma 26 and Claim 25 imply that there is a constant ε > 0 such that

Pr [P (PPP 1,PPP 2, . . . ,PPP k) ̸∈ Fake(γγγ,EEE)] ≥ ε+ 1
100 .

Thus,

Pr [P (PPP 1,PPP 2, . . . ,PPP k) ̸∈ Fake(γγγ,EEE) ∪ {⊥}] ≥ ε.

Then, for N = O
(
log 1

ε

)
, T gives a correct answer for every 0-instance with probability

at least 2
3 . ◀

5.3 Constructions of Ξ, α and β

Proof of Lemma 26. Assume that x1, . . . , xk is a 0-instance UDISJk,2ℓ−k−1. Let i0 ∈
[2ℓ−k − 1] be such that x1,i0 = x2,i0 = . . . = xk,i0 = 1.

Hereinafter γ denotes a bijection from [2ℓ−k−1]∪{∗} to {0, 1}ℓ−k, E denotes an invertible
matrix from Fℓ×ℓ

2 and e1, e2, . . . , eℓ denote rows of E.
Before presenting constructions of Ξ, α, and β we explain how we are going to establish

symmetry and difference properties from Definition 24.
For every s ∈ {0, 1}ℓ−k and b ∈ {0, 1} we introduce the following notation:

R(s, b, E) :=
{

(s, b, z) · E | z ∈ Fk−1
2
}
.

D. Itsykson and A. Riazanov 3:23

Using the key property of the matrix C−→x (γ,E) we can describe rows of C−→x (γ,E) in
terms of R(s, b, E).

▷ Claim 27.
The set of the last 2k+1 rows of C−→x (γ,E) is R(γ(∗), 0, E)∪R(γ(∗), 1, E) and each of this
rows appears exactly twice. Recall that we already denote this set as Fake(γ,E). Hence,
Fake(γ,E) = R(γ(∗), 0, E) ∪R(γ(∗), 1, E).
The set of rows of C−→x (γ,E) with indices from [2k(i− 1) + 1; 2ki] for i ∈ [2ℓ−k−1] \ {i0} is
exactly R(γ(i), 0, E) ∪R(γ(i), 1, E) and every such row appears exactly once.
The set of rows of C−→x (γ,E) with indices from [2k(i0−1)+1; 2ki0] is exactly R(γ(i0), 0, E)
and every such row appears exactly twice.

▷ Claim 28. R(s, b, E) can be represented as a shift of the linear space Span(eℓ−k+2, . . . , eℓ):

R(s, b, E) =

ℓ−k∑
j=1

sjej + b · eℓ−k+1

+ Span(eℓ−k+2, . . . , eℓ).

Proof.

R(s, b, E) =
{

(s, b, z) · E | z ∈ Fk−1
2
}

=
{

(s, b, z) · (e1, e2, . . . , eℓ)T | z ∈ Fk−1
2
}

=
ℓ−k∑
i=j

sjej + b · eℓ−k+1 +
k−1∑
i=1

zieℓ−k+1+i | z ∈ Fk−1
2

 =

ℓ−k∑
j=1

sjej + b · eℓ−k+1

 + Span(eℓ−k+2, . . . , eℓ).

◁

▷ Claim 29. For every s ∈ {0, 1}ℓ−k and b ∈ {0, 1}, |R(s, b, E)| = 2k−1.

Proof. By Claim 28, |R(s, b, E)| =
∣∣∣(∑ℓ−k

j=1 sjej + b · eℓ−k+1

)
+ Span(eℓ−k+2, . . . , eℓ)

∣∣∣ =
|Span(eℓ−k+2, . . . , eℓ)| = 2k−1. ◁

▷ Claim 30. Sets R(s, b, E) for s ∈ {0, 1}ℓ−k and b ∈ {0, 1} are disjoint.

Proof. Consider two vectors u ∈ R(s, b, E) and v ∈ R(s′, b′, E) such that (s, b) ̸= (s′, b′).
Then, by Claim 28, u and v have different coordinates in the basis e1, e2, . . . , eℓ, hence u ̸= v.

◁

▷ Claim 31. Assume that γ, γ′ are bijections from [2ℓ−k − 1] ∪ {∗} to {0, 1}ℓ−k and E and
E′ are invertible matrices from Fℓ×ℓ

2 such that
R(γ(i0), 0, E) ∪ R(γ(∗), 0, E) ∪ R(γ(∗), 1, E) = R(γ′(i0), 0, E′) ∪ R(γ′(∗), 0, E′) ∪
R(γ′(∗), 1, E′);
R(γ(i0), 1, E) = R(γ′(i0), 1, E′).

Then matrices C−→x (γ,E) and C−→x (γ′, E′) differ only by a permutation of rows.

Proof. By Claim 27, rows from R(γ(i0), 1, E) do not appear in C−→x (γ,E), rows from
R(γ(i0), 0, E) ∪R(γ(∗), 0, E) ∪R(γ(∗), 1, E) appear in C−→x (γ,E) exactly twice. The matrix
C−→x (γ,E) has 2ℓ+2k rows. All rows of C−→x (γ,E) that are not in R(γ(i0), 1, E)∪R(γ(∗), 0, E)∪
R(γ(∗), 1, E), by Claim 27, appear in C−→x (γ,E) exactly once.

CCC 2021

3:24 Proof Complexity of Natural Formulas via Communication Arguments

By Claims 29 and 30, |R(γ(i0), 0, E) ∪ R(γ(∗), 0, E) ∪ R(γ(∗), 1, E)| = 3 · 2k−1, hence,
the number of rows of C−→x (γ,E) that are not in R(γ(i0), 1, E) ∪R(γ(∗), 0, E) ∪R(γ(∗), 1, E)
equals 2ℓ − 2k+1. By Claims 29 and 30, the number of ℓ-bit strings not from R(γ(i0), 1, E)∪
R(γ(i0), 0, E) ∪R(γ(∗), 0, E) ∪R(γ(∗), 1, E) is also 2ℓ − 2k+1. Hence, all rows from {0, 1}ℓ \
(R(γ(i0), 0, E)∪R(γ(∗), 0, E)∪ (γ(∗), 1, E)∪R(γ(i0), 1, E)) appear in C−→x (γ,E) exactly once.
Thus, matrices C−→x (γ,E) and C−→x (γ′, E′) have the same set of rows and each row appears
the same number of times in each of these matrices. ◁

For α, β : Ξ→ Ξ we denote α(γ,E) = (γα, Eα) and β(γ,E) = (γβ , Eβ). We are going to
construct α and β such that for all (γ,E) ∈ Ξ the following equalities are satisfied.


R(γ(i0), 1, E) = R(γα(i0), 1, Eα) = R(γβ(i0), 1, Eβ);
R(γ(i0), 0, E) = R(γα(∗), 0, Eα) = R(γβ(∗), 0, Eβ);
R(γ(∗), 1, E) = R(γα(∗), 1, Eα) = R(γβ(i0), 0, Eβ);
R(γ(∗), 0, E) = R(γα(i0), 0, Eα) = R(γβ(∗), 1, Eβ).

(2)

Notice that by Claim 31, equations (2) imply the symmetry property. Equations (2) also
imply the difference property. Indeed,

Fake(γ,E) = R(γ(∗), 1, E) ∪R(γ(∗), 0, E);
Fake(γα, Eα) = R(γα(∗), 1, Eα) ∪R(γα(∗), 0, Eα) = R(γ(∗), 1, E) ∪R(γ(i0), 0, E);
Fake(γβ , Eβ) = R(γβ(∗), 1, Eβ) ∪R(γβ(∗), 0, Eβ) = R(γ(∗), 0, E) ∪R(γ(i0), 0, E).

Hence, by Claim 30, Fake(γ,E) ∩ Fake(γα, Eα) ∩ Fake(γβ , Eβ) = ∅.
In order to complete the proof of the lemma we have to construct Ξ and bijections α, β

from Ξ to Ξ such that
(Largeness) Pr[(γγγ,EEE) ∈ Ξ] > 2

3 + 1
100 ;

and for all (γ,E) ∈ Ξ the equations (2) are satisfied.

Definition of Ξ. A pair (γ,E) is in Ξ iff there exist m,n ∈ [ℓ − k] such that (γ(∗))m =
1, (γ(i0))m = 0 and (γ(∗))n = 0, (γ(i0))n = 1. In other words, γ(∗) and γ(i0) are not
comparable with respect to coordinate-wise comparison.

Notice that γγγ(i0) and γγγ(∗) are distributed uniformly among non-equal elements of
{0, 1}ℓ−k. Let SSS and TTT are two independent random variables distributed uniformly on the
set of all subsets of [ℓ− k]. Then,

Pr [(γγγ,EEE) ∈ Ξ] =1 − Pr [γγγ(i0) ≤ γγγ(∗) ∨ γγγ(∗) ≤ γγγ(i0)] ≥ 1 − 2 Pr [γγγ(i0) ≤ γγγ(∗)]
=1 − 2 Pr [SSS ⊆ TTT | SSS ̸= TTT] ≥ 1 − 2 Pr [SSS ⊆ TTT]

=1 − 2
ℓ−k∏
j=1

(1 − Pr[j ∈ SSS ∧ j ̸∈ TTT]) = 1 − 2
(3

4

)ℓ−k

>
2
3 + 1

100 if ℓ − k ≥ 7.

Hence, the largeness property is satisfied.

Construction of α. Let (γ,E) ∈ Ξ, we define α(γ,E) = (γα, Eα), where Eα is a
matrix with rows defined by vectors (e′1, . . . , e′ℓ) = (e1, . . . , eℓ−k, eℓ−k+1 +

∑ℓ−k
j=1(γ(i0)j +

γ(∗)j)ej , eℓ−k+2, . . . , eℓ), and

γα(i) =


γ(∗) if i = i0

γ(i0) if i = ∗
γ(i) otherwise

.

D. Itsykson and A. Riazanov 3:25

▷ Claim 32. α is a bijection from Ξ→ Ξ.

Proof. Notice that rows of E′ form a basis since
∑ℓ−k

j=1(γ(i0)j +γ(∗)j)ej ∈ Span(e1, . . . , eℓ−k).
The mapping γ 7→ γα is bijective since it just swaps γ(i0) and γ(∗). Since the condition on
γ(i0) and γ(∗) does not change after application of α, we get that α(Ξ) ⊆ Ξ. Notice that∑ℓ−k

j=1(γ(i0)j + γ(∗)j)ej =
∑ℓ−k

j=1(γα(i0)j + γα(∗)j)e′j , hence α(γα, Eα) = (γ,E), hence α is
bijective. ◁

▷ Claim 33. For all (γ,E) ∈ Ξ the following equalities hold
1. R(γα(i0), 1, Eα) = R(γ(i0), 1, E);
2. R(γα(i0), 0, Eα) = R(γ(∗), 0, E);
3. R(γα(∗), 0, Eα) = R(γ(i0), 0, E);
4. R(γα(∗), 1, Eα) = R(γ(∗), 1, E).

Proof. We use Claim 28. Let us denote S := Span(eℓ−k+2, . . . , eℓ) = Span(e′ℓ−k+2, . . . , e
′
ℓ).

1. R(γα(i0), 1, Eα) =
(∑ℓ−k

j=1 γα(i0)je
′
j + e′ℓ−k+1

)
+ S =

(∑ℓ−k
j=1 γ(∗)jej + e′ℓ−k+1

)
+ S =(∑ℓ−k

j=1 γ(i0)jej + eℓ−k+1

)
+ S = R(γ(i0), 1, E);

2. R(γα(i0), 0, Eα) =
(∑ℓ−k

j=1 γα(i0)je
′
j

)
+ S =

(∑ℓ−k
j=1 γ(∗)jej

)
+ S = R(γ(∗), 0, E);

3. R(γα(∗), 0, Eα) =
(∑ℓ−k

j=1 γα(∗)je
′
j

)
+ S =

(∑ℓ−k
j=1 γ(i0)jej

)
+ S = R(γ(i0), 0, E);

4. R(γα(∗), 1, Eα) =
(∑ℓ−k

j=1 γα(∗)je
′
j + e′ℓ−k+1

)
+ S =

(∑ℓ−k
j=1 γ(i0)jej + e′ℓ−k+1

)
+ S =(∑ℓ−k

j=1 γ(∗)jej + eℓ−k+1

)
+ S = R(γ(∗), 1, E). ◁

Construction of β. For (γ,E) ∈ Ξ, we define β(γ,E) = (γβ , Eβ), where γβ = γα and Eβ

is defined below. Let jmin = min{j ∈ [ℓ− k] : (γ(∗))j = 1 ∧ (γ(i0))j = 0}; jmin is correctly
defined since (γ,E) ∈ Ξ. Now we define Eβ = (e′′1 , . . . , e′′ℓ):

e′′j =


ej if j ̸∈ {jmin, ℓ− k + 1}∑ℓ−k

i=1 (γ(∗)i + γ(i0)i)ei if j = ℓ− k + 1
ejmin + eℓ−k+1 if j = jmin

.

▷ Claim 34. β is a bijection from Ξ→ Ξ.

Proof. Let us verify that β is injective. Given γβ we can easily recover γ, hence we can
recover jmin as well. Then

ℓ−k∑
i=1

(γ(i0)i +γ(∗)i)e′′i + e′′ℓ−k+1 =
∑

i∈[ℓ−k]\{jmin}

(γ(i0)i +γ(∗)i)ei +
e′′

jmin︷ ︸︸ ︷
ejmin + eℓ−k+1 +e′′ℓ−k+1

= eℓ−k+1 +
∑

i∈[ℓ−k]\{jmin}

(γ(i0)i + γ(∗)i)ei + ejmin︸ ︷︷ ︸
e′′

ℓ−k+1

+e′′ℓ−k+1 = eℓ−k+1.

Thus, we can uniquely recover eℓ−k+1 and, hence, also recover ejmin = e′′jmin
+ eℓ−k+1; for

j ∈ [ℓ] \ {jmin, ℓ − k + 1}, ej = e′′j . Hence, β is injective. Notice that since we represent
e1, . . . , eℓ as linear combinations of e′′1 , . . . , e′′ℓ , then e′′1 , . . . , e

′′
ℓ is a basis, hence the matrix

Eβ is invertible. Thus, we verify that β(Ξ) ⊆ Ξ and β is injective, hence β is bijective. ◁

CCC 2021

3:26 Proof Complexity of Natural Formulas via Communication Arguments

▷ Claim 35. For all (γ,E) ∈ Ξ the following equalities hold
1. R(γβ(i0), 1, Eβ) = R(γ(i0), 1, E);
2. R(γβ(i0), 0, Eβ) = R(γ(∗), 1, E);
3. R(γβ(∗), 0, Eβ) = R(γ(i0), 0, E);
4. R(γβ(∗), 1, Eβ) = R(γ(∗), 0, E);

Proof. We denote S := Span(eℓ−k+2, . . . , eℓ) = Span(e′′ℓ−k+2, . . . , e
′′
ℓ). Recall that γ(∗)jmin =

1 and γ(i0)jmin = 0.
1. R(γβ(i0), 1, Eβ) =

∑ℓ−k
i=1 γβ(i0)ie

′′
i + e′′ℓ−k+1 +S =

∑ℓ−k
i=1 γ(∗)iei + eℓ−k+1 + e′′ℓ−k+1 +S =∑ℓ−k

i=1 γ(∗)iei + eℓ−k+1 +
∑ℓ−k

i=1 (γ(∗)i + γ(i0)i)ei + S =
∑ℓ−k

i=1 γ(i0)iei + eℓ−k+1 + S =
R(γ(i0), 1, E);

2. R(γβ(i0), 0, Eβ) =
∑ℓ−k

i=1 γβ(i0)ie
′′
i + S =

∑ℓ−k
i=1 γ(∗)iei + eℓ−k+1 + S = R(γ(∗), 1, E);

3. R(γβ(∗), 0, Eβ) =
∑ℓ−k

i=1 γβ(∗)ie
′′
i + S =

∑ℓ−k
i=1 γ(i0)iei + S = R(γ(i0), 0, E);

4. R(γβ(∗), 1, Eβ) =
∑ℓ−k

i=1 γβ(∗)ie
′′
i + e′′ℓ−k+1 + S =

∑ℓ−k
i=1 γ(i0)iei + e′′ℓ−k+1 + S =∑ℓ−k

i=1 γ(∗)iei + S = R(γ(∗), 0, E). ◁

Claims 33 and 35 imply the equations 2. ◀

5.4 Proof of Lemma 21
To prove Lemma 21 it is sufficient to prove the following:

▶ Proposition 36. There exist matrices T1, . . . , Tk ∈ F2k×k
2 , such that

for α1, . . . , αk ∈ {0, 1} the matrix
∑k

i=1 αiTi is zero iff α1 = α2 = . . . = αk = 0, i.e.
T1, . . . , Tk are linearly independent;
For every non-zero matrix M ∈ Span(T1, . . . , Tk), M +Kk ∈ Sk.

Proof of Lemma 21. Let for i ∈ {1, . . . , k − 1}, Ai(0) = Ti and Ai(1) be the zero matrix.
Let Ak(0) = Kk + Tk, Ak(1) = Kk. For each b1, . . . , bk ∈ {0, 1},

∑k
i=1 Ai(bi) =

∑k
i=1(1 −

bi)Ti +Kk. Then
∑k

i=1 Ai(1) = Kk, and if for at least one i ∈ [k], bi ̸= 1, then by the first
condition of Proposition 36,

∑k
i=1(1− bi)Ti differs from zero, thus by the second condition

of Proposition 36,
∑k

i=1 Ai(bi) ∈ Sk. ◀

Proof of Proposition 36. Let us prove the proposition by induction on k. We are going
to prove a stronger statement: namely, we additionally require that for arbitrary non-zero
matrix M ∈ Span(T1, . . . , Tk) the set of even-indexed rows of M + Kk ∈ Sk coincide with
the set of odd-indexed rows of this matrix with all bits flipped.

The base case k = 1. T1 =
(

0
1

)
, and K1 =

(
0
0

)
. It is easy to verify that all conditions

hold.
Induction step from k to k + 1. Notice that Kk+1 =

(
Kk 02k×1
Kk 12k×1

)
. Let T1, . . . Tk

be the matrices from induction hypothesis for k. Then define T ′i =
(
Ti 02k×1
Ti 02k×1

)
for

i ∈ [k] and T ′k+1 =
(

02k×k z0
12k×k z1

)
, where z0 = (0, 1, 0, 1, . . . , 0, 1)T ∈ {0, 1}2k×1, and z1 =

(1, 0, 1, 0 . . . , 1, 0)T ∈ {0, 1}2k×1.
Let us verify that all conditions hold. First we show that the matrices T ′1, T ′2, . . . , T ′k+1

are linearly independent. Matrices T ′1, T ′2, . . . , T ′k are linearly independent since they contain
linearly independent blocks T1, . . . , Tk. The matrix T ′k+1 does not belong to Span(T ′1, . . . , T ′k),
since the last column of T ′k+1 is non-zero, but the last columns of all T ′1, . . . , T ′k are zeros.

D. Itsykson and A. Riazanov 3:27

Let us check that for any non-zero matrix M ∈ Span(T ′1, . . . , T ′k, T ′k+1), the condition
M +Kk+1 ∈ Sk+1 holds and the set of even-indexed rows of M +Kk+1 coincide with the set
of odd-indexed rows of this matrix with all bits flipped. Let us analyze the cases:

1. Let M be a non-zero matrix from Span(T ′1, . . . , T ′k). Then, M has form
(
M ′ 02k×1
M ′ 02k×1

)
,

where M ′ is a non-zero matrix from Span(T1, . . . , Tk), thus M ′ + Kk ∈ Sk. Then

M +Kk+1 =
(
M ′ +Kk 02k×1
M ′ +Kk 12k×1

)
; it follows from the induction hypothesis that all rows

of this matrix are distinct, i.e. M + Kk+1 ∈ Sk+1. In order to verify that the set of
even-indexed rows of this matrix coincide with the set of odd-indexed rows with all
bits flipped, observe that by induction hypothesis the first 2k−1 even-indexed rows of
M +Kk+1 coincide with the last 2k−1 odd-indexed rows of M +Kk+1 with all bits flipped,
and the first 2k−1 odd-indexed rows of M+Kk+1 coincide with the last 2k−1 even-indexed
rows of M +Kk+1 with flipped bits.

2. M = T ′k+1, then M + Kk+1 =
(

Kk z0
12k×k +Kk z0

)
. Let us show that all rows of this

matrix are distinct. The first 2k rows start with 0 and are obtained by appending zeroes
and ones to the rows of Kk in the alternating order. Since for every pair of coinciding
rows of Kk they are adjacent, the first 2k rows are distinct. The last 2k rows start from
one, so they differ from the first 2k rows. The proof that they are distinct is the same as
for the first 2k rows. Observe that the (2i− 1)th row of the matrix M +Kk+1 coincide
with the (2k + 2i)th row of M +Kk+1 with flipped bits, and the (2i)th row of M +Kk+1
coincide with the (2k + 2i− 1)th row of M +Kk+1 with flipped bits for i ∈ [2k].

3. M = R + T ′k+1, where R is a non-zero matrix from Span(T ′1, . . . , T ′k). Let R have

the form
(
R′ 02k×1
R′ 02k×1

)
, where R′ is a non-zero matrix from Span(T1, . . . , Tk). Then

M +Kk+1 = R+ T ′k+1 +Kk+1 =
(

R′ +Kk z0
12k×k +R′ +Kk z0

)
. By the induction hypothesis,

R′ +Kk ∈ Sk and its even-indexed rows coincide with its odd-indexed rows with flipped
bits. Then, all even-indexed rows of M + Kk+1 end with 0, the first 2k−1 of them
are even-indexed rows of R′ + Kk with appended zero, and the last 2k−1 of them are
even-indexed rows of R′+Kk with all bits flipped and appended 0. Then, by the induction
hypothesis, the set of the former rows does not intersect with the set of the latter rows,
therefore they are all distinct. By the same argument, all the rows of M + Kk+1 that
end with 1 are distinct. Thus, M +Kk+1 ∈ Sk+1.
Let us verify that the set of even-indexed rows of this matrix coincide with the set of
odd-indexed rows of this matrix with all bits flipped. Observe that if the ith row of
R′ + Kk coincides with the jth row of R′ + Kk with flipped bits, then the ith row of
M+Kk+1 coincides with its jth row with flipped bits, and the (2k + i)th row of M+Kk+1
coincides with its (2k + j)th row with all bits flipped. The required property follows from
the induction hypothesis. ◀

5.5 Corollaries
▶ Corollary 37. If k + 7 ≤ ℓ, then the size of any semantic Res (PCk−1) tree-like refutation

of BPHP2ℓ+2k

2ℓ is at least 2
Ω
(

2ℓ/2

k23k/2

)
. For k = 2, the size of any tree-like semantic Res(⊕)

refutation of BPHP2ℓ+4
2ℓ is at least 2Ω(2ℓ).

Proof. Follows from Theorem 3 and Lemma 1. ◀

CCC 2021

3:28 Proof Complexity of Natural Formulas via Communication Arguments

▶ Corollary 38. Let 2 ≤ k ≤ ℓ− 7 and S be the minimal size of tree-like refutation of φ =
BPHP2ℓ+2k

2ℓ ◦⊕k in the semantic proof system Tcc(k, c). Then logS log logS ≥ c ·Ω
(

2ℓ/2

k23k/2

)
.

For k = 2, logS log logS ≥ c · Ω
(
2ℓ
)
.

Proof. By Lemma 9, R1/3
pub(Search (φ)) = O

(
log S log log S

c

)
. We also know that

R
1/3
pub

(
Search

(
BPHP2ℓ

2ℓ+2k ◦ ⊕k

))
≥ R1/3

pub

(
⊕kSearch

(
BPHP2ℓ

2ℓ+2k

))
.

Now the statement follows from Theorem 3. ◀

6 Bit pigeonhole principle

6.1 Reduction from BPHP ◦ ⊕k to BPHP
Let T ⊆ X1 ×X2 × · · · ×Xk × Y and S ⊆ Z1 × Z2 × · · · × Zk ×W be two relations. We
say that S is many-one reducible to T if there are k + 1 mappings f1 : X1 → Z1, f2 :
X2 → Z2, . . . , fk : Xk → Zk and g : W → Y such that if (f1(x1), . . . , fk(xk), y) ∈ T then
(x1, . . . , xk, g(y)) ∈ S.

▶ Lemma 39. If S is many-one reducible to T , then Rpub
1/3(S) ≤ Rpub

1/3(T).

Proof. The ith party computes f(xj) for all j ∈ [k] \ {i} and then all parties run the optimal
protocol for T . As soon as all the parties learn an answer y they compute g(y) without
communication. ◀

Recall that BPHPM
2n encodes that there exist M different strings s1, s2, . . . , sM from

{0, 1}n. Let k be a positive integer. Let us define the partition Πk of the variables of
BPHPM

2n into k parts. Let n = ℓk + r where 0 ≤ r < k. For each i ∈ [M] the row si is
partitioned into k parts s = s

(1)
i s

(2)
i · · · s

(k)
i such that |s(t)

i | = ℓ+ 1 if t ≤ r, and |s(t)
i | = ℓ if

t > r. The partition Πk of the variables of BPHPM
2n into k parts is the following: the tth

part consists of the variables s(t)
1 , s

(t)
2 , . . . , s

(t)
M .

We consider a search problem SearchPairM
2n : given the values of the variables of BPHPM

2n ,
that are partitioned according to Πk find a pair of distinct indices i, j ∈ [M], such that the
values of si and sj coincide.

▶ Proposition 40. The relation SearchPairM
2n is many-one reducible to Search

(
BPHPM

2n

)
with variables partitioned according to Πk.

Proof. The proof is straightforward. ◀

▶ Theorem 41. ⊕kBPHPm
2ℓ is many-one reducible to SearchPairm·2(k−1)ℓ

2kℓ .

Proof. Let us denote M = m · 2(k−1)ℓ. Consider a set Z ={
(y1, y2, . . . , yk) ∈ (Fℓ

2)k |
∑

i yi = 0}
}

. It is easy to see that |Z| = 2(k−1)ℓ. Let φ

be a bijection between [M] and Z × [m].
Let for i ∈ [m] and t ∈ [k], x(t)

i denote the ith string of the tth party in the communication
problem ⊕kBPHPm

2ℓ . Let xi := (x(1)
i , . . . , x

(k)
i).

For every t ∈ [k] we define ft as follows: ft

(
x

(t)
1 , . . . , x

(t)
m

)
is a sequence of rows

r
(t)
1 , r

(t)
2 , . . . , r

(t)
M such that for all i ∈ [M], r(t)

i = zt + x
(t)
j , where (z, j) = φ(i) for all

z ∈ Z and j ∈ [m] (recall that z ∈ Z is divided on k parts of equal lengths and zt denotes
the tth part).

Let us construct the function g from the definition of the reduction.
Let q, w ∈ [M] and q ̸= w. Assume that φ(q) = (z, j1) and φ(w) = (z, j2). We define

g(q, w) := (j1, j2).

D. Itsykson and A. Riazanov 3:29

Let us verify that f1, f2, . . . , fk and g define a reduction. Let q, w ∈M be a pair of different
numbers such that the assignment α :=

{
si ← r

(1)
i r

(2)
i . . . r

(k)
i | i ∈ [M]

}
satisfies sq = sw.

Assume that g(q, w) = (j1, j2). We need to verify that j1 ̸= j2 and
∑k

t=1 x
(t)
j1

=
∑k

t=1 x
(t)
j2

.
Notice that under the assignment α the value of sq is xj1 +z and the value of sw is xj2 +y,

where j1, j2 ∈ [m] and z, y ∈ Z such that (z, j1) = φ(q) and (y, j2) = φ(w). If j1 = j2, then
xj1 + z = xj2 + y implies z = y. Since φ is a bijection, we get q = w. Thus, j1 ̸= j2.

For each t ∈ [k], the following equality holds.

zt + x
(t)
j1

= yt + x
(t)
j2

(3)

If we sum up equations (3) for all t ∈ [k] and use that y, z ∈ Z, we get
∑k

t=1 x
(t)
j1

=∑k
t=1 x

(t)
j2

. Hence, (j1, j2) is a correct answer for ⊕kBPHPm
2ℓ . ◀

The following proposition deals with the case, where the number of bits is not divisible
by k.

▶ Proposition 42. Let n = kℓ+ r, where 0 ≤ r < k. Let M > 2kℓ. Then SearchPairM
2kℓ is

many-one reducible to SearchPairM2r

2n .

Proof. Let x1, x2, . . . , xM be the input of SearchPairM
2kℓ , let x(t)

j be the tth part of the row
xj according to the partition Πk. Given this input we construct an input for SearchPairM2r

2n .
Let τ be a bijection between [M]× {0, 1}r and [M2r].

For each i ∈ [M] we construct 2r rows yτ(i,α) one for each α ∈ {0, 1}r. Let Πk partition
a row yτ(i,α) into the following parts: y(1)

τ(i,α)y
(2)
τ(i,α) · · · y

(k)
τ(i,α). Let

y
(t)
τ(i,α) =

{
x

(t)
i if t > r

x
(t)
i αt if 0 ≤ t ≤ r

.

Now we can define the function ft(x(t)
1 , . . . , x

(t)
M) as y(t)

τ(i,α) for each i ∈M and α ∈ {0, 1}r and
t ∈ [k] Observe that for each i ∈ [M] the rows yi,α for α ∈ {0, 1}r are distinct. That allows
us to define the function g as g(τ(i1, α1), τ(i2, α2)) = (i1, i2). All the required properties can
be easily verified. ◀

▶ Theorem 4. Let M = 2n + 2k+n−⌊n/k⌋ and n ≥ k(k + 7). If variables of BPHPM
2n are

partitioned according Πk, then Rpub
1/3

(
Search

(
BPHPM

2n

))
= Ω

(
2n/2k−3k/2

k

)
.

For k = 2 a stronger bound holds: Rpub
1/3

(
Search

(
BPHPM

2n

))
= Ω(2n/2).

Proof. Let ℓ = ⌊n/k⌋ and r = n− ℓk.

Rpub
1/3

(
Search

(
BPHPM

2n

))
= Rpub

1/3

(
Search

(
BPHP(2k+2ℓ)2(k−1)ℓ+r

2n

))
(Proposition 40)

≥ Rpub
1/3

(
SearchPair(2k+2ℓ)2(k−1)ℓ+r

2n

)
(Proposition 42)

≥ Rpub
1/3

(
SearchPair(2k+2ℓ)2(k−1)ℓ

2kℓ

)
(Theorem 41)

≥ Rpub
1/3

(
⊕kBPHP2k+2ℓ

2ℓ

) (Corollary 19)= Ω
(

2ℓ/2−3k/2

k

)
= Ω

(
2n/2k−3k/2

k

)
.

The case of k = 2 can be treated in the same way, the only difference is in the application
of Corollary 19. ◀

CCC 2021

3:30 Proof Complexity of Natural Formulas via Communication Arguments

6.2 Upper bound for communication complexity of Search
(
BPHPm

2n

)
▶ Proposition 5. For M > 2n and k ∈ {2, 3, . . . , n} there exists a deterministic NOF
communication protocol for Search

(
BPHPM

2n

)
w.r.t. Πk transmitting O

(
2⌈n/k⌉ · logM

)
bits.

Proof. The protocol is going to have only two active parties: the second party, which we
call Alice, and the first party, which we call Bob. We are going to use that Alice can see the
variables s(1)

1 , . . . , s
(1)
M and that Bob can see all other variables.

Let us denote s̄(1)
i = s

(2)
i s

(3)
i . . . s

(k)
i ∈ {0, 1}n−⌈n/k⌉ the bits Bob sees in the ith line

for i ∈ [M]. Bob finds a value α ∈ {0, 1}n−⌈n/k⌉ such that the size of the set Sα ={
i ∈ [M] | s̄(1)

i = α
}

is larger than 2⌈n/k⌉. Such α exists since M > 2n. Bob then picks an
arbitrary subset S′ of Sα of size 2⌈n/k⌉ + 1 and sends the description of S′ to Alice using(
2⌈n/k⌉ + 1

)
· ⌈log2 M⌉ bits. Then, by the pigeonhole principle there exists i ̸= j ∈ S′ such

that s(1)
i = s

(1)
j . Alice and Bob then spend O(logM + n) bits transmitting indices i and j

and all the values of the ith and jth lines to each other. Both of them then find the falsified
clause of BPHPM

2n with no communication because it only depends on variables si and sj

and broadcast its description to all of the parties using an additional O(n+ logM) bits. ◀

For k = 2 this upper bound coincides with the lower bound given by Corollary 19 up to
a logarithmic factor. For the larger value of k the upper bound and the lower bound are
polynomially related. This upper bound shows that the dependence on k in the lower bound
is not an artifact of the proof, but a genuine phenomenon.

6.3 Short Th(log n) proof of BPHPm
n

In this section we give a short tree-like Th(logn) refutation of the bit pigeonhole principle
BPHPm

n . This observation is similar to the one of [5] that converts a resolution proof of the
unary encoding of the pigeonhole principle PHPm

n to a proof of BPHPm
n in Res(logn).

Namely we prove the following:

▶ Proposition 43. If there exists a tree-like Th(1)-refutation of PHPm
2ℓ of size S. Then there

exists a tree-like Th(ℓ)-refutation of BPHPm
2ℓ of size O(S).

Proof. Let pi,j for i ∈ [m] and j ∈ [2ℓ] be a variable of PHPm
2ℓ indicating that the ith pigeon

flies to the jth hole. Let si,k for i ∈ [m], k ∈ [ℓ] be a variable of BPHPm
2ℓ indicating the ℓth

bit of the ith string si.
Let Qj(x1, x2, . . . , xℓ) for j ∈ [2k] be a multilinear polynomial over reals such that

for all a1, a2, . . . , aℓ ∈ {0, 1}ℓ, Qj(a1, a2, . . . , aℓ) = 1 if (a1, a2, . . . , aℓ) = binℓ(j − 1) and
Qj(a1, a2, . . . , aℓ) = 0 otherwise. We ma define Qj as follows Qj(x1, . . . , xℓ) =

∏ℓ
k=1(1 −

xk + αℓ) for i ∈ [m], j ∈ [2k], where α = binℓ(j − 1). By the construction deg(Qj) = ℓ.
Let Pi,j = Qj(si,1, si,2, . . . , si,ℓ).
Consider a tree-like Th(1)-refutation of PHPm

2ℓ of size S: f1 ≥ 0, f2 ≥ 0, . . . , fS ≥ 0,
where fi are linear real polynomials over variables pi,j and fS ≥ 0 is unsatisfiable on Boolean
cube. For each of the inequalities on the following conditions hold:
(a) fi ≥ 0 is semantically implied by fj ≥ 0 and fk ≥ 0 on the Boolean cube for j, k < i.
(b) fi is a linear representation of an axiom of PHPm

2ℓ ;
Let Fi be a polynomial obtained of substitution pj,k := Pj,k to fi for all j ∈ [m]; k ∈ [2ℓ].
Consider a sequence of inequalities F1 ≥ 0, . . . , FS ≥ 0. Observe that FS ≥ 0 is unsatisfiable
on the Boolean cube since Pi,j ∈ {0, 1} on the Boolean cube. Let us verify that the sequence
F1 ≥ 0, . . . , FS ≥ 0 may be extended to a correct tree-like Th(ℓ) refutation of BPHPm

2ℓ :

D. Itsykson and A. Riazanov 3:31

(a) If fi ≥ 0 is semantically implied by fj ≥ 0 and fk ≥ 0, then Fi ≥ 0 is also implied by
Fj ≥ 0 and Fk ≥ 0, since Pi,j is Boolean on the Boolean cube.

(b) If fi is a linear representation of a
hole axiom then fi ≥ 0 is equivalent to the function (1 − pa,b) + (1 − pc,b) ≥ 1 on
{0, 1}Vars(PHPm

2ℓ) for a, c ∈ [m], b ∈ [2ℓ]. Thus Fi ≥ 0 is also equivalent to (1− Pa,b) +
(1− Pc,b) ≥ 1 on the Boolean cube. Observe that the restriction of (1− Pa,b) + (1−
Pc,b) ≥ 1 to the Boolean cube coincides with the predicate sa ≠ binℓ(b)∨ sc ̸= binℓ(b)
which is an axiom of BPHPm

2ℓ .
pigeon axiom then fi ≥ 0 is equivalent to

∑2ℓ

j=1 pa,j ≥ 1 on the Boolean cube for some
a ∈ [m]. Thus Fi ≥ 0 is equivalent to

∑2ℓ

j=1 Pa,j ≥ 1 on {0, 1}Vars(BPHPm

2ℓ). Observe
that the latter inequality is identically true, since Pa,j is equivalent to sa = binℓ(j−1),
so for exactly one value of j ∈ [2ℓ], Pa,j = 1. Since Fi ≥ 0 is identically true it can be
semantically derived from two arbitrary axioms of BPHPm

2ℓ .

It is easy to see that the size of the resulting refutation is at most 3S. ◀

▶ Proposition 44 ([4]). For m > n there exists a tree-like Cutting Planes (which is a
subsystem of Th(1)) refutation of PHPm

n of size O(m2n) .

▶ Proposition 6. For m > 2ℓ there exists a tree-like Th(ℓ) refutation of BPHPm
2ℓ of size

O(m2 · 2ℓ).

Proof. Follows from Propositions 43 and 44. ◀

References
1 Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower bounds for Lovász-Schrijver

systems and beyond follow from multiparty communication complexity. SIAM J. Comput.,
37(3):845–869, 2007.

2 Paul Beame and Søren Riis. More on the relative strength of counting principles. In Paul
Beam and Samuel R. Buss, editors, Proof Complexity and Feasible Arithmetics, Proceedings
of a DIMACS Workshop, New Brunswick, New Jersey, USA, April 21-24, 1996, volume 39
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 13–35.
DIMACS/AMS, 1996. doi:10.1090/dimacs/039/02.

3 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

4 William Cook, Collette R. Coullard, and Gy. Turán. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18(1):25–38, 1987.

5 Stefan S. Dantchev, Nicola Galesi, and Barnaby Martin. Resolution and the binary encoding of
combinatorial principles. In Amir Shpilka, editor, 34th Computational Complexity Conference,
CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA, volume 137 of LIPIcs, pages 6:1–6:25.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CCC.2019.6.

6 Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere. Random Θ(log n)-
CNFs are hard for cutting planes. In Chris Umans, editor, 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 109–120. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.19.

7 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower
bounds from resolution. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors,
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pages 902–911. ACM, 2018. doi:10.1145/
3188745.3188838.

CCC 2021

https://doi.org/10.1090/dimacs/039/02
https://doi.org/10.4230/LIPIcs.CCC.2019.6
https://doi.org/10.1109/FOCS.2017.19
https://doi.org/10.1145/3188745.3188838
https://doi.org/10.1145/3188745.3188838

3:32 Proof Complexity of Natural Formulas via Communication Arguments

8 Michal Garlík and Leszek Aleksander Kolodziejczyk. Some subsystems of constant-depth frege
with parity. ACM Trans. Comput. Log., 19(4):29:1–29:34, 2018. doi:10.1145/3243126.

9 Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity.
In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC
’14, page 847–856, New York, NY, USA, 2014. Association for Computing Machinery. doi:
10.1145/2591796.2591838.

10 Pavel Hrubes and Pavel Pudlák. Random formulas, monotone circuits, and interpolation. In
Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 121–131. IEEE Computer Society,
2017. doi:10.1109/FOCS.2017.20.

11 Pavel Hrubes and Pavel Pudlák. A note on monotone real circuits. Inf. Process. Lett.,
131:15–19, 2018. doi:10.1016/j.ipl.2017.11.002.

12 Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: amplifying communica-
tion complexity hardness to time-space trade-offs in proof complexity. In Howard J. Karloff
and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 233–248. ACM, 2012.
doi:10.1145/2213977.2214000.

13 Russell Impagliazzo, Toniann Pitassi, and Alasdair Urquhart. Upper and lower bounds for
tree-like cutting planes proofs. In Proceedings of the Ninth Annual Symposium on Logic in
Computer Science (LICS ’94), Paris, France, July 4-7, 1994, pages 220–228. IEEE Computer
Society, 1994. doi:10.1109/LICS.1994.316069.

14 Dmitry Itsykson and Dmitry Sokolov. Lower bounds for splittings by linear combinations.
In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical
Foundations of Computer Science 2014 - 39th International Symposium, MFCS 2014, Budapest,
Hungary, August 25-29, 2014. Proceedings, Part II, volume 8635 of Lecture Notes in Computer
Science, pages 372–383. Springer, 2014. doi:10.1007/978-3-662-44465-8_32.

15 Dmitry Itsykson and Dmitry Sokolov. Resolution over linear equations modulo two. Annals
of Pure and Applied Logic, 171(1), January 2020. doi:10.1016/j.apal.2019.102722.

16 Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity of
set intersection. SIAM J. Discret. Math., 5(4):545–557, 1992. doi:10.1137/0405044.

17 Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. SIAM J. Discret. Math., 3(2):255–265, 1990. doi:10.1137/0403021.

18 H. Kesten. An introduction to probability theory and its applications, volume i, (william
feller). SIAM Review, 11(1):96–96, 1969. doi:10.1137/1011021.

19 Erfan Khaniki. On proof complexity of resolution over polynomial calculus. Electronic Col-
loquium on Computational Complexity (ECCC), 27:34, 2020. URL: https://eccc.weizmann.
ac.il/report/2020/034.

20 Jan Krajíček. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic. J. Symb. Log., 62(2):457–486, 1997. doi:10.2307/2275541.

21 Jan Krajíček. An exponential lower bound for a constraint propagation proof system based
on ordered binary decision diagrams. J. Symb. Log., 73(1):227–237, 2008. doi:10.2178/jsl/
1208358751.

22 Jan Krajíček. Randomized feasible interpolation and monotone circuits with a local oracle. J.
Mathematical Logic, 18(2):1850012:1–1850012:27, 2018. doi:10.1142/S0219061318500125.

23 Jan Krajíček. Proof complexity, volume 170. Cambridge University Press, 2019.
24 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,

1997.
25 Edward I Nechiporuk. A boolean function. Engl. transl. in Sov. Phys. Dokl., 10:591–593, 1966.
26 Vsevolod Oparin. Tight upper bound on splitting by linear combinations for pigeonhole

principle. In Nadia Creignou and Daniel Le Berre, editors, Theory and Applications of
Satisfiability Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8,
2016, Proceedings, volume 9710 of Lecture Notes in Computer Science, pages 77–84. Springer,
2016. doi:10.1007/978-3-319-40970-2_6.

https://doi.org/10.1145/3243126
https://doi.org/10.1145/2591796.2591838
https://doi.org/10.1145/2591796.2591838
https://doi.org/10.1109/FOCS.2017.20
https://doi.org/10.1016/j.ipl.2017.11.002
https://doi.org/10.1145/2213977.2214000
https://doi.org/10.1109/LICS.1994.316069
https://doi.org/10.1007/978-3-662-44465-8_32
https://doi.org/10.1016/j.apal.2019.102722
https://doi.org/10.1137/0405044
https://doi.org/10.1137/0403021
https://doi.org/10.1137/1011021
https://eccc.weizmann.ac.il/report/2020/034
https://eccc.weizmann.ac.il/report/2020/034
https://doi.org/10.2307/2275541
https://doi.org/10.2178/jsl/1208358751
https://doi.org/10.2178/jsl/1208358751
https://doi.org/10.1142/S0219061318500125
https://doi.org/10.1007/978-3-319-40970-2_6

D. Itsykson and A. Riazanov 3:33

27 Fedor Part and Iddo Tzameret. Resolution with counting: Dag-like lower bounds and
different moduli. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer
Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume
151 of LIPIcs, pages 19:1–19:37. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.ITCS.2020.19.

28 Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computa-
tions. J. Symb. Log., 62(3):981–998, 1997. doi:10.2307/2275583.

29 Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica,
19(3):403–435, 1999. doi:10.1007/s004930050062.

30 Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth. J. ACM,
39(3):736–744, 1992. doi:10.1145/146637.146684.

31 Alexander A. Sherstov. The multiparty communication complexity of set disjointness. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages 525–548,
2012.

32 Alexander A. Sherstov. Communication lower bounds using directional derivatives. J. ACM,
61(6), December 2014. doi:10.1145/2629334.

33 Dmitry Sokolov. Dag-like communication and its applications. In Computer Science -
Theory and Applications - 12th International Computer Science Symposium in Russia, CSR
2017, Kazan, Russia, June 8-12, 2017, Proceedings, pages 294–307, 2017. doi:10.1007/
978-3-319-58747-9_26.

A Proof of Lemma 12

▶ Lemma 12. Let T be a binary tree with m vertices such that the ith vertex is labeled with
ai ∈ {0, 1} with the hereditary property: for each inner vertex i with direct descendants c1
and c2, if ai = 1, then ac1 = 1 or ac2 = 1. We also assume that if r is the root of T , then
ar = 1. Assume that we have a one-sided bounded error oracle access to ai i.e. if we request
a value of ai and ai = 0 we get 1 with probability at most 1

2 and 0 with probability at least 1
2 ;

if ai = 1 we get 1 with probability 1. Then there exists an algorithm A that with probability
at least 2

3 returns a leaf ℓ of T with aℓ = 1 and makes O(logm) oracle queries to a1, . . . , am.

Proof of Lemma 12. For a tree F we denote by |F | the number of nodes in F and for a node
v of F we denote by Subtree(F, v) the subtree of F with root v. Let Oracle(i) be the oracle
function returning the correct value of ai with probability at least 9

10 . We can implement
such a function using the majority vote of a constant number of initial oracle queries. Let
C be a constant; an appropriate value of C we choose later. Consider Algorithm 2 on the
following page.

We claim that at any iteration Ti has the hereditary property. This is the case in the
beginning and if i decreases at some iteration, then the next Ti was considered at an earlier
iteration. Otherwise, the next Ti is either a subtree of the current Ti (in that case the
hereditary property is clearly maintained), or is obtained by removal a subtree with 0-labeled
root (here we use that the oracle has a one-sided error) from the previous Ti (the hereditary
property is also maintained in that case).

We first consider a variant of the algorithm that works infinitely long (i.e., C = +∞)
and compute the expected number of the first iteration such that Ti consists of a single
1-labeled leaf of T . Notice that after the first such iteration the value of Ti stays the same
for all further iterations. We show that that the expected value is at most C logm for some
constant C. Then by running the algorithm for 3C⌈logm⌉ iterations we obtain the required
error probability by Markov’s inequality.

CCC 2021

https://doi.org/10.4230/LIPIcs.ITCS.2020.19
https://doi.org/10.2307/2275583
https://doi.org/10.1007/s004930050062
https://doi.org/10.1145/146637.146684
https://doi.org/10.1145/2629334
https://doi.org/10.1007/978-3-319-58747-9_26
https://doi.org/10.1007/978-3-319-58747-9_26

3:34 Proof Complexity of Natural Formulas via Communication Arguments

Algorithm 2 Search for 1-leaf.

T0 := T ▷ Initialize the tree
i := 0
for j := 1 to 3C⌈log3/2 m⌉ do

r := root of Ti

if Oracle(r) = 0 then
i := max{0, i− 1} ▷ Backtrack since the current tree may not con-

tain a 1-leaf
else if |Ti| ≠ 1 then

v := a centroid node of Ti ▷ i.e. such that |Subtree(Ti, v)| ∈[1
3 |Ti|, 2

3 |Ti|
]

if Oracle(v) = 1 then
Ti+1 := Subtree(Ti, v)

else
Ti+1 := Ti−Subtree(Ti, v) ▷ Ti+1 is obtained from Ti by the deletion of

Subtree(Ti, v)
i := i+ 1

return the only node of Ti, if |Ti| = 1

Let T(j) denote the value of Ti before the start of jth iteration, i(j) denote i at the start
of jth iteration and r(j) denote the root of T(j). Notice that if ar(j) = 1, then for every
j′ > j, T(j′) is a subtree of T(j), since the algorithm never backtracks if the true value of the
roots label is 1. Hence, if ar(j) = ar(j′) = 1 for some j < j′, then i(j) ≤ i(j′).

Let us consider a sequence j1, j2, j3 . . ., where j1 = 0, js = min{j | ar(j) = 1 ∧ j >

js−1 ∧ i(j) > i(js−1)}, if such minimum exists.
Let us consider the iterations from js till js+1 − 1. We consider the random variables

Yjs
, Yjs+1, . . . Yjs+1−1 corresponding to these iterations with the following properties:
If T(j) coincides with T(js), then its root is labeled with 1. Then Yj = −1 if the second
oracle query returns the correct answer and Yj = 1 if the answer it incorrect. Notice that
Pr[Yj = −1] ≥ 9

10 .
If the root of T(j) is labeled with zero, then Yj = −1, if the first oracle query returns
the correct answer (i.e. the algorithm backtracks). Otherwise, if T(j) consists of a single
node Yj = 0. Otherwise, if the root of T(j + 1) is labeled with 0, then Yj = 1. If it is
labeled with 1, then Yj = −∞. Notice that Pr[Yj ≤ −1] ≥ 9

10 .

Notice that, js+1 = js + min{k |
∑js+k−1

j=js
Yj ≤ −1}. In order to estimate the expected

value of js+1− js we consider an auxiliary random variables Xjs
, Xjs+1, . . . , Xjs+1−1, defined

as Xj =
{

1, if Yj ≥ 0
−1, if Yj < 0

. Notice then
∑js+k−1

j=js
Yj ≤

∑js+k−1
j=js

Xj . We can apply the

following fact about random walks in a straight line to the random variables Xj :

▶ Theorem 45 (Section XII.2 of [18]). Let X1, X2, . . . be a sequence of independent random
variables that take value in {−1, 1}. Assume that for all i, Pr[Xi = 1] ≤ 1

10 and Pr[Xi =
−1] ≥ 9

10 . Let M be a random variable that equals the minimal natural number k such that∑k
i=1 Xi = −1. Then the expected value of M is at most C, where C ∈ R is an absolute

constant.

Fact 45 implies that E[js+1 − js] ≤ C. Then E[js] = E[js − js−1 + (js−1 − js−2) +
· · · + (j2 − j1) + (j1 − j0)] ≤ sC. Thus, by Markov’s inequality Pr[js ≤ 3sC] ≥ 2

3 . Since
|Tjs
| ≤

(2
3
)s |Tj0 |, the algorithm that runs for 3C⌈log3/2 m⌉ iterations terminates in a 1-

labeled leaf with probability at least 2
3 . ◀

	1 Introduction
	1.1 Communication complexity of search problems
	1.2 Search problem Search(phi) o XOR
	1.3 Perfect matching principle in tree-like Res(XOR)
	1.4 Bit pigeonhole principle
	1.4.1 Bit pigeonhole principle with XOR-gadget
	1.4.2 Bit pigeonhole without XOR-gadget

	1.5 Open questions

	2 Preliminaries
	3 Communication protocols from tree-like Res(PC d) proofs
	4 Perfect matching
	5 Bit pigeonhole principle with parity gadget
	5.1 Warm-up example
	5.2 Proof of Theorem 18
	5.3 Constructions of Xi, alpha and beta
	5.4 Proof of Lemma 21
	5.5 Corollaries

	6 Bit pigeonhole principle
	6.1 Reduction from BPHP o XORk to BPHP
	6.2 Upper bound for communication complexity of Search(BPHP)
	6.3 Short Th(log n) proof of BPHP

	A Proof of Lemma 12

