
On p-Group Isomorphism: Search-To-Decision,
Counting-To-Decision, and Nilpotency Class
Reductions via Tensors
Joshua A. Grochow # Ñ

Departments of Computer Science and Mathematics, University of Colorado Boulder, CO, USA

Youming Qiao #

Centre for Quantum Software and Information, University of Technology Sydney, Australia

Abstract
In this paper we study some classical complexity-theoretic questions regarding Group Isomorphism
(GpI). We focus on p-groups (groups of prime power order) with odd p, which are believed to be a
bottleneck case for GpI, and work in the model of matrix groups over finite fields. Our main results
are as follows.

Although search-to-decision and counting-to-decision reductions have been known for over four
decades for Graph Isomorphism (GI), they had remained open for GpI, explicitly asked
by Arvind & Torán (Bull. EATCS, 2005). Extending methods from Tensor Isomorphism
(Grochow & Qiao, ITCS 2021), we show moderately exponential-time such reductions within
p-groups of class 2 and exponent p.
Despite the widely held belief that p-groups of class 2 and exponent p are the hardest cases of
GpI, there was no reduction to these groups from any larger class of groups. Again using methods
from Tensor Isomorphism (ibid.), we show the first such reduction, namely from isomorphism
testing of p-groups of “small” class and exponent p to those of class two and exponent p.

For the first results, our main innovation is to develop linear-algebraic analogues of classical
graph coloring gadgets, a key technique in studying the structural complexity of GI. Unlike the
graph coloring gadgets, which support restricting to various subgroups of the symmetric group,
the problems we study require restricting to various subgroups of the general linear group, which
entails significantly different and more complicated gadgets. The analysis of one of our gadgets relies
on a classical result from group theory regarding random generation of classical groups (Kantor
& Lubotzky, Geom. Dedicata, 1990). For the nilpotency class reduction, we combine a runtime
analysis of the Lazard Correspondence with Tensor Isomorphism-completeness results (Grochow
& Qiao, ibid.).

2012 ACM Subject Classification Computing methodologies → Algebraic algorithms; Theory of
computation → Problems, reductions and completeness

Keywords and phrases group isomorphism, search-to-decision reduction, counting-to-decision reduc-
tion, nilpotent group isomorphism, p-group isomorphism, tensor isomorphism

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.16

Related Version This paper is based on part of the following preprint:
Previous Version: https://arxiv.org/abs/1907.00309

Funding Joshua A. Grochow: Partially supported during the preparation of this work by NSF
Grants DMS-1750319 and CCF-2047756.
Youming Qiao: Partially supported during the preparation of this work by NSF Grant DMS-1750319
and Australian Research Council Grant DP200100950.

Acknowledgements The authors would like to thank James B. Wilson for related discussions, and
Ryan Williams for pointing out the problem of distinguishing between ETH and #ETH. J. A. G.
would like to thank V. Futorny and V. V. Sergeichuk for their collaboration on the related work [28].
Ideas leading to this work originated from the 2015 workshop “Wildness in computer science, physics,
and mathematics” at the Santa Fe Institute.

© Joshua A. Grochow and Youming Qiao;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 16; pp. 16:1–16:38

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jgrochow@colorado.edu
https://www.cs.colorado.edu/~jgrochow
https://orcid.org/0000-0002-6466-0476
mailto:youming.qiao@uts.edu.au
https://orcid.org/0000-0003-4334-1449
https://doi.org/10.4230/LIPIcs.CCC.2021.16
https://arxiv.org/abs/1907.00309
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

1 Introduction

In this paper, we study the algorithmic problem of deciding whether two finite groups
are isomorphic, known as the Group Isomorphism problem (GpI). Different variants
of the GpI problem arise, with correspondingly different complexities, when the groups
are given in different ways, e.g. by a generating set of permutations, a generating set of
matrices, a full multiplication table, or a black box oracle. In its various incarnations, GpI
is a fundamental problem in computational algebra and computational complexity. The
generator-enumerator algorithm solves isomorphism in |G|log |G|+O(1)-time [26,58]1, and even
the current state of the art for general groups – in any of the aforementioned input models –
is still |G|Θ(log |G|) [9, 10, 17, 25, 49, 66, 70]. Nonetheless, over the past 15 years there has been
significant progress on efficient isomorphism tests in various classes of groups: here is an
incomplete list of references [4–6,12,13,15,30,31,47,48,63,65,66].

When given by multiplication tables, GpI reduces to GI [44], and in the other, more
realistic (for computer algebra systems) and more succinct models, we get a reduction in the
other direction [32,34,52, 57]. As a result, the techniques and complexity of GpI are closely
bound up with GI. However, since the techniques used in GpI are often independent of the
input model, we are free to focus on the abstract structure of the groups in question, and
the choice of input model is then essentially just a choice of how we measure and report the
running time. For example, if GI is in P, then GpI can be solved in poly(|G|) time; if GpI
for groups given by a generating set of m matrices of size n × n over Fp can be solved in
pO(n+m) time, then GI is in P.

For GI, a wide variety of algorithmic and structural complexity results are known (see,
e.g., [3, 33,44]). In particular, there are polynomial-time search-to-decision and counting-to-
decision reductions [54], so search, counting, and decision are all equivalent for GI. (This was
an early piece of evidence that GI was not likely to be NP-complete, since for NP-complete
problems, their counting variants are typically #P-complete, hence at least as hard as all of
PH [68].) For GpI, no such reductions are known, even in restricted classes of groups; Arvind
and Torán [2, Problem 16] explicitly asked for such reductions. Additionally, for GI, there
are many classes of graphs for which the isomorphism problem remains GI-complete – such
as graphs of diameter 2 and radius 1, directed acyclic graphs, regular graphs, line graphs,
polytopal graphs [74] – but no such analogous results are known for GpI.

In this paper, we make progress on all three of these questions, within the class of groups
widely believed to be hardest cases of GpI, namely the p-groups of nilpotency class 2 and
exponent p; these are groups of order a power of the prime p, such that G modulo its center
is abelian, and such that gp = 1 for all g ∈ G. (Throughout most of this paper we assume p

is an odd prime.) For each of our three main results, we now give further motivation before
stating it formally.

1.1 Main results
Search-to-decision reductions. The “decision versus search” question is a classical one
in complexity theory, having attracted the attention of researchers since the introduction
of NP. Efficient search-to-decision reductions for SAT and GI are now standard. Valiant
first showed the existence of an NP relation for which search does not reduce to decision in
polynomial time [69]. A celebrated result of Bellare and Goldwasser shows that, assuming

1 Miller [58] attributes this algorithm to Tarjan.

J. A. Grochow and Y. Qiao 16:3

DTIME(22O(n)) ̸= NTIME(22O(n)), there exists an NP language for which search does not
reduce to decision in polynomial time [8]. However, as usual for such statements based on
complexity-theoretic assumptions, the problems constructed by such a proof are considered
somewhat unnatural, and natural problems for which search seems not reducible to decision
are rare. The most famous candidate may be Factoring (with the decision version being
Primality)2 and Nash Equilibrium [18] (the decision version is trivial).

▶ Theorem A. Let p be an odd prime, and let GpIso2Exp(p) denote the isomorphism
problem for p-groups of class 2 and exponent p in the model of matrix groups over Fp. For
groups of order pn, there is a search-to-decision reduction for GpIso2Exp(p) running in
time pO(n) = poly(|G|).

▶ Remark 1. This runtime is really only square-root (moderately) exponential: The running
time of the best-known algorithm for GpIso2Exp(p) is essentially pΘ(n2), and the best-
known witness size, if we think in terms of nondeterministic algorithms, is Θ(n2) [50]. So
our search-to-decision reduction in time pO(n) is akin to having such a reduction running in
time 2Θ(

√
N) for a problem that is solvable in 2Θ(N) time (resp., has witness size Θ(N)).

We note that that GpIso2Exp(p) seems different from all the problems listed above in
terms of search-to-decision reductions, in the following ways. First, unlike SAT and GI, a
polynomial-time search-to-decision reduction has been open for decades, whereas those for
SAT and GI are straightforward. Note that a polynomial-time reduction would need to
run in time poly(n, log p), and we find it unlikely that the time complexity of our reduction
can be brought down this far with current techniques. Second, unlike Factoring and
Nash Equilibrium, whose decision versions are computationally easy, its decision version
also seems to require deeper techniques. Indeed, it is a long-standing open problem to test
isomorphism of p-groups of class 2 and exponent p in time polynomial in the group order,
which already can be exponential in the input size if the input is given by a generating set of
matrices.

Counting-to-decision reductions. Counting-to-decision reductions are also of great interest
in complexity theory. An efficient counting-to-decision reduction for GI is also a well-known
result [54]. In contrast, for SAT, a polynomial-time counting-to-decision reduction would
imply that PH collapses [68].

▶ Theorem B. For p an odd prime, p ≥ nΩ(1), there is a randomized counting-to-decision
reduction for GpIso2Exp(p) for groups of order pn, running in time pO(n) = poly(|G|).

As with Theorem A, the runtime here is only moderately exponential, see Remark 1.
Also as in the case of search-to-decision, GpIso2Exp(p) seems different from the problems

listed above in terms of reducing counting to decision. First, a polynomial-time counting-to-
decision reduction for GpIso2Exp(p) remains open after 40 years, whereas the reduction for
GI was found within the first decade of the rise of computational complexity theory. Second,
unlike SAT, for which there have been no non-trivial algorithms to reduce exact counting to
decision, we show a moderately exponential-time algorithm for GpIso2Exp(p). As Ryan
Williams pointed out to us, asking for the existence of subexponential-time counting-to-
decision reduction for SAT seems to lead to asking for the relation between the decision [35]
and the counting [22] versions of the Exponential Time Hypothesis.

2 Here we are thinking of Factoring as the search problem corresponding to the relation {(n, d) :
d is a proper divisor of n} ⊆ N × N, so that the existence problem is then precisely Primality.

CCC 2021

16:4 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

Nilpotency class reduction. Unlike the case of Graph Isomorphism, for GpI essentially
the only class of groups for which isomorphism is known to be as hard as the general case are
those which are directly indecomposable, that is, they cannot be written as a direct product
A×B with both A, B nontrivial [42,72,73]. However, this result is the group analogue of
saying that isomorphism of connected graphs is GI-complete, so although useful (and much
less trivial than in the case of graphs vs connected graphs), from a structural perspective it
is more like a zero-th step.

For a variety of reasons (e. g., [29]), p-groups of nilpotency class 2 and exponent p are
widely believed to be the hardest cases of GpI, but to date there is no known reduction
from isomorphism in any larger class of groups to this class. The Tensor Isomorphism-
completeness of testing isomorphism in this class of groups (when given by generating
matrices over Fp) suggests an additional reason for hardness [32] (see also Section 6.1). Here,
we leverage that completeness result to give a reduction within GpI itself. While it falls
short of being GpI-complete (equivalent to GpI), this is the first such reduction that we are
aware of.

To state our result, we need to first recall the definition of nilpotency class. We will give
an inductive definition: a group G is nilpotent of class 1 if it is abelian, and nilpotent of class
c > 1 if G/Z(G) (G modulo its center) is nilpotent of class c− 1. Recall that a finite group
is nilpotent iff it is the direct product of its Sylow p-subgroups, so from the comment above,
isomorphism of nilpotent groups is polynomial-time equivalent to isomorphism of p-groups
(for varying p).

▶ Theorem P. Let p be an odd prime. For groups given by generating sets of m matrices of
size n×n over Fpe , Group Isomorphism for p-groups of exponent p and class c < p reduces
to Group Isomorphism for p-groups of exponent p and class 2 in time poly(n, m, e log p).

In fact, because the Lazard Correspondence works whenever all subgroups generated
by 3 elements have nilpotency class < p, our reduction also works in this more general
setting. For example, as a consequence of Theorem P, testing isomorphism of 5-groups in
which every 3-generated subgroup has class 4 (the groups themselves may have larger class)
reduces to testing isomorphism of 5-groups of class 2 in the matrix group model over fields
of characteristic 5.

▶ Remark 2. Two additional results would suffice to get the analogous result in the Cayley
table model. The first is to compute the Lazard Correspondence in the Cayley table model
in time poly(|G|); we thank an anonymous ITCS reviewer for pointing out that this can
be achieved by applying the matrix Lazard Correspondence (see Proposition 26) to the left
regular representation of the group on itself. The second is to improve the blow-up in the
reduction from (Lie) Algebra Isomorphism to 3TI from [28]. Currently this reduction
increases the dimension quadratically, which means the size of the group becomes |G|O(log |G|)

after the reduction; instead, we would need a reduction that increases the dimension only
linearly.

▶ Remark 3. One may also ask whether our theorems can be combined, in order to get
search-to-decision and counting-to-decision reductions for p-groups of class c < p instead of
only class 2. We believe this should be approachable, but again the quadratic increase in
dimension in reductions, mentioned in the previous remark, gets in the way. The quadratic
increase makes the square-root exponential reductions into ordinary exponential reductions,
negating any gains.

J. A. Grochow and Y. Qiao 16:5

1.2 Main techniques and proof strategies
All our results are based on the connection with Tensor Isomorphism (TI) [32]. Let
Λ(n,F) denote the space of n× n skew-symmetric (alternating) matrices over F. Then the
Baer Correspondence [7] gives an equivalence between

p-groups of class 2, ex-
ponent p, G/Z(G) ∼=
Zn

p , Z(G) ∼= Zm
p

←→
{
A ≤ Λ(n,Fp)
dimA = m

}
←→


Nilpotent Fp-Lie algebras
of class 2, L/Z(L) ∼= Fn

p ,
Z(L) ∼= Fm

p


in such a way that two such groups are isomorphic iff the corresponding Lie algebras are
isomorphic iff the corresponding matrix spaces A,B ≤ Λ(n,Fp) are isometric. Here, we say
that two such linear subspaces are isometric if there is an invertible matrix L ∈ GL(n,Fp)
such that B = LtAL := {LtAL : A ∈ A}.3 The corresponding computational problem is:

▶ Definition 4 (The Alternating Matrix Space Isometry problem).
Input: A1, . . . , Am and B1, . . . , Bm, n× n alternating4 matrices over a field F,
Decide: Is there a L ∈ GL(n,F), such that the linear span of {Ai : i ∈ [m]} is equal to the
linear span of {LtBiL : i ∈ [m]}?

Our search- and counting-to-decision reductions (Theorems A and B) actually follow
from analogous results on Alternating Matrix Space Isometry (Theorems A′ and B′),
using a constructive version of the Baer Correspondence communicated to us by James B.
Wilson (Lemma 24). The viewpoint of alternating matrix spaces made the constructions
much easier to find and reason about.

Our nilpotency class reduction uses a constructive version of the Lazard Correspondence
(Proposition 26), which generalizes the Baer Correpsondence to nilpotency class c < p; the
TI-completeness of Lie Algebra Isomorphism for nilpotent Lie algebras of class 2 (a
combination of reductions from [28] and [32]); and finally the aforementioned constructive
Baer Correspondence to go back to p-groups of class 2.

In the remainder of this section we give more details of the techniques involved.

1.2.1 Linear algebraic coloring gadgets
Our most novel technique is to devise linear algebraic analogues for Alternating Matrix
Space Isometry of the graph coloring gadget, a key technique in the structural complexity
study of Graph Isomorphism (see, e. g., [44]). This technique is crucial in the following
theorems, used to prove Theorems A and B, respectively.

▶ Theorem A′. Let q be a prime power. There is a search-to-decision reduction for Altern-
ating Matrix Space Isometry which, given n× n alternating matrix spaces A,B over Fq

of dimension m, computes an isometry between them if they are isometric, in time qÕ(n) or
in time qO(n+m). The reduction queries the decision oracle with inputs of dimension at most
O(n2).

3 For bilinear maps – which are another way of viewing matrix spaces – the corresponding notion is
often called “pseudo-isometry”, with “isometry” of bilinear maps being a more restrictive notion. We
chose our nomenclature by analogy with individual matrices: just as we call two matrix spaces A, B
“conjugate” when LAL−1 = B, or “equivalent” when LAM = B, we call two matrix spaces “isometric”
when there is an isometry-transformation that sends one such space to another. We are careful to use
“pseudo-isometry” when we refer to the corresponding notions for matrix tuples or for bilinear maps.

4 An n × n matrix A over F is alternating if for every v ∈ Fn, vtAv = 0. When F is not of characteristic
2, this is equivalent to being skew-symmetric At = −A.

CCC 2021

16:6 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

▶ Theorem B′. For q a prime power with q = nΩ(1), there is a randomized counting-to-
decision reduction for Alternating Matrix Space Isometry which, given n×n alternating
matrix spaces A,B over Fq of dimension m, computes the number of isometries from A to B
in time qO(n). The reduction queries the decision oracle with inputs of dimension at most
O(n2).

Let us first briefly review the graph coloring gadgets. Suppose we have a graph G = (V, E)
with the vertices colored, i. e., there is a map f : V → {1, . . . , c} =: [c], where we view [c]
as the set of colors. Let n = |V |. Suppose we want to construct an uncolored graph G̃, in
which the color information carried by f is encoded. One way to achieve this is the following.
(See [44] for other more efficient constructions.) For every v ∈ V , if v ∈ V is assigned color
k ∈ [c], then attach a “star” of size kn to v, that is add kn new vertices to G and attach them
all to v. We then get a graph G̃ with O(cn2) vertices, and we see that an automorphism of
G̃, when restricting to V , has to map v ∈ V to another v′ ∈ V of the same color, as degrees
need to be preserved under automorphisms.

Such an idea can be carried out in the 3-tensor context as in [28], but with a significant
loss of efficiency which prevents its use for search- and counting-to-decision reductions and
indicates the needs for new techniques. To illustrate the situation, we consider a toy problem.
To ease the presentation, we adopt a perspective on 3-tensors that we hope is clear on its
own; the analogy with the graph case is fairly close, but not immediately obvious, and we
present it in full detail in Section 3. Note that by slicing a 3-tensor along one direction, we
get a tuple of matrices (see also Section 2); in the following of this subsection we shall mostly
work with matrix tuples.

Let A = (A1, . . . , Am) ∈ M(n,F)m be a tuple of matrices, where Ai’s are linearly
independent. There are two natural actions on A. The first action is S = (si,j) ∈ GL(m,F)
on A by sending Aj to

∑
i∈[m] si,jAi. Denote the resulting matrix tuple by AS . The second

action is (L, R) ∈ GL(n,F) × GL(n,F) on A by sending Aj to LAjRt for j = 1, . . . , m.
Denote the resulting matrix tuple by LARt. For two tuples A, B, and for the purposes
of this illustration, let us define the set of isomorphisms as Iso(A, B) = {S ∈ GL(m,F) :
∃L, R ∈ GL(n,F), LARt = BS}.

In the counting-to-decision reduction we will need to test isomorphism of such tuples
under the action by diagonal matrices. Let diag(m,F) denote the subgroup of GL(m,F)
consisting of diagonal matrices. Our goal then is to construct Ã = (Ã1, Ã2, Ã3) ∈ M(N,F)3

and B̃, such that Iso(Ã, B̃) = Iso(A, B) ∩ diag(3,F). The construction we use, from [28], is
as follows. Let N = 23 · n = 8n, and let

Ã1 =


A1 0 0 0
0 In 0 0
0 0 0 0
0 0 0 0

 , Ã2 =


A2 0 0 0
0 0 0 0
0 0 I2n 0
0 0 0 0

 , Ã3 =


A3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I4n

 , (1)

where Is denotes the identity matrix of size s, and 0’s denote all-zero matrices of appropriate
sizes, and define B̃ similarly. By [28, Lemma 2.2], we have Iso(Ã, B̃) = Iso(A, B)∩diag(3,F).
The proof, while not difficult, relies on certain algebraic machineries like the Krull–Schmidt
Theorem for quiver representations. For our purpose, we only point out that a key in the
proof is that Iso(Ã, B̃) ⊆ diag(3,F), which can be easily checked by comparing the ranks of
the Ãi, B̃i. (We note that, because L and R act independently on the rows and columns of
the Ãi, for individual slices rank is essentially the only invariant we have.)

J. A. Grochow and Y. Qiao 16:7

The preceding gadget construction can be generalized to handle subgroups of GL(n,F) of
the form


S1 0 . . . 0
0 S2 . . . 0
...

...
. . .

...
0 0 . . . Sc

 : Si ∈ GL(ni,F)

 ,

where c = O(log n). We shall refer to this gadget as the Futorny–Grochow–Sergeichuk gadget,
or FGS gadget for short.

However, the FGS gadget cannot be used for search- and counting-to-decision reductions
in Theorems A and B. The key bottleneck is the restriction that c = O(log n). To check
why this is so reveals an interesting distinction between the combinatorial and the linear
algebraic worlds. Recall that in the graph setting, if there are c colors, we need stars of size
at most cn. While in the linear algebraic setting, if there are c components, the biggest
identity matrix needs to be of size 2c · n× 2c · n. The reason is that we can do non-trivial
linear combinations of the matrices Ãi, so several matrices of small ranks might be combined
to get a matrix of large rank. Indeed, in Eq. 1, if Ã3 was accompanied with I3n instead of
I4n, then a non-trivial linear combination of Ã1 and Ã2 could be of rank the same as Ã3,
and the argument that Iso(Ã, B̃) ⊆ diag(m,F) would not go through. That’s why we need
such exponential growth as the number of components grow.

To address this challenge, we devise two new gadgets, which restrict to the monomial
group and the diagonal group, respectively.

The monomial group of GL(n,F), denoted as Mon(n,F), consists of monomial matrices,
i.e. a matrix with exactly one non-zero entry in each row and each column. We design
a gadget that restricts to Mon(n,F), which is the key in the search-to-decision reduction
(Theorem A′).

In the case of F = Fq and q = nΩ(1), we design a gadget that restricts to diag(n, q), which
is the key in the counting-to-decision reduction (Theorem B′). The gadget for restricting to
monomial groups cannot be used in the counting-to-decision reduction. Its construction is
already delicate, and the analysis is involved, relying on a celebrated result of Kantor and
Lubotzky regarding random generation of classical groups [41].

1.2.2 Constructive Lazard Correspondence
In light of the TI-completeness of isomorphism of class 2 p-groups given by matrices over
finite fields of characteristic p [32], the key idea here is how to reduce isomorphism for other
classes of groups to some tensor problem. For groups in general it is unclear how to do
this, as tensors are multilinear and groups are not. But for p-groups of nilpotency class < p,
the Lazard Correspondence gives an equivalence between the category of such groups and
a corresponding category of Lie algebras (over the same field, nilpotent of the same class).
If this correspondence were computationally efficient, we would then be in the fortunate
setting in which Lie Algebra Isomorphism is multilinear, and is in TI [28], so we can then
reduce back to isomorphism of class 2 p-groups. We observe (Proposition 26) that when the
groups are given by matrices in characteristic p, the Lazard Correspondence can be efficiently
computed using the usual matrix logarithm and exponential.

The restriction to groups of nilpotency class c < p comes entirely from the Lazard
Correspondence, which is also known only to work under this same assumption (see [60] for
details, and what can be said when c = p, but unfortunately already when c = p one no
longer gets an equivalence up to isomorphism). Despite this restriction, we note that we
know of no prior reductions from any class of groups to p-groups of class 2.

CCC 2021

16:8 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

In Remark 2 we discuss the ingredients necessary to get the same result for GpI in the
Cayley table model, which seems approachable.

1.3 Organization of the paper
In Section 2 we present preliminaries and notation. In Section 3 we present more details of
the analogy with individualizing vertices in graphs by attaching stars, using the example
of reducing Monomial Code Equivalence to Tensor Isomorphism. In Section 4 we
present our gadget to restrict to the monomial subgroup, an example use of this to reduce
GI to Alternating Matrix Space Isometry, and Theorem A′. In Section 5 we prove
Theorem B′. In Section 6 we present the constructive Baer and Lazard Correspondences,
and use them to derive Theorems A and B from Theorems A′ and B′, respectively, as well as
proving Theorem P. Finally, in Section 7 we conclude with open questions and discuss the
relationship between this work and the authors’ line of work on Tensor Isomorphism.

2 Preliminaries

Table 1 Summary of notation related to 3-way arrays and tensors.

Font Object Space of objects
A, B, . . . matrix M(n,F) or M(ℓ× n,F)
A, B, . . . matrix tuple M(n,F)m or M(ℓ× n,F)m

A,B, . . . matrix space [Subspaces of M(n,F) or Λ(n,F)]
A, B, . . . 3-way array T(ℓ× n×m,F)

Vector spaces. Let F be a field. In this paper we only consider finite-dimensional vector
spaces over F. We use Fn to denote the vector space of length-n column vectors. The ith
standard basis vector of Fn is denoted e⃗i. Depending on the context, 0 may denote the zero
vector space, a zero vector, or an all-zero matrix. For S a set of vectors, we use ⟨S⟩ to denote
the subspace spanned by elements in S.

Some groups. The general linear group of degree n over a field F is denoted by GL(n,F).
The symmetric group of degree n is denoted by Sn. The natural embedding of Sn into
GL(n,F) is to represent permutations by permutation matrices. The subgroup of GL(n,F)
consisting of diagonal matrices is called the diagonal subgroup, denoted by diag(n,F). A
monomial matrix is a product of a diagonal and a permutation matrix; equivalently, each row
and each column has exactly one non-zero entry. The collection of monomial matrices forms
a subgroup of GL(n,F), which we call the monomial subgroup and denote by Mon(n,F). It
is the semi-direct product diag(n,F) ⋊ Sn

∼= (F∗)n ⋊ Sn.

Nilpotent groups. If A, B are two subsets of a group G, then [A, B] denotes the subgroup
generated by all elements of the form [a, b] = aba−1b−1, for a ∈ A, b ∈ B. The lower central
series of a group G is defined as follows: γ1(G) = G, γk+1(G) = [γk(G), G]. A group is
nilpotent if there is some c such that γc+1(G) = 1; the smallest such c is called the nilpotency
class of G, or sometimes just “class” when it is understood from context. A finite group is
nilpotent if and only if it is the product of its Sylow subgroups; in particular, all groups of
prime power order are nilpotent.

J. A. Grochow and Y. Qiao 16:9

Matrices. Let M(ℓ × n,F) be the linear space of ℓ × n matrices over F, and M(n,F) :=
M(n× n,F). Given A ∈ M(ℓ× n,F), At denotes the transpose of A.

A matrix A ∈ M(n,F) is alternating, if for any u ∈ Fn, utAu = 0. That is, A represents
an alternating bilinear form. Note that in characteristic ̸= 2, alternating is the same as skew-
symmetric, but in characteristic 2 they differ (in characteristic 2, skew-symmetric=symmetric).
The linear space of n× n alternating matrices over F is denoted by Λ(n,F).

The n×n identity matrix is denoted by In, and when n is clear from the context, we may
just write I. The elementary matrix Ei,j is the matrix with the (i, j)th entry being 1, and
other entries being 0. The (i, j)-th elementary alternating matrix is the matrix Ei,j − Ej,i.

Matrix tuples. We use M(ℓ × n,F)m to denote the linear space of m-tuples of ℓ × n

matrices. Boldface letters like A and B denote matrix tuples. Let A = (A1, . . . , Am), B =
(B1, . . . , Bm) ∈ M(ℓ × n,F)m. Given P ∈ M(ℓ,F) and Q ∈ M(n,F), PAQ :=
(PA1Q, . . . , PAmQ) ∈ M(ℓ,F). Given R = (ri,j)i,j∈[m] ∈ M(m,F), AR := (A′

1, . . . , A′
m) ∈

M(m,F) where A′
i =

∑
j∈[m] rj,iAj .

▶ Remark 5. In particular, note that the coefficients in the formula of defining A′
i correspond

to the entries in the ith column of R. While this choice is immaterial (we could have chosen
the opposite convention), all of our later calculations are consistent with this convention.

Given A, B ∈ M(ℓ × n,F)m, we say that A and B are isometric, if there exists P ∈
GL(n,F), such that P tAP = B. Finally, A and B are pseudo-isometric if there exist
P ∈ GL(n,F) and R ∈ GL(m,F), such that P tAP = BR.

Matrix spaces. Linear subspaces of M(ℓ×n,F) are called matrix spaces. Calligraphic letters
like A and B denote matrix spaces. By a slight abuse of notation, for A ∈ M(ℓ× n,F)m, we
use ⟨A⟩ to denote the subspace spanned by those matrices in A. For A, B ∈ M(n,F)m, we
say that the spaces ⟨A⟩, ⟨B⟩ are isometric iff the tuples A, B are pseudo-isometric.

3-way arrays. Let T(ℓ × n ×m,F) be the linear space of ℓ × n ×m 3-way arrays over F.
We use the fixed-width teletypefont for 3-way arrays, like A, B, etc..

Given A ∈ T(ℓ×n×m,F), we can think of A as a 3-dimensional table, where the (i, j, k)th
entry is denoted as A(i, j, k) ∈ F. We can slice A along one direction and obtain several
matrices, which are then called slices. For example, slicing along the first coordinate, we obtain
the horizontal slices, namely ℓ matrices A1, . . . , Aℓ ∈ M(n×m,F), where Ai(j, k) = A(i, j, k).
Similarly, we also obtain the lateral slices by slicing along the second coordinate, and the
frontal slices by slicing along the third coordinate.

We will often represent a 3-way array as a matrix whose entries are vectors. That is,
given A ∈ T(ℓ× n×m,F), we can write

A =


w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n

...
.

...
wℓ,1 wℓ,2 . . . wℓ,n

 ,

where wi,j ∈ Fm, so that wi,j(k) = A(i, j, k). Note that, while wi,j ∈ Fm are column vectors,
in the above representation of A, we should think of them as along the direction “orthogonal
to the paper.” Following [45], we call wi,j the tube fibers of A. Similarly, we can have the
row fibers vi,k ∈ Fn such that vi,k(j) = A(i, j, k), and the column fibers uj,k ∈ Fℓ such that
uj,k(i) = A(i, j, k).

CCC 2021

16:10 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

Given P ∈ M(ℓ,F) and Q ∈ M(n,F), let PAQ be the ℓ× n×m 3-way array whose kth
frontal slice is PAkQ. For R = (ri,j) ∈ GL(m,F), let AR be the ℓ × n × m 3-way array
whose kth frontal slice is

∑
k′∈[m] rk′,kAk′ . Note that these notations are consistent with the

notations for matrix tuples above, when we consider the matrix tuple A = (A1, . . . , Ak) of
frontal slices of A.

3 Warm up: reducing Monomial Code Equivalence to Tensor
Isomorphism

The purpose of this section is to present a concrete example that illustrates what we mean
by a gadget restricting to monomial subgroups. We also explain why the gadget would be
viewed as a linear algebraic analogue of attaching stars in the graph setting as mentioned in
Section 1.2.1.

We will give a reduction here to the Tensor Isomorphism (TI) problem, so we begin
by recalling its definition:

▶ Definition 6 (The d-Tensor Isomorphism problem). d-Tensor Isomorphism over
a field F is the problem: given two d-way arrays A = (ai1,...,id

) and B = (bi1,...,id
), where

ik ∈ [nk] for k ∈ [d], and ai1,...,id
, bi1,...,id

∈ F, decide whether there are Pk ∈ GL(nk,F) for
k ∈ [d], such that for all i1, . . . , id,

ai1,...,id
=

∑
j1,...,jd

bj1,...,jd
(P1)i1,j1(P2)i2,j2 · · · (Pd)id,jd

.

Let A be an ℓ × n × m 3-way array, with lateral slices L1, L2, . . . , Ln (each an ℓ × m

matrix). For any vector v ∈ Fn, we get an associated lateral matrix Lv, which is a linear
combination of the lateral slices as given, namely Lv :=

∑n
j=1 vjLj (note that when v = e⃗j

is the j-th standard basis vector, the associated lateral matrix is indeed Lj). By analogy
with adjacency matrices of graphs, Lv is a natural analogue of the neighborhood of a vertex
in a graph. Correspondingly, we get a notion of “degree,” which we may define as

degA(v) := rkLv = rk(
n∑

j=1
vjLj) = dim span{Lvw : w ∈ Fm} = dim span{utLv : u ∈ Fℓ}.

The last two characterizations are analogous to the fact that the degree of a vertex v in a
graph G may be defined as the number of “in-neighbors” (nonzero entries the corresponding
row of the adjacency matrix) or the number of “out-neighbors” (nonzero entries in the
corresponding column).

To “individualize” v, we can enlarge A with a gadget to increase degA(v), as in the graph
case. Note that degA(v) ≤ min{ℓ, m} because the lateral matrices are all of size ℓ×m. For
notational simplicity, let us individualize v = e⃗1 = (1, 0, . . . , 0)t. To individualize v, we will
increase its degree by d = min{ℓ, m}+ 1 > maxv∈Fn degA(v). Extend A to a new 3-way array
Av of size (ℓ + d)× n× (m + d); in the “first” ℓ× n×m “corner”, we will have the original
array A, and then we will append to it an identity matrix in one slice to increase deg(v).
More specifically, the lateral slices of Av will be

L′
1 =

[
L1 0
0 Id

]
and L′

j =
[
Lj 0
0 0

]
(for j > 1).

Now we have that degAv
(v) ≥ d. This almost does what we want, but now note that any

vector w = (w1, . . . , wn) with w1 ̸= 0 has degAv
(w) = rk(w1L′

1 +
∑

j≥2 wjLj) ≥ d. We can
nonetheless consider this a sort of linear-algebraic individualization.

J. A. Grochow and Y. Qiao 16:11

Leveraging this trick, we can then individualize an entire basis of Fn simultaneously, so
that d ≤ deg(v) < 2d for any vector v in our basis, and deg(v′) ≥ 2d for any nonzero v′

outside the basis (not a scalar multiple of one of the basis vectors), as we do in the following
result. This is also a 3-dimensional analogue of the reduction from GI to CodeEq [52,59,62]
(where they use Hamming weight instead of rank).

We now come to the concrete result. Given two d × n matrices A, B over F of rank d,
the Monomial Code Equivalence problem is to decide whether there exist Q ∈ GL(d,F)
and a monomial matrix P ∈ Mon(n,F) ≤ GL(n,F) (product of a diagonal matrix and a
permutation matrix) such that QAP = B. Monomial equivalence of linear codes is a basic
notion in coding theory [11], and Monomial Code Equivalence was recently studied in
the context of post-quantum cryptography [67].

▶ Proposition 7. Monomial Code Equivalence reduces to 3-Tensor Isomorphism.

Proof. Without loss of generality we assume d > 1, as the problem is easily solvable when
d = 1. We treat a d × n matrix A as a 3-way array of size d × n × 1, and then follow the
outline proposed above, of individualizing the entire standard basis e⃗1, . . . , e⃗n. Since the
third direction only has length 1, the maximum degree of any column is 1, so it suffices to
use gadgets of rank 2. More specifically, (see Figure 1) we build a (d + 2n)× n× (1 + 2n)
3-way array A whose lateral slices are

Lj =



a1,j 01×2 01×2 · · · 01×2 · · · 01×2
...

...
...

. . .
...

. . .
...

ad,j 01×2 01×2 · · · 01×2 · · · 01×2
02×1 02×2 02×2 · · · 02×2 · · · 02×2

...
...

...
. . .

...
. . .

...
02×1 02×2 02×2 · · · I2 · · · 02×2

...
...

...
. . .

...
. . .

...
02×1 02×2 02×2 · · · 02×2 · · · 02×2


where the I2 block is in the j-th block of size 2 (that is, rows d+2(j−1)+{1, 2} and columns
2(j − 1) + {1, 2}).

It will also be useful to visualize the frontal slices of A, as follows. Here each entry of the
“matrix” below is actually a (1 + 2n)-dimensional vector, “coming out of the page”:

A =



ã1,1 ã1,2 . . . ã1,n

...
...

. . .
...

ãd,1 ãd,2 . . . ãd,n

e1,1 0 . . . 0
e1,2 0 . . . 0
0 e2,1 . . . 0
0 e2,2 . . . 0
...

...
. . .

...
0 0 . . . en,1
0 0 . . . en,2



,

where

ãi,j =
[

ai,j

02n×1

]
∈ F1+2n

ei,j = e⃗1+2(i−1)+j ∈ F1+2n for i ∈ [n], j ∈ [2]

and the frontal slices are

A1 =
[

A

02n×n

]
A1+2(i−1)+j = Ed+2(i−1)+j,i for i ∈ [n], j ∈ [2]

(In A we turn the vectors ãi,j and ei,j “on their side” so they become perpendicular to the
page.)

CCC 2021

16:12 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

A

I2

I2

Figure 1 Pictorial representation of the reduction for Proposition 7.

We claim that A and B are monomially equivalent as codes if and only if A and B are
isomorphic as 3-tensors.

(⇒) Suppose QADP = B where Q ∈ GL(d,F), D ∈ diag(n,F) and P ∈ Sn ≤ GL(n,F).

Then by examining the frontal slices it is not hard to see that for Q′ =
[
Q 0
0 (DP)−1 ⊗ I2

]
(where (DP)−1 ⊗ I2 denotes a 2n × 2n block matrix, where the pattern of the nonzero
blocks and the scalars are governed by (DP)−1, and each 2 × 2 block is either zero or a
scalar multiple of I2) we have Q′A1DP = B1 and Q′A1+2(i−1)+jDP = B1+2(π(i)−1)+j , where
π is the permutation corresponding to P . Thus A and B are isomorphic tensors, via the
isomorphism (Q′, DP, diag(I1, P)).

(⇐) Suppose there exist Q ∈ GL(d + 2n,F), P ∈ GL(n,F), and R ∈ GL(1 + 2n,F), such
that QAP = BR. First, note that every lateral slice of A is of rank either 2 or 3, and the
actions of Q and R do not change the ranks of the lateral slices. Furthermore, any non-trivial
linear combination of more than 1 lateral slice results in a lateral matrix of rank ≥ 4. It
follows that P cannot take nontrivial linear combinations of the lateral slices, hence it must
be monomial.

Now consider the frontal slices. Note that, as we assume d > 1, every frontal slice of QAP ,

except the first one, is of rank 1. Therefore, R must be of the form
[
r1,1 01×(n−1)
r⃗′ R′

]
where

R′ is (n − 1) × (n − 1). Since R is invertible, we must have r1,1 ̸= 0, and the first frontal
slice of BR contains all the rows of B scaled by r1,1 in its first d rows. The first frontal slice
of QAP is a matrix that generates, by definition (and since we’ve shown P is monomial), a
code monomially equivalent to A. Since the first frontal slices of QAP and BR are equal, and
the latter is just a scalar multiple of B1, we have that A and B are monomially equivalent
as codes as well. ◀

J. A. Grochow and Y. Qiao 16:13

4 Search-to-decision reduction by restricting to monomial groups

4.1 The gadget restricting to the monomial group

In this section, we present the gadget that restricts to the monomial group in the setting of
Alternating Matrix Space Isometry. To show this, we will need the concept of monomial
isometry; see Some Groups above. Recall that a matrix is monomial if, equivalently, it can
be written as DP where D is a nonsingular diagonal matrix and P is a permutation matrix.
We say two matrix spaces A,B are monomially isometric if there is some M ∈ Mon(n,F)
such that M tAM = B.

▶ Lemma 8. Alternating Matrix Space Monomial Isometry reduces to Alternating
Matrix Space Isometry.

More specifically, there is a poly(n, m)-time algorithm r taking alternating matrix tuples
to alternating matrix tuples, such that for A, B ∈ Λ(n,F)m, the matrix spaces A = ⟨A⟩ and
B = ⟨B⟩ are monomially isometric if and only if the matrix spaces ⟨r(A)⟩ and ⟨r(B)⟩ are
isometric.

The gadget used in Lemma 8 is essentially to apply the gadget in Proposition 7 “in two
directions.” Still, to prove the correctness requires some work.

Proof. For A = (A1, . . . , Am) ∈ Λ(n,F)m, define r(A) to be the alternating matrix tuple
Ã = (Ã1, . . . , Ãm+n2) ∈ Λ(n + n2,F)m+n2 , where

1. For k = 1, . . . , m, Ãk =
[
Ak 0
0 0

]
.

2. For k = m + (i − 1)n + j, i ∈ [n], j ∈ [n], Ãk is the elementary alternating matrix
Ei,in+j − Ein+j,i.

At this point, some readers may wish to look at the large matrix in Equation 2 and/or at
Figure 2.

It is clear that r can be computed in time Õ((m + n2)(n2 + n)) = poly(n, m). Given
alternating matrix tuples A, B, let A,B be the corresponding matrix spaces they span, and
let Ã = ⟨r(A)⟩ and B̃ = ⟨r(B)⟩. We claim that A and B are monomially isometric if and
only if Ã and B̃ are isometric.

To prove this, it will help to think of our matrix tuples A, Ã, etc. as (corresponding to)
3-way arrays, and to view these 3-way arrays from two different directions. Towards this end,
write the 3-way array corresponding to A as

A =


0 a1,2 a1,3 . . . a1,n

−a1,2 0 a2,3 . . . a2,n

−a1,3 −a2,3 0 . . . a3,n

...
.

...
−a1,n −a2,n −a3,n . . . 0

 ,

where ai,j are vectors in Fm (“coming out of the page”), namely ai,j(k) = Ak(i, j). The
frontal slices of this array are precisely the matrices A1, . . . , Am.

The 3-way array corresponding to Ã = r(A) is then the (n + 1)n× (n + 1)n× (m + n2)
array:

CCC 2021

16:14 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

Ã =



0 ã1,2 ã1,3 . . . ã1,n e1,1 . . . e1,n 0 . . . 0 . . . 0 . . . 0
−ã1,2 0 ã2,3 . . . ã2,n 0 . . . 0 e2,1 . . . e2,n . . . 0 . . . 0

.

.

.
. . .

. . .
. . .

.

.

.
. . .

. . .
. . .

. . .
. . .

.

. . .
. . .

.

.

.
−ã1,n −ã2,n −ã3,n . . . 0 0 . . . 0 0 . . . 0 . . . en,1 . . . en,n
−e1,1 0 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0

.

.

.
.
.
.

.

.

. . . .

.

.

.
.
.
. . . .

.

.

.
.
.
. . . .

.

.

. . . .

.

.

. . . .

.

.

.
−e1,n 0 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0

0 −e2,1 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0

.

.

.
.
.
.

.

.

. . . .

.

.

.
.
.
. . . .

.

.

.
.
.
. . . .

.

.

. . . .

.

.

. . . .

.

.

.
0 −e2,n 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0

.

.

.
.
.
.

.

.

. . . .

.

.

.
.
.
. . . .

.

.

.
.
.
. . . .

.

.

. . . .

.

.

. . . .

.

.

.
0 0 0 . . . −en,1 0 . . . 0 0 . . . 0 . . . 0 . . . 0

.

.

.
.
.
.

.

.

. . . .

.

.

.
.
.
. . . .

.

.

.
.
.
. . . .

.

.

. . . .

.

.

. . . .

.

.

.
0 0 0 . . . −en,n 0 . . . 0 0 . . . 0 . . . 0 . . . 0



,

(2)

where ãi,j =
[
ai,j

0

]
∈ Fm+n2 (here think of the vector ai,j as a column vector, not coming

out of the page; in the above array we then lay the column vector ãi,j “on its side” so that
it is coming out of the page), and ei,j := em+(i−1)n+j ∈ Fm+n2 , which we can equivalently

write as
[

0m

ei ⊗ ej

]
, where we think of ei ⊗ ej here as a vector of length n2. Note that all the

the nonzero blocks besides upper-left “A” block only have nonzero entries that are strictly
behind the nonzero entries in the upper-left block.

A
In

In

-In

-In

Figure 2 Pictorial representation of the reduction for Lemma 8.

J. A. Grochow and Y. Qiao 16:15

The second viewpoint, which we will also use below, is to consider the lateral slices
of A, or equivalently, to view A from the side. When viewing A from the side, we see the
(n + 1)n× (m + n2)× (n + 1)n 3-way array:

Alat =



ℓ1,1 ℓ1,2 . . . ℓ1,m en+1 . . . e2n . . . 0 . . . 0
...

.
...

...
. . .

...
. . .

...
. . .

...
ℓn,1 ℓn,2 . . . ℓn,m 0 . . . 0 . . . en2+1 . . . en2+n

0 0 . . . 0 e1 . . . 0 . . . 0 . . . 0
...

...
. . .

...
...

. . .
... . . .

...
. . .

...
0 0 . . . 0 0 . . . e1 . . . 0 . . . 0
...

.
...

...
. . .

...
. . .

...
. . .

...
0 0 . . . 0 0 . . . 0 . . . en . . . 0
...

...
. . .

...
...

. . .
... . . .

...
. . .

...
0 0 . . . 0 0 . . . 0 . . . 0 . . . en



, (3)

where every ℓi,k ∈ Fn2+n has only the first n components being possibly non-zero, namely,
ℓi,k(j) = Ak(i, j) for i ∈ [n], j ∈ [n], k ∈ [m] and ℓi,k(j) = 0 for any j > n.

For the only if direction. Suppose there exist P ∈ Mon(n,F) and Q ∈ GL(m,F), such
that P tAP = BQ. We can construct P̃ ∈ Mon(n + n2,F) and Q̃ ∈ GL(m + n2,F) such that

P̃ tÃP̃ = B̃Q̃. In fact, we will show that we can take P̃ =
[
P 0
0 P ′

]
where P ′ ∈ Mon(n2,F),

and Q̃ =
[
Q 0
0 Q′

]
where Q′ ∈ Mon(n2,F). It is not hard to see that this form already

ensures that the first m matrices in the vector P̃ tÃP̃ and those of B̃Q̃ are the same, since
when P̃ , Q̃ are of this form, those first m matrices are controlled entirely by the P (resp., Q)
in the upper-left block of P̃ (resp., Q̃).

The remaining question is then how to design appropriate P ′ and Q′ to take care of the
last n2 matrices in these tuples. This actually boils down to applying the following simple
identity, but “in 3 dimensions:” Let P be the permutation matrix corresponding to σ ∈ Sn,
so that Pei = eσ(i), and et

iP = et
σ−1(i). Let D = diag(α1, . . . , αn) be a diagonal matrix.

Then

P tDP = diag(ασ−1(1), . . . , ασ−1(n)). (4)

To see how Equation 4 helps in our setting, it is easier to focus attention on the lower
right n2 × n2 sub-array of Alat, which can be represented as a symbolic matrix

M =


x1In 0 . . . 0

0 x2In . . . 0
...

.
...

0 0 . . . xnIn

 .

Here we think of the xi’s as independent variables, whose indices correspond to “how far
into the page” they are. That is, xi corresponds to the vector e⃗i in Alat, which is coming out
of the page and has its only nonzero entry i slices back from the page.

CCC 2021

16:16 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

Then the action of P permutes the xi’s and multiplies them by some scalars, the action
of P ′ is on the left-hand side, and the action of Q′ is on the right-hand side. Let σ be the
permutation supporting P . Then P sends M to

MP =


ασ(1)xσ(1)In 0 . . . 0

0 ασ(2)xσ(2)In . . . 0
...

.
...

0 0 . . . ασ(n)xσ(n)In

 .

So setting P ′ = σ ⊗ In, Q′ the monomial matrix supported by σ ⊗ In with scalars being
1/αi’s, we have P ′tMP Q′ = M by Equation 4.

For the if direction. Suppose there exist P̃ ∈ GL(n + n2,F) and Q̃ ∈ GL(m + n2,F), such
that P̃ tÃP̃ = B̃Q̃. The key feature of these gadgets now comes into play: consider the lateral
slices of Ã, which are the frontal slices of Alat (which may be easier to visualize by looking at
Equation 3 and Figure 2). The first n lateral slices of Ã and B̃ are of rank ≥ n and < 2n,
while the other lateral slices are of rank < n (in fact, they are of rank 1; note that without
loss of generality we may assume n > 1, for the only 1× 1 alternating matrix space is the
zero space). Furthermore, left multiplying a lateral slice by P̃ t and right multiplying it by Q̃

does not change its rank. However, the action of P̃ here is by P̃ tÃP̃ , and while the P̃ t here
corresponds to left multiplication on the lateral slices (=frontal slices of Alat), the P̃ on the
right here corresponds to taking linear combinations of the lateral slices. In other words,
just as Alat is the “side view” of Ã, (P̃ tAlatQ̃)P̃ is the side view of (P̃ tÃP̃)Q̃. Taking linear
combinations of the lateral slices could, in principle, alter their rank; we will use the latter
possibility to show that P̃ must be of a constrained form.

Write P̃ =
[
P1,1 P1,2
P2,1 P2,2

]
where P1,1 is of size n × n. We first claim that P1,2 = 0. For

if not, then in (Alat)P̃ (the side view), one of the last n2 frontal slices receives a nonzero
contribution from one of the first n frontal slices of Alat. Looking at the form of these slices
from Equation 3, we see that any such nonzero combination will have rank ≥ n, but this is a
contradiction since the corresponding slice in Blat has rank 1. Thus P1,2 = 0, and therefore
P1,1 must be invertible, since P̃ is.

Finally, we claim that P1,1 has to be a monomial matrix. If not, then some frontal slice
of (Alat)P̃ among the first n would have a contribution from more than one of these n slices.
Considering the lower-right n2 × n2 sub-matrix of such a slice, we see that it would have
rank exactly kn for some k ≥ 2, which is again a contradiction since the first n slices of
Blat all have rank < 2n. It follows that P t

1,1AiP1,1, i ∈ [m], are in B, and thus A and B are
monomially isometric via P1,1. ◀

4.1.1 Application: reducing Graph Isomorphism to Alternating
Matrix Space Isometry

An application of the monomial-restricting gadget is to give an immediate reduction from
Graph Isomorphism to Alternating Matrix Space Isometry. While a reduction
between these two problems is already known (cf. [32] for details), we choose to present it as
an illustration of using this gadget.

▶ Proposition 9. Graph Isomorphism reduces to Alternating Matrix Space Isometry.

J. A. Grochow and Y. Qiao 16:17

Proof. For a graph G = ([n], E), let AG be the alternating matrix tuple AG = (A1, . . . , A|E|)
with Ae = Ei,j − Ej,i where e = {i, j} ∈ E, and let AG = ⟨AG⟩ be the alternating matrix
space spanned by that tuple. If P is a permutation matrix giving an isomorphism between
two graphs G and H, then it is easy to see that P tAGP = AH , and thus the corresponding
matrix spaces are isometric. The converse direction is not clear, though it is recently shown
to be true in [34] with a rather intricate proof. Instead, we will provide a conceptually
simpler proof, by showing that this construction gives a reduction to monomial isometry,
and then using Lemma 8 to reduce to ordinary Alternating Matrix Space Isometry.

Let us thus establish that the preceding construction gives a reduction from GI to
Alternating Matrix Space Monomial Isometry. We will show that G ∼= H if and
only if AG and AH are monomially isometric. The forward direction was handled above.
For the converse, suppose P tDtAGDP = AH where D is diagonal and P is a permutation
matrix. We claim that in this case, P in fact gives an isomorphism from G to H. First let us
establish that P alone gives an isometry between AG and AH . Note that for any diagonal
matrix D = diag(α1, . . . , αn) and any elementary alternating matrix Ei,j − Ej,i, we have
Dt(Ei,j−Ej,i)D = αiαj(Ei,j−Ej,i). Since AG has a basis of elementary alternating matrices,
the action of D on this basis is just to re-scale each basis element, and thus DtAGD = AG.
Thus, we have P tAGP = AH .

Finally, note that P t(Ei,j − Ej,i)P = Eπ(i),π(j) − Eπ(j),π(i) = Aπ(e), where π ∈ Sn is
the permutation corresponding to P , and by abuse of notation we write π(e) = π({i, j}) =
{π(i), π(j)} as well. Since the elementary alternating matrices are linearly independent, and
AH has a basis of elementary alternating matrices, the only way for Aπ(e) to be in AH is
for it to be equal to one of the basis elements (one of the matrices in AH). In other words,
π(e) must be an edge of H. As P is invertible, we thus have that P gives an isomorphism
G ∼= H. ◀

4.2 Search-to-decision reduction for Alternating Matrix Space
Isometry

▶ Theorem A′. Given an oracle deciding Alternating Matrix Space Isometry, the
task of finding an isometry between two alternating matrix spaces A,B ∈ Λ(n,Fq), if it exists,
can be solved using at most qO(n) oracle queries each of size at most O(n2), and in time
either qO(n) · n! = qÕ(n), or qO(n+m).

Proof. We first present the gadget construction. Then based on this gadget, we present the
search-to-decision reduction.

Gadget construction. Let A = (A1, . . . , Am) be an ordered linear basis of A, and let
A ∈ T(n× n×m,Fq) be the 3-way array constructed from A, so we can write

A =


0 a1,2 a1,3 . . . a1,n

−a1,2 0 a2,3 . . . a2,n

−a1,3 −a2,3 0 . . . a3,n

...
.

...
−a1,n −a2,n −a3,n . . . 0

 ,

where ai,j ∈ Fm, 1 ≤ i < j ≤ n thought of as a vector coming out of the page.

CCC 2021

16:18 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

We first consider a 3-way array Ãi constructed from A, for any 1 ≤ i ≤ n− 1, as Ãi =

0 a1,2 . . . a1,i a1,i+1 . . . a1,n −e1,1 . . . −e1,2n 0 . . . 0 0 . . . 0 0 . . . 0
−a1,2 0 . . . a2,i a2,i+1 . . . a2,n 0 . . . 0 −e2,1 . . . −e2,2n 0 . . . 0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
−a1,i −a2,i . . . 0 ai,i+1 . . . ai,n 0 . . . 0 0 . . . 0 −ei,1 . . . −ei,2n 0 . . . 0

−a1,i+1 −a2,i+1 . . . −ai,i+1 0 . . . ai+1,n 0 . . . 0 0 . . . 0 0 . . . 0 −f1,1 . . . −f1,n

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
−a1,n −a2,n . . . −ai,n −ai+1,n . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 −fn−i,1 . . . −fn−i,n

e1,1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
e1,2n 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

0 e2,1 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
0 e2,2n . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 0 . . . ei,1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
0 0 . . . ei,2n 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 0 . . . 0 f1,1 . . . fn−i,1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
0 0 . . . 0 f1,n . . . fn−i,n 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0



,

where ej,k is the (m + 2n(j− 1) + k)th standard basis vector, and fj,k is the (m + 2ni + n(j−
1) + k)th standard basis vector. A pictorial description can be seen by combining Figure 2
(for the ej,k) and [32, Figure 3] (for the fj,k).

We claim the following.

▷ Claim 10. If there exist invertible matrices P and Q to satisfy P tÃiP = B̃Q
i , then P must

be in the form

P1,1 0 0
0 P2,2 0

P3,1 P3,2 P3,3

, where P1,1 is a monomial matrix of size i× i, P2,2 is of

size (n− i)× (n− i), and P3,3 is of size (2ni + n)× (2ni + n).
Furthermore, there exist such P and Q if and only if A and B are isometric by a matrix

of the form
[
P1,1 0

0 P2,2

]
where P1,1 is a monomial matrix of size i× i.

Proof. This claim is immediate by combining the arguments for the FGS gadget [28] as used
in [32], and the monomial-restricting gadget introduced in Section 4.1. We only outline the
argument and point out some subtle issues here.

First, observe that for the lateral slices of Ãi:
The first i lateral slices have rank in [2n, 3n). Note that the rank is strictly less than 3n

because some tube fibers (coming out of the page) are 0 in the upper-left n× n sub-array.
The next n− i lateral slices have rank in [n, 2n).
The remaining 2ni + n lateral slices have rank in [1, n) (since i ≥ 1.)

Because of the above, for P and Q to satisfy P tÃiP = B̃Q
i , P must be in the required form.

It is the furthermore statement that requires certain care. The only if direction is
straightforward: after observing that P has to be of the above form, we can easily verify that[
P1,1 0

0 P2,2

]
is an isometry from A to B. For the if direction, starting from

[
P1,1 0

0 P2,2

]
and

Q1,1 ∈ GL(m,F), we need to design P3,3 ∈ GL(2ni + n,F) and Q2,2 ∈ GL(2ni + n(n− i),F)

such that letting P =

P1,1 0 0
0 P2,2 0
0 0 P3,3

 and Q =
[
Q1,1 0

0 Q2,2

]
, we have P tÃiP = B̃Q

i .

This can be achieved by combining the arguments for the only if directions in the proofs of
Lemma 8 and [32, Proposition 3.3]. ◁

J. A. Grochow and Y. Qiao 16:19

The search-to-decision reduction. Given these preparations, we now present the search-to-
decision reduction for Alternating Matrix Space Isometry. Recall that this requires us
to use the decision oracle O to compute an explicit isometry transformation P ∈ GL(n, q),
if A and B are indeed isometric. Think of P as sending the standard basis (e⃗1, . . . , e⃗n) to
another basis (v1, . . . , vn), where e⃗i and vi are in Fn

q .

In the first step, we guess v1, the image of e⃗1, and a complement subspace of ⟨v1⟩, at
the cost of qO(n). For each such guess, let P1 be the matrix which sends e⃗1 7→ v1 and sends
⟨e⃗2, . . . , e⃗n⟩ to the chosen complementary subspace arbitrarily. We apply P1 to A, and still
call the resulting 3-way array A in the following. Then construct Ã1 and B̃1, and feed these
two instances to the oracle O. Note that, since P1,1 (using notation as above) must be
monomial, any equivalence between Ã1 and B̃1 must preserve our choice of v1 up to scale.
Thus, clearly, if A and B are indeed isometric and we guess the correct image of e⃗1, then the
oracle O will return yes (and conversely).

In the second step, we guess v2, the image of e⃗2, and a complement subspace of ⟨v2⟩
within ⟨e⃗2, . . . , e⃗n⟩, at the cost of qO(n). Note here that the previous step guarantees that
there is an isometry respecting the direct sum decomposition ⟨v1⟩ ⊕ ⟨e⃗2, . . . , e⃗n⟩, so we need
only search for a complement of v2 within ⟨e⃗2, . . . , e⃗n⟩, and not a more general complement
of ⟨v1, v2⟩ in all of Fn

q . This is crucial for the runtime, as at the n/2 step, the latter strategy
would result in searching through qΘ(n2) possibilities.

For each such guess, we apply the corresponding transformation to A (and again call
the resulting 3-way array A). Then construct Ã2 and B̃2, and feed these two instances to
the oracle O. Clearly, if A and B are indeed isometric and we guess the correct image of
e⃗2 (and e⃗1 from the previous step), then the oracle O will return yes. However, there is a
small caveat here, namely we may guess some image of e2, such that A and B are actually

isometric by some matrix P of the form
[
P1,1 0

0 P2,2

]
where P1,1 is a monomial matrix of

size 2 (instead of the more desired diagonal matrix). But this is fine, as it still ensures P1,1
to be monomial, which is the key property to keep. This means that our choices of {v1, v2}
is correct as a set up to scaling, so we proceed.

In general, in the ith step, we maintain the property that A and B are isometric by some

P =
[
P1,1 0

0 P2,2

]
where P1,1 is a monomial matrix of size (i− 1)× (i− 1). We guess vi, the

image of e⃗i in ⟨e⃗i, . . . , e⃗n⟩, and a complement subspace of ⟨vi⟩ within ⟨e⃗i, . . . , e⃗n⟩. This cost
is qO(n). For each such guess, we apply the corresponding transformation to A (and call the
resulting 3-way array A). Then construct Ãi and B̃i, and feed these two instances to the oracle

O. Once we guess correctly, we ensure that A and B are isometric by P =
[
P1,1 0

0 P2,2

]
where P1,1 is a monomial matrix of size i× i.

So after the (n − 1)th step, we know that A and B are isometric by a monomial
transformation. As the number of all monomial transformations is (q−1)n ·n! ≤ qn ·2n log n =
qÕ(n), we can enumerate all monomial transformations and check correspondingly. This
gives an algorithm in time qÕ(n). By resorting to Proposition 11 which solves Alternating
Matrix Space Monomial Isometry in time qO(n+m), we have an algorithm in time
qO(n+m).

Note that all the instances we feed into the oracle O are of size O(n2). This concludes
the proof. ◀

CCC 2021

16:20 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

4.3 A simply-exponential algorithm for monomial isometry of
alternating matrix spaces

We now state the algorithm for monomial isometry used in Theorem A′.

▶ Proposition 11. Let A,B ≤ Λ(n, q) be m-dimensional. Then there exists a qO(n+m)-time
algorithm that decides whether A and B are monomially isometric, and if so, computes an
explicit monomial isometry.

Proof. Let A,B ≤ Λ(n, q) be two m-dimensional alternating matrix spaces. Clearly, by
incurring a multiplicative factor of qn, we can reduce to the problem of testing whether
A and B are permutationally isometric, i.e. whether there exists a permutation matrix
T ∈ GL(n, q), such that T tAT = B. We will solve this problem in time 2O(n) · qO(m). This
would give an algorithm with total running time qn · 2O(n) · qO(m) = qO(n+m). The basic
idea of the algorithm comes from Luks’s dynamic programming technique for Hypergraph
Isomorphism [53].

Reducing to a generalized linear code equivalence problem. Suppose A = ⟨A1, . . . , Am⟩,
and B = ⟨B1, . . . , Bm⟩. Let A and B be the n × n ×m 3-way arrays formed by the given
bases of A and B. For S ⊆ [n] of size s, let (Ai)S be the submatrix of Ai with row and
column indices in S. Then let AS be the s×s×m 3-way array formed by ((A1)S , . . . , (Am)S).
Similarly we can define BS for S ⊆ [n].

For each S ⊆ [n] of size s, let Iso(A[s], BS) be the coset in Sn × GL(m, q), such that
(A, B) ∈ Sn × GL(m, q) if and only if the natural action of (A, B) sends A[s] to BS . Since
all the matrices are alternating, their diagonal entries are zero, and thus A{i} and B{i}
are both the 1 × 1 × m zero vector for any i. It follows that if s = 1 and S = {i},
Iso(A[1], BS) = G×GL(m, q), where G is the coset of Sn consisting of permutations sending
1 to i.

Suppose we have computed Iso(A[s], BS) for all s < t. Fix T ⊆ [n], |T | = t, and let us
compute Iso(A[t], BT). For any (A, B) ∈ Iso(A[t], BT), A sends [t− 1] to some T ′ ⊆ T of size
t− 1. So in this case, (A, B) ∈ Iso(A[t−1], BT ′), which has been computed. Let T \ T ′ = {t′}.
On the other hand, for (A, B) ∈ Iso(A[t−1], BT ′) to be in Iso(At, BT), (A, B) needs to send the
tth horizontal slice of A[t] to the t′th horizontal slice of BT .

We first identify T ′ with [t− 1]. We then note that every horizontal slice of A[t] has a row
of zeros. So the problem now becomes: given two (t−1)×m matrices P and Q over Fq, decide
whether P and Q are the same under G ≤ St−1 ×GL(m, q). (Note that G = Iso(A[t−1], BT ′)
from above.) Clearly, this is a generalization of the Linear Code Equivalence problem.
Furthermore, if we could solve this problem in time 2O(n) · qO(m), we would have achieved
our original goal.

Solving the generalized linear code equivalence problem. We solve the above problem
again by a dynamic programming scheme as follows. For R ⊆ [t− 1] of size r, PR denotes
the r × m submatrix of P with row indices from R. Let Iso′(P[r], QR) be the coset in
St−1 ×GL(m, q), such that (C, D) ∈ Iso′(P[r], QR) if and only if the natural action of (C, D)
sends P[r] to QR. If r = 0, then Iso′(P∅, Q∅) = G where G ≤ St−1 ×GL(m, q) is given as an
input.

Suppose we have computed Iso′(P[r], QR) for any r < u. Fix U ⊆ [t− 1], |U | = u, and let
us compute Iso′(P[u], QU). For any (C, D) ∈ Iso′(P[u], QU), C sends [u− 1] to some U ′ ⊆ U

of size u − 1. So in this case, (A, B) ∈ Iso(P[u−1], QU), which has been computed. Let
U \ U ′ = {u′}. On the other hand, for (C, D) ∈ Iso(P[u−1], QU ′) to be in Iso(P[u], QU), D

J. A. Grochow and Y. Qiao 16:21

needs to send the uth row of P[u] to the u′th row of QU . This subcoset of Iso(P[u−1], QU ′)
can be computed in time qO(m), by treating GL(m, q) as a permutation group on Fm

q . We
then take a union over size-(u− 1) subsets U ′ to obtain a generating set for Iso(P[u], QU). If
necessary, we can reduce the generating set size by applying the standard permutation group
machinery, as our time bound is 2O(n) · qO(m), which is quite generous. ◀

5 Counting-to-decision reduction by restricting to diagonal groups

In this section, we devise a gadget to achieve the restriction to the group of diagonal matrices,
and use it to do the counting to decision reduction for Alternating Matrix Space
Isometry.

5.1 Preliminaries
Some preparations are in order.

▶ Observation 12. Let n ≥ 23. Then any permutation σ ∈ Sn either fixes a set of 6 points
P ⊆ [n], or moves a set of 6 points P ⊆ [n] to another set of 6 points Q ⊆ [n] such that these
two sets are disjoint.

Proof. Suppose σ fixes at most 5 points. Then there are at least 18 points that are not fixed
by σ. Suppose σ has t non-trivial cycles of length l1, . . . , lt, such that

∑
i li ≥ 18. For a cycle

(p1, . . . , ps), we can choose p1, p3, . . . , p2·⌊s/2⌋−1 and put them in P , and p2, p4, . . . , p2·⌊s/2⌋
in Q. Do this for every cycle, we obtain the desired P and Q. The worst case is when every
cycle is of length 3. Since there are at least 18 points not fixed by σ, P is of size ≥ 6. ◀

We shall make repeated uses of the following facts.

▶ Fact 13.
1. Given ai ∈ R, 0 ≤ ai ≤ 1, i ∈ [m],

∏
i∈[m](1− ai) ≥ 1−

∑
i∈[m] ai.

2. Let m, N ∈ N and 1 ≤ m ≤ N . A random matrix A ∈ M(N ×m, q) is of rank m with
probability ≥ 1− 2/qN−m+1.

3. For n ∈ N, 0 ≤ d ≤ n, the number of dimension-d subspaces of Fn
q is equal to the Gaussian

binomial coefficient(
n

d

)
q

:= (qn − 1) · (qn − q) · . . . · (qn − qd−1)
(qd − 1) · (qd − q) · . . . · (qd − qd−1) .

4. The Gaussian binomial coefficient satisfies:

q(n−d)d ≤
(

n

d

)
q

≤ q(n−d)d+d.

5. For d ∈ N, the number of complement subspaces of a fixed dimension-d subspace of Fn
q is

qd(n−d).

Proof. For (2), Pr[rk(A) = m] = (1 − 1
qN) · (1 − q

qN) · . . . · (1 − qm−1

qN). By (1), we have
Pr[rk(A) = m] ≥ 1−

∑N
i=N−m+1

1
qi = 1− 1

qN−m+1 −
∑N

i=N−m+2
1
qi ≥ 1− 2

qN−m+1 . ◀

5.2 Describing the gadget
Let A ≤ Λ(n, q) be an alternating matrix space, and let A = (A1, . . . , Am) ∈ Λ(n, q)m be an
ordered linear basis of A. Let A ∈ T(n× n×m,Fq) be the 3-way array constructed from A,
i.e. the ith frontal slice of A is Ai.

We shall assume n = Ω(1), and q = nΩ(1) throughout the remainder of this section.

CCC 2021

16:22 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

The form of the gadget. To describe the gadget, it is easier to view A from the lateral
viewpoint. That is, for i ∈ [n], let Ci = [A1ei, . . . , Amei] ∈ M(n × m, q). Let C =

(C1, . . . , Cn) ∈ M(n ×m, q)n. Then construct C′ = (C ′
1, . . . , C ′

n), C ′
i =

[
Ci 0
0 Gi

]
, where

Gi is of size 6n × 4n2. For i ∈ [n], Gi =
[
0 . . . 0 Hi 0 . . . 0

]
, where Hi is of size

6n× 4n in the ith block, and 0 denotes an all-zero matrix of size 6n× 4n. The Hi will be
described below.

Note that from the frontal viewpoint of looking at A, Gi’s are inserted, vertically, below and
behind A. So to preserve the alternating structure, −Gi’s also need to be inserted, horizontally,
on the right and behind A. We therefore get Ã, which is of size 7n× 7n× (m + 4n2).

Conditions imposed on the Hi’s. Of course, the key to the construction above lies in the
properties of the Hi’s. Let Vi ≤ F6n

q be the subspace spanned by the columns of Hi. We
shall impose the following conditions on Hi.
1. For any i ∈ [n], rk(Hi) = dim(Vi) = 4n.
2. For any i, j ∈ [n], i ̸= j, rk([HiHj]) = dim(Vi ∪ Vj) = 6n.
3. For any (i1, i2, i3, i4, i5, i6) ∈ [n]6 and (j1, j2, j3, j4, j5, j6) ∈ [n]6, such that |{i1, . . . i6} ∪
{j1, . . . , j6}| = 12, i.e. ik and jℓ all different, the coset C = {T ∈ GL(6n, q) : ∀k ∈
[6], T (Vik

) = Vjk
} is empty. Note that for any i ∈ [n], T (Vi) is spanned by the columns of

THi.
4. For any (i1, i2, i3, i4, i5, i6) ∈ [n]6, ik all different, the group S = {T ∈ GL(6n, q) : ∀k ∈

[6], T (Vik
) = Vik

} consists of only of scalar matrices.

▶ Remark 14. Given H1, . . . , Hn ∈ M(6n× 4n, q), whether they satisfy the four conditions
can be verified in polynomial time.

Conditions (1) and (2) are easily verified in deterministic polynomial time.
For condition (3), it can be formulated as a linear algebraic problem as follows. Let X

be a 6n × 6n variable matrix. Let Yk, k ∈ [6], be 4n × 4n variable matrices. Set up the
equations XHik

= Hjk
Yk, and solve the linear equations to get a subspace of F(6n)2+6·(4n)2

q .
The question is then whether this subspace contains (T, R1, . . . , R6) where T ∈ GL(6n, q)
and Ri ∈ GL(4n, q). This is an instance of the symbolic determinant identity testing (SDIT)
problem, so it admits a randomized efficient algorithm when q = nΩ(1).

In fact, this instance of SDIT problem can be solved in deterministic polynomial time.
For this let us also check out condition (4). Here, let X and Yi be from above, and set up
the equations XHik

= Hik
Yk. Solve the linear equations to get a subspace of F(6n)2+6·(4n)2

q .
This subspace turns out to be an algebra under the natural multiplications. Indeed, if
AHik

= Hik
Bk and A′Hik

= Hik
B′

k, then AA′Hik
= Hik

BkB′
k. To compute the unit

group in a matrix algebra can be solved by a polynomial-time Las Vegas algorithm by [16].
Given the unit group, whether it consists of only scalar matrices can be verified easily in
deterministic polynomial time.

Then the linear space in condition (3) is a module over the algebra defined in the last
paragraph. Because of this structure, the SDIT problem for such instances can be solved in
deterministic polynomial time [14,19,37].

5.3 Construction and properties of the gadget
The following three propositions reveal the construction and functions of the gadget described
above.

First about the construction. Instead of constructing the above Hi’s explicitly in a
deterministic way, we shall show that random choices suffice.

J. A. Grochow and Y. Qiao 16:23

▶ Proposition 15. Let Hi ∈ M(6n× 4n, q), i ∈ [n], be random matrices. Then Hi’s satisfy
the four conditions in Section 5.2 with probability ≥ 1− nO(1)

qΩ(1) .

Second about the functionality. The following proposition formally explains this.

▶ Proposition 16. Suppose A and B are two 3-tensors constructed from ordered bases of
m-dimensional alternating matrix spaces A,B ≤ Λ(n, q). Let Ã and B̃ be constructed as above,
and let Ã and B̃ be the alternating matrix spaces spanned by the frontal slices of Ã and B̃,
respectively. Then A and B are isometric via a diagonal matrix if and only if Ã and B̃ are
isometric.

Finally we shall use this gadget to achieve a counting-to-decision reduction for Altern-
ating Matrix Space Isometry. Formally, we have the following.

▶ Proposition 17. Suppose we are given A,B ≤ Λ(n, q) and a decision oracle for Altern-
ating Matrix Space Isometry. Then there exists a Las Vegas randomized algorithm that
computes the number of isometries from A to B in time qO(n).

The next three subsections are devoted to the proofs of Propositions 15 (Section 5.3.3),
16 (Section 5.3.1), and 17 (Section 5.3.2). Note that, because the proof of Proposition 15 is
more complicated compared to the other two, we postpone it to the last.
▶ Remark 18. In fact, we expect that this construction works even for small finite fields.
The bottleneck lies in Proposition 15. If the probability nO(1)

qΩ(1) could be improved to nO(1)

qΩ(n) ,
then we would be done. We believe it possible to utilize the structure of invariant subspaces
under matrix actions over Fq to achieve this. However, we expect that the calculations will
be tedious and heavy, so we hope to leave this to a future work.

5.3.1 Restricting to the diagonal group
Briefly speaking, conditions 1 and 2 ensure that we first restrict to monomial matrices.
Conditions 3 and 4 prevent non-trivial permutations due to the following. As we assume
n = Ω(1), by Observation 12, σ ∈ Sn either fixes 6 elements in [n], or moves a set of 6
elements to another, disjoint, set of 6 elements. Condition 3 ensures that the second case
could not happen. Condition 4 ensures that in the first case, the only possible invertible
matrices that “preserves” the matrices Gi for i ∈ P when multiplying from the left are scalar
matrices.

We now prove Proposition 16.

Proof of Proposition 16. Recall that we construct such Ã and B̃ from A and B, respectively,
using the method in Section 5.2. Let Ã and B̃ be alternating matrix spaces in Λ(7n, q),
spanned by the frontal slices of Ã and B̃, respectively.

We want to show that Ã and B̃ are isometric if and only if A and B are isometric via diag-
onal matrices. The if direction is straightforward. Suppose there exist P = diag(α1, . . . , αn) ∈

diag(n, q) and Q ∈ GL(m, q) such that P tAP = BQ. Let P̃ =
[
P 0
0 I6n

]
∈ GL(7n, q). Let

Q̃ =
[
Q 0
0 Q′

]
∈ GL(m + 4n2), where Q′ = diag(α1I4n, . . . , αnI4n). Then it is easy to verify

that P̃ tÃP̃ = B̃Q̃.
Now we turn to the only if direction. If Ã and B̃ are isometric, then there exists

P̃ ∈ GL(7n, q) and Q̃ ∈ GL(m + 4n2, q), such that P̃ tÃP̃ = B̃Q̃. Let P̃ =
[
P1,1 P1,2
P2,1 P2,2

]
, where

P1,1 is of size n× n. It can be checked easily, from the lateral viewpoint, that P1,2 = 0. As

CCC 2021

16:24 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

if not, then some Hi would appear in one of the last 6n lateral slices in ÃP̃ . This would
set this slice to be of rank ≥ 4n by condition (1), which contradicts that the corresponding
lateral slice of B̃Q̃ is of rank ≤ n. It follows that P1,1 ∈ GL(n, q) and P2,2 ∈ GL(6n, q).

We first claim that P1,1 has to be a monomial matrix. If not, then one of the first n

lateral slice of ÃP̃ has two distinct Hi and Hj . By condition (2), this slice is of rank ≥ 6n,
which contradicts that the corresponding lateral slice of B̃Q̃ is of rank ≤ 5n.

We further claim that P1,1 has to be a diagonal matrix. If not, then suppose the non-trivial
permutation underlying P1,1 is σ ∈ Sn. Since we assumed n = Ω(1), by Observation 12, one
of the following two cases has to happen.
∃{i1, . . . , i6} ⊆ [n], {j1, . . . , j6} ⊆ [n], |{i1, . . . , i6} ∪ {j1, . . . , j6}| = 12, such that σ(ik) =
jk for k ∈ [6]. We then claim the following.

▷ Claim 19. For P̃ tÃP̃ = B̃Q̃ to hold, a necessary condition is that ∀k ∈ [6], P2,2Hjk
and

Hik
have the same linear span.

Proof. To see this, note that the ikth lateral slice of P̃ tÃP̃ is the jkth lateral slice of P̃ tÃ
(up to a scalar multiple). It is equal to the ikth lateral slice of B̃Q̃. Then P̃ t acts on the

left on the jkth lateral slice of Ã. Noting that P t =
[
P t

1,1 P t
2,1

0 P t
2,2

]
and the jkth lateral

slice of Ã is C ′
jk

=
[
Cjk

0
0 Gjk

]
, we see that P tC ′

jk
=

[
∗ ∗
0 P t

2,2Gjk

]
. (Here, Ci and Gi are

defined in Section 5.2.) On the other hand, we see that the ikth lateral slice of B̃Q̃ is the
ikth lateral slice multiplied from the right by Q̃. Our claim follows then by comparing
the last 6n rows. ◁

But the condition (3) excludes the existence of such P2,2, so this cannot happen.
∃{i1, . . . , i6} ⊆ [n], ik all different, such that σ(ik) = ik. In this case, for P̃ tÃP̃ = B̃Q̃

to hold, by the same argument as in the proof of Claim 19, a necessary condition is
that P2,2Hik

and Hik
have the same linear span. Then the condition (4) ensures that

P2,2 = λI6n for some λ ̸= 0 ∈ F in this setting. Then because σ is non-trivial, σ moves
some i ∈ [n] to j ∈ [n], i ̸= j. By comparing the jth lateral slice of P̃ tÃ and the ith
lateral slice of B̃Q̃, P2,2Hi = λHi and Hj have the same linear span, which is not possible
because the condition (2) ensures that Hi and Hj span different subspaces.

We then have shown that P1,1 must be a diagonal matrix. By comparing the top-left-front
sub-tensors of size n× n×m of P̃ tÃP̃ and B̃Q̃, we arrive at the desired conclusion that A
and B are isometric via the diagonal matrix P1,1. ◀

5.3.2 Using the gadget for counting-to-decision reduction
The strategy follows closely the counting to decision reduction for graph isomorphism.

We first review the strategy for counting to decision reduction for graph isomorphism [54].
Suppose we are given two graphs with the vertex set being [n], i.e. G, H ⊆

([n]
2

)
. We first

use the decision oracle to decide whether G and H are isomorphic. If not, the number of
isomorphisms is 0. If so, we turn to compute the order of Aut(G). Let A = Aut(G). For
i ∈ [n], let Ai = {σ ∈ A : ∀1 ≤ j ≤ i, σ(j) = j}. Set A0 = A. We then have the tower of
subgroups A0 ≥ A1 ≥ · · · ≥ An = {id}. The order of A0 is then the product of [Ai : Ai+1],
the index of Ai+1 in Ai, for i = 0, 1, . . . , n− 1. Let Gi be the graph with the first i vertices
in G individualized. Then Aut(Gi) ∼= Ai. To compute [Ai : Ai+1], we note that it is equal to
the size of the orbit of the vertex i + 1 under Ai. For each j ≥ i + 1, construct from Gi two

J. A. Grochow and Y. Qiao 16:25

graphs G′
i and G′′

i as follows. In G′
i, individualize i + 1, and in G′′

i , individualize j. Then j

is in the orbit of i + 1 under Ai if and only if G′
i and G′′

i are isomorphic. Enumerating over
j ≥ i + 1 gives us the size of the orbit of i + 1 under Ai. This finishes an overview of the
idea for counting to decision reduction for graph isomorphism.

We then apply the above strategy to get a counting to decision reduction for alternating
matrix space isometry to prove Proposition 17.

Proof of Proposition 17. Our goal is to compute the number of isomorphisms from A to B,
where A,B ≤ Λ(n, q) are of dimension m. First, we use the decision oracle first to decide
whether A and B are isometric. If not, the number of isometries is 0. If so, we need to
caculate the order of the autometry group of A, Aut(A). To do that, we first randomly
sample n 6n × 4n matrices H1, . . . , Hn over Fq, and verify whether they satisfy the four
conditions in Section 5.2 using Remark 14. Note that this is where the algorithm needs to
be a Las Vegas algorithm.

Let A = Aut(A). Recall that ei denotes the ith standard basis vector in Fn
q . For i ∈ [n],

let Ai = {T ∈ A : ∀1 ≤ j ≤ i, T (ei) = λiei, λi ̸= 0 ∈ Fq}. Note that An = A∩ diag(n, q). We
can calculate the order of An in time qO(n) by brute-force, i.e., enumerating all invertible
diagonal matrices. Set A0 = A. We then have the tower of subgroups A0 ≥ A1 ≥ · · · ≥ An.

To compute the order of A0, it is enough to compute [Ai : Ai+1]. Note that for T, T ′ ∈ Ai,
TAi+1 = T ′Ai+1 as left cosets in Ai if and only if T (ei+1) = λT ′(ei+1) for some λ ̸= 0 ∈ Fq.
So [Ai : Ai+1] is equal to the size of the orbit of ei+1 under Ai in the projective space. Let
v ∈ Fn

q . To test whether v is in the orbit of ei+1 under Ai in the projective space, we tranform
A by P t · P , where P ∈ GL(n, q) sends ei+1 to v and ej to ej for j ̸= i + 1, to get A′. We
then add the diagonal restriction gadget to the first i + 1 lateral slices and the first i + 1
horizontal slices of A and A′, to obtain Ã and Ã′ respectively. Then feed A and A′ to the
decision oracle. By the functionality of the diagonal restriction gadget, v is in the orbit of
ei+1 in the projective space if and only if Ã and Ã′ are isometric. Enumerating v ∈ Fn

q up to
scalar multiples gives us the size of the orbit of ei+1 under Ai in the projective space. This
finishes the description of the algorithm.

A small caveat in the above is that our gadget requires n = Ω(1), so we cannot start
from A0 at the beginning. This issue can be revolved by noting that the order of Ac, for any
constant c, can be computed in time qO(n), by enumerating all possible images of e1, . . . , ec

in time qO(n), adding the diagonal restriction gadget, and utilizing the decision oracle. ◀

5.3.3 Random Hi’s satisfy the requirements when q = nΩ(1)

In the following we will encounter random matrices over Fq as well as random subspaces
in Fn

q . There is a subtle point which we want to clarify now. Let m ≤ n. Note that
there are

(
n
m

)
q

subspaces of Fn
q , and there are N1 = (qn − 1) · . . . · (qn − qm−1) rank-m

matrices of size n ×m. It can be seen easily that each m-dimensional subspace V of Fn
q

has N2 = (qm − 1) · . . . · (qm − qm−1) many representations as rank-m matrices of size
n ×m, i.e. the columns of the matrix span V . It follows that we can work with random
rank-m matrices of size n×m as if we are working with random m-dimensional subspaces of
Fn

q . Such correspondences will be used implicitly for other structures, including direct sum
decompositions.

Now let us get back to our question. We shall show that a random choice of Hi, i ∈ [n],
would satisfy the four conditions we imposed on Hi’s. We will prove that for conditions
k = 1, 2, 3,

Pr[random Hi not satisfy condition k] ≤ nO(1)

qΩ(n) .

CCC 2021

16:26 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

Once these hold, by a union bound, we have

Pr[∃i ∈ [3], random Hi not satisfy condition i] ≤ nO(1)

qΩ(n) .

For condition (4), we will prove that

Pr[random Hi not satisfy condition 4 | Hi satisfy conditions 1, 2, 3] ≤ nO(1)

qΩ(1) .

This then would allow us to conclude that when q = nΩ(1), random Hi’s satisfy all the four
conditions.

We examine the first three conditions one by one.
1. For condition (1), by Fact 13 (2), we have Pr[∃i ∈ [n], rk(Hi) < 4n] ≤ n · Pr[rk(Hi) <

4n] ≤ 2n
q2n+1 .

2. For condition (2), noting that the block matrix (HiHj) is a random 6n× 8n matrix over
Fq, by Fact 13 (2), we have Pr[∃i ̸= j ∈ [n], rk((HiHj)) < 6n] ≤

(
n
2
)
· 2

q8n−6n+1 ≤ n2

q2n+1 .
3. For condition (3), let I = (Hi1 . . . Hi6), and J = (Hj1 . . . Hj6). We see that C is

non-empty if and only if there exists L ∈ GL(6n, q) and Rk ∈ GL(4n, q), k ∈ [6],
such that LHik

Rk = Hjk
. Note that the orbit of I under this group action is of size

at most q(6n)2+6·(4n)2 = q132n2 . Since ik and jℓ are all different, the probability of
J belonging to this orbit is ≤ q132n2

q144n2 = 1
q12n2 . We then have Pr[∃ik, jk ∈ [n], k ∈

[6], ik, jk all different, C = ∅] ≤
(

n
12

) 2
q12n2 ≤ n12

q12n2 .

We now focus on condition (4). For condition (4), we first assume that the conditions (1)
and (2) as above hold. Then Vi’s are random 4n-dimensional subspaces of F6n

q . Note that

Pr[∃ik ∈ [n], k ∈ [6], ik all different, S non-scalar] ≤ n6 · Pr[S non-scalar for V1, . . . , V6].

So we turn to study Pr[S non-scalar for V1, . . . , V6], and will show that it is ≤ 1
qΩ(1) .

Let U1 = V1 ∩ V2, U2 = V2 ∩ V3, and U3 = V1 ∩ V3. Let W1 = V4 ∩ V5, W2 = V5 ∩ V6, and
W3 = V4 ∩ V6. Since conditions (1) and (2) hold, we have dim(Ui) = dim(Wi) = 2n. We
claim that with probability ≥ 1− 2/q, F6n

q = U1⊕U2⊕U3, i.e., U1 ∪U2 ∪U3 span F6n
q . This

can be seen as follows. Since we assumed conditions (1) and (2), this happens if and only if
V1 ∩ V2 and V3 together span F6n

q . Therefore we calculate, using Fact 13 (1), (3), and (5),
that

Pr[V3 is a complement subspace of V1 ∩ V2]

= q2n·4n/

(
6n

4n

)
q

= (q6n − q2n)(q6n − q2n+1) . . . (q6n − q6n−1)
(q6n − 1)(q6n − q) . . . (q6n − q4n−1)

≥ (q6n − q2n)(q6n − q2n+1) . . . (q6n − q6n−1)
q6n · q6n · · · · · q6n

= (1− 1/q4n)(1− 1/q4n−1) . . . (1− 1/q)

≥ 1−
4n∑

i=1
1/qi ≥ 1− 2/q.

It follows that with probability ≥ 1− 4/q, we can assume in addition that Wi form a direct
sum decomposition of F6n

q .
Therefore, we turn to bound the probability that there exists a non-scalar invertible

matrix stabilizing these two direct sum decompositions of F6n
q . Since ik are all different,

the two direct sum decompositions U1 ⊕ U2 ⊕ U3 and W1 ⊕ W2 ⊕ W3 are independent.

J. A. Grochow and Y. Qiao 16:27

So we can assume that Ui is spanned by those standard basis vectors ⃗e2n(i−1)+1, . . . , ⃗e2ni,
i = 1, 2, 3. The group that stabilizes this direct sum decomposition U1 ⊕ U2 ⊕ U3 consists ofD1 0 0

0 D2 0
0 0 D3

 ∈ GL(6n,Fq) where Di is of size 2n× 2n.

The question then becomes to bound the probability for a random W1 ⊕ W2 ⊕ W3
to be stabilized by a non-scalar matrix of the above form. This can be formulated as
the following linear algebraic problem. (Recall the correspondence between random m-
dimensional subspaces and random rank-m matrices as discussed at the beginning of the

subsection.) Let W =

W11 W12 W13
W21 W22 W23
W31 W32 W33

 ∈ GL(6n, q) be a block matrix where Wij is of

size 2n×2n. Suppose the columns of

W1i

W2i

W3i

 span Wi. Then D = diag(D1, D2, D3) stabilizes

W1 ⊕W2 ⊕W3 if and only if there exists a block diagonal matrix E = diag(E1, E2, E3),
Ei ∈ GL(2n, q), such thatD1 0 0

0 D2 0
0 0 D3

 W11 W12 W13
W21 W22 W23
W31 W32 W33

 =

W11 W12 W13
W21 W22 W23
W31 W32 W33

 E1 0 0
0 E2 0
0 0 E3

 . (5)

Note that each direct sum decomposition W1 ⊕W2 ⊕W3, dim(Wi) = 2n, has 6 · |GL(2n, q)|3
such matrix representations. (The factor 6 takes care of the orders of the three summands.)
So the question becomes to bound the probability for a random invertible matrix to have a
non-scalar D and E satisfying Equation 5.

First, note that Equation 5 holds if and only if DiWi,j = Wi,jEj for i, j ∈ [3].

▷ Claim 20. When q = Ω(1), we have Pr[∀i, j ∈ [3], rk(Wi,j) = 2n] ≥ 1− 20
q .

Proof. Let us work in the setting when W is a random matrix, not necessarily the one
above. Then Pr[rk(W) = 6n] ≥ 1 − 2

q . For any i, j ∈ [3], Pr[rk(Wi,j) < 2n] ≤ 2
q , so

Pr[∃i, j ∈ [3], rk(Wi,j) < 2n] ≤ 18
q . It follows that Pr[∃i, j ∈ [3], rk(Wi,j) < 2n | rk(W) =

6n] = Pr[∃i, j ∈ [3], rk(Wi,j) < 2n ∧ rk(W) = 6n]/ Pr[rk(W) = 6n] ≤ 18/q
1−2/q = 18

q−2 ≤
20
q ,

where the last inequality uses that q = Ω(1). ◁

So we assume that rk(Wi,j) = 2n for all i, j ∈ [3] in the following, with a loss of probability
≤ 20

q .
For i ∈ [3], by DiWii = WiiEi, we have Di = WiiEiW

−1
ii . For i ̸= j, by

(WjjEjW −1
jj)Wji = DjWji = WjiEi, we have Ej = W −1

jj WjiEiW
−1
ji Wjj . Again for i ̸= j,

we have WiiEiW
−1
ii Wij = DiWij = WijEj = WijW −1

jj WjiEiW
−1
ji Wjj . It follows that

∀i, j ∈ [3], i ̸= j, EiW
−1
ii WijW −1

jj Wji = W −1
ii WijW −1

jj WjiEi.

In particular, E3 commutes with X = W −1
33 W32W −1

22 W23 and Y = W −1
33 W31W −1

11 W13. Since
Wij are independent random invertible matrices, X and Y are independent random invertible
matrices. We now resort to the following classical result.

▶ Theorem 21 ([41], cf. also [23, 40]). Let X and Y be two random matrices in SL(n, q).
Then the probability of X and Y not generating SL(n, q) is ≤ 1

qΩ(n) .

CCC 2021

16:28 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

Back to our setting, the above theorem implies that the group G generated by random X

and Y from GL(2n, q) contains SL(2n, q) with probability ≥ 1 − 1
qΩ(n) . It follows that E3

belongs to the centralizer of G, so E3 must be a scalar matrix. Then note that Di’s and other
Ei’s are all conjugates of E3. So we have ∀i ∈ [3], Di = Ei = λI2n for some λ ̸= 0 ∈ Fq.

Summarizing the above, we have

Pr[S non-scalar for V1, . . . , V6]

≤ Pr[S non-scalar for Vi ∧ F6n
q = U1 ⊕ U2 ⊕ U3 = W1 ⊕W2 ⊕W3] + 4

q

≤ Pr[S non-scalar for Vi | F6n
q = U1 ⊕ U2 ⊕ U3 = W1 ⊕W2 ⊕W3] + 4

q

≤ Pr[D non-scalar for W ∧ ∀i, j ∈ [3], rk(Wij) = 2n] + 20
q

+ 4
q

≤ Pr[D non-scalar for W | ∀i, j ∈ [3], rk(Wij) = 2n] + 24
q

≤ 1
qΩ(n) + 24

q

≤ 1
qΩ(1) ,

when q = nΩ(1). This concludes the proof of Proposition 15. ◀

6 Application to p-Group Isomorphism, using constructive Baer and
Lazard Correspondences

The applications to p-Group Isomorphism rely on the following well-known connections
between alternating bilinear maps and Lie algebras on the one hand, and p-groups of
“small” class on the other. We present these connections here, partly for audiences not from
computational group theory, and partly because we will need to address some computational
aspects of these procedures. We begin with some preliminaries.

6.1 Preliminaries
TI-completeness. As the proof of Theorem P in Section 6.3.1 uses a result on TI-
completeness from [32], here we recall the definition of TI; see Definition 6 for the d-Tensor
Isomorphism problem.

▶ Definition 22 (dTI, TI). For any field F, dTIF denotes the class of problems that are
polynomial-time Turing (Cook) reducible to d-Tensor Isomorphism over F. Also let
TIF =

⋃
d≥1 dTIF.

The relationship between TI over different fields remains an intriguing open question [32],
but here we will only need TI over Fp. One of the the main results of [32] is that TI = dTI
for any fixed d ≥ 3.

Algebras and their algorithmic representations. A Lie algebra A consists of a vector space
V and a bilinear map [,] : V × V → V that is alternating ([v, v] = 0 for all v ∈ V ; this is
equivalent to skew-symmetry [u, v] = −[v, u] in characteristic not 2) and satisfies the Jacobi
identity [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0. The Jacobi identity is essentially the “derivative”
of associativity.

J. A. Grochow and Y. Qiao 16:29

After choosing an ordered basis (b1, . . . , bn) where bi ∈ Fn of V ∼= Fn, this bilinear map
[,] can be represented by an n× n× n 3-way array A, such that [bi, bj] =

∑
k∈[n] A(i, j, k)bk.

This is the structure constant representation of A. Algorithms for Lie algebras have been
studied intensively in this model, e. g., [21, 38].

It is also natural to consider matrix spaces that are closed under commutator. More
specifically, let A ≤ M(n,F) be a matrix space. If A is closed under commutator, that is,
for any A, B ∈ A, [A, B] = AB −BA ∈ A, then A is a matrix Lie algebra with the product
being the commutator. (Protip: one way to remember the Jacobi identity is to derive it as
the natural identity among nested commutators of three matrices.) Algorithms for matrix
Lie algebras have also been studied, e. g., [24, 36,38].

6.2 Constructive Baer Correspondence and Theorems A and B
Let us review Baer’s Correspondence [7], which connects alternating bilinear maps with
p-groups of class 2 and exponent p. Let P be a p-group of class 2 and exponent p, p > 2.
Suppose the commutator subgroup [P, P] ∼= Zm

p and P/[P, P] ∼= Zn
p . Then the commutator

map [,] : P/[P, P] × P/[P, P] → [P, P] is an alternating bilinear map. Conversely, let
ϕ : Zn

p × Zn
p → Zm

p be an alternating bilinear map. Then a p-group of class 2 and exponent
p, denoted as Pϕ can be defined as follows. The group elements are from Zn

p × Zm
p , and the

group product · is defined as

(u, v) · (u′, v′) = (u + u′, v + v′ + 1
2ϕ(u, u′)).

We say that (A, B) ∈ GL(n, p) × GL(m, p) is a pseudo-autometry of ϕ, if ϕ = B ◦ ϕ ◦ A.
Wilson [71] elucidated the structure of Aut(Pϕ) in terms of the pseudo-autometry group of
ϕ, that we denote ΨAut(ϕ). Here we recall the consequence of Wilson’s result that we need
for counting group isomorphisms.

▶ Proposition 23 (Wilson [71, Prop. 3.8], see [15, Prop. 2.4] for notation closer to ours). For
ϕ : Zn

p × Zn
p → Zm

p an alternating bilinear map,

|Aut(Pϕ)| = |ΨAut(ϕ)|pnm,

where ΨAut(ϕ) denotes the pseudo-autometry group of ϕ.

We then state a lemma which can be viewed as a constructive version of Baer’s Corres-
pondence, communicated to us by James B. Wilson.

▶ Lemma 24 (Constructive version of Baer’s Correspondence for matrix groups). Let p be
an odd prime. Over the finite field F = Fpe , Alternating Matrix Space Isometry is
equivalent to Group Isomorphism for matrix groups over F that are p-groups of class 2
and exponent p. More precisely, there are functions computable in time poly(n, m, log |F|):

G : Λ(n,F)m → M(n + m + 1,F)n+m and
Alt : M(n,F)m → Λ(m,F)O(m2)

such that: (1) for an alternating bilinear map A, the group generated by G(A) is the Baer
group corresponding to A, (2) G and Alt are mutually inverse, in the sense that the group
generated by G(Alt(M1, . . . , Mm)) is isomorphic to the group generated by M1, . . . , Mm, and
conversely Alt(G(A)) is pseudo-isometric to A.

Proof. First, let G be a p-group of class 2 and exponent p given by m generating matrices
of size n× n over F. Then from the generating matrices of G, we first compute a generating
set of [G, G], by just computing all the commutators of the given generators. We can then

CCC 2021

16:30 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

remove those redundant elements from this generating set in time poly(log |[G, G]|, log |F|),
using Luks’ result on computing with solvable matrix groups [51]. We then compute a
set of representatives of a non-redundant generating set of G/[G, G], again using Luks’s
aforementioned result. From these data we can compute an alternating bilinear map
representing the commutator map of G in time poly(n, m, log |F|).

Conversely, let an alternating bilinear map be given by A = (A1, . . . , Am) ∈ Λ(n,F)m.
From A, for i ∈ [n], construct Bi = [A1ei, . . . , Amei] ∈ M(n ×m,F), where ei is the ith
standard basis vector of Fn. That is, the jth column of Bi is the ith column of Aj . Then for
i ∈ [n], construct

B̃i =

1 et
i 0

0 In Bi

0 0 Im

 ∈ GL(1 + n + m,F),

where ei ∈ Fn, and for j ∈ [m], construct

C̃j =

1 0 et
j

0 In 0
0 0 Im

 ∈ GL(1 + n + m,F),

where ej ∈ Fm. Let G(A) be the matrix group generated by B̃i and C̃j . Then it can be verified
easily that, G(A) is isomorphic to the Baer group corresponding to the alternating bilinear
map defined by A. In particular, [G, G] ∼= Fm ∼= Zem

p (isomorphism of abelian groups), and
G/[G, G] ∼= Fn ∼= Zen

p . This construction can be done in time poly(n, m, log |F|). ◀

Given the above lemma, we can present search- and counting-to-decision reductions for
testing isomorphism of a class of p-groups, proving Theorems A and B.

Proof of Theorem A. The search-to-decision reduction follows from Theorem A′, using the
qO(n+m)-time algorithm, with the constructive version of Baer’s Correspondence in the model
of matrix groups over finite fields (Lemma 24).

In more detail, given Lemma 24 we can follow the procedure in the proof of Theorem A′.
For the given p-groups, we compute their commutator maps. Then whenever we need to
feed the decision oracle, we transform from the alternating bilinear map to a generating set
of a p-group of class 2 and exponent p with this bilinear map as the commutator map. After
getting the desired pseudo-isometry for the alternating bilinear maps, we can easily recover
an isomorphism between the originally given p-groups. ◀

Proof of Theorem B. For the counting-to-decision reduction, we basically follow the above
routine, but with a twist, because of the minor distinction between alternating matrix space
isometry, and alternating bilinear map pseudo-isometry. Let us briefly explain this issue.
Suppose from an alternating bilinear map ϕ : Zn

p × Zn
p → Zm

p we constructed the p-group Pϕ

of class 2 and exponent p; by Proposition 23 |Aut(Pϕ)| = pnm|ΨAut(ϕ)|, so by multiplying
the result by pnm, it is necessary and sufficient to count the psuedo-autometries of ϕ.

Towards that end, let (C1, . . . , Cm) ∈ Λ(n, p) be a matrix representation of ϕ. If Ci’s are
linearly independent, then for a pseudo-autometry (A, B) ∈ GL(n, p)×GL(m, p), given A

there exists a unique B that makes (A, B) a pseudo-autometry. If Ci’s are not linearly inde-
pendent, say the linear span of Ci’s is of dimension m′, then the number of B such that (A, B)
is a pseudo-autometry (assuming there are any) is |M((m−m′)×m′, p)||GL(m−m′, p)| =
pm′(m−m′)|GL(m−m′, p)|. To see this, suppose that we have taken linear combinations of the
Ci so that C1, . . . , C ′

m are linearly independent and Cm′+1, Cm′+2, . . . , Cm are zero. Then

J. A. Grochow and Y. Qiao 16:31

without changing the Ci, we may take any invertible linear combination among Cm′+1, . . . , Cm

(a copy of GL(m−m′, p)), and we may add any linear combination of the last m−m′ matrices
to the first m′ matrices (a copy of M((m−m′)×m′, p)). The counting to decision reduction
for Alternating Matrix Space Isometry computes the number of A ∈ GL(n, p) so that
there exists some B ∈ GL(m, p) such that (A, B) is a pseudo-autometry. So it needs to be
multiplied by a factor of pm′(m−m′)|GL(m−m′, p)|. ◀

6.3 Constructive Lazard’s Correspondence and Theorem P
The Lazard Correspondence [46] is a correspondence between certain classes of groups and
Lie algebras, which extends the usual correspondence between Lie groups and Lie algebras
(say, over R) to some groups and Lie algebras in positive characteristic. Here we state just
enough to give a sense of it; for further details and exposition we refer to Khukhro’s book [43]
and Naik’s thesis [60]. While Naik’s thesis is quite long, it also includes a reader’s guide,
and collects many results scattered across the literature or well-known to the experts in one
place, building the theory from the ground up and with many examples.

Recall that a Lie ring is an abelian group L equipped with a bilinear map [,], called the
Lie bracket, which is (1) alternating ([x, x] = 0 for all x ∈ L) and (2) satisfies the Jacobi
identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L (in some sense the “derivative”
of the associativity equation). Let L1 = L, and Li+1 = [L, Li], which is the subgroup (of
the underlying additive group) generated by all elements of the form [x, y] for x ∈ L, y ∈ Li.
Then L is nilpotent if Lc+1 = 0 for some finite c; the smallest such c is the nilpotency class.
(Lie algebras are just Lie rings over a field.)

The correspondence between Lie algebras and Lie groups over R uses the Baker–Campbell–
Hausdorff (BCH) formula to convert between a Lie algebra and a Lie group, so we start
there. The BCH formula is the solution to the problem that for non-commuting matrices
X, Y , eXeY ≠ eX+Y in general (where the matrix exponential here is defined using the power
series for ex). Rather, using commutators [A, B] = AB −BA, we have

exp(X) exp(Y) = exp
(

X + Y + 1
2[X, Y] + 1

12 ([X, [X, Y]]− [Y, [X, Y]]) + · · ·
)

,

where the remaining terms are iterated commutators that all involve at least 4 Xs and Y s,
and successive terms involve more and more. Applying the exponential function to a Lie
algebra in characteristic zero yields a Lie group. The BCH formula can be inverted, giving
the correspondence in the other direction.

In a nilpotent Lie algebra, the BCH formula has only finitely many nonzero terms, so
issues of convergence disappear and we may consider applying the correspondence over
finite fields or rings; the only remaining obstacle is that the denominators appearing in the
formula must be units in the ring. It turns out that the correspondence continues to work
in characteristic p so long as one does not need to use the p-th term of the BCH formula
(which includes division by p), and the latter is avoided whenever a nilpotent group has
class strictly less than p, or even when all subgroups generated by at most 3 elements have
class strictly less than p. While the correspondence does apply more generally, here we only
state the version for finite groups. For any fixed nilpotency class c, computing the Lazard
Correspondence is efficient in theory; for how to compute it in practice when the groups are
given by polycyclic presentations, see [20].

Let Grpp,n,c denote the set of finite groups of order pn and class c, and let Liep,n,c denote
the set of Lie rings of order pn and class c. We note that for nilpotency class 2, the Baer
Correspondence is the same as the Lazard Correspondence.

CCC 2021

16:32 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

▶ Theorem 25 (Lazard Correspondence for finite groups [46], see, e. g., [43, Ch. 9 & 10]
or [60, Ch. 6]). For any prime p and any 1 ≤ c < p, there are functions log : Grpp,n,c ↔
Liep,n,c : exp such that (1) log and exp are inverses of one another, (2) two groups
G, H ∈ Grpp,n,c are isomorphic if and only if log(G) and log(H) are isomorphic, and (3)
if G has exponent p, then the underlying abelian group of log(G) has exponent p. More
strongly, log is an isomorphism of categories Grpp,n,c

∼= Liep,n,c.

Part (3) can be found as a special case of [60, Lemma 6.1.2].
For p-groups given by d×d matrices over the finite field Fpe , we will need one additional fact

about the correspondence, namely that it also results in a Lie algebra of d×d matrices. (Being
able to bound the dimension of the Lie algebra and work with it in a simple linear-algebraic
way seems crucial for our reduction to work efficiently.) In fact, the BCH Correspondence is
easier to see for matrix groups using the matrix exponential and matrix logarithm; most of
the work for BCH and Lazard is to get the correspondence to work even without the matrices.
In some sense, this is thus the “original” setting of this correspondence. Though it is surely
not new, we could not find a convenient reference for this fact about matrix groups over
finite fields, so we state it formally here.

▶ Proposition 26 (cf. [43, Exercise 10.6]). Let G ≤ GL(d,Fpe) be a finite p-subgroup of
exponent p, consisting of d× d matrices over a finite field of characteristic p. Then log(G)
(from the Lazard Correspondence) can be realized as a finite Lie subalgebra of de×de matrices
over Fp. Given a generating set for G of m matrices, a generating set for log(G) can be
constructed in poly(d, n, e log p) time.

Khukhro [43] gives the characteristic zero analogue of this result (minus the straightforward
complexity analysis) for the full group of upper unitriangular matrices as Exercise 10.6. One
way to see Proposition 26 is to use the characteristic zero result, apply the fact that these
isomorphisms are in fact equivalence of categories (and thus hold for subgroups/subalgebras
as well), and note that the same formulae in characteristic zero apply in characteristic p so
long as one never needs to divide by p. We now sketch the argument.

Proof sketch. First we use the standard embedding of GL(d,Fpe) into GL(de,Fp) (replace
each element by an e×e block which is the left regular representation of Fpe acting on itself as
an e-dimensional Fp-vector space), to realize G as a subgroup of GL(de,Fp). G is conjugate
in GL(de,Fp) to a group of upper unitriangular matrices (upper triangular with all 1s on the
diagonal); this is a standard fact that can be seen in several ways, for example, by noting that
the group U of all upper unitriangular matrices in GL(de,Fp) is a Sylow p-subgroup, and
applying Sylow’s Theorem. (Note that we do not need to do this conjugation algorithmically,
though it is possible to do so [27,36,64]; this is only for the proof.) Thus we may write every
g ∈ G as 1 + n, where the sum here is the ordinary sum of matrices, 1 denotes the identity
matrix, and n is strictly upper triangular. To see that we can truncate the Taylor series for
logarithm before the p-th term (thus avoiding needing to divide by p), note that (1 + n)p = 1
since G is exponent p. We have (1 + n)p = 1p +

(
p
1
)
n +

(
p
2
)
n2 + · · ·+

(
p

p−1
)
np−1 + np. Since

these are matrices over a field of characteristic p, and p|
(

p
i

)
for all 1 ≤ i ≤ p − 1, all the

intermediate terms vanish and we have that (1 + n)p = 1p + np. Thus 1 = (1 + n)p = 1 + np,
so we get that np = 0. Thus, in the the Taylor series for the logarithm

log(1 + n) = n− n2

2 + n3

3 − · · ·

the last nonzero term is np−1/(p− 1), so we may use this Taylor series even over Fpe .

J. A. Grochow and Y. Qiao 16:33

The main things to check are that the set log(G) := {log(1 + n) : 1 + n ∈ G} is closed
under scalar multiplication, matrix addition, and matrix commutator [X, Y] = XY − Y X.
Suppose g1, g2 are matrices in G, and write them as gi = 1 + ni (i = 1, 2), as above. We
recall that, because np

i = 0 from above, the power series for both log and exp work to
compute the matrix logarithm and exponential over Fpe , respectively, and that the usual
rules of logarithms are satisfied for a single matrix A: whenever A ∈ Mde(Fp) satisfies
Ap = 0, we have log exp A = A, exp log(1 + A) = 1 + A, exp(nA) = (exp A)n for n ∈ Z, and
log((1 + A)n) = n log(1 + A).

Scalar multiplication: For α ∈ Fp, we show that α log(1 + n1) is in log(G). This
is easy to show, as it follows directly from the rules of logarithms just mentioned:
α log(1 + n1) = log((1 + n1)α) where on the right-hand side we treat α as an integer in
the range [0, p− 1]. (This is the only point where we are using that we are working over
Fp now rather than Fpe .)
Addition: Let xi = log(1 + ni) for i = 1, 2. We want to show that x1 + x2 is in log(G), or
equivalently that exp(x1 + x2) ∈ G. This follows from the first inverse BCH formula h1,
which satisfies exp(x̂1 + x̂2) = h1(exp(x̂1), exp(x̂2)) for x̂i in the free nilpotent-of-class-c
Fp-Lie algebra, and then we may apply the homomorphism from the latter algebra to
the subalgebra of Mn(Fp) generated by the ni to see that the same formula works. (We
note, because a reviewer asked, that here we do not need this entire subalgebra to be in
{g − 1 : g ∈ G}; the use of that subalgebra is just convenient for talking about algebra
homomorphisms in the proof. Rather, it suffices that the preceding equation holds for
these particular elements ni, which are by definition of the form gi − 1 for some matrices
gi ∈ G.)
Commutator: [log(1 + n1), log(1 + n2)]. A similar argument as in the previous case
works, using the second inverse BCH formula h2, which satisfies exp([x̂1, x̂2]) =
h2(exp(x̂1), exp(x̂2)).

Equivalently, we may note that the derivation of the inverse BCH formulas in [43] uses a
free nilpotent associative algebra as an ambient setting in which both the group (or rather, n

such that 1 + n is in the group) and the corresponding Lie algebra live; in our case, we may
replace the ambient free nilpotent associative algebra with the algebra of de × de strictly
upper-triangular matrices over Fp, and all the derivations remain the same, mutatis mutandis.
See, for example, [43, p. 105, “Another remark...”]. ◀

6.3.1 Class reduction in p-group isomorphism testing
Proposition 26 now allows us to prove Theorem P.

Proof of Theorem P. By the Lazard Correspondence (reproduced as Theorem 25) two p-
groups of exponent p and class c < p are isomorphic if and only if their corresponding Fp-Lie
algebras are. By Proposition 26, we can construct a generating set for the corresponding
Fp-Lie algebra by applying the power series for logarithm to the generating matrices of G.
This Lie algebra is thus a subalgebra of ne × ne matrices over Fp, so we can generate a
basis for the entire Lie algebra (using the linear-algebra version of breadth-first search; its
dimension is ≤ (ne)2) and compute its structure constants in time polynomial in n, m, and
e log p. Then use [28] to reduce isomorphism of Lie algebras to 3-Tensor Isomorphism,
and then use the fact that isomorphism of p-groups of exponent p and class 2 given by a
matrix generating set over Fp is TI-complete [32] to reduce to the latter problem. ◀

CCC 2021

16:34 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

7 Conclusion

In this paper, we gave first-of-their-kind results around search-to-decision, counting-to-
decision, and reductions to hard instances in the context of Group Isomorphism. We
focused on p-groups of class 2 (or more generally small class) and exponent p, as these are
widely believed to be the hardest cases of GpI. They also have the closest connection with
tensors.

We view this paper as the second in a planned series, focusing on isomorphism problems for
tensors, groups, polynomials, and related structures. Although Graph Isomorphism (GI)
is perhaps the most well-studied isomorphism problem in computational complexity – even
going back to Cook’s and Levin’s initial investigations into NP (see [1, Sec. 1]) – it has long
been considered to be solvable in practice [55, 56], and Babai’s recent quasi-polynomial-time
breakthrough is one of the theoretical gems of the last several decades [3]. However, several
isomorphism problems for tensors, groups, and polynomials seem to be much harder to solve,
both in practice – they’ve been suggested as difficult enough to support cryptography [39,61] –
and in theory: the best known worst-case upper bounds are barely improved from brute force
(e. g., [49, 66]). As these problems arise in a variety of areas, from multivariate cryptography
and machine learning, to quantum information and computational algebra, getting a better
understanding of their complexity is an important goal with many potential applications.

In the first paper in this series [32], we showed that numerous such isomorphism problems
from many research areas are equivalent under polynomial-time reductions, creating bridges
between different disciplines. The Tensor Isomorphism (TI) problem turns out to occupy a
central position among these problems, leading us to define the complexity class TI, consisting
of those problems polynomial-time reducible to the Tensor Isomorphism problem. The
gadgets and TI-completeness result from that first paper in some cases opened the door, and
in other cases are used as subroutines, in the main results of the current paper.

Finally, we list here some additional questions that we find interesting and approachable.
One question is whether our tensor-based methods here can be extended or combined with
other methods to get analogous results in wider classes of groups; for isomorphism algorithms,
something along these lines was proposed by Brooksbank, Grochow, Li, Wilson, & Qiao [12],
but there are many interesting open questions in this direction.

Getting the results of this paper to work in the Cayley table model would also be
interesting from the complexity-theoretic perspective; the necessary ingredients are discussed
in Remark 2.

Lastly, we mention that extending the results of the present paper, [28], and [32] to rings
beyond fields would be very interesting. In particular, working with tensors over Z/pkZ is
an important step towards extending the results of this paper to p-groups of class 2 without
restricting them to exponent p. (This is particularly important when p = 2, as groups of
exponent 2 are abelian, so the hardest instances of 2-groups, rather than “p-groups of class 2
and exponent p” with p = 2, are often taken to be 2-groups of class 2 and exponent four.)

It seems conceivable that many of our arguments could extend to tensors over local rings –
those with a unique maximal ideal – as many of our arguments are rank-based, and rank still
has nice properties over local rings (e.g. Nakayama’s Lemma). In particular, if R is a ring
and m a maximal ideal, then R/m is a field; in a local ring, there is a unique maximal ideal,
so the field R/m is canonically associated to R, and one can talk cleanly about rank and
dimension of R-modules considered over the field R/m. Besides Z/pkZ, another local ring of
interest is the ring F[[t]] of power series in one variable over a field F; a tensor over F[[t]] is
essentially a 1-parameter family of tensors over F, so studying tensor problems over F[[t]]
could have applications to border rank and geometric complexity theory.

J. A. Grochow and Y. Qiao 16:35

References
1 Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. Inf. Comput.,

256:2–8, 2017. doi:10.1016/j.ic.2017.04.004.
2 Vikraman Arvind and Jacobo Torán. Isomorphism testing: Perspective and open problems.

Bulletin of the EATCS, 86:66–84, 2005.
3 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Proceedings

of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages
684–697, 2016. arXiv:1512.03547 [cs.DS] version 2. doi:10.1145/2897518.2897542.

4 László Babai, Paolo Codenotti, Joshua A. Grochow, and Youming Qiao. Code equivalence
and group isomorphism. In Proceedings of the Twenty-Second Annual ACM–SIAM Symposium
on Discrete Algorithms (SODA11), pages 1395–1408, Philadelphia, PA, 2011. SIAM. doi:
10.1137/1.9781611973082.107.

5 László Babai, Paolo Codenotti, and Youming Qiao. Polynomial-time isomorphism test for
groups with no abelian normal subgroups - (extended abstract). In Automata, Languages, and
Programming - 39th International Colloquium, ICALP 2012, Proceedings, Part I, pages 51–62,
2012. doi:10.1007/978-3-642-31594-7_5.

6 László Babai and Youming Qiao. Polynomial-time isomorphism test for groups with Abelian
Sylow towers. In 29th STACS, pages 453–464. Springer LNCS 6651, 2012. doi:10.4230/
LIPIcs.STACS.2012.453.

7 Reinhold Baer. Groups with abelian central quotient group. Trans. AMS, 44(3):357–386, 1938.
doi:10.1090/S0002-9947-1938-1501972-1.

8 Mihir Bellare and Shafi Goldwasser. The complexity of decision versus search. SIAM J.
Comput., 23(1):97–119, 1994. doi:10.1137/S0097539792228289.

9 Hans Ulrich Besche and Bettina Eick. Construction of finite groups. J. Symb. Comput.,
27(4):387–404, 1999. doi:10.1006/jsco.1998.0258.

10 Hans Ulrich Besche, Bettina Eick, and E.A. O’Brien. A millennium project: Constructing small
groups. Intern. J. Alg. and Comput, 12:623–644, 2002. doi:10.1142/S0218196702001115.

11 Anton Betten, Michael Braun, Harald Fripertinger, Adalbert Kerber, Axel Kohnert, and
Alfred Wassermann. Error-correcting linear codes: Classification by isometry and applications,
volume 18. Springer Science and Business Media, 2006.

12 Peter A. Brooksbank, Joshua A. Grochow, Yinan Li, Youming Qiao, and James B. Wilson.
Incorporating Weisfeiler–Leman into algorithms for group isomorphism. arXiv:1905.02518
[cs.CC], 2019.

13 Peter A. Brooksbank, Yinan Li, Youming Qiao, and James B. Wilson. Improved algorithms for
alternating matrix space isometry: From theory to practice. In Fabrizio Grandoni, Grzegorz
Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA
2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages
26:1–26:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ESA.2020.26.

14 Peter A. Brooksbank and Eugene M. Luks. Testing isomorphism of modules. J. Algebra,
320(11):4020–4029, 2008. doi:10.1016/j.jalgebra.2008.07.014.

15 Peter A. Brooksbank, Joshua Maglione, and James B. Wilson. A fast isomorphism test
for groups whose Lie algebra has genus 2. J. Algebra, 473:545–590, 2017. doi:10.1016/j.
jalgebra.2016.12.007.

16 Peter A. Brooksbank and E. A. O’Brien. Constructing the group preserving a system of forms.
Internat. J. Algebra Comput., 18(2):227–241, 2008. doi:10.1142/S021819670800441X.

17 John J. Cannon and Derek F. Holt. Automorphism group computation and isomorphism testing
in finite groups. J. Symbolic Comput., 35(3):241–267, 2003. doi:10.1016/S0747-7171(02)
00133-5.

18 Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player
Nash equilibria. J. ACM, 56(3):Art. 14, 57, 2009. doi:10.1145/1516512.1516516.

CCC 2021

https://doi.org/10.1016/j.ic.2017.04.004
https://arxiv.org/abs/1512.03547
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1137/1.9781611973082.107
https://doi.org/10.1137/1.9781611973082.107
https://doi.org/10.1007/978-3-642-31594-7_5
https://doi.org/10.4230/LIPIcs.STACS.2012.453
https://doi.org/10.4230/LIPIcs.STACS.2012.453
https://doi.org/10.1090/S0002-9947-1938-1501972-1
https://doi.org/10.1137/S0097539792228289
https://doi.org/10.1006/jsco.1998.0258
https://doi.org/10.1142/S0218196702001115
https://arxiv.org/abs/1905.02518
https://doi.org/10.4230/LIPIcs.ESA.2020.26
https://doi.org/10.4230/LIPIcs.ESA.2020.26
https://doi.org/10.1016/j.jalgebra.2008.07.014
https://doi.org/10.1016/j.jalgebra.2016.12.007
https://doi.org/10.1016/j.jalgebra.2016.12.007
https://doi.org/10.1142/S021819670800441X
https://doi.org/10.1016/S0747-7171(02)00133-5
https://doi.org/10.1016/S0747-7171(02)00133-5
https://doi.org/10.1145/1516512.1516516

16:36 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

19 Alexander Chistov, Gábor Ivanyos, and Marek Karpinski. Polynomial time algorithms for
modules over finite dimensional algebras. In Proceedings of the 1997 International Symposium
on Symbolic and Algebraic Computation, ISSAC ’97, pages 68–74. ACM, 1997. doi:10.1145/
258726.258751.

20 Serena Cicalò, Willem A. de Graaf, and Michael Vaughan-Lee. An effective version of the Lazard
correspondence. J. Algebra, 352(1):430–450, 2012. doi:10.1016/j.jalgebra.2011.11.031.

21 W.A. de Graaf. Lie Algebras: Theory and Algorithms, volume 56 of North-Holland Mathemat-
ical Library. Elsevier Science, 2000.

22 Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlén. Exponential
time complexity of the permanent and the Tutte polynomial. ACM Trans. Algorithms,
10(4):Art. 21, 32, 2014. doi:10.1145/2635812.

23 Sean Eberhard and Stefan-C. Virchow. Random generation of the special linear group.
Transactions of the American Mathematical Society, page 1, 2020. doi:10.1090/tran/8009.

24 Wayne Eberly and Mark Giesbrecht. Efficient decomposition of associative algebras over finite
fields. Journal of Symbolic Computation, 29(3):441–458, 2000. doi:10.1006/jsco.1999.0308.

25 Bettina Eick, C. R. Leedham-Green, and E. A. O’Brien. Constructing automorphism groups
of p-groups. Comm. Algebra, 30(5):2271–2295, 2002. doi:10.1081/AGB-120003468.

26 V. Felsch and J. Neubüser. On a programme for the determination of the automorphism group
of a finite group. In Pergamon J. Leech, editor, Computational Problems in Abstract Algebra
(Proceedings of a Conference on Computational Problems in Algebra, Oxford, 1967), pages
59–60, Oxford, 1970.

27 Katalin Friedl and Lajos Rónyai. Polynomial time solutions of some problems in computational
algebra. In Robert Sedgewick, editor, Proceedings of the 17th Annual ACM Symposium on
Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages 153–162. ACM,
1985. doi:10.1145/22145.22162.

28 Vyacheslav Futorny, Joshua A. Grochow, and Vladimir V. Sergeichuk. Wildness for tensors.
Lin. Alg. Appl., 566:212–244, 2019. doi:10.1016/j.laa.2018.12.022.

29 Joshua A. Grochow. Answer to “what is the hardest instance for the group isomorph-
ism problem?”. Theoretical Computer Science Stack Exchange. URL: https://cstheory.
stackexchange.com/a/42551/129.

30 Joshua A. Grochow and Youming Qiao. Polynomial-time isomorphism test of groups that are
tame extensions - (extended abstract). In Algorithms and Computation - 26th International
Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, pages 578–589,
2015. doi:10.1007/978-3-662-48971-0_49.

31 Joshua A. Grochow and Youming Qiao. Algorithms for group isomorphism via group extensions
and cohomology. SIAM J. Comput., 46(4):1153–1216, 2017. Preliminary version in IEEE
Conference on Computational Complexity (CCC) 2014 (DOI:10.1109/CCC.2014.19). Also
available as arXiv:1309.1776 [cs.DS] and ECCC Technical Report TR13-123. doi:10.1137/
15M1009767.

32 Joshua A. Grochow and Youming Qiao. On the complexity of isomorphism problems for
tensors, groups, and polynomials I: Tensor Isomorphism-completeness. In ITCS, page to
appear, 2021. arXiv:1907.00309.

33 Martin Grohe and Pascal Schweitzer. The graph isomorphism problem. Commun. ACM,
63(11):128–134, 2020. doi:10.1145/3372123.

34 Xiaoyu He and Youming Qiao. On the Baer–Lovász–Tutte construction of groups from graphs:
isomorphism types and homomorphism notions. arXiv:2003.07200 [math.CO], 2020.

35 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput.
System Sci., 62(2):367–375, 2001. Special issue on the Fourteenth Annual IEEE Conference
on Computational Complexity (Atlanta, GA, 1999). doi:10.1006/jcss.2000.1727.

36 Gábor Ivanyos. Fast randomized algorithms for the structure of matrix algebras over finite fields.
In Proceedings of the 2000 international symposium on Symbolic and algebraic computation,
pages 175–183. ACM, 2000. doi:10.1145/345542.345620.

https://doi.org/10.1145/258726.258751
https://doi.org/10.1145/258726.258751
https://doi.org/10.1016/j.jalgebra.2011.11.031
https://doi.org/10.1145/2635812
https://doi.org/10.1090/tran/8009
https://doi.org/10.1006/jsco.1999.0308
https://doi.org/10.1081/AGB-120003468
https://doi.org/10.1145/22145.22162
https://doi.org/10.1016/j.laa.2018.12.022
https://cstheory.stackexchange.com/a/42551/129
https://cstheory.stackexchange.com/a/42551/129
https://doi.org/10.1007/978-3-662-48971-0_49
https://arxiv.org/abs/1309.1776
https://doi.org/10.1137/15M1009767
https://doi.org/10.1137/15M1009767
https://arxiv.org/abs/1907.00309
https://doi.org/10.1145/3372123
https://arxiv.org/abs/2003.07200
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1145/345542.345620

J. A. Grochow and Y. Qiao 16:37

37 Gábor Ivanyos, Marek Karpinski, and Nitin Saxena. Deterministic polynomial time algorithms
for matrix completion problems. SIAM J. Comput., 39(8):3736–3751, 2010. doi:10.1137/
090781231.

38 Gábor Ivanyos and Lajos Rónyai. Computations in associative and Lie algebras. In Some tapas
of computer algebra, pages 91–120. Springer, 1999. doi:10.1007/978-3-662-03891-8_5.

39 Zhengfeng Ji, Youming Qiao, Fang Song, and Aaram Yun. General linear group action on
tensors: A candidate for post-quantum cryptography. In Dennis Hofheinz and Alon Rosen,
editors, Theory of Cryptography - 17th International Conference, TCC 2019, Nuremberg,
Germany, December 1-5, 2019, Proceedings, Part I, volume 11891 of Lecture Notes in Computer
Science, pages 251–281. Springer, 2019. Preprint arXiv:1906.04330 [cs.CR]. doi:10.1007/
978-3-030-36030-6_11.

40 William M. Kantor. Some topics in asymptotic group theory. Groups, Combinatorics and
Geometry (Durham, pages 403–421, 1990.

41 William M Kantor and Alexander Lubotzky. The probability of generating a finite classical
group. Geometriae Dedicata, 36(1):67–87, 1990.

42 Neeraj Kayal and Timur Nezhmetdinov. Factoring groups efficiently. In Susanne Albers,
Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas,
editors, Automata, Languages and Programming, 36th International Colloquium, ICALP
2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume 5555 of Lecture Notes in
Computer Science, pages 585–596. Springer, 2009. Preprint ECCC Tech. Report TR08-074.
doi:10.1007/978-3-642-02927-1_49.

43 E. I. Khukhro. p-automorphisms of finite p-groups, volume 246 of London Mathematical
Society Lecture Note Series. Cambridge University Press, Cambridge, 1998. doi:10.1017/
CBO9780511526008.

44 Johannes Köbler, Uwe Schöning, and Jacobo Torán. The graph isomorphism problem: its
structural complexity. Birkhauser Verlag, Basel, Switzerland, Switzerland, 1993. doi:10.1007/
978-1-4612-0333-9.

45 Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455–500, 2009. doi:10.1137/07070111X.

46 Michel Lazard. Sur les groupes nilpotents et les anneaux de Lie. Ann. Sci. Ecole Norm. Sup.
(3), 71:101–190, 1954. doi:10.24033/asens.1021.

47 François Le Gall. Efficient isomorphism testing for a class of group extensions. In Proc. 26th
STACS, pages 625–636, 2009. doi:10.4230/LIPIcs.STACS.2009.1830.

48 Mark L. Lewis and James B. Wilson. Isomorphism in expanding families of indistinguishable
groups. Groups Complex. Cryptol., 4(1):73–110, 2012. doi:10.1515/gcc-2012-0008.

49 Yinan Li and Youming Qiao. Linear algebraic analogues of the graph isomorphism problem
and the Erdős–Rényi model. In Chris Umans, editor, 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, pages 463–474. IEEE Computer Society, 2017.
doi:10.1109/FOCS.2017.49.

50 Richard J. Lipton, Lawrence Snyder, and Yechezkel Zalcstein. The complexity of word and
isomorphism problems for finite groups. Yale University Department of Computer Science
Research Report # 91, 1977. URL: https://apps.dtic.mil/dtic/tr/fulltext/u2/a053246.
pdf.

51 Eugene M. Luks. Computing in solvable matrix groups. In FOCS 1992, 33rd Annual
Symposium on Foundations of Computer Science, pages 111–120. IEEE Computer Society,
1992. doi:10.1109/SFCS.1992.267813.

52 Eugene M. Luks. Permutation groups and polynomial-time computation. In Groups and
computation (New Brunswick, NJ, 1991), volume 11 of DIMACS Ser. Discrete Math. Theoret.
Comput. Sci., pages 139–175. Amer. Math. Soc., Providence, RI, 1993.

53 Eugene M. Luks. Hypergraph isomorphism and structural equivalence of boolean functions.
In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, May
1-4, 1999, Atlanta, Georgia, USA, pages 652–658, 1999. doi:10.1145/301250.301427.

CCC 2021

https://doi.org/10.1137/090781231
https://doi.org/10.1137/090781231
https://doi.org/10.1007/978-3-662-03891-8_5
https://arxiv.org/abs/1906.04330
https://doi.org/10.1007/978-3-030-36030-6_11
https://doi.org/10.1007/978-3-030-36030-6_11
https://doi.org/10.1007/978-3-642-02927-1_49
https://doi.org/10.1017/CBO9780511526008
https://doi.org/10.1017/CBO9780511526008
https://doi.org/10.1007/978-1-4612-0333-9
https://doi.org/10.1007/978-1-4612-0333-9
https://doi.org/10.1137/07070111X
https://doi.org/10.24033/asens.1021
https://doi.org/10.4230/LIPIcs.STACS.2009.1830
https://doi.org/10.1515/gcc-2012-0008
https://doi.org/10.1109/FOCS.2017.49
https://apps.dtic.mil/dtic/tr/fulltext/u2/a053246.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a053246.pdf
https://doi.org/10.1109/SFCS.1992.267813
https://doi.org/10.1145/301250.301427

16:38 On p-Group Isomorphism: Search- & Counting-To-Decision, and Class Reductions

54 Rudolf Mathon. A note on the graph isomorphism counting problem. Information Processing
Letters, 8(3):131–136, 1979.

55 Brendan D. McKay. Practical graph isomorphism. Congr. Numer., pages 45–87, 1980.
56 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal of Symbolic

Computation, 60(0):94–112, 2014. doi:10.1016/j.jsc.2013.09.003.
57 Alan H. Mekler. Stability of nilpotent groups of class 2 and prime exponent. The Journal of

Symbolic Logic, 46(4):781–788, 1981.
58 Gary L. Miller. On the nlog n isomorphism technique (a preliminary report). In STOC, pages

51–58. ACM, 1978. doi:10.1145/800133.804331.
59 Takunari Miyazaki. Luks’s reduction of graph isomorphism to code equivalence. Comment to

E. W. Clark, https://groups.google.com/forum/#!msg/sci.math.research/puZxGj9HXKI/
CeyH2yyyNFUJ, 1996.

60 Vipul Naik. Lazard correspondence up to isoclinism. PhD thesis, The University of Chicago,
2013. URL: https://vipulnaik.com/thesis/.

61 Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two
new families of asymmetric algorithms. In Advances in Cryptology - EUROCRYPT ’96, Inter-
national Conference on the Theory and Application of Cryptographic Techniques, Saragossa,
Spain, May 12-16, 1996, Proceeding, pages 33–48, 1996. doi:10.1007/3-540-68339-9_4.

62 Erez Petrank and Ron M. Roth. Is code equivalence easy to decide? IEEE Trans. Inf. Theory,
43(5):1602–1604, 1997. doi:10.1109/18.623157.

63 Youming Qiao, Jayalal M. N. Sarma, and Bangsheng Tang. On isomorphism testing of
groups with normal Hall subgroups. In Proc. 28th STACS, pages 567–578, 2011. doi:
10.4230/LIPIcs.STACS.2011.567.

64 Lajos Rónyai. Computing the structure of finite algebras. J. Symb. Comput., 9(3):355–373,
1990. doi:10.1016/S0747-7171(08)80017-X.

65 David J. Rosenbaum. Bidirectional collision detection and faster deterministic isomorphism
testing. arXiv preprint arXiv:1304.3935 [cs.DS], 2013.

66 David J. Rosenbaum. Breaking the nlog n barrier for solvable-group isomorphism. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1054–1073.
SIAM, 2013. Preprint arXiv:1205.0642 [cs.DS]. doi:10.1137/1.9781611973105.76.

67 Nicolas Sendrier and Dimitris E. Simos. The hardness of code equivalence over Fq and
its application to code-based cryptography. In International Workshop on Post-Quantum
Cryptography, pages 203–216. Springer, 2013.

68 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991. doi:10.1137/0220053.

69 Leslie G. Valiant. Relative complexity of checking and evaluating. Information Processing
Lett., 5(1):20–23, 1976/77. doi:10.1016/0020-0190(76)90097-1.

70 James Wilson. 2014 conference on Groups, Computation, and Geometry at Colorado State
University, co-organized by P. Brooksbank, A. Hulpke, T. Penttila, J. Wilson, and W. Kantor.
Personal communication, 2014.

71 James B. Wilson. Decomposing p-groups via Jordan algebras. J. Algebra, 322(8):2642–2679,
2009. doi:10.1016/j.jalgebra.2009.07.029.

72 James B. Wilson. Finding direct product decompositions in polynomial time. arXiv:1005.0548
[math.GR], 2010.

73 James B. Wilson. Existence, algorithms, and asymptotics of direct product decompositions, I.
Groups Complex. Cryptol., 4(1):33–72, 2012. doi:10.1515/gcc-2012-0007.

74 V. N. Zemlyachenko, N. M. Korneenko, and R. I. Tyshkevich. Graph isomorphism problem. J.
Soviet Math., 29(4):1426–1481, May 1985. doi:10.1007/BF02104746.

https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1145/800133.804331
https://groups.google.com/forum/#!msg/sci.math.research/puZxGj9HXKI/CeyH2yyyNFUJ
https://groups.google.com/forum/#!msg/sci.math.research/puZxGj9HXKI/CeyH2yyyNFUJ
https://vipulnaik.com/thesis/
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1109/18.623157
https://doi.org/10.4230/LIPIcs.STACS.2011.567
https://doi.org/10.4230/LIPIcs.STACS.2011.567
https://doi.org/10.1016/S0747-7171(08)80017-X
https://arxiv.org/abs/1304.3935
https://arxiv.org/abs/1205.0642
https://doi.org/10.1137/1.9781611973105.76
https://doi.org/10.1137/0220053
https://doi.org/10.1016/0020-0190(76)90097-1
https://doi.org/10.1016/j.jalgebra.2009.07.029
https://arxiv.org/abs/1005.0548
https://doi.org/10.1515/gcc-2012-0007
https://doi.org/10.1007/BF02104746

	1 Introduction
	1.1 Main results
	1.2 Main techniques and proof strategies
	1.2.1 Linear algebraic coloring gadgets
	1.2.2 Constructive Lazard Correspondence

	1.3 Organization of the paper

	2 Preliminaries
	3 Warm up: reducing Monomial Code Equivalence to Tensor Isomorphism
	4 Search-to-decision reduction by restricting to monomial groups
	4.1 The gadget restricting to the monomial group
	4.1.1 Application: reducing Graph Isomorphism to Alternating Matrix Space Isometry

	4.2 Search-to-decision reduction for Alternating Matrix Space Isometry
	4.3 A simply-exponential algorithm for monomial isometry of alternating matrix spaces

	5 Counting-to-decision reduction by restricting to diagonal groups
	5.1 Preliminaries
	5.2 Describing the gadget
	5.3 Construction and properties of the gadget
	5.3.1 Restricting to the diagonal group
	5.3.2 Using the gadget for counting-to-decision reduction
	5.3.3 Random H_i's satisfy the requirements when q = n^{Omega(1)}

	6 Application to p-Group Isomorphism, using constructive Baer and Lazard Correspondences
	6.1 Preliminaries
	6.2 Constructive Baer Correspondence and Theorems A and B
	6.3 Constructive Lazard's Correspondence and Theorem P
	6.3.1 Class reduction in p-group isomorphism testing

	7 Conclusion

