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—— Abstract

We study pseudo-deterministic query complexity — randomized query algorithms that are required to

output the same answer with high probability on all inputs. We prove Q(y/n) lower bounds on the
pseudo-deterministic complexity of a large family of search problems based on unsatisfiable random
CNF instances, and also for the promise problem (FINDI) of finding a 1 in a vector populated with
at least half one’s. This gives an exponential separation between randomized query complexity and
pseudo-deterministic complexity, which is tight in the quantum setting. As applications we partially
solve a related combinatorial coloring problem, and we separate random tree-like Resolution from
its pseudo-deterministic version. In contrast to our lower bound, we show, surprisingly, that in the
zero-error, average case setting, the three notions (deterministic, randomized, pseudo-deterministic)
collapse.
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1 Introduction

The natural and beautiful notion of pseudo-determinism which formalizes random search
algorithms that are required on every input, to output the same solution with high probability,
was introduced by Gat and Goldwasser in [12]. A motivating example is the problem of
finding an n-bit prime number in time polynomial in n. Since primality testing is in P, and
the primes are dense within the natural numbers, we can efficiently find a prime with high
probability by repeatedly selecting a random number, test it for primality, and halt if a prime
is found. In contrast the fastest deterministic algorithm for finding primes is exponential
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in n. A pseudo-deterministic algorithm lies between a randomized search algorithm (which
on each input may output a large number of different solutions as we vary the random coins),
and a deterministic algorithm. Here we are allowed unlimited use of randomness, but the
search algorithm is required to output a canonical answer f(z) on each input z (with very
high probability).

Pseudodeterminism is important, both because of the intrinsic nature of the underlying
questions that it raises, and because of its strong connections to other phenomena. First,
it relates to the reproducibility question in science — empirical research has unavoidable
randomness in many phases of research, from data generation/collection, to experiment
design and testing. Pseudodeterministic algorithms correspond to reproducible experiments
where the same (or a very similar) outcome will usually be obtained if the experiment
is reproduced under a different set of (random) conditions [12, 22]. Pseudodeterminism
also is related to the notion of global stability in machine learning, which is closely tied to
generalization in machine learning

Starting with [12], a growing body of research has laid much of the groundwork for a
theory of pseudo-deterministic complexity theory, establishing the power and limitations of
pseudo-determinism for a variety of computational models (See for example [12, 13, 22, 14,
15, 16].) Assuming P = BPP, polynomial-time pseudo-deterministic search is equivalent to
deterministic polynomial-time search. This implies for example that finding an n-bit prime is
in polytime assuming P = BPP, but this is far from giving a efficient deterministic or pseudo-
deterministic algorithm that generates primes. Oliveira and Santhanam [30] demonstrated
the power of pseudo-determinism by proving unconditionally that finding primes could be
carried out (for infinitely many n) in subexponential-time.

1.1 Our Results

In this paper we study the power of pseudo-determinism in the context of query complexity,
which was first defined and studied by Goldreich, Goldwasser and Ron [13]. We focus on
search problems with solutions that can be verified easily by deterministic query algorithms,
similarly to the complexity class FNP, and that have an abundance of solutions!. In other
words, we consider search problems where a solution can be found randomly simply by
guessing and then verifying the guess, but for which deterministically finding a solution
is difficult. The most natural problems we consider are promise problems, but we prove
lower bounds for these via reduction to problems which have the above property on the full
domain, i.e., we prove lower bounds for the analogs of TFNP problems with an abundance of
witnesses.

This scenario is of central importance in complexity theory, where many longstanding open
problems are closely connected to explicit constructions of objects that exist in abundance.
For example, explicit constructions of rigid matrices imply circuit lower bounds, and explicit
constructions of functions that are hard to compute (or approximate) imply derandomization.

1. We define an elementary promise search problem, FIND1: given an n bit string with
the promise that it contains at least n/2 1’s, output a coordinate ¢ such that z; = 1.
FIND1 is easy for randomized query complexity, and we observe (Section 3) that FIND1
is complete for easily verifiable search problems with randomized query algorithms. 2

! In contrast, the linear query lower bounds of [13] are not for a problem with easily verifiable solutions.
2 A similar problem titled Find-Support-Elem was considered in the context of studying the space
complexity of pseudo-deterministic streaming algorithms [17]
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2. We prove (Section 4) a lower bound of Q(1/n) on the pseudo-determinsitic query complexity
of a broad class of search problems associated with random unsatisfiable CNF formulas,
a problem in the query analog of TFNP. As a corollary we prove the same lower bound
for FIND1, thus separating randomized from pseudo-deterministic query complexity for
a problem in the analog of FNP. Our lower bound also holds in the quantum setting
where a simple binary search plus Grover’s result shows that our lower bound is tight.
A key idea in our proof is to look at a different structured family of search problems
associated with highly unsatisfiable CNF formulas. Our lower bound for these structured
search problems follows by combining Huang’s Sensitivity Theorem with known linear
lower bounds on the Nullstellensatz/SOS degree for refuting random unsatisfiable CNF
instances.

3. Applications. We study two questions related to our lower bound in Section 5. First as
a corollary, we obtain a lower bound for a related combinatorial coloring problem that
we define and find independently interesting. Secondly, we extend our results to give
an exponential separation between the size of randomized decision trees and the size of
pseudo-deterministic decision trees. Our size separation in turn implies an exponential
separation between pseudo-deterministic tree-like Resolution refutations and random
tree-like Resolution refutations (defined in [7]).

4. In contrast to our lower bounds which expose the limitations of pseudo-deterministic
query algorithms, we prove (Section 6) that in the zero-error average setting, the three
notions (deterministic, randomized, and pseudo-deterministic) collapse.

1.2 Our ldeas

We discuss our results and the ideas behind them at a high level.

Our observation that FIND1 is a canonical problem for pseudo-deterministic query
complexity for problems in FNP follows from the fact that every randomized query algorithm
can be assumed to have as support a linear-size set B of deterministic decision trees. Assume
that FIND1 has an efficient pseudodeterministic query algorithm, and let S be a problem in
FNP. We define a pseudodeterministic algorithm for S by simulating the protocol for FIND1.
Every time the protocol for FIND1 queries a bit, we run the corresponding decision tree in
the linear-size set B and return 1 iff the decision tree returns a valid solution to S. Note
that since S is in FNP, we can check that a solution is valid efficiently. When the protocol
for FIND1 concludes and outputs an index j of a bit, we simulate the corresponding decision
tree in B and return the solution for S that it outputs.

Our lower bound for a TENP problem is for the search problem associated with a randomly
chosen k-CNF formula ¢ of linear size. The main property we require from this formula is
that the factor graph is a strong enough expander. The search problem associated with ¢ is
to return the index of an unsatisfied clause, given an assignment to the variables. We choose
the size of the CNF large enough so that for each assignment to variables, a constant fraction
of clauses are violated. Thus there is a trivial randomized protocol for the search problem
with cost O(1): output a random clause.

We show that any pseudo-deterministic query algorithm for this problem requires Q(y/n)
queries, using a novel connection to proof complexity. We use the known result [21, 6, 3]
that the random CNFs we consider require linear degree to refute in the Nullstellensatz proof
system to show a lower bound on the Fourier degree of the search problem associated with
these CNFs. We then use the recent breakthrough of Huang on the Sensitivity Conjecture [25]
to lower bound the sensitivity by (y/n), and show that the pseudo-deterministic query
complexity is lower bounded by the sensitivity. By using the very recent result of [2] instead
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of [25], we can even lower bound the pseudodeterministic quantum query complexity by
Q(y/n). For quantum query complexity, this is actually tight, as a matching upper bound
follows from combining binary search with Grover’s algorithm.

Our quest for an improved linear lower bound for FIND1 raises an interesting combinatorial
question: given any coloring of the hypercube (omitting the all zeroes vertex) with n colors
such that each vertex is colored with the index of one of its 1s, must there be vertex with a
constant fraction of 1s so that a constant fraction of its neighbours are colored differently
from it? If the answer to this question is yes, we would be able to show that FIND1 requires
linear pseudo-deterministic query complexity. The question above is about the sensitivity of
a coloring; we can ask an analogous question for block-sensitivity and in this case, it turns
out that we can prove an Q(y/n) lower bound, which also implies our Q(y/n) lower bound for
FINDI1.

Our proof of a pseudo-deterministic query lower bound uses ideas from proof complex-
ity. We show that there is a connection in the reverse direction too, by defining pseudo-
deterministic versions of propositional proof systems such as Resolution. A broad question in
proof complexity is whether we can use proof systems to capture the behaviour of randomized
algorithms. Motivated in part by this and in part by a question about bounded-depth Frege
proof systems, [7] defined Random Resolution: a randomized version of Resolution. This
is quite a powerful system which even refutes random k-CNFs in constant size, contrary to
our intuition that random k-CNFs should be hard to solve. We define pseudo-deterministic
Resolution and pseudo-deterministic Tree Resoluton, and we show that pseudo-deterministic
Tree Resolution is efficiently verifiable, suggesting that it is a more viable candidate for
capturing the behaviour of randomized algorithms. We apply the ideas of our separation
between randomized query complexity and pseudo-deterministic query complexity to get a
strong separation between Random Tree Resolution and pseudo-deterministic Tree Resolution:
random k-CNFs can be refuted in linear size in Random Tree Resolution but require 29(v7)
size in pseudo-deterministic Tree Resolution.

Finally, we turn our attention from lower bounds to algorithms. We show that perhaps
surprisingly, there is a close connection between randomized query complexity and pseudo-
deterministic query complexity on average. Specifically, for zero-error algorithms (where the
query algorithm is not allowed to make a mistake), we show that over any distribution D,
the randomized, pseudo-deterministic and deterministic query complexity are all within a
polylogarithmic factor of each other. Similarly, we show that for any approximation problem
(such as the problem of approximating the Hamming weight of an input considered in [13],
for which there is a constant-query randomized algorithm) and distribution D, there is
an efficient bounded-error pseudo-deterministic query algorithm which asks few queries on
average over D. Note that we require the algorithm to be pseudo-deterministic on every
input, which is a pretty strong guarantee.

As a toy problem for our result on zero-error query algorithms, consider the FIND1
problem, which does have a very efficient zero-error randomized algorithm. Given any
distribution D, we can use an averaging argument to identify a small set of decision trees
from the support of our randomized query algorithm such that at least one of the trees from
this set outputs a correct solution with probability at least 1 — 1/n over the distribution.
We can also efficiently check if this is indeed the case. If not, we simply query every bit, and
this doesn’t cost too much on average because this case happens with very low probability.

Generalizing to efficient average-case zero-error algorithms is somewhat more involved,
and requires an interleaving simulation of decision trees together with a Markov argument at
different scales. We use similar ideas for our bounded-error pseudo-deterministic algorithms -
the challenge is to meet the pseudo-determinsitic guarantee on every input.
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1.3 Related Work

Optimal query separations were already proven by [13] but their search problem is not in FNP
— that is, for the problem that they studied, solutions are not verifiable with a polylogarithmic
number of queries. In particular, they studied the search problem of estimating the number
of ones in a binary string to within an additive en. They proved that this search problem has

low randomized query complexity, but requires linear pseuododeterministic query complexity.

2 Definitions

» Definition 1. A search problem over domain X and range O is defined to be a relation
SCXxO. Forze X, the feasible solutions for S on x are the elements o € O such that
(z,0) € S. S is total if there is at least one feasible solution for every x € X. A function
[+ X = O solves the search problem S if for every x € X with at least one feasible solution
for S, (z, f(z)) € O.

Deterministic Query Complexity. Let X = {0,1}". A determininistic decision tree T" over
Z1,...,T, with outputs from O is a binary tree where each internal node is labelled with a
variable x;, and with outedges labelled by x; = 0 and z; = 1. Each leaf of the tree is labelled
with some o € O. A deterministic decision tree T' computes f : {0,1}" — O if for every
input z € {0,1}", the (unique) path in T consistent with = has leaf label f(z). Let P¥(f)
be the minimum depth of a deterministic decision tree computing f. 3 For a search problem
S C {0,1}" x O, The (deterministic) query complexity of S, P*(S) is the minimum of P¥(f)
over all functions f solving S.

Randomized and Quantum Query Complexity. A randomized decision tree over 1, ..., x,
with outputs from O is a distribution 7 over deterministic decision trees. A randomized
decision tree 7 computes f : {0,1}" — O with error at most e if for every input z, the
probability (over T' drawn from 7) that T'(z) ouputs f(z) is at least 1 —e. The bounded-error
randomized query complexity of search problem S, denoted by BPP (S), is the minimum
over all functions f computing S of the depth of a randomized decision tree computing f
with error 1/3.

We can also define zero-error randomized query complexity for f and S. In this case 7 is
a distribution over decision trees, but with the property that for every x, the probability
that T (z) = f(x) is one. Whereas before the depth was defined to be the maximum depth
over all decision trees in the distribution, in the zero-error case, we define the depth to be
the expected depth. The quantum query complexity for functions and search problems is
defined analogously. (e.g., see [9].)

Nondeterministic Query Complexity. Let S C {0,1}" x [m] be a search problem. A
verification decision tree for f is a decision tree 7 over the Boolean variables x1,...,x,,
Y1, -, Yogm Wwith outputs {0,1} such that for every input pair (z,y) € {0,1}" x [m],
T(z,y) =1 if and only if (x,y) € S. The verification query complexity of S is the minimum
depth over all verification decision trees for S. A search problem & C {0,1}" x [m] with
m = O(n) is an NP-search problem if there is a verification decision tree for S of depth
polynomial in logm.

3 We note that since f may not be Boolean, FP%(f) is a more accurate notation, but we slightly abuse
notation and use P% to be consistent with prior work/notation.
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Pseudodeterministic Query Complexity. Finally we define the bounded-error and zero-
error pseudo-deterministic query complexity for total search problems S§. A bounded-error
pseudo-deterministic decision tree for S is a distribution over decision trees with the following
property: For every input z, there is a canonical value o € O such that with probability
at least 2/3, T(z) = o. In other words, T is a bounded-error randomized decision tree
for a particular function f that solves S. Let psP*(S) denote the (bounded-error) pseudo-
deterministic query complexity of S. Similarly let pstt(S ) denote the pseudo-deterministic
bounded-error quantum query complexity of S.

We note that for bounded-error randomized and pseudo-determinstic query algorithms,
by repeatedly running the query algorithm O(log(1/4)) times, we can amplify the success
probability from 2/3 to 1 —§.

Sensitivity and Block Sensitivity. Let f:{0,1}" — O. A block B C [n] is sensitive for f
on input z if f(z ® 1) # f(x), where 15 is the n-bit string that is 1 on bits in B and 0
otherwise. In other words, if we change x by flipping all of the bits in B to get xZ, then
the value of f changes (so f(z) # f(z?)). The block sensitivity of x with respect to f,
bs,;(f), is the maximal number of disjoint blocks that are all sensitive for z. We define
bs(f) = mal‘xe{o,l}nbsz(f)-

A bit i € [n] is sensitive for x with respect to f if the block {i} is sensitive for z. The
sensitivity of & with respect to f, s,(f), is the maximal number of sensitive bits for z, and

S(f) = maxze{o,l}”sw(f)'

Degree. A polynomial ¢ € R[x1,...,x,] is said to represent the function f : {0,1}"™ — {0,1}
if g(z) = f(z) for all z € {0,1}". The (Fourier) degree of f, d(f) is the degree of the (unique)
polynomial representing f. A multioutput function f : {0,1}™ — [m], induces a partition of
{0,1}" into m classes, where the i*" class contains those inputs that are mapped to i (i.e.,
those x such that f(z) = 4). Thus we can define m associated Boolean functions, f, i € [m],
where fi(x) is 1 if and only if f(x) = i. The Fourier degree of f : {0,1}" — [m] is defined as
maxie[m]d(fi), and the Fourier degree of a total search problem S is the minimum of d(f)
over all functions f solving the search problem S.

Known Relationships. Pioneering work of Nisan [28], Nisan and Szegedy [29] and Beals-et-al
[4] studied the above query measures and showed that nearly all of them are polynomially
equivalent. (See [5] for a nice exposition.) The two exceptions are pseudo-deterministic
complexity (which was defined later) and sensitivity, which remained a longstanding open
problem for thirty years. In recent breakthrough work, Huang [25] resolved the conjecture
by proving s(f) > deg(f)*/?. The exact quantitative relationships between the measures
has been intensively studied; a table summarizing the state-of-the-art pairwise relationsihps
(pre-Huang) is given in [1]. Post-Huang, [2] improved the relationships between deterministic
query complexity, quantum query complexity and degree to near-optimal (ignoring polylog
factors).

We summarize here the relationships that will be important for us. First, the following
basic relationships are known:

QY (f) = O(BPP™(f)) = O(P™(f))

d(f) = O(P*(f))
s(f) = O(bs(f)) = O(BPPU(f)).
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The following nontrivial relationships have recently been proven using Huang’s theorem [2]:
d(f) = 0(Q™(/)?)
PE(f) = 0(Q"(H)").

These results are know to be tight within polylog factors. Before these results the best known
(pre-Huang) was d(f), P*(f) = O(Q™(/)°).

We now consider the relationship between the pseudo-deterministic, deterministic and
randomized query classes. Let & be a FNP search problem, we have the easy inclusions:

PU(S) > psBPPU(S) > BPP(S)

PY(S) 2 psQ™(S) = Q™(S).

3 Search Problems in TFNP

We define TFNP%, the query analog of TFNP to be the class of all search problems
f:{0,1}™ — [m] that admit a nondeterministic decision tree of complexity polylog(n).
(Equivalently, f can be written as a polylog(n)-width DNF.)

» Definition 2. Let X = {z € {0,1}", | || > n/2} where |x| is the number of 1’s in x. The
search problem FIND1 C X x [n] is defined by: (x,i) € FINDI if and only if x € X and
Tr; = 1.

It is not hard to see that the deterministic query complexity of FIND1 is (n), but the
randomized query complexity (and therefore also the quantum query complexity) is constant.
Here we show that for any search problem in TFNP for which solutions are verifiable using
few queries, a gap between randomized and pseudo-deterministic query complexity implies a
gap between randomized and pseudo-deterministic query for FINDI.

Call a function f : N — N reasonable if f(©(n)) = O(f(n)). Note that functions such as
f(n) =nc for e <1, f(n) =log(n) and f(n) = O(1), which often occur as bounds on query
complexity, are all reasonable.

» Theorem 3. Letr,q,v : N — N be reasonable functions. Let S be a search problem verifiable
with v(n) queries such that BPPY(S) < r(n) and psP*(S) > q(n). Then psP*(FINDI) =
Q(q(n)/(r(n) +v(n)).

Proof. Since § has randomized decision tree complexity at most r(n), there is a family
F of deterministic decision trees of depth r(n) such that for each x € Z of length n, a
uniformly chosen tree from F solves S on x with probability at least 3/4. If we uniformly
and independently pick a subfamily F’ of ¢n trees from F for large enough constant ¢, it
follows using Chernoff bounds and a union bound that with positive probability over the
choice of F’, for each x € X of length n, a uniformly chosen tree from F’ solves S on z
with probability at least 2/3. Hence, by the probabilistic method, there must exist such a
subfamily F’. Fix such a subfamily, and let T; ...T},, be an arbitrary enumeration of the
decision trees in F’, where m = cn.

Assume that FIND1 can be solved pseudo-deterministically with at most p(m) queries on
inputs of length m. We show how to solve S pseudo-determistically on inputs of length n
with at most p(m)(r(n) + v(n)) queries. The pseudo-deterministic query algorithm A for S
on input z of length n is as follows. We simulate the pseudo-deterministic query algorithm
A’ for FIND1 that makes at most p(m) queries. If A" asks whether bit ¢ € [m] is 1 in the

36:7

CCC 2021



36:8

On Pseudo-Deterministic Query Complexity

input to FIND1, we run the query algorithm for S corresponding to tree 7T;. By assumption,
at most r(n) queries are made, and some output y is produced. We verify that (z,y) € S
by using the v(n) query verification algorithm for the search problem S. If the verification
succeeds, we assume the answer to the query made by A’ is 1 and proceed, otherwise we
proceed with the simulation of A assuming that the answer is 0. When we finish simulating
A’, some index j € [m] is output. We proceed to run the query algorithm corresponding to
T; on x and return the output z of this algorithm.

The cost of this query algorithm A is at most p(m)(r(n) + v(n)) since the simulation of
each query of A’ has cost at most r(n) + v(n), and there are at most p(m) queries along
any computation path. It remains to argue that A pseudo-deterministically solves S. By
assumption, a uniformly chosen tree from F’ solves S on x with probability at least 2/3 -
this implies that for at least 2/3 fraction of indices ¢ € [m], the simulation of a query made
by A’ to ¢ returns 1. By assumption, A’ pseudo-deterministically solves FIND1, hence there
is a fixed j € [m] for which the query made by A’ to j returns 1 such that A’ outputs j with
probability at least 2/3. But since T} solves S correctly, this means that A outputs a fixed
solution to the search problem S with probability at least 2/3.

Thus we have that p(m) > q(n)/(r(n) + v(n)) This implies that p(m) = Q(g(m)/(r(m) +
v(m)) using m = O(n) and our assumption that the functions r, ¢, v are all reasonable. <

4 Lower Bounds for Pseudo-deterministic Query Complexity

» Theorem 4. There is a \/n gap between the randomized and pseudo-deterministic query
complexity of FINDI:

(1) BPPY(FIND1) = O(1), and therefore Q*(FIND1) = O(1) as well;

(2) psQ*(FIND1) = Q(/n) and thus psP*(FIND1) = Q(\/n) as well.

The proof of the above theorem follows from Theorem 3 together with our main theorem
below which proves a \/n separation between randomized and pseudo-deterministic quantum
query complexity for a broad family of TFN Pt search problems that are associated with
expanding unsatisfiable CNF formulas.

» Definition 5. Let C = Cy A ... A C,, be an unsatisfiable k-CSP problem over Boolean
variables x1, ..., xy, where each C; is a constraint involving at most k variables. The search
problem associated with C', S¢ C {0, 1}™ x [m], consists of all pairs (x,i) such that x € {0,1}",
and Ci(z) = 0. A query algorithm for Sc on input x outputs a constraint C; that is falsified
by x.

Sc has been studied extensively in proof complexity and communication complexity,
where lower bounds on its deterministic query complexity have been used to obtain, via lifting,
exponential lower bounds on the monotone circuit size of a monotone function associated
with C. Similarly, these search problems play a prominent role in lower bounds in proof
complexity and extended formulations (e.g., [10, 8, 11]).

» Definition 6. Let C = Cy A ... ANC,, be a k-CSP over Boolean variables x1,...,Zy,.
Consider the bipartite graph with m left vertices (one for each constraint) and n right vertices
(one for each variable), such that (i,7) is an edge if and only if variable x; occurs in constraint
C;. C is (r,s)-expanding if for every subset S C [m] of left vertices, |S| < r, the set of right
elements adjacent to S, N(S), has size at least s.

» Theorem 7. Let C be a k-CNF or k-XOR over x1,...,%y,, that is (en, ¢)-expanding for
€ =1/100, ¢ > k/2. Then psQ®(Sc) = Q(/n).
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» Corollary 8. Let k > 3, ¢ = c(k) a sufficiently large constant, n sufficiently large and
m = cn. Let CI* be the distribution over random k-CNF (k-XOR) formulas with m constraints,
where each constraint is chosen uniformly at random from the set of all size-k clauses (size-k
XOR formulas). Then with probability 1 — o(1), a random C drawn from CI* will have
BPPY(Sc) € O(1), and psQ*(Sc) € Q(/n).

Proof of Corollary 8. For ¢ = c(k) a sufficiently large constant, with high probability a
random k-CNF from C] will have the property that every assignment x falsifies a constant
fraction of the clauses of C. Assuming that C' drawn from C,* satisfies this property, there is
a constant depth randomized query algorithm for S¢. Namely, pick a random subset S of
O(1) clauses from C, and query all of the variables underlying these clauses. Output the
first clause from S that is falsified, if one exists, and otherwise output error. Since every
assignment falsifies a constant fraction, €, of clauses, the probability that all clauses in S are
satisfied (so the algorithm errs) is at most (1 — €)°l) so we can choose |S| to be a sufficiently
large constant so that the probability of error is at most 1/3. Therefore with probability
1 —o(1), BPP¥(S¢) = O(1). For the lower bound, a standard calculation shows that a

random k-CNF (or k-XOR) formula will be (n/100, k/2) expanding with high probability.

Therefore by Theorem 7, psQ®(S¢) = Q(v/n). <

Our lower bound proceeds by first proving linear lower bounds on the Fourier degree of
Sc, by a reduction to known lower bounds on the Nullstellensatz degree of refuting C'. With
this linear degree bound at hand, we obtain our lower bound by applying Huang’s sensitivity
theorem (showing that sensitivity and degree are quadratically related) together with the
fact that sensitivity lower bounds randomized query complexity.

A alternative proof which also gives us the \/n quantum pseudo-deterministic lower
bound can be obtained by combining our linear degree bound for S¢ with the result of [2],
showing that quantum query complexity is quadratically related to degree. We begin with
the definition of Nullstellensatz degree.

» Definition 9. For C = Cy A ... A C,, be an unsatisfiable k-CNF' formula, we define the
standard representation of C' by a set of m + n polynomial equations (each of degree at most
k) such that C is satisfiable if and only if there is an assignment such that all polynomials
evaluate to zero. For a clause C;, let C’j‘ denote the set of variables occurring positively in
C; and let C; denote the set of variables occurring negatively in C;; with this notation we
can write C; = szecj x5V Va:jec,; T;. From C; define the polynomial

Q(Cl) = szecj(l - xj)szGC:xj'
Let Q(C) = {Q1,...,Qm+n} denote the set of polynomials {Q(C;) : C; € C} U {x? — a; :

» Definition 10. Let C' be an unsatisfiable k-CNF formula and let Q(C) be the associated
set of polynomials as in Definition 9. A Nullstellensatz refutation of C (over a field F) is a
set of polynomials {P;},i =1...m +n such that

> PQi=1

i€[m+n]

holds over the ring Flxy ...xy,]. Any such sequence {P;} is called a Nullstellensatz refutation
of C, and the degree of the refutation is maxic(m4nd(P;). The Nullstellensatz degree of C,
NS(C), is the minimum degree over all Nullstellensatz refutations of C.
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We will use the following linear lower bounds on the Nullstellensatz degree for random
formulas.

» Theorem 11 ([21, 6, 3]). Let C = Cy A ... A Cy, be a k-CNF or k-XOR formula over
X1y, Tm, with m = O(n) and such that C is (en, k/2)-expanding. Then NS(C) = Q(n)
(over any field).

The next lemma shows that d(S¢) is lower bounded by Nullstellensatz degree (over any
field).

» Lemma 12. Let C be an unsatisfiable k-CNF formula, and let f be any function solving the
search problem Sc. Then NS(C) < d(f). Conversely, for any finite field F, O(d(S¢)logn) <
NS(C) < d(Sc).

Proof of Lemma 12. Suppose that f: {0,1}™ — [m] solves the search problem for C, and
let d = d(f) = max; d(f"). Consider the polynomial 37, f'Q;. First, we claim that
the polynomial Zie[m] fiQ; evaluates to 1 on all inputs in {0,1}". Since the functions
{f"| i € [m]} form a partition of {0,1}", for every a € {0,1}", there is exactly one i € [m]
such that fi(a) = 1, and for all other j # i, f/(a) = 0. Since f’(a) = 1 implies C;(a) = 0,
it follows that Q;(a) = 1. Thus, > cp, fiQ; evaluates to 1 for all a € {0,1}" as claimed.
Now using the axioms {Q11, .-, Qmin} = {27 —; | i € [n]}, we can derive the identically
1 polynomial as:

Yo+ Y Qs

i€[m] i€[m+1,m+n]

where each h; is of degree at most d. Thus we have a degree d Nullstellsatz refutation of C,
so NS(C) < d(f).

In the other direction, let Q(C) be the set of polynomials associated with C, and
assume that we have degree-d polynomials P, ..., P,, such that )", P;Q; = 1(mod2), where
F = GF(2). (A similar argument works over any finite field.) We want to define polynomials
f% such that: fi(a) = 1 implies that C;(a) = 1 and for all Cj, j < i, Cj(a) = 0. For any a,
we know that >, P;(a)Q;(a) = 1. In order to determine whether or not f(a) =1, we want
to do a binary search in order to find a term P;(«)Q;(a) that evaluates to 1. For example
suppose that m = 16. Then since 2321 Pi(a)Q;(a) is odd either (a) Z§:1 P;Q; is odd, or
(b) Z;ig P;Q; is odd. If (a) is odd, then we recurse on the left (smaller) side and otherwise
if (a) is even then we recurse on the right side. Viewing the binary search as a decision tree,
at the root we query 2?21 P;Q; and if it evaluates to 1 we go left and otherwise we go right.
This gives a height logm decision tree where internal vertices are labelled with degree d
polynomials, and the leaves are labelled with the index ¢ € [m] such that P;(a) = 1. Let p;
be the path from the root to the leaf labelled by i. We can define a polynomial f? associated
with p; which is the product of logm polynomials (along the path) such that fi(a) =1 if
and only if « is consistent with the path p;. Thus the f%’s solve the search problem S¢ and
have degree dlogm. <

Proof of Theorem 7. Let C = C; A ... AC,, be a k-CNF or k-XOR CSP over z1,...,z,
that is (en, k/2) expanding, where m = O(n). By Theorem 11, NS(C) = Q(n), and thus by
Theorem 12, d(S¢) = Q(n).

Assume that 7 is a pseudo-deterministic query algorithm for S¢. Then for every
input & € {0,1}", there is a canonical solution f(z) such that T (x) outputs f(x) with
probability at least 2/3. Thus 7 is a randomized query algorithm for f. By Nisan [2§]
s(f) = O(BPP(f)), and by Huang [25], s(f) > \/d(f). Thus since d(S¢) = Q(n), it follows
that BPP(f) = Q(y/n), and thus psP™(S¢) = Q(\/n). <
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Proof of Theorem 4. This follows from Theorem 7 and Theorem 3. We apply Theorem 3
to the search problem S¢. By Theorem 7, we have that r(n) = O(1) and ¢(n) = Q(y/n).
Also v(n) = O(1) since we can verify a solution to S¢ by just querying the variables in the
clause that is the candidate solution. Clearly, r, ¢, v are all reasonable, hence it follows from
Theorem 3 that FIND1 has pseudo-deterministic query complexity Q(y/n). <

We observe that our Q(y/n) separation between pseudo-deterministic quantum query
complexity and quantum query complexity is tight. Grover [23] discovered a quantum query
algorithm of complexity O(+/n) for solving the following search problem: Given an n-bit
binary string z, the goal is to find a coordinate ¢ such that x; = 1 (or to indicate that no
such ¢ exists). (See e.g., [9] for a survey.) This implies that FIND1 has pseudo-deterministic
quantum query complexity O(y/n), using a simple binary search algorithm to find the
lexicographically first 1. For the quantum lower bound, we combine the result of [2] that
quantum query complexity is at least y/deg(f) with Theorem 7.

5 Applications

5.1 A Related Combinatorial Problem

Our pseudo-deterministic query lower bound is related to a natural problem in extremal graph
theory, which states that any proper coloring of the hypercube has high (block) sensitivity.

» Definition 13. A proper coloring of the m-dimensional Boolean cube is any function
c:{0,1}™ —{0™} — [m] such that for all € {0,1}™ —{0™}, Bes) = 1.

» Theorem 14. Let ¢ be any proper coloring of the Boolean cube. Then there must exist
B €{0,1}™ such that: (i) B contains at least a constant fraction of 1’s, and (i) B has block
sensitivity d = Q(y/m). That is, there are d disjoint blocks of inputs, B, ..., By such that
for alli € [d], c(B) # c(B57).

We remark that the above theorem implies a lower bound of Q(y/n) on the pseudo-
deterministic query complexity of FINDI.

Proof. At a high level, we will convert our sensitivity lower bound for the search problem
associated with a random unsat k-XOR formula into a block sensitivity lower bound for the
above coloring problem. Fix an expanding k-XOR formula C with m = O(n) constraints
and n variables such that for any assignment o € {0,1}", at least a constant fraction of the
parity constraints are falsified by a. Further we will assume that the constraint-to-variable
graph is expanding and in particular, for any subset S C [n], there exists a large subset
S' C S, |8 = O(|S]) such that for all i # j € ', the constraints containing z; are disjoint
from the constraints containing x;.

First, we define a simple transformation that maps each input o € {0,1}" to an associated
m-~dimensional Boolean vector, 8(a) C {0,1}™.

» Definition 15. Let a € {0,1}™. The constraint vector, 3(a) € {0,1}™ associated with o
is defined as follows. For each j € [m], B(a)m =1 if and only if Cj(a) = 0. That is, the
constraint vector associated with o has a 1 in coordinate j exactly when the j** constraint of
C s falsified by a. Let S(C) denote the image of this map; that is, S(C) C {0,1}™ is the
set of all length m vectors that are constraint vectors for some « € {0,1}™.
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Since C' has the property that every assignment falsifies a constant fraction of the
constraints in C, it follows that for every «, 8(a) contains at least a constant fraction of
1’s. Now consider a pair of adjacent assignments o and o’ where o is obtained from «
by toggling the value of z;, i € [n]. Let B(z;) C [m] denote the set of coordinates j such
that constraint Cj in C contains z;. Because the constraints in C' are all parity constraints,
the constraint vector, 3(a') associated with o' can be obtained from S(a) by toggling the
coordinates in B(x;). Thus for every o € {0,1}" and ¢ € [n], we have:

Bla’) = (B(a)) P,

where 8(a)P(*) is obtained by starting with $(a) and flipping the coordinates in B(z;).

Now suppose that ¢ : {0,1}™ — [m] is a proper coloring of the m-dimensional Boolean
hypercube. Then ¢ restricted to the constraint vectors S(C') defines a function f. : {0,1}" —
[m] that solves the search problem associated with C'. By the proof of Theorem 7, any
function that solves the search problem for C' has sensitivity Q(v/n). Let o € {0,1}" be an
input of maximal sensitivity, and let S C [n], |S| = Q(y/n), be the set of sensitive coordinates:
for alli € S, fo(a) # f.(a?).

By our assumption on C' (which follows by expansion), there exists a subset S’ C .S of
size at least €|S| such that the sets of coordinates/constraints, {B(z;) | ¢ € S’} are pairwise
disjoint. Now we claim that S(a) € {0,1}™ has block sensitivity |S’|, where the sensitive
blocks are: {B(z;) | i € S'}.

First, by construction the blocks are pairwise disjoint. Secondly we want to show that
for each i € [S], c¢(B(a)) # c(B(a)B*)). Since the constraints of C' are parity constraints,
flipping the value of any variable x; flips the value of each constraint containing x;. That is, the
assignment o corresponds to the constraint vector 8(a’) = f(a)Z®). Since i is a sensitive
coordinate for f. with respect to , f.(a) # f.(a?), and therefore c(B(a)) # c(B(a)BE)). <

We leave open the following conjecture which is a strengthening of the above theorem.

» Conjecture 16. Let ¢ be any proper coloring of the Boolean cube. Then there exists an
assignment B € {0, 1}™ such that § has at least a constant fraction of 1’s and such that
has Q(n) sensitivity.

We also state another conjecture that strengthens the theorem in a different way. A vector
B € {0,1}™ is b-colorful with respect to a proper coloring c¢ if the set of colors associated
with 3 plus all of the neighbors of 5 is at least b.

» Conjecture 17. Let ¢ be any proper coloring of the m-dimensional Boolean hypercube. then
there exists 5 € {0,1}™ such that 8 has a constant fraction of 1’s, and § is Q(n)-colorful.

5.2 Size Lower Bounds and Pseudo-deterministic Resolution

The rich theory of TFNP and its subclasses (PPA, PPAD, PLS, etc) are defined based on the
underlying combinatorial axiom required to prove the totality of functions in the class. Thus
it is not surprising that there are strong connections between many TFNP subclasses and
corresponding proof systems. For example it is known that FP is complete for the bounded
arithmetic theory S3 (in the sense that the TFNP problems definable in S3 are the functions
in FP), and similarly PLS is complete for the theory T.

The query complexity of subclasses of TFNP corresponds to studying the subclasses
relative to an oracle. In the query world FP becomes P* and PLS becomes PLS®. The
corresponding relativized systems of bounded arithmetic, Si(R) and T3 (R), are uniform
versions of the propositional proof systems TreeRes (Tree-like Resolution) and Res (dag-like
Resolution).
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For many weak propositional proof systems, there is an equivalence between minimal-size
proofs of unsatisfiable formulas C and the query complexity of solving the search problem
Sc in a corresponding query model. In this section we will use this equivalence to define
pseudo-deterministic Resolution — a new notion that lies between ordinary Resolution and
the much stronger notion of Random Resolution. Building on our pseudo-deterministic
query lower bound, we exponentially separate pseudo-deterministic tree-like Resolution from
Random Resolution.

5.2.1 Pseudo-deterministic Resolution

We start by defining some dag-like query models and review the known equivalences between
Resolution and its common subsystems and their query model counterparts.

» Definition 18 (Conjunction DAGs). Consider the n-bit input domain {0,1}"™ and let F be
the set of all conjunctions of literals over the n input variables. An F-DAG, 11, solving a
search problem S C {0,1}" x [m] € TENP® is a directed acyclic graph of fanout at most two,
where each node v is associated with a function f, € F. (The set f; *(1) is called the feasible
set for v) and satisfying the following conditions:

There is a distinguished root node r and f, =1 (the constant 1 function).

For each non-leaf node v with children u,u’, we have f;1(1) C f (1)U £,1(1).

Each leaf node v is labelled with an output o, € [m] such that f,;1(1) C S71(o0,).
The size of 11 is the number of vertices in the dag. The width of 11 is the maximum width of
a conjunction associated with a node of 11.

» Theorem 19. Let C be an unsatisfiable k-CNF formula and let S¢ be the associated search

problem. The following equivalences hold:

1. The minimum width Resolution refutation of C is equivalent (to within constant factors)
to the minimum width of a conjuction-DAG for S¢ [31, 82].

2. The minimum size Resolution refutation of C is equivalent (to within constant factors)
to the minimum size conjunction-DAG for Sc. [31, 32].

3. The minimum size Reqular Resolution refutation of C is equivalent to the minimum-size
read-once Branching program for S¢ [27].

4. The minimum size tree-like Resolution refutation of C is equivalent to the minimum size
deterministic decision tree for Sc.

With these equivalences in hand, we easily obtain natural pseudo-deterministic versions
of these proof systems, stated next for Resolution and its common subsystems.

» Definition 20. Let C be an unsatisfiable k-CNF formula. A pseudo-deterministic tree-like
Resolution refutation of C is a pseudo-deterministic decision tree for Sc. Let the minimal-
size pseudo-deterministic TreeRes refutation for C be equal to psPdt(Sc). Similarly the
pseudo-deterministic reqular Resolution complexity of C' is the pseudo-deterministic read-once
branching program size for Sc, and the pseudo-deterministic Resolution complexity of C' is
the pseudo-deterministic dag-like query complexity of Sc.

It is not hard to see that pseudo-deterministic TreeRes, Res refutations are sound, and at
least for TreeRes, pseudo-deterministic proofs can be efficiently verified. We want to compare
pseudo-deterministic Resolution (and its subsystems) to Random Resolution (defined in [7]
(following a suggestion by S. Danchev), where it was motivated by the open problem of
proving a strict depth hierarchy for bounded-depth Frege systems.
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» Definition 21. A random Resolution refutation (RR) of an unsat CNF formula F over
X1, .., Ty 18 a distribution ™ on pairs (w;, E;), i € [q] such that:

1. Fach E; is a CNF formula in x1,...,%y;

2. For each i € [q], w; is a Resolution refutation of F N E;;

3. Forall a € {0,1}", Pri.[Ei(a) =1] > 3/4

The size of the proof is Y, (|w;| + size(E;)).

Similarly one can define random tree-like and regular) Resolution proofs; where now
each w; is a tree-like (regular) Resolution refutation of F' A E;. Random Cutting Planes
refutations were also defined in a similar manner by Sokolov [32].

Random Resolution turns out to be quite powerful, as is evidenced by the fact that random
unsatisfiable k-CNF formulas have short RR refutations, and even short random tree-like
refutations. For a random k-CNF with sufficiently many clauses, every assignment will falsify
a constant fraction of the clauses and thus we can create the distribution {(w;, E;),i € [¢]}
to mimic the randomized strategy for finding a violated clause: for each clause C; in F, let
E; be the negation of C;. Clearly each formula F' A E; is unsatisfiable and has a very short
tree-like proof, since C; together with F; is contradictory. Secondly since every assignment
is falsified by 1 — € fraction of clauses, Pr;[E;(a) = 1] > 1 — €. Using this fact together with
the PCP theorem, Pudlak and Thapen [7] observed that no polynomial-time verifier, or even
a randomized verifier, can check a RR refutation (or even a tree-like refutation) efficiently
unless P = NP (or BPP = NP).

The following theorem shows that a natural random distribution of formulas exponentially
separates pseudo-deterministic TreeRes size from random TreeRes size.

» Theorem 22. For all constant k > 3, there exists a family of k-CNF (k-XOR) formulas
{Fn}nen} such that:
The formulas F,, admit linear-size random TreeRes refutations;
For n sufficiently large and m = O(n) sufficiently large, any pseudo-deterministic TreeRes
refutation of F,, requires size exp(Q(y/n)).

Proof. The formula F,, will be obtained by two steps. First we will choose a k/2-CNF
(k/2-XOR) formula, f,, such that its clause variable graph is expanding. For example a
random formula chosen with m = O(n) clauses (XOR equations) will suffice. Secondly we
obtain F),, by composing f, with a 2-bit gadget g. That is, each variable z; will be replaced
by g(x?, xf), where zf, xf are twin variables replacing z;. For f,, an expanding CNF formula,
we define the gadget g to be the parity function, g(a,b) = a ® b and for f,, an XOR formula,
g(a,b) = aVvb. We then rewrite f,, og, as a k-CNF, clause-by-clause. Since f,, is a k/2-CNF
formula with n variables and m clauses, F;, will be a k-CNF formula with 2n variables and
m - 2% clauses.

Fix n sufficiently large, and let 7 be a pseudo-deterministic TreeRes refutation of F,,
where each tree T; € T has size at most s. Define size(7T) to be the sum of the sizes of all
trees in 7. First we remark that by Newman’s theorem, we can assume that the number of
trees (i.e. the amount of randomness required) is polynomial in the size of each tree, and
thus counting the total size of all trees combined, rather than the max tree size, is justified.

Let R C {0, 1, x}2" be the uniform distribution over the family of restrictions p such that:

for all i € n, exactly one variable in the pair (z¢, z?) is set to 0 or 1 and the other variable

1
in the pair is set to x. That is, (2%],,2%|,) C {(x,0), (x,1),(0,), (1,%)}. Let T be a size s
pseudo-deterministic TreeRes refutation of F,,. Let terms(7T) be the set of all terms (partial
assignments) associated with all paths in all trees, T;, and let wide C terms(T) be those

terms in terms(7T) of width at least w, w = O(y/n).
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For a fixed term ¢ € wide(T), the probability that a random p € R does not set ¢ to zero
is at most (3/4)". By the union bound, the probability that there exists p € R that sets all
wide terms to zero is at least 1 — s(3/4)" which is greater than zero for log s = O(w). Thus
there exists a restriction setting all wide terms of T to zero.

Applying p to T, and to F,,, we obtain a pseudo-deterministic TreeRes refutation 7' of
F,|, of size at most n and of depth at most w. Since F,|, is just a copy of f,,, by the expansion
properties of f;,, we can apply Theorem 7 which states that any pseudo-deterministic decision
tree for f, must have depth Q(y/n), and thus s = Q(exp(y/n)). <

5.2.2 Pseudo-deterministic Algebraic Proofs

By the relationship between low-degree polynomials solving S¢ and low-degree Nullstellensatz
refutations of C' given in Lemma 12, we can define pseudo-deterministic Nullstellensatz
refutations to be pseudo-deterministic polynomials solving S¢.

» Definition 23. Let C' be an unsatisfiable k-CNF and let S¢ be the corresponding search
problem. Then a pseudo-deterministic degree d Nullstellensatz refutation over F is a distribu-
tion over polynomials P = {P',... P1} over F such that each P': {0,1}" — [m] has degree
at most d and such that there exists a function f solving Sc such that P probabilistically
computes f: for all inputs x € {0,1}", Priciq[P(z) = f(z)] > 3/4.

We note that the degree of Nullstellensatz refutations of C over Fo have also been shown
to be equivalent to the PPAY query complexity of S¢ [19]. (Intuitively there is a degree-d
PPAY query algorithm for S if there is a depth-d decision tree reduction from S to an instance
of PPA. See [19] for a formal definition.)

Over the reals, Q(n¢) lower bounds for pseudo-deterministic Nullstellensatz refutations
follow from our pseudo-deterministic query lower bound for S¢ for random C'. This is because
a family of polynomials computing a function f that solves the search problem implies the
existence of an approximate polynomial of the same degree for solving f (that is, polynomials
p; that pointwise are within € of fi(z) for all x.) And polynomial degree is polynomially
related to approximate-degree for Boolean functions over the reals [29].

It is interesting to study similar relationships for other, stronger algebraic proof systems
such as Sherali Adams (SA) and Sum-of-Squares. Can low degree proofs be characterized or
lower bounded by the complexity of a family of pseudo-deterministic algebraic objects for
solving the associated search problem?

6 Average Case Pseudo-deterministic Simulations

In this section, we study pseudo-deterministic simulations of randomized query algorithms
in the average-case setting. We first show that for any search problem S, the existence of
zero-error randomized algorithms with low query complexity on average over a distribution
D implies the existence of deterministic algorithms with low query complexity on average
over D (and hence also of zero-error pseudo-deterministic algorithms). In the bounded-error
setting, we show that for any search problem S solving an approximation problem, the
existence of bounded-error randomized algorithms with low query complexity implies that for
any D, there is a bounded-error pseudo-deterministic algorithm with low query complexity
on average over D.

We first define what it means to solve search problems efficiently on average by a
pseudo-deterministic algorithm. We adopt the strongest reasonable definition of average-case
solvability: the algorithm must be pseudo-deterministic and solve the problem correctly on
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every input, and must have low query complexity on average over the distribution on inputs
(and randomness of the algorithm). Adopting a strong notion of solvability makes our results
stronger, as our results are mainly simulation results.

» Definition 24. Let D be a distribution over X C {0,1}". We say that a search problem S
over domain X is solvable on average over D by a bounded-error pseudo-deterministic query
algorithm with complexity q if there is a randomized query algorithm A that is bounded-error
pseudo-deterministic and solves S correctly with probability > 2/3 on each input in X, and
moreover the expected number of queries of A (over the randomness of A and the distribution
D) is at most q. Similarly, we say that a search problem S over domain X is solvable on
average over D by a zero-error pseudo-deterministic query algorithm with complexity q if
there is a randomized query algorithm A that is zero-error pseudo-deterministic and solves S
correctly with probability 1 on each input in X, and moreover the expected number of queries
of A (over the randomness of A and the distribution D) is at most q. If A is deterministic, we
say that S is solvable on average over D by a deterministic query algorithm with complexity q.

We first show that the canonical problem FIND1 (which is solvable efficiently by zero-error
query algorithms) has low average-case deterministic query complexity over any distribution.

» Proposition 25. Let D be any distribution on the domain of FIND1 restricted to n-
bit inputs. FIND1 is solvable on average over D by a deterministic query algorithm with
complezity log(n) + 1.

Proof. Let D be any distribution on the domain of FIND1 restricted to n-bit inputs. Let R
be a subset of [n] of size log(n) where R is chosen uniformly at random over all such subsets.
Since FINDI1 is defined over inputs « with |z| > n/2, we have that for each z in the domain
of FINDI1, the probability that there is a j € R such that z; = 1 is at least 1 — 1/n. By
averaging, there is a subset B of [n] of size log(n) such that with probability at least 1 —1/n
over D, z; =1 for some j € B when x is chosen from D.

Consider the following deterministic query algorithm A. A queries the indices in B in
lexicographic order, and outputs the first such index j for which x; = 1, if such an index
exists. If no such index exists, A queries the indices in [n] \ B in lexicographic order, and
outputs the first index j for which z; = 1. Since FIND1 is only defined over n-bit inputs with
at least one 1, this query algorithm is correct. Call an input z in the domain of FIND1 “good”
if there is a j € B such that x; = 1. With probability at least 1—1/n over x chosen from D, z
is good and the query algorithm A uses at most log(n) queries. When « is not good, A uses at
most n queries. Thus the query complexity is at most (1—1/n)-log(n)+n-1/n <log(n)+1
on average over D. <

Next we significantly generalize Proposition 25 and show that efficient average-case
solvability by zero-error randomized algorithms is in fact equivalent to efficient average-case
solvability by deterministic algorithms (and hence also by zero-error pseudo-deterministic
algorithms).

» Theorem 26. Let S be a total search problem over domain X C {0,1}"*, D a distribution

over X, and q : N — N a function. The following are equivalent:

1. S is solvable on average over D by a zero-error query algorithm with complexity
O(g(n)polylog(n)).

2. S is solvable on average over D by a zero-error pseudo-deterministic query algorithm
with complezity O(q(n)polylog(n)).

3. S is solvable on average over D by a deterministic query algorithm with complexity
O(g(n)polylog(n)).
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Proof. The third item trivially implies the second, and the second item trivially implies the
first. We show that the first item implies the third.

Suppose S is solvable on average over D by a zero-error query algorithm with complexity
r(n) = O(g(n)polylog(n)). This implies that there is a distribution D’ over deterministic
query algorithms such that for every input z in X, a query algorithm A chosen from D’
solves § with probability at least 2/3 over D’, and moreover the expected number of queries
over A chosen from D’ and z chosen from D is at most r(n). Without loss of generality,
we can assume that D’ is uniform over a multi-set Y of deterministic query algorithms. If
this multi-set has size K, sampling from D’ is equivalent to sampling uniformly from [K].
From now on, we assume a bijection between [K| and Y, and also assume without loss of
generality that K > 4log(n).

For positive integral ¢, define an input x € X to be t-good if it is the case that with
probability at least 1/6 over choice of A from D’, A solves S correctly on x making at most
2tr(n) queries. We argue that for each ¢, x chosen from D is t-good with probability at
least 1 — 1/t. The proof is by contradiction. Suppose this were not the case. Then for some
positive integer ¢, with probability greater than 1/¢ over x chosen from D, x is not t-good. If
x is not t-good, then with probability at least 5/6 over choice of A from D', A either does
not return a solution for S or makes more than 2¢r(n) queries. Since for any x € X', A solves
x with probability at least 2/3, it must be the case that with probability at least 1/2 over
choice of A from D’, A makes more than 2¢r(n) queries on « when z is not t-good. Since
the probability over D that z is not ¢-good is greater than 1/¢, this implies that when « is
sampled from D and A from D’, the expected number of queries is greater than r(n), in
contradiction to the assumption that the zero-error query algorithm corresponding to D’ has
complexity at most r(n).

Now consider a t-good x € X. Say that k € [K] is t-suitable for z if running the k’th
deterministic query algorithm from Y on x succeeds in solving S on z while making at
most 2tr(n) queries. Since z is t-good, k chosen uniformly from [K] is suitable for « with
probability at least 1/6. Let R be a subset of [K] of size 4 log(n) chosen uniformly at random
from all subsets of this size. With probability at least 1 — 1/n, R contains j € [K] such that
j is t-suitable for x. Say that R is t-suitable for x if this is the case.

Let u(x) be the smallest positive integer ¢ such that x is t-good. For any x, we have that
w(z) < n.

By averaging, there is a subset B of [K] of size 4log(n) such that with probability at
least 1 — 1/n over x sampled from D, B is u(z)-suitable for z. Consider the query algorithm
A that works as follows. It runs the query algorithms corresponding to the elements of B
in an interleaving fashion. Namely, if the elements of B are by ... bs104(n), it makes the first
query of the b;’th algorithm for each j € [4log(n)] in order, then the second query for each
of these algorithms, and so on until it has made enough queries for a given algorithm so that
the algorithm outputs an answer. Naturally, it never repeats a query that it has already
been made. Note that A halts after making at most 8u(x) log(n)r(n) queries.

We bound the expected number of queries made by A for x chosen from distribution
D. With probability at most 1/n, B is not p(z)-suitable for z, and in this case A makes
at most n queries on . When B is pu(z)-suitable, A halts and outputs a correct solution
for S on z after making at most 8u(x)log(n)r(n) queries. For each integer i € [[log(n)]],

we have that the probability over z sampled from D that u(z) < 2% is at least 1 — 1/2%.

Computing the expectation of the running time of A by summing over 1 < ¢ < log(n)
such that 2¢ < u(z) < 2! we have that the contribution to the expectation when B is
u(z)-suitable is at most (1/2-2+ 1/4 -4+ ...)8log(n)r(n) < 16(log(n))?r(n). Thus, the
total expectation is at most 16(log(n))?r(n) + 1 = O(g(n)polylog(n)), as desired. <
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Next, we turn to bounded-error average-case solvability. We show that the eeHWE
problem of approximating the Hamming weight of a string to within an additive term e
is solvable efficiently on average by bounded-error pseudo-deterministic query algorithms.
We note that Goldreich, Goldwasser and Ron [13] showed an Q(n) query lower bound for
worst-case bounded-error pseudo-deterministic algorithms solving this problem.

» Theorem 27. For any distribution D and any constant € > 0, e-HWE is solvable on
average over D by bounded-error pseudo-deterministic algorithms of complexity O(log(n)/e?).

Proof. We use the fact that, on any z, if we take a random sample of bits of size ¢ =
O(log(n)/€?), the empirical average of ones of this sample differs from that of z by €/4 with
probability at most 1/5n, using a standard Chernoff-Hoeffding bound. By averaging, for
every distribution D there must be some fixed such subset of bits with this property, when
we take the expectation over random z from D. Call this subset A, and let d4(x) be the
empirical estimate of the density of x based on the bits in A. Let B represent a uniform
random subset of bits of size ¢, and let dg(z) represent the empirical estimate of the density
of = based on the bits in B. Let d(x) represent the actual density of x.

Let p(z) be the function : p(x) = da(z) if Probglldg(z) — da(z)] < €/2] > 1/5, and
p(x) = d(x) otherwise. p(x) is a fixed function of x, and it is always a good approximation
to d(x), since if it is not literally d(z), it is €/2 close to dg(z) for most B, and a random B
has dg(z) €/2 close to d(x) .

Consider the following algorithm for computing p(x):
Compute da(z).

Choose a random B of size q.

Compute dp(x)

If |dg(z) — da(z)| < €/2, return da(x)

Otherwise, query all bits of z, and compute p(z). Return p(z).

4

We claim that this algorithm returns p(x) on any x except with probability at most 1/5.
Case 1: If Probg||ldg(z) — da(z)] < €/2] > 1/5, then p(z) = da(z). Then we either return
the correct value in step 4, or we go on to compute the correct value in step 5. Either way,
the algorithm is always correct.

Case 2: If Probg|ldp(x) —da(z)| < €/2] < 1/5, then by definition, we return a value in
step 4 with probability at most 1/5. Thus, on such an input, with probability at least 4/5,
we go on to compute and return p(z) by brute force in step 5.

Finally, we bound the expected number of bits queried by the algorithm over a random
x from D. Over such random z, with probability 1 — 1/5n, |da(z) — d(x)| < €/4, and for
any x, with the same probability over B, |dg(z) — d(z)| < €/4. If both of these happen,
|da(z) — dp(z)| < €/2 and the algorithm terminates in line 4 after making 2q queries. So
the expected number of queries is at most 2¢ + 2/5n - n = O(q). <

We observe that Theorem 27 generalizes to yield an efficient bounded-error pseudo-
deterministic algorithm on average for any approximation problem with low bounded-error
randomized query complexity. Given a metric A on a space O and a function f: X — O, a
search problem S with domain X C {0, 1}" and range O is said to be the e-approximation prob-
lem for f if the solutions to S on input « € X are all points y € O for which A(y, f(z)) < e

» Theorem 28. Let € be a constant, O be a space with metric A and f : X — O be a function
such that there is a randomized query algorithm with complezity q to €/4-approximate f.
Then for any distribution D over X there is a pseudo-deterministic query algorithm A that
e-approximates [ with query complexity O(qlog(n)) on average over D.
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The proof is a straightforward generalization of the proof of Theorem 27, and we therefore
omit it.

We note that unlike with zero-error randomized query complexity, efficient bounded-error
query algorithms are not in general efficiently simulated on average by deterministic query
algorithms.

» Proposition 29. Let D be any distribution assigning positive weight to every n-bit input.
For any e < 1/2, e-HWE has zero-error average-case query complexity Q(n) over D.

Proof. Let A be any zero-error query algorithm solving e-HWE on average over D. A is a
distribution over deterministic query algorithms. We note that for any deterministic query
algorithm in the support of A, there is no path of length < (1 — 2¢)n with an output. If
there were such a path, then the output would not be a correct e-approximation either for
the input on which all unqueried bits are 0 or for the input on which all unqueried bits are 1.
Since both of these inputs have positive probability according to D, this would imply that A
is not a correct zero-error algorithm for e HWE.

Now for any input z, since A is a correct zero-error query algorithm, it must return an
output with probability at least 2/3. By the previous paragraph, this means that the average
number of queries over D is Q(n). <

7 Open Problems

Here we record some open problems and directions that we leave open.

First, our lower bound is tight for pseudo-deterministic quantum query complexity. We
conjecture that the bound for both FIND1 and S¢ can be improved to ©(n) for pseudo-
determnistic query complexity. Such an improvement would have to bypass sensitivity (and
approximate degree) since both incur a quadratic loss. Secondly, we leave open the question
of proving superpolynomial or exponential lower bounds for pseudo-deterministic Resolution
refutations.

More generally, it is very interesting to study pseudo-determinism in the realm of
communication complexity. A pseudo-deterministic communication protocol for a search
problem S = {0,1}” x {0,1}" x [m] is a distribution II = {my,...,m,} over deterministic
protocols with the property that there exists a function frr : {0,1}" x {0,1}"™ — [m] solving
S, where II is a randomized protocol for f. That is, for every input (z,y) € {0,1}™ x {0,1}",
Priciglmi(z,y) = f(z,y)] = 3/4.

Pseudo-deterministic communication complexity is interesting for several reasons. For
Boolean functions an exciting body of work has culminated in what is now a nearly complete
understanding of many query/degree measures and their pairwise relationships. In turn these
query measures for Boolean functions have natural analogs in communication complexity,
and lifting theorems give a way to lift query upper and lower bounds to their communication
counterparts. However for search problems, we lack a good understanding of query measures
and the relationships between them, and this in turn leads to a lack of clarity with respect
to their communication analogs. For example, what is the analog of sensitivity and block-
sensitivity for search problems? In [26] a notion called critical block sensitivity was defined,
and used in [20, 18] to prove strong lower bounds on dynamic SOS and extended formulations
on the exact compution of certain functions. Unfortunately critical block sensitivity is only
defined for search problems containing inputs with a unique solution and therefore these
tools cannot be used to prove inapproximability results. As a second example, extended
formulation lower bounds have been proven by lifting semialgebraic degree lower bounds, but
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applying the lifting framework to prove inapproximability lower bounds is quite subtle, in large
part due to a lack of relaxed/approximate/pseudo-deterministic notions of query complexity
for search problems (e.g., approximate notions of Sherali-Adams (SA) and Sum-of-Squares
(SOS) degree.) Since pseudo-deterministic algorithms are just randomized algorithms for
computing some function solving the search problem, they are central to the study of relaxed
query measures for search problems.

Secondly, the pseudo-determinism communication complexity of Karchmer-Wigderson
search problems is particularly interesting. It is well known that deterministic communication
complexity lower bounds on the KW search problems associated with a Boolean function
is equivalent to formula size lower bounds (and dag-like communication lower bounds are
equivalent to circuit lower bounds). This equivalence has been quite successful for proving
lower bounds in monotone models of computation where lifting theorems in communication
complexity have been applied to prove a variety of state-of-the art lower bounds for monotone
formulas, monotone span programs, monotone circuits, as well as extended formulations
(which are also a monotone model as they relate to nonnegative rank).

An exciting direction towards proving nonmonotone circuit/formula lower bounds is to
further develop lower bound techniques for monotone models to apply to more functions —
such as slice functions or all small “perturbations” of the function [24]. Related to this, we
note that the communication complexity of monotone KW games is quite different than that
of non-monotone KW games: whereas the (nonmonotone) KW game for any f has a trivial
O(logn) pseudo-deterministic protocol, the monotone KW game (for monotone f) in general
appears to be hard pseudo-deterministically.

A reasonable approach for separating pseudo-determininistic from randomized communic-
ation is lifting. We conjecture that the lifted /composed functions FIND1 o " and S¢ o g™
require large pseudo-deterministic communication complexity for good choices of g (such
as the index function). We note that standard lifting theorems won’t work in a black-box
way since the pseudo-deterministic protocol can have different canonical solutions for dif-
(Z',4') such that ¢"(Z,7y) = ¢"(Z'y’). Nonetheless, pseudo-deterministic
communication lower bounds should be possible by combining lifting (in a non-blackbox

5
)

ferent inputs (Z, ¥)
way) with the right pseudo-deterministic query lower bound argument. In this respect we

view our pseudo-deterministic query lower bounds as a first step towards obtaining a similar
separation in communication complexity.
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