
A Majority Lemma for Randomised Query
Complexity
Mika Göös #

School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland

Gilbert Maystre #

School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland

Abstract
We show that computing the majority of n copies of a boolean function g has randomised query
complexity R(Maj ◦ gn) = Θ(n · R1/n(g)). In fact, we show that to obtain a similar result for any
composed function f ◦ gn, it suffices to prove a sufficiently strong form of the result only in the
special case g = GapOr.

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-
tography

Keywords and phrases Query Complexity, Composition, Majority

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.18

Acknowledgements We thank Thomas Watson and anonymous reviewers for helpful comments.

1 Introduction

In boolean function complexity theory, a typical direct sum problem asks: For a given boolean
function g : {0, 1}m → {0, 1}, how much harder is it to compute g on n separate inputs, that
is, computing gn(x1, . . . , xn) := (g(x1), . . . , g(xn)), compared to computing g on a single
input? For randomised query complexity, a complete answer was recently obtained by Blais
and Brody [7] (improving on [17, 6]). They showed that the most obvious way to compute gn

is optimal: Evaluate each copy of g separately with a “reduced” error probability ≪ 1/n so
that, by a union bound, the n-bit output will be correct with high probability. More precisely,
their result states (we assume n ≥ 3 for simplicity of notation throughout the paper)

∀g : R(gn) = Θ(n · R1/n(g)). (Direct sum)

Here we used standard notation: R(g) := R1/3(g) where Rϵ(g) denotes the ϵ-error query
complexity of g, that is, the least number of queries a randomised algorithm (decision
tree) must make to the input bits xi ∈ {0, 1} of an unknown input x ∈ {0, 1}m in order
to output g(x) with probability at least 1 − ϵ (where the probability is over the internal
randomness of the algorithm). Similarly, Rϵ(g) denotes the ϵ-error expected query complexity
of g where we measure the expected (rather than worst-case) number of queries made by the
algorithm. See Section 2 for precise definitions.

How far can we push the direct sum result? What if, instead of all the n output bits
of gn, we only wanted to compute their parity? In other words, what is the randomised
query complexity of the composed function Xor ◦ gn? Do we still have to compute each g

with reduced error? Brody et al. [8] provided an affirmative answer:

∀g : R(Xor ◦ gn) = Θ(n · R1/n(g)). (Xor Lemma)

More generally, we can ask the following question.

▶ Problem 1. For which n-bit outer functions f (assume R(f) = Θ(n) for simplicity) and
inner functions g does the composed function f ◦ gn necessitate error reduction?

© Mika Göös and Gilbert Maystre;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mika.goos@epfl.ch
mailto:gilbert.maystre@epfl.ch
https://doi.org/10.4230/LIPIcs.CCC.2021.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 A Majority Lemma for Randomised Query Complexity

There is no conjectured characterisation for when error reduction is necessary. To showcase the
subtlety of this question, we mention that f = Or, despite having a highly “sensitive” input
x = 0n, never necessitates error reduction. By now, there are many proofs [12, 20, 22, 15, 5]
showing that R(Or ◦ gn) = O(n · R(g)) for every g.

Our goal in this paper is to make further progress on Problem 1.

1.1 Our results
Our main result is to prove tight bounds for composing with the n-bit majority function
Maj. This in particular confirms a conjecture made in [7, 5].

▶ Theorem 2 (Maj lemma). R(Maj ◦ gn) = Θ(n · R1/n(g)) for every partial function g.

Previously, Ben-David et al. [5] proved Theorem 2 in the special case g = GapOr. Here
GapOr = GapOrm is the m-bit partial function defined by GapOr(x) = Or(x) on inputs
of Hamming weight |x| ∈ {0, m/2} and is undefined otherwise. This is a particularly clean
example of a function whose query complexity behaves as (assuming m ≥ log(1/ϵ))

Rϵ(GapOr) = Θ(log(1/ϵ)).

We prove Theorem 2 by a direct reduction to this previous result! Our more general
result says, informally, that error reduction is necessary for any composed function f ◦ gn if
it is necessary in the special case g = GapOr. Our key conceptual insight is to formulate a
sense in which every g can be “simulated” by GapOr. There is, however, a slight technical
caveat. For the reduction to work, we need to assume that the lower bound for f ◦ GapOrn

holds not only against randomised decision trees but also against a more powerful model
called ϵ-approximate nonnegative degree deg+

ϵ (aka conical junta degree, partition bound),
which we will recall in Section 2.

▶ Theorem 3 (Reduction to GapOr). If a function f satisfies deg+
ϵ (f ◦ hn) ≥ Ω(n log n)

for some constant ϵ > 0 and for both h ∈ {GapOrlog n, ¬GapOrlog n}, then

∀g : R(f ◦ gn) = Ω(n · R1/n(g)).

Theorem 2 follows immediately by combining Theorem 3 with [5, Theorem 4], which
proved the required nonnegative degree lower bound for Maj ◦ GapOrn (we only note that
their proof works equally well for ¬GapOr in place of GapOr). In fact, the nonnegative
degree lower bound holds more generally for any (2n + 1)-bit outer function that agrees with
Maj on inputs of weight n and n + 1. For example, Xor is such a function, and hence the
Xor lemma of Brody et al. [8] can be recovered using Theorem 3. However, the original
proof in [8] is much simpler than ours, and moreover, the result of [8] actually characterises
Rϵ(Xor ◦ gn) for all ϵ > 0 while we focus on the bounded-error case ϵ = 1/3.

Our goal for the rest of the paper is to prove Theorem 3.

Optimality? We note that our choice of GapOr in Theorem 3 is optimal at least in the sense
that it cannot be replaced with the more symmetric alternative GapMaj, which is defined by
GapMajm(x) = Majm(x) on inputs of weight |x| ∈ {m/3, 2m/3} and undefined otherwise.
There are known examples of partial f (but no known total ones) for which GapOr does
not need error reduction while GapMaj does [5, Section 4]. We suspect however that other
aspects of Theorem 3 can be improved; see Subsection 1.4 for open problems.



M. Göös and G. Maystre 18:3

1.2 Techniques: Leaf Lemma
Our main technical contribution, which might be of independent interest, is what we call
Leaf Lemma. It states that every boolean function g admits a balanced input distribution
µ = 1

2 (µ0 + µ1), where µi is a distribution supported on g−1(i), and a “hard side” b ∈ {0, 1}
satisfying the following: If we run a decision tree of shallow depth ≪ Rϵ(g) on a random
input x ∼ µ then we will typically reach a leaf ℓ making one-sided error, that is, if the leaf ℓ

is reached by x ∼ µb with probability p, then ℓ is also reached by x ∼ µ1−b with probability
at least ϵ · p. Interestingly, this property is inherently one-sided and the choice of the hard
side b depends on the function g. For example, GapOr and ¬GapOr have distinct hard
sides. See our proof overview in Section 3 for more details.

1.3 Other related work
Complexity of composition. A major theme in boolean function complexity theory is to
understand the complexity of the composition f ◦ gn in terms of the complexities of its two
constituent functions. It has been long known that many well-studied complexity measures
behave multiplicatively under composition. For example, deterministic query complexity
satisfies D(f ◦ gn) = D(f) D(g) [24], quantum query complexity satisfies Q(f ◦ gn) =
Θ(Q(f) Q(g)) [23, 21], and yet more examples (degree, certificate complexity, sensitivity)
are discussed in [25]. An interesting exception to this rule is randomised query complexity,
where we can have two types of counter-examples.

Super-multiplicative: There are functions f and g such that R(f ◦ gn) ≥ ω(R(f) R(g)).
For example, this happens whenever f necessitates error reduction for g = GapOr.
Sub-multiplicative: Recent work [13, 3] has found surprising examples of partial f and g

such that R(f ◦ gn) ≤ o(R(f) R(g)).

It is still open to quantify the extent to which multiplicativity can fail. For example, it
has not been ruled out that R(f ◦ gn) ≥ R(f) R(g)/poly(log n) for all partial functions. It is
also possible that a strict multiplicative lower bound holds for all total functions. This latter
question is known as the randomised composition conjecture (for total functions) and it has
been studied in a long line of work [6, 1, 13, 2, 3, 4].

Noisy decision trees. Necessity of error reduction is closely related to the model of “noisy
decision trees” [12, 11, 10, 15]. In this model, the goal is to compute a boolean function f given
noisy query access to its input bits. A single query to an input variable xi returns its correct
value with probability 2/3 (say) and the opposite value 1 − xi with probability 1/3. This
model is effectively equivalent to computing f ◦GapMajn in the standard query model. With
this interpretation, one of the results of [12] states that R(Maj◦GapMajn) = Θ(n log n). We
note that this is weaker (in two respects) than the result deg+

ϵ (Maj ◦ GapOrn) = Θ(n log n)
from [5], which we used to derive our main result (although see Problem 4 below).

1.4 Open problems
How optimal is Theorem 3? We suspect that our assumption about nonnegative degree is an
artifact of our proof and can be relaxed as follows.

▶ Problem 4. Show that the hypothesis in Theorem 3 can be weakened to R(f ◦ hn) ≥
Ω(n log n).

CCC 2021



18:4 A Majority Lemma for Randomised Query Complexity

Whether we need to assume hardness for both GapOr and its negation, we do not know.

▶ Problem 5. Are there examples of f with R(f ◦ GapOrn) ≥ ω(R(f ◦ ¬GapOrn))?

Theorem 3 could be useful in showing tight composition results for yet more outer
functions. For example, consider the well-studied partial function SqrtGapMajn (often
called simply the gap majority function) defined as Majn but restricted to inputs of Hamming
weight |x| /∈ n/2 ±

√
n.

▶ Problem 6. Show R(SqrtGapMaj ◦ gn) = Θ(n · R1/n(g)) for every g.

2 Query complexity basics

We study partial boolean functions f : {0, 1}n → {0, 1, ∗}. The domain of the func-
tion is dom(f) := f−1({0, 1}) and the inputs f−1(∗) are undefined. We say f is total
if dom(f) = {0, 1}n. For partial functions f and g, their composition f ◦ gn is defined
by (f ◦ gn)(x1, . . . , xn) := f(g(x1), . . . , g(xn)) if xi ∈ dom(g) for all i ∈ [n]; otherwise
(f ◦ gn)(x1, . . . , xn) := ∗. Standard references for boolean function complexity are [9, 18].

Decision trees. A (deterministic) decision tree t is an algorithm for computing a boolean
function on an unknown input x ∈ {0, 1}n. The algorithm repeatedly queries the input
variables xi ∈ {0, 1} in some order (which can depend on outcomes of queries made so
far) until eventually producing an output t(x). Such an algorithm can be represented as a
binary tree, with internal nodes labelled with variables xi, outgoing edges of the internal
nodes labelled with query outcomes (xi = 0 and xi = 1), and leaves labelled with output
values. Each input x determines a unique root-to-leaf path, obtained by following the query
outcomes consistent with x. The most important cost measure of t is its depth, denoted
depth(t), which is the longest root-to-leaf path in the tree and equals maxx q(t, x) where
q(t, x) denotes the number of queries made by t on input x.

A randomised decision tree T is a distribution over deterministic decision trees t ∼ T .
We say T computes f : {0, 1}n → {0, 1, ∗} with error ϵ if for every x ∈ dom(f) we have
Pt∼T [t(x) = f(x)] ≥ 1 − ϵ. There are two cost measures for T : the (worst-case) depth
is the maximum depth of any decision tree in the support of T ; the expected depth is
maxx Et∼T [q(t, x)]. The ϵ-error query complexity of f , denoted Rϵ(f), is the least depth
of a randomised decision tree that computes f with error ϵ. The ϵ-error expected query
complexity, denoted Rϵ(f), is defined analogously.

Error reduction. It is well known that the error probability of an algorithm (computing a
boolean-valued function) can be reduced from any constant 1/2−δ, where δ > 0, to any other
constant ϵ > 0 by repeating the algorithm constantly many times (in fact, O(log(1/ϵ)/δ2)
many) and outputting the majority answer. Hence we often set ϵ := 1/3 and omit ϵ from
notation. In this bounded-error regime, we have R(f) ≤ R(f) ≤ O(R(f)) where the second
inequality follows by truncating executions that query many more bits than the expectation.
For vanishing ϵ = o(1) (as n → ∞), it is possible that Rϵ(f) ≤ o(Rϵ(f)). For example,
consider the partial 2n-bit function f where the task is to distinguish inputs of the form x0n

from inputs of the form 0nx with the promise that |x| = n/2. We have R1/n(f) = O(1) while
R1/n(f) = Θ(log n). In this small-error regime, the following fine-grained error reduction
calculation will be useful.

▷ Claim 7. Rϵk (f) ≤ 4k · Rϵ(f) for every k ≥ 1 and ϵ ≤ 1/16.



M. Göös and G. Maystre 18:5

Proof. Suppose T computes f with error ϵ and consider the algorithm T ′ that runs T 4k − 1
times and outputs the majority answer. Then T ′ errs iff at least 2k of the runs err. This
happens with probability at most

∑4k−1
i=2k

(4k−1
i

)
ϵi(1 − ϵ)4k−1−i ≤ 24kϵ2k ≤ ϵk. ◁

Leaf indicators. Let t be a decision tree with n-bit inputs. We denote by L(t) the set of its
leaves and by ℓt

x ∈ L(t) the unique leaf reached on input x. We often identify a leaf ℓ ∈ L(t)
with its associated leaf indicator function ℓ : {0, 1}n → {0, 1} defined by ℓ(x) := 1 iff input x

reaches leaf ℓ. Thus each ℓ is simply a conjunction of at most depth(t) literals (xi or x̄i)
determined by the unique root-to-ℓ path in t. If t outputs boolean values, we let A(t) ⊆ L(t)
denote the set of accepting leaves, that is, those that output 1. Since the leaf indicators have
pairwise disjoint supports, we can write the function computed by t as

t(x) =
∑

ℓ∈A(t) ℓ(x). (1)

Nonnegative degree. Let p : {0, 1}n → R≥0 be a nonnegative function. We say p is a
nonnegative d-junta if it depends on at most d of its variables. For example, if t is a depth-d
decision tree, then each ℓ ∈ L(t) is a nonnegative d-junta. More generally, we say that p is a
conical junta of degree d if it can be written as a conical combination of nonnegative d-juntas,
that is, p(x) =

∑
i aiqi(x) where ai ≥ 0 are nonnegative scalars and the qi are nonnegative

d-juntas. For example, the function computed by t is a degree-d conical junta, as given by
the expression (1). The nonnegative degree of p, denoted deg+(p), is the least d such that p

is a degree-d conical junta.
Let f : {0, 1}n → {0, 1, ∗} be a partial function. We say that p ϵ-approximates f if

p(x) ∈ f(x) ± ϵ for every x ∈ dom(f). The ϵ-approximate nonnegative degree of f , denoted
deg+

ϵ (f), is the least degree of a conical junta that ϵ-approximates f . For example, if T is a
depth-d randomised ϵ-error decision tree for f , then there exists a degree-d conical junta pT

that ϵ-approximates f , namely,

pT (x) := Et∼T [t(x)] ∈ f(x) ± ϵ.

This shows that deg+
ϵ (f) ≤ Rϵ(f). The gap betweeen deg+

1/3(f) and R(f) can be huge for
partial functions. For example, consider the n-bit UniqueOr defined by UniqueOr(x) =
Or(x) for inputs of weight |x| ∈ {0, 1} and undefined othwerwise. Then deg+(UniqueOr) =
1 (computed by

∑
i xi) while R(UniqueOr) = Θ(n). For total functions, the gap is at most

polynomial [9].
Nonnegative degree has been studied under many names: (one-sided) partition bound [16],

WAPP query complexity [14, 5], and query complexity “in expectation” [19].

3 Proof overview

Here we outline the proof of Theorem 3. We phrase the proof in the contrapositive: Supposing
that T is a randomised decision tree computing f ◦ gn of shallow depth ≪ n · R1/n(g) we
construct an approximate conical junta for f ◦GapOrn (or f ◦¬GapOrn) of degree ≪ n log n.

Our overview is in two parts.
(§3.1) We first formulate our main technical lemma called Leaf Lemma and its generalisation

Multileaf Lemma. They describe what typical leaves of T look like: they are noisy, meaning
that they make noticeable errors in predicting the outputs of many copies of g. The
proofs of these lemmas will occupy the remaining sections of this paper.

CCC 2021



18:6 A Majority Lemma for Randomised Query Complexity

(§3.2) Then we use Multileaf Lemma to prove Theorem 3. A notable component of this part
of the proof is showing how the acceptance probabilities of noisy leaves can be “simulated”
by low-degree conical juntas in the domain of f ◦ GapOrn.

3.1 Statement of Leaf Lemma
Example. We build up to the statement of Leaf Lemma by first considering the prototypical
example g = GapOrm. Define two distributions µ0 and µ1 so that µi is uniform over
GapOr−1

m (i). Namely, µ0 places probability 1 on the input 0m and µ1 is uniform over x of
weight |x| = m/2. Suppose t is a deterministic decision tree of shallow depth d ≪ m trying
to compute GapOrm. For a leaf ℓ ∈ L(t) and any input distribution µ we write for short

ℓ(µ) := Ex∼µ[ℓ(x)] = Px∼µ[ℓ(x) = 1].

What do the typical leaves look like when we run t on a random input x ∼ µi for i ∈ {0, 1}?

Easy side i = 1. The tree will query a 1-bit after about 2 queries in expectation. Such
leaves ℓ are safe to output 1 as they know GapOr(x) = 1 for certain: ℓ(µ0) = 0 and
ℓ(µ1) > 0.
Hard side i = 0. Here every query returns 0 and we reach a leaf ℓ reading d many 0s.
Although the leaf ℓ can be quite confident that the input x was sampled from µ0 rather
than µ1, some uncertainty remains: ℓ(µ0) = 1 and ℓ(µ1) ≥ ϵ for ϵ := 2−Ω(d).

In both cases, we have ℓ(µ1) ≥ ϵ · ℓ(µ0) and we say that ℓ is (one-sidedly) noisy. We now
formalise how every g gives rise to such noisy leaves.

General case. Fix a partial function g : {0, 1}m → {0, 1, ∗}. Let µ = 1
2 (µ0 + µ1) be a

balanced distribution where µi is supported on g−1(i). For a leaf ℓ over m bits, a “hard side”
b ∈ {0, 1}, and an error parameter ϵ ≥ 0, we define

ℓ is (ϵ, µ, b)-noisy def⇐⇒ ℓ(µ1−b) ≥ ϵ · ℓ(µb).

Our Leaf Lemma says that every partial function g admits a hard distribution µ =
1
2 (µ0 + µ1) such that if we run a shallow decision tree t on a random input x ∼ µ, the leaf
reached ℓt

x will typically be noisy. For simplicity of notation, for small quantities a, b ∈ [0, 1],
we write a ≪ b (resp. a ≪ b) to mean a ≤ cb (resp. ac ≤ b) for a sufficiently small constant
c > 0.

▶ Leaf Lemma. For every partial g and 0 < ϵ ≪ δ ≪ 1, there exists a distribution
µ = 1

2 (µ0 + µ1) over dom(g) and a hard side b ∈ {0, 1} such that for every deterministic tree
t and i ∈ {0, 1}:

Ex∼µi [q(t, x)]
Rϵ(g)

≪ δ =⇒ Px∼µi [ ℓt
x is (ϵ, µ, b)-noisy ] ≥ 1 − δ.

Leaf Lemma is our main technical contribution. The proof appears in Section 4. To
whet the reader’s appetite, we highlight two interesting challenges that make the lemma
non-trivial.

(C1) Which side is hard? We need to somehow tease out a hard side for an arbitrary g and
this can even depend on the choice of µ. For example, consider g(b, x) := b ⊕ GapOr(x)
where b ∈ {0, 1}. Rather than µ assigning b at random, the distribution can fix b to either
0 or 1, which reduces g to either GapOr or ¬GapOr (two functions with distinct hard
sides).



M. Göös and G. Maystre 18:7

(C2) Behaviour of typical leaves. The existence of µ is often proved using various minimax
theorems (we use one due to Blais and Brody [7]). These theorems typically guarantee
that any shallow decision tree incurs error at least ϵ on average relative to µ. This does
not rule out the following bad scenario: the tree could make error 1/2 on 2ϵ fraction of
the leaves reached and no error on 1 − 2ϵ fraction of the leaves – here the typical leaves
are not noisy!

In order to use Leaf Lemma in the context of composed functions, we generalise it to the
direct sum setting where the inputs come from dom(gn) := dom(g)n. Let ℓ be a leaf over nm

bits and write ℓ(x) =
∏

i∈[n] ℓi(xi) where xi ∈ {0, 1}m and each ℓi is over m bits. We define

ℓ is (δ, ϵ, µ, b)-noisy def⇐⇒ ℓi is (ϵ, µ, b)-noisy for at least (1 − δ)n many i ∈ [n].

Our generalised lemma says that we will typically reach a noisy leaf if we run a shallow
decision tree on a random input from the product distribution µy := µy1 × · · · × µyn where
y ∈ {0, 1}n.

▶ Multileaf Lemma. For every partial g and 0 < ϵ ≪ δ ≪ 1, there exists a distribution
µ = 1

2 (µ0 + µ1) over dom(g) and a hard side b ∈ {0, 1} such that for every deterministic tree
t taking inputs from dom(gn) and having depth(t)/(nRϵ(g)) ≪ δ,

∀y ∈ {0, 1}n : Px∼µy [ ℓt
x is (δ, ϵ, µ, b)-noisy ] ≥ 1 − δ.

Given Leaf Lemma the proof of the generalisation is not difficult: we can use linearity of
expectation to see that the expected number of queries t makes to most copies of g is low,
and hence we can apply Leaf Lemma for those copies. The details appear in Section 5.

3.2 Proof of Theorem 3
We conclude this overview section with a proof of Theorem 3 using Multileaf Lemma. We
start with a lemma that shows how the noisy leaves in the domain of gn can be “simulated”
by low-degree conical juntas in the domain of GapOrn. For simplicity, we state the lemma
assuming a hard side b = 0; an analogous lemma holds for b = 1 by replacing GapOr with
¬GapOr.

▶ Simulation Lemma. Let ℓ be a (δ, ϵ, µ, 0)-noisy leaf over the variables of gn. There exists
a conical junta pℓ : ({0, 1}log n)n → R≥0 of degree at most n · [δ log n + log(1/ϵ)] such that

∀x ∈ dom(GapOrn
log n) : pℓ(x) = ℓ(µGapOrn

log n(x)).

Proof. We start by defining three conical juntas in the domain of GapOrm for m := log n.
Let Sm

k be the distribution over multisets obtained by picking k random elements from [m]
with replacement.

q1(x) := 2
m

∑
i∈[m] xi of degree 1,

q2(x) :=
∏

i∈[m] x̄i of degree m = log n,
q3(x) := ES∼Sm

k

∏
i∈S

x̄i of degree k := log(1/ϵ).

Note the following output values:

∀x ∈ (GapOrm)−1(0) : q1(x) = 0, q2(x) = 1, q3(x) = 1,
∀x ∈ (GapOrm)−1(1) : q1(x) = 1, q2(x) = 0, q3(x) = 2−k = ϵ.

CCC 2021



18:8 A Majority Lemma for Randomised Query Complexity

Let y = (y1, . . . , yn) be the input variables of gn. We write ℓ(y) =
∏

i ℓi(yi) so that
ℓ(µGapOrn

m(x)) =
∏

i ℓi(µGapOrm(xi)). We simulate each factor in this product separately. For
i ∈ [n] consider the function pi : {0, 1}m → R≥0 defined by

pi(x) := ℓi(µGapOrm(x)).

First note that pi can always be written as a conical combination of q1 and q2 in degree
log n. Moreover, if ℓi is (ϵ, µ, 0)-noisy, meaning ℓi(µ1) ≥ ϵ · ℓi(µ0), then we can do better and
write pi as a conical combination of q1 and q3 in degree log(1/ϵ). We now define pℓ :=

∏
i pi.

The claimed bound on the degree of pℓ follows because at most δ fraction of the ℓi are
non-noisy. ◀

We are now ready to prove Theorem 3 using Multileaf Lemma and Simulation Lemma.

Proof of Theorem 3. Suppose for contradiction that T is a randomised decision tree for
f ◦ gn having error 1/3 and depth γnR1/n(g) where γ = o(1) as n → ∞. Our goal is
to construct an o(n log n)-degree o(1)-approximate conical junta for f ◦ GapOrn

log n (or
f ◦ ¬GapOrn

log n).
We make two simplifying assumptions wlog.

1. The randomised tree T has error o(1). To ensure this, we may reduce T ’s error by
running it 1/

√
γ = ω(1) times. This will yield an o(1)-error tree of depth √

γnR1/n(g) =
o(nR1/n(g)).

2. There is some ϵ := 1/no(1) such that T has depth o(nRϵ(g)). To ensure this, we may
apply Claim 7 to see that γnR1/n(f) ≤ √

γnRϵ(f) ≤ o(nRϵ(f)) where ϵ := 1/n4√γ .

We invoke Multileaf Lemma with the above ϵ ≤ o(1) and δ := max{γc, ϵc} ≤ o(1) for
small enough constant c > 0. We get a hard distribution µ and a hard side b, say b = 0 (case
b = 1 is similar, but using ¬GapOr), such that the following holds: For every t in the support
of T if we run t on a random input x ∼ µy, where y ∈ {0, 1}n, then the leaf reached ℓt

x will
be (δ, ϵ, µ, 0)-noisy with probability 1 − o(1). This allows us to effectively ignore non-noisy
leaves: denoting by N (t) ⊆ A(t) the set of accepting leaves that are (δ, ϵ, µ, 0)-noisy, we have

∀y ∈ {0, 1}n : Ex∼µy [t(x)] = Ex∼µy

[ ∑
ℓ∈A(t) ℓ(x)

]
(Using (1))

∈ Ex∼µy

[ ∑
ℓ∈N (t) ℓ(x)

]
± o(1). (2)

We now define the approximating conical junta by

p(x) := Et∼T

[ ∑
ℓ∈N (t) pℓ(x)

]
,

where the pℓ are given by Simulation Lemma. Hence p has degree at most

n · [δ log n + log(1/ϵ)] = n · [o(1) log n + log no(1)] = o(n log n).

We finish the proof of Theorem 3 by verifying that p indeed o(1)-approximates f ◦GapOrn
log n.

∀x : p(x) = Et∼T

[ ∑
ℓ∈N (t) pℓ(x)

]
= Et∼T

[ ∑
ℓ∈N (t) ℓ(µy)

]
(y := GapOrn

log n(x))

= Et∼T

[ ∑
ℓ∈N (t) Ex′∼µy [ℓ(x′)]

]
= Et∼T

[
Ex′∼µy [

∑
ℓ∈N (t) ℓ(x′)]

]
∈ Et∼T

[
Ex′∼µy [t(x′)]

]
± o(1) (Using (2))



M. Göös and G. Maystre 18:9

= Ex′∼µy

[
Et∼T [t(x′)]

]
± o(1)

∈ Ex′∼µy

[
(f ◦ gn)(x′)

]
± o(1) (T has error o(1))

= f(y) ± o(1)
= (f ◦ GapOrn

log n)(x) ± o(1). ◀

4 Proof of Leaf Lemma

We prove Leaf Lemma in three subsections.

(§4.1) We start by recalling a distributional characterisation due to Blais and Brody [7] of
expected query complexity Rϵ using decision trees that can “abort”.

(§4.2) We then formulate a Hard Side Lemma, which encapsulates the core challenge in
finding the hard side of a given function g and from which Leaf Lemma is easy to derive.

(§4.3) Finally, we prove the Hard Side Lemma.

4.1 Distributional characterisation of Rϵ due to Blais–Brody
A (deterministic) abort-tree t is a decision tree that outputs either a boolean value (0 or 1)
or the abort symbol ⊥. When an abort-tree is trying to compute a boolean function g, we
do not consider the output ⊥ as an “error”; the tree simply gives up on the computation.
Indeed, we say that t(x) errs iff t(x) = 1 − g(x), that is, t(x) ̸= ⊥ and t(x) ̸= g(x). As before,
a randomised abort-tree is a probability distribution over deterministic abort-trees. For
γ ∈ (0, 1) and ϵ ∈ [0, 1/2) we define Rγ,ϵ(g) as the least (worst-case) depth of a randomised
abort-tree T such that for all x ∈ dom(g):

Pt∼T [ t(x) = ⊥ ] ≤ γ and Pt∼T [ t(x) errs ] ≤ ϵ.

We formulate a distributional version of Rγ,ϵ(g) as follows. For a distribution µ over dom(g),
we define Dµ

γ,ϵ(g) as the least depth of a deterministic abort-tree t such that

Px∼µ[ t(x) = ⊥ ] ≤ γ and Px∼µ[ t(x) errs ] ≤ ϵ.

The following two lemmas from [7, §3.1] connect abort-trees and Rϵ(g).

▶ Lemma 8 (Abort vs. expected depth). For every ϵ ∈ [0, 1/2) and γ ∈ (0, 1),

γ · Rγ, ϵ(g) ≤ Rϵ(g) ≤ 1
1−γ · Rγ, (1−γ)ϵ(g).

▶ Lemma 9 (Minimax). For every ϵ ∈ [0, 1/2), γ ∈ (0, 1), and α, β ∈ (0, 1) with α + β ≤ 1,

maxµ Dµ
γ/α, ϵ/β(g) ≤ Rγ, ϵ(g) ≤ maxµ Dµ

αγ, βϵ(g).

4.2 Statement of Hard Side Lemma
When searching for the hard side of a partial function g under a distribution µ = 1

2 (µ0 + µ1),
it is convenient to study a more symmetric notion of noisiness than the one-sided variant
defined earlier. For a leaf ℓ ∈ L(t) of an abort-tree t, we define the relative error re(ℓ, µ) so
that if ℓ is an aborting leaf, then re(ℓ, µ) := 0; otherwise

re(ℓ, µ) := min{ℓ(µ0), ℓ(µ1)}
ℓ(µ0) + ℓ(µ1) ∈ [0, 1/2].

CCC 2021



18:10 A Majority Lemma for Randomised Query Complexity

This definition captures the best achievable error of a leaf in an abort-tree. Namely, let us
say that t is µ-smart if every non-abort leaf ℓ ∈ L(t) outputs a boolean value i ∈ {0, 1} that
maximises ℓ(µi). Then for every leaf ℓ in a µ-smart t we have Px∼µ[ t(x) errs | ℓt

x = ℓ ] =
re(ℓ, µ). An easy calculation gives the following claim, which we record for future use.

▷ Claim 10. For a µ-smart t we have Px∼µ[ t(x) errs ] = Ex∼µ[re(ℓt
x, µ)].

Another easy calculation shows that relative error implies noisiness.

▷ Claim 11. If re(ℓ, µ) ≥ ϵ, then ℓ is (ϵ, µ, b)-noisy for both b ∈ {0, 1}.

We are now ready to formulate Hard Side Lemma, which isolates the technical challenge 3.1
(discussed in Subsection 3.1): Every partial function g admits a balanced distribution µ and
a hard side b such that if we run a shallow abort-tree on the hard side µb of µ, then t must
either abort with high probability or we reach a leaf of noticeable error (in expectation).

▶ Hard Side Lemma. For every partial function g and 0 < ϵ ≪ δ ≪ 1, there exists
a distribution µ = 1

2 (µ0 + µ1) over dom(g) and a hard side b ∈ {0, 1} such that for any
deterministic abort-tree t with depth(t)/Rϵ(g) ≪ δ we have either

Px∼µb [ t(x) = ⊥ ] > 1 − δ or Ex∼µb [ re(ℓt
x, µ) ] > ϵ. (3)

We defer the proof until Subsection 4.3. We first use the lemma to prove Leaf Lemma,
and here is where we address challenge 3.1: we exploit the high abort probability (namely,
1 − δ) guaranteed by Hard Side Lemma to show that typical leaves are noisy.

▶ Leaf Lemma (restated). For every partial g and 0 < ϵ ≪ δ ≪ 1, there exists a distribution
µ = 1

2 (µ0 + µ1) over dom(g) and a hard side b ∈ {0, 1} such that for every deterministic tree
t and i ∈ {0, 1}:

Ex∼µi [q(t, x)]
Rϵ(g)

≪ δ =⇒ Px∼µi [ ℓt
x is (ϵ, µ, b)-noisy ] ≥ 1 − δ.

Proof. We observe first that regardless of µ, b, or even the expected depth of t, the lemma
holds for the easy side i = 1−b. Indeed, if we let B ⊆ L(t) denote the set of non-(ϵ, µ, b)-noisy
leaves,

Px∼µ1−b [ℓt
x ∈ B] =

∑
ℓ∈B ℓ(µ1−b) < ϵ

∑
ℓ∈B ℓ(µb) ≤ ϵ

∑
ℓ∈L(t) ℓ(µb) = ϵ ≤ δ.

Let us then focus on the interesting case i = b where the careful choice of µ and b is
essential. We invoke Hard Side Lemma with parameters ϵ and δ̇ := δ2 (assuming suitably
0 < ϵ ≪ δ̇ ≪ 1) to obtain µ and b such that for every abort-tree ṫ with depth(ṫ) ≤ δ̇cRϵ(g) the
property (3) holds (with dotted parameters). Let x ∼ µb henceforth and write re(ℓ) := re(ℓ, µ)
for short. Suppose t satisfies Ex[q(t, x)] ≤ δ̇c+2Rϵ(g) (where we chose 2(c+2) as the exponent
hidden by ≪). Recalling from Claim 11 that relative error implies noisiness, our goal is to
show

Px[ re(ℓt
x) ≥ ϵ ] ≥ 1 − δ. (4)

We convert t into an abort-tree by letting t′ be a modification of t that aborts whenever more
than δ̇cRϵ(g) queries are made. Using Markov’s inequality and the low expected depth of t,

Px[t′(x) = ⊥] = Px[q(t, x) > δ̇cRϵ(g)] ≤ Ex[q(t, x)]/δ̇cRϵ(g) ≤ δ̇2.



M. Göös and G. Maystre 18:11

We also have Px[re(ℓt
x) ≥ ϵ] ≥ Px[re(ℓt′

x ) ≥ ϵ] since we only made more executions abort.
To prove (4), suppose for contradiction that Px[re(ℓt′

x ) ≥ ϵ] < 1 − δ. Let ṫ be a further
modification of t′ that aborts any leaf ℓ ∈ L(t′) with re(ℓ) ≥ ϵ. Note that

Px[ṫ(x) = ⊥] ≤ Px[t′(x) = ⊥] + Px[re(ℓt′

x ) ≥ ϵ] ≤ δ̇2 + 1 − δ ≤ 1 − δ̇.

Hence we get from (dotted) property (3) that Ex[re(ℓṫ
x)] > ϵ. But this contradicts the fact

that re(ℓ) < ϵ for all ℓ ∈ L(ṫ) by construction. This verifies (4) and concludes the proof. ◀

4.3 Proof of Hard Side Lemma
Let ν be a distribution that witnesses D := maxν′ Dν′

1−δ, ϵ1/3(g) so that every abort-tree t

with depth(t) < D fails to satisfy at least one of the following:

Px∼ν [ t(x) = ⊥ ] ≤ 1 − δ, (5)

Px∼ν [ t(x) errs ] ≤ ϵ1/3. (6)

As a minor technicality, we re-balance ν. We can write ν = λµ0 + (1 − λ)µ1 where λ ∈ (0, 1)
and µi is a distribution supported on g−1(i). We define µ := 1

2 (µ0 + µ1) as our balanced
distribution.

Assume towards a contradiction that there does not exist a hard side for µ, that is, the
claim of the lemma fails for both b ∈ {0, 1}. This means there exists two abort-trees t0 and
t1 of depth at most δ3Rϵ(g) (where we chose 3 as the exponent hidden by ≪) such that for
both b ∈ {0, 1}:

Px∼µb [ tb(x) = ⊥ ] ≤ 1 − δ, (7)
Ex∼µb [ re(ℓtb

x , µ) ] ≤ ϵ. (8)

We will use t0 and t1 to construct a third tree t that computes g too well relative to ν

contradicting our choice of ν. We may assume wlog that t0 and t1 are µ-smart, since the
properties (7)–(8) do not depend on the boolean leaf-labels (only whether a leaf aborts or
not). We now define t as follows: On input x we run both t0(x) and t1(x); if t0(x) ̸= ⊥, we
output t0(x); otherwise we output t1(x). We will show that t has depth(t) < D and satisfies
(5)–(6), which will contradict our choice of ν.

Tree t is shallow. We have the following chain of inequalities

depth(t) ≤ 2δ3Rϵ(g) ≤ 32δ3Rϵ1/4(g) < δ2Rϵ1/4(g) ≤ R1−δ2, δ2ϵ1/4(g)

≤ maxν′ Dν′

(1−δ2)2, δ4ϵ1/4(g) ≤ maxν′ Dν′

1−δ, ϵ1/3(g) =: D.

The first inequality uses the definition of t. Second uses error reduction (Claim 7 with k := 4).
Third uses δ ≪ 1. Fourth uses Lemma 8 (with γ := 1 − δ2). Fifth uses the minimax lemma
(Lemma 9 with α := 1 − δ2, β := δ2). The final inequality uses ϵ ≪ δ ≪ 1.

Tree t has bounded abort. We verify property (5) by

Px∼ν [t(x) = ⊥] = Px∼ν [t0(x) = ⊥ ∧ t1(x) = ⊥]
= λPx∼µ0 [t0(x) = ⊥ ∧ t1(x) = ⊥]

+ (1 − λ)Px∼µ1 [t0(x) = ⊥ ∧ t1(x) = ⊥]
≤ λPx∼µ0 [t0(x) = ⊥] + (1 − λ)Px∼µ1 [t1(x) = ⊥]
≤ 1 − δ. (Using (7))

CCC 2021



18:12 A Majority Lemma for Randomised Query Complexity

t0 t1g−1(0) g−1(1) g−1(0) g−1(1)

⊥ (≤ 10%)

⊥
⊥ ⊥ (≤ 10%)

Figure 1 Two trees t0 and t1 in the proof of Hard Side Lemma. The leaves partition dom(g) into
subcubes where grey leaves output ⊥, green leaves output 1, and blue leaves output 0. Hatched
regions are error. We are promised that, e.g., t0 has bounded abort (10% in our figure) over µ0, but
not necessarily over µ1.

Tree t errs rarely. We start with a claim that says that if the expected relative error is low
over one side µb of µ, then a µ-smart tree errs rarely over the whole distribution µ.

▷ Claim 12. Let t′ be µ-smart and b ∈ {0, 1}. If Ex∼µb [re(ℓt′

x , µ)] ≤ ϵ then Px∼µ[t′(x) errs] ≤
ϵ1/2.

Proof. We prove the claim for b = 0 as the other case is analogous. Since t′ and µ are fixed,
we drop them from notation writing re(ℓ) := re(ℓ, µ), ℓx := ℓt′

x , L := L(t′). We argue that
relative error on one side of the distribution must spill over to the other side:

Ex∼µ0 [re(ℓx)] =
∑

ℓ∈L ℓ(µ0) re(ℓ) ≥
∑

ℓ∈L ℓ(µ1) re(ℓ)2 = Ex∼µ1 [re(ℓx)2] ≥ Ex∼µ1 [re(ℓx)]2.

Here the first inequality used ℓ(µ0) ≥ ℓ(µ1) re(ℓ) (from Claim 11) and the second inequality
used Jensen’s inequality. It follows that Ex∼µ1 [re(ℓx)] ≤ Ex∼µ0 [re(ℓx)]1/2 ≤ ϵ1/2 and therefore
Ex∼µ[re(ℓx)] ≤ ϵ1/2. The claim then follows from Claim 10. ◁

We now verify property (6), which concludes the proof of Hard Side Lemma.

Px∼ν [t(x) errs] ≤ Px∼ν [t0(x) errs ∨ t1(x) errs]
≤

∑
b∈{0,1} Px∼ν [tb(x) errs]

=
∑

b∈{0,1} λPx∼µ0 [tb(x) errs] + (1 − λ)Px∼µ1 [tb(x) errs]

≤
∑

b∈{0,1} 2Px∼µ[tb(x) errs]

≤
∑

b∈{0,1} 2 · ϵ1/2 (Claim 12 and (8))

= 4ϵ1/2

≤ ϵ1/3. (ϵ ≪ 1)

5 Proof of Multileaf Lemma

▶ Multileaf Lemma (restated). For every partial g and 0 < ϵ ≪ δ ≪ 1, there exists a
distribution µ = 1

2 (µ0 + µ1) over dom(g) and a hard side b ∈ {0, 1} such that for every
deterministic tree t taking inputs from dom(gn) and having depth(t)/(nRϵ(g)) ≪ δ,

∀y ∈ {0, 1}n : Px∼µy [ ℓt
x is (δ, ϵ, µ, b)-noisy ] ≥ 1 − δ.



M. Göös and G. Maystre 18:13

Proof. Apply Leaf Lemma with parameters ϵ and δ̇ := δ3 (assuming suitably 0 < ϵ ≪
δ̇ ≪ 1) to obtain µ = 1

2 (µ0 + µ1) and b ∈ {0, 1} that satisfy the lemma for trees of
depth at most δ̇cRϵ(g). Fix y ∈ {0, 1}n and a deterministic tree t over dom(gn) with
depth(t) ≤ δ̇c+4nRϵ(g) (where we chose 3(c + 4) as the exponent hidden by ≪).

Here is the plan for our proof. An input x ∈ dom(gn) can be seen as inducing several
subtrees of t corresponding to distinct coordinates i ∈ [n]. Indeed, define tx,i as the tree over
inputs from dom(g) that is obtained from t by substituting x as its input variables except
retaining xi as free variables. If we can show that tx,i has shallow depth in expectation over
an input z ∼ µyi then we can hope to use and argue that the reached leaf ℓz ∈ L(tx,i) (which
is one of the n components of a leaf of t) is typically (ϵ, µ, b)-noisy.

Let us formalise this plan. Let x ∼ µy henceforth. For i ∈ [n] we define two events

i-th tree is shallow: Si(x) def⇐⇒ Ez∼µyi [q(tx,i, z)] ≤ δ̇cRϵ(g),
i-th leaf is noisy: Ni(x) def⇐⇒ ℓxi ∈ L(tx,i) is (ϵ, µ, b)-noisy.

Note that Leaf Lemma states Px[Ni | Si] ≥ 1 − δ̇. Thinking of Si and Ni as indicator
variables, we define S := 1

n

∑
i Si and N := 1

n

∑
i Ni. With this notation, Multileaf Lemma

becomes equivalent to

Px[N ≥ 1 − δ] ≥ 1 − δ. (9)

To show this, we compute as follows (using Claim 13 that is proved below)

Ex[N ] = 1
n

∑
i Px[Ni]

≥ 1
n

∑
i(1 − δ̇)P[Si] (Leaf Lemma)

= (1 − δ̇)Ex[S]
≥ (1 − δ̇)(1 − δ̇) (Claim 13)
≥ 1 − δ2. (δ̇ := δ3 ≪ 1)

Hence (9) follows by applying Markov’s inequality to the nonnegative random variable
1 − N ≥ 0. This completes the proof apart from the following claim. ◀

▷ Claim 13. Ex[S] ≥ 1 − δ̇.

Proof. Let qi(t, x) denote the number of queries made by t to the i-th component of x.
Define xi←z as a copy of x but where z is inserted at the i-th component. Note that
qi(t, xi←z) = q(tx,i, z). Linearity of expectation gives∑

i∈[n] Ex[qi(t, x)] ≤ depth(t) ≤ δ̇c+4nRϵ(g). (10)

Define I ⊆ [n] as the set of coordinates i satisfying

Ex [qi(t, x)] ≤ δ̇c+2Rϵ(g). (11)

We have that |I| ≥ (1 − δ̇2)n as otherwise more than δ̇2n terms in the sum (10) are larger
than δ̇c+2Rϵ(g) contradicting the upper bound on depth(t). Fix i ∈ I. Sampling x ∼ µy is
equivalent to first taking x ∼ µy, then sampling independently z ∼ µyi , and finally outputting
xi←z. Hence

Ex Ez∼µyi [qi(t, xi←z)] = Ex[qi(t, x)] ≤ δ̇c+2Rϵ(g).

CCC 2021



18:14 A Majority Lemma for Randomised Query Complexity

We get from Markov’s inequality and the above that

Px[¬Si] = Px

[
Ez∼µyi [qi(t, xi←z)] > δ̇cRϵ(g)

]
≤ δ̇2. (12)

In conclusion,

Ex[S] ≥ 1
n

∑
i∈I Px[Si] ≥ 1

n |I| · (1 − δ̇2) ≥ (1 − δ̇2)2 ≥ 1 − δ̇. ◁

References
1 Anurag Anshu, Dmitry Gavinsky, Rahul Jain, Srijita Kundu, Troy Lee, Priyanka Mukhopad-

hyay, Miklos Santha, and Swagato Sanyal. A composition theorem for randomized query
complexity. In Proceedings of the 37th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), pages 10:1–10:13. Schloss Dagstuhl, 2017.
doi:10.4230/LIPIcs.FSTTCS.2017.10.

2 Andrew Bassilakis, Andrew Drucker, Mika Göös, Lunjia Hu, Weiyun Ma, and Li-Yang Tan.
The power of many samples in query complexity. In Proceedings of the 47th International
Colloquium on Automata, Languages, and Programming (ICALP), volume 168, pages 9:1–9:18.
Schloss Dagstuhl, 2020. doi:10.4230/LIPIcs.ICALP.2020.9.

3 Shalev Ben-David and Eric Blais. A new minimax theorem for randomized algorithms. In
Proceedings of the 61st Symposium on Foundations of Computer Science (FOCS), pages
403–411, 2020. doi:10.1109/FOCS46700.2020.00045.

4 Shalev Ben-David and Eric Blais. A tight composition theorem for the randomized query
complexity of partial functions. In Proceedings of the 61st Symposium on Foundations of
Computer Science (FOCS), pages 240–246, 2020. doi:10.1109/FOCS46700.2020.00031.

5 Shalev Ben-David, Mika Göös, Robin Kothari, and Thomas Watson. When is amplification
necessary for composition in randomized query complexity? In Proceedings of the 22nd
International Conference on Randomization and Computation (RANDOM), volume 176, pages
28:1–28:16. Schloss Dagstuhl, 2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.28.

6 Shalev Ben-David and Robin Kothari. Randomized query complexity of sabotaged and com-
posed functions. Theory of Computing, 14(1):1–27, 2018. doi:10.4086/toc.2018.v014a005.

7 Eric Blais and Joshua Brody. Optimal separation and strong direct sum for randomized query
complexity. In Proceedings of the 34th Computational Complexity Conference (CCC), pages
29:1–29:17. Schloss Dagstuhl, 2019. doi:10.4230/LIPIcs.CCC.2019.29.

8 Joshua Brody, Jae Tak Kim, Peem Lerdputtipongporn, and Hariharan Srinivasulu. A strong
XOR lemma for randomized query complexity. Technical report, arXiv, 2020. arXiv:2007.
05580.

9 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
A survey. Theoretical Computer Science, 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)
00144-X.

10 Chinmoy Dutta and Jaikumar Radhakrishnan. Lower bounds for noisy wireless networks using
sampling algorithms. In Proceedings of the 49th Symposium on Foundations of Computer
Science (FOCS), pages 394–402. IEEE, 2008. doi:10.1109/FOCS.2008.72.

11 William Evans and Nicholas Pippenger. Average-case lower bounds for noisy boolean decision
trees. SIAM Journal on Computing, 28(2):433–446, 1998. doi:10.1137/S0097539796310102.

12 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy informa-
tion. SIAM Journal on Computing, 23(5):1001–1018, 1994. doi:10.1137/S0097539791195877.

13 Dmitry Gavinsky, Troy Lee, Miklos Santha, and Swagato Sanyal. A composition theorem
for randomized query complexity via max-conflict complexity. In Proceedings of the 46th
International Colloquium on Automata, Languages, and Programming (ICALP), pages 64:1–
64:13. Schloss Dagstuhl, 2019. doi:10.4230/LIPIcs.ICALP.2019.64.

https://doi.org/10.4230/LIPIcs.FSTTCS.2017.10
https://doi.org/10.4230/LIPIcs.ICALP.2020.9
https://doi.org/10.1109/FOCS46700.2020.00045
https://doi.org/10.1109/FOCS46700.2020.00031
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.28
https://doi.org/10.4086/toc.2018.v014a005
https://doi.org/10.4230/LIPIcs.CCC.2019.29
http://arxiv.org/abs/2007.05580
http://arxiv.org/abs/2007.05580
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1109/FOCS.2008.72
https://doi.org/10.1137/S0097539796310102
https://doi.org/10.1137/S0097539791195877
https://doi.org/10.4230/LIPIcs.ICALP.2019.64


M. Göös and G. Maystre 18:15

14 Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rectangles
are nonnegative juntas. SIAM Journal on Computing, 45(5):1835–1869, 2016. doi:10.1137/
15M103145X.

15 Navin Goyal and Michael Saks. Rounds vs. queries tradeoff in noisy computation. Theory of
Computing, 6(1):113–134, 2010. doi:10.4086/toc.2010.v006a006.

16 Rahul Jain and Hartmut Klauck. The partition bound for classical communication complexity
and query complexity. In Proceedings of the 25th Conference on Computational Complexity
(CCC), pages 247–258. IEEE, 2010. doi:10.1109/CCC.2010.31.

17 Rahul Jain, Hartmut Klauck, and Miklos Santha. Optimal direct sum results for deterministic
and randomized decision tree complexity. Information Processing Letters, 110(20):893–897,
2010. doi:10.1016/j.ipl.2010.07.020.

18 Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of Algorithms
and Combinatorics. Springer, 2012.

19 Jedrzej Kaniewski, Troy Lee, and Ronald de Wolf. Query complexity in expectation. In
Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming
(ICALP), pages 761–772. Springer, 2015. doi:10.1007/978-3-662-47672-7_62.

20 Claire Kenyon and Valerie King. On boolean decision trees with faulty nodes. Random
Structures and Algorithms, 5(3):453–464, 1994. doi:10.1002/rsa.3240050306.

21 Troy Lee, Rajat Mittal, Ben Reichardt, Robert Špalek, and Mario Szegedy. Quantum query
complexity of state conversion. In Proceedings of the 52nd Symposium on Foundations of
Computer Science (FOCS), pages 344–353. IEEE, 2011. doi:10.1109/FOCS.2011.75.

22 Ilan Newman. Computing in fault tolerant broadcast networks and noisy decision trees.
Random Structures and Algorithms, 34(4):478–501, 2009. doi:10.1002/rsa.20240.

23 Ben Reichardt. Reflections for quantum query algorithms. In Proceedings of the 22nd
Symposium on Discrete Algorithms (SODA), pages 560–569. SIAM, 2011.

24 Petr Savický. On determinism versus unambiquous nondeterminism for decision trees. Technical
Report TR02-009, Electronic Colloquium on Computational Complexity (ECCC), 2002. URL:
http://eccc.hpi-web.de/report/2002/009/.

25 Avishay Tal. Properties and applications of boolean function composition. In Proceedings of
the 4th Conference on Innovations in Theoretical Computer Science (ITCS), pages 441–454.
ACM, 2013. doi:10.1145/2422436.2422485.

CCC 2021

https://doi.org/10.1137/15M103145X
https://doi.org/10.1137/15M103145X
https://doi.org/10.4086/toc.2010.v006a006
https://doi.org/10.1109/CCC.2010.31
https://doi.org/10.1016/j.ipl.2010.07.020
https://doi.org/10.1007/978-3-662-47672-7_62
https://doi.org/10.1002/rsa.3240050306
https://doi.org/10.1109/FOCS.2011.75
https://doi.org/10.1002/rsa.20240
http://eccc.hpi-web.de/report/2002/009/
https://doi.org/10.1145/2422436.2422485

	1 Introduction
	1.1 Our results
	1.2 Techniques: Leaf Lemma
	1.3 Other related work
	1.4 Open problems

	2 Query complexity basics
	3 Proof overview
	3.1 Statement of Leaf Lemma
	3.2 Proof of Theorem 3

	4 Proof of Leaf Lemma
	4.1 Distributional characterisation of R due to Blais–Brody
	4.2 Statement of Hard Side Lemma
	4.3 Proof of Hard Side Lemma

	5 Proof of Multileaf Lemma

