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Abstract
Semialgebraic proof systems have been studied extensively in proof complexity since the late 1990s
to understand the power of Gröbner basis computations, linear and semidefinite programming
hierarchies, and other methods. Such proof systems are defined alternately with only the original
variables of the problem and with special formal variables for positive and negative literals, but there
seems to have been no study how these different definitions affect the power of the proof systems.
We show for Nullstellensatz, polynomial calculus, Sherali-Adams, and sums-of-squares that adding
formal variables for negative literals makes the proof systems exponentially stronger, with respect
to the number of terms in the proofs. These separations are witnessed by CNF formulas that are
easy for resolution, which establishes that polynomial calculus, Sherali-Adams, and sums-of-squares
cannot efficiently simulate resolution without having access to variables for negative literals.
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1 Introduction

Given a set of polynomial equalities

pj = 0 j ∈ [m] (1)
and/or inequalities

rj ≥ 0 j ∈ [ℓ] (2)

in some field F (which should be ordered if ℓ > 0), the problem of determining whether
there exists solutions satisfying all constraints is a natural and well-known NP-hard problem.
If one includes among the equalities (1) also equations x2

i − xi = 0 for all variables xi,
then this setting can also be used to decide satisfiability of formulas in conjunctive normal
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40:2 The Power of Negative Reasoning

form (CNF). This is done by identifying 1 with true and 0 with false and then translating
disjunctive clauses like x1 ∨ x2 ∨ xk into equalities (1 − x1)x2(1 − x3) = 0 or inequalities
x1 + (1 − x2) + x3 ≥ 1 (using the multiplicative or additive translation, respectively).

For polynomial equalities as in (1), it follows from (a mild extension of) Hilbert’s
Nullstellensatz that there is no solution if and only if there are polynomials qj such that the
syntactic equality∑

j∈[m]

qjpj = 1 (3)

holds. Such Nullstellensatz certificates can be viewed as proof system in the sense of Cook
and Reckhow [15], and the study of this Nullstellensatz proof system was initiated in [7]. In
the polynomial calculus proof system introduced in [14] such certificates can be constructed
step by step by explicitly deriving polynomials in the ideal generated by { pj | j ∈ [m]}.
This can be seen to correspond to Gröbner basis computations, which can potentially yield
more concise certificates of unsatisfiability. When there are also inequalities (2), linear
combinations of polynomial products∑

j∈[m]

qjpj +
∑
j∈[ℓ]

sjrj = −1 (4)

for sj ≥ 0 with different syntactic restrictions yield proof systems such as Sherali-Adams [38]
and sums-of-squares (SOS) [30, 25], corresponding to linear and semidefinite programming
hierarchies.

By now there is a rich literature on upper and lower bounds for these proof systems. An
excellent general reference on proof complexity is [28]. For more details on Nullstellensatz
and polynomial calculus the reader can consult [13] and the references therein, and a recent
survey covering Sherali-Adams and sums-of-squares is [21].

1.1 Encoding of Variables and Literals
One slightly annoying aspect when translating CNF formulas to the algebraic setting described
above is that the translation is quite sensitive to the signs of the literals in clauses. Normally,
polynomials are represented as linear combinations of monomials, which means that a clause

x1 ∨ x2 ∨ · · · ∨ x3 (5a)

with k positive literals turns into a polynomial equation

k∏
i=1

(1 − xi) = 0 (5b)

with 2k monomials if we use the multiplicative translation. This problem does not immediately
arise for the additive translation, but it is still conceivable that it could be helpful to encode
polynomials of the form (5b) more concisely.

This problem was perhaps first addressed in [1], where a version of polynomial calculus
was defined with separate formal variables xi for negative literals, together with equations
xi + xi − 1 = 0 enforcing the intended meaning of negation. This proof system was called
polynomial calculus with resolution, or PCR for short, in [1], since the introduction of negative
literals can be seen to allow polynomial calculus to simulate the resolution proof system
efficiently, but in this paper we will refer to this flavour of the proof system as polynomial
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calculus with negative literals (as opposed to polynomial calculus without negative literals).
When the proof system has access to separate variables for positive and negative literals,
this ensures that lower bounds do not depend on the choice of signs for literals encoding
the input, but reflect more intrinsic properties of the problem under study. As far as we
are aware, essentially all lower bounds for polynomial calculus holds even when negative
literals are allowed (with the exception of some of the lower bounds in [20]), and to the best
of our knowledge there are no polynomial calculus upper bounds that are known to hold
only for polynomial calculus with negative literals and not for polynomial calculus without
them. Papers such as [5, 31, 11, 4] have studied the Sherali-Adams and sums-of-squares
proof systems both with and without variables for negative literals, but again without really
distinguishing between the two versions of the proof system thus obtained.

The purpose of this work is to understand if and how the introduction of formal variables
for negative literals affect the power of reasoning of (semi)algebraic proof systems. This is
arguably quite a natural question, and we find it somewhat surprising that nothing seems to
be known regarding how the two variants of these (semi)algebraic proof systems are related.

Somewhat intriguingly, this does not seem to be just a theoretical concern. For, e.g.,
Gröbner basis computations, one could expect that this whole question should be irrelevant,
since the basis reduction algorithm will immediately remove whichever literal over a given
variable that comes later in the order. This appears not to be the case, however, and papers
such as [36, 27] use “bit-flipping” (i.e., the introduction of formal variables for negated literals)
to try to avoid blow-ups in polynomial size during hardware circuit verification.

1.2 Our Results
We show that for all of the proof systems Nullstellensatz, polynomial calculus, Sherali-Adams,
and sums-of-squares, adding separate formal variables for negative literals results in an
exponential increase in power. Our main results can be summarized as follows (where we
refer to Section 2 for the missing formal definitions).

▶ Theorem 1. Let P be any of the proof systems Nullstellensatz or polynomial calculus (over
any field), or Sherali-Adams or sums-of-squares. Then there is a family of CNF formulas
{Fn}∞

n=1 of size polynomial in n such that the proof system P has polynomial size refutations
of Fn that use formal variables for negative literals, whereas P refutations of Fn requires
exponential size when such formal variables are not allowed.

We remark that, except for sums-of-squares, the separating formulas above are CNFs
of constant width. It is known from [1, 5] that polynomial calculus, Sherali-Adams, and
sums-of-squares over literals can simulate the resolution proof system efficiently. Since the
formulas in Theorem 1 are all easy for resolution, it follows that negative literals are necessary
for the simulation.

▶ Corollary 2. None of the proof systems polynomial calculus, Sherali-Adams, or sums-of-
squares can polynomially simulate resolution, unless formal variables for negative literals are
allowed.

For Nullstellensatz and polynomial calculus we also give some more refined separation
results involving size-degree trade-offs and space-degree trade-offs.

1.3 Outline of This Paper
In Section 2 we review the relevant preliminaries. In Section 3 we establish our separation
results for polynomial calculus. Analogous results for Sherali-Adams and sums-of-squares
are obtained in Section 4, and the separation for Sherali-Adams is sharpened somewhat in
Section 5. Our results for Nullstellensatz are presented in Section 6.
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2 Preliminaries

We encode propositional variables as algebraic variables with {0, 1} values, with the intended
meaning that 1 represents true and 0 represents false. For each variable x we consider a
corresponding variable x that represents the logical negation of x, i.e., it holds that x = 1 − x.
We say that x is a positive literal and x is a negative literal. A (partial) boolean assignment ρ

is a mapping from some algebraic variables to {0, 1}, with the constraint that x ∈ dom(ρ)
if and only if x ∈ dom(ρ) and that in such case ρ(x) = 1 − ρ(x). Given a polynomial p the
restriction of p by ρ, denoted as p↾ρ, is the polynomial obtained from p by substituting in it
all variables x ∈ dom(ρ) with the corresponding value ρ(x). Given a set of polynomials S we
denote as S↾ρ the set of restricted polynomials. A random restriction is a distribution over
partial boolean assignments. A polynomial is multilinear if no variable appears with degree
larger than one and no monomial contains two opposite literals.

For a set S = {p1 = 0, . . . , pm = 0; r1 ≥ 0, . . . , rℓ ≥ 0} of polynomial equations and
inequalities we say that a boolean assignment satisfies S if it satisfies all the equations and
inequalities in it. We say that S implies an equation p = 0 when every boolean assignment
which satisfies S also satisfies p = 0. In the same way S implies an inequality r ≥ 0 when
every boolean assignment which satisfies S also satisfies r ≥ 0. We now discuss encodings of
a clause

x1 ∨ · · · ∨ xj ∨ ¬xj+1 ∨ · · · ∨ ¬xk (6a)
into polynomial constraints

(1 − x1) · · · (1 − xj) · xj+1 · · · xk = 0 , (6b)
x1 · · · xj · xj+1 · · · xk = 0 , and (6c)
x1 + · · · + xj + (1 − xj+1) + · · · + (1 − xk) ≥ 1 . (6d)

A clause (6a) is naturally encoded as the polynomial equation (6b), which has 2j monomials
of degree up to k. Using negative literals we get the more efficient encoding (6c) which has a
single monomial. We would like to stress that (6b) and (6c) are algebraic representations of
the same boolean function, even though they are syntactically different. For semi-algebraic
proofs, clauses are naturally represented as inequalities (6d).

We now define all proof systems discussed in this paper.

Resolution. We first introduce some basic notation. We denote the negation of a variable
x by ¬x or x. The width of a clause C is the number of literals in C. A CNF formula is a
conjunction of clauses and a width-k CNF formula, or simply a k-CNF formula, is a CNF
formula where every clause has width at most k. A resolution proof from a CNF formula F

of a clause C is a sequence of clauses (C1, . . . , Cτ ) such that Cτ = C and, for each i ∈ [τ ],
Ci is either a clause of F , or is some clause Cj ∨ D obtained by weakening a clause Cj , for
some j < i, or is derived from Cj and Cj′ , for some j, j′ < i by applying the resolution rule

B ∨ x D ∨ ¬x
B ∨ D

, (7)

where Cj = B ∨ x, Cj′ = D ∨ ¬x, and Ci = B ∨ D. When applying rule (7), we say
that we resolve on x. The size/length of a resolution proof (C1, . . . , Cτ ) is τ and its width
is the maximum width of any clause in the proof. A resolution refutation (i.e., proof of
unsatisfiability) of F is a proof of the empty clause ⊥ from it.
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A resolution proof (C1, . . . , Cτ ) can also be viewed as a DAG, with nodes [τ ] and, for all
i, j ∈ [τ ], a directed edge from j to i if Cj was used to derive Ci. The depth of a proof is the
length of the longest directed path in the underlying DAG. If the DAG is a tree the proof is
tree-like.

The following (semi-)algebraic proof systems reason about polynomial equations and/or
inequalities over {0, 1}, expressed in term of variables representing positive and negative
literals. To deal with CNF formulas we use the encodings (6), plus appropriate axioms
enforcing boolean values.

Nullstellensatz. Consider an initial set of polynomial equations S = {p1 = 0, . . . , pm =
0} over a field F and over variables x1, . . . , xn, x1, . . . , xn, where we require the set S to
include variable axioms x2

i − xi = 0, x2
i − xi = 0 and xi + xi − 1 = 0 for each i ∈ [n].

A Nullstellensatz (NS) proof of p = 0 from S is a set of polynomials {q1, . . . , qm} in
F[x1, . . . , xn, x1, . . . , xn] such that∑

j∈[m]

qjpj = p , (8)

where we stress that the equality is syntactical. Since all polynomials in S are zero by
hypothesis, the proof is sound. The (monomial) size of any such proof is the sum over
j ∈ [m] of the number of monomials occurring in each polynomial qjpj , when expanded out
as a linear combination of monomials. The degree of any such proof is the maximum degree
among all qjpj for j ∈ [m]. A refutation of S is a proof of the equation 1 = 0. A refutation
of a CNF formula F in NS is a refutation of a set S of polynomials containing the variable
axioms specified above plus the clauses of F encoded as in (6b), unless a different encoding
is specified.

▶ Proposition 3 (NS with negative literals simulates tree-like resolution). Let F be an unsat-
isfiable CNF formula that has a tree-like resolution refutation of F in size s and depth d.
Then the set of polynomial equations obtained by encoding each clause of F as in (6c) has an
NS refutation with negative literals in size 2s − 1 and degree d.

Polynomial calculus. As was the case for Nullstellensatz, we consider an initial set
of polynomial equations S = {p1 = 0, . . . , pm = 0} over a field F and over variables
x1, . . . , xn, x1, . . . , xn, and we require that S include variable axioms x2

i − xi = 0, x2
i − xi = 0

and xi + xi − 1 = 0 for each i ∈ [n]. A polynomial calculus (PC) proof of p = 0 from S is
a sequence of polynomials (q1, q2, . . . , qτ ) in F[x1, . . . , xn, x1, . . . , xn] such that qτ = p and
each qt for 1 ≤ t ≤ τ is either

some polynomial pj with pj = 0 ∈ S;
a linear combination αqt1 + βqt2 for some α, β ∈ F and 1 ≤ t1, t2 < t;
a multiplication x · qt′ for some t′ < t and variable x = xi or x = xi.

When the equations in S are satisfied, all derived polynomials, p in particular, are zero.
The (monomial) size of such a proof is the sum over 1 ≤ t ≤ τ of the number of monomials
occurring in each polynomial qt, when written as a sum of monomials. The degree of such
a proof is the maximum degree among all qt for 1 ≤ t ≤ τ . A refutation of S is a proof of
1 = 0. A refutation of a CNF formula F in PC is a refutation of a set S of polynomials
containing the variable axioms specified above plus the clauses of F encoded as in (6b),
unless a different encoding is specified. It is a simple observation that when dealing with
CNF formulas of constant width, it is possible to efficiently deduce the representation (6b)
from the representation (6c) and vice versa.

We stress that all results proved here for NS and PC hold independently of the field F.

CCC 2021
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Sherali-Adams. We consider an initial set of polynomial equations and inequalities S =
{p1 = 0, . . . , pm = 0; r1 ≥ 0, . . . , rℓ ≥ 0} over the real field and over variables x1, . . . , xn, and
we require that the set S include, for each i ∈ [n], variable axioms x2

i − xi = 0, x2
i − xi = 0,

xi + xi − 1 = 0, xi ≥ 0, xi ≥ 0, 1 − xi ≥ 0, and 1 − xi ≥ 0. We also assume that S includes
the axiom 1 ≥ 0. We refer to an arbitrary product of factors of the form xi, xi, 1 − xi, 1 − xi

as a generalized monomial.1 A Sherali-Adams (SA) proof/derivation of r ≥ 0 from S is a set
of polynomials {q1, . . . , qm; s1, . . . , sℓ} such that∑

j∈[m]

qjpj +
∑
j∈[ℓ]

sjrj = r , (9)

where each sj is a positive linear combination of generalized monomials. That is, sj can be
written as sj =

∑
i αj,ihj,i for some αj,i’s that are positive real numbers and hj,i’s that are

generalized monomials. Under the assumption that all polynomial equations and inequalities
in S are satisfied, the addends qjpj are equal to zero and the addends sjrj are nonnegative;
hence r ≥ 0.

The (monomial) size of an SA proof is the sum over j ∈ [m] and j ∈ [ℓ] of the number of
monomials occurring in each summand in (9), when written as a sum of monomials. The
degree of an SA proof is the maximum degree among all qjpj for j ∈ [m] and all sjrj for
j ∈ [ℓ]. An SA refutation of S is an SA proof of −1 ≥ 0. A refutation of a CNF formula F in
SA is a refutation of a set S of polynomials containing the variable axioms specified above
plus the clauses of F encoded as in (6d), unless a different encoding is specified.

Sums-of-squares. As was the case for Sherali-Adams, we consider an initial set of polynomial
equations and inequalities S = {p1 = 0, . . . , pm = 0; r1 ≥ 0, . . . , rℓ ≥ 0} over the real field
and over variables x1, . . . , xn, and we require that S include, for each i ∈ [n], variable axioms
x2

i − xi = 0, x2
i − xi = 0, xi + xi − 1 = 0, xi ≥ 0, xi ≥ 0, 1 − xi ≥ 0, and 1 − xi ≥ 0, and

also the axiom 1 ≥ 0. A sum of squares (SOS) proof of r ≥ 0 from S is a set of polynomials
{q1, . . . , qm; s1, . . . , sℓ} in F[x1, . . . , xn, x1, . . . , xn] such that∑

j∈[m]

qjpj +
∑
j∈[ℓ]

sjrj = r , (10)

where each sj is a positive linear combination of squared polynomials, that is, sj can be
written as sj =

∑
i αj,ih

2
j,i for some αj,i’s that are positive real numbers and hj,i’s that are

polynomials. Under the assumption that all polynomial equations and inequalities in S are
satisfied, the summands qjpj are equal to zero and the summands sjrj are nonnegative;
hence, r ≥ 0.

The (monomial) size of an SOS proof is the sum over j ∈ [m] and j ∈ [ℓ] of the number
of monomials occurring in each summand in (10), when written as a sum of monomials. The
degree of an SOS proof is the maximum degree among all qjpj for j ∈ [m] and all sjrj for
j ∈ [ℓ]. An SOS refutation of S is an SOS proof of −1 ≥ 0. A refutation of a CNF formula
F in SOS is a refutation of a set S of polynomials containing the variable axioms specified
above plus the clauses of F encoded as in (6d), unless a different encoding is specified.

For the rest of the paper we say a proof in either NS, PC, SA, or SOS is without negative
literals if none of the variables x1, . . . , xn occur in any of the polynomials occurring in the
proof. Otherwise we say that the proof is with negative literals.

1 For instance (1 − x2)x3x4x5(1 − x9) is a generalized monomial. It is positive under the assumption that
all variables are between 0 and 1.



S. F. de Rezende, M. Lauria, J. Nordström, and D. Sokolov 40:7

▶ Proposition 4. Consider a CNF formula F with a resolution refutation of length L and
width w. It holds that

the clauses of F , encoded as in (6c), have a PC refutation with negative literals of size
O(L) and degree w + 1;
when F is a k-CNF formula with m clauses, its representation using encoding (6b) has a
PC refutation with negative literals of size O(2km + L) and degree w + 1;
the clauses of F , represented using encoding (6b), have a PC refutation without negative
literals of size O(2wL) and degree w + 1.

▶ Proposition 5 ([11]). Let S := {p1 = 0, . . . , pm = 0; r1 ≥ 0, . . . , rℓ ≥ 0} be a set of
polynomial equations and inequalities. If S has a Sherali-Adams refutation of degree d and
size N , then it has a sums-of-squares refutation of degree d + 1 and size N c for some c > 0.

The next lemma is a fundamental tool for the results in the next section.

▶ Lemma 6. Let S be a set of monomials over (positive) variables y1, . . . , yn and z1, . . . , zn.
There is a restriction ρ that for all i ∈ [n] sets exactly one of {yi, zi} to 0 and is such that
S↾ρ has degree at most log|S|.

Proof. We consider a random restriction ρ that for each i, chooses either yi or zi with
probability 1/2 and sets it to 0. Note that a monomial of degree d is set to 0 by ρ with
probability at least 1 − (1/2)d. Indeed, if the monomial contains both yi and zi for some
i ∈ [n], then it is set to 0 with probability 1; otherwise every variable is set to 0 independently
with probability 1/2 and thus the monomials is not set to 0 with probability (1/2)d. Therefore,
by union bound over all monomials in S we have that

Pr[ S↾ρ has a monomial of degree > log|S| ] ≤ |S| · (1/2)log|S|+1 < 1 . (11)

We conclude that there is some restriction ρ such that S↾ρ has degree at most log|S|. ◀

3 Negative literals and polynomial calculus

The main goal of this section is to exhibit a formula that has short refutations in resolution
but requires exponential size refutations in PC without negative literals. In particular, this
implies that not using negative literals can lead to an exponential blow-up in the size of
refutations. The starting point is the graph ordering principle, a formula introduced in [37]
that falsely claims that it is possible to partially order vertices of some finite graph such that
each vertex has at least one neighbour that is smaller (according to the ordering) than itself.

Consider a finite undirected graph G = (V, E). The graph ordering principle on G,
denoted as GOP(G), is a CNF formula defined on propositional variables xu,v for every two
distinct u, v ∈ V , with the intended meaning that xu,v is true when u is smaller than v in
the partial order. The clauses of GOP(G) are

xu,v ∨ xv,w ∨ xu,w for every three distinct u, v, w ∈ V , (12a)
xu,v ∨ xv,u for every two distinct u, v ∈ V , (12b)∨
u : {u,v}∈E

xu,v for every v ∈ V . (12c)

The graph ordering principle is a generalization of the ordering principle, considered for
the first time in [29]. The latter principle falsely claims that it is possible to partially order
a set of n element so that no element is minimal. The ordering principle, expressed as a

CCC 2021
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CNF formula, is often denoted by OPn, and is exactly the formula GOP(Kn), where Kn is
the complete graph over n vertices. Proposition 7 claims an upper bound that holds for any
graph, even the complete one. The degree lower bound in Proposition 8, however, holds only
for specific families of expander graphs.

▶ Proposition 7 ([39]). Given any graph G with n vertices and maximum degree d, the
formula GOP(G) is a d-CNF formula with Θ(n2) variables and Θ(n3) clauses. Furthermore,
GOP(G) has a resolution refutation of length Θ(n3) where every clause in the refutation
contains at most two negative literals.

▶ Proposition 8 ([23]). There exists a sequence of graphs {Gn}n such that each Gn has
Θ(n) vertices and constant maximum degree d, and any PC refutation of GOP(Gn) requires
polynomials of degree Ω(n).

The degree lower bound implies, in particular, that any resolution refutation of GOP(Gn)
must have width Ω(n) (due to Proposition 4). Given the resolution upper bound in Proposi-
tion 7, the simulation of resolution in Proposition 4 gives a small PC refutation of GOP(Gn)
only when using with negative literals. This suggests that negative literals are essential to
obtain small refutations of GOP(Gn). Is this really the case? A positive answer would give
us the separation we are looking for, but unfortunately we are not able to prove a size lower
bound for refuting GOP(Gn) in PC without negative literals. Instead, we compose GOP(Gn)
with the 2-bit OR function, thus obtaining a new formula that will remain easy for resolution
but will be provably hard for PC without negative literals.

Let us make this construction explicit. We denote by GOPOR(G) the CNF formula
obtained from GOP(G) by substituting each variable xu,v in GOP(G) by the disjunction of
two fresh variables, yu,v ∨ zu,v. In order to obtain a CNF formula, after the substitution
we must apply distributivity. This process transforms a clause of width k, with j negative
literals and k − j positive literals, into a set of 2j clauses with j negative literals and 2(k − j)
positive literals. For example, see how the substitution transforms this clause with 2 negative
literals

xu1,v1 ∨ xu2,v2 ∨ xu3,v3 ∨ xu4,v4 ∨ . . . ∨ xuk,vk
, (13)

into four clauses

yu1,v1 ∨ yu2,v2 ∨ yu3,v3 ∨ zu3,v3 ∨ yu4,v4 ∨ zu4,v4 ∨ . . . ∨ yuk,vk
∨ zuk,vk

(14a)
yu1,v1 ∨ zu2,v2 ∨ yu3,v3 ∨ zu3,v3 ∨ yu4,v4 ∨ zu4,v4 ∨ . . . ∨ yuk,vk

∨ zuk,vk
(14b)

zu1,v1 ∨ yu2,v2 ∨ yu3,v3 ∨ zu3,v3 ∨ yu4,v4 ∨ zu4,v4 ∨ . . . ∨ yuk,vk
∨ zuk,vk

(14c)
zu1,v1 ∨ zu2,v2 ∨ yu3,v3 ∨ zu3,v3 ∨ yu4,v4 ∨ zu4,v4 ∨ . . . ∨ yuk,vk

∨ zuk,vk
. (14d)

This transformation has not increased the size of the formula by much: GOPOR(G) has
Θ(n2) variables, Θ(n3) clauses, and the maximum width of its clauses is at most 2 times the
maximum width of a clause in GOP(G). Moreover, GOPOR(G) still admits short resolution
refutations.

▶ Lemma 9. For every graph G with n vertices, the formula GOPOR(G) has a resolution
refutation of length Θ(n3) where every clause in the refutations contains at most two negative
literals.
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Proof. The idea is to use the resolution refutation of GOP(G) from Proposition 7 as a
scheme for the refutation of GOPOR(G). Let C1, C2, . . . , Cτ be the sequence of clauses in
this refutation. For each Ci we consider the set Ci of at most four clauses that we get by
applying substitution (14) to it. Every clause in Ci has the same number of negative literals
as Ci, and that is at most two.

We show how to derive each Ci from GOPOR(G) by induction on i, assuming all previous
set Cj for j < i have already been derived. Furthermore, we show that each such derivation
takes a constant number of resolution steps.

If Ci is an initial clause of GOP(Gn) then all clauses of Ci are in GOPOR(G) by construction.
If Ci follows from Cj for some j < i by weakening, then each clause of Ci is a superset of some
clause in Cj and thus follows from it by weakening. The remaining case is when Ci is derived
by a resolution step from two previous clauses Cj and Ck. Without loss of generality, we
rewrite clause Cj as A ∨ xu,v, clause Ck as B ∨ xu,v, and clause Ci as A ∨ B. The structure
of sets Cj and Ck is as follows,

Cj : Ck :
A1 ∨ yu,v ∨ zu,v yu,v ∨ B1

A2 ∨ yu,v ∨ zu,v yu,v ∨ B2

A3 ∨ yu,v ∨ zu,v zu,v ∨ B1

A4 ∨ yu,v ∨ zu,v zu,v ∨ B2 ,

where A1, A2, A3, A4 and B1, B2 are the result of applying the substitution to A and B

respectively. These clauses may contain repetitions: if A does not contain negative literals
then A1, . . . , A4 are all the same. If A contains one negative literal then we get two clauses
repeated twice each. If A contains two negative literals then they are all different. Similarly
for B: if it contains no negative literals then B1 is equal to B2, otherwise it contains one
negative literal and B1 is different from B2. B cannot contain two negative literals.

By resolving on both variables yu,v and zu,v we obtain clauses Aµ ∨ Bν for µ ∈ {1, 2, 3, 4}
and ν ∈ {1, 2}. We can exclude the possibility that A contains two negative literals and
simultaneously B contains one, because otherwise A ∨ B would have three negative literals.
Therefore, the set of newly derived clauses has size at most four and is indeed the sequence
of clauses obtained by applying the substitution to A ∨ B. This concludes the induction and
gives us a refutation of GOPOR(G) since Cτ is the empty clause and, therefore, Cτ is the set
containing only the empty clause. ◀

▶ Lemma 10. There exists a sequence of graphs {Gn}n such that each Gn has Θ(n) vertices
and constant degree d, and any PC refutation of GOPOR(Gn) without negative literals requires
monomial size 2Ω(n).

Proof. Let {Gn}n be the sequence of graphs given by Proposition 8. Let P be a refutation
of GOPOR(Gn) in monomial size s. By Lemma 6, there is a restriction ρ that sets exactly
one of {yu,v, zu,v} to 0 and is such that all monomials in P↾ρ have degree at most log s. Note
that the formula GOPOR(Gn)↾ρ is an isomorphic copy GOP(Gn), where each variable xu,v

has been renamed either to yu,v or to zu,v, and thus, by Proposition 8, it requires refutations
of degree Ω(n). Since P↾ρ is a PC refutation of GOPOR(Gn)↾ρ, we conclude that log s ≥ Ω(n)
and the lemma follows. ◀

We collect the two lemmas in the following theorem.
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▶ Theorem 11. There is a family of constant width CNF formulas {Fn}n of size Θ(n3) such
that Fn has a resolution refutation of length Θ(n3), but any PC refutation of Fn with no
negative literals must contain 2Ω(n) monomials.

▶ Remark 12. It is legitimate to ask whether the result holds when we reverse the encoding
of true and false and adopt the classic standard for PC literature, where 0 is true and 1 is
false. In this case, GOPOR(Gn) becomes easy for PC, but nevertheless we can get the same
separation by simply flipping the polarity of all literals in GOPOR(Gn), i.e., by substituting
each xu,v with yu,v ∨ zu,v instead of yu,v ∨ zu,v, and then changing the random restriction to
assign to true the variable chosen from each pair. Since in this case true is 0, monomials of
large degree will be set to zero with overwhelmingly high probability.

We end this section by presenting a family of formulas that have small size, small space
refutations in resolution – and, therefore, also in PC with negative literals – but exhibit a
strong size-space trade-off for PC without negative literals. To define the space of a refutation,
we think of it as a proof being presented on a blackboard. At each step we can either write
down an axiom of the formula being refuted or a new clause obtained by one of the derivation
rules of the proof system applied to what is already on the blackboard, or we can erase a line
from the blackboard. The resolution space of the refutation is then the maximum number of
clauses on the blackboard at any given moment, and the PC space of the refutation is the
maximum number of monomials on the blackboard at any given moment.

▶ Theorem 13. There exists a family of constant-width CNF formulas {Fn}n∈N of size Θ(n)
such that:
1. there is a resolution refutation of Fn in size O(n) and space O(1); but
2. any PC refutation without negative literals of Fn in monomial size t and space s must

satisfy s log t = Ω(n/ log n).

The CNF formulas we consider are lifted pebbling formulas as defined next. Let G = (V, E)
be a DAG. If (u, v) ∈ E we say that u is a predecessor of v and v a successor of u. We
write pred(v) to denote the set of all predecessors of v. A vertex with no predecessor (resp.
successor) is called a source (resp. sink).

The pebbling formula [9] over a DAG G = (V, E) with a single sink z, denoted PebG,
consists of the clauses xv ∨

∨
u∈pred(v) ¬xu for all v ∈ V (note that if v is a source, then

pred(v) = ∅) encoding that sources are true and truth propagates upwards, and the clause
¬xz encoding that the sink is false. We encode this formula by a set of polynomials in the
standard way. Given a set U ⊆ V , we denote by xU the monomial

∏
u∈U xu (in particular,

x∅ = 1). For every vertex v ∈ V , we have the polynomial equation

xpred(v) · (1 − xv) = 0 , (15)

and for the sink z we also have the polynomial equation

xz = 0 . (16)

The formulas that witness the trade-off separation of Theorem 13 are based on the family of
graphs defined by Gilbert and Tarjan [24]. These graphs have large pebbling cost Ω(n/ log n),
even in the stronger, so-called black-white pebbling model and were used in [8] to obtain a
space-degree trade-off for PC.

▶ Lemma 14 ([24, 8]). There is a family of graphs {Gn}n∈N with indegree 2 of size Θ(n)
such that any PC refutation, even with negative literals, of PebGn in space s and degree d

must satisfy sd = Ω(n/ log n).
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With this result, we are now ready to prove Theorem 13.

Proof of Theorem 13. Let {Gn}n∈N be the family of graphs given by Lemma 14 and let N be
the number of vertices of Gn. Let x1, . . . , xN be the variables of PebGn

in inverse topological
order. We define Fn = PebNOR

Gn
, that is, we substitute each variable xi by ¬(yi ∨ zi) and

rewrite the formula in CNF.
The linear size resolution refutation of PebNOR

Gn
in space O(1) can be described in rounds.

We start with the clause y1 ∨ z1. At the end of round i, we will have derived a clause∨
j∈Si

(yj ∨ zj) for some set Si ⊆ [i] such that Si forms a cut in Gn, that is, the sink of Gn

and the sources of Gn are not connected in Gn \ Si; and moreover every vertex in Si has at
least one predecessor not in Si. Furthermore, at each round, the cut Si moves towards the
sources, i.e., the set of vertices connected to the sink in Gn \ Si increases when i increases.

For round i+1, we first weaken
∨

j∈Si
(yj ∨zj) to

∨
j∈Si∪{i+1}(yj ∨zj). Now, for all v ∈ Si

such that both predecessors of v, say u and w, are in Si∪{i+1} we resolve
∨

j∈Si∪{i+1}(yj ∨zj)
with yu ∨ zu ∨ yw ∨ zw ∨ ȳv and then with yu ∨ zu ∨ yw ∨ zw ∨ z̄v, thus obtaining a clause∨

j∈Si+1
(yj ∨ zj) for some set Si+1 that satisfies the invariant. Finally, after round N , we

have derived
∨

j∈SN
(yj ∨ zj) where SN only contains sources. Thus, we can easily derive

contraction by resolving this with ȳj and z̄j for all j ∈ SN . Note that this refutation has
space 3 and size O(N) = O(n).

Now for proving item 2, let P be a PC refutation without negative literals of PebNOR
Gn

in monomial size t and space s. By Lemma 6, there is a restriction ρ that for all i ∈ [N ]
sets exactly one of {yi, zi} to 0 and such that all monomials in P when restricted by ρ have
degree at most log t. Since space does note increase with restriction, we have that P↾ρ is a
refutation of PebNOR

Gn
↾ρ in space at most O(s) and degree at most log t.

We now argue that there is a PC refutation with negative literals of PebGn
in space O(s)

and degree O(log t) and, by Lemma 14, this will imply that s log t = Ω(n/ log n). Let H be
the formula PebNOR

Gn
↾ρ with any yi substituted by (1 − ȳi) and any zi by (1 − z̄i). Since H is

an isomorphic copy of PebGn
, where each variable xi has been substituted by either ȳi or z̄i,

it is enough to show that there is a PC refutation with negative literals of H in space O(s)
and degree O(log t). Indeed, this follows since we can derive each axiom of PebNOR

Gn
↾ρ from

an axiom of H and variable axioms in constant space and degree. ◀

4 Negative Literals and Semialgebraic Proofs

We show that allowing negative literals makes Sherali-Adams and sums-of-squares exponen-
tially stronger, too. The main result of this section is that there is a family of formulas
that have short resolution refutations but require exponential size SA and SOS refutations
without negative literals. This implies, in both systems, an exponential separation between
the power of proofs with and without negative literals.

The following auxiliary lemma states the well-known semantic completeness of SA.

▶ Lemma 15 (Folklore). If some multilinear inequalities S = {r1 ≥ 0, . . . , rℓ ≥ 0} on
variables x⃗ = (x1, . . . , xn) semantically imply a multilinear inequality r ≥ 0 then there is an
SA derivation of r from S in degree 2n and size 2O(n).

Proof. For a multilinear polynomial p, we define the sets S−
p := {α ∈ {0, 1}n | p(α) < 0}

and S+
p := {α ∈ {0, 1}n | p(α) ≥ 0}. The fact that inequality r ≥ 0 is semantically implied

by S means that S−
r ⊆

⋃
i S−

ri
.
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Let Qi := S−
ri

\
i−1⋃
j=1

S−
rj

. Consider the polynomial

∑
i∈[ℓ]

 ∑
α∈Qi∩S−

r

|r(α)|
|ri(α)|ri(x⃗)χα(x⃗)

 +
∑

α∈S+
r

r(α)χα(x⃗) , (17)

where χα(x⃗) is the characteristic function of a point α. The polynomial (17) is pointwise
equivalent to r on the boolean cube because of the definition of the characteristic functions.
Moreover, (17) is a legal SA derivation from S because S−

r ⊆
⋃

S−
ri

implies that coefficients
|r(a)|
|ri(a)| in (17) are all positives.

The degree of the polynomial (17) is at most 2n by definition and size is at most 23n.
Since it is pointwise equivalent to r on the boolean it is enough to multilinearize to transform
it into r.

For multilinearization we apply the following procedure. Denote by h(x⃗) the polynomial
(17) after expanding brackets. While polynomial h(x⃗) has a term of the form xd

i t we subtract
a polynomial txd−2

i (x2
i − xi) from polynomial (17) where i ∈ [n] and d ≥ 2 is an integer.

In one step we reduce the individual degree of one variable in one term in the polynomial
h(x) and increase the size of polynomial (17) by 2. At the end of the process (17) is a
multilinear polynomial of degree at most 2n and size at most 2n23n, pointwise equal to r.
After expanding brackets it will be a multilinear polynomial that is pointwise equivalent to r

on the boolean cube. ◀

▶ Lemma 16. Consider two sets S1 := {p1 = 0, . . . , pm = 0; r1 ≥ 0, . . . , rℓ ≥ 0} and
S2 := {f1 = 0, . . . , fm′ = 0; g1 ≥ 0, . . . , gℓ′ ≥ 0}. If there is an SA (resp. SOS) refutation of
S2 in size N2 and degree d2 and each element fi ≥ 0, −fi ≥ 0, and gi ≥ 0 can be derived in
SA (resp. SOS) from S1 in size N1 and degree d1, then there is an SA (resp. SOS) refutation
of S1 in size N1N2 and degree d1d2 (resp. in size N1N

O(1)
2 and degree O(d1d2)).

Proof. First consider a set S2 without equations (i.e., m′ = 0). Let {h1, . . . , hd} be an SA
(or SOS) refutation of S2 in size N2 and degree d2, so that we have∑

i∈[ℓ′]

higi = −1 . (18)

For i ∈ [ℓ′], let {q1,i, . . . , qm,i; s1,i, . . . , sℓ,i} be an SA (or SOS) derivation of gi ≥ 0 from S1
in size N1 and degree d1, so that∑

j∈[m]

qj,ipj +
∑
j∈[ℓ]

sj,irj = gi . (19)

The composition of these derivations

−1 =
∑

i∈[ℓ′]

higi =
∑

i∈[ℓ′]

hi

 ∑
j∈[m]

qj,ipj +
∑
j∈[ℓ]

sj,irj

 (20)

=
∑

j∈[m]

 ∑
i∈[ℓ′]

hiqj,i

 pj +
∑
j∈[ℓ]

 ∑
i∈[ℓ′]

hisj,i

 rj (21)

gives us the desired refutation of S1 in size N1N2 and degree d1d2. Notice that (21) is a valid
SA (or SOS) refutation because polynomials hi and sj,i are valid multipliers for inequalities
and thus so are their products and sums of products.
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When S2 contains equations, we reduce to the case where m′ = 0, using the observation
that the set

S ′
2 := {−f1 ≥ 0, . . . , −fm′ ≥ 0; f1 ≥ 0, . . . , fm′ ≥ 0; g1 ≥ 0, . . . , gℓ′ ≥ 0} (22)

has an SA refutation of size N2 and degree d2 (or an SOS refutation of size N
O(1)
2 and

degree O(d2)). To see this, start from a refutation {e1, . . . , em; h1, . . . , hℓ} of S2 in size N2
and degree d2, so that we have∑

i∈[m′]

eifi +
∑

i∈[ℓ′]

higi = −1 . (23)

To make it a valid SA refutation of S ′
2, rewrite each eifi as e+

i (fi)+e−
i (−fi) where ei = e+

i −e−
i

and both e+ and e− are positive sums of monomials. Note that this operation does not
change neither size nor degree. To make it a valid SOS refutation of S ′

2, rewrite each eifi as(
ei+1

2
)2 · fi +

(
ei−1

2
)2 · (−fi). Note that this refutation has degree at most 2d2 and size at

most N2
2 . The result follows. ◀

Recall the ordering principle formula OPn, which is the graph ordering principle for-
mula (12) over the complete graph Kn. As mentioned in Section 2, for SA and SOS the
default encoding of CNF formulas is (6d). For OPn this enconding consists of inequalities:

(1 − xu,v) + (1 − xv,w) + xu,w − 1 ≥ 0 for any three distinct u, v, w ∈ [n], (24a)
(1 − xu,v) + (1 − xv,u) − 1 ≥ 0 for any two distinct u, v ∈ [n], (24b)∑
u∈[n]

xu,v − 1 ≥ 0 for any u, v ∈ [n]. (24c)

The reason we cannot use the graph ordering principle as we did in Section 3 is that we do
not know how to prove strong SA degree lower bounds for GOP. Instead we use OPn which
can be still encoded in low degree using inequalities, and for which we have degree lower
bounds.

For the separation we use the OPOR
n formula. We have already showed in Lemma 9 that

OPOR
n is easy for resolution. In the presence of negative literals, this transfers to SA by the

following known simulation result.

▶ Lemma 17 ([5]). If a CNF formula F has a resolution refutation of width w and length L,
then it has an SA refutation with negative literals of degree w + 1 and size O(w2L).

Since SOS can simulate SA we obtain the following upper bound.

▶ Lemma 18. The formula OPOR
n has SA and SOS refutations with negative literals of

size nO(1).

Proof. By Lemma 9 the formula OPOR
n has a resolution refutation of size O(n3). The width

of any resolution refutation cannot exceed the number of variables that appear in the formula,
hence the considered refutation has width at most O(n2). Together with Lemma 17, this
implies the desired result for SA. To conclude the proof it is enough to recall that, by
Proposition 5, SOS can simulate any SA proof with at most a polynomial blowup in size. ◀

We now proceed to prove the lower bounds for SA and SOS without negative literals.
The main idea is analogous to that of Lemma 10: we show that we can reduce any small SA
or SOS refutation without negative literals of OPOR

n to a low degree refutation of OPn. To
conclude the proof we then apply the following degree lower bounds.
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▶ Lemma 19 ([16]). Any SA refutation of OPn has degree at least n − 2.

For SOS the lower bound we know holds for the following, slightly different encoding:

xu,vxv,w(1 − xu,w) = 0 for any three distinct u, v, w ∈ [n], (25a)
xu,vxv,u = 0 for any two distinct u, v ∈ [n], (25b)∑
u∈[n]

xu,v = 1 + z2
v for any u, v ∈ [n], (25c)

where zv are real valued extension variables.

▶ Lemma 20 ([35]). For any ε > 0, there is a constant cε > 0 such that any SOS proof of
the system of equations (25) has degree at least cεn1/2−ε.

We show that this result implies a degree lower bound for the standard encoding of OPn

as in (24).

▶ Corollary 21. For any ε > 0, there is a constant cε > 0 such that any SOS proof of the
OPn has degree at least cεn1/2−ε.

Proof. For the sake of completeness, let us argue a well known fact. If p = 0 is the product
encoding, as per (6b), of a clause C of width w, and r ≥ 0 is the additive encoding of C,
as per (6d), then there is an SA (and hence also SOS) derivation of r from p and boolean
axioms in degree w + 1. Indeed, this follows from Lemma 15 by noting that the product
encoding p = 0 is equivalent to the two inequalities p ≥ 0 and −p ≥ 0 that semantically
imply the inequality r ≥ 0.

By using the above fact we can derive inequalities (24a) and (24b) from the con-
straints (25a) and (25b) in degree 4. Finally, the inequality∑

u∈[n]

xu,v − 1 ≥ 0 (26)

can be derived in SOS from (25c) by adding the square z2
v and thus obtaining ∑

u∈[n]

xu,v − 1 − z2
v

 + z2
v =

∑
u∈[n]

xu,v − 1 . (27)

Therefore, if there an SOS refutation of (24) in degree d, then by Lemma 16 there is an SOS
refutation of (25) in degree O(d). Together with Lemma 20, this implies the desired lower
bound. ◀

We are now ready to prove the size lower bounds for SA and SOS.

▶ Lemma 22. Any SA refutation of OPOR
n without negative literals requires monomial size

2Ω(n). For any ε > 0 there is a constant cε > 0 such that any SOS refutation of OPOR
n without

negative literals requires monomial size 2cεn1/2−ε .

Proof. The proof is very similar to that of Lemma 10. Let yu,v, zu,v for u, v ∈ [n] be the
variables of OPOR

n , that is, OPOR
n is obtained by substituting in OPn each variable xu,v by

yu,v + zu,v. Let {p1 = 0, . . . , pm = 0; r1 ≥ 0, . . . , rℓ ≥ 0} is the encoding of OPOR
n and let

{q1, . . . , qm; s1, . . . , sℓ} be an SA refutation of OPOR
n without negative literals, so that∑

j∈[m]

qjpj +
∑
j∈[ℓ]

sjrj = −1 . (28)
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Let S be the monomial size of this refutation. By Lemma 6, there is a restriction ρ that
sets exactly one of {yu,v, zu,v} to 0 and is such that all monomials appearing in (28) when
restricted by ρ have degree at most log S. Note that the formula OPOR

n ↾ρ is an isomorphic
copy OPn, where each variable xu,v has been renamed either to yu,v or to zu,v, and thus, by
Lemma 19, it requires refutation of degree Ω(n). Since P↾ρ is an SA refutation of OPOR

n ↾ρ in
degree at most log S, we conclude that log S ≥ Ω(n) and the size lower bound for SA follows.

The proof of the size lower bound for SOS is analogous, except that we use Corollary 21
for the degree lower bound instead of Lemma 19. ◀

We collect Lemmas 9,18 and 22 in the following theorem.

▶ Theorem 23. There is a family of CNF formulas {Fn}n of size Θ(n3) such that Fn has
a resolution refutation and SA and SOS refutations with negative literals in monomial size
nO(1). But any SA refutation of Fn without negative literals requires monomial size 2Ω(n),
and for any ε > 0 there is a constant cε > 0 such that any SOS refutation of Fn without
negative literals requires monomial size 2cεn1/2−ε .

5 Pigeonhole and Sherali-Adams

In this section we improve the previous result for Sherali-Adams and show a separation
between SA with and without negative literals, using constant width formulas, and hence
independent of the encoding of the clauses. Note that, in contrast to the previous section,
this result does not give a corresponding separation for SOS.

We start with the formula that encodes the (negation of the) pigeonhole principle (PHP).
The formula is defined on propositional variables xi,j for i ∈ [n + 1] and j ∈ [n], with the
intended meaning that xi,j is true if and only if the i-th pigeon goes into hole j. The clauses
of PHP are:

Pi :=
∨

j∈[n]

xi,j for every i ∈ [n + 1], and (29a)

Hj
i,k := xi,j ∨ xk,j for every two distinct i, k ∈ [n + 1] and every j ∈ [n]. (29b)

In order to reduce the width of the formula we introduce extension variables ei,j for i ∈ [n+1]
and j ∈ [n] and replace the clauses (29a) by

EPi,j := ei,j−1 ∨ xi,j ∨ ei,j for every i ∈ [n + 1] and j ∈ [n], (30a)
EPi,0 := ei,0, EPi,n+1 := ei,n for every i ∈ [n + 1]. (30b)

Intuitively, the variable ei,j represents the disjunction of the variables xi,ℓ for ℓ ≤ j. We
denote this 3-CNF formula with extension variables by EPHP.

Similarly to previous cases, we substitute the variables in the formula by a 2-bit function.
In this case, however, we use NOR(y, z) := ¬(y ∨ z) which is equivalent to y ∧ z. We apply
this substitution to the formula EPHP, to obtain the formula EPHPNOR, by replacing each
variable xi,j with yi,j ∧ zi,j and each ei,j with ai,j ∧ bi,j and rewriting it in CNF.

It was shown in [16] that Sherali-Adams without negative literals can refute PHP in
polynomial size. We use this result to obtain a size upper bound for Sherali-Adams refutations
with negative literals of EPHPNOR.

▶ Lemma 24 ([16]). There is an SA refutation without negative literals of PHP of size O(n4).

▶ Lemma 25. There is an SA refutation with negative literals of EPHPNOR of size O(n5).
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Proof. Let S be the set of polynomial inequalities encoding PHP as per (6d) plus the variable
axioms for each xi,j and let S ′ = {p1 = 0, . . . , pm = 0; r1 ≥ 0, . . . , rℓ ≥ 0} be the set of
polynomial inequalities obtained from S by replacing each variable xi,j by the product yi,jzi,j .

We want show that there is a small, namely size O(n), SA derivation with negative literals
from EPHPNOR of each of the inequalities pi ≥ 0, −pi ≥ 0 for i ∈ [m] and ri ≥ 0 for i ∈ [ℓ].
Suppose this is true. Then given a size O(n4) refutation of PHP, which is guaranteed to exist
by Lemma 24, we can replace each occurrence of xi,j by the product yi,jzi,j and obtain a
refutation of S ′ of exactly the same size. Composing this refutation with the derivation of S ′

from EPHPNOR, we obtain, by Lemma 16, a refutation of EPHPNOR of size O(n5).
We start by considering the hole axioms (29b) of PHP, that is, xi,j ∨xk,j , which is encoded

as (1 − xi,j) + (1 − xk,j) − 1 ≥ 0. After replacing the x variables in the polynomial inequality,
we obtain

(1 − yi,jzi,j) + (1 − yk,jzk,j) − 1 ≥ 0 , (31)

which is in S ′. Now, the formula EPHP also contains hole axioms (29b), and thus the
substituted formula EPHPNOR contains a set of inequalities encoding the formula (yi,j ∧
zi,j) ∨ (yk,j ∧ zk,j). Since this formula, and therefore also the inequalities encoding it,
semantically implies inequality (31), by Lemma 15 there is an SA derivation of (31) from
EPHPNOR in constant size.

We have a similar situation for the pigeon axioms (29a) of PHP, i.e.,
∨

j∈[n] xi,j , which is

encoded as
n∑

j=1
xi,j − 1 ≥ 0. Our goal is to derive the polynomial inequality

n∑
j=1

yi,jzi,j − 1 ≥ 0 (32)

from EPHPNOR. Again, by Lemma 15, each of the inequalities
(1 − ai,0bi,0) − 1 ≥ 0;
ai,j−1bi,j−1 + yi,jzi,j + (1 − ai,jbi,j) − 1 ≥ 0, for all j ∈ [n]; and
ai,nbi,n − 1 ≥ 0

has an SA derivation from EPHPNOR of the constant size, since they are semantically implied
by the clauses EPi,j with variables substitute by NOR. Note that the sum of these inequalities

(1−ai,0bi,0)−1+
n∑

j−1
(ai,j−1bi,j−1+yi,jzi,j+(1−ai,jbi,j)−1)+ai,nbi,n−1 =

n∑
j=1

yi,jzi,j−1 (33)

is a valid SA derivation of (32) in size O(n).
Finally, we note that the substituted variable axioms yi,jzi,j ≥ 0, 1 − yi,jzi,j ≥ 0,

(yi,jzi,j)2 − yi,jzi,j ≥ 0 and −(yi,jzi,j)2 + yi,jzi,j ≥ 0 can be easily derived in constant size
from the variable axioms for yi,j and zi,j . ◀

We now show that any Sherali-Adams refutation of EPHPNOR without negative literals
has exponential size. For this, we use the following degree lower bound.

▶ Lemma 26 ([5]). Any SA refutation of EPHP has a degree at least n − 2.

▶ Lemma 27. Any SA refutation of EPHPNOR without negative literals requires monomial
size 2Ω(n).
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Proof. The proof is very similar to that of Lemma 22. Consider an SA refutation of EPHPNOR

without negative literals, that is, a set of polynomials P = {q1, . . . , qm; s1, . . . , sℓ} such that∑
j∈[m]

qjpj +
∑
j∈ℓ

sjrj = −1 , (34)

where {p1 = 0, . . . , pm = 0; r1 ≥ 0, . . . , rℓ ≥ 0} is the polynomial encoding of EPHPNOR and
each sj is a positive linear combination of generalized monomials. Let S be the monomial
size of this refutation. By Lemma 6, there is a restriction ρ that sets exactly one of {yi,j , zi,j}
and exactly one of {ai,j , bi,j} to 0 and is such that all monomials appearing in (34) when
restricted by ρ have degree at most log S. Note that the formula EPHPNOR↾ρ is almost an
isomorphic copy of EPHP, except that:

each variable xi,j has been substituted by either (1 − yi,j) or by (1 − zi,j);
each variable ei,j has been substituted by either (1 − ai,j) or by (1 − bi,j).

It is not hard to see that this formula EPHPNOR↾ρ also requires degree n − 2 to be refuted in
SA, since otherwise we could obtain, by substituting each variable yi,j and zi,j by (1 − xi,j)
and each variable ai,j and bi,j by (1 − ei,j), a refutation of EPHP in degree less than n − 2
contradicting Lemma 19. Therefore, since P↾ρ is an SA refutation of EPHPNOR↾ρ in degree
at most log S, we conclude that log S ≥ Ω(n) and the size lower bound for SA follows. ◀

We collect Lemmas 25 and 27 in the following theorem.

▶ Theorem 28. There is a family of constant width CNF formulas {Fn}n of size Θ(n3)
such that Fn has an SA refutation with negative literals of monomial size O(n5), but any SA
refutation of Fn without negative literals must contain 2Ω(n) monomials.

6 Separating Nullstellensatz with and without negative literals

In this section we show that there are formulas that have linear size tree-like resolution
refutations – and, therefore, also linear size Nullstellensatz refutations if variables for negative
literals are allowed – but require nearly exponential size Nullstellensatz refutations if such
variables are not allowed.

▶ Theorem 29. There exists a family of constant width CNF formulas {Fn}n∈N of size Θ(n)
such that there are tree-like resolution refutations, and therefore also NS refutations with
negative literals, of Fn in size O(n), but any NS refutation without negative literals of Fn

must have size 2Ω(n/ log n).

A formula that witnesses a size separation of 2Ω̃(n) must necessarily require NS degree
Ω̃(n) since if there is a degree-d NS refutation, then there is an NS refutation without negative
literals in simultaneous degree d and size nO(d). In this sense, the separation in Theorem 29 is
nearly optimal. For smaller values of d, we can show a similar separation with the additional
property that NS with negative literals presents a smooth trade-off between degree and size
of refutations.

▶ Theorem 30. For any 0 < ϵ ≤ 1/4, any large enough n ∈ N and any 2 ≤ k ≤ nϵ/2, there
exists a constant width CNF formula Fk,n of size Θ(kn) such that:
1. there is an NS refutation with negative literals of Fk,n in linear size O(kn);
2. for any d satisfying 21+1/ϵk4 log n ≤ d ≤

√
n, there is an NS refutation with negative

literals of Fk,n in degree d and size nk(1+5ϵ)/d2k−3; and
3. any NS refutation without negative literals of Fk,n must have size 2k.
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The CNF formulas we consider are lifted pebbling formulas. We will also use the relation
between the formulas and pebble games as defined next.

The reversible pebble game [10] is a single-player game that is played with a set of pebbles
on a DAG G. The goal of the game is to pebble (i.e., place a pebble on) each vertex of G at
least once. Initially, the graph contains no pebbles. At each round, the player is allowed to
place a pebble on any vertex of G such that all its predecessors are pebbled. In particular, the
player is always allowed to place a pebble on any source of G. Moreover, at any given round,
a pebble on a vertex v can be removed from G if all the predecessors of v are pebbled. Again,
this implies that it is always possible to remove a pebble from a source of G. A sequence of
pebbling moves that pebbles each vertex of G at least once according to these rules and ends
with the empty graph is called a reversible pebbling of G. The time of a reversible pebbling
is the number of rounds and the space is the maximum number of pebbles on G at any given
moment. The reversible pebbling cost of G is the minimum space required for any reversible
pebbling of G (independent of time). We sometime refer to the standard pebble game where
the rule for removing pebbles is relaxed so that any pebble can be removed at any point.

For our purpose, we note that pebbling formulas always have linear size NS refutations
(even without negative literals), while for some “hard” graphs the NS degree is necessarily
large. In order to prove the separations in this section, we use the following characterization of
NS degree and size, when negative literals are not allowed, in terms of reversible pebbling space
and time [19]. We would like to point out that for Theorem 29 the degree characterization
of [18], or even the not-so-tight bound of [12], would have be enough.

▶ Lemma 31 ([19]). Let G be a single-sink DAG. There is a Nullstellensatz degree d and
size t refutation without negative literals of PebG if and only if there is a reversible pebbling
of G in space d and time t − 1.

By this characterisation, it is easy to see that pebbling formulas always have linear size
NS refutations without negative literals. In order to obtain NS size lower bounds when
negative literals are not allowed we compose pebbling formulas with the not-or function
NOR, that is, we substitute each variable xi by ¬(yi ∨ zi). This is useful for proving NS lower
bounds since formulas lifted with NOR satisfy the following property.

▶ Lemma 32. Let F be an unsatisfiable CNF formula. If NS requires degree d to refute F ,
then NS without negative literals requires size 2d to refute F NOR.

Proof. Let n be the number of variables of F , and let y1, . . . , yn and z1, . . . , zn be the
variables of F NOR. Let S = {p1 = 0, . . . , pm = 0} be the set of polynomial equations
encoding F NOR (plus the variable axioms). Let {q1, . . . , qm} be an NS refutation without
negative literals of S, that is,∑

j∈[m]

qjpj = 1 , (35)

and let s be its monomial size. By Lemma 6, there is a restriction ρ that for all i ∈ [n]
sets exactly one of {yi, zi} to 0 and such that all monomials in qjpj for pj = 0 ∈ S when
restricted by ρ have degree less than log s. Note that F NOR↾ρ is almost an isomorphic copy
of F , except that variables xi have been substituted by either (1 − yi) or (1 − zi). It is not
hard to see that F NOR↾ρ also requires degree d refutations, since otherwise substituting every
yi or zi appearing in the refutation by (1 − xi) would give a refutation of F in degree less
than d. This implies that log s ≥ d. ◀
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While substituting variables in a formula with NOR can give NS size lower bounds if
negative literals are not allowed, for pebbling formulas this substitution does not make the
formula harder for NS if negative literals are allowed, and not even for tree-like resolution.

▶ Lemma 33. Let G be a DAG with n vertices. There is a tree-like resolution refutation of
PebNOR

G in size 4n + 1.

Proof. We describe a decision tree that solves the falsified clause search problem of PebNOR
G .

The idea is to query the variables in topological order, from the sources to the sink. Let
x1, . . . , xn be the variables of PebG, ordered topologically according to G from the sources
to the sink, and for i ∈ [n], let yi, zi be the lifted variables so that xi = ¬(yi ∨ zi). The
decision tree queries yi and zi, from i = 1 to n: if the result of the query is 0 it proceeds
to the next query, if it is 1 it has found a falsified axiom (since this implies there is a false
variable whose predecessors are true). Finally, if all vertices are 0, then the sink clause of
PebNOR

G , which states the sink is false, is falsified. This gives a decision tree of size 4n + 1
(and depth 2n). ◀

We also observe that if a CNF formula has small NS refutations without negative literals
in degree d, then the formula composed with NOR has small NS refutations with negative
literals in degree 2d.

▶ Lemma 34. Let F be a constant-width unsatisfiable CNF formula. If there is an NS
refutation without negative literals of F in size s and degree d then there is an NS refutation
with negative literals of F NOR in size O(s) and degree 2d.

Proof. Let x1, . . . , xn be the variables of F , and for i ∈ [n], let yi, zi be the lifted variables
so that xi = ¬(yi ∨ zi). For a clause (or a CNF) C, let C∗ be the polynomial translation
of C without negative literals, as per (6b). Moreover, for a polynomial p over x variables, let
p[ȳz̄] be the polynomial obtained by substituting in p each variable xi by the product ȳiz̄i.

Consider a clause C of F and denote by CNOR the CNF that is obtained by substituting
variables xi by ¬(yi ∨ zi). Since C has constant width, there is an NS derivation (with
negative literals) of C∗[ȳz̄] from the set of polynomials (CNOR)∗ in constant size and without
increasing the degree.

Let S = {p1 = 0, . . . , pm = 0} be the set of polynomial equations encoding F (plus the
variable axioms). Let {q1, . . . , qm} be an NS refutation without negative literals of S, that
is, ∑

j∈[m]

qjpj = 1 , (36)

in degree d and monomial size s. If we substitute every variable xi in
∑

j∈[m] qjpj by ȳiz̄i, we
have a polynomial that is syntactically equal to 1, has degree 2d and has monomials size s.
The lemma follows by the observation above that implies that there is an NS derivation
(with negative literals) of p[ȳz̄] from (F NOR)∗ in constant size and without increasing the
degree. ◀

The family of graphs we consider for the proof of Theorem 29 is the one defined by Paul
et al. [34] and also used by Gilbert and Tarjan [24]. It was shown in [34] that these graphs
have large standard pebbling cost, and thus also have large reversible pebbling cost.

▶ Theorem 35 ([34]). For every N ∈ N, there is a DAG of size Θ(N) that has reversible
pebbling cost Ω(N/ log N).
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Figure 1 A 2-layer 4-bit-reversal permutation graph.

We are now ready to prove the first theorem of this section.

Proof of Theorem 29. Let GN be the DAG of size Θ(N) and pebbling cost Ω(N/ log N)
given by Theorem 35. We define FN = PebNOR

GN
. The upper bound follows directly from

Lemma 33. For the lower bound, note that Theorem 35 together with Lemma 31 imply
that NS requires degree Ω(N/ log N) to refute PebGN

and, therefore, by Lemma 32, any NS
refutation of FN must have size 2Ω(N/ log N). ◀

To prove Theorem 30 we consider another family of graphs, based on the so-called
bit-reversal permutation graphs. Let n be an integer. Given j ∈ {0, 1, . . . , 2n − 1} and
ℓ ∈ [n], we denote by jℓ the ℓth bit of j. Now let reverse(j) =

∑
ℓ∈[n] 2n−ℓjℓ be the integer in

{0, 1, . . . , 2n − 1} obtained by reversing the bit representation of j.
The k-layer n-bit-reversal permutation graph consists of k directed path graphs of length 2n,

where we consider vertices in each path to be numbered from 0 to 2n − 1, and in between
consecutive layers i and i + 1, for i ∈ [k − 1], there are edges from vertex j in layer i to vertex
reverse(j) in layer i + 1, for all j ∈ {0, 1, . . . , 2n − 1}. See Figure 1 for an illustration.

It was shown in [3] that these graphs exhibit a certain smooth time-space trade-off for
standard pebbling.

▶ Proposition 36 ([3]). Let G be a k-layer n-bit-reversal permutation graph, and let N = 2n.
For any s such that k + 1 ≤ s ≤

√
N/4 there exists a standard pebbling of G in space 2k2s + 2

and time 2k/2(Nk/s2k−3). Furthermore, every standard pebbling of G in space s requires
time 2−3k(Nk/s2k−3).

By a classical result of [10], which is analysed precisely in [32], we can translate, with
some loss both in time and in space, the upper bound in this trade-off to the reversible
pebble game.

▶ Proposition 37 ([10, 32]). Let G be an arbitrary DAG. If G has a standard pebbling in
space s and time t ≥ 2s, then for any ϵ > 0, G can be reversibly pebbled in simultaneous time
t1+ϵ/sϵ and space ϵ(21/ϵ − 1) s log(t/s).

▶ Corollary 38. Let 0 < ϵ ≤ 1/4, let G be a k-layer n-bit-reversal permutation graph and let
N = 2n. For any s such that k + 1 ≤ s ≤

√
N/4 there exists a reversible pebbling of G in

space s
k+1 21/ϵk4 log N and time 2k(Nk(1+ϵ)/s2k−3).

We are now ready to prove Theorem 30.

Proof of Theorem 30. Let 0 < ϵ ≤ 1/4, let G be a k-layer n-bit-reversal permutation graph
for k < 2ϵn/2, and let N = 2n. We define Fk,N to be PebNOR

G . Item 1 follows from Lemma 34
and the fact that any pebbling formula has linear size NS refutations.
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We argue that from Corollary 38 it follows that for any d such that 21/ϵk4 log N ≤ d ≤
√

N ,
the graph G can be reversibly pebbled in space d and time nk(1+5ϵ)/d2k−3. Item 2 then
follows from the correspondence between reversible pebbling and NS refutations (Lemma 31)
and Lemma 34. To see why the claim above holds, let

s := d(k + 1)
21/ϵk4 log N

, (37)

which is at least k + 1 and at most
√

N/4 by the bounds of d. Note, moreover, that

s ≥ d

21/ϵk3 log N
≥ 2d

N2ϵ
, (38)

where the last inequality holds for N large enough since k ≤ N ϵ/2. By Corollary 38 it then
follows that there is a reversible pebbling of G in space d and time

2k · Nk(1+ϵ)

s2k−3 ≤ 2k ·
(

N2ϵ

2

)2k−3

· Nk(1+ϵ)

d2k−3 ≤ nk(1+5ϵ)

d2k−3 , (39)

as claimed.
Item 3 follows by applying Lemma 32 with d = k. ◀

7 Concluding Remarks

Algebraic and semi-algebraic proof systems become more powerful when they can succinctly
represent negation of variables using additional formal variables. In some cases this advantage
results in exponentially smaller proofs. To witness these separations we built rather artificial
formulas. It would be interesting to understand whether this phenomenon occurs for formulas
encoding natural problems as well.

More importantly, is this just a theoretical advantage? Practical approaches based on
the naive computation of a Gröbner basis nullify any additional expressive power. Since the
polynomials xi = 1 − xi are in the ideal, any such computation eliminates one variable in
each pair, potentially causing an exponential blow-up in size along the way. In algebraic
circuit verification this is a concrete problem. Some works indeed use new variables for
negated literals and have either to avoid or to mitigate such blow-up [36, 27]. Any algorithm
that tests ideal membership and wants to make good use of negative literals should be more
adaptive than, say, the standard Buchberger’s algorithm. It should figure out when to reduce
between xi and xi, depending on the context.

Back to the theoretical aspects of this work, the separation formula for sums-of-squares
has unbounded width. Since we manage to get formulas of constant width for the others
proof systems, we would like to do the same for sums-of-squares. Is this possible? The issue
here is not so much our proof techniques, which has been more than enough for all the other
proof systems discussed in this paper, but the not so surprising fact that the lower bound
technology for sums-of-squares is quite behind the one for NS, PC and SA. It seems fair
to say that due to research progress that has happened during the last few years we now
have a situation where many of the open problems regarding algebraic proof system and how
they relate to one another have been resolved (see for example [11]). We know how different
complexity measures relate [26, 2, 23, 33, 22, 4] and whether these systems admit efficient
proof search [6, 17]. Yet the situation for sums-of-squares is far from being so positive. We
still do not understand the complexity of many important formulas in this proof systems.
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