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Preface

In its second edition, the conference on Information-Theoretic Cryptography (ITC) was once
again affected by the COVID-19 pandemic. After an initial optimistic attempt to organize a
hybrid conference in Bertinoro, Italy, with Daniele Venturi as the general chair, the organizers
had to finally revert, once again, to a virtual event.

The importance of ITC in the landscape of cryptography conferences is very evident, as
information-theoretic cryptography continues to flourish, in old and new forms. It is rare
to find cryptographic problems whose study does not give rise to interesting information-
theoretic questions, and this year’s program is a clear testament to this. It covers a diverse
and exciting range of topics, from foundations all the way to real-world applications.

We have received a total of forty-six submissions, and the nineteen members of our
program committee, helped by a number of external reviewers, accepted twenty-six of them.
As in the previous edition, we have set a high bar for selection, without targeting a particular
number of accepted papers. The unusually high acceptance rate is solely an indication of the
high quality of these submissions. And despite our best efforts, I am quite certain we have
still managed to reject submissions that were well deserving of acceptance. The conference
also includes six spotlight talks, and possibly other events, which are still being arranged at
the time of finalizing this volume.

None of this would be possible without all of those who have contributed to making ITC
a success. First of all, I would like to thank the authors of all papers (accepted or not) for
submitting their works. I am also indebted to all PC members for their tireless reviewing
efforts and their insightful discussions, and to all external reviewers for dedicating their
time to this effort. Once again, the members of the ITC Steering Committee, led by Benny
Applebaum, have been giving extremely valuable advice while organizing a conference in
such uncertain times. I also want to particularly thank Daniele Venturi, this year’s general
chair, for his work on the logistics of the conference, and for his attempts to bring ITC
physically to Italy. And of course, I want to thank all invited speakers, presenting authors,
and participants for committing their time to making this second edition a success, despite
all circumstances.
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Group Structure in Correlations and Its
Applications in Cryptography
Guru-Vamsi Policharla
Indian Institute of Technology, Bombay, Mumbai, India

Manoj Prabhakaran
Indian Institute of Technology, Bombay, Mumbai, India

Rajeev Raghunath
Indian Institute of Technology, Bombay, Mumbai, India

Parjanya Vyas
Indian Institute of Technology, Bombay, Mumbai, India

Abstract
Correlated random variables are a key tool in cryptographic applications like secure multi-party
computation. We investigate the power of a class of correlations that we term group correlations: A
group correlation is a uniform distribution over pairs (x, y) ∈ G2 such that x + y ∈ S, where G is a
(possibly non-abelian) group and S is a subset of G. We also introduce bi-affine correlations, and
show how they relate to group correlations. We present several structural results, new protocols and
applications of these correlations. The new applications include a completeness result for black box
group computation, perfectly secure protocols for evaluating a broad class of black box “mixed-groups”
circuits with bi-affine homomorphisms, and new information-theoretic results. Finally, we uncover a
striking structure underlying OLE: In particular, we show that OLE over F2n , is isomorphic to a
group correlation over Zn

4 .
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1 Introduction

A central concept in secure multiparty computation (MPC) is that of correlated random
variables. If Alice and Bob are given correlated random variables, they can later use them
to securely compute any function, with information-theoretic security [22, 20]. This model
has been a key ingredient in many theoretical and practical results in MPC. While the class
of 2-party correlations that information-theoretically secure computation can be based on
(i.e., “complete” correlations) is well-understood [23, 24], not all complete correlations are
used in practical protocols. Instead, several “standard” correlations which have additional
structure, like Oblivious Transfer (OT), Oblivious Linear function Evaluation (OLE) and
Beaver’s Multiplication Triplets (BMT) [2] are used in practice. The main motivation in
this work is to systematically study the additional structure that protocols can exploit, and
develop a deeper and broader foundation for such correlations.
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licensed under Creative Commons License CC-BY 4.0
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1:2 Group Structure in Correlations and Its Applications in Cryptography

Apart from uncovering the beautiful mathematical structures from which these correlations
derive their power, another motivation for our work is to expand the applicability of correlated
random variables to secure computation involving black-box algebraic structures which can
be less structured than finite fields or rings. Consider the following seemingly disparate
problems of information-theoretically secure 2-party computation:

Blackbox Group Computation: If the function is given as a circuit over a blackbox
(non-abelian) group, how can two parties securely compute it with perfect security? The
complete correlation proposed in [10] (namely, oblivious transfer of group elements),
yielded only statistical security.
Generating and Processing Correlations over a Blackbox Ring: If correlated
random variables over a blackbox ring (e.g., OLE) are acquired by a pair of parties from
a trusted server, can they be efficiently rerandomized (e.g., for “forward security” against
future corruption of the server)? Efficiency relates to both the use of correlations as well
as communication and number of rounds.
How efficiently can such correlations be generated, using a less structured primitive like
string OT?
Circuits Using Alternate Algebraic Structures: Traditionally, MPC literature has
considered algebraic circuits to be over fields or rings, and these protocols breakdown if
the algebraic structure underlying the circuit has less structure. Can alternate protocols
be devised for computation over (say) distributive near-rings or non-associative algebras,
or when multiple such algebraic structures are used in the same circuit?

We introduce bi-affine correlations as an abstraction of a broad class of cryptographically
interesting correlations, and address all of the above problems in terms of them. Perhaps more
importantly, we undertake a study of the fundamental properties of bi-affine correlations and
the underlying mathematical structure of bi-affine homomorphisms, without being confined to
immediate applications. This leads us to the definition of Group Correlations and Subgroups
Correlations as a generalization of bi-affine correlations, that brings out additional hidden
structure of bi-affine correlations.

Interestingly, while “additive correlations” (the abelian version of group correlations) and
“bilinear correlations” (a special case of bi-affine correlations) have been explicitly considered
before in various applications, most notably in the rich line of work on function/homomorphic
secret-sharing (F/HSS) and pseudorandom correlation generators (PCG) [8, 9, 5, 7, 6],1 it
was not realized that the former is a generalization of the latter, underlining the need for
studying them abstractly.

1.1 Our Contributions
We develop a theory of group correlations and subgroups correlations, with a focus on the
subclass of bi-affine correlations. A group correlation, specified by a group G and a subset
S ⊆ G, is simply an additive secret-sharing of a random element in S, or equivalently,
a uniform distribution over {(x, y) | x, y ∈ G, x + y ∈ S}. A subgroups correlation is a
restriction of such a group correlation correlation to the universe G1 ×G2 where G1 and G2
are subgroups of G, with a regularity condition on S (so that the resulting correlation has

1 In these works, bi-linear correlations were often termed simple bi-linear correlations. For consistency
with the terminology in the current work, we avoid this term. What was termed (general) bi-linear
correlations there would correspond to correlations of the form BAσ⟨2⟩ in this work.
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uniform marginal distributions). Within this simple framework, a rich variety of structures
arise based on how the groups and the set S are defined. Our contributions include the
following:

A Theory of Group Correlations: This includes several new definitions of structures
and properties, as well as connections between them. (Section 3).
Information-Theoretic Results: We give new results on information theoretic quan-
tities (specifically, residual information) that can be used to analyze the optimality of
secure protocols. (Section 4).
New Protocol Building-Blocks: We present a suite of protocols for various function-
alities involving bi-affine correlations, with applications to 2-Party secure computation.
(Section 5).
Applications: The above building-blocks can be put together to yield various information-
theoretically secure computation protocols. In particular, we show:

There exists a complete correlation for 2-party perfectly passive-secure evaluation of
a black-box (non-abelian) group circuit – called the Zero Alternating Sum (ZAS)
correlation. ZAS is a bi-affine correlation, and hence this could seen as a special case
of the following results. In contrast, previously the complete correlation proposed in
[10] (namely, OT with group elements), yielded only statistical security.
When the circuit has logarithmic depth, or is in the form of polynomial-sized formula,
we obtain a 2-round UC secure protocol.
A GMW-style 2-Party protocol for evaluating a black-box “mixed-group circuit” with
homomorphism and bi-affine homomorphism gates, which requires 2 rounds of interac-
tion per layer.
2-Party protocols for rerandomizing and testing bi-affine correlations obtained from a
semi-trusted source (who will not collude with either party until after the protocol is
over) (Section 5.1, Section 5.4). We also discuss how this can be viewed as a solution
to sampling correlations in the single-server version of the commodity based model [4].
A 2-Party protocol for securely sampling bi-affine correlations using string OTs, gener-
alizing a protocol of Gilboa [19]. Using our information-theoretic results, we establish
its optimality for a class of bi-affine correlations (including the ones considered in [19]).
(Section 5.3).

A Surprising Structure. Finally, we uncover a striking structure underlying OLE. In
particular, we show that OLE over F2n , is isomorphic to a group correlation over Zn

4 .
Given that OLE has been widely studied and used, it is remarkable that such a structure
has remained hidden so far.

Details of the protocols and applications can be found in the full version.

Discussion
Here we elaborate on some of the above contributions.

Hidden Structures. We point out two instances of hidden structure in well-studied objects
that are revealed by our abstractions. OLE and BMT are two correlations that have been
extensively studied both in terms of their applications, and in terms of protocols generating
them. However, while abstracting them as bi-linear correlations (see Footnote 1), they are
treated somewhat differently. For instance, in [5], PCGs for bi-linear correlations are given,
which directly applies to OLE; and then a PCG for BMT is provided by reducing BMT
to OLE. However, a consequence of our results is that BMT is already a (simple) bi-linear
correlation, but with a bi-linear operator different from that of OLE: while OLE uses a

ITC 2021



1:4 Group Structure in Correlations and Its Applications in Cryptography

map σ(a, b) = ab, BMT uses σ((a, b), (c, d)) = ad + bc (all variables belonging to a ring).
This results in a more efficient protocol since reducing one BMT to two OLE correlations is
wasteful (a reduction in the opposite direction is not possible).

The second instance of a hidden structure is that of OLE which has a complicated
structure due to the interaction of field multiplication with the addition structure of the
field. As such, one may not expect OLE (over large fields) to be a group correlation. But we
show that every symmetric bi-affine correlation (of which OLE is an example) is in fact a
group correlation. Even more surprisingly, for the special case of OLE over the field F2n , the
underlying group turns out to be Zn

4 . Thus OLE over F2n can be seen as sampling an element
uniformly from a (non-obvious) set S ⊆ Zn

4 , and then simply additively secret-sharing it
coordinate-wise. While we do not offer any immediate applications of this particular structure,
as a fundamental property of an extremely useful cryptographic primitive, it is an interesting
result.

ZAS: A Bi-Affine Correlation in a Group. An interesting application we present is that of
a complete correlation for 2-party secure computation over a black-box group, with perfect
security. In contrast to the prior approach which relied on OT with group elements, and only
obtained statistically secure protocols [10], we rely on a deceptively simple correlation, called
the Zero Alternating Sum (ZAS) correlation. In a ZAS correlation over a (non-abelian) group
G, Alice and Bob get random pairs (a, c) ∈ G2 and (b, d) ∈ G2 such that a+ b+ c+ d = 0.

Note that defining ZAS does not require anything more than the group operation.
This demonstrates the generality of bi-affine homomorphisms, compared to bi-linear maps.
While bi-linear maps are used to capture the multiplication operation in a ring, bi-affine
homomorphisms can equally well capture the alternating sum structure in a group. Concretely,
the function σ : G2 → Gop, defined as σ(x, y) = −(x+y) where Gop is the opposite group of G
(whose group operation is the same as that of G, but applied to the operands in the opposite
order), is a bi-affine homomorphism w.r.t. the subgroups T = G× {0} and U = {0} ×G of
the group G2.

Optimality of Gilboa’s Reduction. As a corollary of our information-theoretic results
pertinent to bi-affine correlations, we show that Gilboa’s reduction from OLE over F2n to
string OT [19] is optimal in the number of string OTs used (n string OTs per OLE instance),
and cannot be improved upon even with amortization. In fact, this extends to OLE over Fpn

if Gilboa’s protocol is modified to use 1-out-of-p string OTs.

Mixed-Groups Circuit with Bi-Affine Homomorphism Gates. Conventionally, MPC litera-
ture has considered boolean or arithmetic circuits over a given ring or field. A variant of this
considers the underlying algebraic structure to be given as a black box to the protocol (e.g.,
[11, 21] for rings and [17, 16, 10] for groups). Motivated by practical applications, MPC
protocols for computation that uses multiple representations has received attention (e.g., the
ABY framework [15] and subsequent works). More recently, circuits with bi-linear gates over
multiple black box groups has been considered in [9].

Our applications use a similar circuit paradigm as [9], and use two types of gates (1) group
operations (2) gates for group homomorphisms and bi-affine homomorphisms. Bi-Affine
Homomorphisms are quite general, and can correspond to multiplication in distributive
near-rings or non-associative rings, or even (negated) addition in a non-abelian group. As
such, this is a powerful computational model that subsumes arithmetic circuits over a
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ring. Nevertheless, the bi-affine homomorphism structure lets us build perfectly secure
2-party protocols for all such circuits, using bi-affine correlations for the corresponding
bi-affine homomorphisms (if necessary, along with “Zero Alternating Sum” correlations for
the non-abelian groups).

1.2 Related Work
Correlations have received much attention in cryptography, especially since Beaver’s proposal
of using them as cryptographic commodities [3] and the emergence of the pre-processing
model as a common approach to theoretically and practically efficient MPC. They have
been put to great use for MPC, both in the passive and active corruption settings, in theory
and practice (see. e.g., the SPDZ family of protocols [14] and subsequent work). All these
works develop and use several building blocks like self-reduction and self-testing for their
correlations.

The recent line of works on Pseudorandom Correlation Generators and Function Secret
Sharing [9, 5, 7, 8, 6], which consider bi-linear and additive correlations are most closely
related to our work. Briefly, they answer two important questions. (1) how to perform secure
computation over bi-linear gates (2) how to efficiently generate these correlations. In contrast
to our work, these results were focussed on exploiting computational hardness, and restricted
themselves to bi-linear correlations and abelian groups.

Secure Multi Party Computation over non-abelian Black-Box groups has been well studied
in the honest-majority setting [17, 16, 10]. In the two-party setting Cohen et al. [10] gave a
passive statistically secure protocol for evaluating circuits over black-box groups in the OT
hybrid model and used the IPS compiler [20] to achieve security against active corruption.
In this work, we use a stronger primitive – namely Zero Alternating Sum correlations – but
are able to obtain a simple perfectly secure protocol against active adversaries without the
use of expensive compilers for log-depth circuits.

Protocols for rerandomization and testing of correlations have appeared previously in the
literature but their focus has remained on specific correlations such as BMT, squaring tuples
etc., [13]. The commodity based model first introduced by Beaver in [4] has been revisited
recently in [12, 27] to sample OLE and BMT correlations.

1.3 Technical Overview
In this section we present the highlights of our results, informally. Several additional technical
details and generalizations are deferred to the subsequent sections and the full version.

1.3.1 Definitions
We consider several classes of flat correlations – i.e., distributions that are uniform over their
support. Below we use support and distribution interchangeably.

Group Correlations and Subgroups Correlations. A group correlation defined w.r.t a group
G and a subset S ⊆ G is the uniform distribution over all pairs (g1, g2) ∈ G2 such that
g1 + g2 ∈ S. A subgroups correlation embedded in this group correlation is obtained by
requiring g1 ∈ G1 and g2 ∈ G2, where G1, G2 are subgroups of G with the property that the
marginal distributions of g1 and g2 are both uniform. This subgroups correlation is said to
be compact if |G| < |G1||G2|.
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(b) Bipartite graph of the OT correlation.

Bi-Affine Homomorphisms. A linear function (or a group homomorphism) ϕ : G → H

satisfies ϕ(a+ b) = ϕ(a) + ϕ(b) (where the addition and subtraction are in the appropriate
groups). An “affine” function ψ is such that ϕ defined by ϕ(x) := ψ(x)− ψ(0) is linear; i.e.,
ψ(a+ b) = ψ(a)− ψ(0) + ψ(b). A bi-affine function could be defined as a function of two
inputs, which is affine in each of them; i.e., for groups T, U,H, a function e : T × U → H

such that

e(t, u+ u′) = e(t, u)− e(t, 0) + e(t, u′) and e(t+ t′, u) = e(t, u)− e(0, u) + e(t′, u). (1)

Note that if we required e(t, 0) = e(0, u) = 0, then the conditions above would collapse
to e being bi-linear. Examples of functions that satisfy (1) but are not bi-linear include
e : G×G→ G defined as e(a, b) = a+ b or as e(a, b) = −a− b.

For notational simplicity in our results, we define a bi-affine homomorphism as a unary
function σ : Q → H, (Q,H being groups) with respect to subgroups T, U ⩽ Q so that
e : T × U → H defined as e(t, u) := σ(t+ u) satisfies (1). An equivalent definition, in terms
of group homomorphisms, is given in Definition 7.

Bi-Affine Correlation. Given a bi-affine homomorphism σ as above, the support of the
corresponding bi-affine correlation correlation BAσ ⊆ (T ×H)× (U ×H) is defined as

BAσ = {((t, a), (u, b)) | σ(t+ u) = a+ b}.

Examples. As shown in Figure 1a, the most commonly used correlations indeed fall under
the class of bi-affine correlations.

Oblivious Linear Evaluation (OLE): Defined over a ring A as
(
(t, a), (u, b)

)
such that

a+b = tu, OLE is isomorphic to a bi-affine correlation with σ(t, u) = tu, where σ : A2 → A

is a bi-affine homomorphism with respect to T = A× {0} and U = {0} ×A.
Beaver’s Multiplication Triples (BMT): Defined over a ring A as

(
(t1, u1, a), (t2, u2, b)

)
such that a+ b = (t1 + t2)(u1 + u2), BMT is isomorphic to a bi-affine correlation with
σ((t1, u1), (t2, u2)) = t1u2 + t2u1, where σ : A4 → A is a bi-affine homomorphism with
respect to T = A2 × {0}2 and U = {0}2 ×A2.
Zero Alternating Sum (ZAS): Defined over a (possibly non-abelian) group D as(
(a, c), (b, d)

)
such that a + b + c + d = 0, ZAS is isomorphic to a bi-affine correla-

tion BAσ, where σ : D2 → Dop defined as σ(c, d) = −(c+ d) is a bi-affine homomorphism
with respect to T = D × {0} and U = {0} ×D.
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Powers of a Bi-Affine Homomorphism. Given a bi-affine homomorphism σ : Q→ H w.r.t.
subgroups T, U , we can define new bi-affine homomorphisms as “powers” of σ. There are a
few different useful notions of such powers that emerge in the sequel, which we call σn, σ(n)

and σ⟨n⟩.
σn : Qn → Hn is simply the coordinate-wise application of σ.
σ(n) : Qn → Hn corresponds to a “vector” variant of σ, generalizing how string-OT or
vector-OLE are vector variants of OT and OLE respectively; it is in fact the same as σn, but
considered as a bi-affine homomorphism w.r.t. Tn and U (n) = {(u, . . . , u)|u ∈ U} ⊆ Un.
BAσ(n) .
σ⟨n⟩ : Qn → H is an inner-product version of σ, generalizing how BMT is isomorphic to
BAσ⟨2⟩ , where σ is the multiplication in a ring (so that BAσ corresponds to OLE over
that ring).

There exists a non-interactive, UC-secure protocol to securely sample one instance of BAσ⟨ℓ,m⟩

from ℓ + m instances of BAσ. A special case of this protocol is the reduction of a BMT
correlation to two OLE correlations. See full version for details.

1.3.2 Connections
We uncover some surprising connections between the different classes of correlations mentioned
above (Theorem 9).
1. Every symmetric bi-affine correlation is a group correlation. In particular, OLE over a

ring A is isomorphic to a group correlation w.r.t the group KA over A×A whose group
operation is defined as (a, b)⊙(c, d) = (a+ c, b+ d− ac), and subset S = {(a, 0) | a ∈ A}.

2. Every bi-affine correlation is a compact subgroups correlation. Note that an asymmetric
bi-affine correlation, like a vector OLE, cannot be a group correlation. But this result
shows that it is a subgroups correlation compactly embedded in a group correlation. In
particular, n-dimensional vector OLE over a ring A is embedded in the group correlation
over the group An×A×An with subset S = {(t, u, tu)|t ∈ An, u ∈ A}. Interestingly, when
instantiated for OLE (n = 1), it shows that OLE is embedded in the BMT correlation.

3. If σ is a semi-abelian bi-affine homomorphism, then BAσ is embedded in BAσ⟨2⟩ . This
serves as an alternate way of viewing the embedding of OLE in BMT, since OLE is BAσ and
BMT is BAσ⟨2⟩ where σ is the 1multiplication operation in the (possibly non-commutative)
ring.

As mentioned, OLE over a ring is a group correlation, over the group K. We explore this
group and discover more unexpected structure:

When A has an element η such that η + η = 1, Kσ is isomorphic to the group A × A
(considering only the addition operation in the ring).
When A is F2n then Kσ is isomorphic to Zn

4 . (See Section 1.3.5).

1.3.3 Information-Theoretic Results
Wyner residual information (RIw) (5) is an information theoretic measure which describes
how “correlated” two random variables are. This measure is a monotone and cannot be
increased through communication. Concretely, Prabhakaran et. al. [25] showed that if
m independent instances of one type of correlation (C) can be reduced to n independent
instances of another type of correlation (C ′), then m ·RIw(C) ≤ n ·RIw(C ′) (Proposition 10).

In this work, we compute the Wyner Residual Information for a subset of bi-affine
correlations which satisfy the non-defective property (Definition 7). A consequence of our
results is that, for any field F , RIw(olen

F ) = log |F |. In fact, the above result extends to
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domains rather than fields. (A domain is a ring with the “zero-product property,” i.e., if
ab = 0 then a = 0 or b = 0.) These results play a crucial role in later sections where we prove
optimality of reductions from bi-affine correlations to oblivious transfer. Furthermore, we
show that the bi-partite graph of a group correlation is a single connected component iff the
set {s− s′ | s, s′ ∈ S} is a generating set for the group G by appealing to the Gács-Körner
common information (Lemma 11).

1.3.4 Constructions
We present several constructions (Section 5), which relate to various conditional sampling
functionalities that complete a bi-affine correlation. Let Fσ be an ideal sampling functionality
that samples an instance of the correlation and gives each party its side of the correlation.
Similary, let F̃σ be a biasable sampling functionality (where the adversary is allowed to pick
its side of a valid correlation). Now, we define three completion functionalities – depending
on how many variables are fixed – for bi-affine correlations.

Conditional Sampling Functionalities Fσ|u, Fσ|tu and Fσ|tau
(where σ : Q→ H is a bi-affine homomorphism w.r.t. T, U ⩽ Q)

Inputs: t, a from Alice, and u ∈ U from Bob, where

t = a = ⊥ for Fσ|u t ∈ T, a = ⊥ for Fσ|tu t ∈ T, a ∈ H for Fσ|tau.

Outputs: (t̃, ã) to Alice and (ũ, b̃) to Bob, where ((t̃, ã), (ũ, b̃))← BAσ conditioned on ũ = u,
t̃ = t if t ̸= ⊥, and ã = a if a ̸= ⊥.

We then present various protocols that implement the above functionalities (Section 5):

UC secure protocols for Fσ|u, Fσ|tu and Fσ|tau in the Fσ-hybrid model (Figure 2). The
protocols remain secure even if Fσ is replaced by an “adversarially controlled” version
F̃σ (which still only provides instances in the support of the correlation BAσ).

These protocols, denoted as Compσ|u, Compσ|tu and Compσ|tau, can be used for multiple
purposes. In particular, it allows for rerandomizing a sample, and also as a tool for
non-destructively checking the validity of a sample (in the protocols TRSampσ and
altTRSampσ below). Our protocols are optimal in multiple ways: there is only one
message (or in the case of Compσ|tau, two messages) and a single instance of the
correlation is “consumed” per instance produced. For the basic forms of these tasks
(without the extension to F̃σ), similar constructions have been previously developed,
but only for specific correlations like OLE, BMT etc., [13].

We also develop a new set of protocols for realizing the above functionalities using a
“tamperable” version F̂σ (which, when the two parties are honest, allows the adversary to
specify arbitrary pairs, possibly outside the support of BAσ), instead of F̃σ. We present
two such protocols, trading-off generality with efficiency.

The first protocol, TRSampσ (Figure 5) works for all bi-affine homomorphisms σ, but
consumes ω(log λ) (purported) samples of BAσ to produce a single (good) instance. This
protocol relies on an error-preservation property of the protocol Compσ|tau, whereby it
can be checked if two purported samples have identical “error,” by consuming only
one of them. This allows checking that a set of samples all have the same error,
while leaving one of them unconsumed. This still admits the possibility that all of
the samples have the same non-zero error. To detect this (except with negligible
probability), a cut-and-choose step is employed.
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The second protocol, altTRSampσ (Figure 6) achieves a rate of 1/2, but relies on
additional algebraic structure in the groups underlying σ. The main component of
this protocol is an error rerandomization step (Figure 7), which we instantiate for a
variety of bi-affine homomorphisms σ : Q→ H, where:
∗ σ corresponds to multiplication in a vector space over a large field (or more generally,

a module of appropriate complexity),
∗ H is abelian and its order has no small prime factors,
∗ H is non-abelian and |{r + x− r | r ∈ H} is large for all x ̸= 0.

We give a semi-honest secure protocol (Figure 4) for efficiently sampling a bi-affine
correlation BAσ from string-OTs. This protocol relies on additional structure in the
groups underlying the σ, and requires (slight) non-blackbox access to them. The additional
structure is used to represent every group element as a small sum of elements from a
“basis.” The protocol is a generalization of a protocol by Gilboa [19] for sampling OLE
over a ring using string OTs, to bi-affine correlations over a wide range of groups. We also
show, using our results on residual information from above, that when the basis allows a
tight representation of the group elements, then, with some additional constraints on σ,
the protocol is optimal in the number of string-OTs used (Lemma 15).

1.3.5 A Surprising Structure for OLE
It is easy to see that OT (i.e., OLE over F2) can be written as a group correlation over Z4,
by “drawing” the correlation as a bipartite graph and observing that it forms a cycle (see
Figure 1b). A surprising result we obtain is that OLE over F2n is in fact a group correlation
over Zn

4 . We illustrate this for n = 2 in the full version.
We give a detailed description and proof in the full version, but provide a high level

overview here. To show that oleF2n is a group correlation we give an isomorphism ϕ from
F2n × F2n to Zn

4 along with a subset S ⊂ Zn
4 and show that field elements (t, a), (u, b) form

an OLE correlation (a + b = tu) iff the sum of elements g1 = ϕ(t, a), g2 = ϕ(u, b) lies
within S. The isomorphism itself is highly non-trivial as it needs to handle the interaction of
multiplicative and additive operations of the field in a purely additive sense. The isomorphism
and subset are given by

ϕ(x, y) = [[[x]]]− 2 ·

√ ∑
i:xi=1

ξ(i)(x)i

 + 2 · [[[√y ]]]

S = {[[[x]]]− 2 ·

√ ∑
i:xi=1

ξ(i)(x)i

 | x ∈ F2n}

where [[[x]]] denotes the embedding from F2n to Zn
4 , obtained by interpreting x ∈ {0, 1}n as

x ∈ {0, 1, 2, 3}n, {ξ(i)}i∈[0,n−1] is an arbitrary basis of F2n with ξ(0) = 1, and (x)i is the field
element obtained by zeroing out all coordinates greater than or equal to i.

1.3.6 Applications
Using our constructions from Section 5 we show how to perform secure 2-Party computation
of “mixed-groups” circuits in the semi-honest setting. The mixed-groups circuit model uses
wires which carry group elements and group/bi-affine homomorphism gates in addition to
gates implementing standard group operations.
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The first setting is semi-honest 2-Party computation in the Fσ, FZAS hybrid model,
where σ is the bi-affine homomorphism corresponding to the bi-affine homomorphism gate
being evaluated. Throughout the evaluation we maintain the invariant that all wires are
secret shared between the two parties. At each bi-affine gate, two bi-affine correlations
and one ZAS correlation (in the group of the output wire) is consumed and at most two
rounds of communication are needed to evaluate each level of the circuit. We achieve
perfect security in this setting.

As a corollary, we show that the ZAS correlation is complete for passively secure
2-Party secure computation over black-box groups. This is immediate as all group
operations can be implemented using ZAS correlations only.
For the special case of formulas (or log-depth circuits) we present a two round perfectly
secure protocol where the communication is proportional to the number of terms in
the formula. Note that a formula can be written as an alternating sum of Alice and
Bob’s private inputs f(x1, . . . , xn, y1, . . . , yn) =

∑n
i=1(xi + yi). Alice pads each term

of the formula with randomness and sends terms which contain her input in the clear.
Alice and Bob invoke FZAS to compute terms containing Bob’s inputs. Bob then
sums up the terms sent by Alice and his output from FZAS invocations to compute
f(x1, . . . , xn, y1, . . . , yn) =

∑n
i=1(xi + yi).

We also show how the same task can be achieved in a different manner using the
Function Secret Sharing based approach of Boyle et al. [9].

The second setting we consider is the commodity based model introduced by Beaver
[4]. Here a semi-trusted server which provides Alice and Bob with (possibly incorrect)
correlations and is guaranteed to not collude with either party. Incorrect correlations are
identified by using either TRSampσ or altTRSampσ, after which the computation can be
done in a manner identical to the previous setting.

Full descriptions of these protocols can be found in the full version.

2 Preliminaries

All the sets (and in particular, groups, rings and fields) we consider in this work are finite.
For groups, we typically use additive notation. When several groups are used together, we
often assign different symbols like ⊙ , ⊕ and + for their operators. The unary negation
symbol (−x) is used across all groups to indicate the inverse; also, the binary subtraction
symbol (x− y) is used to denote x+ (−y), when the group operation is +. We use upright
capital letters to denote random variables, as X, Y etc. Through out the paper, 2-party
secure computation, unless otherwise qualified, refers to information-theoretic security against
passive corruption.

We recall that given a subgroup T of a group (G,+), its right and left cosets containing
an element g ∈ G are defined as T + g = {t+ g | t ∈ T}, g + T = {g + t | t ∈ T}. We define
“shifted groups” over these cosets, by redefining the group operation.

▶ Definition 1 (Shifted Group Operation). Given a group (G,+), and g ∈ G, the operation
+g is defined as x+g y = x− g + y.

It can be seen that +g is associative, as (x+g y) +g z = x+g(y+g z) = x− g + y − g + z.
For any subgroup T ⊆ G, it can be verified that (T + g,+g) and (g + T,+g) are both groups
with identity element g and the inverse of x given by g − x+ g. They are both subgroups
of (G,+g).
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▶ Definition 2 (Flat Correlation). A flat correlation over sets X,Y is defined to be the uniform
distribution over a set C ⊆ X × Y . It is said to be regular if there are integers dX , dY such
that ∀x ∈ X, |C ∩ ({x} × Y )| = dX and ∀y ∈ Y , |C ∩ (X × {y})| = dY .

Above, C is called the support of the correlation, and is also used to denote the correlation
itself. Given a flat correlation over X,Y with support C, its graph GC is defined as the
bipartite graph with vertices X∪̇Y (disjoint union) and the set of edges C.

▶ Definition 3 (Isomorphic Correlations). Flat correlations C ⊆ X × Y and C ′ ⊆ X ′ × Y ′

are said to be isomorphic to each other if there exist bijections α : X → X ′ and β : Y → Y ′

such that C ′ = {
(
α(x), β(y)

)
| (x, y) ∈ C}.

▶ Definition 4 (Sampling Functionalities FC , F̃C , F̂C). For a flat correlation C, we define
three functionalities as follows.

Sampling Functionality FC : Uniformly samples a pair (x, y) ← C, and gives x to
Alice and y to Bob.
Biasable Sampling Functionality F̃C : If Alice is corrupt, then it takes x ∈ X from
Alice, and outputs y ← {y′|(x, y′) ∈ C} to Bob; similarly, if Bob is corrupt, it takes y
from Bob and outputs x← {x′|(x′, y) ∈ C} to Alice. But if both parties are honest then
it lets the adversary specify a valid sample, i.e., (x, y) ∈ C, instead of sampling one itself.
Tamperable Sampling Functionality F̂C : It behaves like F̃C , but if both Alice and
Bob are honest, then it lets the adversary specify an arbitrary pair (x, y) (rather than
only a valid pair).

3 Definitions and Connections

3.1 Group Correlations and Subgroups Correlations
▶ Definition 5 (Group Correlation). A flat correlation C ⊆ X × Y is said to be a group
correlation if there exists a group G and a subset S ⊆ G such that C is isomorphic to the
flat correlation C ′ ⊆ G×G given by C ′ = {(x, y) | x+ y ∈ S}. In this case, we say that C is
a group correlation of the form GCG,S. A group correlation of the form GCG,S is said to be
abelian if the group G is abelian.

Regularity. Let G1, G2 be subgroups of G, and S ⊆ G. S is said to be regular with respect
to (G1, G2) if, for all g2, g

′
2 ∈ G2, we have |S ∩ (G1 + g2)| = |S ∩ (G1 + g′

2)|, and for all
g1, g

′
1 ∈ G1, we have |S ∩ (g1 +G2)| = |S ∩ (g′

1 +G2)|. We call degL = |S ∩ (g1 +G2)| and
degR = |S ∩ (G1 + g2)| the left and right degree of the subgroups correlation respectively.

We say that a group correlation GCG,S is regular w.r.t. a pair of subgroups (G1, G2) of
G if S is regular w.r.t. (G1, G2).

▶ Definition 6 (Subgroups Correlation). A flat correlation C ⊆ X × Y is said to be a
subgroups correlation if there exists a group correlation C ′ that is regular w.r.t. a pair
of subgroups (G1, G2), and C is isomorphic to the correlation C ′′ ⊆ G1 × G2 defined as
C ′′ = C ′ ∩ (G1 ×G2). In this case, we say C is of the form GCG,S

G1,G2
, and is embedded in

C ′. Further, if |G| < |X||Y |, we say that C is a compact subgroups correlation.

If C is a regular flat correlation, then it can be seen to be a (non-compact) subgroups
correlation of the form GCG,S

G1,G2
where, identifying X and Y with arbitrary groups of the

same sizes (say Z|X| and Z|Y |), we let G = X × Y , G1 = X × {0
Y
}, G2 = {0

X
} × Y , and

S = C. Conversely, a subgroups correlation is a regular flat correlation. Hence, without
restricting to being compact, subgroups correlations and regular flat correlations are the
same. A compact subgroups correlation entails more structure than just being regular.

ITC 2021



1:12 Group Structure in Correlations and Its Applications in Cryptography

3.2 Bi-Affine Correlations
We start by defining a generalization of the notion of a homomorphism, called bi-affine
homomorphism. Note that the definition below refers to homomorphisms between “shifted”
groups, using the shifted group operation (Definition 1).

▶ Definition 7 (Bi-Affine Homomorphism). For groups (Q,+) and (H,⊕), and subgroups
T, U ⩽ Q, a function σ : Q→ H is said to be a bi-affine homomorphism w.r.t. (T, U), if the
following are group homomorphisms

σ|T +u : (T + u,+u)→ (H,⊕σ(u)) ∀u ∈ U
σ|t+U : (t+ U,+t)→ (H,⊕σ(t)) ∀t ∈ T.

Further, σ is said to be semi-abelian if H is an abelian group; it is said to be abelian if
both Q and H are abelian. It is said to be symmetric if it is semi-abelian and Q = D×D,T =
D × {0}, U = {0} ×D for some group D. If either σ|T +u is surjective for every u ∈ U , or
σ|t+U is surjective for every t ∈ T , σ is called a surjective bi-affine homomorphism. If there
is no pair (t, u) ∈ (T \ {0})× (U \ {0}) such that σ(t+ u) = σ(t)− σ(0) + σ(u), σ is said be
to non-defective2.

These homomorphism conditions over the shifted groups can be equivalently written as,
∀t, t′ ∈ T, u, u′ ∈ U ,

σ(t+ t′ + u) = σ(t+ u)⊕−σ(u)⊕σ(t′ + u)
σ(t+ u+ u′) = σ(t+ u)⊕−σ(t)⊕σ(t+ u′).

(where we used (t+ u) +u(t′ + u) = t+ t′ + u and (t+ u) +t(t+ u′) = t+ u+ u′).

▶ Definition 8 (Bi-Affine Correlation). Given groups (Q,+) and (H,⊕), and a bi-affine
homomorphism σ : Q→ H w.r.t. (T, U), the correlation BAσ ⊆ (T ×H)× (U ×H) is defined
as

BAσ = {((t, a), (u, b)) | σ(t+ u) = a⊕ b}

A flat correlation C is said to be a bi-affine correlation if there exists σ as above such that it
is isomorphic to BAσ. Further, C is said to be semi-abelian, abelian or symmetric if σ has
the corresponding property.

Bi-linear correlations. It is instructive to compare bi-affine homomorphisms with bi-linear
maps. For groups (T,+), (U,+) and (H,⊕), where the last one is abelian, a function
e : T × U → H is said to be a bi-linear map if e left and right distributes over the group
operations: i.e., for all t1, t2 ∈ T and u1, u2 ∈ U , e(t1 + t2, u1) = e(t1, u1)⊕ e(t2, u1), and
e(t1, u1 +u2) = e(t1, u1)⊕ e(t1, u2).

It is easy to see that a bi-linear map is a special case of a bi-affine homomorphism: Let
Q = T × U , T ′ = T × {0

U
} and U ′ = {0

T
} × U . Then, σ : Q→ H is a bi-linear map iff it

is a semi-abelian bi-affine homomorphism w.r.t. (T ′, U ′), with the additional property that
σ(x) = 0 for all x ∈ T ′ ∪ U ′. If a bi-affine homomorphism σ is a bi-linear map, then we say
that a correlation of the form BAσ is a bi-linear correlation. For bi-linear σ, non-defective

2 This condition corresponds to K2,2 freeness of the bi-affine correlation. Proof can be found in the full
version.
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reduces to not having non-zero t ∈ T, u ∈ U such that σ(t+ u) = 0. An example of such a
bi-affine correlation is given by OLE (or vector OLE) over a domain. A domain is a ring
with the “zero-product property,” i.e., if ab = 0 then a = 0 or b = 0 (with fields being a
special case of domains).

3.3 Powers of Bi-Affine Homomorphisms
Given a bi-affine homomorphism σ, one can define related bi-affine homomorphisms as various
“powers”. In this section, we describe some standard transformations to do this, and in
Section 3.5 give some important examples of correlations in the literature that illustrate
these transformations. Let σ : Q→ H be a bi-affine homomorphism w.r.t subgroups T, U .

We define σn : Qn → Hn as simply the coordinate-wise application of σ. That is,
σn(q1, ..., qn) = (σ(q1), ..., σ(qn)). If σ is a bi-affine homomorphism w.r.t. subgroups
T, U ⩽ Q, then σn is readily seen to be a bi-affine homomorphism w.r.t. subgroups
Tn, Un ⩽ Qn.
It is interesting to view σn as a bi-affine homomorphism w.r.t. other subgroups within
Tn, Un. In particular, we define σ(n) to be the same as σn but considered as a bi-affine
homomorphism w.r.t. Tn, U (n), where U (n) = {(u, . . . , u)|u ∈ U} ⊆ Un.

When H is abelian, we also define an aggregating version σ⟨ℓ,m⟩ : Qℓ+m → H, as
σ⟨ℓ,m⟩(q1, . . . , qℓ, q

′
1, . . . , q

′
m) =

∑ℓ
i=1 σ(qi)⊕

∑m
i=1 σ(−q′

i) where the summations refer to
the operation ⊕ in the group H. σ⟨ℓ,m⟩ can be seen to be a bi-affine homomorphism
w.r.t. (T ℓ × Um, U ℓ × Tm). We shall simply write σ⟨n⟩ for the symmetric bi-affine
homomorphism σ⟨⌈n/2⌉,⌊n/2⌋⟩.

These powers of a bi-affine homomorphism are in fact bi-affine homomorphisms. We prove this
in the full version. We can now define BAσn , BAσ(n) and BAσ⟨n⟩ as the bi-affine correlations
corresponding to σn, σ(n) and σ⟨n⟩ respectively.

3.4 Group Structure of Bi-Affine Correlations
In this section we show connections between (sub)group correlations and bi-affine correlations,
which can be summarized as follows:

▶ Theorem 9. For any bi-affine homomorphism σ,
1. BAσ is a compact subgroups correlation;
2. if σ is symmetric, then BAσ is a group correlation;
3. if σ is semi-abelian, then BAσ is embedded in BAσ⟨2⟩ , and more generally, BAσ⟨ℓ,m⟩ is

embedded in BAσ⟨2m′⟩ for all m′ ≥ max(ℓ,m).
We present the key ingredients of the above connections here. Details omitted from here can
be found in the full version.

Groups J and K. To capture the structure of bi-affine correlations as (sub)group correlations,
we define two groups.

If σ : Q→ H is a bi-affine homomorphism w.r.t. (T, U), the group Jσ is defined as the
direct product T × U ×H. Then it is easy to see that BAσ is a subgroups correlation
of the form GCG,S

G1,G2
where G = Jσ and S = {(t, u, σ(t + u)) | t ∈ T, u ∈ U}, with

G1 = T × {0} ×H,G2 = {0} × U ×H. This is a compact subgroups correlation because
|G1||G2| = |T ||U ||H|2 > |T ||U ||H| = |G|.
If σ : D×D → H is a symmetric bi-affine homomorphism, then Kσ is defined as (D×H,⊙),
where ⊙ is given by (d, h)⊙(d′, h′) = (d+ d′, h⊕h′⊕σ(d, 0)⊕σ(0, d′)⊕−σ(d, d′)). It
can now be shown that BAσ is a group correlation of the form GCKσ,S , where S =
{(d+ d′, σ(d, 0)⊕σ(0, d′))|d, d′ ∈ D}.
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In particular, if σ : A×A→ A for a ring A, with σ(a, b) = ab (multiplication in the ring),
then the operation ⊙ is defined as (t, a)⊙(u, b) = (t + u, a + b − tu). This group, which
we denote as KA, encodes both the addition and multiplication operations in the ring (as
(0, a)⊙(0, a′) = (0, a+ a′), and (a, 0)⊙(a′, 0) = (a+ a′,−aa′)).

3.5 Some Noteworthy Examples
Here we consider several cryptographically interesting examples and show that they are (sub)
group correlations and also explore connections between them. More examples along with a
tabular summary can be found in the full version.

Oblivious Linear function Evaluation and Beaver’s Multiplication Triples. OLE and BMT
over an arbitrary ring A are defined as follows:

oleA := {
(
(p, a), (q, b)

)
| a+ b = pq},

bmtA := {
(
(a1, b1, c1), (a2, b2, c2)

)
| c1 + c2 = (a1 + a2)(b1 + b2)}.

Consider the symmetric bi-affine homomorphism σ : A × A → A defined with respect to
subgroups T = A× {0} and U = {0} ×A as σ(p, q) = pq. It can be seen that the bi-linear
correlation BAσ is isomorphic to oleA. oleA is also a group correlation (Theorem 9).

It is straightforward to see that BMT is a group correlation with G = A× A× A and
S = {(a, b, ab) | a, b ∈ A}. Furthermore, BMT is isomorphic to the bi-linear correlation

BAσ⟨2⟩ := {
(
(ã1, 0), (0, b̃2), c̃1

)
,
(
(0, b̃1), (ã2, 0), c̃2

)
| ã1b̃1 + ã2b̃2 = c̃1 + c̃2},

This can be seen by defining isomorphisms

α(a1, b1, c1) =
(
(a1, 0), (0, b1), c1 − a1b1

)
and β(a2, b2, c2) =

(
(0, b2), (a2, 0), c2 − a2, b2

)
.

It can now be checked that(
(a1, b1, c1), (a2, b2, c2)) ∈ bmtA ⇔

(
α(a1, b1, c1), β(a2, b2, c2)) ∈ BAσ⟨2⟩ .

Zero-Alternating Sum Correlation. We introduce an important correlation, called Zero
Alternating Sum (ZAS) correlation over any (possibly non-abelian) group (D,+). ZAS is a
flat correlation zasD ⊆ D2 ×D2, defined as

zasD := {
(
(a, c), (b, d)

)
| a+ b+ c+ d = 0}.

We remark that if D is an abelian group, then zasD is a trivial correlation.3

zasD as a Bi-Affine Correlation. Somewhat surprisingly, ZAS turns out to be a bi-affine
correlation. We define the corresponding bi-affine homomorphism σ : D ×D → H, where
H = Dop, the opposite group of D (i.e., H has the same elements as D and has a group
operation ⊕ defined by a⊕ b = b + a). We let σ(x, y) = −(x + y). Then, clearly, ZAS is
isomorphic to the flat correlation {((c, a), (d, b)) | σ(c, d) = a+ b}. It is straightforward to
verify that σ is indeed a bi-affine homomorphism. For completeness, we present a proof in
the full version. Later, we refer to the bi-affine homomorphism σ defined above as σzas

D .

3 A secure protocol for sampling from zasD, when D is abelian, is as follows: Alice samples x ← D
to Bob; Alice then picks a random a ← D and outputs (a, x − a); Bob samples b ← D and outputs
(b,−x− b).
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zasD as a Group Correlation. When D is not abelian, σ defined above is not semi-abelian,
and hence zasD is not symmetric. As such, Theorem 9 does not apply to zasD. Nevertheless,
we show below that zasD over any group D is a group correlation of the form GCG,S , where
the group G is D ×D, with coordinate-wise addition, and S = {(g,−g) | g ∈ D}.

((a, c), (b, d)) ∈ zasD ⇔ a+ b+ c+ d = 0⇔ a+ b = −(c+ d)
⇔ (a+ b, c+ d) ∈ S ⇔ (a, c) + (b, d) ∈ S.

4 Information Theoretic Results

Common-Information. For a pair of correlated random variables (X,Y), two important
information-theoretic measures of correlation are the well-known quantity of mutual infor-
mation I(X; Y) [26] and the lesser known notions of common information. Specifically, there
are two measures of common information due to Gács and Körner [18] and due to Wyner
[28], which can defined as below:

CIgk(X; Y) = I(X; Y)−RIgk(X; Y) (2)
CIw(X; Y) = I(X; Y) +RIw(X; Y) (3)
RIgk(X; Y) = inf

Q
I(X; Y|Q), such that H(Q|X) = H(Q|Y) = 0 (4)

RIw(X; Y) = inf
Q
I(Y; Q|X) + I(X; Q|Y), such that I(X; Y|Q) = 0 (5)

where the infimum is over all random variables Q that are jointly distributed with (X,Y).
Here RIgk and RIw are (respectively) Gács-Körner and Wyner residual information.

We shall write RIw(C) etc. as a short hand for RIw(X; Y), where the random variables
(X,Y) are uniformly distirbuted over C. We will use the following proposition that is a
special case of a “monotonicity” result in [25].

▶ Proposition 10 ([25]). If m independent instances of FC can be securely computed using
n independent instances of FC′ , then m ·RIw(C) ≤ n ·RIw(C ′).

Also, C is a trivial correlation – i.e., there exists an information theoretically secure
2-party protocol to sample from C – iff RIw(C) = 0 (or equivalently, RIgk(C) = 0).

▶ Lemma 11. Suppose C is a group correlation of the form GCG,S. Then:
1. C is trivial iff S is a (left or right) coset of a subgroup of G.
2. CIgk(C) = 0 iff the set {s− s′ | s, s′ ∈ S} is a generating set for the group G.
3. If for all s1, s2, s3, s4 ∈ S, s1 − s2 + s3 − s4 = 0 ⇒ {s1, s3} = {s2, s4}, then RIw(C) =

log |S| viz. C is K2,2 free.

Now, we state our main technical result in this section. Recall that in a non-defective
bi-affine homomorphism, there is no pair (t, u) ∈ (T \ {0})× (U \ {0}) such that σ(t+ u) =
σ(t)− σ(0) + σ(u).

▶ Lemma 12. If σ is a non-defective bi-affine homomorphism w.r.t. (T, U), then RIw(BAσ) =
log min(|T |, |U |).

An example of a non-defective bi-affine homomorphism is multiplication in a domain. As
a result, we have RIw(olen

A) = log |A| if A is a domain.
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5 Protocols for Bi-Affine Correlations

In this section, we present several protocols pertinent to bi-affine correlations. These protocols
realize several basic functionalities related to “completing” a correlation (i.e., sampling from
a correlation conditioned on certain variables being fixed), given access to a random instance
of the same correlation which could be obtained from a semi-trusted source modeled by the
biasable sampling functionality. The same protocols can also be used to “rerandomize” for
forward security. Missing details of the constructions and their proofs can be found in the
full version.

In the following, let σ : Q → H be a bi-affine homomorphism from a group (Q,+) to
group (H,⊕) w.r.t subgroups T, U ⩽ Q.

5.1 Completing a Bi-Affine Correlation
We first define the conditional sampling functionality that completes a bi-affine correlation,
by sampling an instance of the correlation conditioned on its inputs.

Conditional Sampling Functionalities Fσ|u, Fσ|tu and Fσ|tau
(where σ : Q→ H and T, U ⩽ Q)

Inputs: t ∈ T, a ∈ H from Alice, and u ∈ U from Bob, where

t = a = ⊥ for Fσ|u t ∈ T, a = ⊥ for Fσ|tu t ∈ T, a ∈ H for Fσ|tau.

Outputs: (t̃, ã) to Alice and (ũ, b̃) to Bob, where ((t̃, ã), (ũ, b̃))← BAσ conditioned on ũ = u,
t̃ = t if t ̸= ⊥, and ã = a if a ̸= ⊥.

Functionalities Fσ|t and Fσ|tub are defined symmetric to Fσ|u and Fσ|tau, respectively.
All functionalities allow the adversary to selectively abort output delivery to honest parties
(after seeing its own output, if any).

Figure 2 contains UC secure protocols for the functionalities Fσ|u, Fσ|tu and Fσ|tau in
the F̃σ hybrid model (Definition 4) with only one invocation of F̃σ. The first two protocols
require one round of communication while Compσ|tau needs two rounds of communication.

▶ Lemma 13. Compσ|u, Compσ|tu and Compσ|tau (Figure 2) UC-securely realize functional-
ities Fσ|u, Fσ|tu and Fσ|tau respectively in the F̃σ hybrid.

We prove this lemma in the full version. Here, we point out that if both parties are
honest, then Alice and Bob output (t, a) and (u, b) such that:

a⊕ b = [σ(t+ ∆u)⊕−σ(t)]⊕[ã⊕ b̃]⊕[−σ(ũ)⊕σ(∆t + ũ)]
= [σ(t+ ∆u)⊕−σ(t)]⊕[σ(t̃+ ũ)]⊕[−σ(ũ)⊕σ(∆t + ũ)]
= [σ(t+ ∆u)⊕−σ(t)]⊕[σ((t̃+ ũ) +ũ(∆t + ũ)]
= σ((t+ ∆u) +t(t+ ũ))
= σ(t+ u)

where, we use the properties of σ (Definition 7) and the fact that ã⊕ b̃ = σ(t̃+ ũ). Also note
that to prove Compσ|tau realizes Fσ|tau, it is sufficient to show that Πσ is a secure realization
of Fσ|tau (and then appeal to the UC theorem to implement Fσ|tu with protocol Compσ|tu

in the F̃σ hybrid model). Correctness of Πσ, when the parties are honest, follows from the
fact that a⊕ b = a⊕∆a⊕ b̃ = ã⊕ b̃ = σ(t + u). UC security follows from the observation
that in Πσ, the inputs to Fσ|tu and the message that Alice sends to Bob can be arbitrary
and would still correspond to valid input choices of the parties (or aborting).
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Protocols Compσ|u and Compσ|tu in the F̃σ hybrid model

Inputs: Bob receives u ∈ U . In Compσ|tu, Alice receives t ∈ T , as well.

Invocation of F̃σ: Alice gets (t̃, ã) and Bob gets (ũ, b̃) from F̃σ, s.t. ã⊕ b̃ = σ(t̃ + ũ).
In Compσ|u, Alice sets t = t̃.
Alice ↔ Bob:

Alice sends ∆t to Bob, where ∆t := −t̃ + t. (In Compσ|u, ∆t = 0T and this message can
be omitted.)
Bob sends ∆u to Alice, where ∆u := u− ũ.

Output: Alice outputs (a, t) where a := σ(t + ∆u)⊕−σ(t)⊕ ã, and Bob outputs (u, b)
where b := b̃⊕−σ(ũ)⊕σ(∆t + ũ). (In Compσ|u, b = b̃.)

Protocol Πσ in the Fσ|tu hybrid model

Inputs: Alice receives (t, a) ∈ T ×H, and Bob receives u ∈ U .
Invocation of Fσ|tu: Alice inputs t, Bob inputs u to Fσ|tu, and receive outputs (t, ã) and
(u, b̃) respectively s.t. ã⊕ b̃ = σ(t + u).
Alice → Bob: Alice sends ∆a to Bob, where ∆a := −a⊕ ã.
Output: Alice outputs (t, a) and Bob outputs (u, b), where b := ∆a⊕ b̃.

Protocol Compσ|tau in the F̃σ hybrid model
Compσ|tau is obtained by composing Πσ with Compσ|tu (as an implementation of Fσ|tu).

Figure 2 UC-secure protocols for Fσ|t, Fσ|tu and Fσ|tau in the F̃σ hybrid model. All protocols
use a single invocation to the functionality F̃σ. The first two protocols have a single round of
message exchange, while the latter requires two rounds.

5.2 Inner-Product Bi-Affine Correlations from Bi-Affine Correlations

If Alice and Bob hold ℓ + m instances of any semi-abelian bi-affine correlation BAσ (in
appropriate directions), they can non-interactively extract an instance of BAσ⟨ℓ+m⟩ .

Protocol to sample BAσ⟨ℓ,m⟩ in the Fσ hybrid model

Invocation of Fσ:
Fσ is invoked ℓ times, at the end of which Alice holds (r1, . . . , rℓ, x1, . . . , xℓ) and Bob holds
(s1, . . . , sℓ, y1, . . . , yℓ) such that σ(ri + si) = xi⊕ yi where ri ∈ T, si ∈ U and xi, yi ∈ H

for all i ∈ [ℓ].
Fσ is invoked m times in the opposite direction, at the end of which Alice receives
(s′1, . . . , s′m, y′1, . . . , y′m) and Bob receives (r′1, . . . , r′m, x′1, . . . , x′m), such that σ(r′i + s′i) =
x′i⊕ y′i where r′i ∈ T, s′i ∈ U and x′i, y′i ∈ H for all i ∈ [m].

Outputs: Alice outputs ti = ri, u′j = −s′j , h1 =
∑ℓ

k=1 xk ⊕
∑m

k=1 y′k and Bob outputs
t′j = −r′j , ui = si, h2 =

∑ℓ

k=1 yk ⊕
∑m

k=1 x′k for all i ∈ [ℓ], j ∈ [m].

Figure 3 A protocol for sampling BAσ⟨ℓ,m⟩ in the Fσ, FZAS|tu hybrid model.
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The correctness of the protocol in Figure 3 can be seen as follows. Recall that the support of
σ⟨ℓ,m⟩ is defined as

(
(t1, . . . , tℓ, u′

1, . . . , u
′
m, h1), (u1, . . . , uℓ, t

′
1, . . . , t

′
m, h2)

)
satisfying

σ⟨ℓ,m⟩(t1 + u1, . . . , tℓ + uℓ, u
′
1 + t′1, . . . , u

′
m + t′m) = h1⊕h2 (6)

The L.H.S of (6) can be expanded to verify correctness.

ℓ∑
i=1

σ(ti + ui) +
m∑

i=1
σ(−t′i − u′

i) =
ℓ∑

i=1
σ(ri + si) +

m∑
i=1

σ(r′
i + s′

i)

=
ℓ∑

i=1
(xi + yi) +

m∑
i=1

(x′
i + y′

i)

= h1⊕h2.

5.3 Bi-Affine Correlations from String OT
We sample bi-affine correlations by first constructing a protocol for Fσ|tau in the string OT
hybrid model. This implies a semi-honest secure protocol for Fσ when Alice and Bob sample
their inputs uniformly at random. As the first step in a protocol for Fσ|tau, Alice and Bob
agree upon a generator matrix MU of dimensions k × d such that every element u ∈ U can
be expressed as u =

∑k
i=1 MU (i, ci) where MU (i, j) denotes the element in the i-th row and

j-th column and the vector c is the decomposition of element u w.r.t the generator matrix
MU . Given such an generator matrix, our protocol needs k instances of

(
d
1
)
-otℓ string OTs.4

Figure 4 describes the protocol for Fσ|tau in the string OT hybrid model.

Protocol Compσ|tau in the
(

d
1

)
-otℓ Hybrid model

Parameters: Groups (T, +), (U, +), (H,⊕) and a generator matrix of U , MU ∈ Uk×d.
Inputs: Alice has input t ∈ T, a ∈ H and Bob has input u ∈ U .

Alice samples {ri}i∈[2,k] ← H and sets r1 = a.
For each i ∈ [k− 1], Alice and Bob invoke

(
d
1

)
-otℓ. Alice’s input is the tuple {−ri⊕σ(t +

MU (i, j))⊕−σ(t)⊕ ri+1}j∈[d] and Bob’s input is a choice integer ci ∈ [d] such that u =∑k

j=1 MU (j, cj) where MU (i, j). Bob receives mi = −ri⊕σ(t + MU (i, ci))⊕−σ(t)⊕ ri+1.
For i = k, Alice’s input is the tuple {−rk ⊕σ(MU (i, j))}j∈[d] and Bob’s input is the choice
integer ck ∈ [d]. Bob receives mk = −rk ⊕σ(t + MU (k, ck)).

Bob combines the messages he received to compute b =
∑k

i=1 mi

Figure 4 A semi-honest secure protocol realising Fσ|tau in the
(

m
1

)
-otℓ-Hybrid model.

▶ Lemma 14. Compσ|tau (Figure 4) is a semi-honest secure protocol realising Fσ|tau.

Note that |U | ≤ dk, since every element in U can be represented as the summation of k
elements, each chosen from a d-dimensional row of MU . The following lemma considers the
case when this representation is tight.

4 Effectively, we require oblivious transfer over group elements and hence the length of strings must be
long enough to send the description of an element.
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▶ Lemma 15. If σ is non-defective and |U | = dk ≤ |T |, then Compσ|tau is optimal in the
number of instances of

(
d
1
)
-otℓ used (for any length ℓ) for semi-honest securely realizing one

instance of BAσ.

▶ Lemma 16. If C is a regular correlation then RIw(C) ≤ log min(degL(C), degR(C)).
Further, if C is K2,2-free, then RIw(C) = log min(degL(C), degR(C)).

Lemma 15 follows from the fact that RIw(
(

d
1
)
-otℓ) ≤ log(d).5 Also, by Lemma 12,

RIw(BAσ) ≤ log |U | = k log d. Then, by Proposition 10, at least k instances of
(

d
1
)
-otℓ are

needed to securely sample one instance of BAσ, proving the lemma.

Comparison with Gilboa’s protocol. In [19], Gilboa gave a protocol to generate OLE
correlations over a ring A. Their protocol requires the ring to have a bit-decomposition
which is equivalent to demanding the existence of a generator matrix MA of dimension
log |A| × 2. When A = F(2n), Gilboa’s protocol uses n instances of

(2
1
)
-otℓ. By appealing to

Lemma 16, Proposition 10 and the fact that RIw(
(2

1
)
-otℓ) = 1, it can be argued that this is

the minimum number of OTs that must be invoked (in either direction and per correlation
if amortised) to obtain an information-theoretically secure 2-Party protocol that samples
oleF2n correlations.

5.4 Biasable Correlations from Tamperable Correlations
The protocol TRSampσ in Figure 5 gives a secure protocol for F̃σ in the F̂σ hybrid model.
With no assumptions on the structure of the correlation, Alice and Bob can consume
log(λ) correlations and output one correlation which they are guaranteed is correct with
overwhelming probability. The main insight in our tamper resistant protocols is to use the
following error preservation property of Compσ|tau to check correlations against each other in
a “tournament” style and thereby amplify the probability of catching incorrect correlations.

Error-Preservation Property. When Compσ|u, Compσ|tu and Compσ|tau are instantiated
in the F̂σ-hybrid, errors in the correlation output by parties is related to the error in the
correlation which parties receive from F̂σ. Recall that when both Alice and Bob are honest,
F̂σ allows the adversary to feed an arbitrary pair ((t̂, â), (û, b̂)) to the parties. Suppose,
â⊕ b̂ = σ(t̂+û)⊕ ê. In this case, the outputs (t, a) and (b, u) are such that a⊕ b = σ(t+u)⊕ e,
where e = x⊕ ê⊕−x (for x = −σ(t+ û)⊕σ(t̂+ û)). In particular, e = 0

H
iff ê = 0

H
; further,

when H is abelian, e = ê.

▶ Lemma 17. TRSampσ (Figure 5) securely realizes the functionality F̃σ against passive
corruption, with statistical security.

A More Efficient Version. While applicable to all bi-affine correlations, TRSampσ has a
rate of o(1/log λ) in the security parameter λ. Here we present a template which can be used
to obtain (a much better) constant rate (in our instantiations, 1/2, without amoritization)
in many common examples of bi-affine correlations over large groups. This template is in
the form of a passive-secure protocol for F̃σ in the (F̂σ, Eσ)-hybrid, where Eσ is an “error

5 An upperbound on
(

d
1

)
-otℓ can be computed by setting Q = Y in (5), where X = (m1, . . . , md) and

Y = (b, mb). Then I(Y; Y|X) = H(Y|X) = log(d) since the only remaining entropy in Y given X is the
d different choices of b.
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Protocol TRSampσ in the F̂σ hybrid model

Parameter: Let n := ω(log λ).
Invocation of F̂σ: Alice gets {(ti, ai)}i∈[n] and Bob gets {(ui, bi)}i∈[n] from n invocations
of F̂σ.
[Cut-and-Choose] Bob → Alice:

Bob samples a random permutation σ ∈ Sn, and sends σ to Alice. Both reorder their
correlations as per σ: in the following, we let ti := tσ(i), etc.
Bob sends {(ui, bi)}1≤i≤n

2
to Alice. Alice aborts if for any i ≤ n

2 , ((ti, ai), (ui, bi)) ̸∈ C.
[Consistency Check] For each i such that n

2 +1 < i ≤ n, Alice and Bob check the instances
i and i− 1 for consistency:

Alice and Bob invoke Comp(ti−1,ai−1),(ui−1,bi−1)
σ|tau on inputs (ti, ai) and ui respectively, and

Bob gets output b∗i .
Bob aborts if b∗i ̸= bi.

Output: Alice outputs (tn, an) and Bob outputs (un, bn).

Figure 5 A passive secure protocol for F̃σ in the F̂σ hybrid model.

randomization” functionality. Then, Eσ itself is securely realized in the F̂σ-hybrid, depending
on the specifics of the map σ. We implement this latter step only for large groups which
satisfy one of three different structural properties.

▶ Lemma 18. altTRSampσ (Figure 6) passive-securely realizes the functionality F̃σ, in the
F̂σ, Eσ hybrid model

Error Randomization Functionality. The error randomization functionality Eσ outputs
two instances of the correlation ((t1, a1), (u1, b1)) and ((t2, a2), (u2, b2)) such that either the
latter is a valid correlation in BAσ, or the former has a “high min-entropy error”. Relying on
this altTRSampσ checks one correlation against the other and catches erroneous correlations
with overwhelming probability. In our instantiations of Eσ, the latter is obtained through an
invocation of F̂σ and the former is a “randomised” version of the latter such that the new
error (if non-zero) has large min-entropy. For details of the error randomization functionality
see Figure 7. Depending on the structure of the bi-affine homomorphism σ : Q → H, the
instantiations need different algebraic properties from the group H:

Modules: A group H is said to be a right-module of a ring R if there is a bi-linear map
σ : H×R→ H (i.e., σ((h+h′), r) = σ(h, r)+σ(h′, r) and σ(h, (r+r′)) = σ(h, r)+σ(h, r′))
with the additional properties that σ(σ(h, r), r′) = σ(h, (rr′)) (where the multiplication
rr′ is from the ring) and σ(h, 1) = h, where 1 stands for the multiplicative identity in R.
Let units(R) denote the set of ring elements r ∈ R that have a multiplicative inverse in
the ring. We define minimgR(H) to be the minimum size of the image of units(R) under
the map r 7→ x · r, over all non-zero elements x in the module H. i.e.,

minimgR(H) = min
x∈H\{0

H
}
|{x · r|r ∈ units(R)}|.

We require that minimgR(H) is super-polynomial in the security parameter. An example is
the case when R is a large enough field and H is a vector-space over R, then minimgR(H) =
|R| − 1.
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Semi-Abelian Bi-affine correlations: For a group H, we define minord(H) as the
order of the smallest non-trivial subgroup of H . Consequently, for all 0 < k < minord(H),
for all h ∈ H \{0

H
}, we have h+ · · ·+ h︸ ︷︷ ︸

k times

̸= 0. minord(H) equals the smallest prime factor

of the order of H. For security we require that minord(H) is super-polynomial in the
security parameter. An example is a large prime order group H , where minord(H) = |H|.
Surjective Bi-affine Correlations: For a (non-abelian) group D, we define minorbit(D)
to be the size of the smallest conjugacy class of D, excluding {0}. That is,

minorbit(D) := min
x∈D\{0}

|{r + x− r|r ∈ D}|.

This instantiation requires the minorbit(D) must be super-polynomial in security param-
eter. As an example consider the group SL(2, 2n)6 – i.e., 2× 2 matrices over F2n , with
determinant 1, where minorbit(SL(2, 2n)) ≥ 2n [1].

Descriptions of instantiations for the above algebraic objects can be found in the full version.

Protocol altTRSampσ in the F̂σ, Eσ hybrid model

Invocation of F̂σ: Alice gets (t0, a0) and Bob gets (u0, b0) from F̂σ.
Error-Rerandomization: Alice and Bob invoke Eσ and receive (t1, a1), (t2, a2) and (u1, b1),
(u2, b2) respectively.
Verification:

Alice and Bob invoke Comp(t0,a0),(u0,b0)
σ|tau on inputs (t1, a1) and u1 respectively, and Bob

gets output b∗.
Bob aborts if b∗ ̸= b1.

Output: Alice outputs (t2, a2) and Bob outputs (u2, b2).

Figure 6 A passive-secure protocol for F̃σ in the F̂σ, Eσ hybrid model.
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Abstract
We prove two classes of lower bounds on the communication complexity of information-theoretically
secure multiparty computation. The first lower bound applies to perfect passive secure multiparty
computation in the standard model with n = 2t + 1 parties of which t are corrupted. We show a
lower bound that applies to secure evaluation of any function, assuming that each party can choose
to learn or not learn the output. Specifically, we show that there is a function H∗ such that for
any protocol that evaluates yi = bi · f(x1, ..., xn) with perfect passive security (where bi is a private
boolean input), the total communication must be at least 1

2
∑n

i=1 H∗
f (xi) bits of information.

The second lower bound applies to the perfect maliciously secure setting with n = 3t + 1 parties.
We show that for any n and all large enough S, there exists a reactive functionality FS taking
an S-bit string as input (and with short output) such that any protocol implementing FS with
perfect malicious security must communicate Ω(nS) bits. Since the functionalities we study can
be implemented with linear size circuits, the result can equivalently be stated as follows: for any
n and all large enough g ∈ N there exists a reactive functionality FC doing computation specified
by a Boolean circuit C with g gates, where any perfectly secure protocol implementing FC must
communicate Ω(ng) bits. The results easily extends to constructing similar functionalities defined
over any fixed finite field. Using known techniques, we also show an upper bound that matches the
lower bound up to a constant factor (existing upper bounds are a factor lg n off for Boolean circuits).

Both results also extend to the case where the threshold t is suboptimal. Namely if n = kt + s

the bound is weakened by a factor O(s), which corresponds to known optimizations via packed
secret-sharing.
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1 Introduction

In secure multiparty computation (MPC) a set of n parties compute an agreed function on
inputs held privately by the parties. The goal is that the intended result is the only new
information released and is correct, even if t of the parties are corrupted by an adversary.

In this paper we focus on unconditional security where even an unbounded adversary
learns nothing he should not, and we ask what is the minimal amount of communication one
needs to compute a function securely. To be clear, we will only consider functions where
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the size of the output is much shorter than the input, so we avoid trivial cases where the
communication is large, simply because the parties need to receive a large output. Note that
one can always compute the function without security by just sending the inputs to one
party and let them compute the function, so the question to consider is: compared to the
size of the inputs, what overhead in communication (if any) is required for a secure protocol?
Note that a different and probably much harder question is if, in general, the communication
must be larger than the circuit size of the function.

These questions only seem interesting for unconditional security: for computational
security we can use homomorphic encryption to compute any function securely with only a
small overhead over the input size.

There is a lot of prior work on lower bounding the communication required in interactive
protocols, and we survey some of this below. However, the most relevant existing work for
us is [6] which considers exactly the questions we ask here for the case of honest majority,
n = 2t+ 1, and passive (semi-honest) security. They show that a factor n overhead over the
input size is required for a variant of the inner product function, where parties may privately
choose to learn or not to learn the output. The result extends to the case of suboptimal
threshold where n = 2t+ s, and then the overhead becomes n/s.

Note that this result leaves open two important questions:
Firstly, a natural next step after the results from [6] is to ask which functions in general

require large communication. However, applying the result from [6] to functions other than
the inner product is nontrivial because they leverage a particular property of the inner
product, namely that it can be used to implement a PIR, which is of course not the case in
general. In this work, we therefore ask:

Can we show lower bounds for perfect passive secure evaluation of functions other
than the inner product?

Second, it is well known that perfect malicious security can be achieved if and only if t < n/3
and the result from [6] has nothing to say about this case: to apply it, one would need to set
s to be Θ(n) and then their lower bound becomes trivial. Hence, the final open question we
consider is:

Can we show lower bounds for perfect malicious security in the case where n = 3t+ 1?

We answer both questions in the affirmative.

1.1 Our results
1.1.1 Bounds for passive security
In this paper, we prove lower bounds for the model with n parties of which t are statically
corrupted. The network is synchronous, and we assume that the adversary can learn the
length of any message sent (in accordance with the standard ideal functionality modeling
secure channels which always leaks the message length). We consider information-theoretically
secure protocols with static corruption in the maximal threshold model.

On the technical side, what we show are actually lower bounds on the entropy of the
messages sent on the network when the inputs have certain distributions. This then implies
similar bounds in general on the average number of bits to send: an adversary who corrupts
no one still learns the lengths of messages, and must not be able to distinguish between
different distributions of inputs. Hence message lengths cannot change significantly when we
change the inputs, otherwise the protocol is insecure.
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For our passive lower bounds, we require that protocols securely implement the standard
functionality for secure function evaluation, where we add the option that each player Pi

can privately choose to learn or not to learn the output, by selecting an additional input bit
bi. What we show is that there exists a mapping H∗ which takes any function f , such that
in any n-party protocol securely evaluating the output yi = bi · f(x1, · · · , xn) for player Pi,
the total average communication must be at least 1

2
∑n

i=1 H
∗
f (xi) where xi is the input of

player Pi.
Very roughly speaking, the function H∗

f (xi) measures how much uncertainty remains
in the function output given that we know xi. Specifically, it is defined as the maximum
uncertainty that remains on any subset of inputs of size t among the remaining 2t inputs.
The lower bounds that we establish are tight in some cases: for the inner product we get a
bound of Ω(n) times the input length, so we recover the lower bound of [6]. Since the inner
product can be computed by a circuit of linear size, this bound is tight up to constant factors.
For the XOR function we get a trivial lower bound which only states that each party must
communicate their input. As the XOR function is linear, it is of course not surprising that
the bound is trivial in this case. Indeed, for two parties the bound is tight since a passively
secure protocol is for one of the two parties to simply reveal their input to the other party.
A final interesting example is a function is called “ranking”, that provides each party with
the index of their input in the sorted list of all inputs. For this example, we get again a
non-trivial bound of Ω(n) times the input size. This bound may not be tight, assuming there
is no linear-sized circuit for sorting integers.

On the technical side, our bound is established by considering a fixed party Pi and
choosing a bipartitioning of the remaining 2t parties into two groups of size t. We show
that the entropy such a group provides to the function output is a lower bound on the
communication of party Pi so we choose the maximum value among all such partitions. This
corresponds to the definition of the function H∗

f mentioned above. Since the adversary is not
allowed to distinguish between different distributions of messages we can essentially add all
the lower bounds for the communication of all parties to obtain our lower bound.

The lower bound extends to the case where the threshold is submaximal, i.e. n = 2t+ s.
The bound can be established by considering a partitioning of the parties into sets of size s (it
is allowed that a party belongs to no set). For each such set, we take the supremum over all
ways of bipartitioning the remaining 2t parties into two sets of size t to get a communication
bound. Since the adversary is not allowed to distinguish between different distributions of
messages, again we can add the communication for each such set of size s. This means we
get a communication lower bound for each such partition of the parties into sets of size s so
we take the maximum among all such partitions. For functions which are “symmetric”, any
partition of the parties into sets of size s gives the same lower bound which means the final
supremum can be omitted. In this case, the lower bound is weakened by a factor O(s) such
that the total communication can be shown to be Ω(

∑n
i=1 H

∗
f (Xi))/s. For functions which

are not symmetric it is not possible to make a general statement about what happens in the
submaximal threshold case, though highly asymmetric functions likely have weaker lower
bounds since only a few parties contribute a large amount of entropy to the function output.

1.1.2 Bounds for active security
For our lower bounds for active security, we make use of the Universal Composability (UC)
model for secure protocols. Recall that, in the UC model, we specify an “ideal functionality”
in order to state what a protocol is supposed to do. The functionality accepts input from
the parties and computes outputs in a specific way that an adversary by definition cannot
modify. A protocol securely implements the functionality if running the protocol is, in a
certain well-defined sense, “equivalent” to interacting with the functionality.

ITC 2021
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In our case, we consider a functionality Ff computing a function f with a specific structure.
Namely, the functionality first receives input from all parties and sends an acknowledgement
to everyone. Then it receives a second batch of inputs, computes the desired function and
sends the result to all parties. This structure of Ff implies that in any protocol implementing
Ff , the first set of inputs must be chosen and committed before the second set of inputs
are chosen, and this is important for the proof of our lower bound. However, even if this
particular structure is a limitation, the model still covers some natural applications. For
instance, the concrete function we study models a case where a long string (a database) is
determined in the first phase, and the function to be evaluated then returns a bit in a certain
position chosen later (an entry in the database).

We assume UC security mainly for simplicity of exposition, we can actually make do with
significantly weaker assumptions, this is detailed in Section 3.5. What we show is that for all
n and any sufficiently large S, there exists a function fS with input size S such that any
protocol that evaluates FfS

securely must communicate Ω(nS) bits.
Even more is true: we are able to construct functions fS as we just claimed such that

they can be evaluated by circuits of size O(S). This means we also get the following result:
for any n and all large enough g ∈ N there exists a Boolean circuit C with g gates specifying
the computation to be done by functionality FC , such that any protocol that evaluates FC

securely must communicate Ω(ng) bits.
We emphasize that our result leaves open the question of overhead over the circuit size

when the circuit is much bigger than the inputs. However, there is still something we can
say about this general question. Note that the general MPC protocols we know are not,
strictly speaking, protocols. Rather, they are protocol compilers that take a circuit C as
input, and produce a protocol for computing C securely. Our results do imply that any
such compiler must produce a protocol with large communication overhead over the circuit
size when applied to circuits in the family we build. Now, if this overhead would no longer
be present when applying the compiler to other circuits, it would mean that it was able to
exploit in some non-trivial way the structure of the circuit it is given. Doing this would
require protocol compilers of a completely different nature than the ones we know, which do
“the same thing” to any circuit they are given.

This bound also extends to the case where the threshold t is suboptimal. Namely, if
n = 3t + s, then the lower bound is O(ng/s) and this shows that the improvement in
communication that we know we can get using so-called packed secret sharing, is the best
we can achieve. The bound does not, however, extend to statistical security. We show in
Section 3.6 that there exists a statistically secure protocol breaking the bound already in the
4-party case.

We also show an upper bound that matches the lower bound up to a constant factor for
all values of t < n/3. This is motivated by the fact that the existing upper bound from [14]
is a factor lg n off for Boolean circuits. We do this by exploiting recent results by Cascudo et
al. [4] on so-called reverse multiplication friendly embeddings. Other than establishing the
exact communication complexity for this particular class of functions, it also shows that our
result is the best possible general lower bound we can have.

To show our results, we start from a lower bound for the communication complexity of a
specific function for the case of four parties including one maliciously corrupt player. We
then “lift” this result to the multiparty case. This high-level strategy is similar the one used
in [6], however our proof for the four party case as well as the concrete lifting technique are
very different from what was done in [6]. In fact it is easy to see that new techniques are
necessary to achieve our result. Namely, in our case where t < n/3, [6] only gives a trivial
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result, as mentioned above. Nevertheless [6] is known to be optimal for passive security, even
in the case of suboptimal threshold. This means that there is no way to use their proof for
our question, one must somehow exploit the fact that the considered protocols are assumed
to be maliciously secure.

1.2 Related work
Prior work on lower bounding communication in interactive protocols includes [15, 12, 5, 11,
15, 16, 2, 13] (and see [10] for an overview of these results). The previous work most relevant
to us is [10]. They consider a special model with three parties where only two have input
and only the third party gets output, and consider perfect secure protocols. This paper was
the first to show an explicit example of a function where the communication for a (passive
and perfectly) secure protocol must be larger than the input.

Later, in [8], a lower bound was shown on the number of messages that must be sent to
compute a certain class of functions with statistical security. When the corruption threshold
t is Θ(n), their bound is Ω(n2). This of course implies that Ω(n2) bits must be sent. However,
we are interested in how the communication complexity relates to the input and circuit size
of the function, so once the input size becomes larger than n2 the bound from [8] is not
interesting in our context.

In [9], lower bounds on communication were shown that grow with the circuit size.
However, these bounds only hold for a particular class of protocols known as gate-by-gate
protocols, and we are interested in lower bounds with no restrictions on the protocol.

2 Lower bounds for arbitrary functions

In this section we prove a lower bound on the communication complexity for perfect passive
secure multiparty computation. The lower bound applies to any function in which the parties
can choose to learn or not to learn the output. For some functions, the lower bound can be
shown to be tight.

Let X be a random variable with pdf p : X → [0, 1]. We define the (Shannon) entropy of
X as:

H(X) = −
∑
x∈X

p(x) lg p(x)

where lg is base 2. The entropy measures the uncertainty of X: to communicate the outcome
of X, an average of H(X) bits have to be communicated. We define the conditional entropy
H(Y | X) as the amount of information in Y left, given that we know X. If H(Y ;X) is the
joint entropy we define:

H(Y | X) = H(Y ;X) −H(X)

A related measure is the mutual information I(Y ;X) that measures how much information
the two random variables X,Y have in common. It is defined as:

I(X;Y ) = H(X) −H(X | Y )

We will use this measure for our lower bound, we need the following identities:

▶ Lemma 1. I(X;Y ) = I(X;Z) + [H(X | Z) −H(X | Y )].
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Proof. Follows from the definition of mutual information:

I(X;Y ) = H(X) −H(X | Y ) = I(X;Z) +H(X | Z) −H(X | Y ) ◀

▶ Lemma 2. Let X,Y, Z be random variables such that I(Y ;Z) ≥ H(Y ). Then H(X | Z) ≤
H(X | Y ).

Proof. By using the chain rule for entropy twice we get:

H(X,Y, Z) = H(Y ) +H(X | Y ) +H(Z | Y,X)
= H(Z) +H(X | Z) +H(Y | Z,X)

Since I(Y ;Z) ≥ H(Y ) we have H(Y | Z,X) = 0 and so we find that:

H(X | Y ) = H(X | Z) + [H(Z) −H(Z | Y,X)] −H(Y )

Noting that H(Z | Y,X) ≤ H(Z | Y ) we get:

H(Z) −H(Z | X,Y ) ≥ H(Z) −H(Z | Y ) = I(Y ;Z) ≥ H(Y )

In particular, we have [H(Z) −H(Z | Y,X)] −H(Y ) ≥ 0 which concludes the proof. ◀

▶ Lemma 3. Let X,Y, Z be random variables such that I(X; (Y, Z)) ≥ ℓ, and I(X;Y ) = 0.
Then H(Z) ≥ ℓ.

Proof. We use the chain rule for mutual information to obtain:

ℓ ≤ I(Y, Z;X) = I(X;Y ) + I(Z;X | Y )

By assumption we have I(X;Y ) = 0. The bound I(Z;X | Y ) ≤ H(Z) is not hard to see and
concludes the proof. ◀

We now define the functional entropy of a random variable which is used to establish
our communication lower bound. Informally, the functional entropy measures how much
uncertainty an input to a function provides to its output.

2.1 Functional entropy
We start by considering the binary case: let f : X × X → Y × Y be a binary function, and
let X1, X2 be random variables over X . We define the f -expansion of X1 to be the following
exponential-sized string (the case for X2 is similar):

Ef (X1) =
n

x2∈X
f(X1, x2)

where ∥ denotes string concatenation. The order of the concatenation matters in the sense
that it must be a fixed order, but the specific order is not important. We now define the
functional entropy of Xi as:

Hf (Xi) = H(Ef (Xi))

Loosely speaking, this quantity measures how much uncertainty remains in the function
output, given that we remove all randomness from variables other than Xi. Since the value
of Ef (Xi) can be computed from Xi, the functional entropy must be upper bounded by the
regular Shannon entropy, i.e. Hf (Xi) ≤ H(Xi).
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We now extend the notion to an n-ary function f : X n → Yn for n = 2t+ 1 and some t.
Let T ⊂ {1, 2, . . . n} be a set of indices, and define −T as its complement. Note that we can
write any f as f ′ where

f(X1, X2, . . . Xn) = f ′(XT , X−T )

We define the functional entropy of a set of random variables T as:

HT = Hf ′(XT )

Finally, we define the maximum functional entropy of a variable Xi as:

H∗
f (Xi) = max

T, |T |=t, i̸∈T
HT

Loosely speaking, H∗
f (Xi) measures how much uncertainty we can have in the function

output, if we fix all but t inputs, where these t inputs do not include Xi. We will use this
quantity to establish our lower bound.

2.2 Lower bound, arbitrary functions, maximal threshold
In this section we establish the communication lower bound for perfect security and maximal
threshold. Let n = 2t+ 1 be an integer, and consider a set of parties P1, P2, . . . Pn computing
a function where the ith party learns yi = bi · fi(X), where bi ∈ {0, 1} is a private boolean
input, and f : X n → Yn is a vector function. Consider a partition of the n parties into
groups of size t, t, 1 where X1 is the concatenated inputs of parties in the first group, X2 the
second group, and X3 is the input of the single party (not including the bi inputs). Let Ci,j

be the (ordered) concatenation of all messages sent between groups i and j.
In the following two lemmas we consider a situation where only the single players in

group 3 learns the output, while all other players have their output selection bit set to 0.
Now, since no group has more than t players, the adversary can corrupt all players in each
single group, and hence neither the first, nor the second group must learn anything new from
the protocol.

▶ Lemma 4. I(X1; (C1,2;C1,3)) ≥ Hf (X1).

Proof. By privacy against group 1, the variables C1,2, C1,3 are independent of X2 and X3.
This means group 2 and P3 can resample randomness and use (C1,2, C1,3) as an oracle to
compute f(x1, x2, x3)2,3 for any values of x2, x3. This implies that the mutual information
between the communication and the expansion is at least the entropy of the expansion:

I(Ef (X1); (C1,2;C1,3)) ≥ H(Ef (X1)) = Hf (X1) (1)

On the other hand, as Ef (X1) is determined by X1 we have that,

I(X1; Ef (X1)) = Hf (X1) (2)

We now compute:

I(X1; (C1,2, C1,3))
= I(X1; Ef (X1)) + (H(X1 | Ef (X1)) −H(X1 | (C1,2;C1,3)) by Lemma 1
= Hf (X1) + [H(X1 | Ef (X1)) −H(X1 | (C1,2;C1,3))] by Equation (2)

By Equation (1) we can apply Lemma 2 to conclude the value in the brackets is nonnegative
which concludes the proof. ◀

ITC 2021



2:8 More Communication Lower Bounds for Information-Theoretic MPC

▶ Lemma 5. H(C1,3) ≥ Hf (X1).

Proof. Immediate consequence of Lemmas 3 and 4 because of privacy against group 2 which
implies I(X1;C1,2) = 0. ◀

▶ Theorem 6. In any MPC protocol of maximal threshold n = 2t + 1 that evaluates
yi = bi · fi(x1, x2, . . . , xn) with perfect passive security, the total communication is at least

1
2

n∑
i=1

H∗
f (Xi)

bits of information.

Proof. Consider any party Pi. Then for any partition of the remaining 2t parties into two
groups of size t, Lemma 5 gives a lower bound on H(C1,3) for a certain setting of the inputs.
We then choose the maximum such lower bound which is precisely H∗

f (Xi). By perfect
passive security, the adversary is not allowed to distinguish between different distributions
of messages so we can add the lower bound obtained for each choice of Pi. Finally, we
divide by two because each bit is counted exactly twice: once at the sender and once at the
receiver. ◀

2.3 Lower bound, arbitrary functions, submaximal threshold
In this section we consider the case when the number of corruptions is submaximal, i.e.
n = 2t+ s for some s > 1. We extend our definition of H∗

f to apply to groups of variables.
Let S be some group of parties of size s we then define:

H∗
f (XS) = max

T, |T |=t, S∩T =∅
HT

We consider a fixed partition of the parties into groups of size t, t, s: we call the concatenated
inputs of the parties in each group for X1, X2, X3, and let Ci,j denote the correspondence
between groups i, j.

Let S be a partition of the parties into sets of size s, and let S be the set of all such
partitions. Note that a party is allowed to belong to no set in S, say if 2t is not divisible by
s.

▶ Theorem 7. In any MPC protocol of submaximal threshold 2t + s that evaluates yi =
bi · fi(x1, x2, . . . , xn) with perfect passive security, the total communication is at least

max
S∈S

[
1
2

∑
S∈S

H∗
f (XS)

]

bits of information.

Proof. Consider some fixed partition S of the parties into sets of size s. We can let any
element S ∈ S define a partition of the parties into sets of size t, t, s. The third group can
be regarded as a single party with the concatenated inputs as their input. In doing so, we
obtain the result of Lemma 5 for any such partition. This means the communication for
the third group must be at least H∗

f (XS). Since the adversary is not allowed to distinguish
between different distributions of messages, we can add the communication for all S ∈ S to
get a lower bound on the communication. Finally, any such S yields a lower bound, so we
choose the partition S ∈ S that maximizes the lower bound. ◀
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The statement of the theorem allows for the function to be “asymmetric” in the sense that
some ways of partitioning the parties gives stronger bounds. If any choice of S gives the
same lower bound, we say the function f is symmetric. For symmetric functions, the above
lower bound can be simplified. We assume that s divides n for simplicity.

▶ Corollary 8. Let f be a symmetric function. Then in any MPC protocol of submaximal
threshold 2t + s that evaluates yi = bi · fi(x1, x2, . . . , xn) with perfect passive security, the
total communication is at least

n

2sH
∗
f (X1)

bits of information.

2.4 Examples
We briefly provide some examples of different choices of f . In the following, we let I denote
an upper bound on the bit length of each participants input, i.e. Xi ∈ {0, 1}I for every i.

2.4.1 Inner product
We consider a variant of the inner product function where 2t parties provide inputs, while
the last party only provides a value for b. Now consider any single party. We can then divide
the remaining 2t parties along the “aisle” of the inner product function. Closer study reveals
that almost all information in Xi matters, meaning we get:

H∗
f (Xi) = tI

Summing this up reestablishes the lower bound of [6]. We note that this lower bound is tight
up to constant factors.

2.4.2 XOR
Consider the bitwise XOR function, that takes n inputs x1, . . . xn ∈ {0, 1}I and outputs
y =

⊕n
i=1 xi. We note that two inputs XT , X

′
T provide the same expansion iff

⊕
i∈T Xi =⊕

i∈T X
′
i. This means we get:

H∗
f (Xi) = I

Summing this up gives a lower bound of Ω(nI) which only states that each party must
communicate their input. However, for two parties this is tight since a passively secure
two-party protocol for XOR is for one of the parties to simply reveal their input.

2.4.3 Ranking
Consider a function where each party Pi inputs an integer xi and learns the index of their
input in the sorted list of all inputs. Note that two inputs XT , X

′
T have the same expansion

if and only if they are permutations of each other. Strictly speaking, the “if” part is not
necessary to be proven since we are calculating a lower bound (not the upper bound), but to
illustrate, from perspective of outside T , the output mostly does not change when values
within T are permuted among themselves. (This could change some tie-breaking if the
mechanics depend on index, but it is true if we allow ties). For the “only if” part, for any
two XT and X ′

T that are different in the multi-set of values they contain, there must be an
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integer that is larger than a values in the multi-set of {XT } and b for {X ′
T } and a ̸= b: thus

there exists an entry in the expansion where someone outsides T holds the integer, and it
would rank differently the two cases, thus the expansion is different. For a list of n items,
the information content of a permutation on n elements is bounded by lg n! ≤ lg nn ≤ n lg n.
This means we get a communication lower bound of Ω(ntI − nt lg t) bits, which for large
inputs is Ω(ntI).

Regarding the corresponding upper bound, we can use a construction by Parberry ([17])
of a sorting network with O(n (lg n)2) gates. We can now use any passively secure MPC
protocol with linear complexity per gate to compute ranking in time O(ntI (lg n)2). This has
a discrepancy of a factor O(lg n)2 and gives a communication lower bound of Ω(n/(lg n)2)
per gate. This bound is not tight unless there is a passively secure MPC protocol for sorting
with sublinear communication complexity per gate; or if there is a circuit for sorting with
linear size. The latter is not true unless sorting can be done in linear time. As a result, it is
unlikely that our bound is tight for the ranking function.

3 Lower bounds for malicious security

In this section we prove that there is an n-party functionality that can be described by a
circuit with g gates such that each party needs to communicate at least Ω(g) bits. We show
this using a series of lemmas that bound the entropy on the communication. We first show
the special case for four parties, and then “lift” this to the general case with n parties.

Let P1, . . .Pn be parties connected by pairwise secure channels. We denote by I the
input size (in bits) of each party, and O the output size. For simplicity we assume all parties
receive the same output, and denote by f : {0, 1}nI → {0, 1}O the function to compute.

We assume an active adversary that is allowed to statically corrupt up to t parties where
3t < n. To define security we use the universal composability (UC) model by Canetti. A
quick reminder (for details, see [3]): The model includes the environment Z, a machine that
models everything that is external to the protocol, include adversarial attacks. π stands for
the protocol, i.e., a set of machines modelling the parties that executes it. The symbol ⋄
stands for “compose”, so Z ⋄ π denotes the “real process” where Z interacts with (attacks)
the protocol. The model also includes an ideal functionality F that specifies what the protocol
is supposed to do. To compare F to π, we need a simulator S that in a nutshell converts the
interface offered by F to the interface Z sees when attacking the protocol. Thus Z ⋄ S ⋄ F
denotes the “ideal process” where Z interacts with S and F and hence only attacks allowed
by F are possible. We then say that π securely implement F , if there exists a simulator S
so that no environment Z can tell if it is doing the real or the ideal process. A bit more
formally:

▶ Definition 9 (UC Security). A protocol π is said to securely realize a functionality F with
perfect malicious security if there exists a simulator S such that for any environment Z, we
have that Z ⋄ π is perfectly indistinguishable from Z ⋄ S ⋄ F.

We will consider protocols that implement a reactive ideal functionality Ff for computing f
securely. The functionality first receives input from each party, and sends an acknowledgement
to all parties once the inputs have been received. Finally, it accepts an additional input from
all parties, it then computes the function and sends the output to all parties. As we shall see,
it is important towards proving our lower bound that we consider this reactive case, rather
than the simpler version where the functionality gets all the inputs in one go.
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Note that any protocol implementing Ff will naturally consist of two phases: one that
implements the part where the first inputs are sent, which we call the input phase, and the
rest, which we call the computation phase. This implies that the first batch of inputs are
committed in the first phase, before any information on the second batch of inputs or the
output is revealed.

Note that the structure imposed by our choice of Ff still allows us to model quite natural
tasks. The concrete function we consider below is one where a long bit string (a “database”)
is committed in the first phase, and then the function computed will securely extract a
particular entry in the database.

3.1 Lower bound, malicious security, four parties
We start by considering a special case of active MPC with four parties P1, . . .P4. In the
input phase, the functionality receives an input bit string Xi from each Pi. We assume that
X1 ∈ {0, 1}I (we do not need to assume anything about the lengths of the other inputs).
Let L be the length of the concatenation X = X1||X2||X3||X4. In the second phase, the
functionality receives an integer ui from Pi, where ui ∈ ZL. It outputs (u,X[u]), where
u =

∑
i ui mod L.

We call this function fI,4. It has the important property that if the input X1 of P1
is changed, there is always a setting of the other inputs for which the change of X1 will
cause the output to change, namely if u points to a position in X1 that was changed. One
consequence of this is the following lemma:

▶ Lemma 10. Assume protocol π computes n-party function f with perfect security, and
it is the case that for any x′

1 ̸= x1, there are values x2, ..., xn of the other inputs such that
f(x1, ..., xn) ̸= f(x′

1, x2, ..., xn). Assume further that P1 has input x1, is corrupt but plays
honestly. Then the simulator for π must always send x1 as input to the functionality for f
on behalf of P1.

Proof. If all players are honest and have inputs x1, ..., xn, then by perfect security the output
must be f(x1, ..., xn). If instead P1 is corrupt but plays honestly, the protocol does exactly
the same as if all players are honest so the output is still f(x1, ..., xn). Hence, when simulating
this case, the simulator must send x1 to the functionality, for any other value x′

1 it may send,
the output in the simulation will be incorrect for some choice of x2, ..., xn, by assumption in
the lemma. ◀

Before continuing, we define some terminology: suppose we are given a player P that takes
part in a protocol π, and let t be a transcript, that is, the ordered set of all messages sent
and received during an execution of the protocol. Now, sampling random coins consistent
with t means to sample uniformly a random tape r that could have been used to create t if
P had done the protocol honestly. In other words, r has the property that if P starts π with
random tape r and receives in each round the messages specified in t, he would send the
messages specified in t in each round. Of course, such a sampling is not always efficient, but
remember that we consider perfectly secure protocols that must be robust against unbounded
adversaries.

▶ Theorem 11. In any reactive protocol that implements FfI,4 with perfect malicious security,
P4 must use average communication Ω(I).

Proof. Consider a protocol π that computes the function with perfect security. We will
consider the messages sent in π as random variables as follows: fix the inputs of P2,P3 and
P4 to arbitrary values x2, x3, x4, and let the input of P1 be chosen uniformly. Assume π is
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executed such that all parties follow the protocol. Now, we let Ti for i = 1, 2, 3, 4 be the
random variable that represents concatenation of all messages sent to and from Pi in the
execution of the input phase.

Since the communication pattern must not depend on the inputs, it suffices to show that
H(T4) ≥ H(X1). We first show this follows from the following two equations:

H(X1 | T2) = H(X1) (3)
H(X1 | T2, T4) = 0 (4)

To see this, we apply the chain rule for Shannon entropy:

H(T4) ≥ H(T4 | T2) + H(X1 | T2, T4) = H(X1, T4 | T2) ≥ H(X1 | T2) = H(X1)

We now show each claim separately:
1. Perfect malicious security implies there is a simulator for a corrupt P2 that plays honestly.

The messages created by the simulation are distributed exactly as in a real execution.
However, while simulating the input phase, the simulator does not have access to the
output, and hence has no information on X1. It follows that H(X1 | T2) = H(X1).

2. Suppose for the sake of contradiction that X1 is not determined by T2, T4. This means
there must exist (at least) two different executions of the input phase where P1 has
different inputs, but the messages seen by P2,P4 are the same. More formally, there exist
sets of values of (T1, T2, T3, T4), say (t1, t2, t3, t4) and (t′1, t2, t′3, t4) both with non-zero
probability where the first case can occur with X1 = x1 and the second with X1 = x′

1,
where x1 ̸= x′

1. We define a value e such that x1[e] ̸= x′
1[e]. Now consider the following

two attacks on the input phase, represented by environments Z,Z ′:
a. Z chooses inputs x1, x2, x3, x4 for the respective parties, corrupts P3, but lets her plays

honestly in the input phase. If at the end of the input phase P3 obtains transcript
T3 = t3, she will pretend that she saw T3 = t′3 instead. She samples random coins r′

3
consistent with t′3 and completes the protocol honestly, assuming that her view of the
input phase was (x3, r

′
3, t

′
3). In the last phase, Z sets the inputs ui in some fixed way

such that e =
∑

i ui mod L.
b. Z ′ chooses inputs x′

1, x2, x3, x4 for the respective parties, corrupts P1, but lets her
plays honestly in the input phase. If at the end of the input phase P1 obtains transcript
T1 = t′1, she will pretend that she had x1 as input and saw T1 = t1 instead. She samples
random coins r1 consistent with t1 and completes the protocol honestly assuming her
view of the input phase was (x1, r1, t1). In the last phase, Z sets the inputs ui in some
fixed way such that e =

∑
i ui mod L.

We can now observe that when the real protocol executes in the first attack, with non-zero
probability, it is the case that P1 has input x1 and transcripts t1, t2, t3 and t4 were
produced in the input phase. Likewise in the second attack it may happen that P1
received input x′

1 and transcripts t′1, t2, t′3 and t4 were produced in the input phase.
Assuming these events, we see that the protocol execution after the input phase will
be the same in the two scenarios: in both cases the players will do the last part of the
protocol honestly starting from views (x1, r1, t1), (x2, r2, t2), (x3, r

′
3, t

′
3), (x4, r4, t4), where

all random coins are uniform, given the corresponding transcripts. Since these views are
identically distributed in the two cases and the inputs chosen in the last phase are the
same, the same output distribution D is generated in both cases.
Now consider the simulation of the two attacks. Note that the ideal functionality always
computes the output from x1, x2, x3, x4 in the first case, and from x′

1, x2, x3, x4 in the
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second, by Lemma 10. This means that the output is x1[e] in the first case and x′
1[e] in

the second. Assume without loss of generality that x1[e] = 0 and x′
1[e] = 1.

On the other hand, we have just seen that the real protocol may sometimes generate
output distribution D under both the first and the second attack. Clearly, the probability
that D outputs 0 is non-zero, or the probability of output 1 is non-zero. Assume the
second case, without loss of generality.
Now, Z can break perfect security: if it sees output 0, it guesses that it has been talking
to the simulation, and otherwise it guesses that it is in the real case. Clearly Z will
always guess simulation in the ideal (simulated) case but will guess real with non-zero
probability in the real case, contradicting perfect indistinguishability. ◀

▶ Remark 12. We can now explain why it is not clear that our proof technique would work if
we had used the standard functionality for secure function evaluation where all inputs are
given in one go: In order to show that the input phase can produce the same state for the
protocol from both input x1 and x′

1 for P1, we need to restrict to a particular subset of the
transcripts that might occur. But if that same phase also includes provision of the inputs ui

and perhaps the computation of u, the possible values of u might be similarly restricted, so
it is not clear that the environment can still choose the index e so that it will “catch” the
difference between x1 and x′

1.

3.2 Lower bound, malicious security, n parties, maximal threshold
We now show that the bound generalizes to multiple parties. Let n = 3t+ 1 and denote the
parties by P1,1, . . .P1,t,P2,1, . . .P2,t,P3,1, . . .P3,t,P4. Define by IPI,n the following function-
ality: each party first provides an I-bit input. When all inputs have been received they are
concatenated to form X, then each party provides number ui ∈ ZL where L is the length of
X. We set u =

∑
i ui mod L and (u,Xu) is returned.

▶ Lemma 13. IPI,n can be computed by a circuit C with O(nI) gates.

Proof. Let S = nI be input size and assume for simplicity that S = 2k is an exact power
of two. We assume the circuit takes O(lgS) additional bits which we will denote by r, it
corresponds to the index u above. Strictly speaking, we should take the ui as input and
compute their sum modulo L, but the size of the circuit for doing this is insignificant, it is
clearly o(nI) for all large enough I. We now proceed using induction in k:

Base-case k = 0: the circuit simply outputs its input bit. This is clearly uniform in the
input.
Induction k > 0: we may split the input into two 2k−1 sized halves X0, and X1. By
induction there are circuits C0, C1 each with O(2k−1) gates computing X0,X1, let y0, y1
be the output gates. It suffices to combine C0, C1 using a constant number of gates. We
now construct the circuit y = (y0 ∧ rk) ∨ (y1 ∧ rk): this takes at most four gates which is
clearly constant. In addition both C0, C1 choose their elements uniformly at random: if
rk is indeed a random bit then y is also uniform.

The result now follows since t = Θ(n). ◀

▶ Lemma 14. Any reactive protocol that realizes IPI,n with perfect malicious security must
have total average communication Ω(ntI).

Proof. Consider any party P. We may group the remaining 3t parties arbitrarily into 3
groups, each consisting of t parties to produce a functionality equivalent to FftI,4 where P
plays the role of P4. Corrupting any party in the 4-party case corrupts at most t parties in
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IPI,n, and the inputs of a t party group are formed by combining the inputs of the individual
players in the group (using concatenation or addition modulo L). By this translation, the
player P1 is the 4-player setting has an input of length tI in the first phase, and hence, by
Theorem 11, P must communicate at least Ω(tI) bits. We can apply this argument to each
of the 3t+ 1 parties and add their resulting communications. It should be noted that this
counts every bit twice: once at the sender, and once at the receiver, however this has no
effect on the asymptotic complexity. We conclude the total average communication is Ω(ntI)
bits. ◀

▶ Theorem 15. There is a (familiy of) Boolean circuit(s) C with g gates such that any reactive
n-party protocol computes C with perfect malicious security must use total communication
Ω(ng).

Proof. Follows immediately from Lemmas 13 and 14 since t = Θ(n). ◀

3.3 Lower bound, malicious security, n parties, submaximal threshold
In this section we consider the case where t is submaximal, i.e. n = 3t+ s for some integer
s > 0.

▶ Theorem 16. There is a Boolean circuit C with g gates such that any reactive n-party
protocol that computes C with perfect malicious security where n = 3t+ s for some s > 0,
and t is the number of corruptions, must use total communication Ω(ng/s).

Proof. By Lemma 13 it suffices to show a total communication lower bound of Ω(ntI/s).
Consider any partition of the 2t+ s honest parties into sets of size s. For simplicity assume s
divides 2t+ s so that any such partition consists of exactly 2t/s+ 1 sets. We may group each
set of s honest parties into a single party which we will call P4. The remaining 3t parties
may be arbitrarily grouped together into 3 groups of t parties each. This immediately gives
a protocol for IPtI,4 where Theorem 11 applies, meaning P4 must communicate Ω(tI). Since
each set of k honest parties are disjoint we may add their communications together to get
the total communication up to a constant factor. There are 2t/s+ 1 such sets giving a total
communication of (2t/s+ 1)Ω(tI) = Ω(ntI/s) = Ω(ng/s). ◀

3.4 Lower bound, malicious security, arithmetic circuits
The argument presented in previous sections only considered Boolean circuits, however
the same argument applies to arithmetic circuits. Let F be a finite field whose elements
require κ bits to describe. The exact same line of reasoning applies with the difference that
H(X1) = κI instead of H(X1) = I. This increases the bounds by a factor of κ showing the
following:

▶ Theorem 17. There is an arithmetic circuit C with elements of size κ with g gates such
that any reactive n-party protocol that securely computes C where n = 3t+ s for some s > 0,
and t is the number of corruptions, must use total communication Ω(ngκ/s).

3.5 Weakening the assumptions
Instead of assuming UC security we can instead make do with much weaker assumptions in
order to show our lower bounds: What we can assume is a two-phase protocol as defined
before, but with much weaker demands on the simulator than what we need for UC security,
as we now sketch:



I. B. Damgård, B. Li, and N. I. Schwartzbach 2:15

The protocol in question can be split in two phases: we call the first one the input phase
and the second the computation phase.
The simulator first simulates the input phase and then the computation phase. It
may rewind the adversary during both phases, but once it has started simulating the
computation phase, it is not allowed to rewind back to the input phase.
Once the simulator starts simulating the computation phase, and the functionality has
received all the inputs, the simulator may now ask for the outputs (so this means it
cannot ask for the output during the input phase).

It is not hard to see that our lower bound proofs go through, also in this model.

3.6 Lower bound, malicious security, statistical security
The lower bound presented above crucially relied on perfect security of the underlying
protocol. In this section we briefly sketch where the lower bound for four parties breaks down
in the case of statistical security. We show how the four parties may compute the function
IPI,4 in a way where P4 has a communication complexity of O(poly(n)). In particular, the
communication complexity of P4 is independent of I, the input size.

It is well-known that we can compute any circuit with statistical security in an honest
majority setting given access to a broadcast channel. We will then let P1,P2,P3 run such a
protocol, letting P4 assist only in the broadcasts (since t < n/3 is required for broadcast).
Specifically, P4 produces a VSS of her input and broadcasts to the other parties, who then
compute a VSS of P4s output and sends back. We use the protocol by [1]. We denote by
X + Y · BC a communication complexity of X bits, and Y bits for broadcast.

▶ Theorem 18 (Ben-Sasson, Fehr, Ostrovsky). Let C be a Boolean circuit with g gates. Then
there is a statistically secure MPC protocol (with security parameter κ) for computing C with
communication complexity O((n lg n) g) +O(n3 κ) · BC.

The communication required for P4 is dominated by the cost of doing broadcasts, which in
particular is independent of I, the input size. This means the lower bound of Theorem 1
does not apply in the statistical setting, even without a broadcast channel. Interestingly,
this suggests a “gap” between the two worlds.

We now show various upper bounds and compare them to the corresponding lower bounds.
In most cases we are able to match the lower bounds up to a constant factor, however there
is a gap of O(lg n) in the case of “unshaped” Boolean circuits, resulting from the fact that
we need > n evaluation points to do secret sharing.

3.7 Upper bound, malicious security, arithmetic circuits
For arithmetic circuits over large fields the parties can secret share their inputs and compute
the circuit using Beaver triples. A recent protocol by [14] gives a protocol that is not
dependent on the depth of the circuit being computed:

▶ Theorem 19 (Goyal, Liu, Song). If C is an arithmetic circuit with g gates over a field
F with |F| > n, and κ is the size of field element, then there is a perfect maliciously secure
protocol for computing C using O(ngκ+ n3κ) bits of communication.

This shows that our lower bound of Ω(ngκ) is tight wrt. the circuit size for arithmetic
circuits over fields of sufficient size. It also shows that our lower bound is the best generic
lower bound one can hope to prove.
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3.8 Upper bound, malicious security, IPI,n

The protocol from [14] is based on secret sharings and as a result requires fields with a size
greater than the number of players, i.e. it must be the case that |F| > n. This is because n
distinct evaluation points are needed for the secret sharing. For smaller fields this is usually
remedied by mapping elements into an extension field K and performing the secret sharings
there. This unfortunately incurs an overhead of O(lg n) compared to our lower bound.

To remedy this for our specific function IPI,n we can use reverse multiplication friendly
embeddings (RMFE) following the work of [4]. An RMFE allows us to evaluate multiple
small circuits in an extension field in parallel with good amortization in the communication.

▶ Definition 20. Let F be a finite field. A k-RMFE scheme (ϕ, ψ) consists of two F-linear
mappings, ϕ : Fk → K, and ψ : K → Fk where for any vectors a,b ∈ Fk it holds that:

ψ(ϕ(a) · ϕ(b)) = a ∗ b

where ∗ is the coordinate-wise (Schur) product. This allows us to perform k parallel
multiplications in F using a single multiplication in K. Using an RMFE scheme, [4] construct
a protocol for Boolean circuits with an amortized communication complexity of O(n) per
multiplication gate:

▶ Theorem 21 (Cascudo et al.). There is a secure n-party protocol for computing Ω(lg n)
parallel evaluations of a Boolean circuit with an amortized communication complexity of
O(n) per multiplication gate.

We now establish an upper bound for our functionality IPI,n:

▶ Theorem 22. There is a perfect maliciously secure protocol based on secret sharing for
computing IPI,n using O(n2I) bits of communication.

Proof. Let C be the circuit described in Lemma 13. Assume for simplicity that nI = 2k and
let u = Θ(k) be the the number of bits required to describe an element in K. At a high level
our strategy is to compose C into smaller circuits for which we get good amortization. The
resulting computation is then computed without embeddings, in the hope that so much work
was saved by parallelization that the remaining computation is asymptotically small.

The protocol is parameterized by an integer i that denotes the depth at which C is
composed into smaller circuits: the parties first invoke the protocol from [4] until all but
the last i layers remain, and then ignore the output reconstruction phase. At this point the
parties have secret sharings of an element w ∈ K that encodes all 2i wire values. The next
step is extracting secret shares of each wire value. To do so, the parties generate sharings of
random bits [r1], . . . [ru], encoding an element [r] for some random r ∈ K. To do this, each
party contributes a random bit [b] which are XORed together. To verify that the parties
actually input bits, a public opening of b2 − b is produced and verified to equal 0 (as the
only roots are 0 and 1). Next the parties compute w − r and open the result in public. The
result is added to [r] to get a sharing [w]. Linearity of the secret sharing implies the parties
may apply ψ locally to get a secret sharing of each wire value. Finally the parties invoke the
protocol [7] on the shares obtained on the rest of the circuit.

Let i = Θ(lg n) and let us analyze the communication complexity. It is clear that the
cost is dominated by the first phase since the remaining two steps do not depend on I. It is
also clear that the size of the circuit is Θ(nI) since there are nI inputs. By Theorem 21 the
complexity of the first phase is O(n) · nI = O(n2I) as we wanted to show. ◀
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3.9 Upper bound, malicious security, submaximal threshold
Both of the previous upper bounds assumed a maximal threshold of n = 3t + 1. In this
section we briefly consider the case of submaximal threshold, i.e. where n = 3t+ s for some
s > 1. In this setting we can use packed secret sharing to “pack together” s shares into a
single element, allowing us to evaluate multiple gates in parallel and saving a factor O(s)
in communication. This matches the submaximal lower bound shown in this paper up to a
constant factor. This shows that packed secret sharing is the best kind of optimization in
terms of communication one could hope to achieve.

4 Conclusion and future work

In this paper we showed two classes of lower bounds for information-theoretic multiparty
computation. For the case of active security, we have show the bound for a reactive
functionality. It remains open whether a similar bound can be shown for (non-reactive)
secure function evaluation.
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3:2 On Prover-Efficient Public-Coin Emulation of Interactive Proofs

1 Introduction

Interactive proofs (IPs), introduced by Goldwasser, Micali and Rackoff [11] in 1985 are an
important object in the study of complexity and cryptography. An interactive proof is an
interactive protocol between two parties, a “prover” and a “verifier”, where the prover is
trying to convince the verifier of the membership of a string in a language. If this claim is
true, then the verifier should be convinced with high probability. Otherwise, if the claim is
false, then no matter what the prover does, the verifier should reject the claim with high
probability. Since their inception, a central question in the study of interactive proofs has
been the connection between private-coin proofs, where the verifier is allowed to hide its
randomness from the prover, and public-coin proofs, where hiding information is not allowed.
Public-coin protocols are especially appealing since they are easier to analyze and manipulate
[4, 1, 2, 3]. Goldwasser and Sipser [12] showed that any private-coin interactive proof can
be transformed into a public-coin proof while preserving the number of rounds (up to an
additive constant).

One issue with this transformation is that of the honest prover’s running time. Vadhan
[22] showed that (assuming the existence of one-way functions) there exist protocols that
cannot be transformed to be public-coin in a black-box manner while preserving the running
time of the prover (up to polynomial factors). While in the classical setting the running
time of the prover is considered unbounded, the recent line of works on doubly-efficient
interactive proofs (deIPs) [10] restricts the honest prover to run in polynomial time. We
emphasize that soundness is required to hold against computationally unbounded adversaries.
Doubly-efficient interactive proofs apply only to tractable computations, and are therefore of
interest when the verifier time can be smaller than the time required to decide the language
without the help of a prover. Indeed, the main focus in the literature is on verifiers that
run in near-linear time. Goldreich [5] gives a survey on recent work on doubly-efficient
interactive proofs.

1.1 This Work
In this work we ask whether transformations of proofs from using private coins to using
public coins are applicable to the doubly-efficient setting:

Which private-coin doubly-efficient interactive proofs can be transformed into public-coin
doubly-efficient proofs and how can this be done?

We tackle the above question from a number of angles. Some of our results also apply to
proofs that are not doubly-efficient.

We extend Vadhan’s impossibility result to show that the existence of one-way functions
implies that there are no transformations from private-coin deIPs to public-coin deIPs that
work in a natural “black-box” way. Note that since deIPs exist only for problems in BPP,
one can always transform such proofs to using “public-coins” by having the verifier solve the
problem on its own. This transformation is not black-box, but it is also not interesting, as
the motivation for deIPs is to reduce the verifier’s running time to under what is required for
it to solve the problem on its own.

Our main result shows that this reliance on one-way functions is essentially tight. Namely,
if one-way functions (of a certain type) do not exist, then (essentially) every doubly-efficient
proof can be efficiently transformed:

▶ Theorem 1 (Efficient emulation of deIPs in Pessiland (Informal)). Suppose that infinitely-often
auxiliary-input one-way functions do not exist. Then every language that has a doubly-efficient
private-coin interactive proof with “good enough” soundness has a doubly-efficient public-coin
interactive proof with the same number of rounds (up to a constant).
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▶ Remark 2. Theorem 1 mentions “good enough” soundness. This is due to the fact that
there is a strong degradation in soundness when applying our technique.1 One could be
tempted to amplify the soundness using parallel or sequential repetition, but in the setting of
deIPs, the overhead of repeating the protocol in terms of the verifier might be problematic
(e.g. it might degrade the verifier’s running-time from linear to quadratic).
Viewing this result through the prism of Impagliazzo’s worlds [15], it (very) roughly says
that in Pessiland (a world where one-way functions do not exist), efficiency-preserving
transformation is always possible. We prove Theorem 1 by showing that for every deIP
there exists a specific efficiently computable function such that if it is efficiently invertible in
the sense of one-way functions2, then efficiency-preserving transformation is possible (see
Section 2.1 for a discussion on the notion of invertibility). We remark that a straightforward
implementation of the Goldwasser-Sipser transformation requires exponential running time
from the prover, and even an oracle that inverts any given function (on random inputs) does
not seem sufficient for making their public-coin prover efficient. Indeed, our results require
changing the transformation so that the ability to invert becomes sufficient for constructing
a public-coin prover.

Using the technique for proving Theorem 1 (and some additional technical work) we
show that in Pessiland’s “one-way function”-less landscape, standard constant-round proofs
(i.e. ones where the honest prover is allowed to run in super-polynomial time) can also
be transformed to be public-coin with only a polynomial overhead on the honest prover’s
running time:

▶ Theorem 3 (Efficient emulation of constant-round IPs in Pessiland (Informal)). Suppose
that infinitely-often auxiliary-input one-way functions do not exist. Then every language
that has a constant-round private-coin interactive proof has a constant-round public-coin
interactive proof where the honest prover’s running time is polynomially related to that of the
private-coin prover.

1.1.1 Sufficient conditions for efficient transformation
Both the impossibility result of [22] and our extension to doubly-efficient proofs are proved
by demonstrating a specific (arguably contrived) protocol that is hard to transform. It
is very natural, then, to ask: considering interactive proofs on a case-by-case basis, for
which protocols (or families of protocols) is efficiency-preserving transformation possible?
In other words we wish to identify sufficient conditions that allow for efficiency-preserving
transformation of private-coin proofs to public-coin ones.

In particular, Theorem 1 implies one such condition: Every deIP has an efficiently
computable function such that if this function is efficiently invertible in the sense of one-way
functions, then efficient transformation for this proof system is possible.

We identify an additional, rather natural, sufficient condition for efficient transformation.
We show that if it is possible to efficiently count the number of coins that are consistent
with transcripts of the protocol, then it is also possible to efficiently emulate the protocol
using public-coins. Unlike in Theorems 1 and 3, this result does not preserve the number of
rounds, but it applies to general interactive proofs (even when the protocol has an inefficient
honest prover and a polynomial number of rounds).

1 Specifically, in order for the public-coin protocol that we end up with to have constant soundness error,
the soundness error of the original (private-coin) protocol should be O(poly(n, r, ℓ)−r) where n is the
input length, and r and ℓ are the number of rounds and number of random bits used by the verifier in
the original private-coin protocol respectively.

2 The requirement that a specific function is distributionally invertible [16] also suffices.
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▶ Theorem 4 (Efficient emulation using approximation (Informal)). Let L be a language and
suppose that L has an r-round private-coin interactive proof with communication complexity
m, and suppose that for every incomplete transcript it is possible to efficiently approximate
the number of verifier random coins that are consistent with the transcript. Then L has a
2rm-round public-coin interactive proof with an efficient prover.

A string of random coins ρ is consistent with an incomplete transcript of an execution of
a protocol if for every verifier message α in the transcript, the verifier outputs α when
given the transcript prefix leading up to α and using ρ as its random coins. We prove this
theorem using a “piecemeal” emulation protocol in which the prover and the verifier together
generate a string that is distributed according to the distribution of a random transcript
in the private-coin protocol. The soundness error of the resulting protocol is a function of
how good the approximation algorithm is. In particular, if one can exactly count the number
of verifier random coins that are consistent with a transcript efficiently, then soundness is
perfectly preserved.

Theorem 4 gives us a condition for efficiently transforming proofs from private-coin
to public-coin that is incomparable to the condition implied by Theorems 1 and 3. The
condition implied by from Theorems 1 and 3 is efficient distributional inversion for some
(efficiently computable) function that depends on the protocol, whereas Theorem 4 uses
efficient approximation of the number of verifier coins consistent with a transcript. We
demonstrate a natural protocol for which the efficient counting condition of Theorem 4 is
satisfied, whereas we don’t know how to efficiently invert the function implied by Theorems 1
and 3.

1.1.2 An application
Rothblum, Vandhan and Wigderson [18] show a private-coin proof of proximity for distin-
guishing between a graph that is bipartite and graphs that are both far from bipartite and
well-mixing. Roughly speaking, an interactive proof of proximity (IPP) is an interactive
proof where the verifier has sub-linear query access to the input. The problem of distinguish-
ing between a bipartite graph and a well-mixing graph that is far from bipartite has also
been studied extensively in the past in the context of property testing [8, 9]. By applying
Theorem 4 to the private-coin protocol of [18] we show a new doubly-efficient public-coin
proof system for this problem. We describe this below in more detail.

▶ Theorem 5 (Public-coin IPP for bipartiteness (Informal)). For every ε > 0, there exists
a public-coin interactive proof of ε-proximity with an efficient prover for the problem of
distinguishing between bipartite graphs and graphs that are ε-far from bipartite and are
well-mixing.

We remark that no such proof was previously known (except for ε close to 1).
The main property of the RVW bipartiteness protocol that we use, is the fact that it

that the (private coin) verifier uses only a logarithmic number of coins (it has logarithmic
randomness complexity), and this suffices for soundness error 1−Ω(ε). Thus, polynomial time
suffices for enumerating all possible choices of verifier randomness and for exactly counting
how many choices are consistent with the transcript. The transformation of Theorem 4
is soundness preserving when efficient exact counting is possible, and so gives an efficient
public-coin protocol with soundness error 1−Ω(ε), which can be amplified to obtain constant
soundness. See the full paper for further discussion and details.
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We note that a similar argument applies to every proof system where the verifier’s
randomness complexity is O(log n). We show that every such private-coin IP (resp. IPP)
can be transformed to a public-coin IP (resp. IPP) while the honest prover’s running time
remains polynomial.

We further note that the Goldwasser-Sipser (GS) approach to transforming private-coin
proofs into public-coin ones, and the result behind Theorem 1, can also preserve the prover’s
efficiency when the verifier’s randomness complexity is O(log n). However, the GS approach
degrades soundness significantly, and hence usually requires parallel repetition before applying
the transformation. Here, since the starting (private coin) protocol has large soundness error,
repeating it to reduce the soundness error to the point where the GS approach can be applied
requires super-logarithmic randomness complexity, which means that the GS transformation
will not preserve the prover’s efficiency. In comparison, in this setting Theorem 4 preserves
soundness (see above), and so it can be used even when the soundness error of the private-coin
protocol is large.

1.2 Related Work
A number of works have tackled the question of private versus public coins, including Haitner,
Mahmoody and Xiao [13] who showed that if the prover is given an NP oracle it is possible to
transform private-coin protocols into public-coin ones where both the prover and the verifier
run in polynomial time. Holenstein and Künzler [14] show a public-coin protocol in which the
prover helps the verifier sample from a distribution, where in addition to the sampled element
the verifier ends up with an approximation of the probability that the element is sampled
from the distribution. They then show this can be used for public-coin emulation. Goldreich
and Leshkowitz [6] improved upon the soundness requirement of Goldwasser and Sipser. In
all of the results described the prover is inefficient and the running time of the verifier incurs
a polynomial overhead. We additionally note that the celebrated IP = PSPACE Theorem
[17, 19], implies a non-black-box transformation of private-coin protocols to public-coin ones.
The protocol used to show that PSPACE ⊆ IP is public-coin, and so one can use this result
to transform private-coin protocols into public-coin ones as follows: Given an interactive
proof, use the transformation for IP ⊆ PSPACE to convert it into a PSPACE problem.
Then use the reduction and protocol showing that PSPACE ⊆ IP to construct a public-coin
proof. While this transformation is not black-box, it blows up the complexity of the honest
prover and the number of rounds of the protocol.

2 Technical Overview

2.1 Overview of the Round-Efficient Emulation
Goldwasser and Sipser [12] showed not only that it is possible to transform private-coin proofs
into public-coin ones, but also that this can be done without significantly increasing the
number of rounds in the protocol. We show that, given a distributional inverter for certain
functions, the prover can be made efficient. A distributional inverter for a function f is an
efficient randomized algorithm that upon receiving an input y drawn from the distribution
f(Un) returns a random element from the set f−1(y).
▶ Remark 6. Proving Theorems 1 and 3 would be significantly simpler if we were to consider
a stronger form of inversion, where the input y to the inverter can be any element in the
support of f . That is, y need not be given as a sample from the distribution f(Un). We
consider the weaker and more complicated variant, since it allows us to establish Theorem 1,
and through it the tight relationship between one-way functions and the (non-)existence of
private-coin to public-coin transformations that preserve the prover’s running time.
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We give three toy cases for protocols of increasing complexity, and then discuss the general
case. For each case we show how Goldwasser and Sipser’s original protocol can be applied in
order to transform it to public-coin, and then discuss how we use distributional inversion in
order to make the prover efficient. Eventually, this requires changes to the Goldwasser-Sipser
transformation. In all three toy cases consider a language L and a one round private-coin
protocol denoted ⟨P, V ⟩ with perfect completeness and soundness error s. Since it has one
round, the protocol is of the following form: On input x the verifier begins with choosing a
random ρ← {0, 1}ℓ, then sends α = V (x, ρ) where α ∈ {0, 1}m. After receiving β from the
prover, the verifier accepts if V (x, α, β; ρ) = 1. Henceforth throughout this overview we omit
the shared input x from notation of the verifier and prover functions.

2.1.1 Case 1: Equally Likely Messages With Known Number of
Messages

2.1.1.1 The Protocol

In addition to the protocol being one-round and having perfect completeness, we assume the
following properties:

Equally Likely Messages: If x is in the language L, then every pair of messages α1, α2 ∈
{0, 1}m that have non-zero probability of being sent by the original verifier V are equally
likely: Prρ←Uℓ

[V (ρ) = α1] = Prρ←Uℓ
[V (ρ) = α2].

Known Number of Messages For Completeness: If x ∈ L then there is a known efficiently
computable function N : {0, 1}∗ → N such that the total number of messages sent by the
verifier with non-zero probability is N(x). That is,

N(x) =
∣∣{α|∃ρ ∈ {0, 1}ℓ s.t. V (x; ρ) = α

}∣∣
Few Messages For Soundness: If x /∈ L then there are significantly fewer than N(x)
verifier messages.

As a running example for this case one is encouraged to think of the classical private-coin
protocol for the graph non-isomorphism problem [7]. In this language the input is comprised
of two n-vertex graphs G0 and G1 which are claimed to be non-isomorphic. The protocol
is as follows: the verifier chooses a random bit b, and random permutation π. It sends
G̃ = π(Gb) to the prover who must return some b′. The verifier accepts if b′ = b. One
can easily verify that this protocol has completeness 1 and soundness error 1

2 . Moreover,
assuming for simplicity that the graphs have no automorphisms, every verifier message is
equally likely and if the graphs are non-isomorphic the number of possible verifier messages
is N = 2n!. If the graphs are isomorphic then there are only n! different messages.

2.1.1.2 The Goldwasser-Sipser Transformation

The transformation of ⟨P, V ⟩ into a public-coin protocol hinges on the observation that,
in this toy case, in order distinguish whether x is in the language, the prover need only
show that the number of possible verifier messages is at least N (since by assumption if
x /∈ L there are significantly fewer such messages). Thus a (public-coin) “set lower-bound”
protocol is used, showing that the set of all valid verifier messages (ones that are sent by V

with non-zero probability over the choice of its random coins) is large . Letting Hm,k be a
family of pairwise independent hash functions from {0, 1}m to {0, 1}k, Uk be the uniform
distribution over k bits and k = k(N) be a value to be discussed later, the final protocol is
as follows:
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1. The parties execute a “set lower-bound” protocol proving that the number of verifier
messages is at least N :
a. The verifier chooses a random h← Hm,k and y ← Uk

3

b. The prover returns α ∈ {0, 1}m.
c. The verifier tests that h(α) = y and otherwise rejects.

2. The prover sends ρ ∈ {0, 1}ℓ.4

3. The verifier accepts if V (ρ) = α.

In the case of completeness, where there are N verifier messages, if k is “small enough”
(i.e. the hash function is very compressing) it is likely that there exists some valid message α

that hashes to y. Conversely, in the case of soundness, where there are significantly fewer
than N legal verifier messages, if k is “large enough” then it is unlikely that there will exist
a valid message that hashes to y. Thus, completeness and soundness of the protocol are
governed by setting k to a reasonable value, which depends on the gap between N and and
the magnitude of the prover’s lie in the case of a false claim. Note that in this protocol
the prover did not even need to send its message β - it was sufficient to use the fact that
there is a large gap in the number of verifier messages between the cases of completeness and
soundness. The sub-protocol executed in Step 1 is known as the “set lower-bound” protocol,
and can be generalized to show a lower-bound on the size of any set S for which the verifier
can efficiently test membership. Specifically, the protocol begins with a claim that N ≤ |S|
and ends with both parties holding an element x for which the verifier needs to verify that it
belongs to S. If N ≤ |S|, then x ∈ S with high probability, and if |S| ≪ N , x /∈ S with high
probability regardless of the prover strategy. A protocol inspired by the set lower-bound
protocol is presented and analysed in the full paper under the name “prover-efficient sampling
protocol”. Going back to the example of graph non-isomorphism, upon receiving h, y from
the verifier, the prover would send some graph G̃, a bit b and a permutation π. The verifier
would then accept if h(G̃) = y and G̃ = π(Gb).

2.1.1.3 Prover Efficiency

The prover strategy in the above protocol is inefficient. It receives some h, y and is required
to find a legal message α that hashes to y and some choice of randomness ρ that leads to α.
However, the prover can be made efficient by giving it oracle access to an inverter for the
function f(h, ρ) = h, h(V (ρ)). An inverter for a function f : {0, 1}a → {0, 1}b is a randomized
algorithm that on input y drawn from the distribution f(Ua) returns some element x in the set
of preimages of y under f (that is, x ∈ f−1(y)). We stress that the input to the inverter must
come from the correct distribution, which in our case is f(Hm,k, Uℓ) ≡ (Hm,k,Hm,k(V (Uℓ)).
The hash function h is clearly chosen by the verifier from the correct distribution. The
image y is drawn by the verifier from the uniform distribution which, if the hash function
is compressing enough, will be statistically close to h(V (Uℓ)) by the Leftover Hash Lemma.
Preimages of (h, y) with respect to f are of the form (h, ρ) where h(V (ρ)) = y. The prover
can send ρ and use ρ to calculate α. In all of this the prover only needs to make a single
oracle call, and to calculate α = V (ρ), and is therefore efficient.

3 In the classic transformation it suffices to set y = 0k and is described here thus as it will be required
later by our transformation.

4 The final prover message can be merged with the previous one to save a round and is described here as
a separate round for clarity.
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2.1.2 Case 2: Equally Likely Messages With Unknown Number of
Messages

2.1.2.1 The Protocol

We make the same assumptions on the protocol as in Case 1, except that the verifier in the
transformation does not know N , the number of verifier messages.

2.1.2.2 The Goldwasser-Sipser Transformation

The protocol is based on two observations made in the case of a cheating prover:
Since the soundness error is s and the verifier uses ℓ random coins, the number of verifier
messages α for which there exist β and ρ such that V (α, β; ρ) accepts is at most s · 2ℓ.
For every fixed α and β, the number of coins ρ such that V (ρ) = α and V (α, β; ρ) accepts
is also bounded from above by s · 2ℓ.

If either of the above were not true, it would mean the soundness error is greater than s.
Now notice that since all messages are equally likely, if there are N valid verifier messages,
then each message has 2ℓ

N different coins that are consistent with it. Importantly, if N is
small, 2ℓ

N is large. This gives rise to the following protocol:
1. Prover sends N , a claim on the number of verifier messages.
2. Prover and verifier execute the set lower-bound protocol to show that the number of legal

verifier messages is at least N . The parties end up with some α claimed to be a verifier
message.

3. Prover sends some β.
4. The parties execute the set lower-bound protocol to show that the number of coins that

are consistent with α and lead the verifier to accept (α, β) is at least 2ℓ

N . The parties end
up with a ρ which is supposed to in the set of random coins that lead the verifier to α.

5. Verifier accepts if V (ρ) = α and V (α, β; ρ) = 1.
The protocol is complete, since if the prover is honest it is likely to succeed in both the set
lower-bound protocols, meaning it samples both a valid message α and valid coins ρ such that
V (ρ) = α and V (α, β; ρ) = 1. We now turn towards soundness. Let S be the set of verifier
messages for which the prover has an accepting strategy (messages α for which there exist β

and ρ such that V (α, β; ρ) accepts). For verifier message α and prover message β, let Tα,β

be the number of random coins ρ such that V (α, β; ρ) accepts. Recall from the argument
above, that |S| ≤ s · 2ℓ and for any α, β, |Tα,β | ≤ s · 2ℓ. Now note that if the verifier ends
up with a verifier message α /∈ S it has a message for which no fixing of β and ρ will make
the verifier accept. Thus the prover must try to sample in S. Similarly, after fixing α and
β if the verifier has ρ /∈ Tα,β it will reject, and so the cheating prover must try to cause
the verifier to end up with an element in Tα,β . To see why the protocol is sound consider
the prover’s choice of N . If |S| ≤ s · 2ℓ ≪ N , then due to the set lower-bound protocol the
prover is unlikely to make the verifier sample from S and so the verifier will reject with high
probability. If N is small, then 2ℓ

N is large. Fixing α and β, if |Tα,β | ≤ s · 2ℓ ≪ 2ℓ

N , then the
verifier is unlikely to end up with such coins, meaning it rejects. Note in the above analysis
we have that s≪ min{N, 2ℓ

N }. Thus if s is small enough to begin with, the prover will be
forced to lie and be caught with high probability.

2.1.2.3 Prover Efficiency

Inspecting the above protocol there are three things that the honest prover needs to do:
Count N , the number of verifier messages, execute the prover’s side of the set lower-bound
protocol to show that there are at least N verifier messages, and execute the prover’s side of
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the set lower-bound protocol to prover that the number of coins that are consistent with α is
at least 2ℓ

N . We explain how to compute each of these efficiently in reverse order:

1. Set Lower-Bound Protocol for Number of Consistent Coins: In this set lower-bound
protocol the parties have already computed a verifier message α. The prover receives
some hash function h and an image y from the verifier, and must return some ρ such
that V (ρ) = α and h(ρ) = y. Naively it seems that this can be solved simply if the
prover has access to an inverter for the function f(h, ρ) = h, V (ρ), h(ρ) since preimages
of (h, α, y) are exactly of the form h′, ρ such that h′, V (ρ), h′(ρ) = h, α, y. The problem
with this idea is that to use this inverter it must be that the message α be drawn from the
distribution V (Uℓ). Thus to use this idea it is imperative that α come from the correct
distribution.

2. Set Lower-Bound Protocol for Number of Messages: In order to complete this stage,
the prover must find some valid verifier message α that hashes to y, and this (as we
did in Case(1) )can be done using an inverter for the function f(h, ρ) = h, h(V (ρ)).
Unfortunately as mentioned in point (1), we need it α to be chosen from the real message
distribution V (Uℓ). Unfortunately using an inverter as described, the message α might
be drawn from a distribution which is far from the real one.5 This issue is fixed if we
move from using a regular inversion oracle to a distributional inversion oracle. Roughly,
a distributional inverter for a function f : {0, 1}m → {0, 1}t is a randomized algorithm A

such if y is drawn from f(Um), the distribution A(y) is statistically close to a random
pre-image of y under f .

3. Computing N : We show that given an inversion oracle for the function f(h, ρ) = h, h(V (ρ))
it is possible to efficiently approximate N , the number of verifier messages. The way
this is done is inspired by the techniques of [20] for approximate counting using an NP
oracle. The prover chooses h← Hm,k and y ← {0, 1}k for increasingly larger values of k,
and calls the inversion oracle on input (h, y). When k is small relative to the number
of verifier messages, there will likely exist a message α that hashes to y, and thus the
inverter will return a set of coins ρ such that V (ρ) = α. Once k is set to a relatively
large value this is unlikely and the inverter will fail. Thus, given the smallest size of k for
which the inverter fails the prover can estimate the size of the set.

2.1.3 Case 3: A Two-Cluster Protocol

2.1.3.1 The Protocol

As in Case 2, we do not assume that the parties know initially the number of verifier
messages. Moreover we replace the assumption that all messages are of equal likelihood with
the following one:

Two Clusters: The verifier messages that have non-zero probability can be partitioned into
two “clusters” C0 and C1, where every message in Cb has equal likelihood pb. Furthermore,
each message in C1 is significantly more likely than messages in C0: p0 ≪ p1. Both
parties know the values p0 and p1 but not |C0| and |C1|.

5 Indeed, suppose that the inverter always returns the lexicographically smallest ρ such that h(V (ρ)) = y.
This will cause a sampling bias towards those messages that have coins that are lexicographically smaller.
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2.1.3.2 The Goldwasser-Sipser Transformation

Rather than giving a claim about the number of possible messages, the prover will claim
only that the heaviest of the flat clusters is large (the weight of cluster Cb is pb · |Cb|).

1. Prover calculates |C0| and |C1| and chooses a bit b such that pb · |Cb| ≥ p1−b · |C1−b|. It
sends b and N = |Cb|.

2. Verifier tests that pb ·N ≥ 1
2 and otherwise rejects.

3. Prover and verifier execute the set lower-bound protocol to show that the size of cluster
Cb is at least N . The parties end up with some α claimed to be in cluster b.

4. Prover sends some β.
5. The parties execute the set lower-bound protocol to show that the number of coins that

are consistent with α and lead the verifier to accept (α, β) is at least pb · 2ℓ. The parties
end up with a ρ which is supposed to be a set of random accepting coins that lead the
verifier to α.

6. Verifier accepts V (ρ) = α and V (α, β; ρ) = 1.
Completeness can be verified by noting that since there are only two clusters, the heaviest
cluster must hold at least half of the weight of the distribution and so the verifier’s test that
pb ·N ≥ 1

2 will pass. Due to the fact that every message α in Cb has likelihood pb, there are
exactly pb · 2ℓ different coins that would lead the verifier to output α and to accept. For
soundness first fix b. Once b is fixed, the smallest the prover can set N to be is 1

2pb
because

otherwise the verifier will reject in Step 2. If pb is very small, this value is large. As in the
analysis of Case 2, since the total number of verifier messages for which the prover as an
accepting strategy is small, if the claim N is large, it will likely not manage to make the
verifier accept. If pb is large, then the value of N can be set to be small, but in this case the
value pb · 2ℓ in Step 5 is large. Noting that for any α and β the number of coins ρ for which
V (α, β; ρ) accepts is at most s · 2ℓ, which we think of as very small, the prover is unlikely to
be able to cause the verifier to end up with coins that will make it accept.

2.1.3.3 Prover Efficiency

In the classic transformation as described above the prover must do three things: Calculate
the size of each cluster, and take part in both executions of the set lower-bound protocol.
1. Counting |C0| and |C1|: The approximate counting technique as used in Case 2 to

approximate N can be used to approximate the number of coins which would lead to
a message. Notice that for α ∈ Cb there are exactly pb · 2ℓ coins that lead to α. Thus,
by randomly choosing many messages and counting how many are in each cluster, the
prover can build a “histogram” of the weights of each cluster - a list of each cluster and
its respective weight. This is formally addressed in the full paper where it is shown that
using both a sampling and a membership oracle one can build such a histogram. An
issue with this approach is that the approximation procedure returns an approximate
value for the number of coins that lead to a message. That is, for a message in Cb it
may claim that the number of coins that lead to the message is anywhere in the range
(1± ε) · pb · 2ℓ for some (relatively small) ε. Since p0 and p1 are far from each other, the
ranges (1± ε) · p0 · 2ℓ and (1± ε) · p1 · 2ℓ do not intersect. Thus it is still easy to recognize
to which cluster a message belong.

2. Set Lower-Bound Protocol for Number of Messages in Cb: In this part of the protocol
the prover receives a hash function h and image y and needs to return a message α such
that α ∈ Cb and h(α) = y. The prover cannot simply use an inverter for a function that
samples inside of Cb since there may not be an efficient function for sampling in Cb. We
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instead show that given a distributional inverter for f(h, ρ) = h, h(V (ρ)) it is possible to
find preimages that are in Cb. This is true because the cluster has significant weight with
respect to the distribution of messages, and so for a randomly chosen hash function and
random image y the weight of elements that belong to the cluster and are preimages to y

is unlikely to be very small relative to all other preimages of y.
3. Set Lower-Bound Protocol for Number of Consistent Coins: The prover’s strategy can be

made efficient in this protocol in exactly the same way as in the same set lower-bound
in the previous case: by inverting f(h, ρ) = h, V (ρ), h(ρ). Doing this has the same issue
dealt with in Case 2 - the distribution from which the message α is drawn must be
close to uniform. In the classical transformation the value of α will be far from random
because the protocol always works with the heaviest cluster. Suppose, for example, that
p0 · |C0| = p1 · |C1|+ ε for a very small ε. Then C0 will always be chosen, even though in
the the real message distribution the likelihood of being in each cluster is almost identical.
In order to fix this skew in distribution we make the choice of b “smoother”. Rather
than setting b as the index of the heaviest cluster, we let b be random and sampled
from the Bernoulli distribution where 0 is drawn with probability p0·|C0|

p0·|C0|+p1·|C1| . This
presents a minor issue: now it could be that pb ·N < 1

2 . To fix this, we limit the choice
of clusters only to ones that have some noticeable probability of appearing, and so the
verifier can make sure that the claimed probability is not smaller than this threshold.
Similar smoothing techniques were used in [14] and [6] in different contexts.

2.1.4 Towards the General Case
In the general case, the verifier message distribution cannot be split into a small number of
flat clusters and the protocol may have multiple rounds. To keep this overview simple we
only consider doubly-efficient proofs. Making the transformation work for constant-round
proofs with an inefficient prover requires some slight additional technical work.

2.1.4.1 General Message Distribution

General Message Distribution: The issue for working with a general distribution for the
verifier messages is solved in the classical transformation by defining clusters of messages as
follows: cluster i is the set of all the messages with weight in the range 2−i and 2−i+1. In our
case, we have to work harder. Firstly, due to the way we use distributional inverters, we will
need that for every cluster, the distribution of messages when restricted only to messages in
the cluster be statistically close to uniform. This can be solved by splitting the distribution
into more clusters - cluster i will now be all messages in the range (1 + 1/ poly(n))−i and
(1 + 1/ poly(n))−i+1. Note that the probabilities of messages in neighbouring clusters are
similar. Therefore, the observation made in analysis of Case 3 that we can distinguish to
which cluster a message belongs even though the approximation procedure does not return
exact values for the number of coins that lead to a message, is false. To solve this issue,
we work with “approximate clusters” - cluster i consists of all the verifier messages for
which the approximation procedure claims the weight is between (1 + 1/ poly(n))−i and
(1 + 1/ poly(n))−i+1.

2.1.4.2 Imperfect Completeness

In order to accommodate protocols with completeness c, recall that the clusters are defined
as sets of accepting coins with some weight. In the classical transformation in Case 3 the
final prover’s claim is that there are pb ·2ℓ coins which would lead the verifier to accept. Since
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now pb is the probability that these coins are sampled conditioned on sampling accepting
coins, the end claim is changed to pc · c · 2ℓ. In our case, we will not be able to use inverters
to find accepting coins, since we only know how to invert efficient functions, and we do not
have an efficient function that returns a random accepting coin. We therefore redefine the
clusters to refer to gerenal coins, not just accepting ones. This means that in our protocol,
the verifier accepts with almost the same probability as in the original private-coin protocol.

2.1.4.3 Multiple Rounds

The issue of multiple rounds is solved in the original transformation by iteratively emulating
each round of the protocol. In the following we ignore the issue of distributions over
messages which are not uniform. This is treated as explained under “General Message
Distribution”. In the Goldwasser-Sipser protocol round i starts with the prefix of a transcript
γi−1 = (α1, β1, . . . , αi−1, βi−1) and Ni−1, a claimed lower bound on the number of coins that
are consistent with γi−1. The prover gives a claim Ni that there are Ni coins consistent with
each message possible verifier message conditioned on the transcript prefix γi−1. The parties
next run the set lower-bound protocol. That is, the verifier sends a randomly sampled hash
function h and random y. The honest prover sends back αi such that h(αi) = y and that αi

is consistent with γi−1 (i.e. there exist ρ such that α1 = V (α1, β1, . . . , αi−1, βi−1; ρ)). The
prover then sends βi. This process is run iteratively until the parties have a full transcript γ

along with a claimed lower-bound on the number of coins consistent with this full transcript,
at which point the parties execute a final set lower-bound protocol to sample a set of coins ρ.

To follow Goldwasser and Sipser’s formula with an efficient prover, we would like an
efficient method such that given a random hash function h, and y find this method
outputs a consistent αi. In the one-round case as explained previously, we noted that
f(h, ρ) = h, h(V (ρ)) was an efficiently computable function in order to sample α1 = V (ρ).
How can we use the same idea but correlate the output to a transcript? To more easily
illustrate, in the following we consider a 2-round protocol so that our goal is to sample α2
after the transcript (α1, β1) has already been set.

We show that if the proof in question is doubly-efficient, it suffices to invert the function
f that on inputs h and ρ: Computes α1 = V (ρ), β1 = P (α1), α2 = V (α1, β1; ρ) and outputs
(α1, β1, h(α2)). Firstly note that since the prover is efficient the function f can be computed
in polynomial time. Next, notice that the distribution f(H, Uℓ) is identical to that of taking
α1, β1 from a random execution of the protocol and additionally outputting a random hash
of the next verifier message. Consider an inverter for f . Given a random pair α1, β1 and a
random h, y it returns randomness ρ such that α1 = V (ρ). Given ρ it is easy to compute
α2 = V (α1, β1; ρ). Since ρ is consistent with α1, β1, we have that α2 is also consistent with
α1, β1. Moreover, α2 will hash to y. This is exactly what we needed.

2.2 Overview of the Piecemeal Emulation Protocol
In this section we overview the techniques used to prove Theorem 4. We prove the theorem by
constructing a protocol which we call the “piecemeal” emulation protocol, which is inspired
by ideas described in [21] that are accredited to Joe Kilian.

The protocol hinges on a sampling protocol where the goal of the honest prover is to help
the verifier generate a transcript that is distributed similarly to a random transcript of the
protocol the parties are trying to emulate. Let L be a language and ⟨P, V ⟩ be an r-round
interactive proof for L with ℓ bits of randomness and message length m. Since there are r

rounds, there are 2r messages sent in the protocol. Each message is of length m, and so
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the length of a complete transcript of the protocol is 2rm bits. We assume without loss
of generality that the protocol ends with the verifier sending its entire randomness to the
prover. To reiterate, our goal is to generate a random transcript of an execution of the
proof. We do this bit-by-bit in an iterative manner as follows: Round i begins with a partial
transcript prefix γi−1 and a claimed lower bound Ni−1 on the number of random coins which
are consistent with this partial transcript, where γ0 = ∅ is the empty transcript with the
claim that all N0 = 2ℓ coins are consistent with the empty transcript. By consistent with
a partial transcript we mean that had the private-coin verifier received these coins at the
beginning of the protocol execution, then this partial transcript would have been generated,
with respect to the prover messages. The prover sends two values N0

i and N1
i where N0

i

is the number of coins that are consistent with extending the transcript with the bit 0,
meaning coins consistent with the transcript (γi−1, 0), and similarly N1

i is the number of
coins consistent with (γi−1, 1). If the prover can exactly count each of these values, then it
should be that Ni−1 = N0

i + N1
i . The verifier tests that indeed Ni−1 = N0

i + N1
i and chooses

a bit b with probability Nb
i

Ni−1
. Both parties set the new transcript to be γi = (γi−1, b) and

the new claim on the number of consistent coins to be Ni = N b
i . This continues on until

i = 2rm when a full transcript has been generated, where since we assumed that the verifier
ends by outputting its randomness, there can only be one random coin that is consistent with
the transcript. Therefore, after the last iteration the verifier tests that the final N2rm = 1,
and that all verifier messages in the transcript are what V would have sent in an actual
execution using randomness from the end of the transcript. Finally, if all these tests pass the
verifier and accepts if V accepts given the transcript γ2rm.

For completeness, it can be shown that the protocol described above generates a transcript
with the exact same distribution as the original one, since in every stage the next bit of the
transcript is chosen with probability equal to the probability that it would appear in a real
random transcript conditioned on the part of the transcript that has already been fixed. We
now would like to to show that the protocol is sound, i.e. that for x /∈ L a malicious prover
cannot cause the verifier to accept in the new protocol with probability greater than in the
original protocol. To show this we look the ratio between the number of claimed consistent
coins, N and the number of consistent coins that would make the verifier accept in a given
round. For a given partial transcript γ we denote by Acc(γ) the set of coins ρ such that
there exists a legal full transcript of the real execution γ′ which begins with γ and in which
the verifier accepts.

We begin our inspection of soundness with the final round and work backwards from there.
Let i = 2mr, and let Ni−1 and γi−1 be the claim and the partial transcript at the beginning
of the iteration. Since the transcript ends with the verifier sending its entire randomness,
the number of accepting coins consistent with a transcript with only one bit missing can
be 0, 1 or 2. It can be shown that in every case, the probability that the verifier ends up
accepting is at most |Acc(γi−1)|

Ni−1
. For conciseness we focus in this overview on what happens

if |Acc(γi−1)| = 1. In this case only one of the two options for the final bit will make the
verifier accept. Suppose this bit is 0, then the probability that the verifier accepts reduces to
the probability that it chooses b = 0, which is N0

i

Ni−1
. Now, since in the end of the protocol

the verifier tests that Ni = N2rm = 1 in order for the prover to cause the verifier to accept
bit 0 it must set N0

i = 1. Therefore, the probability that the verifier ends up accepting the
transcript is at most 1

Ni−1
= |Acc(γi−1)|

Ni−1
.

We now look at other rounds of the protocol. Let γi−1 and Ni−1 be the inputs to iteration
i. Suppose, as our induction hypothesis, that upon entering round i + 1 with γi and Ni the
probability that the verifier ends up accepting is |Acc(γi)|

Ni
. Let N0

i and N1
i be the values sent
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by the prover. By the induction hypothesis, if the verifier chooses bit b, which happens with
probability Nb

i

Ni−1
, then it will end up accepting with probability |Acc(γi−1,b)|

Nb
i

. Therefore the
probability that the verifier ends up accepting is:

N0
i

Ni−1
· |Acc(γi−1, 0)|

N0
i

+ N1
i

Ni−1
· |Acc(γi−1, 1)|

N1
i

= |Acc(γi−1, 0)|+ |Acc(γi−1, 1)|
Ni−1

Noting that |Acc(γi−1, 0)|+ |Acc(γi−1, 1)| = |Acc(γi−1)| we have that the verifier eventually
accepts with probability |Acc(γi−1)|

Ni−1
. This inductive argument extends all the way up to γ0

and N0 in which case |Acc(γ0)|
N0

is equal to the soundness error of the original protocol.
The actual protocol differs slightly from the one described above. In the real setting, the

honest prover cannot exactly calculate N0
i and N1

i , but rather only ε-approximate them. This
will mean that the transcript that is sampled is only close to uniform. A further implication
of this change is that since the honest prover can err, the verifier now must relax its test that
N0

i + N1
i = Ni−1. This relaxation turns out to be to test that Ni−1

N0
i

+N1
i
≤ 1 + 3ε. This in turn

gives the cheating prover some additional leeway, specifically in round i the probability that
the verifier ends up accepting changes from |Acc(γi−1)|

Ni−1
to (1 + 3ε)2rm−i · |Acc(γi−1)|

Ni−1
(recall

that 2rm is the number of bits sent in the protocol). If ε is small enough this leeway is
insignificant.
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Abstract
We study the randomness complexity of interactive proofs and zero-knowledge proofs. In particular,
we ask whether it is possible to reduce the randomness complexity, R, of the verifier to be comparable
with the number of bits, CV , that the verifier sends during the interaction. We show that such
randomness sparsification is possible in several settings. Specifically, unconditional sparsification
can be obtained in the non-uniform setting (where the verifier is modelled as a circuit), and in
the uniform setting where the parties have access to a (reusable) common-random-string (CRS).
We further show that constant-round uniform protocols can be sparsified without a CRS under a
plausible worst-case complexity-theoretic assumption that was used previously in the context of
derandomization.

All the above sparsification results preserve statistical-zero knowledge provided that this property
holds against a cheating verifier. We further show that randomness sparsification can be applied
to honest-verifier statistical zero-knowledge (HVSZK) proofs at the expense of increasing the
communication from the prover by R − F bits, or, in the case of honest-verifier perfect zero-
knowledge (HVPZK) by slowing down the simulation by a factor of 2R−F . Here F is a new measure
of accessible bit complexity of an HVZK proof system that ranges from 0 to R, where a maximal
grade of R is achieved when zero-knowledge holds against a “semi-malicious” verifier that maliciously
selects its random tape and then plays honestly. Consequently, we show that some classical HVSZK
proof systems, like the one for the complete Statistical-Distance problem (Sahai and Vadhan, JACM
2003) admit randomness sparsification with no penalty.

Along the way we introduce new notions of pseudorandomness against interactive proof systems,
and study their relations to existing notions of pseudorandomness.
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1 Introduction

Randomness is a valuable resource. It allows us to speed-up computation in various settings
and it is especially useful, or even essential, at the presence of adversarial behavior. Con-
sequently, an extensive body of research has been devoted to the question of minimizing
the randomness complexity in various contexts. Notably, the seminal notion of pseudoran-
domness [8, 41] has been developed as a universal approach for saving randomness or even
completely removing the need for random bits. In this paper, we study this general question
in the context of (probabilistic) interactive proofs.
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Interactive proofs, presented by [24, 4], form a natural extension of non-deterministic
polynomial time computation (NP). A computationally-bounded probabilistic verifier V

wishes to decide whether an input x is a member of a promise problem1 Π = (Πyes, Πno) with
the aid of a computationally-unbounded untrusted prover P who tries to convince V that
x is a yes-instance. Towards this end, the two parties exchange messages via a protocol,
and at the end the verifier decides whether to accept or to reject the input. The protocol
should achieve completeness and soundness. The former asserts that yes-instances should
be accepted except for some small probability (completeness error ), and the latter asserts
that no-instances should be rejected regardless of the prover’s strategy except for some small
probability (soundness error). (See Definition 10.)

The celebrated result of [30, 37] shows that interactive proofs are as strong as polynomial-
space computations (i.e., IP = PSPACE). Moreover, randomness seems essential for this
result: If one limits the verifier to be deterministic then interaction does not really help –
the prover can predict the verifier messages and so can send all the answers at once – and
the power of such proof systems is limited to NP. Put differently, randomness provides
“unpredictability” which is crucial for achieving soundness, i.e., for coping with a cheating
prover. In fact, even in cases where soundness can be achieved deterministically (i.e., when
the underlying problem is in NP) one may want to use a randomized proof system. This
is the case, for example, when the prover wants to hide some information from the verifier
like in the case of zero-knowledge proofs [24]. Indeed, deterministic proof systems inherently
allow the verifier to convince others in the validity of the statement, a property that violates
zero-knowledge for non-trivial languages [34]. In this context, randomness is used for hiding
information similarly to its use in the setting of randomized encryption [23].

How much randomness is needed for interactive proofs?

We would like to understand how randomness complexity scales with other resources. Spe-
cifically, we would like to relate it to the communication complexity of the protocol – a
measure that was extensively studied in the context of interactive proofs and for which we
have better understanding (e.g., [18, 21]). We therefore ask:

Given an interactive proof system ⟨P, V ⟩ for a problem Π, can we always sparsify
the randomness complexity R to be comparable with the amount of communication
complexity? Can we do this while preserving zero-knowledge?

We use the term randomness sparsification to highlight the point that we do not aim for full
de-randomization, rather we only try to make sure that the randomness complexity is not
much larger than the communication complexity.

1.1 Related works
Clearly the question of sparsification becomes trivial for public-coin protocols (aka Arthur-
Merlin protocols) in which all the randomness of the verifier is being sent during the
protocol. Goldwasser and Sipser [25] showed that any general interactive proof protocol

1 A promise problem [13] is a partition of the set of all strings into three sets: Πyes the set of yes instances,
Πno the set of no instances, and {0, 1}∗ \ (Πyes ∪ Πno) the set of “disallowed strings”. The more common
notion of a language corresponds to the special case where Πno is the complement of Πyes (i.e., there
are no disallowed strings). The promise problem formalization is especially adequate for the study of
interactive proofs and is therefore adopted for this paper. See [17] for a thorough discussion.
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can be transformed into public-coin protocol, however, this transformation increases the
randomness complexity of the new system and therefore does not resolve the sparsification
question.

Information-theoretically, if the verifier sends at most CV bits during the whole interaction,
it should be possible to emulate it with about CV bits of randomness (in expectation).
Indeed, in the context of two-party communication complexity games, it is well known [31]
that randomized protocols that use R random bits can be converted into protocols whose
randomness complexity is not much larger than the communication complexity C. While
this result can be generalized to the setting of interactive proof systems [2], it does not
preserve the computational complexity of the verifier. Specifically, this sparsification is
essentially based on an inefficient pseudorandom generator G whose existence follows from
the probabilistic method.

The question of efficient sparsification in the related context of information-theoretic
secure multiparty computation (ITMPC) was addressed by Ishai and Dubrov [12]. They
introduced the notion of non-Boolean PRG (nb-PRG) and showed that such a PRG can be
used to sparsify efficiently-computable protocols with passive security.2 The definition of
nb-PRG generalizes the standard notion of PRG by considering non-Boolean distinguishers.
Formally, a (T, C, ε) nb-PRG G : {0, 1}S → {0, 1}R fools any T -time non-Boolean algorithm
D : {0, 1}R → {0, 1}C with C output bits in the sense that D(UR) is ε-close (in statistical
distance) to D(G(US)) where UN denotes the uniform distribution over N -bit strings. For
polynomially related parameters, nb-PRGs with an optimal seed length of O(C) bits can be
obtained either based on (exponentially strong) cryptographic assumptions [12] or based on
standard worst-case complexity-theoretic assumptions [3, 1]. In order to sparsify a passively-
secure efficient ITMPC protocol, it suffices to invoke the parties over pseudorandom tapes
that are selected according to (T, C, ε) nb-PRG where C upper-bounds the number of bits
communicated to the adversary and T is the total computational complexity of the protocol.
The main idea is to note that any fixed coalition of corrupted parties receives from the
honest parties at most C bits of incoming messages whose distribution can be generated by
applying a procedure D to the pseudorandom tapes of the honest parties. The procedure D

is obtained by “gluing” together the codes of all parties, and can therefore be implemented
with complexity T . Since the underlying nb-PRG fools D, the sparsified protocol remains
information-theoretic private: An external unbounded environment that examines the view
of the adversary “learns” nothing on the honest parties inputs.

The above argument relies on the efficiency of all internal parties that participate in
the protocol. It is therefore unclear whether it can be extended it to our setting where
prover, even when played honestly, may be computationally unbounded.3 Nuida and
Hanaoka [33] pointed out to the limitation of the nb-PRG approach in the context of “leaky”
distinguishing games with an internal computationally-unbounded adversary, and suggested
to use exponentially-strong cryptographic pseudorandom generators (whose distinguishing
advantage is exponential in the leakage available to the adversary). It should be mentioned,
however, that although the original sparsification argument of [12] fails, we do not know

2 More precisely, their sparsification applies to protocols with privacy against parties that passively follow
the protocol but may select their random tape arbitrarily. (In addition, they used an indistinguishability-
based definition which is equivalent to unbounded simulation, however, their result seems to generalize
to the case of efficient simulation as well.)

3 In contrast, one can use nb-PRGs (against arbitrary polynomial-time adversaries) to sparsify efficiently-
computable argument systems. In such systems correctness holds with respect to an efficient prover
strategy, and soundness is required to hold only against efficient provers. However, this setting has no
information-theoretic flavor and a standard cryptographic pseudorandom generator can be used as well.

ITC 2021



4:4 On the Randomness Complexity of Interactive Proofs & SZK Proofs

whether nb-PRGs suffice for sparsification neither in our context nor in the more general
context suggested by [33]. In fact, known concrete constructions of nb-PRGs (e.g., ones that
are based on exponential cryptographic-PRGs) seem to suffice for this purpose.

Finally, let us mention that several works have studied other aspects of randomness
complexity in the context of public-coin interactive proof systems. This includes randomness-
efficient methods for round-reduction [7] and for error-reduction [6].

1.2 Our Results and Techniques
In this paper, we present several sparsification results for interactive proofs and for zero-
knowledge proofs. We begin with the former case.

1.2.1 General Interactive Proofs
Before stating our results, we set-up some notation.

▶ Notation 1. For polynomially-bounded integer-valued functions R, CV , TV , CP and k we
consider proof systems that on an n-bit input, the parties exchange k(n) messages, where
the verifier V uses R(n) random bits, sends a total number of CV (n) bits, and runs in time
TV (n), and the prover sends a total number of CP (n) bits. We refer to such protocols as
IPk[R, CV , TV , CP ] protocols. We also consider non-uniform IPk[R, CV , TV , CP ] protocols
in which the verifier is implemented by a TV -size circuit. We sometimes omit k and use
IP[R, CV , TV , CP ] (or non-uniform IP[R, CV , TV , CP ]) to denote a protocol with an unspecified
round complexity. (Observe that in any case k is upper-bounded by CV + CP .) Similarly,
we let IP (resp.,IP/poly, IPk) denote the union of IP[R, CV , TV , CP ] (resp., non-uniform
IP[R, CV , TV , CP ], IPk[R, CV , TV , CP ]) where R, CV , TV , CP range over all polynomially-
bounded functions.

1.2.1.1 PRGs against interactive proofs

Let us begin by presenting a natural definition for a PRG against an interactive proof.
Consider an IP[R, CV , TV , CP ] proof system ⟨P, V ⟩ for a problem Π with completeness error
of δc and soundness error of δs. For a length-extending function G : {0, 1}S(n) → {0, 1}R(n)

we define the verifier V G(x) to be the verifier that samples a seed s←↩ {0, 1}S(n) and invokes
V with the random tape G(s) on the input x. We say that G ε-fools the protocol ⟨P, V ⟩
if

〈
P, V G

〉
forms an interactive proof system for Π with an additive penalty of ε in the

completeness and soundness error, i.e., the completeness error and soundness errors are
upper-bounded by δc + ε and by δs + ε, respectively.

We begin by noting that, in the non-uniform setting, one can construct such PRGs
unconditionally with a seed length that is linear in the verifier’s communication complexity
and logarithmic in its running time.

▶ Theorem 2. For every functions TV (n), CV (n), CP (n), R(n) : N→ N and ϵ : N→ [0, 1],
there exists a G : {0, 1}S(n) → {0, 1}R(n) that can be computed by a non-uniform Õ(RTV )-size
circuit and ε-fools every non-uniform IP[R, CV , TV , CP ] protocol where S = 2CV +2 log(1/ε)+
log TV + log log TV + O(1).

As an immediate corollary we derive the following result.

▶ Theorem 3 (Non-Uniform Randomness Sparsification for IP). Suppose that a promise
problem Π has a (possibly non-uniform) IP[R, CV , TV , CP ] interactive proof ⟨P, V ⟩ with
completeness error δc and soundness error δs. Then, for every ε(n), the promise problem Π
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also has a non-uniform proof system ⟨P, V ′⟩ whose verifier is a non-uniform algorithm with
randomness complexity R′ = O(CV + log(1/ε) + log TV ) and computational complexity of
T ′V = TV + Õ(TV (R + log(1/ε))) and with identical communication complexity (C ′V = CV

and C ′P = CP ), and identical round complexity. The soundness and completeness error of
the new system are δ′s ⩽ δs + ε and δ′c ⩽ δc + ε. Moreover, if the original proof system has a
prefect completeness then so is the new system.4

The PRG construction (Theorem 2) is based on a family of t-wise independent hash
functions. That is, we show that, for a properly chosen parameter t, a randomly chosen t-wise
independent hash function is likely to fool IP[R, CV , TV , CP ]. Unfortunately, one has to invest
too many random bits in order to sample a hash function, and so we use non-uniformity to
hard-wire one “good” hash function. (See Section 3 for details.) An alternative solution is to
select the hash function via a common-random-string (CRS) that is available to both parties
and can be reused among many invocations.5 This also leads to uniform sparsification in an
amortized setting where many instances are considered together. In such a case one can even
remove the CRS and let the verifier sample it once for all the instances. (See Corollary 19.)

1.2.1.2 Single-Instance Sparsification in the uniform setting without CRS?

A natural way for achieving randomness sparsification in the uniform setting is to “sparsify”
the process of selecting the hash function. That is, to use a different pseudorandom generator
to sample a hash function. Indeed, this approach was taken by [1] to construct nb-PRGs.
The idea is to show that given the description of a hash function hz one can determine
with “not-too-large-complexity” (e.g., low in the polynomial hierarchy) whether hz fools an
interactive proof system. If such a decision can be made by some “algorithm” D then we can
select the hash function by using a PRG that fools D. Unfortunately, our definition of “fooling
interactive proofs” does not seem to be efficiently-decidable. First, the definition implicitly
refers to inputs that satisfy the promise of the underlying problem Π, and deciding whether
an input x belongs to Πyes ∪Πno may be very hard. Second, as part of the pseudorandomness
requirement, the new system

〈
P, V G

〉
should preserve completeness (up to an error of ε).

However, this property depends on the behavior of the honest prover P which is an inefficient
procedure on which we have no “handle”. In particular, even if we try to design an interactive
proof system for deciding whether hz is a good PRG, it is not clear how to make sure that
the unbounded prover really uses the honest P when needed.

1.2.1.3 Strong PRGs

We solve both problems by strengthening the notion of pseudorandomness against interactive
proofs. Specifically, we say that G strongly ε-fools the protocol ⟨P, V ⟩ if for every string
x ∈ {0, 1}∗ and every possible prover strategy P ∗, the gap between the acceptance probability
of V (x) when interacting with P ∗(x) and the acceptance probability of V G(x) when interacting
with P ∗(x) is at most ε. While this definition seems stronger than the previous one, the
proof of Theorem 2 actually shows that random hash functions strongly fool interactive
proofs. Crucially, this new definition makes no reference to the underlying promise problem
or to the honest prover P . (Indeed, one may say that G ε-fools the interactive machine V .)

4 All our transformations preserve perfect completeness. From now on, we omit this point throughout
this section.

5 In many scenarios such a CRS is available “for free”. Furthermore, the fact that it is re-usable and that
it should not be kept private from the prover even before the protocol begins, makes it highly-attractive
even compared to public coins.
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4:6 On the Randomness Complexity of Interactive Proofs & SZK Proofs

As a result, the above-mentioned obstacles are removed and we can show that the problem
of checking whether a given hash function hz strongly-fools an IPk proof system admits an
IPk+1 proof system. For constant k, this puts the language of “bad” hash functions in the
class AM and so we can select our hash function by a pseudorandom generator that fools
AM – a well-studied object in complexity theory. Specifically, known constructions of such
PRGs [32, 27, 28, 36] can be based on the assumption that E = DTime(2O(n)) is hard for
exponential size non-deterministic circuits. (See Theorem 22 for details). In Section 4 we
prove the following result.

▶ Theorem 4 (Uniform Randomness Sparsification for constant-round proofs). Suppose that
E is hard for exponential size non-deterministic circuits. Then, for every inverse polyno-
mial ε, every constant k and every polynomially-bounded functions R, CV , TV , CP , there
exists a PRG computable in uniform polynomial time of T ′V = Õ(TV · (R + log n)) that
strongly ε-fools non-uniform IPk[R, CV , TV , CP ] proof systems with seed length of R′ =
2CV + O(log n). Consequently, every IPk[R, CV , TV , CP ] proof system can be transformed
into a new IPk[R′, CV , T ′V , CP ] with an additive penalty of ε in the soundness and completeness
errors. Moreover, perfect completeness is preserved.

The underlying assumption can be viewed as a natural extension of EXP ≠ NP to the
non-uniform settings. Similar assumptions were made in the literature (e.g., [5, 11, 14, 22, 39]).
▶ Remark 5. One should note that when k is constant the underlying assumption suffices
for full de-randomization of the protocol (via a sequence of transformations). Still, one
may prefer to use the sparsified protocol (that still uses some randomness), either due
to its efficiency properties (in terms of computation and communication) or due to its
zero-knowledge properties as discussed in Section 1.2.2.

The seed length of our PRGs is dominated by the number of bits, CV , sent by the verifier.
(This is the case both in the uniform and non-uniform settings.) It is not hard to show that
such a dependency is essentially optimal even if one considers the weaker variant of IP PRGs.

▶ Proposition 6 (Sparsification lower-bound). For every functions TV (n), CV (n), CP (n), R(n) :
N → N where CV < R every G : {0, 1}S(n) → {0, 1}R(n) that 0.1-fools IP[R, CV , TV , CP ]
protocols must have a seed length of Ω(CV ).

Proof. Assume that S < αCV for some small constant α < 1. A simple information-theoretic
argument shows that y = G(US) is predicatable in the following sense. There exists an index
i ∈ [CV ] such that given the (i−1)-prefix y[1 : i−1], one can guess (possibly inefficiently) the
next bit y[i] with success probability of, say, 0.8. Indeed, letting pi := H(yi|y[1 : i−1]) denote
the conditional entropy of yi given the prefix, we know that

∑CV

i=1 pi ⩽ H(y) = S < αCV and
so, by an averaging argument, there exists an index i for which pi < α. For sufficiently small
constant α, this implies that yi is predictable with probability 0.8. Consider the following
proof system for the trivial empty language (Πyes = ∅ and Πno = {0, 1}∗). The verifier
samples r ∈ {0, 1}R and sends r[1 : i − 1] to the prover who responds with a single bit b.
The verifier accepts if b = y[i]. When r is random the soundness error is 1/2, but when
r = G(US), the error grows to 0.8. ◀

1.2.1.4 nb-PRGs are not IP-PRGs

We also show (in the full version) that, under plausible cryptographic assumptions, some
nb-PRGs do not fool IP protocols. Roughly, this is done by constructing a nb-PRG which is
malleable. That is, although the prover cannot tell whether the verifier uses random bits
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or bits that were generated via the nb-PRG, she can provide a short hint that allows a
computationally-bounded algorithm (the original verifier) to distinguish between the two
cases. Our results therefore show that the inapplicability of nb-PRGs to our setting reflects
an inherent limitation and it is not just an artifact of the previous proof techniques.

1.2.2 Zero-Knowledge Proofs

We move on and study randomness-sparsification for statistical zero-knowledge proofs. In
the following we focus on constant-round zero-knowledge protocols with a uniform verifier
and base our results on the assumption from Theorem 4. If one is willing to make the verifier
non-uniform (or to allow a public common reference string), then the following results can
be proved unconditionally without assumptions for protocols with an arbitrary number of
rounds.

Let SZKk[R, CV , TV , CP ] be an IPk[R, CV , TV , CP ] statistical zero-knowledge protocol,
whose zero-knowledge property holds against an arbitrary, possibly malicious, verifier that
may deviate from the protocol. We begin by noting that PRG-based randomness-sparsification
trivially preserves such a strong zero knowledge property.

▶ Theorem 7 (Uniform Randomness Sparsification for constant-round SZK). Suppose that E
is hard for exponential size non-deterministic circuits. Then, for every inverse polynomial
ε, every constant-round SZKk[R, CV , TV , CP ] proof system can be transformed into a new
SZKk[R′, CV , T ′V , CP ] with randomness of R′ = 2CV + O(log n), (uniform) verifier’s com-
plexity of T ′V = Õ(TV · (R + log n)) and with an additive penalty of ε in the soundness and
completeness errors.

The proof is straightforward: Any malicious verifier strategy that can be played in the
original protocol ⟨P, V ⟩ can be also played in the sparsified protocol

〈
P, V G

〉
. Indeed, SZK

is a feature of the honest prover that remains unchanged in the sparsified proof system.

1.2.2.1 Sparsifying HVSZK?

We move on and ask whether such a theorem can be proved for the case of honest-verifier
statistical zero-knowledge protocols (HVSZK). While there are known transformations from
HVSZK to SZK (e.g., [40, 20, 26]) these transformations incur a communication complexity
overhead that is at least as large as the randomness complexity of the original protocol.
Therefore, the problem of sparsifying HVSZK is not known to be reducible to the sparsification
of SZK.

It is instructive to see why Theorem 7 does not immediately generalize to the HVSZK
setting. Consider for simplicity a 2-message proof system ⟨P, V ⟩ where V sends a message a

and receives a message b. The view of an honest verifier consists of the input x, the random
tape r and the incoming message b. In the sparsified system,

〈
P, V G

〉
, the view consists of

the input x, a PRG seed s and the message a. Suppose that the original verifier admits a
simulator that, given x, samples the pair (r, a). How can we use such a simulator to sample
(s, a)? If we use the original simulator then a random r is unlikely to land in the image
of G which is sparse in the set of all R-bit strings. Moreover, even if we hit the image,
it is not clear how to invert G and find an appropriate seed. We observe that the second
problem can be easily solved by exploiting the concrete structure of our PRGs. Specifically,
by using algebraic constructions of t-wise independent hash functions we can efficiently invert
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4:8 On the Randomness Complexity of Interactive Proofs & SZK Proofs

the PRGs in polynomial-time.6 To handle the sparsity problem we suggest two possible
approaches:

Our first solution exploits the prover. We show that the simulation problem can be
avoided by asking the prover to supply R random bits at the beginning of the interaction.
In the context of honest-verifier perfect zero-knowledge proofs, we show that randomness
can be traded by a simulation slow-down. Specifically, the sparsified protocol (without
any modifications) can be simulated with an overhead of time 2R−S where S is the
seed-length of the generator. (See Corollary 37.) Such a simulation implies witness-
indistinguishability [15] and can be meaningful when the underlying problem is harder
than 2R−S . Specifically, one can tune S, i.e., the level of sparsification, according to the
hardness of the problem.

1.2.2.2 How much should we pay?

In the above solutions we pay a communication overhead of R (resp., simulation slow-down
of 2R−S) in the sparsification of HVSZK systems (resp., HVPZK) whereas in the case of SZK
proof systems (with security against cheating verifier) we pay nothing. It turns out that one
can interpolate between these two extremes based on a single measure. Roughly, we say that
a proof system is an F -semi-malicious statistical zero-knowledge system (F -SMSZK), for
some function 0 < F < R if it is possible to simulate every verifier that plays honestly except
that it selects the first F -bits of its random tape by some arbitrary (efficiently-computable)
distribution (the other R− F coins are chosen uniformly).7 We prove the following theorem.
(See Corollaries 30 and 33.)

▶ Theorem 8 (Trading randomness with prover’s communication or simulation slowdown).
Suppose that E is hard for exponential size non-deterministic circuits. Then, every promise
problem Π that admits a constant-round F -SMSZKk[R, CV , CP , TV ] proof system ⟨P, V ⟩ also
has:

An HVSZKk+1[R′ = 2CV + O(log n), CV , T ′V = Õ(TV · (R + log n)), C ′P = CP + R − F ]
proof system. Specifically, the new protocol consists of an additional preliminary message
from the prover that consists of a random string of length R− F bits.
In the prefect zero-knowledge setting, where ⟨P, V ⟩ is F -SMPZKk[R, CV , CP , TV ] sys-
tem, the problem Π admits an HVPZKk[2CV + O(log n), CV , CP , TV ] proof system whose
simulator runs in time poly(n)2R−F .

Observe that 0 ⩽ F ⩽ R and that any HVSZK proof system is also an 0-SMSZK and every
SZK proof system is R-SMSZK. Thus Theorem 8 implies Theorem 7. Interestingly, some
classical HVSZK proof systems also achieve full accessibility of F = R. Most notably, this
is the case for the classical protocol for the complete statistical-distance problem of [35] as
well as the classical proof system for graph-non-isomorphism (GNI) of [19]. (See the full
version.) In fact, these proof systems have only two messages and therefore they are known
to be insecure against a cheating verifier [34, Theorem 8] (unless the underlying problems are
in BPP). It follows that even the notion of R-SMSZK proof systems is likely to be weaker
then SZK.

6 This does not contradict security since our PRG fools verifiers of predetermined fixed polynomial-time
(corresponding to the running time of the verifier) but can be inverted in larger polynomial time. This
feature of the fixed-polynomial-time setting (that is typically used in the context of derandomization [32])
seems novel to this work.

7 One should not be confused with our notion of semi-malicious SZK proof systems and the one suggested
by [29] that applies to zero-knowledge PCPs.
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We further mention that even when F = 0, we can get some non-trivial simulation for
HVPZK. Specifically by exploiting the concrete properties of our PRG we can get a simulator
whose complexity is poly(n)2R−S where R is the original randomness complexity and S is
the seed length of the simulator. (See Section 5.5.) As an application, one can adjust the seed
length (i.e., the level of sparsification) according to a given time-bound on the simulation
(that may be dictated by the intractability of the underlying language).

1.2.2.3 Organization

Following some preliminaries (Section 2), we study, in Section 3, randomness sparsification
for interactive proofs in the non-uniform setting and in the amortized sparsification in the
uniform setting. Section 4 is devoted to randomness sparsification for constant-round uniform
interactive proofs, and Section 5 to statistical zero-knowledge proofs.

2 Preliminaries

Probabilistic notation

For every n ∈ N we denote by Un the uniform distribution over the set {0, 1}n of binary
strings of length n. For a probability distribution D, we use the notation x←↩ D to denote a
value x that is sampled according to D. When D is a finite set, the notation x←↩ D denotes
a value x that is sampled uniformly from D. We follow the standard way of defining distance
between two distributions:

▶ Definition 9 (Statistical Distance). Given X, Y two probability distributions over some
discrete universe Ω the statistical difference between them is defined:

SD(X, Y ) = maxS⊂Ω|Pr[X ∈ S]− Pr[Y ∈ S]|.

▶ Definition 10 (Interactive proof system [24]). A pair of interactive machines ⟨P, V ⟩ is
called an interactive proof system with completeness error of δc and soundness error of δs

for a promise problem Π = (Πyes, Πno) if the followings hold:
Completeness: For every x ∈ Πyes we have

Pr[(P, V )(x) = 1] ⩾ 1− δc(|x|)

where the probability is taken over the randomness of V and P and we write (P, V )(x) = 1
to denote the event that, after interacting with P (x), the verifier V (x) accepts.
Soundness: For any cheating strategy for the prover P ∗ and every x ∈ Πno, it holds that

Pr[(P ∗, V )(x) = 1] ⩽ δs(|x|).

When the parameters δc and δs are unspecified we assume that they are taken to be o(1).8 By
default, we assume that V is efficient, i.e., it runs in time TV (|x|) for some polynomially-
bounded function TV . In the non-uniform setting, we assume that V can be implemented by
a non-uniform family of TV (|x|)-size probabilistic circuits.

8 Standard ρ-fold parallel repetition reduces the errors exponentially with ρ at the expense of increasing
the communication and computation complexity by a factor of ρ and without affecting the round
complexity (see e.g., [16]).
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4:10 On the Randomness Complexity of Interactive Proofs & SZK Proofs

Following Notation 1, we let k, R, CV , CP denote the number of messages sent in the protocol,
the randomness complexity of V , the number of bits sent by V , and the number of bits sent
by P .

▶ Definition 11 (Statistical Zero-Knowledge). An interactive proof system ⟨P, V ⟩ for a promise
problem Π = (Πyes, Πno) is a Statistical Zero-Knowledge proof system (SZK) with a simulation
error of δz if for every computationally-unbounded verifier V ∗ there exists a simulator Sim
that runs in time polynomial in the complexity of V ∗ such that for every yes-instance x ∈ Πyes
it holds that

SD(viewV ∗(x), Sim(x)) ⩽ δz(|x|),

where viewV ∗(x) is the random variable that corresponds to the view of V ∗(x) when interacting
with P (x) which consists of the random tape and all the incoming messages that were sent
by P .

The proof system is an Honest-Verifier Statistical Zero-Knowledge proof system (HVSZK)
if the above holds for the special case where V ∗ = V . We also denote by HVSZK and SZK
the class of all promise problems that posses such an interactive proof system (with error
parameters of o(1)).

3 Non-uniform randomness sparsification for IP

In this section we study the possibility of reducing the randomness of a general proof system
(P, V ). We begin by defining a strong form of pseudo-random generators against interactive
proof systems.

▶ Definition 12 (Strongly fooling a protocol). Let ⟨P, V ⟩ be a protocol and R(n) denote the
randomness complexity of V . For a length-extending function G : {0, 1}S(n) → {0, 1}R(n) we
define the verifier V G(x) to be the verifier that samples a seed s←↩ {0, 1}S(n) and invokes
V (x; r) with randomness r = G(s).

We say that G strongly ε-fools the protocol ⟨P, V ⟩ if for every input x and any possible
prover strategy P ∗ it holds that

|Pr[(V, P ∗)(x) = 1]− Pr[(V G, P ∗)(x) = 1]| ⩽ ε.

We say that G strongly ε-fools IP[R, CV , TV , CP ] if it strongly ε-fools any interactive proof
⟨P, V ⟩ ∈ IP[R, CV , TV , CP ].

Recall that is the class IP[R, CV , TV , CP ] is the class of IP protocols in which on an n-bit
input the verifier runs in TV (n) time, uses at most R(n) random bits and sends at most
CV (n) bits to the prover, and the total length of the prover responds is at most CP (n) bits.
Observe that a PRG strongly fools a protocol regardless of the prescribed prover, and it is a
trait of the verifier.

▶ Observation 13. Suppose that ⟨P, V ⟩ is an interactive proof system for a promise problem
Π with completeness error δc and soundness error δs and G strongly ε-fools ⟨P, V ⟩. Then〈
P, V G

〉
is an interactive proof system for a promise problem Π with completeness error

δc + ε and soundness error δs + ε. Moreover, if the original system has perfect completeness
then so is the new system.

Proof. The first part is immediate from Definition 12. The “Moreover” part holds for any G

since for any yes instance x a bad (faulty) random string s in
〈
P, V G

〉
for which (V G, P )(x)

rejects translate into a random tape r = G(s) for which (V, P )(x) rejects as well. ◀
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We continue by showing that pseudo-random generators against circuits with very small
error can be used to fool protocols.

▶ Lemma 14 (Fooling protocols via circuit-PRGs). Let TV (n), CV (n), CP (n), R(n) : N→ N be
some integer-valued functions and let ϵ : N→ [0, 1]. Every PRG G : {0, 1}S(n) → {0, 1}R(n)

that ε/2CV (n)-fools 3TV -size circuits also strongly ε-fools non-uniform IP[R, CV , TV , CP ]
protocols.

Proof. Let ⟨P, V ⟩ be some (possibly non-uniform) IP[R, CV , TV , CP ] proof system and let
G : {0, 1}S(n) → {0, 1}R(n) be a PRG that ε/2CV (n)-fools 3TV -size circuits. Fix some input
x ∈ {0, 1}n and let CV = CV (n), TV = TV (n), CP = CP (n) and S = S(n). Fix some proof
strategy P ∗. Let viewV (r) denote the verifier’s view when interacting with P ∗ on the shared
input x with randomness r. This view consists of (x, r), the concatenation, a⃗ of all the
messages sent from V to P ∗ during the interaction and the messages b⃗ that were sent from
P ∗ to V during the interaction.9 In the following, we will think of (⃗a, b⃗) as random variables
whose distribution is induced by a random choice of the verifier’s random coins.

We will show that (*) viewV (Ur) is ε indistinguishable from viewV (G(US)) by TV -size
circuits. Note that (*) implies that |Pr[(V, P ∗)(x) = 1] − Pr[(V G, P ∗)(x) = 1]| ⩽ ϵ since
V decides whether to accept its view by applying a predicate which is computable by a
circuit of size at most TV . Let us assume, without loss of generality, that the strategy P ∗ is
deterministic. Indeed, if (*) does not hold for some randomized P ∗ then, by an averaging
argument, there exists a deterministic P ∗ that violates (*).

We proceed by proving (*). Assume towards contradiction that there exists some
distinguisher D of complexity at most TV that violates (*). Then, we can write

ε <

∣∣∣∣∣∣
∑

a∈{0,1}CV

Pr
r←↩UR

[D(x, r, a⃗, b⃗) = 1 | a⃗ = a] Pr
r←↩UR

[⃗a = a]

−
∑

a∈{0,1}CV

Pr
r←↩G(US)

[D(x, r, a⃗, b⃗) = 1 | a⃗ = a] Pr
r←↩G(US)

[⃗a = a]

∣∣∣∣∣∣
⩽

∑
a∈{0,1}CV

∣∣∣∣ Pr
r←↩UR

[D(x, r, a⃗, b⃗) = 1 | a⃗ = a] Pr
r←↩UR

[⃗a = a]

− Pr
r←↩G(US)

[D(x, r, a⃗, b⃗) = 1 | a⃗ = a] Pr
r←↩G(US)

[⃗a = a]
∣∣∣∣ ,

where the inequality is due to the triangle inequality. By an averaging argument, we conclude
that there should be at least one element a∗ such that

ε

2CV
<

∣∣∣∣ Pr
r←↩UR

[D(x, r, a⃗, b⃗) = 1 | a⃗ = a∗] Pr
r←↩UR

[⃗a = a∗]

− Pr
r←↩G(US)

[D(x, r, a⃗, b⃗) = 1 | a⃗ = a∗] Pr
r←↩G(US)

[⃗a = a∗]
∣∣∣∣ .

Recall that the prover is deterministic and therefore once the verifier’s messages are fixed
to a∗, the prover’s messages become fixed as well to some value b∗. We now can define a
new distinguisher D′ : {0, 1}R(n) → {0, 1} that holds (x, a∗, b∗) as a non-uniform advice

9 In the context of this proof, we omit the seed s from the verifier’s view. While such an omission will be
problematic later when discussing zero-knowledge, it has no consequences in the current proof.
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and operates as follows. Given an input r ∈ {0, 1}R(n), the distinguisher D′ invokes the
verifier V (x) using r as the random coins, and emulates the prover P ∗ by responding
according to b∗. If the resulting transcript disagrees with (a∗, b∗) the distinguisher D′

rejects. Otherwise, D′ return D(x, r, a∗, b∗). Clearly, D′ distinguishes between r ←↩ UR to
r ←↩ G(US) with advantage ε/2CV . Moreover, D′ can be implemented by a circuit of size
TV +(CV +CP )+TV ⩽ 3TV , and therefore we derive a contradiction to the pseudorandomness
of G and (*) follows. ◀

The following claim from [1] shows that good circuit PRGs can be obtained from t-wise
independent hash functions. In the following we say that a family of functions H = {hz :
X → Y } is t-wise independent [10] if for every t distinct inputs x1, . . . , xt ∈ X and uniformly
chosen hz ←↩ H, the random variable (hz(x1), . . . , hz(xt)) is uniformly distributed over Y t.

▷ Claim 15 (PRGs from hash functions (Claim 5.2 in [1])). For every T and ε, δ ∈ [0, 1],
and every family H = {hz : {0, 1}s → {0, 1}r} of t-wise independent hash functions with
t = 4T log T + 2 log(1/δ) and s = 2 log(1/ε) + log t the following holds. With probability
1− δ, a random member hz ←↩ H ε-fools any T -size circuit.

By combining Claim 15 with Lemma 14 we derive the following theorem.

▶ Theorem 16 (Fooling protocols via hashing). Let TV (n), CV (n), CP (n), R(n) : N → N
and ϵ, δ : N→ [0, 1] be some arbitrary functions and let H =

{
hz : {0, 1}S(n) → {0, 1}R(n)}

be a family of t-wise independent hash functions where t = O(TV log TV + log(1/δ)) and
S = 2CV + 2 log(1/ε) + log TV + log log TV + log log(1/δ) + O(1).

Then, Prhz←↩H[hz strongly ε-fools non-uniform IP[R, CV , TV , CP ]] > 1− δ.

▶ Remark 17 (Canonical construction of t-wise independent hash functions). Throughout the
paper we use the following standard construction of t-wise independent hash functions
H =

{
hz : {0, 1}S → {0, 1}R

}
where t < 2S < 2R. Let F = GF (2R) denote the finite field of

2R elements. We identify field elements with binary strings of length R via some canonical
representation that supports arithmetic operations with a computational cost of Õ(R) bit
operations (For instance [38]). It is well known [10] that the family H′ = {h′z : F→ F}z∈Ft

where h′z denotes the degree-t univariate polynomial whose coefficients are given by the
vector z ∈ Ft is a family of t-wise independent hash functions from {0, 1}R to {0, 1}R. We
define H by restricting the domain of H to some fixed 2S subset. Specifically, Let hz denote
the function that takes an input x ∈ {0, 1}S , maps it to F by padding it with R− S zeroes,
and outputs h′z(x). Then, H = {hz}z∈Ft is a t-wise independent family. Observe that one
can sample an index z by sampling a tR random bits, and that given z and x ∈ {0, 1}S we
can evaluate hz(x) by making O(t) arithmetic operations. Hence the total bit complexity of
sampling and evaluating a function in H is Õ(tR).

By hard-wiring a “good” hash function as a non-uniform advice to Theorem 16 we derive
the following corollary (that strengthens Theorem 2 from the introduction.).

▶ Corollary 18. For every functions TV (n), CV (n), CP (n), R(n) : N→ N and ϵ : N→ [0, 1],
there exists a PRG : {0, 1}S(n) → {0, 1}R(n) that can be computed by a non-uniform Õ(RTV )-
time and strongly ε-fools non-uniform IP[R, CV , TV , CP ] where S = 2CV +2 log(1/ε)+log TV +
log log TV + O(1).

Theorem 3 follows immediately.
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The amortized setting

For a promise problem Π = (Πyes, Πno) and a polynomial k(·) define the problem Πk =
(Π′yes, Π′no) by letting Π′yes denote the set of all tuples x⃗ = (x1, . . . , xk(n)) ∈ ({0, 1}n)k(n) such
that xi ∈ Πyes for every i and by letting Π′no denote the set of tuples x⃗ = (x1, . . . , xk(n)) ∈
({0, 1}n)k(n) such that, for every i, xi ∈ Πyes ∪Πno and for at least one i, xi ∈ Πno.

▶ Corollary 19 (Uniform Amortized sparsafication of many instances). Let Π be a promise
problem that admits a uniform IP[R, CV , TV , CP ] proof system with negligible soundness
and correctness errors. Then, for every polynomial k(·), the promise problem Πk admits
a (uniform) IP[R′, C ′V = kCV , T ′V , C ′P = kCP ] proof system with constant error where
R′ = R · Õ(TV ) + O(k(CV + log k + log TV )) and T ′V = kÕ(TV R).

So for sufficiently large k, the amortized randomness complexity R′/k is O(CV +log k+log TV )
per instance.

Proof. Let ε = 1/(10k) and δ = 0.1. Let H be a family of t-wise hash function that expand
S bits to R bits where t = O(TV log TV ) and S = 2CV + 2 log(1/ε) + log TV + log log TV +
log log(1/δ)+O(1) ⩽ 2CV +2 log k+2 log TV +O(1). The verifier samples a function hz ←↩ H
and given x⃗ = (x1, . . . , xk(n)) applies, for each i, the original verifier V (xi; hz(si)) where si

is chosen uniformly and independently from US . At the end, we accept if and only if all
interactions accepted. The prover simply runs the original protocol k times.

By Theorem 16, with probability 1− δ the hash function hz ε-fools the original protocol.
Therefore, conditioned on this event, the error in each instance is at most ε + n−ω(1), and
by a union bound the total error is at most δ + kε + kn−ω(1) ⩽ 0.2, as required. The
communication grows by a factor of k, the randomness complexity is O(tR) for sampling the
hash function (Remark 17) plus O(kS) for sampling the seeds. The computational complexity
for sampling hz is Õ(tR) and each instance has an additional cost of TV + Õ(tR) (again see
Remark 17). ◀

4 Uniform Randomness Sparsification for Constant-Round Protocols

In this section we extend the randomness reduction seen in the previous section from the
non-uniform setting to the uniform setting. Recall that in the previous section we reduced the
randomness of general IP proofs by using a non-uniform advice that consisted of a description
of a “good” hash function that can be used as a PRG. As explained in Section 1.2 we cannot
afford to to sample the hash function uniformly since this requires too much randomness
(larger than the amount of randomness that is needed for the original protocol). Instead, we
describe a randomness-efficient method for sampling a “good” hash function via a uniform
algorithm by reducing the problem to a more standard de-randomization problem. We
further show that for constant number of rounds, the latter problem can be solved under
standard complexity-theoretic assumptions.

We begin by defining a promise problem whose no-instances corresponds to hash functions
that “fool a given protocol” and its “yes” instances are hash functions that “fail to fool the
protocol”.

▶ Definition 20. Let ⟨P, V ⟩ be a k-round (possibly non-uniform) IP[R, CV , CP , TV ] protocol
for a promise problem L with a polynomial-time verifier, and let ε(n) be some inverse
polynomial. Fix some efficiently computable family of hash functions

H =
{

hz : {0, 1}S(n) → {0, 1}R(n)
}

z∈{0,1}Z(n)
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that satisfies Theorem 16 with respect to IP[R, CV , CP , TV ] protocols where the underlying
parameters ε, δ are taken both to be ε(n). We define a promise problem Π = ΠP,V,ε over
strings z ∈ {0, 1}∗ as follows:

The set of yes instances, Πyes, consists of all strings z such that hz does not strongly
2ε-fools ⟨P, V ⟩.
The set of no instances, Πno, consists of all strings z such that hz strongly ε-fools ⟨P, V ⟩.

We prove the following lemma.

▶ Lemma 21 (ΠP,V,ε ∈ IPk+1). For any k-message protocol ⟨P, V ⟩ (resp., non-uniform
protocol ⟨P, V ⟩) and inverse polynomial ε the promise problem ΠP,V,ε is in IPk+1 (resp.,
IP/polyk+1) and the computational complexity of the corresponding verifier is O(TV + TH)
where TV is the complexity of V and TH is the computational complexity of universal
evaluation of H. Consequently, for constant k, ΠP,V,ε is in AM (resp., in AM/poly).

Proof. On a shared input z ∈ {0, 1}∗, the prover will try to convince the verifier that hz

does not strongly 2ε-fools ⟨P, V ⟩. Recall that this means that one of the following holds for
some input x:

(Case 0:) There exists P ∗ Strategy such that Pr[(V hz , P ∗)(x) = 1] − Pr[(V, P ∗)(x) =
1] > 2ε.
(Case 1:) There exists P ∗ Strategy such that Pr[(V, P ∗)(x) = 1] − Pr[(V hz , P ∗)(x) =
1] > 2ε.

Accordingly, the prover first declares x and whether case (0) or case (1) holds and then
proceeds to prove its claim via an interactive proof. Specifically, on common input (1n, z)
the parties invoke the following (k + 1)-move protocol.
1. The prover finds an input x ∈ {0, 1}n and a proof strategy P ∗ such that Case c ∈ {0, 1}

holds.
The prover sends x and c.

2. The verifier samples two strings, r0 ←↩ UR, r1 ←↩ hz(US) and a random bit b ∈ {0, 1}.
The two parties invoke an interactive protocol where the prover plays P ∗(x) and the
verifier plays V (x; rb).
Let v ∈ {0, 1} denote the output (acceptance bit) of V (x; rb).

3. The verifier accepts if b = v ⊕ c.

Completeness: Assume that hz does not strongly 2ε-fool ⟨P, V ⟩ and let us assume that
case (0) holds. (The other case is proved symmetrically.) Then, the probability that the
verifier accepts is

1
2 Pr[(P ∗, V hz )(x) = 1] + 1

2(1− Pr[(P ∗, V )(x) = 1]) ⩾ 1
2 + ε.

Soundness: Fix some no instance z for which hz strongly ε-fool ⟨P, V ⟩. We analyze the
acceptance probability of the verifier when interacting with a cheating prover. Fix an
arbitrary first message (x, c) of the prover and let us denote by P ∗ the strategy that the
prover plays in Step 2 of the protocol. Since hz strongly ε-fool ⟨P, V ⟩, it holds that the
difference between the quantities

q = Pr[(P ∗, V )(x) = 1] and qz = Pr[(P ∗, V hz )(x) = 1]

is at most ε in absolute value. Suppose that c = 0 (the other case is symmetric). Then, the
verifier accepts with probability

1
2qz + 1

2(1− q) ⩽ 1/2 + ε/2,
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as required.
Overall, the protocol has completeness of 1/2 + ε and soundness of 1/2 + ε/2. Since

ε = Ω(1/poly(n)), we can use standard parallel amplification theorems to reduce the error
(cf. [16, Appendix A]). This completes the proof of the first part of the lemma. The
“Consequently” part, follows from the equivalence between constant-round IP protocols and
AM proofs [25, 4]. ◀

We will make use of the following result.

▶ Theorem 22 (PRGs against AM/poly [27, 28, 36]). Suppose that E = DTime(2O(n)) is hard
for exponential-size non-deterministic circuits10 , i.e., there exists a language L in E and a
constant β > 0, such that for every sufficiently large n, circuits of size 2βn fail to compute
the characteristic function of L on inputs of length n.

Then for every polynomial T (·) and inverse polynomial ε(·), there exists a pseudo-random
generator G that stretches seeds of length ρ = O(log m) into a string of length m in time
poly(m) such that G ε-fools every promise problem Π = (Πyes, Πno) that admits an AM/poly
proof system with a T -size verifier in the following sense. For every sufficiently large m and
b ∈ {yes, no}∣∣∣∣ Pr

z←↩Um

[z ∈ Πb]− Pr
z←↩G(Uρ)

[z ∈ Πb]
∣∣∣∣ ⩽ ε(m).

By combining the above theorem with Lemma 21, we derive the following corollary.

▶ Corollary 23 (uniform PRG against constant-round IP protocols). Under the assumption
of Theorem 22 for every polynomials TV (n), CV (n), CP (n), R(n) : N → N, constant k ∈ N
and inverse polynomial ε : N → [0, 1] there exists a polynomial-time computable PRG that
strongly ε-fools non-uniform IPk[R, CV , CP , TV ] with seed length of 2CV + O(log n).

Proof. Let ε′ = ε/4. Fix some non-uniform ⟨P, V ⟩ interactive proof in IPk[R, CV , CP , TV ]
and let Π = ΠP,V,ε′ denote the corresponding promise problem defined in Definition 20.
Recall that

H =
{

hz : {0, 1}S(n) → {0, 1}R(n)
}

z∈{0,1}Z(n)

is a family of t-wise independent hash functions where t = O(TV log TV + log(1/ε′)) and
S = 2CV + 2 log(1/ε′) + log TV + log log TV + log log(1/ε′) + O(1) that can be evaluated by
a poly(n)-time universal evaluation algorithm H : {0, 1}Z(n) × {0, 1}S(n) → {0, 1}R(n). As
shown in Lemma 21, the promise problem Π is in AM/poly. Let us denote by T (n) the time
complexity of the verifier in the corresponding proof system (and recall that T = O(TV + TH)
and so it depends only on ε, R, CV , CP and TV ). Let G′ : {0, 1}ρ(n) → {0, 1}Z(n) be the PRG
that ε′-fools AM/poly problems with T -time verifiers as promised in Theorem 22. Recall that
ρ(n) = O(log Z(n)) = O(log n).

We define the PRG against non-uniform IPk[R, CV , CP , TV ] that maps a random seed of
length ρ(n)+S(n) into a pseudorandom string of length R(n) as follows. Given a seed (s1, s2)
where s1 ∈ {0, 1}ρ(n) and s2 ∈ {0, 1}S(n), output H(G′(s1), s2) = hG′(s1)(s2). Note that
PRG is indeed efficiently computable and that its definition depends only in the parameters

10 A non-deterministic circuit C has additional “non-deterministic input wires”. Such a circuit evaluates to
1 on x if and only if there exist an assignment to the non-deterministic input wires that makes C output
1 on x. Non-Deterministic circuits can be therefore viewed as a non-uniform version of the class NP.
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R, CV , CP , TV and ε. We prove that PRG strongly ε-fools ⟨P, V ⟩. For this it suffices to show
that, except with probability ε/2, over the choice of s1, it holds that hG′(s1)(s2) strongly
ε-fools ⟨P, V ⟩. Indeed,

Pr
s1

[G′(s1) ∈ Πno] ⩾ Pr
z

[z ∈ Πno]− ε′ ⩾ 1− 2ε′ ⩾ 1− ε/2

where the first inequality follows from the pseudo-randomness of G′ and the second inequality
follows from Theorem 16. The corollary follows. ◀

Theorem 4 follows immediately from Corollary 23

5 Zero Knowledge Proofs

In this section we study the problem of randomness sparsification for zero-knowledge proof
systems.

5.1 SZK proof systems
We begin by noting that PRG-based sparsification trivially preserves zero-knowledge against
malicious verifier.

▶ Observation 24. If ⟨P, V ⟩ is a constant-round SZK proof system and G ε-fools ⟨P, V ⟩ then〈
P, V G

〉
is an SZK proof system whose soundness error and completeness error increase by

ε. Moreover, if ⟨P, V ⟩ has perfect completeness the so is
〈
P, V G

〉
.

Proof. By Observation 13, the system
〈
P, V G

〉
is an interactive proof system with the desired

parameters. Since zero-knowledge against cheating verifier is a property of P the new system
is also zero-knowledge. ◀

By combining the above observation with Corollary 23 we derive Theorem 7.

5.2 Semi-Malicious SZK Proof Systems
We move on to study sparsification for semi-malicious SZK proof systems. We begin by
introducing this new variant of zero-knowledge.

▶ Definition 25 (F semi-malicious SZK). Let F : N→ N be an integer valued function and
let ⟨P, V ⟩ be a proof system with randomness complexity of R for a promise problem Π. Let
D(1n; s) be an efficiently-computable algorithm that given randomness s outputs F (n) bits.
Define the verifier VD(x) as follows:

Sample random coins s for D, and compute the F (|x|)-bit string f = D(1|x|, s).
Sample r′ ←↩ {0, 1}R(|x|)−F (|x|).
invoke V (x) on the concatenated random tape f ◦ r′.

Let µ(D) denote the completeness error of the proof system ⟨P, VD⟩ with respect to Π, and
let viewVD

(x) denote the random variable that corresponds to the view of the verifier VD(x)
when interacting with P on a common input x.

We say that ⟨P, V ⟩ is F semi-malicious zero-knowledge proof system with zero-knowledge
error of δz, abbreviated (F, δz)-SMSZK, if for every efficiently-computable algorithm D(1n; s)
there exists a simulator SimD that runs in expected polynomial-time such that for every yes
instance x,

SD(SimD(x), viewVD
(x)) ⩽ δz + µ(D). (1)
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By default, we assume that δz is negligible and in this case we refer ⟨P, V ⟩ as F -SMSZK proof
system. The notion of F semi-malicious perfect zero-knowledge proof system (F -SMPZK is
short) is defined analogously, except that the simulator’s deviation in (1) must be zero. We
refer to the F -bit prefix of the verifier’s tape as the accessible bits.

▶ Remark 26 (On the additive term µ(D)). One could consider a more restrictive definition
of F -SMSZK in which the deviation of the simulator SimD is bounded by δz regardless of
the completeness error µ(D) of D. While our reductions are compatible with this alternative
variant as well, we choose to employ the current definition since it is more liberal. Further
note that the additive term µ(D) intuitively allows the simulator to deviate when the protocol
outputs non-accepting transcripts. Thus, one can roughly think of our definition as restricting
the attention to semi-malicious distributions D that put most of their mass on strategies for
which completeness hold.

Observe that 0 ⩽ F ⩽ R and that any HVSZK proof system is also an 0-SMSZK and
every SZK proof system is R-SMSZK. On the other hand, as mentioned in Section 1.2.2, the
classical HVSZK proof system for the complete statistical-distance problem of [35] can be
shown to have maximal accessible bit complexity of F = R too. (See the full version.) Thus,
even R− SMSZK complexity is a weaker notion than SZK complexity.
▶ Remark 27. One can use a more general definition in which the “accessible bits” are
not necessarily the first ones and can be taken to be any set of F (|x|) indices that can be
efficiently computable and possibly depend on the input x itself. However, in this case one
can always modify the verifier (by pre-permuting the random tape) and make sure that the
accessible bits are located in the first F (|x|) indices.
▶ Remark 28. Typical SMSZK systems (e.g., for statistical-distance [35] or for GNI [19])
satisfy the following stronger definition. There exists a “universal” simulator Sim such that
for every yes instance x and every fixing f ∈ {0, 1}F (|x|) of the first F (|x|) bits of the verifier,
the distribution Sim(x, f) is (δz + µ(f))-close, in statistical-distance, to the view of Vf when
interacting with P on the input x, where Vf denotes the verifier that given an input x and a
random tape r′ ←↩ {0, 1}R(|x|)−F (|x|) invokes V (x) on the concatenated random tape f ◦ r′.

5.3 SMSZK: Randomness vs. Prover’s Communication/CRS
▶ Theorem 29. Let ⟨P, V ⟩ be an (F, δz)-SMSZKk[R, CV , CP , TV ] proof system for the promise
problem Π. Suppose that G : {0, 1}S → {0, 1}R ε-fools non-uniform IP[R, CV , CP , TV ]
protocols. Consider the following proof system ⟨P ′, V ′⟩ that on shared input x of length n

proceeds as follows:
1. P ′ sends a random message a of length R− F where R = R(n) and F = F (n).
2. The verifier reads his random tape s ←↩ US(n), computes r2 = G(s), expands a to an

R-bit string r1 = 0F ◦ a and sets r = r1 ⊕ r2. From now on, the prover plays P (x) and
verifier plays V (x; r).

Then, ⟨P ′, V ′⟩ is an HVSZKk+1 proof system with zero-knowledge error of δz + ε and an ε

additive penalty in the correctness and soundness error.

Proof. We begin by showing that ⟨P ′, V ′⟩ is an IPk+1 proof system for Π. For any fixing
of a ∈ {0, 1}R−F , define the proof system ⟨Pa, Va⟩ in which the verifier expands a to r1
like in the above description, samples r2 uniformly and calls V (x; r1 ⊕ r2) and the prover
operates as before. Clearly, the soundness and correctness of this system is the same as
the original one. Next, define the a-residual proof system ⟨P ′a, V ′a⟩ which is identical to the
sparsified system ⟨P ′, V ′⟩ except that a is hard-coded into V ′ who skips the first step of the

ITC 2021
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above protocol. The proof system ⟨P ′a, V ′a⟩ is the G-sparsified version of ⟨Pa, Va⟩, and since
G ε-fools non-uniform proof systems, the system ⟨P ′a, V ′a⟩ is sound and complete (with an
additive error of ε). Since this is true for every choice of a, it follows that ⟨P ′, V ′⟩ is an
IPk+1 proof system for Π.

Let D(1n; s) be the algorithm that samples s←↩ US(n) and outputs the F (n)-bit prefix
of G(s), and let SimD denote the simulator of the original F -SMSZKk[R, CV , CP , TV ] proof
system with respect to the distribution D(1n). We define a simulator Sim′ for ⟨P ′, V ′⟩ that,
on an input x of length n, operates as follows:
1. Let S = S(n), R = R(n) and F = F (n). Invoke SimD(x) and sample a view (x, s′, α, c′)

where s′ is the S-bit seed sampled for D, α ∈ {0, 1}R−F form the uniform part of the
verifier’s random tape, and c′ is the (simulated) sequence of incoming messages.

2. Compute r′2 = G(s) and set a′ ∈ {0, 1}R−F to be the XOR of α with the (R − F )-bit
suffix of r′2.

3. Output the tuple (x, s′, a′, c′).

Fix a yes instance x. We analyze the statistical distance between the simulated tuple
(x, s′, a′, c′) and the “real” tuple (x, s, a, c) that corresponds to the distribution of the real
view of V ′ when interacting with P . It suffices to show that if the original simulator is
perfect the two distributions are identical. (Indeed, since the new simulator makes a single
call to the original simulator, a deviation of δz + ε of the original simulator can increase the
statistical distance of the new one by at most δz + ε.)

First observe that in both experiments s and s′ are distributed uniformly. Fix some value
for s = s′, and consider the conditional distributions [(a′, c′)|s′] and [(a, c)|s]. Next observe
that a is uniform and that a′ is uniform as well (since α is uniform). Finally, conditioned on
(s, a) = (s′, a′) the transcript c is sampled according to the experiment ⟨P, V ⟩ (x; r) where
r = (0F ◦ a) ⊕ G(s) and similarly the simulated transcript c′ is sampled according to the
experiment ⟨P, V ⟩ (x; r′) where r′ = (0F ◦ a′)⊕G(s′) = (G(s′)[1 : F ] ◦ α) and so the tuples
are identically distributed. ◀

By combining Theorem 29 with Corollary 23 we derive the following corollary which
implies the first part of Theorem 8 from the introduction.

▶ Corollary 30 (Trading randomness with prover’s communication for SMSZK). Suppose that E
is hard for exponential size non-deterministic circuits. Then, for every inverse polynomial ε,
every constant-round (F, δz)-SMSZKk[R, CV , CP , TV ] proof system can be transformed into a
new

HVSZKk+1[R′ = 2CV + O(log n), CV , T ′V = Õ(TV · (R + log n)), C ′P = CP + R− F ]

system with an additive penalty of ε in the soundness and completeness error and an additive
penalty of ε+δz in the simulation error. Specifically, the new protocol consists of an additional
preliminary message from the prover that consists of a random string of length R− F bits.
Moreover, the transformation preserves perfect completeness, and if the original proof system
is semi-malicious perfect zero-knowledge then the resulting scheme admits a perfect simulation
(i.e., it is HVPZKk+1[R′, CV , T ′V , C ′P ]).

▶ Remark 31. Corollary 30 can be converted to a statement regarding HVSZK in the common
reference string model by replacing the first message of the prover with a common reference
string ρ. This CRS can be chosen by the prover (a malicious choice does not affect the
soundness). However, the CRS is not reusable among several invocations.
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5.4 SMPZK: Randomness vs. Simulation Complexity
In the perfect setting, SMPZK proof systems can be sparsified at the expense of slowing-down
the simulation by a factor of 2R−F .

▶ Lemma 32. Let ⟨P, V ⟩ be an F -SMPZK proof system for a promise problem Π. Let
G : {0, 1}S(n) → {0, 1}R(n) be a poly(n)-time computable function that ε-fools ⟨P, V ⟩. Then
the protocol

〈
P, V G

〉
is a proof system with an additive penalty of ε in soundness and

completeness errors that has a perfect honest-verifier simulator Sim′ with expected running-
time of (poly(n))2R(n)−F (n).

Proof. Let D(1n; s) be the algorithm that samples s ←↩ US(n) and outputs the F (n)-bit
prefix of G(s), and let SimD denote the simulator of the original F -SMPZK proof system with
respect to the distribution D(1n). The view of V D in interaction with P over a yes-instance
x ∈ {0, 1}n is parsed into (x, s, β, c) where s←↩ US(n), β ←↩ UR(n)−F (n) and c is the vector of
incoming messages. We define a new simulator Sim′(x) as follows: (1) Sample (x; s′, β′, c′) by
invoking SimD(x) (2) If the last R(n)− F (n) bits of G(s′) equal to β′ output the transcript
(x; s′, β′, c′) and halt; otherwise, goto (1).

Since β′ is uniformly distributed, at each iteration Sim′ halts with probability 2F (n)−R(n),
and so the expected running time is poly(n)2R(n)−F (n). Perfect simulation follows by noting
that (s′, β′) are distributed identically to the random tape of V G and that conditioned on
every fixing of these coins, (s, β), the simulated transcript c′ is distributed just like a real
interaction between P (x) and V G(x; s, β) (since SimD is a perfect simulator). ◀

By combining Lemma 32 with Corollary 23 we derive the following corollary which implies
the second part of Theorem 8 from the introduction.

▶ Corollary 33. Assuming that E is hard for exponential size non-deterministic circuits,
let ε : N → [0, 1] be an inverse polynomial and R, CV , CP , TV : N → N be polynomially
bounded functions where Cv = ω(log n). Suppose that the promise problem Π admits a
constant-round F -SMPZKk[R, CV , CP , TV ] proof system. Then Π admits an IPk[R′ = 2CV +
O(log n), CV , CP , TV ] proof system with an honest-verifier perfect simulator that runs in
expected time of poly(n)2R−F and with ε penalty in the soundness and completeness errors.

5.5 HVPZK: Randomness vs. Simulation Complexity
Corollary 33 shows that F -SMPZK systems can be sparsified with a simulation slow-down of
2R−F . In this section we describe a different simulation strategy that yields a slow-down of
2R−S where S is the seed-length of the PRG. This holds even when F = 0, i.e., for HVPZK
proof systems. This theorem is based on a PRG that satisfies some additional features (e.g.,
regularity and the existence of an efficient inversion algorithm). We later show that our
PRGs meet these requirements.

▶ Definition 34. We say that a function G : {0, 1}S → {0, 1}R is δ-regular if G(US) is δ-
close in statistical distance to U(Image(G)), the uniform over the image of G. (In particular,
a 0-regular function maps the same number of inputs to each of its outputs.) A uniform
inversion algorithm for G is a randomized algorithm that given an input y ∈ {0, 1}R outputs
⊥ if y is not in the image of G, and, otherwise, outputs a uniformly chosen preimage of y

under G.

▶ Lemma 35. Let ⟨P, V ⟩ be an HVPZK proof system for a promise problem Π whose simulator
Sim runs in time TSim. Let G : {0, 1}S(n) → {0, 1}R(n) be a poly(n)-time computable function
that ε-fools ⟨P, V ⟩, can be uniformly inverted in expected time of TG−1 , and is δ-regular.
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Then the protocol
〈
P, V G

〉
is a proof system with an additive penalty of ε in soundness and

completeness errors and with an honest-verifier simulator Sim′ with statistical deviation of δ

and expected running-time of (TSim + TG−1) 2R

|Image(G)| .

Proof. For a given instance x, the view of the original verifier V can be parsed to (x, r, v)
where r is the randomness and v is the transcript. Let us parse the view of V G (in an
interaction (P, V G)(x)) as a tuple (x, s, r, v) where s is the seed r = G(s) and v is the
transcript v. (While r is redundant it will be useful to keep it as part of the view.) The
simulator Sim′(x) does the following: (1) Sample (r′, v′) by calling Sim(x); (2) Call the
G-inverter on r′ and denote its output by s′. If the output is ⊥ output ⊥; otherwise, output
the tuple (x, s′, r′, v′).

Let us analyze the statistical deviation of Sim′. Fix some yes instance x and consider
the distribution (x, s, r, v) in the real interaction (P, V G)(x). Observe that, conditioned
on r = r′ the simulated tuple (x, s′, r′, v′) is distributed identically to the real distribution
(x, s, r, v). Indeed, in both cases s is uniform preimage of r and v is a random transcript
that corresponds to an interaction between P (x) and V (x; G(s)). Therefore, the statistical
distance between the simulated view (conditioned on not outputting ⊥) and the real view is
exactly the statistical distance between r = G(US) and r′ = U(Image(G)) which is at most
δ since G is δ-regular. Finally, observe that the success probability (that r′ hits Image(G))
is exactly |Image(G)|/2R, and so the expected number of iterations is 2R/|Image(G)| as
required. ◀

We move on and show that our PRGs are invertable and almost-uniform.

▶ Proposition 36. Let k ∈ N be a constant, R, CV , CP , TV : N→ N polynomially-bounded
functions and ε : N → [0, 1] be an inverse polynomial. Let G : {0, 1}S(n) → {0, 1}R(n) be
the uniform PRG (resp., non-uniform PRG) that ε-fools non-uniform IPk[R, CV , CP , TV ]
(resp., non-uniform IP[R, CV , CP , TV ]) that is promised by Corollary 23 (resp., Corollary 18).
Then G is (poly(n)2−S(n))-regular, the image of G, on n-bit inputs, consists of at least
2S(n)/poly(n) strings and there is an algorithm that, given the description of G, uniformly
inverts G in expected poly(n) time.

Proof. We begin with the non-uniform version of G (from Corollary 18). As explained
in Remark 17, G is defined by some degree-t univariate polynomial hz : F → F over the
field F = GF (2R) and t = poly(n). To compute G on an input x ∈ {0, 1}S , we map x to
a field element (by padding with R − S zeroes) and output the evaluation of hz on the
padded-version of x.

Let y be a string in the image of G. First observe that the number of preimages
under G is at most t since the polynomial hz,y = hz(x) − y is of degree t = poly(n).
Hence, |Image(G)| ⩾ 2S/poly(n) and G(US) samples every element y ∈ Image(G) with
probability py ∈ [1/|Image(G)|, t/|Image(G)|]. Since U(Image(G)) samples each element from
Image(G) with weight 1/|Image(G)|, it follows that G is δ regular for δ = O(t/|Image(G)|) =
poly(n)/2S(n).

Next, observe that there exists a randomized algorithm A that given y lists in expected
time of TA = poly(t, R) = poly(n) all the pre-images of y under G. (This can be done, for
example, by factoring hz,y to its irreducible components via the algorithm of [9] and by
noting that, for each root a of hz,y, the polynomial x− a must appear in the factorization.)
We can therefore sample a random preimage in expected-polynomial time.

We move on to the uniform setting. Recall that in this setting (Corollary 23), the PRG
G is defined as follows: (1) Sample a short seed s1 of length O(log n) and a long seed s2 of
length S −O(log n); (2) Feed the short seed s1 into a PRG G1 that fools AM/poly languages
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(with properly chosen parameters) and use the resulting string z = G1(s1) to select a degree-t
univariate polynomial hz : F→ F over the field F = GF (2R) where t = poly(n) as before; (3)
Output hz(s2).

It follows that each point in the image of G has at most t · |Image(G1)| ⩽ poly(n)
preimages. Therefore, |Image(G)| ⩾ 2S(n)/poly(n) and G is δ-regular for δ = O(poly(n)/2S).
Finally, in order to uniformly invert y ∈ Image(G) we compute, for every s1, the list Ls1 ={

(s1, s2) : hG1(s1)(s2) = y
}

(using the aforementioned algorithm for hz where z = G1(s1)),
and then sample a preimage (s1, s2) uniformly from the union of all these (polynomially-many)
lists. The expected running time is O(2|s1|poly(n)) = poly(n), as required. ◀

By combining Lemma 35 and Proposition 36, we derive the following corollary.

▶ Corollary 37. Assuming that E is hard for exponential size non-deterministic circuits,
let ε : N → [0, 1] be an inverse polynomial and R, CV , CP , TV : N → N be polynomially
bounded functions where Cv = ω(log n). Suppose that the promise problem Π admits a
constant-round HVPZKk[R, CV , CP , TV ] proof system. Then Π admits an IPk[R′ = 2CV +
O(log n), CV , CP , TV ] proof system with an honest-verifier simulator with negligible deviation
error and expected running time of poly(n)2R−S.
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Abstract
We introduce and study a simple kind of proof system called line-point zero knowledge (LPZK). In
an LPZK proof, the prover encodes the witness as an affine line v(t) := at + b in a vector space
Fn, and the verifier queries the line at a single random point t = α. LPZK is motivated by recent
practical protocols for vector oblivious linear evaluation (VOLE), which can be used to compile
LPZK proof systems into lightweight designated-verifier NIZK protocols.

We construct LPZK systems for proving satisfiability of arithmetic circuits with attractive
efficiency features. These give rise to designated-verifier NIZK protocols that require only 2-5 times
the computation of evaluating the circuit in the clear (following an input-independent preprocessing
phase), and where the prover communicates roughly 2 field elements per multiplication gate, or
roughly 1 element in the random oracle model with a modestly higher computation cost. On the
theoretical side, our LPZK systems give rise to the first linear interactive proofs (Bitansky et al.,
TCC 2013) that are zero knowledge against a malicious verifier.

We then apply LPZK towards simplifying and improving recent constructions of reusable non-
interactive secure computation (NISC) from VOLE (Chase et al., Crypto 2019). As an application,
we give concretely efficient and reusable NISC protocols over VOLE for bounded inner product, where
the sender’s input vector should have a bounded L2-norm.
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1 Introduction

Zero-knowledge proofs, introduced by Goldwasser, Micali, and Rackoff [29] in the 1980s,
are commonly viewed as a gem of theoretical computer science. For many years, they were
indeed confined to the theory domain. However, in the past few years we have seen explosive
growth in research on concretely efficient zero-knowledge proof systems. This research is
motivated by a variety of real-world applications. See [49] for relevant pointers.

Designated-verifier NIZK

There are many different kinds of zero-knowledge proof systems. Here we mainly consider
the setting of designated-verifier, non-interactive zero knowledge (dv-NIZK), where the proof
consists of a single message from the prover to the verifier, but verification requires a secret
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verification key that is known only to the verifier and is determined during a (reusable)
setup phase. Moreover, we consider by default computationally sound proofs, also known as
arguments. Designated-verifier NIZK has a rich history starting from [39]; see [43, 40, 19]
and references therein for recent works in the area. We will typically consider a more
restrictive setting, sometimes referred to as preprocessing NIZK, where also the prover needs
to hold secret information. In this variant of dv-NIZK the prover and the verifier engage
in a (typically inexpensive and reusable) interaction during an offline preprocessing phase,
before the inputs are known. In the end of the interaction the prover and the verifier obtain
correlated secret randomness that is consumed by an online protocol in which the prover can
prove multiple statements to the verifier. While this preprocessing model will be our default
model for NIZK, our results are relevant to both kinds of dv-NIZK.

Efficiency of proof systems

We are primarily motivated by the goal of improving the efficiency of zero-knowledge proofs.
There are several metrics for measuring efficiency of proof systems. Much of the research in
this area focuses on improving succinctness, which refers both to the proof length and to the
verifier’s running time. This is highly relevant to the case of publicly verifiable proofs that
are generated once and verified many times. However, in the case of a proof that is verified
once by a designated verifier, other complexity metrics, such as prover’s running time and
space, can become the main performance bottlenecks. Indeed, state-of-the-art succinct proof
systems, such as zk-SNARKs based on pairings [30] or IOPs [7], typically incur high concrete
prover computation costs when scaled to large verification tasks. Moreover, they require a big
amount of space, and are not compatible with a “streaming” mode of operation in which the
proof is generated on the fly together with the computation being verified. On the other hand,
non-succinct or semi-succinct proof systems based on the “MPC-in-the-head” [35, 27, 18, 37],
garbled circuits [24, 31], or interactive proofs [28, 46, 48], scale better to big verification
tasks.

Minimizing prover complexity

Our goal is to push the advantages of non-succinct zero-knowledge proof systems to their
limits, focusing mainly on optimizing the prover’s computation. This can be motivated by
settings in which the prover and the verifier are connected via a fast local network. An
extreme case is that of physically connected devices, for which the distinction between
computation and communication is blurred. Alternatively, one can think of scenarios in
which the proofs can be generated and stored offline on the prover side and only verified at
a later point, or possibly not at all. Another motivating scenario is one where the statement
is short and simple, but is kept secret from the verifier. In this setting, which comes up in
applications such as “commit-and-prove” and NISC on small inputs (which will be discussed
later), the concrete overhead of “asymptotically succinct” systems is too high. Finally, if
the witness is secret-shared between multiple provers and the proof needs to be generated
in a distributed way, the prover’s computation is likely to become a bottleneck. All of
the above reasons motivate a systematic study of minimizing the prover’s complexity in
zero-knowledge proofs.

Achieving constant computational overhead

We consider the goal of zero-knowledge proofs with constant computational overhead, namely
where the total computational cost (and in particular the prover’s computation) is only
a constant times bigger than the cost of performing the verification in the clear. In the
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case of proving the satisfiability of a Boolean circuit, this question is still open, and the
best computational overhead is polylogarithmic in a statistical security parameter [20].
However, when considering arithmetic circuits over a big finite field F and settling for
O(1/|F|) soundness error, this goal becomes much easier. The first such proof system was
given by Bootle et al. [11], who also achieved “semi-succinctness.” However, the underlying
multiplicative constants are very big, and this system is not considered practical. A more
practical approach uses variants of the GKR interactive proofs protocol [46, 48, 47]. Here
the concrete computational overhead is smaller, but still quite big: roughly 20x overhead in
the best-case scenario of “layered” arithmetic circuits. On top of that, this overhead is only
relevant when the verification circuit is much bigger than the witness size. In some of the
applications we consider (such as the NISC application discussed below), this will not be
the case.

A third approach, which is most relevant to our work, relies on oblivious linear evaluation
(OLE) [42, 36] and its vector variant (VOLE) [2]. An OLE is an arithmetic variant of
oblivious transfer, allowing the receiver, on input α, to learn a linear combination aα + b

of two ring elements held by the sender. VOLE is a natural vector analogue of OLE: the
receiver learns aα + b for a pair of vectors a, b held by the sender. The idea of using random
precomputed instances of OLE and VOLE towards zero-knowledge proofs with constant
computational overhead was suggested in [12, 19]. This is motivated by recent techniques for
securely realizing pseudorandom instances of (V)OLE with sublinear communication and
good concrete overall cost [12, 13, 44, 16, 15]. However, these protocols for zero knowledge
from (V)OLE still suffered from a high concrete overhead. For instance, the protocol from [19]
requires 44 instances of OLE for each multiplication gate. Recent and concurrent works by
Weng et al. [45] and Baum et al. [6] improved this state of affairs. We discuss these works
and compare them to our own in the full version of this paper [23].

1.1 Our contribution
Motivated by the goal of minimizing prover complexity in zero-knowledge proofs, we introduce
and study a simple kind of proof systems called line-point zero knowledge. We then apply
this proof system towards obtaining simple, concretely efficient, and reusable protocols for
non-interactive secure computation. We elaborate on these results below. We defer many
proofs to the full version of our paper [23].

Line-point zero knowledge

A recent work of Boyle et al. [12], with improvements in [13, 44], has shown how to securely
generate a long, pseudorandom instance of a vector oblivious linear evaluation (VOLE)
correlation with low communication complexity (sublinear in the vector length) and good
concrete efficiency. Here we show how to use this for implementing simple and efficient
dv-NIZK protocols for circuit satisfiability, improving over similar protocols from [12, 19]. In
particular, previous protocols involve multiple VOLE instances and have a large (constant)
overhead in communication and computation compared to the circuit size.

The goal of reducing NIZK to a single instance of VOLE motivates the key new tool
we introduce: a simple kind of information-theoretic proof system that we call line point
zero knowledge (LPZK). In an LPZK proof, the prover P generates from the witness w (a
satisfying assignment) an affine line v(t) := at + b in an n-dimensional vector space Fn. The
verifier queries a single point v(α) = aα + b on this line, and determines whether to accept
or reject. We call this proof system LPZK over F of length (or dimension) n. We define the
LPZK model formally along with more refined cost metrics in Section 2.1.

ITC 2021
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Information-theoretic LPZK construction

We start by showing the existence of an LPZK for arithmetic circuit satisfiability (an NP-
complete problem), where the dimension n and computational costs scale linearly with the
circuit size.

▶ Theorem 1 (LPZK for arithmetic circuit satisfiability). For any NP-relation R(x, y) and
finite field F, there exists an LPZK system for R over F with soundness error O(1/|F|).
Concretely, in the case of proving the satisfiability of an arithmetic circuit C over F, we have
an LPZK over F with dimension n = O(|C|), soundness error ε = O(1/|F|), and where the
prover and verifier can be implemented by arithmetic circuits of size O(|C|).

As an information-theoretic proof system, LPZK can be viewed as a simple instance of a
(1-round) zero-knowledge linear interactive proof (LIP) [9], in which the verifier sends a single
field element to the prover. Theorem 1 implies the first such system that is zero knowledge
even against a malicious verifier.

From LPZK to NIZK over random VOLE

It is easy to convert an LPZK into an NIZK protocol in the rVOLE-hybrid model, namely
with a trusted setup in which the prover P receives a random pair of vectors a′, b′ ∈ Fn,
while the verifier V receives a random field element α ∈ F and the vector a′α + b′. This
uses a standard reduction from VOLE to rVOLE; see Section 2.2 for details. We refer to the
length of the vectors a′, b′ as the rVOLE length.

The rVOLE setup, whose efficient implementation will be discussed later, allows the
prover to compress the LPZK proof by eliminating entries that can be picked at random
independently of the input. Using this and other optimizations, we obtain an information-
theoretic NIZK protocol in the rVOLE-hybrid model with the following concrete efficiency
features.

▶ Theorem 2 (NIZK over a single random VOLE). Fix an integer t ≥ 1. There exists an
(unconditional, perfect zero-knowledge) NIZK protocol in the rVOLE-hybrid model that proves
the satisfiability of an arithmetic circuit C over a field F, where C has k inputs, k′ outputs
and m multiplication gates, with the following security and efficiency features:

Soundness error ε = 2t/|F|;
Communication k + k′ + (2 + 1

t )m field elements from P to V ;
rVOLE length n = k + 2m field elements;
Computation Assuming the cost of field additions is negligible compared to multiplica-
tions, the computation of the prover is less than 4 times the cost of evaluation in the clear,
and the computation of the verifier is less than 5 times the cost of evaluation in the clear.

VOLE instantiations

The random VOLE required by Theorem 2 can be instantiated in a variety of ways. For
instance, one could use a 2-message protocol in the CRS model based on Paillier’s encryption
scheme, which yields statistical dv-NIZK arguments for NP from the DCRA assumption [19].
Other efficient VOLE implementations under different assumptions appear in [2, 22, 5]. In
terms of asymptotic efficiency, random VOLE can be implemented with constant multiplicative
computational overhead under plausible variants of the learning parity with noise (LPN)
assumption over big fields [2, 12]. From a concrete efficiency viewpoint, the most appealing
current VOLE implementations rely on pseudorandom correlation generators (PCGs) [12,
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13, 44]. A PCG for VOLE enables a “silent” generation of a long random VOLE correlation
by locally expanding a pair of short, correlated seeds. This local expansion can be done in
near-linear or even linear time, and may be carried out in an offline phase before the statement
is known. The secure generation of the correlated seeds can also be done by a concretely
efficient, low-communication protocol. Optimized pseudorandom function analogs of PCG
that enable random access to the outputs of a virtually unbounded VOLE correlation were
recently considered in [15]. The above approaches generally lead to a preprocessing NIZK,
where both the verifier and the prover are fixed in advance. However, using 2-round protocols
for VOLE with security against malicious receivers [19, 13], LPZK can be compiled into
dv-NIZK protocols in which the same (short) verifier message can be used by different provers.

1.2 Improving proof size in the random oracle model
Inspired by the concurrent1 work of Weng et al. [45], we can improve the communication
cost of our proofs in the random oracle model by a factor of 2 (asymptotically) at the cost of
a modest increase of prover and verifier computation, in the form of calls to a cryptographic
hash function. Note that other attractive features of LPZK such as space- and streaming-
friendliness are maintained. See [23] for a detailed comparison between the results of [45]
and our work.

▶ Theorem 3 (NIZK over random VOLE in the ROM). Fix an integer r ≥ 1. There exists an
(unconditional) NIZK protocol in the RO-rVOLE-hybrid model that proves the satisfiability
of an arithmetic circuit C over a field F, where C has k inputs and m multiplication gates
and ℓ is the number of oracle calls a malicious prover P ∗ makes, with the following features:

Soundness error ε = 2
|F| + ℓ

|F|r ;
Communication k + k′ + m + 2r field elements from P to V ;
rVOLE length n = k + m + r field elements;
Computation Computation of O(r|C|) field operations and 1 cryptographic hash call
(from Fm to Fmr) for both the prover and the verifier.

1.3 Reusable NISC from LPZK via certified VOLE
A non-interactive secure computation (NISC) protocol [34] is a two-party protocol that
securely computes a function f(x, y) using two messages: a message by a receiver, encrypting
its input x, followed by a message by a sender, that depends on its input y. The output f(x, y)
is only revealed to the receiver. A major challenge is making such protocols secure even
when either party can be malicious. Another challenge is to make such protocols reusable,
in the sense that the same encrypted input x can be used to perform computations with
many sender inputs yi without violating security. This should hold even when a malicious
sender can learn partial information about the honest receiver’s output, such as whether
the receiver “aborts” after detecting an inconsistent sender behavior. Existing NISC (or
even NIZK) protocols based on parallel calls to oblivious transfer (OT) and symmetric
cryptography [39, 34, 1, 41] are not fully reusable, and this is in some sense inherent [19].

Chase et al. [19] recently showed how to realize reusable NISC by using parallel instances
of VOLE instead of OT. This can be seen as a natural extension of the LPZK model, where
the receiver randomly encodes its NISC input x into multiple points αi and the sender

1 Most of the present work was done concurrently and independently of [45]. We explicitly point out the
improvements that are based on ideas from [45].
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randomly encodes is input y into corresponding lines vi(t). Here reusability refers to fixing
the VOLE inputs (points) αi generated by an honest receiver on input x and reusing them
in multiple interactions with a malicious sender.

On top of the reusability feature, another advantage of the VOLE-based protocol, which
is inherited from earlier protocols with security against semi-honest senders [32, 3], is that it
“natively” supports simple arithmetic computations over the VOLE field. This is contrasted
with NISC protocols over OT [34, 1, 41], which apply to Boolean circuits and are expensive
to adapt to arithmetic computations.

We provide an alternative construction of reusable NISC over VOLE that uses LPZK to
protect against malicious senders. Our approach significantly simplifies the protocol from
[19] and results in much better concrete constants.

NISC for bounded inner product

To illustrate the concrete efficiency potential of our NISC technique, we optimize it for a
simple application scenario. Consider an “inner product” functionality that measures the level
of similarity (or correlation) between receiver feature vector x and a sender feature vector y,
where the same x can be reused with multiple sender inputs yi. Here we view both x and y

as integer vectors that are embedded in a sufficiently large finite field. An obvious problem
is that the ideal functionality allows a malicious sender to scale its real input by an arbitrary
multiplicative factor, thereby increasing the perceived similarity. To prevent this attack, we
modify the functionality to bound the L2 norm of the sender’s input. In this way, the sender’s
strategy is effectively restricted to choosing the direction of a unit vector, where the bound
on the norm determines the level of precision. For this bounded inner product functionality,
we obtain a concretely efficient protocol that offers reusable malicious security. Even when
considering malicious security alone, without reusability, previous techniques for NISC are
much less efficient for such simple arithmetic functionalities. To give just one data point,
for vectors of length 1000 over F, with |F| ≈ 264 and sender L2 norm bounded by 1024, our
protocol requires 1002 instances of VOLE with a total of 21,023 entries and communication
of 36,047 field elements (roughly 282 kB) after the offline generation of VOLE instances.
Given recent methods for “silent” generation of multiple VOLE instances [13, 44, 16, 15],
the amortized cost of setting up the required VOLE instances is small.

1.4 Overview of techniques

From LPZK to NIZK via random VOLE. An LPZK proof system can be directly realized by
a single instance of VOLE, where the prover’s line v(t) := at + b ∈ Fn determines the VOLE
sender’s input (a, b) and the verifier’s point α is used as the VOLE receiver’s input. A further
observation is that this single VOLE instance can be easily reduced to a random VOLE
functionality that assigns to the prover a uniformly random pair of vectors (a′, b′) each in Fn

and to the verifier a uniformly random value α ∈ F and v′ = a′α + b′. Indeed, the prover
can send (a− a′) and (b−b′) to the verifier, who computes v(α) = v′ + (a− a′)α + (b−b′).
This requires communication of 2n field elements on top of the pre-processing step required
to set up the random VOLE instance. Combined with efficient protocols for generating long
instances of random VOLE, this gives rise to dv-NIZK protocol in which the offline phase
consists of secure generation of random VOLE and the online phase uses the random VOLE
as a “one-time pad” for realizing LPZK.
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Constructing information-theoretic LPZK proofs

Our information-theoretic LPZK construction follows the general template of similar kinds of
proof systems: the verification circuit is evaluated in two different ways that depend on secret
randomness picked by the verifier, and the verifier accepts if the two evaluations are consistent.
Zero knowledge is obtained by masking the values revealed to the verifier using randomness
picked by the prover. This high level approach was used in previous information-theoretic
zero-knowledge proof systems (such as succinct zero-knowledge linear PCPs [4, 33, 26, 9]),
actively secure computation protocols (such as the SPDZ line of protocols [8, 21]), and
circuits resilient to additive attacks [25]. Our LPZK systems most closely resemble the
“homomorphic MAC” approach used for actively secure computation in the preprocessing
model [8, 21], but differ in the low-level details.

More concretely, we construct LPZK for proving the satisfiability of an arithmetic
circuit C by encoding intermediate wire values in the vector a and masking these values with
randomness in b. This is an information-theoretic encryption: If the verifier holds v1(α) :=
a1α + b1 and α, where a1 is sampled from some distribution and b1 is chosen uniformly at
random from F, the distribution of v1(α) holds no information about a1.

We can “add” two encrypted wires v1(t) = a1t + b1 and v2(t) = a2t + b2 non-interactively
for free; the prover adds to obtain (a1 + a2)t + (b1 + b2), and the verifier adds v1(α) + v2(α) =
(a1 + a2)α + (b1 + b2).

To multiply v1 and v2, the prover seeks to construct the encrypted wire a1a2t + b, for
some value b. When the prover multiplies v1(t) · v2(t) they obtain a quadratic in t. By
adding and subtracting a masking term b3t, they can write v1(t)v2(t) = tv3(t) + v4(t),
with v3(t) = a1a2t + (b1a2 + b2a1 − b3) and v4(t) = b3t + b1b2, so that v3(t) is the desired
encryption of a1a2 and satisfies v3(t) = (v1(t)v2(t) − v4(t))/t. The verifier learns vi(α),
for 1 ≤ i ≤ 4 from the LPZK, and accepts if

v3(α) = v1(α)v2(α)− v4(α)
α

,

and rejects otherwise. Finally, to open the value of an encrypted wire v(t) = at + b, the
prover sends b to the verifier who computes a = (v(α)− b)/α.

Certified VOLE

As a building block for NISC, we build a certified variant of VOLE. This primitive is useful
for invoking several parallel instances of VOLE while assuring the receiver that a given
circuit C is satisfied when its inputs are a certain subset of the entries of the VOLEs.

We construct fully general certified VOLE from a weaker construction, distributional
VOLE with equality constraints. This construction allows us to move all inputs to C to a single
VOLE instance. The sender and receiver then prove that C is satisfied using LPZK NIZK.

This weaker variant, which we call eVOLE, is distributional, because it requires the VOLE
inputs from the receiver to be chosen independently and uniformly at random. In general
certified VOLE, which we call cVOLE, we use two additional evaluation points α, β, and
perform an affine shift to the receiver’s inputs, replacing (α1, . . . , αn) with (α + α1, . . . , α +
αn, α, β).

This forces all receiver inputs to be uniformly random, and every input besides β is
independent of β. We move all inputs to C to the VOLE instance with receiver input β, and
use the VOLE instance with input α to reverse the affine shift of the receiver’s inputs.
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From certified VOLE to NISC

Following [19], our NISC protocol is obtained from certified VOLE in a conceptually straight-
forward way: we start with existing protocols for arithmetic branching programs [32, 3]
that achieve security against a malicious receiver and semi-honest sender. We then protect
the receiver against a malicious sender by using certified VOLE to enforce honest behavior.
This yields a statistically secure reusable NISC protocol for “simple” arithmetic functions
represented by polynomial-size arithmetic branching programs. We can bootstrap this to get
reusable NISC over VOLE for general Boolean circuits using the approach of [19]; however,
this comes at the cost of making a non-black-box use of a pseudorandom generator and losing
the concrete efficiency features of the arithmetic variant of the protocol.

2 LPZK and random VOLE

In this section we give a formal definition of our new notion of LPZK proof system and show
how to compile such a proof system into a designated-verifier NIZK when given a random
VOLE correlation.

2.1 Defining LPZK
While an LPZK proof system can be defined for any NP-relation, we focus here on the case
of arithmetic circuit satisfiability that we use for describing our constructions. Our definition
can be seen as a simple restriction of the more general notion of (1-round) zero-knowledge
linear interactive proof [9] that restricts the verifier to sending a single field element.

Here and in the following, we work in an arithmetic model in which probabilistic polynomial
time (PPT) algorithms can sample a uniformly random element from a finite field F and
perform field operations at a unit cost. All of the protocols we describe make a black-box
use of the underlying field F.

▶ Definition 4 (LPZK). A line-point zero-knowledge (LPZK) proof system for arithmetic
circuit satisfiability is a pair of algorithms (Prove, Verify) with the following syntax:

Prove(F, C, w) is a PPT algorithm that given an arithmetic verification circuit C : Fk →
Fk′ and a witness w ∈ Fk, outputs a pair of vectors a, b ∈ Fn that specify an affine line
v(t) := at + b. We assume that the dimension n is determined by C.
Verify(F, C, α, vα) is a polynomial-time algorithm that, given an evaluation vα of the line
v(t) at some point α ∈ F, outputs acc or rej.

The algorithms (Prove, Verify) should satisfy the following:

Completeness. For any arithmetic circuit C : Fk → Fk′ and witness w ∈ Fk such that
C(w) = 0, and for any fixed α ∈ F, we have

Pr[v(t) R←− Prove(F, C, w) : Verify(F, C, α, v(α)) = acc] = 1.

Reusable ε-soundness. For every arithmetic circuit C : Fk → Fk′ such that C(w) ̸= 0
for all w ∈ Fk, and every (adversarially chosen) line v∗(t) = a∗t + b∗, where the length
n of v∗ depends on C as above, we have Pr[α R←− F : Verify(F, C, α, v∗(α)) = acc] ≤ ε.
Moreover, for every F, C, v∗(t) the probability of Verify accepting (over the choice of α)
is either 1 or ≤ ε. Unless otherwise specified, we assume ε ≤ O(1/|F|).
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Perfect zero knowledge. There exists a PPT simulator Sim such that, for any arithmetic
circuit C : Fk → Fk′ , any witness w ∈ Fk such that C(w) = 0, and any α ∈ F, the output
of Sim(F, C, α) is distributed identically to v(α), where v(t) is the affine line produced by
Prove(F, C, w).

The reusable soundness requirement guarantees that even by observing the verifier’s decision
bit on a maliciously chosen circuit C, and line v∗(t) = a∗t + b∗, the prover learns essentially
nothing about the verifier’s secret point α, which allows the same α to be reused without
substantially compromising soundness.

Proof of Knowledge

For simplicity, we focus here on (reusable) soundness and ignore the additional proof of
knowledge property. However, the LPZK systems we construct all satisfy this stronger
notion of soundness (see [9] a definition of proofs of knowledge in the context of linear proof
systems). More formally, there is an efficient extractor that can extract a valid witness from
any (maliciously generated) line that makes the verifier accept with > ε probability.

Computational LPZK

The above definition considers our main information-theoretic flavor of LPZK, with statistical
soundness and perfect zero knowledge. Computational variants of LPZK can be defined
analogously. In particular, we will later consider computationally sound LPZK in the random
oracle model, which bounds the number of oracle queries made by a malicious prover.

Complexity measures for LPZK: (n, n′, n′′)-LPZK

In addition to the dimension/length parameter n, we use two other parameters n′ and n′′

as complexity measures for LPZK. These will help us obtain a more efficient compiler from
LPZK to NIZK that takes advantage of verifier outputs that are either known by the prover
(namely, are independent of α) or entries of a, b that can be picked at random independently
of w. Concretely, the parameter n′′ is the number of entries of a that are always equal to
zero; we assume without loss of generality that these are the last n′′ entries. The parameter
n′ measures the total number of entries of the first n−n′′ entries of a and b that functionally
depend on w. To take advantage of the random VOLE setup, we assume the remaining
2n− 2n′′ − n′ entries are picked uniformly and independently at random, and then these n′

entries are determined by w and the random entries. We will assume that the parameters
(n, n′, n′′) as well as the identity of the entries of each type are determined by the public
information C.

2.2 Compiling LPZK to NIZK over random VOLE
We now describe and analyze a simple compiler that takes an LPZK proof system as defined
above and converts it into a (designated verifier) NIZK protocol that relies on a random
VOLE correlation, where the prover gets a random pair of vectors a′, b′ ∈ Fn specifying an
affine line a′t + b′ in Fn and the verifier gets the value of the line at a random point α ∈ F,
namely v′ = a′α + b′. Similarly to previous VOLE-based compilers from [12, 19], we rely on
the simple known reduction from VOLE to random VOLE. Our compiler takes advantage of
the extra parameters n′ and n′′ of the LPZK, which help reduce the cost of the NIZK below
the 2n field elements communicated by the natural generic compiler.
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▶ Lemma 5 (From LPZK to NIZK). Given (n, n′, n′′)-LPZK over F with soundness error ε,
there is an NIZK protocol that uses a single instance of random VOLE of length n− n′′ and
requires communication of n′ + n′′ field elements from the prover to the verifier.

Proof. Let a, b ∈ Fn be the vectors for the prover’s line at + b. The prover and verifier
are given a random VOLE of length n, so that the prover holds (a′, b′), and the verifier
holds v′ = a′α + b′ for a random α ∈ F.

We recall a simple self-reduction property of VOLE (see e.g. [12]) that allows us to
replace a random pair (a′, b′) with the pair (a, b) as follows. The prover sends vectors a′− a
and b′ − b to the verifier, who then computes

v = v′ + α(a′ − a) + (b′ − b)

Finally, the prover sends the final n′′ values of b to the verifier in the clear, and the
verifier appends these values to v.

For any entry of a, b that should be chosen randomly for LPZK, the prover sets the
corresponding entry of a′ − a or b′ − b to zero, and so no communication is required for
those entries. The entire reduction requires a random VOLE of length n with communication
of n′+n′′ field elements, as desired. The security completeness, soundness, and zero knowledge
properties of the above NIZK protocol are inherited directly from the corresponding properties
of the LPZK. ◀

UC security

While we only consider here a standard standalone security definition for NIZK proofs [29, 10],
all of our LPZK-based NIZK protocols are in fact UC-secure NIZK protocols (e.g., in the
sense of [17]) in the rVOLE-hybrid model. This is the typical situation for information-
theoretic protocols.

Using a corruptible random VOLE functionality

When using a pseudorandom correlation generator (PCG) for generating the random VOLE
correlation with sublinear communication complexity [12, 14, 44], what is actually realized
is a so-called “corruptible” random VOLE functionality that allows the malicious party to
choose its output, and then samples the honest party’s output conditioned on this choice.
The transformation of Lemma 5 remains secure even when using this corruptible VOLE
functionality. Indeed, it was already observed in [12] that the reduction of VOLE to random
VOLE remains secure even when using corruptible random VOLE, and the LPZK to NIZK
transformation builds on this reduction.

3 Single gate example

To clarify the exposition, we begin with an example where the prover wishes to convince
the verifier that they hold a triple of values x, y, z satisfying xy = z. More precisely, the
prover and verifier realize a commit-and-prove functionality for the triple (x, y, z) and the
relation R(x, y, z) := xy − z. We prove that our single gate example satisfies this stronger
flavor of ZK, which is meaningful even for finite functions. Note that our LPZK construction
is adapted from this single gate example, rather than directly built up from it, so this proof
and the proof in Section 4 can be read independently.

A commit-and-prove protocol for the above relation R has the same syntax as LPZK, and
should satisfy the following loosely stated properties (see, e.g., [38] for a formal definition).
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Completeness If the prover runs honestly on (x, y, z) such that z = xy, then the verifier
always accepts.
Binding There is a deterministic extractor that given a line picked by a (potentially
malicious) prover outputs effective inputs (x∗, y∗, z∗) such that the following holds. Any
attempt of the prover to “explain” a different input triple (x′, y′, z′) (by revealing its
randomness) would lead to an inconsistent verifier view, except with the binding error
probability (over the choice of α).
Soundness For any malicious prover, if the extracted values (x∗, y∗, z∗) satisfy z∗ ̸= x∗y∗,
then the verifier rejects except for the soundness error probability (over the choice of α).
Zero knowledge For any choice of α, the verifier’s evaluation on an honestly generated
line can be simulated without knowing x, y, z.

Random evaluation of the line picked by a prover (even a malicious one) effectively
commits the prover to unique values of x, y, z, in the sense that except for the binding error
probability it cannot reveal randomness that consistently explains different (x′, y′, z′)), and
moreover the verifier rejects unless z = xy (except with soundness error probability).

3.1 Protocol
We construct our commit-and-prove protocol for the relation R(x, y, z) := xy − z as a
(5, 4, 1)-LPZK over F with binding and soundness error ≤ 2/|F|.

The (honest) prover chooses some triple (x, y, z) and constructs a line at + b by setting

a = (a1, a2, a3, a4, a5) := (x, y, z, xb2 + yb1 − b3, 0)

with b1, b2, b3, b4 chosen uniformly at random and b5 := b1b2 − b4. We write

v(t) := at + b,

for the line held by the prover, and v = aα + b for the point received by the verifier, for a
random α ∈ F. We likewise write the prover’s view of the entries as

v(t) = (v1(t), v2(t), v3(t), v4(t), v5(t)),

and write vi for vi(α). The verifier now checks whether

v1v2 − αv3 − v4 − v5 = 0.

We remark that it would be possible to present the same protocol as a (4, 5, 0)-LPZK by
dropping the v5 term and setting b4 := b1b2. This variant has the same communication and
computation complexity, but we give the (5, 4, 1)-LPZK construction here because it is more
similar to the construction in Section 4.
▶ Remark 6 (Extension to general arithmetic circuits). We can convert this protocol to an
LPZK for arithmetic circuits by placing all intermediate wire values into a and running
the commit-and-prove protocol for each multiplication gate. The binding property ensures
that the wire values match the values x, y, z for which the prover demonstrates xy = z. For
all multiplication gates whose inputs are intermediate values, the verifier no longer needs
to learn the values v1, v2 masking the inputs x, y from VOLE, but can instead compute
them as a linear combination of previous multiplication gate outputs. This therefore gives
a communication cost of 3 field elements per multiplication gate. We improve on this by
batching together verification messages into blocks of size t, as we show in the next section.
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4 Information-Theoretic LPZK for Arithmetic Circuits

In this section we describe an information-theoretic LPZK for proving the satisfiability of
arithmetic circuits. A full proof, and more formal theoreom statement, of Theorem 1 are
given in the full version of this paper [23].

4.1 Setup
An arithmetic circuit C over a field F with k input wires, k′ output wires, m multiplication
gates, and arbitrarily many addition gates can be converted into an ordered triple (a, QC , RC),
where a = (a0, a1, . . . , ak+k′+4m) represent wire values. The input wires correspond to indices
0, 1, . . . , k, the intermediate wires correspond to indices k + 1, . . . , k + 4m, and the output
wires correspond to indices k + 4m + 1, . . . , k + k′ + 4m. QC is a collection of m degree 2
polynomials, with the ith polynomial defined as

qi(a) := ak+4i−1 − ak+4i−3ak+4i−2,

and RC is a set of linear relations defining certain ai’s in terms of previous elements. Formally,
we write r ·a for the standard dot product, and write RC as 2m + k′ vectors ri corresponding
to the relations

r2i−j · a = ak+4i−2−j ,

for j ∈ {0, 1}, and 1 ≤ i ≤ m, where the only nonzero entries of r2i−j occur at indices ≤
k + 4i− 4, and

r2m+i · a = 0,

for 1 ≤ i ≤ k′.
The wires ak+4i are not needed for the insecure evaluation of the circuit, but we introduce

them now to keep indices consistent. We require that each of rj have zero at each of their
entries in positions k + 4i, for 1 ≤ j ≤ 2m + k′ and 1 ≤ i ≤ m, i.e. the relations in RC cannot
depend on the unused ak+4i wires. We set a0 = 1 so that the relations RC can include
addition by constant terms.

We construct a NIZK in this setting. Using a (k+2m, k+2m, m
t +k′)-LPZK with soundness

error 2t/|F|, a prover P will convince a verifier V that they hold a witness w = (w1, . . . , wk)
of circuit inputs to C such that the k′ entries ak+4m+i = 0, for 1 ≤ i ≤ k′. The circuit C

and associated data k, k′, m and Q are public.

4.2 The LPZK construction
To begin, the prover constructs a pair of vectors (a, b) ∈ Fk+(4+ 1

t )m+2, with a0 = 1 and
b0 = 0. The next k elements of a are set equal to the witness w, and the corresponding
elements of b are chosen uniformly at random. Using the relations in RC , for the ith
multiplication gate, and for j ∈ {0, 1}, the prover defines

ak+4i−2−j := r2i−j · a

bk+4i−2−j := r2i−j · b

ak+4i−1 := ak+4i−3ak+4i−2

ak+4i := ak+4i−3bk+4i−2 + ak+4i−2bk+4i−3 − bk+4i−1,
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with bk+4i−j chosen uniformly at random, for j ∈ {0, 1}. Then, for 1 ≤ i ≤ k′, P sets
ak+4m+i = 0 and

bk+4m+i := r2m+i · b.

Next, P constructs a vector c of length m and defines

ci := bk+4i−3bk+4i−2 − bk+4i,

if this value is not equal to zero, and ci = 1 otherwise, for 1 ≤ i ≤ m. Finally, for
i = 1, . . . , m/t, P sets ak+k′+4m+i = 0 and defines

bk+k′+4m+i :=
t·i+t−1∏

j=t·i
cj .

After constructing (a, b), the prover constructs a shortened pair of vectors (â, b̂) of length
k + k′ + (2 + 1

t )m + 1 by deleting the zeroth entry and the entries k + 4i−2− j, for 1 ≤ i ≤ m

and j ∈ {0, 1}, and performs LPZK with the verifier so that the verifier learns v̂ = αâ + b̂.

The verifier then computes from v̂ a vector v of length k +k′ +(4+ 1
t )m+2 by re-indexing

to match the indexing of a and b, setting v0 = 1, and computing

vk+4i−2−j := r2i−j · v,

for 1 ≤ i ≤ m and j ∈ {0, 1}.
Then for 1 ≤ i ≤ k′, the verifier checks that r2m+i · v = vk+4m+i. Finally, the verifier

defines, for 1 ≤ i ≤ m, the values

xi := vk+4i−3vk+4i−2 − αvk+4i−1 − vk+4i,

when this is nonzero, and xi := 1 otherwise, and checks that

t·i+t−1∏
j=t·i

xj = vk+k′+4m+i.

5 LPZK in the Random Oracle Model

In the section we present Theorem 3, which gives an improved NIZK over random VOLE in
the random oracle model (ROM). This follows by applying the compiler of Lemma 5 to the
LPZK in following theorem.

▶ Theorem 7 (LPZK in the ROM). For any positive integer r, there exists an LPZK in
the ROM for arithmetic circuit satisfiability, with the following size parameters (n, n′, n′′)
and soundness error. If C has k inputs, k′ outputs, and m multiplication gates, we have
n = k + k′ + m + 2r, n′ = k, n′′ = k′ + m + 2r. For any malicious prover making ℓ calls
to a random oracle H : Fm → Fmr, the soundness error is ε = 2

|F| + ℓ
|F|r . Moreover, the

computation of both the prover and the verifier consists of O(r|C|) field operations and a
single call to H.

At a high level, the LPZK construction begins by setting a equal to the wire values in the
circuit evaluation, and choosing b at random, as in § 4.2. To convince the verifier that all
multiplication gates have been evaluated correctly, the prover must show that a sequence of
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quadratic polynomials whose coefficients are determined by a and b each have leading term
zero, i.e. that this sequence of quadratics is actually a sequence of linear polynomials. The
protocol uses LPZK to reveal to the verifier a vector s of the evaluations of those quadratics
at α and then the prover must show they have vectors y, z such that s = yα + z. In other
words, the prover must show that y, z as VOLE inputs give s as a VOLE output.

To do this, prover and verifier choose a random r ×m matrix M := H(w) by evaluating
a random oracle H on the prover messages w sent during the protocol. Then after adding
random masks from the LPZK to y, z, s, the verifier cheks that Ms = Myα + Mz.

5.1 The LPZK construction
Similar to § 4.2, the prover begins by constructing a line v(t) := at + b with v ∈
Fk+k′+5m+3r+1, and then reduces to a shorter v̂ that is used as VOLE input. For 0 ≤
i ≤ k + k′ + 4m, the prover defines ai and bi identically to their definitions in § 4.2, except
each entry ak+4j is chosen uniformly at random from F, for 1 ≤ j ≤ m, and each entry bk+4j

is chosen so that bk+4j = bk+4j−1. The partial redundancy between the k + 4j − 1th
and k + 4jth entry is to preserve the indexing of § 4.2 while enabling the reconstruction
of vk+4i−1 from vk+4i and the value of ak+4j − ak+4j−1, as described below.

The next r entries of a and b are chosen uniformly at random from F. The remaining m+2r

entries of a are all set equal to zero, and the remaining m + 2r entries of b will be given
explicitly later. These m + 2r entries, in other words, can be sent from the prover to the
verifier directly without require any VOLE overhead.

For 1 ≤ i ≤ m, the prover computes

yi := bk+4i−1 − ak+4i−3bk+4i−2 − ak+4i−2bk+4i−3

and

zi := −bk+4i−3bk+4i−2,

and defines y = (yi) and z = (zi), where i ranges from 1 to m. For r the positive integer fixed
in the statement of the theorem, let H : Fm → Fmr be a random oracle, and treat the output
of H as a matrix in Mr×m(F). The prover then defines w := (wi) := (ak+4i−1 − ak+4i),
where i ranges from 1 to m. The prover then sets

y := (ak+k′+4m+1, . . . , ak+k′+4m+r)T + H(w)yT

and

z := (bk+k′+4m+1, . . . , bk+k′+4m+r)T + H(w)zT .

For 1 ≤ i ≤ m, the prover sets

bk+k′+4m+r+i := ak+4i−1 − ak+4i,

then the prover sets

b[k + k′ + 5m + r + 1 : k + k′ + 5m + 2r] = y,

and

b[k + k′ + 5m + 2r + 1 : k + k′ + 5m + 3r] = z,

writing b[i, j] for the projection onto coordinates i through j inclusive.
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Next, the prover computes from the pair (a, b) a line in a lower-dimensional space v̂(t) :=
ât + b̂ ∈ Fk+k′+2m+3r. For 1 ≤ i ≤ k, we take âi = ai and b̂i = bi. For 1 ≤ i ≤ m

we take âk+i = ak+4i and b̂k+i = bk+4i. For 1 ≤ i ≤ r, we take âk+m+i = ak+k′+4m+i

and b̂k+m+i = bk+k′+4m+i. The remaining k′ + m + 2r values of a we set equal to zero.
For 1 ≤ i ≤ k′, we set b̂k+m+r+i = r2m+i · b. For 1 ≤ i ≤ m, we set b̂k+k′+m+r+i = wi =
ak+4i−1 − ak+4i. Finally, for 1 ≤ i ≤ 2r, we set b̂k+k′+2m+r+i = bk+k′+5m+r+i.

Now, having constructed v̂(t), the prover and verifier run LPZK so that the verifier
learns v̂(α), and, similar to § 4.2, expands v̂(α) to a vector v = aα + b. The verifier
reconstructs vk+4i−1 as

vk+4i−1 = vk+4i + αvk+k′+m+r+i,

and the other missing values as in § 4.2.
The verifier now computes, for 1 ≤ i ≤ m,

si := vk+4i−1α− vk+4i−3vk+4i−2,

the vector s = (si), and the value

s := (vk+k′+4m+1, . . . , vk+k′+4m+r)T + H(w)sT ,

yα := (v[k + k′ + 5m + r + 1 : k + k′ + 5m + 2r])

zα := (v[k + k′ + 5m + 2r + 1 : k + k′ + 5m + 3r])

and returns rej unless yα + z = s. Then for 1 ≤ i ≤ k′, the verifier checks that r2m+i · v =
vk+4m+i and returns rej if any test fails, and acc otherwise.

6 Non-Interactive Secure Computation

In this section we apply LPZK towards simplifying and improving the efficiency of the
reusable protocol for non-interactive secure computation (NISC) from [19]. Our construction
relies on a variant of VOLE called certified VOLE, described in more detail in § 6.2.

6.1 NISC definition
We start by giving a simplified definition of reusable NISC over VOLE, which strengthens
the definition from [19]. The definition can be seen as a natural extension of the definition of
LPZK to the case of secure computation, where both the sender and the receiver have secret
inputs. Instead of the prover encoding its witness as a line and the verifier picking a random
point, here the sender encodes its input as multiple lines and the receiver encodes its input
as multiple points, one for each line. (The lines are the sender’s VOLE inputs and the points
are the receiver’s VOLE inputs.)

At a high level, reusable security is ensured by preventing a malicious sender from
making the receiver’s output depend on its input beyond the dependence allowed by the
ideal functionality. This is contrasted with OT-based NISC protocols, where the sender can
learn a receiver’s OT input by starting from an honest strategy and replacing one of the
sender OT inputs by a random one.

We formulate the NISC definition for arithmetic functions f defined over an arbitrary field
F, where the security error vanishes with the field size. For simplicity we consider a single
function f and information-theoretic security. The definition can be naturally generalized to
take a function description as input and allow computational security.
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▶ Definition 8 (Reusable arithmetic NISC). A reusable non-interactive secure computation
(NISC) protocol over VOLE for an arithmetic function f : Fn × Fm → Fℓ is a triple of
algorithms (R1, S, R2) with the following syntax:

R1(F, x) is a PPT algorithm that, given an input x ∈ Fn, outputs points (α1, . . . , αn′) ∈
Fn′ and auxiliary information aux.
S(F, y) is a PPT algorithm that, given y ∈ Fm, outputs n′ pairs of vectors ai, bi ∈ Fs,
each specifying an affine line vi(t) := ait + bi.
R2(F, aux, (v1, . . . , vn′)) is a polynomial-time algorithm that, given auxiliary information
aux and evaluations vi, outputs either z ∈ Fℓ or rej.

The algorithms (R1, S, R2) should satisfy the following security requirements:

Completeness. When both parties follow the protocol, running the above algorithms in
sequence, with vi = vi(αi), results in the output z = f(x, y).
Reusable ε-security against malicious sender. There exists a polynomial-time
extractor algorithm Ext such that for any field F and lines v∗

i (t) := a∗
i t + b∗

i , the output of
Ext(F, (a∗

1 , b∗
1), . . . , (a∗

n′ , b∗
n′)) is y∗ ∈ Fm ∪ {⊥} such that the following holds: for every

honest receiver’s input x ∈ Fn, the receiver’s output when interacting with malicious
sender strategy v∗

i (t) is equal to f(x, y∗) except with ≤ ε probability over the receiver’s
randomness. Here we assume that the output on ⊥ is rej. Unless otherwise specified, we
assume ε ≤ O(1/|F|). We will also use a random-input variant of the above definition,
where the probability is over both the receiver’s randomness and a uniformly random
choice of x ∈ Fn.
Perfect security against malicious receiver. There exist a polynomial-time ex-
tractor algorithm Ext and PPT simulator algorithm Sim such that, for any field F
and malicious receiver points α∗

1, . . . , α∗
n′ ∈ F, the extractor outputs an effective in-

put x∗ = Ext(F, (α∗
1, . . . , α∗

n′)), where x∗ ∈ Fn, such that the following holds. For every
honest sender’s input y ∈ Fm, the output distribution of Sim(F, f(x∗, y))} is identical to
{(v1(α∗

1), . . . , vn′(α∗
n′)) : (v1(t), . . . , vn′(t)) R←− S(F, y)}.

We note that instead of allowing the receiver to output rej, we could instead make the
receiver use a default value for the sender input and compute the output of f . However,
making the receiver reject whenever it detects cheating makes protocol descriptions more
natural.

The definition above does not permit the sender to transmit additional values to the
receiver in the clear. In order to simplify the definition and the proofs, we note that we can
realize plaintext transmission from sender to receiver as a reusable NISC protocol over VOLE.
The function f(x, y) := y prints the sender input, the algorithm R1(F, x) outputs random
points α1, α2, and the sender algorithm S(F, y) outputs ai := 0 and bi = y for i = 1, 2.
Finally, R2(F, (v1, v2)) rejects if v1 ̸= v2, and outputs v1 otherwise. The security conditions
are straightforward to verify.

In the proofs below, when we refer to “sending values in the clear”, we formally mean
the protocol above. In actual applications, of course, we will continue to send the plaintexts
directly. We use direct transmission, rather than this more involved NISC protocol, in our
analysis of computation and communication complexity.

Throughout this section, whenever we desire to refer to the jth entry of a vector ai, bi, vi,
etc, we write the entry as aj

i , bj
i , vj

i , etc.
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6.2 Certified VOLE
The main building block for NISC is a certified variant of VOLE, allowing the sender and
the receiver to invoke multiple parallel instances of VOLE while assuring the receiver that
the sender’s VOLE inputs satisfy some global consistency relation.

6.2.1 Definitions and results
In its general form, certified VOLE with a general arithmetic relation, the VOLE consistency
requirement is specified by a general arithmetic circuit. We write cVOLE for this form of
certified VOLE.

We begin with a more specialized form, distributional certified VOLE with equality
constraints, which we write as eVOLE. In this variant of certified VOLE, the arithmetic
circuit on the family of VOLEs is restricted to a single equality constraint between two
coefficients from a vectors. In eVOLE, we require additionally that R’s inputs are uniformly
distributed over F and independent. It is straightforward to extend this result to an arbitrary
set of equality constraints on terms from a and b vectors, and we explain the details below.

Certified VOLE of these flavors can be realized by extending a family of random VOLEs
with a NIZK proof that the random VOLEs satisfy the desired constraints. We give more
precise definitions of these forms of certified VOLE as ideal functionalities in Figures 1 and 2.
We state this result as the following two lemmas.

▶ Lemma 9. A receiver R and a sender S can realize the functionality F (F)
eV OLE with

parameters (ℓ1, ℓ2, i, j) in the rVOLE hybrid model with 2 instances of random VOLE of
total length ℓ1 + ℓ2 + 2 and communication of 3 field elements from sender to receiver, in
addition to any communication cost for transforming random VOLEs to the VOLEs with
inputs (â1, b̂1, â2, b̂2).

▶ Lemma 10. Fix an integer t ≥ 1. A receiver R and a sender S can realize the functional-
ity F (F)

cV OLE , in the rVOLE hybrid model with k+2 instances of random VOLE. For a circuit C

with qa inputs from the âi’s, qb inputs from the b̂i’s, q′ outputs, and m multiplication gates,
these VOLE instances have total length

2m + 6qa + 7qb +
k∑

i=1
ℓi,

and the protocol requires communication of

(2 + 1
t )m + q′ + 8qa + 9qb + 2

k∑
i=1

ℓi

field elements from sender to receiver.

6.2.2 The protocols
eVOLE

eVOLE is a special case of reusable arithmetic NISC where the receiver has no inputs, and
R1(F) outputs uniformly random and independent points (α, β), and stores their values as the
auxiliary information aux := (α, β). The sender’s input y := (â1, b̂1, â2, b̂2) is two existing
VOLE inputs, and the algorithm S(F, y) outputs vectors (a1, b1, a2, b2) whose first ℓ, ℓ, ℓ′,
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Functionality F (F)
eV OLE : Distributional certified VOLE with equality constraint

Parametrized by a finite field F, length parameters (ℓ1, ℓ2), and integers i, j with
1 ≤ i ≤ ℓ1 and 1 ≤ j ≤ ℓ2.

R sends x := (α, β) to F (F)
eV OLE

// Receiver security is only required for random inputs
S sends y := (â1, b̂1, â2, b̂2) to F (F)

eV OLE , where âk, b̂k ∈ Fℓi

F (F)
cV OLE verifies that âi

1 = âj
2.

If the input does not pass verification, the ideal functionality sends ⊥ to R.
Otherwise, F (F)

cV OLE computes v̂1 := â1α + b̂1 and v̂2 := â2β + b̂2 and sends
f(x, y) := (v1, v2) to R.

Figure 1 Distributional certified VOLE with equality constraints.

Functionality F (F)
cV OLE : Parametrized by a finite field F, a sequence of k positive

integers ℓ1, . . . , ℓk, and an arithmetic circuit C on q ≤ 2
∑k

i=1 ℓi inputs.

Setup phase
R sends to F (F)

cV OLE its input x := (α1, . . . , αk) ∈ Fk.
Send phases

S sends y := (â1, . . . , âk, b̂1, . . . , b̂k) to F (F)
cV OLE , where âi, b̂i ∈ Fℓi

F (F)
cV OLE verifies that (â1, . . . , âk, b̂1, . . . , b̂k) is a satisfying assignment for C.

If the input does not pass verification, the ideal functionality sends ⊥ to R.
Otherwise, F (F)

cV OLE computes v̂i := âiαi + b̂i and sends f(x, y) := (v̂1, . . . , v̂k)
to R.

Figure 2 Certified VOLE with a general arithmetic relation.

and ℓ′ coordinates are equal to (â1, b̂1, â2, b̂2), respectively. The remaining values are defined
as aℓ+1

1 := b̂j
2, aℓ′+1

2 := b̂i
1, with bℓ+1

1 and bℓ′+1
2 chosen uniformly at random. In addition, the

sender sends the value bℓ+1
1 − bℓ′+1

2 in the clear.
The VOLE protocol evaluates the sender’s output on α and β, respectively, so that in an

honest run of the protocol, the receiver learns v1 := a1α + b1 and v2 := a2β + b2. In the
algorithm R2(F, aux, (v1, v2)), the receiver tests whether

βvi
1 − αvj

2 + vℓ+1
1 − vℓ′+1

2 = bℓ+1
1 − bℓ′+1

2 .

The receiver rejects if the test fails, and otherwise outputs the vectors v̂1, v̂2 obtained by
deleting the last element from v1, v2.

This protocol can be modified to prove constraints of the form âi
1 = b̂j

2 or b̂i
1 = b̂j

2 for the
same communication cost and one or two additional multiplications, respectively, by the
receiver. Indeed, by multiplying v1 by α−1 or v2 by β−1, the receiver can locally obtain the
VOLE outputs w1 := α−1b1 + a1 and w2 := β−1b2 + a2, and the same construction above
applies to the pair v1, w2 or the pair w1, w2.

Additionally, since the eVOLE protocol transforms VOLE inputs âi, b̂i for the sender
into extended VOLE inputs ai, bi and delivers extended VOLE outputs vi to the receiver,
this protocol can be implemented repeatedly on the same two instances of VOLE, proving c

equality constraints with VOLEs of length ℓ + c, ℓ′ + c.
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cVOLE

We write the receiver’s inputs as x := (α1, . . . , αk). The receiver’s algorithm R1(F, x)
generates their VOLE inputs by choosing random independent values α, β, and then out-
puts (α + α1, . . . , α + αk, α, β).

As in eVOLE, the sender defines aj
i := âj

i everywhere this is defined. We give the
definition of bj

i later. Then, for each input to C from the âi’s, say âj1
i , the sender chooses

one entry of ak+1 and one entry of ak+2, say aj2
k+1 and aj3

k+2 respectively, and uses eVOLE
to prove âj1

i = aj3
k+2 and aj2

k+1 = aj3
k+2. Since each of the pairs (α + αi, β) and (α, β) are

uniformly random and independent, the conditions for eVOLE are satisfied.
Similarly, for an input b̂j1

i to C, the sender chooses entries bj2
k+1, aj3

k+2 and aj4
k+2 and

proves bj1
i = aj3

k+2 and bj2
k+1 = aj4

k+2. We now define bj1
i := b̂j1

i + bj2
k+1. Upon subtract-

ing vj2
k+1 := aj2

k+1α + bj2
k+1 from vj1

i := aj1
i (α + αi) + bj1

i , the receiver holds

v̂j1
i := vj1

i − vj2
k+1 = aj1

i αi + (bj1
i − bj2

k+1) = âj1
i αi + b̂j1

i .

After deleting unneeded entries of the v̂i’s receiver ends with the VOLE outputs v̂i := âiαi+b̂i,
as desired. In addition, the elements aj1

i , bj2
i , bj2

k+1 have all been transferred to entries of ak+2,
so the receiver and sender extend the (k + 2)nd instance of VOLE vk+2 with a NIZK proof
that C is satisfied by âi, b̂i.

6.3 Reusable NISC over VOLE
In this section we build on certified VOLE to compile NISC protocols with security against
semi-honest senders into reusable NISC protocols in the fully malicious setting. We follow
the same high level approach of [19], but present the compiler at a higher level of generality
and with a more refined efficiency analysis.

Consider a two-party sender-receiver functionality f(x, y) where the receiver R holds
x = (x1, . . . , xn) ∈ Fn and the sender S hold inputs y = (y1, . . . , yn) ∈ Fm. The function f is
arithmetic, in the sense that its outputs are defined by a sequence of ℓ arithmetic branching
programs P1, . . . , Pℓ over F, where program Pi has si nodes. (Note that such an arithmetic
program Pi can simulate any arithmetic formula with si additions and multiplication gates.)

The goal is to securely evaluate f using only parallel instances of VOLE. (The ideal
VOLE instances can be implemented using the same kind of cryptographic compilers we
used in the context of LPZK.) We also require the NISC protocol to be reusable in the sense
that if the receiver’s input is fixed but the sender’s input changes, the same VOLE inputs of
the receiver can be securely reused, even if the sender can obtain partial information about
the receiver’s outputs in the different invocations. This feature is impossible to achieve in
the information-theoretic setting when we use OT instead of VOLE [19].

To get a reusable NISC for f , we take the following two-step approach:
1. Using a so-called “Decomposable Affine Randomized Encoding” (DARE) for branching

programs [32, 3] (an arithmetic variant of information-theoretic garbling), we get a NISC
protocol for f with n instances of VOLE, each of length Sj =

∑
i∈D(j)

(
si

2
)
, where D(j) is

the set of output entries that depend on xj .2 This protocol is secure against a malicious
receiver R and a semi-honest sender R.

2 In a bit more detail, for a branching program P (x1, . . . , xn) of size s, the output can be encoded by the
n matrices Yj = L · Aj(xj) · R + Zj , where L, R, Zj , and Aj(xj) are (s − 1) × (s − 1) matrices, Aj is an
affine (degree-1) function of xj , the Zj are random subject to the constraint

∑
Zj = 0, and L, R are
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2. To obtain reusable security against a malicious S (while maintaining security against
malicious R) we replace the parallel VOLE in the previous protocol by certified VOLE,
where the circuit C specifying the consistency relation takes the sender’s input y and
randomness in the previous protocol as a witness, and checks that the sender’s VOLE
inputs are obtained by applying the honest sender’s algorithm to the witness. Using naive
matrix multiplication, this requires a circuit C of size S =

∑n
j=1 Sj +

∑ℓ
i=1 s3

i . Applying
our protocol for F (F)

cV OLE with the arithmetic relation specified by C, we ensure that
whenever a malicious sender does not provide a witness that “explains” its VOLE inputs
by an honest sender strategy, the receiver outputs ⊥ except with O(1/F) probability. In
particular, a (reusable) simulator for a malicious sender interacting with the F (F)

cV OLE

functionality either outputs the input y found in the witness, if the consistency check
specified by C passes, or ⊥ if C fails.

Combining the above two steps, we derive the feasibility result from [19] in a simpler way.

▶ Theorem 11 (Reusable arithmetic NISC over VOLE). Suppose f : Fn × Fm → Fℓ is a
sender-receiver functionality whose i-th output can be computed by an arithmetic branching
programs over F of size si that depends on di inputs. Then f admits a reusable NISC protocol
over VOLE with the following efficiency and security features:

The protocol uses n + 2 parallel VOLE instances.
The total length of the VOLE instances is 15

∑ℓ
i=1 di

(
si

2
)

+ 2
∑ℓ

i=1 s3
i .

The simulation error (per invocation) is ε = O(1/|F|).

Chase et al. [19] show how to bootstrap Theorem 11 to get reusable NISC over VOLE for
general Boolean circuits, by making (a non-black-box) use of any pseudorandom generator,
or equivalently a one-way function.

6.4 NISC Example: Bounded Inner Product
In this section we showcase the usefulness of reusable arithmetic NISC by presenting an
optimized construction for a natural functionality: an inner product between the receiver’s
input vector and the sender’s input vector, where the sender’s vector is restricted to have
a bounded L2 norm. This functionality is useful for measuring similarity between two
normalized feature vectors. The bound on the sender’s input is essential for preventing a
malicious sender from inflating the level of similarity by scaling its input.

6.4.1 Functionality
Let R hold inputs x = (x1, . . . , xn) and S hold inputs y = (y1, . . . , yn) such that yi ∈
{0, 1, . . . , K} and

n∑
i=1

y2
i ≤ L2,

for some other constant L, so that the ℓ2 norm satisfies

∥y∥2 ≤ L.

random invertible matrices of a special form. The matrix Yj contains
(

s
2

)
non-constant entries. See [32]

for details. The Sj entries of VOLE j are the concatenation of the (non-constant entries of) matrices Yj

associated with outputs that depend on xj
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R desires to compute the dot product x · y (as a measure of the similarity of R and S’s
inputs). To simplify the protocol, we restrict to the case where K and L are powers of
2. When R and S do not wish to impose any bound on individual entries beyond what is
implied by the ℓ2 norm, they set K = L.

In the above description we assume the inputs to be vectors over non-negative integers.
This functionality can be naturally embedded by considering vectors over a finite field F
of prime order p, provided that p is bigger than the square-norm bound L2 and an upper
bound on the output size.

6.4.2 Protocol

S begins with a sequence of n inputs (yi), and selects associated random masks zi.
First S engages in pre-processing of their data by computing the bit decomposition (cij)

of each element yi and the bit decomposition (csj) of the sum of squares σy :=
∑

y2
i . We

use lg K bits for the bit decompositions (cij) and 2 lg L bits for bit decomposition (csj),
which ensures that y satisfies the desired bounds if the bit decompositions are correct.

We give a slightly modified construction of cVOLE, optimized for this setting. R and S

generate n + 2 instances of random VOLE. As in cVOLE, R chooses inputs (x1 + α, . . . , xn +
α, α, β), with α, β ∈ F random and independent. The input of S to the ith instance of VOLE
is yi, for 1 ≤ i ≤ n. Then S uses the entire vector y as inputs to the (n + 1)st and (n + 2)nd
instance of VOLE. S also takes as inputs to the (n + 2)nd instance all constant terms from
the first n VOLEs, the sum of the constant terms from the (n + 1)st instance, the squares y2

i ,
and the bit decompositions (cij) and (csj). After this initial set up, R learns the following:

v1
i := yi(xi + α) + zi, for 1 ≤ i ≤ n, where zi is a random element determined in the

initial random VOLE set up, and thus requires no additional communication.
vi

n+1 := yiα + wi, for 1 ≤ i ≤ n− 1, with wi from the random VOLE.
vn

n+1 := ynα + wn, where wn is chosen such that
∑n

i=1 zi =
∑n

i=1 wi.
vi

n+2 := yiβ + ui, for 1 ≤ i ≤ n, with ui from the random VOLE.
vn+i

n+2 := ziβ + un+i, for 1 ≤ i ≤ n, with ui from the random VOLE.
v2n+1

n+2 := (
∑n

i=1 wi)β + u2n+1, with u2n+1 from the random VOLE.
Additionally, an+2 holds all of the bit decompositions and associated data mentioned above.
To complete the verification step of the protocol, R and S execute eVOLE to ensure that all
inputs that occur in multiple VOLE instances are, in fact, equal, and then S uses LPZK-NIZK
on the (n + 2)nd instance of VOLE to convince R of the validity of S’s input.

The NIZK proof checks that all values y2
i sent by S are actually equal to the squares of

the values yi, and confirms that cij and csi are in {0, 1} by evaluating the quadratic t2 − t

on each entry. The proof then checks that the bit-decompositions are correct by computing
and revealing yi −

∑
j cij2j and

∑
y2

i −
∑

j csj2j , all of which are equal to zero when both
parties behave honestly.

Finally, R computes the output value as

x · y =
n∑

i=1

(
v1

i − vi
n+1

)
.

We give the proof and the calculation of the communication and computational complexity
in the full version of this paper [23].
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6:2 ZK-PCPs from Leakage-Resilient Secret Sharing

1 Introduction

Probabilistically Checkable Proofs (PCPs) [2, 3] allow a probabilistic verifier to check the
validity of a given statement by only querying few proof bits. Zero-Knowledge (ZK) proofs [18]
allow a prover to convince a verifier of the validity of a statement, without revealing any
additional information to the verifier. This work focuss on Zero-Knowledge Probabilistically
Checkable Proofs (ZK-PCPs) (and ZK-PCPs of proximity), which combine the advantages of
these two types of proof systems. Before describing our main results, we first give a short
overview of these proof systems.

Probabilistically Checkable Proofs (PCPs)

PCPs [2, 3] allow a randomized efficient verifier V with oracle access to a purported proof
π to verify an NP-statement of the form “x ∈ L” by reading only few bits of π. The proof
can be efficiently generated given the NP witness, and the verifier accepts true claims with
probability 1, whereas false claims are accepted with low probability (which is called the
soundness error). The celebrated PCP theorem [2, 3, 15] states that any NP language has
a PCP system with soundness error 1/2, in which the verifier reads only O (1) bits from
a polynomial-length proof (soundness can be amplified through repetition). An attractive
feature of these PCP systems is that the verifier is non-adaptive, namely it makes a single
round of queries to the proof. PCPs of Proximity (PCPPs) [16, 6, 15] are a generalization
of PCPs in which the verifier does not read its entire input. Instead, V has oracle access
to x, π, and wishes to check whether x is close to L (in relative Hamming distance). The
best PCPP constructions for NP [7, 27] obtain comparable parameters to the PCP systems
described above, where any x which is δ-far from L in relative Hamming distance is rejected
with high probability, and δ is a constant or even inverse polylogarithmic (δ is called the
proximity parameter).

Zero-Knowledge (ZK) proofs

ZK proofs [18] allow a randomized efficient prover to prove an NP-statement of the form
“x ∈ L” to a randomized efficient verifier, while guaranteeing that true claims are accepted
with probability 1, false claims are rejected with high probability, and the verifier learns
no information about the corresponding NP-witness. This last property, known as zero-
knowledge, is formalized by requiring that for any (possibly malicious) efficient verifier V∗,
there exists an efficient simulator machine that has access only to the statement x, and can
simulate the interaction of V∗ with the honest prover.

Zero-Knowledge PCPs (ZK-PCPs)

ZK-PCPs [26] combine the attractive features of PCPs and ZK proofs. Specifically, ZK-PCPs
are PCPs in which the prover P is randomized, and the proof π has the following zero-
knowledge guarantee: the view of every (possibly malicious, possibly unbounded) verifier V∗

that makes an a-priori bounded number of queries to the proof, can be efficiently simulated
up to a small statistical distance. We remark that restricting V∗ to making an a-priori
bounded number of queries is inherent to obtaining ZK with polynomial-length proofs.

The first ZK-PCP constructions for NP [26, 22] obtain ZK against any verifier V∗ that is
restricted to querying at most q∗ = q∗ (|x|) proof bits, with proofs of length poly (q∗) that
can be verified with polylog(q∗) queries and have a negligible soundness error. In particular,
the query gap q∗/q – the ratio between the query complexities of the malicious and honest
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verifiers – obtained by these constructions is exponential.1 Unfortunately, obtaining ZK
in [26, 22] did not come without a cost: it required the honest verifier to be adaptive, namely
to make several rounds of queries to the proof (where the queries of each round depend on
the answers to previous queries). In cryptographic applications of ZK-PCPs (e.g., in [25])
this blows-up the round complexity of resultant protocols. In particular, every round of
queries which the verifier makes to the ZK-PCP induces two communication rounds in the
interactive protocols which rely on ZK-PCPs.

Ishai and Weiss [24] introduce the notion of Zero-Knowledge PCPPs (ZK-PCPPs). Similar
to ZK-PCPs, the ZK-PCPP prover is randomized, and zero-knowledge means that the view
of any verifier V∗ making q∗ queries to the input and the proof can be efficiently simulated,
up to a small statistical distance, by making only q∗ queries to the input. They use similar
techniques to [26, 22] to obtain ZK-PCPPs for NP with comparable parameters to the
ZK-PCPs of [26, 22], where the proximity parameter δ is constant or inverse polylogarithmic.
These ZK-PCPPs also require adaptive verification, which increases the round complexity in
their cryptographic applications [24, 30].

As discussed in Sections 2.1.4 and 2.2.2 below, adaptive verification is in fact inherent
to the constructions of [26, 22, 24]. Indeed, these schemes are obtained by combining a
PCP or PCPP with a weak zero-knowledge guarantee that only holds against the honest
verifier, with an information-theoretic commitment primitive called locking schemes [26].
This latter primitive requires adaptive opening, which causes the resultant ZK-PCP verifier
to be adaptive.

Can ZK-PCPs be verified non-adaptively?

Motivated by the goal of obtaining ZK for PCPs at no additional cost, Ishai et al. [25] gave a
partial answer to this question. Specifically, they construct ZK-PCPs with similar parameters
to the schemes of [26, 22] in which the honest verifier is non-adaptive, but with a weaker
zero-knowledge guarantee compared to standard ZK-PCPs: the zero-knowledge simulator is
inefficient (this is also known as witness-indistinguishability). Alternatively, they obtain ZK
with efficient simulation against computationally-bounded verifiers, assuming the existence of
one-way functions and a common random string. The techniques of [25] diverge from the
standard method of designing ZK-PCPs [26, 22] discussed above. Specifically, the ZK-PCP
of [25] is based on a novel connection to leakage-resilient circuits, which are circuits that
operate over encoded inputs, and resist certain “side channel” attacks in the sense that such
attacks reveal nothing about the input other than the output. Unfortunately, the weaker ZK
guarantee of the ZK-PCPs of [25] carries over to any application in which these systems are
used. Moreover, [25] give evidence that inefficient simulation is inherent to their technique of
using leakage-resilient circuits.

Non-adaptive honest vs. malicious verification

It is instructive to note that while having non-adaptive (honest) verification is a feature
of the system (since it guarantees that the honest verifier can achieve soundness with a
single round of queries), having zero-knowledge against non-adaptive malicious verifiers is a
restriction of the system, since there is no ZK guarantee against adaptive malicious verifiers,
that make several rounds of queries to the proof.

1 We stress that a larger gap is preferable to a smaller one, since it means the proof can be verified with
few queries, while guaranteeing zero-knowledge even when a malicious verifier makes many more queries
(compared to the honest verifier).

ITC 2021
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We note that in [25], leakage-resilient circuits fall short of yielding ZK-PCPs with full-
fledged zero-knowledge not only because the simulation is inefficient, but also because
zero-knowledge holds only against non-adaptive (malicious) verifiers. Ishai et al. [25] obtain
ZK (with inefficient simulation) against adaptive verifiers by combining leakage-resilient
circuits with techniques of [9]. These techniques incur an exponential blowup in the complexity
of the ZK simulator, but did not pose a problem for [25] since their simulator (even against
non-adaptive malicious verifiers) was already inefficient.

The current landscape of ZK-PCPs is unsatisfying. Current ZK-PCP constructions either
require adaptive verification [26, 22], or guarantee only a weak form of ZK with an inefficient
simulator [25]. This holds regardless of the query gap, i.e., even if we restrict malicious
verifiers to making the same number of queries as the honest verifier. For ZK-PCPPs, the
situation is even worse: no constructions with non-adaptive verification are known (not even
with inefficient simulation). This state of affairs gives rise to the following natural question:

Do there exist ZK-PCPs (and ZK-PCPPs) with non-adaptive verification and efficient
simulation?

As we discuss in Sections 2.1.4 and 2.2.2 below, the limitations of existing ZK-PCP and
ZK-PCPP constructions seem to be inherent to the respective techniques they employ to
obtain ZK. This seems to imply that obtaining both non-adaptive verification and efficient
simulation requires new techniques. Or maybe such objects do not even exist?

1.1 Our results
In this work, we answer our research question in the affirmative: we construct ZK-PCPs and
ZK-PCPPs that can be verified non-adaptively and have efficient zero-knowledge simulation.
Unlike the schemes of [26, 22, 24, 25], which obtain an exponential gap between the query
complexities of the malicious and honest verifiers, we are only able to obtain a polynomial
query gap (q∗ vs. (q∗)ϵ, for some constant ϵ ∈ (0, 1)).

In the following, we say that a PCP (PCPP, resp.) system is a non-adaptive q-query
q∗-ZK-PCP (q∗-ZK-PCPP, resp.) if it is perfectly ZK against a (possibly malicious, possibly
adaptive) verifier making q∗ queries, and achieves a negl (q∗) soundness error where the
honest verifier makes q non-adaptive queries to the proof.

Specifically, we obtain the following results:

▶ Theorem 1 (Non-Adaptive ZK-PCPs with Efficient Simulation). There exists a constant
ϵ ∈ (0, 1) such that for any ZK parameter q∗ ∈ N there exists a non-adaptive (q∗)ϵ-query
Ω (q∗)-ZK-PCP for NP.

▶ Theorem 2 (Non-Adaptive ZK-PCPPs with Efficient Simulation). Let n ∈ N be an input
length parameter. Then there exists a constant c > 0 such that for any proximity parameter
δ ≥ 1/

√
n, there exists a non-adaptive q-query q∗-ZK-PCPP for NP with proximity parameter

δ, q∗ = Ω
(
nc+1)

, and q = Õ
(
nc+1/2)

.

Our non-adaptive ZK-PCPs and ZK-PCPPs can be plugged-into the applications described
in [24, 25, 30], and will reduce the round complexity of the resultant protocols.2

2 In this context, we note that if one only requires ZK against the honest verifier, then non-adaptive
ZK-PCPs and ZK-PCPPs are known. (This is implicit in [26] and [24] for ZK-PCPs and ZK-PCPPs
respectively, via standard soundness amplification.) Consequently, our non-adaptive ZK-PCPs and ZK-
PCPPs (with ZK against malicious verifiers) do not improve the round complexity in applications that
only require ZK against the honest-verifier (e.g., the ZK arguments of [22], and the commit-and-prove
protocols of [24]).
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Our constructions show that leakage-resilience techniques can be used to construct ZK-
PCPs (and ZK-PCPPs) with both non-adaptive (honest) verification and efficient simulation.
Specifically, we circumvent the negative result of [25] on the limitations of using leakage-
resilient circuits, by relying on leakage-resilient secret sharing [17, 12] secure against local
leakage [19, 8, 1]. Compared to leakage-resilient circuits, leakage-resilient secret sharing has
the weaker guarantee of only protecting information from leakage, whereas leakage-resilient
circuits also protect computation. However, this weaker guarantee suffices for our needs, and
admits leaner and more efficient constructions compared to those of leakage-resilient circuits
(and applications using them). Specifically, we use leakage resilient secret sharing to design
a new alphabet reduction procedure that transforms a ZK-PCP over a large alphabet to a
ZK-PCP over bits, while preserving zero-knowledge.

2 Our Techniques

We now give more details about our ZK-PCP and ZK-PCPP constructions.

2.1 ZK-PCPs with Non-Adaptive Verification and Efficient Simulation
Our starting point is a ZK-PCP implicit in the work of [21]. They use secure Multi-Party
Computation (MPC) protocols to construct a ZK-PCP variant over a large (poly-sized)
alphabet with efficient ZK simulation, that can be verified non-adaptively. Their ZK-PCP
suffers from two disadvantages. First, strictly speaking it is not a ZK-PCP, since in standard
ZK-PCPs the proof is a bit string, whereas the ZK-PCP of [21] is over a large alphabet.
Second, their construction has no query gap, namely the proof is ZK against verifiers querying
q∗ proof symbols, but to get soundness the honest verifier must also make q∗ queries.

2.1.1 Amplifying the Query Gap in the ZK-PCP of [21]
To prove that x ∈ L for some NP-language L with a corresponding NP relation R = R (x, w),
Ishai et al. [21] employ an n-party protocol that computes the function fR (x, w1, . . . , wn) =
R (x,⊕wi), where x is a common input, and wi is the input of the ith party Pi. The prover
executes the MPC protocol “in its head”, obtaining the views of all parties P1, . . . , Pn in
the execution (the view of party Pi consists of its input, random input, and all messages it
received during the execution). The proof consists of all these views, where each view is a
symbol in the resultant proof. To verify the proof, the verifier reads several views, and checks
that: (1) the output reported in all views is 1; and (2) the views are consistent, namely for
every pair Vi, Vj of queried views of Pi, Pj (respectively), the incoming messages from Pi

reported in Vj are the messages Pi would send in the protocol given its view Vi, and vice
versa.

To get q∗-ZK, the protocol should be private against q∗ (semi-honest) parties, in the
sense that they learn nothing from the execution except their inputs and the output. For
soundness, [21] rely on a notion of correctness against q∗ corrupted parties (known as
robustness), guaranteeing that even if q∗ parties arbitrarily deviate from the protocol, they
cannot cause an honest party to output 1 in a protocol execution on x /∈ L. We revisit their
analysis, and show that general MPC protocols yield a square root query gap. That is, given
a q∗-private and q∗-robust MPC protocol, the resultant ZK-PCP over a large alphabet is ZK
against a (possibly malicious) verifier querying q∗ proof symbols, and can be non-adaptively
verified with only

√
q∗ queries, with a negligible soundness error. This already yields a

non-trivial ZK-PCP over a large alphabet. Our tighter analysis can be found in the full
version [20].

ITC 2021
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2.1.2 Alphabet Reduction for ZK-PCPs
Next, we address the fact that the ZK-PCP of [21] is over a large alphabet. For standard
PCPs, one can easily reduce the alphabet Σ over which the proof π is defined to {0, 1} by
simply replacing each alphabet symbol with a bit string, thus obtaining a new proof π′ over
{0, 1}. This would increase the proof length and the query complexity of the honest verifier
by a multiplicative log |Σ| factor, but would not otherwise affect the system.3

Unfortunately, applying this transformation to zero-knowledge PCPs might render the
resultant scheme totally insecure. Indeed, while the system would still be ZK against verifiers
making q∗ queries, the query gap now reduces since the query complexity of the honest
verifier (i.e., the number of queries it must make to obtain soundness) increases. Specifically,
depending of |Σ|, the honest verifier might now need to make > q∗ queries, but π′ might not
be ZK even against q∗ + 1 malicious queries. As a result, π′ might not be ZK even against
malicious verifiers that make fewer queries than the honest verifier! Indeed, a malicious
verifier V∗ with oracle access to π′ is not restricted to querying “whole” symbols of π, i.e.,
reading the entire substring of π′ that corresponds to a symbol of π. On the contrary,
V∗ might read “parts” of symbols, thus potentially gaining (partial) information on q∗ + 1
symbols of π, and possibly violating the ZK guarantee of the original system.

The trivial alphabet reduction for PCPs described above fails because querying even a
single bit in the bit string sσ representing a symbol σ ∈ Σ might reveal information about σ.
Therefore, to make this alphabet reduction work for zero-knowledge PCPs, we must guarantee
that querying few bits of sσ reveals nothing about σ. We do so using leakage-resilient
secret sharing.

At a high level, a (t-threshold) Secret Sharing Scheme (SSS) is a method of distributing
a secret s among n parties by giving each party Pi a share Shi, such that any t shares reveal
no information about s, but any t + 1 shares completely determine s. A Leakage-Resilient
Secret Sharing Scheme (LR-SSS) against local leakage [19, 8, 1] has the added feature of
resisting leakage on the shares, in the following sense. The secret s remains hidden given t

shares, as well as few leakage bits computed separately on every other share.
Given a ZK-PCP system (P ,V) over a large alphabet Σ, and a LR-SSS for secrets in

{0, 1}log|Σ|, our alphabet reduction works as follows. The prover P ′ uses P to generate a
proof π = σ1 . . . σN over Σ, replaces every σi with its bit-representation sσi

, which it secret
shares using the LR-SSS. The proof π′ consists of the secret sharings of sσ1 , . . . , sσN

. To
verify the proof, the verifier V ′ emulates V , where a query Q of V to its proof π is answered
as follows. V ′ uses the secret sharing of sσQ

(from its own proof oracle π′) to reconstruct σQ,
which it then provides to V.4

The PCP system obtained through the reduction preserves the completeness and soundness
of (P ,V), and guarantees ZK against non-adaptive (possibly malicious) verifiers that are
restricted to making (roughly) q∗∗ = q∗ℓt queries to the proof, where (P ,V) is ZK against
verifiers querying q∗ proof symbols, and the LR-SSS is private against any t shares as well as
ℓ leakage bits from every other share.

3 We note that several PCP constructions (e.g. [15]) use more elaborate alphabet reduction techniques
for efficiency reasons (in particular, their goal is to achieve quasi-linear length proofs with O (1) query
complexity and a constant soundness error). A log |Σ| blowup is less significant in the context of
zero-knowledge PCPs, where the query complexity is anyway ω (1) since we wish to have a negligible
soundness error.

4 Due to some technical issues, the construction is actually somewhat more involved, see Section 4 and
the full version [20] for the construction and further details.
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To see why ZK holds, we split the proof π′ into N “sections”, where the ith section
contains the secret sharing of sσi

, and sσi
is the bit-representation of the ith symbol σi of

the original proof π. Roughly (and somewhat inaccurately), the queries of any non-adaptive
(possibly malicious) verifier V∗ querying at most q∗∗ proof bits divide the sections of π′ into
two groups.
1. “Light” sections, from which V∗ reads at most ℓt bits. In particular, for each such section

containing the secret shares Sh1, . . . , Shn of the bit-representation sσ of a symbol σ, there
can be at most t shares from which V∗ reads more than ℓ bits, and each other share is
queried only ℓ times. Therefore, the leakage-resilience of the LR-SSS guarantees that sσ

(and consequently also σ) remains entirely hidden.
2. “Heavy” sections, from which V∗ queries more than ℓt bits. Notice that there can only be

at most q∗ such sections, and V∗ obtains no information about the symbols of π encoded
in “light” sections, so the queries to the “heavy” sections can be simulated by the ZK of
(P ,V).

(The full – and accurate – analysis appears in the proof of Theorem 18, which can be found
in the full version [20].)

In summary, combining a ZK-PCP over a large alphabet with a SSS that resists probing
leakage, we obtain a ZK-PCP over {0, 1}. Instantiating the transformation with the ZK-PCP
of [21] (with our improved analysis) together with the LR-SSS of [29] yields a ZK-PCP with
the parameters of Theorem 1that is ZK against (possibly malicious and unbounded) verifiers
that only make non-adaptive queries to their proof oracle.

2.1.3 Amplifying to ZK Against Adaptive Verifiers
The analysis of our alphabet reduction for ZK-PCPs crucially relied on the fact that the
malicious verifier V∗ was non-adaptive. Indeed, the queries to “light” and “heavy” sections
are simulated differently (using the LR-simulator of the LR-SSS, and the ZK-simulator of
(P ,V), respectively), meaning the simulator for (P ′,V ′) needs to know at the onset of the
simulation which sections are “heavy” and which are “light”. Obtaining ZK against adaptive
verifiers seems to require a stronger leakage-resilience guarantee with a two-phase flavor
similar to the locking schemes of [26, 22]. Specifically, in the first phase of the simulation,
the LR-simulator SimLR should be able to answer adaptive leakage queries as in a standard
(adaptively-secure) LR-SSS. However, unlike standard LR-SSSs, at some point the simulation
may move to a second phase. In the second phase the simulator SimLR is given a secret s,
and should be able to “explain” s by providing an entire secret sharing of s which is random
subject to being consistent with the previously-simulated answers to leakage queries. We
formalize this notion, introducing equivocal SSSs as a generalization of standard LR-SSSs,
and provide a construction based on codes with leakage-resilience guarantees (see Section 2.3
for further details).

Applying our alphabet reduction to (P ,V) and an equivocal SSS now yields a ZK-PCP
with ZK against any – possibly malicious and adaptive – verifier V∗ making at most q∗∗

queries. Indeed, the ZK-PCP simulator Sim starts the simulation by answering all queries
using the LR-simulator SimLR of the equivocal SSS. Whenever the number of queries to a
certain proof section passes some threshold, Sim uses the ZK-simulator SimZK to simulate
the underlying symbol σ of π. Then, Sim provides the bit-representation of σ to SimLR as
the secret-shared secret. The equivocation property of the SSS guarantees that SimLR can
now “explain” this secret by providing an entire secret sharing which is consistent with the
previous leakage. These secret shares can be used to answer any further queries to that
section of the proof. The construction appears in Section 4.1, and the analysis can be found
in the full version [20].
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6:8 ZK-PCPs from Leakage-Resilient Secret Sharing

To sum up, combining a ZK-PCP over a large alphabet with an equivocal SSS against
probing leakage yields a ZK-PCP over {0, 1}, where zero-knowledge holds against adaptive
verifiers. Instantiating the transformation with the ZK-PCP of [21] and the equivocal scheme
described in section 2.3.2 yields a ZK-PCP with the parameters of Theorem 1.

2.1.4 Why Do Previous Approaches of Constructing Non-Adaptive
ZK-PCPs Fail?

It is instructive to discuss why our approach of combining alphabet reduction with LR secret
sharing succeeds in simultaneously obtaining non-adaptive verification and efficient simulation,
whereas previous approaches [26, 22, 25] could only achieve one of these properties.

As noted above, the ZK-PCPs of [26, 22] are obtained by combining PCPs that are ZK
against the honest verifier with locking schemes. In effect, the locking schemes are used
to “force” the queries of a malicious verifier to be distributed (almost) as the queries of
the honest verifier. This transformation causes adaptive verification due to two reasons:
first, the original proof is altered in such a way that necessitates adaptive queries to verify
it. Second, the locking schemes themselves require adaptive opening. We are faced with a
similar challenge, where the queries of the malicious verifier might drastically deviate from
those of an honest verifier (namely, V∗ might query “parts” of symbols, whereas the honest
verifier always queries whole symbols). However, instead of “forcing” the queries of V∗ to
“look” honest, we allow V∗ to make any set of queries, but guarantee that queries to “parts”
of symbols reveal no information on the underlying symbol.

The ZK-PCP of [25] uses a different approach. Their starting point is a non-ZK PCP,
and they use leakage-resilient circuits to protect the entire PCP generation. That is, the
queries of the verifier are interpreted as leakage on the process of generating the PCP from
the NP-witness, and by protecting this entire computation from leakage, they obtain ZK.
More specifically, they change the NP statement which is being verified: instead of verifying
that (x, w) is a satisfying input for the verification circuit C of the NP-relation R, the honest
verifier checks whether the leakage-resilient version Ĉ of C is satisfiable. Therefore, soundness
of the resultant ZK-PCP system crucially relies on the fact that if there exists no w such
that C (x, w) = 1, then there exists no w′ such that Ĉ (x, w′) = 1,5 a notion which they call
SAT-respecting. Ishai et al. [25] give evidence that SAT-respecting leakage-resilient circuits
with efficient LR-simulation (for the leakage classes needed to construct ZK-PCPs) exist
only for languages in BPP. The inefficient LR-simulation is the cause of ZK with inefficient
simulation in their ZK-PCPs. We circumvent their negative results by using LR-SSSs to
protect information – instead of using LR circuits to protect computation – and apply the
LR-SSS to PCPs with ZK guarantees (whereas [25] use standard PCPs).

2.2 ZK-PCPPs with Non-Adaptive Verification and Efficient Simulation

We extend our techniques to apply to PCPs of Proximity. Specifically, our alphabet reduction
could also be applied to ZK-PCPPs, which reduces the task of designing ZK-PCPPs with
non-adaptive verification to designing such ZK-PCPPs over a large alphabet.

5 In fact, Ĉ operates on encoded inputs, however to simplify the discussion we disregard this at this point,
and provide a more accurate discussion in Section 2.2.2 below.
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2.2.1 A ZK-PCPP with Non-Adaptive Verification Over Large Alphabets
The first step is to design a ZK-PCPP over a large alphabet. We do so by presenting a
variant of the system of [21] in which the verifier does not read its entire input. Recall that
the proof in the ZK-PCP of [21] consists of the views of all parties in an execution of an
MPC protocol for the function fR (x, w1, . . . , wn) = R (x,⊕wi), where x is a common input,
and wi is the input of the ith party Pi. In particular, a single proof symbol (i.e., a single
view) reveals the entire input x. This is problematic in the context of ZK-PCPPs, in which
the proof is required to hide not only the NP-witness w, but also most of the input x, in the
sense that a verifier making few queries learns only few physical bits of x.

Thus, no single party can hold the entire input x. Instead, following [24] we introduce
m additional “input parties” (where m = |x|), such that the MPC protocol is over m + n

parties P1, . . . , Pm+n. The inputs of parties P1, . . . , Pm are x1, . . . , xm (respectively), and
the inputs of parties Pm+1, . . . , Pm+n are w1, . . . , wn (respectively). Proof generation from
this revised protocol is similar to the original construction of [21], and verification is also
similar, except that whenever the verifier queries a view of Pi, i ∈ [m], it also queries xi from
its input oracle, and checks that xi is the input of Pi reported in the view.

If the MPC protocol is q∗-private, then we are guaranteed that q∗ queries to the proof
reveal at most q∗ bits of x. Indeed, the q∗-privacy of the protocol guarantees that the views
of q∗ parties reveal no information other than their inputs (which is at most q∗ bits of x)
and their output (which is 1).

As for soundness, we show that our improved analysis (discussed in Section 2.1.1 above)
extends to PCPPs. Specifically, we show that if the MPC protocol is q∗-robust then the
resultant ZK-PCPP is sound with proximity parameter δ ≥ 1/

√
|x|, namely the verifier

rejects (with high probability) inputs that are δ-far from the language. Indeed, let x be δ-far
from L, and notice that any (possibly ill-formed) proof π∗ for x determines an effective input
x∗ for the underlying MPC protocol (x∗ is obtained by concatenating the inputs reported
in the views of P1, . . . , Pm). We show that if x∗ is δ-far from x then with overwhelming
probability the verifier will query a view on which x, x∗ differ, in which case it rejects with
probability 1. Otherwise, x∗ is δ-close to x, implying x∗ /∈ L, in which case our improved
analysis of Section 2.1.1 essentially shows that the PCPP verifier rejects with overwhelming
probability. This yields the first ZK-PCPP with non-adaptive verification and efficient
simulation, but the proof is over a large alphabet.

Combining this ZK-PCPP over a large alphabet with our alphabet reduction, we obtain
the first ZK-PCPPs over {0, 1} with non-adaptive verification. Moreover, the system has
efficient ZK simulation. Specifically, combining the ZK-PCPP over a large alphabet with
a LR-SSS gives a ZK-PCPP with ZK against non-adaptive malicious verifiers, whereas
combining it with an equivocal SSS gives a full-fledged ZK-PCPP. Instantiating the equivocal
SSS with the scheme of Section 2.3.2 gives a ZK-PCPP with the properties of Theorem 2.
Due to space limitations, the construction and analysis of our ZK-PCPP system is deferred
to the full version [20].

2.2.2 Why Do Previous Approaches of Constructing Non-Adaptive
ZK-PCPPs Fail?

We now give some intuition as to why LR-SSS is useful to obtaining ZK-PCPPs with non-
adaptive verification, whereas ZK-PCPP constructions based on leakage-resilient circuits
seem to fail. Recall that a leakage-resilient circuit operates over encoded inputs, where
leakage from some function class F on the internal wire values of the circuit reveals no
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6:10 ZK-PCPs from Leakage-Resilient Secret Sharing

information about the input other than the output. In particular, this implies that the input
encoding should resist leakage from F , since leakage can be applied to the input wires (which
carry the encoded inputs).

Recall that the verifier wishes to verify that (x, w) ∈ R, namely that (x, w) satisfies the
verification circuit C of R. When using leakage-resilient circuits to verify this claim, the
circuit C is replaced with its leakage-resilient variant Ĉ, which operates over encoded inputs,
where the queries of the verifier are interpreted as leakage on the wire values of Ĉ. This
raises the question of how to incorporate x into the computation. Syntactically, Ĉ cannot
operate directly on the unencoded input x, but if Ĉ operates on an encoding of x, the prover
can cheat by providing an encoding of some x∗ ≠ x. (The verifier will not be able to tell the
difference because the input encoding is resilient against leakage, namely against the verifier
queries.) The solution of [25] is to first hard-wire x into C, i.e. replace C with Cx = C (x, ·),
and then generate the leakage-resilient version Ĉx of Cx. The verifier will now verify that
Ĉx is satisfiable.

While this solves the problem for ZK-PCPs, it cannot be applied in the context of
ZK-PCPPs. Indeed, verifying that Ĉx is satisfiable requires knowing the structure of Ĉx.
This is indeed the case for ZK-PCPs, since x is known to the verifier in its entirety, so the
verifier can locally construct Ĉx. However, the ZK-PCPP verifier does not know all of x, nor
do we want it to – the advantage of ZK-PCPPs over ZK-PCPs (which is crucially exploited
by cryptographic applications of ZK-PCPPs) is that the verifier can be sublinear in the input
length, and verify the claim without learning “too much” about the input. Therefore, we
cannot hard-wire x into the verification circuit, and so it is unclear how the verifier would
verify consistency of its own input with the one used to evaluate C.

Finally, we note that even if one were to solve this issue of how to handle the input, using
leakage-resilient circuits would incur inefficient ZK simulation in the resultant ZK-PCPP,
due to the negative results of [25].

2.3 Equivocal Secret Sharing
We generalize the notion of LR-SSS [17, 12] secure against local leakage [19, 8, 1] by
introducing equivocal SSSs. We then construct a 1-party equivocal SSS based on codes with
probing-resilience. We note that while a 1-party SSS is useless as a means of sharing a secret,
its equivocation property gives a meaningful way of encoding a secret in a leakage-resilient
(in fact, equivocal) manner. In particular, such schemes suffice for constructing ZK-PCPs and
ZK-PCPPs as described in Sections 2.1 and 2.2 above. Morevoer, since 1-party schemes can
be more efficient than multi-party schemes, using 1-party schemes results in more efficient
ZK-PCPs and ZK-PCPPs.

2.3.1 Equivocal SSS: Definition
Recall that a standard t-threshold n-party SSS guarantees that the secret remains entirely
hidden given any t of the n shares. LR-SSS enhances this privacy property to hold even
given leakage on the other shares. We will focus on resisting adaptive (t, ℓ)-local probing
leakage, in which the leakage reveals t shares, as well as ℓ bits from every other share. This
can be formalized by comparing the real execution with an ideal experiment in which an
efficient simulator Sim, that has no knowledge of the secret, answers the leakage queries.

An equivocal SSS generalizes the notion of (adaptive) LR-SSS by considering a two-phase
ideal experiment, where the first phase is similar to the ideal experiment of LR-SSS. At the
end of the first phase, the adversary can choose whether to continue to the second phase.
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In the second phase, the simulator is given a secret s, and must generate an entire secret
sharing of s, which is given to the adversary. The adversary should have only a negligible
advantage in distinguishing the real execution from the ideal experiment, as long as it didn’t
violate the leakage restrictions. That is, as long as at the onset of the second phase, the
adversary obtained at most t shares, and probed at most ℓ bits from every other share.
Since the adversary can choose not to continue to the second phase of the simulation, this
notion strictly generalizes the notion of a LR-SSS. Notice that we make no restriction on the
computational power of the adversary. The definition appears in Section 3.3.

2.3.2 Equivocal SSS: Construction
We use a 1-party equivocal SSS that resists (0, ℓ)-local probing leakage [19, 8, 1], where ℓ is a
constant fraction of the share size. Considering 1-party schemes suffices for the ZK-PCP and
ZK-PCPP application, and admit lean constructions that result in more efficient ZK-PCPs
and ZK-PCPPs (in terms of query complexity and proof length).

2.3.2.1 Existing leakage-resilient encodings

A 1-party equivocal SSS gives a method of encoding data such that the resultant encoding is
equivocal, and consequently also leakage-resilient. We note that leakage-resilient encodings
have been considered before under different names. ZK codes [13, 14, 23] are encodings
that resists non adaptive probing leakage, i.e., these are 0-threshold 1-party SSSs that resist
non-adaptive probing leakage. Leakage-resilient storage [17, 12] encodes the data into two
parts that resist adaptive leakage from each part separately. Thus, leakage-resilient storage
can be though of as a ramp 2-party SSS which is private against 0 parties, reconstructible
given both shares, and resists adaptive leakage. We note that the schemes of [17, 12] resists
general local leakage (i.e., leakage which operates on each share separately, and has short
output), and not just probing. An Equivocal SSS generalizes these notions – while ZK
codes and leakage-resilient storage are only secure as long as the number of leakage bits
does not pass an a-priori bound, equivocal schemes guarantee security even beyond the
leakage threshold. Another related notion is that of a Reconstructable Probabilistic Encoding
(RPE) [10, 5, 11, 4]. Informally, these are leakage resilient encodings that are also equivocal
(with perfect leakage resilience and equivocation), with an additional error correction property.
RPEs and equivocal SSSs are incomparable: while RPEs are a strengthening of 1-party
equivocal SSS (due to their error correction), (multi-party) equivocal SSSs guarantee leakage
resilience even when full shares are leaked. In particular, they can potentially achieve a
better leakage rate.

2.3.2.2 A specific 1-party equivocal SSS construction

Our constructions will employ the ZK code of [13, 14]. Thy construct a linear code in {0, 1}n

with constant rate, and leakage resilience against a constant fraction of leaked bits. It is also
equivocal, which follows from linearity using its dual distance (see [4, Lemma 2]). Therefore,
it is a 1-party equivocal SSS with constant rate and security against probing of a constant
fraction of codeword bits.

2.3.2.3 Why do equivocal SSSs yield non-adaptive ZK-PCPs?

We note that the locking schemes used in the constructions of [26, 22, 24] posses an equivoca-
tion property which is similar to our equivocal SSS, but applying them towards constructing
ZK-PCPs and ZK-PCPPs causes the honest verifier to be adaptive. The reason is that
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reconstructing (i.e., opening) the secret in a locking scheme requires making several rounds of
queries to the locking scheme. This is because one should be able to recover the locked secret
without reading the entire lock, which is needed since locking schemes are generally much
longer than the locked secret. (The blowup is inherent to obtaining equivocation in locking
schemes.) On the other hand, in an equivocal SSS the secret is reconstructed by reading
all (or most) of the shares, which can be done non-adaptively. The fact that reconstruction
requires reading many shares is not problematic in terms of efficiency, since the total length
of all shares is usually relatively short compared to the secret.

2.4 Future Directions

Our work still leaves several open questions for future research. First, it is natural to ask
whether the query gap (between the query complexity of the malicious and honest verifiers)
in our constructions could be improved – to a better polynomial gap, or even exponential?
This could potentially be achieved by instantiating the ZK-PCP of [21] with an MPC
protocol with stringent communication requirements, in which the communication complexity
(more specifically, the size of the views) is sublinear in the number of parties. Another
natural research direction is to construct multi-party equivocal SSSs, and in particular
ones that withstand general local leakage (and not just probing leakage). Finally, it would
be interesting to find further applications of equivocal SSSs in other contexts, e.g., for
adaptively-secure MPC.

3 Preliminaries

We denote the security parameter by κ. We say that a function µ : N → N is negligible
if for every positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) < 1

p(κ) .
We denote the set of all negligible functions by negl (κ). We use the abbreviation PPT
to denote probabilistic polynomial-time, and denote by [n] the set of elements {1, . . . , n}
for some n ∈ N. For a string s of length n, and a subset I ⊆ [n], we denote by s|I the
restriction of s to the coordinates in I. For an NP relation R, we denote by Rx the set of
witnesses of x, and by LR its associated language. That is, Rx = {w | (x, w) ∈ R} and
LR = {x | ∃ w s.t. (x, w) ∈ R}.

Let δ ∈ (0, 1), let Σ be an alphabet, and let x, y be strings over Σn. We say that x, y are
δ-close if |{i : xi ̸=yi}|

n < δ, otherwise we say that x, y are δ-far. We say that x is δ-close to a
language L if there exists x′ ∈ L such that x, x′ are δ-close. Otherwise, we say that x is δ-far
from L.

▶ Definition 3. Let Xκ and Yκ be random variables accepting values taken from a finite
domain Ω. The statistical distance between Xκ and Yκ is

SD(Xκ, Yκ) = 1
2

∑
w∈Ω

∣∣ Pr[Xκ = w]− Pr[Yκ = w]
∣∣.

We say that Xκ and Yκ are ε-close if their statistical distance is at most ε(κ). We say that
Xκ and Yκ are statistically close, denoted Xκ ≈s Yκ, if ε(κ) is negligible in κ.

We use the asymptotic notation O (·) and Ω (·). We will sometimes disregard polylogar-
ithmic factors, using Õ (n) and Ω̃ (n) to denote n · poly log n and n/poly log n ,respectively.
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3.1 Zero-Knowledge Probabilistically Checkable Proofs (PCPs) and
PCPs of Proximity

Informally, a Probabilistically Checkable Proof (PCP) system for a language L consists of a
probabilistic polynomial time prover that given x ∈ L and a corresponding witness generates
a proof for x, and a probabilistic polynomial-time verifier having direct access to individual
symbols of the proof. This proof string (called oracle) will be accessed only partially by the
verifier. The oracle queries are determined by the verifier’s input and coin tosses. Formally,

▶ Definition 4 (PCP). A Probabilistically Checkable Proof (PCP) for a language L consists
of a PPT prover P and a PPT verifier V such that the following holds for some negligible
function negl = negl (κ).
1. Syntax. The prover P has input 1κ, x, w, and outputs a proof πx for x over some

alphabet Σ. The verifier V has input 1κ, x, and oracle access to π. It makes q queries to
π, and outputs either 0 or 1 (representing reject or accept, respectively).

2. Completeness: For every x ∈ L, every w ∈ Rx, and every proof πx ∈ P (1κ, x, w),

Pr[Vπx(1κ, x) = 1] ≥ 1− negl(κ)

where the probability is over the randomness of V, and κ is the security parameter.
3. Soundness: For every x /∈ L and every oracle π∗,

Pr[Vπ∗
(1κ, x) = 1] ≤ negl(κ)

where the probability is over the coin tosses of the verifier, and κ is a security parameter.
negl is called the soundness error of the system.

Efficiency measures of a PCP system

We associate with a PCP system the following efficiency measures: the alphabet size |Σ|, the
query complexity q, and the proof length |π|. We will call such a system a q-query PCP over
alphabet Σ. We are generally interested in obtaining PCPs with Σ = {0, 1}, in which the
proof length |π| is polynomial in |x|, and q is significantly smaller than |π|. We note that a
PCP prover is usually deterministic, but allowing for randomized provers will be useful when
discussing zero-knowledge PCPs, as we do next.

Next, we define zero-knowledge PCPs. Intuitively, these are PCPs in which the witness
remains entirely hidden throughout the verification process, even when the verifier is malicious
and can potentially make many more queries to the proof compared to the honest verifier.
We guarantee zero-knowledge against any, possibly malicious and unbounded, verifier - the
only restriction is on the number of queries the verifier makes to the proof (this restriction is
inherent to obtaining zero-knowledge). Thus, we first define the notion of a query bounded
verifier.

▶ Definition 5 (Query-bounded verifier). We say that a (possibly malicious) verifier V∗ with
oracle access to a proof π is q∗-query-bounded if it makes only q∗ queries to π.

▶ Definition 6 (Non adaptive verifier). We say that a (possibly malicious) verifier V∗ is non
adaptive if its queries are determined solely by its input x and its randomness (in particular,
V∗ can make a single round of queries to its proof oracle).

We will use the following notation. For a PCP system (P ,V) and a (possibly malicious)
verifier V∗, we use ViewV∗,P (x, w) to denote the view of V∗ when it has input x and oracle
access to a proof that was randomly generated by P on input (x, w). We are now ready to
define zero-knowledge PCPs.
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▶ Definition 7 (ZK-PCP). We say that a PCP system (P ,V) for L is a (q∗, ε)-Zero-Knowledge
PCP (or ZK-PCP for short) if for any (possibly malicious and adaptive) q∗-query-bounded
verifier V∗ there exists a PPT simulator Sim, such that for any (x, w) ∈ R, Sim(1κ, x) is
distributed ε-statistically close to ViewV∗,P (x, w).

If (P ,V) is a (q∗, ε)-ZK-PCP for ε = negl (κ) then we simply say that (P ,V) is a q∗-ZK-
PCP. If (P ,V) is a (q∗, 0)-ZK-PCP then we say it is a perfect q∗-ZK-PCP. If the ZK property
of the system only holds against PPT verifiers V∗ then we say the system is a computational
(q∗, ε)-ZK-PCP (or CZK-PCP for short). If the zero-knowledge property is only guaranteed
against non-adaptive verifiers then we say the system is a ZK-PCP for non-adaptive verifiers.
If the honest ZK-PCP verifier is non-adaptive then we say that (P ,V) is a non-adaptive
ZK-PCP.

We stress that having a non-adaptive honest verifier is a desirable feature of the system,
whereas having ZK against non-adaptive verifiers is a weaker form of ZK (since the system
has no guarantee against malicious adaptive verifiers).

We remark that although this definition requires a weaker notion with a non-universal
simulator, all our constructions obtain the stronger notion with a universal simulator.
Furthermore, our constructions will rely on the MPC-in-the-head approach, where the quality
of ZK will be inherited from the level of security of the underlying MPC protocol employed
by the construction.

3.2 Leakage-Resilient Secret Sharing Schemes (LR-SSS)
A Secret-Sharing Scheme (SSS) allows a dealer to distribute a secret among n parties.
Specifically, during a sharing phase each party receives a share from the dealer, and the secret
can then be recovered from the shares during a reconstruction phase. The scheme is associated
with an access structure which defines subsets of authorized and unauthorized parties, where
every authorized set can recover the secret from its shares, whereas unauthorized sets learn
nothing about the secret even given all their shares. A Leakage-Resilient SSS (LR-SSS)
guarantees this latter property holds even if the unauthorized set obtains some leakage on
the other shares.

We will mainly be interested in t-threshold secret sharing schemes, in which all (and only)
subsets of size at least t + 1 are authorized to reconstruct the secret. We first define secret
sharing schemes.

▶ Definition 8 (Secret Sharing Scheme). An n-party Secret Sharing Scheme (SSS) for secrets
in S consists of the following pair of algorithms.
Sharing algorithm Share: Takes as input a secret s ∈ S and outputs shares (s1, · · · , sn) ∈
S1 × · · · × Sn, where si is called the share of party i, and Si is the domain of shares of
party i.

Reconstruction algorithm Reconst: Takes as input a description G of an authorized set,
and shares {si : i ∈ G} and outputs s′ ∈ S.

The scheme is required to satisfy the following properties:
Correctness: For every s ∈ S, and every authorized set G,

Pr [Reconst (G, Share (s) |G) = s] = 1

where Share (s) |G denotes the shares of the parties in the authorized set G.
Secrecy: For any pair of secrets s, s′ ∈ S, and any unauthorized set G, Share (s) |G and

Share (s′) |G are statistically close.
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In our constructions, we will use Shamir’s secret sharing scheme [28], which we review next.

▶ Definition 9 (Shamir’s SSS). Let F be a field.

Sharing algorithm: For any input s ∈ F, pick a random polynomial p(·) of degree t in the
polynomial-field F[x] with the condition that p(0) = s, and output p(1), . . . , p(n).

Reconstruction algorithm: For any input (s′
i)i∈S where none of the s′

i are ⊥ and |S| > t,
compute a polynomial g(x) such that g(i) = s′

i for every i ∈ S. This is possible using
Lagrange interpolation where g is given by

g(x) =
∑
i∈S

s′
i

∏
j∈S/{i}

x− j

i− j
.

Finally the reconstruction algorithm outputs g(0).

We will actually require a stronger correctness property for SSSs which, informally,
guarantees unique reconstruction for any set of (possibly ill-formed) shares. This can be
thought of as a weak form of unique decoding, where we only require error detection (i.e.,
identifying whether or not an error occurred), and not error correction. Alternatively, this is
a weaker form of verifiable secret sharing, which need only be secure against a corrupted
dealer (i.e., all the share holders are assumed to be honest). Formally,

▶ Definition 10 (Strongly-correct SSS). We say that an n-party secret sharing scheme
(Share, Reconst) for secrets in S is strongly correct if Reconst is deterministic, and the only
authorized set is [n] (the set of all parties).

We note that for any t < n, t-out-of-n Shamir’s scheme (with the access structure in
which the only authorized set is [n]) is strongly correct. For this, we assume that the shares
are numbered in some arbitrary way, and reconstruction always uses the “first” t + 1 shares,
see Remark 11 below.
▶ Remark 11 (Strong correctness implies unique reconstruction in threshold schemes). The strong
correctness property of Definition 10 implies unique reconstruction in threshold schemes,
when these are thought of as ramp secret sharing schemes which are private for sets of size
at most t, and reconstructible for the set of all parties. Indeed, we assume without loss
of generality that the shares are numbered (in some arbitrary way). Given all n shares,
reconstruction is performed with the first t + 1 shares. These t + 1 shares determine some
secret, and the fact that Reconst is deterministic guarantees its uniqueness. In particular, we
note that in this case Shamir’s secret sharing scheme has unique reconstruction.
▶ Remark 12. We note that for our alphabet reduction for ZK-PCPs (Construction 17,
Section 4) and ZK-PCPPs (which appears in the full version [20]) we can make due with any
SSS with deterministic reconstruction, by having the verifier use some arbitrary fixed minimal
authorized set for reconstruction. Notice that if such a set can be efficiently found then the
verifier in Construction 17 will be PPT. We further note that for threshold SSSs (such as the
one used in our final constructions in Theorems 1 and 2), such a minimal authorized set can
be found efficiently.

Next, we define leakage-resilient SSS.

▶ Definition 13 (Leakage-resilient SSS). We say that a secret sharing scheme (Share, Reconst)
for S is ε-leakage resilient against a family F of leakage functions if for every f ∈ F , and
every pair of secrets s, s′ ∈ S, f (Share (s)) and f (Share (s′)) are ε-statistically close.
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We will be particularly interested in the local probing leakage family, which consists of all
functions that, given the n shares, output the shares of an unauthorized set in their entirety,
as well as ℓ bits from each of the other shares. More specifically, we will only consider the
t + 1-threshold access structure mentioned above, in which all (and only) subsets of size
≥ t + 1 are authorized. Formally:

▶ Definition 14 ((t, ℓ)-local probing leakage). Let S1 ×S2 × · · · × Sn be the domain of shares
for some secret sharing scheme. For a subset G ⊆ [n] and a sequence (I1, . . . , In) of subsets of
[n], the function fG,I1,...,In

on input (s1, . . . , sn) outputs si for every i ∈ G, and outputs si|Ii

for every i /∈ G. The (t, ℓ)-local probing function family corresponding to S1 × S2 × · · · × Sn

is defined as follows:

Ft,ℓ = {fG,I1,...,In : G ⊆ [n], |G| ≤ t, ∀i /∈ G, |Ii| ≤ ℓ} .

3.3 Equivocal Secret Sharing
In this section we define the notion of equivocal secret sharing, compare it to leakage-resilient
secret sharing, and present a 1-party equivocal SSS based on coding. We start with the
definition.

At a high level, an equivocal SSS is a leakage-resilient SSS with the additional guarantee
that even after some bits are leaked from the shares, one can still “open” the secret (by
providing the entire secret sharing) consistently with the previous leakage. This is formalized
(in Definition 15) in the simulation-based paradigm, by comparing the real world experiment
with an ideal experiment, which are described in Figure 1.

The real and ideal experiments have two phases: a leakage phase and a guessing phase.
This is captures by having the adversary and simulator consist of two separate algorithms
(A1,A2) and (Sim1, Sim2), respectively. Leakage resilience is guaranteed against a family F

of leakage functions and a leakage bound ℓ.
In the real world, the secret s is secret shared into n shares Sh1, . . . , Shn. The adversary

A1 is then given oracle access to a SHARE oracle, and a LEAK oracle. The Share oracle,
given an index i, returns the i’th share Shi. Each call to SHARE updates the set T of secret
shares which the adversary has queried so far, by adding i to T (T is initialized to ∅). The
LEAK oracle takes as input a function g ∈ F , which specifies, for each share Shi, i /∈ T , a
leakage function gi. It applies these leakage functions to the shares Shi, i /∈ T , and returns
the outputs outputi. For each such share Shi, i /∈ T , it also updates the counter ℓi of the
number of leakage bits obtained on Shi, by increasing it by |outputi|. T and ℓ1, . . . , ℓn are
treated as global parameters that can be accessed and updated by all oracles.

At the end of the first phase of the experiment (the adversary A1 decides when to end
the first phase and move to the second phase), A1 outputs a bit bR, which specifies whether
it wishes to learn the entire secret sharing of s. If bR = 1, i.e., the adversary chose to proceed
to the second phase, then it learns the entire secret sharing of s (this is done by calling the
REVEAL oracle). Otherwise, the adversary obtains no further information beyond what it
obtained during the leakage phase.

At the second phase of the game, the adversary A2 outputs a guess b′
R as to whether

it is in the real or ideal experiments. This guess depends on the leakage in the first phase
of the game, and can either depend on the secret shares of s (if bR = 1) or not (if bR = 0).
The adversarial guess is only taken into account if the adversary did not violate the leakage
restrictions, i.e., only if the following two conditions are satisfied. First, the set T of shares
which the adversary received throughout the experiments (through SHARE queries) is an
unauthorized set. Second, for every share i, the number of bits ℓi leaked from Shi (through
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LEAK queries) does not exceed the leakage bound ℓ. These checks are performed by calling
the VALID oracle, where if the tests fail then the adversary automatically looses the game
(by setting its “guess” to 0).

The ideal experiment is similar to the real experiment, except that the SHARE ,LEAK,
and REVEAL oracles are emulated by the simulator. In particular, the simulator needs to
simulate shares and leakage on shares (through the SHARE and LEAK oracles). Additionally,
if bI = 1 (i.e., the adversary chose to learn the entire secret sharing in the ideal experiment)
then the simulator is given the secret s, and needs to emulate the entire secret sharing of s

consistently with the previous leakage (this is done in the REVEAL oracle).
We note that by allowing the adversary to choose not to receive the entire secret sharing

of s at the end of the first phase, we capture leakage-resilient secret sharing as a special case
of equivocal secret sharing. Indeed, if the adversary chooses not to learn the secret sharing,
then the simulator is only required to adaptively simulate the leakage (with no knowledge of
the secret). We elaborate more on this in Remark 16 below.

▶ Definition 15 (Equivocal SSS). We say that an n-party secret sharing scheme
(Share, Reconst) for secrets in S is ε (n)-equivocal for leakage class F , leakage bound ℓ

and access structure Acc if for every adversary (A1,A2) there exists an efficient simulator
(Sim1, Sim2) and a negligible function ε (n) such that for every s ∈ S,

|Pr [REALF,ℓ,Acc (s) = 1]− Pr [IDEALF,ℓ,Acc (s) = 1]| ≤ ε (n)

where REALF,ℓ,Acc (s) , IDEALF,ℓ,Acc (s) are defined in Figure 1, and the probability is over
the random coin tosses of SET UPR, (A1,A2) and (Sim1, Sim2).

We say that the scheme is perfectly equivocal, if it is ε-equivocal with ε = 0.

▶ Remark 16 (On the connection between equivocal and LR secret sharing). We note that
equivocal secret sharing captures LR secret sharing as a special case, in the following sense.
If a t-threshold secret sharing scheme is ε-equivocal with leakage bound ℓ, then it is also
2ε-leakage resilient against (t, ℓ)-local probing leakage. Indeed, if the REVEAL oracle is not
called in Figure 1 (which happens when b = 0) then the simulator never receives the secret s,
in which case the simulated answers to the leakage queries are required to be distributed
ε-statistically close to the real execution. As this holds for any secret, the real leakage on
the shares of two different secrets must be 2ε-statistically close.

4 Alphabet Reduction for ZK-PCPs

In this section we describe a reduction for ZK-PCPs over any alphabet Σ into a ZK-PCP
over {0, 1}. In particular, this reduction preserves the zero-knowledge property. We note
that for standard (non-ZK) PCPs, one can easily transform a PCP over any alphabet Σ into
a PCP over {0, 1} by simply representing every symbol of Σ as a binary string. However,
this reduction does not preserve zero-knowledge since a malicious verifier given access to the
binary proof can read “parts” of symbols of the original proof, and thus potentially violate
the zero-knowledge guarantee of the underlying ZK-PCP over Σ (which only guarantees
zero-knowledge when most symbols are not accessed at all).

We begin by describing a general reduction, then instantiate it to obtain ZK-PCPs over
{0, 1} with a square root gap.
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SET UPR (s):
pick a uniformly random string
r for Share
(Sh1, . . . , Shn)← Share (s; r)
output (Sh1, . . . , Shn)

SHARER (s, r, i):
T1 ← T1 ∪ {i}
output Shi

LEAKR (s, r, g, T ):
if g /∈ F then return
(outputi)i/∈T ← g

(
(Shi)i/∈T

)
T1 ← T1 ∪ T

for every i /∈ T

ℓi ← ℓi + |outputi|
output

(
(outputi)i/∈T , (Shi)i∈T

)

REVEALR (s, r):
output (Sh1, . . . , Shn)

VALID (ℓ, Acc):
if T1 /∈ Acc ∧ ℓi ≤ ℓ for every i ∈ [n]

then output true
else

output false

SET UPI ():
initialize St to the empty string
St← Sim1 (St)
output St

SHAREI (i):
Shi ← Sim1 (St, i)
T1 ← T1 ∪ {i}
output Shi

LEAKI (g, T ):
if g /∈ F then return
run Sim (St, g, T ) to obtain(
(outputi)i/∈T , (Shi)i∈T , St

)
T1 ← T1 ∪ T

for every i /∈ T

ℓi ← ℓi + |outputi|
output

(
(outputi)i/∈T , (Shi)i∈T

)

REVEALI (s):
rev← Sim2 (St, s)
output rev

REALF,ℓ,Acc (s):
ℓ1, . . . , ℓn ← 0
T1 ← ∅
r ← SET UPR (s)
(StA, bR)← ASHARER(s,r,·),LEAKR(s,r,·,·)

1
if bR = 1 then(

Sh′
1, . . . , Sh′

n

)
← REVEALR (s, r)

StA ← StA ◦
(
Sh′

1, . . . , Sh′
n

)
b′

R ← A2 (StA)
if VALID (ℓ, Acc) then output b′

R

else output 0

IDEALF,ℓ,Acc (s):
ℓ1, . . . , ℓn ← 0
T1 ← ∅
St← SET UPI ()
(StA, bI)← ASHAREI(·),LEAKI(·,·)

1
if bI = 1 then

output← REVEALI (s)
StA ← StA ◦ output

b′
I ← A2 (StA)

if VALID (ℓ, Acc) then output b′
I

else output 0

Figure 1 The Security Experiments of Equivocal SSS.
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A General Transformation

Our starting point is the trivial transformation described above, in which every proof symbol
is replaced with a corresponding bit-string. As discussed above, this alone does not guarantee
zero-knowledge since a malicious verifier may read parts of symbols of the original proof. The
high-level idea of preventing such malicious strategies from leaking additional information is
to “protect” each bit-string by secret-sharing it (equivalently, encoding it) using a leakage-
resilient secret sharing scheme (equivalently, leakage-resilient encoding). Recall that, very
roughly, a probing-resilient secret sharing scheme hides the secret from an adversary that sees
several secret shares, and can probe few bits in each of the other shares. The zero-knowledge
property of the new PCP system now follows from a combination of leakage-resilience and
the zero-knowledge property of the original ZK-PCP. To see why, given a malicious query-
bounded verifier V∗, we partition the symbols of the original proof into two groups, based
on the number of bits V∗ reads from the secret-sharing of the bit-string representing the
symbol. Since V∗ is query-bounded, there are only few symbols from whose secret shares V∗

can read many bits (having many such symbols would have violated the query bound). The
zero-knowledge property of the original ZK-PCP system guarantees that V∗ learns nothing
about the witness even if it is given all these symbols in their entirety. For the rest of the
symbols, since V∗ reads only few bits from their secret shares, the leakage-resilience of the
secret sharing scheme guarantees that the secret shared symbol remains entirely hidden. The
actual analysis is slightly more involved, see the proof of Theorem 18 below for details.

We now formally describe the transformation.

▶ Construction 17 (Alphabet reduction for ZK-PCPs). Let κ be a security parameter. The
system (P ′,V ′) is over alphabet {0, 1}.

Building blocks:
A PCP system (P ,V) over alphabet Σ of size |Σ| = 2m.
A strongly-correct secret sharing scheme (Share, Reconst) for secrets in {0, 1}m.

Prover algorithm. P ′ has input 1κ, x, w. It runs P with input 1κ, x, w to obtain a proof
π over Σ. For every proof symbol σ, it uses Share to secret-share the bit-representation of σ.
(That is, the length-m bit representation of σ is treated as the secret.) Then, P ′ outputs the
concatenation of all secret shares. We denote the proof generated by P ′ by π′.

Verifier algorithm. V ′ is given input 1κ, x and oracle access to π′. It runs V with input
1κ, x, and emulates the oracle π for V as follows. Whenever V reads a symbol σ from π, V ′

reads the entire secret sharing of σ from π′. Then, it uses Reconst to recover the symbol σ,
and provides σ to V as the answer of the oracle.

The following theorem summarizes the properties of Construction 17. Its proof, and
several relevant corollaries, can be found in the full version [20].

▶ Theorem 18 (Non-adaptive ZK-PCPs for non-adaptive verifiers). Assume Construction 17
is instantiated with:

A non-adaptive q-query (q∗, ϵ)-ZK-PCP (P ,V) over alphabet Σ for a language L, with
proofs of length N .6
A strongly-correct k-party secret sharing scheme (Share, Reconst) for secrets in {0, 1}m

with secret shares in {0, 1}M which is ϵ′-leakage-resilient against (t, ℓ)-local probing leakage.

6 In fact, as will be evident from the proof, it suffices that (P, V) is ZK against non-adaptive malicious
verifiers.
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Then Construction 17 is a non-adaptive q′-query (q∗∗, ϵ′′)-ZK-PCP for non-adaptive verifiers,
where:

q′ = q ·M · k q∗∗ = (q∗ + 1) (ℓ + 1) (t + 1)− 1 ϵ′′ = ϵ + ϵ′ · (N − q∗) .

Moreover, the transformation preserves the soundness and completeness of (P ,V).

4.1 Upgrading to ZK Against Adaptive Verifiers
Our ZK-PCP (Theorem 18) obtained through the alphabet reduction of Construction 17 can
be verified non-adaptively, but guarantee ZK only against non-adaptive verifiers. Ideally, we
would like a ZK-PCP which can be verified non-adaptively, but guarantees ZK even against
adaptive malicious verifiers.

In this section, we show that when Construction 17 is instantiated with an equivocal SSS
(see Definition 15) instead of a leakage-resilient SSS then the resultant ZK-PCP retains its
ZK even when the malicious verifier is adaptive. Concretely, we prove the following:

▶ Theorem 19. Assume Construction 17 is instantiated with:
A non-adaptive q-query (q∗, ϵ)-ZK-PCP (P ,V) over alphabet Σ for a language L, with
proofs of length N .7
A strongly-correct k-party ϵ′-equivocal (ramp) secret sharing scheme against (t, ℓ)-local
probing leakage, for secrets in {0, 1}m with secret shares in {0, 1}M .

Then Construction 17 is a non-adaptive q′-query (q∗∗, ϵ′′)-ZK-PCP, where

q′ = q ·M · k q∗∗ = (q∗ + 1) (ℓ + 1) (t + 1)− 1 ϵ′′ = ϵ + ϵ′ ·N.

Moreover, the transformation preserves the soundness and completeness of (P ,V).

Theorem 1 now follows from Theorem 19 by an appropriate instantiation of the building
blocks. See the full version [20] for details.
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Abstract
Data-oblivious algorithms are a key component of many secure computation protocols.

In this work, we show that advances in secure multiparty shuffling algorithms can be used to
increase the efficiency of several key cryptographic tools.

The key observation is that many secure computation protocols rely heavily on secure shuffles.
The best data-oblivious shuffling algorithms require O(n log n), operations, but in the two-party or
multiparty setting, secure shuffling can be achieved with only O(n) communication.

Leveraging the efficiency of secure multiparty shuffling, we give novel, information-theoretic
algorithms that improve the efficiency of securely sorting sparse lists, secure stable compaction, and
securely merging two sorted lists.

Securely sorting private lists is a key component of many larger secure computation protocols. The
best data-oblivious sorting algorithms for sorting a list of n elements require O(n log n) comparisons.
Using black-box access to a linear-communication secure shuffle, we give a secure algorithm for
sorting a list of length n with t ≪ n nonzero elements with communication O(t log2 n + n), which
beats the best oblivious algorithms when the number of nonzero elements, t, satisfies t < n/ log2 n.

Secure compaction is the problem of removing dummy elements from a list, and is essentially
equivalent to sorting on 1-bit keys. The best oblivious compaction algorithms run in O(n)-time,
but they are unstable, i.e., the order of the remaining elements is not preserved. Using black-box
access to a linear-communication secure shuffle, we give an information-theoretic stable compaction
algorithm with only O(n) communication.

Our main result is a novel secure merge protocol. The best previous algorithms for securely
merging two sorted lists into a sorted whole required O(n log n) secure operations. Using black-box
access to an O(n)-communication secure shuffle, we give the first multi-party secure merge algorithm
that requires only O(n log log n) communication. Our algorithm takes as input n secret-shared
values, and outputs a secret-sharing of the sorted list.

All our algorithms are generic, i.e., they can be implemented using generic secure computations
techniques and make black-box access to a secure shuffle. Our techniques extend naturally to the
multiparty situation (with a constant number of parties) as well as to handle malicious adversaries
without changing the asymptotic efficiency.

These algorithm have applications to securely computing database joins and order statistics on
private data as well as multiparty Oblivious RAM protocols.
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1 Introduction

Secure sorting protocols allow two (or more) participants to privately sort a list of n encrypted
or secret-shared [41] values without revealing any data about the underlying values to any
of the participants. Secure sorting is an important building block for many more complex
secure multiparty computations (MPCs), including Private Set Intersection (PSI) [32], secure
database joins [33, 10, 43], secure de-duplication and securely computing order statistics as
well as Oblivious RAMs [38, 24].

Secure sorting algorithms, and secure computations in general, must have control flows
that are input-independent, and most secure sorting algorithms are built by instantiating a
data-oblivious sorting algorithm using a generic secure computation framework (e.g. garbled
circuits [47, 48], GMW [23], BGW [13]). This method is particularly appealing because it is
composable – the sorted list can be computed as secret shares, and used in a further (secure)
computations.

Most existing secure sorting algorithms make use of sorting networks. Sorting networks
are inherently data oblivious because the sequence of comparisons in a sorting network is fixed
and thus independent of the input values. The AKS sorting network [2] requires O(n log n)
comparators to sort n elements. The AKS network matches the lower bound on the number
of comparisons needed for any (not necessarily data independent) comparison-based sorting
algorithm. Unfortunately, the constants hidden by the big-O notation are extremely large,
and the AKS sorting network is never efficient enough for practical applications [3]. In
practice, some variant of Batcher’s sort [9] is often used1. The MPC compilers Obliv-c [49],
ABY [19] and EMP-toolkit [45] provide Batcher’s bitonic sort. Batcher’s sorting network
requires O(n log2 n) comparisons, but the hidden constant is approximately 1/2, and the
network itself is simple enough to be easily implementable.

Although Batcher’s sorting network is fairly simple and widely used, the most efficient
oblivious sorting algorithms make use of the shuffle-then-sort paradigm [31, 30] which builds
on the observation that many traditional sorting algorithms (e.g. quicksort, mergesort,
radixsort) can be made oblivious by obliviously shuffling the inputs before running the
sorting algorithm. Since oblivious shuffling and (non-oblivious) sorting can be done in
O(n log n)-time these oblivious sorting algorithms run in O(n log n) (but unlike AKS the
hidden constants are small).

Although the shuffle-then-sort paradigm is extremely powerful, improvements in shuffling
(below O(n log n)) are unlikely to improve these protocols because of the O(n log n) lower-
bound on comparison-based sorting.

In the context of secure multiparty computation, however, sorting can often be reduced to
the simpler problem of merging two sorted lists into a single sorted whole. Each participant
in the computation, sorts their list locally, before beginning the computation, and the secure
computation itself need only implement a data-oblivious merge.

Merging is an easier problem than sorting, and even in the insecure setting it is known
that any comparison-based sorting method requires O(n log n) comparisons, whereas (non-
oblivious) linear-time merging algorithms are straightforward. Unfortunately, no data-
oblivious merge algorithms are known with complexity better than simply performing a
data-oblivious sort, and the best merging networks require O(n log n) comparisons.

Our main result is a secure multiparty merge algorithm, for merging two (or more) sorted
lists (into a single, sorted whole) that requires only O(n log log n) secure operations. This is
the first secure multiparty merge algorithm requiring fewer than O(n log n) secure operations.

1 For example, hierarchical ORAM [38, 24] uses Batcher’s sort.
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The crucial building block of our algorithm is a linear-communication secure multiparty
shuffle. Although no single-party, comparison-based shuffle exists using O(n) comparisons,
such shuffles exist in the two-party and multiparty setting (see Section 3), and this allows us
to avoid the O(n log n) lower bound for comparison-based merging networks that exists in
the single-party setting.

Our secure multiparty merge algorithm makes use of several novel data-oblivious al-
gorithms whose efficiency can be improved through the use of a linear-communication secure
multiparty shuffle.

These include
Securely sorting with large payloads: In Section 4 we show how to securely sort t

elements (with payloads of size w) using O(t log t + tw) communication. Previous sorting
algorithms required O(tw log(tw)) communication.
Securely sorting sparse lists: In Section 5 we show how to securely sort a list of size
n with only t nonzero elements in O(t log2 n + n) communication. This beats naïvely
sorting the entire list whenever t < n/ log2 n.
Secure stable compaction: In Section 6.1 we show how to securely compact a list
(i.e., extract nonzero elements) in linear time, while preserving the order of the extracted
elements. Previous linear-time oblivious compaction algorithms (e.g. [6]) are unstable
i.e., they do not preserve the order of the extracted values.
Secure merge: In Section 7 we give our main algorithm for securely merging two lists
with O(n log log n) communication complexity. Previous works all required O(n log n)
complexity.

All the results above crucially rely on a linear-communication secure multiparty shuffle.
Outside of the shuffle, all the algorithms are simple, deterministic and data-oblivious and
thus can be implemented using any secure multiparty computation protocol.

In the two-party setting, we give a protocol for a linear-communication secure shuffle
using any additively homomorphic public-key encryption algorithm with constant ciphertext
expansion (Section 3.3). In the multiparty setting, a linear-communication secure shuffle can
be built from any one-way function [34].

By making black-box use of a secure shuffle, our protocols can easily extend to different
security models. If the shuffle is secure against malicious adversaries, then the entire protocol
can achieve malicious security simply by instantiating the surrounding (data oblivious)
algorithm with an MPC protocol that supports malicious security. One benefit of this
is that our protocols can be made secure against malicious adversaries without changing
the asymptotic communication complexity. Similarly, as two-party and multi-party linear-
communication shuffles exist, all our algorithms can run in the two-party or multi-party
settings simply by instantiating the surrounding protocol with a two-party or multi-party
secure computation protocol (e.g. Garbled Circuits or GMW).

2 Preliminaries

2.1 Secure multiparty computation

Secure multiparty computation (MPC) protocols allow a group of participants to securely
compute arbitrary functions of their joint inputs, without revealing their private inputs to
each other or any external party. Secure computation has been widely studied in both theory
and practice.
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Different MPC protocols provide security in different settings, depending on parameters
like the number of participants (e.g. two-party or multiparty), the amount of collusion (e.g.
honest majority vs. dishonest majority), and whether the participants are semi-honest, covert
[15, 7] or malicious.

In this work, we focus on creating data-oblivious algorithms that can be easily implemented
using a variety of MPC protocols.

2.2 Oblivious algorithms
Secure and oblivious algorithms have been widely studied, it is instructive to differentiate
between three types of data oblivious algorithms [37].

1. Deterministically data independent: In these algorithms, the control flow is determ-
inistic and dependent only on public data. Most sorting networks are deterministically
data independent.

2. Data independent: In these algorithms, the control flow is determined completely by
the public data as well as additional (data-independent) randomness.

3. Data oblivious: In these algorithms, data can be “declassified” during the computation,
and the control flow can depend on public data, as well as on previously declassified
data. To ensure privacy, we require that the distribution of all declassified data (and the
point at which it was declassified) is independent of the secret (input) data. The sorting
algorithms of [31] are data oblivious, as are many ORAM constructions [38, 24].

All three of these types of algorithms can be easily implemented using generic MPC
protocols.

2.3 Secure sorting
One common technique for secure sorting is to implement a sorting network under a generic
MPC protocol. Since the sequence of comparisons in a sorting network is data-independent,
if each comparison is done securely, the entire sorting procedure is secure.

In practice, many secure sorting algorithms are built on Batcher’s sorting network
[9]. Batcher sorting networks require O(n log2 n) comparisons to sort n entries, and is
straightforward to implement, and is provided by MPC compilers like EMP-toolkit [45]
and Obliv-c [49]. In the two-party setting, when each individual’s list is pre-sorted, then
the final round of the Batcher sort can be omitted, and Batcher’s Bitonic sort provides
an efficient merge algorithm with O(n log n) complexity. The AKS sorting network [2] and
its improvements [39, 40] are asymptotically better than a Batcher’s, and requires only
O(n log n) comparisons, but the hidden constants are enormous and the AKS network is not
efficient for practical applications [3].

Zig-zag sort [27] is a deterministic data-independent sorting method, requiring O(n log n)
comparisons, but the hidden constants are much smaller than those in AKS. Unfortunately,
Zig-zag sort has a depth of O(n log n) (instead of O

(
log2 n

)
for Batcher’s sorting network),

and this high depth makes it less appealing for some applications.
A randomized version of the Shellsort algorithm can be made data-oblivious, and gives

an O(n log n) randomized algorithm that can be made either Monte Carlo or Las Vegas [25].
In a 2-party computation, when both parties hold their data in the clear, each party

can locally sort his or her data, and then apply Batcher’s bitonic sorting network to merge
the two sorted lists. This results in an algorithm that runs in O(n log n) time (with small
constants). This trick was used, for instance, in private set intersection [32]. Unfortunately,
this trick does not apply when the two halves of the list cannot be pre-sorted, e.g. when the
list is the (secret-shared) output of a prior computation.
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Although sorting networks of size O(n log n) with a small hidden constant are unknown,
secure sorting can be achieved in O(n log n) time (with a small constant) by combining secure
shuffles and a generic sorting algorithm [31]. The core idea is that if the underlying data are
randomly shuffled, then the sequence of comparisons in any sorting algorithm (e.g. mergesort,
quicksort) are independent of the underlying data.

More concretely, to securely sort a list, data owners can first securely shuffle their lists,
then apply an O(n log n) sorting algorithm (e.g. merge sort) to their shuffled list. Each
comparison in the sorting algorithm will be computed under MPC, but the result of the
comparison is then revealed, and the players can order the (secret) data based on the output
of this public comparison. The Waksman permutation network [44] requires O(n log n) swaps,
to implement a shuffle, so the entire shuffle-then-sort procedure only requires O(n log n)
operations (with small constants). This idea has been implemented using the Sharemind
platform [14] and to build efficient mix-nets [4]. These protocols are not data-independent
(since the exact sequence of comparisons depends on the underlying data), but instead they
are data-oblivious which is sufficient for security.

Building on this shuffle-then-sort paradigm, oblivious radix sort [30] requires O(n log n)
communication, but only a constant number of rounds, and is efficient in both theory and
practice. This was later improved (in the multiparty setting) [17] by incorporating the
linear-time multiparty shuffle algorithm of [34] we review this shuffle in Section 3.2.

See [21] for a survey of data-oblivious sorting methods.

Sorting provides a method for computing all the order statistics of the joint list. If,
however, only a single order statistic (e.g. the kth largest element) is needed, there are more
efficient secure protocols that only require O(log n) secure comparisons to compute the kth
order statistic [1]. The protocols of [1] reveal the order statistics in the clear, and it is not
clear how to modify them to reveal only secret shares of the relevant order statistic, Thus
they are not applicable in scenarios where computing order statistics is merely the first step
in a larger secure computation. Another way of viewing this distinction is that the algorithms
presented in [1] are not data-oblivious – the sequence of comparisons depends on the output –
but since the output is revealed by the protocol the entire sequence of comparisons could be
simulated by a simulator who only sees the protocol’s output.

Merging two sorted lists is potentially easier than sorting, and when data-obliviousness is
not needed merging can be done in linear-time using a single-scan over each list.

In the deterministic data independent setting, Batcher’s merging networks are known to
be optimal when one list is small [5]. In the (probabilistic) data independent setting, [35]
gives a randomized variant of Batcher’s odd-even mergesort using O(n log n) comparisons
(with hidden constant less than one).

In the three-party setting, there is a linear-communication secure merge protocol [16], but
no similar result is known in the two-party setting.

The main contribution of this work is to provide a new, multiparty secure merge algorithm
that only requires O(n log log n) secure operations (with small constants). Our construction
avoids the lower bound of [35] by using an efficient secure shuffle (see Section 3) that is
not comparison-based. Our construction immediately yields efficient, secure algorithms for
sorting and obliviously computing order statistics in both the two-party and multiparty
settings, and these constructions can easily be made secure against malicious adversaries
using standard techniques.
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3 Shuffling secret shares

3.1 O(n log(n))-oblivious shuffles
Secure shuffles can be done in O(n log n)-time using a Waksman permutation network [44, 12].
Waksman permutation networks are built using “controlled-swap-gates” which take two inputs
and a “control bit” that determines whether to swap the two inputs. Although the Waksman
network guarantees that every permutation can be realized through a choice of control bits, a
uniformly random choice of control bits does not result in a uniformly random permutation
[12]. On the other hand, given a permutation, the specific control bits required to realize
this permutation can be calculated efficiently.

Waksman networks can be used to facilitate a secure m-party shuffle by simply having
each player separately input their control bits and performing m (sequential) shuffles. The
resulting shuffle will be random as long as one player was honest, and the entire cost of the
protocol is O(mn log n). Alternatively, the control bits can be set within the MPC [42], but
this requires O

(
n2) secure multiplications, and is thus less efficient than simply repeated

executing a Waksman permutation with different control bits provided by each party when
the number of players, m, is constant.

Asymptotically efficient oblivious shuffles can also be performed using more complex
ORAM-based techniques [6, 20], but these are not nearly as efficient as Waksman shuffles in
practice.

3.2 Multiparty secure shuffles
In this section, we review the linear-communication secure multiparty shuffle of [34]. A
similar, multiparty secure shuffle was used for efficient multiparty ORAM [16]. The protocol
is an information-theoretic protocol for executing a pseudo-random shuffle. An overview of
the multiparty shuffle is given in Figure 1.

The group of participants, C, generates a permutation, σ(C). Since σ(C) is hidden from
players outside C, and every coalition of size t is outside some subset, the final permutation
(which is the composition of all the permutations σ(C)) is hidden from all players [34, Section
4.3].

As noted in [34], simply sharing the (public) permutation among members of C requires
O(n log n) communication. If, however, the players share a pseudorandom permutation,
this communication cost is essentially eliminated and the total communication complexity
becomes O(n) as claimed. This can also be made secure against malicious adversaries, while
retaining its O(n) communication complexity [34, Section 4.4].

▶ Lemma 1 (Multiparty secure shuffle [34]). If there exists a Pseudorandom permutation
(PRP) with λ-bit keys, then for any m ≥ 3 and any t < m− 1, then then there is an m-party
secure shuffling protocol that remains secure against t corrupted players, that can shuffle
vectors of length m, where each player’s communication is(

m

m− t

)
n(m− t) +

(
m− 1

m− t− 1

)
(nm + λ).

In particular, if the number of players, m, is constant, the total communication per player is
linear in the database size, n.

Although the communication complexity of this re-sharing based protocol is linear in the
database size, n, repeating the resharing procedure for every subset of size t makes the overall
communication exponential in the threshold size, t. Thus if t = Θ(m), the communication
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MultiPartyShuffle

Input: m parties hold secret shares of a vector v⃗ of length n. Let t < m− 1 be the
desired corruption threshold.

Output: Secret shares of the shuffled vector v⃗.

1. For every subset, C, of m− t players, the protocol does the following:
a. The players re-share the secret shares of v⃗ to members of C.
b. The members of C reconstruct shares of v⃗ from the shares of shares of v⃗ using the

linearity of the secret sharing scheme.
c. The members of C choose a (pseudorandom) permutation σ(C) : [n]→ [n], known

to all members of C.
d. The members of C shuffle the shares of v⃗ according to this public permutation.
e. The members of C re-share the shares of σ(C)(v⃗) to the entire group of players.
f. The players reconstruct shares of σ(C)(v⃗) from the shares of shares of σ(C)(v⃗)

using the linearity of the secret sharing scheme.

Figure 1 The secure m-party shuffle of [34]. This shuffle provides security against semi-honest
adversaries when the corruption threshold is t < m − 1.

will be exponential in the number of players, m. Thus it only retains asymptotic efficiency for
small (constant) m. From an asymptotic standpoint, this is not a restriction, because if m is
super-constant, simply secret-sharing the input data among all the participants requires ω(n)
communication per party, so we can’t hope to get O(n) communication whenever m = ω(1).

3.3 2-party secure shuffles
In this section, we give a simple two-party shuffle that relies on an additively homomorphic
cryptosystem. Such a cryptosystem is not information-theoretically secure, and currently
there is no known, linear-communication information-theoretic secure shuffle. We note,
however, that all our protocols use only black-box access to the underlying shuffle, and thus
if the underlying shuffle could be made information-theoretically secure, then the entire
protocol would inherit this security.

If the cryptosystem has constant ciphertext expansion, then the resulting shuffle re-
quires only O(n) communication. This is essentially the two-party variant of the linear-
comumunication multiparty shuffle [34] described in Section 3.2. A similar 2-party shuffle
was described in [22].

Using a lattice-based scheme with ciphertext packing, this can be made extremely efficient
in practice. To demonstrate the practical efficiency of this scheme, we implemented it using
the PALISADE [18] FHE library, to show that it is dramatically more communication efficient
than a simple Waksman shuffle (implemented in EMP [45]). We chose to implement our
scheme using lattice-based FHE because ciphertext packing makes these schemes extremely
efficient (in terms of ciphertext expansion, and the cost of additively homomorphic operations)
when used to encrypt blocks of data. See Appendix C for details.

▶ Lemma 2 (2-Party secure shuffle). If PKE is an additively homomorphic, semantically
secure cryptosystem with constant ciphertext expansion, then the shuffle TwoPartyShuffle
outlined in Figure 2 is secure against passive adversaries, and requires O(n) communication.
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TwoPartyShuffle

Input: Alice and Bob hold secret shares of vector v⃗. Let v⃗a and v⃗b denote the shares.
Assume that the secret sharing is additive over a group G, i.e., v⃗a[i] + v⃗b[i] = v⃗[i]
where arithmetic is done over G.

Output: Additive secret shares of the shuffled vector v⃗.

1. Alice generates a key for an additively homomorphic PKE. pka $← Gen. Suppose
PKE is additively homomorphic over a group, G.

2. Bob generates a key for an additively homomorphic PKE. pkb $← Gen.
3. For each block i = 1, . . . , n, Alice encrypts her share vector v⃗a[i], setting ca[i] =

Enc(pka, v⃗a[i]). Alice sends these ciphertexts to Bob.
4. For each block i = 1, . . . , n, Bob encrypts his share vector v⃗b[i]. cb[i] = Enc(pkb, v⃗b[i]).
5. Bob locally shuffles the 2n ciphertexts, keeping both (encrypted) shares of each

element together.
6. Bob re-randomizes the ciphertexts and the shares and sends them to Alice.
7. Alice locally shuffles the 2n ciphertexts, keeping both (encrypted) shares of each

element together.
8. Alice re-randomizes the ciphertexts and the plaintext shares.
9. Alice sends Bob his encrypted ciphertexts.

10. Bob decrypts his shares.

Figure 2 A 2-party shuffle based on additively homomorphic encryption, secure against semi-
honest adversaries.

The proof is straightforward, but for completeness we provide it in Appendix B.
Two-party shuffles of this type can be made secure against malicious adversaries, while

retaining their asymptotic efficiency [29, 11].
The linear-communication multiparty secure shuffle in Section 3.2 has been used to

create extremely efficient sorting algorithms in the multiparty setting [17]. Using our
linear-communication secure 2-party shuffle, TwoPartyShuffle described in Figure 2, the
shuffle-then-sort construction of [17] can be extended to the 2-party setting.

4 Securely sorting with large payloads

In this section, we give a simple, linear-communication algorithm for sorting keys with large
payloads that makes black-box use of a linear-communication secure shuffle. In large-payload
sorting, we have a collection of blocks data (payloads), and each block is tagged with a
key. Each payload must be put into the position determined by its key, but the position of
elements within each payload remains unchanged. Like all our constructions, this algorithm
crucially relies on a black-box access to a linear-communication shuffle (Section 3).

Oblivious sorting algorithms [31] and sorting networks [2] can sort n elements using
O(n log n) comparisons. Now, imagine that instead of n elements, we have n/w blocks, each
of size w, and the n/w blocks need to be (obliviously) sorted based on n/w (short) keys.
In the insecure setting, this requires O (n/w log (n/w)) comparisons. In the secure setting,
using an existing oblivious sorting algorithm, requires O (n/w log (n/w)) secure comparisons.
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LargePayloadSort

Input: A secret-shared vector Jx⃗K of keys with |x⃗| = n/w. A secret-shared vector
of payloads, Jy⃗K with y⃗ ∈ ({0, 1}w)n/w of payloads. The vector y⃗ is viewed as n/w

payloads, each of size w.
Output: Sorted lists Jx⃗K and Jy⃗K, sorted by x⃗.

1. For i = 1, . . . , n/w, generate a random “tag,” JriK, with ri ∈ {0, 1}λ (ri is the tag
associated to xi and block yi).

2. Shuffle the list ((Jx1K, Jy1K, Jr1K), . . . , (Jxn/wK, Jyn/wK, Jrn/wK)).

((Jx̃1K, Jỹ1K, Jr̃1K), . . . , (Jx̃n/wK, Jỹn/wK, Jr̃n/wK))
= SHUFFLE

(
((Jx1K, Jy1K, Jr1K), . . . , (Jxn/wK, Jyn/wK, Jrn/wK))

)
3. Sort the (shuffled) list ((x̃1, r̃1), . . . , (x̃n/w, r̃n/w)), based on their keys x⃗.

((Jx̄1K, Jr̄1K), . . . , (Jx̄n/wK, Jr̄n/wK)) = SORT
(
((Jx̃1K, Jr̃1K), . . . , (Jx̃n/wK, Jr̃n/wK))

)
4. Reveal the tags (r̃1, . . . , r̃n/w), and (r̄1, . . . , r̄n/w).
5. Move ((r̃1, Jỹ1K), . . . , (r̃n/w, Jỹn/wK)) so that the r̃i are in the same order as r̄i. Let

(Jȳ1K, . . . , Jȳn/wK) denote this ordered list.
6. Return (Jx̄1K, . . . , Jx̄n/wK) and (Jȳ1K, . . . , Jȳn/wK).

Figure 3 Securely sorting keys with large payloads.

Unfortunately, obliviously swapping two blocks (based on the result of the secure comparison)
requires O(w) controlled swap gates. Thus the entire process requires O (n log (n/w)) secure
operations.

Note that since a secure comparison of λ-bit keys requires λ secure AND gates to
implement as a circuit, whereas a controlled-swap gate only requires one, sorting n elements
(based on λ-bit keys) requires O(nλ log n) secure AND gates, whereas sorting n/w blocks,
requires O

(
n
(

λ
w + 1

)
log (n/w)

)
secure AND gates, so sorting on blocks is actually somewhat

faster (although still not linear).
Given a linear-communication secure shuffle, the problem of sorting with large payloads

can be reduced to the problem of sorting with small payloads as follows. Each key and
its corresponding payload (“block”) are tagged with a random tag. Then the keys are
sorted together with their (short) tags, and the (sorted) tags are revealed. The blocks are
shuffled together with their tags, and the tags are revealed. Finally, the blocks are moved
into the ordering given by the tags. The key obsevrvation is that shuffle ensures that this
final data-movement is independent of the underlying data. The full algorithm is given by
LargePayloadSort in Figure 3.

▶ Lemma 3 (Securely sorting with large payloads). The sorting algorithm, LargePayloadSort,
outlined in Figure 3 can be instantiated using O(n/w log(n/w) + n) communication, and is
(t, m)-secure against semi-honest adversaries if m = 2, or t < m− 1.

Proof. First, note that the probability that ri collides with another rj is at most n
w2λ , so a

union bound shows that with probability at least 1− n2

w22λ , all the ri will be distinct. Note
that if the ri are not distinct, correctness may fail, but privacy will still be preserved.
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If we choose w = ω(log n), then n2

w22λ will be negligible, and for the rest of the argument,
we assume we are in the case where all the ri are distinct.

First, note that the vectors x⃗ and y⃗ can be tagged using a single linear pass (requiring
O(nλ/w) secure operations). Sorting the vector x⃗ requires O (n/w log (n/w)) operations,
using a standard oblivious sorting algorithm (e.g. [31]). The shuffling algorithm requires
O(n) secure operations, and the final step of moving the data can be done in linear time,
since it does not need to be done obliviously.

To see that this protocol is secure, note that each player’s view consists of the {ri}
associated with the sorted x⃗, and the {ri} associated with the shuffled y⃗. These distributions
can be simulated as follows: the simulator chooses n/w ri uniformly from {0, 1}λ. The
simulator reveals {ri} as associated with x⃗, then the simulator shuffles the {ri} and reveals
the shuffled set as associated with y⃗. Since the protocol chooses the {ri} uniformly, their
distribution is unchanged after sorting them based on x⃗. Since the shuffle is secure, the {ri}
associated with the shuffled y⃗ are simply a random permutation of the {ri} associated with
x⃗. ◀

5 Sorting sparse lists

The algorithm LargePayloadSort provides a method for sorting sparse lists with linear com-
munication. The idea is to divide the list into blocks. Then, with a single pass, we can
count the number of nonzero elements in each block. Using LargePayloadSort, we can sort
the blocks based on the number of nonzero elements. If the list is sparse enough (relative
to the blocksize), we can be sure that only a small fraction of blocks have nonzero entries.
These blocks will appear first (after sorting blocks based on the number of nonzero entries),
thus it only remains to sort these “top” blocks (using on O(n log n)-sorting algorithm). The
complete algorithm is outlined in Figure 4.

▶ Lemma 4. If V⃗ is a list of length n with t nonzero entries, then V⃗ can be securely sorted
using O

(
t log2(n) + n

)
secure operations, which is linear in n when t < n/ log2(n).

Proof. The algorithm, SparseSort is provided in Figure 4.
First, we note that this algorithm is correct. Since V⃗ has at most t nonzero elements, at

most t blocks of B⃗ contain nonzero elements. Thus after sorting B⃗ (Step 3) all the nonzero
elements are in the top t blocks, and after sorting the top t blocks (Step 5) the entire list is
sorted.

Next, we analyze the running efficiency. Step 2 requires a linear pass over the list, and
requires O(n) communication. Step 3 calls LargePayloadSort which requires O(n/w log(n/w)+
n) communication to sort blocks of size w. Step 5 requires sorting a list of length tw which can
be done in time O(tw log(tw)). If w = log(n), then Step 3 requires O(n) secure operations,
and Step 5 requires O(t log2(n)) = O(n) secure operations. ◀

6 Oblivious Compaction

In this section, we review the notion of oblivious compaction. The goal of compaction is to
remove a set of marked element from a list. Given a secret shared list, where each element is
tagged with secret share of 0 or 1, an oblivious compaction procedure removes all elements
tagged with a 0, and returns the new (secret shared) list containing only those elements
tagged with a 1.
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SparseSort

Input: A secret-shared list, JV⃗ K, of length n. An upper bound, t < n, on the number
of nonzero elements of V⃗ .

Output: Secret shares of the sorted list JV⃗ K.

1. Break V⃗ into blocks: Set the blocksize, w = O(polylog n). Let JB⃗K denote a
secret-shared vector of length n/w, where

B⃗i = [Viw+1, . . . , V(i+1)w]

is the ith block of V⃗ .
2. Count entries in blocks: For i = 1, . . . , n/w

Set JCiK = J0K
For j = 1, . . . , w

If V(i−1)w+j ̸= 0 then JCiK = JCi + 1K.
3. Sort blocks:((

JC̄1K, JB̄1K
)

, . . . ,
(
JC̄n/wK, JB̄n/wK

))
= LargePayloadSort

(
(JC1K, JB1K) , . . . ,

(
JCn/wK, JBn/wK

))
4. Merge blocks: Merge the blocks B̄i into a list of n individual elements, let Wi

denote the ith element in this list, i.e.,

(JW1K, . . . , JWnK) =
(
JB̄1K, . . . , JB̄n/wK

)
.

5. Sort top blocks:(
JW̄1K, . . . , JW̄twK

)
= SORT (JW1K, . . . , JWtwK)

6. Return:
(
JW̄1K, . . . , JW̄twK, JWtw+1K, . . . , JWnK

)

Figure 4 Securely sorting a sparse list of length n with t nonzero entries using O(t log2(n) + n)
communication.
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The first oblivious compaction algorithm was probabilistic and ran in O(n log log λ)
time with failure probability that was negligible as a function of λ [35]. Follow-up works
[37, 36] also gave probabilistic algorithms for solving the problem of oblivious compaction
with running time O(n log log n). The first deterministic, O(n)-time compaction algorithm
appeared in [6].

The compaction algorithms of [35, 6, 20] use expander graphs, and while they are
asymptotically efficient, the hidden constants in the big-O are large,2 and the algorithms are
likely to be inefficient for lists of reasonable size. The compaction algorithms of [37] and [36]
are data independent and run in time O(n log log n), (with reasonable constants) and thus
are suitable for our purposes. In Appendix D, we review the algorithm of [37] and give a
tight analysis of its error probability and running time.

When the list is sparse (i.e., it has O(n/ polylog(n)) nonzero elements), the problem of
compaction is much simpler, and in Appendix E we give a simple algorithm for compacting
sparse lists.

A sorting algorithm is called stable if the order of elements with equal keys is retained. In
general, 0-1 principle [8] for sorting networks tells us that any deterministic, data-independent
stable compaction algorithm is in fact a sorting algorithm. Thus the lower bounds on the
size of comparison-based sorting algorithms tell us that any deterministic, comparison-based
compaction algorithm with o(n log n) complexity must be unstable.

In Section 6.1, we show that, given black-box access to a linear-communication shuffle,
stable compaction with complexity O(n) is achievable. This does not violate the sorting
lower bounds since the underlying shuffle is a multiparty protocol.

6.1 Stable compaction

Using the a linear-communication secure shuffle (see Section 3), we give a simple, linear-time
stable compaction algorithm. Our stable compaction algorithm takes three arguments, a
public bound, t, a secret-shared vector of “tags,” s⃗, and a secret shared vector of “payloads,” x⃗.

Jy⃗K = StableCompaction (t, Js⃗K, Jx⃗K) .

▶ Lemma 5 (Stable compaction). Algorithm, StableCompaction, outlined in Figure 5 is stable,
secure against passive adversaries, and requires O(n) communication.

Proof. It is straightforward to see that if the shuffle can be done with linear time and
communication, the entire protocol can be done with linear time and communication.

To see that the protocol is secure, we construct a simulator that simulates the players’
views. First, note that, essentially, the players’ views consist of the revealed vector y⃗.
Consider the following simulator, S. On inputs n, t, the simulator, S, generates a vector z⃗

such that zi = i for i = 1, . . . , n− t, and zi = 0 for i > n− t. Then S shuffles z⃗, and outputs
the shuffled vector y⃗. It is straightforward to check that this has the same distribution as in
the real protocol. ◀

2 The smallest constant being ∼ 16, 000 in [20].
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StableCompaction

Input: Secret shares of a vector Js⃗K of length n of “tags”. Secret shares of a vector
Jx⃗K of length n of “payloads”. An integer t < n, such that the number of nonzero
elements in s⃗ is t. Note that in compaction the value t is publicly known.

Output: Secret shares of a list of length n consisting of the t nonzero elements in x⃗,
followed by the n− t “dummy” elements.

1. Using a linear pass, tag the real and dummy elements using two distinct counters, c

and d, so that the tags of the dummy elements all appear before the real elements.
Initialize JcK = 1.
Initialize JdK = t + 1.
For i = 1, . . . , n,

If JsiK = J⊥K, set JyiK = JdK, and set JdK = Jd + 1K.
If JsiK ̸= J⊥K, set JyiK = JcK, and set JcK = Jc + 1K.

2. Shuffle the vector x⃗ together with the tags y⃗, using a linear-communication secure
shuffle (see Section 3).

((Jx̃1K, Jỹ1K), . . . (Jx̃nK, JỹnK)) = SHUFFLE ((Jx1K, Jy1K), . . . (JxnK, JynK))

3. Reveal the tags ỹ.
4. For i = 1, . . . , n, move Jx̃iK to location, yi, i.e., set Jx̄yi

K = Jx̃iK.
5. The first t elements of Jx̄K are the “true” values and the last n − t entries are the

“dummy” elements.

Figure 5 Stable compaction.

7 Securely merging private lists

7.1 Construction overview
In this section, we describe our novel data-oblivious merge algorithm. Our algorithm requires
a linear-communication algorithm for shuffling secret shares (see Section 3), an oblivious
sorting algorithm, SORT (e.g. [2, 27, 31, 30]) that requires sort(·) secure operations, and
an oblivious, stable compaction algorithm (see Section 6) The rest of the operations are
standard operations (e.g. equality test, comparison) that can be easily implemented in any
secure computation framework.

At a high-level, the merging algorithm proceeds as follows:
The input is two (locally) sorted lists, which are then concatenated.
The players divide the list into blocks of size w = O(polylog(n)). We call the first element
of each block a “pivot” element. Then the players sort these blocks based on their
pivots using LargePayloadSort. (For efficiency, this step requires the linear-communication
shuffle).
At this point, because the initial lists were sorted, most elements are “close” to their true
location in the list. In fact, we can concretely bound the number of “strays” (i.e., the
number of elements that may be far from their true location).
After extracting the strays, every wth element is declared to be a pivot for some parameter
w = O(polylog n).
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The players obliviously extract these strays, and match them to their “true” pivots. Since
the number of strays and pivots is not too large, this can be done using a linear number
of secure operations using the sparse sorting algorithm SparseSort (described in Figure 4).
The players reinsert the strays next to their true pivot. To avoid revealing the number of
strays associated with each pivot, the number of strays associated to each pivot must be
padded with “dummy” elements.
The players use a linear-communication stable compaction algorithm to remove the
dummy elements that were inserted with the strays.
The players sort using polylog(N)-sized sliding windows again. At this point, all the
elements will be in sorted order, but there will be many dummy elements.

The details of this construction are described in Section 7.2.

7.2 Oblivious merge with O(n log log n) secure operations
In this section, we provide the details of our oblivious-merge algorithm.

1. Public parameters: A length, n ∈ Z. A blocksize w ∈ Z, such that w | n (we will set
w = O(polylog(n))). A parameter δ, with 0 < δ < 1.

2. Inputs: Sorted, secret-shared lists (Ja1K, . . . , JaℓK), and (Jb1K, . . . , Jbn−ℓK). We let v⃗

denote this list,

Jv1K, . . . , JvnK def= Ja1K, . . . , JaℓK, Jb1K, . . . , Jbn−ℓK.

3. Creating pivot tags: For every pivot, assign a random identifier r from the set
1, . . . , n/w as follows(

Jr1K, . . . , Jrn/wK
)

= SHUFFLE (J1K, . . . , Jn/wK) .

At this point, the “identifier” or “tag” ri remains hidden (secret-shared), and will be
assigned to the ith pivot in the next step.
Secure Operations: O (n/w)

4. Sorting based on pivots: This step uses LargePayloadSort to sort blocks of size w

based on their leading entry as follows. Define Bi to be the ith block of size w,

Bi
def=
(
v(i−1)w+1 . . . , vi·w

)
,

and define pi
def= v(i−1)w+1 for i = 1, . . . , n/w to be the leading element of each block.(

J⃗̃pK,
((

Jr̃1K, JB̃1K
)

, . . . ,
(
Jr̃n/wK, JB̃n/wK

)))
= LargePayloadSort

(
Jp⃗K,

(
(Jr1K, JB1K) , . . . ,

(
Jrn/wK, JBn/wK

)))
.

At this point, the blocks of the vector v⃗ are sorted according to the leading element in
each block,

(v1, . . . , vn) def= B̃1 · · · B̃n/w.

Secure Operations: O(n/w log(n/w) + n)
5. Revealing pivot Tags: For i = 1, . . . , n/w, reveal r̃i. Note that since each pivot, pi,

was assigned a random tag ri (which remains hidden), revealing {r̃i}, which are sorted
based on the pi reveals no information about the set of pivots, {pi}.
Secure Operations: O (n/w)
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6. Tagging: Using a linear pass, tag each element with its initial index, i.e., the ith element
in the list is tagged with a (secret-shared) value i. For i = 1, . . . , n set JeiK = JiK. Note
that since the tags are publicly known, this step can be done without communication.
Secure Operations: O(n)

7. Sorting sliding windows: Fix a threshold, δ > 0 (the exact value of δ is calculated in
Lemma 11). Sort the list Jv⃗K together with the tags e⃗, based on windows of size 4δ−1w

as follows: For i = 1, . . . , n/(2δ−1w)− 1,((
Jv2(i−1)δ−1w+1K, Je2(i−1)δ−1w+1K

)
, . . . ,

(
Jv2(i+1)δ−1wK, Je2(i+1)δ−1wK

))
= SORT

((
Jv2(i−1)δ−1w+1K, Je2(i−1)δ−1w+1K

)
, . . . ,

(
Jv2(i+1)δ−1wK, Je2(i+1)δ−1wK

))
Secure Operations: O

((
n/
(
2δ−1w

))
sort

(
4δ−1w

))
8. Identifying “strays” For each element in v⃗, if its initial index (stored in its tag e) differs

from its current position by more than δ−1w, then mark the element with a (secret-shared
tag “stray”).
For i = 1, . . . , n,

JsiK =
{

J1K if |ei − i| > δ−1w

J0K otherwise.

and

JviK =
{

J⊥K if |ei − i| > δ−1w

JviK otherwise.

Secure Operations: O (n)
9. Extracting strays At this point, each stray is tagged with the (secret-shared) tag

(JsiK = J1K) and we can extract these strays using a compaction algorithm.

(Jz1K, . . . , JzbK) = StableCompaction (Js⃗K, Jv⃗K) .

For an appropriate choice of parameters, δ, w, Lemma 6 shows that the number of strays
will be less than b.
Secure Operations: O (n)

10. Sorting pivots and strays: Sort pivots together with strays, using SORT. There are
n/w pivots, and the list of strays has b elements, so this list has b + n/w elements. Pivot
i, p̃i is tagged with its tag, r (from Step 4), and each stray is tagged with 0.

((Jz1K, Jρ1K), . . . , (Jzb+n/wK, Jρb+n/wK)
)

= SORT
(
((Jz1K, J0K), . . . , (JzbK, J0K)) ||

(
(Jp̃1K, Jr̃1K), . . . , (Jp̃n/wK, Jr̃n/wK)

))
Secure Operations: sort(b + n/w)

11. Adding pivot IDs to strays After step 10, the players hold a (sorted) list, Jz⃗K, of
pivots and strays, and a list of “tags” Jp⃗K, where pivot pi is tagged with ri and each
stray is tagged with 0. Both lists are of length b + n/w. In this step, they will tag each
stray in this list with its corresponding pivot ID as follows. Initialize JcK = Jρ̃1K. For
i = 1, . . . , b + n/w.
a. If ρi ̸= 0 (i.e., zi is a pivot), then JcK = JρiK, JρiK = J0K.
b. If ρi = 0 (i.e., zi is not a pivot) , then JρiK = JcK.
At the end of this process, each of the strays is tagged with a (secret-shared) ID of the
nearest pivot above it. To make this step oblivious, the conditional can be implemented
with a simple mux. Secure Operations: O(b + n/w)
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12. Counting number of strays associated to each pivot: Initialize JcK = J0K. Define
the share vector Js⃗K as follows. For i = b + n/w, . . . , 1
a. If ρi ̸= 0 (i.e., zi is not a pivot), then set JcK = Jc + 1K, and JsiK = J0K.
b. If ρi = 0 (i.e., zi is a pivot) , then set JsiK = JcK, JcK = J0K.
At the end of this process, if zi is a pivot, then si stores the number of strays associated
with that pivot.
Secure Operations: O(n)

13. Removing pivots from stray list: Using the sparse compaction algorithm SparseCom-
paction (described in Figure 8), extract a list of b strays, together with their tags (recall
the “tag” ρi gives the pivot ID rj of the nearest pivot preceding the ith stray). Note that
this compaction does not need to be stable.

(((Jz1K, Jρ1K), . . . , (JzbK, JρbK))
= SparseCompaction

(
b, Jρ⃗K, ((Jz1K, Jρ1K), . . . , (Jzb+n/wK, Jρb+n/wK)

)
Secure Operations: O

(
b log2(n)

)
14. Extracting pivot counts: After Step 12 the s⃗ is a vector of length b + n/w containing

the number of strays associated with each of the n/w pivots, and 0s in the locations
corresponding to strays. Set

Js⃗K = StableCompaction (n/w, Js⃗K, Js⃗K) .

At this point, s⃗ is a vector of length n/w, and for i = 1, . . . , n/w, si is the number of
strays associated with pivot i.
Secure Operations: O (b + n/w)

15. Padding lists of strays: Although the total number of strays, b, is known, revealing the
number of strays associated with each pivot would leak information. Thus the number of
strays associated with each pivot must be padded to a uniform size. Note that every wth
element in the sorted inputs J⃗aK and J⃗bK was defined to be a pivot, thus if the list were
completely sorted, there could be at most 2(w − 1) elements between any two adjacent
pivots.
a. For i = 1, . . . , n/w, for j = 1, . . . , w,

B(i−1)·w+j =
{

(1, (⊥, ri)) if j ≤ JsiK
(0, (⊥, ri)) otherwise.

The elements tagged with 1 are the “dummy” elements. Note that among all the Bi,
there are at most b elements tagged with a 0. The elements tagged with a 0 will be
removed in the next step.

b. Using the algorithm SparseSort (described in Figure 4), sort the Bi.((
JB̃1,1K,

(
JB̃1,2K, JB̃1,3K

))
, . . . ,

(
JB̃2n(w−1)/w,1K,

(
JB̃2n(w−1)/w,2K, JB̃2n(w−1)/w,3K

)))
= SparseSort

(
(JB1,1K, (JB1,2K, JB1,3K)) , . . . ,

(
JB2n(w−1)/w,1K,

(
JB2n(w−1)/w,2K, JB2n(w−1)/w,3K

)))
c. We remove the first components, B̃i,1, and set(

(JC1,1K, JC1,2K) , . . . ,
(
JC2(w−1)n/w−b,1K, JC2(w−1)n/w−b,2K

))
=
((

JB̃1,2K, JB̃1,3K
)

, . . . ,
(
JB̃2n(w−1)/w−b,2K, JB̃2n(w−1)/w−b,3K

))
Secure Operations: O (n)
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16. Merging strays and pads Concatenate the list of b strays, (Jz⃗K, Jρ⃗K) (from Step 13)
along with the 2(w− 1)n/w− b pads JC⃗K from the previous step. Shuffle this list, keeping
the associated tags, then, reveal the tags and move strays and pads to the positions given
by their tags. This is accomplished as follows.
a. ((

JC̃1,1K, JC̃1,2K
)

, . . . ,
(
JC̃(2w−1)n/w,1K, JC̃(2w−1)n/w,2K

))
= SHUFFLE

(
(Jz⃗K, Jρ⃗K) ||JC⃗K

)
b. For each element in this shuffled list, reveal the associated tag, C̃i,2. Note that by Step

15 exactly 2(w − 1) (secret-shared) elements will have each tag.
c. For each i, move the block C̃i,1 of size 2(w−1) to the location where C̃i,2 = r̃j (revealed

in Step 5). At the end of Step 8, Jv1K, . . . , JvnK was the list of elements with the strays
set to ⊥. To accomplish this, define the function f(r̃j) def= j for j = 1, . . . , n/w, for the
public r̃j (revealed in Step 5).

for i = 0, . . . , n/w − 1 do
Define di = 1.

for j = 1, . . . , w do
set Jṽi(3w−1)+jK = Jviw+jK.

end for
end for
for i = 1, . . . , (2w − 1) do

Let j = f(C̃i,2).
Set Jṽ(j−1)(3w−1)+w+dj

K = JC̃i,1K.
Set dj = dj + 1.

end for
Secure Operations: O(n)

17. Compacting: Now, we need to remove the 2(w − 1)n/w dummy elements. We cannot
use an off-the-shelf compaction algorithm [37, 6, 36] because these algorithms are not
stable, Instead, we use the stable compaction algorithm StableCompaction (described in
Figure 5).
For i = 1, . . . , (3w − 1)n/w, if JṽiK = J⊥K, then set JziK = J0K, otherwise set JziK = J1K

J⃗̃vK = StableCompaction
(
n, Jz⃗K, J⃗̃vK

)
.

Secure Operations: O(n)
18. Sorting sliding windows At this point, the players have a (secret-shared) list, J⃗̃vK,

consisting of n elements, and all elements are in approximately their correct positions.
In this step, sort overlapping blocks of size 4

((
δ−1 + 4

)
w + 2

)
using a secure sorting

algorithm SORT.
For i = 1, . . . ,

⌈
n

2(δ−1+4)w+2

⌉
, set(

Jṽ(i−1)2((δ−1+4)w+2)+1K, . . . , Jṽ(i+1)2((δ−1+4)w+2)+1K
)

= SORT
(
Jṽ(i−1)2((δ−1+4)w+2)+1K, . . . , Jṽ(i+1)2((δ−1+4)w+2)+1K

)
At this point all the elements will be sorted.
Secure Operations: O

(⌈
n

2(δ−1+4)w+2

⌉
sort

(
4
((

δ−1 + 4
)

w + 2
)))

19. Return: The sorted, secret shared list, J⃗̃vK.

See Appendix A for a concrete calculation of the communication cost. See Appendix B
for a proof of security.
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8 Correctness

8.1 Bounding the number of strays
In order to analyze the running time of our algorithm, we need to bound the number of
“strays” that appear in Step 8.

▶ Lemma 6 (Bounding the number of strays). Suppose a list, L, is created as follows
1. L is composed of two sorted sublist L = a⃗||⃗b with |⃗a| = ℓ, and |⃗b| = n − ℓ. We assume

w | ℓ and w | n− ℓ.
2. Break the sorted list a⃗ into blocks of size w. Call the first element ( i.e., the smallest

element) in each block a “pivot.”
3. Break the sorted list b⃗ into blocks of size w. Call the first element ( i.e., the smallest

element) in each block a “pivot.”
4. Alice and Bob sort their joint list of blocks based on their pivots.

We call an element a “stray” if it is more than tw positions above its “true” position ( i.e.,
its position in the fully sorted list of Alice and Bob’s entries). Then there at most n

t strays.

Proof. Call the elements with indices [iw + 1, . . . , (i + 1)w] in L a “block.” Let Bi denote
the ith block for i = 1, . . . , n/w. Notice that
1. The elements within each block are sorted i.e., L[iw+j] ≤ L[iw+k] for each 0 ≤ j ≤ k ≤ w

and all i.
2. The lead elements in each block are sorted i.e., L[iw] ≤ L[jw] for i ≤ j.
3. Each element is less than or equal to all pivots above it i.e., L[iw + j] ≤ L[kw] for all

j < w, k > i.
4. All entries provided by a single party are in sorted order.
With these facts, notice that the only way an element’s index in L can be greater than its
true position is if it was in a block where the preceding block was provided by the other party.
Similarly, for an element to be more than tw from its true position, it must be in a block
preceded by t consecutive blocks provided by the other party. If we label blocks provided by
Alice with an a, and blocks provided by Bob with a b, then in order for w elements to be
more than tw out position, we need a sequence of a, · · · , a︸ ︷︷ ︸

t

, b or b, . . . , b︸ ︷︷ ︸
t

, a. There can only

be n
tw such sequences, so at most n

t elements can be strays. ◀

Note that the sequence of operations described in Lemma 6 exactly corresponds to the
process in the merging algorithm. In Step 2, the initial list is created as the concatenation of
a⃗ and b⃗. In Step 3, every wth element is tagged as a pivot, and in Step 4, the blocks are
sorted based on their pivots. Lemma 6 gives a bound on the number of elements that can be
more than tw positions away from their “true” location at the end of this process. In Step 7
(Sorting sliding windows), every element that is more than tw from its true location will
move at least tw positions, and thus will be tagged as a “stray” in Step 8. Conversely, every
element that moves more than tw positions in Step 7 must have been at least tw positions
from its true location, and thus the set of “strays” found in Step 8 will exactly correspond
to the set of elements that were tw positions from their true location, and this number is
exactly what is bounded in Lemma 6.

▶ Theorem 7 (Correctness of the merge). If the input lists J⃗aK and J⃗bK in Step 2 are locally
sorted, then the output list Jv⃗K in Step 19 is globally sorted.

Proof. At the end of Step 2, the two parts of the list v⃗, (v1, . . . , vℓ) and (vℓ+1, . . . , vn)
are locally sorted.
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At the end of Step 4 blocks of size w are sorted according to their leading (smallest)
elements. Note that if these blocks were non-overlapping (i.e., viw < viw+1 for i =
1, . . . , n/w − 1), the entire list would already be sorted at this point. In general, however,
there may be considerable overlap in the blocks provided from the a⃗ and those from b⃗.
At the end of Step 8, Lemma 10 tells us that all elements that are more than δ−1w from
their true (final) location will be tagged as “stray.”
Corollary 9 shows that after Step 8, no pivot will be tagged as “stray,” so no strays will
be extracted in Step 9, and thus concatenating the lists of pivots and strays in Step 10
will not introduce any duplications.
At the beginning of Step 18, Lemma 10 shows that every non-stray will be within δ−1w

of its true location. Lemma 8 shows that at the end of Step 4, every pivot is within w of
its true location. By Step 16, every stray is within 3w + 2 of its true pivot (based on the
pivot’s location after Step 4. Thus at the beginning of 18, every stray is within 4w + 2 of
its true location. Putting this together, every element is within (δ−1 + 4)w + 2 of its true
location. Since the sorting windows are chosen so that every element is sorted along with
all elements within a distance of (δ−1 + 4)w + 2 on either side, at the end of Step 18 all
the elements are sorted. ◀

▶ Lemma 8. Let v(i−1)w+1 denote the ith pivot at the end of Step 4. The true index, j∗, of
v(i−1)w+1 (in the completely sorted list) satisfies

(i− 2)w < j∗ < (i− 1)w + 1

Proof. At the end of Step 4 the pivots are all in sorted order relative to one another, and all
the blocks between the pivots are locally sorted.

First, notice that if (i− 1)w + 1 < j < w, the vj ≥ v(i−1)w+1, since the ith block is locally
sorted. Next, notice that if (i− 1)w + 1 ≤ j, then

v(i−1)w+1 ≤ v(⌈ j
w ⌉−1)w+1 ≤ vj (1)

where the first inequality holds because the pivots are sorted, and the second inequality holds
because vj is in the

⌈
j
w

⌉
th block which is locally sorted. Thus the true index j∗ of v(i−1)w+1

satisfies j∗ ≤ (i− 1)w + 1.
To see the other side of Equation 1, recall that the list v⃗ was composed of blocks from

two sources a⃗, and b⃗ which were locally sorted. Without loss of generality, assume block i

came from source a⃗. Now, consider the i′th block for i′ < i. If the i′th block came from the
same source as the ith block (⃗a), then since the original lists a⃗ was sorted, all elements of the
i′th block are less than or equal to v(i−1)w+1. If the i′th block came from the other source, b⃗,
then the elements v(i′−1)w+2, . . . , vi′·w could be out of order relative to v(i−1)w+1. On the
other hand, if there exists an i′′ with i′ < i′′ < i, with i′′ also from the source b⃗, then since b⃗

was locally sorted, all elements of the i′th block are less than or equal to those of the i′′th
block, in particular, they are less than or equal to the i′′th pivot which is less than or equal to
the ith pivot v(i−1)w+1. Thus only one block from b⃗ can be out of order relative to v(i−1)w+1.
Thus at most w − 1 elements vj with j < (i− 1)w + 1 can satisfy vj > v(i−1)w+1. ◀

▶ Corollary 9. In Step 8, no pivot will be tagged as a “stray.”

Proof. In Step 8, an element will be tagged as a stray if it is more than δ−1w from its true
location. Lemma 8 shows that a pivot is at most w from its true location, and thus can move
at most w positions when we sort on sliding windows in Step 7. ◀
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▶ Lemma 10. After Step 8 every element that was more than δ−1w from its true location
before Step 7 will be tagged as a “stray.”

Proof. To show this, it suffices to show that at the beginning of Step 7, if an element is
more than δ−1w from its true location (in the globally sorted list) then it will move at least
δ−1w during the sorting procedure of Step 7.

First, note that (as in the proof of Lemma 6) the only way an element can be more than
δ−1w from its true position is if

⌊
δ−1⌋ consecutive, adjacent blocks were provided by the

other party. By the choice of sliding windows, every element will be sorted within a window
containing at least δ−1w elements on either side of it. Thus any element that is directly
preceded or followed by δ−1w “out-of-order” elements will move at least δ−1w and thus be
tagged as a stray. ◀

9 Extensions

Malicious adversaries: Our secure-merge algorithm outlined in Section 7 is “MPC-friendly,”
and aside from the O(n)-communication shuffle (discussed in Section 3), the entire algorithm
can be naturally represented as an O(n log log n)-sized circuit. For this reason, extending
our merge protocol to provide malicious security requires (1) a linear-communication shuffle
and (2) a generic MPC protocol that both provide security against malicious adversaries.

The multiparty shuffle of [34] can be modified to provide security against malicious
adversaries, and several generic MPC protocols (e.g. [46, 28]) provide security against
malicious adversaries. In the two-party setting, the literature on efficient, verifiable shuffles
(e.g. [29, 11]) provide methods for making homomorphic encryption-based shuffles (like
that of Section 3.3) secure against malicious adversaries without affecting its asymptotic
communication complexity.

Merging more than two lists. Our protocol can also be modified in a straightforward
manner to support more than two parties, by merging multiple lists recursively.
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Appendix

A Protocol analysis

A.1 Efficiency analysis
In this section, we examine the efficiency of our construction.

Our algorithm requires a data-oblivious sorting routine, SORT. Sorting networks like
Batcher’s and the AKS network are deterministic data-independent sorting algorithms.
Batcher’s sorting network requires O(n log2(n)) comparisons to securely sort n elements, and
the AKS sorting network [2] uses only O(n log(n)) comparisons, the hidden constants are so
large that it only begins to beat Batcher’s sort for n > 1052 [3] and is hence impractical.
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The work of [31, 30] provide a data-oblivious sorting routines that requires O(n log n)
comparisons (with small constants) by combining a permutation network, and (public) sorting
algorithm. To the best of our knowledge, this is the fastest data-oblivious sort in practice,
and has optimal asymptotic guarantees.

Throughout the rest of the analysis, we assume that the subroutine SORT is a data-
oblivious sorting algorithm that requires sort(n) = O(n log(n)) secure operations.

▶ Lemma 11. The merging algorithm in described in Section 7.2 requires O(n log log(n))
secure operations.

Proof. Lemma 6 tells us that the maximum number of strays, b, is δn. In order for Step
15 to run in linear time, we set δ = O

(
log−2(n)

)
. Note, however, that if we use the

asymptotically efficient linear-time compaction algorithm from [6], we can choose a larger
value for δ, (i.e., δ = O(1)). With this choice of δ, the runtime is dominated by Steps 10
and 18. Step 10 takes time sort(b + n/w). Setting t = δ−1, Lemma 6 gives b = δn, so
b + n/w = O (n/w). Since sort(n) = O(n log(n)) operations, setting w = O

(
log2(n)

)
, step

10 takes O(n) secure operations. Step 18 takes O
(⌈

n
2(δ−1+4)w+2

⌉
sort

(
4
((

δ−1 + 4
)

w + 2
)))

.

With our choices of δ = O
(
log−2(n)

)
, and w = O

(
log2(n)

)
,
⌈

n
2(δ−1+4)w+2

⌉
= O

(
nlog−4(n)

)
,

and 4
((

δ−1 + 4
)

w + 2
)

= O
(
log4(n)

)
. Since sort(n) = O(n log(n)) operations, Step 18 takes

time O(n log log(n)). ◀

B Obliviousness

In this section, we show that the algorithm given in Section 7 is data oblivious.

▶ Lemma 12 (Obliviousness). The merge algorithm given in Section 7 is data oblivious.

Proof. Showing data-obliviousness requires showing
1. All values that affect the control flow are independent of the inputs
2. The value, and time of revelation of all revealed values are independent of the inputs

It is straightforward to check that all revealed values are uniformly and independently
chosen, and that the time of their revelation is deterministic (and hence input-independent).

Data are revealed at Steps 4 and 16. At Step 4, the pivot-IDs that are revealed are
uniformly random and independent of the input. The pivot locations are deterministic (every
wth element).

At Step 16, the same number of pivot IDs of each type are revealed (2w − 1) because of
the padding, and their locations are data-independent because of the secure shuffle.

Thus the entire algorithm is data-oblivious as long as the secure shuffle is data oblivious.
◀

With the exception of an asymptotically efficient secure shuffling algorithm, all the steps
of our sorting algorithm can be implemented with generic secure computation techniques,
and hence can easily be made secure against malicious parties or extended to the multiparty
setting.

Note that three steps require the asymptotically efficient secure shuffle. These are Steps 4
(“Sorting based on pivots”), 16 (“Merging strays and pads”) and 17 (“Compacting”).

In Section 3 we give standard algorithms for instantiating a two-party data-oblivious
shuffle (using additively homomorphic encryption) and a multi-party data-oblivious shuffle
(using one-way functions).
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C Shuffling times

Our secure sorting algorithm requires an efficient method for secure shuffling with payloads.
We give a simple, linear-time algorithm for this in Figure 2 based on additively homomorphic
encryption. To demonstrate the practical performance of this shuffle, we implemented and
benchmarked it using the PALISADE FHE library [18].

We used PALISADE version 1.6, with the “BFVrns” cryptosystem with a security level
set to “HEstd_128_classic.” This scheme uses the plaintext modulus 536903681, which
can encode plaintexts of length 29 bits. In this scheme, each ciphertext can be “packed”
with 16384 plaintexts, so each ciphertext holds 29 · 16384 = 475136 plaintext bits. Each
ciphertext required 1053480 bytes to store, so the ciphertext expansion with these parameters
is approximately 17.7.

We benchmarked the running time and communication cost of this scheme, and the
results are presented in Figure 6.

For comparison, we also implement the Waksman permutation network [44] using the
semi-honest 2pc provided by EMP [45]. The Waksman permutation network has complexity
O(n log n), where n is the number of bits being shuffled, rather than the number of blocks.
Because a uniform setting of control bits in the Waksman network does not yield a uniform
permutation, in practice, the Waksman network would usually be run twice (where each
player inputs control bits for one of the shuffles). These benchmarks only show a single run
of Waksman network.
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Figure 6 The communication cost of the FHE-based secure shuffling protocol in Section 3. Note
that both the x and y axes are on a log scale, and in such a scale, the function y = x log x, will
appear as y = x + log x, which is why the O(n log n) Waksman shuffle appears linear.
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D The [37] compaction algorithm

In this section, we review a data independent compaction algorithm described in [37, Theorem
14]. The algorithm runs in O(n log log n) time, and works by recursively peeling off 1/6th of
the remaining elements (depending on whether the majority of the remaining elements are
zero or one).

Algorithm 3 describes a simple randomized procedure that takes an array, v⃗, of length
n with the promise that at least n/2 of the elements in v⃗ are 0. Algorithm 3 reorganizes v⃗

such that the first n/6 elements of v⃗ are 0 with high probability. The algorithm makes use of
a deterministic O(n log(n)) partitioning algorithm, partition, e.g. that of [26] that requires
exactly n log(n) comparisons.

The full algorithm is described in Algorithm 2.

Algorithm 1 The [37] data-independent partitioning algorithm that runs in O(n log log n) time.

Private input: A list v⃗ ∈ {0, 1}n

Initialize a0 = 0
for i = 0, . . . , n− 1 do ▷ Count the number of 1s in v⃗

a0 = a0 + v[i]
end for
return MZ(v⃗, a0)
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Figure 7 The running time of the FHE-based secure shuffling protocol. Both parties were run
on the same machine, so networking costs were minimized.
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Algorithm 2 The [37] data-independent partitioning algorithm that runs in O(n log log n) time.

Private input: A list v⃗ ∈ {0, 1}n

Private input: a, the number of 1’s in v⃗

if n < 4s then
return partition(v⃗)

end if
Initialize flipped = 0

if a > n/2 then ▷ If majority ones, flip the bits of v⃗

flipped = 1
end if
v⃗ = flipped · (v⃗ ⊕ 1n) + (1− flipped) · v⃗ ▷ If flipped = 1, invert bits of v⃗

v⃗ = MZInner(v⃗, a) ▷ First n/6 bits are now 0 w.h.p.
Define v⃗l = (v[0], . . . , v[⌊n/6⌋]) ▷ ⃗⃗

lv is sorted portion of list
Define v⃗r = (v[⌊n/6⌋+ 1], . . . , v[n− 1]) ▷ v⃗r is unsorted portion of list
a = flipped · (n− a) + (1− flipped) · a ▷ Number of 1s remaining in v⃗r

v⃗r = MZ(v⃗r, a) ▷ Recurse
v⃗u = v⃗l||v⃗r

v⃗f = reverse (1n ⊕ v⃗u) ▷ Flip bits and reverse list
return flipped · v⃗f + (1− flipped) · v⃗u

Algorithm 3 The inner step of the [37] algorithm that moves n′/6 elements of type 0 to the
beginning of the list.

Input: A list v⃗ ∈ {0, 1}n′
with the promise that majority(v⃗) = 0

for i from 0 to n′/3− 1 do ▷ Boost probability that v⃗[i] = 0
for j from 0 to c− 1 do

r
$← [n′/3, n′ − 1]

if v⃗[r] = 0 then
swap(v⃗[i], v⃗[r])

end if
end for ▷ At this point, Pr [v⃗[i] = 0] > 1−

( 1
2
)c+1

end for
for i from 0 to n′/(3s)− 1 do

partition(v⃗[i · s, . . . , (i + 1) · s− 1]) ▷ Sort blocks of size s

for j from 0 to s/2 do
swap(v⃗[i · s/2 + j], v⃗[(2 · i) · s/2 + j]) ▷ Move first half of each block to the

beginning of the list
end for

end for
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▶ Lemma 13 (Algorithm 1 correctness). The probability that Algorithm 1 fails to correctly
compact a list is

6n− 20s

3s
e−2( 1

2 −( 3
4 )c)2

s

A straightforward calculation shows that for c = 6, setting s = log(n)2, gives a failure
probability of less than 2−40 for all n > 212.

Proof. At each iteration through the loop, the size of the remaining list drops by a factor
of 5/6. The loop terminates when the list size reaches 4s. If we let t denote the number of
iteration of the algorithm, we have 4s =

( 5
6
)t

n, which means

t =
log
(

n
4s

)
log 6

5

and
( 5

6
)t = 4s

n .
First, notice that

t∑
i=0

(
5
6

)i

=
(

1−
( 5

6
)t+1

1− 5
6

)

= 6
(

1− 5
6 ·
(

5
6

)t
)

= 6
(

1− 5
6 ·

4s

n

)
= 6n− 20s

n
.

A given block of size s will fail if it has more than s
2 zeros. The right half is guaranteed to

have at least n′

2 −
n′

3 = n′

6 zeros, so at least 1
4 of the elements on the right hand side are zero.

For a given ai, after making c attempted swaps, the probability that ai is zero is at least
1−

( 3
4
)c. Thus by the Hoeffding bound, the probability that a given block fails is at most

e−2( 1
2 −( 3

4 )c)2
s

Taking a union bound over the n′

3s blocks of size s, and then summing over the n′, we have
the total failure probability is bounded by

n

3s
e−2( 1

2 −( 3
4 )c)2

s

◀

▶ Lemma 14 (Algorithm 1 runtime). Algorithm 1 obliviously compacts a list using
6n− 14s

3 log s + 6n− 20s

3 · (c + 6)

comparisons.

Proof. Algorithm 1 uses n comparisons to compute a before calling Algorithm 2.
Each iteration of the loop (Algorithm 3) requires n′

3s calls to partition (on sets of size s).
At iteration i, n′ =

( 5
6
)i

n, which gives

n

3s

t∑
i=0

(
5
6

)i

= 6n− 20s

3s
.
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So there are a total of 6n−20s
3s calls to partition of size s.

At each iteration of the loop (Algorithm 3) there are also n′·c
3 controlled swaps.

Thus the total number of controlled swaps in is

n · c
3

t∑
i=0

(
5
6

)i

= 6n− 20s

3 · c

At every call to Algorithm 2 there are 2n + log(n) swaps. Finally, there is one call to
partition of size 4s.

Thus total runtime is

6n− 20s ·
(

1
3s

partitionTime(s) + c

3
6n− 20s

3 + 2
)

+ partitionTime(4s)

Where partitionTime(n) denotes the number of swaps needed to partition a set of size s.
There are many options for the partition algorithm used here. In our implementation, we use
the simple, deterministic, data independent partitioning algorithm from [26], which requires
n log n controlled swaps.

Thus the total number of comparisons is

6n− 14s

3 log s + 6n− 20s

3 · (c + 6).

As noted above, setting c = 6, and s = log2 n gives a failure probability below 2−40, for all
n > 212, so with these parameters, the overall number of comparisons is

4n log log n + 14n. ◀

The deterministic data independent partitioning algorithm from [26] runs in time requires
exactly n log n, secure comparisons, so the [37] compaction algorithm will start to beat the
deterministic [26] solution when 4n log log n < n log n, i.e., when n > 216.

E Sparse compaction

The sparse sorting algorithm of Figure 4 can also be used for extracting a small number of
nonzero values from a list. The resulting sparse compaction algorithm takes three arguments,
a public bound, t, a secret-shared vector of “tags,” s⃗, and a secret shared vector of “payloads,”
x⃗.

Jy⃗K = SparseCompaction (t, Js⃗K, Jx⃗K) .

We outline our sparse compaction algorithm in Figure 8.

▶ Corollary 15 (Sparse compaction). Given a secret-shared list of length n with at most t

nonzero elements, the non-zero elements can be extracted in O
(
t log2(n) + n

)
time using the

algorithm given in Figure 8.

F Security proofs

▶ Lemma 16 (Secure shuffling). If PKE = (Gen, Enc, Dec) is a CPA-secure additively-
homomorphic cryptosystem, over the group G, and the scheme is rerandomizable, then secure
shuffling algorithm in Figure 2 securely implements a 2-party shuffle in the honest-but-curious
setting.
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SparseCompaction

Public parameters: An integer, n, and a bound t < n.
Input: A secret-shared list, Jx⃗K, of length n, each element of Jx⃗K is tagged with a

(secret-shared) tag JyiK with yi ∈ {0, 1}. The guarantee is that at most t tags are 1.
Output: A secret shared list, Jw⃗K of length t containing all the nonzero elements of x⃗.

1. Sorting: Use the sparse sorting algorithm, SparseSort to sort the n elements of V⃗

based on their tags.

((Jx̄1K, Jȳ1K), . . . , (Jx̄nK, JȳnK)) = SparseSort ((Jx1K, Jy1K), . . . , (x̄n, ȳn))

2. Extraction: Return the top t elements of the sorted list (Jx̄1K, . . . , Jx̄tK).

Figure 8 Sparse compaction.

Proof. First, we note that if Alice or Bob, generates a random permutation, the resulting
permutation will be random. Second, note that since Alice and Bob are honest-but-curious,
at every step the ciphertexts they provide correctly encode some ordering of the secret shares.

Consider a series of Bob’s views. Let viewb
0 denote Bob’s view in the real protocol. Let

viewb
1 be the protocol where, instead of encrypting her shares under pka, Alice encrypts the

0 vector. The semantic security of PKE ensures that viewb
0 and viewb

1 are indistinguishable.
Let viewb

2 be the protocol where, instead of shuffling the pairs of ciphertexts, Alice simply
re-randomizes Bob’s shares (through the homomorphic encryption). Since the encryption
is re-randomizable, and the plaintext shares are re-randomized over the group G, both the
ciphertexts and the decrypted plaintexts are indistinguishable from in viewb

1. Thus, Alice’s
security is preserved.

The proof of security from Bob’s side is essentially identical.
◀
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identically distributed no matter what the program’s memory request sequence is. In the past, two
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hold in expectation (but may occasionally run more slowly); and constructions whose performance
bounds hold deterministically (even though the algorithms themselves are randomized).

In this paper, we revisit the performance metrics for perfect ORAM/OPRAM, and show novel
constructions that achieve asymptotical improvements for all performance metrics. Our first result is
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prior literature has been stuck at O(log3 N) for more than a decade.

Next, we show how to construct a perfect ORAM with O(log3 N/ log log N) deterministic
simulation overhead. We further show how to make the scheme parallel, resulting in an perfect
OPRAM with O(log4 N/ log log N) deterministic simulation overhead. For perfect ORAMs/OPRAMs
with deterministic performance bounds, our results achieve subexponential improvement over the
state-of-the-art. Specifically, the best known prior scheme incurs more than

√
N deterministic

simulation overhead (Raskin and Simkin, Asiacrypt’19); moreover, their scheme works only for the
sequential setting and is not amenable to parallelization.

Finally, we additionally consider perfect ORAMs/OPRAMs whose performance bounds hold
with high probability. For this new performance metric, we show new constructions whose simulation
overhead is upper bounded by O(log3 / log log N) except with negligible in N probability, i.e., we
prove high-probability performance bounds that match the expected bounds mentioned earlier.
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8:2 Perfectly Oblivious (Parallel) RAM Revisited, and Improved Constructions

1 Introduction

Oblivious RAM (ORAM) is an algorithmic construction that provably obfuscates a (parallel)
program’s access patterns. It was first proposed in the ground-breaking work by Goldreich
and Ostrovsky [22, 21], and its parallel counterpart Oblivious Parallel ORAM (OPRAM)
was proposed by Boyle et al. [9]. ORAM and OPRAM are fundamental building blocks for
enabling various forms of secure computation on sensitive data, e.g., either through trusted-
hardware [35, 19, 30, 28] or relying on cryptographic multi-party computation [24, 29].
Since the initial proposal, ORAM and OPRAM have attracted much interest from various
communities, and there has been a line of work dedicated to understanding their asymptotic
and concrete efficiencies. It is well-known [22, 21, 27] that any O(P)RAM scheme must
incur at least a logarithmic overhead (also known as simulation overhead) in (parallel)
runtime relative to the insecure counterpart. On the other hand, ORAM/OPRAM schemes
with poly-logarithmic overhead have been known [22, 21, 23, 26, 36, 37, 38, 32], and the
very recent exciting work of Asharov et al. [5] showed how to match the logarithmic lower
bound in the sequential ORAM setting, assuming the existence of one-way functions and a
computationally bounded adversary.1 Throughout this paper, we use the standard notion of
simulation overhead originally suggested by Goldreich and Ostrovsky [22, 21]: if the original
RAM/PRAM’s (parallel) runtime is T and the corresponding ORAM/OPRAM’s (parallel)
runtime is χT , we say that the ORAM/OPRAM has simulation overhead χ.

Motivation for perfectly secure ORAMs/OPRAMs. With the exception of very few works,
most of the literature has focused on either computationally secure [22, 21, 23, 26, 11, 32, 5]
or statistically secure [2, 36, 37, 15, 38] ORAMs. A computationally secure (or statistically
secure, resp.) ORAM guarantees that for any two request sequences of the same length, the
access patterns incurred are computationally (or statistically resp.) indistinguishable. Most
known computationally secure or statistically secure schemes [22, 21, 36, 37, 38, 9, 13] suffer
from a small failure probability that is negligible in the ORAM’s size henceforth denoted N

while achieving poly log N overhead. If the ORAM/OPRAM’s size is large, say, N ≥ λ for
some desired security parameter λ, then the failure probability would also be negligible in
the security parameter. Unfortunately, for small choices of N (e.g., N = poly log λ), these
schemes actually give polylogarithmic overhead in security parameter λ (and not in N) to
achieve a negl(λ) security failure probability – note that a poly log λ overhead equals to NΘ(1)

for this parameter regime, and thus the dependence on N is undesirable. Even though at
first sight, it seems like we might not care about the parameter regime when N is much
smaller than λ; as it turns out, such a small-N ORAM/OPRAM (with polylogarithmic in N

overhead) was needed in many scenarios, such as in the construction of searchable encryption
schemes [18], oblivious algorithms [36, 32, 4, 5] including notably, the recent OptORAMa
work [5] that constructed an optimal ORAM.

The study of perfectly secure ORAMs/OPRAMs is partly motivated by the aforementioned
mismatch. Moreover, recall also that perfect security has long been a topic of interest in the
multi-party computation and zero-knowledge proof literature [25, 20], and its theoretical
importance widely-accepted. Historically, perfect security is viewed as attractive since 1)
the security holds in any computational model even if quantum computers or other forms
of computers can be built; and 2) perfectly secure schemes often have clean compositional
properties. Therefore, another natural application of perfectly secure ORAM/OPRAM is to
construct efficient perfectly secure, RAM-model MPC.

1 For the parallel setting, how to achieve optimality remains open.
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Does there exist a perfectly secure ORAM/OPRAM with o(log3 N) overhead? Despite
the sustained and lively progress in understanding the asymptotic overhead of computa-
tionally and statistically secure ORAMs/OPRAMs, our understanding of perfectly secure
ORAMs/OPRAMs has been somewhat stuck. In general, few results are known in the perfect
security regime: in 2011, Damgård et al. [17] first showed a perfectly secure ORAM scheme
with O(log3 N) expected simulation overhead and O(log N) server space blowup, where the
space blowup is the ratio between the server space consumed by the scheme compared to the
insecure space N . Recently, Chan et al. [12] show an improved and simplified construction
that removed the log N server space blowup; and moreover, they showed how to extend
the approach to the parallel setting resulting in a perfectly secure OPRAM scheme with
O(log3 N) expected overhead. There is no known super-logarithmic lower bound for perfect
security, and thus we do not understand yet whether the requirement of perfect security
would inherently incur more overhead than computationally secure ORAMs. Therefore, an
exciting and extremely challenging open direction is to understand the exact asymptotic
complexity of perfectly secure ORAMs and OPRAMs, that is, to seek a matching upper- and
lower-bound. This is a very ambitious goal and in this paper, we aim to take the next natural
step forward. Since all prior upper bounds seem stuck at O(log3 N), we ask the following
natural question: does there exist an ORAM/OPRAM with o(log3 N) asymptotic overhead?

The large gap between expected and deterministic performance bounds. To achieve
perfect security, the prior perfect ORAM/OPRAM constructions pay a price: specifically
their algorithms are Las Vegas, and the stated O(log3 N) overhead is in an expected sense.
Their ORAMs can occasionally run longer than O(log3 N) time if certain unlucky events
happen (where the unlucky events are identically distributed for all inputs so that the scheme
remains perfectly secure). Moreover, the smaller the choice of N , the more likely that the
ORAM can run much longer than the expectation.

Raskin et al. [34] (Asiacrypt’19) recently pointed out that this issue was somewhat shoved
under the rug in prior works on perfect ORAMs/OPRAMs, and they were the first to
ask how to construct perfect ORAMs with deterministic performance bounds. To avoid
confusion, note that all ORAM schemes with non-trivial efficiency must be randomized
algorithms; however, their performance bounds can be made deterministic (i.e., deterministic
performance bounds does not mean that the algorithm is deterministic). Raskin et al. showed
a perfectly secure ORAM with a deterministic simulation overhead O(

√
N log N

log log N ) (assuming
O(1) client-side storage2). While conceptually interesting, in comparison with the O(log3 N)
schemes [17, 12], the price to obtain deterministic bounds seems high. Therefore, another
natural question is, does there exist perfectly secure ORAMs/OPRAMs with deterministic
polylogarithmic overhead?

1.1 Our Results and Contributions
Our contributions are two-fold. First, following Raskin et al., we make another effort at
systematizing the performance metrics for perfect ORAM/OPRAMs. Besides expected and
deterministic performance bounds, we additionally consider the notion of high-probability
performance bounds (explained below). Second, we show novel perfect ORAM/OPRAM
constructions with asymptotical performance improvements for all three types of performance
metrics: expected, high-probability, and deterministic.

2 Their overhead can be improved to O(
√

N) if we allowed O(
√

N) client-side storage.
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8:4 Perfectly Oblivious (Parallel) RAM Revisited, and Improved Constructions

Revisiting the performance metrics for perfectly secure ORAMs/OPRAMs. We consider
the following performance bounds for ORAM/OPRAMs:
1. Expected performance bounds. Suppose that the original RAM/PRAM runs in (parallel)

time T , and the corresponding ORAM/OPRAM runs in expected (parallel) time χ · T ,
then we say that the ORAM/OPRAM satisfies expected simulation overhead (or expected
overhead) χ.

2. High-probability performance bounds. Suppose that the original RAM/PRAM runs in
(parallel) time T , and the corresponding ORAM/OPRAM runs in (parallel) time χ · T

with 1 − δ probability where δ is suitably small (e.g., negligibly small in some security
parameter), then, we say that ORAM/OPRAM satisfies simulation overhead (or overhead)
χ with probability 1 − δ. We stress that the failure probability δ describes the probability
that the ORAM/OPRAM exceeds the performance bounds, it does not describe security
failure since the ORAM/OPRAM is perfectly secure. This is a natural, intermediate
notion that is not as stringent as deterministic performance bounds and yet gives a strong
guarantee. This notion may permit asymptotically better schemes than insisting on
deterministic performance bounds.

3. Deterministic performance bounds. Suppose that the original RAM/PRAM runs in
(parallel) time T , and the corresponding ORAM/OPRAM runs in (parallel) time χ · T

with probability 1, then we say that the ORAM/OPRAM satisfies deterministic simulation
overhead χ.

Asymptotically better constructions for all performance metrics. We show novel perfect
ORAM/OPRAM constructions that achieve asymptotical performance improvements across
the board.

First, for expected performance, we overcome the log3 N barrier that the literature
has been stuck at for the past decade. Our perfect ORAM/OPRAM scheme has
O(log3 N/ log log N) expected overhead.
Second, for high-probability performance bounds, previously, there were no documented
schemes with this type of performance bounds to the best of our knowledge. We show new
perfectly secure ORAM/OPRAMs that achieve O(log3 N/ log log N) simulation overhead
with probability 1 − negl(N).3
Finally, we construct perfect ORAM/OPRAMs with deterministic, poly-logarithmic
simulation overhead. Our result achieves a sub-exponential performance improvement
relative to prior art [34].

Our results are summarized in the following theorems, and moreover, Table 1 gives an
explicit comparison of our results with prior work.

▶ Theorem 1 (Informal: perfect OPRAM with expected performance bounds). There exists a
perfectly secure OPRAM scheme that consumes only O(1) blocks of client private cache and
O(N) blocks of server-space; moreover the scheme achieves O(log3 N/ log log N) expected
simulation overhead.

▶ Theorem 2 (Informal: perfect OPRAM with high-probability performance bounds). There
exists a perfectly secure OPRAM scheme that consumes only O(1) blocks of client private
cache and O(N) blocks of server-space; moreover the scheme achieves O

(
1

log log N · (log3 N +

log2 N · log2 log(1/δ) + log N · log3 log(1/δ))
)

simulation overhead with probability 1 − δ.

3 Note that our formal theorem statement gives a parametrized version where the performance failure
probability may be any free parameter.
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Table 1 Comparison of our results with prior work. For simplicity, the high-probability
bounds are parameterized to 1 − negl(N) failure probability.

Space ORAM overhead OPRAM overhead

Schemes with expected
performance bounds

Damgård et al. [17] O(N log N) O(log3 N) N/A
Chan et al. [12] O(N) O(log3 N) O(log3 N)

This work O(N) O(log3 N/ log log N) O(log3 N/ log log N)

Schemes with high-probability This work O(N) O(log3 N/ log log N) O(log3 N/ log log N)performance bounds

Schemes with deterministic
performance bounds

Raskin et al. [34] O(N) O(
√

N · log N
log log N ) N/A

This work O(N) O(log3 N/ log log N) O(log4 N/ log log N)

▶ Theorem 3 (Informal: perfect OPRAM with deterministic performance bounds). There exists
a perfectly secure ORAM scheme that achieves O(log3 N/ log log N) simulation overhead with
probability 1. For the parallel setting: there exists a perfectly secure OPRAM scheme that
achieves O(log4 N/ log log N) simulation overhead with probability 1.

For both the ORAM/OPRAM schemes above, we need only O(1) blocks of client private
cache and O(N) blocks of server-space.

1.2 Technical Highlight

Getting an O(log3 N/ log log N) deterministic overhead ORAM. To improve the over-
head of perfectly secure ORAMs to O(log3 N/ log log N), our techniques are inspired by the
rebalancing trick of Kushilevitz et al. [26] (SODA’12), and yet departs significantly from
Kushilevitz et al. Namely, the existing perfect ORAM/OPRAM constructions of Chan et
al. [12] consist of an “online fetch phase” and an “offline maintain phase,” the fetch phase
takes a logical request (as an input to the ORAM) and answers to the request using a
data structure, and then the maintain phase reshuffles the data structure. We observe that
the maintain and fetch phases suffer from an imbalance; specifically, the offline maintain
phase costs O(log3 N) per request whereas the online fetch phase costs only O(log2 N). A
natural idea is to modify the scheme and rebalance the costs of the offline maintain phase
and the online fetch phase, such that both phases would cost only O(log3 N/ log log N).
Unfortunately, existing techniques such as Kushilevitz et al. completely fail for rebalancing
perfect ORAMs/OPRAMs – we defer the technical reasons to the full version [14].

Our starting point is the perfect ORAM construction by Chan et al. [12] in which the
maintain phase costs O(log3 N) and the fetch phase costs only O(log2 N). Specifically, their
construction consists of D = O(log N) number of ORAMs such that except for the last
ORAM which stores the actual data blocks, every other ORAM serves as a (recursive) index
structure into the next ORAM – for this reason, these D ORAMs are also called D recursion
depths; and all of the recursion depths jointly realize an implicit logical index structure that
is in fact isomorphic to a binary tree (which has a branching factor of 2).

First, we show how to use a fat-block trick to increase the branching factor and hence
reduce the number of recursion depths by a log log N factor. Specifically, we increase the
implicit index structure’s branching factor from 2 (i.e., storing two pointers or position labels
in the next recursion depth) to log N . Thus a fat-block is a bundle of logarithmically many
normal blocks and hence each fat-block can store logarithmically many pointers. While this
reduces the recursion depth by a log log N factor, the fetch phase now costs a logarithmic
factor more per recursion depth (since obliviously accessing a fat-block is a logarithmic factor
more costly than accessing a normal block).

ITC 2021



8:6 Perfectly Oblivious (Parallel) RAM Revisited, and Improved Constructions

The primary challenge is to realize the maintain phase such that the amortized per-depth
maintain-phase cost preserves the asymptotics, despite the fat-block now being logarithmically
fatter. To accomplish this we rely on the following two key insights:
1. Exploit residual randomness. First, we rely on an elegant observation first made in the

PanORAMa work [32] in the context of computationally secure ORAMs. Here we make
the same observation for perfectly secure ORAMs. At the core of Chan et al.’s ORAM
construction is a data structure called an oblivious “one-time-memory” (OTM). When
an OTM is initialized, all elements in it are randomly permuted (and the randomness
concealed from the adversary) – note that in our setting, each element is a fat-block. The
critical observation is that after accessing a subset of the elements in this OTM data
structure, the remaining unvisited elements still appear in a random order. By exploiting
such residual randomness, when we would like to build a new OTM consisting of the
remaining unvisited elements, we can avoid performing expensive oblivious permutation
(which would take time O(n log n) to sort n elements) and instead rely on linear-time
operations.

2. Exploit sparsity. In the construction of Chan et al., the D ORAMs at all recursion depths
must perform a “coordinated shuffle” operation during the maintain phase. An important
step in this coordinated shuffle is (for each recursion depth) to inform the parent depth
the locations of its fat-blocks after the reshuffle. In Chan et al., two adjacent recursion
depths perform such “communication” through oblivious sorting, thus incurring O(n log n)
cost per-depth to rebuild a data structure of size n.
Our key observation is that the fat-blocks contained in each OTM data structure in
each recursion depth are sparsely populated. In fact, most entries in the fat-blocks are
irrelevant and only a 1/ log N fraction of them are populated. Thus, we employ an
oblivious tight compaction [5] to compress away the wasted space, where tight compaction
is a degenerated sorting that sorts elements tagged with 0/1 keys. After this compression,
the OTM becomes logarithmically smaller and we can apply an oblivious sort.

Finally, we stress that to get an ORAM with deterministic performance bounds, we will
need to instantiate our ORAM with building blocks that give deterministic performance. We
defer the details to later technical sections.

Parallelizing the scheme. To parallelize our ORAM scheme, we encounter several additional
technicalities. Some of the core algorithmic building blocks can be parallelized; however,
to preserve the asymptotical total work of the sequential versions, the only known parallel
counterparts give Las Vegas-type performance bounds. This would be fine if we only wanted
an OPRAM with expected O(log3 N/ log log N) overhead. However, more work is needed
to get an OPRAM whose simulation overhead is O(log3 N/ log log N) with high probability.
Finally, to get an OPRAM whose simulation overhead holds deterministically, we need to
replace some of the oblivious parallel building blocks with ones with deterministic performance
bounds – here we lose an extra logarithmic factor in total work. We defer a more detailed
exposition of these technicalities to later sections.

2 Technical Overview

We start with an informal and intuitive exposition of our main technical ideas. For simplicity,
most of the section describes how to get the sequential ORAM result with deterministic
O(log3 N/ log log N) simulation overhead. Then, in Section 2.4, we sketch the additional
steps and technicalities needed to parallelize the scheme to get the expected, high-probability,
and deterministic performance bounds for OPRAM. The full formal details will be deferred
to the technical sections later.
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2.1 Background on Perfect ORAM
The goal of an ORAM scheme is to simulate to the client a memory array of N blocks, where
each block consists of Ω(log N) bits. In the simulated memory, each block is indexed by a
logically address in {0, 1, . . . , N − 1}, and the client can read or write a block using a logical
address. The ORAM is allowed to use client-side storage of only O(1) number of blocks as
well as server storage, where the server supports only fetch or store the content of blocks
(but no computation). By perfect security, we require that the sequence of accessed blocks
on the server (also called the access pattern) be identically distributed for any sequence
of read/write accesses to the memory simulated by ORAM. Such settings are standard in
previous works [17, 12, 34].

In a recent work, Chan et al. [12] propose a perfectly secure ORAM with O(log3 N)
simulation overhead. At a high level, their scheme is inspired by the hierarchical ORAM
paradigm by Goldreich and Ostrovsky [22, 21], but Chan et al. replace the “oblivious
hashing” (which has a negligible statistical imperfectness) with perfectly secure data structures
(including a “one-time-memory” as well as a“position map”). In this way, they also remove
the pseudo-random function (PRF) in Goldreich and Ostrovsky’s construction [22, 21].

2.1.1 Position-based Hierarchical ORAM
First, imagine that the client can store per-block metadata and we will later remove this
strong assumption through a non-blackbox recursion technique. Specifically, imagine that
the client remembers where exactly each block is residing on the server. In this case, we can
construct a perfect ORAM as follows – henceforth this building block is called “position-based
ORAM” since we assume that the correct position label for every requested block is known
to the client.

Hierarchical levels. The server-side data structure is organized into log N+1 levels numbered
0, 1, . . . , log N where level i is either 1. empty, in which case it stores no blocks; or 2. full,
in which case the level stores 2i real blocks plus 2i dummy blocks in a randomly permuted
fashion (we also say that the level has capacity 2i). Each block, whose logical addresses range
from 0 to N − 1, resides in exactly one of the levels at a random position within the level.

Fetch phase. Every time a block with address addr is requested, the client looks up the
block’s position. Suppose that the block resides in the j-th position of level ℓ. The client
now visits for one block per full level from the server – note that the levels are visited in a
fixed order from 0 to log N :

for level ℓ (i.e., where the desired block resides), the client reads precisely the j-th position
to fetch the real block; it then marks the visited position as visited;
for every other level ℓ′ ̸= ℓ, the client reads a random unvisited dummy block (and marks
the corresponding block on the server as visited for obliviousness).

Maintain phase. Every time a block B has been fetched by the client, it updates the block
B’s contents if this is a write request, and then it puts B back to level 0 as an unvisited block
so that level 0 becomes full. Now, suppose levels 0, 1, . . . , ℓ∗ are all full and either level ℓ∗ + 1
is empty or ℓ∗ = log N . The client will now merge levels 0, 1, . . . , ℓ∗ into the “target” level
ℓtgt := min(ℓ∗ + 1, log N). This procedure is called “rebuilding” level ℓtgt. At the end of the
rebuild, it marks level ℓtgt as full and every smaller level as empty.
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8:8 Perfectly Oblivious (Parallel) RAM Revisited, and Improved Constructions

To merge consecutively full levels into the next empty level (or the largest level), the goal
is to implement the following ideal functionality obliviously:
1. extract all unvisited real blocks to be merged and place them in an array called A;
2. pad A with dummy blocks to a length of 2 · 2ℓtgt blocks and randomly permute the

resulting array.
Chan et al. show how to achieve the above obliviously – even though the client has only O(1)
blocks of client storage – through oblivious sorting (using the AKS sorting network [1]). The
cost of rebuilding a level of capacity n is dominated by the oblivious sorting on O(n) blocks,
which has a cost of O(n log n).

Note that the above construction guarantees that whenever a real block is accessed, it is
moved into a smaller level. Thus, in every level, each real or dummy block is accessed at
most once before the level is rebuilt; and this is important for obliviousness. For this reason,
later in our technical sections, we name each level in this hierarchy an oblivious “one-time
memory”. Note also that the number of dummies in a level must match the total number of
accesses the level can support before it is rebuilt again.

Additional details about dummy positions. The above description implicitly assumed that
for a level the desired block does not reside in, the client is informed of the position of a
random unvisited dummy block. If the client does not store this information locally, it can
construct a (per-level) metadata array M on the server every time a level is rebuilt. When a
block is being requested, the client can sequentially scan the metadata array at every level
(including the level where the desired block resides) to discover the location of the next
unvisited dummy (residing at a random unvisited location in the level).

As Chan et al. show, such a dummy metadata array can be constructed with O(n log n)
overhead using oblivious sorting too, at the same time when a level of capacity n is rebuilt.

Overhead. Summarizing, in the position-based ORAM, after every 2ℓ requests, the level ℓ

will be rebuilt, paying O(2ℓ · log(2ℓ)) cost. Amortizing the total cost over the sequence of
requests, it is not difficult to see that the average cost per request is O(log2 N).

2.1.2 Recursive Position Map
So far we have assumed that the client magically remembers where exactly each block is
residing on the server. To remove this assumption, Chan et al. propose to recursively store the
blocks’ position labels in smaller ORAMs until the ORAM’s size becomes constant, resulting
in D = O(log N) ORAMs henceforth denoted ORAM0, ORAM1, . . . , ORAMD respectively,
where ORAMi stores the position labels of all blocks in ORAMi+1 for i ∈ {0, 1, . . . , D}. We
often call ORAMD the “data ORAM” and every other ORAM a “metadata ORAM”; we
also refer to the index i as the depth of ORAMi. Now, suppose that each block can store
Ω(log N) bits of information, such that we can pack the position labels of at least 2 blocks
into a single block. In this case, each ORAMi is twice smaller in capacity than ORAMi+1 and
thus ORAM0 would be of O(1) size – thus operations to ORAM0 can be supported trivially
by scanning through the whole ORAM0 consuming only constant cost, and the total space is
still O(N).

As Chan et al. show, in the hierarchical ORAM context such a recursion idea does
not work in a straightforward blackbox manner,4 but needs a special “coordinated rebuild”
technique which we now explain. Henceforth, suppose that each block’s logical address addr

4 Roughly speaking, it is because each logical access on ORAMi+1 would have incurred too many accesses
on ORAMi, and then the cost of such recursion would have been too expensive.
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is log N bits long, and we use the notation addr⟨d⟩ to denote the address addr, written in
binary format, truncated to the most significant d bits.

Fetch phase (straightforward): To fetch a block at some logical address addr, the client
looks up logical address addr⟨d⟩ in each ORAMd for d = 0, 1, . . . D sequentially. Since the
block at logical address addr⟨d⟩ in ORAMd stores the position labels for the two blocks at
logical addresses addr⟨d⟩∥0 addr⟨d⟩∥1 in ORAMd+1, the client is always able to find out
the position of the block in the next recursion depth before it performs a lookup there.
Maintain phase (coordinated rebuild): The maintain phase needs special treatment such
that the rebuilds at all recursion depths are coordinated. Specifically, whenever the data
ORAMD is rebuilding the level ℓ, each other recursion depth ORAMd would be rebuilding
level min(ℓ, d) in a coordinated fashion – note that each ORAMd has only d levels.
The main goal of the coordination is for each ORAMd to pass the blocks’ updated position
labels back to the parent depth ORAMd−1. More specifically, recall that when ORAMd

rebuilds a level ℓ, all real blocks in the level would now be placed at a new random position.
When these new positions have been decided, ORAMd must inform the corresponding
metadata blocks in ORAMd−1 the new position labels. The coordinated rebuild is possible
due to the following invariant which is not hard to observe (recall that addr⟨d⟩ is the
block that stores the position labels for the block addr⟨d+1⟩ in ORAMd+1):

For every addr, the block at address addr⟨d⟩ in ORAMd is always stored at a smaller or
equal level relative to the level of the block at address addr⟨d+1⟩ in ORAMd+1.

Chan et al. show how to us oblivious sorting to perform a coordinated rebuild, paying
O(n log n) to pass the new position labels of level-ℓ in ORAMd to the parent ORAMd−1
where n = 2ℓ is the level’s capacity.

2.1.3 Analysis
It is not hard to see that the entire fetch phase consumes O(log2 N) overhead where one
log N factor comes from the number of levels within each recursion depth, and another comes
from the number of recursion depths. The maintain phase, on the other hand, consumes
O(log3 N) amortized cost where one logarithmic factor arises from the number of recursion
depths, one arises from the number of levels within each depth, and the last one stems from
the additional logarithmic factor in oblivious sorting.

To asymptotically improve the overhead, one promising idea is to somehow balance the
fetch and maintain phases. This idea has been explored in computationally secure ORAMs
first by Kushilevitz et al. [26] and later improved in subsequent works [11]. Unfortunately as
we explain the full version [14], Kushilevitz et al.’s rebalancing trick is not compatible with
known perfect ORAMs. Thus we need fundamentally new techniques for realizing such a
rebalancing idea.

2.2 Building Blocks
Before we introduce our new algorithms, we describe two important oblivious algorithms as
building blocks that were discovered in very recent works [33, 5].

Tight compaction. Tight compaction is the following task: given an input array containing
m balls where each ball is tagged with a bit indicating whether it is real or dummy, produce
an output array containing also m balls such that all real balls in the input appear in the
front and all dummies appear at the end.
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In a very recent work called OptORAMa [5], the authors show how to accomplish tight
compaction obliviously in O(m) time. Their algorithm can be expressed as a linear-sized
circuit (of constant fan-in and fan-out), consisting only of boolean gates and swap gates,
where a boolean gate can perform boolean computations on two input bits; and a swap gate
takes in a bit and two balls, and decides to either swap or not swap the two balls.

Intersperse. The same work OptORAMa described another randomized oblivious algorithm
called “intersperse”, which accomplishes the following task in deterministic linear time: given
two randomly shuffled input arrays I and I′ (where the permutations used in the shuffles
are hidden from the adversary), create an output array of length |I| + |I′| that contains
all elements from the two input arrays, and moreover, all elements in the output array are
randomly shuffled in the view of the adversary.

2.3 A New Rebalancing Trick for Perfectly Secure ORAMs
We propose new techniques for instantiating such a rebalancing trick. Our idea is to introduce
a notion called a fat-block. A fat-block is a bundle of χ := log N normal blocks; thus to
access a fat-block requires paying χ = log N cost.

Imagine that in each metadata ORAM, the atomic unit of storage is a fat-block (rather
than a normal block). Since each fat-block can pack χ = log N position labels, the depth
of the recursion is now logχ N = log N/ log log N , i.e., a log log N factor smaller than before
(see Section 2.1.2). More concretely, a metadata ORAM ORAMd at depth d stores a total of
χd metadata fat-blocks – for the time being we assume that N is a power of χ for simplicity,
and let D := logχ N + 1 be the number of recursion depths such that the total storage is still
O(N) blocks (our idea can be generalized to the case when N is not a power of χ). Within
each ORAMd, as before, we have a total of d log χ + 1 levels where each level ℓ can store 2ℓ

fat-blocks.
It is not hard to see that the fetch phase would now incur O(log3 N/ log log N) cost across

all recursion depths – in comparison with before, the extra log N factor arises from the cost
of reading a fat-block, and the log log N factor saving comes from the log log N saving in
recursion depth.

Our hope is that now with the smaller recursion depth, we can accomplish the maintain
phase in amortized O(log3 N/ log log N) cost. Recall that each level ℓ in a metadata ORAMd

now contains 2ℓ fat-blocks. The crux is to rebuild a level containing 2ℓ fat-blocks in cost
that is linear in the level’s total size, that is, 2ℓ · χ. Note that if we naïvely used oblivious
sorting on fat-blocks (like in Section 2.1.1) to accomplish this, the cost would have been
2ℓ · χ · log(2ℓ) which is more expensive than previous scheme and undesirable.

To resolve this challenge, the following two insights are critical:
Sparsity: First, observe that each level in a metadata ORAM is sparsely populated:
although the entire level, say, level ℓ, has the capacity to store 2ℓ · χ position labels, the
level is rebuilt after every 2ℓ requests. Thus in fact only 2ℓ of these position label entries
are populated.
Residual randomness: The second important observation is that the unvisited fat-blocks
contained in any level appear in a random order where the randomness of the permutation
is hidden from the adversary – note that a similar observation was first made in the
PanORAMa work [32] by Patel et al.
More specifically, suppose that to start with, a level contains n fat-blocks including some
reals and some dummies, and all of these n fat-blocks have been randomly permuted
(where the randomness of the permutation is hidden from the adversary). As the client
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visits fat-blocks in a level, the adversary learns which blocks are visited. Now, among
all the unvisited blocks, there are both real and dummy blocks and all these blocks are
equally likely to appear in any order w.r.t. the adversary’s view.

We now explain how to rely on the above insights to rebuild a level containing n = 2ℓ

fat-blocks in O(n · χ) time – note that at most half of these fat-blocks are real, and the
remaining are dummy. From Section 2.1.2, we learned that to rebuild a level containing n

fat-blocks, it suffices to realize the following functionality obliviously:
1. Merge. The first step of the rebuild is to merge consecutively full levels into the next

empty level (or the largest level). After this merge step, this new level is marked full and
every smaller level is marked empty.

2. Permute. After the above merge step, the resulting array containing n fat-blocks must
be randomly permuted (and their positions after the permutation will then be passed to
the parent depth next).

3. Update. After the permutation step, each real fat-block in the level (at a recursion
depth d) whose logical address is addr must receive up to χ updated positions from the
child recursion depth, i.e., the fat-block at logical address addr wants to learn where the
fat-blocks at logical addresses addr||0, addr||1, . . ., addr||(χ − 1) newly reside in the child
depth d + 1.

4. Create dummy metadata. Finally, create a dummy metadata array to accompany this
level: the dummy metadata array containing n entries where each entry is O(log N) bits
(note that an entry is a normal block, not a fat-block). This array should store the
positions of all dummy fat-blocks contained in the level in a randomly permuted order.

Realizing “merge + permute”. We first explain how to accomplish the “merge + permute”
steps. For simplicity we focus on explaining the case where consecutive full levels are merged
into the next empty level (since it would be fine if the merging into the largest level alone
is done naïvely using oblivious sort on all fat-blocks). Here it is important to rely on the
residual randomness property mentioned earlier. Suppose the levels to be merged contain
1, 2, 4, 8, . . . , n/2 fat-blocks respectively. Recall that in all of these levels to be merged, the
unvisited blocks appear in a random order w.r.t. the adversary’s view. Thus, we can simply
do O(log n) cascading merges using Intersperse (see Section 2.2), every time merging two
arrays each containing 2i fat-blocks into an array containing 2i+1 fat-blocks, and the overall
cost is O(n).

Realizing “update”. At this moment, let us not view the level as an array of n fat-blocks
any more, but as an array of O(n · χ) position entries. For realizing the “update” step in
O(n · χ) overhead, the key insight is to exploit the sparsity.

Recall that the problem we need to solve boils down to the following. There is a destination
array D consisting O(n ·χ) position entries among which O(n) entries are going to be updated,
and we override terminologies “real” and “dummy” (opposed to previously denoted real
or dummy fat-blocks) and say the to-be-updated O(n) entries are real while all remaining
entries are dummy. Additionally, there is a source array S consisting of O(n) entries (which
can be real or dummy). In both the source S and the destination D, each real entry is of the
form (k, v) where k denotes a key and v denotes a payload value; further, in each array D or
S, every real entry must have a distinct key. Now, we would like to route each real entry
(k, v) ∈ S to the corresponding entry with the same key in the destination array D.

Exploiting the sparsity in the problem definition, we devise the following algorithm where
an important building block is linear-time oblivious tight compaction (see Section 2.2).
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First, we rely on oblivious tight compaction to compact the destination array D, resulting
in a compacted array D̃ consisting of only O(n) entries. Moreover, recall that oblivious tight
compaction can be viewed as a circuit consisting of boolean gates and swap gates. When we
compact the destination array D, each swap gate remembers the routing decision since later
it will be useful to run this circuit in the reverse direction. After the compaction, we can
now afford to pay the cost of oblivious sorting. Hence, each entry in the source S can route
itself to each entry in the compacted destination D̃ – this can be accomplished through a
standard technique called oblivious routing [9, 13], which has a cost of O(n log n). Now, by
running the aforementioned tight compaction circuit in the reverse direction, we can route
each element of the compacted destination D̃ back into the original destination array D.

It is not difficult to see that the above steps require only O(n·(χ+log n)) = O(n log N) cost.

Obliviously create dummy metadata array. Finally, obliviously creating the dummy
metadata array is easy: this can be accomplished by writing down O(log N) bits of metadata
per fat-block, and then performing a combination of oblivious random permutation and
oblivious sort on the resulting metadata array. To get deterministic simulation overhead for
our ORAM, we will need to use an oblivious random permutation algorithm with deterministic
performance bounds – fortunately, this is known due to Asharov et al. [5].

Summary. In the above, we took care to make sure that all oblivious building blocks used
give deterministic performance bounds. At this moment, we derive a perfect ORAM scheme
with O(log3 N/ log log N) deterministic overhead. This warmup result already improves upon
Chan et al. [12] who showed O(log3 N) expected simulation overhead, as well as Raskin [34]
who showed roughly

√
N deterministic simulation overhead.

2.4 Parallelizing the Scheme
So far, for simplicity we have focused on the sequential case. To obtain our OPRAM result,
we need to make the above scheme parallel. To this end, we will rely on the OPRAM
techniques by Chan et al. [12], that is, the fetch phase is still performed sequentially, but
the maintain phase is realized using parallel and oblivious sorting, tight compaction, and
random permutation. One main challenge here is that we will need a parallel counterpart
for the Intersperse algorithm. Note that Asharov et al. [5]’s Intersperse algorithm gives
deterministic performance bounds and perfect security, but is inherently sequential. We
devise a new parallel Intersperse algorithm that preserves the same asymptotical total work
as the sequential version of Asharov et al. [5] (for fat-blocks); however, the algorithm gives
Las-Vegas-type performance. This is fine if we only aim for an O(log3 / log log N)-expected-
overhead OPRAM, but it will not work if we want matching high probability performance
bounds. Observe that our parallel Intersperse algorithm’s performance bounds are more
concentrated around the mean for larger input sizes. In our OPRAM, the Intersperse
algorithm needs to be applied to input arrays containing 1, 2, 4, . . . , N/ log N fat blocks.
Therefore, to get O(log3 / log log N) overhead with 1 − negl(N) probability, our idea is to
apply the Las-Vegas Intersperse algorithm only to sufficiently large instances, and for
small instances, we apply a variant which gives deterministic performance bounds but is a
logarithmic factor more expensive. We prove that this bi-modal approach gives an OPRAM
scheme whose simulation overhead is O(log3 / log log N) with 1 − negl(N) probability.

Finally, to get an OPRAM with deterministic performance bounds, we need to replace the
Intersperse building block entirely with one that gives deterministic performance bounds,
but is a logarithmic factor more expensive. This explains why our OPRAM with deterministic
performance bounds has an extra logarithmic factor.
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2.5 Open Questions

Our paper raises several interesting open questions. First, for constructions with deterministic
performance bounds, currently our OPRAM scheme has a logarithmic factor higher simulation
overhead than the sequential ORAM – this extra logarithmic factor stems from the parallel
perfect oblivious permutation building block we use [3]. One open question is whether we
can get rid of this extra logarithmic factor.

In our paper, we adopt the standard notion of simulation overhead originally defined
by Goldreich and Ostrovsky [22, 21]. This standard notion is naturally amortized over
the multiple steps of the RAM/PRAM, since it takes the ratio of the total runtime of the
ORAM/OPRAM and that of the original RAM/PRAM. In comparison, some earlier works
consider an even stronger notion, often referred to as worst-case overhead [31, 36, 26, 11, 34]:
a worst-case overhead of χ requires that every (parallel) step of the original RAM/PRAM
is simulated by at most χ steps in the compiled ORAM/OPRAM. While some previous
ORAM/OPRAM constructions are amenable to a standard deamortization trick [31, 26] to
achieve worst-case overhead that match the amortized, our constructions are not compatible
with standard deamortization techniques [26] for a similar reason why PanORAMa [32]
and OptORAMa [5] are also not compatible with standard deamortization. It is due
to the “residual randomness” technique: after the residual randomness of an element is
used to facilitate a random permutation, if the same element is then accessed due to the
deamortization, then such residual randomness is revealed and the random permutation is
no longer random in the adversarial view, which is insecure. An interesting future direction
is whether we can achieve worst-case overhead that match the amortized bounds claimed in
our paper.

Our paper focuses on the theoretical understanding of the asymptotic complexity of
perfectly secure ORAMs/OPRAMs. Our asymptotic constant is huge due to using AKS
sorting network [1] and the linear tight compaction [6]. The constants are similar to earlier
works [17, 12] that also use AKS sorting. A standard way to replace the huge constant with
another logarithmic factor is to replace both AKS sorting and tight compaction with bitonic
sorter [8] (notice that the standard bitonic sort takes O(n log2 n) work, but to sort only 0/1
elements, i.e. tight compaction, a bitonic sort augmented with counting takes only O(n log n)
work). An interesting question is whether we can achieve the performance bounds claimed in
this paper, but without the use of expander graphs with large constants.

Last but not the least, for perfectly secure ORAM/OPRAM (and in fact even for
statistically secure ORAM/OPRAM), we still do not have matching upper- and lower-bounds.
Therefore, a more challenging direction is to close this obvious gap in our understanding.

2.6 Roadmap of Subsequent Formal Sections

In the technical sections, we formalize the blueprint described in this section. Our formal
description is modularized which will facilitate formal analysis and proofs. Moreover, in our
formal sections we will directly present the OPRAM result (since the sequential ORAM is a
special case of the more general OPRAM result).

ITC 2021



8:14 Perfectly Oblivious (Parallel) RAM Revisited, and Improved Constructions

3 Preliminaries

3.1 Definitions
3.1.1 Parallel Random-Access Machines
We review the concepts of a parallel random-access machine (PRAM) and an oblivious
parallel random-access machine (OPRAM). The definitions in this section are borrowed from
Chan et al. [12]. Although we give definitions only for the parallel case, we point out that
this is without loss of generality, since a sequential RAM can be thought of as a special case
PRAM with one CPU.

Parallel Random-Access Machine (PRAM). A parallel random-access machine consists
of a set of CPUs and a shared memory denoted by mem indexed by the address space
{0, 1, . . . , N − 1}, where N is a power of 2. In this paper, we refer to each memory word also
as a block, which is at least w = Ω(log N) bits long.

We consider a PRAM model where the number of CPUs is fixed to be some parameter
m ≤ N5. Each CPU has a state that stores O(1) blocks. In each step, each CPU executes a
next instruction circuit denoted Π, and then interacts with memory. Circuit Π can perform
word-level operations including addition, subtraction, and bit-wise boolean operations in
unit time and then updates the CPU state. Further, CPUs interact with memory through
request instructions I⃗(t) := (I(t)

i : i ∈ [m]). Specifically, at time step t, CPU i’s instruction is
of the form I

(t)
i := (read, addr), or I

(t)
i := (write, addr, data) where the operation is performed

on the memory block with address addr and the block content data.
If I

(t)
i = (read, addr) then the CPU i should receive the contents of mem[addr] at the

beginning of time step t. Else if I
(t)
i = (write, addr, data), CPU i should still receive the

contents of mem[addr] at the beginning of time step t; further, at the end of step t, the
contents of mem[addr] should be updated to data.

Write conflict resolution. By definition, multiple read operations can be executed con-
currently with other operations even if they visit the same address. However, if multiple
concurrent write operations visit the same address, a conflict resolution rule will be necessary
for our PRAM to be well-defined. In this paper, we assume the following:

The original PRAM supports concurrent reads and concurrent writes (CRCW) with an
arbitrary, parametrizable rule for write conflict resolution. In other words, there exists
some priority rule to determine which write operation takes effect if there are multiple
concurrent writes in some time step t.
Our compiled, oblivious PRAM (defined below) is a “concurrent read, exclusive write”
PRAM (CREW). In other words, our OPRAM algorithm must ensure that there are no
concurrent writes at any time.

CPU-to-CPU communication. In the remainder of the paper, we sometimes describe our
algorithms using CPU-to-CPU communication. For our OPRAM algorithm to be oblivious,
the inter-CPU communication pattern must be oblivious too. We stress that such inter-
CPU communication can be emulated using shared memory reads and writes. Therefore,
when we express our performance metrics, we assume that all inter-CPU communication is
implemented with shared memory reads and writes.

5 If N < m, the oblivious simulation can be achieved by assigning at most one address to each CPU and
then performing oblivious routing [9], which takes only O(log m) overhead.
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Additional assumptions and notations. Henceforth, we assume that each CPU can only
store O(1) memory blocks. Further, we assume for simplicity that the runtime T of the
PRAM is fixed a priori and publicly known. Therefore, we can consider a PRAM to be
parametrized by the following tuple

PRAM := (Π, N, T, m),

where Π denotes the next instruction circuit, N denotes the total memory size (in terms
of number of blocks), T denotes the PRAM’s total runtime, and m denotes the number of
CPUs.

Finally, in this paper, we consider PRAMs that are stateful and can evaluate a sequence
of inputs, carrying states in between, where each input can be stored in a single memory
block.

3.1.2 Oblivious Parallel Random-Access Machines
An OPRAM is a (randomized) PRAM with certain security properties, i.e., its access patterns
leak no information about the inputs to the PRAM.

Randomized PRAM. A randomized PRAM is a PRAM where the CPUs are allowed to
generate private random numbers. Concretely, we assume that the next instruction circuit
Π can sample a uniform random number from [a] for any positive integer a ≤ 2w in unit
time (recall that w is the memory word size in bits), where the assumption is needed by
the oblivious random permutation (e.g., [3]). For simplicity, we assume that a randomized
PRAM has a priori known, deterministic runtime, and that the CPU activation pattern in
each time step is also fixed a priori and publicly known.

Memory access patterns. Given a PRAM program denoted PRAM and a sequence inp of
inputs, we define the notation Addresses[PRAM](inp) as follows:

Let T be the total number of parallel steps that PRAM takes to evaluate inputs inp.
Let At := (addrt

1, addrt
2, . . . , addrt

m) be the list of addresses such that the i-th CPU
accesses memory address addrt

i in time step t.
We define Addresses[PRAM](inp) to be the random object [At]t∈[T ].

Oblivious PRAM (OPRAM). We say that a PRAM is perfectly oblivious, iff for any two
input sequences inp0 and inp1 of equal length, it holds that the following distributions are
identically distributed (where ≡ denotes identically distributed):

Addresses[PRAM](inp0) ≡ Addresses[PRAM](inp1)

We remark that for statistical and computational security, some earlier works [11, 13]
presented an adaptive, composable security notion. The perfectly oblivious counterpart of
their adaptive, composable notion is equivalent to our notion defined above. In particular, our
notion implies security against an adaptive adversary who might choose the input sequence
inp adaptively over time after having observed partial access patterns of PRAM.

We say that OPRAM is a perfectly oblivious simulation of PRAM iff OPRAM is per-
fectly oblivious, and moreover OPRAM(inp) is identically distributed as PRAM(inp) for any
input inp.
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Metrics. We will use the standard notion of simulation overhead to characterize an
OPRAM’s performance [22, 21, 9]. If a PRAM that consumes m CPUs and completes
in T parallel steps can be obliviously simulated by an OPRAM that completes in γ · T steps
also with m CPUs, then we say that the simulation overhead is γ. Moreover, supposing that
the OPRAM is randomized (by a random tape that is independent from the PRAM), and
letting the OPRAM completes in T ′ steps with m CPUs where T ′ is a random variable, we
say that the expected simulation overhead is γ if E[T ′] = γT , and we say that the simulation
overhead is γ with probability 1−δ if Pr[T ′ ≤ γT ] ≥ 1−δ. We additionally say the simulation
overhead γ is deterministic if it is γ with probability 1, which coincides with the standard
simulation overhead.

More generally, suppose that an ample (i.e., unbounded) number of CPUs are available:
in this case if algorithm can be completed in T parallel steps consuming m1, m2, . . . , mT

CPUs in each step respectively, then we say that the algorithm can be completed in T depth
and W :=

∑
t∈[T ] mt total work. Similar to that of simulation overhead, when the total work

and depth are random variables, we quantify the total work and depth using expected, with
probability, or deterministic, where deterministic is sometimes omitted.

Therefore, for an OPRAM, if the original PRAM (taking T parallel steps and using m

CPUs) can be obliviously simulated in W ′ total work and T ′ = O(W ′/m) depth then the
OPRAM has simulation overhead W ′/Tm.

Oblivious simulation of a non-reactive functionality. For defining the security of inter-
mediate building blocks, we now define what it means to obliviously realize a non-reactive
functionality. Let F : {0, 1}∗ → {0, 1}∗ be a possibly randomized functionality. We say that
MF is a perfect oblivious simulation (or oblivious simulation for short) of F with leakage L,
iff there exists a simulator Sim, such that for every input x ∈ {0, 1}∗, the following real-world
and ideal-world distributions are identical:

Real world: execute MF (x) and let y be the output and Addr be the memory access
patterns; output (y, Addr);
Ideal world: output (F(x), Sim(L(x))).

For simplicity, if the leakage function L(x) = |x|, we often say that MF is a perfect
oblivious simulation of F (omitting the leakage function) for short.

Modeling input assumptions. Some of our building blocks provide perfect obliviousness
only if the input array is randomly shuffled and the corresponding randomness concealed.
More formally, suppose that a machine M(A, x) and a functionality F(A, x) both take in
an array A ∈ Dn where D ∈ {0, 1}ℓ as input and possibly an additional input x ∈ {0, 1}∗.
Formally, we say that “the machine M is a perfectly oblivious simulation of the functionality
F with leakage L assuming that the input array A is randomly shuffled”, iff for every A ∈ Dn

and every x ∈ {0, 1}∗, the following real-world and ideal-world distributions are identical:
Real world: randomly shuffle the array A and obtain A′, execute MF (A′, x) and let y be
the output and Addr be the memory access patterns; output (y, Addr);
Ideal world: output (F(A, x), Sim(ℓ, L(A, x)).

Note that the above definition considers only a single input array A, but there is a natural
generalization for algorithms that take two or more input arrays – in this case we may require
that some or all of these input arrays be randomly shuffled to achieve perfect obliviousness.
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3.2 Oblivious Algorithm Building Blocks
We describe some algorithmic building blocks. Unless otherwise noted, for algorithms that
operate on arrays of n elements, we always assume that a single memory word is wide enough
to store the index of each element within the array, i.e., w ≥ log n where w is the bit-width
of each PRAM word. We typically use the following notation: let B denote the bit-width of
each element, and let β := ⌈B/w⌉ denote the number of memory words it takes to store each
element.

3.2.1 Oblivious Sort
Oblivious sorting can be accomplished through a sorting network such as the famous
construction by Ajtai, Komlós, and Szemerédi [1]. We restate this result in the context of
PRAM algorithms:

▶ Theorem 4 (Oblivious sorting [1]). There exists a deterministic, oblivious algorithm that
sorts an array of n elements consuming O(β · n log n) total work and O(log n) depth where
β ≥ 1 denotes the number of memory words it takes to represent each element.

3.2.2 Oblivious Random Permutation
Let ORP be an algorithm that upon receiving an input array X, outputs a permutation of
X. Let Fperm denote an ideal functionality that upon receiving the input array X, outputs
a perfectly random permutation of X. We say that ORP is a perfectly oblivious random
permutation, iff it is a perfect oblivious simulation of the functionality Fperm. Recall that
for any integer m ∈ [n], each CPU of the PRAM can sample an integer uniformly at random
from [m] in unit time.

Sequential ORP algorithm with deterministic performance bounds. Recently, a sequential
oblivious algorithm is developed to perform such permutation in O(n log n) total work [5,
Section 6.4].

▶ Theorem 5 (A sequential ORP algorithm [5]). Let β ≥ 1 denote the number of memory
words it takes to represent each element. There exists an oblivious random permutation
construction that completes in deterministic O(β · n log n) total work.

Parallel ORP algorithm with deterministic performance bounds. Alonso and Schott [3]
construct a parallel random permutation algorithm that takes O(n log2 n) total work and
O(log2 n) depth to randomly permute n elements. Although achieving obliviousness was not
a goal of their paper, it turns out that their algorithm is also perfectly oblivious, giving rise
to the following theorem:

▶ Theorem 6 (Alonso-Schott ORP). There is a perfectly oblivious algorithm that permutes
an array of n elements in deterministic O(β · n log n + n log2 n) total work and O(log2 n)
depth where β ≥ 1 denotes the number of memory words for representing each element.

Parallel, Las Vegas ORP algorithm. A few recent works [10, 5] describe another perfectly
oblivious random permutation algorithm which is asymptotically more efficient but the
algorithm is Las Vegas, i.e., the algorithm satisfies perfect obliviousness and correctness, but
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with a small probability the algorithm may run longer than the stated bound.6 Below, we
restate this result in the form that we desire in this paper – the specific theorem stated below
arises from the improved analysis of Asharov et al. [5, Theorem 4.3] where we replace the
“quadratic oblivious random permutation” with Alonso-Schott ORP; for the performance
bounds, we state an expected version and a high-probability version. Notice that the replaced
ORP incurs an O(log2 n) depth with probability o(1) but not in expectation.

▶ Theorem 7 (A Las Vegas ORP algorithm). Let β ≥ 1 denote the number of memory words
it takes to represent each element. There exists a Las Vegas perfectly oblivious random
permutation construction that completes in expected O(β · n log n) total work and expected
O(log n) depth. Furthermore, except with n−Ω(

√
n) probability, the algorithm completes in

O(β · n log n) total work and O(log2 n) depth.

Note that the above theorem gives a high-probability performance bound for sufficiently
large n. Later in our OPRAM construction, we will adopt ORP for problems of different
sizes – we will use Theorem 7 for sufficiently large instances and use Theorem 6 for small
instances.

3.2.3 Oblivious Routing
Oblivious routing [9] is the following primitive where n source CPUs wish to route data to
n′ destination CPUs based on the key.

Inputs: The inputs contain two arrays: 1) a source array src := {(ki, vi)}i∈[n] where each
element is a (key, value) pair or a dummy element denoted (⊥, ⊥); and 2) a destination
array dst := {k′

i}i∈[n′] containing a list of (possibly dummy) keys.
We assume that each (non-dummy) key appears no more than C times in the src array
where C = O(1) is a known constant; however, each (non-dummy) key can appear any
number of times in dst.
Outputs: We would like to output an array Out := {v′

i,j}i∈[n′],j∈[C] where (v′
i,1, . . . , v′

i,C)
contains all the values contained in src whose keys match k′

i (padded with ⊥ to length C).

▶ Theorem 8 (Oblivious routing [9, 13, 10]). There exists a perfectly oblivious routing algorithm
that accomplishes the above task in O(log(n + n′)) depth and O(β · (n + n′) log(n + n′)) total
work where β ≥ 1 denotes the number of words it takes to represent each element.

3.2.4 Oblivious Tight Compaction
As mentioned in Section 2.2, tight compaction is the following task: given an input array
containing n elements where each element is tagged with a bit indicating whether it is real
or dummy, produce an output array containing also n elements such that all real elements in
the input appear in the front and all dummies appear at the end. We will use the parallel
oblivious tight compaction of Asharov et al. [6] running in linear work and logarithmic depth.

▶ Theorem 9 (Oblivious tight compaction [6]). There exists a deterministic, oblivious tight
compaction algorithm that compacts an array of n elements in total work O(β · n) and depth
O(log n) where β ≥ 1 denotes the number of words it takes to represent each element.

6 Using more depth but only unbiased random bits, Czumaj [16] shows a Las Vegas switching network to
achieve the same abstraction.
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We point out that Asharov et al.’s oblivious parallel compaction algorithm [6] works in
the so-called indivisibility model, that is, the payload of the elements are moved around as
opaque strings.

3.3 Parallel Intersperse
Oblivious intersperse is an abstraction that which can be used to mix two input arrays
such that the mixing is uniformly at random in the adversarial view. The abstraction was
originated in PanORAMa [32] and then formally defined and realized in OptORAMa [5]. In
this section, we define intersperse for completeness and then state the sequential and parallel
realizations that run in expected, high probability, or deterministic performance bounds.

3.3.1 Definition
Informally, in the definition of OptORAMa, the Intersperse algorithm receives the concat-
enation of the two input arrays and only the sum of their lengths is public but not each
array’s individual length where each input array is shuffled uniformly at random, and then
Intersperse is required to output a uniformly shuffled array consisting of all input elements.
More specifically, Intersperse has the following syntax.

Input. The concatenated array I0∥I1, and two integers n0 := |I0| and n1 := |I1|.
Output. An array B of size n = n0 + n1 that contains all elements of I0 and I1. Each
position in B will hold an element from either I0 or I1, chosen uniformly at random and
the choices are concealed from the adversary.

We now define the security notion required for Intersperse. We require that when we
run Intersperse on two input arrays I0 and I1 that are both randomly shuffled (based
on a secret permutation), the resulting array will be randomly shuffled (based on a secret
permutation) too. More formally stated, we require that Intersperse is a perfect oblivious
simulation of the following Fshuffle(I0, I1) functionality provided that the two input arrays
are randomly shuffled. Henceforth we assume that the bit-width of each element in the input
arrays is a publicly known parameter that the scheme is implicitly parametrized with.

Fshuffle(I0∥I1, n0, n1):
1. Choose a permutation π : [n] → [n] uniformly at random where n := |I0| + |I1|.
2. Let I be the concatenation of I0∥I1.
3. Initialize an array B of size n. Assign B[i] := I[π(i)] for every i = 1, . . . , n.
4. Output: The array B.

The recent work OptORAMa [5, Claim 6.3] showed how to construct an Intersperse
algorithm in linear time, i.e., O(n); however, their algorithm is inherently sequential (see
the following warmup). A manuscript by Asharov et al. [7] considered how to devise a
parallel version of Intersperse in an attempt to make OptORAMa parallel; but their
parallel Intersperse algorithm achieves only statistical security.7 Later in this section
we will describe a variant of the parallel intersperse that is perfectly secure but consumes
more cost.

7 The algorithm of Asharov et al. [7] may abort and fail with a negligible probability, and such negligible
event reveals some information about the input (n, n0) so that it is only statistically secure.
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3.3.2 Warmup: A Sequential, Linear-Work Intersperse Algorithm
Asharov et al. [5] used the following method to construct a sequential Intersperse algorithm:
1. First, initialize an array Aux of size n that has n0 zeros and n1 ones, where the zeros’

positions are chosen uniformly at random (and the remaining positions are ones). More
formally, the algorithm must obliviously simulate the following FSampleAux(n, n0) func-
tionality with leakage (n, n0).
FSampleAux(n, n0) – Sample Auxiliary Array

Input: Two numbers n, n0 ∈ N such that n0 ≤ n.
The functionality: Sample an array Aux of n bits uniformly at random conditioned
on having n0 zeros and n − n0 ones. Output Aux.

2. Next, we route elements 1-to-1 from I0 to zeros in Aux and 1-to-1 route elements from I1
to ones in Aux. This can be accomplished by running oblivious tight compaction circuit
(Theorem 9) to pack all the 0s in Aux in the front. During the process, all swap gates
remember their routing decisions. Now, we can run the oblivious tight compaction circuit
in reverse and on the input array I0||I1. It is not hard to see that in the outcome, every
0 position in Aux would receive an element from I0 and every 1 position in Aux would
receive an element from I1.

Asharov et al. [5, Claim 6.3] proved that the above algorithm indeed realizes the Intersperse
abstraction as defined above. Moreover, they show how to implement the above idea
obliviously in linear-time, resulting in the following theorem:

▶ Theorem 10 (Sequential, linear-time Intersperse [5]). There exists an algorithm that
perfectly obliviously simulates Fshuffle for two randomly shuffled input arrays. Moreover, the
algorithm completes in deterministic O(βn) total work where n denotes the sum of the lengths
of the two input arrays, and β ≥ 1 denotes the number of memory words required to represent
each element.

3.3.3 Parallel Intersperse Algorithms
We need a parallel version of the Intersperse algorithm. In Asharov et al. [5]’s Intersperse
construction, while the oblivious tight compaction building block can be replaced with a
parallel realization of tight compaction (Theorem 9), unfortunately they adopt a highly
sequential procedure for generating the Aux array. To get a parallel algorithm, it suffices to
devise a parallel procedure for generating such an Aux array. More formally, we would like
to devise an algorithm that obliviously simulates the functionality FSampleAux(n, n0).

A naïve algorithm with deterministic performance. A naïve algorithm is the following:
simply write down exactly n0 number of 0s and n − n0 number of 1s, apply an oblivious
random permutation to permute the array, and output the result. If we use Theorem 6 to
instantiate this naïve algorithm, we obtain the following theorem:

▶ Theorem 11 (Naïve parallel algorithm for sampling Aux). For any n0 ≤ n, there exists an
algorithm that perfectly obliviously simulates FSampleAux(n, n0); moreover, for sampling an
Aux array of length n, the algorithm completes in deterministic O(n log2 n) total work and
O(log2 n) depth.

This immediately gives rise to the following corollary for Intersperse due to the result
of Asharov et al. [5] and parallel tight compaction (Theorem 9):
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▶ Corollary 12 (Naïve parallel Intersperse). There exists an algorithm that perfectly obli-
viously simulates Fshuffle for two randomly shuffled input arrays. Moreover, the algorithm
completes in deterministic O(βn + n log2 n) total work and O(log2 n) depth where n denotes
the sum of the lengths of the two input arrays, and β ≥ 1 denotes the number of memory
words required to represent each element.

A more efficient Las Vegas algorithm. To obliviously simulates the functionality
FSampleAux(n, n0) with better performance, we use the Las Vegas version of oblivious random
permutation, Theorem 7, which gives the following theorem:

▶ Theorem 13 (Las Vegas parallel algorithm for sampling Aux). For any n0 ≤ n, there exists
a Las Vegas algorithm that perfectly obliviously simulates FSampleAux(n, n0). Except with
probability n−Ω(

√
n), the algorithm completes in O(n log n) total work and O(log2 n) depth.

Furthermore, the above stated performance bounds also apply in expectation.

Now due to the work of Asharov et al. [5] and parallel tight compaction (Theorem 9), we
have the following corollary.

▶ Corollary 14 (Parallel Intersperse). Let β ≥ 1 be the number of words used to represent
an element. There is an Intersperse algorithm that is a perfectly oblivious simulation of
Fshuffle on two randomly shuffled input arrays; moreover, except with n−Ω(

√
n) probability,

the algorithm completes in O(βn + n log n) total work and O(log2 n) depth. Moreover, the
stated performance bounds also apply in expectation.

We defer the formal construction and proof to the full version [14]
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Abstract
Onion routing is the most widely used approach to anonymous communication online. The idea
is that Alice wraps her message to Bob in layers of encryption to form an “onion” and routes it
through a series of intermediaries. Each intermediary’s job is to decrypt (“peel”) the onion it receives
to obtain instructions for where to send it next. The intuition is that, by the time it gets to Bob,
the onion will have mixed with so many other onions that its origin will be hard to trace even for
an adversary that observes the entire network and controls a fraction of the participants, possibly
including Bob. Despite its widespread use in practice, until now no onion routing protocol was
known that simultaneously achieved, in the presence of an active adversary that observes all network
traffic and controls a constant fraction of the participants, (a) anonymity; (b) fault-tolerance, where
even if a few of the onions are dropped, the protocol still delivers the rest; and (c) reasonable
communication and computational complexity as a function of the security parameter and the
number of participants.

In this paper, we give the first onion routing protocol that meets these goals: our protocol
(a) achieves anonymity; (b) tolerates a polylogarithmic (in the security parameter) number of
dropped onions and still delivers the rest; and (c) requires a polylogarithmic number of rounds
and a polylogarithmic number of onions sent per participant per round. We also show that to
achieve anonymity in a fault-tolerant fashion via onion routing, this number of onions and rounds is
necessary. Of independent interest, our analysis introduces two new security properties of onion
routing – mixing and equalizing – and we show that together they imply anonymity.
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1 Introduction

Suppose that Alice wishes to send a message anonymously to Bob. Informally, by anonymously,
we mean that no one (not even Bob) can distinguish the scenario in which Alice sends a
message to Bob from an alternative scenario in which it is Allison who sends a message to
Bob. To begin with, Alice can encrypt the message and send the encrypted message to Bob
so that only Bob can read the message. However, an eavesdropper observing the sequence of
bits coming out of Alice’s computer and the sequence of bits going into Bob’s computer can
still determine that Alice and Bob are communicating with each other if the sequences of
bits match. Thus, encryption is not enough.
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Onion routing [11] is the most promising approach to anonymous channels to date. In
onion routing, messages are sent via intermediaries and wrapped in layers of encryption,
resulting in so-called onions; each intermediary’s task is to “peel off” a layer of encryption
and send the resulting onion to the next intermediary or its final destination. The onion’s
layers are unlinkable to each other, and so its route through the network cannot be traced
from merely observing the sequences of bits that Alice transmits and Bob receives. However,
even with Alice sending her message to Bob encoded as an onion, her communication can
still be tracked by a resourceful eavesdropper with an extensive view of the network traffic
(e.g., an ISP-level or an AS-level adversary) who can observe all Internet traffic.

The adversary who can observe all network traffic is called the network adversary.
The adversary who, in addition to observing all network traffic, controls a subset of the
participants is called the passive adversary if it follows the prescribed protocol, or active if it
does not. The three adversary models – the network adversary, the passive adversary, and
the active adversary – are standard for analyzing cryptographic protocols such as multi-party
computation (MPC) [21]. The most desirable goal is to achieve security in the presence of
the most powerful of these, i.e., the active adversary corrupting as large a fraction of the
participants as possible.

It was known how to construct an onion routing protocol that is both efficient and
anonymous from the passive adversary who corrupts a constant fraction of the parties. In
Πp [3], each user forms an onion bearing his message to its recipient; the users’ onions are
routed randomly through a network of servers. Πp is anonymous from the passive adversary
provided that the onions travel for a superlogarithmic (in the security parameter) number of
rounds, and the average number of onions per server per round is also superlogarithmic.

However, Πp isn’t anonymous from the active adversary. To see why this is the case,
consider the following attack. Suppose that the adversary A suspects that Alice is commu-
nicating with Bob. Because A is active, he can disrupt Alice’s communication by dropping
Alice’s outgoing onion in the event that Alice’s first intermediary is corrupt (the probability
of this event is identical to the fraction of parties that are under the adversary’s control). If
Bob doesn’t receive an onion at the end of the protocol, then A can infer that her suspicion
was correct: Alice’s interlocutor is Bob!

So what can we do instead? Of course, we could use general-purpose MPC [21]. Every
party will receive as input a message and its destination, and every party will receive as output
the messages that were meant for him/her. In addition to perfect anonymity, this approach
provides fault tolerance: in MPC that is secure against the active adversary, the honest
parties are guaranteed to receive their output no matter how much the adversary deviates
from the protocol. But the problem with this approach is that relying on general-purpose
MPC makes this approach too inefficient: the most efficient general MPC protocol still
requires that at least some of the participants send and receive Ω(N) bits, where N is the
number of participants. (See Cramer, Damgård, and Nielsen [16].)

Recently proposed protocols, Stadium [30] and Atom [25], are more efficient. However,
they are not fault-tolerant: honest parties will abort the protocol run whenever even a single
message packet is dropped. Thus, while this approach provides anonymity from the active
adversary, it is also extremely fragile: if just one message is dropped (which could be the
result of an innocuous fault), the entire network suffers a catastrophic failure. In contrast,
we would like to design onion routing protocols that can tolerate faults. Thus, compared to
MPC and Stadium-Atom-type protocols, onion routing appears attractive from the efficiency
and fault tolerance points of view.

In this paper, we answer these fundamental questions: Can an onion routing protocol
be simultaneously anonymous, fault-tolerant, and efficient? What is the communication
complexity of anonymous and fault-tolerant onion routing?
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1.1 Problem setting
Before describing our results in detail, let us first define our problem setting. Let P def=
{P1, P2, . . . , PN} denote the set of N parties, participating in an onion routing protocol. We
assume that the protocol progresses in global rounds and that an onion sent at round r arrives
at its destination prior to round r + 1. Moreover, the adversary is modelled with rushing,
i.e., the adversary receives onions sent in round r instantaneously in round r.1 We assume
that the number N of participants and every other quantity in the protocol is polynomially
bounded in the security parameter λ.

We define an onion routing protocol to be a protocol in which the honest parties form and
process only message packets that are cryptographic onions. To do this, the honest parties use
a secure onion encryption scheme which is a triple of algorithms: (Gen, FormOnion, ProcOnion).

See Section 2.1 for more details. During setup of an onion routing protocol, each honest
party P generates a public-key pair (pk(P ), sk(P ))← Gen(1λ) using the onion encryption
scheme’s key generation algorithm Gen. Each party P publishes his/her public key pk(P ) to
a public directory so that everyone knows everyone else’s public keys.

Let M be the space of fixed-length messages. An input σ = (σ1, . . . , σN ) to the protocol
is a vector of inputs, where σi is a set of message-recipient pairs for party Pi. For m ∈M
and Pj ∈ P, the inclusion of a message-recipient pair (m, Pj) in input σi means that
party Pi is instructed to send message m to recipient Pj . In this paper, we consider the
following “benchmark” input space, dubbed the simple input/output setting (I/O). An input
σ = (σ1, . . . , σN ) is in the simple I/O setting if there exists a permutation function π : P 7→ P
such that each party P ∈ P is instructed to send a message to party π(P ) and no other
message, i.e., ∀P ∈ P , ∃mP ∈M such that σP = {(mP , π(P ))}. The simple I/O setting is a
superset of the spaces considered in prior works [3, 25,30,31].

Unless stated otherwise, the adversary is active and can observe the traffic on all com-
munication channels and, additionally, can non-adaptively corrupt and control a constant
fraction of the parties. By non-adaptively, we mean that the corruptions are made independ-
ently of any protocol run.2 Without loss of generality, this type of corruption is captured by
allowing the adversary to select the set Bad of corrupted parties prior to the beginning of the
protocol run. Once the adversary corrupts a party, the adversary can observe the internal
state and computations of the corrupted party and arbitrarily alter the behavior of the party.

By VΠ,A(1λ, σ), we denote the view of the adversary A when it interacts with protocol Π
on input: the security parameter 1λ and the instructions σ. The view consists of all the
observations that A makes during the run: the values and positions of every onion at every
round, the states and computations of every corrupted party between every pair of consecutive
rounds, the randomness used by A, and the numbers of messages received by the honest
parties. The view does not include the honest parties’ randomness. VΠ,A,Bad(1λ, σ) denotes
A’s view given its choice Bad for the corrupted parties. At the end of the protocol run,
each honest party Pi outputs the set OΠ,A

i (1λ, σ) of (non-empty) messages from the message
spaceM that Pi receives from interacting with adversary A in a run of protocol Π on input σ.
We define the output OΠ,A(1λ, σ) of protocol Π in an interaction with adversary A on input σ

as the N parties’ outputs:3 OΠ,A(1λ, σ) def= (OΠ,A
1 (1λ, σ), OΠ,A

2 (1λ, σ), . . . , OΠ,A
N (1λ, σ)).

1 We do not consider the asynchronous communication model [9] in which Alice’s outgoing onions
(including her onion to her recipient Bob) can be delayed indefinitely. In such a case, we cannot even
guarantee correctness (i.e., message delivery when no party deviates from the protocol).

2 If we were to allow the adversary to adaptively corrupt parties, then the adversary could easily block all
of Alice’s onions. For every onion O sent by Alice, the adversary can corrupt the party P who receives
O in time to direct P to drop the onion obtained from processing O before the next round.

3 Technically, the view and the output may depend on other parameters, such as the public parameters
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1.2 Our results
We now describe our results. Our construction pertains to the problem setting described
in Section 1.1. Our lower bound applies more generally to any arbitrary input set (not
necessarily constrained to the simple I/O setting).

Following prior work [3, 25, 30, 31], we use a natural game-based definition of anonymity:
a protocol is anonymous if the adversary cannot distinguish the scenario in which Alice
sends a message to Bob while Carol sends one to David, from one in which Alice’s message
goes to David while Carol’s goes to Bob; (see Definition 4). More precisely, for any pair
of inputs (σ0, σ1) that agree on the inputs and outputs for the adversarial participants,
OΠ,A(1λ, σ0) ≈ OΠ,A(1λ, σ1), where “≈” denotes indistinguishability.

We relate anonymity of an onion routing protocol to two new concepts: An onion routing
protocol mixes if it sufficiently shuffles the honest users’ onions making it infeasible for the
adversary to trace a received message back to its sender. A protocol equalizes if the adversary
cannot determine the input from the numbers of messages received by the parties; in other
words, the number of messages output by each participant – or the fact that a participant
did not receive an output at all – are random variables that are computationally unrelated
to the input vector σ. (See Definitions 5 and 7.)

We show that in many cases, mixing and equalizing implies anonymity, i.e., an onion
routing protocol that mixes and equalizes is anonymous. (See Theorem 3 for the formal
theorem statement.) We use this to prove that our protocol is anonymous. Anonymity also
implies equalizing; this observation is useful for proving a lower bound that (almost) matches
our protocol.

1.2.1 Anonymous, “robust,” and efficient onion routing
As we just explained, our strategy is to construct a protocol that mixes and equalizes.

Intuitively, mixing is the easier one to achieve: the onions need to sufficiently shuffle
with other onions traveling over the network to ensure that each of them is hard to trace.
This intuition is essentially correct with the caveat that an active adversary can strategically
interfere with this process by dropping onions. To ensure that each onion shuffles with a
sufficiently large number of onions (formed by an honest party) a sufficiently large number of
times, our protocol uses checkpoint onions [3] that each intermediary expects to receive, and
if a constant fraction (e.g., one-third) of them don’t arrive because the adversary dropped
them, the protocol aborts.

An active adversary who controls a fraction of the participants can try to “isolate” an
honest party Alice from the rest of the network by dropping all of the messages/onions
received directly from Alice. In a fault-tolerant network protocol, the remaining participants
may still be able to get their messages through to their destinations. In this case, based on
who received an output, an adversary can infer who Alice’s intended recipient was. This
attack explains why equalizing is difficult to achieve.

To overcome this attack, we introduce a new type of onions, called merging onions. When
two merging onions belonging to the same pair arrive at some intermediary I, I recognizes
that they are from the same pair (although, other than their next layer and destination, I

does not learn anything else about them). The protocol directs I to discard one of them

(denoted, pp) and the parties’ states (denoted, states). Thus, we could be more precise by denoting the
view and the output as VΠ,A(1λ, pp, state, σ) and OΠ,A(1λ, pp, states, σ), but we will use the simpler
notation for better readability.
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(chosen at random) while sending its mate along. If only one onion of the pair arrived at
I while its mate is missing (i.e. the adversary dropped it some time earlier in the protocol
run), then I simply sends along the mate that survived, and there is nothing to discard.

Why does this help? Suppose that both Alice and Allison created 2h merging onions; at
rounds r1, r2, . . ., rh each of these onions (if it hasn’t been deleted yet) will meet a mate.
Say, exactly one of Alice’s onions is dropped by the adversary at some point prior to round
r1, so its mate (the onion it was supposed to pair with at round r1) was not dropped. Also,
suppose that none of Allison’s onions were dropped. Then at round r1 all but one of Alice’s
remaining merging onions will meet a mate, and half of them will be dropped, so exactly
2h−1 of Alice’s onions will remain in the system – which is exactly how many of Allison’s
onions remain. Additional h − 1 opportunities to merge account for the possibility that
the adversary has dropped a larger number of Alice’s onions. Merging onions ensure that
the number of Alice’s onions that remain in the system at the end of the protocol is the
same as the number of Allison’s onions, i.e., that the protocol equalizes. The fact that Alice
was targeted and many of her onions had been dropped upfront doesn’t matter because the
protocol discards all but one of them anyway! (See Section 4 for a more in-depth description
of merging onions and how to construct them.)

Positive result. We construct an onion routing protocol Π▷◁, pronounced “Pi-butterfly,”
because it uses a butterfly network. Π▷◁ takes advantage of the merging onions technique
described above. It is (a) anonymous from the active adversary who can corrupt up to a
constant fraction κ < 1

2 of the parties and (b) robust, i.e. whenever the adversary drops
at most logarithmic (in the security parameter) number of message packets (i.e. onions),
Π▷◁ delivers the messages from honest senders with overwhelming probability. Moreover,
(c) during the execution of the protocol, every honest party transmits up to a polylog (in the
security parameter) number of onions: specifically γ1 log N log3+γ2 λ onions, where N is the
number of participants, and λ is the security parameter. γ1 and γ2 are parameters that can
be set as desired: increasing them increases the rate at which the maximum distance in the
adversarial views for any two inputs shrinks. (See Theorem 12 for the precise relationship.)

1.2.2 Matching negative result
Our protocol is essentially optimal as far as both the round complexity and the number of
onions each participant sends out are concerned. In Section 7, we explain why a protocol
that is anonymous and robust in the presence of an active adversary that corrupts a constant
fraction of participants requires a polylogarithmic number of onions sent out per participant.

1.3 Related work
Our work is inspired by the fact that Tor [18], the most widely adopted anonymous com-
munication system, is also known to have numerous security flaws [23, 27, 29, 32]: Tor is
based on a highly efficient design that favors practicality over security and is not secure even
from the passive adversary [17]. Moreover, it has been shown to be vulnerable to network
traffic correlation attacks [23, 27, 29, 32]. Thus, our goal was to design a protocol that was as
close to Tor’s efficiency and fault tolerance as possible, while also being provably anonymous.
We consider a very specific and narrow problem in the much larger field of anonymous
messaging systems. Although our definition of anonymity and adversary models are standard
in cryptography, other definitions have been considered [1, 5, 6, 10, 19] and positive results for
alternative models are known [4–6].
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Other provably anonymous systems exist [12, 14, 15, 28], but they are not nearly as
efficient. Achieving anonymous channels using heavier cryptographic machinery has been
considered also. One of the earliest examples is Chaum’s dining cryptographer’s protocol [12].
Rackoff and Simon [28] use secure multiparty computation for providing security from active
adversaries. Other cryptographic tools used in constructing anonymity protocols include
oblivious RAM (ORAM) and private information retrieval (PIR) [14, 15]. Corrigan-Gibbs et
al.’s Riposte solution makes use of a global bulletin board with a latency of days [15].

We are not the first to look into lower bounds on the complexity of anonymous messaging
protocols (e.g., [13, 17]). However, all other lower bounds are for the setting where every
participant is guaranteed to receive an output, and don’t apply to protocols that allow aborts
or that allow some participants to receive an output while others’ output doesn’t make it
through.

2 Preliminaries

For a set S, we denote the cardinality of S by |S|, and s←$S denotes that s is chosen from
S uniformly at random. For an algorithm A(x), y ← A(x) is the (possibly probabilistic)
output y from running A on the input x. In this paper, log(x) is the logarithm of x base 2.

We say that a function f : N 7→ R is negligible in the parameter λ, written f(λ) = negl(λ),
if for a sufficiently large λ, f(λ) decays faster than any inverse polynomial in λ. When λ is
the security parameter, an event Eλ is said to occur with (non-)negligible probability if the
probability of Eλ can(not) be bounded above by a function negligible in λ. An event occurs
with overwhelming probability (abbreviated, w.o.p.) if its complement occurs with negligible
probability. We use the standard notion of a pseudorandom function [20, Chapter 3.6].

2.1 Onion encryption schemes
Our work on onion routing builds upon a secure onion encryption scheme [2,7,24]. Recall that
an onion encryption scheme is a triple: (Gen, FormOnion, ProcOnion). The algorithm Gen
generates a participant key pair, i.e., a public key and a secret key. The algorithm FormOnion
forms onions, and the algorithm ProcOnion processes onions.

Let P be a set of participants, and let Bad ⊆ P be the set of corrupt parties. For
every honest P ∈ P \ Bad, let (pk(P ), sk(P ))← Gen(1λ, pp, P ) be the key pair generated for
party P , where λ is the security parameter, and pp, the public parameters. For every corrupt
party P ∈ Bad, let pk(P ) denote P ’s public key. Let M be the message space consisting of
messages of the same fixed length, and let the nonce space S consist of nonces of the same
fixed length. These lengths may be a function of the security parameter λ. Here, a nonce is
really any metadata associated with an onion layer.

FormOnion takes as input a message m ∈M, an ordered list (Q1, . . . , Qd−1, R) of parties
from P, the public keys (pk(Q1), . . . , pk(Qd−1), pk(R)) associated with these parties, and a
list (s1, . . . , sd−1) of (possibly empty) nonces from S associated with the layers of the onion.4
The party R is interpreted as the recipient of the message, and the list (Q1, . . . , Qd−1, R)
is the routing path. The output of FormOnion is a sequence (O1, . . . , Od) of onions. Such a
sequence is referred to as an evolution, but every Oi in the sequence is an onion. Because it is

4 Technically, the input/output syntax and constructions of [2, 7] do not include the sequence (s1, . . . , sd)
of nonces but can easily be extended to do so; if we use layered CCA2-secure encryption instead of
onion encryption – which is fine for this application – then incorporating the nonces is trivial.
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convenient to think of an onion as a layered encryption object where processing an onion Oi

produces the next onion Oi+1, we sometimes refer to the process of revealing the next onion
as “decrypting the onion” or “peeling the onion.”

For every i ∈ [d − 1], only intermediary party Qi can peel onion Oi to reveal the next
layer, (Oi+1, Qi+1, si+1)← ProcOnion(sk(Qi), Oi, Qi), which contains the peeled onion Oi+1,
the next destination Qi+1 of the onion, and the nonce si+1. Only the recipient R can peel
the innermost onion Od to reveal the message, m← ProcOnion(sk(R), Od, R).

In our constructions, a sender of a message m to a recipient R “forms an onion” by
generating nonces and running the FormOnion algorithm on the message m, a routing path
(Q1, . . . , Qd−1, R), the keys (pk(Q1), . . . , pk(Qd−1), pk(R)) associated with the parties on the
routing path, and the generated nonces; the formed onion is the first onion O1 from the list
of outputted onions.

Secure onion encryption. Suppose that (honest) Alice generates an onion carrying a message
m for Bob. That is, she generates a string of nonces and runs the algorithm FormOnion
on the inputs: the message m, the routing path (Q1, . . . , Qi−1, I, Qi+1, . . . , Qd−1, Bob), the
public keys associated with the routing path, and the nonces. Let O denote the onion
for intermediary party I, i.e., O is the ith onion in the outputted evolution. Suppose that
(honest) Carol runs the algorithm FormOnion on the inputs: the message m′, the routing
path (Q′

1, . . . , Q′
j−1, I, Q′

j+1, . . . , Q′
e−1, David), the public keys associated with the routing

path, and some nonces. Let O′ denote the onion for intermediary party I. Provided that the
onion encryption scheme is secure, if party I receives onions O and O′ in the same round and
consequently processes the two onions in the same batch, then the adversary cannot tell which
processed onion resulted from processing O and which resulted from processing O′. In other
words, onions formed by honest parties “mix” at honest parties. For a precise, cryptographic
definition of secure onion encryption, see the recent paper by Ando and Lysyanskaya [2].

2.2 Onion routing protocols
In an onion routing protocol, all the packets sent between protocol participants are treated
as onions; i.e., upon receipt, they are fed to ProcOnion. Moreover, internally, there are
type checks that ensure that these onions are processed properly. There are two cases for
processing an honestly formed onion properly: the case where peeling the onion reveals its
next layer and destination and the case where it reveals a message for the processing party.

If Qi runs ProcOnion and outputs the next layer of the onion Oi+1 (together with its
destination Qi+i and nonce si+1), then the only two options for what an onion routing
protocol permits Qi to do with Oi+1 is either send it to Qi+1 or drop it (if Qi+1 = Qi then
this send step is internal to Qi). Which of these actions are taken depends on the specifics of
the algorithm and also on the values (Qi+1, si+1). In other words, an onion routing protocol
cannot have an onion sent to incorrect destinations or fed as input to another algorithm.

Further, if Qi runs ProcOnion and outputs a message m ≠ ⊥, then this message becomes
(ultimately, at the end of the protocol) part of Qi’s output, i.e., it will be on the list of
messages that have been sent to Qi. In other words, m cannot be internal to the protocol; it
must be a message that someone sent to Qi via the protocol. Conversely, the only way that
a message m can be on the list of messages received by Qi is if Qi obtained it by peeling one
of the onions it received.

These restrictions on protocol design are natural. Indeed, any implementation of onion
routing would ensure that it is adhered to by using type checking of the objects created, sent,
and processed by the algorithm. Without such a restriction, any protocol can be thought of
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as an instance of onion routing protocol, so limiting our attention in this way is meaningful.
Note that this places restrictions just on the protocol that the honest parties are executing;
the adversary is still free to do anything he wishes: to mismatch types, to route onions
incorrectly, to try to rewrap onions, to form and process onions adversarially, etc.

Onion routing serves a purpose: to route messages from senders to recipients. Therefore,
it needs to satisfy correctness:

▶ Definition 1 (Correctness). A messaging protocol Π is correct if in an interaction with a
passive adversary, it delivers all the messages with overwhelming probability.

In this paper, we will consider only correct onion routing protocols, but we will analyze
their interactions with active adversaries.

Further, the protocols we design in this paper have an additional attractive property of
being indifferent:

▶ Definition 2 (Indifference). An onion routing protocol Π is indifferent if two properties hold:
(i) The routing path corresponding to each honestly formed onion is of a fixed length. (ii) The
sequence of intermediaries, including the recipients of dummy onions, and the sequence of
nonces corresponding to each honestly formed onion do not depend on the input.

The intuition behind this notion is that the contents of the messages sent and received
between parties have no bearing on how the messages are routed and transmitted. For
protocol design, indifference is an attractive property that allows components of an onion
to be in place (and possibly the bulk of the cryptographic computation finished) before the
message contents even becomes known. Another attractive feature of indifferent protocols is
that their security properties are easier to analyze, as we will explore in the next section.
Our negative results apply to all onion routing schemes, indifferent or not.

3 Security definitions: anonymity, equalizing, and mixing

A motivating example. Consider Ando, Lysyanskaya, and Upfal’s very simple protocol Πp

(p, for passive) in the passive adversary setting [3]. Recall that corrupted parties also follow
the protocol in this setting. Let Servers ⊆ P be the set of servers which is a subset of
P. During the onion-forming phase, every party P generates an onion from the message-
recipient pair (m, R) in P ’s input by first choosing d− 1 servers (S1, . . . , Sd−1), each chosen
independently and uniformly at random from Servers. Next, P forms an onion O by running
FormOnion on the message m, the routing path P → = (S1, . . . , Sd−1, R), the public keys
associated with P →, and the sequence of empty nonces. At the first round of the execution
phase, each party P sends its formed onion O to the first server S1 on the routing path. For
every round r ∈ [d], each server S does the following: Between the rth and (r + 1)st rounds,
S processes all the onions it received at the rth round. At the (r + 1)st round, S sends the
processed onions to their respective next destinations. At the dth round, each party receives
an onion that, once processed, reveals a message m for the party.

Πp is anonymous if the protocol sufficiently shuffles the onions during the execution
phase. In prior work [3], Ando, Lysyanskaya, and Upfal showed that sufficient shuffling
occurs when the server load (i.e., the average number of onions received by a server at a
round: N

|Servers| ) and the number of rounds (i.e., d) are both superlogarithmic in the security
parameter. However, there is no parameter setting for which Πp can be anonymous from the
active adversary. If κN out of N participants are corrupted, then with probability κ, the
adversary can determine the recipient of any honest party, say Alice: Suppose that during
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the onion-forming phase, Alice picks a routing path that begins with an adversarial party S1.
During the execution phase, the adversary can direct S1 to drop Alice’s onion before the
second round. In this case, the adversary can figure out who Alice’s recipient is (say, it’s
Bob) by observing who does not receive an onion at the end of the protocol run.

The motivating example illustrates that while mixing (i.e. sufficiently shuffling onions) is
helpful for achieving anonymity, it is not enough. To be anonymous, the protocol must also
guarantee that the numbers of messages received by the parties don’t reveal the input. We
call this property, equalizing.

Here, we provide formal game-based definitions of anonymity (Section 3.1), equalizing
(Section 3.2), and mixing (Section 3.3). Given these definitions, it can be shown that for
indifferent onion routing protocols, equalizing and mixing imply anonymity:

▶ Theorem 3. For any adversary class A, an indifferent (Definition 2) onion routing protocol
that mixes and equalizes for A in the simple I/O setting is anonymous for A in the simple
I/O setting, provided that the underlying onion encryption is secure (i.e., UC-realizes the
ideal functionality for onion encryption [2]).

We omit the proof for brevity. We will use Theorem 3 to prove our upper bound in
Section 6.3.

3.1 Anonymity
Anonymity is a property of a messaging protocol Π (i.e., Π doesn’t have to be an onion
routing protocol).

In the anonymity game (for defining anonymity), the adversary necessarily learns the
corrupt parties’ inputs and received messages. For example, let N = 4, and let P3 be
a corrupt party. Suppose that the adversary chooses as inputs σ0 = (σ0

1 , σ0
2 , σ0

3 , σ0
4) and

σ1 = (σ1
1 , σ1

2 , σ1
3 , σ1

4) such that σ0
3 ≠ σ1

3 . Then, the adversary can determine the input from
P3’s input. Suppose that the adversary chooses as inputs σ0 and σ1 such that σ0 contains an
instruction to send message m0 to P3, whereas σ1 contains an instruction to send message
m1 ̸= m0 to P3. Then, the adversary can determine the input from P3’s received message.
Thus, the adversary’s choice for (σ0, σ1) is constrained to pairs of inputs that differ only in
the honest parties’ inputs and “outputs.”

We define this formally by first defining equivalence classes for inputs as follows. Let Σ
be a set of input vectors. Let A be the adversary, and let Bad be the set of parties controlled
by A. Fixing Bad imposes an equivalence class on Σ. Each equivalence class is defined
by a vector (e1, e2, . . . , eN ). For each corrupted party Pi ∈ Bad, ei = (σi,Mi) “fixes” the
input σi for Pi and also, the set Mi of messages instructed to be sent from honest parties
to Pi. For each honest party Pi ∈ P \ Bad, ei = Vi “fixes” the number Vi of messages
instructed to be sent from honest parties to Pi. An input vector belongs to the equivalence
class (e1, e2, . . . , eN ) if for every Pi ∈ Bad, the input for Pi is σi, the set of messages from
honest parties to Pi is Mi, and ei = (σi,Mi); and if for every Pi ∈ P \ Bad, the number
of messages from honest parties to Pi is Vi, and ei = Vi. Two input vectors σ0 and σ1 are
equivalent w.r.t. the adversary’s choice Bad for the corrupted parties, denoted σ0 ≡Bad σ1, if
they belong to the same equivalence class imposed by Bad.

We now describe the anonymity game (below); the protocol Π is anonymous if this induces
indistinguishable adversarial views.

The anonymity game. AnonymityGame(1λ, Π,A, Σ) is parametrized by the security para-
meter 1λ, a protocol Π, an adversary A, and a set Σ of input vectors.
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First, the adversary A and the challenger C set up the parties’ keys: A chooses a subset
Bad ⊆ P of the parties to corrupt and sends Bad to the challenger C. For each honest party
in P \ Bad, C generates a key pair for the party; the public keys pk(P \ Bad) of the honest
parties are sent to A. A picks the keys for the corrupted parties and sends the corrupted
parties’ public keys pk(Bad)) to C.

Next, the input is selected: A picks two input vectors σ0, σ1 ∈ Σ such that σ0 ≡Bad σ1

and sends them to C. C chooses a random bit b←$ {0, 1} and interacts with A in an execution
of protocol Π on input σb with C acting as the honest parties adhering to the protocol and
A controlling the corrupted parties.

At the end of the execution, A computes a guess b′ for b from its view VΠ,A,Bad(1λ, σb)
and wins the anonymity game if b′ = b.

The standard notion of anonymity is defined as follows:

▶ Definition 4 (Anonymity). A messaging protocol Π(1λ, pp, states, $, σ) is anonymous
from the adversary class A w.r.t. the input set Σ if every adversary A ∈ A wins
the anonymity game AnonymityGame(1λ, Π,A, Σ) with only negligible advantage, i.e.,∣∣Pr

[
A wins AnonymityGame(1λ, Π,A, Σ)

]
− 1

2
∣∣ = negl(λ).

The protocol is computationally (resp. statistically) anonymous if the adversaries in A
are computationally bounded (resp. unbounded).

3.2 Equalizing
Here, we introduce a new concept called equalizing, which is closely related to anonymity.
Like anonymity, equalizing is a property of a messaging protocol Π.

Informally, Π equalizes if observing how many messages each party received during the
protocol run does not reveal whether the protocol ran on σ0 or σ1. In Πp (in our motivating
example), whether Bob receives a message or not exposes who was sending Bob the message:
Alice or another party, Allison; so Πp does not equalize. Instead, in an equalizing protocol,
the probability that Bob receives a message doesn’t depend on the sender’s identity. Put
another way, Bob is expected to receive the same number of messages in the scenario where
Alice is the sender as the one where it is Allison. Formally, equalizing is defined with respect
to the equalizing game (below).

The equalizing game. EqualizingGame(1λ, Π,A,D, Σ) is parametrized by the security para-
meter 1λ, a protocol Π, an adversary A, a distinguisher D, and a set Σ of input vectors.

The challenger for the equalizing game first interacts with the adversary exactly the same
way as the challenger for the anonymity game. (See the previous section, Section 3.1, for the
description of the anonymity game.) Recall that at the end of the anonymity game, each
honest party Pr outputs the set OΠ,A

r (1λ, σb) of (non-empty) messages from the message
spaceM that it obtained during the execution from processing onions. Let vr be the number
of messages that Pr received during the run, i.e., vr

def= |OΠ,A
r (1λ, σb)|. (These statistics are

part of the adversary’s view in the anonymity game.)
We define the statistics for the corrupt parties differently since C does not get to observe

how many messages the corrupt parties output; indeed it is not even clear what it means for
a corrupt party to produce an output. For each recipient Pr ∈ Bad, let vr correspond to the
number of onions that C has routed to an adversarial participant P ′ such that (1) they had
been formed by an honest participant with Pr as the recipient; and (2) all the participants
after P ′ on the remainder of this onion’s route are controlled by the adversary. In other
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words, vr is the number of onions from honest participants that Pr would receive if, internal
to the adversary, all the onions are processed and delivered to their next destinations. We
define this formally below.

Let msPairs(Pr) denote the set of message-sender pairs for Pr. That is, for every (m, Ps) ∈
msPairs(Pr), the input σs for Ps includes the message-recipient pair (m, Pr), i.e., (m, Pr) ∈ σs.
Let receivableOnions(Pr) be the following set of onions: An onion O is in receivableOnions(Pr)
if there exists a message-sender pair (m, Ps) ∈ msPairs(Pr) such that

i. O was formed by C (on behalf of Ps) by running FormOnion on input the message
m, a routing path P → = (Q1, . . . , Qd−1, Pr) ending in Pr, the public keys pk(P →) of
the parties on the path, and a sequence s→ of nonces, i.e., O ∈ {O1, . . . , Od} where
(O1, . . . , Od)← FormOnion(m, (P →), pk(P →), s→);

ii. letting i denote the position of O in the output of the FormOnion call, either i = 1, or
the (i− 1)st intermediary Qi−1 on the routing path is honest; and

iii. O is “peelable all the way” by A; i.e., Qi, . . . , Qd−1, Pr are all adversarial.

For each adversarial recipient Pr ∈ Bad, we define the statistic vr to be the number of
onions in receivableOnions(Pr) that the challenger sent out during the execution.

Let v = (v1, v2, . . . , vN ). C provides these statistics v alone (and not the rest of the view)
to the distinguisher D, who outputs a guess b′ for the challenge bit and wins the game if
b′ = b, i.e. if it correctly determines whether the challenger ran the protocol on input σ0 or
σ1. The definition for equalizing is as follows:

▶ Definition 5 (Equalizing). A messaging protocol Π(1λ, pp, states, $, σ) equalizes for
the adversary class A w.r.t. the input set Σ if for every adversary A ∈ A and
distinguisher D, D wins EqualizingGame(1λ, Π,A,D, Σ) with negligible advantage, i.e.,∣∣Pr

[
D wins EqualizingGame(1λ, Π,A,D, Σ)

]
− 1

2
∣∣ = negl(λ).

The protocol computationally (resp. statistically) equalizes if the adversaries and the
distinguishers are computationally bounded (resp. unbounded).

Clearly, a protocol that satisfies anonymity must equalize:

▶ Theorem 6. For any adversary class A, a protocol that is anonymous for A w.r.t. the
input set Σ equalizes for A w.r.t. Σ.

Proof. If D can guess b based on the statistics v alone, then the adversary A who has access
to the entire view of its interaction with C can guess b also. (It is also easy to see that
a protocol need not satisfy anonymity in order to satisfy equalizing. Thus, equalizing is
necessary but not sufficient to achieve anonymity.) ◀

3.3 Mixing in the simple I/O setting
Mixing is a property of onion routing protocols. Informally, an onion routing protocol mixes
if the protocol sufficiently shuffles the honest parties’ “message-bearing” onions. That is, once
an honestly generated onion has traveled far enough, getting peeled at every intermediary,
the adversary cannot trace it to the original sender. If the adversary is the recipient of the
message contained in the onion, it should not be able to trace it to the sender provided the
message itself does not reveal the sender.

Formally, mixing is defined with respect to the mixing game. To keep things simple, we
present the definition in the simple I/O setting, but this can be extended to any arbitrary
input set.
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The mixing game. Let OE = (Gen, FormOnion, ProcOnion) be a secure onion encryption
scheme. MixingGame(1λ, Π,A) is parametrized by the security parameter 1λ, an onion routing
protocol Π, and an adversary A.

First, the adversary A and the challenger C set up the parties’ keys (exactly as we
described above for the anonymity game): A chooses a subset Bad ⊆ P of the parties to
corrupt and sends Bad to C. For each honest party in P \Bad, C generates a key pair for the
party by running the onion encryption scheme’s key generation algorithm Gen and sends the
public keys pk(P \ Bad) of the honest parties to the adversary A. A picks the keys for the
corrupted parties and sends the public-key portions pk(Bad) to C.

Next, the input is selected: A identifies a set S ⊆ P \ Bad of honest target senders and
a set R ⊆ P, |R| = |S| of target receivers. In addition to S and R, A also decides part of
the input; for every non-target sender Ps ∈ P \ S, A chooses a message m and a unique
non-target recipient Pr ∈ P \ R such that Ps’s input becomes σs = {(m, Pr)}; and for every
target recipient Pr ∈ R, A chooses a message mr to be sent to Pr. We call the portion of
the input that A decides “the partial input vector,” and denote it σ̃. A sends (S, R, σ̃) to the
challenger C. C supplies the rest of the input vector σ = (σ1, . . . , σN ) by choosing a random
bijection g from S to R; each Ps ∈ S is instructed to send the message mg(Ps) to g(Ps) ∈ R,
i.e., σs = {(mg(Ps), g(Ps)} where the message mg(Ps) was supplied by A as part of the partial
input vector.

Next, C interacts with A in an execution of protocol Π on input σ with C acting as the
honest parties adhering to the protocol and A controlling the corrupted parties. Whenever
the protocol Π specifies for an onion to be formed or processed, C runs the onion encryption
scheme’s onion-forming algorithm FormOnion or onion-processing algorithm ProcOnion.

Let OR be the set of onions received by the parties in R.
At the end of the execution, A chooses two onions Os, Os̄ ∈ OR and a target sender

Ps ∈ S and outputs (Os, Os̄, Ps).
Let an onion O be a “valid challenge onion” if (i) there exists a message mr ∈M and

a target recipient Pr ∈ R such that mr is A’s choice for the message to be sent to Pr, and
(ii) O is the last onion to be received by the recipient over the network in the onion evolution
generated by C on behalf of one of the target senders running FormOnion on the message mr

and a routing path ending in Pr.
Let sender(Os) be the sender of Os, and let sender(Os̄) be the sender of Os̄. To maximize

his chances of winning the game, the adversary wants both Os and Os̄ to be valid challenge
onions such that Os was sent by Ps, while Os̄ was not. Formally, if A chose two valid challenge
onions, and {Ps} ⊂ {sender(Os), sender(Os̄)} ⊆ S, then A wins iff Ps = sender(Os). Other-
wise, if A did not choose two valid challenge onions, or if {Ps} ̸⊂ {sender(Os), sender(Os̄)}
or {sender(Os), sender(Os̄)} ̸⊆ S, then A wins with probability one-half. See Figure 1 for a
quick reference to the mixing game.

We now define mixing as follows.

▶ Definition 7 (Mixing). An onion routing protocol Π(1λ, pp, states, $, σ) mixes
conditioned on the event E for the adversary class A if given E, every
adversary A ∈ A wins MixingGame(1λ, Π,A) with negligible advantage, i.e.,∣∣Pr

[
A wins MixingGame(1λ, Π,A) | E

]
− 1

2
∣∣ = negl(λ).

The protocol computationally (resp. statistically) mixes if the adversaries in A are com-
putationally bounded (resp. unbounded).

Now that we have defined mixing formally, let us walk the reader through our definitional
choices. The starting intuition is that this definition needs to capture that it should be hard
for the adversary to pinpoint the origin of an onion received by one of the target recipients.
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MixingGame(1λ, Π, A)

A C

pick Bad ⊆ P Bad

pk(P \ Bad)

pk(Bad)

pick honest S ⊆ P \ Bad
pick R ⊆ P s.t. |R| = |S|

pick σ̃ S, R, σ̃

randomly pick σ

. . . . . . . . . . . . . . . . . interact in run of protocol Π on input σ . . . . . . . . . . . . . . . . .

output Os, Os̄ ∈ OR and Ps ∈ S

Figure 1 Schematic of the mixing game.

This goal comes with a caveat that of course an adversary can determine the sender of an
onion that one of the target senders has just created, or, more generally, that hasn’t traveled
very far and hasn’t had a chance to mix with any onions from other target senders. Hence,
we need to restrict the set of onions on which the adversary can win to a set of onions that
have traveled far and have already had a chance to mix with other onions. This is why we
have the requirement that the onion be a valid challenge onion. Intuitively, a valid challenge
onion is one that was formed by a target sender and has already arrived at its destination, a
target recipient, and now the adversary’s job is to figure out where it came from.

Next, let us explain why, to win the game, the adversary must produce two valid challenge
onions, and correctly attribute one of them to a sender Ps, while the other must have
originated with another target sender. What does it mean that the adversary cannot trace
an onion? One intuitive approach would be to say: the adversary’s chances of winning the
game where he picks just one onion and guesses its origin are close to a simulator’s chances of
winning a game where he just guesses a sender, and the challenger picks the onion uniformly
at random and independently of the simulator’s guess. The problem with this approach is
that we don’t know the best strategy for such a simulator and with what probability it would
succeed. So our approach is to have the adversary pick a sender and two onions. “Mixing”
means that, if it so happens that exactly one of them comes from Ps and the other comes
from another target sender, then try as he may, the adversary cannot tell which is which any
better than by guessing randomly; and if it doesn’t happen that way, then the adversary
wins with probability one-half.

4 Main tools: checkpoint onions and merging onions

We describe the main ingredients for our constructions: checkpoint onions (a tool that was
introduced in prior work [3]) and a new tool: merging onions.
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4.1 Checkpoint onions
Our goal is to achieve anonymity by ensuring that our protocol mixes and equalizes in the
presence of an active adversary that drops onions. The challenge is: if the adversary drops
too many onions, then the remaining ones don’t have enough onions to mix with, and so
the resulting protocol will not mix. Checkpoint onions give the honest participants a way of
checking that there are still enough onions in the system for mixing to be possible.

A checkpoint onion O is a dummy onion (containing the empty message ⊥) formed by a
party P that travels through the network until, at a pre-determined checkpoint round r, it
arrives at the intermediary I, who is expecting it. If it fails to arrive, then I is alerted to
the activity of an active adversary. More precisely, let F·(·, ·) be a pseudo-random function
over two inputs, keyed by sk(P, I) which is a secret key shared between P and I. Let b be a
binary predicate. Let D be the diagnostic rounds; the honest parties test whether enough
onions remain in the system after these rounds. For each intermediary I and each round
r ∈ D, P determines whether or not to create a checkpoint onion that will arrive at I at
round r by computing f = F (sk(P, I), (r, 0)) and then checking if b(f) = 1; if so, P creates
this checkpoint onion. Similarly, the intermediary I will know to expect a checkpoint onion
from P at round r by computing f = F (sk(P, I), (r, 0)) and then checking if b(f) = 1.

P forms O by running FormOnion on input the empty message ⊥, a randomly chosen
routing path P → = (I1, . . . , Id), the public keys associated with parties on P →, and a
sequence (s1, . . . , sd−1) of nonces. The nonce sr which will be received by I, is the value that
I will know to expect: sr = F (sk(P, I), (r, 1)); the rest are random nonces. The reason that
I will know to expect sr is that I can compute it too, since sk(P, I) is shared between P

and I. Of course, the shared key sk(P, I) need not be set up in advance: it can be generated
from an existing PKI, e.g., using Diffie-Hellman.

If the adversary drops an onion belonging to the same evolution as O before it reaches I,
I will detect it: it will detect that no onion with nonce sr was received in round r. (Since F

is pseudorandom, it is highly unlikely that another onion peels to the same nonce value.)

4.2 Merging onions
Checkpoint onions help with mixing, but not with equalizing. If our routing protocol just has
every sender form one “message-bearing” onion to its recipient and send it along in addition
to a set of checkpoint onions (as in the protocol Πa of Ando, Lysyanskaya, and Upfal [3]),
then an adversary who targets the sender Alice can cause Alice’s recipient Bob to receive the
message with a smaller probability than her alternative recipient, Bill; so this protocol will
not equalize and, from Theorem 6, has no hope of achieving anonymity.

So how can we design a protocol that equalizes? One approach is to detect when the
adversary drops any onions at all (e.g., using verifiable shuffling) [25, 30] and abort when
that happens. While this approach equalizes, it is not at all fault-tolerant. To achieve fault
tolerance and equalizing, the protocol must be able to react to the adversary dropping onions
in a way that is less dramatic than total abort. This can be accomplished by using a new
tool: merging onions. The idea here is that a sender P can create two onions, O1 and O2
that bear the same message to the same recipient R. Further, they will be routed through
the same intermediary I, arriving at I at the same round r. Let O′

1 (resp. O′
2) denote the

rth layer of O1 (resp. O2) that arrives at I at round r. When I peels both O′
1 and O′

2, I

discovers that they are (essentially) the same onion, and only forwards one of them to the
next destination. If I receives just one of them (because the other one had been dropped by
the adversary), then it forwards it to the next destination too.
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Why does this approach help with equalizing? Suppose we have a protocol in which every
participant creates two message-bearing onions that merge at round r. Suppose that the
adversary targets the sender Alice and succeeds in dropping one of her two outgoing merging
onions. Since these onions were supposed to merge at round r, after round r, there are just
as many onions for which Alice was the sender (namely, just one onion) as for any other
participant. In general, of course, the adversary may drop more than one onion belonging to
Alice. In fact, in order to guarantee that any of Alice’s onions survive with overwhelming
probability when the adversary controls a constant fraction of the network’s nodes, Alice
needs to send out a superlogarithmic (in the security parameter λ) number of onions. In
order to equalize the number of onions that make it to each destination, our protocol will
have to create not a pair, but 2h = Ω(polylog λ) merging onions, organized in a binary tree
of height h.

We now illustrate how to form 2h merging onions through a toy example for h = 3. We
first construct a binary tree graph of height 3 = log 8. We label the root vertex of the tree v,
and the left-child and right-child of v, v0, and v1. More generally, the left-child of a vertex
vw is vw0, and the right-child of vw is vw1, so that the leaf vertices are: v000, v001, v010, v011,
v100, v101, v110, and v111. Each of these leaf vertices corresponds to a separate onion.

Let y denote a fixed number of rounds; this will later correspond to the length of an
“epoch.” Next, for each vertex vi of the graph, we choose a random sequence I→

i = (I1
i , . . . , Iy

i )
of y parties and a random sequence s→

i = (s1
i , . . . , sy

i ) of y nonces, i.e., ∀j ∈ [y], Ij
i ←$P and

sj
i ←$S. Let the “direct path from a leaf vertex vℓ to the root” be the path that begins with

vℓ and recursively moves to its parent vertex until the root vertex v is reached. For example,
the direct path from v101 to the root is (v101, v10, v1, v). Let the “sequence of intermediaries
corresponding to leaf vertex vℓ” be the sequence of parties corresponding to the parties on
the direct path from vℓ to the root, e.g., for v101, it is (I→

101, I→
10 , I→

1 , I→), where I→ is the
sequence of parties assigned to the root. Let the “sequence of nonces corresponding to leaf
vertex vℓ” be the sequence of nonces corresponding to the parties on the direct path from
vℓ to the root, e.g., for v101, it is (s→

101, s→
10, s→

1 , s→), where s→ is the sequence of nonces
assigned to the root.

For each leaf vertex vℓ, we form an onion O1
ℓ using the message m from the input,

the routing path (I→
101, I→

10 , I→
1 , I→, R) where R is the recipient from the input, the public

key associated with the routing path, and the sequence (s→
101, s→

10, s→
1 , s→) of nonces. We

can generalize this idea to generate an arbitrarily large set of merging onions by using an
appropriately large binary tree.

5 A stepping stone construction, Π△

Let us extend the toy example construction we just saw to a protocol, Πx,y,t
△ , which is a

stepping stone for our main construction. Πx,y,t
△ is pronounced “Pi-tree” from the fact that

the onions’ routing paths are structured like a binary tree graph and is parametrized by the
number x of merging onions per sender (this is also the expected number of checkpoint onions
per sender), the number y of rounds per epoch, and the threshold t for missing checkpoint
nonces per diagnostic round. (We will generally omit the superscript for better readability.)

We use a secure onion encryption scheme OE = (Gen, FormOnion, ProcOnion) as a building
block. During the setup phase, the participants set up their keys. Every honest party P

sets up his/her keys (pk(P ), sk(P )) by running the onion encryption scheme’s key generation
algorithm Gen.
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The onion-forming phase. During the onion-forming phase, each honest party P creates
two types of onions: merging onions and checkpoint onions.

On input {(m, R)}, P forms a set of x merging onions using the number y of rounds in
an epoch, the message m, and the recipient R.
In addition to merging onions, P generates (on average) x checkpoint onions using the
set D = {y, 2y, . . . , (log x + 1)y} as the diagnostic rounds. (Appropriate functions are
chosen for F·(·, ·) and b(·) such that P generates x checkpoint onions in expectation.
See Checkpoint onions in Section 4 to recall how these functions are used for generating
checkpoint onions.)

For both merging onions and checkpoint onions, the length of the routing path is fixed; it is
(log x + 1)y + 1.

The execution phase. All onions are created during the onion-forming phase and released
simultaneously in the first round of the execution phase.

After each round r of the execution phase, P peels all onions it received at the rth round
and merges mergeable onions (i.e., if two onions peel to the same nonce value, drop one
of them at random).
If r is a diagnostic round (i.e., r ∈ D), P runs the following diagnostic test: Let Ckpts(P, r)
denote the set of checkpoints that P expects to see from peeling the onions between
rounds r and r + 1. P counts how many checkpoints from Ckpts(P, r) are missing. If
the number exceeds a fixed threshold value t, then P aborts. Otherwise, P continues for
another round by sending the processed onions to their respective next destinations in
random order.
At the end of the execution phase, P peels the onions it received at the last round and
outputs the set of (non-empty) messages it received.

▶ Remark 8. Πx,y,t
△ is anonymous from the adversary who corrupts up to κ fraction of the

parties when (i) the onion encryption scheme is secure, (ii) the number x of onions formed by
each (honest) party is Ω

(
2⌈log(χ(log χ+1))⌉)

where χ = max(
√

N log2+ϵ λ, log2(1+ϵ) λ), (iii) the
number y of rounds per epoch is Ω

(
log1+ϵ λ

)
, and (iv) the threshold t is 2(1 − δ)(1 −

κ)3κ log1+ϵ λ. (See the full version of the paper for the proof.) The reason that Πx,y,t
△ needs

so many onions is that the adversary can target Alice and drop a lot of her onions before
the honest participants realize (via checkpoint onions) the presence of an attack and abort.
The protocol Π▷◁ presented in the next section improves on this by giving the routing paths
enough structure that missing onions can be detected sooner.

6 Our main construction, Π▷◁

In this section, we present our main construction Π▷◁ (pronounced “Pi-butterfly”). Π▷◁ uses
a variant of a butterfly graph described below.

6.1 The butterfly network and variants
Recall [26, Chapter 4.5.2] that the butterfly network B = (V (B), E(B)) is a directed
graph on (n + 1)2n vertices. The vertices are organized into N = 2n rows and n + 1
columns, so each vertex has an address (r, c) where 1 ≤ r ≤ N and 0 ≤ c ≤ n. Vertices
in column i represent potential locations of a data packet (here, an onion) at epoch i;
each participant P has a dedicated row. An edge from (P, i) to (Q, i + 1) means that
an onion can travel from participant P to participant Q in epoch i. The edges of the
specific butterfly network that will be useful for us are E(B) = {((P, i), (Q, i + 1)) |
P = Q or binary representations of P and Q differ in position i + 1 only}.
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Let J and J ′ be two participants whose binary representation differs in bit i + 1 only.
In Π▷◁, epoch i is dedicated to having an onion bounce y times between J and J ′. This
way, by the end of the epoch, the onions that J and J ′ held at the beginning of the epoch
will be mixed together if one of them is honest. More formally, the onions travel along
the edges of a stretched butterfly network, defined as follows: its N(ny + 1) vertices are
organized into N rows and ny + 1 columns; and its edges are: E(β) = {((P, j), (Q, j + 1)) |
for i = ⌊j/y⌋, ((P, i), (Q, i + 1)) ∈ E(B)}.

However, what if both J and J ′ are adversarial? Then sending the onions through
the stretched butterfly network just once will result in the adversary knowing the ith

bit of an onion’s destination! So to prevent this, we will send the onions through the
iterated stretched butterfly network. For an integer z, let βz denote the stretched butterfly
network iterated z times. More precisely, βz is a directed graph in which the vertices
are organized into N rows and nyz + 1 columns, i.e., a vertex has an address (r, c) where
1 ≤ r ≤ N and 0 ≤ c ≤ nyz. The edges are as follows: E(βz) = {((P, j), (Q, j + 1)) |
for i = j mod ny, ((P, i), (Q, i + 1)) ∈ E(β)}.

To summarize, we begin with a butterfly network B, then we stretch it by y to get β, then
we iterate it z times to get βz; see Figure 2. By a “walk through βz” we mean a sequence
(J0, . . . Jnyz) such that, for each i < nyz, ((Ji, i), (Ji+1, i + 1)) ∈ E(βz). A random walk from
a node J0 is a sequence that begins with J0 such that for i > 0, each Ji is a walk selected
uniformly at random conditioned on the first i elements being (J0, . . . , Ji−1). A random walk
starting at any address can be sampled efficiently.

B β βz

Figure 2 Diagrams of the butterfly network B, the stretched butterfly network β, and the iterated
stretched butterfly network βz for n = log(8) = 3, and y = z = 2.

6.2 Description of the construction

Πx,y,z,t
▷◁ consists of setup, the onion-forming phase, and the execution phase. It is paramet-

erized by the number x of merging onions per sender, the number y of rounds per epoch,
the number z of iterations of a variant of a butterfly graph, and the threshold t for missing
checkpoint nonces. The execution phase is further divided into the mixing sub-phase and the
equalizing sub-phase. The iterated stretched butterfly graph determines routing options for
the mixing sub-phase.

Let OE = (Gen, FormOnion, ProcOnion) be a secure onion encryption scheme. During
setup, each honest participant P generates its public key pair (pk(P ), sk(P )) using Gen.
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6.2.1 The onion-forming phase
On input {(m, R)}, each honest party P generates exactly x merging onions and (on average)
x checkpoint onions. To form an onion, P first needs to pick a path for it. Each onion will
(potentially) travel to d

def= (nyz + 1) + y log x + 1 parties to reach its destination: the first
nyz + 1 steps involve a random walk through the iterated stretched butterfly network (the
mixing sub-phase), and the next y log x + 1 steps will take the onion through the equalizing
sub-phase and to the recipient.

To begin with, P generates the x merging onions as follows: Let T be the binary tree
of height log x. Let k be an address of a node in T (i.e., k is a binary string of length at
most log x); let vk denote this node. I.e., V (T ) = {vk | k is a binary string, |k| ≤ log x}. To
each non-leaf vertex vk in T , P assigns a sequence of y random parties and y random nonces;
let I→

vk
= (Ivk,1, . . . , Ivk,y) denote the sequence of vertices and s→

vk
= (svk,1, . . . , svk,y) denote

the sequence of nonces corresponding to vertex vk. (Up until this step, this is exactly how
merging onions are formed in Π△.) For each leaf vertex vℓ, P picks a random walk through
the iterated stretched butterfly βz and nyz + 1 random nonces; let J→

vℓ
= (Jvℓ,0, . . . , Jvℓ,nyz),

denote the random walk, and let t→
vℓ

= (tvℓ,0, . . . , tvℓ,nyz) be the sequence of nonces.
Let vℓ be a leaf of T . Let vℓ,i = vki where ki is the i-bit prefix of ℓ. I.e. vℓ,ℓ = vℓ and

vℓ,0 = vε, and (vℓ,h, vℓ,h−1, . . . , vℓ,0) is the path from vℓ to the root of the tree, where h = log x.
P will create an onion Oℓ for each leaf vℓ. Its routing path is I→

ℓ = (J→
vℓ

, I→
ℓ,2, . . . , I→

ℓ,h, R)
where J→

vℓ
is as defined above, I→

ℓ,i = I→
ki

where ki is the i-bit prefix of ℓ, and R is the
recipient, and such that |I→

ℓ | = d. Similarly, let s→
ℓ = (t→

vℓ
, s→

ℓ,2, . . . , s→
ℓ,h) denote the sequence

of nonces corresponding to this path. To form the onion Oℓ corresponding to vℓ, P runs the
algorithm FormOnion on the message m, the routing path I→

ℓ , the public keys associated
with the routing path, and the nonce sequence s→

ℓ .
After forming the merging onions, P generates the checkpoint onions. Just as in Π△, the

execution phase consists of epochs, and the last round of every epoch is a diagnostic round.
Here, each epoch lasts y rounds, thus round r > 0 is a diagnostic round if r is a multiple of y.
For each diagnostic round r and for each intermediary I, P uses the pseudorandom function
Fsk(P,I)(r, 0) to determine whether to form a checkpoint onion to send to I at round r, and
if so, calculates the nonce s = Fsk(P,I)(r, 1).

When Fsk(P,I)(r, 0) = 1, P generates a checkpoint onion to be verified by party I in
round r. Recall that d

def= (nyz + 1) + y log x + 1; so round d is the last round of the execution
phase. Since the checkpoint onion should not be distinguishable from a merging one during
the mixing sub-phase, it needs to travel over the edges of the iterated stretched butterfly
network for the first nyz + 1 rounds, and follow a random path through the network during
the equalizing sub-phase, all the way until the last round d.

As a result, for r ≥ nyz + 1, P generates the routing path by first picking a random
walk J0→nyz = (J0, . . . , Jnyz) through the iterated stretched butterfly network starting
at a random node J0, and then choosing each participant on the next part of the path
Jnyz+1→r−1 = (Jnyz+1, . . . , Jr−1) uniformly at random from P. Next, Jr = I, and each
router on the remaining stretch of the path Jr+1→d is, again, chosen uniformly at random
from P. So the resulting routing path is J→

I,r = (J0→nyz, Jnyz+1→r−1, Jr, Jr+1→d). P

chooses the corresponding nonces {sI,r,j}j∈{0,...,d−1}\{r} uniformly at random, sets sI,r,r = s,
and gives the resulting routing path, sequence (sI,r,0, . . . , sI,r,d−1) of nonces and the empty
message to FormOnion to obtain checkpoint onion OI,r.

If r ≤ nyz, then round r occurs during the mixing sub-phase, as the onion is making its
way through the butterfly network. So its path has to be formed in such a way that it arrives
at I at round r; but it needs to be a randomly chosen path conditioned on this event (so that
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a checkpoint onion’s path is distributed the same way as one of a merging onion). Let J0→nyz

be a random walk through βz that is at address I at round r. Let each intermediary in the
sequence Jnyz+1→d be chosen uniformly at random from P . Again, for j ̸= r, 0 ≤ j ≤ d− 1,
the nonce sI,r,j is chosen at random, while sI,r,r = s. Let J→

I,r = (J0→nyz, Jnyz+1→d). Run
FormOnion on input the routing path J→

I,r, sequence of nonces s→
I,r and the empty message

to obtain checkpoint onion OI,r.

▶ Remark 9. In both Π△ and Π▷◁, the onion layers are tagged with their respective round
number to prevent replay attacks. If by peeling an onion received at round r, an honest
relaying party observes a round number r′ ̸= r, the party drops the onion. (We can, therefore,
assume that replay attacks do not happen. We can safely do so since the security of the
onion encryption scheme prevents the adversary from modifying the onions formed by honest
participants in any meaningful way. See, for example Ando and Lysyanskaya’s work on onion
encryption [2], for a sufficiently strong construction.)

6.2.2 The execution phase
At the beginning of the execution phase, each party P is live. P ’s status will change from
live to aborted if it ever receives a special abort message from another party. An aborted
party sends the special abort message to a random sample of x parties. (A slight technicality
is that, since all messages must be onions, the abort message is a specially formed onion.)

For each r ∈ {0, . . . , d− 1}, each live honest party P first peels all the onions it received
at the rth round. It merges onions that are mergeable: if it received two onions that have
the same nonce, then it drops one of them, selected at random, and sends the other one
to its next destination.
If r is a diagnostic round (i.e., a multiple of y), then P runs the diagnostic test: P

compares the number of checkpoint onions it expects to receive with the number it
received. For every participant Q ∈ P, if Fsk(Q,P )(r, 0) = 1, then P expects to receive a
checkpoint onion with nonce s = Fsk(Q,P )(r, 1) in this round. In the mixing sub-phase, if
fewer than t checkpoint onions are missing so far in the protocol run (not just in this
round, but cumulatively), then P continues the run by processing all the other onions.
Otherwise, P ’s status changes: it is no longer live but becomes an aborted party. In the
equalizing sub-phase, change status to aborted if there are t or more missing checkpoint
onions in this round, else continue.
At the last round (round d) of the execution phase, P peels the onions it received and
outputs the set of (non-empty) messages it received.

6.3 Proof that Π▷◁ is anonymous, robust, and efficient
In this section, we will prove that there exists a parameter setting (for x, y, z, and t) such
that Π▷◁ is simultaneously anonymous, fault-tolerant, and efficient.

Our measure of efficiency is onion cost per user, which measures how many onions are
transmitted by each user in the protocol. This is an appropriate measure when the parties
pass primarily onions to each other. It is also an attractive measure of complexity because it
is algorithm-independent: If we measured complexity in bits, it would change depending on
which underlying encryption scheme was used. Since an onion contains as many layers as
there are intermediaries, its bit complexity scales linearly with the number of intermediaries.
(We assume that every message m can be contained in a single onion.) To translate our lower
bound from onion complexity to bits, we will consider onions to be at least as long (in bits)
as the message m being transmitted and the routing information. More formally,
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▶ Definition 10 (Onion cost). Let outΠ,A
i (1λ, σ) denote the number of onions formed by

an honest party that party Pi transmits directly to another party in a protocol run of Π
with adversary A, security parameter λ and σ. The onion cost of Π is OCΠ,A(1λ, Σ) def=
Eσ,i,$

[
outΠ,A

i (1λ, σ)
]

. The expectation is taken over the input σ←$ Σ, the party Pi←$P,
and the randomness $ of the protocol.

For an adversary class A, the onion cost of Π interacting with A w.r.t. Σ is the maximum
onion cost over the adversaries in A, i.e., OCΠ,A(1λ, Σ) def= maxA∈A OCΠ,A(1λ, Σ).

Our formal notion of fault tolerance is robustness, defined below:

▶ Definition 11 (Robustness). A messaging protocol Π is robust if in every interaction
in which the adversary drops at most a logarithmic (in the security parameter) number of
message packets, Π delivers all messages sent out by honest participants w.o.p.

Let Aκ denote the class of active adversaries who can corrupt up to a constant κ fraction
of the participants. In this section, we will prove the following upper bound on onion cost:

▶ Theorem 12. For any constants κ < 1
2 and γ1, γ2 > 0, there is a setting of x, y, z, and

t such that Πx,y,z,t
▷◁ is robust and anonymous from the adversary class Aκ with onion cost

at most γ1 log N log3+γ2 λ (in the presence of Aκ), where λ is the security parameter and
N = ω(log λ) is the number of participants.

Proof. Recall that the number of corruptions is κ < 1
2 . Set ϵ1 such that γ1 = 6ϵ3

1 and ϵ2
such that γ2 = 3ϵ2. Let x = y = z = ϵ1 log1+ϵ2 λ. Let an onion (layer) be commutable if
(i) an honest party formed it, and (ii) it is not a checkpoint onion for verification by an
adversarial party (more precisely, it does not belong to the same evolution as a checkpoint
onion for verification by an adversarial party); and let t = W

3 , where W = (1−κ)x
z log N+log x is the

expected number of commutable checkpoint nonces at a party at a diagnostic round.
Having set the parameters, we wish to show that the protocol Πx,y,z,t

▷◁ (a) is robust; (b) has
onion cost OC ≤ γ1 log N log3+γ2 λ; and (c) is anonymous, provided that the underlying
onion encryption scheme is secure.

Part (a) is true by inspection.
To see why (b) follows, recall that each participant forms x merging onions and, on

average, x checkpoint onions; let X be the maximum number of onions formed by an honest
party. Each of these onions will need to be processed in each round, so OC ≤ Xd, where d

is the number of rounds. Using Chernoff bounds, X < 3x with overwhelming probability.
The number of rounds is d = (nyz + 1) + y log x + 1; for our setting of parameters, therefore,
OC ≤ 6ϵ3

1 log N log3(1+ϵ2) λ.
We show part (c) via a series of lemmas that follow. First, we invoke the UC composition

theorem of Canetti [8] in order to replace cryptographic algorithms for onion encryption
with ideal encryption; this allows our further analysis to assume that onions reveal nothing
to an intermediary I other than the information that is intended for I (Lemma 13). Let
Πideal

▷◁ be the resulting protocol. Next, we argue that Πideal
▷◁ is an indifferent onion routing

protocol (Lemma 15). This is helpful because then we will be able to invoke Theorem 3.
Third, we discard, for the purposes of analysis, all the checkpoint onions that are checked
by the adversary; we show that if a protocol mixes (resp. equalizes) in this setting, then it
mixes (resp. equalizes). Finally, we show that in this setting, Π▷◁ mixes (Lemma 16) and
equalizes (Lemma 17). Then, putting it all together, we get our desired result. ◀
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▶ Lemma 13. Let Π be onion routing protocol that makes use of an onion encryption scheme
that is UC-secure [8] under a computational assumption A. Let Πideal be the same protocol,
but the onion encryption scheme is replaced by the ideal onion encryption functionality
of Camenisch and Lysyanskaya [7]. If Πideal is anonymous, then Π is anonymous under
assumption A.

Proof. The Lemma follows by the UC composition theorem of Canetti [8]. ◀

▶ Remark 14. Since CCA2-secure public-key encryption UC-realizes the ideal public-key
encryption functionality of Canetti, and in Π▷◁, the adversary already knows how many layers
of a given onion have already been peeled, forming onions by using CCA2-secure encryption
to encrypt each layer will also result in an anonymous Π▷◁.

▶ Lemma 15. Πideal
▷◁ is indifferent.

Proof. In Πideal
▷◁ , the length of each routing path is fixed, and the intermediaries and nonces

of honestly formed onion layers do not depend on the input σ to the protocol. The procedure
for generating intermediaries and nonces takes as input only the values x, y, and z. Thus, by
definition, Πideal

▷◁ is indifferent. ◀

For the subsequent lemmas (Lemmas 16-18), we analyze only commutable onions.

▶ Lemma 16. With parameters x, y, z, and t defined as above, Πideal
▷◁ mixes for the adversary

who corrupts up to half of the parties.

Proof sketch. If Πideal
▷◁ delivers messages in the final round d, then w.o.p., the adversary

dropped (at most) a constant fraction of the commutable checkpoint onions before the last
epoch: The adversary cannot drop more than a constant fraction of all commutable onions
without also dropping a proportional number of checkpoint onions. This is because if the
adversary were to drop more than a constant fraction of all commutable onions, then, from
known probability concentration bounds [22], w.o.p., the adversary would drop close to a
proportional number of checkpoint onions, which, in turn, would cause all honest parties
to abort the run. Combining this with Chernoff bounds we get: during each round of
the penultimate epoch e, each honest party processed a polylogarithmic (in the security
parameter) number of commutable onions. From Chernoff bounds, we also get: during
epoch e, each commutable onion went to an honest party a polylogarithmic number of
times. Thus, either the Πideal

▷◁ aborts, or it sufficiently shuffles the commutable onions
during the penultimate epoch since shuffling for a polylogarithmic number of rounds with a
polylogarithmic number of other onions is sufficient for mixing. Either way, Πideal

▷◁ mixes. ◀

▶ Lemma 17. With parameters x, y, z, and t defined as above, Πideal
▷◁ equalizes for the

adversary who corrupts up to half of the parties, who also receives everything about non-
commutable onions as an auxiliary input.

Before proving Lemma 17, let us prove the following:

▶ Lemma 18. Let Πideal
▷◁ run with parameters x, y, z, and t are as defined above on input σ,

with A corrupting up to half of the participants, and receiving an auxiliary input about
non-commutable onions as an auxiliary input. If there is an unaborted honest party at the
beginning of the equalizing phase, then with overwhelming probability for each honest party P ,
at least 1−κ

9 of P ’s merging onions remained undropped by the adversary at the end of the
mixing phase. (Recall that κ is the corruption rate.)
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Proof sketch. In the first round, the adversary A knows the sender of each commutable
onion. As the protocol progresses, A loses track of this information. Thus, A’s optimal tactic
is to target Alice upfront by dropping every onion that might have come from Alice that is
routed to an adversarial party during the first three rounds of the first epoch (as well as the
last round of the epoch).

In the first round, some of Alice’s onions route to a corrupt party; A drops all of these.
However, from Chernoff bounds, w.o.p., at least a constant fraction of Alice’s onion go to an
honest party first. Let O be such an onion, and let P be the honest party that receives O in
the first round. Recall that during each epoch of the mixing phase, P shuffles onions back
and forth with another party P ′. A can attempt to drop O if P ′ is corrupt. However, even
if P ′ is corrupt, A cannot drop O if it arrives at P first and remains at P during rounds 2
and 3 (and return to P at round y) – so, using probability concentration bounds, 1−κ

9 of the
time. Thus, even if A employs the optimal tactic for dropping Alice’s onions, (at least) 1−κ

9
of Alice’s onions will make it to the equalizing phase. Since A cannot do better than this,
this proves Lemma 18. ◀

Proof sketch of Lemma 17. From Lemma 18, if Πideal
▷◁ continues into the equalizing phase,

then a constant fraction of each honest party’s merging onions are still in play at the start of the
equalizing phase. However, Lemma 18 does not guarantee that there will be an epoch i > nyz

such that the number of Alice’s merging onions at epoch i, numMOAlice,i, will be close to that of
Allison’s, numMOAllison,i. To prove that Πideal

▷◁ equalizes, we need to show that there exists an
epoch i ≤ d such that (for any two parties Alice and Allison), numMOAlice,i ≈ numMOAllison,i.
If A doesn’t drop any commutable onions during the equalizing phase, then this condition is
satisfied by the merging of onions.

So what can A do? The only information that A has for guessing where any commutable
onion came from is which onions are part of a mergeable pair and which are not; this is
because the onions are shuffled during the mixing phase and each epoch of the equalizing
phase. Let a singleton be a commutable onion that is not part of a mergeable pair; note that
it can be either a checkpoint onion or a merging onion. W.l.o.g., suppose that A dropped
more of Alice’s onions upfront (during the mixing phase) than Allison’s. Then, at the start
of the equalizing phase, it is likely that more singletons are Alice’s merging onions than
Allison’s merging onions. So, A can attempt to prevent the numbers of merging onions from
evening out by dropping singletons. We can show that the best that A can do is to drop as
many singletons as possible (without causing the protocol to be aborted) at the beginning of
the equalizing phase. (Of course, A could also drop onions that belong in a mergeable pair,
but this would only help to even out the numbers of merging pairs.) Even if A does this,
there exists an epoch i ≤ d such that numMOAlice,i ≈ numMOAllison,i.

Armed with Lemma 18 and the above analysis, we can prove that Πideal
▷◁ equalizes. If

the adversary drops too many onions during the mixing phase, then Πideal
▷◁ equalizes since

every honest party stops participating (Lemma 18), and so no one receives their message.
Otherwise, Πideal

▷◁ equalizes since enough of each sender’s merging onions make it to the
equalizing phase (Lemma 18), and the numbers of merging onions are eventually evened out
by the merging of onions (above). ◀

7 Our lower bound: polylog onion cost is required

In this section, we present our lower bound: an onion routing protocol can be anonymous
from the active adversary only if the onion cost is superlogarithmic in the security parameter.
Our lower bound holds for protocols that are minimally functional for the active adversary.
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We call this notion weakly robustness, defined below. The reason this definition is weaker
than robustness (Definition 11) is that here we only insist that the protocol guarantee delivery
for senders whose onions are never dropped.

▶ Definition 19 (Weakly robust). Let Π(1λ, pp, states, $, σ) be an onion routing protocol and
let A be an adversary attacking Π that drops at most O(log(λ)) onions. Π is weakly robust if
whenever A doesn’t drop any onions sent by honest party P , P ’s message will be delivered to
its recipient with overehlming probability.

▶ Theorem 20. If the onion routing protocol Π(1λ, pp, states, $, σ) is weakly robust and
(computationally) anonymous from the adversary A who corrupts up to a constant fraction of
the parties and drops at most f(λ) = O(log(λ)) onions, then the onion cost of Π interacting
with A is ω(f(λ)).

Proof sketch. Let us give the intuition for the proof of this theorem. If an honest Pi sends
out only O(log(λ)) onions, then an adversary that chooses which participants to corrupt
uniformly at random has a 1/λO(1) chance of controlling each and every participant that
ever receives an onion directly from Pi. (This is because O(log(λ)) = O(log(N)), since λ

and N are polynomially related.) Thus with non-negligible probability it can cut off Pi

entirely by dropping all of the onions it sends out, guaranteeing that the intended recipient
of Pi’s message never receives the message; yet, by weak robustness (Definition 19), we can
show that there will be some recipient whose probability of receiving his message is high.
Therefore, Π will not equalize (Definition 5): based on who failed to receive the message,
it is possible to determine whether Pi’s intended recipient was Bob or Bill. Since it does
not equalize, by Theorem 6, it is not anonymous. See the full version of this paper for the
proof. ◀

8 Conclusion and future work

Here, we mention a few extensions of our results: We proved that the required onion cost for
an onion routing protocol to provide robustness and (computational) anonymity from the
active adversary is polylogarithmic in the security parameter. Our proof for the lower bound
can be used to prove the stronger result that polylogarithmic onion cost is required even
when (i) the adversary observes the traffic on only Θ(1) fraction of the links and or when (ii)
the security definition is weakened to (computational) differential privacy. (iii) Also, while
we explicitly showed this to be the case for the simple I/O setting, the result holds more
generally whenever any party can send a message to any other party.

We also proved the existence of a robust and anonymous onion routing protocol with
polylogarithmic (in the security parameter) onion cost. (iv) This result also extends beyond
the simple I/O setting; our onion routing protocol is anonymous w.r.t. any input set where
the size of each party’s input is fixed.

There is a small gap between our lower and upper bounds. A natural direction for future
work is to close this gap.
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Abstract

Consider a sender S and a group of n recipients. S holds a secret message m of length l bits and
the goal is to allow S to create a secret sharing of m with privacy threshold t among the recipients,
by broadcasting a single message c to the recipients. Our goal is to do this with information
theoretic security in a model with a simple form of correlated randomness. Namely, for each subset
A of recipients of size q, S may share a random key with all recipients in A. (The keys shared
with different subsets A must be independent.) We call this Broadcast Secret-Sharing (BSS) with
parameters l, n, t and q.

Our main question is: how large must c be, as a function of the parameters? We show that n−t
q

l

is a lower bound, and we show an upper bound of ( n(t+1)
q+t

− t)l, matching the lower bound whenever
t = 0, or when q = 1 or n − t.

When q = n − t, the size of c is exactly l which is clearly minimal. The protocol demonstrating
the upper bound in this case requires S to share a key with every subset of size n − t. We show that
this overhead cannot be avoided when c has minimal size.

We also show that if access is additionally given to an idealized PRG, the lower bound on
ciphertext size becomes n−t

q
λ + l − negl(λ) (where λ is the length of the input to the PRG). The

upper bound becomes ( n(t+1)
q+t

− t)λ + l.

BSS can be applied directly to secret-key threshold encryption. We can also consider a setting
where the correlated randomness is generated using computationally secure and non-interactive
key exchange, where we assume that each recipient has an (independently generated) public key
for this purpose. In this model, any protocol for non-interactive secret sharing becomes an ad hoc
threshold encryption (ATE) scheme, which is a threshold encryption scheme with no trusted setup
beyond a PKI. Our upper bounds imply new ATE schemes, and our lower bound becomes a lower
bound on the ciphertext size in any ATE scheme that uses a key exchange functionality and no
other cryptographic primitives.
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1 Introduction

In this paper, we consider the following scenario: We have a sender S and a group of n

recipients. S holds a secret message m of length l bits, and the goal is to allow S to create
a secret sharing of m with privacy threshold t among the recipients. This should be done
by broadcasting a single message c to the recipients, followed by local computation by the
recipients.

Our goal is to do this with information theoretic security, and since this is clearly
impossible in the plain model, we consider a model with correlated randomness.

Note that, if the correlated randomness is “strong enough”, the problem becomes trivial:
we could ask that S has a random secret r of the same length as m and the recipients have
shares of r in, e.g., Shamir’s secret sharing scheme. Now, S can broadcast m− r which is
clearly of minimal size, and the recipients adjust their shares accordingly. The problem,
however, is that each instance of the correlation can only be used once. And if we want to
use the Shamir-based solution several times, the only known approach is to create every
correlation instance from scratch, implying a communication cost for every instance. In
other words, there is no known way to create new instances from old ones using only local
computation, not even if we settle for computational security.

We therefore choose an arguably arguably simpler and easier to implement form of
correlated randomness where S shares random strings with one or more of the recipients.
More precisely, for each subset A of recipients of size q, S may share a secret random bit
string sA with all recipients in A. Note that this form of correlated randomness can be set
up using only communication between the sender and the receivers; receivers do not need
to interact. Furthermore, from one instance of such correlated randomness, the parties can
generate as many new (pseudorandom) instances as they like using a PRF and only local
computation. These properties are very useful for applications. See, for instance, Section 1.1.

For any q, we also allow S to share a secret with any subset smaller than q 1. This means
that, for larger q, we have stronger forms of correlated randomness.

We consider protocols where S computes c from m and all the shared secrets (sA’s). Then
c is broadcast, and each recipient computes his share of m from c and the shared secrets
he holds. Security means that c and the information held by up to t recipients contain no
information on m, but c and the information held by any t + 1 recipients determine m.

We call the notion we just sketched Broadcast Secret-Sharing (BSS), with parameters
l, n, t and q. In the following, we will sometimes refer to c as the ciphertext and the
correlated randomness as shared keys, which is motivated by the fact that any broadcast
secret sharing scheme can be used as is for a secret key threshold encryption scheme. More
on this interpretation below.

Our main question is: how large must c be, as a function of the parameters? And, as
a secondary question, how much secret correlated data do we need? To the best of our
knowledge, these questions, as well the notion of broadcast secret-sharing, have not been
considered before.

Let lc be the length of c. It is easy to see that

l ≤ lc ≤ n · l.

Namely, c must always carry enough information to transmit m to the receivers – and on
the other hand, S can always solve the problem by sharing a one-time pad key with each

1 The motivation is that, for virtually any way to implement the shared randomness, S could always
share with q′ < q parties by imagining q − q′ virtual parties and emulate these herself.
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receiver, then making a standard secret sharing of m and letting c consist of the one-time
pad encryptions of each of the shares.

In this paper, we show the much stronger conditions

n− t

q
l ≤ lc ≤ (n(t + 1)

q + t
− t)l.

Note that our upper bound matches the lower bound whenever t = 0 or when q = 1 or
n− t. Note also that when q = n− t, the size of c is exactly l which is minimal, so q = n− t

is the largest value it makes sense to consider. The protocol demonstrating the upper bound
in this case requires S to share a key with every subset of size n − t. We show that this
(possibly exponential) overhead cannot be avoided when c has minimal size.

The BSS schemes we mentioned so far produce Shamir secret-sharings as output. In the
final part of the paper, we show that if access is additionally given to an idealized PRG2,
other solutions become possible. Namely, the sender chooses a PRG-input, shares it among
the receivers using the best available BSS, and one-time pad encrypts the message using the
output from the PRG. Note that this produces a non-standard, non-linear secret sharing.
The lower bound on ciphertext size becomes n−t

q λ + l − negl(λ) (where λ is the length of
the input to the PRG). The upper bound becomes ( n(t+1)

q+t − t)λ + l.

1.1 Applications
We believe broadcast secret-sharing is interesting in its own right, and we describe below a
couple of applications that make use of a BSS-scheme “out of the box”. As further motivation,
we also consider in the following subsection two different ways to provide the correlated
randomness, leading to other applications.

1.1.1 (Secret-Key) Threshold Encryption
The first application is to secret-key threshold encryption, where a sender sends a ciphertext
to set of receivers such that only large enough subsets can decrypt. The main difference
between broadcast secret sharing and secret-key threshold encryption is that, in secret-key
threshold encryption, it is important that the shared keys be reusable. We can easily achieve
this by interpreting each key shared between S and a (subset of) receiver(s) as a key for a
pseudorandom function (PRF) ϕ. To encrypt, S chooses a random nonce r, and for each
shared key K, computes ϕK(r). Note that these PRF values form a (pseudorandom) set
of values that can be used as fresh correlated randomness for the broadcast secret-sharing
scheme we use. S now uses this scheme to share her message m among the receivers, resulting
in a ciphertext c, and sends the pair (r, c). Decryption can clearly be done by any subset
consisting of at least t + 1 receivers, and no smaller subset learns anything, which follows
easily from security of the PRF and the underlying BSS-scheme. Note that decryption
requires minimal interaction: each receiver just has to send his share to the others.

Note also that this application works exactly for the simple form of correlated randomness
we use, where S knows some keys, and each receiver knows a subset of them. Had we allowed
a more complicated correlation, the receivers could not have generated new (pseudorandom)
correlations of the same form simply by applying the PRF locally.

2 We warn the reader that in an actual implementation, a real PRG would have to be used, and the
scheme would only be computationally secure.
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1.1.2 Secure Multiparty Computation
A second application of BSS is to use it to non-interactively supply input to a secret-sharing
based multiparty computation protocol, where the keys held by the sender and receivers can
be generated in an earlier setup phase. Given an ideal functionality for distributing keys,
we get information theoretic security if the keys are used once. But if we are happy with
computational security, we can use a PRF as explained in the previous subsection to extend
the key material and support any number of inputs. Note that this will not work when using
the well-known method of “pre-cooking” a Shamir secret sharing of a random value known
to the sender. Note also that our construction generates Shamir secret-sharings and so is
compatible with standard MPC protocols.

1.2 Implementing Shared Keys
Broadcast secret sharing assumes keys shared between the sender and (subsets of) the
receiver(s). To discuss the use of BSS in practice, we must also consider the distribution of
these keys. We suggest two approaches: non-interactive key exchange (NIKE), and quantum
key agreement.

1.2.1 Using NIKE to get (Public-Key) Ad-Hoc Threshold Encryption
In this subsection, we discuss a way to generate the shared keys on the fly, via computationally
secure and non-interactive key exchange. Here, we assume that each recipient has an
(independently generated) public key and secret key for this purpose.

In this model, any protocol for BSS (including our upper bounds) implies a (public-key)
ad hoc threshold encryption (ATE) scheme, which is a threshold encryption scheme with
no trusted setup beyond a PKI. Namely, the sender creates a ciphertext that includes the
information required for the key exchange as well as the c created for broadcast secret-sharing
of the message m. To decrypt, at least t+1 recipients will first compute the shared randomness
using the key exchange, then use this to compute their shares, and finally exhange the shares
to reconstruct m. In the related work section below, we give more background on ATE and
its relation to standard threshold encryption.

Note that for q = 1 the non-interactive key exchange can be done very efficiently based
on the DDH assumption: if each receiver i has a public key of form gxi in some appropriate
group, then S just needs to include a single element gr for random r in the ciphertext, then
the shared key will be of form gxir for receiver i. A similar solution for q = 2 can be designed
using pairing friendly groups. Thus, for these cases, our upper bounds become (essentially)
upper bounds on the ciphertext size of the corresponding ATE-scheme. In particular, the
ATE-scheme that follows from this and our construction for q = 2 has smaller ciphertext size
than the best previous scheme of Daza et al. [4]. For instance, when t = 1, that scheme has
ciphertext size (n− 1)l while we can obtain ( 2n

3 − 1)l.
Less efficient non-interactive key exchange solutions also exist for larger values of q. They

can be constructed from multilinear maps, indistinguishability obfuscation [2], universal
samplers [8, 7] (which can be built from indistinguishability obfuscation or functional
encryption), or encryption combiners satisfying perfect independence [9] (which can be built
from universal samplers).

On the other hand, in this setting, our lower bound becomes a lower bound on the
ciphertext size in any ATE scheme that uses an ideal functionality for key exchange (and
perhaps for PRG), and no other cryptographic primitives. We formalize the demand that
no other cryptographic primitives are used by requiring that the scheme is information
theoretically secure when using the ideal functionalities.
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We stress that these lower bounds hold for ATE-schemes that have access to the crypto-
graphic primitives only via the ideal functionalities they implement. This is more restrictive
than if black-box access were given to the corresponding algorithms; one might say that we
allow the protocol to use them “only as intended”. However, to the best our knowledge, no
general lower bound was known for ATE before.

1.2.2 Using Quantum Agreement
The correlated randomness needed for BSS can also be provided in a setting where the sender
shares entangled quantum states with each of the receivers. As is well known, if sender
and receiver share a pair of particles that are in the so-called EPR state, then measuring
each particle results in the same random bit being obtained by both parties. Moreover, as
long as the state really is the pure EPR state, no third party has any information on the
randomness obtained. Thus this setting gives us exactly what we want for q = 1, with perfect
security assuming perfect ability to prepare states and measure them. The same is true if
one assumes that sender and receiver has executed a secure quantum key exchange protocol
at some earlier time.

The case of q > 1 also has a quantum implementation, namely if we assume that the
sender shares multipartite entangled states with subsets of receivers. In a multipartite
entangled state, each involved party holds a particle, and the global state of the particles
can be designed to be fully entangled so that local measurements return the same random
result for all parties.

1.3 Related Work
1.3.1 Threshold Secret-Key Cryptosystems
There is not much work on secret-key (symmetric) cryptosystems where the decryption
and/or the encryption process can be distributed among a number of parties. A formal study
of this was done by Agrawal et al. [1], in which formal security definitions and constructions
were given for the case where both encryption and decryption is distributed. Our construction
is in a different model where only the decryption is distributed. This allows us to offer new
tradeoffs for constructions using only secret-key primitives and no public-key techniques,
which is usually the more efficient case. The one construction from [1] using only secret-key
primitives (a PRF) is very similar to our solution where q = n− t. It has minimal ciphertext
size l but requires

(
n
t

)
keys, potentially leading to exponential in n overhead. At the other

extreme, we have the trivial solution where q = 1 and the sender secret-shares the message
and sends a share to each receiver, leading to ciphertext size nl and a total of n keys. However,
the construction leading to our upper bound implies a spectrum of options “in between”,
namely we can get ciphertext size ( n(t+1)

q+t − t)l using n
q+t

(
q+t

t

)
keys.

1.3.2 Threshold Public-Key Cryptogsystems
The concept of public-key threshold encryption is very well known. It goes back at least to
Desmedt et al. [5], and has since then been studied in a very long line of research. For this
type of scheme, the key generation outputs a public key pk and a set of secret keys sk1, . . . , skn

which are generated with respect to a threshold value t, where 0 ≤ t < n. Informally, the
important security properties are that given any set of at least t + 1 secret keys, one can
decrypt a ciphertext encrypted under pk, while the encryption remains secure even given any
set of t secret keys. For efficiency, ciphertexts should have size independent of n.
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Requiring a single trusted execution of key generation can be very limiting, particularly
in a system where parties may join at any point, or where senders want to dynamically
choose subsets of the parties to be the recipients of a particular message. Dynamic threshold
public-key encryption, introduced by Delerablée and Pointcheval [6], has a reduced setup
requirement where the sender can pick the set of n recipients at encryption time; however,
each recipient’s secret key must be derived from a common master secret key, so a trusted
authority is still necessary. Ad hoc threshold encryption (ATE), first introduced by Daza et
al. [4] as threshold broadcast encryption3 (motivated by its applicability to mobile ad hoc
networks), requires no trusted setup beyond the absolute minimum – a PKI.

ATE considers a universe of users, where each user i has a public key pki and corresponding
secret key ski, and where all key pairs are independently generated. A sender can select a
set R of n users and a threshold value t at the time at which he decides to send a message
m. He can then construct a ciphertext c = EpkR,t(m), where pkR is the set of public keys
belonging to parties in R. ATE requires properties similar to those of standard threshold
encryption: namely, that any t + 1 parties in R can decrypt, while the encryption remains
semantically secure even given the secret keys of any t parties in R.

Clearly, ATE has a number of attractive properties that standard threshold encryption
lacks: no trusted authority, and the ability to decide on the set of receivers and the threshold
on the fly. On the other hand, it is not clear that an ATE ciphertext can be as small as
a standard one. The best known solution is from Daza et al. [4]. They show how to get
ciphertext size linear in n − t. This solution is in our model discussed earlier (though it
was not presented this way). Namely, it combines a BSS-scheme with non-interactive key
exchange, where q = 1. In fact, their BSS scheme is a special case of our upper bound.

In this context, our lower bound shows that the ATE scheme of Daza et al. has optimal
ciphertext size in the class of ATE schemes that use non-interactive key exchange with q = 1
and no other cryptographic tools (but as mentioned above, it can be improved using q = 2).
To the best of our knowledge, our bound is the first lower bound obtained for ATE schemes.

Reyzin et al. [10] show that using indistinguishability obfuscation, as well as a few
standard primitives, it is possible to get ciphertext size independent of n. There are several
reasons, however, why this is not a very satisfactory answer. For one thing, the construction
requires that senders (as well as receivers) have public and secret keys, which is not usually
assumed for ATE. Moreover, obfuscation requires strong assumptions; and with current state
of the art techniques, it comes at the price of a huge loss of efficiency in practice.

1.3.3 Pseudorandom Secret-Sharing

In [3], Cramer et al. show that, in a model where sufficiently many independent random
values are generated and each player is given an appropriate subset of these, the players can
locally convert this information to a random Shamir secret-sharing (with a fixed threshold
that depends on the set-up). This model is a somewhat similar to ours. The crucial difference,
however, is that we have a distinguished player - the sender - who knows all the values
and can send a single message to the others. This allows us to create secret-sharings with
any threshold, and while we do make use of their technique in our construction, we need
additional new ideas to do so.

3 One should note that ATE for t = 0 is very similar to broadcast encryption: each party can decrypt on
his own. However, in broadcast encryption, centralized key generation is usually allowed (or at least key
generation is coordinated between receivers). This is exactly what is not allowed in ATE.



I. B. Damgård, K. G. Larsen, and S. Yakoubov 10:7

1.4 Open Problems
There is a very rich space of problems to explore. The most obvious open question is of
course to close the gap between the upper and the lower bound on ciphertext size. Another
problem is to understand how large the correlated randomness must be. Can the lower
bound for minimal ciphertext size be generalized, or is there a way to get polynomial size
randomness when the ciphertext is (close to) minimal size?

2 Definitions

In this section, we give the syntax and security definitions for broadcast secret sharing (BSS).
We consider the following random variables:
SA, the random variable shared by the sender with the q parties in the set A,
the message M, and
the ciphertext C.

For ease of notation, we also let U be the random variable giving all the secrets SA shared
by the sender with any subset of receivers, Ui be the random variable giving all the secrets
held by party Pi (that is, Ui = {SA}i∈A), and UA be the random variable giving the union
of all the secrets held by parties in A.

We use uppercase variables – S, U, M, C – to refer to distributions, and lowercase variables
– s, u, m, c – to refer to concrete values.

2.1 BSS Syntax
We assume that any BSS scheme comes with a specification of finite sets from where the
random variables are to be chosen. Hence, when we say in the following “any distribution of
M”, for instance, this means any distribution over the specified set of outcomes.

A BSS scheme with parameters (l, n, t, q) consists of two algorithms, described below.

EuR(m) → c is a secret sharing algorithm (which we also sometimes dub encryption) that
uses a set of keys uR = {ui}i∈R belonging to the parties in the size-n set R of intended
recipients (where each ui consists of all secrets known to sets A where i ∈ A) to transform
a length-l message m into a secret sharing (or ciphertext) c.

DuA(c) → m is a reconstruction (or decryption) algorithm that uses keys uA = {ui}i∈A
belonging to a subset A of the intended recipient set R (where |A| > t) to recover the
message m from the sharing / ciphertext c.

2.2 BSS Security
Informally, a BSS scheme is secure if any t parties in the designated set of receivers R can
learn nothing about a message from a ciphertext, but any t + 1 parties in R can recover the
message. More precisely:

▶ Definition 1 (BSS Perfect Security). A BSS scheme (E, D) is perfectly secure with threshold
t if for any set of receivers R of size n, for C = EUR(M), the following two properties hold
for any distribution of M:
Security For any A ⊂ R of size at most t, we have H(M|C, UA) = H(M).
Correctness For any A ⊂ R of size greater than t, we have H(M|C, UA) = 0. Furthermore,

M = DUR(C).
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We can define statistical security similarly, where we assume that the distribution of
the variables may also depend on a security parameter λ, but we always assume that the
parameters l, n, t are polynomial in λ.

▶ Definition 2 (BSS Statistical Security). A BSS scheme (E, D) is statistically secure with
threshold t if for any set of receivers R of size n, for C = EUR(M), the following two
properties hold for any distribution of msg:
Security For any A ⊂ R of size at most t, we have H(M|C, UA) ≥ H(M)− negl(λ).
Correctness For any A ⊂ R of size greater than t, we have H(M|C, UA) ≤ negl(λ). Fur-

thermore, M = DUR(C) with overwhelming probability.

Finally we define a different type of security that we will need later for technical reasons.
It is designed for a situation where t = 0, so C alone reveals nothing about the message.
Moreover, each player on her own can learn l′ bits of the message, but not necessarily the
entire message.

▶ Definition 3 (BSS l′-Security). A BSS scheme (E, D) is l′−secure if for any set of receivers
R of size n, for C = EUR(M), the following two properties hold for any distribution of M
and some l′ ≤ H(M):
Security H(M|C) ≥ H(M)− negl(λ).
Correctness For any receiver Pi we have H(M|C, Ui) ≤ H(M)− l′ + negl(λ).

Clearly, if a BSS-scheme is l′-secure for l′ = H(M), it is statistically secure in the case
where t = 0.

3 Lower Bounds for Broadcast Secret Sharing

In this section, we prove a lower bound for BSS schemes with statistical security. Throughout
the proofs, we consider sending a uniform random message M of l bits. We then prove that the
corresponding ciphertext of a BSS scheme must (roughly) satisfy H(C) ≥ nH(M)/q = nl/q.
Since the entropy of a random variable giving a bit string is a lower bound on its expected
length (Shannon’s source coding theorem), this also lower bounds the length of the ciphertext.
We prove the lower bound in steps, starting with the warm-up case t = 0, q = 1 and then
extending it to arbitrary q and finally also to arbitrary t.

3.1 Warm-Up: BSS with t = 0 and q = 1
We start with a lower bound proof in the simple setup with threshold t = 0 and shared keys
among q = 1 recipients. We let the message M be a uniform random bit string of length l

(hence H(M) = l). We prove the following lower bound, where negl(λ) may be replaced by 0
for perfect security:

▶ Theorem 4. For any BSS scheme with statistical security, n recipients, threshold t = 0
and sharing of keys with q = 1 recipients, we must have:

H(C) ≥ n(l − negl(λ)).

To prove the lower bound, let Si for i = 1, . . . , n denote the shared key received by the
i’th recipient (for q = 1, only i receives that random key). The high level idea in our proof is
to argue that C must contain a lot of information about the randomness Si for every index i.
Since the shared keys are independent, this implies a lower bound on the entropy of C. More
formally, consider the mutual information I(Si; C | M, S1, . . . , Si−1). We will show:
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▶ Lemma 5. For all recipients i, it holds that I(C; Si | M, S1, . . . , Si−1) ≥ l − negl(λ).

Before proving Lemma 5, let us see how we use it to prove Theorem 4. Using non-negativity
of entropy and the chain rule of mutual information, we have

H(C) ≥ H(C | M)
≥ H(C | M)−H(C | M, S1, . . . , Sn)
= I(C; S1, . . . , Sn | M)

=
n∑

i=1
I(C; Si | M, S1, . . . , Si−1)

≥ n(l − negl(λ)).

This completes the proof of Theorem 4. Thus what remains is to prove Lemma 5.

Proof of Lemma 5. The basic idea in the proof of Lemma 5 is that C and Si together
reveal M, thus collectively they must have l − negl(λ) bits of information about M. Since
S1, . . . , Si alone have no information about M, those l−negl(λ) bits must be accounted for in
I(C; Si | M, S1, . . . , Si−1). We prove that formally in the following. By definition, the mutual
information in Lemma 5 equals:

I(C; Si | M, S1, . . . , Si−1) =
H(Si | M, S1, . . . , Si−1)−H(Si | C, M, S1, . . . , Si−1).

The message M and all the shared keys are independent, hence H(Si | M, S1, . . . , Si−1) =
H(Si). Since entropy may only increase by dropping variables we condition on, we also con-
clude H(Si | C, M, S1, . . . , Si−1) ≤ H(Si | C, M). Using the definition of mutual information,
we thus have:

I(Si; C | M, S1, . . . , Si−1) ≥ H(Si)−H(Si | C, M)
= I(Si; C, M)
= H(C, M)−H(C, M | Si).

Since the ciphertext C contains no information about M alone (up to negl(λ)), we have
H(C, M) = H(C)+H(M | C) ≥ H(C)+H(M)−negl(λ). By the chain rule of entropy, we have
H(C, M | Si) = H(C | Si) + H(M | C, Si) ≤ H(C) + H(M | C, Si). But H(M | C, Si) ≤ negl(λ)
since recipient i can recover M from C and Si. We therefore have:

I(Si; C | M, S1, . . . , Si−1) ≥ H(C) + H(M)− negl(λ)− (H(C) + negl(λ))
= H(M)− negl(λ)
= l − negl(λ). ◀

3.2 BSS with t = 0
In this section, we generalize the lower bound from Section 3.1 to q ≥ 1 (still assuming t = 0
and that the message M is a uniform random l bit string):

▶ Theorem 6. For any BSS scheme with statistical security, n recipients, security threshold
t = 0 and sharing of keys with q recipients, we must have:

H(C) ≥ n(l − negl(λ))/q.
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To show this, we will show a stronger statement that will be useful for other purposes in
the following:

▶ Theorem 7. For any l′-secure BSS scheme with n recipients, and sharing of keys with q

recipients, we must have:

H(C) ≥ n(l′ − negl(λ))/q.

Clearly, this result implies Theorem 6: when M is uniform and H(M) = l, the assumption
in Theorem 6 is equivalent to requiring l-security.

The basic idea in the proof for q = 1 was to argue that the ciphertext C contained a lot
of information about each Si. Formally, Lemma 5 showed that I(C; Si | M, S1, . . . , Si−1) ≥
l− negl(λ). In the following, we discuss the obstacles we face when generalizing the proof to
q ≥ 1 and show how we overcome them.

First, in order to prove Lemma 5, we used the fact that Si together with C revealed M to
conclude that I(C; Si | M, S1, . . . , Si−1) ≥ l − negl(λ). Considering instead l′-security this
statement would be I(C; Si | M, S1, . . . , Si−1) ≥ l′−negl(λ) and it could be proved in exactly
the same way for q = 1.

However, since a recipient may now use all his shared keys to recover M, we define a random
variable Ui for each recipient i: We let Ui denote all shared keys held by recipient i (Ui =
{SA}i∈A). Intuitively, the analog of Lemma 5 would state that I(C; Ui | M, U1, . . . , Ui−1) ≥
l′ − negl(λ).

With this definition of Ui we again have that Ui and C together reveal l′ bits of M.
Unfortunately, the sets of shared keys held by different recipients are not disjoint. This means
that Ui may depend on U1, . . . , Ui−1 and thus the lower bound on the mutual information is
not necessarily true.

Our key idea for addressing the above issue is to further partition Ui into subset
Ui,1, . . . , Ui,q where Ui,k contains all shared keys SA for which i is the k’th smallest in-
dex in A. Note that with this definition Ui,k and Uj,k with i ̸= j are disjoint sets of shared
keys (only one index can be the k’th smallest in a set A) and thus are independent. The
same holds for Ui,j and Ui,k with j ̸= k (i cannot both be the j’th and k’th smallest index
in A). Finally, we also define Fi,k to denote the set of all shared keys SA in which i is the
largest index in A and |A| < k. Our generalization of Lemma 5 then becomes:

▶ Lemma 8. There is an index k ∈ {1, . . . , q} such that

n∑
i=1

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥ n(l′ − negl(λ))/q.

Before proving Lemma 8, let us see that it implies Theorem 6. We have:

H(C) ≥ H(C | M)
≥ H(C | M)−H(C | M, U1,k, F1,k, . . . , Un,k, Fn,k)
= I(C; U1,k, F1,k, . . . , Un,k, Fn,k | M)

=
n∑

i=1
I(C; Ui,k, Fi,k | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k)

≥ n(l′ − negl(λ))/q.

What remains is thus to prove Lemma 8. The key step in doing so is to replace each mutual
information in the sum by a term that only depends on the sets Ui,1, . . . , Ui,q seen by the i’th
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recipient. The rewriting is quite non-trivial and crucially relies on the fact that we applied
the chain rule in reverse order of indices such that we condition on Uj,k, Fj,k for indices j > i.
The rewriting we make uses the following:

▶ Lemma 9. For every recipient i and every index k ∈ {1, . . . , q} we have

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥ I(Ui,k; C | M, Ui,1, . . . , Ui,k−1).

Let us first use Lemma 9 to prove Lemma 8.

Proof of Lemma 8. Consider summing over all recipients and all choices of k, applying
Lemma 9 on each term:

q∑
k=1

n∑
i=1

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥

q∑
k=1

n∑
i=1

I(Ui,k; C | M, Ui,1, . . . , Ui,k−1) =

n∑
i=1

q∑
k=1

I(Ui,k; C | M, Ui,1, . . . , Ui,k−1) =

n∑
i=1

I(Ui,1, . . . , Ui,q; C | M) =

n∑
i=1

I(Ui; C | M).

Since Ui and M are independent, we have I(Ui; C | M) = H(Ui | M) − H(Ui | C, M) =
H(Ui)−H(Ui | C, M) = I(Ui; C, M) = H(C, M)−H(C, M | Ui). Since M cannot be recovered
from C, we have

H(C, M) = H(C) + H(M | C) ≥ H(C) + H(M)− negl(λ).

By the chain rule, H(C, M | Ui) = H(C | Ui) + H(M | C, Ui) ≤ H(C) + H(M | C, Ui). But, by
l′-security, l′ bits of M are determined from C and Ui, more precisely

H(M | C, Ui) ≤ H(M)− l′ + negl(λ).

We have thus shown I(Ui; C | M) ≥ H(C)+H(M)−negl(λ)− (H(C)+H(M)− l′ +negl(λ)) =
l′ − negl(λ). We therefore have:

q∑
k=1

n∑
i=1

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥

n∑
i=1

l′ − negl(λ) =

n(l′ − negl(λ)).

Averaging over all choices of k completes the proof of Lemma 8. ◀

To finish, we thus need to prove Lemma 9:
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Proof of Lemma 9. We need to show that for all recipients i and every index k, it holds
that

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥ I(Ui,k; C | M, Ui,1, . . . , Ui,k−1).

The main observation needed in the proof is the fact every shared key in Ui,1, . . . , Ui,k also
appears in Ui,k, Fi,k, . . . , Un,k, Fn,k. More formally, we start by observing that:

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥
I(Ui,k; C | M, Fi,k, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) =

H(Ui,k | M, Fi,k, Ui+1,k, . . . , Fn,k)−H(Ui,k | C, M, Fi,k, Ui+1,k, . . . , Fn,k).

Notice that the set of shared keys Ui,k is disjoint from the sets Uj,k with j ̸= i. This
holds since for any set of receivers A, only one receiver can be the k’th smallest. Moreover,
Ui,k is also disjoint from Fj,k for all j. This is true since Fj,k contains only shared keys
for sets of receivers with cardinality less than k. This means that Ui,k is independent of
M, Fi,k, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k and thus we have

H(Ui,k | M, Fi,k, Ui+1,k, . . . , Fn,k) = H(Ui,k).

We therefore have:

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥
H(Ui,k)−H(Ui,k | C, M, Fi,k, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k).

Since entropy may only increase by removing variables that we condition on, we remove all
shared keys from Fi,k, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k which do not appear in Ui,1, . . . , Ui,k−1.
We claim that we are left with precisely the full set of shared keys appearing in Ui,1, . . . , Ui,k−1.
To see this, consider a shared key SA appearing in Ui,j for some j < k. Assume first that i is
the largest index in the set A. Then the cardinality of A is j < k and we have SA ∈ Fi,k by
definition of Fi,k. Next, assume that the cardinality of A is less than k, but i is not the largest
index in A. Let i′ > i be the largest index. Then by definition, we have SA ∈ Fi′,k. Finally,
assume that the cardinality of A is at least k. Let i′ > i be the k’th smallest index in A,
then SA ∈ Ui′,k. In all cases, we have that SA is in one of Fi,k, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k

and we conclude that we are left with Ui,1, . . . , Ui,k−1. We therefore have:

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥
H(Ui,k)−H(Ui,k | C, M, Ui,1, . . . , Ui,k−1).

Conditioning on a random variable may only decrease entropy, we can therefore bound the
above by:

I(Ui,kFi,k; C | M, Ui+1,k, Fi+1,k, . . . , Un,k, Fn,k) ≥
H(Ui,k | M, Ui,1, . . . , Ui,k−1)−H(Ui,k | C, M, Ui,1, . . . , Ui,k−1) =

I(Ui,k; C | M, Ui,1, . . . , Ui,k−1).

This concludes the proof of Lemma 9 and thus also of Theorem 7. ◀
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3.3 Final BSS Lower Bound
In this section, we finally extend the lower bound in Theorem 6 to the general case of t ≥ 0
and q ≥ 1. Our final result is the following:

▶ Theorem 10. For any BSS scheme with statistical security, n recipients, security threshold
t and sharing of keys with q recipients, we must have:

H(C) ≥ (n− t)(l − negl(λ))/q.

The proof follows via a reduction from the case with t = 0 (Theorem 6). The basic idea is to
show that any BSS scheme for arbitrary threshold t ≥ 0 can be converted into a scheme for
t = 0 and n− t receivers. This is done by treating the first t receivers as dummy receivers
for which all shared keys are public information. This way, we get a BSS scheme with t = 0
for the remaining receivers t + 1, . . . , n.

In detail, consider all shared keys U1, . . . , Ut held by the first t parties in a BSS scheme
with threshold t. Consider any concrete instantiation u1, . . . , ut of the random variables
and let Eu1,...,ut

denote the event that Ui = ui for i = 1, . . . , t. We will prove that for most
instantiations of U1 = u1, . . . , Ut = ut, conditioned on Eu1,...,ut

, the BSS statistical security
definitions hold for the remaining n− t receivers with threshold t = 0. Formally, we require
that:

Security We have H(M | C, Eu1,...,ut) ≥ H(M)− negl(λ).

Correctness For any receiver i with i ∈ {t + 1, . . . , n}, we have

H(M | C, Ui, Eu1,...,ut
) ≤ negl(λ).

Call u1, . . . , ut typical if they satisfies the above Security and Correctness. If u1, . . . , ut are
typical, then we have a BSS scheme with threshold t = 0 for the remaining n− t receivers
t+1, . . . , n if we hard code U1 = u1, . . . , Ut = ut and let those be shared knowledge. Therefore,
by Theorem 6, it must be the case for typical u1, . . . , ut, that

H(C | Eu1,...,ut
) ≥ n− t

q
(1− negl(λ)).

We will show:

▶ Lemma 11. U1, . . . , Ut are typical with probability at least 1− negl(λ).

Before we prove Lemma 11, we use the lemma to finish the proof of Theorem 10. We see that

H(C) ≥ H(C | U1, . . . , Ut)
=

∑
u1,...,ut

H(C | Eu1,...,ut) Pr[Eu1,...,ut ]

≥
∑

u1,...,ut:u1,...,ut are typical
H(C | Eu1,...,ut

) Pr[Eu1,...,ut
]

≥ n− t

q
(1− negl(λ)) Pr[U1, . . . , Ut are typical]

= n− t

q
(1− negl(λ)).

What remains is thus to prove Lemma 11.
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Proof of Lemma 11. Let X(u1, . . . , ut) take the value H(M)−H(M | C, Eu1,...,ut). Observe
that since M is independent of U1, . . . , Ut, we have H(M) = H(M | Eu1,...,ut

) and thus
X(u1, . . . , ut) = H(M | Eu1,...,ut

)−H(M | C, Eu1,...,ut
). Conditioning on C may only decrease

entropy, hence X is non-negative for all u1, . . . , ut. It follows by Markov’s inequality that

Pr
[
X(U1, . . . , Ut) >

√
E[X(U1, . . . , Ut)]

]
<

√
E[X(U1, . . . , Ut)].

Now recall from the security requirements of a BSS scheme with threshold t that:

H(M)− negl(λ) ≤ H(M | C, U1, . . . , Ut)
=

∑
u1,...,ut

H(M | C, Eu1,...,ut
) Pr[Eu1,...,ut

],

which implies

E[X(U1, . . . , Ut)] = H(M)−
∑

u1,...,ut

H(M | C, Eu1,...,ut
) Pr[Eu1,...,ut

]

≤ negl(λ).

Thus by Markov’s, we have Pr
[
X(U1, . . . , Ut) > negl(λ)

]
< negl(λ).

Next, for any receiver i > t, define Yi(u1, . . . , ut) to take the value H(M | C, Ui, Eu1,...,ut
).

Since entropy is always non-negative, so is Yi. By definition of conditional entropy, we
have E[Yi(U1, . . . , Ut)] = H(M | C, Ui, U1, . . . , Ut). Thus from Markov’s we again have
Pr[Yi(U1, . . . , Ut) > negl(λ)] < negl(λ). It finally follows by a union bound that with probabil-
ity at least 1−(n−t+1)negl(λ) = 1−negl(λ), we simultaneously have X(U1, . . . , Ut) < negl(λ)
and Yi(U1, . . . , Ut) < negl(λ) for all i = t + 1, . . . , n. That is, U1, . . . , Ut are typical with
probability at least 1− negl(λ). ◀

4 Upper Bound on Ciphertext Size

In this section, we explore constructions of broadcast secret-sharing.

4.1 Building Block: Pseudorandom Secret Sharing
Our results in this section leverage pseudorandom secret sharing, which is a technique for the
local (that is, non-interactive) conversion of a replicated secret sharing to a Shamir secret
sharing.

A replicated secret sharing for the (t + 1)-out-of-n threshold access structure proceeds as
follows. First, the dealer splits the secret M into

(
n
t

)
additive secret shares, where each share

rA corresponds to a different maximally unqualified set A of size t. Then, the complement
of each set A (that is, the n− t parties that are not in A) are all given rA. It is then clear
that any maximally unqualified set A is only missing knowledge of one share rA, which any
additional party holds.

Pseudorandom secret sharing [3] locally converts such a replicated secret sharing into a
Shamir secret sharing (a degree-t polynomial f with f(0) = M as the secret, and f(i) = si as
party i’s share for i ∈ [1, . . . , n]). Pseudorandom secret sharing proceeds as follows: let fA
be the degree-t polynomial such that fA(0) = 1, and fA(i) = 0 for all i ∈ A. Each player Pi

can then compute their Shamir share as

si =
∑

A⊆[n]:|A|=t,i/∈A

rAfA(i).
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We stress that, despite the name, pseudorandom secret-sharing as presented here provides
perfect information theoretic security. The name comes from an application of the technique
that uses pseudorandom functions.

Cramer, Damgård and Ishai [3] also prove a lower bound, stated in Theorem 12.

▶ Theorem 12 (From [3]). Fewer than
(

n
t

)
independent random values shared among various

subsets of parties cannot be locally converted into a (t + 1)-out-of-n threshold secret sharing.

4.2 Lower Bounding the Correlated Randomness When H(C) = H(M)
▶ Theorem 13. For any perfectly secure BSS scheme with threshold t = θ(n), if H(C) =
H(M), then correlated randomness of exponential size is necessary.

Proof. If H(C) = H(M), then for any distribution of keys, there is exactly one ciphertext
that corresponds to any given message. Therefore, choosing a ciphertext at random (without
considering the correlated randomness) will always give a valid ciphertext that corresponds to
some message, no matter which value the randomness takes. Choosing the randomness and
ciphertext simultaneously independently at random thus produces a random (t + 1)-out-of-n
secret sharing (where the ciphertext is simply an additional random value given to all parties).
So, the exponential lower bound by Cramer et al. [3] (Theorem 12) on amount of independent
randomness that can be converted into a (t + 1)-out-of-n secret sharing applies. ◀

4.3 The Upper Bound
Construction 1 below achieves optimal ciphertext size whenever t = 0, or when q = 0 or
when q is the maximal relevant value n− t. This construction leverages the techniques of
replicated or pseudorandom secret sharing. The price we pays is that the overhead in terms
of size of correlated randomness is sometimes exponential (that is, the sender and each of the
receivers must use an exponential number of shared random values). Whether this happens
depends on the parameter values.

▶ Construction 1. Let n′ = q+t. We partition the recipients into n
n′ subsets of size n′ = q+t.

(We assume for simplicity that n′ = q + t divides n.) An arbitrary but fixed one of these
subsets is chosen and named B. This is done publicly once and for all. We also assign once
and for all a unique point in a suitable finite field to each recipient.

Consider now any of the above subsets A. We set up the correlated randomness such
that the sender S shares a random value with any subset of A, of size n′ − t = q. These
values form a random replicated secret-sharing among the players in A and hence, using
the technique from [3], S can share a random polynomial fA of degree at most t with the
participants in A, using only the correlated randomness. Concretely, S knows fA and each
player in A knows a point on fA.

The ciphertext consists of m + fB(0) and fB − fA for every subset A ̸= B.
Each recipient locally computes from the correlated randomness fA(i) where A is the

subset she is in and i is her assigned point in the field. Then she computes fB(i) =
fA(i) + (fB − fA)(i). To reconstruct, any subset of size at least t + 1 can interpolate fB and
compute m = (m + fB(0))− fB(0).

The security of this construction follows trivially from the security of replicated secret
sharing: each fA is uniformly random of degree at most t and so fB − fA contains no
information on m, even given m + fB(0). Since each polynomial fB − fA can be specified
using t + 1 coefficients, the ciphetext size is

((t + 1)(n/(q + t)− 1) + 1)l = (n(t + 1)/(q + t)− t)l.

ITC 2021



10:16 Broadcast Secret-Sharing, Bounds and Applications

The size of the shared keys (correlated randomness) is n/(q + t) ·
((q+t)

t

)
field elements.

This can be as much as
(

n
t

)
and so may be exponential in n. But as we showed above, at

least when q = n− t, this overhead cannot be avoided.

5 Bounds Additionally Assuming an Idealized PRG

In this section, we add to our BSS model an idealized pseudorandom generator (PRG); an
idealized functionality that takes in a random length-λ seed, and outputs a longer random
value. (As long as the output is at least one bit longer than the input, we can bootstrap the
PRG to give arbitrarily long outputs. In our case, the output length that most often makes
sense is l, the length of the message.) Our BSS algorithms are augmented with oracle access
to the idealized PRG.

We make some assumptions on how the BSS protocol may use the idealized PRG:

▶ Definition 14. An admissible BSS-protocol satisfies the following:
For any subset of receivers, any PRG-seed chosen by the sender can either be computed
using what that subset of receivers knows, or has full entropy (possibly up to a negligible
loss).
During the sharing phase, the sender chooses all seeds that are input to PRG uniformly,
independently of anything else.
The idealized PRG is not called with any shared keys as input.

In the following we will only consider admissible BSS constructions. The motivation for
this is as follows:

We want to make sure that an admissible protocol can be turned into a construction in
the real world by replacing the idealized PRG by a real PRG construction. Now, if a
seed has (essentially) full entropy in the view of the adversary, then (and only then) can
we use the standard security of a real PRG to conclude that the output is pseudorandom.
Seeds for which the adversary has partial information are not useful in this sense, and we
may as well give the adversary full information on that seed for free.
This is why we assume that in the view of a subset of receivers, any seed that the sender
chose can either be computed or has (essentially) full entropy. However, for a seed to be
potentially useful it must have full entropy in the first place, which is why we assume
that the sender chooses all seeds uniformly, independently of anything else.
We assume that the idealized PRG is not called using shared keys as input for simplicity,
because this does not cost us any generality: calls to the PRG using shared keys as input
is equivalent to asking for longer shared keys. In both cases, the result is a greater amount
of correlated randomness.

Finally, we will assume that privacy only needs to hold given ability to call the PRG a
polynomial number of times. The reason for this is that otherwise protocols that actually
make use of the PRG could not ensure that the message is hidden from a non-qualified subset
of receivers. As an example, suppose the sender secret-shares a seed s and includes in the
ciphertext a one-time pad encryption m⊕ PRG(s). A completely unbounded adversary can
call the PRG on all inputs and, once all the outputs are given, the only uncertainty she has
is which seed the sender used. Then, if m is longer than s, it cannot have full entropy.

To be able to talk about the information a set of receivers can get from the oracle, we
abuse notation and let PRG(C, UA) denote the random variable that is obtained by calling
the PRG on inputs that are selected by an unbounded randomized algorithm that gets C, UA
as input. The algorithm only returns a polynomial number of outputs. For simplicity of
notation, we suppress the algorithm and the random coins it uses.
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▶ Definition 15 (BSS Statistical Security with PRG). A BSS scheme (E, D) is statistically
secure with threshold t with respect to a random oracle PRG if for any set of receivers R of
size n, for C = EP RG

UR
(M), the following two properties hold for any distribution of M:

Security For any A ⊂ R of size at most t, we have H(M|C, UA, PRG(C, UA)) ≥ H(M) −
negl(λ).

Correctness For any A ⊂ R of size greater than t, H(M|C, UA, PRG(C, UA)) ≤ negl(λ).
Furthermore, M = DP RG

UR
(C) with overwhelming probability.

5.1 Lower Bound on Ciphertext Size
▶ Theorem 16. Consider any BSS scheme that is statistically secure with threshold t with
respect to PRG (which takes inputs of size λ) and shares messages of length l ≥ λ. If the
scheme is admissible it holds that

H(C) ≥ n− t

q
λ + l − δ(λ)

for a negligible function δ(λ).

To show the above theorem, consider first a scheme that satisfies the assumption with
threshold t = 0, so then the only unqualified set of receivers is the empty set. Since the
scheme is admissible, there is a (possibly empty) set of seeds S that were chosen by the
sender, but where each seed in S has full entropy given the ciphertext C, and all other seeds
are determined by C.

We claim that we can transform this scheme into a new one (for a different distribution
of messages) that is l′-secure (Definition 3) with l′ = λ. In particular, this will be a scheme
where the PRG is not available. Recall that in such a scheme a qualified subset of receivers
can determine at least l′ bits of the message.

To this end, we define the message M′ in the new scheme to be the original M concatenated
with the seeds in S. Reconstruction in the new scheme by a qualified set A works as follows:
If at least one seed s ∈ S is determined by C, UA, then return s. Otherwise, by admissibility,
all seeds in S have full entropy given C, UA. Consider the random variable PRG(C, UA)
that would have been used for reconstruction in the original scheme. Notice that since
this variable is formed by calling the PRG a polynomial number of times, the inputs used
will overlap with S with only negligible probability. Therefore unless this overlap event
happens, access to the PRG can be perfectly simulated without calling the PRG, simply by
choosing fresh randomness to play the role of the PRG’s output. Hence, we can return M
with overwhelming probability without calling the PRG, so H(M|C, UA) is negligible, even
without access to the PRG.

Since l ≥ λ, we have shown that given C, UA for a qualified set A, the entropy of M′

drops by at least l′ bits (up to a negligible amount), and this is the correctness property of
Definition 3.

The security property of Definition 3 follows immediately from admissibility and from
the security property of Definition 15: given only C, all seeds in S have full entropy and
H(M|C, UA, PRG(C, UA)) can only increase if we take away the PRG and therefore do not
condition on PRG(C, UA).

We can now apply Theorem 7 and since we did not change the distribution of C, we
conclude:

▶ Lemma 17. For any BSS-scheme satisfying Definition 15 with t = 0, we have:

H(C) ≥ n(λ− δ(λ))/q.
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Proof of Theorem 16. Given any BSS-scheme satisfying Definition 15, we can construct
from this a new scheme for n′ = n− t receivers and threshold 0 (but the same ciphertext
dsitribution). This is done by fixing the shared keys of the first t players and making them
public, exactly as in the proof of Theorem 10, so we will not repeat the details here. We then
apply the above lemma, and conclude that H(C) ≥ (n− t)(λ− δ(λ))/q. We finally obtain
Theorem 16 by also noting that C must carry enough information to determine the message,
so we can add l to the lower bound. ◀

5.2 Upper Bound
Construction 2 describes how, using an idealized PRG in addition to shared keys, we can
achieve

H(C) = (n(t + 1)/(q + t)− t)λ + l.

▶ Construction 2. The sender chooses a random PRG seed, uses the scheme from Con-
struction 1 to share this seed among the receivers, and uses the PRG output on this seed to
one-time-pad-encrypt the message.

Ciphertext size and correctness follow trivially from Construction 1. As for security,
it follows from security of Construction 1 that an unqualified set A of receivers has no
information on the seed chosen by the sender. Hence the event that the (polynomial number
of) inputs to the PRG chosen by A include the sender’s seed has negligible probability. Unless
this event happens, the message has full entropy, so the security property follows.

It is important to remark that, unlike Construction 1, Construction 2 does not give the
receivers a Shamir secret sharing of the message, but rather of a PRG seed. The receivers
reconstruct by first recovering the PRG seed, and then expanding that seed and using the
resulting longer string to recover the message. The downside is that this not a linear secret
sharing of the message. However, the upside is that, since a PRG seed can be used to
generate an arbitrarily long pseudorandom string, the shared PRG seed can be re-used and
the sender can share additional messages of length l to the same set of receivers by sending
only l additional bits.

6 Application: Ad hoc Threshold Encryption

We can use any (l, n, t, q) BSS scheme together with any non-interactive key exchange (NIKE)
scheme for q + 1 parties to get (l, n, t) ad hoc threshold encryption (ATE). Informally,
the message sender uses the NIKE scheme to set up the correlated randomness for BSS
non-interactively. She simply generates a fresh NIKE key pair, uses the secret key to derive
shared secrets with every size-q subset of receivers, uses those shared secrets to run BSS,
and sends the NIKE public key along with the resulting ciphertext to enable the recipients
to derive the same shared secrets.

We sketch the definitions of NIKE and ATE below, and formalize how ATE can be
instantiated from NIKE and BSS.

6.1 NIKE Definitions
A non-interactive key exchange (NIKE) scheme consists of two algorithms:

KG(1λ) → (pk, sk) is a randomized key generation algorithm that takes in the security
parameter λ and returns a public-private key pair.
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KA(ski, pkA) → s is a key agreement algorithm that takes in one secret key and q public
keys pkA = {pkj}j∈A and returns a shared secret.

Informally, a NIKE scheme for q parties is correct as long as, for any i ∈ A (where
|A| = q + 1), sA ← KA(ski, {pkj}j∈A,j ̸=i) gives the same value. It is secure as long as, given
{pki}i∈A (but none of the associated secret keys ski), sA is computationally indistinguishable
from random.

6.2 ATE Definitions

An ad hoc threshold encryption (ATE) scheme consists of three algorithms:

KG(1λ) → (pk, sk) is a randomized key generation algorithm that takes in the security
parameter λ and returns a public-private key pair.

EpkR(m) → c is an encryption algorithm that encrypts a message m to a set of public keys
pkR = {pki}i∈R belonging to the parties in the intended recipient set R in such a way
that any size-(t + 1) subset of the recipient set should jointly be able to decrypt.

DpkR,skA(c) → m is a decryption algorithm that uses secret keys skA = {ski}i∈A belonging
to a subset A of the intended recipient set R (where |A| > t) to decrypt the ciphertext c
and recover the message m.

Informally, an (l, n, t) ATE scheme is correct if D(E(M)) = M (where D and E are run
with the appropriate keys). It is secure if, for any two messages m0 and m1 of the same
length l, c0 = EpkR(M0) and c1 = EpkR(M1) are computationally indistinguishable even
given t or fewer of the secret keys ski, i ∈ A.

6.3 ATE from NIKE and BSS

We can build an ATE scheme from a NIKE scheme and a BSS scheme as follows:

KG(1λ) → (pk, sk):
1. Return (pk, sk)← NIKE.KG(1λ).

EpkR(m) :
1. Run (pk, sk)← NIKE.KG(1λ).
2. For every size-q subset A ⊆ R, run sA ← NIKE.KA(sk, pkA).
3. Run BSS.c← BSS.EuR(m).
4. Return (pk, BSS.c).

DpkR,skA(c = (pk, BSS.c)):
1. For every party i ∈ A, for every size-q subset A′ such that i ∈ A′, run

sA′ ← NIKE.KA(ski, {pk} ∪ {pkj}j∈A′,j ̸=i).

2. Recall that uA denotes {sA′}A′∪A̸=∅. Return m← BSS.DuA(BSS.c).

The size of a ciphertext in this scheme will be equal to the size of the corresponding BSS
ciphertext plus the size of a NIKE public key.
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6.4 From ATE and NIKE to BSS
Assume we have an ATE-scheme whose algorithms use an ideal NIKE functionality. We also
assume that the ATE scheme is statistically secure when using the ideal NIKE functionality,
that is, ciphertexts of different messages are statistically indistinguishable, and the message
has full entropy in the view of a non-qualified set of receivers (up to a negligible amount).

From this, we can obtain a BSS scheme: the keys returned from the NIKE functionality
become the correlated randomness, the encryption algorithm becomes the sharing algorithm,
and the view of each receiver (including the ciphertext) is a share. Reconstruction is done by
emulating the decryption protocol.

It therefore follows that our lower bound for BSS ciphertext size is also a lower bound for
ciphertext size in any ATE scheme of the type we assumed.
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Abstract
Non-malleable secret sharing (NMSS) schemes, introduced by Goyal and Kumar (STOC 2018),
ensure that a secret m can be distributed into shares m1, · · · , mn (for some n), such that any t (a
parameter ≤ n) shares can be reconstructed to recover the secret m, any t − 1 shares doesn’t leak
information about m and even if the shares that are used for reconstruction are tampered, it is
guaranteed that the reconstruction of these tampered shares will either result in the original m or
something independent of m. Since their introduction, non-malleable secret sharing schemes sparked
a very impressive line of research.

In this work, we introduce a feature of local reconstructability in NMSS, which allows recon-
struction of any portion of a secret by reading just a few locations of the shares. This is a useful
feature, especially when the secret is long or when the shares are stored in a distributed manner on
a communication network. In this work, we give a compiler that takes in any non-malleable secret
sharing scheme and compiles it into a locally reconstructable non-malleable secret sharing scheme.
To secret share a message consisting of k blocks of length ρ each, our scheme would only require
reading ρ + log k bits (in addition to a few more bits, whose quantity is independent of ρ and k)
from each party’s share (of a reconstruction set) to locally reconstruct a single block of the message.

We show an application of our locally reconstructable non-malleable secret sharing scheme to a
computational non-malleable secure message transmission scheme in the pre-processing model, with
an improved communication complexity, when transmitting multiple messages.
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1 Introduction

Secret Sharing Schemes

Secret sharing schemes [29, 6] allow a dealer holding a secret m, to distribute the secret
across a set of parties P1, P2, · · · , Pn as shares m1, m2, · · · , mn such that subsets of parties
authorised by the dealer can reconstruct the secret m and all the other subsets of parties
have no information about the secret. Secret sharing schemes are fundamental building
blocks in secure computation.
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Non-malleability

Non-malleable secret sharing schemes(NMSS) were introduced by Goyal and Kumar [18].
They ensure that if the shares of an authorised set are tampered, then reconstruction of these
tampered shares is either same as the original secret or it is some independent of the original
secret. Since their introduction, NMSS received wide attention with a long line of work
[18, 19, 31, 3, 17, 2, 8, 25, 28, 26], [12, 9]. NMSS are built specific to the class of tampering
that the shares undergo. This is because without any restriction of the tampering it is
impossible to build NMSS as the tampering function can take all the shares of an authorised
set and reconstruct m, compute the shares of m + 1 with respect to this authorised set and
sets them as the tampered shares. In this case, the reconstruction of the tampered shares
will give m + 1, which is not same as m but is very much related to m. Tampering families
that were studied so far in the context of NMSS are a)independent tampering: tampering of
a share depends solely on itself and is independent of the other shares b) joint tampering:
tampering of a share can depend on few other shares c) affine tampering: All shares can be
tampered together, but the tampering function is restricted to be an affine function.

Locality Reconstructability/Recoverability

Inspired from the (well studied) notion of locality in the context of codes (error correcting codes
[21, 10] and Non-malleable codes [15, 11, 14]), we study the notion of local reconstructability
in the context of secret sharing schemes. A secret sharing scheme is locally reconstructable,
if it facilitates retrieval of a portion of the underlying secret such that one does not need to
read through the entire share of each party in an authorised set but instead can just read a
few locations from shares of parties in the authorised set.

1.1 Our Result
We define the notion of locally reconstructable non-malleable secret sharing schemes
(inspired from [15]), which are non-malleable secret sharing schemes infused with the
feature of local reconstructability. Suppose the secret to be shared is parsed as a sequence
of blocks m = (m1, · · · , mk). Assume m is shared, the shares are (possibly) tampered
and let m̃ = (m̃1, · · · , m̃k) denote the reconstruction of the tampered shares. The non-
malleability guarantee is that, either m̃ is independent of m or there exists an efficiently
samplable set description I ⊂ {1, · · · , k} (independent of m) such that for i ∈ I, m̃i = ⊥
and for i /∈ I, m̃i = mi.
We show how to compile any non-malleable secret sharing scheme secure against some
tampering model Fnm into a locally reconstructable Non-malleable secret sharing scheme.
Our tampering model: The above compiled scheme is non-malleable against the
following tampering family. Parse each share shi as consisting two parts ai and bi, i.e
shi = (ai, bi). bi’s (for i ∈ {1, · · · , n}) can be tampered jointly and arbitrarily but
independent of any aj . All ai’s can be tampered together as per the tampering allowed
by the underlying non-malleable secret sharing i.e by any f ∈ Fnm. In addition, we can
allow the description of this tampering function to depend on the values (b1, · · · , bn). We
give a pictorial representation of our tampering model in Figure 1. We will call this family
as the Lookahead family as tampering of ai’s can depend on bi’s but not vice-versa1.

1 While this may seem like an artificial model of tampering, we indeed show an application of this model
to a non-malleable secure message transmission protocol.
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Figure 1 Lookahead tampering. Solid arrows signify that the tampering function of ai’s (which
is f) can depend on bi’s.

Parameters: Let each block of the message be ρ bits long, where ρ is some polynomial
in the computational security parameter λ. Upon appropriate instantiation, we have an
LRNMSS with share length of each party being k(ρ + log k + 2λ) + r(2λ), where r(α)
is denotes the length of a share of the underlying NMSS upon sharing an α-bit secret.
Asymptotically, for long messages the rate( message length

share length per party ) of the compiled locally
reconstructable NMSS is 1

1+o(1) when (log k ≪ ρ). To locally reconstruct any particular
block, each party of an authorised set needs to read only ρ + log k + r(2λ) + 2λ bits. Note
that this quantity only depends logarithmically on k.
Non-malleable secure message transmission in the pre-processing model: We
show an application of our locally reconstructable non-malleable secret sharing scheme
to a computational non-malleable message transmission protocol, in the pre-processing
model (where a sender and a receiver communicate, first in a message-independent offline
phase and then in a message dependent online phase). We show that a combination of
our locality feature and the pre-processing, helps us improve communication, specially
when the sender wants to transmit multiple messages.

1.2 Technical Overview
We parse the secret to be shared as a sequence of blocks (typically of same length) m =
(m1, · · · , mk). Let NMShare denote the non-malleable secret sharing scheme to be compiled
into a locally reconstructable NMSS. Let Encrypt be any symmetric key authenticated
encryption scheme. Then our compiler proceeds as follows.

Choose an authentication encryption key K

Secret share K using NMShare. Let a1, · · · , an be the shares.
Encrypt each block mi(i ∈ {1, · · · , k}) along with its location stamp, ci ← EncryptK(mi||i)
For all i ∈ {1, · · · , n}, set bi = (c1, c2, · · · , ck)
Output shi = (ai, bi)

The scheme is locally reconstructable as to recover (say) jth block, the authorised set of
parties need to put together only (their respective)ai’s and cj(which is given to them as
part of bi). Then they can check the consistency of these cj ’s, reconstruct K and decrypt cj

using K to obtain mj . If any of the above checks fail, the parties abort. This reconstruction
procedure can be naturally extended to recover all the blocks. The works of [24, 1, 13, 17]
use similar techniques to improve the rate, while the focus of our work is to achieve locality.

Now we provide a very brief idea of why the above scheme is non-malleable. Suppose
even after tampering, if the tampered authenticated encryption key remained the same,
then any tampering of the ciphertexts would be detected by the integrity of authenticated
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encryption. If the tampered authenticated key turns out to be independent of K, then all
the information about K is lost in the shares, and the ciphertexts do not reveal anything
about the messages they encrypt by the indistinguishability of encryption. We provide more
details in the technical sections.

Our tampering model does not allow the tampering of ciphertexts to depend on shares of
the encryption key. Allowing this kind of tampering will result in the tampered ciphertexts
depending indirectly on the encryption key, which would break the encryption security.
Although our scheme can be made secure against individual tampering by using secret
sharing schemes with stronger security guarantees (e.g. leakage resilient schemes) as the
underlying scheme, this trail would worsen the rate and deviate from our focus on building a
rate-1 scheme.

While the above model for tampering our scheme seems artificial, it is indeed natural
when we apply it in the context of secure message transmission. Particularly, we will send
the shares a1, · · · , an of the key K in the offline phase (independent of the message to be
transmitted) and then send the ciphertext ci corresponding to message mi in the online
phase. Here, the online tampering of the ciphertext, indeed will be independent of the offline
transmissions.

1.3 Organization of the paper
We provide preliminaries in Section 2. Then, we present our LRNMSS definition in Section
3.1 . We define the tampering model in Section 3.2. Our construction and security proof of
the locally reconstructable non-malleable secret sharing scheme appears in Section 3.3 and
Section 3.4, respectively. We also explain how to instantiate the construction in Section 3.5.
In Section 4, we provide an application for our LRNMSS scheme to a non-malleable secure
message transmission protocol in the pre-processing model.

2 Preliminaries

2.1 Notations
The set of all natural numbers is denoted by N. x← X denotes sampling from a probability
distribution X. All logarithms are base 2. For any two sets S and S′, S\S′ := {x : x ∈
S, x ̸∈ S′}, is the set of elements in S that are not in S′. Let [n] denote the set {1, 2, . . . , n}.
Let [n] represents the set of all elements. Then, the complement of the set I denoted by
Ī := {x : x ∈ [n], x ̸∈ I} is the set of all the elements that are not in I. For any set T ⊆ [n]
and a function f outputting n-tuples, f(.)T represents the output of f restricted to the set
T . negl(x) represents negligible function in x. For any two distributions A and B, A ≈c B

means that the distributions A and B are computationally indistinguishable.

2.2 Authenticated Encryption
An encryption scheme consists of a tuple of polynomial-time algorithms E = (Gen, Encrypt,
Decrypt) with key space K, message space M and ciphertext space C such that:

The randomized algorithm Gen takes as input the security parameter λ ∈ N and outputs
a uniform key sk ∈ K.
The randomized algorithm Encrypt takes as input a key sk ∈ K and a message m ∈M
and outputs a ciphertext c ∈ C.
The deterministic algorithm Decrypt takes as input a key sk ∈ K and ciphertext c ∈ {0, 1}∗

and outputs a value m ∈M∪ {⊥}, where ⊥ denotes an invalid ciphertext.
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▶ Definition 1 ([22, 4, 5]). An encryption scheme E = (Gen, Encrypt, Decrypt) is called a
symmetric-key authenticated encryption scheme if it satisfies the following properties:
1. Correctness. For all m ∈M,

Pr[sk ← Gen(1λ); Decryptsk(Encryptsk(m)) = m] = 1
(where probability is taken over randomness of Gen and Encrypt)

2. Semantic Security. For any non-uniform PPT adversary A, it holds that |2·Advpriv
E (A)

−1| = negl(λ), where
Advpriv

E = Pr[sk ← Gen(1λ); b← {0, 1} : ALRsk,b(·,·)(1λ) = b].
Here, the left-or-right encryption oracle LRsk,b(·, ·) with b ∈ {0, 1} and inputs m0, m1 ∈M
for |m0| = |m1|, is defined as:

LRsk,b(m0, m1) := Encryptsk(mb).
3. Authenticity. For any non-uniform PPT adversary A, it holds that Advauth

E (A) =
negl(λ) where

Advauth
E (A) = Pr[sk ← Gen(1λ), c← AEncryptsk(·) : c /∈ Q ∧ Decryptsk(c) ̸= ⊥]

where Q is list of ciphertexts received by A through the encryption oracle.

2.3 Secret Sharing Schemes
We will be considering computational secret sharing scheme throughout this paper.

▶ Definition 2. Let M be finite set of secrets, where |M| ≥ 2. A scheme Σ = (Share, Rec)
consists of a randomized sharing function Share :M→ S1 × · · · × Sn which takes as input a
secret M ∈M and outputs n shares (s1, . . . , sn) where each si ∈ Si. The scheme Σ is called
a (t, n)-threshold secret sharing scheme with message space M if the following properties
hold:
1. Correctness. For any set T ⊆ [n] such that |T | ≥ t, there exists a deterministic

reconstruction function Rec : ⊗i∈TSi →M such that for every M ∈M,
Pr[Rec(Share(M)T ) = M ] = 1

(over the randomness of the sharing function)
2. Privacy (Computational). For any set U ⊆ [n] such that |U | < t, and for every pair

of secrets M0, M1 ∈M,
{Share(M0)U} ≈c {Share(M1)U}

2.4 Non-malleable Secret Sharing Schemes
Non-malleable secret sharing schemes were first studied in [18]. We will be considering the
computational variant of their definition.

▶ Definition 3. Let Σ = (Share, Rec) be a (t, n)-secret sharing scheme for message space
M. Let F ⊆ {f : S1 × · · · × Sn → S1 × · · · × Sn} be some family of tampering functions.
The scheme is said to be non-malleable w.r.t F if for each f ∈ F and set T ⊆ [n] such that
|T | = t, there exists a distribution NMSimf,T such that ∀m ∈M,

NMTamperf,T
m ≈c NMIdealNMSimf,T

m

where NMTamperf,T
m and NMIdealNMSimf,T

m are distributions defined as below:

NMTamperf,T
m =


shares← Share(m)
s̃hares← f(shares)
m̃← Rec(s̃haresT )
Output m̃
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NMIdealNMSimf,T

m =


m̃← NMSimf,T

If m̃ = same∗, Output m

Else, Output m̃


3 Locally Reconstructable Non-malleable Secret Sharing

Scheme(LRNMSSS)

In this section, we define and construct non-malleable secret sharing scheme with local
reconstrcutability. Intuitively, this gives a way to secret share blocks of messages such that
in order to recover a single block of message, a small number of bits from each share in a
reconstruction set is needed.

3.1 LRNMSS - Definition
▶ Definition 4. (LRNMSSS) Let (Share, Rec) be a (t, n)-secret sharing scheme for message
space M. The scheme Σ = (Share, Local, Rec) is called a (t, n, p)-locally reconstructable
non-malleable secret sharing scheme for with message space M = M1 × · · · × Mk and
Mi ⊆ {0, 1}ρ ∀i ∈ [k] if:
1. Local Reconstruction. For any M = (m1, . . . , mk) ∈M where mi ∈Mi ∀i ∈ [k], for

any i ∈ [k] and for any set T ⊆ [n] such that |T | ≥ t, there exists a deterministic function
Local such that,

Pr[LocalShare(M)T (i) = mi] = 1
where Local reads at most p bits from each share in T .

2. Non-malleability. Let F be some family of tampering functions. The scheme is said to
be non-malleable w.r.t F if for each f ∈ F and set T ⊆ [n] such that |T | = t, there exists
a distribution Simf,T such that ∀M ∈M,

Tamperf,T
M ≈c IdealSimf,T

M

where Tamperf,T
M and IdealSimf,T

M are distributions defined as below:

Tamperf,T
M =


shares← Share(M)
s̃hares← f(shares)
M̃ ← Rec(s̃haresT )
Output M̃



IdealSimf,T

M =


(I∗, M∗)← Simf,T

If I∗ = [k], set M̃ = M∗

Else, set M̃ |I∗ = ⊥ and M̃ |I∗ = M |I∗

Output M̃


Now we describe the tampering model we consider in this paper.

3.2 Our Model - Lookahead Tampering
The message is partitioned into k blocks of length ρ. Let Share be a sharing function which
takes as input a message M ∈ {0, 1}kρ and outputs n shares, namely share1, . . . , sharen where
each sharei ∈ {0, 1}γ̂ × {0, 1}kρ̂. Each share can be viewed as k + 1 blocks2. The first block

2 To have correspondence with the explanation in the introduction, one can consider the first block of
each share to be ai and the remaining k blocks to be bi.
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is of length γ̂ and next k blocks are of length ρ̂. Let Fnm(⊆
{

f f : {0, 1}nγ̂ → {0, 1}nγ̂
}

)
be some set of tampering functions. We define a lookahead tampering family F specific to
Fnm. The tampering function family consists of functions of the form (f1, f2) where f1 takes
as input the first blocks of the shares under the constraint that f1 ∈ Fnm. The rest of the
blocks in the shares are hardwired in function f1. The function f2 takes as input the last k

blocks of all the shares.
Our tampering family is defined as :

F =
{

f : (f1, f2) ∀(x1, . . . , xnk) ∈ {0, 1}nkρ̂, f1(·, x1, . . . , xnk) ∈ Fnm,

f2 : {0, 1}nkρ̂ → {0, 1}nkρ̂

}

3.3 Our Construction
We use the following building blocks for the LRNMSS compiler.
1. A symmetric key authenticated encryption scheme E = (Gen, Encrypt, Decrypt) as in Def. 1

with key space K ⊆ {0, 1}γ , message space M⊆ {0, 1}ρ+log k, where k is the number of
message blocks defined in Def. 4 and ciphertext space C ⊆ {0, 1}ρ̂.

2. A non-malleable secret sharing scheme Σ′ = (NMSharet
n, NMRect

n), which is non-malleable
w.r.t Fnm as in Def. 3 with message space M⊆ {0, 1}γ and share-space Si ⊆ {0, 1}γ̂ for
all i ∈ [n].

Our construction combines a symmetric key authenticated encryption scheme(Def. 1) and a
non-malleable secret sharing scheme (Def. 3) to obtain a locally reconstructable non-malleable
secret sharing scheme(Def. 4).
Upon receiving a message having k blocks, Share function generates a key using the Gen
function of the authenticated encryption and then encrypts each of the message block along
with its index using the key. The key is shared using a non-malleable secret sharing scheme.
A share of the key along with the ciphertexts constitutes a share of LRNMSSS.
On input an index i, Local function reads first and (i + 1)th block of every share in a
reconstruction set. Using the first blocks, Local recovers key using NMRect

n function of the
non-malleable secret sharing. A consistency check is also made to make sure that all the
(i + 1)th blocks are the same. The (i + 1)th block is decrypted using the recovered key. It
performs a check to make sure that the index decrypted is the same as input index. Local
outputs decrypted message block.
Rec function reads the shares in a reconstruction set and parses the shares as k + 1 blocks.
First block correspond to the shares of the key. Using NMRect

n, it recovers the key . It
performs consistency checks to make sure that all the ciphertext corresponding to an index
are same. Rec outputs the concatenation of the decrypted messages.
The LRNMSS compiler is defined as:

ITC 2021
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Share(M): On input M = (m1, m2, . . . , mk),
1. sk ← Gen(1λ).
2. ej ← Encryptsk(mj , j) ∀j ∈ [k].
3. (sk1, . . . , skn)← NMSharet

n(sk).
4. Output sharei = (ski, e1, . . . , ek).
LocalshareT (j) : For any reconstruction set T = {i1, . . . .it} ⊆ [n] such that |T | ≥ t,
ski and ei

j represents the first and (j + 1)th block of sharei respectively. Local reads
(ski1 , ei1

j ), . . . , (skit
, eit

j ) from shareT on input index j ∈ [k] and evaluates,
1. If ∃ ia, ib s.t. eia

j ̸= eib
j , output ⊥ and terminate.

2. Else, recover sk ← NMRect
n(ski1 , . . . , skit

).
3. Recover (m̃j , j̃)← Decryptsk(ei1

j ).
a. If j̃ ̸= j, output ⊥ and terminate.

4. Output m̃j .

Rec(shareT ) : For any reconstruction set T = {i1, . . . .it} ⊆ [n] such that |T | ≥ t and
input shareT = sharei1 , . . . , shareit

,
1. Parse shareij as (skij , e

ij

1 , . . . , e
ij

k ).
2. sk ← NMRect

n(ski1 , . . . , skit
).

3. For each j ∈ [k],
a. If ∃ ia, ib s.t. eia

j ̸= eib
j , set m̃j = ⊥.

b. Else, (m̃j , j̃)← Decryptsk(ei1
j ).

i. If j̃ ̸= j, set m̃j = ⊥.
4. Output m̃1, . . . , m̃k.

3.4 Security Analysis

▶ Theorem 5. Let E = (Gen, Encrypt, Decrypt) be a symmetric key authenticated encryption
scheme with ciphertext space C ⊆ {0, 1}ρ̂, Σ′ = (NMSharet

n, NMRect
n) be a (t, n) non-malleable

secret sharing scheme which is non-malleable w.r.t Fnm with share space Si ⊆ {0, 1}γ̂ for
all i ∈ [n]. Then, the scheme Σ = (Share, Local, Rec) defined above is a (t, n, γ̂ + ρ̂)-locally
reconstrcutable non-malleable secret sharing scheme which is non-malleable with respect to F ,
the lookahead family specific to Fnm.

Proof. Correctness. The correctness of the scheme follows from the correctness of the
underlying secret sharing scheme and encryption scheme.
Local Reconstruction. On input an index i, Local function reads first block and i + 1th

block of the shares in a reconstrution set T . It recovers key from the first blocks of the shares
using NMRect

n. That would require Local to read γ̂ bits from each share in T .
Local then checks if the i + 1th block of each share in T are same or not.This would require
Local to read ρ̂ bits from each share in T . If yes, the i + 1th ciphertext block is decrypted
using the recovered key. It performs a check to make sure that i + 1th ciphertext block
corresponds to the message block mi. It checks if the decrypted index is the same as input
index.
Thus, Local needs to read p = (γ̂ + ρ̂) bits from each share in T . Total number of bits to be
retrieved to reconstruct a single block mi is t(γ̂ + ρ̂).
Privacy. Let T ⊂ [n] with |T | < t, be an arbitrary set. We wish to show that for any two
messages M0, M1 ∈M, Share(M0)T ≈c Share(M1)T .
We show this through a sequence of hybrids:
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Hybrid0: This corresponds to the shares of M0 = (m0
1, . . . , m0

k) in the set T . Gener-
ate sk ← Gen(1λ). Further, ej ← Encryptsk(m0

j , j) for j ∈ [k] and (sk1, . . . , skn) ←
NMSharet

n(sk). Set sharei = (ski, e1, . . . , ek) for each i ∈ T . Output {sharei}i∈T .
Hybrid1: Generate a new key sk′ ← Gen(1λ) and replace the shares of sk in the set T

with the shares of sk′.
Generate sk ← Gen(1λ) and sk′ ← Gen(1λ). Further, ej ← Encryptsk(m0

j , j) for j ∈ [k]
and (sk′

1, . . . , sk′
n) ← NMSharet

n(sk′). Set sharei = (sk′
i, e1, . . . , ek) for each i ∈ T .

Output {sharei}i∈T .
Hybrid2: Replace the encryptions of message M0 with encryptions of message M1 =
(m1

1, . . . , m1
k).

Generate sk ← Gen(1λ) and sk′ ← Gen(1λ). Further, e′
j ← Encryptsk(m1

j , j) for j ∈ [k]
and (sk′

1, . . . , sk′
n) ← NMSharet

n(sk′). Set sharei = (sk′
i, e′

1, . . . , e′
k) for each i ∈ T .

Output {sharei}i∈T .
Hybrid3: This corresponds to the shares of M1 = (m1

1, . . . , m1
k) in the set T . Gener-

ate sk ← Gen(1λ). Further, e′
j ← Encryptsk(m1

j , j) for j ∈ [k] and (sk1, . . . , skn) ←
NMSharet

n(sk). Set sharei = (ski, e′
1, . . . , e′

k) for each i ∈ T . Output {sharei}i∈T .
Here, Hybrid0 ≡ Share(M0)T and Hybrid3 ≡ Share(M1)T .
By the computational privacy of Σ′ = (NMSharet

n, NMRect
n), we get Hybrid0 ≈c Hybrid1 and by

the semantic security of E = (Gen, Encrypt, Decrypt), it follows Hybrid1 ≈c Hybrid2. Finally,
again by the computational privacy of Σ′ = (NMSharet

n, NMRect
n), it follows Hybrid2 ≈c

Hybrid3.
Thus, Share(M0)T ≡ Hybrid0 ≈c Hybrid1 ≈c Hybrid2 ≈c Hybrid3 ≡ Share(M1)T .
Non-malleability. To show the non-malleability of our scheme, we need to show that
∀ f ∈ F , ∀ T ⊆ [n] such that |T | = t , ∃ Simf,T such that ∀M ∈M

Tamperf,T
M ≈c IdealSimf,T

M

For any f = (f1, f2) ∈ F and any reconstruction set T = {i1, . . . , it}, we begin by describing
the simulator Simf,T .
For each (e1, . . . , ek) ∈ {0, 1}kρ̂, we define a function g : {0, 1}nγ̂ → {0, 1}nγ̂ , hardwired with
n copies of (e1, . . . , ek), as g(x) = f1(x, (ei

1, . . . , ei
k)i∈[n]), ∀x ∈ {0, 1}nγ̂ where (ei

1, . . . , ei
k) =

(e1, . . . , ek), ∀i ∈ [n]. Hence, by definition of F , g ∈ Fnm. Let NMSimg,T be the simulator
for the underlying NMSS (which is non-malleable w.r.t Fnm) and ϕ denote the empty string.
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11:10 Locally Reconstructable Non-Malleable Secret Sharing

Simf,T :
1. sk ← Gen(1λ).
2. ej ← Encryptsk(0ρ+log k) ∀j ∈ [k].
3. Set ei

j = ej ∀j ∈ [k], ∀i ∈ [n] and hardwire them in g.
4. s̃k ← NMSimg,T .
5. If s̃k = same∗,

a. (ẽi
1, . . . , ẽi

k)i∈[n] ← f2((ei
1, . . . , ei

k)i∈[n]).
b. I = {j : ẽia

j ̸= ẽib
j for some ia, ib ∈ T}.

c. I1 = {j : ∃ic ∈ T s.t. ẽic
j ̸= ej and ∀ia, ib ∈ T, ẽia

j = ẽib
j }.

d. Set (I∗, M∗) = (I ∪ I1, ϕ).
6. Else,

a. (ẽi
1, . . . , ẽi

k)i∈[n] ← f2((ei
1, . . . , ei

k)i∈[n]).
b. I = {j : ẽia

j ̸= ẽib
j for some ia, ib ∈ T}.

c. ∀j ∈ I, set m̃j = ⊥.
d. ∀j /∈ I, (m̃j , j̃)← Decrypt

s̃k
(ẽi1

j ).
i. If j̃ ̸= j, set m̃j = ⊥.

e. Set (I∗, M∗) = ([k], m̃1, . . . , m̃k).
7. Output (I∗, M∗).

For any f = (f1, f2) ∈ F , any reconstruction set T = {i1, . . . , it} and any message M =
(m1, . . . , mk) ∈M, we define the tamper distribution, Tamperf,T

M as below.

Tamperf,T
M :

1. sk ← Gen(1λ).
2. ej ← Encryptsk(mj , j) ∀j ∈ [k].
3. Set ei

j = ej ∀j ∈ [k], ∀i ∈ [n].
4. (sk1, . . . , skn)← NMSharet

n(sk).
5. sharei = (ski, ei

1, . . . , ei
k).

6. (s̃hare1, . . . , s̃haren)← f(share1, . . . , sharen).
7. Parse s̃harei as (s̃ki, ẽi

1, . . . , ẽi
k) ∀i ∈ [n].

8. s̃k ← NMRect
n(s̃ki1 , . . . , s̃kit

).
9. For each j ∈ [k]

a. If ∃ ia, ib ∈ T s.t. ẽia
j ̸= ẽib

j , set m̃j = ⊥.
b. Else, (m̃j , j̃)← Decrypt

s̃k
(ẽi1

j ).
i. If j̃ ̸= j, set m̃j = ⊥.

10. Output m̃1, . . . , m̃k.

Now, through a sequence of hybrids, we show that the Tamperf,T
M and IdealSimf,T

M are
computationally indistinguishable.
We define the first hybrid, which only has some notational changes with respect to Tamperf,T

M

and is equivalent to it.
Rewriting Tamperf,T

M as Hybrid1f,T
M : Hybrid1f,T

M is the same as the tampering experiment with
few differences. We expand the function f giving f1 and f2. Then, f2 is placed after the
non-malleable secret reconstruction, because NMRect

n doesn’t depend on the output of f2. A
new variable I is also defined to maintain the indices having inconsistent ciphertexts.
Steps (5)− (10) of Tamperf,T

M is replaced with the following steps (5)− (10) in Hybrid1f,T
M .

5. s̃k1, . . . , s̃kn ← f1(sk1, . . . , skn, (ei
1, . . . , ei

k)i∈[n]).
6. s̃k ← NMRect

n(s̃ki1 , . . . , s̃kit
).
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7. (ẽi
1, . . . , ẽi

k)i∈[n] ← f2((ei
1, . . . , ei

k)i∈[n]).
8. I = {j : ẽia

j ̸= ẽib
j for some ia, ib ∈ T}.

9. a. ∀j ∈ I, set m̃j = ⊥.
b. ∀j /∈ I, (m̃j , j̃)← Decrypt

s̃k
(ẽi1

j ).
i. If j̃ ̸= j, set m̃j = ⊥.

10. Output m̃1, . . . , m̃k.

▷ Claim 6. For any M ∈M, f ∈ F , and any set T ⊆ [n] such that |T | = t,

Tamperf,T
M ≡ Hybrid1f,T

M .

Proof. Clearly, only the notations were modified in Hybrid1f,T
M and the distribution remains

the same. Hence Tamperf,T
M is identical to Hybrid1f,T

M . ◁

In our next hybrid, we use the non-malleability of our underlying NMSS. Hence, we replace
the tamper distribution of the underlying NMSS with its simulator.
Going from Hybrid1f,T

M to Hybrid2f,T
M : Hybrid2f,T

M is the same as Hybrid1f,T
M , except that the

simulator, NMSimg,T , for the underlying NMSS, Σ′ = (NMSharet
n, NMRect

n), is used to
generate the tampered key s̃k.
Steps (4)− (6) of Hybrid1f,T

M is replaced with the following steps (4)− (5) in Hybrid2f,T
M .

4. s̃k ← NMSimg,T .
5. If s̃k = same∗, set s̃k = sk.

▷ Claim 7. If Σ′ = (NMSharet
n, NMRect

n) is a non-malleable secret sharing scheme w.r.t.
Fnm, then for any M ∈M, f ∈ F , and any set T ⊆ [n] such that |T | = t,

Hybrid1f,T
M ≈c Hybrid2f,T

M .

Proof. If the two hybrids are computationally distinguishable, we can build an adversary
A breaking the non-malleable property of the Σ′. Let D be the distinguisher that can
distinguish between Hybrid1f,T

M and Hybrid2f,T
M .

The adversary A is defined as follows:
1. A generates sk ← Gen(1λ).
2. A computes ej ← Encryptsk(mj , j) for j ∈ [k].
3. Set ei

j = ej ∀j ∈ [k], ∀i ∈ [n].
4. A sends sk, g, (ei

1, . . . , ei
k)i∈[n] to the challenger.

5. A after receiving challenge s̃k from the challenger, does the following:
a. (ẽi

1, . . . , ẽi
k)i∈[n] ← f2((ei

1, . . . , ei
k)i∈[n])

b. I = {j : ẽia
j ̸= ẽib

j for some ia, ib ∈ T}
c. ∀j ∈ I, set m̃j = ⊥
d. ∀j /∈ I, (m̃j , j̃)← Decrypt

s̃k
(ẽi1

j )
i. If j̃ ̸= j, set m̃j = ⊥.

e. Sends D(m̃1, . . . , m̃k) to the challenger.
If the challenge corresponds to the output of the tampered experiment NMTamperg,T

sk , then
D will be invoked with distribution corresponding to Hybrid1f,T

M . Otherwise, D will be
invoked with distribution corresponds to the simulated experiment NMIdealNMSimg,T

sk . This
contradicts the non-malleability property of Σ′. ◁
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11:12 Locally Reconstructable Non-Malleable Secret Sharing

In the next hybrid, we only make a few notational changes, leading to an identical distribu-
tion.
Rewriting Hybrid2f,T

M as Hybrid3f,T
M : In Hybrid3f,T

M , s̃k = same∗ and s̃k ̸= same∗ are con-
sidered as two different cases. When s̃k = same∗, a new variable I1 is defined to maintain
the indices having consistent, but tampered ciphertexts. For all the indices other than those
in I ∪ I1, the key and the ciphertexts were not tampered. Decrypt outputs the original
message block, mi, at those indices.
Steps (5)− (10) of Hybrid2f,T

M is replaced with the following steps (5)− (7) in Hybrid3f,T
M .

5. If s̃k = same∗,
a. (ẽi

1, . . . , ẽi
k)i∈[n] ← f2((ei

1, . . . , ei
k)i∈[n]).

b. I = {j : ẽia
j ̸= ẽib

j for some ia, ib ∈ T}.
c. I1 = {j : ∃ic ∈ T s.t. ẽic

j ̸= ej and ∀ia, ib ∈ T, ẽia
j = ẽib

j }.
d. ∀j ∈ I, set m̃j = ⊥.
e. ∀j ∈ I1, (m̃j , j̃)← Decryptsk(ẽi1

j ).
i. If j̃ ̸= j, set m̃j = ⊥.

f. ∀j /∈ I ∪ I1, set m̃j = mj .
6. Else,

a. (ẽi
1, . . . , ẽi

k)i∈[n] ← f2((ei
1, . . . , ei

k)i∈[n]).
b. I = {j : ẽia

j ̸= ẽib
j for some ia, ib ∈ T}.

c. ∀j ∈ I, set m̃j = ⊥.
d. ∀j /∈ I, (m̃j , j̃)← Decrypt

s̃k
(ẽi1

j ).
i. If j̃ ̸= j, set m̃j = ⊥.

7. Output m̃1, . . . , m̃k.

▷ Claim 8. For any M ∈M, f ∈ F , and any set T ⊆ [n] such that |T | = t indices,

Hybrid2f,T
M ≡ Hybrid3f,T

M .

Proof. The only difference between these hybrids are that instead of a single case in
Hybrid2M

f,T , two cases were introduced in Hybrid3f,T
M with both the cases executing the same

steps. Hence, they are identical distributions. ◁

In our next hybrid, we use the authenticity property of the underlying authenticated
encryption scheme in order to completely remove the use of the original secret key sk.
Going from Hybrid3f,T

M to Hybrid4f,T
M : In Hybrid4f,T

M , the decrypted messages corresponding
to the indices in the set I1 are set to ⊥.
Step 5(e) in Hybrid3f,T

M is replaced with the following step in Hybrid4f,T
M .

5. e. ∀j ∈ I1, set m̃j = ⊥.

▷ Claim 9. If E = (Gen, Encrypt, Decrypt) is an authenticated symmetric key encryption
scheme, then for any M ∈M, f ∈ F , and any set T ⊆ [n] such that |T | = t,

Hybrid3f,T
M ≈c Hybrid4f,T

M .

Proof. If the hybrids are computationally distinguishable, we can build an adversary which
can break the authenticity property of the encryption scheme. Note that the two hybrids differ
only in the case where s̃k = same∗ and the set I1 is non-empty and are identical otherwise.
Pick a message M = (m1, . . . , mk) ∈M for which the two hybrids are distinguishable.
Adversary A, which can compute a valid new ciphertext, is defined as:
1. A sends (mj , j)j∈[k] as queries to the challenger.
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2. A on receiving e1, . . . , ek from the challenger, does the following
a. Set ei

j = ej ∀j ∈ [k], ∀i ∈ [n].
b. s̃k ← NMSimg,T .
c. (ẽi

1, . . . , ẽi
k)i∈[n] ← f2((ei

1, . . . , ei
k)i∈[n]).

d. I1 = {j : ∃ic ∈ T s.t. ẽic
j ̸= ej and ∀ia, ib ∈ T, ẽia

j = ẽib
j }.

e. A sends (ẽi1
j )j∈I1 to the challenger.

From our assumption that the two hybrids are distinguishable, we know that there exists
some j ∈ I1 such that the corresponding ciphertext ẽi1

j is valid, i.e., Decryptsk(ẽi1
j ) ̸= ⊥.

Since j ∈ I1, we know that ẽia
j = ẽib

j for all ia, ib ∈ T and ẽi1
j ≠ ej . Moreover, because of

the index j being appended to the message, ẽi1
j ≠ eq, for each q ∈ [k]. This implies that

the adversary A outputs a valid ciphertext, which it did not receive as a challenge, hence
breaking the authenticity of the encryption. ◁

Next, we use the semantic security of the authentication scheme to move to a hybrid where,
the actual message is no longer used in the encryption.
Going from Hybrid4f,T

M to Hybrid5f,T
M : In Hybrid5f,T

M , the ciphertexts corresponding to M are
replaced with the ciphertexts corresponding to 0ρ+log k.
Step 2 in Hybrid4f,T

M is replaced with the following step in Hybrid5f,T
M .

2. ej ← Encryptsk(0ρ+log k) ∀j ∈ [k]

▷ Claim 10. If E = (Gen, Encrypt, Decrypt) is an authenticated encryption scheme, then for
any M ∈M, f ∈ F , and any set T ⊆ [n] such that |T | = t,

Hybrid4f,T
M ≈c Hybrid5f,T

M .

Proof. Assume to the contrary that, there exists M ∈ M and a distinguisher D that can
distinguish between the hybrids Hybrid4f,T

M and Hybrid5f,T
M . The distinguisher D can be used

to construct another distinguisher D1 which violates the semantic security of the underlying
encryption scheme E .
The distinguisher D1 is defined as follows:
1. D1 sets M0 = (mj , j)j∈[k], M1 = 0k(ρ+log k).
2. D1 sends (M0, M1) to the challenger.
3. D1 on receiving (e1, . . . , ek) from the challenger, does the following,

a. Set ei
j = ej ∀j ∈ [k], ∀i ∈ [n].

b. s̃k ← NMSimg,T .
c. If s̃k = same∗,

i. (ẽi
1, . . . , ẽi

k)i∈[n] ← f2((ei
1, . . . , ei

k)i∈[n]).
ii. I = {j : ẽia

j ̸= ẽib
j for some ia, ib ∈ T}.

iii. I1 = {j : ∃ic ∈ T s.t. ẽic
j ̸= ej and ∀ia, ib ∈ T, ẽia

j = ẽib
j }.

iv. ∀j ∈ I, set m̃j = ⊥ .
v. ∀j ∈ I1, set m̃j = ⊥.
vi. ∀j /∈ I ∪ I1, set m̃j = mj .

d. Else,
i. (ẽi

1, . . . , ẽi
k)i∈[n] ← f2((ei

1, . . . , ei
k)i∈[n]).

ii. I = {j : ẽia
j ̸= ẽib

j for some ia, ib ∈ T}.
iii. ∀j ∈ I, set m̃j = ⊥.
iv. ∀j /∈ I, (m̃j , j̃)← Decrypt

s̃k
(ẽi1

j ).
A. If j̃ ̸= j, set m̃j = ⊥.

e. D1 sends D(m̃1, . . . , m̃k) to the challenger.
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If the challenge corresponds to the ciphertext of M0, then D will be invoked with the distri-
bution corresponding to Hybrid4f,T

M . Otherwise, the distribution corresponds to Hybrid5f,T
M .

This contradicts the semantic security of E . ◁

We finally make some notational changes to the above hybrid, to get an identical distribution,
which would be IdealSimf,T

M .
Rewriting Hybrid5f,T

M as Hybrid6f,T
M : The new variable I∗ represents the set of tampered

indices. If shares are entirely tampered, the output will be independent of the original
message. If the tampering function doesn’t change first blocks of shares, then any modification
will output ⊥. I∗ keeps track of these indices. The simulator for the LRNMSSS outputs
tampered indices along with message vector. If the shares are entirely tampered, Hybrid6f,T

M

will output the message vector which is independent of original message. If the first block
is not tampered, the Hybrid6f,T

M outputs ⊥ at indices in I∗ and original messages for other
indices.
Steps (5)− (7) of Hybrid5f,T

M are replaced with the following steps in Hybrid6f,T
M

5. If s̃k = same∗,
a. (ẽi

1, . . . , ẽi
k)i∈[n] ← f2((ei

1, . . . , ei
k)i∈[n]).

b. I = {j : ẽia
j ̸= ẽib

j for some ia, ib ∈ T}.
c. I1 = {j : ∃ic ∈ T s.t. ẽic

j ̸= ej and ∀ia, ib ∈ T, ẽia
j = ẽib

j }.
d. Set (I∗, M∗) = (I ∪ I1, ϕ).

6. Else,
a. (ẽi

1, . . . , ẽi
k)i∈[n] ← f2((ei

1, . . . , ei
k)i∈[n]).

b. I = {j : ẽia
j ̸= ẽib

j for some ia, ib ∈ T}.
c. ∀j ∈ I, set m̃j = ⊥.
d. ∀j /∈ I, (m̃j , j̃)← Decrypt

s̃k
(ẽi1

j ).
i. If j̃ ̸= j, set m̃j = ⊥.

e. Set (I∗, M∗) = ([k], m̃1, . . . , m̃k).
7. If I∗ = [k], set M̃ = M∗.
8. Else, set M̃ |I∗ = ⊥ and M̃ |I∗ = M |I∗ .
9. Output M̃ .

▷ Claim 11. For any M ∈M, f ∈ F , and any set T ⊆ [n] such that |T | = t indices,

Hybrid5f,T
M ≡ Hybrid6f,T

M .

Proof. When I∗ = [k], key can be tampered or not. If the key was tampered, M∗ stores the
messages decrypted using the tampered key at all the indices. Hybrid5f,T

M also outputs the
decrypted messages at all indices when the key is tampered. If the key was not tampered,
M∗ stores empty vector. Hybrid6f,T

M outputs M∗ in that case. If I∗ = [k], then I ∪ I1 = [k].
Hybrid5f,T

M outputs ⊥ at all the indices.
When I∗ ̸= [k], key was not tampered. Both the hybrids output ⊥ at those indices in
I∗ = I ∪ I1. On all the other indices, Hybrid5f,T

M and Hybrid6f,T
M outputs original message

corresponding to their indices. Both the hybrids behave the same for all the cases. Thus,
Hybrid5f,T

M and Hybrid6f,T
M are identical. ◁

From our description of the simulator, Simf,T , clearly Hybrid6f,T
M is the same as IdealSimf,T

M .
By the previous claims, we get
Tamperf,T

M ≡ Hybrid1f,T
M ≈c Hybrid2f,T

M ≡ Hybrid3f,T
M ≈c Hybrid4f,T

M

Hybrid4f,T
M ≈c Hybrid5f,T

M ≡ Hybrid6f,T
M ≡ IdealSimf,T

M ◀
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3.5 Instantiation

Let the secret to be shared in LRNMSS consists of k blocks, with size of each block ρ, where ρ

is some polynomial in the computational security parameter λ. Let (NMSharet
n, NMRect

n) be a
NMSS with length of the each share being r(α) when a α-bit secret is shared. Authenticated
encryption (Gen, Encrypt, Dec) scheme is instantiated with Encrypt-and-authenticate scheme
mentioned in Section 4.5 of [20] . We let the encryption key, randomness and tag to be of
length 2λ, λ and λ respectively. The encryption scheme takes messages of length ρ + log k,
outputs a ciphertext of length ρ + log k + 2λ.

For messages of length kρ, a single share of LRNMSS will be of length k(ρ + log k + 2λ) +
r(2λ).
Thus, the rate of LRNMSS is kρ

k(ρ+log k+2λ)+r(2λ) .
For long messages, rate = 1

1+o(1) assuming log k ≪ ρ.
For local reconstruction, Local is required to read ρ + log k + 2λ + r(2λ) bits from each
share in a reconstruction set.

4 Computational Non-malleable Multi-message Transmission in the
Pre-processing Model

Perfectly secure message transmission (SMT) was introduced in [16], where a sender S wants
to transmit a message m to a receiver R, through n wires between them, ensuring that
perfect secrecy is guaranteed, even in the presence of an eavesdropping adversary looking
at a bounded number of wires, and perfect resiliency is guaranteed, even in the presence of
an adversary controlling a bounded number of wires completely. Post their introduction,
SMTs have been studied in several works [16, 30, 32, 27, 23]. Non-malleable secure message
transmission (NMSMT) was introduced in [18], where the goal is to guarantee non-malleability
in the presence of an adversary who can tamper all n wires according to some tampering
model (i.e., the tampered message m′ is guaranteed to be either same as the original message
m, or is completely independent of it). Further, they build NMSMTs using non-malleable
secret sharing schemes.

In this work, we show an application of our LRNMSS scheme to build a computational
SMT protocol in the pre-processing model, that allows the sender and receiver to commu-
nicate in two phases: a message-independent offline phase and a message-dependent online
phase, to non-malleably send multiple messages to the receiver, while saving on the online
communication. Formally, we allow S and R to first communicate in an offline phase, where S

sends messages x1, · · · , xn to R (which are all independent of the messages to be transmitted
in the online phase). In the online phase, S can securely send message m by sending a single
message c, through one wire, to R. In both the online and offline phase, the adversary can
tamper the messages being sent (with the restriction that each wire for the offline phase
communication can be arbitrarily tampered independent of each other, and the single wire
for the online phase communication, can be arbitrarily tampered independent of the offline
communication). The guarantee is that the tampered messages are either the same or are
independent of the original messages. To transmit k messages, each of size ρ = poly(λ) (for
security parameter λ), our protocol requires an offline communication of 2λ bits per wire
(with n wires in total) and an online communication of ρ + log k + 2λ bits per message. In
comparison, even if we instantiate the NMSMT protocol of [18] with a rate-1 computational
non-malleable secret sharing scheme [7, 17] (as in our construction), to send k messages of
length ρ each, the protocol would need to commmunicate nρ bits (in total) per message in a
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single online phase. Hence, by introducing an offline phase and by leveraging the locality of
our LRNMSS construction, we save a factor of n in the online communication required.

We now define our model for computational non-malleable multi-message transmission
formally.

▶ Definition 12 (Computational Non-malleable Multi-message Transmission). Let S and R

denote the sender and receiver of the message transmission protocol, respectively and let
M denote the message space from which S wants to transmit messages to R. S and R

communicate in two phases: in the offline phase, they communicate through n wires connecting
them, and in the online phase, they communicate through a single wire. In the offline phase,
S sends messages x1, · · · , xn to R (each xi is sent through the i-th wire). In the online
phase, to transmit a message m to R, S sends the message c. Let π(m1, · · · , mk, S, R) denote
an execution of the protocol to transmit k messages m1, · · · , mk (involving a single offline
phase message and k online phase messages). We say that π(·, S, R) is a k-non-malleable
multi-message transmission protocol with respect to a tampering family Fsplit, if it satisfies
the following properties:
1. Correctness: For all messages m1, · · · , mk ∈ M, at the end of an honest execution

of the protocol π(m1, · · · , mk, S, R), the receiver receives the messages m1, · · · , mk, with
probability 1.

2. Computational Privacy: For every adversary A that can see at most n−1 wires in the
offline phase and the single wire of the online phase, and for each pair of multi-messages
(m1, · · · , mk), (m′

1, · · · , m′
k),

πview
A (m1, · · · , mk, S, R) ≈c πview

A (m′
1, · · · , m′

k, S, R),

where πview
A (m1, · · · , mk, S, R) denotes the distribution corresponding to the view of A

in the protocol execution π(m1, · · · , mk, S, R), which includes the messages sent through
n− 1 wires in the offline phase and the messages sent in the online phase.

3. Non-malleability:
Tampering Family Fsplit: We allow each wire of the offline phase to be tampered
independent of each other, and the online phase messages are tampered independent of
all offline messages (but may depend on each other). Hence, each f ∈ Fsplit consists of
functions f1, · · · , fn, g, where each fi acts on wire i of the offline phase and g acts on
the online phase messages.
For each f ∈ Fsplit, there exists a distribution Simf over M, such that, for all sets of
messages (m1, · · · , mk),

Tamperf
m1,··· ,mk

≈c Copy(m1, · · · , mk, Simf ),

where Tamperf
m1,··· ,mk

and Copy(m1, · · · , mk, Simf ) are defined as follows:

Tamperf
m1,··· ,mk

=


(x1, · · · , xn, c1, · · · , ck)← π(m1, · · · , mk, S, R)
(x′

1, · · · , x′
n, c′

1, · · · , c′
k) = f((x1, · · · , xn, c1, · · · , ck))

(m′
1, · · · , m′

k)← R(x′
1, · · · , x′

n, c′
1, · · · , c′

k)



Copy(m1, · · · , mk, Simf ) =


(I, m∗

1, · · · , m∗
k)← Simf

If I = [k], set m′ = m∗
1, · · · , m∗

k

Else, set m′|I = ⊥, and m′|I = (mi)i∈I

Output : m′
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Construction. Consider our LRNMSS construction from 3.3, specifically for n-threshold
setting. S generates sk ← Gen(1λ) and sends the shares (sk1, · · · , skn) ← NMSharen

n(sk)
through the n-wires in the offline phase (ski is sent through wire i, for each i ∈ [n]). For
each message mj (j ∈ [k]) in the online phase, S sends the ciphertext cj = Encryptsk(mj , j)
to R. Now, clearly, R can reconstruct to recover sk from the offline communication and
decrypt each ciphertext from the online phase3

▶ Theorem 13. Let the messages being transmitted be of ρ bits each. If (NMSharen
n, NMRecn

n)
is a n-threshold computational non-malleable secret sharing scheme against independent
tampering (each share tampered independently and arbitrarily) with rate 1 and (Gen, Encrypt,
Decrypt) is a symmetric key authenticated encryption scheme, then the above construction
describes a k-non-malleable multi-message transmission protocol with respect to the tampering
family Fsplit with an offline communication complexity of 2nλ bits (through all wires combined)
and an online communication complexity of (ρ + log k + 2λ) bits, per message sent.

Proof. The correctness and computational privacy of the protocol directly follow from the
correctness and privacy of our LRNMSS scheme.
For non-malleability, note that the tampering model Fsplit, is in fact weaker than the
tampering model F of our LRNMSS. Note that, tampering of the shares sent in the offline
face indeed belong to Fnm (here, the tampering doesn’t depend on the ciphertexts sent in the
online phase) and the ciphertexts are all tampered independent of the offline shares. Hence,
by the non-malleability of our LRNMSS scheme, the non-mallebility of our SMT protocol
follows.

Communication Cost. Let each message being transmitted be of ρ bits, k be the number
of messages transmitted, λ be the security parameter, n be the number of wires in the offline
phase. If we instantiate our protocol with the rate 1 computational NMSS scheme of [17, 7],
we get a total offline communication complexity of 2nλ bits and an online communication
complexity of (ρ + log k + 2λ) bits, per message. ◀
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12:2 Linear Threshold Secret-Sharing with Binary Reconstruction

1 Introduction

Threshold secret sharing, introduced by Blakley [7] and Shamir [23], allows a dealer to
distribute n shares of a secret value to n distinct parties, such that any t parties can
reconstruct the secret from their shares, but any cohort of fewer than t parties can glean
nothing about the secret value. While originally introduced in the context of secure data
storage, secret sharing has since found a myriad of applications in cryptography and beyond
(e.g., see references in [5]).

A particularly useful and well-understood variant of secret-sharing is linear secret-sharing
schemes: schemes where the secret is represented as a field element, the shares are comprised
of collections of field elements, and any t parties can reconstruct the secret by applying
a linear function to the field elements in their shares. A canonical example of a linear
secret-sharing scheme is Shamir’s scheme [23].1

Shamir’s scheme enjoys some desirable properties (in addition to linearity): each share is
comprised of just a single field element (an optimal share size), and additionally the residual
distribution of shares corresponding to any unauthorized set (any ≤ t − 1 shares) is uniform.
A major drawback of Shamir’s scheme is that it is not black-box in the underlying field: it
requires a field of size at least n + 1 (even when sharing a 1-bit secret). In particular, the
reconstruction coefficients may be arbitrary elements in this large field.

Another classical linear secret sharing scheme that is black-box in the underlying field is
that of Benaloh and Leichter [6]. Their scheme is recursively defined with respect to any
monotone formula computing the access structure (in our case, t-out-of-n threshold function):

Initialization. Assign the secret, s, to the output wire of the formula
Recursion. Given a (sub)-formula with output labeled s′:

If the top gate is OR, assign both input wires to that gate s′ and recurse on both
subformulas,
If the top gate is AND, assign left input wire to that gate uniformly random r and the
right input wire s′ − r, and recurse on both subformulas,
If the (sub)formula is an input variable, xi, concatenate s′ to the ith share.

This scheme works for any underlying field, and allows for reconstruction with binary,
or {0, 1}, coefficients. Unfortunately, it does not enjoy the advantages of Shamir’s scheme:
unauthorized shares are clearly not uniform in general, and moreover the size of shares is
comparable to the size of the formula, which can be quite large. For the particular case of
n/2-out-of-n thresholds, or majority, the smallest known formula is of size n5.3 [24] (and
in fact the smallest bound on explicit monotone formulas computing majority gives size
approximately n5000 [3, 22, 19]).

In this work, we ask whether it is possible to get the best of both worlds:

(Q1) Are there linear threshold secret sharing schemes that admit small shares and
reconstruction via binary coefficients?
(Q2) Moreover, are there such schemes where, additionally, unauthorized shares are
jointly uniformly distributed?

With the general question (Q1) in mind, we initiate the study of linear threshold secret-
sharing with binary reconstruction, where the coefficients of all linear reconstruction functions

1 Recall that to share a secret s in Shamir’s scheme, one chooses a random polynomial p of degree t − 1,
such that p(0) = s. The ith share is then simply p(αi) where {α1, . . . , αn} is a set of distinct non-zero
field elements.
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are simply 0 and 1 (See Definition 5). That is, the secret can be reconstructed by a sum of
some subset of the field elements making up (sufficiently many) shares. Specifically, we are
interested in the minimum size of the shares for such schemes, quantified in terms of the total
number of field elements. We observe how known and folklore results yield upper bounds
for this question, then prove lower bounds. We also investigate the minimum share size of
such schemes under the additional requirement from (Q2), that unauthorized sets of shares
are uniformly distributed. We again prove upper and lower bounds. Almost all our upper
bounds are black-box schemes that do not place any restrictions on the field (in particular,
when the secret is from a small field, each field element can be represented by a small number
of bits). Our lower bounds are tight in some cases (depending on the field characteristic and
the threshold). Our technical starting point is the tight connection between monotone span
programs and linear secret sharing, shown by Karchmer and Wigderson [20]. Following in
their footsteps and much subsequent work on linear secret sharing, we begin by defining
restricted models of monotone span programs that are equivalent to the notions of secret
sharing we are interested in, and prove our main results within these models.

While we believe this topic to be natural and interesting in its own right, in Section 1.3
we highlight some surprising applications of such schemes from recent results in lattice-based
cryptography.

1.1 Our Results

We summarize our results below. We focus on threshold 1 < t < n, since for t = 1 and t = n

there is an immediate upper bound of n (one field element per share),2 and this is clearly
optimal (since for linear schemes shares have to consist of field elements).

On threshold secret sharing with binary reconstruction

A simple folklore construction of secret sharing with binary reconstruction involves a simple
bit-decomposition of Shamir’s scheme. Suppose we are working over the field F = GF (pc)
with pc ≥ n + 1. Let L = GF (p), m = ⌈log(p)⌉ and let g ∈ F be such that F = L(g). If
Shamir’s scheme would deal a share s ∈ Fq then the corresponding shares in the modified
scheme is s′ = (s ·gi ·2j)i=c−1,j=m−1

i=0,j=0 . To see that such a scheme admits binary reconstruction,
suppose Shamir’s scheme would require multiplication by reconstruction coefficient α. Then,
we know that, for i ∈ {0, . . . , c − 1}, j ∈ {0, . . . , m − 1} there is βij ∈ {0, 1} such that
α =

∑c−1
i=0

∑m−1
j=0 βij · gi · 2j . So, in the modified scheme, the party can obtain the product

α · s as
∑c−1

i=0
∑m−1

j=0 βij · (gi · 2j · s), which uses only {0, 1} as coefficients.
This yields an upper bound of total share size O(n log |F|) for threshold secret sharing with

binary reconstruction, where F is required to be of size at least n + 1. To obtain a black-box
upper bound, we start instead with Benaloh and Leichter’s scheme [6]. As mentioned above,
for the special case of majority, instantiating with Valiant’s probabilistic construction of a
monotone formula for majority [24] gives a black-box linear threshold scheme with binary
reconstruction, where the total share size is O(n5.3). For the general case, Boppana [10] gave
a probabilistic construction of monotone formulas computing t-out-of-n Threshold functions
that yields total share size O((min{t, n − t})4.3n log n). To our knowledge, no fully-explicit
scheme of comparable size is known.

2 For t = 1 every share is the secret, and for t = n we can use additive secret sharing.
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12:4 Linear Threshold Secret-Sharing with Binary Reconstruction

We observe that it may be possible to improve on these upper-bounds if one starts from
small series-parallel undirected contact networks (See Definition 9) for the threshold function,
which are potentially smaller than corresponding monotone-formula. Explicit undirected
contact networks without the series-parallel restriction are known to beat Boppana’s bound.
Additionally, as is the case with [6], this connection applies for arbitrary access structures,
beyond threshold.

Finally, for the special case that the field has characteristic two, a O(n log n) upper bound
is given by Karchmer and Wigderson [20]. We note that this may also yield non-trivial
results for access structures other than threshold, as it makes use of a general connection to
monotone-span programs.

Moving to lower bounds, we first show that any linear threshold scheme with binary
reconstruction for 1 < t < n requires total share size at least 2n − 1. Next, we prove a lower
bound of n⌈logchar(F) n⌉ total share size for fields of characteristic char(F). This indicates
that the only hope of achieving linear total share complexity must follow the folklore scheme
and utilize large characteristic where char(F) = Ω(n).

Resolving the gap between the general upper and lower bounds remains an open problem.
However, for the specific case of secret sharing with binary reconstruction over finite fields
with characteristic 2, the second lower bound n⌈log2 n⌉ above is tight, matching the [20]
upper bound.

Note that Bogdanov, Guo, and Komargodski [8] gave a lower bound of Ω( n log(n)
log|F| ) for gen-

eral threshold schemes. Our bound (for linear threshold schemes with binary reconstruction)
is higher for any non-prime field, by a factor of log |F|

log char(F) .

On uniformly-distributed unauthorized shares in threshold secret sharing with binary
reconstruction

Note that neither the folklore construction specified above nor that of Benaloh and Leichter
yield schemes with uniformly distributed unauthorized shares. Do such schemes exist?

Yes, in fact, we prove that subfield decomposition applied to Karchmer and Wigderson’s
scheme for characteristic 2 [20] indeed yields uniformly distributed unauthorized shares (with
total share size O(n log n)). This is tight for the case of characteristic 2, as follows from the
above mentioned lower bounds.

More generally, for all fields and access structures, we show connections between share
size of secret sharing schemes with uniform unauthorized shares and the complexity of the
access structure in a new, restricted span program model (see Section 1.2). Furthermore,
we introduce various other connections to known models like contact networks and and we
show that constructions in these new models yield an upper bound on total share size for
threshold secret sharing of min{

(
n
t

)
t,

(
n

t−2
)
t(n − t) log(n − t)}. For the special cases of t = 2

and t = n − 1, we show an upper bound of O(n log(n)).
Using extremal set theory (and, alternately, graph theory) we show a general lower

bound of Ω(n log n) on total share size of threshold schemes with binary reconstruction and
uniform unauthorized shares for any underlying field. Recall that if unauthorized shares
may be arbitrarily distributed, we only know comparable bounds for fields with constant
characteristic. Also, observe that for the special case of t = n − 1, this lower bound is tight,
as follows from the upper bound mentioned above. However, there is a gap between these
bounds for various values of t, and we show that significantly improving either the upper
bound or the lower bound will require different techniques than the ones used here.

Our results are summarized in the following table.
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0,1 Re-
cons

Unauth-
uniform

Lower Upper Remarks (1 < t < n

in all cases)
✓ n [20] n [20] Upper bound requires

|F| ≥ n + 1
✓ max{n logchar(F)(n), 2n − 1}

If char(F) = O(1), this is
Ω(n log(n))

O((min{t, n − t})4.3n log(n)) [17] or
O(n log(|F|))

Second upper bound
requires |F| ≥ n +
1 and bit decomposi-
tion

✓ Ω(n log(n)) O(n log(n)) [20] char(F) = 2
✓ ✓ Ω(n log(n)) O(n log(n)) char(F) = 2
✓ ✓ Ω(n log(n)) min{O(

(
n

t−2

)
t(n − t) log(n − t)),(

n
t

)
t)}

2 < t < n

✓ ✓ Ω(n log(n)) O(n log(n)) t = n − 1

1.2 Technical Overview
As discussed above, we introduce two new models of linear secret sharing schemes with
perfect privacy. In the first, we restrict the linear reconstruction functions to use coefficients
only from a fixed, small set. While both for generality and for ease in some of the proofs, we
define the model in a general way to allow for any set here, we will mostly be interested in
the case where this set is {0, 1}. In the second model, we impose the additional requirement
that the joint distribution of the shares of any unauthorized set of parties be uniform. While
we also prove some general results about these models, our main focus will be computing
threshold functions in these models. For both models, we are concerned with the total
number of shares (field elements) distributed to the parties. To show upper and lower bounds
for this quantity, we use the following equivalence.

1.2.1 Equivalence to New Span Program Models
A monotone span program consists of a matrix, M , over some vector space where the rows
are labeled by input variables, x1, . . . , xn. A monotone span program accepts an input if
and only if the rows corresponding to inputs xi = 1 span the all ones vector (using arbitrary
coefficients).

The first model we define requires that any authorized submatrix be able to span the
fixed target only using a fixed set of span coefficients. However, note that the requirement
that the unauthorized submatrices cannot span the target vector stays the same, that is, it
has to hold for any span, without restrictions to the coefficients. In the second model, we
further add the uniformity requirement that any unauthorized submatrix have full row rank.
We extend the well-known equivalence between linear secret sharing schemes with perfect
privacy and monotone span programs to show that both the coefficients and the uniformity
are preserved between these new models.

1.2.2 Upper Bounds
While our focus will be on lower bounds, we explore some upper bounds for the case of
coefficient set {0, 1}, in order to show that some of our lower bounds are tight. On top of
the folklore version Shamir’s scheme which requires |F| ≥ n + 1 and bit decomposition of
field elements, we explore some other methods that yield upper bounds for the non-uniform
model for all fields. We define two new contact network variations that lead to upper bounds
for our monotone span programs, and hence for our secret sharing models. The first model
requires that the graph underlying the contact network be a series-parallel graph. We show
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12:6 Linear Threshold Secret-Sharing with Binary Reconstruction

that the contact network to span program construction of [20] leads to coefficients {0, 1}. For
the uniform scheme case, the second contact network model we define further requires that
the subgraph be acylic when the input is unauthorized. We show that the same construction
from this model yields uniform restricted span programs. We further define a new non-local
monotone formula model that forbids computing disjunction of small conjunctions. We show
that, for the case of threshold function, converting this type of formula to a contact network
using the known conversion gives us a network with the acyclicity property defined above.
We show upper bounds for this formula model that utilizes an existing explicit formula
construction for the special case of t = 2. We further show some lower bounds by using
extremal combinatorics regarding intersections of fixed size subsets of a set and prove that
such a model has to have distinct subtrees/subformulae computing almost all subsets of [n].
Our lower bounds show that the upper bounds we give are close to optimal.

We finally show that decomposing a program is the optimal method when we want to
restrict the coefficients to a subset that is a subfield, even when we working with the stronger
uniform model. This implies a tight lower bound for the case where the field characteristic
does not grow with the number of parties and the threshold value is constant.

1.2.3 Lower Bounds
Our lower bounds are in two cases. For the general case, we first show a new canonical
span program definition for our new span program models, and then show that the size
preserving conversion into the canonical model also preserves the coefficient set. Then, we
prove that there is a size-preserving conversion that lets us switch the coefficient set with
the matrix entry set, at the cost of taking the dual of the computed function. Using these
results, we show that the subfield decomposition method is optimal, as mentioned above.
For the uniform case, we show a field independent n log2(n) lower bound for computing
any threshold function (2 < t < n) in the uniform span program model. We do this by
showing that if we can find a large family of authorized subsets of parties that have a fixed
core subset and have large pairwise intersections, then the total share size must also be
large or else we can find cancellations in span equations, which leads to a violation of the
uniformity. We start with a primitive version of the argument that gives the lower bound
for some cases and then make it more flexible in the next step. Then, we go on to show
lower bounds for various threshold values. Finally, we show that a single, condensed and
graph-theoretic argument can show the same lower bound for (almost) all threshold values.
Finally, using Ahlswede-Khachatrian Complete Intersection Theorem [2] we also show that
the proof technique we present cannot give a lower bound that is asymptotically better than
the one shown here. More specifically for the case where the coefficient set is {0, 1}, the
lower bound we give matches the upper bound we give above for any threshold value and
a field of characteristic 2 or any field and threshold value t = n − 1. This shows that the
bound we give is optimal for both threshold-independent or field-agnostic lower bounds.

1.3 Secret Sharing with Binary Reconstruction in Lattice-Based
Cryptography

We describe two recent applications of linear threshold secret sharing in lattice-based cryp-
tography that require such restrictions on reconstruction coefficients. The first highlights the
utility of binary reconstruction coefficients, and the second highlights the additional utility
of requiring unauthorized shares to be uniformly distributed. Understanding the share size
of such schemes has immediate ramifications to the efficiency of these constructions. We
anticipate that schemes admitting such simple reconstruction will find applications beyond
those presented here.
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Threshold Cryptosystems

Threshold cryptography refers to settings where a cryptographic secret is shared amongst n

parties in such a manner that if any t of them come together they can accomplish a task,
but security is preserved so long as fewer than t parties are corrupted. Boneh et al. [9]
construct Threshold Fully Homomorphic Encryption (TFHE), a primitive that was effectively
complete for threshold cryptography in general. In TFHE, an encryption key is made public
and n parties are given shares for an associated decryption scheme. Given data encrypted
under the public key, each party can independently perform a computation on the encrypted
data, homomorphically, before using their share of the decryption key to perform a “partial
decryption.” Any t partial decryptions can be combined to recover the result of computation
in the clear and semantic security holds even if an adversary corrupts t − 1 parties. An
important property is compactness: the size of the ciphertext is independent of the number
of decryptors and does not grow with complexity of homomorphic computation. (Without
compactness there are trivial solutions.)

Boneh et al. [9] showed TFHE schemes could be constructed from the Learning with
Errors (LWE) assumption, and since publication numerous further applications have been
found in situations requiring secure computation with limited interaction. The authors, in
fact, gave two constructions of TFHE from LWE, both relying on linear secret sharing. At
a high level, both schemes take advantage of the fact that decryption in LWE-based FHE
schemes is effectively an inner product between the secret key and the ciphertext. As such,
the natural thing to do is secret-share the secret key using a linear secret sharing scheme
and perform the inner products locally with each share of the key and simply perform linear
reconstruction on the resulting partial decryptions. The problem is that taking an inner
product does not immediately decrypt, but instead yields the plaintext plus some small noise.
Thus, if the linear reconstruction function has large coefficients, this noise will not remain
small and the “reconstructed noise” may occlude the reconstructed plaintext.

Boneh et al. propose to get around this by using schemes that only use binary recon-
struction coefficients. The authors conclude by observing that such a scheme exists for any
access structure computable by monotone Boolean formulas (including threshold functions)
– the Benaloh and Leichter [6] scheme we described above. Unfortunately, as also noted
above, this results in a scheme where the share size scales polynomially with the circuit
size. Consequently, this also leads to large keys in the TFHE scheme, and comparatively
high noise growth. Hence, any improvement to linear threshold secret-sharing with binary
reconstruction will immediately result in an improved TFHE scheme.

Boneh et al. additionally proposed a solution that uses Shamir’s scheme as is and instead
modifies the noise distribution of a specific FHE scheme. Unfortunately, the resulting
ciphertext is not immediately compact and requires further compilation with a non-threshold
FHE scheme. As a result, new ideas are needed to yield a scheme with practical parameters.

Fuzzy Identity-Based Encryption and Attribute-Based Encryption

Attribute-Based Encryption (ABE) is a public-key encryption scheme with fine-grained
access control. Unlike in a traditional public-key encryption, in ABE an authority can issue
secret keys bound to predicates, skP , associated with some single public key, pk. Given a
encryption of m (encrypted under pk), a party holding skP can recover m if and only if
P (m) = 1. Fuzzy Identity-Based Encryption (Fuzzy IBE) refers to the specific case that the
family of allowable predicates are restricted to threshold functions.
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12:8 Linear Threshold Secret-Sharing with Binary Reconstruction

Prior to 2013 [11, 16], ABE schemes for NC1 were known from pairing-based assumptions,
but not lattice-based assumptions. As outlined in [1, Appendix B], a tempting paradigm for
achieving such an object involves viewing the predicate P as specifying an access structure for
a linear secret sharing scheme and sampling LWE trapdoors with the shares baked in, which
in turn allow decryption when the receiver is holding authorized shares for the message. We
refer the reader to [1, Appendix B] for details, but this goes awry for similar reasons to the
above. Correctness is not achieved due to noise growth when the reconstruction coefficients
are large. Thus, small reconstruction coefficients are needed. However, in this case the classic
scheme of [6] does not yield a secure ABE via the recipe of [1], because unauthorized sets of
shares may contain correlations that damage the LWE security. If the secret sharing scheme
has the additional property that unauthorized shares are uniformly distributed, the scheme
is secure.

Agrawal et al. [1] invoke this recipe with Shamir’s scheme to construct Fuzzy IBE. However,
to deal with the large reconstruction coefficient in Shamirs scheme, they are required to
modify the noise distribution (in a similar manner to the second TFHE construction of [9]).
The resulting scheme requires a larger base field ((ℓ!)2 times larger, where ℓ is the length of
an “identity”). Consequently, linear secret sharing with binary coefficients and uniformly
distributed unauthorized shares immediately yields practical improvements to Fuzzy IBE
from LWE.

2 Preliminaries

▶ Notation. Unless otherwise specified, any column or row representation of a vector is
according to the standard basis of Fd for the appropriate value of d. Similarly, any matrix
Mk×ℓ is a representation over the standard bases of Fk and Fℓ. For a matrix Mk×ℓ over
a field F, and a subset A ⊂ F, RowspanA(M) denotes the set {vM |v ∈ A1×k}. When F
is clear from the context and A = F, we will drop the subscript. By 1 (0), we denote the
unique row vector whose entries are all ones (zeroes) in the implicit basis of appropriate
dimension, and its dimension will be clear from the context. We will consider elements of
{0, 1}n and subsets of [n] interchangeably in the natural way. Tht

n denotes the t-out-of-n
threshold function, i.e, the function Tht

n : {0, 1}n → {0, 1} where Tht
n(x) = 1 if and only if

|x| ≥ t. For any set A, x ∈ An and i ∈ [n], xi denotes the ith component of x. We show the
degree of a field extension F over L as |F : L|.

The following generalizes the span program model of [20].

▶ Definition 1. Fix a field F and two sets A, B ⊆ F. A restricted span program over
(F, A, B) is a labeled matrix M̂(M, ρ) where Mk×ℓ is a matrix over F with entries only in A

and ρ : rows(M) → {xϵ
i |i ∈ [n], ϵ ∈ {0, 1}}. For any v ∈ {0, 1}n, Mv denotes the submatrix

consisting of rows r ∈ rows(M) such that ρ(r) = xϵ
i with ϵ = vi for some i ∈ [n].

We say that M̂ computes f : {0, 1}n → {0, 1} if for all x ∈ {0, 1}n,{
1 ∈ RowspanB(Mx), if f(x) = 1
1 ̸∈ RowspanF(Mx), if f(x) = 0

We define size(M̂) to be the number of rows in M , rows(M̂, i) to be the rows of i ∈ [n],
that is, {r ∈ rows(M)|ρ(r) = xϵ

i for some ϵ ∈ {0, 1}}, and rowcount(M̂, i) to be |rows(M̂, i)|.
More generally, for any P ⊂ [n], we take rows(M̂, P ) and rowcount(M̂, P ) to denote⋃

i∈P rows(M̂, i) and
∑

i∈P rowcount(M̂, i), respectively.
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For any f : {0, 1}n → {0, 1}, we denote the set of all restricted span programs over
(F, A, B) computing f as SPA,B,F(f) and the smallest program size in this set as
size(SPA,B,F(f)).

We will usually refer to the span program M̂ and its underlying matrix M interchangeably,
denoting both as M .

▶ Definition 2. Let M̂(M, ρ) be a restricted span program computing f : {0, 1}n → {0, 1}
over (F, A, B). If Mx has full row rank as an F-matrix for all x ∈ {0, 1}n such that f(x) = 0,
then we call M̂ a uniform program.

Similar to the above, SPA,B,F − Uniform(f) and size(SPA,B,F − Uniform(f)) denote the
set of uniform restricted span programs computing f and the size of the smallest program in
this set, respectively.

For both models defined above and similar models that will be defined below, the qualifier
monotone will mean that all labels are of the form x1

i . The corresponding sets will be denoted
as MSPA,B,F(f) and MSPA,B,F − Uniform(f).
▶ Remark 3. In the context of span programs, we will refer to 1 as the target vector. For
usual span programs, it is well known that any two definitions with different non-zero target
vectors are equivalent, since a program can be converted to be a program for another target
vector through a simple change of basis. However, we have to be more careful with the
restricted span programs.

It’s easy to see that the set of coefficients, B, is preserved when we change the basis. The
entry set, however, requires a more detailed investigation, and we avoid it since we won’t
need it here. The uniformity is similar to the set of coefficients and is preserved.

2.1 Restricted, Information-Theoretically Secure Linear Secret Sharing
Schemes

In this section, we define the new secret sharing models that motivate the definitions of
the restricted span program models of the previous section. We will also extend the known
equivalence between the linear secret sharing schemes with perfect privacy and monotone
span programs to between their new counterparts.

▶ Definition 4. [5] Fix number of parties n ∈ Z+, and sets R, S, S1, . . . , Sn. A secret
sharing with perfect privacy scheme realizing the access function f : {0, 1}n → {0, 1} over
the domain of secrets S and domains of shares S1, . . . , Sn with random input domain R is
a family of functions (share, (reconstructP )P ⊆[n]) where share : S × R → S1 × · · · × Sn and
reconstructP : (×i∈P

Si) → S satisfy the following for all P ⊆ [n].
Correctness If f(P ) = 1, then Prr∼R[reconstructP (share(s, r)P ) = s] = 1
Perfect Privacy If f(P ) = 0, then, for all a, b ∈ S, v ∈×i∈P

Si,

Pr
r∼R

[share(a, r)P = v] = Pr
r∼R

[share(b, r)P = v]

Here, shareP refers to the joint share vector of subset P , that is, components indexed
i ∈ [n] of shareP with i ∈ P .

In this work, unless otherwise stated, secrets and shares will be from a single field, that
is, S = F and Si = Fci , where ci ∈ N, for all i ∈ [n]. The size of a scheme is the total number
of field elements distributed, that is,

∑n
i=1 ci.

We call a scheme linear when the domain of secret and domain of shares are all a field F
and all the reconstruction functions are linear on the shares.
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▶ Definition 5. Fix a field F and a set B ⊆ F. A restricted secret sharing scheme
S(share, reconstruct) over (B,F) is a linear secret sharing scheme over F with perfect privacy
such that the reconstruction coefficients are only from B. If for a restricted secret sharing
scheme, the joint distribution of the shares of any unauthorized set is uniform, then the
scheme is called a uniform scheme.

To provide intuition, throughout the text, we sometimes use the secret sharing nomencla-
ture for span programs, such as referring to the rows labeled xϵ

i as the rows of party i or
referring to x with f(x) = 0 as an unauthorized input.

We extend the equivalence proof of [4] to show that the set of coefficients and uniformity
are preserved.

▶ Lemma 6. For any field F, sets A, B ⊆ F, function f : {0, 1}n → {0, 1} and M ∈
MSPA,B,F(f), there is a restricted secret sharing scheme S realizing f over (B,F) with
size(S) = size(M). Furthermore, if M is uniform, S is also uniform.

Proof. Let k × ℓ be the size of M . For each s ∈ F, define Ns = {v ∈ Fℓ×1|1v = s} and fix
an arbitrary indexing γs : [|Ns|] → Ns. Let R = [|N1|], also noting that |Ns| = |N1| for all
s ∈ F. We construct the scheme (share, reconstruct, R) over (B,F) as follows.

Define share(s, r) = Mγs(r) where in the resulting vector, an entry will be a share piece
for party j if the corresponding row in M is labeled x1

j .
Consider any P such that f(P ) = 1. Then, there is uP with entries in B such that

uP MP = 1. Hence, uP (MP γs(r)) = uP MP γs(r) = 1γs(r) = s. Therefore, we define
reconstructP (q) = uP q and we have correctness.

Now consider any P such that f(P ) = 0. Pick u ∈ Fℓ×1 such that MP u = 0 and
1u = 1. Such u exists since 1 ̸∈ RowspanF(MP ). For any s1, s2 ∈ F and any c ∈ F, we
will show that ϕ(r) = γ−1

s2
((s2 − s1)u + γs1(r)) is a bijection from {r ∈ R|MP γs1(r) = c}

to {r ∈ R|MP γs2(r) = c}. First of all, it’s well defined: β(x) = ((s2 − s1)u + x) is a
bijection from Ns1 to Ns2 since 1β(x) = s2 − s1 + 1x = s2. A similar argument shows that
γ−1

s1
((s1 − s2)u + γs2(r)) is also well-defined and acts as the inverse of ϕ(r), hence proving

our claim.
Lastly, we prove that uniformity is preserved. Assume that M is uniform, and we claim

the scheme constructed above is uniform. Again consider any P such that f(P ) = 0. Since
we want to show that all share vectors of the appropriate dimension have non-zero and equal
probability, observe that it’s enough to show that for each s ∈ F and c1, c2 ∈ Frowcount(M,P )×1,
there is a bijection between {r ∈ R|MP γs(r) = c1} and {r ∈ R|MP γs(r) = c2} and that
both are non-empty sets. But there is indeed a bijection since {v ∈ Fℓ×1|MP v = c1, 1v = s}
and {v ∈ Fℓ×1|MP v = c2, 1v = s} are both translations of {v ∈ Fℓ×1|MP v = 0, 1v = 0} and
since γs is also a bijection. Finally, observe that when we concatenate the row vector 1 to
MP it still has full row rank since MP has full row rank and 1 ̸∈ Rowspan(MP ). Hence,
{v ∈ Fℓ×1|MP v = c1, 1v = s} is always non-empty. ◀

▶ Lemma 7. For any field F, set B ⊆ F, function f : {0, 1}n → {0, 1} and a restricted secret
sharing scheme S realizing S over (B,F), there is M ∈ MSPF,B,F(f) with size(M) = size(S).
Furthermore, if S is uniform, M is also uniform.

Proof. Let R be the domain of the random input of share and fix any ordering of R and S.
We define the matrix Msize(S)×(|R||F|) as follows. Index the columns of M by (r, s) ∈ R × F,
ordering first by the index of s and then by the index of r. Set the column labeled (r, s) to



M. Ball, A. Çakan, and T. Malkin 12:11

share(s, r). Index the rows by the party indices. That is, if the ith entry of the joint share
vector belongs to party j, label the ith row of M with x1

j . Finally, let the target vector w be
the concatenation of

[
si si . . . si

]
1×|R| for i = 1 to |F| in that order.

Consider any fixed r ∈ R and s ∈ F. Take P ⊆ [n] such that f(P ) = 1. Let v be the joint
share vector of P and let k be its dimension. Then, by the correctness of the secret sharing
scheme, there is c =

[
c1 c2 . . . ck

]
1×|R| ∈ Bk such that, reconstructP (v) =

∑k
i=1 civi = s.

Then, we see that cMP = w. The case when f(P ) = 0 is proven similarly by contradiction.
Lastly, we show that uniformity is preserved. Take any P such that f(P ) = 0. Consider

MP and let ℓ be its number of rows. By the uniformity of the secret sharing scheme, for any
i ∈ [ℓ] and for all s ∈ F, there is r ∈ R such that the column labeled (r, s) is ei, the vector
with 1 in the ith coordinate and 0 in all the others. Hence, rank(MP ) = ℓ. ◀

▶ Remark 8. Observe that in the proof of Lemma 7, instead of requiring that the joint
distribution of the shares of the unauthorized sets be uniform, we could show the same
results with the weaker assumption that the support of those distributions are equal to their
respective spaces or even just that those supports span their respective spaces. In fact, based
on this observation, we can see that any such weaker scheme can be converted to a uniform
scheme by first applying Lemma 7 and then Lemma 6 while preserving the total share size.

3 Upper Bounds

In this paper, our focus will be lower bounds. However, we do present upper bounds for
reference.

3.1 Upper Bounds for MSPF,{0,1},F(T ht
n)

Note that, while the upper bounds here work for any field; for suitable fields, the folklore
construction discussed in the introduction, Shamir’s scheme with bit decomposition, yields
better upper bounds.

▶ Definition 9 ([17]). An undirected contact network (UCN) (G, s, t, µ) is an undirected
graph G = (V, E) with edges labeled by variables or their negations, that is µ : E → {xϵ

i |i ∈
[n], ϵ ∈ {0, 1}}, and two designated vertices, source s ∈ V and terminal t ∈ V . For any
u ∈ {0, 1}n, Eu is defined to be {e ∈ E : µ(e) = xϵ

i with ui = ϵ} and Gu is (V, Eu).
A UCN is said to compute a function f(x1, . . . , xn) : {0, 1}n → {0, 1} if for all x ∈ {0, 1}n,

f(x) = 1 if and only if there is a path from s to t in Gx. The size of a UCN is defined to be
the number of edges its graph has, |E|.

An undirected monotone contact network (UMCN) is a UCN where all edges are labeled
by (non-negated) variables, namely ϵ = 1. A UCN is series-parallel if the underlying network
graph is series-parallel.

Note that the same construction is named symmetric branching programs in [20] and we
will use the terms interchangeably. Also, as in the case of span programs, we will refer to the
contact network and its underlying graph interchangeably.

Now we present a lemma from [20] which allows us to obtain upper bounds for span
programs using known contact network and formula sizes. Additionally, we observe that
when the underlying graph of a contact network is series-parallel, the proof actually gives
a program in MSPF,{0,1},F(f). The proof, with this observation, can be found in the full
version of this paper.
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▶ Lemma 10. [20] Fix a field F. A UCN G = (V, E) computing a function f can be converted
into a span program of the same size computing f . Also, if the network is monotone, so is
the resulting program. Finally, if the network is series-parallel, the resulting program is in
MSPF,{0,1},F(f).

Using the monotone formula upper bounds stated in [10], we get the following upper
bounds.

▶ Theorem 11. [10] size(UMCN(Tht
n)) ≤ O((min{t, n − t})4.3n log(n))

▶ Corollary 12. size(MSPF,{0,1},F(Tht
n)) ≤ O((min{t, n − t})4.3n log(n))

3.2 Upper Bounds for MSPF,{0,1},F − Uniform(T ht
n)

While the monotone UCN model does not give MSPF,{0,1},F − Uniform directly, requiring
that the Gx be acyclic when f(x) = 0 is enough to get this property. Note that, in case of
Tht

n, this is equivalent to each cycle of the contact network having at least t distinct variables.
We use the following restricted models to get MSPF,{0,1},F − Uniform upper bounds.

▶ Definition 13. Let Ĝ(G, s, t, µ) be a UCN computing f : {0, 1}n → {0, 1}. If Gx is acyclic
for all x ∈ {0, 1}n such that f(x) = 0, then we call Ĝ a uniform network.

▶ Lemma 14. In Lemma 10, if the network is uniform, then so is the resulting program.

Proof. Let G be a uniform UCN computing f and let M be the corresponding span program
obtained using Lemma 10. For a contradiction, suppose there is x with f(x) = 0 such that
Mx does not have full row rank. Then, there is a linear dependency

∑
i ciui = 0 where {ui}i

is rows(Mx) and ci are not all 0. Consider only those i such that ci ≠ 0. Consider any ui

and its corresponding edge in the network, (v, w). ui is a difference of two basis vectors by
construction. Therefore, for those basis vectors to be eliminated, there should be distinct
j, k such that the edge of uj touches v, the edge of uk touches w and cj , ck ≠ 0. Continuing
like this, we get a connected subset of vertices of Gx such that each vertex of it has degree
at least 2 in Gx, which implies Gx is cyclic. ◀

▶ Definition 15. Restricted monotone formulae for threshold functions.
A restricted monotone formula for a threshold function is a monotone formula3 F computing
Tht

n for some t, n such that OR gates cannot have as their input a literal; their inputs can
only be outputs of other gates, and if an input of an OR gate is the output of a pure AND
subtree 4, that subtree must be effectively computing

∧
i∈S xi for some S ⊆ [n] with |S| ≥ t−1.

We will interchangeably consider formulae as functions and as trees. We denote the set of
restricted monotone formulae computing Tht

n as RestrictedFormula(t, n).

▶ Lemma 16. For any restricted monotone formula F ∈ RestrictedFormula(t, n) and for
any field F, there is an M̂ ∈ MSPF,{0,1},F − Uniform(Tht

n) with size(M̂) ≤ size(F ).

Proof. The proof is presented in the full version of the paper. ◀

Note that we are not claiming that this is the optimal way of constructing an MSPF,{0,1},F−
Uniform from a contact network or a formula, but these uniform network and restricted
formula definitions are natural and readily give such programs.

3 We require fan-in = 2 and allow only AND, OR gates. Formula size is the number of gates.
4 An AND gate which doesn’t have any OR gates below
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Now, we show some upper bounds for MSPF,{0,1},F − Uniform(Tht
n) that we obtain from

contact networks and restricted formulae.

▶ Theorem 17. size(MSPF,{0,1},F − Uniform(Tht
n)) ≤

(
n
t

)
t

Sketch. Use the sum of minterms form of f . ◀

Some optimal monotone formula upper bounds such as the one in [24] are shown proba-
bilistically. However, [13, Section 1] gives a code-based explicit construction, which is still
optimal for t = Θ(1) and t = n − Θ(1). In fact, below we will invoke his construction only
for t = 2.

The following is an elementary construction using [13], which nevertheless improves upon
the naive upper bound by a factor of n

log(n) in some cases.

▶ Theorem 18. size(RestrictedFormula(t, n)) ≤ O(
(

n
t−2

)
t(n − t) log(n − t)).

Proof. Observe that the threshold function Tht
n for t > 2 can be written in terms of Th2

n−t+2
as follows: Tht

n(x1, x2, . . . , xn) =
∨

S={i1,i2,...,it−2}⊂[n] xi1xi2 . . . xit−2Th2
n−t+2([n]−S). Based

on this, do the following for each S = {i1, i2, . . . , it−2} ⊂ [n] and OR the resulting formulae.
Apply the construction of [13] to get a formula for Th2

n−t+2, and then replace each literal xj

(where j ∈ [n] − S) with xjxi1xi2 . . . xit−2 . Note that this replacement only increases the size
of each formula for Th2

n−t+2 by a factor of t − 1.
Since the formula for Th2

n−t+2 is of size O((n − t) log(n − t)), the formula we get for Tht
n

is of size O(
(

n
t−2

)
t(n − t) log(n − t)). ◀

We show below that the upper bounds obtained above are close to optimal for this model.

▶ Theorem 19. size(RestrictedFormula(t, n)) ≥ Ω(( n
t−1)
n−t )

Proof. Consider any S ⊆ [n] with |S| = t. We will show that there must be S′ ⊆ S with
|S′| = t − 1 such that there is a pure AND subtree of the formula computing

∧
i∈S′ xi.

Assume this is true for now. Since we cannot re-use a computation result in a formula, we
conclude that the minimum size of the formula is t|F∗| where F∗ is the smallest collection of
size t − 1 subsets of [n] that includes a size t − 1 subset of each size t subset of [n]. Observe
that, for each K ⊆ [n], |K| = t − 1, F∗ has to include a subset K ′ ⊆ [n], |K ′| = t − 1
with |K

⋂
K ′| ≥ t − 2. Suppose otherwise. Then, let i be such that i ̸∈ K and consider

K
⋃

{i}. This size t subset won’t have any size t − 1 subsets that’s in F∗ (i.e., K
⋃

{i} won’t
be covered). Based on this, we conclude that |F∗| ≥ γ(J(n, t − 1)) where γ(J(n, t − 1)) is
the domination number of the Johnson graph J(n, t − 1). It’s an elementary result that
γ(G) ≥ |V (G)|

∆(G)+1 for any graph G, where ∆(G) is the maximum degree of G. Therefore, we

get |F∗| ≥ Ω( ( n
t−1)

(n−t)(t) ) since J(n, t − 1) is (t − 1)(n − t + 1) regular.
Now, we need to prove our initial claim. Consider any S ⊆ [n] with |S| = t and its

evaluation by this formula. First of all, it’s easy to see that the formula must contain at
least 1 OR gate. Start at the root vertex of the formula. Since an AND gate means both
subtrees evaluate to 1, we can descend down to an OR gate that must evaluate to 1. After
this point, if we get to an OR gate, we recursively call the descend procedure for the child
that evaluates to 1. We stop when we have reached an AND gate.

By the definition of RestrictedFormula, its easy to see that this descending procedure
will terminate at an AND gate that has output 1 in this case and that’s computing

∧
i∈S′ xi

for some S′ ⊆ [n] with |S′| ≥ t − 1 in general. If |S′| > t − 1, we must have S = S′, which
means (by descending one more level) that a subset of S is computed by a pure AND subtree.
If |S′| = t − 1, this implies S′ ⊂ S, which again proves our claim. ◀
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As discussed above, this model is not the only way we can obtain MSPF,{0,1},F − Uniform
upper bounds through contact networks or formulae. Below we use a more direct analysis to
obtain a better upper bound for a specific case.

▶ Definition 20. For a function f : {0, 1}n → {0, 1}, define its dual f ′ : {0, 1}n → {0, 1} as
f ′(x1, x2, . . . , xn) = f(x1, x2, . . . , xn).

Observe that dual of a monotone formula is again a monotone formula of the same size.
It’s easy to see that dual of Tht

n is Thn−t+1
n .

▶ Theorem 21. size(MSPF,{0,1},F − Uniform(Tht
n)) ≤ O(n log(n)) for t = 2 and t = n − 1.

Proof. For t = 2, the requirement that each cycle contain at least t distinct variables is
trivially satisfied. This shows that any formula upper bound for t = 2 transfers to our
case. So we just use [13] formula directly to get O(n log(n)). We cannot hope for a better
upper bound through formulae since it is known that there is a Ω(n log(n)) lower bound for
monotone formulae for t = 2 [17].

For t = n − 1, take the dual of [13] formula constructed for t = 2. Any parallel part in
this construction corresponds to Aj

0 and Aj
1 of [13, Section 1], and their union contains all

the variables by the definition given there. Hence, any cycle contains all n variables. ◀

3.3 Subfield Decomposition
The method of converting a program over F to a program over the subfield L is useful for us
in the case when char(F) = 2, since then {0, 1} is a subfield.

[20, Theorem 12] uses subfield decomposition method to show upper bounds for
MSPF2,F2,F2(Tht

n) through Shamir’s secret sharing scheme over larger fields of characteristic
2. [12, Lemma 3] uses the same method for integer span programs. Here, we show that this
method also preserves uniformity. We modify the decomposition slightly to be able to show
the uniformity, so we first show in detail the correctness of the method in our context.

▶ Theorem 22. Let L be a subfield of F. Then, size(MSPL,L,L(f)) ≤ size(MSPF,F,F(f)) · |F :
L| and size(MSPL,L,L − Uniform(f)) ≤ size(MSPF,F,F − Uniform(f)) · |F : L|

Proof. Let {a0, a1, . . . , aℓ−1} be an L-basis of F where ℓ = |F : L| and a0 = 1. For any x ∈ F,
let Nx denote the ℓ × ℓ matrix whose kth row is the L-coordinates of akx as a row vector.
We omit the proof here, but it’s easy to show that Nxy = NxNy and Nx+y = Nx + Ny for
all x, y ∈ F using the fact that multiplication is linear. Finally, for any matrix A with entries
in F, let Â denote the matrix created by replacing each entry x of A with Nx.

Let Ms×k ∈ MSPF,F,F − Uniform(Tht
n) with target vector w1×k = [1, 0, . . . , 0]. We claim

M̂ ∈ MSPL,L,L(Tht
n) with target vector w1×kℓ = [1, 0, . . . , 0]. Note that it is fine to use these

target vectors since we can change target vectors at the end to return to the original model.
First, the correctness. Let A ⊆ [n] be such that f(A) = 1. Then, there is v such that

vMA = w1×k. Hence, v̂M̂A = ˆ(w1×k). Considering the L-coordinates of 0 and 1, it is easy
to see that only keeping the first row gives us (v̂)1M̂A = w1×kℓ.

Then, the security. Let A be such that f(A) = 0. Then, w1×k ̸∈ Rowspan(MA) Then,
M̃Av = ([0, . . . , 0, 1]T )(sA+1)×1 has a solution, where L̃ is the matrix obtained by appending
[1, 0, . . . , 0]T at the bottom of L for any matrix L. Then, consider the multiplication (̂M̃A)v̂,
and drop the last (ℓ − 1) rows of (̂M̃A) and all except the first column of v̂. Denote these as

P and u respectively. Observe that we have Pu = ([0, . . . , 0, 1]T )(sAℓ+1)×1 and P = (̃M̂A).
Therefore, wkℓ×1 ̸∈ Rowspan(M̂A).
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Finally, the uniformity. Let A be such that f(A) = 0. Assume for a contradiction that
M̂A does not have full row rank. Then, there is a row vector v ≠ 0 with entries in L such
that vM̂A = [0, . . . , 0]1×kℓ. Now, observe that there is (unique) (vc)1×sA

such that the first
row of v̂c is equal to v. Then, we can see that the first row of v̂cM̂A is all zeroes. We claim
this is a contradiction. Consider vcMA. Since v is not 0, vc is not 0 either. By definition, we
have that MA has full row rank. Hence, vcMA is not all zero. Therefore, the first row of
v̂cM̂A cannot be all zeroes. ◀

▶ Corollary 23. size(MSPF,{0,1},F −Uniform(Tht
n)) ≤ O(n log(n)) for any F with char(F) =

2.

4 Lower Bounds

4.1 MSPF,{0,1},F(Tht
n)

▶ Theorem 24. For any field F of finite characteristic char(F) and any t with 2 ≤ t ≤ n − 1,
we have size(MSPF,{0,1},F(Tht

n)) ≥ n logchar(F)(n)

Since we have the upper bound O(n log2(n)) for any field F with char(F) = 2, that is
obtained through bit decomposition, we conclude that the lower bound is tight for such F.
Furthermore, using monotone contact networks, we get the same upper bound for any field F
(of any characteristic including 0) and for threshold t = Θ(1) or n − Θ(1), we again conclude
that the lower bound is tight for the case of Θ(1) characteristic and such threshold values.

We begin by outlining the proof of the theorem. First, we will show that conversion into a
canonical form that preserves the program size and the coefficient set B. Then, we will prove
that there is again a size preserving conversion between MSPA,B,F(f) and MSPB,A,F(f ′) where
f ′ is the dual of f , inspired by [14]. Lastly, we show size(MSP{0,1},F,F(Tht

n)) ≥ n logchar(F)(n)
using an adaptation of a theorem of [20].

4.1.1 Canonical Forms
We start with canonical forms. The following definition is from [20].

▶ Definition 25. Let M be a span program computing f. We say that M is canonical if the
columns of M are in one-to-one correspondence with U = f−1(0) ⊂ {0, 1}n and for every
u ∈ U , the column corresponding to u in Mu is 0. We denote the class of canonical monotone
span programs as MSPCanonA,B,F.

Observe that this condition automatically implies the security condition: since the column
u of Mu will be 0, Mu cannot span 1. Therefore, we can think of this condition as replacing
the security condition.

With a small modification, construction of [20, Theorem 6] preserves the set of coefficients.
We observe this below and also the fact that in some cases the set of entries is also preserved.
Proof given in the full version.

▶ Lemma 26. For any M ∈ MSPA,B,F(f), there is N ∈ MSPF,B,F − Canonical(f) with
size(M) = size(N). Furthermore, if A is a subfield of F, then N ∈ MSPA,B,F − Canonical(f)

4.1.2 Switching the Sets A and B

The following lemma is inspired by [14, Theorem 3.4]. The complete proof is presented in
the full version.
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▶ Lemma 27. For any M ∈ MSPA,B,F − Canonical(f), there is N ∈ MSPB,A,F −
Canonical(f ′) with size(M) = size(N).

▶ Corollary 28. size(MSPA,B,F − Canonical(f)) = size(MSPB,A,F − Canonical(f ′))

4.1.3 Proof of the Main Theorem
▶ Definition 29. [20] An function g : {0, 1}ℓ → {0, 1} is called a restriction of a function
f : {0, 1}n → {0, 1} if g can be obtained by hardwiring (each to 0 or 1 independently) some
of the inputs of f .

▶ Lemma 30. Let g be a restriction of f : {0, 1}n → {0, 1}. Then, for any M ∈ MSPA,B,F −
Canonical(f), there is N ∈ MSPA,B,F − Canonical(g) with size(N) ≤ size(M).

Proof. See the proof of [20, Theorem 7]. It’s easy to see that the construction there preserves
A and B. ◀

▶ Lemma 31. If A, B,F are all fields such that A ⊆ B ⊆ F, then MSPA,B,F(f) =
MSPA,A,A(f)

Proof. Consider any M ∈ MSPA,B,F(f), we will show M ∈ MSPA,A,A(f). Let di be
rowcount(M, i) for i ∈ [n]. Consider any authorized input v ∈ f−1(1). Then, there is a row
vector r ∈ B

(
∑

i∈v
di) such that rMv = 1. Since 1 and Mv both have their entries in A, then

there is r′ ∈ A
(
∑

i∈v
di) such that r′Mv = 1, since a solution in an extension field implies a

solution in the subfield (see [18], for example).
The security condition is trivial: for an unauthorized input u ∈ f−1(0), since Mu cannot

F-span 1, then it cannot A-span it either.
Now, take any N ∈ MSPA,A,A(f), we will show N ∈ MSPA,B,F(f). Since A ⊂ B,

the coefficient set condition is trivially satisfied. Finally, consider any unauthorized input
u ∈ f−1(0). Assume for a contradiction there is r ∈ F(

∑
i∈u

di) such that rNv = 1. As above,
this would imply existence of r′ ∈ A

(
∑

i∈u
di) such that r′Nv = 1, which is a contradiction. ◀

Finally, the proof of the main theorem. [20, Theorem 11] gives an algebraic variation of
a lower bound proof for Th2

n formula size to show that size(MSPF2,F2,F2(Th2
n)) ≥ n log2(n).

Here, we use the same counting argument in a more general setting along with the lemmas
above to show results for the restricted model.

Proof. Let L be the prime subfield of F. Observe that size(MSPF,{0,1},F(Tht
n)) ≥

size(MSPF,L,F(Tht
n)) since {0, 1} ⊆ L. We will mainly work with L in the proof.

We will prove size(MSPL,F,F(Th2
n)) ≥ n log|L|(n). Assume this is true for now.

By Lemma 31, size(MSPL,F,F(Th2
n)) = size(MSPL,L,L(Th2

n)). Then, by Corol-
lary 28, size(MSPL,L,L(Th2

n)) = size(MSPL,L,L(Thn−1
n )). Again by Lemma 31,

size(MSPL,L,L(Thn−1
n )) = size(MSPL,F,F(Thn−1

n )). Therefore, size(MSPL,F,F(Thn−1
n )) ≥

n log|L|(n). Finally, again by using Corollary 28, we get size(MSPF,L,F(Th2
n)) ≥ n log|L|(n)

and size(MSPF,L,F(Thn−1
n )) ≥ n log|L|(n)

For any t ≤ n − 1, when we hardwire n − t − 1 inputs of Tht
n to 0, we get Tht

t+1. Hence,
by Lemma 30, size(MSPCanonF,L,F(Tht

n)) ≥ (t + 1) logchar(F)(t + 1). Therefore, for any
t with n

2 ≤ t ≤ n − 1, size(MSPCanonF,L,F(Tht
n)) ≥ Ω(n logchar(F)(n)). Lastly, note that

by Lemma 26, size(MSPCanonF,L,F(Tht
n)) = size(MSPF,L,F(Tht

n)). This proves the main
inequality for n

2 ≤ t ≤ n − 1.
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Similar to above, for any t ≥ 2, we can hardwire t−2 inputs of Tht
n to 1 and get Th2

n−t+2.
Therefore, for t with n

2 ≥ t ≥ 2, we get size(MSPF,L,F(Tht
n)) ≥ Ω(n logchar(F)(n)), hence

proving the main inequality for all 2 ≤ t ≤ n − 1.
Now we prove size(MSPL,F,F(Th2

n)) ≥ n log|L|(n). Take any M ∈ MSPL,F,F(Th2
n). Let ℓ

be the number of columns of M and di be the number of rows of i. For any a ∈ L\{0}, define
the set of column vectors Ra := {r ∈ Lt : 1r = a}. Also, for all i ∈ [n], Ri,a := {r ∈ Lt :
M ′

ir = wdi,a} where M ′
i is a matrix with di + 1 rows with first di rows set to M{i} and the

last row set to 1. wdi,a is the column vector of size di + 1 with first di rows equal to 0 and the
last row equal to a. It’s easy to see that

⋃
i∈[n] Ri,a ⊆ Ra. Also, for any i, j ∈ [n] with i ̸= j,

we have Ri,a

⋂
Rj,a = ∅. We prove the disjointness by contradiction as follows. Suppose there

is r ∈ Ri,a

⋂
Rj,a. Let {bm}m∈[di] and {ck}k∈[dj ] be the rows of parties i and j respectively.

Since t = 2, there is {βm}m∈[di], {γk}k∈[dj ] ⊆ L such that
∑di

m=1 βmbm +
∑dj

k=1 γkck = 1.
Multiplying by r on both sides and considering the definitions of Ri, Rj , we get 0 = 1r. This
is a contradiction since 1r = a ̸= 0 by definition.

Using disjointness, we get
∑n

i=1 |Ri,a| ≤ |Ra|. Now, observe that Ra is defined by a single
linear equation in L. Hence, |Ra| = |L|t−1. Similarly, |Ri,a| = |L|t−rankL(M ′

i). Note that here
we used the fact that 1 is not in L-span of M ′

i (since t > 1), which shows the non-homogeneous
equation system defining Ri,a is not inconsistent. Using the fact rankL(M ′

i) ≤ di + 1, we
now have

∑n
i=1 |L|t−1−di ≤ |L|t−1. Applying the arithmetic-geometric mean inequality (or

Jensen’s inequality directly), we get
∑n

i=1 di ≥ n log|L|(n). ◀

▶ Remark 32. To get a lower bound when the field characteristic grows with n, one approach
that looks promising is to consider r with entries in {0, 1} and consider programs with
entries in {0, 1}, instead of in L. In fact, one can use a linear recursion5 or use combinatorial
approaches directly to see that there are

∑⌊ ℓ−1
k ⌋

k=0
(

ℓ
char(F)k+1

)
solutions to 1r = 1 with r

having entries in {0, 1}. However, the other side is problematic: sets Ri,1 can have small
sizes that are independent of di. For example, in the case ℓ = 2n, char(F) = n2 + 1, it’s
possible that |Ri,a| = 1, no matter how large or small di is,6 which renders this approach
useless.

We finish this section with a lower bound that works for all fields, albeit it’s an asymp-
totically insignificant result. Nevertheless, the approach will be useful in the next section for
proving lower bounds for the uniform model.

▶ Theorem 33. size(MSPF,{0,1},F(Tht
n)) ≥ 2n − 1 for all t such that 1 < t < n.

Proof. Consider any M ∈ MSPF,{0,1},F(Tht
n). We will show that there can be at most one

i ∈ [n] such that rowcount(M, i) = 1. For a contradiction, without loss of generality, assume
that rowcount(M, i) = rowcount(M, t + 1) = 1.

Consider the following authorized sets A1, A2, A3 and the unauthorized set U1. A1 =
{1, 2, . . . , t−1, t}, A2 = {1, 2, . . . , t−1, t+1}, A3 = {2, 3, . . . , t−1, t, t+1}, U1 = {2, 3, . . . , t−
1, t}. Observe that, for any i ∈ [n], when A is a minterm, rowcount(M, i) = 1 and i ∈ A, the
coefficient of the single row of i must be nonzero.

5 This leads to a block diagonal matrix with block size char(F) and each block being circulant, which can
be solved with standard techniques.

6 Consider the case when there is a row of full of 1s expect the last column. Since ℓ < char(F), this forces
all of the first ℓ − 1 coordinates of r to be 0. Then, the last entry is forced to be 1 by the last row of the
linear system. Hence, there is only 1 solution.
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Since rows of A1 and A2 can span 1, there is a 0 − 1 combination of rows of these sets
that are equal to each other. Canceling out the row of party 1, we see that rows of parties
{2, . . . , t − 1, t} can F-span the only row of party t + 1.

A3 is also authorized, so it can span 1. But we can get rid of the row of party t + 1 in
this span equation by replacing it with what we obtained above. Thus, U1 can F-span the
target, which violates the security condition. ◀

4.2 Lower Bounds for Uniform Schemes via Extremal Sets
In this section, we prove a Ω(n log(n)) lower bound for computing thresholds functions with
uniform restricted span programs with {0, 1} coefficients. Recall such a restricted span
program, M̂(M, ρ), computing f is said to be uniform, if for all x such that Tht

n(x) = 0 Mx

has full row rank. Roughly, we show that if we can find a large family of authorized subsets
that have a fixed core subset and have large pairwise intersections, then the total share size
must also be large.

We start with a primitive version of the argument and then make it more flexible in the
next step. Then, we go on to show lower bounds for various threshold values.

Finally, we show that a single, condensed version can show the same lower bound for
(almost) all threshold values and then show that this is the optimal lower bound that can be
shown with the technique we give here.

▶ Theorem 34. Suppose t + (2c − 1)(t−1) < n for some 2 < t < n and c ∈ N+. Then, there
cannot be M ∈ MSPF,{0,1},F − Uniform(Tht

n) where rowcount(M, i) = c for all i ∈ [n].

Proof. Suppose otherwise. Let vi,j denote the jth row of party i for i = 1, . . . , n and
j = 1, . . . , c.

Consider the subset of parties A={1, 2, . . . , (t − 1)}. If we add any one more party to
this set, it will be able to 0,1 span the target vector w = 1. Note that no matter which party
we add, we will have that, for each i = 1, 2, . . . , t − 1, the coefficient of vi,j is non-zero for
at least one value of j = 1, . . . , c. (Assume otherwise for some party i. Then its rows are
contributing 0 to the span, so we can just drop party i and get a party set of (t − 1) parties
that can span w, which is a contradiction).

Therefore, there are (2c − 1)(t−1) possible coefficient combinations for the rows of parties
1, 2, . . . , t − 1 in any case where we add another party to them to span 1.

So, consider the parties t, t + 1, . . . , t + (2c − 1)(t−1) (this is where we use the inequality
assumption with c, t, n). If we add party t to the set A={1, 2, . . . , (t − 1)}, they will be able
to span 1. If we instead add party t + 1, again they will be able to span 1 (since that makes
t many parties). It continues like this for all values t, t + 1, . . . , (2c − 1)(t−1)

Now, we have (2c − 1)(t−1) + 1 span equations giving 1, where, in each of them we have
t parties (first t-1 parties and one another party). Furthermore, in each of them, not all
coefficients of the rows of a given party is 0 (due to reasoning above: we can go down to t-1
parties otherwise). By the pigeonhole principle, there must be two equations (without loss of
generality, say they are the ones with party t and party t+1 respectively) where all the row
coefficients of the parties 1, 2, . . . , t − 1 are the same. Remembering that both equations are
equal to 1, we can equate them and cancel everything related to rows of parties 1, 2, . . . , t − 1.

Now, we have an equation of the following form: b1vt,1 + b2vt,2 + · · · + bcvt,c = d1vt+1,1 +
d2vt+1,2 + · · · + dcvt+1,c. That is, some linear combination of rows of party t is equal to some
(not necessarily the same coefficients) linear combination of rows of party t + 1.

Finally, consider the unauthorized set of two parties: party t and party t + 1 (since
t > 2). By above, the submatrix of these two parties does not have full row rank, which is a
contradiction. ◀
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We generalize the proof method shown above by making the number of parties that we try
to cancel a parameter, along with the number of span equations we use. We will call these
parameters x and ℓ respectively, and the proof method x-fixed-ℓ-minterms proof.

Proof. x-fixed-ℓ-minterms proof. Suppose in the proof above, instead of considering (2c −
1)(t−1) + 1 equations, we consider ℓ different equations for some parameter ℓ, corresponding
to ℓ many distinct minimal (that is, of size t) authorized sets. We also require that all the
minimal sets contain the first x parties, for some parameter x. Finally, we require that the
union P of parties involved in pair of minimal sets, satisfy |P − [x]| < t. If there is a way
of choosing a family of minimal sets satisfying these, we will call it a minimal set choosing
strategy Yx,ℓ,t. It’s easy to see that we also need 1 < x < t.

Fix some x, ℓ, c such that there is a strategy Yx,ℓ,t and ℓ > (2c − 1)x. Then, there cannot
be an MSP01-Uniform program where all n of the parties get c rows each. We prove by
contradiction as follows.

Suppose otherwise. Then, we can invoke strategy Yx,ℓ,t to get ℓ different span equations.
Since ℓ > (2c − 1)x; by the pigeonhole principle, there has to be two equations where the first
x parties have exactly the same coefficients for each of their rows. Call the parties involved
in those two equations P1 and P2. By cancellation, we get a linear dependence between rows
of (P1 ∪ P2) − [x]. By the definition of a strategy, we have |(P1 ∪ P2) − [x]| < t. Hence, the
fact that the submatrix of (P1 ∪ P2) − [x] is not of full row rank is a contradiction.

We can remove the requirement that all parties get the same number of rows as follows.
Observe that the pigeonhole principle would still work if we assume that c is the largest
number of rows that a party among the first x parties has. However, we are not required
to invoke this proof with the actual first x parties. Instead, re-label parties so that parties
2, 3, . . . , x are the parties with smallest number of rows. Then, invoke the proof by re-labeling
the first party to be any party except one of those x − 1 parties with smallest number of rows.
Now, if we have the lower bound c∗ under the assumption that all parties get the same number
of rows, then in the general case, we get rowcount(M, i) ≥ c∗ for all i ∈ [n] expect x − 1
many of them. Hence, the total number of rows is lower bounded by (n − x + 1)c∗ + (x − 1).

Finally, it’s easy to see that the impossibility result for ℓ > (2c − 1)x corresponds to the
lower bound c > log2(ℓ)

x . Hence, we get the following theorem. ◀

▶ Theorem 35. If there is a strategy Yx,ℓ,t, then we have
size(MSPF,{0,1},F − Uniform(Tht

n)) > (n − x + 1) log2(ℓ)
x + (x − 1).

We now show some strategies for various cases and the corresponding lower bounds.

▶ Lemma 36. If t + ℓ − 1 ≤ n and x ≥ 2, then there is a strategy Yx,ℓ,t.

Proof. On top of the first x parties, for each minimal set, add parties {x + 1, x + 2, . . . , t −
1, t + i − 1} for i = 1, . . . , ℓ. This gives us ℓ minimal sets, and we never run out of parties
since t + ℓ − 1 ≤ n. Finally, the union of any two minimal sets contains t − 1 − (x + 1) + 1 + 2
parties, which is ≤ t − 1 since x ≥ 2. ◀

▶ Corollary 37. size(MSPF,{0,1},F − Uniform(Tht
n)) ≥ Ω(n log(n − t)) for t ≥ 3.

Proof. Invoke the x-fixed-ℓ-minterms proof using the strategy Yx,ℓ,t for x = 2 and ℓ =
n − t + 1. ◀

▶ Corollary 38. size(MSPF,{0,1},F − Uniform(Tht
n)) ≥ Ω(n log(n)) for the majority function

(t = ⌈ n
2 ⌉).
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▶ Lemma 39. If ℓ ≤
(

n−x
t−x

)
and x ≥ min{n − t + 1, t+1

2 }, then there is a strategy Yx,ℓ,t.

Proof. Simply pick all possible subsets of size (t−x) of the set {x+1, x+2, . . . , n}. ℓ ≤
(

n−x
t−x

)
guarantees that we can produce ℓ minimal sets without running out of possible subsets, and
x ≥ min{n − t + 1, t+1

2 } guarantees the pairwise union size requirement (We don’t prove
it here, but it can be obtained using the elementary inequalities |A ∪ B| ≤ |A| + |B| and
|U − A| ∪ |U − B| ≤ |U − A| + |U − B| where U contains both A, B.) ◀

▶ Corollary 40. size(MSPF,{0,1},F − Uniform(Tht
n)) ≥ Ω((n − x) log((n−x

t−x))
x ) for t ≥ 3 where

x = min{n − t + 1, t+1
2 }

Proof. Use the strategy shown above with ℓ =
(

n−x
t−x

)
and x = min{n − t + 1, t+1

2 }. Again,
this is the best lower bound we can get from this family of strategies. ◀

▶ Corollary 41. For any t = n − Θ(1) and t = Θ(1), except for t = 0, 1, 2, n, we have
size(MSPF,{0,1},F − Uniform(Tht

n)) ≥ Ω(n log(n)).

Proof. Just use the elementary inequality
(

n
k

)
≥ ( n

k )k with Corollary 40. The other side(
n
k

)
≤ ( en

k )k shows that this is the best lower bound we can get for these thresholds using
this family of strategies. ◀

It turns out that we can show all of these bounds, or in fact more, by a single graph
theoretic argument: one that uses the properties of Johnson graphs. This reduction is only
applicable when x = 2, but later we show that the lower bound (which applies to almost all
threshold values) we get from this is the best lower bound we can get for any value of x.

▶ Theorem 42. For any 3 ≤ t ≤ n − 1, we have size(MSPF,{0,1},F − Uniform(Tht
n)) ≥

Ω(n log(n)).

Proof. Let x = 2. Then, let P1, P2 be any pair of subsets of size t provided by a fixed
strategy. It’s easy to show that |(P1 ∪P2)− [x]| ≤ t−1 implies |(P1 − [x]) ∩ (P2 − [x])| ≥ t−3.
Since P1 ̸= P2 and |P1 − [x]| = |P2 − [x]| = t − 2, we get |(P1 ∪ P2) − [x]| = t − 3. This shows
that P1 − [x], P2 − [x] must be adjacent in the Johnson graph J := Jn−2,t−2. This was for
any pair P1, P2, which means that we are looking for the largest clique in J . Its size is the
clique number of the graph and is denoted ω(J).

[15, Section 16.6] states that χ(Jn,k) ≤ n, where χ(G) denotes the chromatic number of
graph G. Since χ(G) ≥ ω(G) for any G, we conclude that ω(J) ≤ n.

In fact, for t ≤ n
2 , the largest clique that gives us this lower bound is the elementary

sliding window family we used in Corollary 37. Furthermore, the same family/clique is one
of the two simple cliques demonstrated in [15, Section 6.1]. Taking into account the other
clique they show, we get ω(J) ≥ max{n − t + 1, t − 1} ≥ n

2 . Hence, we get a n log(n) lower
bound for all 3 ≤ t ≤ n − 1, thus proving Theorem 42. ◀

Lastly, we give the following result. It might indicate that x-fixed-ℓ-minterms method
might not be using the full power of the 0,1 restriction, and results specific for binary matrices
(and their ranks) might lead to better lower bounds for size(MSPF,{0,1},F − Uniform(Tht

n)).

▶ Corollary 43. Let B ⊆ F and 0 ∈ B. Any x-fixed-ℓ-minterms based lower bound we get
for size(MSPF,{0,1},F − Uniform(Tht

n)) also works for size(MSPF,B,F − Uniform(Tht
n)) when

we change the base of the logarithm from 2 to |B|. In particular, for constant |B|, the lower
bound stays the same asymptotically.

Proof. Just change the base 2 to |B| in the pigeonhole principle argument of x-fixed-ℓ-
minterms proof. ◀
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4.3 Limitations
While the fact that various values of x provided Ω(n log(n)) lower bound for various threshold
values was promising that better lower bounds could be obtained by setting x > 2, it turns
out that just using x = 2 is sufficient.

▶ Lemma 44. The best lower bound we can obtain using the x-fixed-ℓ-minterms method is
Ω(n log(n)).

Proof. Here, we give a sketch of the proof and the complete proof is presented in the full
version. By Ahlswede-Khachatrian Complete Intersection Theorem [2]7, which provides
bounds for strategies (or families of subsets in their terminology) for all possible values, we
conclude the following.

If there is an integer r such that 0 ≤ r ≤ x−1 and x(2+ t−2x
r+1 ) < n−x < x(2+ t−2x

r ), then
the largest family a strategy Yx,ℓ,t can provide is Fr = {A ⊂ {x + 1, x + 2, . . . , n} : |A| = (t −
x), |A∩{x+1, x+2, . . . , t−x+1+2r}| ≥ t−2x+1+r}. Then, under the assumption that such r

exists, it’s easy to see that ℓ = |Fr| ≤
∑t−2x+1+2r

j=t−2x+1+r

(
t−2x+1+2r

j

) ∑t−2x+1+2r
j=t−2x+1+r

(
n−t+2x−1−2r

t−x−j

)
Then, log(ℓ) ≤ log((r + 1)

(
t+1+2r

j

)
) + log((r + 1)

(
n−t+2x−1−2r

j

)
). Here, we used the fact that

r ≤ t−2x+1+2r
2 ≤ t−2x+1+2r

2 and x − 1 − r ≤ n−t+2x−1−2r
2 and that the binomial coefficients

are larger towards the middle.
Continuing by using r + 1 ≤ x, t + 1 + 2r ≤ 4n, x − 1 − r ≤ x, n − t + 2x − 1 − 2r ≤

n + 2x ≤ 4n and x ≤ 4n
2 , after multiple steps and by using the inequality

(
n
k

)
≤ ( en

k )k we get
log(ℓ) ≤ 4x log(4en). Hence, log(ℓ)

x ≤ O(log(n)).
Finally, the case where there is no such integer r. First of all, observe that if t ≤ 2x, we get

log(ℓ)
x ≤ log((n−x

t−x))
x ≤ t−x

x log(n) ≤ log(n). Similarly, n ≤ 3x implies log(ℓ)
x ≤ log(2n)

x = n
x ≤ 3.

Therefore, we can assume t > 2x and n > 3x. Under this, the inequality condition
provided for r above becomes x t−2x

n−3x − 1 < r < x t−2x
n−3x

It’s easy to see that if t−2x
n−3x ≤ 1, we can pick an integer r that both satisfies this and

is in the range 0 ≤ r ≤ x − 1. Hence, we only need to focus on the case t − 2x > n − 3x,
or x > n − t equivalently. In that case, log(ℓ)

x ≤ log((n−x
t−x))
x = log((n−x

n−t))
x ≤ n−t

x log( e(n−x)
n−t ) ≤

n−t
x log(en) ≤ O(log(n)) ◀

The fact that we have O(n log(n)) upper bound for fields of characteristic 2 shows that
field-agnostic approaches like the one here cannot yield lower bounds better than Ω(n log(n)).
With this lemma, we also showed that subset-counting approaches like the one presented is not
likely to yield better lower bounds even if they were specifically for fields with characteristic
different than 2.
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Abstract
In this work we challenge the common misconception that information-theoretic (IT) privacy is too
impractical to be used in the real-world: we propose to build simple and reusable IT-encryption
solutions whose only efficiency penalty (compared to computationally-secure schemes) comes from a
large secret key size, which is often a rather minor inconvenience, as storage is cheap. In particular,
our solutions are stateless and locally computable at the optimal rate, meaning that honest parties
do not maintain state and read only (optimally) small portions of their large keys with every use.

Moreover, we also propose a novel architecture for outsourcing the storage of these long keys to
a network of semi-trusted servers, trading the need to store large secrets with the assumption that it
is hard to simultaneously compromise too many publicly accessible ad-hoc servers. Our architecture
supports everlasting privacy and post-application security of the derived one-time keys, resolving two
major limitations of a related model for outsourcing key storage, called bounded storage model.

Both of these results come from nearly optimal constructions of so called doubly-affine extractors:
locally-computable, seeded extractors Ext(X, S) which are linear functions of X (for any fixed seed
S), and protect against bounded affine leakage on X. This holds unconditionally, even if (a) affine
leakage may adaptively depend on the extracted key R = Ext(X, S); and (b) the seed S is only
computationally secure. Neither of these properties are possible with general-leakage extractors.
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1 Introduction

Information-theoretic (IT) security is very attractive as it enables provably secure schemes
that resist advances in computational power, novel cryptanalysis, or the possibility of quantum
computers. This is especially important for privacy applications, where huge amounts of
encrypted communication are being stored and recorded, with the danger that all these
communications could be decrypted years later. Unfortunately, the famous impossibility
result of Shannon [28, 10] states that IT-secure schemes come at a price: the secret should
be at least as large as the message. The traditional interpretation of this negative result is
that one must settle for much weaker computational security, so as to make the problem of
key distribution feasible.

1.1 Reusable IT-Encryption
As we observe, just because the secret key must be large does not make the system automat-
ically impractical. In fact, since local storage is often cheap, a (necessarily) large secret key
X might be a very reasonable price to pay for unconditional security, provided this is the
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only efficiency penalty when compared to computationally-secure schemes. For the purposes
of this work, we will interpret this latter requirement by demanding that our solutions are
simultaneously stateless and locally-computable.

Stateless. Our first requirement demands that parties keep no state beyond storing the
original key X. This is crucial when there are many parties that cannot easily remain
synchronized together. For example, this could be the case when the secret key is shared by
k ≫ 2 parties and each party cannot view all transmissions (possibly intentionally). It also
removes out-of-sync errors as a common potential source of insecurity that cause multiples
parties to accidentally reuse the same portion of the key. In particular, statelessness rules
out trivial solutions where parties slowly utilize consecutive (fresh) portions shared key X

(e.g., as one-time pads) until X “runs out” that is infeasible with many parties.

Locally Computable. Our second requirement of local compatibility ensures that each
concrete application of the scheme (both as sender and receiver) only accesses the long
secret key X in very few locations. We call this number of locations p the probe complexity,
and the ratio α = m

p ∈ [0; 1] the locality of a given solution. Requiring p ≪ |X| rules
out elegant (stateless) solutions using so called ℓ-wise independent hash functions, because
all conventional ℓ-wise independent hash functions read the entire long key X for every
evaluation.

Rate of IT-encryption. We can now define our first motivating question more formally. As
the “price” for being stateless and locally computable, we introduce a “waste” parameter
β > 0, indicating that the total length of all the messages we wish to (statelessly) encrypt
is bounded by (1 − β)|X|. Given this “waste” β > 0 and message length m, our goal is to
minimize the probe complexity p (and maximize locality α).

It is not hard to see (this follows from the more general observation of [30]) that p ≥ m/β

(i.e., α ≤ β), which is indeed independent of the key length |X|. Intuitively, since in any
stateless scheme up to (1 − β)-fraction of X might have been already used to encrypt prior
messages, one needs to sample on average 1/β bits of X to get an “unused” bit. We ask
if this exact bound is tight, and optimal locality α ≈ β can be achieved, perhaps up to an
sub-linear additive loss (that we denote by o(m) while omitting the security parameter λ

from notation)?

▶ Open Problem 1. Design practical, stateless and reusable IT-secure encryption schemes
of m-bit messages with n-bit key and probe complexity p = m/β + o(m), where (1 − β)n is the
upper bound on the total length of the encrypted messages.

As one of our main results, we present the first affirmative solution to this open question,
achieving p = m/β + O(

√
λ(m + λ))) = m/β + o(m), whenever message length m = ω(λ).

Our scheme is quite practical. We present the exact expression with no hidden constants
in Theorems 13 and 15, and demonstrate concrete improvements over prior state-of-the-art
solutions [5, 4] in Section 6.

1.2 Delegating Storage
While solving Open Problem 1 means that long secrets is the only “price” for unconditional
security (when compared to computationally-secure schemes), we would like to do even better,
and delegate the storage of these large keys (to a cloud provider as an example). Since this
clearly overcomes the Shannon’s impossibility result, we require strong trust assumptions
with the storage server.
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To achieve this ambitious goal, our encryption scheme for message M will compute
a ciphertext C = (S, R ⊕ M), where R = Ext(X, S), Ext is a carefully chosen locally
computable extractor [30] and S is a fresh random seed chosen by the sender. At a high level,
we would like the server to store X instead of the users, and only the honest sender/receiver(s)
be able to retrieve the correct one-time pads R = Ext(X, S) from the server.

Basic Architecture. As the first attempt, imagine some virtual server T will choose the
long random string X, for the altruistic purpose of helping users utilize “reusable IT-security”.
In our final architecture, the virtual server will be emulated by a network of semi-trusted
servers under (still strong, but) more plausible trust and communication assumptions. But,
for now, we will think of T as not only stateless and locally computable, but also fully trusted,
incorruptible, and having private channels to any user who contacts it.1

Since T might not even know its user base, we assume that T is truly public, and does
not perform any explicit authentication. Hence, anybody, including the attacker A, can send
a seed S to T, and get back the value R = Ext(X, S). However, we assume that the total
length of one-time pads obtained by the attacker is bounded by (1 − β)|X| that may be
achieved by ensuring that servers stop responding after a certain number of requests.

Sharing the seed. In the setting of Section 1.1, the seed S used to derive R = Ext(X, S)
was sent in the clear, as part of the ciphertext C = (S, R ⊕ M). This was fine since access to
X was given only to the honest uses, and not the attacker A. Now, however, S cannot be
sent in the clear, as then A can directly query T on S, just as the honest recipient would.

Now, we need some mechanism how only the authorized parties learn S. Moreover, they
need to do this repeatedly for every new message M . This looks like a chicken-and-egg
problem, as transmitting fresh seeds while protecting their privacy unconditionally is as hard
as solving the reusable IT-encryption. To resolve this dilemma, we would like for this idea to
work even if the seed S is shared using some computationally-secure mechanism. As natural
examples, parties can (a) run fresh Diffie-Hellman key agreement to generate S; or (b) share
a short symmetric key k once, and have the sender computationally encrypt seed S using k;
or (c) in the public-key setting, computationally encrypt S using the receiver’s public key.
In all of these scenarios, we want to claim that M is remains private forever, as long as the
privacy of S is not broken during the lifetime of server T. We call this notion of privacy
everlasting privacy, following the terminology of [2].

Allowing adversarial seeds. In the setting of Section 1.1, the attacker could only observe
prior extractor outputs Ext(X, Si) on honestly chosen, random seeds Si. In contrast, the
current setting enables the adversary A to learn outputs Ext(X, Si) on adversarial seeds
Si. Moreover, the seed Si could be chosen effectively depending on the “challenge one-
time pad” R = Ext(X, S). With respect to the security game, if A observes “challenge
encryption” P = R ⊕ M and knows the message M ∈ {V0, V1}. Therefore, A can deduce
R ∈ {P ⊕V0, P ⊕V1} without knowing the “challenge seed” S. Hence we want our architecture
to be post-application secure [12]. That is, it should be safe to let the attacker interact with
the servers, even after the honest parties use the challenge encryption P (either large portions
of P or all of P may be leaked to A).

1 These strong assumptions will be substantially weakened, once we replace the virtual server by several
“real” servers. This is similar in spirit to IT secret sharing [27] and MPC literature [8], which assume
private channels to uncorrupted servers. However, we will do even better, as there are no “consistency
requirements” for generating randomness. For example, our servers will be ad hoc, and do not
communicate (or possibly even know!) about each other. See Section 5.2.
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To summarize the preceding discussion, to soundly realize our basic architecture for
key delegation, the chosen extractor Ext(X, S) must be (a) everlastingly private with
computationally-secure seeds; and (b) post-application secure.

▶ Open Problem 2. Design IT-secure, locally computable extractor Ext for the sound
implementation of the basic delegation architecture. In particular, Ext should be post-
application secure and support computationally-secure seeds.

In this work we design the first architecture which supports these guarantees. Moreover,
we show how to distribute the virtual server among several servers, only some of which
can be trusted. Our solution is (a) ad-hoc, meaning servers do not need to know about
or coordinate with each other, and (b) almost fully stateless, meaning the servers need to
maintain minimal-to-no state except to ensure that adversaries view a bounded amount of
leakage.

1.3 Locally Computable Extractors to the Rescue?
Our first hope is that standard locally computable extractors (LCEs), as originally formalized
in the context of Bounded Storage Model (BSM) encryption [30], would be precisely what
we need to solve Open Problems 1 and 2. Such an extractor Ext(X, S) is guaranteed to
work on a uniform, n-bit key X, even despite the attacker obtaining up (1 − β)n leakage
bits L = f(X), for any function f of attacker’s choice. In particular, by modeling previous
extractor outputs Ext(X, Si) as leakage on X, the resulting scheme appears to be suffice for
our purposes of building reusable IT-encryption. Unfortunately, general LCEs do not work
for either of our questions, both quantitatively and qualitatively.

Suboptimal Rate. While the best upper bound [30] on the locality α of LCEs is the same
α ≤ β as we have in our simpler setting, we currently do not have schemes matching this
bound. Thus, this approach will not help us resolve Open Problem 1. The best known scheme
of [5] achieves α0(β) ≈ − log2(1 − h−1

2 (β)), where h2(z) = −z log2(z) − (1 − z) log2(1 − z)
is the binary entropy function, and h−1

2 (β) takes the smaller of two possible inverses. It is
easy to see that α0(β) ≪ β for all β even slightly bounded away from 0 and 1. For example,
α0(0.5) = 0.168 ≪ 0.5 and α0(0.1) = 0.019 ≪ 0.1. In fact, [5] proved the optimality of
their particular proof technique based on the so called “subkey prediction lemma” [1, 5, 4]
(although it is conceivable a better non-asymptotic LCE bound will be found with a different
technique; e.g., those from [24, 30]).

Computationally Secure Seeds. Just like in our setting from Section 1.2, supporting
computationally secure seeds would be a huge win for the BSM setting. Surprisingly, several
works [19, 15] showed that the BSM (and LCE) is too general to handle computationally-
secure seeds. First, everlasting privacy in the BSM may not be reduced in a black-box manner
to any computational assumption [19]. Second, there are explicit examples of computationally
secure mechanisms to generate S which would break BSM security for any LCE. For example,
if the attacker knows encryption Z of S under some fully homomorphic encryption (FHE),
this still leaves S computationally secure. Yet, the attacker can efficiently evaluate Ext(X, ·)
inside the ciphertext as its compact leakage function L = f(X, Z), learning FHE of the
one-time pad R = Ext(X, S). When the attacker later becomes unbounded, it can break the
FHE, and learn R.

Fortunately, this attack on BSM does not translate to our setting in the delegated storage
setting. The servers will refuse to homomorphically evaluate the given ciphertext, as this
does not correspond to evaluating Ext(X, Si) on some seed Si. However, it shows that we
need a more refined approach to provably achieve everlasting privacy.
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Post-Application Security. In the traditional BSM setting, the leakage L = f(X) may
only depend on the random source X. For post-application security, however, we allow the
leakage function to also depend on R; that is, L = f(X, R). Unfortunately, general LCEs
cannot be post-application secure, at least for the interesting setting when |S| < |R|.2 To
see this, consider a boolean leakage function f(X, R) which is 1 if and only there exists some
seed S which yields R = Ext(X, S). When |S| < |R|, such f(X, R) will always be true with
“real” R, but almost never true with random R (see our full version for more details).

Once again, this attack does not translate to our setting, as such leakage does not
correspond to evaluating Ext(X, Si) on some seed Si. However, it shows that we need a
more refined approach to provably achieve post-application-security.

1.4 Doubly-Affine Extractors
To overcome the limitations of existing LCEs, we notice that, for both of our application
scenarios, the leakage of X consists of values Ext(X, Si) for various seeds Si. Hence, we can
try to design efficient extractors which are only secure against leakage of their own outputs.
Moving forward, we will denote LCEs with this property as simply extractors. With this
approach, we will resolve both Open Problems 1 and 2.

Linearity. We observe that most existing LCEs [2, 15, 22, 30] are linear (affine) functions of
X (for any fixed S). For our settings, an affine extractor only needs to be secure against what
is called affine leakage functions resulting from previous extractor outputs. Such extractors
are called affine extractors [16], and certainly appear easier than “general leakage” extractors.
However, until now affine extractors have only been considered in the seedless setting. As a
result, these seedless affine extractors are neither locally computable, nor linear.

In this work, we initiate the study of seeded affine extractors which are both locally
computable and linear functions of the source X. For conciseness, we will call such (seeded,
locally computable) extractors doubly-affine, where “affine” now refers to both the leakage
and the extractor itself.

Our Model and its Advantages. The formal security game for doubly-affine extractors is
given in Figure 1. The attack is split in two stage. In this first state, the attacker A1 is given
challenge output R (either Ext(X, S) or uniform), and can make up to ℓ = (1 − β)n adaptive
affine leakage queries. Since these queries are adversarial and our extractor is linear, they
can model extractor outputs Ext(X, S∗) on adversarial seeds S∗. Thus, post-application
security is built into the definition.

In the second stage, the attacker A2 is given the seed S, but cannot make any more
leakage queries. This models everlasting privacy, although not necessarily with respect to
computationally secure seeds (yet). To model the latter concern, we augment the basic
definition in Figure 1 to a seemingly more advanced setting in Figure 2, where some abstract
seed-generating procedure Σ(S′) outputs the extractor seed S and the side-information Z.
This side information Z is given to A1 to help making its affine queries, and the entire seed
S′ used by the computationally secure seed generator is given to the second-stage attacker
A2. We require that the game in Figure 2 is secure against any computationally bounded
A1 and unbounded A2, as long as S remains pseudorandom to A1 given Z.

2 Setting |S| ≥ |R| is uninteresting for BSM, as parties can then use S instead of R.
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For example, to model Diffie-Hellman key exchange, we set S′ = (a, b), Z = (ga, gb) and
S = Prg(gab), for some pseudorandom generator Prg. The fact that we give the values a

and b to A2 now accurately models the fact that an unbounded attacker can break discrete
log of ga and gb eventually, and thus learn more information than simply recovering the
extractor seed S = Prg(gab).

Fortunately, unlike the setting of general LCEs, we show that any doubly-affine extractor
satisfying a the simpler definition in Figure 1 will also automatically satisfy the definition
in Figure 2. Thus, our basic definition in Figure 1 also covers everlasting security against
computationally secure seeds.

Parameters and Efficiency. Last, but not the least, restricting to linear leakage allows
to solve our nearly optimal probe complexity p ≈ m/β, settling Open Problem 1 in the
affirmative. As we show in Section 6, our construction is also concretely efficient, making it
attractive for real-world applications where IT-security matters.

As an additional advantage, it gracefully extends to a more refined model of local
computability, where in addition to the probe complexity p, we also wish to minimize the
number of non-contiguous memory c blocks one needs to read the required p bits. We call this
parameter c cache complexity, as it roughly corresponds to the number of cache misses to read
c non-contiguous regions of memory. Unlike probe complexity, cache complexity does not
have to grow with the number of extracted bits m, and can be as small as c = O(λ), where λ

is the security parameter. Indeed, our main construction generally gives p = m
β · (1+

√
O(λ)

c )).
To summarize, doubly-affine extractors provide all the properties we need to simultaneously

resolve Open Problems 1 and 2.

1.5 Our Constructions and Techniques
Our doubly-affine extractor follow the sample-then-extract approach introduced by
Vadhan [30] for LCE. The first sampling step selects a subset I of p bits of X, denoted by
Y = X|I , and the second step applies a non-local extractor to Y to produce the final output
R. In our work, we improve the parameters for both steps, when the leakage is restricted to
be affine.

Sampler Improvement. The two samplers we analyze were already considered by prior
work on LCEs [23, 24, 30, 5], but our work presents new, improved analyses for the case of
affine leakage. As our key insight, we prove (see Theorem 7) that the optimal affine leakage
strategy against any sampler is to select some physical (1 − β)n bits of X. In other words,
the best adversarial strategy is to simply try and guess as many locations of the sampled
bits as possible.

This result is surprising for two reasons. First, the same equivalence is false for general-
leakage samplers: [5] shows that even simple (but highly non-linear) leakage functions may
greatly outperform physical-bit leakage. Second, the equivalence is false for the overall
setting of doubly-affine extractors. Ignoring locality, for example, parity of all n bits of X is
trivially secure against bounded leakage of up to (n − 1) bits, but is trivially insecure against
a single-bit of affine leakage.

Once we reduce to physical-bit leakage, a simple Chernoff bound easily implies that the
number of “non-leaked” physical bits in a “random-enough” p-bit sample of X is highly
concentrated around its expected value βp – a conclusion which would seem highly non-
obvious without our equivalence.
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Extractor Improvement. Once we know that the sample Y has entropy of approximately
βp in the adversary’s view, we can apply any non-local linear Ext′ to extract m ≈ βp bits
from Y . For concrete security, especially for small values of m, we still want to optimize the
entropy loss (βp − m). Using extractors for general leakage, this entropy loss is known to be
at least 2λ [26], and this bound is easily achieved by many linear extractors (e.g., [20]).

Once again, we observe that our non-local extractor only has to withstand affine leakage.
In particular, we show that the optimal entropy loss for (non-local) doubly-affine extractors
is only λ, saving a factor of two over general-leakage extractors. We present a general con-
struction of such non-local, doubly-affine extractors from rank-preserving matrices (see [11]),
that may be instantiated from a variety of concrete matrices such as Toeplitz matrices.

Seed Length. In our analysis, we did not optimize the length s of S. Existentially, we
show that all our improvements are possible (unconditionally) with s = O(λ), while our
concrete constructions use larger seed length s = O(m + λ log(n)). Such a seed-length
is quite acceptable for most applications, as this only increases the ciphertext length (or
communication with the server T) by a constant factor. Moreover, to match computationally-
secure encryption schemes with optimal ciphertext length m + O(λ), we use the fact that
doubly-affine extractors are everlastingly private with computationally-secure seeds. Hence,
we can use any stream cipher (e.g., SALSA20 or CHACHA) to expand a λ-bit seed S′ into
the required longer seed S = Prg(S′), while maintaining IT-security.

Our reusable IT-encryption in Section 1.1 has ciphertext (S′, Ext(X, Prg(S′)) ⊕ M) of
optimal length (m + λ), matching that of computationally secure schemes! Similarly, the
communication complexity when interacting with our virtual server T from Section 1.2
can be made optimal: λ “upstream” bits S′ from the users, and m “downstream” bits
R = Ext(X, Prg(S′)) from the server. We stress that we need an extremely weak kind
of computational-security security for the Prg: just ability to fool a concrete, and easily
computable statistical test (which we know a random expanding function satisfies w.h.p.).
Thus, it seems extremely plausible that SALSA20 or CHACHA satisfy this combinatorial
property unconditionally. Nevertheless, it is a good theoretical question to improve the seed
length s to the optimal value O(λ).

1.6 Applications
Replicated Setting. We generalize the setting of Section 1.1, where the entire long secret key
X is replicated among several trusted parties. We already saw that doubly-affine extractors
immediately give locally computable, CPA-secure encryption C = (S, Ext(X, S) ⊕ M) with
optimal locality in this setting. In fact, the same scheme is trivially CCA1-secure, since
doubly-affine extractors support leakage of extractor outputs on adversarial seeds S. To get
CCA2 security, and even achieve the strongest notion of authenticated encryption (AE) [6],
the parties can additionally share a short key for computationally-secure MAC, and use this
fixed key to authenticate the ciphertext C = (S, P ) above. In this variant, the authenticity
is computational, but the privacy is everlasting, as long as the MAC is not broken while the
post-challenge decryption oracle is used. Moreover, all these schemes are still everlastingly
private with computationally-secure seeds S, allowing to achieve optimal ciphertext length
(m + O(λ)).

Distributed Setting. We generalize the setting of Section 1.2 where parties delegate the
storage of X to several servers. We already saw that doubly-affine extractors are enough in
the single server case, as they provide the required post-application security and support
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computationally secure seeds. For example, the server T can help the parties to achieve
all the efficiency benefits of (symmetric-key) authenticated encryption with associated data
(AEAD) plus everlasting privacy. All the parties need to do is use a computationally-secure
AEAD (using a short shared key) to encrypt the seed S,3 instead of the message M . Similar
techniques also work in the public-key setting, where S can be appropriately encrypted using
the receiver’s public-key.

While relying on a single trusted server T may be challenging due to privacy of the channel,
we can consider distributed setting with multiple servers t ≥ 2 where we use the standard
assumption in the information-theoretic literature that channels between the user and at
least g servers are secure and the remaining t − g channels may be compromised. This is an
assumption that has been used in many prior seminal works including information-theoretic
secret sharing [27], multi-party computation [8] and secure message transmission [14].

Specifically, we extend our architecture to the setting of t ≥ 2 servers, who jointly emulate
the virtual server T. In more detail, each of the t servers will independently generate and
store a subset of the random source X. For the distributed setting, we only assume that
g ≤ t servers are honest with a private channel to users. Moreover, the servers do not need
to coordinate, or even know each other’s existence: each simply picks a random string, and
provides access to its random string to users.

We also consider two cases where the (t−g) corrupted servers are either honest-but-curious
or malicious. Our honest-but-curious solution works for any g ≥ 1, and achieves multiplicative
overhead roughly t/g for the user, as compared to the single-server case. In particular, each
server accesses and returns a sub-linear number of bits p′ ≈ m/(βg). For the malicious
setting, we necessarily assume that g > 2t/3, and use simple error-correcting techniques to
achieve overhead roughly t/(3g − 2t), with each server returning p′ ≈ m/(β(3g − 2t)) bits.

2 Definitions

In this section, we formally define doubly-affine extractors that output affine functions of
the random source while tolerating affine leakage. We start by presenting the affine oracle
that provides linear access to a truly random string. Afterwards, we define doubly-affine
extractors in both the information theoretic and computationally secure settings.

2.1 Affine Leakage Model
In the affine leakage model, there is a uniformly random string X ∈ {0, 1}n. Throughout
our work, X is referred to as the source or random source. The string X is accessed through
an affine oracle that receives a n-bit string Q ∈ {0, 1}n and returns the dot product of
LINX(Q) = Q · X. In other words, one query to the affine oracle enables retrieving the XOR
of a subset of bits of X.

For convenience, multiple queries to the affine oracle may be represented using a single
matrix. In particular, q queries may be represented using a q × n bit-matrix Q ∈ {0, 1}q×n

such that LINX(Q) = QX where the affine oracle returns the multiplication of Q and X

resulting q bits.

▶ Definition 1. For any X ∈ {0, 1}n, the affine oracle LINX receives a q × n binary matrix
Q ∈ {0, 1}q×n for any q ≥ 1. Then, LINX(Q) = QX.

3 Technically, S should be encrypted with associated data P = R⊕M .
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2.2 Information-Theoretic Doubly-Affine Extractors
The main focus of our work is to construct efficient extractors in the affine leakage model.
The goal of a doubly-affine extractor is to utilize a short random seed along with access to
the oracle LINX to derive a random string that may be used at higher level applications.
For security, the extractor’s output should remain random even if an adversary uses the
oracle LINX to learn large (but not all) of the underlying random string X.

In more detail, extractors are defined as algorithms that receive a random s-bit seed and
output a m-bit random string where m > s (that is, the output random string is larger than
the input seed). Extractors are able to perform queries to the oracle LINX to access the
uniformly random string X. The output of extractors should remain random to an adversary
that has utilized the oracle LINX to learn at most ℓ bits about the random string X.

In this paper, we restrict our attention to extractors that only perform non-adaptive
queries to LINX . In other words, the extractor must pick a single query matrix Q, send
it to the LINX and use the response to generate the output. To our knowledge, all prior
works also exclusively studied extractors that non-adaptively accessed the underlying random
string X. Non-adaptivity may be beneficial in settings where sending queries to LINX may
be expensive.

For convenience, we will make the assumption that the output of doubly-affine extractors
will simply be the response from the single query to the oracle LINX . We show that this
limitation is not important as our constructions will be essentially optimal. With this
restriction, the output of doubly-affine extractors will also be affine. This property will be
integral in settings when the adversary’s leakage consists of previous extractor outputs.

We define extractors as Ext : {0, 1}n × {0, 1}s → {0, 1}m where the first argument is the
n-bit random string, the second argument is s-bit random seed and the output are the m
extracted bits. As we consider non-adaptive extractors, we note that all extractors Ext are
uniquely defined by a query algorithm PickExt : {0, 1}s → {0, 1}m×n that outputs a m × n
binary matrix that will be query to the oracle LINX . Since Ext returns the output from
the oracle, we note that Ext(X, S) = LINX(Pick(S)) for any n-bit random string X and
s-bit random seed. We will use Ext and PickExt interchangeably in our paper.

The security of doubly-affine extractors are presented in Figure 1. The adversary A is
given a challenge of either a m-bit unifomly random string or the extractor output. Using
the oracle LINX , A may perform ℓ adaptive queries to learn at most ℓ linear functions of X

with knowledge of the challenge. Afterwards, A is given the input seed and must guess the
origin of the challenge. We say A has ε advantage if A has 1/2 + ε probability of guessing
correctly. For ease of presentation, we split A into stateful adversaries A1 and A2 that are
responsible for generate oracle queries and computing the final guess respectively. We note
that both adversaries are computationally unbounded.

We stress that A is given the challenge prior to performing any queries to the oracle LINX .
As a result, we require that doubly-affine extractors provide security against post-application
leakage. This is a notion that is not achievable in other models with general leakage (we
present a counterexample in our full version). By restricting to linear leakage, we enable a
significant improvement in security.

▶ Definition 2. A deterministic algorithm Ext : {0, 1}n × {0, 1}s → {0, 1}m is (ℓ, ε)-secure
if for any adversary A, Pr[G(Ext, n, s, m, ℓ, A) = 1] ≤ 1

2 + ε.

We move onto the efficiency of extractors. We define the probe complexity of an extractor
as the number of bits of X accessed by the oracle in a single extractor execution. We define
the cache complexity of an extractor as the number of disjoint regions of X accessed by the
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G(Ext, n, s, m, ℓ, A = (A1, A2))
C A = (A1, A2)
Draw b← U1.
Draw X ← Un.
Draw challenge seed S ← Us.
If b = 0, set R← Ext(X, S).
If b = 1, draw R← Um.

R
−−−−−−−−−−−→

t1 Set t1 ← A1(R).
←−−−−−−−−−−−

Set L1 ← LINX(t1). L1
−−−−−−−−−−−→

. . . . . . . . .
tℓ Set tℓ ← A1(R, L1, . . . , Lℓ−1).

←−−−−−−−−−−−
Set Lℓ ← LINX(tℓ). Lℓ

−−−−−−−−−−−→
Set state← A1(R, L1, . . . , Lℓ).

Send seed S as challenge. S
−−−−−−−−−−−→

b′ Set b′ ← A2(S, state).
←−−−−−−−−−−−

If b ̸= b′, output 0.
If b = b′, output 1.

Figure 1 Game G(Ext, n, s, m, ℓ, A).

oracle in a single extractor execution. Probe complexity measures the total running time
of oracle in a single extractor execution while cache complexity measures the number of
cache misses incurred in a single extractor execution. Note that probe complexity may be
measured as the number of non-zero columns in the query matrix produced by PickExt.
Cache complexity corresponds to the number of consecutive groups of non-zero columns
found in the query matrix produced by PickExt.

▶ Definition 3. Ext is (p, c)-local if for every seed S, PickExt(S) has at most p non-zero
columns and at most c consecutive non-zero column groups.

2.3 Computational Doubly-Affine Extractors
As another advantage of doubly-affine extractors, we show that they may be built even when
using seeds that are only computationally-secure. In more detail, suppose the extractor’s
input seed is computationally-secure with respect to leakage seen by the adversary. Is it
possible for the extractor’s output to remain information-theoretically random with help
from the affine oracle? This is impossible for computationally unbounded adversaries with
access to the oracle as the adversary may compute the seed and query the oracle to obtain
the extractor’s output. Instead, we want computational extractors to produce outputs that
are secure against adversaries that are computationally-bounded only when the oracle is
available and may become computationally-unbounded afterwards. The ability to handle
computationally-secure seeds is a benefit of the affine leakage model that is impossible in
general leakage models (see [15, 19]).

The security game for computational extractors is shown in Figure 2. As a major
result, we will prove that the security games in Figure 1 and Figure 2 are equivalent (see
Section 4). That is, every information-theoretic extractor is also a computational extractor.
We consider hybrid adversaries A = (A1, A2) where A1 is a stateful PPT adversary and
A2 is a computationally unbounded adversary. The game uses a computationally-secure
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Gc(Ext, n, s, m, ℓ, Σ, A1, A2)
C A = (A1, A2)
Draw b← U1.
Draw X ← Un.
Draw S′ ← Us′ .
Draw (S, Z)← Σ(S′).
If b = 0, set R← Ext(X, S).
If b = 1, draw R← Um.

R, Z
−−−−−−−−−−−→

t1 Set t1 ← A1(Z, R).
←−−−−−−−−−−−

Set L1 ← LINX(t1). L1
−−−−−−−−−−−→

. . . . . . . . .
tℓ Set tℓ ← A1(Z, R, L1, . . . , Lℓ−1).

←−−−−−−−−−−−
Set Lℓ ← LINX(tℓ). Lℓ

−−−−−−−−−−−→
Set state← A1(Z, R, L1, . . . , Lℓ).

Send seed S′ as challenge. S′

−−−−−−−−−−−→
b′ Set b′ ← A2(S′, state).

←−−−−−−−−−−−
If b ̸= b′, output 0.
If b = b′, output 1.

Figure 2 Game Gc(Ext, n, s, m, ℓ, Σ, A1, A2).

protocol Σ that produces a computational seed S as well as leakage Z using a (typically)
shorter random seed S′. A1 is given both the extractor’s output and the leakage Z of Σ.
The role of A1 is to adaptively query the oracle LINX to learn ℓ bits about X. A2 will use
the knowledge gained by A1 as well as the original seed S′ to distinguish between challenges
of either uniformly random strings or extractor outputs.

▶ Definition 4. A deterministic algorithm Ext : {0, 1}n × {0, 1}s → {0, 1}m is (ℓ, Σ, ε)-
computationally-secure if for any hybrid adversary A = (A1, A2) such that A1 is PPT,
Pr[Gc(Ext, n, s, m, ℓ, Σ, A) = 1] ≤ 1

2 + ε.

3 Information-Theoretic Doubly-Affine Extractors

In this section, we present our constructions for information-theoretic doubly-affine extractors.
We start by reducing the security game of doubly-affine extractors to linear algebraic
concepts. Afterwards, we show that constructing doubly-affine extractors requires two
simpler primitives: samplers and non-local doubly-affine extractors (or non-local extractor,
for short). By presenting efficient samplers and non-local doubly-affine extractors, we obtain
our final efficient extractor. We also present various lower bounds for the studied primitives.

3.1 Optimal Doubly-Affine Extractor Adversary
One of the main results in our paper is the ability to reduce the complex security game of
doubly-affine extractors to a simpler game. Consider the following adversarial approach to
compromise doubly-affine extractors according to the security game in Figure 1. Suppose
the adversary has chosen ℓ queries to LINX . Next, the adversary receives the seed S and
computes the query matrix PickExt(S). Next, the adversary checks whether extractor’s
output bits is a linear combination of any of the ℓ leakage bits. This is equivalent to checking
whether the span of the extractor’s queries intersects the span of the adversary’s queries.
In the case of an intersection, the adversary can check whether the output bit matches the
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G⊕(Ext, n, s, m, ℓ, A)
C A

t1, . . . , tℓ Set t1, . . . , tℓ ← A().
←−−−−−−−−−−−

Draw S ← Us.
Compute s1, . . . , sm ← PickExt(S).
Set S ← span(s1, . . . , sm).
Set L ← span(t1, . . . , tℓ).
Set d← dim(S ∩ L).
Output 1 if d > 0.
Output 0 if d = 0.

Figure 3 Linear Span Game G⊕(Ext, n, s, m, ℓ, A).

linear combination. For real challenges, this is always true. For random challenges, this is
only true with probability 1/2. Therefore, the adversary has significant advantage as long as
the intersection of query spans is non-empty.

We show that the above adversary is essentially optimal up to choosing the oracle queries.
Formally, we prove this by showing the security game in Figure 1 is equivalent to the same
simpler game in Figure 3. The game in Figure 3 severely limits the adversary by forcing the
adversary to follow the above adversarial approach. The adversary must ignore both ignore
the extractor output and non-adaptively query the oracle. Additionally, the adversary loses
the ability to post-process the oracle results. Instead, the challenger determines the winner
of the game by checking whether the intersection of the adversarial query subspace and the
extractor query subspace is non-empty. We show the games in Figures 1 and 3 are identical.

As a caveat, we note that the adversary could also check whether the extractor’s outputs
bit are linearly independent. If any output bit is a linear combination of the other output
bits, then the adversary will already win the game. For real challenges, the linearly dependent
output bit must match the linear combination of the other output bits. For random challenges,
this only happens 1/2 of the time. Therefore, we will assume that the extractor outputs bits
will be linearly independent. In other words, the extractor’s oracle queries will always be
linearly independent without loss of generality.

▶ Theorem 5. Suppose that Ext is (ℓ, ε)-secure with respect to security game G⊕. That
is, for any adversary A, Pr[G⊕(Ext, n, s, m, ℓ, A) = 1] ≤ ε. Then, Ext is (ℓ, ε)-secure with
respect to G according to Definition 2.

With this theorem, we already see that the main challenge for extractors is to ensure
output bits are not a linear combination of the adversarial oracle queries.

3.2 Sample-then-Extract Paradigm
To construct doubly-affine extractors, we use the sample-then-extract paradigm that was
introduced by Vadhan [30]. This paradigm constructs extractors in two steps. First, a subset
of the random string X is sampled such that the sample contains a large amount of entropy
conditioned on the adversary’s leakage. Next, a non-local doubly-affine extractor (that we
will also denote as a non-local extractor) is executed on the sampled subset. The non-local
extractor is expected to utilize the entirety of the sampled subset to produce as many random
bits as possible (since no locality is required, they are denoted as non-local).

We now explain at a high level why the sample-then-extract algorithm results in an
extractor. All the sampled bits will not be random after the adversary views leakage bits. If
the adversary sees ℓ bits of the n-bit random string X, then we expect only (1 − ℓ/n)-fraction
of the sampled bits to be random. The role of the non-local extractor is to condense the
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G⊕,λ(Samp, n, s, p, ℓ, A)
C A

t1, . . . , tℓ Set t1, . . . , tℓ ← A().
←−−−−−−−−−−−

Draw S ← Us.
Compute I1, . . . , Ip ← PickSamp(S).
Set S ← span(1I1 , . . . ,1Ip ).
Set L ← span(t1, . . . , tℓ).
Set d← dim(S ∩ L).
Output 1 if p− d < λ.
Output 0 if p− d ≥ λ.

Figure 4 Relaxed Linear Span Game G⊕,λ(Samp, n, s, p, ℓ, A).

Gunit,λ(Samp, n, s, p, ℓ, A)
C A

T1, . . . , Tℓ Set T1, . . . , Tℓ ← A().
←−−−−−−−−−−−

Draw S ← Us.
Compute I1, . . . , Ip ← PickSamp(S).
Set S ← span(1I1 , . . . ,1Ip ).
Set L ← span(1T1 , . . . ,1Tℓ ).
Set d← dim(S ∩ L).
Output 1 if p− d < λ.
Output 0 if p− d ≥ λ.

Figure 5 Relaxed Unit Span Game Gunit,λ(Samp, n, s, p, ℓ, A).

mixture of random and non-random sampled bits into a smaller string of truly random bits.
We will define and construct samplers and non-local extractors in the upcoming sections.

3.3 Samplers
The notion of samplers has been well studied in the past (see [7, 9, 24, 31, 30, 17] as some
examples). Prior works studied samplers with respect to general functionalities and/or
general leakage. In our work, we define samplers in a narrower manner within the affine
leakage model that will be easily composable in the sample-then-extract paradigm.

Samplers are deterministic algorithms Samp : {0, 1}n × {0, 1}s → {0, 1}p with inputs of
a n-bit random string X and a s-bit seed S that outputs p sampled bits of X. The goal is to
sample as many random bits as possible in the view of the adversary with leakage bits. As
discussed in the previous section, it is unlikely that all sampled bits will be secure. If an
adversary has ℓ random leakage bits of X, then only (1 − ℓ/n)p sampled bits will be secure
in expectation.

For any Samp, we denote PickSamp as the queries sent to the oracle (similar to ex-
tractors). The output of Samp will also be the response from the oracle. In other words,
Samp(X, S) = LINX(PickSamp(S)). As Samp samples bits, each column of PickSamp(S)
is a unit vector. We will use Samp and PickSamp interchangeably throughout the paper.

We relax the security game of doubly-affine extractors (Figure 3) to obtain a security
game for samplers in affine leakage model presented in Figure 4. Recall that the extractor
adversary should not compromise any output bits. We modify the definition for samplers so
at least λ sampled bits are random in the adversary’s view. We chose to immediately define
samplers with respect to the optimal adversary for convenience. One could re-define sampler
security using a natural game by relaxing the security of doubly-affine extractors in Figure 1.

▶ Definition 6. A deterministic algorithm Samp : {0, 1}n×{0, 1}s → {0, 1}p is (ℓ, ε, λ)-secure
if for any adversary A, Pr[G⊕,λ(Ext, n, s, m, ℓ, A) = 1] ≤ ε.
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Specific to samplers, we immediately show that the adversary may immediately be
weakened without loss of generality. Consider a simple adversary for samplers that also
samples ℓ bits from X. If the adversary samples λ + 1 bits identical to the sampler, the
adversary will distinguish the real-or-random challenge with high advantage. We prove that
this adversary is optimal. In other words, sampler adversaries do not gain advantage by
learning linear combinations of X as opposed to sampling single bits of X. To formalize
this idea, we modify the sampler game in Figure 4 such that the adversary may only sample
physical bits of X. The new game may be found in Figure 5.

▶ Theorem 7. Suppose that Samp is (ℓ, ε, λ)-secure with respect to security game Gunit,λ.
That is, for any adversary A, Pr[Gunit,λ(Samp, n, s, m, ℓ, A) = 1] ≤ ε. Then, Samp is
(ℓ, ε, λ)-secure with respect to G⊕,λ according to Definition 6.

The above security reductions significantly simplify analyzing sampler security. Before
moving on, we highlight that the majority of our efficiency gains are achieved from our
improved samplers. In particular, the insight that optimal sampler adversaries in the affine
leakage model model are limited is the key reason as to why our doubly-affine extractors are
more efficient than previous constructions in the general leakage model.

(p, c)-Local Sampler Construction. We start by presenting an efficient (p, c)-local sampler.
The idea is to view the n-bit source X as a two-dimensional matrix with c rows and n/c
columns and the seed S = (S1, . . . , Sc) as c integers from the set [n/c] that are represented
using log(n/c) bits. The sampler will sample p/c bits from each row. In the i-th row, the
sampler chooses the consecutive p/c bits starting from the Si-th column. Samp is (p, c)-local
as a total of p bits are sampled that may be arranged into c consecutive groups (one group
per row). Our construction is similar to ones presented in [15], but is was never analyzed or
defined as a stand-alone sampler.

▶ Theorem 8. For any 0 ≤ ℓ < n, c > 0, ε > 0 and λ > 0, there exists a (p, c)-local sampler
that is (ℓ, ε, λ)-secure with seed length s = c log(n/c) and probe complexity

p = max

c,
λ

1 − ℓ
n −

√
ln(1/ε)

c

 .

We note that the efficiency of our sampler is almost optimal. Note that an adversary
may always pick ℓ random bits of X as leakage. If p bits are sampled, it is expected that
only (1 − ℓ/n)p sampled bits are secure. Our construction secure samples λ = (1 − ℓ/n −√

ln(1/ε)/c)p bits implying that at most (
√

ln(1/ε)/c)-fraction of bits are lost beyond the
expectation.

(p, p)-Local Sampler Construction. For the setting where cache complexity is irrelevant, we
present a (p, p)-local sampler that ends up being more concretely efficient in our full version.
Our construction simply picks a subset of p bits from X uniformly at random using a seed S

that encodes a random subset using log
(n

p
)

bits.

3.4 Non-Local Doubly-Affine Extractors
In the sample-then-extract paradigm, the goal of non-local extractors is to take sampled
bits containing both random and non-random bits and produce a truly random string. We
abstract the setting to the original doubly-affine extractor security game by assuming that
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the non-random bits are leakage viewed by the adversary. In other words, we assume that
the random source X has n random bits except that ℓ bits are not random as they have been
viewed by the adversary.

The simplest way to build non-local extractors is to use affine universal hash functions
and the leftover hash lemma [20]. As the input string X has n − ℓ random bits, the leftover
hash lemma states that there exists a non-local extractor that outputs n − ℓ − 2 log(1/ε)
random bits except with probability ε.

In our work, we improve upon this result by constructing non-local extractors that
produces n − ℓ − log(1/ε) random bits. This reduces the lost entropy by a factor of two. The
ability to build improved non-local extractors is another advantage of doubly-affine extractors.
To do this, we generically reduce the construction of non-local extractors to a special family
of matrices with certain properties. Consider m matrices A1, . . . , Am with n rows and s
columns. For any non-empty subset ∅ ≠ I ⊆ {1, . . . , m}, the matrix AI =

∑
i∈I Ai has rank

n. We present an instantiation using field multiplication.

Special Matrix Family from Toeplitz Matrices. We instantiate the matrix family using
Toeplitz matrices to achieve s = n + m − 1. Note, as m ≤ n, the seed length is at most
s ≤ 2n. Toeplitz matrices are the matrices where all diagonals are equal. For any Toeplitz
matrix T , it is always the case that Ti,j = Ti+1,j+1. In particular, we will use Toeplitz
matrices of dimension n × (n + m − 1). We define the set T1, . . . , Tm in the following way. Ti

consists of the first i − 1 columns only of 0’s followed by the n × n identity matrix occupying
the next n columns. All remaining columns will also consist of only 0’s. As an example,
T1 consists of the identity matrix occupying the first n columns followed by all 0’s. Using
this construction, we get that for any seed S ∈ {0, 1}n+m−1, TiS = (Si, Si+1, . . . , Si+n−1).
We note that the computational cost of this instantiation is O(n log n) using FFT (see [25]
for more details). In the full version, we present an instantiation from field multiplication
with smaller seed lengths, but higher computational costs. We use the Toeplitz matrix
instantiation for practical considerations.

▶ Theorem 9. For any subset ∅ ̸= I ⊆ [1, . . . , m], TI =
∑

i∈I Ti has rank n.

Non-Local Extractor Construction. Our non-local extractor is built using the m matrix
family A1, . . . , Am described above. The non-local extractor receives a s-bit seed S and a
n-bit input string X with m random bits. Then, the output of the non-local extractor is
X · (A1S), . . . , X · (AmS). In other words, the i-th output bit is the dot product of X and
the matrix-vector multiplication of the Ai and the seed S. Our construction is similar to the
one [11], but our security analysis is different, as we extract more bits in our setting.

▶ Theorem 10. For any 0 ≤ ℓ < n and ε > 0, there exists a non-local extractor that is
(ℓ, ε)-secure that outputs m = n − ℓ − log(1/ε) bits with seed length n.

We also present a lower bound on the number of extractable bits by non-local extractors
that is tight up to an additive constant factor.

▶ Theorem 11. Non-local extractors extract at most n − ℓ − log(1/ε) − O(1) bits.

Seed Length. While our construction extracts an almost optimal number of bits, it requires
a large seed length of n. Our seed length is similar to those obtained using the leftover hash
lemma resulting in seed lengths of at least n− ℓ+log(1/ε)−O(1) bits [20]. In our full version,
we existentially show there exists a matrix family that would result in a non-local extractor

ITC 2021



13:16 Doubly-Affine Extractors, and Their Applications

with seed length log(nℓ/ε) while extracting the same number of bits. We also present a seed
length lower bound showing that the existential construction is almost optimal. We leave it
as an open question to construct such a matrix family explicitly, but remind that: (a) in our
setting it is safe to expand the seed computationally (unlike general extractors [3]); (b) in
the random oracle model, one can expand the seed using the random oracle as done in [5, 4];
(c) one can use theoretical extractors of [18] which are linear, have seed O(log n + log(1/ε)),
but double the entropy loss to 2 log(1/ε).

3.5 Doubly-Affine Extractors
With constructions of both samplers and non-local extractors, we finally construct our local
extractors. First, we will formally define the sample-then-extract paradigm and show that
it is secure. Afterwards, we plug in our sampler and non-local extractor constructions to
obtain our efficient local extractors.

Sample-then-Extract. We formally define the sample-then-extract composition. Suppose we
have a sampler Samp with seed length SSamp that samples p bits. Note, the corresponding
PickSamp algorithm outputs a p × n query matrix. Additionally, assume we have a non-local
extractor NLExt with seed length SNLExt that extracts from an p-bit input and produces
m-bit outputs. The corresponding PickNLExt algorithm outputs a m × p query matrix. The
resulting local extractor Ext is defined by its oracle query function

PickExt(S = (SSamp, SNLExt)) = PickNLExt(SNLExt)PickSamp(SSamp).

In other words, the oracle query sent by Ext is the matrix multiplication of the query
matrices chosen by NLExt and Samp.

▶ Theorem 12. Let Samp be a (ℓ, ε1, λ)-secure sampler with seed length S1 that samples p
bits from an n-bit source and NLExt be a (p − λ, ε2)-secure non-local extractor with seed
length S2 that receives a p-bit source and outputs m bits. Then, there exists an extractor
Ext that that is (ℓ, ε1 + ε2)-secure with seed length S1 + S2 that outputs m bits. If Samp is
(p, c)-local, then Ext is (p, c)-local.

Using the above theorem, we present our constructions using our sampler and non-local
extractors. The resulting extractors are more efficient than all prior works (see Section 6).

▶ Theorem 13 ((p, c)-Local Extractor). For any 0 ≤ ℓ < n, m > 0 and ε > 0, there exists
an (p, c)-local extractor that is (ℓ, ε)-secure with seed length s = c log(n/c) + p with probe
complexity

p = max

c,
m + log(2/ε)

1 − ℓ
n −

√
ln(2/ε)

c


for any cache complexity c ≥ ln(2/ε)(1 − ℓ/n)−2.

We note that our extractor is almost optimal in terms of randomness efficiency. Once
again, we can consider a simple adversary that samples ℓ leakage bits of X randomly. For any
extractor with probe complexity p, only (1 − ℓ/n)-fraction of the probed bits will be random
in expectation. Our extractor is able to produce m = (1 − ℓ/n −

√
ln(2/ε)/c)p − log(2/ε)

bits that is only (
√

ln(2/ε)/c)-fraction from the expectation with log(2/ε) additive bit loss.
We also present the following lower bound on cache complexity for extractors.
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▶ Theorem 14. Any (p, c)-local extractor that is (ℓ, ε)-secure with one output bit must have
cache complexity c = Ω(log(1/ε)/ log(np/ℓ)).

In terms of cache complexity, we note that our extractor requires cache complexity at
least ln(2/ε)(1 − ℓ/n)−2. Our extractor’s cache complexity matches the lower bound in the
setting that a constant fraction of bits are leaked, ℓ = Θ(n).

We also present an extractor when cache complexity is ignored (c = p). While both
constructions are asymptotically identical, our (p, p)-local extractor is more concretely efficient.
This construction is also more efficient than all previous schemes (see Section 6).

▶ Theorem 15 ((p, p)-Local Extractor). For any 0 ≤ ℓ < n, m > 0 and ε > 0, there exists
an (p, p)-local extractor that is (ℓ, ε)-secure with seed length s = p log(n/p) + p with probe
complexity p satisfying

ε ≤ 2(m + log(2/ε)) ·
(

n − ℓ

m + log(2/ε) − 1

)
·

(
ℓ

p−m−log(2/ε)+1
)(n

p
) .

4 Computational Doubly-Affine Extractors

We move onto constructing extractors that are secure when using computationally-secure seeds.
To refresh readers, recall that computational extractors considered security games against
hybrid adversaries A = (A1, A2) where A1 is a PPT adversary and A2 is computationally
unbounded. A1 queries the oracle for information about the random source X using the
real-or-random challenge and seed leakage. After A1 learns ℓ bit of leakage from the oracle,
A2 is able to use all learned information to distinguish a real-or-random challenge. Note
that A1 cannot be computationally unbounded as, otherwise, A1 could derive the original
seed, query the oracle to compute the extractor’s output and compare with the challenge.
For the full definition, we refer readers back to Section 2.3. We re-iterate that computational
seeds are not possible with general leakage [15, 19].

As a major result of our work, we show that any information-theoretic extractor is already
a computational extractor. In other words, our constructions from Section 3.5 are also
computational extractors with similar parameters. In particular, we prove that the security
game in Figure 1 generically implies security with respect to Figure 2.

To prove this result, we will utilize insights similar to the ones presented in Theorem 5.
Recall that Theorem 5 proved that after receiving the extractor seed, the optimal adversary
for information-theoretic extractors simply checked whether any extractor output is a linear
combination of the leakage bits received from the oracle. Note that this post-processing
adversary may be executed in PPT adversary, which is the key reason why doubly-affine
extractors may utilize computational seeds. This statement is not true in other general
leakage models that prevent their usage of computational seeds.

▶ Theorem 16. If Ext is information-theoretically (ℓ, ε)-secure, then Ext is computationally
(ℓ, ε + ε′)-secure if the computationally-secure seed generator is a PPT algorithm that is
secure against PPT adversaries except with probability ε′.

Therefore, our efficient information-theoretic extractors from Section 3.5 are also compu-
tational extractors that may be used with computational seeds.

ITC 2021



13:18 Doubly-Affine Extractors, and Their Applications

5 Applications

In this section, we utilize our doubly-affine extractors to present information-theoretic
encryption solutions. We critically leverage both restrictions of affine output and leakage
in the following way. Let the random source X be the secret key. To encrypt a message
M , one first samples a random seed S and produces the ciphertext (S, Ext(X, S) ⊕ M). To
decrypt a ciphertext (S, M ′), one can compute the value M ′ ⊕ Ext(X, S) = M . In the above
protocol, an adversary with access to encryption/decryption oracles end up only learning
extractor outputs that are affine. As a result, the adversary obtains only affine leakage about
X. So, doubly-affine extractors end up being the perfect primitive for information-theoretic
encryption. While one may also use seeded extractors with general output and leakage, we
show our doubly-affine extractors result in better probe/cache complexity (see Section 6).

5.1 Replicated Setting
We consider the problem with k ≥ 2 parties that need reusable information-theoretic
encryption to communicate multiple messages over potentially insecure channels. This may
also be referred to as the group communication problem. For the case of k = 2, we note
there is a simple stateful solution. Each party consumes the secret key X as one-time pads
starting from different ends and stops when meeting in the middle. However, this solution
does not scale well for k > 2 parties where all parties do not see all encrypted messages. The
natural generalization is to split X into k parts for each party. This is sub-optimal in terms
of utilizing X when some parties encrypt infrequently and other parties encrypt frequently.
By using doubly-affine extractors, we avoid these issues.

IND-CCA1 Encryption. We show that the simple example presented earlier is already an
IND-CCA1 secure for secret key X and messages M .

Enc(X, M) = (S, M ⊕ Ext(X, S)) with uniformly random S.
Dec(X, (S, M ′)) = M ′ ⊕ Ext(X, S).

We prove security in a stronger variant of real-or-random challenges denoted by IND-CCA1$.
The adversary submits a challenge message M . The challenger returns either an encryption
to M or a random string that must be distinguished by the adversary. Note, this requires
that ciphertexts are indistinguishable from random strings.

IND-CCA2 Authenticated Encryption. We present the first application of our computa-
tional doubly-affine extractors for constructing IT authenticated encryption (AE) that is
IND-CCA2$ secure. We assume the existence of a standard, computationally-secure AE with
associated data (AEAD) scheme, EncAEAD and DecAEAD. We assume that the secret key
is (X, KAEAD) where KAEAD is an AE secret key.

Enc((X, KAEAD), M) = (EncAEAD(KAEAD, S, M ′), M ′) with M ′ = M ⊕ Ext(X, S)
and uniformly random S.
Dec((X, KAEAD), (S′, M ′)) = M ′ ⊕ Ext(X, DecAEAD(KAEAD, S′, M ′)) and rejecting
whenever
DecAEAD(KAEAD, S′, M ′) fails authenticity verification.

It is straightforward to adapt our scheme to an IT AEAD by appending associated data
with M ′ in the above scheme. Our construction also achieves authenticity against any PPT
adversaries from the underlying AEAD scheme.
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For security, we adapt our real-or-random challenge from the prior sections where the
adversary must distinguish between an encryption of an adversarially chosen message and
a random string. For IND-CCA2$, the adversary is able to make both encryption and
decryption queries after the challenge. A computationally unbounded adversary in IND-
CCA2$ may trivially break the scheme. For the challenge ciphertext (S′, M ′), the adversary
sends a decryption query for ciphertext (S′, M ′′) where M ′′ ≠ M ′ to receive M ′′ ⊕ Ext(X, S)
where S is the encrypted seed. Therefore, the adversary computes Ext(X, S) and may
break the scheme. Due to this limitation, we consider adversaries that are PPT when
encryption/decryption queries are available but computationally unbounded afterwards.

5.2 Distributed Setting

We consider another setting where the random source X is jointly stored by t ≥ 2 servers.
Each server stores a disjoint subset of X. We will use the standard assumption from
information-theoretic cryptography literature where the user will have a private channel with
only a subset of g < t trusted servers and the remaining t − g channels may be compromised
and/or the servers may be compromised and using faulty randomness. This is a common
assumption that appears in many prior important works such as information-theoretic secret
sharing [27], multi-party computation [8] and secure message transmission [14]. Note users
do not know which servers are compromised. For simplicity, we assume each server stores an
equal portion of X (our analysis is trivial to extend when this is not the case). If there are
t − g bad servers, a (t − g)/t fraction of X will be leaked. Adversaries may also query the
servers to learn affine leakage about the random source X.

We modify our extractors for the multi-server setting. Recall that our extractors first
sample bits then apply a non-local extractor on sampled bits. With multiple servers, our
extractor first executes the sampler portion with each server individually. Afterwards, the
non-local extractor will be executed on all sampled bits to obtain the final extractor output.
In terms of efficiency, we note that the virtual random source has only n := (g/t)|X| random
bits excluding parts of X stored by the bad servers. Any (p, c)-local extractor will probe
(g/t)p bits from good servers and the remaining sampled bits are assumed to be compromised
already. Executing a non-local extractor over all sampled bits can output (g/t)p − log(1/ε)
random bits. By considering the multi-server setting, we must increase the probe complexity
of our extractors by a multiplicative factor of (t/g). In particular, consider any extractor
with probe complexity p in the replicated setting that outputs m bits. To obtain m output
bits in the multi-server setting, our extractors must instead probe (t/g)p bits.

We emphasize that our doubly-affine extractors are easily amenable to the distributed
setting. In particular, the distributed servers do not need any communication or coordination.
The seeds that are sent to each server may be computationally-secure. To encrypt/decrypt a
message M , the communication and computation from each server is sub-linear in the length
of M . Our encryption schemes are easily adaptable to settings where servers may go offline
and new servers join as well if servers are malicious. Most of these great properties are not
be obtainable by other primitives when moving to distributed settings (such as MPC).

As one requirement, servers must limit the leakage that may be obtained by an adversary.
To do this, the servers may keep track of the number of unique bits that are sampled by all
users. To limit adversaries to ℓ leakage bits, the servers should stop responding after ℓ/g

unique queries. As a result, the g servers return at most ℓ leakage bits. Note that keeping
track of the unique sampled bits may be done very efficiently with small storage (using
HyperLogLog [21] as an example).
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Public-Key IND-CCA2 Encryption. With the server setting, there may be a need for
public-key encryption as parties no longer share the secret key. We show that we may build
public-key IND-CCA2$ encryption schemes using our computational doubly-affine extractors.
We re-use our previous IND-CCA2$ definition with the only difference that the adversary
obtains the public key before any encryption/decryption queries.

We will use any public-key encryption (PKE) scheme (EncPK, DecPK) with IND-CCA2
security against PPT adversaries with label support [29] where the label is not private but
is required for decryption. Suppose that the PKE has key pair (pk, sk) and Ext(X, S) is
computed using distributed variant of our doubly-affine extractors.

Enc(X, pk, M) = (EncPK(pk, S, M ′), M ′) with M ′ = M ⊕ Ext(X, S) and uniformly
random S.
Dec(X, sk, (S′, M ′)) = M ′ ⊕ Ext(X, DecPK(sk, S′, M ′)).

We formally define and prove security in our full version.

Computationally-Secure Keys. In the server setting, parties no longer need to meet and
share the secret key as they may generate shared randomness through the servers. We show
that two parties may utilize information-theoretic encryption schemes without meeting. First,
the two parties use key exchange to agree on a computationally-secure seed S. To encrypt a
message M , we may use any of the prior constructions where Ext(X, S) is computed using
the servers.

Malicious Servers. In this last section, we consider when the t − g corrupted servers
are malicious. Malicious servers are able to answer in an arbitrary manner including no
response, wrong responses and responses that are inconsistent across multiple requests. As an
example, malicious servers may ignore sampler seeds and return random bits for each request.
Therefore, malicious servers can force our extractor outputs to no longer be deterministic.
For two queries with the same seeds, the outputs might be different that will be problematic
for many applications.

In this section, we present a solution to this problem. The main modification is to utilize
Reed-Solomon codes to handle both errors (servers returning wrong responses) and erasures
(servers not returning any response). Using a Reed-Solomon code that adds z check bits, the
decoding algorithms may handle up to a errors and b erasures such that 2a + b ≤ ⌊z/2⌋. All
p sampled bits will be encoded using a Reed-Solomon code. If there are at t − g malicious
servers, that means at most (t − g)/t · p errors and/or erasures may occur in the sampled
bits. Therefore, we choose to use a Reed-Solomon code with z ≥ 2(t − g)/t · p check bits. In
applications, multiple parties will have to share both the same seeds as well as the z check
bits to guarantee the same output.

As the z check bits generated by the Reed-Solomon code must be shared between multiple
parties, we consider the z check bits to be public and, thus, available to the adversary. One
reason we chose to use Reed-Solomon code is that that check bits are linear in the message
and, thus, linear in the sampled bits. So, we may consider the leaked z check bits as general
linear leakage obtained by the adversary. This requires several modifications to DExt. Note
that our extractors require that the sampled bits from the g good servers have m + log(2/ε)
bits of residual entropy as the non-linear extractor will lose log(2/ε) bits of entropy. For
malicious server setting, the z check bits will be publicly released. Therefore, we need the
sampled bits from the good servers to have residual entropy of m + z + log(2/ε) bits as we
will lose z bits of entropy for the public check bits and another log(2/ε) from the non-linear
extractor. Additionally, at most t/3 of the servers may be malicious.
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Table 1 Numerical examples, comparison with [5]. Both tables consider 100 GB random
sources and ε = 2−64. The left table considers 10% leakage and the right table 50% leakage. The
leftmost columns denote the probe complexity p. The second and third column denote the number
of random bits extracted.

p Ours [5]

500 309 210
1000 734 484
2000 1638 1031
4000 3399 2127

279 128 88
436 256 174
742 512 342

351 188 128
584 381 256
1052 775 512

p Ours [5]

500 82 20
1000 282 104
2000 721 272
4000 1723 608

621 128 40
934 256 93
1527 512 192

1142 343 128
1903 678 256
3426 1452 512

6 Experimental Evaluation

We now analyze the efficiency of our extractors in several dimensions. We compare our
extractors with those that appeared in previous works. The majority of previous works such
as [15, 30] focused on asymptotic as opposed to concrete efficiency. We focus on two recent
works that present concretely efficient (p, p)-local extractors [5] and (p, c)-local extractors [4].
We caveat that these extractors were built for general leakage as opposed to only linear
leakage like our extractors. Therefore, we expect our constructions to be more efficient.

Both [5] and [4] assume the existence of a random oracle. The random oracle is utilized for
both seed generation and non-local extraction. To make a fair comparison with our doubly-
affine extractors, we replace random oracles with our non-local extractor (see Theorem 10)
and require that the requisite seed length is provided as input. With these modifications,
our constructions have smaller or identical seed lengths. The (p, c)-local extractor of [4]
uses seeds of length p log(n/c) that is larger than our extractor’s seed length of c log(n/c)
(Theorem 13). Our (p, p)-local extractors in Theorem 15 use log

(n
p
)

seeds that are identical
to the ones used in [5]. We present numerical comparisons in Tables 1 and 2 verifying that
our extractors are more efficient. For our comparison, we use security parameter ε = 2−64.
In all settings, our constructions extract more bits compared to both previous works when
using the same probe and/or cache complexity.

7 Conclusions

In this paper, we define the notion of doubly-affine extractors where both the output and
leakage must be affine. Using these two restrictions, we present a series of reductions showing
that optimal doubly-affine extractors end up being simple PPT algorithms that check
intersection of linear subspaces. Using these insights, we show that doubly-affine extractors
may tolerate post- application leakage and computational seeds, which are impossible in general
leakage models. We present extractor constructions that are almost concretely optimal in
terms of randomness usage, probe and cache complexity beating prior works. Finally,
we show that the doubly-affine restrictions are perfect for the application of information-
theoretic encryption. Using our concretely efficient extractors, we obtain state-of-the-art
information-theoretic encryption.
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Table 2 Numerical examples, comparison with [4]. Both tables consider 100 GB random
sources and ε = 2−64. The left table considers 10% leakage and the right table 50% leakage. The
leftmost column denotes the cache complexity c. The first row denotes the number of probed bits in
each of the c groups. The remaining entries denote the number of random bits extracted.

c 1 8 32 64 512
Ours [4] Ours [4] Ours [4] Ours [4] Ours [4]

250 53 53 885 524 3738 695 7542 723 60796 748
500 234 189 2334 1130 9532 1471 19129 1572 153488 1575

1000 622 463 5436 2343 21942 3024 43950 3134 352057 3229
5000 3690 2655 31237 12048 128746 15445 257558 15994 2060924 16464

10000 8263 5395 66565 24178 266455 30972 532976 32068 4264226 33008

c 1 8 32 64 512
Ours [4] Ours [4] Ours [4] Ours [4] Ours [4]

250 0 0 85 90 538 146 1142 157 9596 168
500 34 0 734 262 3132 374 6329 396 51088 417

1000 222 84 2236 608 9142 831 18350 874 147257 914
5000 1960 757 16137 3371 64746 4482 129558 4697 1036924 4892

10000 4263 1598 34565 6825 138455 9046 276976 9475 2216266 9864
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Abstract
In this work, we characterize linear online extractors. In other words, given a matrix A ∈ Fn×n

2 , we
study the convergence of the iterated process S ← AS ⊕X, where X ∼ D is repeatedly sampled
independently from some fixed (but unknown) distribution D with (min)-entropy k. Here, we think
of S ∈ {0, 1}n as the state of an online extractor, and X ∈ {0, 1}n as its input.

As our main result, we show that the state S converges to the uniform distribution for all input
distributions D with entropy k > 0 if and only if the matrix A has no non-trivial invariant subspace
(i.e., a non-zero subspace V ⊊ Fn

2 such that AV ⊆ V ). In other words, a matrix A yields a linear
online extractor if and only if A has no non-trivial invariant subspace. For example, the linear
transformation corresponding to multiplication by a generator of the field F2n yields a good linear
online extractor. Furthermore, for any such matrix convergence takes at most Õ(n2(k + 1)/k2) steps.

We also study the more general notion of condensing – that is, we ask when this process
converges to a distribution with entropy at least ℓ, when the input distribution has entropy at
least k. (Extractors corresponding to the special case when ℓ = n.) We show that a matrix gives
a good condenser if there are relatively few vectors w ∈ Fn

2 such that w, AT w, . . . , (AT )n−kw are
linearly dependent. As an application, we show that the very simple cyclic rotation transformation
A(x1, . . . , xn) = (xn, x1, . . . , xn−1) condenses to ℓ = n−1 bits for any k > 1 if n is a prime satisfying
a certain simple number-theoretic condition.

Our proofs are Fourier-analytic and rely on a novel lemma, which gives a tight bound on the
product of certain Fourier coefficients of any entropic distribution.
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1 Introduction

An extractor is a deterministic algorithm that takes input X ∼ D sampled from some
sufficiently nice distribution D and outputs nearly uniformly random Y ∈ {0, 1}n. An
online extractor is a deterministic algorithm with a state S ∈ {0, 1}n that takes inputs
X1 ∼ D1, X2 ∼ D2, . . . , Xm ∼ Dm one at a time, updating its state after each input. We
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say that it extracts from D1, . . . , Dm if the state S is statistically close to random at the end
of this process. This naturally models the idea of “gradually accumulating entropy” from
entropic sources.

We are interested in perhaps the simplest possible setting, when the Di = D are
independent and identical but otherwise arbitrary entropic distributions over {0, 1}n, and
when the extractor is linear (over F2). In other words, on input X ∈ {0, 1}n, the state
S ∈ {0, 1}n is updated by the procedure

S ← AS ⊕X

for some fixed linear transformation A ∈ Fn×n
2 .

We then ask the natural question

Which matrices A ∈ Fn×n
2 are good extractors?

In other words, for which matrices A does the process S ← AS ⊕X always converge to
uniform when X is sampled independently from any distribution with non-zero entropy?

We first notice that there is a natural obstruction that prevents some matrices A ∈ Fn×n
2

from extracting. As an illustrative example, suppose that A is the “rotation” map defined
by A(x1, . . . , xn) = (xn, x1, x2, . . . , xn−1). Then, A clearly fails to extract from the uniform
distribution over {0n, 1n}.

More generally, suppose that there exists a subspace V ⊂ Fn
2 with dimension 0 <

dim(V ) < n such that AV ⊆ V . Such a subspace is called a non-trivial invariant subspace.
(The trivial invariant subspaces are {0n} and Fn

2 .) Then, if X is sampled from the uniform
distribution over V , it is not hard to see that the distribution of the state S will itself remain
uniform over V after each run of the extractor S ← AS ⊕X. (Here and elsewhere, we
assume without loss of generality that the starting state is 0n.) So, A completely fails to
extract from this distribution, even though it clearly has (min-)entropy.

Our main theorem is a proof that this is the only obstruction, i.e., that a matrix A

extracts from all entropic distributions if and only if A has no non-trivial invariant subspace.
In fact, we show that this property implies that A extracts after relatively few samples, just
Õ(n2(k + 1)/k2) samples. (Notice that n/k samples is the best that one could possibly hope
for.)

▶ Theorem 1 (Informal, see Theorems 10 and 11). A matrix A ∈ Fn×n
2 extracts from arbitrary

entropic distributions if and only if A has no non-trivial invariant subspace.
Specifically, if A has no non-trivial invariant subspace and the input has min-entropy

k > 0, then the distribution of the state will be 2−n-close to uniform after m ≤ O(n2(k +
1)/k2 · log(2n/k)) steps.

We note that, while the property of having a non-trivial invariant subspace might seem
rather opaque, it is efficiently checkable: A has no non-trivial invariant subspace (and thus
is a good extractor) if and only if its characteristic polynomial is irreducible [8]. Moreover,
there are very sparse matrices A having this property. For example, if A is the linear
transformation corresponding to multiplication by a generator of the finite field F2n , then
A is a good extractor which can be easily implemented in time O(n).1 Thus, we show very
simple linear-time, online linear extractors that work for any (unknown) distribution with
non-zero min-entropy.

1 Indeed, multiplication by the generator corresponds to one cyclic rotation and one conditional XOR
with a fixed string corresponding to the coefficients of the irreducible polynomial generating the field.
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Our proof of Theorem 1 is Fourier-analytic: the main technical tool is a novel lemma
(Lemma 7) concerning certain products of Fourier coefficients of distributions with entropy k.
Specifically, for linearly independent w1, . . . , wr ∈ Fn

2 , we give a tight bound on the product
of the associated Fourier coefficients. (The worst case is essentially a linear transformation
of the uniform distribution over a Hamming ball.)

Online linear condensers

We also consider a more general question. Recall that a condenser is a deterministic
algorithm that takes as input X ∼ D sampled from a sufficiently nice distribution and
outputs Y ∈ {0, 1}n that has relatively large entropy (but is not necessarily close to uniform).
In our setting, we are interested in the following question.

For which matrices A does the process S ← AS ⊕X converge to a distribution with
at least ℓ bits of entropy, whenever X is sampled independently from some (unknown)
distribution with more than k bits of entropy?

Notice that our extractor question from above corresponds to the the special case when k = 0
and ℓ = n.

Here, our result is necessarily a bit more complicated (though the proof is simple and uses
the same Fourier-analytic tools). Specifically, we define the A-rank of a vector w ∈ Fn

2 as
the dimension of the subspace spanned by w, Aw, . . . , An−1w. Notice that a matrix A has a
non-trivial invariant subspace if and only if there is a non-zero vector w ∈ Fn

2 with A-rank
less than n – so that this notion of A-rank is naturally related to the idea of non-trivial
invariant subspaces discussed above. And, notice that the obstruction that we ran into with
rotation arose from the existence of the vector 1n with rank equal to 1, which can cause our
condenser to “get stuck at one bit of entropy.” There is a similar obstruction caused by the
uniform distribution over the subspace orthogonal to 1n (i.e., the subspace of vectors with
even Hamming weight) that can cause our condenser to “get stuck at n− 1 bits of entropy.”

More generally, a vector with A-rank r means that “we can get stuck on distributions
with entropy r or entropy n− r.” So, if we are going to condense from k bits to ℓ bits, we
must have k > min{n− r, r} and ℓ ≤ max{r, n− r}.

We prove that low-rank vectors are essentially the only possible obstruction to condensing.
In particular, a matrix A is a good condenser if it has a small number of vectors with small
A-rank. (Again, while this might seem rather opaque, it is easy to count the vectors with a
given A-rank by computing the characteristic and minimal polynomials of A [8].) In fact, for
technical reasons, it is more natural to study vectors with low AT -rank, rather than vectors
with low A-rank. (Since AT and A have the same characteristic and minimal polynomials,
A-rank and AT -rank are closely related.)

▶ Theorem 2 (Informal, see Theorem 15). For any invertible A ∈ Fn×n
2 , if there are at most

N vectors in {0, 1}n with AT -rank less than r, then A condenses any distribution with k >

g := n−r bits of min-entropy to a distribution with at least ℓ = n− log2 N bits of min-entropy.
In particular, the state will have entropy at least ℓ− 2−n after m = Õ(n2(k− g + 1)/(k− g)2)
steps.

As an application, we show that rotation does in fact condense from k > 1 bits of entropy
to n− 1 bits – and that it only requires m = Õ(n2k/(k − 1)2) steps to do so – when n is a
prime satisfying a simple number-theoretic condition.
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1.1 Related work

To the best of our knowledge, our question of linear extractors from independent, identically
distributed (IID) sources was not explicitly considered by prior work, but several works
considered somewhat related models.

The closest such model is our recent prior work [11], which was motivated by a very
practical question of analyzing the bit-level complexity of fast entropy accumulation in
real-world random number generators (RNGs), such as the Fortuna RNG used by Windows
10 [13]. That work also studied linear online extractors, but only for a specific class of natural
distributions that arise in practice and only for hyper-efficient linear transformations A that
simply permute the bits of the state. Indeed, in [11], we were primarily concerned with the
practical question of optimizing the exact number of samples needed to extract from such
distributions for fixed n ∈ {32, 64} using these extremely fast linear transformations.2 From
a technical point of view, both works use Fourier-analytic techniques, but the details are
quite different. The main Fourier-analytic tool in [11] is a bound on the Fourier coefficients
of the class of natural distributions that we study there. Here, our main tool is Lemma 7,
which applies to arbitrary entropic distributions.

Starting with Chor and Goldreich [7], many papers (see [2, 15, 6] and references therein)
studied the much harder question of randomness extraction from several independent (but not
identical) arbitrary entropic sources. Unlike our work, these extractors cannot be linear, and,
to the best of our knowledge, no online extractor is known to extract from this general class
of courses. However, if one sufficiently restricts the distribution family to be more structured,
online extraction is sometimes possible – even by extremely efficient functions. For example,
the classical work of Santha and Vazirani [16] showed that simply applying bit-wise XOR
is a good extractor for independent (but not necessarily identical) SV-sources. In fact, in
some cases online extraction becomes possible even without assuming independence, as long
as each new source comes from certain very structured family conditioned on the previous
sources [4, 3].

The classical work of von Neumann [18] studied the question of randomness extraction
from IID coin flips with an a-priori unknown bias, and his extractor happened to be online.
Elias [12] improved the rate of von Neumann’s extractor, but sacrificed the online property
to do so.

The works of [9, 10] explicitly considered online extractors in various idealized computa-
tional models (such as the random oracle model). These extractors are highly non-linear.

In the setting of so-called “seeded extractors”, where an additional random seed is
available for extraction, the power of simple, linear extractors goes back to the leftover hash
lemma [14], and the streaming analog of this question (corresponding to a very long source
X) was studied by [1].

2 In contrast, we are interested in the more theoretical question of extracting from arbitrary entropic
sources with arbitrary n. In exchange for this generality, we sacrifice the extreme efficiency achieved
in [11] (which was the primary goal of that work). Indeed, in [11] we show that very efficient linear
transformations A can extract from a natural class of sources in just a bit more than n/k steps, while it
is easy to see that n−k steps are necessary for a linear online extractor to extract from arbitrary entropic
sources. Indeed, all of the different linear transformations that we considered in [11] are conjugates of
rotation, and are therefore equivalent in our setting of arbitrary entropic sources, while in the model
of [11] their convergence rates are quite different. (In [11], we were also happy to converge to at most,
e.g., n− ε bits of entropy, while here we are interested in asymptotic convergence.)
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2 Preliminaries

2.1 Entropy and statistical distance
For an integer n ≥ 1, we write [n] := {0, . . . , n− 1}. For a distribution D over {0, 1}n and
x ∈ {0, 1}n, we write D(x) := PrX∼D[X = x] for the probability that D assigns to x. The
statistical distance between two distributions D1 and D2 over {0, 1}n is

SD(D1, D2) := 1
2 ·

∑
x∈{0,1}n

|D1(x)−D2(x)| .

We say D1 is ε-close to D2 if SD(D1, D2) ≤ ε. The min-entropy of D is

Hmin(D) := min
x∈{0,1}n

log2(1/D(x)) .

2.2 Basic Fourier analysis
For a distribution D over {0, 1}n and w ∈ {0, 1}n, we define the Fourier coefficient of D at
w as

D̂(w) := E
X∼D

[(−1)⟨X,w⟩] = Pr
X∼D

[⟨X, w⟩ = 0 mod 2]− Pr
X∼D

[⟨X, w⟩ = 1 mod 2] .

▷ Claim 3. For any distribution D over {0, 1}n,

Hmin(D) ≥ n− log2

( ∑
w∈{0,1}n

|D̂(w)|
)

and

SD(D, U) ≤ 1
2

∑
w∈{0,1}n,w ̸=0

|D̂(w)| ,

where U is the uniform distribution over {0, 1}n.

Proof. Recall that for any x ∈ {0, 1}n,

D(x) = 1
2n

∑
w∈{0,1}n

D̂(w)(−1)⟨x,w⟩ ≤ 1
2n

∑
w∈{0,1}n

|D̂(w)| .

Therefore,

Hmin(D) = min
x∈{0,1}n

log2(1/D(x)) ≥ n− log2

( ∑
w∈{0,1}n

|D̂(w)|
)

.

Moreover, note that D̂(0) = 1,∣∣D(x)− 1
2n

∣∣ =
∣∣ 1
2n

∑
w∈{0,1}n,w ̸=0

D̂(w)(−1)⟨x,w⟩∣∣ ≤ 1
2n

∑
w∈{0,1}n,w ̸=0

|D̂(w)| .

Therefore,

SD(D, U) = 1
2 ·

∑
x∈{0,1}n

|D(x)− 1
2n
| ≤ 1

2 ·2
n ·

( 1
2n

∑
w∈{0,1}n,w ̸=0

|D̂(w)|
)

= 1
2

∑
w∈{0,1}n,w ̸=0

|D̂(w)| .◁
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The Fourier coefficients arise naturally in our context because they interact nicely with
both convolution and linear transformations, as this next well-known claim shows.

▷ Claim 4. For distributions D1, . . . , Dm over {0, 1}n and linear transformations
A1, . . . , Am ∈ Fn×n

2 , let D be the distribution given by

Pr
X∼D

[X = x] = Pr
X1∼D1,...,Xm∼Dm

[A1X1 ⊕ · · · ⊕ AmXm = x] ,

where the Xi are independent. Then,

D̂(w) = D̂1(AT
1 w) · · · D̂m(AT

mw)

for any w ∈ {0, 1}n.

Proof. We have

E[(−1)⟨w,X⟩] = E[(−1)⟨w,A1X1⊕···⊕AmXm⟩]

= E[(−1)⟨w,A1X1⟩] · · ·E[(−1)⟨w,AmXm⟩]

= E[(−1)⟨AT
1 w,X1⟩] · · ·E[(−1)⟨AT

mw,Xm⟩]

= D̂1(AT
1 w) · · · D̂m(AT

mw) . ◀

For a distribution D over {0, 1}n, integer ℓ ≥ 1, and linear transformation A : Fn
2 → Fn

2 ,
we write D

(ℓ)
A for the distribution obtained by sampling X1, . . . , Xℓ independently and

returning X1 ⊕AX2 ⊕ · · · ⊕ Aℓ−1Xℓ.

2.3 Properties of (near)-uniform distribution over the Hamming ball
The (near)-uniform distribution over the Hamming ball with a given min-entropy plays an
important role in our analysis.

▶ Definition 5. For r, n ∈ N, k ∈ R, suppose 1 ≤ r ≤ n, and n− r < k ≤ n, we define D∗
r,k

over {0, 1}n as follows,

D∗
r,k(x) :=


2−k

∑r
i=1 xi < d∗

p∗ ∑r
i=1 xi = d∗

0 otherwise,

where d∗ := min{0 ≤ d ≤ r : 2n−r · (
(

r
0
)

+
(

r
1
)

+ · · ·+
(

r
d

)
) ≥ 2k}, and

p∗ := 1(
r

d∗

) · (2−(n−r) − 2−k ·
((

r

0

)
+

(
r

1

)
+ · · ·+

(
r

d∗ − 1

)))
.

(I.e., d∗ and p∗ are chosen to make D∗
r,k a probability distribution.)

▶ Lemma 6. Let 1 ≤ r ≤ n and n− r < k ≤ n, and let D∗
r,k be defined as above. Then, for

1 ≤ i ≤ r,

D̂∗
r,k(ei) ≤ 1− c · d∗

r
≤

(
1− c(r + k − n)

6r log(2r/(r + k − n))

)
,

where c := 1− 2−(r+k−n) ≥ min( 1
2 , r+k−n

2 ).
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Proof. By symmetry, for 1 ≤ i ≤ r, j ∈ N,

r · D̂∗
r,k(ei) =

r∑
i′=1

D̂∗
r,k(ei′) =

r∑
i′=1

(1− 2 Pr
x∼D∗

r,k

[xi′ = 1]) = r − 2 E
x∼D∗

r,k

[
r∑

i′=1
xi′ ] .

Let pj := Prx∼D∗
r,k

[
∑r

i′=1 xi′ = j]. We have that

pj :=


2n−r−k

(
r
j

)
0 ≤ j ≤ d∗ − 1

2n−r
(

r
d∗

)
· p∗ j = d∗

0 otherwise.

For 1 ≤ j ≤ d∗ − 1, it holds that

j · pj + (d∗ − j) · pd∗−j ≥ (pj + pd∗−j) · (d∗/2)

because pj ≤ pd∗−j if and only if j ≤ d∗ − j 3. Hence,

2 E
x∼D∗

r,k

[ r∑
i′=1

xi′

]
=

d∗∑
j=0

(j · pj + (d∗ − j) · pd∗−j)

≥
d∗−1∑
j=1

(pj + pd∗−j) · (d∗/2) + 2d∗ · pd∗

= d∗ ·
d∗∑

i=0
pi + d∗ · (pd∗ − p0)

= d∗(1 + pd∗ − p0)
≥ d∗ · c

where the last inequality is due to pd∗ ≥ 0. Hence

D̂∗
r,k(ei) = 1−

2Ex∼D∗
r,k

[
∑r

i′=1 xi′ ]
r

≤ 1− c · d∗

r
.

The first inequality in the theorem statement follows.
To finish the proof, we prove that for k ∈ R, n− r < k ≤ n,

d∗ ≥ r + k − n

6 log(2r/(r + k − n)) .

We rely on some basic facts about binary entropy function listed in Appendix A. For p ∈ (0, 1),
the binary entropy function is H(p) := p log2(1/p) + (1− p) log2(1/(1− p)). By Fact 19, we
have

2r+k−n ≤
d∗∑

i=0

(
r

i

)
≤ 2rH(d∗/r) .

If k ≤ n − 1, then d∗ ≤ r/2. The desired conclusion follows by instantiating rH(d∗/r) ≥
r + k − n in Claim 20. If n − 1 < k ≤ n, then d∗ > r/2 > r+k−n

6 log(2r/(r+k−n)) because
r+k−n

6 log(2r/(r+k−n)) ≤ r/6 for all k ≤ n. ◀

3 Note that pj = 2n−r−k ·
(

r
j

)
, pd∗−j = 2n−r−k ·

(
r

d∗−j

)
for 1 ≤ j ≤ d∗ − 1. If pj ≤ pd∗−j , it implies(

r
j

)
≤

(
r

d∗−j

)
. Since (j + d∗ − j)/2 = d∗/2 ≤ r/2, it implies j ≤ d∗ − j. Conversely, if j ≤ d∗ − j, by

the same reason it implies
(

r
j

)
≤

(
r

d∗−j

)
and thus pj ≤ pd∗−j .
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3 Our main lemma

▶ Lemma 7. For r, n ∈ N, k ∈ R, suppose 1 ≤ r ≤ n, n− r < k ≤ n, F2-linearly independent
vectors w1, . . . , wr ∈ {0, 1}n, and a distribution D over {0, 1}n with at least min-entropy k,
we have

r∏
i=1
|D̂(wi)| ≤ 2−c(r+k−n)/6 log2(2r/(r+k−n)) .

where c = 1− 2−(r+k−n).

Proof of Lemma 7. Let D∗
r,k be defined as in Definition 5. We show that products of Fourier

coefficients at independent vectors is maximized by the products of Fourier coefficients at
basis vectors for D∗

r,k.

▷ Claim 8. For F2-linearly independent vectors w1, . . . , wr ∈ {0, 1}n and any distribution
D over {0, 1}n with min-entropy k ≤ n. we have

r∏
i=1
|D̂(wi)| ≤

r∏
i=1

D̂∗
r,k(ei) ,

where ei ∈ {0, 1}n is the ith standard basis vector.

Combining with Lemma 6, we have
r∏

i=1
|D̂(wi)| ≤

r∏
i=1

D̂∗
r,k(ei) ≤

(
1− c(r + k − n)

6r log(2r/(r + k − n))

)r

.

The desired conclusion follows (notice (1− x)r ≤ 2−rx for x ≥ 0). ◀

Proof of Claim 8. Let A ∈ Fn×n
2 be an invertible linear transformation such that AT wi = ei

for all i. Then, Hmin(AD) = Hmin(D) and ÂD(ei) = D̂(wi). So, by applying the linear
transformation A, we may assume without loss of generality that wi = ei. By possibly
flipping some bits, we may also assume that D̂(ei) ≥ 0, so that it suffices to prove that

r∏
i=1

D̂(ei) ≤
r∏

i=1
D̂∗

r,k(ei) ,

For 1 ≤ i < j ≤ r, let π : {0, 1}n → {0, 1}n be the map that swaps the ith and jth
coordinates and leaves all other coordinates untouched. Let D′ be the distribution given by
D′(x) = (D(x) + D(π(x)))/2. Notice that Hmin(D′) ≥ Hmin(D). Furthermore,

r∏
k=1

D̂′(ek) = (D̂(ei) + D̂(ej))2

4 ·
∏

k /∈{i,j}

D̂(ek) ≥
r∏

k=1
D̂(ek) ,

where the last inequality follows from the fact that (a + b)/2 ≥
√

ab for a, b ≥ 0. Therefore,
we may assume without loss of generality that D(x) = D(π(x)). By a similar argument, we
may assume that D(x) = D(x′) for any x, x′ ∈ {0, 1}n with

∑r
i=1 xi =

∑r
i=1 x′

i.
Now, suppose that there exists a vector x ∈ {0, 1}n and an index 1 ≤ i ≤ r such

that xi = 1, D(x) > 0 and D(x ⊕ ei) < 2−k. Then, let D′ be the distribution that
is identical to D except that D′(x) = D(x) − p and D′(x ⊕ ei) = D(x ⊕ ei) + p, where
0 < p ≤ min{D(x), 2−k−D(x⊕ei)}. Clearly, Hmin(D′) ≥ k and

∏r
i=1 D̂′(ei) >

∏r
i=1 D̂(ei).

So, by replacing D with D′, we may assume without loss of generality that no such x and i

exist. Together with the above assumption that D(x) = D(x′) whenever
∑r

i=1 xi =
∑r

i=1 x′
i,

this uniquely characterizes the distribution D. I.e., D = D∗
r,k. The result follows. ◁
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4 Extractability

In this section, we characterize the matrices A that yield online extractors.

▶ Definition 9. We say that a subspace S ⊆ Fn
2 is an invariant subspace of A ∈ Fn×n

2 or
A-invariant if for every w ∈ S, Aw ∈ S. We say S is non-trivial if S ̸= {0} and S ̸= Fn

2 .

There is a rich theory of invariant subspaces that is beyond the scope of this work. (See,
e.g., [8].) For our purposes, it suffices to note simply that the invariant subspaces can be
computed efficiently. In particular, the invariant subspaces correspond to factors of the
characteristic and minimal polynomials of A, and A has no non-trivial invariant subspace if
and only if the characteristic polynomial of A is irreducible.

Invariant subspaces arise naturally in this context. Indeed, if S ⊂ Fn
2 is a non-trivial

invariant subspace of A, then A will completely fail to extract from the uniform distribution
over S. We make this observation formal in Theorem 10.

▶ Theorem 10. For A ∈ Fn×n
2 , if there exists a non-trivial A-invariant subspace with

dimension r, then there exists a distribution D over {0, 1}n with min-entropy r such that
D

(m)
A = D for all m.

Proof. Let S be an A-invariant subspace with dimension r. Let D be the uniform distribution
over S with min-entropy r. Recall that Dm

A is the distribution obtained by sampling
X1, . . . , Xℓ independently from D and returning X1 ⊕AX2 ⊕ · · · ⊕ Am−1Xm. Because S

is A-invariant, it holds that y := AX2 ⊕ · · · ⊕ Am−1Xm is in the subspace S, and X1 ⊕ y

is uniformly distributed over S for an independent y ∈ S. Therefore for all m, D
(m)
A is the

uniform distribution over S. ◀

Perhaps more surprisingly, the next theorem shows that this is the only restriction. In
particular, if A has no non-trivial invariant subspace, then A extracts from any source with
min-entropy k after Õ(n2(k + 1)/k2) steps.

▶ Theorem 11. For A ∈ Fn×n
2 , if A has no non-trivial invariant subspace, then for k > 0,

and any distribution D over {0, 1}n with min-entropy at least k,

SD(D(m)
A , U) ≤ 2n−1−⌊m/n⌋· ck

6 log2(2n/k)

where c = 1− 2−k.

Proof. Because the orthogonal subspace of an A-invariant subspace is AT -invariant, AT also
has no non-trivial invariant subspace. For any non-zero w, it must therefore be the case
that w1 := w, w2 := . . . , wn := (AT )n−1w, are linearly independent. Otherwise the span
of w1, . . . , wn would be a non-trivial AT -invariant subspace. By applying Lemma 7 with
r = n, we obtain

n−1∏
i=0
|D̂((AT )iw)| =

n∏
i=1
|D̂(wi)| ≤ 2−ck/6 log2(2n/k) , (1)

where c = 1− 2−k. Therefore, for any non-zero w,

|D̂(m)
A (w)| =

m−1∏
i=0
|D̂((AT )iw)| =

⌊m/n⌋−1∏
j=0

n−1∏
i=0
|D̂((AT )jn+iw)| ≤ 2−⌊m/n⌋· ck

6 log2(2n/k)

where the last inequality is due to (AT )jnw ̸= 0 and (1).

ITC 2021
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By applying Claim 3,

SD(D(m)
A , U) ≤ 1

2 ·
∑

w∈{0,1}n,w ̸=0

|D̂(m)
A (w)| ≤ 2n−1−⌊m/n⌋· ck

6 log2(2n/k) ,

as desired. ◀

We remark that a better upper bound can be obtained by using SD(D(m)
A , U) ≤ 1

2 ·√∑
w∈{0,1}n,w ̸=0 D̂

(m)
A (w)2 instead of Claim 3. Because it yields the same (asymptotic)

upper bound on the number of required steps, we do not include it for the sake of simplicity.
We note in passing that the matrix A corresponding to multiplication by a generator of a

finite field is a particularly nice example satisfying the condition of Theorem 11. That is, if
we interpret y = (y1, . . . , yn) ∈ {0, 1}n as the polynomial y1 + y2t + · · ·+ yntn−1 ∈ F2[t]/p(t)
for some irreducible polynomial p(t) ∈ F2[t] of degree n. Then, the matrix A corresponding
to multiplication by t has no non-trivial invariant subspace4 and thus yields a good extractor.
This matrix has the convenient property that it is quite sparse – with all columns except the
last having a single non-zero entry.

5 Condensibility

We now turn our attention to linear online condensers. Our results will be in terms of the
concept of the A-rank of a vector w ∈ Fn

2 , defined below.

▶ Definition 12. For any A ∈ Fn×n
2 , the A-orbit of a vector w ∈ {0, 1}n is the set {Akw}∞

k=0.
The linear orbit [w] of w is the subspace spanned by A-orbit of w.

▶ Definition 13. For any A ∈ Fn×n
2 , the A-rank of a vector w ∈ {0, 1}n is the maximal

integer r such that the set of vectors {w, Aw, . . . , Ar−1w} is linearly independent. We use
rankA(w)5 to denote A-rank of w.

One can efficiently compute the number of vectors with a given A-rank by computing the
minimal polynomial of A [8].

▶ Proposition 14. For A ∈ Fn×n
2 , w ∈ {0, 1}n with the A-rank r, the linear orbit [w] is an

invariant subspace of dimension r. Moreover,

[w] = span(w, Aw, . . . , Ar−1w) .

The above proposition shows that the A-rank of w characterizes the minimal invariant
subspace V containing w: if the A-rank of w is r, then the first r vectors in the A-orbit
are linear independent and thus generate V . In particular, if A has no non-trivial invariant
subspace, then every w ∈ Fn

2 \ {0n} has A-rank n.
Our next theorem gives a partial characterization of matrices A that yield good linear

online condensers in terms of AT -rank and the number of vectors with small AT -rank. This
yields a natural generalization of Theorem 11.

4 To see this, suppose for contradiction that there exists a non-trivial t-invariant subspace V ⊂ F2[t]/p(t).
Then, for any x ∈ V , we must have that x, tx, . . . , tn−1x are linearly dependent (since otherwise V is
either not invariant or V = Fn

2 is non-trivial). Since F2[t]/p(t) is a field, if V ̸= {0}, we must also have
that 1, t, . . . , tn−1 are linearly independent. This means that t is a root of a polynomial with degree at
most n− 1, contradicting the assumption that p is irreducible.

5 In linear algebra, our notation rankA(w) is the same as the maximal dimension of a Krylov subspace
generated by A and w.
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▶ Theorem 15. For any invertible A ∈ Fn×n
2 , if there are at most N vectors in {0, 1}n with

AT -rank less than r, then for any real number g := n− r < k ≤ n and any distribution D

over {0, 1}n with min-entropy at least k,

Hmin(D(m)
A ) ≥ n− log2(N + 2n−⌊m/n⌋· c(k−g)

6 log2(2r/(k−g)) )

where c = 1− 2−(k−g).

Proof. For any w ∈ {0, 1}n with AT -rank at least r, then there are at least r-linear
independent vectors among w, . . . , (AT )n−1w, denoted as w1, . . . , wr. By Lemma 7, it
implies

n−1∏
i=0
|D̂((AT )iw)| ≤

r∏
i=1
|D̂(wi)| ≤ 2− c(k−g)

6 log2(2r/(k−g)) ,

where c = 1− 2−(k−g). Moreover, because A is invertible, (AT )nw has the same AT -rank as
w. We have that,

|D̂(m)
A (w)| =

m−1∏
i=0
|D̂((AT )iw)| ≤

⌊m/n⌋−1∏
j=0

n−1∏
i=0
|D̂((AT )jn+iw)| ≤ 2−⌊m/n⌋· c(k−g)

6 log2(2r/(k−g))

Because there are at most N vectors with AT -rank less than r and |D̂(m)
A (w)| ≤ 1 for every

w, it holds that∑
w∈{0,1}n

|D̂(m)
A (w)| ≤ N · 1 +

∑
w:rankAT (w)≥r

|D̂(m)
A (w)| ≤ N + 2n · 2−⌊m/n⌋· c(k−g)

6 log2(2r/(k−g)) .

By applying Claim 3,

Hmin(D) = n− log2

( ∑
w∈{0,1}n

|D̂(w)|
)
≥ n− log2(N + 2n−⌊m/n⌋· c(k−g)

6 log2(2r/(k−g)) ) ,

as desired. ◀

Theorem 15 implies that any distribution with > n − r bits of min-entropy can be
condensed into at least n− log2 N bits. Notice that Theorem 15 is non-vacuous if N < 2r.
Moreover, the constraint k > n − r is tight. If there exists a vector with AT -rank r, then
there is an AT -invariant subspace V of dimension r, which in particular contains 2r vectors
of AT -rank at most r. Then, by Theorem 10 the distribution D that is uniform over the
subspace orthogonal to V has min-entropy n− r but D

(m)
A = D for all m.

Rotation

Finally, as an application of this result, we show that rotation yields a good condenser for
some n. (Moreover, if we assume an additional minor condition on the distribution D, we
actually get an extractor.)

We write rotn for the linear transformation over {0, 1}n which rotates the coordinates of
a vector x by 1. In other words,

rotn((x1, . . . , xn)) := (x2, x3, . . . , xn, x1) .

ITC 2021
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Our first observation is that {x : xi = xi+d, ∀1 ≤ i ≤ n− d} is an invariant subspace of
any rotation when d < n is a divisor of n. By Theorem 10, rotn therefore cannot extract
from sources with min-entropy d for d < n a divisor of n. Moreover, rotations in general
cannot condense from a single bit of randomness because of the invariant subspace {0n, 1n}
and cannot condense beyond n − 1 bits of randomness because of the invariant subspace
{x : x1 ⊕ · · · ⊕ xn = 0}. Therefore, the best we can hope for is to condense from k > 1 bits
of entropy to n− 1 bits of entropy for n prime.

We show that rotn does in fact achieve this as long as n is a prime satisfying a natural
number-theoretic condition. Indeed, this follows from Theorem 15 together with the following
lemma due to Vazirani [17].

▶ Lemma 16 ([17]). If n is a prime such that 2 generates Z∗
n (e.g., 5, 29, 37), then all

w ∈ {0, 1}n \ {1n, 0n} have rotn-rank at least n− 1.

Plugging into Theorem 15 yields the following. In particular, for such primes, rotn

condenses from k > 1 bits to n− 1 bits in at most m = Õ(n2k/(k − 1)2) steps.

▶ Corollary 17. If n is a prime with 2 is a primitive root for Z∗
n, then for any real number

1 < k ≤ n, and distribution D over {0, 1}n with at least min-entropy k,

Hmin(D(m)
rotn

) ≥ n− log2(2 + 2n−⌊m/n⌋· c(k−1)
6 log2(2(n−1)/(k−1)) ).

where c = 1− 2−(k−1).

Finally, we note that our proof of Theorem 15 actually yields a statement about extraction
as well, which we present here in the special case of rotation. Specifically, in the proof of
Theorem 15, we used the trivial bound of |D̃(w)| ≤ 1 for low-rank w. If we instead happen
to know a better bound on the Fourier coefficient explicitly for the single non-zero low-rank
vector for rotation, 1n, we see that we can actually extract.

▶ Theorem 18. For primes n such that 2 generates Z∗
n, and for 1 < k ≤ n, a distribution D

over {0, 1}n with at least min-entropy k,

SD(D(m)
rotn

, U) ≤ 1
2 ·

(
|D̂(1n)|m + 2n−⌊m/n⌋· c(k−1)

6 log2(2(n−1)/(k−1))
)

where c = 1− 2−(k−1).

Theorem 18 implies that for such primes n, rotation yields a good online linear extractor
for distributions D with small |D̂(1n)| and min-entropy strictly larger than one. Notice that
the two counterexamples that we discussed in the definition – the uniform distribution over
{0n, 1n}, and the uniform distribution over all strings with even Hamming weight – show
that one of these conditions alone is not enough.
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A Facts about binary entropy function

▶ Fact 19. For 0 ≤ d ≤ ℓ/2,

d∑
i=0

(
ℓ

i

)
≤ 2ℓH(d/ℓ).

▷ Claim 20. [5] For every p ∈ (0, 1/2],

H(p)
6 log2(2/H(p)) ≤ p ≤ H(p)

log2(1/H(p)) .

We include the proof from [5] for completeness.

Proof. The upper bound on p follows from the inequality H(p) ≥ p log2 1/p. Applying twice
we obtain

1
p
≥ 1

H(p) log2
1
p
≥ 1

H(p) log2( 1
H(p) log2

1
p

) ≥ 1
H(p) log2

1
H(p)

because 1/p ≥ 2. For the lower bound, we apply H(p) ≤ 2p log2 1/p twice to obtain

1
p
≤ 2

H(p) log2
1
p
≤ 2

H(p) log( 2
H(p) log2

1
p

).

Now 2/H(p) ≥ (1/p) log2(1/p) ≥
√

log2(1/p), which is true for every p ∈ (0, 1]. Therefore,

1
p
≤ 2

H(p) log2
( 8

H(p)3

)
= 6

H(p) log2
( 2

H(p)
)
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15:2 Code Offset in the Exponent

1 Introduction

Fuzzy extractors [13] permit derivation of a stable key from a noisy source. Specifically,
given a reading e from the noisy source, the fuzzy extractor produces a pair (key, pub),
consisting of a derived key and a public value; the public value pub must then permit key to
(only) be recovered from any e′ that is sufficiently close to e in Hamming distance. Fuzzy
extractors are the emblematic technique for robust, secure key derivation from biometrics
and physical unclonable functions. These applications place special emphasis on the source
distribution and for this reason a principal goal of fuzzy extractor design is to precisely
identify those distributions over e for which extraction is possible and, moreover, produce
efficient constructions for these distributions.

Despite years of work, existing constructions do not simultaneously secure practical
sources while retaining efficient recovery. Canetti et al.’s construction [8, 9] is secure for the
widest variety of sources. However, Simhadri et al.’s [31] implementation for the iris estimates
only 32 bits of security with algorithms that take ≈ 10 seconds on a 32-core machine.

The fuzzy extraction problem is well-understood in the information-theoretic setting,
where the fundamental quantity of interest is the fuzzy min-entropy [18, 19] of the distribution
of e; this measures the total weight of an arbitrarily centered ball of radius t in the probability
distribution over e. While this measure is sufficient for determining the feasibility of
information-theoretic fuzzy extraction for a distribution, it doesn’t indicate whether it
is possible in polynomial time [18, 34]. In the information-theoretic setting, it is not
possible to build an information-theoretic fuzzy extractor that simultaneously works for all
distributions [18, 17, 19]. That is, a fuzzy extractor exists for each distribution with fuzzy
min-entropy but no construction can secure all such distributions.

One can hope to sidestep these limitations by providing only computational security [15,
16]. However, even in this more favorable setting no universal theory has emerged without
resorting to general purpose obfuscation. Two known fuzzy extractors use “computational”
tools1 to correct errors, they are:

Canetti et al.’s [8, 9] construction explicitly places random subsets of e in a digital
locker [7] and records the indices used in each subset. To recover, one attempts to open
each digital locker with subsets of the value e′. Canetti et al.’s construction is secure
when a random subset of locations is hard to predict (Definition 10). However, Simhadri’s
implementation for the iris provides poor security (32 bits) in order to run in 10 seconds
and still requires millions of digital lockers [31].
Fuller et al. [15, 16] modify the code-offset construction [24]. The code-offset construction
construction is determined by a linear error-correcting code A ∈ Fn×kq and a secret,
uniformly random x ∈ Fkq ; given a sample e ∈ Fnq from the noisy source, the construction
publishes the pair pub = (A,Ax + e) . All operations are carried out over the field
with q elements. To reproduce the value e note that with a second sample e′ from
the source – which we assume has small Hamming distance from e2 – the difference
(Ax + e)− e′ = Ax + (e− e′) is evidently close to the codeword Ax. By decoding the
error correcting code one can recover x (and e).3 Security analysis of the code offset
treats Ax as a biased one time pad, proving that Ax + e leaks no more than (n− k) log q

1 Multiple computational fuzzy extractors retain the information-theoretic core and analyze it using
standard information-theory techniques [32, 33]; these works are subject to the above limitations.

2 It is also possible to consider other distances between e and e′. However the error correction techniques
required are different. We consider Hamming error in this work.

3 Applying a randomness extractor [25] on either x or e yields a uniform key.
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bits about e. However, many real distributions have entropy less than (n− k) log q, which
we call low entropy, for which this analysis provides no security guarantee. To support low
entropy distributions, Fuller et al. instantiate this construction with A being randomly
distributed and show security whenever the distribution over e yields a secure learning
with errors (LWE) instance. Known LWE error distributions consider i.i.d. symbols
(discretized Gaussian [28] and uniform interval [14]).

The digital locker construction supports more distributions (i.i.d. symbols implies that all
subsets have entropy). Both constructions use information set decoding [26], that is, repeated
selection of random subsets of coordinates with the hope to find a subset with no errors.

The digital locker construction comes with an important drawback. Many physical sources
are sampled along with correlated side information that is called confidence. Confidence
information is a secondary probability distribution z (correlated with the reading e) that
can predict the error rate in a symbol ei. When zi is large this indicates that the symbol of
ei is less likely to differ. Examples include the magnitude of a convolution in the iris [31]
and the magnitude of the difference between two circuit delays in ring oscillator PUFs [22].
By considering bits with high confidence it is possible to reduce the effective error rate from
t = n/10 to t = 3n/106 [22]. For a subset size of 128 and t = n/10 unlocking with 95%
probability requires testing approximately 2 · 106 subsets while t = 3n/106 requires testing a
single subset. This confidence information cannot be used in the digital locker construction
as subsets are specified at enrollment time whereas confidence information is determined
when e is drawn. The LWE construction can use this information [23] as it allows on-the-fly
testing of all large enough subsets. Confidence information is critical: fuzzy extractors that
secure low entropy distributions do not support t = Θ(n) which is demonstrated in practice,
leading to inefficient implementations. Because constructions are used with sources beyond
their designed error tolerance any reduction in error rate has a drastic impact on efficiency
(see Subsection 3.2).

Our contributions

This work introduces the code offset in the exponent construction. Code offset in the exponent
yields the first reusable fuzzy extractor that simultaneously

allows the symbols of e to be correlated,
supports structured but low entropy distributions over e (less than (n− k) log q), and
allows the use of confidence information for improved efficiency.

This work introduces the Code Offset in the Exponent problem:

Distinguish rAx+e, given (A, r), from a random tuple of group elements, where r is
a random generator of a prime order group, A is a suitable linear code, and x is a
uniform dimension k vector.

A natural fuzzy extractor constructor exists when rAx+e has such pseudorandom properties.
We show that when the group effectively limits the adversary to linear operations – by
adopting the generic group model – the resulting fuzzy extractor is secure for many low
entropy distributions while retaining the ability to use confidence information. This allows
code offset in the exponent to benefit from the efficiency gains of using confidence information
while remaining secure for a large family of distributions. Specifically, we present three
contributions:
Sec 1.1 We define the code offset in the exponent construction and show that it yields a

reusable fuzzy extractor if the distribution on e is good enough.

ITC 2021
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Sec 1.2 We define and describe what constitutes good enough in the generic group model
with a novel information-theoretic sufficient condition we call MIPURS.

Sec 1.3 We characterize MIPURS, establishing containment relations between MIPURS and
the secured distributions in Canetti et al. [8] and Fuller et al. [15] (see Figure 1).

We then review further related work and offer a table of comparisons (Sec 1.4). Section 2
covers definitions and preliminaries including the MIPURS condition. Section 3 details the
code offset in the exponent construction. Section 4 characterizes MIPURS distributions.

1.1 Code offset in the exponent
Code offset in the exponent is motivated by the observation that reproduction of e in the LWE
construction uses only linear operations. Thus, we explore an adaptation of the code offset
construction that effectively limits the adversary to linear operations by translating all relevant
arithmetic into a “hard” group. Specifically, we introduce code offset in the exponent: If r is
a random generator for a cyclic group G of prime order q, we consider pub = (A, r, rAx+e)
where we adopt the shorthand notation rv, for a vector v = (v1, . . . , vn)⊺ ∈ (Zq)n, to indicate
the vector (rv1 , . . . , rvn)⊺. This construction possesses strong security properties under
natural cryptographic assumptions on the group G. We focus on code-offset in the exponent
with a random linear code (given by A) and adopt the generic group model [30] to reflect the
cryptographic properties of the underlying group. As stated above, the goal is to characterize
the distributions on e for which rAx+e given (A, r) is pseudorandom. Pseudorandomness
suffices to show security of a fuzzy extractor that leaks nothing about e. Analysis of this
construction is most natural when e has symbols over a large alphabet, but binary e can be
amplified (see Section 3.1).

Looking ahead, if one uses a random generator in each enrollment the construction allows
multiple (noisy) enrollments of e, known as a reusable fuzzy extractor [6]. The reusability
proof uses the details of the generic group proof, while the one time analysis is just based on
pseudorandomness. See the full version of this work for details of that proof.

1.2 When is code offset in the exponent hard?
In the generic group model, we establish that distinguishing code offset in the exponent from
a random vector of group elements is hard (Theorem 4) for any error distribution e where
the following game is hard to win for any information-theoretic adversary A:4

Experiment EMIPURS
A,e (n, k):

ψ ← e; A $← Fn×kq .
(b, g)← A(A, e).
If b ∈ null(A), b ̸= 0⃗ and ⟨b, ψ⟩ = g output 1.
Output 0.

Observe that the role of the random matrix A in the game above is merely to define a random
subspace of (typical) dimension k.

We call this condition on an error distribution MIPURS or maximum inner product
unpredictable over random subspace. Specifically, a random variable e over Fnq is (k, β)–
MIPURS if for all A (which knows the distribution of e but not the sampled value ψ),
Pr[EMIPURS

A,e (n, k) = 1] ≤ β.

4 We use boldface to represent random variables, capitals to represent random variables over matrices,
and plain letters to represent samples. We use ψ to represent samples from e to avoid conflict with
Euler’s number.
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When e is a (k − Θ(1), β)–MIPURS distribution for a code with dimension k and β =
ngl(n) then code-offset in the exponent yields a fuzzy extractor in the generic group model
(Theorem 5). Showing this requires one additional step of key extraction; we use a result of
Akavia, Goldwasser, and Vaikuntanathan [1, Lemma 2] which states that dimensions of x
become hardcore once there are enough dimensions for LWE to be indistinguishable. This
reduction is entirely linear and holds in the generic group setting.

MIPURS is necessary. When A is information theoretic, for all distributions e that are
not MIPURS one can find a nonzero vector b in the null space of A whose inner product with
e is predictable, thus predicting ⟨b,Ax + e⟩ = ⟨b, e⟩ ?= g. This is not the case for a uniform
distribution, U: the value ⟨b,U⟩ is uniform (and thus is ⟨b,U⟩ = g with small probability if
the size of q is super polynomial). Thus the vector b serves as a way to distinguish Ax + e
from U.

Beullens and Wee [3] recently introduced the KOALA assumption which roughly assumes
that an adversary’s only mechanism for distinguishing a vector from a subspace from random
is by outputting a vector that is likely to be the null space of the provided vector. This can
be seen as specializing [11, Assumption 5] that vectors can only be distinguished by fixed
inner products.

The adversary has more power in the MIPURS setting (than in KOALA) in three ways.
First, the distribution e and thus Ax + e is not linear, second the adversary doesn’t have to
“nullify” all subspaces – only a single vector, and third, the adversary can predict any inner
product, not just 0. One can view MIPURS as an assumption on a group: Whenever an
adversary can distinguish the (nonlinear) vector Ax + e from uniform that there is another
adversary that can choose some b and predict ⟨b, Ax + e⟩ (in our setting this choice of b is
after seeing A). Theorem 4 can be interpreted as the MIPURS “assumption” holding in the
generic group model.

1.3 Supported Distributions
Our technical work characterizes the MIPURS property (summarized in Figure 1). The
most involved relationship is showing that all high entropy sources are MIPURS. To provide
intuition for our results, we summarize this result here.

For any d = poly(n) there is an efficiently constructible distribution e whose entropy is
approximately log(dqn−k−1) where the MIPURS game is winnable by an efficient adversary
with noticeable probability: For 1 ≤ i ≤ d, sample some d random linear spaces Bi of
dimension n − k − 1 and define Ei to be all points in a random coset gi of Bi. Consider
the following distribution e: Pick i ← {1, ..., d} for some polynomial size d then output a
random element of Ei. The support size of this distribution is approximately dqn−k−1. Then
since null(A) has dimension at least n − k, ∃bi ̸= 0⃗ such that bi ∈ null(A) ∩ null(Bi)
(since dim(null(A)) + dim(null(Bi)) > n). The adversary can calculate these bi’s. Then
the adversary just picks a random i and predicts (bi, gi).5 This result is nearly tight: all
distributions whose entropy is greater than log(poly(n)qn−k) are MIPURS. Note this is a
factor of q away from matching the size of our counterexample for a random code. Informally,
this yields the following (see Corollary 25):

▶ Theorem 1 (Informal). Let n, k ∈ Z be parameters. Let q = q(n) be a large enough
prime. For all e ∈ Znq whose minentropy is at least ω(log n) + log(qn−k), there exists some
β = ngl(n) for which e is (k, β)–MIPURS.

5 If A is some fixed code (chosen before adversary specifies e), then Ei can directly be a coset of A and
one can increase the size of E to dqn−k.
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As mentioned above, information theoretic analysis of code offset provides a key of length
ω(log n) when the initial entropy of e is at least ω(log n)+(n−k) log(q). However, information
theoretic analysis of code offset reduces the entropy of e which may allow prediction of sensitive
attributes. In the generic group analysis no predicate of e is leaked. The generic group
analysis also allows the construction to be safely reused multiple times (with independent
generators).

Proof Intuition

Suppose in the above game the adversary generated e as the span of a linear space E with
the goal that null(A) ∩ null(E) ⊃ {⃗0}. For a random, independent B def= null(A), the
probability of B and null(E) overlapping is noticeable only if the sum of the dimensions
is more than n (Lemma 19). This creates an upper bound on the dimension of E of n− k
(ignoring the unlikely case when A is not full rank).

Our proof is dedicated to showing that the general case (where E is not linear) does not
provide the adversary with more power. First we upper bound the size of a set E where
each vector is predictable in the MIPURS game. We show for a random sample from E to
have a large intersection with a low dimensional space requires E to have size at least that
of the low dimensional space (Lemma 18). In Lemma 20, we switch from measuring the size
of intersection of a sample of E with respect to the worst case subspace to how “linear” E
is with respect to the worst vector in an average case subspace. This result thus controls
an “approximate” algebraic structure in the sense of additive combinatorics. We show the
adversary can’t do much better on a single vector b as long as it is chosen from a random B.

The above argument considers the event that the adversary correctly predicts an inner
product of 0; this can be transformed to an arbitrary inner product by a compactness
argument which introduces a modest loss in parameters (Theorem 22). Once we have a
bound on how large a predictable set E can be, another superlogarithmic factor guarantees
that all distributions e with enough minentropy are not predictable.

1.4 Further Related Work
We have already introduced the work of Canetti et al. [8] and Fuller et al. [16]. Canetti et
al. [8] explicitly place some subsets into a digital locker, for security they require that an
average subset has average min-entropy, which we call average subsets have entropy.

Lemma 11 shows that the MIPURS condition is contained in average subsets have entropy.
This containment is proper, we actually show that there are distributions where all subsets
have entropy that are not MIPURS. Suppose that e is a Reed-Solomon code, then all subsets
of e have entropy but as long as the dimension of the code < n− k − 1 then the null space
of e is likely to intersect with null(A) (Prop. 14).

There are also MIPURS sources where not all subsets have entropy. Consider a uniform
distribution over n−k coordinates with a fixed value in the remaining k coordinates (Prop. 13).
Since null(A) is unlikely to have non zero coordinates only at these fixed k coordinates,
predicting the inner product remains difficult. Fortunately, multiplying a binary source where
all subsets have entropy by a random vector produces a location source which is contained in
MIPURS. It is this transformation we recommend for actual biometrics, see Section 3.1.

One can additionally build a good fuzzy extractor assuming a variant of multilinear
maps [5]. Concurrent work of Galbraith and Zobernig [20] introduces a new subset sum
assumption to build a secure sketch that is able to handle t = Θ(n) errors; they conjecture
hardness for all securable distributions. A secure sketch is the error correction component in
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Figure 1 Implications between different types of supported distributions for fuzzy extraction.
Arrows are implications. All shown implications are proper. Location sources are those that have
random group elements in some locations with zeroes in other locations but it is hard to find a
subset of all zero locations. A location source can be produced as the component wise product of a
binary source where all subsets have entropy and a random vector of group elements. We consider
this type of distribution in Section 3.1.

most fuzzy extractors. Their assumption is security of the cryptographic object and deserves
continued study. A line of works [32, 33] use information-theoretic tools for error correction
and computational tools to achieve additional properties. Those constructions embed a
variant of the code offset. Table 1 summarizes constructions that use computational tools for
the “correction” component and the traditional information theoretic analysis of the code
offset construction.

2 Notation and Preliminaries

2.1 Notation
We use boldface to represent random variables, capitals to represent random variables over
matrices or sets, and corresponding plain letters to represent samples. As one notable
exception, we use ψ to represent samples from e to avoid conflict with Euler’s number. We
denote the exponential function with exp(·). When defining ranges for parameters, we use [
and ] to indicate ranges inclusive of indicated values and ( and ) to indicate ranges exclusive
of the indicated values. For random variables xi over some alphabet Z we denote the tuple
by x = (x1, ...,xn). For a vector v we denote the ith entry as vi. For a set of indices J , xJ
denotes the restriction of x to the indices in J . For m ∈ N, we let [m] = {1, . . . ,m}, so that
[0] = ∅. We use the notation span(S) to denote the linear span of a set S of vectors and apply
the notation to sequences of vectors without any special indication: If F = (f1, . . . , fm) is a
sequence of vectors, span(F ) = span({fi | i ∈ [m]}). The min-entropy of a random variable
x is H∞(x) = − log(maxx Pr[x = x]).

We consider the Hamming metric. Let Z be a finite set and consider elements of Zn; then
we define dis(x, y) = |{i | xi ̸= yi}|. Un denotes the uniformly distributed random variable
on {0, 1}n. Logarithms are base 2. We denote the vector of all zero elements as 0. We let ·c
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15:8 Code Offset in the Exponent

Table 1 Comparison of computational techniques for fuzzy extractors. Many schemes [32, 33] use
information theoretic techniques for information reconciliation and these are grouped together. These
techniques all inherit the information theoretic analysis on the strength of information reconciliation.
Reuse is denoted as G# if reuse is supported with some assumption about how multiple readings
are correlated and  if no assumption is made. See Figure 1 for relations between supported
distributions. The LWE works considered the setting when k = Θ(n) which leads to t = Θ(log n). If
one sets k = ω(log n) one can achieve error tolerance of o(n) using the analysis in this work, we thus
present the more favorable regime for the above comparison.

Construction Supported low entropy dist. Reuse Error rate (t) Weakness
Code Offset [13] - G# Θ(n)
LWE [2, 15] Independent G# o(n)
Subset sum [20] Fuzzy min-ent. # Θ(n) Assumes security
Grey box obf. [5] Fuzzy min-ent. # Θ(n) Multilinear maps
Digital Locker [8] Average Subsets have Ent.  o(n) No confidence info
This work MIPURS  o(n)

denote component-wise multiplication. In our theorems we consider a security parameter
γ, when we use the term negligible and super polynomial, we assume other parameters are
functions of γ. We elide the notational dependence of other parameters on γ.

2.2 Fuzzy Extractors

Our motivating application is a new fuzzy extractor that performs error correction “in the
exponent.” A fuzzy extractor is a pair of algorithms designed to extract stable keys from a
physical randomness source that has entropy but is noisy. If repeated readings are taken
from the source one expects these readings to be close in an appropriate distance metric
but not identical. We consider a generic group version of security (computational security is
defined in [15], information-theoretic security in [13]).

Before introducing the definition, we review some notation from the generic group model;
the model is reviewed in detail in the full version of this work. Let G be a group of prime
order q. For each element r ∈ G in the standard game, rather than receiving r, the adversary
receives a handle σ(r) where σ is a random function with a large range. The adversary is
given access to an oracle, which we denote as OσG, which given x = σ(r1), y = σ(r2) computes
σ(σ−1(x) + σ−1(y)); when σ can be inferred from context, we write OG. Since the adversary
receives random handles they cannot infer anything about the underlying group elements
except using the group operation and testing equality. We assume throughout that the range
of σ is large enough that the probability of a collision is statistically insignificant (that is
≪ 1/q).

We overload the notation σ(·) to apply to tuples and, furthermore, adopt the convention
that σ(·) is the identity on non-group elements; thus, it can be harmlessly applied to all
inputs provided to the adversary. Specifically, when z

def= z1, . . . , zn then σ(z) only passes zi
through σ if zi ∈ Gq. For example, if z = (r,A, rAx+w), then σ(z) = (σ(r),A, σ(rAx+w)).

▶ Definition 2. Let E be a family of probability distributions over the metric space (M, dis).
A pair of procedures (Gen : M → {0, 1}κ × {0, 1}∗,Rep : M× {0, 1}∗ → {0, 1}κ) is an
(M, E , κ, t)-fuzzy extractor that is (ϵsec,m)-hard with error δ if Gen and Rep satisfy the
following properties:
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Correctness: if dis(ψ,ψ′) ≤ t and (key, pub)← Gen(ψ), then

Pr[Rep(ψ′, pub) = key] ≥ 1− δ.

Security: for any distribution e ∈ E , the string key is close to random conditioned on pub
for all A making at most m queries to the group oracle OG, that is∣∣Pr[AOG(σ(key, pub)) = 1]− Pr[AOG(σ(U, pub)) = 1]

∣∣ ≤ ϵsec.
Where the probability of the statement is taken over σ $← Σ and key, pub)← Gen(e).

We also assume that the adversary receives σ(1). The errors are chosen before pub: if the
error pattern between ψ and ψ′ depends on the output of Gen, then there is no guarantee
about the probability of correctness.

2.3 The MIPURS condition
In this section, we introduce our novel Maximum Inner Product Unpredictable over Random
Subspace (MIPURS) condition.

▶ Definition 3. Let e be a random variable taking values in Fnq and let A be uniformly
distributed over Fn×kq and independent of e. We say that e is a (k, β)−MIPURS distribution
if for all random variables b ∈ Fnq ,g ∈ Fq independent of e (but depending arbitrarily on A
and each other)

E
A

[
Pr
[
⟨b, e⟩ = g and b ∈ null(A) \ 0⃗

]]
≤ β .

To see the equivalence between this definition and the game presented in the introduction,
the random variables b and g can be seen as encoding the “adversary” and quantifying over
all (b,g) is equivalent to considering all information-theoretic adversaries.

▶ Theorem 4. Let γ be a security parameter. Let q be a prime and n, k ∈ Z+ with k ≤ n ≤ q.
Let A ∈ Fn×kq and x ∈ Fkq be uniformly distributed. Let e be a (k, β)−MIPURS distribution.
Let u ∈ (Fq)n be uniformly distributed. Let Σ be the set of random functions with domain of
size q and range of size q3. Then for all adversaries D making at most m queries∣∣∣∣∣ Pr

σ
$←Σ

[DOG(A, σ(Ax + e)) = 1]− Pr[DOG(A, σ(u)) = 1]

∣∣∣∣∣ < µ

(
3
q

+ β

)

for µ = ((m+ n+ 2)(m+ n+ 1))2
/2. If 1/q = ngl(γ), n,m = poly(γ), and β = ngl(γ)

then the statistical distance between the two cases is ngl(γ).

In the above, the adversary is provided the code directly in the group, not its image in
the handle space. The proof of Theorem 4 is a relatively straightforward application of the
simultaneous oracle game introduced by Bishop et al. [4, Section 4]; this proof appears in
the full version of this work.

3 A Fuzzy Extractor from Hardness of Code Offset in the Exponent

One can directly build a fuzzy extractor out of any e that satisfies the MIPURS condition. To
do so, one instantiates the code-offset construction “in the exponent” and then uses hardcore
elements of x as the key.
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▶ Construction 1. Let γ be a security parameter, t be a distance, k = ω(log γ), α ∈ Z+,
ℓ ∈ Z+, let q be a prime and let Gq be a cyclic group of order q. Let Fq be the field with q
elements. Suppose that e and e′ ∈ Fnq , and let dis be the Hamming metric. Define (Gen,Rep)
as follows:

Gen(ψ = ψ1, . . . , ψn)
1. Sample generator r of Gq.
2. Sample A← Fn×(k+α)

q , x← Fk+α
q .

3. For i = 1, ..., n: set rci = rAi·x+ψi .
4. Set key = rx0 , ..., rxα−1 .
5. Set pub = (r, A, {rci}ni=1).
6. Output (key, pub).

Rep(ψ′, pub = (r,A, rc1 . . . rcn ))
1. For i = 1, ..., n, set rc′

i = rci/rψ
′
i .

2. For i = 1, ..., ℓ:
(i) Sample Ji ⊆ {1, ..., n} where |J | = k + α.
(ii) If A−1

Ji
does not exist go to 2.

(iii) Compute rs = r
A−1

Ji
c′

Ji .
(iv) Compute rc′′

= rAs.
(v) If dis(rc′

, rc′′
) ≤ t, output rs0 , ..., rsα .

3. Output ⊥.

▶ Theorem 5. Let c be a constant. Let all parameters be as in Construction 1. Let E be the
set of all (k, β)-MIPURS distributions. Suppose that

k′
def= k + α = o(n) and k′ = ω(log n),

t is such that tk′ ≤ cn log n for some constant c, which with the above implies t = o(n),
Let δ′ > 0 be some value,
Let η > 0 be some constant and let ℓ = n2(1+η)c log 1

δ′ , and
Let δ be some value such that δ ≤ δ′ + exp(−Ω(n)).

Then (Gen,Rep) is a (Fnq , E , |Fαq |, t)-fuzzy extractor that is (ϵsec,m)-hard that is correct with
probability 1− δ for all adversaries in the generic group model (making at most m queries)
where

ϵsec =
(

((m+ n+ 2)(m+ n+ 1))2

2

)(
3
q

+ β

)
.

The proof of Theorem 5 is shown in the full version of this work [12].

3.1 Handling binary sources
In this section we show one way to transform binary sources to a good MIPURS distribution
and consider the associated impact on correctness. Assume that the source e takes binary
vlaues and all subsets of e are hard to predict, one can form a MIPURS distribution by
multiplying by an auxiliary random and uniform random variable r ∈ Fnq . This has the effect
of placing random errors in the locations where ei = 1. Since decoding finds a subset without
errors (it does not rely on the magnitude of errors) we can augment errors into random errors.
We prove that this augmented vector is MIPURS in Section 4.

However, this transform creates a problem with decoding. When bits of e are 1, denoted
ei = 1 we cannot use location i for decoding as it is a random value (even if e′j = 1 as well).
When one amplifies a binary e, we recommending using another uniform random variable
y ∈ {0, 1}n and check when yi ̸= ei to indicate when to include a random error. Then
in reproduction the algorithm should restrict to locations where yi = ei. Using Chernoff
bounds one can show this subset is big enough and the error rate in this subset is not much
higher than the overall error rate (except with negligible probability). If k + α is just barely
ω(log n) one can support error rates that are just barely o(n).

To introduce the construction we first need to formalize the required property of the
distribution e. We introduce a notion called all subsets have entropy:
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▶ Definition 6. Let a source e = e1, . . . , en consist of n-bit binary strings. For some
parameters k and β we say that the source e is a source where all k-subsets have entropy
β if H∞(ej1 , . . . , ejk

) ≥ β for any 1 ≤ j1, . . . , jk ≤ n, ja ̸= jb for a ̸= b.

▶ Construction 2. Let γ be a security parameter, t be a distance, k = ω(log γ), α ∈ Z+, q be
a prime and let Gq be some cycle group of order q. Let Fq be the field with q elements. Let
E ∈ {0, 1}n and let dis be the Hamming metric. Let τ = max(0.01, t/n). Define (Gen,Rep)
as follows:

Gen(ψ = ψ1, ..., ψn)
1. Sample random generator r of Gq.
2. Sample A← (Fq)n×(k+α),
3. Sample x← (Fq)k+α.

4. Sample y $← {0, 1}n.
5. For i = 1, ..., n:

(i) If ψi = yi, set rci = rAi·x.
(ii) Else set rci

$← Gq.
6. Set key = rx0...α−1 .
7. Set pub = (r, y, A, {rci}ni=1).
8. Output (key, pub).

Rep(ψ′, pub = (r, y, A, rc1 . . . rcℓ ))
1. Let I = {i|ψ′

i = yi}.
2. For i = 1, ..., ℓ:

(i) Choose random Ji ⊆ I, with |Ji| = k.
(ii) If A−1

Ji
does not exist, output ⊥.

(iii) Compute rs = r
A−1

Ji
cJi .

(iv) Compute rc′
= r

A(A−1
Ji

cJi
).

(v) If dis(cI , c′
I) ≤ 2|cI |τ , output rs0 , ..., rsα−1 .

3. Output ⊥.

▶ Theorem 7. Let all parameters be as in Construction 2. Let γ ∈ N and let E be the set
of all sources where all (k − γ)-subsets have entropy β (Definition 6) over {0, 1}n. Then
(Gen,Rep) is a ({0, 1}n, E , |Fαq |, t)-fuzzy extractor that is (ϵsec,m)-hard for all adversaries in
the generic group model (making at most m queries) where

ϵsec =
(

((m+ n+ 2)(m+ n+ 1))2

2

)(
4
q

+ 2−β +
(

(k − γ)
(

n
k−γ−1

)
qγ+1

))
.

Furthermore, suppose that
k′

def= k + α = o(n) and k′ = ω(log n),
t is such that tk′ ≤ cn log n for some constant c, which with the above implies t = o(n),
Let δ′ > 0 be some value.
Let η > 0 be some constant.
Let ℓ = n2(1+η)c log 1

δ′ , (if tk′ = o(n log n) setting ℓ = n log 1/δ′ suffices)
Then there is some function negligible ngl(n) such that the Rep is correct with probability
1− δ′ − ngl(n).

We defer proving Theorem 7 to the full version of this work [12].

3.2 The power of confidence information
Most PUFs and biometrics demonstrate a constant error rate τ = t/n. This is higher than
the correction capacity of our construction and Canetti et al.’s digital locker construction [8].
However, existing fuzzy extractors that support constant τ do not support the low entropy
distributions found in practice.

While code offset in the exponent is not designed for constant error rates it is efficient
for small constant τ . As described in the introduction for the case of PUFs and biometrics,
using confidence information can lead to a multiplicative decrease in the effective error rate
of bits chosen for information set decoding. The important tradeoff is between the fractional
error rate τ = t/n and the number of required iterations.
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15:12 Code Offset in the Exponent

Figure 2 Expected number of iterations ℓ to have Rep output a value with .95 probability across
error rate. Three lines represent original error rate t and two reduced error rates of t/2 and t/10
that may be achievable by using confidence information. Note that the y-axis is in log scale.

We observe, for practical parameters, multiplicative changes in τ lead to exponential
changes in the required iterations ℓ. To demonstrate we consider the following parameters: a
source of length n = 1024 (common for the iris), a subset size of k = 128, and an output key
of a single group element (α = 1). Figure 2 shows how log ℓ increases for different τ . Three
lines represent the original error rate and two potential reduced error rates (multiplicative
decreases of 2 and 10 respectively). Figure 2 considers τ steps of .001. Between 0 and .06,
each step of .001 increases log ℓ by .667 (r2 value of .999).

As mentioned in the introduction, Canetti et al. [8] digital locker6 condition for security
is that average subsets have entropy. A distribution satisfying MIPURS implies that average
subsets have entropy (see Section 4.3). Since code offset in the exponent allows the adversary
to test any subset, average subsets having entropy does not suffice (see Section 1.4). Section 3.1
showed how to handle distributions where all subsets have entropy by multiplying by a
random error vector. Unfortunately, as we show in Section 4.4, MIPURS and all subsets
have entropy are incomparable notions creating a barrier to removing this random vector in
Construction 2.

Reusability

Reusability is the ability to support multiple independent enrollments of the same value,
allowing users to reuse the same biometric or PUF, for example, with multiple noncooperating
providers. More precisely, the algorithm Gen may be run multiple times on correlated
readings e1, ..., eρ of a given source. Each time, Gen will produce a different pair of values

6 Intuitively, a digital locker is a symmetric encryption that is semantically secure even when instantiated
with keys that are correlated and only have entropy [10].
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(key1, pub1), ..., (keyρ, pubρ). Security for each extracted string keyi should hold even in the
presence of all the helper strings (pub1, . . . , pubρ) . The reproduction procedure Rep at the
ith provider still obtains only a single e′ close to ei and uses a single helper string pubi.
Because providers may not trust each other keyi should be secure even when all keyj for
j ≠ i are also given to the adversary. In the full version of this work [12] we show that
Construction 1 is reusable if a random generator is used with each enrollment.

4 Characterizing MIPURS

Definition 3 of MIPURS is admittedly unwieldy. It considers a property of a distribution
e ∈ Fnq with respect to a random matrix. We turn to characterizing distributions that satisfy
MIPURS. We begin with easier distributions and conclude with the general entropy case is
in Section 4.5. Throughout, we consider a prime order group G of prime size q, a random
linear code A ∈ Fn×kq and the null space B def= null(A).

4.1 Independent Sources ⊂ MIPURS
In most versions of LWE, each error coordinate is independently distributed and contributes
entropy. Examples include the discretized Gaussian introduced by Regev [28, 29], and
a uniform interval introduced by Döttling and Müller-Quade [14]. We show that these
distributions fit within our MIPURS characterization.

▶ Lemma 8. Let e = e1, . . . , en ∈ Fnq be a distribution where each ei is independently
sampled. Let α = min1≤i≤n H∞(ei). For any k ≤ n, e is a (k, β)−MIPURS distribution for
β = 2−α.

Proof of Lemma 8. Consider a fixed element b ̸= 0 in B. Since the components of e are
independent, predicting ⟨b, e⟩ is at least as hard as predicting ei for each i such that bi ≠ 0.
This can be seen by fixing b and ej for j ̸= i and noting that the value of ei then uniquely
determines ⟨b, e⟩. Since b ̸= 0 there exists at least one such i. Thus,

Pr
B

[
max
g

max
b∈B\0

Pr
e

[⟨b, e⟩ = g]
]
≤ 2−α def= β. ◀

4.2 Location Sources ⊂ MIPURS
Next, we consider e′ given by the coordinatewise product of a uniform vector r ∈ Fnq and
a “selection vector” e ∈ {0, 1}n: that is, e′i = ri ·c ei where all large enough subsets of e
are unpredictable (·c is component-wise multiplication). Location sources are important for
applications (see Section 3).

▶ Lemma 9. Let γ ∈ N and k ∈ Z+. Let e ∈ {0, 1}n be a distribution where all (k−γ)-subsets
have entropy α. Define the distribution e′ as the coordinatewise product of a uniform vector
r ∈ Fnq and e: that is, e′i = ei ·c ri. Then the distribution e′ is a (k, β)-MIPURS distribution
for β = 2−α + ((k − γ)

(
n

k−γ−1
)
/qγ+1.

Proof of Lemma 9. We use A ∈ Fn×kq to represent the random matrix from the definition of
a MIPURS distribution and let B ∈ Fn×n−kq represent its null space. We start by bounding the
“minimum distance” of B, that is, the minimum weight of a non-zero element of B = null(A).
Observe that the number of vectors in Fnq of weight less than k − γ is

k−γ−1∑
j=0

(
n

j

)
qj ≤ (k − γ)

(
n

k − γ − 1

)
qk−γ−1 .
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The probability that any fixed, nonzero vector lies x in B is q−k, as it must annihilate k
independent, uniform linear equations. That is,

∑
i xiAis = 0 for each 1 ≤ s ≤ k. Thus

E[|{w ∈ null(A) \ 0 | wt(w) < k − γ}|] ≤ (k − γ)
(

n

k − γ − 1

)
q−γ−1 . (1)

By Markov’s inequality, the probability that there is at least one such small weight vector in
null(A) is no more than the expected number of such vectors. Hence

Pr[∃w ∈ null(A) \ 0,wt(w) < k − γ] ≤ (k − γ)
(

n

k − γ − 1

)
q−γ−1 .

For some b in the span of B with weight at least k − γ, consider the product ⟨b, e′⟩ =∑n
i=1 bi · ei · ri. Define I as the set of nonzero coordinates in b. With probability at least

1− 2−α there is some nonzero coordinate in eI . Conditioned on this fact this means that at
least one value ri is included in the inner product. Thus, the entropy of the inner product is
bounded below by the entropy of ei · ri which since ei ̸= 0 is bounded by the entropy of ri.
In this case, the prediction probability of an inner product (and therefore a single element of
) is 1/q. The argument concludes by assuming perfect predictability when there exists b in
B with weight of at most k − γ − 1. ◀

4.3 MIPURS ⊂ Average Subasets Have Entropy
As mentioned in the Introduction, Canetti et al. [8] showed a fuzzy extractor construction
for all sources where an average subset has entropy:7

▶ Definition 10 ([8] average subsets have entropy). Let the source e = e1, . . . , en consist of
strings of length n over some arbitrary alphabet Z. We say that the source e is a source with
a k-average subsets have entropy β if

E
j1,...,jk

$←[1,...,n],jα ̸=jγ

(
max
z
{Pr[(ej1 , . . . , ejk

) = z | j1, . . . , jk]}
)
≤ β.

We now show that a MIPURS distribution also has that average subsets have entropy.

▶ Lemma 11. Let e = e1, . . . , en be a source over alphabet Z such that e is (k, β)−MIPURS.
Then e has (k′, β′)-entropy samples for any k′ and

β′ = β(
1− (qk′−(k+1))

(2k′( n
k′))

) .

Proof of Lemma 11. We proceed by contradiction, that is suppose that e does not have
k′, β′ entropy samples. That is,

E
j1,...,j′

k

$←[1,...,n],jα ̸=jγ

(
max
z
{Pr[(ej1 , . . . , ejk

) = z | j1, . . . , j
′
k]}
)
> β′.

We consider the following definition of b,g in the MIPURS game:
1. Receive input A, compute B = null(A).

7 We make a small modification to their definition changing to sampling without replacement.
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2. Select random b ∈ B such that wt(b) ≤ k′, b ̸= 0. If no such b exists output b = 0,g = 0.
3. Define I as the set of nonzero locations in b. If |I| < k′ insert random distinct locations

until |I| = k′.
4. Compute z = arg maxz {Pr[eI = z | I]}.
5. Output g = ⟨b, z⟩.

If z is the correct prediction for eI then g = ⟨b, z⟩ = ⟨b, e⟩. As noted above, the
probability of any particular value nonzero b being in B is q−k. Thus, conditioned on finding
a good b, the distribution of the random variable b is exactly that of a uniform weight
k′ value. This implies that Eb [maxz {Pr[(eI) = z | I}] > β′. It remains to analyze the
probability that B contains no vectors of weight k′. Here we derive an elementary bound,
asymptotic formulations exist in the information theory literature [21, Theorem 1.1].

▶ Lemma 12. Let V denote a random subspace of Fnq of dimension κ. Let Wℓ denote the
subset of Fnq consisting of all vectors with weight ℓ, then

Pr[V ∩Wℓ = 0] ≤ (qn − 1)((
n
ℓ

)
(q − 1)ℓ−1(qκ − 1)

) .
Proof of Lemma 12. We begin by noting that |Wℓ| =

(
n
ℓ

)
(q − 1)ℓ. For a vector v⃗ ∈ Wℓ,

define Xv⃗ = 1 if v⃗ ∈ V and 0 otherwise. Then

E

∑
v⃗∈Wℓ

Xv⃗

 =
(
n

ℓ

)
(q − 1)ℓ q

κ − 1
qn − 1 .

We wish to compute the second moment of the sum
∑
Xv⃗. We have

E

 ∑
v⃗,w⃗∈Wℓ

Xv⃗Xw⃗

 = E

 ∑
v⃗,w⃗∈Wℓ

v⃗,w⃗ independent

Xv⃗Xw⃗

+ E

 ∑
v⃗,w⃗∈Wℓ

v⃗,w⃗ dependent

Xv⃗Xw⃗


≤
(
n

ℓ

)
(q − 1)ℓ

((
n

ℓ

)
(q − 1)ℓ − (q − 1)

)
max

indep. v⃗,w⃗
Pr[v⃗, w⃗ ∈ V ]

+
(
n

ℓ

)
(q − 1)ℓ+1 max

dependent v⃗,w⃗
Pr[v⃗, w⃗ ∈ V ]

≤
((

n

ℓ

)
(q − 1)ℓ

)2 (qκ − 1)(qκ−1 − 1)
(qn − 1)(qn−1 − 1)︸ ︷︷ ︸

(‡)

+
(
n

ℓ

)
(q − 1)ℓ+1 q

κ − 1
qn − 1 .

Note that (m− t)/(n− t) < m/n assuming that t ≤ m < n and hence that that

(‡) =
((

n

ℓ

)
(q − 1)ℓ

)2 (qκ − 1)(qκ − q)
(qn − 1)(qn − q) ≤

((
n

ℓ

)
(q − 1)ℓ

)2 (qκ − 1)2

(qn − 1)2 ≤ E
[∑

Xv⃗

]2
.

It follows that

Var
[∑

Xv⃗

]
= E

[(∑
Xv⃗

)2
]
− E

[∑
Xv⃗

]2
≤
(
n

ℓ

)
(q − 1)ℓ+1 q

κ − 1
qn − 1 .

Then using Chebyshev’s inequality with a constant of

α =

√((
n

ℓ

)
(q − 1)ℓ q

κ − 1
qn − 1

)2/((n
ℓ

)
(q − 1)ℓ+1 q

κ − 1
qn − 1

)
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one finds:

Pr
[∑

Xv⃗ = 0
]
≤ Var[

∑
Xv⃗]

E [
∑
Xv⃗]2

≤
(
n
ℓ

)
(q − 1)ℓ+1 qκ−1

qn−1((
n
ℓ

)
(q − 1)ℓ qκ−1

qn−1

)2 ≤
(qn − 1)((

n
ℓ

)
(q − 1)ℓ−1(qκ − 1)

) .
This completes the proof of Lemma 12. ◀

Thus, for dim(B) ≥ n− k it is true that for any k′:

Pr[B ∩Wk′ = 0] ≤ (qn − 1)(
n
k′

)
(q − 1)k′−1(qn−k − 1)

≤ qn

2k′(n
k′

)
qn−k+k′−1 = qk

′−(k+1)

2k′(n
k′

) .

We note that the overall success of prediction of b,g in the MIPURS game is bounded below
by Pr[B ∩ Wk′ = 0] ∗ 0 + (1 − Pr[B ∩ Wk′ = 0]) ∗ β′ = β. This completes the proof of
Lemma 11. ◀

4.4 MIPURS and all subsets have entropy
We now consider the relationship between MIPURS and all subsets have entropy. Recall, that
we showed that for a distribution e where all subsets have entropy multiplying by a random
vector produced a MIPURS distribution. With two simple examples, we show that MIPURS
is not contained by all subsets have entropy and all subsets have entropy is not contained by
MIPURS.

▶ Proposition 13 (MIPURS ̸→ all subsets have entropy). Define e ∈ Fnq as the distribution
that is fixed in the first k positions and uniform in all other positions. Clearly for any β > 0
it does not hold that all k-subsets have entropy. Furthermore, e is (k, β) − MIPURS for
β ≥ (1− 1

qk − k
qn−k ) log q.

To show the above proposition, assume perfect predictability in the MIPURS game in the
case when A is not full rank or when 1k||0n−k is in null(A). Otherwise, full entropy results
from the same argument as Lemma 8.

For the second direction we assume that e is a Reed-Solomon [27] code (the counterexample
is similar to the one presented in Section 1.3). For the field Fq of size q, a message length
k, and code length n, such that k ≤ n ≤ q, define the Vandermonde matrix V where the
ith row, Vi = [i0, i1, ...., ik]. The Reed Solomon Code RS(n, k, q) is the set of all points Vx
where x ∈ Fkq .

▶ Proposition 14 (all subsets have entropy ̸→ MIPURS). Let k < n/2 and let e be the uniform
distribution over RS(n, n− k− 1, q) then all k subsets of e have entropy k log q. Furthermore,
e is not (k, β)−MIPURS for any β < 1.

Note dim(null(A)) ≥ n− k and thus null(A) and null(RS(n, n− k− 1, q)| are guaranteed
to a have a nontrivial intersection. The result follows by picking some b in this intersection
and setting g = 0.

4.5 High entropy ⊂ MIPURS
We now turn to the general entropy condition: MIPURS is hard for all distribution where the
min-entropy exceeds log qn−k (by a super logarithmic amount). For conciseness, we introduce
κ

def= n− k.
The adversary is given a generating matrix of the code, A; this determines B = null(A).

Our proof is divided into three parts. Denote by E a set of possible error vectors.
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1. Theorem 16: We show that the number of vectors ψ ∈ E that are likely to have 0 inner
product with an adversarially chosen vector in B is small. Intuitively, we show that this
set is “not much larger than a κ-dimensional subspace.”

2. Theorem 22: We then show it is difficult to predict the value of the inner product: even if
the adversary may select arbitrarily coupled b and g, it is difficult to achieve ⟨b, ψ⟩ = g.

3. Lemma 24: We show that any distribution e with sufficient entropy cannot lie in the set
of predictable error vectors E with high probability.

We codify the set of possible adversarial strategies by introducing a notion of κ-induced
random variables. For the moment, we assume that B is a uniformly selected subspace of
dimension exactly κ; at the end of the proof we remove this restriction to apply these results
when B has the distribution given by null(A) (Corollary 25).

▶ Definition 15. Let b be a random variable taking values in Fnq . We say that b is κ-induced
if there exists a (typically dependent) random variable B, uniform on the collection of κ-
dimensional subspaces of Fnq , so that b ∈ B and b ̸= 0⃗ with certainty: Pr

[
b ∈ B ∧ b ̸= 0⃗

]
= 1.

Note, in fact, that the random variables B and b are necessarily dependent unless n = κ.

It suffices to consider the maximum probability in Definition 3 with respect to κ-induced
random variables. This is because for any b that is not κ-induced we can find another b
that is κ induced that does no worse in the game in Definition 3. For example when b is not
in B or is the zero vector, one can replace b with a random element in the span of B.

We now show that if the set E is large enough there is no strategy for b that guarantees
⟨b, ψ⟩ = 0 with significant probability. The next theorem (Thm. 22) will, more generally,
consider prediction of the inner product itself. For a κ induced random variable b, define

E(b,0)
ϵ =

{
f ∈np

∣∣∣∣ Pr
b

[⟨b, f⟩ = 0] ≥ ϵ
}
.

When b can be inferred from context, we simply refer to this set as Eϵ. Then define
Pκ,ϵ = max

b
|E(b,0)
ϵ | where the maximum is over all κ-induced random variables in Fnq .

▶ Theorem 16. Let q be a prime and let d > 1, κ,m, η ∈ Z+ be parameters for which κ ≤ n.
Then assuming Pκ,ϵ > d · qκ we must have

ϵ ≤
(
κ+ η

m

)
+
(
m

κ

)((
m

η

)(
1
d

)η
+
(

2
q

))
.

Before proving Theorem 16, we introduce and prove two combinatorial lemmas (18 and
20). We then proceed with the proof of Theorem 16. The major challenge is that the set
Eϵ (for a particular b) is typically not a linear subspace; these results show that is has
reasonable “approximate linear” structure. We begin with the notion of linear density to
measure, intuitively, how close the set is to linear.

▶ Definition 17. The ℓ-linear density of a sequence of vectors F = (f1, . . . , fm), with each
f i ∈ Fnq , is the maximum number of entries that are covered by a subspace of dimension ℓ.
Formally,

∆ℓ(F ) = max
V,dim(V )=ℓ

|{i | f i ∈ V }|.

▶ Lemma 18. Let q be a prime and let n, ℓ ∈ Z+ satisfy ℓ ≤ n. Let E ⊂ Fnq satisfy |E| ≥ qℓ
and let F = (f1, . . . , fm) be a sequence of uniformly and independently chosen elements of E.
Define d so that |E| = dqℓ; then for any η ≥ 0,

Pr
F

[∆ℓ(F) ≥ ℓ+ η] ≤
(
m

ℓ

)(
m− ℓ
η

)(
1
d

)η
.
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Proof of Lemma 18. By the definition of linear density, if ∆ℓ(F) ≥ ℓ+ η there must be at
least one subset of ℓ + η indices I ⊂ [m] so that {f i | i ∈ I} is contained in a subspace of
dimension ℓ. In order for a subset I to have this property, there must be a partition of I into a
disjoint union S∪L, where S has cardinality ℓ and T indexes the remaining η “lucky” vectors
that lie in the span of the vectors given by S. Formally, ∀t ∈ T, f t ∈ span({f s | s ∈ S}).

Fix, for the moment, ℓ indices of F to identify a candidate subset of vectors to play the
role of S and η indices of F to identify a candidate set T . The probability that each of the η
vectors indexed by T lie in the space spanned by S is clearly no more than (qℓ/|E|)η ≤ (1/d)η.
Taking the union bound over these choices of indices completes the argument: The probability
of a sequence is no more than

(
m
ℓ

)(
m−ℓ
η

)
d−η, as desired. ◀

Before introducing our second combinatorial lemma (Lem 20), we need a Lemma bounding
the probability of a fixed subspace having a nontrivial intersection with a random subspace.

▶ Lemma 19. Let q be a prime and κ, n ∈ N with κ ≤ n. Let V be a random variable uniform
on the set of all κ-dimensional subspaces of Fnq . Let W be a fixed subspace of dimension ℓ.
Then

Pr[V ∩W ̸= {0}] ≤ qκ+ℓ−(n+1) ·
(

q

q − 1

)
.

Proof of Lemma 19. Let L denote the set of all 1-dimensional subspaces in W . Each 1-
dimensional subspace is described by an equivalence class of q − 1 vectors under the relation
x ∼ y ⇔ ∃λ ∈ F∗q , λx = y. Thus |L| = (qℓ − 1)/(q − 1) ≤ qℓ−1(q/(q − 1)). Then

Pr[V ∩W ̸= {⃗0}] ≤
∑
L∈L

Pr[L ⊂ V] ≤ |L| max
v∈n

q \{0⃗}
Pr[v ∈ V] ≤ qκ+ℓ−(n+1)

(
q

q − 1

)
,

where we recall the fact that for any particular fixed nonzero vector v, Pr[v ∈ V] = qκ−1
qn−1 ≤

qκ−n. ◀

▶ Lemma 20. Let q be a prime, let ℓ, κ, n ∈ Z+ satisfy ℓ, κ ≤ n. Let F = (f1, . . . , fm) be a
sequence of elements of Fnq with dim(span(F )) ≥ ℓ. Then, for any κ-induced random variable
b taking values in Fnq ,

Pr
b

[
|{i | ⟨b, f i⟩ = 0}| ≥ ∆ℓ(F )

]
≤
(
m

ℓ

)
qκ−ℓ−1

(
q

q − 1

)
≤ 2
(
m

ℓ

)
qκ−ℓ−1 .

Proof of Lemma 20. Let VF denote the collection of all ℓ-dimensional subspaces of Fnq
spanned by subsets of elements in the sequence F . That is,

VF = {V | V = span({f i | i ∈ I}), I ⊂ [m], dim(V ) = ℓ} .

Then |VF | ≤
(
m
ℓ

)
, as each such subspace is spanned by at least one subset of F of size ℓ. As

dim(span(F )) ≥ ℓ, the set VF is nonempty.
Observe that if I ⊂ [m] has cardinality at least ∆ℓ(F ) then, by definition, dim(span({f i |

i ∈ I})) ≥ ℓ; otherwise, an additional element of F could be added to the set indexed by I to
yield a set of size exceeding ∆ℓ(F ) which still lies in a subspace of dimension ℓ (contradicting
the definition of ∆ℓ). Note in the case that m = ℓ (and there is no element to add) then
∆ℓ(F ) = ℓ = dim(span({f i | i ∈ I})). Thus, if I ⊂ [m] has cardinality at least ∆ℓ(F ), there
must be some V ∈ VF for which V ⊂ span({f i | i ∈ I}). In particular

Pr
b

[
|{f i ∈ F | ⟨b, f i⟩ = 0}| ≥ ∆ℓ(F )

]
≤ Pr

b

[
∃V ∈ VF , ∀v ∈ V, ⟨v,b⟩ = 0

]
≤
∑
V ∈VF

Pr
b

[
∀v ∈ V, ⟨v,b⟩ = 0

]
=
∑
V ∈VF

Pr
b

[
b ∈ V ⊥] ,
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where we have adopted the notation V ⊥ = {w | ∀v ∈ V, ⟨v, w⟩ = 0}. Recall that when V

is a subspace of dimension ℓ, V ⊥ is a subspace of dimension n− ℓ. To complete the proof,
we recall that b is κ-induced, so that there is an associated random variable B, uniform on
dimension κ subspaces, for which b ∈ B with certainty; applying Lemma 19 we may then
conclude∑

V ∈VF

Pr
b

[
b ∈ V ⊥] ≤

∑
V ∈VF

Pr
B

[
B ∩ V ⊥ ̸= {⃗0}] ≤

(
m

ℓ

)
qκ−ℓ−1

(
q

q − 1

)
.

This completes the proof of Lemma 20. ◀

Proof of Theorem 16. Now we analyze the relationship between our two paramenters of
interest: ϵ and d. Fix some ϵ > 0. Let b be a κ-induced random variable for which
|E(b,0)
ϵ | = Pκ,ϵ and let B be the coupled variable, uniform on subspaces, for which b ∈ B.
For the purposes of analysis we consider a sequence of m vectors chosen independently

and uniformly from Eϵ = E
(b,0)
ϵ with replacement; we let F = (f1, . . . , fm) denote the set

of vectors so chosen. We study the expectation of the number of vectors in F that are
orthogonal to b. We first give an immediate lower bound by linearity of expectation and the
definition of Eϵ: Eb,F[|{f i ∈ F | ⟨b, f i⟩ = 0}|] ≥ ϵ ·m.

We now infer an upper bound on this expectation using Lemmas 18 and 20. We say that
the samples F from Eϵ are compact if ∆κ(F) ≥ κ+ η. The probability of this compact event
is no more than

(
m
κ

)(
m−κ
η

) ( 1
d

)η by Lemma 18. For compact selections, we crudely upper
bound the expectation by m; for spread selections we further split the expectation based on
the random variable B. We say that B is susceptible (for a fixed F = (f1, ..., fm)) if there
exists some b ∈ B such that |{f i ∈ F | ⟨b, f i⟩ = 0}| ≥ ∆κ(F ). Otherwise, B is resistant. The
probability of a susceptible selection of B is bounded above by (2/q)

(
m
κ

)
in light of Lemma 20

(applied with ℓ = κ). In the pessimistic case (that B is susceptible), we again upper bound
the expectation by m. Then if the experiment is neither compact nor susceptible, we may
clearly upper bound the expectation by κ+ η. So, for any η > 0 we conclude that

E
b,B,F

[|{fi ∈ F | ⟨b, fi⟩ = 0}|] ≤ (κ+ η) +m

((
m

κ

)(
m− κ
η

)(
1
d

)η
+ 2
q

(
m

κ

))
and hence that

ϵ ≤
(
κ+ η

m

)
+
(
m

κ

)((
m

η

)(
1
d

)η
+ 2
q

)
.

This completes the proof of Theorem 16. ◀

▶ Corollary 21. Let κ and n be parameters satisfying 1 ≤ κ < n and let q be a prime such
that q ≥ 24κ. Then for ϵ ≥ 5eq−1/(2(κ+1)) we have Pκ,ϵ ≤ 5eqκ/ϵ. In particular, for such ϵ

and any κ-induced b, the set |E(b,0)
ϵ | ≤ 5eqκ/ϵ.

Proof of Corollary 21. Consider parameters for Theorem 16 that satisfy the following:

1 < d ≤ q1/(2(κ+1)), m = dη

2e , and η = log q .

First note that κ < 4κ ≤ log q = η (as q ≥ 24κ). Then, consider a set E(b,0)
ϵ for some b. We

have

ϵ ≤
(
κ+ η

m

)
+
(
m

κ

)((
me

ηd

)η
+ 2
q

)
≤
(

2η
m

)
+ 3
(
m

κ

)
q−1 ≤

(
4e
d

)
+ 3
(
dη/2e
κ

)
q−1︸ ︷︷ ︸

(†)

.
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Since q ≥ 24κ, we may write q = 22ακ for some α ≥ 2 and it follows that
(

log q
κ

)κ
= (2α)κ ≤

(2α)κ = √q because 2α ≤ 2α for all α ≥ 2. In light of this, consider the second term in the
expression (†) above:

3
(
dη/2e
κ

)
q−1 ≤ 3

(
dη

2κ

)κ
q−1 ≤ 3

2

(
dη

κ

)κ
q−1 ≤ 3

2

(
dκ
√
q

)((
log q
κ

)κ 1
√
q

)
≤ 3

2d ≤
e

d
.

We conclude that for any 1 < d ≤ q1/(2(κ+1)), Pκ,ϵ ≥ dqk =⇒ ϵ ≤ 5e/d. Observe then that
for any ϵ > 5e/q1/(2(κ+1)) we may apply the argument above to Pκ,ϵ with d = 5e/ϵ and
conclude that Pκ,ϵ ≤ 5eqκ/ϵ. ◀

Predicting Arbitrary Values

We now show that the adversary cannot due much better than Theorem 16 even if the task
is predicting and arbitrary inner product (not just zero).

▶ Theorem 22. Let b be a κ-induced random variable in n
q and let g be a random variable

over Fq (arbitrarily dependent on b). For ϵ > 0 we generalize the notation above so that

E(b,g)
ϵ =

{
f ∈nq

∣∣∣∣ Pr
b,g

[⟨b, f⟩ = g] ≥ ϵ
}
. then |E(b,0)

ϵ2/8 | ≥
ϵ2

8 |E
(b,g)
ϵ | .

Proof of Theorem 22. For an element ψ ∈ E(b,g)
ϵ , define Fψ = {(x, ⟨x, ψ⟩) | x ∈ Fnq }. Note

that Prb,g[(b,g) ∈ Fψ] ≥ ϵ by assumption. For any δ < ϵ, there is a subset F ∗ ⊂ E(b,g)
ϵ for

which |F ∗| ≤ 1/δ and for any ψ ∈ E(b,g)
ϵ , Pr

b,g

[
(b,g) ∈

(
Fψ ∩

(⋃
f ′∈F∗ Ff ′

))]
≥ ϵ − δ. To

see this, consider incrementally adding elements of E(b,g)
ϵ into F ∗ so as to greedily increase

Pr
b,g

[
(b,g) ∈

⋃
f ′∈F∗ Ff ′

]
. If this process is carried out until no ψ ∈ E

(b,g)
ϵ increases the

total probability by more than δ, then it follows that every Fψ intersects with the set with
probability mass at least ϵ − δ, as desired. Note also that this termination condition is
achieved after including no more than 1/δ sets. It follows that for any ψ ∈ E(b,g)

ϵ ,

E
f ′∈F∗

Pr
b

[⟨b, ψ⟩ = ⟨b, f ′⟩] ≥ (ϵ− δ)δ and E
f ′∈F∗

E
ψ∈E(b,g)

ϵ

Pr
b

[⟨b, ψ⟩ = ⟨b, f ′⟩] ≥ (ϵ− δ)δ .

Then there exists an f∗ for which

E
ψ∈E(b,g)

ϵ

Pr[⟨b, ψ⟩ = ⟨b, f∗⟩] ≥ (ϵ− δ)δ .

Setting δ = ϵ/2 and we see that

E
ψ∈E(b,g)

ϵ

Pr[⟨b, ψ⟩ = ⟨b, f∗⟩] = Pr
b,ψ∈E(b,g)

ϵ

[⟨b, ψ⟩ = ⟨b, f∗⟩] ≥ ϵ2

4 .

Using this expectation (of a probability), we bound the probability it is greater than 1/2 its
mean. As the inner product is bi-linear,

Pr
ψ∈E(b,g)

ϵ

[
Pr
b

[⟨b, ψ − f∗⟩ = 0] ≥ ϵ2

8

]
≥ ϵ2

8 .

Thus, an ϵ2/8 fraction of the set {ψ− f∗ | ψ ∈ E(b,g)
ϵ } must be a subset of E(b,0)

ϵ2/8 : The claim
of the theorem follows, that |E(b,0)

ϵ2/8 | ≥ (ϵ2/8)|E(b,g)
ϵ | . ◀
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With the language and settings of this last Theorem, applying Corollary 21 to appropriately
control |E(b,0)

ϵ2/8 | yields the following bound on |E(b,g)
ϵ |.

▶ Corollary 23. Let κ and n be parameters satisfying 1 ≤ κ < n and let q be a prime such
that q ≥ 24κ. Let b be any κ-induced random variable in Fnq and g any random variable in
Fq. Then for any ϵ ≥ 11q−1/(4(κ+1)) it holds that |E(b,g)

ϵ | ≤ (320eqκ)
/

(ϵ4).

This implies all high min-entropy distributions are not predictable in the above game.

▶ Lemma 24. Let b be a κ-induced random variable in Fnq . Let g be an arbitrary random
variable in Fq. Let e be a random variable with H∞(e) = s. Let E(b,g)

ϵ be as defined in
Theorem 22. Then for ϵ > 0, Pr

ψ←e,b,g
[⟨b, ψ⟩ = g] ≤ 2−s|E(b,g)

ϵ |+ ϵ .

Proof of Lemma 24. Our predictable set Eϵ = E
(b,g)
ϵ gives us no guarantee on the instability

of the inner product. If ψ ∈ Eϵ then we upper bound the probability by 1. Because e
has min-entropy s, we know that no element is selected with probability greater than 2−s,
thus the probability of a lying inside a set of size |Eϵ| is at most |Eϵ|/2s. Outside of our
predictable set, we know that the probability of a stable inner product cannot be greater
than ϵ by definition of Eϵ. Therefore if ψ does not fall in the predictable set, we bound the
probability by ϵ (for simplicity, we ignore the multiplicative term less than 1). ◀

▶ Corollary 25. Let k and n be parameters with n > k and let q be a prime such that
q ≥ 24(n−k). Let ϵ ≥ 11q−1/(4(n−k+1)) be a parameter. Then for all distributions e ∈ Fnq such
that H∞(e) ≥ log

(
320eqn−kϵ−5) , it holds that (for any b and g above)

Pr
b,g,e

[⟨b, e⟩ = g] ≤ 2ϵ+ k/qn−k

and thus e is (k, 2ϵ+ k/qn−k)−MIPURS.

The additional k/qn−k term is due to the probability that A may not be full rank, all of the
above analysis was conditioned on A being full rank. The corollary then follows by replacing
κ = n− k.
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Abstract
P4-free graphs– also known as cographs, complement-reducible graphs, or hereditary Dacey graphs–
have been well studied in graph theory. Motivated by computer science and information theory
applications, our work encodes (flat) joint probability distributions and Boolean functions as bipartite
graphs and studies bipartite P4-free graphs. For these applications, the graph properties of edge
partitioning and covering a bipartite graph using the minimum number of these graphs are particularly
relevant. Previously, such graph properties have appeared in leakage-resilient cryptography and
(variants of) coloring problems.

Interestingly, our covering problem is closely related to the well-studied problem of product
(a.k.a., Prague) dimension of loopless undirected graphs, which allows us to employ algebraic lower-
bounding techniques for the product/Prague dimension. We prove that computing these numbers is
NP-complete, even for bipartite graphs. We establish a connection to the (unsolved) Zarankiewicz
problem to show that there are bipartite graphs with size-N partite sets such that these numbers
are at least ϵ · N1−2ϵ, for ϵ ∈ {1/3, 1/4, 1/5, . . . }. Finally, we accurately estimate these numbers
for bipartite graphs encoding well-studied Boolean functions from circuit complexity, such as set
intersection, set disjointness, and inequality.

For applications in information theory and communication & cryptographic complexity, we
consider a system where a setup samples from a (flat) joint distribution and gives the participants,
Alice and Bob, their portion from this joint sample. Alice and Bob’s objective is to non-interactively
establish a shared key and extract the left-over entropy from their portion of the samples as
independent private randomness. A genie, who observes the joint sample, provides appropriate
assistance to help Alice and Bob with their objective. Lower bounds to the minimum size of the
genie’s assistance translate into communication and cryptographic lower bounds. We show that (the
log2 of) the P4-free partition number of a graph encoding the joint distribution that the setup uses
is equivalent to the size of the genie’s assistance. Consequently, the joint distributions corresponding
to the bipartite graphs constructed above with high P4-free partition numbers correspond to joint
distributions requiring more assistance from the genie.

As a representative application in non-deterministic communication complexity, we study the
communication complexity of nondeterministic protocols augmented by access to the equality oracle
at the output. We show that (the log2 of) the P4-free cover number of the bipartite graph encoding
a Boolean function f is equivalent to the minimum size of the nondeterministic input required by the
parties (referred to as the communication complexity of f in this model). Consequently, the functions
corresponding to the bipartite graphs with high P4-free cover numbers have high communication
complexity. Furthermore, there are functions with communication complexity close to the naïve
protocol where the nondeterministic input reveals a party’s input. Finally, the access to the equality
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oracle reduces the communication complexity of computing set disjointness by a constant factor
in contrast to the model where parties do not have access to the equality oracle. To compute the
inequality function, we show an exponential reduction in the communication complexity, and this
bound is optimal. On the other hand, access to the equality oracle is (nearly) useless for computing
set intersection.
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1 Introduction

A graph is P4-free if no four vertices induce a path of length three. Since the 1970s, P4-free
graphs – also known as cographs, complement-reducible graphs, or hereditary Dacey graphs
from empirical logic [22] – have been widely studied in graph theory [45, 46, 36, 60, 62].
Motivated by computer science and information theory applications, our work encodes joint
probability distributions and Boolean functions as bipartite graphs and studies bipartite
P4-free graphs.1 For these applications, the graph properties of edge partitioning and covering
a bipartite graph using the minimum number of these graphs are particularly relevant.2

The P4-free partition number of a bipartite graph G is the minimum number of P4-free
subgraphs partitioning G’s edges, denoted by P4-fp (G). Similarly, the P4-free cover number
of a bipartite graph G is the minimum number of P4-free subgraphs covering G’s edges,
denoted by P4-fc (G). The definition extends to general graphs; however, our study focuses on
bipartite graphs. We are given a bipartite graph as input, and the objective is to partition or
cover its edges using P4-free bipartite graphs. P4-free partition and cover numbers are natural
extensions of fundamental graph properties, such as product/Prague dimension, equivalence
cover number, biclique partition, and cover numbers, arboricity, and star arboricity (refer
to [63] for definitions). In turn, these graph properties have applications to theoretical
computer science, information theory, and combinatorial optimization; for a discussion of
these connections, see Appendix E in the full version.

1 A bipartite P4-free graph is a disjoint union of bicliques.
2 In contrast, [31] introduced the vertex partitioning a graph into different color-classes so that the vertices

of any color-class induces a P4-free graph.
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In addition to being motivated by intellectual curiosity, our work illustrates that the P4-
free partition and cover numbers appear in diverse computer science and information theory
problems (refer to problems A and B in Section 1.1). Section 1.2 presents the equivalence
between the P4-free partition number and Problem A, and the consequences of the graph
theory results for problem A. Next, Section 1.3 demonstrates the equivalence of Problem
B and the P4-free cover number, and the implications of the graph results for problem B.
Interestingly, we prove that the P4-free cover number of a bipartite graph is either identical
to or one less than the well-studied product/Prague dimension [54, 55] of the complement
graph (interpreted as a loopless undirected graph). Our work proves the following graph
theory results (refer to Section 2 for formal statements).
1. Determining the P4-free partition and cover numbers of general graphs, even bipartite

ones, is NP-complete.
2. There are bipartite graphs with size-N partite sets whose P4-free partition and cover

numbers are at least ϵ · N1−2ϵ, for constant ϵ ∈ {1/3, 1/4, 1/5, . . . }. Furthermore,
Erdős-Rényi graphs (with constant parameter) have P4-free partition and cover numbers
≥ N/ log N , asymptotically almost surely.

3. Finally, we encode the Boolean set intersection and disjointness functions, and the
inequality function as bipartite graphs. We present tight estimates of the P4-free partition
and cover numbers of these graphs.

1.1 Motivating Problems
We encode joint probability distributions and Boolean functions as equivalent bipartite
graphs and study the P4-free partition and cover numbers of these graphs. Leveraging
this connection, we present representative applications of these graph properties and their
estimates to information theory and circuit complexity. In particular, consider the fol-
lowing illustrative representative problems from information theory and communication &
cryptographic complexity motivating this study.

1.1.1 Problem A. Assistance for Correlation Distillation
Extracting randomness [32, 56], establishing secret keys [49, 50, 51, 1, 2], and performing
general secure computation [16, 17, 40, 41, 19, 42, 18, 64, 65, 39, 13] with maximum effi-
ciency and resilience from noise sources is fundamental to theoretical computer science and
information theory. Towards that objective, we study the communication and cryptographic
complexity of parties to agree on a shared secret and extract private local randomness from
a source.

A setup (see part (a) of Figure 1), the only source of randomness in the system, samples
(x, y) according to the joint probability distribution pXY , and (privately) sends x to Alice
and y to Bob. Alice and Bob’s objective is to agree on a shared secret key and private
(independent) randomness without any additional public communication. A genie, who
observes the sample (x, y), provides a public k-bit assistance z to Alice and Bob to facilitate
their efforts. We emphasize that all agents Alice, Bob, and the genie are deterministic. After
that, Alice and Bob locally compute the shared key s from their respective local views (x, z)
and (y, z). Finally, Alice extracts the left-over entropy from x (conditioned on (s, z)) as her
local private randomness rA. Similarly, Bob extracts his local private randomness rB from
the left-over entropy of y.

For the security of Bob’s local randomness, an honest but curious Alice cannot obtain
any additional information on rB beyond what is already revealed by z and s. Analogously,
Bob’s view should contain no additional information on Alice’s view conditioned on z and s.
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Genie

(X, Y )

Alice Bob

(RA, S) (RB , S)

Z Z

X Y

(a) Problem A: Assistance for
Correlation Distillation

F

(X, Y )

Alice Bob

(RA, S) (RB , S)

X Y

(b) Communication and Cryptographic
lower bounds

Figure 1 Part (a). A pictorial summary of the system in our motivating problem A.
Part (b). The setup samples (x, y) according to the distribution pXY and sends x to Alice and y to Bob.
Alice and Bob use F adaptively multiple times to communicate with each other; F delivers its output to
both Alice and Bob. The functionality F may be a communication protocol (i.e., a message forwarding
functionality), or help Alice and Bob evaluate any (possibly, a stateful) functionality of their inputs. The
objective of Alice and Bob is to generate a shared secret key s at the end of the protocol and extract the
left-over entropy in their shares as independent local randomness.

Intuitively, conditioned on the genie’s assistance Z, Alice-Bob samples’ joint distribution
splits into shared randomness and local independent randomness.

What is the minimum length k of the genie’s assistance sufficient for Alice and Bob
to agree on a shared key and obtain secure private randomness? In particular, which
distributions pXY need no assistance at all?

Mutual information and other common information variants (refer to Appendix D in the
full version for discussion) cannot accurately measure this information-theoretic property;
thus, motivating our study. This problem is equivalent to computing the P4-free partition
number of a bipartite graph encoding the (flat) joint probability distribution pXY . In
particular, lower bounds to k translates into lower bounds on (interactive) communication
and cryptographic complexity (see part (b) of Figure 1).

1.1.2 Problem B. Nondeterministic Communication Complexity relative
to the Equality Oracle

The nondeterministic communication complexity of the equality function is high [44]. However,
what is the additional utility of an oracle call to the equality function in computing other
functions?

Suppose Alice has input x ∈ X, Bob has input y ∈ Y , and are interested in computing the
Boolean function f : X × Y → {0, 1} of their private inputs. They have access to an equality
oracle EQ : {0, 1}∗ × {0, 1}∗ → {0, 1} defined by EQ(a, b) = 1 if and only if a = b. They are
interested in computing f(x, y) using this equality oracle and a k-bit nondeterministic input
without any additional communication.

The functions A : X × {0, 1}k → {0, 1}∗ and B : Y × {0, 1}k → {0, 1}∗ satisfying the
following constraints define a nondeterministic protocol for f relative to the equality oracle.
1. For every input-pair (x, y) ∈ X × Y such that the output f(x, y) = 1, there exists a

nondeterministic input z ∈ {0, 1}k ensuring EQ( A(x, z) , B(y, z) ) = 1.
2. For every input-pair (x, y) ∈ X ×Y such that the output f(x, y) = 0, for all nondetermin-

istic inputs z ∈ {0, 1}k, we have EQ( A(x, z) , B(y, z) ) = 0.
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The communication complexity of this protocol is k, i.e., the length of the nondeterministic
input. What is the minimum communication complexity k of the function f?

Intuitively, we are augmenting the nondeterministic communication protocols with an
equality oracle at the output. If the EQ oracle is useful to compute a function f , then
its communication complexity in our model shall be significantly lower than where the
parties cannot access the EQ oracle. We show that this problem is identical to the P4-free
cover number of a bipartite graph encoding the Boolean function f . Our results show that
the access to the equality oracle reduces the communication complexity of computing set
disjointness by a constant factor compared to the model where parties do not have access to
the equality oracle. To compute the inequality function, perhaps surprisingly, we show an
exponential reduction in the communication complexity. On the other hand, access to the
equality oracle is virtually useless to computing the set intersection. Section 1.3 provides the
details.

1.1.3 Additional Applications and History
In Appendix F of the full version, we present a representative scheduling problem that
naturally reduces to computing P4-free partition/cover numbers. Beyond the applications
above, this example highlights the innate ability of P4-free graphs to encode scheduling
problems that are amenable to parallelization.

Edge-partitioning graphs using the minimum number of P4-free graphs have found
applications in leakage-resilient cryptography [9]. In particular, if k-bits of genie’s assistance
suffices for the setup in problem A, then k-bits of leakage also suffices for the adversary to
destroy the possibility of performing general secure computation. Identifying a large P4-free
subgraph of a given graph is studied in clustering. For example, an exclusive row and column
bicluster [48, 37] is identical to a P4-free graph, with applications in analyzing biological data.
[15] used P4-free partition and cover numbers to approach a coloring conjecture (a variant of
Ryser’s conjecture) for bipartite graphs.

1.1.4 Related graph properties: Equivalence Cover Number and
Product/Prague Dimension

The following discussion is specific to loopless undirected graphs. An equivalence graph is a
(disjoint) union of cliques. The equivalence cover number of a graph G is the minimum number
d of equivalence sub-graphs that cover the edges of G [54, 55]. Note that the P4-free cover
number is an extension of this concept to bipartite graphs. Furthermore, the equivalence
cover number of G is identical to the product/Prague dimension of the complement of the
graph G [63, 30], the minimum d ∈ N such that the complement of the graph G is an induced
subgraph of Kd

N (the d-fold product of the infinite complete graph KN). Computing the
equivalence cover number or the product dimension of a graph is NP-complete [54].

The P4-free cover number (for bipartite graphs) has a close connection to the product
(a.k.a., Prague) dimension.

▶ Proposition 1. If a redundancy-free3 bipartite graph G = (L, R, E) has a size-d P4-free
edge-covering, then the complement bipartite graph G ..= (L, R, L × R \ E) is an induced
subgraph of K2 ×Kd

N.

3 A graph is redundancy-free if no two vertices have an identical neighborhood.
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The converse of the proposition does not hold exactly (refer to Section 7). However, if G

is an induced subgraph of K2 × Kd
N, then G has a size-(d + 1) P4-free cover. We prove

that P4-fc (G) ∈ {pdim (H) , pdim (H) − 1}, where G = (L, R, E ⊆ L × R) is a bipartite
graph, H = (L∪R, L×R \E) is the loopless undirected graph representing the complement
of the bipartite graph G, and pdim (H) is the product/Prague dimension of H (refer to
Corollary 34 in Section 7). Figure 7 presents a graph showing the necessity of this slack
in the characterization. However, for most applications, an additive slack of one should
be acceptable. This proposition facilitates lower-bounding the P4-fc (G) using the algebraic
lower-bounding techniques for the product/Prague dimension [47, 4, 63, 5].

Despite this similarity, extremal properties of the equivalence cover number and pro-
duct/Prague dimension need not translate into extremal properties of the P4-free cover
number. For example, an N -vertex star has an equivalence cover number (N − 1) [63]. On
the other hand, the P4-free cover number of any bipartite graph with size-N partite sets
is at most its star arboricity (because star forests are P4-free), which is at most (roughly)
N/2 [3]. The bottleneck here is that the P4-fc (G) is close to pdim (H), where H represents a
bipartite graph, i.e., the graph H is structured (triangle-free in this particular case). The
graphs realizing the extremal properties for equivalence cover number and product/Prague
dimension need not have this structure. In particular, the construction of bipartite graphs
with high P4-free cover and partition numbers turns out to be non-trivial, and our work
establishes a connection to the well-known (unsolved) Zarankiewicz problem [11] and relies
on probabilistic techniques to demonstrate their existence.

Section 7 also presents a variant of the product/Prague dimension to estimate the P4-free
partition number (see Corollary 37). A lower bound for the P4-free partition number is
non-trivial if it is not already a lower bound to the P4-free cover number. Unfortunately,
no non-trivial lower-bounding techniques for general graphs are known for this new graph
embedding property. When non-trivial lower bounds for this variant of the product/Prague
dimension is proven, they shall transfer to the P4-free partition number.

Among several notions of product dimension for graphs [30], most of which are unrelated
to the property we wish to capture,4 the graph property mentioned above is the closest and
most relevant.

1.2 P4-free Partition Number
We reduce problem A to computing the P4-free partition number. We present the reduction’s
highlight. A bipartite graph G naturally represents a (flat) joint distribution pXY , where
the edge-set is the support of pXY (see Figure 2 for examples). If G is already P4-free, then
Alice and Bob need no assistance from the genie; the connected component’s identity is their
shared key s, and (conditioned on the identity of the shared key) their samples rA = (x|s) and
rB = (y|s) are independent private randomness. If G is not P4-free, the genie decomposes G

into G1, . . . , Gd such that each Gi is P4-free and the edge sets E(G1), . . . .E(Gd) partition
the edge set E(G). For a joint sample (u, v) ∈ E(G), the genie reveals the (unique) z = i

such that (u, v) ∈ E(Gi). Conditioning on the genie’s assistance z = i, Alice-Bob’s samples
come from the joint distribution Gi, which is P4-free, so they agree on their shared key
and secure private randomness as above. To minimize the genie’s assistance, one needs to
minimize d ∈ N, identical to P4-fp (G).

4 Even the notions of dimension that are deceptively similar sounding, for example, the “product dimension
of bipartite graphs” introduced by [59], are unrelated to the graph properties that this paper studies.
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00 11 01 10
00 1 1 0 0
11 1 1 0 0
01 0 0 1 1
10 0 0 1 1

(a) Forward or flip.

00 01 10 11
00 1 1 0 0
01 0 1 1 0
10 0 0 1 1
11 1 0 0 1

(b) Noisy typewriter.

Figure 2 Pictorial representation of the probability distributions (a) forward or flip, and (b) noisy
typewriter distributions, for n = 2. Rows correspond to Alice samples, and columns correspond to Bob
samples. The (i, j)-th entry of a matrix being 1 represents that (i, j) is in the support of the distribution.
The distribution is a uniform distribution over all the elements in the support. Let Ga be the bipartite
graph whose adjacency matrix is defined by the matrix representation of the forward and flip distribution.
The graph Ga is a disjoint union of 2n−1 copies of the K2,2 biclique. Note that Ga is P4-free, and,
hence, P4-fp (Ga) = 1. Let Gb be the bipartite graph whose adjacency matrix is defined by the matrix
representation of the noisy typewriter distribution. The graph Gb is a cycle of length 2n+1. Note that Gb

is not P4-free, and P4-fp (Gb) = 2 (the graph decomposes into two matchings).

1.2.1 Discussion on Problem A
We begin by expanding how lower-bounding the information-theoretic measure in problem
A translates into communication and cryptographic lower bounds (as in [8]). Suppose, in
our model, one proves that the genie’s assistance must be k ≥ k∗ bits. Now consider the
setting in part (b) of Figure 1 where there is no genie; however, the parties have access
to a functionality F . The functionality F may be an arbitrary communication protocol or
multiple calls to arbitrary interactive stateful functionalities that receive adaptive inputs
from Alice and Bob. In particular, F may be multiple copies of the NAND-functionality,
which is sufficient for general secure computation [68, 27, 42]. Observe that the genie can
simulate the functionality F ’s entire output with access to (x, y). Consequently, we have the
following result.

▶ Proposition 2. If pXY needs k ≥ k∗ bits of assistance from the genie in our model, then
Alice and Bob need to receive at least k∗ bits from F in the Figure 1 part (b) model to
establish a shared key s and extract the left-over entropy in their sample as independent
private randomness.

In information theory, Gray-Wyner systems/networks are well-studied [66]. However,
existing measures like mutual information and various notions of common information are
inadequate to capture the information-theoretic property in Problem A accurately. For
example, there are two joint distributions with identical (Shannon’s) mutual information [61];
however, one needs no assistance while the other needs one-bit assistance.5 Refer to Figure 2
for the following discussion. Consider the first distribution (namely, the forward or flip
distribution), where Alice gets i.i.d. uniformly random bits x = (x1, x2, . . . , xn), and Bob
either (with probability half) gets y = x or y = (x1, . . . , xn), i.e., every bit of x is flipped. In
the second distribution (the noisy typewriter distribution), Alice gets a uniformly random
sample x ∈ {0, 1, . . . , 2n − 1}, and Bob either gets y = x or y = (x + 1) mod 2n with
probability half. The bipartite graph corresponding to the forward or flip distribution is,
indeed, P4-free, and the bipartite graph corresponding to the noisy typewriter distribution

5 By tensorizing the distributions, one can increase the gap in the necessary assistance arbitrarily.
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has P4-free partition number 2 (i.e., one-bit assistance is necessary and sufficient). Both
distributions have (n− 1) bits of mutual information; however, the first distribution needs
no assistance, but the second distribution needs one-bit assistance6 to agree on a secret key.

Wyner’s common information [66] estimates the minimum assistance that removes any
dependence between Alice-Bob samples. This quantity is a significant overestimation (for ex-
ample, in the forward or flip distribution, it needs (n−1)-bits of assistance z = (x1, . . . , xn−1)),
and Wyner’s assistance eliminates the possibility of Alice and Bob agreeing on a secret key,
which defeats the objective of this problem. Gács-Körner common information [25] estimates
the length of the secret key that Alice and Bob can generate without any assistance from the
genie, which results in pessimistic estimates. For example, starting with samples from the
noisy typewriter distribution, Alice and Bob cannot even agree on a one-bit secret; however,
appropriate one-bit assistance would help them generate an (n− 1)-bit secret. Likewise, non-
interactive correlation distillation [53, 52] enables parties to agree on a secret non-interactively
without any assistance. However, even without the necessity to generate independent local
randomness, strong hardness of computation results are known [53, 52, 67, 10, 14].

Refer to Appendix D in the full version for additional discussion on various forms of
common information.

1.2.2 Our results for Problem A

Observe that the naïve assistance that reveals the XOR of the parties’ inputs suffices; however,
the minimum assistance may be exponentially smaller. Our work relies on suitably encoding
(flat) joint distributions as bipartite graphs. We prove in Theorem 5 that ascertaining the
minimum assistance is, in general, difficult. Furthermore, there are joint distributions where
the minimum assistance that is needed is close to the naïve assistance mentioned above,
yielding lower bounds in communication and cryptographic complexity. In other words, we
obtain the following as a corollary to Theorem 6.

▶ Corollary 3. Let ΩX = ΩY = {0, 1}n
. Fix t ∈ N. There are joint distributions over the

sample space ΩX × ΩY that require Alice and Bob to (each) receive at least
(

1− 2
t+2

)
n bits

of communication in the model in Figure 1 part (b).

Finally, we upper-bound the minimum assistance needed for a few well-studied probability
distributions i.e. when pXY is the INTn

7 or the DISJn
8 joint distribution, then ⌈n/2⌉-bit

assistance suffices (we explicitly provide the assistance that the genie provides and it is
efficient to compute, see Theorem 8). For INEQN , where N = 2n, the genie needs to provide
⌈log n⌉ bits of assistance. The assistance for INEQN is optimal because we prove a matching
lower bound. In general, min{log2 N, 1

2 log2|Supp(pXY )|} bits of assistance suffices.9

6 The genie notifies the parties whether y = x or not.
7 Alice receives random X ⊆ {1, 2, . . . , n}, and Bob receives random Y ⊆ {1, 2, . . . , n} conditioned on

X ∩ Y ̸= ∅.
8 Alice receives random X ⊆ {1, 2, . . . , n}, and Bob receives random Y ⊆ {1, 2, . . . , n} conditioned on

X ∩ Y = ∅.
9 Because, P4-fp (G) ≤ sa (G) ≤ O

(√
|E(G)|

)
. The last bound on the star arboricity of G follows from

an averaging argument and the bound of [3].
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1.3 P4-free Cover Number
We reduce Problem B to the P4-free cover number. Boolean functions naturally encode a
bipartite graph’s adjacency matrix; an input-pair that evaluates to 1 denotes an edge in the
graph. If the graph G (of a function f) is P4-free, then parties need no nondeterministic
input; they can evaluate f using the EQ oracle.10 Otherwise, decompose G into P4-free
G1, . . . , Gd such that the union of the edge-sets of G1, . . . , Gd is the edge-set of G. For input
(x, y) such that f(x, y) = 1, the nondeterministic input is i ∈ {1, . . . , d}, where the edge-set
of Gi contains the edge (x, y). Next, given this nondeterministic input, parties can evaluate
f . For input (x, y) such that f(x, y) = 0, no nondeterministic input can make Alice and Bob
output 1. One minimizes d ∈ N to minimize the nondeterministic communication complexity,
which is identical to P4-fc (G).

1.3.1 Discussion on Problem B
The equality function in the standard nondeterministic communication complexity model
(where parties do not have access to the EQ oracle) has high nondeterministic communication
complexity. Determining the minimum nondeterministic input is equivalent to covering the
input-pairs where the output is 1 using a minimum number of combinatorial rectangles, a.k.a.,
the biclique cover number [35]. The motivating problem’s objective is to characterize the
utility of oracle access to the EQ function in computing other functions. If the EQ oracle
is useful, then the nondeterministic communication complexity relative to the EQ oracle
shall be lower than without accessing the EQ oracle. The particular notion of “reduction”
considered above is similar to Karp-reduction [38], which permits only one call to the oracle
and no post-processing of the oracle’s output. Similarly, in circuit complexity, it is typical to
augment a circuit class with a more expressive gate at the output that is not computable by
circuits in that class. For example, one studies the effects of augmenting AC0 circuits with
a MAJ (majority) gate or a THR (threshold) gate at the output [7, 26, 33, 29], enabling a
controlled exploration of the gap between the power of AC0 and TC0 circuits.

1.3.2 Our results for Problem B
Similar to the result for P4-free partition number, we prove that computing the P4-free cover
number is difficult (see Theorem 5), and there are functions that need nondeterministic input
(roughly) the size of the parties’ inputs, in other words, we obtain the following as a corollary
to Theorem 6.

▶ Corollary 4. Fix t ∈ N. There are Boolean functions f : {1, 2, . . . , N} × {1, 2, . . . , N} →
{0, 1} requiring at least (1− 2

t+2 ) log2 N bits of nondeterministic input in the communication
complexity model where parties have access to the EQ oracle.

These functions are analogs of the “fooling sets” in our communication model. In the standard
nondeterministic communication model, the EQ function is hard-to-compute and needs n-bits
of nondeterministic input. The “fooling set” lower-bounding technique draws inspiration
from this result. For a general f , this argument demonstrates pairs of Alice and Bob’s
input-sets where only the diagonal elements are 1; and the rest are 0. That is, the function
f has an embedded EQ function. The size of this “embedded EQ” (a.k.a., the fooling set) in

10 Parties compute the connected component where their private input belongs. Then, they use the EQ
oracle to test if they belong to the same connected component.
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f suffices to prove lower bounds on the nondeterministic input needed to compute f . In our
setting, these functions that require (1− 2

t+2 )n-bit nondeterministic input serve as “fooling
sets” in the nondeterministic communication complexity model where parties can access the
EQ oracle.

Next, we provide estimates for some well-known functions in communication complexity
(see Theorem 8). We prove that the P4-free cover number of DISJn is (roughly) ≤

√
N . That

is, only n/2 bits of nondeterministic input suffices to compute this function. Recall that,
in the standard model, the function DISJn requires n-bit nondeterministic input because
{(X, {1, 2, . . . , n} \X)}X⊆{1,2,...,n} is a fooling set. Consequently, our result demonstrates a
linear gap in the number of bits needed in our model, which indicates that the EQ oracle
is non-trivially useful to compute DISJn. We prove a lower bound showing that 0.085n-bit
assistance is necessary.

Next, we prove that the P4-free cover number of INTn is between n and n(1− log2(n)
n ).

Observe that the nondeterministic communication complexity of INTn (without access to the
EQ oracle) is already ⌈log2 n⌉ bits. Consequently, EQ oracle’s access is practically useless
because the difference between the ceiling of the log of the lower and the upper bounds is at
most 1 (asymptotically).

Finally, we show that INEQN needs only log2 log2 N bit nondeterministic input using
the EQ oracle. Intuitively, if N = 22s and all inputs are 2s-bit binary strings, then the
nondeterministic input is the s-bit index where the parties’ input differ. Recall that in the
standard model (without access to the EQ oracle), INEQN requires log2 N -bit nondeterministic
input, which is exponentially higher. Furthermore, using the algebraic technique of [47, 63], we
prove a matching lower bound to the P4-free cover number of INEQN . Observe that we prove
that P4-fp (INEQN ), not just P4-fc (INEQN ), matches the lower bound for the P4-fc (INEQN ).

2 Our Contribution

We prove the NP-completeness of determining the P4-free partition and cover numbers of a
bipartite graph.

▶ Theorem 5 (Hardness of P4-free Partition and Cover). The following languages are NP-
complete.

P4-FREE-PART = { ⟨G⟩ | G is a bipartite graph and P4-fp (G) ≤ 2} ,

P4-FREE-COV = { ⟨G⟩ | G is a bipartite graph and P4-fc (G) ≤ 2} .

Similar problems, for example, calculating the biclique partition number/cover [57] and star
arboricity [34] (even for bipartite graphs) are NP-complete.

Next, we prove that there are graphs G with large P4-free partition and cover numbers.
Note that for a bipartite graph G = (L, R, E), we have P4-fc (G) ≤ P4-fp (G) ≤ min{|L|, |R|}
by decomposing the graph into stars rooted at vertices of the smaller partite set. Towards
understanding the tightness of this naïve upper-bound, we show that, for any N ∈ N
and constant ϵ ∈ {1/3, 1/4, . . . }, there are bipartite graphs with size-N partite sets and
P4-fp (G) ≥ P4-fc (G) ≥ Ω(ϵ ·N1−2ϵ) (roughly).

▶ Theorem 6 (High P4- Free Partition and Cover Numbers). Let C be an appropriate positive
absolute constant and t ∈ N be a parameter. There exists N0 ∈ N such that for all N ∈ N
and N ≥ N0, there is a graph GN,t = (L, R, E) such that (1) |L| = |R| = N, and (2)
P4-fp (GN,t) ≥ P4-fc (GN,t) ≥ C · 1

t ·N
1− 2

t+2 .
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Our constructions rely on extremal bipartite graphs that avoid Kt+1,t+1-subgraphs (the
unsolved Zarankiewicz problem [11]), for which only probabilistic constructions are known
(refer to the discussion in Section 4). Explicit constructions are known only for very specialized
values of t. However, the P4-free partition and cover numbers of GN,t cannot be too large. For
any sparse bipartite graph G, using an averaging argument, its star-arboricity has the upper
bound sa (G) ≤ O

(√
|E(G)|

)
[3]. Since star forests are P4-free and GN,t has O

(
N2− 2

t+1

)
edges, it implies that P4-fp (GN,t) ≤ O

(
N1− 1

t+2

)
.

In problem A, the joint distributions corresponding to these bipartite graphs require a lot
of assistance from the genie. Consequently, these lower bounds translate into communication
and cryptographic complexity lower bounds. The functions corresponding to these bipartite
graphs are difficult to compute for parties with nondeterministic input and access to the EQ
oracle. If these functions are embedded in another function, then that function must have
high nondeterministic communication complexity as well.

As a corollary (of the proof technique presented above), we prove the following result for
dense bipartite graphs drawn from the Erdős-Rényi distribution with (constant) parameter
p ∈ (0, 1). Graphs drawn from ER(N, N, p) avoid bicliques with size-(2 loga N) partite sets.
Therefore, we have the following result.

▶ Corollary 7 (High P4-Free Partition and Cover Number of Erdős-Rényi Graphs). Let p ∈ (0, 1)
be a constant parameter. Let ER(N, N, p) represent the distribution over the sample space of all
bipartite graphs over size-N partite sets that includes every edge into the graph independently
with probability p. Then, for a = 1/p, we have

Pr
[
P4-fp (G) ≥ P4-fc (G) ≥ pN

4 loga N
· (1− o(1)) : G

$←− ER(N, N, p)
]
≥ 1− o(1).

Upper bounds to the P4-free cover and partition numbers for bipartite Erdős-Rényi graphs is
potentially an extremely challenging problem. Upper-bounding the P4-free partition number
of Erdős-Rényi bipartite graphs remains open.

Finally, we estimate the P4-free partition and cover numbers for the graphs INTn, DISJn,

and INEQN that are well-studied functions from communication theory and are defined
below.
1. The Intersection Graph. For n ∈ N, let INTn = ({0, 1}n

, {0, 1}n
, E) be the bipartite

graph defined as follows. For any u, v ∈ {0, 1}n, we have (u, v) ∈ E if and only if the set
U ⊆ {1, 2, . . . , n} indicated by u, intersects the set V ⊆ {1, 2, . . . , n} indicated by v.

2. The Disjointness Graph. For n ∈ N, let DISJn = ({0, 1}n
, {0, 1}n

, E) be the bipartite
graph defined as follows. For any u, v ∈ {0, 1}n, we have (u, v) ∈ E if and only if the set
U ⊆ {1, 2, . . . , n} indicated by u, is disjoint from the set V ⊆ {1, 2, . . . , n} indicated by v.

3. The Inequality Graph. For N ∈ N, let INEQN = ({1, 2, . . . , N}, {1, 2, . . . , N}, E) be
the bipartite graph defined as follows. For any u, v ∈ {1, 2, . . . , N}, we have (u, v) ∈ E if
and only if u ̸= v.

▶ Theorem 8 (Estimates for Particular Graphs). For all n, N ∈ N, the following statements
hold.
1. n − 1

2 lg(n) − O(1) ≤ P4-fc (INTn) ≤ n, and P4-fp (INTn) ≤{
2 · 2n/2 − 2, even n, and
3 · 2(n−1)/2 − 2, odd n.

2. 20.085n ≤ P4-fc (DISJn) ≤ P4-fp (DISJn) ≤ 2⌈n/2⌉.
3. P4-fc (INEQN ) = P4-fp (INEQN ) = ⌈log2 N⌉.
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Recall that for any Boolean function f , parties can calculate it with ⌈log2 P4-fc (G(f))⌉-
bit nondeterministic input and one call to the EQ oracle, where G(f) is the bipartite
graph representing the Boolean function f . Therefore, the bounds above translate into
communication bounds.

Observe the exponential gap between the upper bounds on the P4-free cover and partition
numbers of INTn. We conjecture that similar to the exponential gaps in the biclique cover
and partition number of some graphs [58], INTn is a candidate bipartite graph witnessing
an exponential gap in its P4-free cover and partition numbers. Currently, the authors are
unaware of any general non-trivial lower bounding technique for the partition number that is
not a lower bound to the cover number for this problem.

Lower-bounding the P4-free cover numbers of INEQN and INTn relies on Proposition 1
and the algebraic technique of [47, 63]. Furthermore, the P4-free cover and partition numbers
of INEQN are exact, previously unknown for the partition number. Finally, the lower bound
on the P4-free cover number of DISJn uses a new counting strategy.

3 Hardness of P4-free Partition and Cover Numbers

In this section, we will prove Theorem 5. Our proof of hardness for both partition and cover
number is based on a result from [28], which shows that computing the edge partition of a
bipartite planar graph into two star forests is NP-complete.

▶ Definition 9. A star is a tree with one internal node, in other words, a biclique in which
either the left partite set or the right partite set has size one. A star forest is a forest whose
connected components are stars. The star arboricity of a graph, represented by sa (G), is the
minimum number of star forests that a graph can be partitioned into.

▶ Imported Theorem 10 (Gonçalves and Ochem [28]). For any g > 3, deciding whether a
bipartite planar graph G with girth11 at least g and maximum degree 3 satisfies sa (G) ≤ 2 is
NP-complete.

Proof of Theorem 5. First we show the decision problem is in NP, that is, given a partition
of the edge set of G into ≤ 2 components we can verify in polynomial time whether it is a
P4-free partition of size ≤ 2 of G or not. This can be done in polynomial time by checking if
any set of four vertices (two in the left set and two in the right set) in each component is
P4-free.

Next we show that the decision problem from Theorem 10 is polynomial-time reducible
to the P4-free partition and cover number on bipartite graphs. The decision problem in
Theorem 10 is NP-complete for any bipartite planar graph of girth at least g > 3; in
particular, it holds for g ≥ 6. Suppose we have a bipartite planar graph G with girth g ≥ 6
and maximum degree 3. Since G has girth at least 6, there are no cycles of length less than 6
in G. It implies that K2,2 is not a subgraph of G. Therefore, any disjoint union of bicliques
in G is a star forest. This implies that sa (G) = P4-fp (G) = P4-fc (G), since K2,2-free graphs
have the property that the P4-free partition and cover numbers are both identical to the star
arboricity. Thus, the star arboricity of G is ≤ 2 if and only if the P4-free partition number
of G is ≤ 2. ◀

11 The girth of an undirected graph is the length of the shortest cycle in the graph.
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4 High P4-free Partition and Cover Numbers

We shall prove Theorem 6 and Corollary 7 in this section. We begin with some terminologies
in extremal graph theory. Fix a graph H. A classical problem in graph theory is to find the
maximum number of edges in a graph on N vertices that does not contain a copy of H.

▶ Definition 11 (Turán number). Turán number denoted by ex(N, H) is the maximum number
of edges in an N -vertex graph that does not contain a copy of H.

A sub-problem of special interest is when H is a complete bipartite graph, this problem is
commonly referred to as the Zarankiewicz problem.

▶ Definition 12 (Zarankiewicz function). Zarankiewicz function, denoted by z(M, N ; s, t),
is the maximum number of edges in a bipartite graph G = (L, R, E), where |L| = M and
|R| = N , that does not contain a sub-graph of the form Ks,t.

The Zarankiewicz function is well-studied [24]. The best general lower bound obtained by
the probabilistic method [20] yields the following bound.

▶ Imported Theorem 13 (Erdős and Spencer [20]). For all a, b ∈ N, we have ex(N, Ka,b) ≥
C ·N2− a+b−2

ab−1 , where C is a positive absolute constant.

An explicit construction for Kt+1,t+1-avoiding graphs for t = 2 is known [12], which has
1
2 N

5
3 + o(N 5

3 ) edges.12 Using norm graphs, constructions of Kt,s-avoiding graphs for fixed
t ≥ 2 and s > (t− 1)! are known as well [43, 6]. Note that the latter set of constructions do
not apply to our setting for t > 3. Considering the adjacency matrix of a Ka,b-free graph on
n vertices, we get z(N, N, a, b) ≥ 2ex(N, Ka,b).

Let G = (L, R, E) be a bipartite graph. A combinatorial rectangle is a set of the form A×B,
where A ⊆ L and B ⊆ R. Observe that a combinatorial rectangle corresponds to a biclique if
we restrict ourselves to rectangles of the form {A×B : (u, v) ∈ A×B ⇐⇒ (u, v) ∈ E}. We
shall use this fact in the sequel to show that the P4-free partition number of a Kt+1,t+1-free
bipartite graph is high.

▶ Lemma 14. For a bipartite graph G = (L, R, E) such that |L| = |R| = N , if G is
Kt+1,t+1-free for some t > 0, then P4-fp (G) ≥ e(G)

2Nt .

Proof. Consider the adjacency matrix of the bipartite graph G. A biclique in G can be
represented as a combinatorial rectangle in the adjacency matrix of G (as explained above).
The width of this combinatorial rectangle is the smaller of its two dimensions, and the length
of this combinatorial rectangle is the larger of the two dimensions. Observe that any P4-free
bipartite graph is the union of non-intersecting combinatorial rectangles.

Let G′ be a P4-free bipartite sub-graph of G. It is instructive to refer to Figure 3. For
any combinatorial rectangle in G′, length ≤ 2N and width ≤ t, since if width = t + 1 ≤ length,
then there exists a Kt+1,t+1-subgraph in G. This observation implies that e(G′) < 2Nt, and
consequently P4-fp (G) ≥ e(G)

2Nt . ◀

The proof of Theorem 6 follows from the fact about Zarankiewicz function of Kt+1,t+1-free
bipartite graphs and Lemma 14.

12 For t = 1, Levi graph of a finite projective plane yields an explicit construction.
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≤ t

≤ t

≤ t

Figure 3 Let t ∈ N be a parameter. Proof intuition underlying the fact that a Kt+1,t+1-free bipartite
graph cannot have a dense P4-free subgraph.

Proof of Theorem 6. We construct a bipartite graph G = (L, R, E) such that |L| = |R| = N

and it is Kt+1,t+1-free. By Imported Theorem 13,

e(G) = z(N, N ; t + 1, t + 1) ≥ 2ex(N, Kt+1,t+1) ≥ 2CN2− 2
t+2 ,

where C is a positive absolute constant. By Lemma 14, we get that

P4-fp (G) ≥ e(G)
2Nt

= 2CN2− 2
t+2

2Nt
= C · 1

t
·N1− 2

t+2 . ◀

Similarly, to prove that ER(N, N, p) have high P4-free partition and cover numbers
(Corollary 7), we rely on the following two observations.
1. The number of edges in a bipartite graph G

$←− ER(N, N, p) is at least pN2 · (1− o(1)),
with probability 1− o(1).

2. Furthermore, G
$←− ER(N, N, p) is Kt+1,t+1-avoiding with high probability, where t + 1 =

⌈2 loga N⌉.
The proof of the second observation follows from the standard outline for first moment
techniques, see, for example, [23] Chapter 7.2. More concretely, let t + 1 = ⌈2 loga N⌉. Let
Nt+1 be the random variable counting the number of Kt+1,t+1 bicliques in G. Then, we have

E[Nt+1] =
(

N

t + 1

)2
p(t+1)2

≤
(

eN

t + 1

)2(t+1)
p(t+1)2

=
(

eNp
t+1

2

t + 1

)2(t+1)

≤
(eN · 1

N

t + 1

)2(t+1)

= o(1)

Therefore, with probability 1− o(1), there are no Kt+1,t+1 bicliques in G.

5 Upper Bounds for INTn, DISJn, and INEQN

In this section, we establish the upper bounds for DISJn, INTn, and INEQN as stated in
Theorem 8. We also exhibit a non-trivial gap between the star arboricity, and the P4-free
partition number of DISJn (see Eq. 2 of Theorem 19).

5.1 P4-free Partition/Cover Number and Graph Products
First, we introduce the notion of a graph product, and state some properties regarding the
behavior of P4-free partition/cover number on graph products. These concepts are used to
solve recurrence relations for DISJn and INTn in the sequel.
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▶ Definition 15 (Graph Product). Let G1 = (L1, R1, E1) and G2 = (L2, R2, E2) be two
bipartite graphs. Let G denote the tensor product of the two bipartite graphs G1, and G2,
represented by G1 ×G2. The partite sets of G are L1 × L2 and R1 ×R2, and the edge set is
E(G) ..= {( (u, a), (v, b) ) : (u, v) ∈ E1, (a, b) ∈ E2}.

▷ Claim 16 (Product of P4-free bipartite graphs is P4-free). Let G and H be two P4-free
bipartite graphs, then G×H is also P4-free.

▷ Claim 17 (Sub-multiplicativity of the P4-free Partition Number). Let G and H be two
bipartite graphs, then the following holds for their graph product.

P4-fp (G×H) ≤ P4-fp (G) · P4-fp (H)

Similarly, the P4-free cover number is also sub-multiplicative.

▷ Claim 18 (Sub-multiplicativity of the P4-free Cover Number). Let G and H be two bipartite
graphs, then the following holds for their graph product.

P4-fc (G×H) ≤ P4-fc (G) · P4-fc (H)

5.2 Bound on DISJn

We show an upper bound for P4-fp (DISJn) using the fact that DISJn is the tensor product
DISJ×n

1 , and we show a lower bound for sa (DISJn), thus exhibiting a gap between the two
measures.

▶ Theorem 19. For any n ∈ N, the following bounds hold.
1. P4-fp (DISJn) = P4-fp (DISJn

1 ) ≤ 2⌈n/2⌉, and

2. sa (DISJn) > ⌈(3/2)n⌉ =
⌈
2.25n/2⌉.

Proof. For the first bound, the proof proceeds by induction on n. For the base cases, observe
that P4-fp (DISJ1) = P4-fp (DISJ2) = 2. Next, for any 2 < n ∈ N, we have

P4-fp (DISJn) = P4-fp (DISJn−2 × DISJ2)
≤ P4-fp (DISJn−2) · P4-fp (DISJ2) (Claim 17)

≤ 2⌈n−2/2⌉ · 2 (Inductive Hypothesis)

= 2⌈n/2⌉

This observation completes the inductive proof.
For the second bound, note that a star forest over partite sets L and R has < |L|+ |R| =

2 · 2n edges in it. Note that e(DISJn) = 3n. Therefore, one needs > ⌈(3/2)n⌉ star forests to
partition the edges of DISJn. ◀

5.3 Bound on INTn

First, we show that P4-fc (INTn) ≤ n. Let [n] denote the set {1, 2, . . . , n}. For each 1 ≤ i ≤ n,
construct a subgraph Gi = (Li, Ri, Ei) of INTn that connect all sets that contain the element
i in [n]. More formally, Li = Ri = {S ⊆ [n] : S ∋ i}, and Ei = {(S, T ) : S ∈ Li, T ∈ Ri}.
Note that Gi is a biclique and it has 4n−1 edges. Note also that every edge in INTn is
covered by at least one graph Gi, for some i ∈ [n] that witnesses the intersection of the
two sets. It implies that G1, G2, . . . , Gn is a P4-free cover of INTn. Therefore, it holds that
P4-fc (INTn) ≤ n = lg N .
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11{0, 1}n−2

10{0, 1}n−2

01{0, 1}n−2

00{0, 1}n−2

11{0, 1}n−2

10{0, 1}n−2

01{0, 1}n−2

00{0, 1}n−2

Figure 4 Partition of edges of INTn into two sets.

Figure 5 Partition of G1 in Lemma 20 into two P4-free graphs.

Next, we prove the upper bound for P4-fp (INTn). Before we discuss our result, it is
instructive to see that P4-fp (INTn) ≤ P4-fp (INTn−1) + P4-fp (DISJn−1), and by working out
this recurrence relation we could have obtained a worse bound of P4-fp (INTn) ≤ 3 · 2n/2 − 3.

Figure 6 Partition of H1 in Lemma 20 into two P4-free graphs.

▶ Lemma 20. For all n ∈ N and n ≥ 3, P4-fp (INTn) ≤ 2P4-fp (INTn−2) + 2

Proof. Consider the graph INTn. We partition the edges of INTn into two sets. Consider
an edge (u, v) where u, v ∈ {0, 1}n. Let u′ ∈ {0, 1}2 represent the two most significant bits
in u, define v′ similarly. Let buv be an indicator variable that takes value 1 when u′ and v′

intersect, and 0 otherwise.
If for the edge (u, v), buv = 1, then we add the edge to the “bold” set. When buv = 0, we

add the edge in the “dashed” set (refer to Figure 4). Let G be the subgraph induced by the
bold edges, and let H be the subgraph induced by the dashed edges.
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Next, we note that G = K2n−2,2n−2 × G1 where G1 is a graph with P4-free partition
number 2. See Figure 5 for an illustration. Similarly, H = INTn−2×H1 where H1 has P4-free
partition number 2. See Figure 6 for an illustration. Combing the above observations, we
get that

P4-fp (INTn) ≤ P4-fp (G) + P4-fp (H)
≤ P4-fp

(
K2n−2,2n−2 ×G1

)
+ P4-fp (INTn−2 ×H1)

≤ P4-fp
(
K2n−2,2n−2

)
· P4-fp (G1) + P4-fp (INTn−2) · P4-fp (H1) (Claim 17)

≤ 2 + 2P4-fp (INTn−2) ◀

Applying Lemma 20 inductively, we have the following result as a consequence.

▶ Theorem 21. P4-fp (INTn) ≤
{

2 · 2n/2 − 2, for even n,

3 · 2(n−1)/2 − 2, for odd n.

5.4 Bound on INEQN

In fact, we prove a more general result.

▷ Claim 22 (Complement of a P4-free graph has a small P4-free partition number). Let H be
a P4-free bipartite graph with c ∈ N connected components. Let G be the complement of H.
Then, the following bound holds.

P4-fc (G) ≤ P4-fp (G) ≤


⌈log2 c⌉, if H has no isolated vertex,
⌈log2 c⌉+ 1, if H has isolated vertices and c > 1, and
2, if H has isolated vertices and c = 1.

Proposition 1 (along with a suitable embedding φ) implies the upper bound P4-fc (G) ≤
⌈log2 c⌉. However, we prove the stronger result that P4-fp (G) ≤ ⌈log2 c⌉.

Our objective is to demonstrate a P4-free partition for G of size ⌈log2 c⌉. The proof starts
by kernelizing the graph G using the rules in [21]. Essentially, without loss of generality, one
can assume that H is a matching. For simplicity assume that H is a matching with c edges
and assume that it has c vertices in each partite set (i.e., there are no isolated vertices).

Next, the idea is to break the problem into half the size while including only one P4-free
graph in the partition of G. Assume, without loss of generality, that the partite sets are
L = {1, . . . , c} and R = {1, . . . , c}, and the edges in H are (i, i), for 1 ≤ i ≤ c.

Define L0 ..= {1, . . . , ⌊c/2⌋} and L1 ..= L \ L0. Similarly, define R0 ..= {1, . . . , ⌊c/2⌋} and
R1 ..= R \R0. Observe the following.
1. The edges induced by (L0, R1) and (L1, R0) in G are disjoint bicliques. Together, they

shall form one P4-free subgraph of G.
2. Next, the edges induced by (L0, R0) and (L1, R1) in G are disjoint and complements of

matchings as well; albeit the matchings are of size ⌊c/2⌋ and ⌈c/2⌉, respectively. We
recursively partition the disjoint union of these graphs.

Hence, Claim 22 is proved. Applying this claim for G = INEQN and H = EQN , we have the
following result.

▶ Theorem 23. For any N ∈ N, it holds that P4-fp (INEQN ) ≤ log2 N.

6 Lower Bounds for INTn, DISJn, and INEQN

This section presents the proofs of the lower bounds in Theorem 8.
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6.1 Bound for INEQN

We begin with a lower bound on P4-fc (INEQN ) by outlining the proof of Proposition 1 below.
Given a size-d P4-free cover {G1, . . . , Gd} of a bipartite graph G = (L, R, E) consider the
following function φ : L ∪ R → {1, 2} × Nd. For i ∈ {0, 1, . . . , d}, φ(u)i refers to the i-th
coordinate of the mapping φ(u). Define φ(u)0 ..= 1 if u ∈ L; otherwise, if u ∈ R, define
φ(u)0 ..= 2. If the edge (u, v) ∈ E is covered in the Gi by the k-th connected component, then
define φ(u)i = φ(v)i

..= k. Since each connected component of Gi is a biclique, there are no
inconsistencies introduced in defining the mapping φ. All remaining undefined coordinates
of the mapping φ are completed with unique entries.

Observe that the mapping φ has the following property. For any u ∈ L and v ∈ R, we have
(u, v) ∈ E if and only if φ(u)0 ̸= φ(v)0, and there exists i ∈ {1, . . . , d} such that φ(u)i = φ(v)i.
Equivalently, by taking the negation, one concludes that (u, v) ∈ L×R \E if and only if, for
all i ∈ {0, 1, . . . , d}, we have φ(u)i ̸= φ(v)i. Therefore, the complement of the bipartite graph
G is a subgraph of K2 ×Kd

N, if φ is injective. Note that a redundancy-free graph cannot
have φ(u) = φ(v), for distinct vertices u and v. Consequently, we have Proposition 1. The
other direction of the proposition does not hold because the first coordinate of the mapping
φ need not be constant restricted over the vertices in L or R. However, given φ one can
prepend a coordinate that is 1 for the vertices in L and 2 for the vertices in R. Therefore, if
G is an induced subgraph of K2 ×Kd

N, then G has a size-(d + 1) P4-free cover.
For deriving the lower bound, consider G = INEQN , i.e., G = EQN . Using the algebraic

lower-bounding technique of [47, 4, 63], one concludes d ≥ ⌈log2 N⌉. Therefore, we have the
following result.

▶ Theorem 24. For any N ∈ N, it holds that P4-fc (INEQN ) ≥ ⌈log2 N⌉.

6.2 Bound on DISJn

We rely on a counting technique to obtain this lower bound. Intuitively, existing algebraic
technique are useful to obtain logarithmic lower bounds. However, in this problem, we seek
to prove a polynomial lower bound.

▶ Theorem 25. For all n ∈ N, the following bound holds.

P4-fp (DISJn) ≥ P4-fc (DISJn) ≥ N log2 3−3/2 ≈ N0.085

The following lemma is the key for the proof of Theorem 25.

▶ Lemma 26. Any P4-free subgraph of DISJn has at most N
√

N edges.

To prove Lemma 26, we shall use the following claims (see full version for their proofs).

▷ Claim 27. Any biclique subgraph of DISJn has at most N edges.

▷ Claim 28. Let {(ai, bi)}i∈N be a sequence of non-negative numbers. Then,

∑
i∈N

aibi ≤

√√√√(max
i∈N

aibi

)(∑
i∈N

ai

)(∑
i∈N

bi

)
.

Furthermore, equality holds if and only if (a) for all i ∈ N, one has ai > 0 iff bi > 0. (b)
all positive ai are constant, and (c) all positive bi are constant.
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Proof of Lemma 26. Suppose G is a P4-free subgraph of DISJn. Let
Ka1,b1 , Ka2,b2 , . . . , Kam,bm

be the (biclique) connected components of G, where ai ∈ N, bi ∈ N
for every 1 ≤ i ≤ m and m ∈ N. The total number of edges in G is

∑m
i=1 aibi. We shall show

that
∑m

i=1 ai · bi ≤ N
√

N . By Claim 27, it holds that ai · bi ≤ N for every 1 ≤ i ≤ m. Since
all the left partite sets of Ka1,b1 , Ka2,b2 , . . . , Kam,bm

are disjoint, it holds that
∑m

i=1 ai ≤ N .
Similarly,

∑m
i=1 bi ≤ N . Therefore, applying Claim 28, the following inequality holds.

m∑
i=1

aibi ≤

√√√√(max
i

aibi

)( m∑
i=1

ai

)(
m∑

i=1
bi

)
≤
√

N ·N ·N = N3/2

Thus, any P4-free subgraph of DISJn has at most N3/2 edges. ◀

Now, we are ready to prove Theorem 25.

Proof of Theorem 25. First, observe that there are 3n edges in DISJn. By Lemma 26, any
P4-free subgraph of DISJn has at most N

√
N edges. Therefore, we have

P4-fp (DISJn) ≥ P4-fc (DISJn) ≥ 3n

N
√

N
= N log2 3−3/2 ≈ N0.085

as desired. ◀

6.3 Bounds on P4-free Cover Number of INTn

We shall prove the following lower bound on the P4-free cover number of INTn.

▶ Theorem 29. For all n ∈ N, the following bounds hold.

n− 1
2

(
lg π + lg

(
n + 1

2 + 1
4 + 1

64(n + 1)

))
≤ P4-fc (INTn) .

First, we state claims needed for the proof of Theorem 29 (see full version for their proofs).

▷ Claim 30. For every n ∈ N, the following bound holds.

lg
(

n

⌊n/2⌋

)
≥ n− 1

2

(
lg π + lg

(
n + 1

2 + 1
4 + 1

64(n + 1)

))
▷ Claim 31. Let G be a bipartite graph. Then, for every induced subgraph H of G, the
following inequality holds.

P4-fc (H) ≤ P4-fc (G)

Proof of Theorem 29. Consider the induced subgraph G = (L′, R′, E′) of INTn, where
L′ = {S ⊆ [n] : |S| =

⌊
n
2
⌋
}, R′ = {T ⊆ [n] : |T | =

⌈
n
2
⌉
}. Observe that each vertex S ∈ L′ is

connected to every T ∈ R′ except when T = [n] \ S. Thus, graph G is the complement of a
matching of size M , where M =

(
n

⌊n/2⌋
)
. Using the algebraic lower-bounding technique of

[47] and Proposition 1, one concludes that

P4-fc (G) ≥ ⌈lg M⌉ ≥ n− 1
2

(
lg π + lg

(
n + 1

2 + 1
4 + 1

64(n + 1)

))
,

where the last inequality follows from Claim 30. Finally, by Claim 31, P4-fc (G) ≤ P4-fc (INTn).
Therefore, we have

n− 1
2

(
lg π + lg

(
n + 1

2 + 1
4 + 1

64(n + 1)

))
≤ P4-fc (INTn) ,

as desired. ◀
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7 Relation to Graph Embedding

This section presents the connection between P4-free partition/cover number and product/-
Prague dimension.

7.1 P4-free Cover Number
▷ Claim 32. If a bipartite graph G = (L, R, E) has a size-d P4-free covering, then the
complement bipartite graph G = (L, R, L×R \ E) is an induced subgraph of K2 ×Kd

N.

Proof. Let G1, . . . , Gd be a size-d P4-free cover of G. Define a vertex mapping φ : L ∪R→
K2 × Kd

N as follows. Let φ(u)i denote the i-th coordinate of the mapping φ(u). Define
φ(u)0 = 0, for all u ∈ L, and φ(v)0 = 1, for all v ∈ R. For i ∈ {1, . . . , d}, define
φ(u)i = φ(v)i = k, for every edge (u, v) in the k-th connected component of Gi. All
remaining entries of φ are filled with unique values. One can verify that (u, v) ∈ L×R \E

if and only if φ(u) and φ(v) differ in every coordinate, that is, φ(u)i ̸= φ(v)i for every
i ∈ {0, 1, . . . , d}. Therefore, the complement bipartite graph G is an induced subgraph of
K2 ×Kd

N.
We emphasize that the vertex mapping φ has the additional property that φ(u) and φ(v)

have t identical coordinates if and only if the edge (u, v) is covered in t P4-free graphs among
G1, . . . , Gd. This property shall be useful in the proof of Claim 35. ◁

▷ Claim 33. If a loopless undirected graph H = (L ∪R, E) is an induced subgraph of Kd
N

and E ⊆ L×R, then the bipartite graph H ′ = (L, R, L×R \E) has a size-d P4-free covering.

Proof. Suppose a loopless undirected graph H = (L ∪R, E) is an induced subgraph of Kd
N

and E ⊆ L×R. Then, there exists a vertex mapping φ : L ∪R→ Nd such that (u, v) ∈ E

if and only if there exists i ∈ {1, 2, . . . , d} such that φ(u)i = φ(v)i. Define a new vertex
mapping φ+ : L ∪R→ {1, 2} × Nd as follows.

φ+(u) =
{

(1, φ(u)), if u ∈ L

(2, φ(u)), otherwise.

For i ∈ {1, 2, . . . , d}, define Gi = (L, R, Ei) such that Ei is the set of all u ∈ L and v ∈ R

such that φ+(u)i = φ+(v)i. Observe that the set of vertices u ∈ L such that φ+(u)i = k and
the set of vertices v ∈ R such that φ+(u)i = k for some k ∈ N form a biclique, and each Ei

is a disjoint union of bicliques. Furthermore, an edge (u, v) ∈ E if and only if there exists
an i ∈ {1, 2, . . . , d} such that φ(u)i = φ(v)i which is equivalent to φ+(u)i = φ+(v)i. This
implies that Ei cover the edge (u, v). Therefore, E1, E2, . . . , Ed is a P4-free cover of H.

The G1, . . . , Gd have the property that if an edges (u, v) is covered t times by these
P4-free graphs, then φ+(u) intersects φ+(v) in exactly t coordinates. This property of the
vertex mapping shall be useful in the proof of Claim 36. ◁

The following result is a consequence of Claim 32 and Claim 33.

▶ Corollary 34. Let G = (L, R, E) be a bipartite graph and H = (L ∪ R, E) be a loopless
undirected graph. Then, the following identity holds.

pdim (H) ∈ {P4-fc (G) , P4-fc (G) + 1} ,

or, equivalently,

P4-fc (G) ∈ {pdim (H)− 1, pdim (H)} .

Note that the additive slack of 1 in Corollary 34 is necessary. Figure 7 gives an example.
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(1, 6)

(1, 5)

(1, 4)

(2, 1)

(2, 2)

(2, 6)

(2, 5)

(2, 4)

(1, 3)

(1, 1)

Graph H = (L ∪R, E ⊆ L×R)

Graph G = (L, R, L×R \ E) = +

Figure 7 Example for the tightness of Corollary 34. Note that the loopless undirected graph
H = (L ∪ R, E) = P4 + C6, where E ⊆ L × R, is an induced subgraph of K2 × KN. The (partition)
vertex mapping of each vertex is explicitly mentioned next to it. However, the bipartite graph G =
(L, R, L × R \ E) is not P4-free and, hence, P4-fc (G) ≥ 2; in fact, we have P4-fc (G) = P4-fp (G) = 2.
The edges of G partition into K2,3 + K3,2 and 4K1,1.

7.2 P4-free Partition Number
Suppose a graph H is an induced subgraph of Kd

N via a vertex mapping φ : V (H)→ Nd. The
vertex mapping φ is a partition if the following conditions are satisfied.
1. If (u, v) ∈ E(H), then φ(u)i ̸= φ(v)i, for all i ∈ {1, 2, . . . , d}.
2. If (u, v) ̸∈ E(H), then there exists a unique i ∈ {1, 2, . . . , d} such that φ(u)i = φ(v)i.
We emphasize that in an unrestricted vertex mapping, instead of (2) above, we insist that
there exists an i ∈ {1, 2, . . . , d} (not necessarily a unique i). Let pdim∗ (H) represent the
minimum d ∈ N such that H is an induced subgraph of Kd

N via a partition vertex mapping.

▷ Claim 35. If a bipartite graph G = (L, R, E) has a size-d P4-free partitioning, then the
complement bipartite graph G = (L, R, L×R \E) is an induced subgraph of K2 ×Kd

N via a
partition vertex mapping.

▷ Claim 36. If a loopless undirected graph H = (L∪R, E) is an induced subgraph of Kd
N via

a partition vertex mapping and E ⊆ L×R, then the bipartite graph H ′ = (L, R, L×R \E)
has a size-d P4-free partitioning.

The proofs of Claim 35 and Claim 36 are identical to the proofs of Claim 32 and Claim 33,
respectively, utilizing the fact that the vertex mapping is a partition. As a consequence of
Claim 35 and Claim 36, we have the following result.

▶ Corollary 37. Let G = (L, R, E) be a bipartite graph and H = (L ∪ R, E) be a loopless
undirected graph. Then, the following identity holds.

pdim∗ (H) ∈ {P4-fp (G) , P4-fp (G) + 1} ,

or equivalently

P4-fp (G) ∈ {pdim∗ (H)− 1, pdim∗ (H)} .
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Replacing Probability Distributions in
Security Games via Hellinger Distance
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Abstract
Security of cryptographic primitives is usually proved by assuming “ideal” probability distributions.
We need to replace them with approximated “real” distributions in the real-world systems without
losing the security level. We demonstrate that the Hellinger distance is useful for this problem,
while the statistical distance is mainly used in the cryptographic literature. First, we show that for
preserving λ-bit security of a given security game, the closeness of 2−λ/2 to the ideal distribution is
sufficient for the Hellinger distance, whereas 2−λ is generally required for the statistical distance.
The result can be applied to both search and decision primitives through the bit security framework
of Micciancio and Walter (Eurocrypt 2018). We also show that the Hellinger distance gives a tighter
evaluation of closeness than the max-log distance when the distance is small. Finally, we show
that the leftover hash lemma can be strengthened to the Hellinger distance. Namely, a universal
family of hash functions gives a strong randomness extractor with optimal entropy loss for the
Hellinger distance. Based on the results, a λ-bit entropy loss in randomness extractors is sufficient
for preserving λ-bit security. The current understanding based on the statistical distance is that a
2λ-bit entropy loss is necessary.
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1 Introduction

Security of cryptographic primitives relies on the use of randomness sources. Secret keys
and random bits are usually assumed to be sampled from uniform distributions. Various
probability distributions other than uniform ones appear in cryptography. In lattice-based
cryptography, discrete Gaussian distributions are used for the hardness of the Learning with
Errors (LWE) problem [32, 31, 21, 27] and the tight reductions for the Short Integer Solution
(SIS) problem [24, 23]. Adding noise from Laplace distributions enables data privacy of
statistical databases in differential privacy [15, 14, 16].

To ensure the security of primitives, we usually define a security game played by an
adversary and show that the adversary’s success probability is sufficiently close to some
value. In the proof, we assume we can use “ideal” probability distributions. We need to
replace them with approximated “real” distributions in real-world systems. For example, in a
security game of an encryption scheme, the adversary receives a ciphertext and tries to guess
which of the two plaintexts were encrypted. The scheme is secure if the success probability
is sufficiently close to 1/2. A secret key and random coins for encryption are assumed
to be sampled from uniform distributions. One may employ the output of a randomness
extractor [33, 11] as a randomness source since the output distribution is sufficiently close
to the uniform distribution. However, the distance to the ideal distribution may affect the
security level of primitives. A question is which closeness measure of distributions should be
used when replacing distributions in security games.
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In cryptographic literature, we mainly employ the statistical distance (a.k.a. the total
variation distance) to measure distribution closeness. The main reason is that it enables a
straightforward analysis of the resulting security levels. The statistical distance is defined as
the maximum difference of probabilities of events between two distributions. By employing a
distribution P that is close to ideal Q within ϵ in the statistical distance, we can guarantee
that the adversary’s success probability only increases by at most ϵ. However, there may not
be any other reason for using the statistical distance.

Also, achieving security by the statistical distance has some limitations. Radhakrishnan
and Ta-Shma [30] showed a lower bound on the entropy loss of randomness extractors.
Roughly, the result implies that to extract a uniformly random string from an entropy source,
we need to lose 2 log(1/ϵ) of entropy, where ϵ is the distance to the uniform distribution.
Based on this result, if we extract a random string from a source of 120-bit entropy by
ensuring 50-bit security, the output bit should be of length at most 120 − 2 · 50 = 20. This
loss of entropy is crucial when using biometric data as entropy sources [11, 8], where a limited
amount of entropy can be used. Randomness extraction (or key derivation) from weak sources
arises in many situations of cryptography, including Diffie-Hellman key exchange [17, 20]
and random number generators from physical sources [5, 4], to name a few.

Our Contribution

In this work, we propose to use the Hellinger distance for replacing distributions in security
games. Roughly speaking, we show that the closeness of 2−λ/2 in the Hellinger distance is
sufficient to preserve λ-bit security. When using the statistical distance, the closeness of 2−λ

is, in general, necessary to achieve the same security level.

To discuss the bit security, we use the framework of Micciancio and Walter [26]. Their
framework can smoothly connect the bit security between search and decision primitives.
Their definition is the same as the standard one for search primitives, where the secret is
chosen from a sufficiently large space. For decision primitives, in which the attacker tries to
guess a secret bit, the definition of the advantage is different from the standard one. See
Section 3 for the details. We show that the distance closeness of 2−λ/2 in the Hellinger
distance is sufficient for preserving the bit security for both search and decision primitives.

Next, we show that the Hellinger distance gives a tighter evaluation of closeness than
the max-log distance, the probability metric introduced in [25, 26]. The work showed that
the closeness of 2−λ/2 in the max-log distance is sufficient for preserving λ-bit security. We
proved that the Hellinger distance is bounded above by the max-log distance as long as the
max-log distance is at most

√
2 − 1. Also, we present a concrete example of a distribution

pair such that their Hellinger distance is exponentially small, while their max-log distance is
a constant.

Finally, we demonstrate the usefulness of using the Hellinger distance in the problem of
randomness extraction (or information-theoretic key derivation). We show that the leftover
hash lemma [6, 19] can be strengthened to the Hellinger distance without losing the security
level. Namely, a universal family of hash functions gives a strong randomness extractor with
optimal entropy loss even when measuring in the Hellinger distance. We can conclude that
the entropy loss of λ-bit is sufficient for preserving λ-bit security. In general, the entropy
loss of 2λ-bit is necessary to preserve bit security when using the statistical distance.
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Techniques
We describe a technical overview of our results. Although the actual proofs seem different
from the below, it reflects the difference between the statistical distance and the Hellinger
distance. Let P = (P1, P2, . . . ) and Q = (Q1, Q2, . . . ) be a pair of probability distribution
ensembles such that each Pi is close to Qi. Let ϵQ

A be the probability that an adversary
A succeeds in the security game in which samples from Q is used. We want to bound the
probability ϵP

A, which is the success probability when using P instead of Q.
For ℓ ∈ N, we define the probability µQ

ℓ that A succeeds in at least one out of ℓ independent
plays of GQ

A. As long as ℓ is small compared to 1/ϵP
A, it holds that µP

ℓ ≈ ℓ · ϵP
A. Since the

number of sample queries in each game is bounded above by the running time TA of A,
µP

ℓ ≤ µQ
ℓ + SD(P ℓ, Qℓ) ≤ µQ

ℓ + ℓTA · maxi SD(Pi, Qi), where SD(Pi, Qi) is the statistical
distance between Pi and Qi, and P ℓ is the ℓ-fold product of P . Note that we use the relation
SD(P ℓ, Qℓ) ≤ ℓTA · maxi SD(Pi, Qi). Now, it holds that ϵP

A ≈ ℓ−1 · µP
ℓ ≤ ℓ−1 · (µQ

ℓ + ℓTA ·
maxi SD(Pi, Qi)) ≈ ϵQ

A + TA · maxi SD(Pi, Qi). Thus, if the primitive has λ-bit security, i.e.,
ϵQ

A/TA ≤ 2−λ, then ϵP
A/TA ≤ 2−λ + maxi SD(Pi, Qi). It implies that maxi SD(Pi, Qi) ≤ 2−λ

is required for preserving bit security. For the Hellinger distance HD(Pi, Qi), we provide a
technical lemma (Lemma 1) showing that SD(P ℓ, Qℓ) ≤

√
2ℓTA · maxi HD(Pi, Qi). Therefore,

we have ϵP
A ≤ ϵQ

A +
√

2ℓ−1TA · maxi HD(Pi, Qi). Hence, if the primitive has λ-bit security,
ϵP

A/TA ≤ 2−λ +
√

2(ℓTA)−1 ·maxi HD(Pi, Qi), implying that, by choosing ℓ = 1/ϵP
A, it suffices

to satisfy maxi HD(Pi, Qi) ≤ 2−λ/2 for preserving bit security.
The leftover hash lemma essentially gives an upper bound on the collision probability of

the hash functions chosen from a universal family. If the collision probability is bounded,
it is close to uniform in the Hellinger distance. This relation was provided by Chung and
Vadhan [9] using Hölder’s inequality. Based on the relation, we show that a universal family
of hash functions gives a strong randomness extractor for the Hellinger distance. Notably, we
can achieve the same parameters as in the case of the statistical distance. Thus, the optimal
entropy loss is achieved by universal hash functions.

Related Work
Barak et al. [3] initiated the study on improving the leftover hash lemma for a limited class
of primitives. The work of [3, 13] showed that the bound of [30] could be improved for the
search primitives and the square-friendly decision primitives, including stateless encryption
schemes and weak pseudorandom functions. Specifically, the entropy loss of λ is sufficient for
square-friendly primitives. For search primitives, Dodis, Pietrzak, and Wichs [12] achieved
the entropy loss of O(log λ) in randomness extraction with O(λ)-wise independent hash
functions. Matsuda et al. [22] generalized the results of [13] by using the Rényi divergence
for capturing the case that the ideal distribution is not uniform. Skorski [34] showed that
being square-friendly is necessary to reduce entropy loss. Compared with the above work,
our results for reducing entropy loss do not build on a specific class of primitives but need to
rely on the bit security framework of [26], especially for the decision primitives.

In lattice-based cryptography, several probability metrics other than the statistical
distance have been employed for improving the analysis of security proofs [28, 2, 25, 29, 36].
The metrics used in these work include the Kullback-Leibler divergence, the Rényi divergence,
the max-log distance, and the relative error.

Micciancio and Walter [26] introduced a new framework of bit security that can smoothly
connect the search primitives and the decision primitives quantitatively. A feature is that it
allows the adversary to declare an attack failure. With their framework, we can say that a

ITC 2021



17:4 Replacing Probability Distributions in Security Games via Hellinger Distance

λ-bit secure pseudorandom generator (a decision primitive) is also a λ-bit secure one-way
function (a search primitive). In the conventional definition, a λ/2-bit secure pseudorandom
generator strangely yields a λ-bit secure one-way function. While they showed that the
max-log distance is beneficial in their framework, we show that the Hellinger distance has
the same effect and gives a tighter evaluation of closeness.

Distances/divergences between distributions other than the statistical distance have
appeared in other cryptographic literature. Chung and Vadhan [9] gave a tight analysis of
hashing block sources using the Hellinger distance as a key tool. Agrawal [1] introduced the
notion of randomness extractors for the Kullback-Leibler divergence and gave explicit/non-
explicit constructions with almost the same parameters as standard extractors. Steinber-
ger [35] used the Hellinger distance for the improved analysis of key-alternating ciphers. Dai,
Hoang, and Tessaro [10] used the chi-square divergence to analyze the information-theoretic
indistinguishability proofs. Berman et al. [7] studied the polarization lemma for various
distance notions such as the triangular discrimination and the Jensen-Shannon divergence to
extend the region of polarization.

2 Preliminaries

We define the distances for distributions used in this work. The basic properties and general
relationships of various distances/divergences can be found in [18]. We also present a useful
lemma for the Hellinger distance, which will be used later.

Let P and Q be probability distributions over a finite set Ω. For a distribution P over Ω
and A ⊆ Ω, we denote by P (A) the probability of event A, which is equal to

∑
x∈A P (x).

The statistical distance (a.k.a. total variation distance) between P and Q is

SD(P, Q) = max
A⊆Ω

|P (A) − Q(A)|.

The data processing inequality guarantees that for any function f : Ω → {0, 1}∗, we have

SD(f(P ), f(Q)) ≤ SD(P, Q). (1)

The Hellinger distance between P and Q is

HD(P, Q) =
√

1
2
∑
x∈Ω

(√
P (x) −

√
Q(x)

)2
=
√

1 −
∑
x∈Ω

√
P (x) · Q(x),

which takes values in [0, 1]. It holds that

HD(P, Q)2 ≤ SD(P, Q) ≤
√

2 · HD(P, Q). (2)

The Hellinger affinity is defined as

HA(P, Q) = 1 − HD(P, Q)2 =
∑
x∈Ω

√
P (x) · Q(x),

which is also known as the Bhattacharyya coefficient or fidelity.
The Hellinger distance has the following useful property, which is weaker than the

Pythagorean probability preservation defined in [25, 26].

▶ Lemma 1. Let Q = (Q1, . . . , Qℓ) and P = (P1, . . . , Pℓ) be probability distribution ensembles
over a finite support

∏
i Ωi. Then,

SD(P, Q) ≤
√

2ℓ · max
ai∈
∏

j<i
Ωj

HD(Pi|ai, Qi|ai).
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Proof. Let ϵ = maxai∈
∏

j<i
Ωj

HD(Pi|ai, Qi|ai). Then, HA(Pi|ai, Qi|ai) = 1 −

HD(Pi|ai, Qi|ai)2 ≥ 1 − ϵ2 for any i and ai ∈
∏

j<i Ωj . It holds that

HA(P, Q)

=
∑

b1,...,bℓ∈
∏

i
Ωi

√
P (b1, . . . , bℓ) · Q(b1, . . . , bℓ)

=
∑

b1∈Ω1

√
P1(b1) · Q1(b1) ·

( ∑
b2∈Ω2

√
P2(b2|P1 = b1) · Q2(b2|Q1 = b1) ·

(
· · ·

·
( ∑

bℓ∈Ωℓ

√
Pℓ(bℓ|P1,ℓ−1 = (b1, . . . , bℓ−1)) · Qℓ(bℓ|Q1,ℓ−1 = (b1, . . . , bℓ−1))

)
· · ·
))

≥ (1 − ϵ2)ℓ ≥ 1 − ℓϵ2,

where P1,ℓ−1 = (P1, . . . , Pℓ−1) and Q1,ℓ−1 = (Q1, . . . , Qℓ−1). Thus, HD(P, Q) =√
1 − HA(P, Q) ≤

√
ℓϵ. The statement follows from (2). ◀

3 Replacing Distributions in Security Games

We consider replacing probability distributions in security games. Let Q = (Qθ)θ be an
ideal distribution ensemble in a security game. We want to replace Q with an approximated
distribution ensemble P = (Pθ)θ without compromising security. We define a general security
game by following the definitions of [26, 25].

An n-bit security game GA is a game played by an adversary A interacting with a
challenger C. At the beginning of the game, the challenger chooses a uniformly random
secret x ∈ {0, 1}n, represented by the random variable X. At the end of the game, A outputs
some value v, represented by the random variable V . The goal of the adversary is to output
v such that R(x, v) = 1, where R is a Boolean function. The adversary may output a special
symbol ⊥ such that R(x, ⊥) = 0 for any x. During the game, A or C may obtain a sample
from a distribution Qθ by querying θ. The success probability of A is ϵQ

A = Pr[R(X, V ) = 1],
where the probability is taken over the randomness of the entire security game, including
the randomness of A. We may denote the game by GQ

A since we intend to replace Q with
another distribution ensemble.

Micciancio and Walter [26] defined the bit security based on an advantage that is different
from most of the literature for the case n = 1. We use their framework for evaluating the
security loss by replacing distributions in security games.

▶ Definition 2 (Bit Security of [26]). Let Π be a primitive for which an n-bit security game GQ
A

is defined. Let X and V be random variables representing a random secret x ∈ {0, 1}n and an
output value v of A in GQ

A, respectively. We define the output probability αA = Pr[V ̸= ⊥]
and the conditional success probability βA = Pr[R(X, V ) = 1 | V ̸= ⊥]. The advantage of A

is defined to be

advA =
{

αAβA n > 1
αA(2βA − 1)2 n = 1

.

The bit security of Π is defined to be

min
A

log2
TA

advA
,

where TA is the running time of A. We say the primitive is λ-bit secure if its bit security is
at least λ.
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We say Π is a search primitive if its n-bit security game G is defined for n > 1, and a
decision primitive if G is a 1-bit security game.

For search primitives, it is not difficult to see that Q = (Qθ)θ can be replaced with
P = (Pθ)θ if their statistical distance between Pθ and Qθ is sufficiently small and the
number of queries is not so much. Specifically, if a search primitive ΠQ is λ-bit secure and
SD(Pθ, Qθ) ≤ 2−λ, then ΠP is (λ − log q)-bit secure, where we denote by ΠQ a primitive
for which a security game GQ

A is defined and q is the number of queries. This fact implies
that it is sufficient to choose P that is close to Q within 2−λ in the statistical distance for
preserving the bit security.

Micciancio and Walter [25, 26] demonstrated that if distributions are close in the max-
log distance, the closeness requirement may be relaxed. The max-log distance between
distributions P and Q over Ω with the same support S ⊆ Ω is

ML(P, Q) = max
x∈S

| ln P (x) − ln Q(x)|.

They showed that the closeness of 2−λ/2 is sufficient to preserve the bit security for search
primitives in [25] and decision primitives in [26].

▶ Lemma 3 ([25, 26]). Let Q = (Qi)i and P = (Pi)i be distribution ensembles over the
support

∏
i Ωi satisfying ML(Pi|ai, Qi|ai) ≤ 2−λ/2 ≤ 1/4 for any i and ai ∈

∏
j<i Ωj. If a

search primitive ΠQ is λ-bit secure, then ΠP is (λ − 3)-bit secure. If a decision primitive ΠQ

is λ-bit secure, then ΠP is (λ − 8)-bit secure.

They showed the above results for a more general class of λ-efficient divergences [25, 26].
We demonstrate that similar effects can be obtained by using the Hellinger distance.

3.1 Security for Search Primitives
Let Q = (Qi)i and P = (Pi)i be distribution ensembles over the same support

∏
i Ωi. We

consider P and Q satisfying HD(Pi|ai, Qi|ai) ≤ 2−λ/2 for any i and ai ∈
∏

j<i Ωj . We call
such a pair (P, Q) a 2−λ/2-Hellinger close pair. We show that this closeness is sufficient for
preserving bit security.

▶ Theorem 4. Let ΠQ be a primitive for which an n-bit security game GQ
A is defined for n > 1.

For any 2−λ/2-Hellinger close pair (P, Q), if ΠQ is λ-bit secure, then ΠP is (λ − 2.973)-bit
secure.

Proof. Let ϵQ
A be the success probability of an adversary A in GQ

A, and TA the running time
of A. Since Π is λ-bit secure, it holds that ϵQ

A/TA ≤ 2−λ for any A. It is sufficient to show
that ϵP

A/TA < 2−(λ−2.973), where ϵP
A is the success probability of A in GP

A.
We consider ℓ independent plays of GQ

A and define µQ
ℓ to be the probability that A

succeeds in at least one out of ℓ plays of GQ
A. Namely, µQ

ℓ = 1 − (1 − ϵQ)ℓ. We define µP
A

analogously. Since the number of queries to the distribution ensemble is at most TA in each
play, it holds that∣∣∣µP

ℓ − µQ
ℓ

∣∣∣ ≤ SD
(
P ℓ, Qℓ

)
≤
√

2ℓTA · 2−λ/2,

where P ℓ is the ℓ-fold product of P , the first inequality is by the data processing inequality,
and the second inequality follows from Lemma 1. Thus,

(1 − ϵQ
A)ℓ ≤

√
2ℓTA · 2−λ/2 + (1 − ϵP

A)ℓ.
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By the fact that (1 − x)ℓ ≥ 1 − ℓx for x ∈ [0, 1] and setting ℓ = 1/ϵP
A, it holds that

1 −
ϵQ

A

ϵP
A

≤

√
2TA · 2−λ

ϵP
A

+ (1 − ϵP
A)1/ϵP

A <

√
2TA · 2−λ

ϵP
A

+ e−1,

where we use the relation that (1 − 1/x)x < e−1 for x > 0. By rewriting the inequality,(√
ϵP

A −
√

TA · 2−λ

√
2(1 − e−1)

)2

<
ϵQ

A

1 − e−1 + TA · 2−λ

2(1 − e−1)2 .

It holds that

√
ϵP

A <

√
ϵQ

A

1 − e−1 + TA · 2−λ

2(1 − e−1)2 +
√

TA · 2−λ

√
2(1 − e−1)

.

Squaring both sides gives that

ϵP
A

TA
<

ϵQ
A

(1 − e−1)TA
+ 2−λ

(1 − e−1)2 +
√

2 · 2−λ/2

1 − e−1

√
ϵQ

A

(1 − e−1)TA
+ 2−λ

2(1 − e−1)2 .

Since ϵQ
A/TA ≤ 2−λ, we have ϵP

A/TA < 7.851 · 2−λ < 22.973 · 2−λ. Therefore, the statement
follows. ◀

3.2 Security for Decision Primitives
Next, we show that the closeness of 2−λ/2 in the Hellinger distance is sufficient for preserving
λ-bit security even for decision primitives.

▶ Theorem 5. Let ΠQ be a primitive for which a 1-bit security game GQ
A is defined. For any

2−λ/2-Hellinger close pair (P, Q), if ΠQ is λ-bit secure, then ΠP is (λ − 6.847)-bit secure.

Proof. Suppose for contradiction that ΠP is not (λ − 6.667)-bit secure. Namely, there exists
an adversary A for ΠP with running time TA such that αP

A(2βP
A − 1)2 > TA/2λ−6.847, where

αQ
A and βQ

A are the output probability and the conditional success probability of A. Since
ΠQ is λ-bit secure, we have αQ

A(2βQ
A − 1)2 ≤ TA/2λ, where αQ

A and βQ
A are the corresponding

probabilities for ΠQ. Let α = min{αQ
A, αP

A}.
We define the games G̃Q

A and G̃P
A such that they are the same as GQ

A and GP
A with

the difference that the adversary can restart the game with fresh randomness at any time.
Consider the adversary B that runs A repeatedly until either the output value is different
from ⊥ or B runs A in total 1/α times, and outputs the same value as A does in the former
and ⊥ in the latter. Let αQ

B and βQ
B be the output probability and the conditional success

probability, respectively when playing G̃Q
B . We also define αP

B and βP
B analogously. Then, it

holds that βQ
B = βQ

A and βP
B = βP

A . The running time of B satisfies TB ≤ TA/α. It follows
from the data processing inequality and Lemma 1 that

βP
B − βQ

B ≤
√

2TB · 2−λ/2.

Hence, we have

2βP
B − 1 ≤ 2βQ

B − 1 +
√

8TB

2λ
.
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Since βQ
B = βQ

A , it holds that

2βQ
B − 1 = 2βQ

A − 1 ≤
√

TA

α 2λ
.

It follows from the above inequalities that

2βP
A − 1 = 2βP

B − 1 ≤
√

8TB

2λ
+
√

TA

α 2λ
≤
(√

8 + 1
)√ TA

α 2λ
.

Then, we have

TA

α (2βP
A − 1)2 ≥ 2λ(√

8 + 1
)2 > 2λ−3.874.

If α = αP
A, the above inequality implies that ΠP is (λ − 3.874)-bit secure. Otherwise, we have

αQ
A = α <

TA

2λ−3.874(2βP
A − 1)2 <

2λ−6.847 · αP
A

2λ−3.874 = 2−2.973 · αP
A,

where the last inequality follows from the assumption. In the proof of Theorem 4, if we
consider the event that A outputs values other than ⊥ instead of the event that A succeeds,
it implies that αP

A < 22.973 · αQ
A for 2−λ/2-Hellinger close pair (P, Q). This contradicts the

above inequality. Therefore, the statement follows. ◀

Limitation of the Statistical Distance
We show that a similar result to Theorem 5 does not hold for the statistical distance. Namely,
the closeness of 2−λ/2 in the statistical distance is not sufficient for preserving security.

As a concrete example, we consider a modified one-time pad encryption scheme ΠQ. The
probabilistic encryption function for messages over {0, 1}λ is defined to be

Enck(m) =
{

(1, m) with probability 2−λ

(0, m ⊕ k) with probability 1 − 2−λ
,

where k ∈ {0, 1}λ is a key sampled according to a distribution Q. Here we assume that
Q is the uniform distribution over {0, 1}λ. Consider a distinguishing game in which, for a
random secret b ∈ {0, 1}, an attacker tries to predict b given m0, m1, and Enck(mb). The
attacker can easily find the corresponding message if the first bit of the ciphertext is 1.
Otherwise, the scheme is perfectly secure, and thus the attacker has no advantage in the
distinguishing game. Let A be an attacker such that given m0, m1, Enck(mb) = (c1, c2),
where c1 ∈ {0, 1}, c2 ∈ {0, 1}λ, A outputs b such that c2 = mb if c1 = 1, and ⊥ otherwise.
Then,

TA

αQ
A(2βQ

A − 1)2
≥ TA

2−λ
≥ 2λ.

Since other adversaries cannot achieve a higher advantage than 2−λ, ΠQ has λ-bit security.
Let P be a distribution over {0, 1}λ such that

P (x) =


2−λ + 2−λ/2 x = 0λ

0 x ∈ S

2−λ otherwise
,
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where |S| = 2λ/2. One may consider S a set of strings starting with 1λ/2. It holds
that SD(P, Q) = 2−λ/2. Consider an adversary A′ such that when c1 = 1, A′ outputs
b satisfying c2 = mb. When c1 = 0, A′ outputs b such that c2 = mb if c2 ∈ {m0, m1},
and ⊥ if c2 /∈ {m0, m1}. For this adversary A′, it is not difficult to see that αP

A′ =
2−λ + (1 − 2−λ)(2−λ + 2−λ/2) ≥ 2−λ/2 and βP

A′ = 1. Thus, the bit security of ΠP is at most
λ/2. This indicates that the closeness of 2−λ/2 in the statistical distance may reduce the bit
security by half.

4 Relations between Max-Log Distance and Hellinger Distance

We show that the Hellinger distance is bounded above by the max-log distance when the
max-log distance is less than

√
2−1. Namely, the Hellinger distance gives a tighter evaluation

of closeness when the distance is small.

▶ Proposition 6. Let P and Q be distributions over Ω with the same support S ⊆ Ω. Then,
HD(P, Q) ≤ ML(P, Q) as long as ML(P, Q) ≤

√
2 − 1.

Proof. It follows from the relation between the Hellinger distance and the chi-square diver-
gence (cf. [18]) that

HD(P, Q) ≤
√

1
2
∑
x∈S

(P (x) − Q(x))2

Q(x) ,

where S ⊆ Ω is the support of P and Q. Then,

HD(P, Q) ≤

√√√√1
2
∑
x∈S

Q(x)
(

P (x)
Q(x) − 1

)2

≤

√√√√1
2
∑
x∈S

Q(x) · max
x∈S

∣∣∣∣P (x)
Q(x) − 1

∣∣∣∣2
= 1√

2
max
x∈S

∣∣∣∣P (x)
Q(x) − 1

∣∣∣∣ .
Let ML(P, Q) = ϵ. By definition, for any x ∈ S,

e−ϵ ≤ P (x)
Q(x) ≤ eϵ.

Since we have the relations ey − 1 ≤ y + y2 and 1 − e−y ≤ y + y2 for y ∈ [0,
√

2], it holds that

HD(P, Q) ≤ 1√
2

(ϵ + ϵ2) ≤ ϵ,

where the last inequality holds for 0 ≤ ϵ ≤
√

2 − 1. ◀

Next, we give a concrete example of distributions for which an exponential gap exists.
We show that, for a uniform distribution Q over {0, 1}n, there is a distribution P such that
ML(P, Q) = 0.6 and HD(P, Q) ≤ 0.6 · 2−n/2.

▶ Proposition 7. Let Q be the uniform distribution over Ω with |Ω| ≥ 4. There is a
distribution P over Ω such that

ML(P, Q) = ϵ and HD(P, Q) ≤

√
3(ϵ + ϵ2)

8|Ω|

for any ϵ ∈ [0, 0.618].
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Proof. Let M = |Ω|. We define P such that

P (x) =


M−1 · eϵ x = x0

M−1 · e−ϵ x = x1

(M − 2)−1 ·
(
1 − M−1(eϵ + e−ϵ)

)
x /∈ {x0, x1}

.

First we show that ML(P, Q) = ϵ. It is clear from the definition that | ln P (x) − ln Q(x)| = ϵ

for x ∈ {x0, x1}. For x /∈ {x0, x1}, we need to show that

M−1 · e−ϵ ≤ (M − 2)−1 ·
(
1 − M−1(eϵ + e−ϵ)

)
≤ M−1 · eϵ,

which can be rewritten as

M ≥ max
{

eϵ − e−ϵ

1 − e−ϵ
,

eϵ − e−ϵ

eϵ − 1

}
.

Since the right-hand side is at most 4 for ϵ ≥ 0, we have ML(P, Q) = ϵ.
Next, we give an upper bound on HD(P, Q). Recall that HD(P, Q) =

√
1 − HA(P, Q)

and HA(P, Q) =
∑

x∈Ω
√

P (x) · Q(x). For x /∈ {x0, x1},

P (x) = 1
M − 2

(
1 − 1

M
(eϵ + e−ϵ)

)
≥ 1

M − 2

(
1 − 1

M
(2 + ϵ + ϵ2)

)
= 1

M

(
1 − ϵ + ϵ2

M − 2

)
,

where the inequality follows from the fact that ex + e−x ≤ 2 + x + x2 for 0 ≤ x ≤ 1. By
using the relation that ex + e−x ≥ 2 for 0 ≤ x ≤ 1, we have

HA(P, Q) =
√

P (x0)Q(x0) +
√

P (x1)Q(x1) +
∑

x∈Ω\{x0,x1}

√
P (x)Q(x)

≥ 2
M

+ M − 2
M

·
√

1 − ϵ + ϵ2

M − 2 .

Thus,

HD(P, Q)2 ≤ 1 − 2
M

− M − 2
M

·
√

1 − ϵ + ϵ2

M − 2

≤ 1 − 2
M

− M − 2
M

(
1 − ϵ + ϵ2

2(M − 2) − 1
2

(
ϵ + ϵ2

M − 2

)2)

= ϵ + ϵ2

2M

(
1 + ϵ + ϵ2

2(M − 2)

)
≤ 3(ϵ + ϵ2)

8M
,

where the second and the last inequalities follow from
√

1 − x ≥ 1 − x/2 − x2/2 for 0 ≤ x ≤ 1
and (ϵ + ϵ2)/(2(y − 2)) ≤ 1/4 for ϵ ∈ [0, 0.618] and y ≥ 4, respectively. Hence, the statement
follows. ◀

5 Randomness Extraction for Hellinger Distance

We focus on the problem of randomness extraction from entropy sources. The min-entropy of
random variable X over {0, 1}n is Hmin(X) = minx∈{0,1}n log2(1/Pr[X = x]). Randomness
extractors are usually defined as a seeded function that maps any entropy source to a
distribution that is close to the uniform distribution in the statistical distance. For n ∈ N,
we denote by Un the uniform distribution over {0, 1}n.
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▶ Definition 8 (Randomness Extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is said
to be a (k, ϵ)-(strong) extractor if for every distribution X over {0, 1}n of Hmin(X) ≥ k, it
holds that SD((Ext(X, Ud), Ud), Um+d) ≤ ϵ, where X and Ud are independent.

For (strong) extractors, the input entropy is k + d, and the output length is m + d.
The difference (k + d) − (m + d) = k − m is called the entropy loss of extractors. The
entropy loss is unavoidable. Radhakrishnan and Ta-Shma [30] showed that it must be at
least 2 log(1/ϵ) − O(1).

It is known that a universal family of hash functions gives an extractor with optimal
entropy loss. A random hash function H : {0, 1}n → {0, 1}m from a family H of hash functions
is called universal if for any distinct x, x′ ∈ {0, 1}n, Pr[H(x) = H(x′)] ≤ 2−m. Specifically,
let |H| = 2d and m = k − 2 log(1/ϵ). Then, extractor Ext defined by Ext(x, H) = H(x) is
a (k, ϵ/2)-strong extractor. This result is known as the leftover hash lemma [6, 19]. The
main technical lemma is a bound on the collision probability. For a random variable X, the
collision probability of X is

cp(X) = Pr[X = X ′] =
∑

x

Pr[X = x]2,

where X ′ is an independent copy of X.

▶ Lemma 9 (The Leftover Hash Lemma [6, 19]). Let X be a random variable over {0, 1}n

with Hmin(X) ≥ k. Let H : {0, 1}n → {0, 1}m be a random hash function from a universal
family H. Then, cp(H(X), H) ≤ 2−d · (2−m + 2−k).

We define a notion of extractors for which the output distribution is close to uniform in
the Hellinger distance.

▶ Definition 10 (Hellinger extractor). A function Ext : {0, 1}n ×{0, 1}d → {0, 1}m is said to be
a (k, ϵ)-(strong) Hellinger extractor if for every distribution X over {0, 1}n of Hmin(X) ≥ k,
it holds that HD((Ext(X, Ud), Ud), Um+d) ≤ ϵ, where X and Ud are independent.

It follows from (2) that if Ext is a (k, ϵ)-Hellinger extractor, then it is also a (k,
√

2ϵ)-
extractor.

We use the following useful lemma of Chung and Vadhan [9] for proving a leftover hash
lemma for the Hellinger distance.

▶ Lemma 11 ([9, Lemma 3.12]). Let X be a random variable over {0, 1}n. If cp(X) ≤ α/2n,
then HA(X, Un) ≥

√
1/α.

We show that a universal family of hash functions gives a Hellinger extractor with optimal
entropy loss.

▶ Theorem 12 (Leftover Hash Lemma for Hellinger). Let H : {0, 1}n → {0, 1}m be a random
hash function from a universal family H with |H| = 2d, m = k+1−2 log(1/ϵ). Then, function
Ext : {0, 1}n × {0, 1}d → {0, 1}m defined by Ext(x, H) = H(x) is a (k, ϵ)-Hellinger extractor.

Proof. Let X be a random variable over {0, 1}n with Hmin(X) ≥ k. It follows from Lemma 9
that

cp(H(X), H) ≤ 2−d ·
(
2−m + 2−k

)
= α

2m+d
,
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where α = 1 + 2m−k. By Lemma 11, we have that HA((H(X), H), Um+d) ≥ α−1/2. Then,
it holds that

HD((H(X), H), Um+d) =
√

1 − HA((H(X), H), Um+d)2

≤
√

1 − α−1/2 =
√

1 − (1 + 2m−k)−1/2

≤
√

1 − (1 − 2m−k−1) =
√

2m−k−1 = ϵ,

where the last inequality follows from the fact that (1 + x)−1/2 ≥ 1 − x/2 for x ≥ 0. Hence,
the statement follows. ◀

Since we have the relation that SD(P, Q) ≤
√

2 ·HD(P, Q), the lower bound of [30] implies
that the entropy loss of Theorem 12 is also optimal.

Entropy Loss of Randomness Extractors in Security Games
We consider the situations in which a uniform distribution is employed in security games, and
we would like to replace it with an output of randomness extractors. Let Π be a primitive
with an n-bit security game GQ

A such that the uniform distribution Q = Um is employed.
Suppose that Π has λ-bit security.

Theorems 4 and 5 imply that for preserving the bit security when replacing Q with P , it
is enough to hold HD(P, Q) ≤ 2−λ/2. Regarding the statistical distance, the closeness of 2−λ

is sufficient for preserving security.
A universal family of hash functions can achieve the security of extractors for both

distances. When using the statistical distance, the entropy loss for achieving SD(P, Q) ≤ 2−λ

is k − m = 2(λ − 1). By Theorem 12, the entropy loss for HD(P, Q) ≤ 2−λ/2 is k − m = λ − 1.
Thus, by analyzing security games via the Hellinger distance, the entropy loss for preserving
λ-bit security can be reduced by half.
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Abstract
We give the first differentially private algorithms that estimate a variety of geometric features of
points in the Euclidean space, such as diameter, width, volume of convex hull, min-bounding box,
min-enclosing ball, etc. Our work relies heavily on the notion of Tukey-depth. Instead of (non-
privately) approximating the convex-hull of the given set of points P , our algorithms approximate
the geometric features of DP pκq – the κ-Tukey region induced by P (all points of Tukey-depth
κ or greater). Moreover, our approximations are all bi-criteria: for any geometric feature µ our
pα, ∆q-approximation is a value “sandwiched” between p1 ´ αqµpDP pκqq and p1 ` αqµpDP pκ ´ ∆qq.

Our work is aimed at producing a pα, ∆q-kernel of DP pκq, namely a set S such that (after a shift)
it holds that p1 ´ αqDP pκq Ă CHpSq Ă p1 ` αqDP pκ ´ ∆q. We show that an analogous notion of a
bi-critera approximation of a directional kernel, as originally proposed by [1], fails to give a kernel,
and so we result to subtler notions of approximations of projections that do yield a kernel. First,
we give differentially private algorithms that find pα, ∆q-kernels for a “fat” Tukey-region. Then,
based on a private approximation of the min-bounding box, we find a transformation that does turn
DP pκq into a “fat” region but only if its volume is proportional to the volume of DP pκ ´ ∆q. Lastly,
we give a novel private algorithm that finds a depth parameter κ for which the volume of DP pκq

is comparable to the volume of DP pκ ´ ∆q. We hope our work leads to the further study of the
intersection of differential privacy and computational geometry.
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1 Introduction

With modern day abundance of data, there are numerous datasets that hold the sensitive
and personal details of individuals, yet collect only a few features per user. Examples of
such low-dimensional datasets include locations (represented as points on the 2D-plane),
medical data composed of only a few measurements (e.g., [25, 27]), or high-dimensional data
restricted to a small subset of features. It is therefore up to us to make sure that the analyses
of such sensitive datasets do not harm the privacy of their participants. Differentially private
algorithms [10, 12] alleviate such privacy concerns as they guarantee that the presence or
absence of any single individual in the dataset has only a limited affect on any outcome.
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18:2 Differentially Private Approximations of a Convex Hull

Figure 1 An example showing that DP pκq’s volume, width and min-enclosing triangle can be
greatly affected by a single point in the input.

Often (usually motivated by data-visualization), understanding the geometric features
of such low-dimensional datasets is a key step in their analysis. Yet, to this day, very little
work has been done to establish differentially private algorithms that approximate the data’s
geometrical features. This should not come as a surprise seeing as most geometric features –
such as diameter, width,1 volume of convex-hull, min-bounding ball radius, etc. – are highly
sensitive to the presence / absence of a single datum. Moreover, while it is known that
differential privacy generalizes [11, 2], geometrical properties often do not: if the dataset P

is composed on n i.i.d. draws from a distribution P then it might still be likely that, say,
diampP q and diampPq are quite different.2

But differential privacy has already overcome the difficulty of large sensitivity in many
cases, the leading example being the median – despite the fact that the median may
vary greatly by the presence/absence of a single datum, we are still capable of privately
approximating the median. The crux in differentially private median approximations [21, 4]
is that the quality of the approximation is not measured by the actual distance between the
true input-median and the result of the algorithm, but rather by the probability mass of the
input’s CDF “sandwiched” between the true median and the output of the private algorithm.
A similar effect takes place in our work. While we deal with geometric concepts that exhibit
large sensitivity, we formulate robust approximation guarantees of these concepts, guarantees
that do generalize when the data is drawn i.i.d. from some unknown distribution. Yet unlike
the private median approximations, our private kernel-approximation algorithm does not
always return an output. It first verifies that certain niceness assumptions about the input
hold; if they don’t hold, it is capable of finding a sufficiently “deep” portion of the input
which can be privately approximated. Details to follow.

Much like in previous works in differential privacy [3, 19], our approximation rely heavily
on the notion of the depth of a point. Specifically, our approximation guarantees are with
respect to Tukey depth [26]. Roughly speaking (see Section 2), a point x has Tukey depth κ

w.r.t. a dataset P , denoted TDpx, P q “ κ, if the smallest set S Ă P one needs to remove from
P so that some hyperplane separates x from P zS has cardinality κ. This also allows us to
define the κ-Tukey region DP pκq “ tx P Rd : TDpx, P q ě κu. So, for example, DP p0q “ Rd

and DP p1q “ CHpP q (the convex-hull of P ). It follows from the definition that for any
1 ď κ1 ď κ2 we have CHpP q “ DP p1q Ą DP pκ1q Ą DP pκ2q. It is known that for any dataset

1 The min gap between two hyperplanes that “sandwich” the data.
2 For example, consider P as a uniform distribution over 2n discrete points whose diameter greatly shrinks

unless two specific points are drawn into P .
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P and depth κ the Tukey-region DP pκq is a convex polytope, and moreover (see [14]) that for
any P of size n it holds that DP pn{pd ` 1qq ‰ H. Moreover, there exists efficient algorithms
(in low-dimensions) that find DP pκq.

One pivotal property of the Tukey depth, which enables differentially private approx-
imations, is that it exhibits low-sensitivity at any given point. As noted by [3], it follows
from the very definition of Tukey-depth that if we add to / remove from P any single datum,
then the depth of any given x P Rd changes by no more than 1. And so, in this work, we
give bi-criteria approximations of key geometric features of DP pκq – where the quality
of the approximation is measured both by a multiplicative factor and with respect to a
shallower Tukey region. Given a measure µ of the convex polytope DP pκq, such as diameter,
width, volume etc., we return a pα, ∆q-approximation of µ – a value lower bounded by
p1´αqµpDP pκqq and upper-bounded by p1`αqµpDP pκ´∆qq. This implies that the quality of
the approximation depends on both the approximation parameters fed into the algorithm and
also on the “niceness” properties of the data. For datasets where µpDP pκ ´ ∆qq « µpDP pκqq,
our pα, ∆q-approximation is a good approximation of µpDP pκqq; but for datasets where
µpDP pκ ´ ∆qq " µpDP pκqq our guarantee is rather weak. Note that no differentially private
algorithm can correctly report for all P whether µpDP pκqq and µpDP pκ ´ ∆qq are / are-not
similar seeing as, as Figure 1 shows, such proximity can be highly affected by the existence
of a single datum in P . Again, this is very much in line with private approximations of the
median [21, 4].3

Our main goal in this work is to produce an kernel for DP pκq. Non privately, a α-kernel [1]
of a dataset P is a set S Ă P where for any direction u it holds that p1´αq maxp,qPP xp´q, uy ď

maxp,qPSxp ´ q, uy ď maxp,qPP xp ´ q, uy. Agarwal et al. [1] showed that for any P there
exists such a kernel whose size is p1{αqOpdq. (We thus assume |P | " p1{αqOpdq for otherwise
the non-private algorithm can trivially output P itself.) More importantly, the fact that S is
a α-kernel implies that p1 ´ OpαqqCHpP q Ă CHpSq Ă CHpP q. It is thus tempting to define an
analogous notion of pα, ∆q-kernel as “for any direction u we have p1 ´ αq maxp,qPDP pκqxp ´

q, uy ď maxp,qPSxp ´ q, uy ď p1 ` αq maxp,qPDP pκ´∆qxp ´ q, uy” and hope that it yields that
p1 ´ OpαqqDP pκq Ă CHpSq Ă DP pκ ´ ∆q. Alas, that is not the case. Having S Ă DP pκq

turns out to be a crucial component in arguing about the containment of the convex-hulls,
and the argument breaks without it. We give a counter example in a later discussion (in
Section 3). Therefore, viewing this directional-width approximation property as means to
an end, we define the notion of pα, ∆q-kernel directly w.r.t. the containment of the convex
bodies.

▶ Definition 1. Given a dataset P and a parameter κ, a set S is called a pα, ∆q-kernel
for DP pκq if there exist two points c1, c2 such that p1 ´ αqpDP pκq ´ c1q Ă CHpSq ´ c1 and
CHpSq ´ c2 Ă p1 ` αqpDP pκ ´ ∆q ´ c2q.

Non privately, the “center” points c1 and c2 may just as well be the origin, since we can
shift the points so that the origin is in the convex-hull; but privately we cannot make
such an assumption as it differentiates between two neighboring datasets. Note that in
particular, a pα, ∆q-kernel gives the pα, ∆q-approximation of the projection along every
direction u proposed earlier (in quotation-marks above). In fact, a pα, ∆q-kernel yields

3 In particular, in the case where P is drawn from a distribution P, it is known that @x P Rd, |
1
n TDpx, P q´

TDpx, Pq| “ Op

b

d logpnq

n q [8], where TDpx, Pq denotes the smallest measure P places on any halfspace
containing x. Thus, if DP pκq and DP pκ ´ ∆q vary drastically, then it follows that the distribution P is
“volatile” at depth κ

n .
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pα, ∆q-approximations of numerous properties of DP pκq, like volume, min-bounding box,
min-enclosing / max-enclosed ball radius, surface area, etc. Our work is the first to give a
private approximation of any of these concepts.

The main caveat of our work is that we are able to output a pα, ∆q-kernel of DP pκq only
when DP pκq satisfies some “niceness” properties. We briefly describe the structure of our
work to better explain these properties and how they relate. We begin with preliminaries in
Section 2. In Section 3 we give our algorithm for finding a kernel, which works under the
premise that the width of DP pκq is large. This means that our goal is complete if we are
able to assert, using a private algorithm, that DP pκq has large width (we design a heuristics
for this purpose, but it is deferred to the full version of this work); or if we can find a
value of κ for which DP pκq can be privately transformed into a region with large width – a
complicated task for which we require multiple “stepping stones” that are detailed in the
following sections.

In Sections 4 and 5 we establish some basic privacy-preserving algorithms for tasks we
require later.In Section 6, we give a private pOp1q, ∆q-approximation of the min-bounding
box of DP pκq; and show that this box yields a transformation that turns DP pκq into a region
of large width, but only if the volumes of DP pκq and DP pκ ´ ∆q are comparable. So finally,
in Section 7, we give an algorithm that finds a value of κ for which is this premise about
the volumes of DP pκq and DP pκ ´ ∆q holds, rendering us capable of privately finding a
pα, ∆q-kernel for this particular DP pκq.

Providing further details about the private approximation algorithms we introduce in
this work requires that we first delve into some background details and introduce some
parameters.

The Setting: Low-Dimension and Small Granularity

Differential privacy deals with the trade-offs between the privacy parameters, ε and δ, and
an algorithm’s utility guarantee. Unlike the majority of works in differential privacy, we
don’t express these trade-offs based on the size n of the data.4 Instead, in our work we
upper bound the ∆-term of a private pα, ∆q-approximation as a function of the privacy-
and accuracy-parameters, as well as additional two parameters. These two parameters are
(i) the dimension, d, which we assume to be constant and so npolypdq is still considered
efficient for our needs; and (ii) the granularity of the grid on which the data resides. In
differential privacy, it is impossible to provide useful algorithms for certain basic tasks [6]
when the universe of possible entries is infinite. Therefore, we assume that the given input P

lies inside the hypercube r0, 1sd and moreover – that its points reside on a grid Gd whose
granularity is denoted as Υ. This means that each coordinate of a point p P P can be
described using υ “ log2p1{Υq many bits. We assume here that 1{Υ is large (say, all numbers
are ints in C, so Υ “ 2´32), too large for the grid to be efficiently traversed. And so, for
each pε, δq-differentially private algorithm we present, an algorithm that returns with a high
probability of 1 ´ β a pα, ∆q-approximation of some geometric feature of DP pκq, we upper
bound the ∆-term as a function of pα, β, ε, δ, d, υq. (Of course, we must also have that κ ą ∆
otherwise the algorithm can simply return r0, 1sd.) In addition, any algorithm with runtime
of pn ¨ υ ¨ ε´1 ¨ α´1 ¨ logp1{βδqqpolypdq is considered efficient.

4 Though n comes into play in our work, both in requiring that for large enough κ we have that DP pκq ‰ H

and in bounding ∆, since if ∆ ą n then it is trivial to give a pα, ∆q-kernel. Moreover, ideally we
would have that ∆ ď

a

dn logpnq so that both DP pκq and DP pκ ´ ∆q (roughly) represent the same
Tukey-depth region w.r.t to the distribution the dataset was drawn from, based on the above-mentioned
bounds of [8].
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Lastly, as pre-processing we apply the algorithm of Kaplan et al. [19] that asserts that
for sufficiently large κ it holds that DP pκq is non-empty and non-degenerate (doesn’t have
0-volume).

Detailed Contribution and Organization

First, in Section 2 we survey some background in differential privacy and geometry. Our
contributions are detailed in the remaining section and are as follows.

In Section 3 we give our private pα, ∆q-kernel approximation, that much like its non-
private equivalent [1], requires some “fatness” condition. In fact, we have two somewhat
different conditions. Our first algorithm requires a known (constant) lower bound on
widthpDP pκqq, and our second algorithm requires a known (constant) lower bound on
the ratio widthpDP pκqq

diampDP pκ´∆qq
. More importantly, the resulting sets from each algorithm do

not satisfy an analogous property to the non-private kernel definition of [1], but rather
more intricate properties regarding projections along any direction. Thus, Section 3
begins by discussing these two properties and proving that they are sufficient for finding
a pα, ∆q-kernel. Due to brevity, we provide here only the high-level ideas of the first (and
very simply) algorithm, whereas its full details, as well as the second algorithm and a
heuristic that may allow us to tell if a region is “fat”,5 are all deferred to the full version
of this work. The remainder of the work presents multiple tools designed in order to
privately find a transformation that turns DP pκq into a fat Tukey-region, each of which
may be of independent interest.
Beimel et al. [3] constructed a function for Tukey-Depth Completion (TDC): given a
prefix of 0 ď i ă d coordinates, each x P R is mapped to the max Tukey-depth of a
point whose first i ` 1 coordinates are the given prefix concatenated with x. Beimel
et al. showed that this TDC-function is quasi-concave (details in Section 4), so (i) by
off-the-shelf private approximation algorithms for quasi-concave functions [4, 7] we can
find x with high TDCpxq-value; and (ii) repeating this process d times returns a point
with high TD. So our first tool is detailed in Section 4 where we present a simple and
efficient implementation of the TDC-function in low-dimensions. We also introduce a
function that takes an additional parameter ℓ and maps x to min tTDCpxq, TDCpx ` ℓqu,
which is also quasi-concave and can also be computed efficiently. The two functions play
an important role in the construction of all following algorithms – we often rotate the
space so that some direction v aligns with first axis and then apply TDC to find a good
extension of a particular coordinate along v into a point inside DP pκq. While we highlight
the main ideas, the full details of this section appear in the full version of this work.
In Section 5 we give a second batch of rudimentary tools – our efficient private algorithms
for pα, ∆diamq-diameter approximation and pα, ∆widthq-width approximation. These
algorithms are quite standard and rely on the Sparse-Vector Technique; thus their formal
descriptions are deferred to the full version of this work.
In Section 6 we turn our attention to asserting that the fatness condition required for
the kernel-approximation algorithm holds. We present a private pc, ∆q-approximation of
the min bounding box problem – it returns a box B that (a) contains DP pκq and (b)
with volume upper bounded by c ¨ volpDP pκ ´ ∆qq. We then show that if volpDP pκqq ě
volpDP pκ´∆qq

2 then by affinely mapping B to r0, 1sd we turn DP pκq into a fat Tukey region.

5 This heuristic allows us to take κ as input to our algorithm: if the heuristic returns “OK” then the
niceness conditions hold and we can return a pα, ∆q-approximation of DP pκq; o/w the algorithms of
Sections 6 and 7 allow us to replace the value of the given κ with a different value, one for which we
can return a pα, ∆q-approximation of DP pκq.
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In Section 7 we give a private algorithm for finding a “good” depth-parameter κ, one for
which it does hold that volpDP pκqq ě volpDP pκ ´ ∆qq{2. We formulate a certain query
q where any κ for which qP pκq is large must also be a good κ, and then give a private
algorithm for finding a κ with a large qP pκq-value. The ε-differentially private algorithm we
give is actually rather novel – it is based on a combination of the Exponential-Mechanism
with additive Laplace noise. Its privacy is a result of arguing that for any neighboring P

and P 1 where P 1 “ P Y txu we can match κ with κ ` 1 so that |qP pκq ´ qP 1 pκ ` 1q| ď 1,
and then using a few more observations that establish pure ε-differential privacy (rather
than pε, δq-DP). Again, due to space considerations, the full-details and proofs from
Sections 6 and 7 appear in the full version of this work.

Our work thus culminates in the following theorem.

▶ Theorem 2. There exists an efficient pε, δq-differentially private algorithm, that for
any sufficiently large dataset P , where |P | ě Ω̃pd4υ ¨ ∆q, with probability ě 1 ´ β finds
a “good” depth parameter κ and a set S such that S is a pα, ∆q-kernel of DP pκq where
∆ “ Op

fpdq

ε ¨ p 1
α q

d
2

b

logp 1
δ q logp 1

αβ qq for some function fpdq “ 2d2 poly logpdq.

In fact, it is also required that ∆ ě ∆BBpd, υ, ε, δ, βq where ∆BB is guarantee of the private
min-bounding-box algorithm, as detailed in Theorem 16; yet this lower-bound holds under a
very large regime of parameters.

Additional Works

In addition to the two works [3, 19] that privately find a point inside a convex hull, it is
also worth mentioning the works regarding privately approximating the diameter [23, 22]
(they return a Op1q-approximation of the diameter that may miss a few points) as well
as the recent work of [15] which can also be used to approximated the diameter; and the
work of [18] that privately approximates a k-edges polygon yet requires a dataset of points
where many lie inside the polygon and many lie outside the polygon. No additional works
that we know of lie in the intersection of differential privacy and computational geometry.
Computational geometry, of course, is a rich fied of computer science replete with many
algorithms for numerous tasks in geometry. Our work only give private analogs to (a few
of) the algorithms of [9, 1], but there are far many more algorithms to be privatized and
the reader is referred to [16] for a survey of the field. Many works deal with computing the
Tukey-depth and the Tukey region [24, 20], and others give statistical convergence rates for
the Tukey-depth when the data is composed of i.i.d. draws from a distribution [28, 8, 5].

2 Preliminaries

Geometry

In this work we use x¨, ¨y to denote the inner-product between two vectors in Rd. We use ej

to denote the nature basis element with 1 on jth coordinate and zeros elsewhere. A closed
half-space is defined by a vector u and a scalar λ and it is the set tx P Rd : xx, uy ď λu. A
polytope, which is a convex body, is the intersection of finitely many closed half-spaces. For
a polytope P and a point x we define P ´ x as the shift of P by x (namely z P P ´ x iff
Dy P P s.t. z “ y ´ x), and we define by cP the blow-up of P by a scalar c. An inner product
xx, uy “ }x}}u} cosp=px, uqq is also known a projection of x onto the subspace spanned by u.
A projection onto a subspace ΠV maps any x P Rd to its closest point in the subspace V .
The following fact is well-known.
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▶ Fact 3. Let S be a convex body. Let u be any vector and let ΠKu be the projection onto
the subspace orthogonal to u. Denote ℓ as the max-length of the intersection of S with any
affine line in direction u, and denote A as the volume of the projection of S onto the subspace
orthogonal to u, A “ volpΠKupSqq. Then A¨ℓ

d ď volpSq ď A ¨ ℓ.

The fact follows from reshaping S so that it is contained in the “cylinder” whose base is A

and height is ℓ, and contains a “pyramid” with base of A and height of ℓ.
The unit-sphere Sd´1 is the set of vectors in Rd of length 1. The diameter of the

convex body P is defined as diampP q “ maxp,qPP }p ´ q}, and it is simple to see that
diampP q “ maxuPSd´1 maxp,qPP xp ´ q, uy. The width of a convex body P is analogously
defined as widthpP q “ minuPSd´1 maxp,qPP xp ´ q, uy. A ζ-angle cover of the unit sphere is a
set of vectors Vζ such that for any v P Sd´1 there exist u such that =pu, vq ď ζ. It is known
that each vector in the sphere can be characterized by d ´ 1 angles φ1, φ2, ..., φd´1 where
φi P r0, 2πs and for any other j, φj P r0, πs. Therefore by discretizing the interval r0, πs we
can create a ζ-angle cover of size 2rπ{ζsd´1.

▶ Proposition 4 (Proof omitted.). Let ζ ă 1
2 . Let Vζ be a ζ-angle cover of Sd´1. Then

@u P Sd´1 the closest v P Vζ satisfies }u ´ v} ď
?

2ζ.

Tukey Depth

Given a finite set of points P Ă Rd, the Tukey depth [26] of a point x P Rd w.r.t P is defined
as TDpx, P q “ minuPSd´1 |tp P P : xp, uy ď xx, uyu|. Given P and a depth parameter κ ě 0
we denote the κ-Tukey region as DP pκq “ tx P Rd : TDpx, P q ě κu. It is known that for any
set of points P it holds that κ˚ “ maxx TDpx, P q P r

|P |

d`1 , |P |

2 s (see [14]). It is also known
that for all κ, the (non-empty) set DP pκq is a convex polytope which is the intersection of
all closed halfspaces that contain at least n ´ κ ` 1 points out of P [24], this yields a simple
algorithm to compute the κ-Tukey region in time Opnpd´1qt d

2 uq. There is a faster algorithm to
compute the κ-Tukey region in time Opnd log nq [20], and so to compute all of the non-empty
Tukey-regions in time Opnd`1 log nq.

Differential Privacy

The formal definition of differential privacy [10, 12] is as follows.

▶ Definition 5. Two datasets P and P 1 are called neighbors if they differ on a single datum,
and in this work we assume that this means that |P△P 1| “ 1. A randomized algorithm A is
said to be pε, δq-differentially private (DP) if for any two neighboring datasets P and P 1 and
for any set of possible outputs S it holds that PrrApP q P Ss ď eε PrrApP 1q P Ss ` δ. When
δ “ 0 we say A is ε-DP or ε-pure DP.

Differential privacy composes: if A is pε, δq-DP and B is pε1, δ1q-DP, then applying A
and then applying B sequentially on P is a pε ` ε1, δ ` δ1q-DP algorithm. It is also worth
noting the advanced-composition theorem [13], where the sequential application of k pε, δq-
DP algorithms yields in total an algorithm which is pOpε

a

k lnp1{kδqq, 2kδq-DP (provided
ε ă 1). Since we deal with a constant dimension d, then whenever we compose polypdq-many
mechanisms, we rely on the basic composition; and whenever we compose exppdq-many
mechanisms, we rely on the advanced composition.

The Laplace additive noise is a ε-DP algorithm that works as follows. Given a func-
tion f that maps inputs to real numbers, we first find its global sensitivity GSpfq “

maxP,P 1neighbors |fpP q ´ fpP 1q|, then output fpP q ` LappGSpfq{εq. It is also worth noting

ITC 2021



18:8 Differentially Private Approximations of a Convex Hull

the Sparse Vector Technique which is an ε-DP algorithm that allows us to assess t queries
q1, q2, .., qt, each with GSpqiq “ 1, and halt on the very first query that exceeds a certain
(noisy) threshold. Our algorithms repeatedly rely on the SVT.

Private Approximations of Quasi-Concave Functions

In our work we use as “building blocks” several known results in differential privacy regarding
approximating quasi-concave functions. A function q : R Ñ R is a quasi-concave function if
for any x ď y ď z it holds that qpyq ě mintqpxq, qpzqu. Quasi-concave functions that obtain
a maximum (namely, there exists some x P R such that @y, qpxq ě qpyq) have the property
that the maximum is obtained on a single closed interval I “ rx, ys (we allow the case x “ y,
or I “ txu). Moreover, it follows that on the interval p´8, xq the function q is monotone
non-decreasing and on the interval py, 8q the function q is monotone non-increasing. The
following is known about DP-approximations of quasi-concave functions.

▶ Theorem 6. Let q be any function q : R Ñ R satisfying (i) q is quasi-concave, (ii)
q has global-sensitivity 1 and (iii) for every closed interval I one can efficiently compute
maxxPI qpxq. Let G Ă R be a grid of granularity Υ “ 2´υ, and denote q˚ “ maxxPG qpxq.
Then, for any 0 ă β ă 1{2 there exist differentially private algorithms that w.p. ě 1 ´ β

return some x P G such that qpxq ě q˚ ´ αqcpε, δ, βq where

αqc
pε, δ, βq “

$

’

’

’

&

’

’

’

%

Op
υ`logp1{βq

ε
q, using ε-DP binary-search

Õp
logpυ{βεδq

ε
q, using the “Between Thresholds” Algorithm [7]

O

ˆ

8log˚pυq log˚pυq

ε
¨ logp

log˚pυq

βδ
q

˙

using the “RecConvace” algorithm [4]

The first bound is given by standard ε-DP binary search algorithm (folklore). The second
bound is given by the rather intuitive “Between Threshold” algorithm of Bun et al. [7]
where instead of the standard counting function fpzq “ |tx : x ď zu| we use the function
fpzq “ max

xPp´8,zs
qpxq ´ max

xPrz,8q
qpxq and set thresholds close to 0 (indicating a maximization

point of q). The third is the RecConcave algorithm by [4] and is rather involved. (It is
unknown6 whether the recent work [17] is applicable to general quasi-concave functions.)

3 Notions of Kernels and Fatness Suitable for Private Approximation

Prior to presenting our algorithm(s) for finding a kernel of a Tukey-region, we first discuss
our goal – what it is we wish to output, and our premise – the kinds of datasets on which
we are guaranteed to release such outputs. Recall, our goal is to give a differentially private
algorithm that outputs a collection of points S which is a pα, ∆q-kernel of DP pκq. Namely,
this S satisfies that (after shifting) p1 ´ αqDP pκq Ă CHpSq Ă p1 ` αqDP pκ ´ ∆q. Clearly,
for any two convex bodies s.t. A Ă B and for any projection Π we have that ΠpAq Ă ΠpBq.
(In fact, this holds for any affine transformation.) So if S is a pα, ∆q-kernel of DP pκq then it
also holds that

@u P Sd´1 p1´αq max
p,qPDP pκq

xp´q, uy ď max
p,qPCHpSq

xp´q, uy ď p1`αq max
p,qPDP pκ´∆q

xp´q, uy (1)

In the standard / non-private setting, the definition of kernel [1] is equivalent to pα, 0q-kernel
(i.e., setting ∆ “ 0). Moreover, as defined in [1], a pα, 0q-kernel must satisfy both the property

6 Uri Stemmer, private correspondence.
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Figure 2 An example showing that the property of Equation (1) doesn’t imply that p1´αqDP pκq Ă

CHpSq. Suppose DP pκq is an equilateral triangle of edge-length 2r and S happens to be a ball of
diameter 2 ¨ 0.99 ¨ r (and DP pκ ´ ∆q is a much larger region). Note that S does satisfy Equation (1)
for α “ 0.01 yet 0.99DP pκq Ć CHpSq.

in (1) and the property that S Ă DP pκq; and it is straight-forward to show that together, the
two properties yield the containment p1 ´ OpαqqDP pκq Ă CHpSq Ă DP pκq. It turns out that
in the private setting, with ∆ ą 0, since it doesn’t necessarily hold that S Ă DP pκq, then
property (1) alone does not guarantee that we output an pα, ∆q-kernel. Figure 2 illustrates
such a setting. So instead, we give algorithms whose resp. outputs satisfy variations of the
projection property in (1). Below we state two claims showing that the different variations
do yield a kernel. The (far from trivial) proofs of the two claims are deferred to the full
version of this work.

▷ Claim 7. Let S be a set that satisfies the following property in regards to DP pκq and
DP pκ ´ ∆q:

@u P Sd´1, max
pPDP pκq

xp, uy ´ α ¨ widthκ ď max
pPCHpSq

xp, uy ď max
pPDP pκ´∆q

xp, uy ` α ¨ widthκ´∆ (2)

then, denoting α1 “ 2α
b

d ` 1
2 , there exists two vectors p1 and p2 such that we can

shift DP pκq and DP pκ ´ ∆q and have that p1 ´ α1qpDP pκq ´ p1q Ă CHpSq ´ p1 and
CHpSq ´ p2 Ă p1 ` α1qpDP pκ ´ ∆q ´ p2q.

▷ Claim 8. Fix α ă 1{6 and let S Ă DP pκ ´ ∆q be a set such that there exists a point
c P DP pκq X S for which

@u P Sd´1, p1 ´ αq max
pPDP pκq

xp ´ c, uy ď max
pPCHpSq

xp ´ c, uy ` α ¨ widthκ (3)

then, denoting α1 “ α
1´α p1 ` 4

b

d ` 1
2 q, there exists a vector b such that we can shift DP pκq

and CHpSq by b and have that DP pκq ´ b Ă p1 ` α1q pCHpSq ´ bq.

Definition of Fatness

The algorithms we provide are such that their respective outputs satisfy the premises of
Claims 7 and 8. Unfortunately, these algorithms do not return useful sets S for any DP pκq.
Much like in the non-private setting [1], in order for each algorithm to output a kernel of
DP pκq we must require that DP pκq satisfies a certain “fatness” property. In the standard,
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18:10 Differentially Private Approximations of a Convex Hull

non-private setting, a convex polytope DP pκq is called cd-fat [1] if there exists a constant
cd ě 1 (depending solely on the dimension d) where diampDP pκqq ď cdwidthpDP pκqq. Alas,
our differentially private algorithms require something stronger. Formally, we define the
follow various notions of fatness, using the shorthand notation widthκ

def
“ widthpDP pκqq.

▶ Definition 9. We say DP pκq is pcd, ∆q-fat if it holds that widthκ ě
diamκ´∆

cd
. We say

DP pκq is cd-absolutely fat if widthκ ě 1
cd

.

It is clear that the fatness properties can be violated by the addition or removal of a
single datapoint to/from P . Therefore, no differentially private algorithm can always assert
w.h.p. whether DP pκq is fat or not, nor estimate its fatness parameter cd. We comment
that in the non-private version [16] the obtained constant is d5{22dpd!q, whereas our fatness
constant is fairly similar: 4d5{25dpd!q.

A Simple Private Kernel Approximation Under “Absolute Fatness”

Under the premise that DP pκq is cd-absolutely fat, that is, that widthκ ě 1{cd (when cd is
known to the algorithm), we are able to give a pretty simple pα, ∆q-kernel approximation
algorithm. The algorithm partitions the r0, 1sd-cube into subcubes of side length 2α

cd

?
d
, and

for each subcube C checks whether max
xPC

TDpx, P q perturbed by Laplace noise is greater than

κ1 “ κ ´ ∆
2 , and if so – adds C’s center to S. Here ∆ is set using the union-bound on all

Laplace random-variables so that w.h.p. any C where C X DP pκq ‰ H adds its center to S.
The full details of the algorithm are deferred to the full version.

▶ Theorem 10. There exists an efficient, pε, δq-DP algorithm that returns w.p.
ě 1 ´ β a set S that satisfies that @u P Sd´1, maxpPDP pκqxp, uy ´ α ¨

widthκ ď maxpPSxp, uy ď maxpPDP pκ´∆kernelqxp, uy ´ α ¨ widthκ´∆kernel , where ∆kernel “

Opdp
cd

?
d

α qd{2
a

logp1{δq logp
cdd
αβ q{εq. So by Claim 7 S is a kernel for DP pκq.

Applications

Agarwal et al. [1] define a function µ of a dataset as a faithful measure if (i) µ is non-
negative, (ii) for every P Ă Rd we have µpP q “ µpCHpP qq, (iii) µ is monotone w.r.t
containment of convex bodies, and most importantly, that (iv) for some c P p0, 1q a p1 ´ cαq-
kernel of P yields a p1 ´ αq-approximation of µpP q “ µpCHpP qq. Obviously, any faithful
measure µ can be approximated by a pα, ∆q-kernel S where p1 ´ α

c qµpDP pκqq ď µpCHpSqq ď

p1 ` α
c qµpDP pκ ´ ∆qq. Thus, a pα, ∆q-kernel gives suitable approximations for problems such

as min/max enclosing ball, min bounding box, John’s Ellipsoid, surface-area etc. (all are
faithful measures).

3.1 Remainder of this Extended Abstract
In the full version of this work, we also present another (and more complex) algorithm, that
works under the premise that DP pκq is pcd, ∆q-fat. Similarly, our proposed heuristic for
finding whether the data is pcd, ∆q-fat is also deferred to the full version of this work. This
alternative algorithm and heuristics require additional “building blocks” such as privately
finding a point inside DP pκq and privately estimating the diameter, width and various
projections. These building blocks are described in Setions 4 and 5 resp. Note that these
additional algorithm and heuristics enable us to return a private kernel of DP pκq for a
user-specified value of κ provided the heuristics return “Yes.” Yet, should the heuristics
return “No,” what we do is to find a different value of κ for which a kernel of DP pκq we can
approximated.
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In Section 6 we show how to (privately) approximate the bounding box of DP pκq,
outputting a box whose volume is comparable to volpDP pκ ´ ∆qq. (This algorithm may
be of independent interest.) Furthermore, we argue that if it is indeed the case that the
volumes of DP pκq and DP pκ ´ ∆q are similar up to a multiplicative factor of 2, then such a
bounding box approximation yields a transformation that turns DP pκq into a p4d

5
2 5dpd!q, ∆q-

fat Tukey region. Thus, in Section 7 we detail an algorithm that returns a value of κ for
which volpDP pκ´∆qq

volpDP pκqq
ď 2. So the algorithm from Section 7 returns a value of κ, for which

the bounding box approximation algorithm of Section 6 does give a transformation that
turns DP pκq fat; implying that the above-mentioned kernel-approximation algorithm can
be successfully applied. The reader should be advised that Sections 4-7 are very succinctly
described, where we tried to highlight the main ideas of each algorithm and the (often quite
subtle) novelties in each algorithm’s design.

4 Tools, Part 1: The Tukey-Depth Completion Function

In this section we discuss the implementation of the following Tukey Depth Completion
function. This function takes as a parameter an i-long tuple of coordinates, where 0 ď i ă d,
and scores each x P R with a value κ if the i ` 1 prefix ȳ ˝ x can be completed to a point
with Tukey-depth of κ.

▶ Definition 11 ([3]). Fix d P N and let P be a collection of points in Rd. For any i-tuple of
coordinates ȳ “ py1, y2, ..., yiq where 0 ď i ď d ´ 1 we define the function TDCȳ : R Ñ R by

TDCP
ȳ pxq “ max

pz1,z2,...,zd´1´iqPRd´i´1
TD

`

py1, .., yi, x, z1, .., .zd´1´iq, P
˘

(4)

For any closed interval I “ ra, bs Ă R we overload the definition of TDC to denote
TDCP

ȳ pIq “ maxxPra,bs TDCP
ȳ pxq. Lastly, for any such ȳ and any ℓ P R we denote

ℓ-TDCP
ȳ pxq “ mintTDCP

ȳ pxq, TDCP
ȳ px ` ℓqu, and similarly, ℓ-TDCP

ȳ pIq “ max
xPI

ℓ-TDCP
ȳ pxq.

We omit the superscript P whenever the dataset is clear.

In the full version of this work we prove that both the TDC-function and the ℓ-TDC-
function are quasi-concave. So it follows that on the real line the values of the TDC-function
ascend from 0 to the max-value (ď n{2), then descend back to 0. In particular, for any κ

(ranging from 0 to the max-value of the TDCȳ-function), there exists an interval raκ, bκs such
that x P raκ, bκs if and only if TDCȳpxq ě κ. And so, we give a simple, LP-based, algorithm
that finds these set of nested intervals traκ, bκsuκą0, and then – through binary search –
finds the maximum κ whose interval intersect the given point x or interval I. (Note that
this binary search is over ď n elements so it runs in time Oplogpnqq.)

Extension

One of the key uses to the TDC-function we rely on is when we rotate directions so that the
first axis aligns with a given direction v. In such a case, this is equivalent to rotating the set
P , so we use the notation TDCRvpP q

ȳ and on occasion just TDCRv
ȳ .

A Technical Point: Grid Refinement

We established that for any 0 ď i ď d ´ 1 and any prefix ȳ there exists an efficient algorithm
that computes TDCȳpxq and ℓ-TDCȳpxq. But as by Beimel et al. [3] noted, it is not a-priori
clear that the coordinates of the completion lie on the same grid Gd we start with. Throughout
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18:12 Differentially Private Approximations of a Convex Hull

most of this paper we ignore this subtlety,7 but we do formally show in the full version
how to refine G into a grid G1 with granulatiry of at least pΥ{dqOpd4

q where the output has
all of its coordinates in G1. The crux of this result is that all coordinates of all vertices of
DP pκq have granularity ě pΥ{dqOpd2

q (see [19]), and that finding the above-mentioned aκ, bκ

requires inverting a pi ` 1q ˆ pi ` 1q-matrix whose entries are coordinates of vertices of DP pκq.
So we end up requiring a refinement of only pΥ{dqOpi¨d2

q per i P t1, 2, .., du, so overall our
refinement has granularity pΥ{dqOpd4

q.

Summary

Now that we refined the grid from G to G1 with granularity Υ4d4
“ 2´υp4d4

q, we can apply
any DP-algorithm that w.p.ě 1 ´ β returns a point on G1 with roughly the same value of
the maximal value. This gives a DP-algorithm that returns w.p.ě 1 ´ β a point x P G1 with
either TDCȳ-value or ℓ-TDCȳ-value which is αqcp¨, ¨, ¨q-close to the max-possible value on the
grid. Altogether, we have the following corollary.

▶ Corollary 12. Fix ε ą 0, δ ě 0, β P p0, 1{2q. There exists an efficient pε, δq-DP-algorithm,
denoted DPPointInTukeyRegion, that takes as input a dataset P and a parameter κ where
DP pκq ‰ H and w.p. ě 1 ´ β returns a point x̄ P pG1qd whose Tukey-depth is at least
κ ´ dαqcp ε

d , δ
d , β

d q ě n
d`1 ´ dαqcp ε

d , δ
d , β

d q. In particular, for any κ ě 0 we return a point of
Tukey-depth ě κ provided n “ Ωpdκ ` d2αqcp ε

d , δ
d , β

d qq

“

$

’

’

&

’

’

%

Ωpdκ ` d3 d4υ`logpd{βq

ε
q, Using the ε-DP binary-search

Ω̃pdκ ` d3 logpdυ{βεδq

ε
q, Using the “Between Thresholds” algorithm

Ωpdκ ` d3 8log˚pdυq log˚pdυq¨logpd log˚pυq{δβq

ε
q, Using the “RecConcave” algorithm

(5)

We comment that quantitatively, the results are just as those obtained by [3] (with a minor
exception of their granularity level set to Υ2d), and as such are better than the utility
guarantee of [19] when δ ą 0. The key improvement of our work is the runtime, decreased to
polypυq.

5 Tools, Part 2: Approximating the Diameter and Width of a
Tukey-Region

The Diameter

In this section our goal is to approximate the diameter of DP pκq, denoted diamκ “

maxa,bPDP pκq

}b ´ a}. Our algorithm returns a pα, ∆q-approximation of diamκ, namely a value ℓ

satisfying p1 ´ αqdiamκ ď ℓ ď diamκ´∆. In order to find such an approximation, we leverage
on the idea of discretizing all possible directions, which is feasible in constant-dimension
Euclidean space. Denoting Vζ as a ζ-angle cover of the unit sphere it is straight-forward
to show that p1 ´ ζ2qdiampP q ď maxvPVζ

maxa,bPP xb ´ a, vy ď diampP q. Based on Vζ , our
approximation merely uses the Sparse-Vector Technique (SVT). For each ℓ we pose the
query qP pℓq “ maxvPVζ

maxxPR ℓ-TDCRvpP q
pxq where Rv is a rotation that sets v as the first

vector basis. The details of the algorithm and its proof of correctness are deferred to the full
version of this work.

7 So instead of formally stating “we find a point p inside the convex body” we should say “we find a
point p within distance

?
dΥ from a point inside the convex body.” After all, our work already deals

with approximations, so under the (rather benign) premise that the diameter of the convex body is
sufficiently larger than Υ, this little additive factor changes very little in the overall scheme.



Y. Gao and O. Sheffet 18:13

▶ Theorem 13. There exists an algorithm DPTukeyDiam which is an efficient ε-DP algorithm
that w.p. ě 1 ´ β returns a value ℓ which is pα, ∆q-approximation of diamκ for ∆diampε, βq “

Op
logppυ`logpdqq{αβq

ε q.

The Width

We now turn our attention to the width estimation of the Tukey region DP pκq. Informally, the
width of a set is the smallest “sandwich” of parallel hyperplanes that can hold the entire set.
Formally, widthκ “ minvPSd´1 maxa,bPDP pκq |xb, vy ´ xa, vy|. Our private approximation gives
a pα, ∆q-approximation of the width – a value w where p1´αqwidthκ ď w ď p1`αqwidthκ´∆.
It is tempting to think that, much like the approach for diameter approximation, a similar
discertization/cover of all directions ought to produce a p1 ` αq-approximation of the width.
Alas, this approach fails when the width is very small, smaller than the discretization level.
But when the discretization is up-to-scale, then we can easily argue the correctness of the
discretization approach. The following is proven in the full version of this work.

▶ Proposition 14. Fix any α ą 0. Given a set P Ă Rd with diameter D and width w, if we
set ζ ď mint αw?

2D
, 1

2 u and take Vζ as a ζ-angle cover of the unit-sphere, then we have that
w ď minvPVζ

maxa,bPP xb ´ a, vy ď p1 ` αqw.

Following Proposition 14 we present our private approximation of widthκ. This approx-
imation also leverages on the query ℓ-TDC for a decreasing sequence of lengths ℓ1 ą ℓ2 ą ...,
however, as opposed to diameter approximation, with each smaller ℓ we also use a dif-
ferent discretization of the unit sphere. For each ℓi we set ζi “ αℓi

4D and use the query
qP pℓiq “ minvPVζi

maxxPR ℓi-TDCRvpP q
pxq. We prove that (i) if widthpDP pκqq ě ℓi then

qP pℓiq ě κ; and (ii) if widthpDP pκqq ď p1 ´ αqℓi and ζi ď αℓ
4D then qP pℓiq ă κ. Thus our

algorithm is merely an application of the SVT with these queries. Algorithm’s details and
proofs appear in the full version of this work.

▶ Theorem 15. There exists an algorithm DPApproxWidth which is a ε-DP algorithm that
w.p. ě 1 ´ β returns a value ℓ which is pα, ∆q-approximation of widthκ for ∆widthpε, βq “

Op
logppυ`logpdqq{αβq

ε q.

Note that our width-approximation algorithm requires we refine the angle-cover Vζ with
each iteration. Without any a-priori lower bound on the width, the refinement can be as small
as Υ, which renders our algorithm inefficient. That is why in our work we rely on having a
particular lower bound, of 1{p4d

5
2 ¨ 5d ¨ pd!qq (which is our fatness bound). In addition, our

full version also describes here two additional algorithms (also SVT-based) for subroutines
we will require later: estimating the max-projection from a point and finding a direction on
which some specific scalar has large TDC-value.

6 Private Approximation of the Bounding Box of DP pκq

In this section we give a differentially private algorithm that returns a transformation
that turns DP pκq into a fat Tukey-region. The transformation is based on (privately)
finding an approximated bounding-box for DP pκq, and once such a box is found, then the
transformation T is merely an affine transformation, composed of rotation and scaling, that
maps the bounding box B to the hypercube r0, 1sd. We thus focus in this section on a
private algorithm that gives a pcd, ∆q-approximation of the bounding box of DP pκq, so our
algorithm’s guarantee relates to both the volume of DP pκq and the volume of DP pκ ´ ∆q.
Formally, we return (w.h.p) a box B which is a bounding box that holds DP pκq and where
volpBq ď 5d ¨ pd!q ¨ volpDP pκ ´ ∆qq.
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The algorithm mimics the non-private bounding-box algorithm in [16] (Ch.18). It is a
recursive algorithm, where in each level of the recursion we find a segment s̄t and an interval
I on the line extending this segment where the following three properties must hold: (i) both
s, t P DP pκ ´ ∆q, (ii) the length of I is ď 5}s ´ t} and (iii) @x P DP pκq, the projection of
x onto this line lies inside I. We then project onto the space orthogonal to s̄t and recurse.
Property (iii) asserts that DP pκq is contained inside the box we return; property (i) combined
with Fact 3 allows us to infer that volpDP pκ ´ ∆qq ě }s ´ t} ¨ volpΠKstpDP pκ ´ ∆qqq{d where
ΠKst is the projection onto the subspace orthogonal to the line connecting s and t; and
property (ii) asserts }s ´ t} ě |I|{5 so that recursively we get a 5d ¨ d! approximation of
volpDP pκ ´ ∆qq. Thus, asserting that these properties hold w.h.p. becomes the goal of our
algorithm, which is far from trivial. Details appear in the full version, along with the proof
of the algorithm’s correctness.

▶ Theorem 16. Let P Ă Gd be a set of points whose Tukey-region κ `

dαqcp ε
d2`2d´1 , δ

d2`2d´1 , β
d2`2d´1 q is non-empty. Then there exists an efficient pε, δq-DP

algorithm that w.p. ě 1 ´ β returns a box B where DP pκq Ă B and volpDP pκqq ď volpBq ď

5dpd!qvolpDppκ ´ ∆BBqq for

∆BB
pε, δ, βq “

$

’

’

&

’

’

%

Op
d3pυ`logpd{βqq

ε
q, Using ε-DP binary search

Õp
d3logpdυ{εδβq

ε
q, Using the “Between Threshold” Alg

Op
d3logpdυ{βq

ε
`

d38log˚pυq log˚pυq logpd log˚pυq{δβq

ε
q, Using the “RecConcave” algorithm

From a Bounding Box to a “Fat” Input

In classic, non-private, computational geometry, the bounding-box approximation algorithm
can be used to design an affine transformation T that turns the input dataset into a fat
input, using a rotation and a separate rescaling of each axis so that B is mapped to r0, 1sd.
Then, finding a kernel for the fat dataset and applying T ´1 gives a kernel for the original
set of points. Unfortunately, we cannot make a similar claim in our setting. Granted, our
bounding box is pcd, ∆q-approximation for any P ; but the resulting affine transformation does
not, always, guarantee that applying it turns DP pκq to be pc1

d, ∆q-fat or c1
d-absolutely fat.

This should be obvious, since when DP pκ ´ ∆BBq is drastically bigger than DP pκq and B is
proportional to DP pκ ´ ∆BBq, mapping B to r0, 1sd doesn’t “stretch” DP pκq enough to make
it fat. Luckily, we show that non-comparable volumes is the only reason this transformation
fails to produce a fat Tukey-region.

▶ Lemma 17. Fix ε ą 0, δ ě 0 and β ą 0, and define ∆BB as in Theorem 16. Suppose
P Ă Gd is such that for some two parameters κ ě κ1, where κ ´ κ1 ě ∆BB, we have that
volpDP pκqq ě 1

2 volpDP pκ1qq. Then there exists a pε, δq-differentially private algorithm that
w.p. ě 1 ´ β computes (i) an affine transformation M that turns MpDP pκqq into a convex
polytope which is pcd, κ ´ κ1q-fat, for cd “ 4d

5
2 5d ¨ pd!q, and (ii) a transformation M̃ making

M̃pDP pκqq 2d ¨ 5d ¨ pd!q-absolutely fat.

7 Finding a “Good” κ Privately

Our discussion in Section 6 leaves us with the question of finding a “good” κ and κ1 “

κ ´ ∆kernel – where volpDP pκqq ě volpDP pκ ´ ∆kernelqq{2. First, we establish that there
are many such good pairs. [19] proved that if the volume of a Tukey region is non-zero,
then it is at least pd{Υq´d3 . Thus, we set t “ rd3υ ` d3 log2pdqs and so it must hold for
any series κ1 ă κ2 ă ... ă κt of length t that at least one pair of adjacent κi, κi`1 is good,
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for otherwise the volpDP pκtqq is below the lower bound of [19]. Consider the specific series
where κi “ i ¨ p4∆kernelq and denote m “ κt. Here, a good pair κi, κi`1 are 4∆kernel apart,
therefore many κs in some interval rκi, κi`1s are good, a fact we rely on in the design of our
private algorithm.

To that end, we define the query
qP pκq

def
“ max

!

0 ď i ď mintκ ´ 1, m ´ κu : volpDP pκ`iqq

volpDP pκ´iqq
ě 1

2

)

. Our goal is to retrieve a
κ where qP pκq ě ∆kernel since then pκ, κ ´ ∆kernelq is a good pair. It is obvious that
@κ, qppκq ě 0 and that qP p1q “ qP pmq “ 0, but we also prove in the full version that for
any neighboring P and P 1 “ P Y txu it holds that |qP pκq ´ qP 1 pκ ` 1q| ď 1. And so our
ε-DP algorithm first picks a value of κ w.p. 9 expp ε

8 qP pκqq and then adds Laplace noise
(rounded to an integer) to it. Based on all of the above mentioned properties we prove that
this “Shifted Exponential Mechanism” is indeed ε-DP. We then argue about its utility, which
is far more straight-forward, and obtain the following conclusion.

▶ Corollary 18. Fix ε ą 0, δ ě 0, β ą 0 and set ∆kernel as in The-
orem 10 and m “ 4rd3υ ` d3 log2pdqs∆kernel. Let P Ă Gd be a set of
points such that DP pmq is non-empty and non-degenerate. Then w.p. ě

1 ´ β, our “Shifted Exponential Mechanism”’ returns a value κ such that
volpDP pκqq{volpDP pκ ´ ∆kernelqq ě 1{2.
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Abstract
Numerous high-profile works have shown that access patterns to even encrypted databases can leak
secret information and sometimes even lead to reconstruction of the entire database. To thwart access
pattern leakage, the literature has focused on oblivious algorithms, where obliviousness requires that
the access patterns leak nothing about the input data.

In this paper, we consider the Join operator, an important database primitive that has been
extensively studied and optimized. Unfortunately, any fully oblivious Join algorithm would require
always padding the result to the worst-case length which is quadratic in the data size N . In
comparison, an insecure baseline incurs only O(R + N) cost where R is the true result length, and in
the common case in practice, R is relatively short. As a typical example, when R = O(N), any fully
oblivious algorithm must inherently incur a prohibitive, N -fold slowdown relative to the insecure
baseline. Indeed, the (non-private) database and algorithms literature invariably focuses on studying
the instance-specific rather than worst-case performance of database algorithms. Unfortunately, the
stringent notion of full obliviousness precludes the design of efficient algorithms with non-trivial
instance-specific performance.

To overcome this worst-case performance barrier of full obliviousness and enable algorithms
with good instance-specific performance, we consider a relaxed notion of access pattern privacy
called (ϵ, δ)-differential obliviousness (DO), originally proposed in the seminal work of Chan et
al. (SODA’19). Rather than insisting that the access patterns leak no information whatsoever,
the relaxed DO notion requires that the access patterns satisfy (ϵ, δ)-differential privacy. We show
that by adopting the relaxed DO notion, we can obtain efficient database Join mechanisms whose
instance-specific performance approximately matches the insecure baseline, while still offering a
meaningful notion of privacy to individual users. Complementing our upper bound results, we also
prove new lower bounds regarding the performance of any DO Join algorithm.

Differential obliviousness (DO) is a new notion and is a relatively unexplored territory. Following
the pioneering investigations by Chan et al. and others, our work is among the very first to formally
explore how DO can help overcome the worst-case performance curse of full obliviousness; moreover,
we motivate our work with database applications. Our work shows new evidence why DO might be
a promising notion, and opens up several exciting future directions.
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1 Introduction

We consider a scenario in which a trusted client (e.g., an Intel SGX enclave or a trusted client
laptop) outsources an encrypted database to an untrusted storage provider (e.g., untrusted
memory or a cloud server). The client would like to make queries to the database without
endangering the privacy of users in the database. Since all data contents are encrypted, the
key challenge is to ensure that access patterns to the database do not accidentally harm
individual users’ privacy. Notably, plenty of recent attacks [24,51,52,56,59,63,70] against
encrypted database systems (e.g., CryptDB [74], Cipherbase [6], and TrustedDB [14]) showed
that when left unprotected, access patterns can leak highly sensitive information, and in
some cases, even lead to reconstruction of the entire database. Given the importance of
this problem, several high-profile works implemented oblivious database systems, including
Opaque [90], ObliDB [41], Obladi [35], as well as the work by Arasu and Kaushik [7], where
obliviousness requires that access patterns leak nothing about the underlying data.

In this paper, we focus on an important database operation, the Join operation, which
has been studied extensively in the database literature [1,13,16,33,44,55,61,71,78,89]. Given
two tables and a specified attribute (henceforth also called the join key or key for short)2,
the Join operation computes, for each possible join key value k, the Cartesian product of
the rows in each table with the join key k. For example, if the join key k appears twice in
the first table and three times in the second table, then in the join result the join key k will
have six occurrences. Some works focus on the special case of foreign-key join where it is
promised that in one of the input tables, each key appears only once. In this paper, however,
we consider the more general case where a key may have multiple occurrences in both tables.

Unfortunately, existing oblivious database systems [7,41,90] do not provide a satisfactory
solution for the Join operation. A fundamental problem is that any fully oblivious algorithm
for Join must always incur the worst-case cost even when the actual join result may be short.
To see this, recall that an algorithm is said to be oblivious iff its memory access patterns
(and runtime3) are indistinguishable for any two inputs of the same length [47,48,81]. For
the case of Join, the result size for the worst-case input is Θ(N1 · N2) where N1 and N2
denote the sizes of the two input tables, respectively. Thus any fully oblivious algorithm
must incur at least Ω(N1 · N2) cost on any input instance, even when the input instance has
a short join result4. This is very expensive in real-world databases, since the join result is
typically much smaller than quadratic in the common case.

In this paper, we ask the following natural question:
Can we design join algorithms that provide a meaningful and mathematically rigorous
notion of privacy, and moreover, avoid having to pay the worst-case quadratic penalty on
every input?

2 A join key can also be a set of attributes, without loss of generality, we assume two tables are joined on
single attribute in this paper.

3 Note that the length of the physical accesses is the same as the program’s runtime.
4 The naïve solution of simulating an insecure join algorithm with Oblivious RAM does not provide full

obliviousness unless the runtime is padded to the worst case.

https://eprint.iacr.org/2021/593
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Parametrized algorithm design and instance-specific performance. We follow the well-
established paradigm in the algorithms and database literature, and focus on instance-
specific complexity measures. Parametraized analysis and instance-specific performance have
been widely adopted in the database, algorithms, as well as cryptography literature, and its
importance has been explained in numerous prior works. For example, a line of work in
the classical (non-private) database literature focused on optimizing the instance-specific
performance for database joins [18, 55, 61, 71, 89] – in this context the output length is
often used as an additional parameter to characterize the algorithms’ performance. The
study of instance-specific performance is also closely related to the prominent line of work on
parametrized algorithms design and analysis [31,37,42,69,77,79] (see Roughgarden’s textbook
for an excellent overview [77].) Last but not the least, notable works in the cryptography
literature also consider how to achieve good instance-specific performance (sometimes called
“input-specific runtime” in the cryptography literature) in the Turing Machine or the Random
Access Machine (RAM) models: for example, the seminal work by Goldwasser et al. [49]
is motivated by “overcoming the worst-case curse” in cryptographic constructions; and a
similar notion is adopted in subsequent works [5, 58].

Prior approaches introduce arbitrary leakages to achieve good instance-specific perform-
ance. As mentioned, full obliviousness precludes the design of algorithms with non-trivial
instance-specific performance. However, prior oblivious database systems [7,41,90] do care
about instance-specific performance bounds. To achieve good instance-specific performance,
they give up on full obliviousness (even though this line of work is commonly referred to as
“oblivious databases”), and introduce arbitrary leakages, e.g., by leaking the multiplicity of
keys, the lengths of intermediate arrays, the final output length, and/or the exact runtime of
the (non-private) program. The ramifications of such leakages are poorly understood, and
can lead to unforeseen privacy breaches. Since numerous prior encrypted database systems
allowing arbitrary leakages have been broken [24,51,52,56,59,63,70], our philosophy is to
advocate for an approach that provides rigorous mathematical guarantees on the leakage.

Although our work focuses on a privately outsourced database scenario, it is interesting
to note that in the cryptography literature, a line of work has focused on general RAM
computations on encrypted data [20, 23, 32, 45, 46, 50]. These works also care about plugging
access pattern leakage. Thus, to achieve full security, essentially full obliviousness is necessary
in these constructions (and indeed these constructions rely on Oblivious RAM as a building
block). Typically this line of work either pads the RAM computation to the runtime on the
worst-case input, or they allow leakage of the exact runtime and thus violate full obliviousness
– the ramification of such leakage is unclear and can lead to severe privacy breaches in some
applications.

Overcoming the worst-case curse with differential obliviousness. Since the worst-case
performance curse is inherent for full obliviousness, we would need a relaxed (but nonetheless
meaningful and rigorous) privacy notion to achieve good instance-specific performance. We
therefore turn our attention to the notion of differential obliviousness (DO) recently defined
by Chan et al. [28]. Simply put, differential obliviousness requires that the access patterns
revealed during a program’s execution must satisfy (ϵ, δ)-differential privacy [39]. So far,
a couple of prior works [17, 28] have shown theoretical separations between DO and full
obliviousness, thus providing initial theoretical evidence why DO is worth studying. Besides
the few pioneering investigations, the landscape of DO remains much unexplored. Designing
DO algorithms, especially for practically motivated applications, is a relatively new territory.

ITC 2021
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1.1 Our Contributions and Results
We show novel DO database join algorithms that can approximately match the instance-
specific performance of the insecure baseline, whereas any fully oblivious join algorithm must
inherently incur, on common instances with O(N)-sized outputs, at least a linear (in database
size) blowup relative to the insecure baseline. Our work is among the very first to formally
explore how DO can help overcome the worst-case curse of full obliviousness.

Specifically, we present two main upper bound results: 1) a DO join algorithm in the
standard word-RAM model where the primary performance metrics are the algorithm’s
runtime and output length, and 2) a DO join algorithm in the external-memory model
where the primary performance metrics are the algorithm’s cache complexity and output
length. Both algorithms approximately match the performance of the insecure baselines in
the corresponding setting. Both models are important to consider: the standard word-RAM
model is the prevalent model in which algorithms are studied; and the external-memory
model is the best fit when we rely on secure processors such as Intel’s SGX to privately
outsource the sensitive database to an untrusted server (as we explain more later).

We also prove lower bound results regarding the performance of any DO join algorithm.
The lower bounds show that some small slowdown relative to the insecure baseline is necessary.
Moreover, our upper bound matches the lower bound when the result size is at least quasi-
linear. For other parameter regimes, e.g., when the result size is linear or shorter, there
remains a small gap between our upper bounds and lower bounds – and bridging this gap is
an interesting direction for future work.

We now present the result statements more formally.

Results for the word-RAM model. Recall the application scenario mentioned at the
beginning of the paper: a trusted client stores an encrypted database on an untrusted storage.
Data can only be decrypted within the trusted client which also runs the database engine.
Anything fetched or written to the storage is encrypted such that the adversary can only
observe the access patterns.

In the standard word-RAM model, we assume that the trusted client is a CPU with
O(1) private registers, and the cost is measured in terms of the number of memory words
transmitted between the CPU and memory (which equates to the runtime of the algorithm).
Table 1 summarizes our results for the standard RAM model. For simplicity, the results are
stated for the typical parameters5 ϵ = Θ(1) and δ = 1/N c for some constant c ≥ 1 and a
more generalize version will be provided in Theorem 1.

As shown in Table 1, our algorithm achieves O(R + N log N) runtime and R + O((µmax +
log N) · log N) result size where N denotes the total input length, R denotes the true result
size (when the insecure algorithm is run), and µmax denotes the multiplicity of the most
frequent join key in the database. Note that even an insecure join algorithm must incur at
least R + N runtime since it has to at least read the input and write down the output. In
the common case in practice, the true output size R is small, e.g., R = O(N). In this case,
our DO algorithm achieves almost a factor of N performance improvement relative to any
fully oblivious solution whose cost is inherently quadratic.

We also compare our algorithm with a naïve DO algorithm that basically simulates the
insecure algorithm (described in Section 3.5) using the state-of-the-art statistically secure
Oblivious RAM [29, 88]6 and then appends an appropriate noise to the result as well as

5 In the cryptography literature, sometimes we want δ to be a negligible function in N . In this case, the
log N factor in the performance bound is replaced with any super-logarithmic function.

6 Like Chan et al. [28], we adopt a statistical notion of differential obliviousness that defends against even
computationally unbounded adversaries.
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Table 1 Our results: stated for the typical parameters when ϵ = Θ(1) and δ = 1
Nc for some

constant c ≥ 1. N1 and N2 denote the lengths of the two input tables, N := N1 + N2, R denotes
the length of the true join result, and µmax denotes the maximum multiplicity of any join key in the
two input tables. Θ(·) means that it is both an upper- and lower-bound.

Runtime Result size

Insecure Θ(R + N) R

Fully oblivious Θ(N1 · N2) Θ(N1 · N2)

Our differentially oblivious algorithms
Naïve: Theorem 15 O((R + N log N) log2 N) R + O(N log N)

Main scheme 1: Thm 1 O(R + N log N) R + O((µmax + log N) · log N)
LB: Thm 2 Ω(R + N log log N + µmax log N) R + Ω(µmax log N)

to the program’s runtime (see Section 3.5 for a more detailed description). In comparison,
our algorithm is a log2 N factor faster than the naïve DO algorithm. Other standard DO
techniques such as the work by Komargodski and Shi [62] fail to work in our context – see
Section 2.5 for more discussions. In light of our lower bound for any DO join algorithm, our
upper bound achieves optimality in terms of result length as long as µmax ≥ log N , and is
optimal in terms of runtime when µmax = Θ(N).

Our main theorems7 are also informally described below for a broader range of choices
for ϵ and δ than Table 1.

▶ Theorem 1 (Our DO join algorithm). Let R be the length of the true join result (i.e.,
without fillers), let µmax denote the multiplicity of the most frequent join key in either input
array, and let N denote the total input length. There is an (ϵ, δ)-differentially oblivious join
algorithm that runs in time O(R + N(log N + 1

ϵ log 1
δ )) and produces a result whose length is

at most R + O( 1
ϵ · (µmax + 1

ϵ log 1
δ ) · log 1

δ ).

Table 1 also shows our lower bound which states that any DO join algorithm must incur
at least Ω(R + N log log N + µmax log N) runtime and must have a result size of at least
R + Ω(µmax log N) with high probability (assuming the same typical choices of ϵ and δ). A
formal statement with more general parameters is given below.

▶ Theorem 2 (Limits of any DO join algorithm (informal)). Let N be the total input length,
then, for most reasonable choices8 of ϵ and δ,
1. any (ϵ, δ)-differentially oblivious join algorithm must produce a result of at least R +

Ω(µmax · 1
ϵ · log ϵ

δ ) with at least δ/ϵ probability.
2. any “natural” (ϵ, δ)-differentially oblivious join algorithm must have some input of total

length N and whose true join result size is R, such that the algorithm incurs at least
Ω(R + N log log 1

δ + µmax · 1
ϵ · log ϵ

δ ) runtime with at least δ/ϵ probability.

In the above, the lower bound for runtime holds for a broad class of natural algorithms
that do not perform encoding or computation on the elements’ payloads – indeed, most
known join algorithms fall into this class. We refer the reader to the online full version [34]
for more details.

7 In Table 1, we assume that δ = 1/Nc like the standard differentially privacy literature suggests. In some
cryptographic application settings where one may desire δ to be a negligible function in N , there will be
an extra (arbitrarily small) super-constant factor added to the bounds in Table 1. See also Theorem 1
for the statement with general parameters.

8 See the formal theorem in our online full version [34] for a more precise characterization of the parameter
regime in which the lower bound holds.

ITC 2021



19:6 Differentially Oblivious Database Joins

Table 2 Our results: cache-agnostic cache complexity. See the caption of Table 1 for the meaning
of the notations N1, N2, N , and R. Our results need to assume the standard “tall cache” and “wide
block” assumptions, i.e., M ≥ B2, and B ≥ log0.55 N where M is the cache size and B is the block
size.

Cache-oblivious cache complexity

Insecure O( R
B + N

B · log M
B

N
B )

Fully oblivious Θ(N1 · N2/B)

Our differentially oblivious algorithms
Naïve: Theorem 15 O ((R + N log N) log N · logB N)

Main scheme 2: Cor 3 O
(

R
B + N

B · log N
)

Results for in the cache-agnostic, external-memory model. The external-memory model [3,
43, 86] and cache complexity are important for scenarios where we want to employ secure
processors to enable encrypted, differentially oblivious databases. Imagine that the server
has a secure processor such as Intel SGX. In this case, the database is stored in an encrypted
format on the server, and only the secure processor can decrypt the data and perform
computation. In other words, we can think of the trusted client as the secure processor,
and the rest of the server’s software stack is untrusted. Moreover, a remote client can
communicate with the secure processor using a secure channel to ask queries and receive
answers back.

Interestingly, it turns out that when Intel SGX is used to outsource both the computation
and storage to an untrusted server, the major performance metric is the number of pages
the SGX enclave needs to fetch. Each enclave page swap is a heavy-weight operation that
involves communication with the untrusted operating system, and moreover, the enclave
must decrypt (or encrypt) the memory page being swapped in (or out). In this scenario,
the trusted enclave memory can be viewed as a cache whose size is henceforth denoted M ,
and each page is a block (i.e., the atomic unit being swapped in and out) whose size is
henceforth denoted B. Further, the rest of the storage outside the trusted enclave memory is
the external memory. An algorithm’s cache complexity is defined as the number of blocks
transmitted between the cache and the external memory during the algorithm’s execution.
In the online full version [34], we provide additional background on the external-memory
model which is a well-accepted model in the algorithms literature – it is very interesting to
observe that the line of work on external-memory algorithms [3, 43, 86] is a perfect fit for
studying the performance of algorithms running on commodity secure processors.

We propose a variant of our algorithm optimized for cache complexity. Our algorithm
is cache agnostic, i.e., the algorithm is unaware of the cache’s parameters, namely, M and
B. Cache-agnostic was also commonly referred to as “cache-oblivious” in the algorithms
literature [38,43]. In our paper, we use the term “cache-agnostic” instead to disambiguate
from our usage of the term “obliviousness”. The importance and advantages of cache-agnostic
algorithms have been extensively discussed in the algorithms literature [38, 43]. First, a
cache-agnostic algorithm is “universal” and the performance bounds hold no matter what the
system parameters (including M and B) are. Not only so, when deployed on a multi-level
memory hierarchy, an optimal cache-agnostic algorithm would give optimal IO performance
between any two adjacent levels of the hierarchy [38,43].
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Table 2 summarizes our cache complexity results. The insecure baseline and the naïve
DO algorithm in the table are described in Section 3.5. As shown in the table, our cache
complexity is quite close to that of the insecure baseline, and outperforms the naïve DO
algorithm by a (B/ log B) · log2 N factor. In a typical scenario, B = poly log N ; in this case,
our improvement over the naïve DO algorithm is polylogarithmic.

Last but not the least, our cache efficient instantiation has relatively small constants
in the big-O notation, and therefore an interesting future direction is to implement our
algorithm and measure its concrete efficiency. We summarize our cache-complexity results in
the following corollary:

▶ Corollary 3 (Our DO join algorithm: cache complexity). There is an (ϵ, δ)-
DO database join algorithm that incurs cache complexity upper bounded by 1

B ·
O

(
N

(
log M

B

N
B + 1

ϵ log 1
δ

)
+ R +

( 1
ϵ log 1

δ

)2
)

, assuming the standard tall cache assumption
M = Ω(B2) and the wide block assumption B = Ω(log0.55 N).

Both the tall cache assumption and the wide block assumption are standard assumptions
adopted commonly in the external-memory algorithms line of work [3, 9, 38,43,86].

Technical highlight. Inspired by the original work of Chan et al. [28], we adopt the
following design paradigm for devising DO algorithms. At a very high level, we decompose
the task of designing a DO algorithm into the following: 1) identify a set of intermediate
ideal functionalities with differentially private leakage; and 2) leverage oblivious algorithms
building blocks to obliviously realize these ideal functionalities, such that the access patterns
leak only the stated differentially private leakage, and nothing else.

Although the design paradigm is simple to state, the non-trivial challenge is to identify
appropriate intermediate functionalities that not only lend to solving our problem, but also
being cognizant that the computational tasks they embody must have efficient oblivious
realizations. We defer the algorithmic details to subsequent formal sections, and we hope
that our algorithmic techniques can inspire the design of DO algorithms for new applications.
We believe that our work provides further evidence on top of the early-stage explorations of
Chan et al. [28] and Beimel et al. [17] that differential obliviousness is a useful notion that
deserves attention.

2 Technical Roadmap

For convenience, henceforth we call the two input tables arrays, denoted I1 and I2 respectively.
Each element in I1 and I2 is either a real element of the form (k, v) or a filler element of the
form (⊥, ⊥). For a real element, k is called the join key (or key for short) and v is called
the payload. The database join operation wants to compute, for each unique join key k,
the Cartesian product of the elements contained in both arrays with join key k. All results
are concatenated and output, and moreover, the output is allowed to contain an arbitrary
number of filler elements that may be needed for privacy.

▶ Remark 4 (Simplifying assumption for the roadmap). Throughout our informal technical
roadmap, we will assume the typical parameters ϵ = Θ(1) and δ = 1/N c for an arbitrary
constant c ≥ 1. In this case, 1

ϵ log 1
δ = Θ(log N), and we thus use two expressions interchange-

ably – but our formal sections later will differentiate the two to be more general. Specifically,
jumping ahead, we often need to add noises of magnitude roughly 1

ϵ log 1
δ = Θ(log N).
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Our differential oblivious join algorithm will make use of standard obivious algorithm
building blocks including oblivious sorting [4, 10,76], and oblivious compaction [11,67]. We
review these building blocks in more detail in Section 3.6.

2.1 Warmup Algorithm
We first present a warmup that achieves O(R + N log2 N) runtime – the warmup algorithm
does not achieve the bounds stated earlier; but it is conceptually simpler and helps our
understanding. Later in Section 2.3, we describe additional techniques to improve the
algorithm’s asymptotical performance, and achieve the bounds stated earlier.

A strawman idea. To understand our algorithm, let us first consider a flawed strawman –
we sketch the high-level idea, and for the time being, omit the details on how to oblivious
sorts to implement the relevant steps.

1. Compute the bin load array L. First, using a constant number of oblivious sorts, write
down a list L of length N := |I1| + |I2|. Each element in L is of the form (k, n̂

(1)
k , n̂

(2)
k )

where n̂
(b)
k denotes the noisy count of the join key k in table b ∈ {1, 2}. The noisy count is

obtained by adding an appropriate, independently sampled noise to the actual multiplicity
of join key k in the corresponding array. To maintain correctness, the noise must be
non-negative. So rather than adding a Laplacian noise with standard deviation 1/ϵ, we
shift the Laplacian to the right to be centered at U/2 = Θ( 1

ϵ · log 1
δ ) = Θ(log N). In this

way, the noise lies within the range [0, U ] except with δ probability9.
The list L should contain all join keys that appear in at least one input array, padded
with fillers of the form (⋆1, n̂

(1)
⋆1 , n̂

(2)
⋆1 ), (⋆2, n̂

(1)
⋆2 , n̂

(2)
⋆2 ), . . ., to a length of N . The filler join

keys ⋆1, ⋆2, . . . have an actual multiplicity of 0 in both input arrays, and thus their noisy
counts are the shifted Laplacian noise in the range [0, U ]. The list L is sorted by the join
key k, and all filler join keys appear at the end.

2. Binning. Now, we have 2N bins each indexed by a pair (b, i) where b ∈ {1, 2} and i ∈ [N ].
Let ki denote the i-th smallest join key. Then, the bin indexed (b, i) has capacity n̂

(b)
ki

, and
all elements in Ib with the join key ki are destined for this bin. Using a constant number
of oblivious sorts, route all elements in either array to their respective destined bins, and
pad each bin with fillers to its intended capacity. Note that the bins corresponding to the
filler join keys ⋆1, ⋆2, . . . have no real elements in them and are full of fillers.

3. Bin-wise Cartesian product. Now, take every pair of bins (1, i) and (2, i) for i ∈ [N ], and
compute the Cartesian product of elements in the two bins – if the two elements being
joined have the same real join key, add the joined tuple to the output; otherwise, add a
filler element to the output.

A flaw that violates differential obliviousness. The above algorithm is natural and concep-
tually simple; it almost works, except for a critical flaw that violates differential obliviousness,
which is illustrated in Figure 1 and explained in detail below. Observe that the array L

is sorted by the join key during Step 1. Now, consider an input I := (I1, I2) in which 8th
smallest join key k8 appears only 1 time in I1 and does not appear in I2, and all other join

9 In our formal sections later, we actually use a shifted geometric distribution which is the discrete
counterpart of the real-valued Laplacian, and moreover we simply truncate the δ-probability mass
outside the range [0, U ] which allows us to get deterministic bounds on the algorithm’s runtime.
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Figure 1 Strawman scheme: a flaw that violates differential obliviousness. See the main body for
more explanation.

keys that appear in I appear more than 16U times in both arrays. Consider a 2-neighboring
input where the only occurrence of k8 is replaced with a join key k−∞ that 1) does not exist
in I, and 2) is smaller than all other join keys in I. In this case, an adversary observing
the access patterns of the program can easily tell which input is used. Recall that the bin
pairs are sorted in the order of the join keys: in the case of I, the 8-th bin pair has small
capacities and the first bin pair has large capacities (where small means between at most
U + 1 and large means at least 16U). In the case of I ′, however, the first bin pair, now
corresponding to the join key k−∞, has small capacities.

A remedy. It turns out that a simple fix can address the above flaw: instead of ordering
the array L using the join key k, we can order it lexicographically based on the (n̂(1)

k , n̂
(2)
k )

fields. Intuitively, this can avoid accidental information leakage through the ordering. More
specifically, in the above steps 2 and 3, the capacities of all bins are leaked to the adversary.
Therefore, if we use the fields (n̂(1)

k , n̂
(2)
k ) to order the array L and the corresponding bins,

then the only information leaked is the multiset of (n̂(1)
k , n̂

(2)
k ) pairs. Given the multiset of

the (n̂(1)
k , n̂

(2)
k ) pairs, the access patterns of the above algorithm are fully determined.

Therefore, it suffices to prove that the leakage, i.e., the multiset of the (n̂(1)
k , n̂

(2)
k ) pairs,

satisfies (O(ϵ), O(δ))-differential privacy. In our formal technical sections later, we shall prove
that this is indeed the case as long as the noises are chosen from the shifted and truncated
geometric distribution defined in Section 3.4.

Final step: compaction of the join result. The above modification fixes the security flaw,
but at this moment, the result output by our algorithm may have length O(R + N log2 N) –
see Section 2.2 for a more detailed analysis. Specifically, when the true result length R is
small, the additive term N log2 N is dominant.

We would like our algorithm to output a result that is as short as possible specific to the
instance. Clearly, for the result to be correct, it cannot be shorter than R. In the online
full version [34], we prove that all (ϵ, δ)-DO algorithms must have result length at least
R + Ω(µmax · 1

ϵ log 1
δ ) where µmax is the maximum multiplicity of any join key in either array.

Our idea is to obliviously compact the result output by the above algorithm to length
R + noise where noise is sampled from an appropriate distribution. The most natural idea
is to sample a shifted Laplacian noise proportional to ∆global/ϵ where ∆global is the global
sensitivity of the exact result length (i.e., how much the length of the exact result would
change in the worst case when we change one position in the input). However, ∆global can be
as large as Θ(N). Instead, we would like to achieve an instance-optimal bound on the result
length (for almost all parameter regimes). To do so, we add noise proportional to the local
sensitivity (or instance-specific sensitivity) which is equal to µmax. To make the idea work,
however, we have to first obtain a noisy version µ̂max to the local sensitivity µmax, and then
add noise proportional to µ̂max to the result length. In this way, our algorithm achieves result
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length R + (µmax + log N) log N which is instance-optimal in light of the R + Ω(µmax log N)
lower bound in almost all parameter regimes. We defer a detailed description of the scheme
to the formal technical sections.

2.2 Performance of the Warmup Algorithm
As mentioned, the warmup algorithm, obtained by changing the way the array L is ordered
in the strawman solution, achieves runtime O(R + N log2 N). To understand the techniques
in Section 2.3 that improves the performance to O(R + N log N), let us first understand the
performance breakdown.

1. The first step, which computes the bin load array L, performs a constant number of
oblivious sorts on arrays of length at most N := |I1| + |I2|, and thus takes N log N time.

2. The second step, which places the elements into bins, performs a constant number of
oblivious sorts, and the length of the arrays sorted is upper bounded by the sum of the
bin capacities. In the worst case, there can be Θ(N) sparsely loaded bins each with
only O(1) number of real elements. The noise added to each bin’s capacity is roughly of
magnitude 1

ϵ log 1
δ which is O(log N) under typical parameters (see Remark 4). Therefore,

the length of the array sorted is at most O(N log N), and the second step takes time
O((N log N) log(N log N)) = N log2 N .

3. The third step computes the Cartesian product of pairs of bins: the runtime of this step is
the actual result length R when there is no noise, plus the number of fillers. The number
of fillers is maximized when there are Θ(N) bins each with O(1) number of real elements
and O(log N) fillers. In this case, the total number of fillers after the Cartesian product
is O(N log2 N). Therefore, the third step takes time O(R + N log2 N).

Summarizing the above, our warmup algorithm achieves O(R + N log2 N) runtime.

2.3 Final Algorithm
Section 2.2 reveals that the N log2 N additive term in the performance bound is incurred
because in the worst-case scenario, there can be Θ(N) sparsely loaded bin-pairs each with
O(1) real elements, and padded with Θ(log N) fillers10. This introduces the N log2 N additive
term in two ways: 1) the binning step requires sorting arrays of length O(N log N) which
takes O(N log2 N) time; and 2) the bin-wise Cartesian product introduces O(N log2 N)
fillers.

Imprecisely speaking, having many sparsely loaded bin-pairs cause a small “signal to noise”
ratio, i.e., the ratio of fillers is high. To improve the performance bound to O(R + N log N),
our idea is to reduce the number of bin-pairs to O(N/ log N), thereby improving the “signal
to noise” ratio. We say that a join key k is sparse iff its noise counts n̂

(1)
k and n̂

(2)
k are both

upper bounded by 2U , where recall that U = Θ( 1
ϵ log 1

δ ). A join key that is not sparse is
said to be dense. Recall that N := |I1| + |I2|.

As mentioned, our noise distribution is upper bounded by U except with probability
δ. This means that if a bin-pair contains a dense join key, then at least one of the bins
in the pair has at least U real elements in it except with δ probability. Thus there can be

10 For example, this can happen if there are many elements with O(1) occurrences in both input arrays, or
with O(1) occurrences in one array but not appearing in the other. In the latter case, essentially there
are many elements in the symmetric difference of the two input arrays that do not contribute to the
true joined result.
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no more than O(N/ log N) bin-pairs for dense-keys. Our focus therefore is to consolidate
multiple sparse join keys into the same bin-pair such that each bin-pair contains at least
Θ(U) elements (including elements from both input arrays). To achieve this, we perform the
following.

Compute key-to-bin mapping. Recall that earlier we computed the bin load array L

which contains tuples of the form (k, n̂
(1)
k , n̂

(2)
k ) sorted according to lexicographical ordering

on (n̂(1)
k , n̂

(2)
k ). It is not too hard to extend the algorithm for computing L such that the

bin load array L also stores the actual counts, i.e., L now contains entries of the form
(k, n

(1)
k , n̂

(1)
k , n

(2)
k , n̂

(2)
k ). where n

(1)
k and n

(2)
k denote the actual multiplicity of the join key k

in I1 and I2, respectively.
Now, we can classify L into a part Ls corresponding to sparse keys, i.e, Ls := {(k, n

(1)
k ,

n̂
(1)
k , n

(2)
k , n̂

(2)
k ) ∈ L : n̂

(1)
k ≤ 2U, n̂

(2)
k ≤ 2U}; and a part Ld := L\Ls corresponding to dense

join keys. All of L, Ls, and Ld are sorted according to lexicographical ordering on (n̂(1)
k , n̂

(2)
k );

and Ls and Ld can be constructed in O(N) time if we allow the access patterns to reveal the
noisy counts contained in L.

Our goal now is to construct an array called BinMap that maps join keys to bin pairs
(note by constructing BinMap, we have not moved the elements into their bins yet – the
actual moving will be done in the subsequent binning step). Each entry of BinMap is of the
form (k, i), meaning that the join key k should be mapped to the i-th bin-pair. To construct
BinMap, we first scan through Ld: for each i ∈ {1, 2, . . . , |Ld|}, if the i-th entry in Ld has
the join key k, add the tuple (k, i) to the array BinMap. At this moment, BinMap stores the
mapping from each dense join key to its destined bin-pair index. The capacities of these
bin-pairs (for dense join keys) are determined by the noisy counts in Ld.

Next, we will add to BinMap the mapping from sparse join keys to their bins. Specifically,
sparse join keys are mapped to additional bin-pairs numbered {(1, j), (2, j) : j = |Ld| +
1, |Ld| + 2, . . . , |Ld| + O(N/U)} where j is also called the bin-pair index. All of these bins
(for sparse join keys) will have capacity exactly 4U , and here we allow multiple join keys to
be mapped to the same bin pair. The invariant we want is that for each bin-pair (1, j), (2, j)
where j ∈ {|Ld| + 1, |Ld| + 2, . . . , |Ld| + O(N/U)}, a total of at least 2U elements will be
mapped to the bin pair (summing across both input arrays). In this way, all the sparse join
keys altogether will not consume more than N/2U bins.

To achieve this, we can scan linearly through Ls. For each entry (k, n
(1)
k , n̂

(1)
k , n

(2)
k , n̂

(2)
k ) ∈

Ls encountered during the scan, we append to BinMap a tuple (k, j) that indicates that join
key k is mapped to the j-th bin-pair. Here j is the current bin-pair counter whose starting
value is |Ld| + 1, and j is incremented whenever one of the current bins is about to exceed its
capacity. To achieve this, the algorithm additionally maintains two counters that remember
how many cumulative elements have been mapped to the current bins (1, j) and (2, j) so far.
Whenever one of the bins (1, j) or (2, j) is about to exceed its capacity 4U , we increment the
bin-pair counter j and reset both counters to be 0 again, i.e., we start mapping join keys to
the next bin-pair. We stress that the access pattern of this step is fixed and depends only on
|Ls| because we append a single entry to BinMap whenever we visit an entry of Ls.

Binning. Next, we perform a binning step and move elements into their desired bins –
henceforth a bin designated for a single dense join key is called a D-bin, and a bin designated
for possibly multiple sparse join keys is called an S-bin. To perform the binning, we need
BinMap which provides the mapping between join keys and their bin indices. D-bins have
capacities determined by the corresponding noisy counts contained in Ld and there are |Ld|
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D-bins. S-bins have capacities exactly 4U , and the number of S-bins is an a-priori fixed
upper bound CN/U for a sufficiently large constant C. We can now use a constant number
of oblivious sorts to move elements into their desired bins, padding each bin with fillers to its
intended capacity as defined above. Note that it is possible that some S-bins do not receive
any element.

Remainder of the algorithm. The remainder would be similar to the warmup algorithm.
We perform bin-wise Cartesian product; and finally we obliviously compact the result adding
an appropriate noise to the final result length. Since now, multiple join keys can share the
same bin-pair, during the Cartesian product step, whenever we try to pairwise-join two
elements with different join keys, we append a filler to the output array.

2.4 Lower Bound Results
As mentioned, we prove new lower bounds on the result length and runtime of any DO
join algorithm. The result length lower bound is proven using the definition of differential
obliviousness. Our lower bound on runtime is obtained by taking the maximum of two lower
bounds: 1) the aforementioned lower bound on the result length, and 2) a lower bound
that stems from a privacy-preserving and complexity-preserving reduction from sorting to
database join. Such a reduction shows that any DO join algorithm must suffer from the
same lower bound for DO sorting proven recently by Chan et al. [28]. We refer the reader to
the online full version [34] for the detailed statements and proofs.

2.5 Additional Related Work
In this paper, we adopt the differential obliviousness notion defined by Chan et al. [28]. Besides
Chan et al. [28], several other works also considered related but somewhat incomparable
notions [60,68,87].

Besides the aforementioned works on oblivious databases [7, 35, 41, 90], a related but
incomparable line of work [2,14,25,26,36,57,73,74,80,82,83] focuses on encrypted databases
or searchable encryption systems. Typically, this line of works either give up on hiding access
patterns [14,25,26,36,74,80,82,83], or hide the access pattern by performing a linear scan
through the entire database upon every update or query [2]. The cryptographic techniques
for computation on encrypted data developed in this line of work is somewhat orthogonal
and complementary to our techniques for obfuscating the access patterns.

Following the classical differential privacy (DP) literature, another line of work that
focuses on differentially private database queries [30, 53, 54, 65, 66]. These works assume that
the database curator is trusted and only aims to guarantee that the result is DP – they are not
concerned about information leakage through the runtime behavior of the database engine.
Notably, the techniques we use to release the noisy counts for the multiplicity of join keys may
be remotely reminiscent of differentially private histogram mechanisms [2,15,19,22,64,84].
We stress, however, that our work and techniques are of a different nature from classical
DP mechanisms, including classical DP algorithms for releasing histograms. While prior
DP mechanisms introduce noise to the statistics released, in our context, we introduce noise
to the algorithm’s access patterns (and not its output) – importantly, we need to do so
without affecting the algorithm’s correctness. It would be very interesting, however, to apply
our DO techniques to classical DP algorithms – in this way, both the runtime behavior of
the database as well as the released statistics would guarantee DP, i.e., we get “end-to-end”
privacy.



S. Chu, D. Zhuo, E. Shi, and T.-H.-H. Chan 19:13

Mazloom and Gordon [68] proposed new techniques that guarantee differential oblivious-
ness for tasks that can be performed in a graph-parallel framework. They rely on shuffling
to guarantee that the access patterns of these algorithms reveal only differentially private
histograms. While seemingly related to our techniques, we do not know any straightforward
way to apply their techniques to the join problem and get our asymptotical bounds: partly,
our techniques are non-trivial because we avoid suffering too much overhead for join keys that
are in the symmetric difference of the two input arrays – these join keys do not contribute
to the true joined result. Imprecisely speaking, doing such “pruning” privately introduces
non-trivial algorithmic challenges.

Komargodski and Shi [62] suggest how to compile any Turing Machine (TM) to a
differentially oblivious TM. A strawman idea is to apply their compiler to the (insecure)
TM that computes the database join problem. Unfortunately, this completely fails because
their work defines neighboring on the operational sequences of two TMs; whereas we define
neighboring on the inputs. For two inputs that are neighboring (i.e., Hamming distance
1), applying the insecure TM that computes database join over these inputs may result in
operational sequences that are far apart. This is also partly why our problem is challenging.

2.6 Open Problems
Our work is among the first to explore DO algorithms motivated by practical database
systems. Our work reveals that this is a promising direction with many intriguing open
questions. For example, can we bridge the gap between our upper- and lower-bounds for a
broader range of parameters?

Another exciting direction is to explore DO algorithms for other common database
queries. In this paper, we considered two-way joins. In the classical, non-private database
literature, however, multi-way join [1,13,16,33,44,55,61,71,78,89] received significantly more
attention because instance-optimal two-way join is long known to be a solved problem. Our
paper reveals that with the extra privacy requirements, even two-way join raises non-trivial
algorithmic challenges. Of course, it also makes sense to ask whether one can design efficient
DO algorithms for multi-way joins as well, especially, whether we can (approximately) match
the performance of the best known insecure algorithms. Recent works in the database
literature also considered join algorithms for the special case when the input tables are
already sorted based on the join key (or more generally, preprocessed in some way). In this
case, it may not be necessary to read the entire input, and sublinear (non-private) algorithms
are known [61, 71]. Therefore, an open question is whether we can achieve sublinear DO
algorithms for sorted inputs. Besides joins, more general class of database queries such as
conjunctive queries [1] are also interesting to consider.

Last but not the least, as mentioned, the cache-efficient variants of our algorithms are
potentially implementable and suitable for SGX-type scenarios. Implementing DO algorithms
in practical database systems and evaluating their concrete performance is another exciting
future direction.

3 Preliminaries

We assume that the algorithm is executed in a standard Random Access Machine (RAM)
model. The adversary can observe the access patterns of the program, i.e., in each step,
which memory location is accessed and whether each access is a read or write operation. The
adversary, however, cannot observe the data contents – for example, in a secure processor
setting, the data contents protected by encryption. We will be concerned about two metrics:
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1) the program’s runtime; and 2) the program’s cache complexity [3]. For the runtime
statements, we assume a standard word-RAM and the CPU has only O(1) number of private
registers. For the cache complexity metric, we assume a standard external-memory RAM
model [3] where the CPU has M bits of private cache, and every time it needs to transmit
data to and from memory, an atomic unit (called a “block”) of B bits is transferred. The
cache complexity metric measures how many blocks are transmitted between the CPU and
memory. All of our algorithms are cache agnostic [38, 43], i.e., the algorithm need not know
the cache’s parameters M and B.

3.1 Database Join
Database join is the following problem. Let K denote the space of join key and V denote the
space of payloads. Let I1 and I2 be two input arrays each containing pairs of the form (k, v),
where k ∈ K ∪ {⊥} is called a join key and v ∈ V ∪ {⊥} is called the payload. If k ∈ K and
v ∈ V, the element (k, v) is said to be a real element. Without loss of generality, we may
assume that if an element’s join key k is ⊥, it payload v must be ⊥ too: such elements, of
the form (⊥, ⊥), are said to be filler elements.

Our goal is to output an array O such that for each non-filler join key k ∈ K that appears
in both I1 and I2: let {(k, v1), (k, v2), . . . , (k, vm)} be the multi-set of elements having join
key k in I1, and let {(k, w1), (k, w2), . . ., (k, wm′)} be the multi-set of elements having join
key k in I2; then the multi-set {k, vi, wj}i∈[m],j∈[m′] ⊆ O. We use R to denote the size of
this multi-set. Moreover, besides the multi-set {k, vi, wj}i∈[m],j∈[m′], O should contain no
other element with the join key k. Additionally, the output array O may contain any number
of filler elements of the form (⊥, ⊥, ⊥).

In other words, the output array O contains, for each join key k ∈ K, the Cartesian
product of the elements in both input arrays under join key k; and additionally, O may
contain some filler elements. The filler elements in the output array O may be needed for
privacy reasons as will become clear later.
▶ Remark 5 (Motivation for allowing fillers in the input array). In our formulation, we allow
the input arrays I1 and I2 to contain filler elements, because the length of the input arrays
may already be noisy to mask the true number of elements contained in it. For example, if
the input array comes from a differentially oblivious database such as in the work by Chan
et al. [28], then the input arrays would already contain a random number of filler elements.

3.2 Full Obliviousness
In this paper, we consider execution of algorithms on the Random Access Machine (RAM)
model. Let Alg denote a possibly randomized algorithm and let I denote an input to the
algorithm. We use the notation AccessesAlg(I) , a random variable denoting the sequence
of memory addresses accessed and whether each access is a read or write, generated by a
random execution of the algorithm Alg on input I. Therefore, AccessesAlg(I) is also called
the “access patterns” of Alg on input I.

▶ Definition 6 (δ-obliviousness). We say that an algorithm Alg satisfies δ-obliviousness w.r.t.
the leakage function Leak(·), iff there exists a simulator Sim, such that AccessesAlg(I) has
statistical distance at most δ from the simulated access patterns Sim(Leak(I)).

In other words, the access patterns are simulatable by a simulator Sim which knows only the
leakage function but nothing more about the input I. Note also that δ is allowed to be a
function in N = |I|.
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A typical leakage function is leaking only the length of the input and nothing else, i.e.,
Leak(I) := |I|.

▶ Definition 7 (Full obliviousness). Henceforth, whenever we say Alg is (fully) oblivious (i.e.,
omitting the leakage function and δ), the leakage function would the default one Leak(I) := |I|,
and δ is assumed to be a negligible function in N .

Throughout the paper, we say that a function ν(N) is a negligible function, iff for any
c ∈ N, there exists a sufficiently large N0 such that for all N ≥ N0, ν(N) ≤ 1/N c. In other
words, ν drops faster than any inverse-polynomial function.

3.3 Differential Obliviousness
Neighboring inputs. Two inputs (I1, I2) and (J1, J2) are said to be neighboring, iff |I1| = |J1|
and |I2| = |J2|, and moreover, the following holds:

either I1 = J1, and moreover, I2 and J2 differ in exactly one position;
or I2 = J2, and moreover, I1 and J1 differ in exactly one position.

Differential obliviousness. Imagine that a database join algorithm Alg is executed on a
Random Access Machine (RAM). The two input arrays (I1, I2) reside in memory, and at the
end of the algorithm, the output array O is written to a designated position in memory.

▶ Definition 8 ((ϵ, δ)-differential obliviousness). We say that a database join algorithm Alg
satisfies (ϵ, δ)-differential obliviousness or (ϵ, δ)-DO for short, iff for any neighboring inputs
(I1, I2) and (J1, J2), for any set S,

Pr
[
AccessesAlg(I1, I2) ∈ S

]
≤ eϵ · Pr

[
AccessesAlg(J1, J2) ∈ S

]
+ δ

where AccessesAlg(I1, I2) is a random variable denoting the sequence of memory addresses
(also called access patterns) generated by a random execution of the algorithm Alg on input
(I1, I2).

Specifically, in the standard RAM model, in each time step, the machine visits one
memory location, reading it and then updating it with either the old value or a new value.
Therefore, AccessesAlg(I1, I2) is just the ordered list of all memory addresses accessed in all
time steps. Moreover, the length of AccessesAlg(I1, I2) is also the (randomized) runtime of
the algorithm. Like the standard notion of differential privacy, our notion secures against
unbounded adversaries.

Typical choices of ϵ and δ. Typically, we would like ϵ = Θ(1). The standard differential
privacy literature [85] recommends that δ be set to 1/N c for some constant c > 1. In the
cryptography literature, sometimes we would like δ to be negligibly small in N .

3.4 Mathematical Building Blocks
▶ Definition 9 (Symmetric geometric distribution). Let α > 1. The symmetric geometric
distribution Geom(α) takes integer values such that the probability mass function at k is
α−1
α+1 · α−|k|.

As we shall see, our algorithm will hide the true cardinality of a set by padding it with a
random number of filler elements. Below we define a useful distribution from which we shall
sample the noises.
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▶ Definition 10 (Shifted and truncated geometric distribution). Let ϵ > 0 and δ ∈ (0, 1) and
∆ ≥ 1. Let k0 be the smallest positive integer such that Pr[|Geom(e ϵ

∆ )| ≥ k0] ≤ δ, where
k0 = ∆

ϵ ln 2
δ + O(1). The shifted and truncated geometric distribution G(ϵ, δ, ∆) has support

in [0, 2(k0 + ∆ − 1)], and is defined as:

min{max{0, k0 + ∆ − 1 + Geom(eϵ)}, 2(k0 + ∆ − 1)}

For the special case ∆ = 1, we write G(ϵ, δ) := G(ϵ, δ, 1).

In the main body of the paper, for simplicity, we shall first assume that we can sample
from the shifted and truncated geometric distribution in O(1) time. In the online full
version [34], we discuss how to remove this assumption without blowing up the runtime.

Notation. Given two random variables X and Y , we use X ∼(ϵ,δ) Y to denote that X

and Y satisfy the standard (ϵ, δ)-differentially private inequality, i.e., for all subsets S,
Pr[X ∈ S] ≤ eϵ · Pr[Y ∈ S] + δ, and Pr[Y ∈ S] ≤ eϵ · Pr[X ∈ S] + δ,

▶ Fact 11 (Differential privacy through adding truncated and shifted geometric noise [15,28]).
Let ϵ > 0 and δ ∈ (0, 1). Suppose u and v are two non-negative integers such that |u−v| ≤ ∆.
Then,

u + G(ϵ, δ, ∆) ∼(ϵ,δ) v + G(ϵ, δ, ∆).

▶ Fact 12 (Post-processing). Let X ∈ X and X ′ ∈ X be random variables and let F : X → Y
be a possibly randomized function. Suppose that X ∼(ϵ,δ) X ′. Then, we have that

F (X) ∼(ϵ,δ) F (X ′).

▶ Fact 13 (Composition of differentially private mechanisms (Theorem B.1 of [40] )). Suppose
that for any neighboring I and I′, T1(I) ∼(ϵ1,δ1) T1(I′). Henceforth let supp(T1(I)) denote
the support of applying the function T1 to the data I. Suppose that for any neighboring I
and I′, for any s1 ∈ supp(T1(I)) ∪ supp(T1(I′)), T2(I, s1) ∼(ϵ2,δ2) T2(I′, s1). Then, for any
neighboring I, I′, we have that

(T2, T1)(I) ∼(ϵ1+ϵ2,δ1+δ2) (T2, T1)(I′)

The following operational lemma will guide our algorithm design and analysis.

▶ Lemma 14 (Operational lemma for differential obliviousness [28]). If an algorithm is δ0-
oblivious w.r.t. a leakage function Leak(·), and moreover, Leak is (ϵ, δ)-differentially private,
then the algorithm satisfies (ϵ, δ0 + δ)-differential obliviousness.

3.5 Naïve Solutions
Insecure algorithm. If privacy is not needed, there is an algorithm that computes the join
result in (expected) O(N + R) time, where R is the actual result size and N := |I1| + |I2|.
Basically, hash elements in each input array into a separate Cuckoo hash table [8,72] and
within each entry of the hash table, use a linked list to store all elements with the same join
key. Now, we can pairwise-join elements with the same join key from the two input arrays
by querying the Cuckoo hash table. The entire algorithm completes in O(N + R) expected
time (where the randomness comes from hashing).
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The Cuckoo hashing based insecure solution, however, does not have great cache com-
plexity. For cache complexity, we use a different insecure baseline, that is, first sort the
two input arrays by join key, and then use the most straightforward approach to compute
pairwise-join elements with the same join key from the two arrays. This algorithm achieves
O( R

B + N
B · log M

B

N
B ).

Observe also that any insecure algorithm must at least read the entire input to guarantee
correctness. Thus an always correct insecure algorithm must incur at least Ω(N) runtime.

Fully oblivious algorithm. The following naïve algorithm, which tries every potential pair of
elements from the two input arrays, can achieve fully oblivious database join with O(|I1| · |I2|)
runtime:

For each element (k, v) ∈ I1, for each element (k′, v′) ∈ I2: if k = k′, add (k, v, v′) to the
output; else add (⊥, ⊥, ⊥) to the output.

As argued in the online full version [34], O(|I1| · |I2|) is also the best we can hope for if full
obliviousness is desired.

Naïve differentially oblivious algorithm. A naïve approach to achieve differentially oblivious
join is to rely on a statistically secure Oblivious RAM (ORAM) that defends against
unbounded adversaries, such as Circuit ORAM [29, 88], to simulate the aforementioned
insecure algorithm with O(log2 N) blowup in runtime. Suppose that the result size is R and
let N be the total input length. We know that the insecure algorithm must complete in
T ≤ C · (R + N) steps for some constant C, and it produces an output of length R. Now,
given the O(log2 N) ORAM simulation overhead, simulating the insecure algorithm with
ORAM requires at most C ′(R + N) log2 N steps for some sufficiently large C ′ > C. However,
if we just stopped here, then the algorithm would leak information through the result length
R and its running time (which is the same as the total length of the physical memory accesses
in the RAM model).

To plug this leakage, the algorithm proceeds to add noise to the result length and its
own runtime. To achieve this, we continue to use the ORAM to simulate the following steps:
1. Append ξ := G(ϵ, δ, N) = O( N

ϵ log 1
δ ) number of filler elements to the joined result – this

requires the ORAM to simulate O(ξ) additional steps. Henceforth let R̂ := R + ξ.
2. Finally, pad the running time of the simulated algorithm to C ′(R̂ + N) log2 N .
Note that in the above, we add noise G(ϵ, δ, N) noise to R because the global sensitivity of
R is upper bounded by N , that is, changing one element in the input can change R by at
most N .

To obtain better cache complexity, we can place the ORAM schemes’ binary tree data
structures in an Emde Boas layout; specifically, each access in the original program will incur
a cache complexity of O(log N · logB N) in the ORAM simulation.

▶ Theorem 15 (Naïve DO algorithm). The above naïve algorithm satisfies (ϵ, δ + negl(N))-
differential obliviousness where negl(·) denotes a suitable negligible function.

Further, suppose that ϵ = Θ(1) and δ = 1
poly(N) , let U = O( 1

ϵ log 1
δ ) = O(log N); then, the

above naïve algorithm achieves O((R+NU) log2 N) runtime and O ((R + NU) log N · logB N)
cache complexity, and outputs a result of O(R + NU) length.

Proof. The runtime, cache complexity and output length follows from the above description.
Observe that because of ORAM (which can fail with negl(N) probability), the access pattern
are simulatable given N and R̂. By Lemma 14, it suffices to prove that the leakage R̂ satisfies
(ϵ, δ)-differential privacy.
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Consider changing one element in the input (I1, I2) to form (I′
1, I′

2). We have that
|R(I1, I2) − R(I′

1, I′
2)| ≤ N where R(I1, I2) denotes the length of the exact result on the input

(I1, I2). By Fact 11, we have that

R̂(I1, I2) ∼(ϵ,δ) R̂(I′
1, I′

2).

where R̂(I1, I2) denotes the length of the result output by the naïve DO algorithm upon
input (I1, I2). Hence, the algorithm is (ϵ, δ + negl(N))-differentially oblivious, where the
extra negl(N) comes from the failure probability of ORAM. ◀

3.6 Oblivious Algorithm Building Blocks
We describe several oblivious algorithm building blocks. Unless otherwise noted, obliviousness
is defined w.r.t. the input-length leakage (i.e., informally, speaking, only the input length is
leaked).

Oblivious compaction. Given an input array where some elements are marked as distin-
guished, output an array where all distinguished elements are moved to the front, and all
non-distinguished elements are moved to the end. The very recent works by Asharov et
al. [11,12] constructed a O(n)-time oblivious compaction algorithm that can compact any
input array of length n. Their linear-time compaction algorithm is not stable, i.e., among
the distinguished (or non-distinguished) elements, the output does not preserve the relative
order the elements appeared in the input, and this non-stability is inherent [67].

To get our cache complexity result, we will adopt the randomized, cache-agnostic, oblivious
compaction algorithm by Lin, Shi, and Xie [67]: their algorithm achieves optimal O(n/B)
cache complexity and O(n log log n) runtime assuming that M = Ω(B2) and B ≥ log0.55 n.

Oblivious sort. Ajtai, Komlós, and Szemerédi [4] showed that there is a sorting circuit with
O(n log n) comparators that can correctly sort any input array containing n elements. Such
a sorting circuit can be executed on a Random Access Machine (RAM) in O(n log n) time
assuming that each element can be represented using O(1) words.

The recent work by Ramachandran and Shi [75] constructed a randomized, cache-agnostic,
oblivious sort algorithm that achieves O(n log n) runtime and O((n/B) logM/B(n/B)) cache
complexity, assuming the tall cache assumption that M = Ω(B2) and further M = Ω(log1+ϵ n)
for an arbitrarily small constant ϵ ∈ (0, 1).

Given oblivious sorting, we can realize a couple intermediate abstractions including
oblivious send-receive and oblivious bin placement which we define below. Both primitives
can be realized by invoking oblivious sorting constant number of times.

Oblivious send-receive. The send-receive primitive11 solves the following problem. In the
input, there is a source array and a destination array. The source array represents n senders,
each of whom holds a key and a value; it is promised that all join keys are distinct. The
destination array represents n′ receivers each holding a join key. Now, have each receiver
learn the value corresponding to the join key it is requesting from one of the sources. If the

11 The send-receive abstraction is often referred to as oblivious routing in the data-oblivious algorithms
literature [21, 27, 29]. We avoid the name “routing” because of its other connotations in the algorithms
literature.
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join key is not found, the receiver should receive ⊥. Note that although each receiver wants
only one value, a sender can send its values to multiple receivers.

Prior works [21, 27, 29] have shown that oblivious send-receive can be accomplished
through a constant number of oblivious sorts on arrays of length O(n + n′). The algorithm
is oblivious w.r.t. the leakage n and n′, (i.e., informally, only the lengths of the input arrays
are leaked).

Oblivious bin placement. A bin placement algorithm solves the following problem. Suppose
we have m bins each of capacity s1, s2, . . . , sm, respectively. We are given an input array
denoted I, where each element is either a filler denoted ⊥ or a real element that is tagged
with a bin identifier β ∈ [m] denoting which bin it wants to go to. It is promised that every
bin will receive no more elements than its capacity. Now, move each real element in I to
its desired bin. If any bin is not full after the real elements have been placed, pad it with
filler elements at the end to its desired capacity. Finally, output the concatenation of the
resulting bins.

Chan and Shi [29] describes an oblivious bin placement algorithm that solves the special
case of the problem when all the bin sizes are equal. Their algorithm relies on a constant
number of oblivious sorts. It is not difficult to extend their algorithm to the case when
the bin sizes are not equal. For completeness, we describe the modified algorithm in the
online full version [34]. Specifically, the algorithm satisfies obliviousness w.r.t. to the leakage
that contains the input size, as well as the sizes of all bins. Let n denote the size of the
input array, and let S :=

∑
β∈[m] sβ be the sum of the sizes of all bins. The runtime of the

algorithm is upper bounded by Tsort(n + S) and the cache-agnostic, cache complexity of
the algorithm is upper bounded by Qsort(n + S), where Tsort(n′) and Qsort(n′) denote the
runtime and (cache-agnostic) cache complexity of oblivious sort over an input array of size n′.

Deferred Contents

Due to space constraints, we defer the full algorithmic details and proofs to the online full
version [34].

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995.
2 Archita Agarwal, Maurice Herlihy, Seny Kamara, and Tarik Moataz. Encrypted databases for

differential privacy. Proc. Priv. Enhancing Technol., 2019(3):170–190, 2019. doi:10.2478/

popets-2019-0042.
3 Alok Aggarwal and S. Vitter, Jeffrey. The Input/Output Complexity of Sorting and Related

Problems. Commun. ACM, 31(9):1116–1127, September 1988. doi:10.1145/48529.48535.
4 M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network. In STOC, 1983.
5 Prabhanjan Ananth, Xiong Fan, and Elaine Shi. Towards attribute-based encryption for

rams from LWE: sub-linear decryption, and more. In Steven D. Galbraith and Shiho Moriai,
editors, Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference on the
Theory and Application of Cryptology and Information Security, Kobe, Japan, December 8-12,
2019, Proceedings, Part I, volume 11921 of Lecture Notes in Computer Science, pages 112–141.
Springer, 2019.

6 Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann, Ravishankar
Ramamurthy, and Ramarathnam Venkatesan. Orthogonal security with cipherbase. In CIDR,
2013.

ITC 2021

https://doi.org/10.2478/popets-2019-0042
https://doi.org/10.2478/popets-2019-0042
https://doi.org/10.1145/48529.48535


19:20 Differentially Oblivious Database Joins

7 Arvind Arasu and Raghav Kaushik. Oblivious query processing. In Proc. 17th International
Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014, pages 26–37.
OpenProceedings.org, 2014.

8 Yuriy Arbitman, Moni Naor, and Gil Segev. De-amortized cuckoo hashing: Provable worst-case
performance and experimental results. In ICALP, 2009.

9 Lars Arge, Michael A. Bender, Erik D. Demaine, Bryan Holland-Minkley, and J. Ian Munro.
An optimal cache-oblivious priority queue and its application to graph algorithms. SIAM
Journal on Computing, 36(6):1672–1695, 2007. doi:10.1137/S0097539703428324.

10 Gilad Asharov, T.-H. Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine Shi.
Bucket oblivious sort: An extremely simple oblivious sort. In Martin Farach-Colton and
Inge Li Gørtz, editors, 3rd Symposium on Simplicity in Algorithms, SOSA@SODA, pages 8–14.
SIAM, 2020.

11 Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and Elaine
Shi. OptORAMa: Optimal Oblivious RAM. In Advances in Cryptology - EUROCRYPT 2020,
2020. To appear. See also: https://eprint.iacr.org/2018/892.

12 Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Enoch Peserico, and Elaine Shi. Oblivious
parallel tight compaction. In Information-Theoretic Cryptography (ITC), 2020.

13 Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for relational
joins. In FOCS, page 739–748, USA, 2008. IEEE Computer Society.

14 Sumeet Bajaj and Radu Sion. Trusteddb: A trusted hardware-based database with privacy
and data confidentiality. IEEE Trans. on Knowl. and Data Eng., 26(3):752–765, 2014.

15 Victor Balcer and Salil P. Vadhan. Differential privacy on finite computers. In Anna R. Karlin,
editor, 9th Innovations in Theoretical Computer Science Conference (ITCS), volume 94, pages
43:1–43:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

16 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. J. ACM, 64(6):40:1–40:58, 2017.

17 Amos Beimel, Kobbi Nissim, and Mohammad Zaheri. Exploring differential obliviousness. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2019, September 20-22, 2019, Massachusetts Institute of Technology,
Cambridge, MA, USA, volume 145 of LIPIcs, pages 65:1–65:20, 2019.

18 Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri Zwick. Listing
Triangles. In Proceedings of the 41st International Colloquium on Automata, Languages, and
Programming (ICALP), volume 8572 of Lecture Notes in Computer Science, pages 223–234.
Springer International Publishing, 2014.

19 Jeremiah Blocki, Anupam Datta, and Joseph Bonneau. Differentially private password
frequency lists. In NDSS, 2016.

20 Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale secure computation: Multi-party
computation for (parallel) RAM programs. In Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part II, volume 9216 of Lecture Notes in Computer Science, pages 742–762. Springer, 2015.

21 Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel ram. In Theory of
Cryptography Conference (TCC), 2015.

22 Mark Bun, Kobbi Nissim, and Uri Stemmer. Simultaneous private learning of multiple concepts.
In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science
(ITCS), pages 369–380, 2016.

23 Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. Adaptive succinct garbled
RAM or: How to delegate your database. In Theory of Cryptography - 14th International
Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part
II, volume 9986 of Lecture Notes in Computer Science, pages 61–90, 2016.

24 David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks
against searchable encryption. In ACM CCS, page 668–679, 2015.

https://doi.org/10.1137/S0097539703428324
https://eprint.iacr.org/2018/892


S. Chu, D. Zhuo, E. Shi, and T.-H.-H. Chan 19:21

25 David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-
Catalin Rosu, and Michael Steiner. Dynamic searchable encryption in very-large databases:
Data structures and implementation. In 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA, February 23-26, 2014. The Internet
Society, 2014.

26 David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, and
Michael Steiner. Highly-scalable searchable symmetric encryption with support for boolean
queries. In CRYPTO, 2013.

27 Hubert Chan, Kai-Min Chung, and Elaine Shi. On the depth of oblivious parallel oram.
manuscript, 2017.

28 T-H. Hubert Chan, Kai-Min Chung, Bruce M. Maggs, and Elaine Shi. Foundations of differen-
tially oblivious algorithms. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), page 2448–2467, USA, 2019. Society for Industrial and Applied
Mathematics.

29 T.-H. Hubert Chan and Elaine Shi. Circuit OPRAM: unifying statistically and computationally
secure ORAMs and OPRAMs. In Theory of Cryptography Conference, (TCC), 2017.

30 T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics.
TISSEC, 14(3):26, 2011.

31 Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved parameterized upper bounds for vertex
cover. In In MFCS, 2006.

32 Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai, Wei-Kai Lin, and
Hong-Sheng Zhou. Cryptography for parallel RAM from indistinguishability obfuscation. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science,
Cambridge, MA, USA, January 14-16, 2016, pages 179–190. ACM, 2016.

33 Shumo Chu, Magdalena Balazinska, and Dan Suciu. From theory to practice: Efficient join
query evaluation in a parallel database system. In SIGMOD Conference, pages 63–78. ACM,
2015.

34 Shumo Chu, Danyang Zhuo, Elaine Shi, and T-H. Hubert Chan (randomized author ordering).
Differentially oblivious database joins: Overcoming the worst-case curse of fully oblivious
algorithms. Online full version of this paper. Cryptology ePrint Archive, Report 2021/593,
2021. URL: https://eprint.iacr.org/2021/593.

35 Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar Harel, Rachit Agarwal, and Lorenzo
Alvisi. Obladi: Oblivious serializable transactions in the cloud. In OSDI, page 727–743, USA,
2018. USENIX Association.

36 Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric
encryption: improved definitions and efficient constructions. In ACM Conference on Computer
and Communications Security, pages 79–88, 2006.

37 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer Publishing
Company, Incorporated, 1st edition, 2015.

38 Erik D. Demaine. Cache-oblivious algorithms and data structures. In Lecture Notes from the
EEF Summer School on Massive Data Sets. BRICS, BRICS, University of Aarhus, Denmark,
June 27–July 1 2002.

39 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In TCC, 2006.

40 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014. URL:
http://dblp.uni-trier.de/db/journals/fttcs/fttcs9.html#DworkR14.

41 Saba Eskandarian and Matei Zaharia. Oblidb: Oblivious query processing for secure databases.
Proc. VLDB Endow., 13(2):169–183, 2019.

42 J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical Computer
Science. An EATCS Series). Springer-Verlag, Berlin, Heidelberg, 2006.

ITC 2021

https://eprint.iacr.org/2021/593
http://dblp.uni-trier.de/db/journals/fttcs/fttcs9.html#DworkR14


19:22 Differentially Oblivious Database Joins

43 Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In Foundations of Computer Science, 1999. 40th Annual Symposium on,
pages 285–297. IEEE, 1999.

44 Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database systems - the
complete book (2. ed.). Pearson Education, 2009.

45 Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel Wichs.
Garbled ram revisited. In EUROCRYPT, pages 405–422, 2014.

46 Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private ram
computation. In STOC, 2014.

47 O. Goldreich. Towards a theory of software protection and simulation by oblivious RAMs. In
STOC, 1987.

48 Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs.
J. ACM, 1996.

49 Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. How to run turing machines on encrypted data. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, volume 8043 of Lecture Notes in
Computer Science, pages 536–553. Springer, 2013.

50 S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana
Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear (amortized) time.
In CCS, 2012.

51 Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. Learning
to reconstruct: Statistical learning theory and encrypted database attacks. In 2019 IEEE
Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019,
pages 1067–1083. IEEE, 2019.

52 Paul Grubbs, Richard McPherson, Muhammad Naveed, Thomas Ristenpart, and Vitaly
Shmatikov. Breaking web applications built on top of encrypted data. In ACM CCS, page
1353–1364, 2016.

53 Anupam Gupta, Aaron Roth, and Jonathan Ullman. Iterative constructions and private data
release. In TCC, volume 7194, pages 339–356, 2012.

54 Moritz Hardt and Guy N. Rothblum. A multiplicative weights mechanism for privacy-preserving
data analysis. In FOCS, pages 61–70, 2010.

55 Xiao Hu and Ke Yi. Instance and output optimal parallel algorithms for acyclic joins. In
Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS), page 450–463, 2019.

56 Mohammad Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure on
searchable encryption: Ramification, attack and mitigation. In Network and Distributed
System Security Symposium (NDSS), 2012.

57 Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel C. Rosu, and Michael Steiner.
Outsourced symmetric private information retrieval. In ACM Conference on Computer and
Communications Security (CCS), 2013.

58 Yael Tauman Kalai and Omer Paneth. Delegating RAM computations. In Theory of Crypto-
graphy - 14th International Conference, TCC 2016-B, Beijing, China, October 31 - November
3, 2016, Proceedings, Part II, volume 9986 of Lecture Notes in Computer Science, pages 91–118,
2016.

59 Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Generic attacks on secure
outsourced databases. In ACM CCS, page 1329–1340, 2016.

60 Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Accessing data while
preserving privacy. CoRR, abs/1706.01552, 2017.

61 Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra. Joins via geometric
resolutions: Worst-case and beyond. In PODS, pages 213–228. ACM, 2015.

62 Ilan Komargodski and Elaine Shi. Differentially oblivious turing machines. In ITCS, 2021.



S. Chu, D. Zhuo, E. Shi, and T.-H.-H. Chan 19:23

63 Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia. The state of
the uniform: Attacks on encrypted databases beyond the uniform query distribution. In 2020
IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21,
2020, pages 1223–1240. IEEE, 2020.

64 Aleksandra Korolova, Krishnaram Kenthapadi, Nina Mishra, and Alexandros Ntoulas. Releas-
ing search queries and clicks privately. In Proceedings of the 18th International Conference on
World Wide Web (WWW), pages 171–180, 2009.

65 Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanavajjhala, Michael
Hay, and Gerome Miklau. Privatesql: A differentially private sql query engine. Proc. VLDB
Endow., 12(11):1371–1384, 2019.

66 Ios Kotsogiannis, Yuchao Tao, Ashwin Machanavajjhala, Gerome Miklau, and Michael Hay.
Architecting a differentially private SQL engine. In CIDR, 2019.

67 Wei-Kai Lin, Elaine Shi, and Tiancheng Xie. Can we overcome the n log n barrier for oblivious
sorting? In SODA, 2019.

68 Sahar Mazloom and S. Dov Gordon. Secure computation with differentially private access
patterns. In CCS, 2018.

69 Shay Moran and Amir Yehudayoff. A note on average-case sorting. Order, 33:23–28, 2015.
70 Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks on property-

preserving encrypted databases. In ACM CCS, page 644–655, 2015.
71 Hung Q. Ngo, Dung T. Nguyen, Christopher Ré, and Atri Rudra. Beyond worst-case analysis

for joins with minesweeper. In PODS, pages 234–245. ACM, 2014.
72 Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144,

2004.
73 Vasilis Pappas, Mariana Raykova, Binh Vo, Steven M. Bellovin, and Tal Malkin. Private

search in the real world. In Annual Computer Security Applications Conference (ACSAC),
2011.

74 Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
Cryptdb: Protecting confidentiality with encrypted query processing. In SOSP, page 85–100,
New York, NY, USA, 2011. Association for Computing Machinery.

75 Vijaya Ramachandran and Elaine Shi. Data oblivious algorithms for multicores. https:

//eprint.iacr.org/2020/947.pdf, 2020.
76 Vijaya Ramachandran and Elaine Shi. Data oblivious algorithms for multicores. In SPAA,

2021.
77 Tim Roughgarden. Beyond the Worst-Case Analysis of Algorithms. Cambridge University

Press, 2020.
78 Leonard D. Shapiro. Join processing in database systems with large main memories. ACM

Trans. Database Syst., 11(3):239–264, 1986.
79 Micha Sharir and Mark H. Overmars. A simple output-sensitive algorithm for hidden surface

removal. ACM Trans. Graph., 11(1):1–11, 1992.
80 Elaine Shi, John Bethencourt, T-H. Hubert Chan, Dawn Song, and Adrian Perrig. Multi-

dimensional range query over encrypted data. In IEEE Symposium on Security and Privacy,
pages 350–364, 2007.

81 Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
O((log N)3) worst-case cost. In ASIACRYPT, 2011.

82 Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches
on encrypted data. In Proceedings of the 2000 IEEE Symposium on Security and Privacy,
Washington, DC, USA, 2000. IEEE Computer Society.

83 Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic searchable
symmetric encryption with small leakage. In Network and Distributed System Security
Symposium (NDSS), 2014.

ITC 2021

https://eprint.iacr.org/2020/947.pdf
https://eprint.iacr.org/2020/947.pdf


19:24 Differentially Oblivious Database Joins

84 Ananda Theertha Suresh. Differentially private anonymized histograms. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, NeurIPS, pages 7969–7979, 2019.

85 Salil Vadhan. The complexity of differential privacy. In Tutorials on the Foundations of
Cryptography: Dedicated to Oded Goldreich, pages 347–450, Cham, 2017. Springer International
Publishing. doi:10.1007/978-3-319-57048-8_7.

86 Jeffrey Scott Vitter. External Memory Algorithms and Data Structures: Dealing with Massive
Data. ACM Comput. Surv., 33(2):209–271, June 2001. doi:10.1145/384192.384193.

87 Sameer Wagh, Paul Cuff, and Prateek Mittal. Differentially private oblivious RAM. PoPETs,
2018(4):64–84, 2018.

88 Xiao Shaun Wang, T-H. Hubert Chan, and Elaine Shi. Circuit ORAM: On Tightness of the
Goldreich-Ostrovsky Lower Bound. In CCS, 2015.

89 Mihalis Yannakakis. Algorithms for acyclic database schemes. In VLDB, page 82–94, 1981.
90 Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E. Gonzalez, and

Ion Stoica. Opaque: An oblivious and encrypted distributed analytics platform. In NSDI,
2017.

https://doi.org/10.1007/978-3-319-57048-8_7
https://doi.org/10.1145/384192.384193


Communication Complexity of Private
Simultaneous Quantum Messages Protocols
Akinori Kawachi # Ñ

Graduate School of Engineering, Mie University, Tsu, Japan

Harumichi Nishimura #

Graduate School of Informatics, Nagoya University, Japan
Institute for Advanced Study, Nagoya University, Japan

Abstract
The private simultaneous messages (PSM) model is a non-interactive version of the multiparty
secure computation (MPC), which has been intensively studied to examine the communication
cost of the secure computation. We consider its quantum counterpart, the private simultaneous
quantum messages (PSQM) model, and examine the advantages of quantum communication and
prior entanglement of this model.

In the PSQM model, k parties P1, . . . , Pk initially share a common random string (or entangled
states in a stronger setting), and they have private classical inputs x1, . . . , xk. Every Pi generates a
quantum message from the private input xi and the shared random string (entangled states), and
then sends it to the referee R. Receiving the messages from the k parties, R computes F (x1, . . . , xk)
from the messages. Then, R learns nothing except for F (x1, . . . , xk) as the privacy condition.

We obtain the following results for this PSQM model. (i) We demonstrate that the privacy
condition inevitably increases the communication cost in the two-party PSQM model as well as in
the classical case presented by Applebaum, Holenstein, Mishra, and Shayevitz [Journal of Cryptology
33(3), 916–953 (2020)]. In particular, we prove a lower bound (3 − o(1))n of the communication
complexity in PSQM protocols with a shared random string for random Boolean functions of 2n-bit
input, which is larger than the trivial upper bound 2n of the communication complexity without the
privacy condition. (ii) We demonstrate a factor two gap between the communication complexity
of PSQM protocols with shared entangled states and with shared random strings by designing
a multiparty PSQM protocol with shared entangled states for a total function that extends the
two-party equality function. (iii) We demonstrate an exponential gap between the communication
complexity of PSQM protocols with shared entangled states and with shared random strings for a
two-party partial function.
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1 Introduction

Background. Communication complexity has been an important research area in theoretical
computer science for more than four decades, aiming to understand the communication
cost of computing functions in a distributed manner [31, 25]. Since the advent of quantum
information science, quantum communication complexity has also been studied intensively to
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determine the advantage of quantum information processing over its classical counterparts.
A number of studies have succeeded in demonstrating the quantum advantages from the
early days of quantum complexity theory [9, 28, 8].

Recently, much attention has been given to studying the amount of communication
overhead required to preserve privacy in the field of cryptography, particularly, multi-
party secure computation (MPC), to explore the optimal communication cost for privacy
from the viewpoint of communication complexity [12, 11]. MPC is commonly based on
a general network model that has complex communication patterns (e.g., in which each
of many parties can freely interact with the other parties bidirectionally) unlike standard
models in communication complexity (e.g., in which two parties can exchange messages
only with each other). Therefore, many studies have focused on a special class of MPC
that has simpler communication patterns, such as private simultaneous messages (PSM)
protocols [14, 21, 4, 5, 1].

The two-party version of the PSM model was first proposed by Feige, Kilian, and Naor [14],
and was later extended by Ishai and Kushilevitz [21]. In the general setting of the PSM
model, we consider k parties P1, . . . , Pk and a unique referee R. The party Pi has its private
input xi, and all parties share a common random string r. Each Pi generates message mi

from xi and r, and then, sends mi to the referee R only once. Note that each party is
not allowed to interact with other parties. The referee R receives the messages m1, . . . ,mk,
and computes an output value of a predetermined function F . The protocol generally has
two properties correctness and privacy: Correctness signifies that the referee can compute
F (x1, . . . , xk) correctly from the messages m1, . . . ,mk, while privacy signifies that the referee
R learns nothing except for F (x1, . . . , xk) from the received messages m1, . . . ,mk in the
information-theoretical sense.

In fact, the communication model of PSM protocols coincides with simultaneous message
passing (SMP) protocols, which are known as traditional communication models in com-
munication complexity [31, 25]. In the (number-in-hand) SMP model, k parties P1, . . . , Pk

that share a common random string r (and sometimes entangled states), send their mes-
sages m1, . . . ,mk computed from individual inputs x1, . . . , xk and the referee computes
F (x1, . . . , xk) from m1, . . . ,mk, as performed in the PSM model. Note that the SMP model
does not require the privacy condition unlike the PSM model. The communication com-
plexity of SMP protocols has been widely studied from the viewpoint of classical/quantum
information to demonstrate the power of quantum communication [8, 18, 16].

Two-party quantum SMP models were first studied by Buhrman, Cleve, Watrous, and de
Wolf [8] in the setting that the two parties do not share any randomness or entanglement. In
this model, they demonstrated that the quantum communication complexity of the equality
function is exponentially smaller than in the classical case. This result has been strengthened
in the literature [3, 15], and Gavinsky [16] demonstrated that there is a relational problem
whose quantum communication complexity is exponentially smaller than that of the two-way
classical communication model. However, the power of shared entanglement in the SMP
model is unclear. In one of the few related studies, Gavinsky, Kempe, Regev, and de Wolf [18]
demonstrated that there is a relational problem that has an exponential gap between quantum
SMP models with shared entanglement and without shared entanglement. However, the
known maximum gap between them for total functions is only a constant multiplicative factor
of 2 [20, 22].

Although various studies have examined quantum versions of MPC so far (e.g., [10, 29, 13]),
to the best of the authors’ knowledge, there has been no attempt to analyze quantum
communication complexity under the privacy condition in a cryptographic setting, and
such analysis is important to understand the advantages of quantum communication in a
cryptographic setting.
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Contributions. In this paper, we examine the power of quantum communication and
shared entanglement under the information-theoretical privacy condition based on a standard
communication model, namely, the PSM (or, equivalently, SMP) model. In particular, we
propose a quantum counterpart of the classical PSM model called private simultaneous
quantum messages (PSQM) model. In the PSQM model, parties P1, . . . , Pk which have
classical private inputs x1, . . . , xk share a common random string or entangled states in
advance, and can send quantum messages to a quantum referee, R. Then, R computes a
classical output value F (x1, . . . , xk) for a given function F .

In the PSM (and its related) model, there are few results on lower bounds of communication
complexity [1, 12, 2]. As one of such results, Applebaum, Holenstein, Mishra, and Shayevitz [1]
proved a lower bound (3 − o(1))n of the communication complexity for random functions
Fn : {0, 1}n × {0, 1}n → {0, 1} in the PSM model. In contrast, every function has the trivial
upper bound 2n in the SMP model (i.e., the PSM model without the privacy condition).
This result implies that the privacy condition creates communication overhead in the PSM
model for some functions. Our first result demonstrates that this communication overhead is
inevitable even if the parties can send quantum messages as in the PSQM model.

▶ Theorem 1. For a (1 − o(1)) fraction of functions Fn : {0, 1}n × {0, 1}n → {0, 1}, the
communication complexity of two-party PSQM protocols with shared randomness for Fn is at
least 3n− 2 logn−O(1).

We also present a multiparty PSQM protocol for a total function that reduces the amount
of quantum communication by half under the condition that the parties share entanglement
compared to the case in which they do not share entanglement.

▶ Theorem 2. For any even n and k, there is a total function Fn : ({0, 1}n)k → {0, 1} such
that the communication complexity of the k-party PSQM protocol with shared entanglement
is at most kn/2, while that without shared entanglement is kn.

Actually, this function matches the equality function for the two-party case. It is known
that for the equality function, the two-party quantum SMP model with shared entanglement
reduces the amount of quantum communication by half compared to the corresponding model
without shared entanglement (e.g. [20]). Our result implies that this reduction still holds
even if the privacy condition is required.

Moreover, we present a two-party PSQM protocol with shared entanglement for a partial
function that reduces the amount of quantum communication exponentially compared to the
case in which the parties do not share entanglement.

▶ Theorem 3. There is a partial function Fn : {0, 1}n × {0, 1}n → {0, 1} such that the
communication complexity of the PSQM protocol with shared entanglement is O(log n) while
that without entanglement is Ω(n).

Related Work. There have been several studies on quantum communication complexity
with privacy conditions (e.g., [23, 17]), although they differed from a cryptographic setting.
For example, Gavinsky and Ito [17] considered the SMP model with privacy; however it
considered the information leakage of quantum messages when the input was randomly
chosen, while in the cryptographic setting, privacy should be retained for any input.

In a study related to the PSQM model, Brakerski and Yuen [6] constructed a quantum
version of decomposable randomized encoding schemes. In fact, decomposable randomized
encoding is equivalent to the PSM model from a communication-complexity perspective.
They demonstrated how to garble a general quantum circuit on quantum inputs in a
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decomposable manner via a constant-depth quantum circuit. In contrast, our study focuses
on the communication complexity of computing several classical functions on classical inputs
in the communication model.

More recently, Morimae [26] investigated relationships between quantum randomized
encoding and other quantum protocols including quantum computing verification and blind
quantum computing. For example, he proved that a randomized encoding scheme of the
BB84 state generation implies a two-round verification scheme of quantum computing with
a classical verifier that additionally performs the encoding operation, and that a quantum
randomized encoding scheme with a classical encoding operation implies violation of the
no-cloning theorem. His target of quantum randomized encoding schemes is similar to
that of [6], that is, encoding for quantum circuits on quantum inputs rather than classical
functions on classical inputs.

2 Preliminaries

Let [n] := {1, 2, . . . , n}. For any two m-bit strings x = x1 · · ·xm and y = y1 · · · ym, the
product x · y denotes

∑
i∈[m] xiyi (mod 2), and x⊕ y denotes the m-bit string whose ith bit

is the XOR of xi and yi.
For any m-bit string x = x1x2 · · ·xm, let

p(x) = x1 + x2α+ · · · + xmα
m−1 (mod qm) (1)

be the corresponding polynomial over F2, where qm is some irreducible polynomial of
degree m over F2. Note that p(x) is regarded as an element in F2m , and p is a one-to-one
correspondence between {0, 1}m \ {0m} and the multiplicative group F∗

2m .
We assume the reader is familiar with the basics of quantum information and computation

such as quantum states and quantum operations (see, e.g, [19, 27]). According to the standard
notations, Pauli gates X, Z, and the Hadamard gate H denote

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
, H = 1√

2

(
1 1
1 −1

)
,

respectively.

2.1 Private simultaneous quantum messages protocols
Private simultaneous quantum messages (PSQM) protocols are formally defined as follows.

▶ Definition 4 (private simultaneous quantum messages (PSQM) protocols). For positive
integers n, k > 0, let n be the size parameter and k be the number of parties. Let Fn :∏k

i=1 Xn,i → Yn. We say that a (k + 1)-tuple Π = (P1, . . . , Pk, R) of quantum algorithms is
an ε-error k-party private simultaneous quantum messages (PSQM) protocol if the following
holds: given an individual input xi ∈ Xn,i and shared random string r among P1, . . . , Pk, the
ith party Pi prepares a quantum message, represented as ρi = Pi(xi, r), in a Hilbert space
Mn,i called a quantum register, and sends Mn,i (or equivalently ρi) to the party R, which is
called the referee. Then, the following two properties hold:
1. (Correctness) The referee R outputs the classical value Fn(x1, . . . , xk) ∈ Yn using the

received joint quantum register Mn :=
⊗k

i=1 Mn,i with a probability of at least 1 − ε.
2. ((Perfect) Privacy) There exists a quantum algorithm Sn, which is called the simulator,

such that the output quantum state Sn(Fn(x1, . . . , xk)) is identical to the quantum state
in Mn (before R), namely, ⊗k

i=1ρi.
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We say that the protocol is exact when ε = 0.
If the shared random string r is replaced by a predetermined multipartite entangled

quantum state |Φ⟩ among the k parties, we say that Π is a PSQM protocol with a shared
entangled state |Φ⟩, where the algorithms and the properties are similarly defined except that
Pi prepares the message using its own part of |Φ⟩ (instead of r), and that the quantum state
in Mn is not a product state of the k local states in Mn,1, . . . ,Mn,k any more.

The communication complexity of Π is defined by the total length log dim(Mn) of the
messages.

Let Cpsm
ε (Fn) (resp. Qpsm

ε (Fn)) be the ε-error classical (quantum) communication com-
plexity of the problem Fn in the PSM (PSQM) model with a shared random string. Let
Cpsm,∗

ε (Fn) (resp. Qpsm,∗
ε (Fn)) be the ε-error classical (quantum) communication complexity

of Fn in the PSM (PSQM) model with shared entangled states (the PSM model with shared
entangled states is defined similarly to the PSQM model with shared entangled states except
that the messages sent to the referee are restricted to classical strings).

3 Communication Lower Bounds of Two-Party PSQM Protocols

In this section, we present the communication lower bounds of random functions for two-party
PSQM protocols (Theorem 1).

The proof strategy is based on that of the classical case presented by Applebaum et al. [1].
The proof for the classical case considers two independent executions of a PSM protocol. It
then evaluated the upper bounds of the collision probability, that is, the probability that the
message in the first execution coincides with the one in the second execution, between two
independent random messages. Because the collision probability is lower-bounded by the
inverse of the size of the message domain, we can obtain the communication lower bound
from the upper bound of the collision probability. Note that this argument is not available
for quantum messages since they vary infinitely even over a finite number of qubits.

In order to extend the above argument to the case of quantum messages, we use the
purity, trρ2, of a quantum message ρ in a PSQM protocol instead of the collision probability.
In accordance with its name, the purity is originally a measure of how pure a quantum state
is. (For example, any pure state has a purity of 1, and the d-dimensional maximally mixed
state has 1/d.) It is easy to see that the purity of a quantum state ρ is lower-bounded by
1/ dim(ρ), and thus, we can obtain the communication lower bounds for a PSQM protocol by
evaluating the upper bound of the purity of the quantum messages, similarly to the collision
probability for a PSM protocol.

However, the purity of quantum messages is different from the collision probability between
classical messages; thus, we must further adapt the proof technique in [1] to the purity. For
example, while the collision probability is analyzed by combinatorial techniques in the proof
of [1], we need to analyze the trace trρ2 combinatorially by extending the original proof
(Claim 7). Also, the proof technique in [1] uses a unique collision (which is obtained from the
property called non-degeneracy that random functions have with high probability) between
two messages in two independent executions with any fixed shared random string. Instead of
the unique collision, we consider weighted collisions defined from the inner product of two
quantum messages and extend the original argument for the weighted collisions (Lemma 9).

Before discussing the details of the proof, we provide several technical definitions and
notation required for the proof of the lower bounds. In this section, we denote Xn,i by Xi.
We use ρ(x1, x2; r) = ρ1(x1; r) ⊗ ρ2(x2; r) to the entire quantum message sent from P1 and
P2 on individual inputs x1 ∈ X1 and x2 ∈ X2 with a shared random string r to R, where
ρ1(x1; r) denotes P1’s message and ρ2(x2; r) denotes P2’s message.
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Let µ be a distribution over X1 × X2 with marginal distributions µ1 and µ2. We define
Supp(µ) for a distribution µ as a set {x : PrX∼µ[X = x ] > 0}. We say that function Fn is non-
degenerate under distribution µ if for every distinct x1 ∈ Supp(µ1) and x′

1 ∈ Supp(µ1), there
exists x2 ∈ Supp(µ2) such that Fn(x1, x2) ̸= Fn(x′

1, x2) and for every distinct x2 ∈ Supp(µ2)
and x′

2 ∈ Supp(µ2) there exists x1 such that Fn(x1, x2) ̸= Fn(x1, x
′
2). We say that Fn is

non-degenerate if the above holds when replacing Supp(µ1) and Supp(µ2) by X1 and X2,
respectively.

A rectangle R of size k × ℓ over X1 × X2 is defined as ((x1,1, . . . , x1,k), (x2,1, . . . , x2,ℓ)),
where x1,i ∈ X1, x2,j ∈ X2 for every i, j, x1,i ̸= x1,i′ for every distinct i, i′, and x2,j ̸= x2,j′

for every distinct j, j′. We say that two rectangles R = ((x1,1, . . . , x1,k), (x2,1, . . . , x2,ℓ)) and
R′ = ((x′

1,1, . . . , x
′
1,k), (x′

2,1, . . . , x
′
2,ℓ)) are X1-disjoint (resp. X2-disjoint) if x1,i ̸= x′

1,i for
every i ∈ [k] (resp. if x2,j ̸= x′

2,j for every j ∈ [ℓ]). In particular, we say that R and R′ are
disjoint if they are either X1-disjoint or X2-disjoint.

For a rectangle R = ((x1,1, . . . , x1,k), (x2,1, . . . , x2,ℓ)), let Fn[R] be a matrix whose (i, j)-
entry is Fn(x1,i, x2,j), and let µ(R) =

∑
i∈[k],j∈[ℓ] µ(x1,i, x2,j). We say that R is similar to

R′ if Fn[R] = Fn[R′]. We define

α(µ) := max
(R1,R2)

min{µ(R1), µ(R2)},

where the maximum ranges over all pairs of similar disjoint rectangles (R1,R2). In addition,

β(µ) := min
y

Pr
(X1,X2),(X′

1,X′
2)∼µ

[ (X1, X2) ̸= (X ′
1, X

′
2) |Fn(X1, X2) = Fn(X ′

1, X
′
2) = y ] ,

where (X1, X2) and (X ′
1, X

′
2) are independent.

We can demonstrate the communication lower bound in Theorem 1 from the following
main technical lemma combined with an appropriate function Fn, which is provided in the
study by Applebaum et al. [1].

▶ Lemma 5. For every non-degenerate function Fn : X1 × X2 → {0, 1}, we have

Qpsm
0 (Fn) ≥ max

µ

(
log(α(µ)−1) +H∞(µ) − log(β(µ)−1)

)
− 1,

where µ is taken over all distributions over X1 × X2 under which Fn is non-degenerate, and
H∞(µ) is the min-entropy of µ.

From the previous study [1], we can obtain the appropriate function by selecting a function
at random, as illustrated in the following theorem.

▶ Theorem 6 (Applebaum et al. [1]). For a (1 − o(1)) fraction of the functions Fn : {0, 1}n ×
{0, 1}n → {0, 1}, Fn is non-degenerate and |R| ≤ 2n · n2 holds for every pair (R,R′) of
similar disjoint rectangles.

Considering the uniform distribution U over {0, 1}n × {0, 1}n, the communication lower
bound from Lemma 5 of PSQM protocols for Fn : {0, 1}n × {0, 1}n → {0, 1} is bounded by
log(α(U)−1) +H∞(U) − log(β(U)−1) − 1. By Theorem 6, we can easily see that this bound
is 3n− 2 log n−O(1) for a (1 − o(1)) fraction of the functions {0, 1}n × {0, 1}n → {0, 1}, as
given in Theorem 1.

Now, we provide the proof of the main technical lemma.
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Proof of Lemma 5. From the correctness, the referee R outputs Fn(x1, x2) for the received
quantum message ρ(x1, x2; r) for every x1, x2 and every r. Without loss of generality, we
can assume that P1 and P2 generate pure states |ψ1(x1; r)⟩ and |ψ2(x2; r)⟩ with a shared
randomness r, respectively.

This assumption is justified as follows. Suppose that P1 and P2 generate mixed states
ρ1(x1; r) and ρ2(x2; r) as their messages on inputs x1, x2 and a shared random string
r. By the spectral decomposition, we have ρ1(x1; r) =

∑
i pi|ψ(i)

1 (x1; r)⟩⟨ψ(i)
1 (x1; r)| and

ρ2(x2; r) =
∑

j qj |ψ(j)
2 (x2; r)⟩⟨ψ(j)

2 (x2; r)|. The joint message state is

ρ(x1, x2; r) :=
∑
i,j

piqj |ψ(i)
1 (x1; r), ψ(j)

2 (x2; r)⟩⟨ψ(i)
1 (x1; r), ψ(j)

2 (x2; r)|

and its probabilistic mixture over the shared random string r is

ρ(x1, x2) :=
∑

r

π(r)ρ(x1, x2; r) =
∑
i,j,r

piqjπ(r)|ψ(i)
1 (x1; r), ψ(j)

2 (x2; r)⟩⟨ψ(i)
1 (x1; r), ψ(j)

2 (x2; r)|.

Rephrasing the probability distribution {π(r)piqj}i,j,r and the pure message states
|ψ(i)

1 (x1; r)⟩, |ψ(j)
2 (x2; r)⟩ to {π(r)}r and |ψ1(x1; r)⟩, |ψ2(x2; r)⟩ respectively, we can assume

that they generate pure states as their messages from the beginning.
We denote by |ψ(x1, x2; r)⟩ their joint state |ψ1(x1; r)⟩ ⊗ |ψ2(x2; r)⟩. Namely, we set

ρ(x1, x2; r) := |ψ(x1, x2; r)⟩⟨ψ(x1, x2; r)| = |ψ1(x1; r)⟩⟨ψ1(x1; r)|⊗|ψ2(x2; r)⟩⟨ψ2(x2; r)|. (2)

In addition, we set

ρ(x1, x2) :=
∑

r

π(r)ρ(x1, x2; r), (3)

where π(r) denotes the probability that r is selected as a shared random string under the
uniform distribution.

As mentioned above, we use the purity as a collision measure of quantum messages in
order to obtain lower bounds of quantum message length from upper bounds of the purity.
We set ρ :=

∑
x1,x2

µ(x1, x2)ρ(x1, x2). We then have

1
dim(M) ≤ trρ2 = tr

(∑
x1,x2

µ(x1, x2)ρ(x1, x2)
)2

= tr
∑

x1,x2,x′
1,x′

2

µ(x1, x2)ρ(x1, x2)µ(x′
1, x

′
2)ρ(x′

1, x
′
2). (4)

Then, the purity of ρ is upper-bounded as follows.

▷ Claim 7.

trρ2 ≤ β(µ)−1tr
∑

(x1,x2)̸=(x′
1,x′

2)

µ(x1, x2)ρ(x1, x2)µ(x′
1, x

′
2)ρ(x′

1, x
′
2).

The proof of this claim is done by a combinatorial analysis of the trace as a quantum
counterpart of the analysis of the collision probability in [1]. The detailed proof will be given
in Appendix A.

Next, we consider an upper bound of

tr
∑

(x1,x2)̸=(x′
1,x′

2)

µ(x1, x2)ρ(x1, x2)µ(x′
1, x

′
2)ρ(x′

1, x
′
2). (5)
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Actually, we show that for every r and r′,

tr
∑

(x1,x2) ̸=(x′
1,x′

2)

µ(x1, x2)ρ(x1, x2; r)µ(x′
1, x

′
2)ρ(x′

1, x
′
2; r′)

is at most 2α(µ)2−H∞(µ) as this implies that Eq. (5) is also at most 2α(µ)2−H∞(µ) (by
Eq. (3)). This completes the proof of Lemma 5 by Claim 7 and Eq. (4).

Now we fix any r and r′. From Eq. (2) and the union bound, we have

tr
∑

(x1,x2) ̸=(x′
1,x′

2)

µ(x1, x2)ρ(x1, x2; r)µ(x′
1, x

′
2)ρ(x′

1, x
′
2; r′)

=
∑

(x1,x2)̸=(x′
1,x′

2)

µ(x1, x2)µ(x′
1, x

′
2)|⟨ψ1(x1; r)|ψ1(x′

1; r′)⟩|2 · |⟨ψ2(x2; r)|ψ2(x′
2; r′)⟩|2.

≤
∑

x1 ̸=x′
1,x2,x′

2

µ(x1, x2)µ(x′
1, x

′
2)|⟨ψ1(x1; r)|ψ1(x′

1; r′)⟩|2 · |⟨ψ2(x2; r)|ψ2(x′
2; r′)⟩|2.

+
∑

x1,x′
1,x2 ̸=x′

2

µ(x1, x2)µ(x′
1, x

′
2)|⟨ψ1(x1; r)|ψ1(x′

1; r′)⟩|2 · |⟨ψ2(x2; r)|ψ2(x′
2; r′)⟩|2. (6)

It suffices to show that the first term of the right-hand of Eq. (6) is at most α(µ)2−H∞(µ)

from the symmetry of P1 and P2.
Note that we can regard the referee as a POVM R = {Ry}y∈{0,1}. The following claim

demonstrates that the referee is projective in the two-party PSQM setting. (Its proof will be
given in Appendix A.)

▷ Claim 8. The referee R = {Ry}y∈{0,1} is a PVM.

In the classical case of [1], Applebaum et al. used the fact that for every x1 and every
r, r′ there exists at most one z such that |ψ1(x1; r)⟩ = |ψ1(z; r′)⟩ if |ψ1(x1; r)⟩, |ψ1(z; r′)⟩ are
classical; that is, either ⟨ψ1(x1; r)|ψ1(z; r′)⟩ = 0 or ⟨ψ1(x1; r)|ψ1(z; r′)⟩ = 1, which can be
derived from the non-degeneracy of Fn. However, we cannot demonstrate the same fact
for quantum messages. Instead, we can prove the following relaxed version of the fact for
quantum messages.

▶ Lemma 9. If Fn is non-degenerate, we have∑
z ̸=x1

|⟨ψ1(x1; r)|ψ1(z; r′)⟩|2 ≤ 1

for every r, r′ and every x1. Similarly∑
z

|⟨ψ2(x2; r)|ψ2(z; r′)⟩|2 ≤ 1

for every r, r′ and every x2.

The proof of this lemma will be given in Appendix A.
Let w1(x1, x

′
1) := |⟨ψ1(x1; r)|ψ1(x′

1; r′)⟩|2 and let w2(x2, x
′
2) := |⟨ψ2(x2; r)|ψ2(x′

2; r′)⟩|2.
We say that x1 collides with x′

1 if w1(x1, x
′
1) > 0. Similarly, we say that x2 collides with x′

2
if w2(x2, x

′
2) > 0.

Now, our final goal is to upper-bound∑
x1 ̸=x′

1,x2,x′
2

µ(x1, x2)µ(x′
1, x

′
2)w1(x1, x

′
1)w2(x2, x

′
2). (7)
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Let C(x1) be the set of the elements in X1 with which x1 collides except for x1 itself.
Similarly, let C(x2) be the set of the elements in X2 with which x2 collides (note that C(x2)
may contain x2).

Let x1 := (x1 : C(x1) ̸= ∅) with an arbitrary (e.g., lexicographical) order in X1. We
denote x1 = (u1, u2, . . . , uk). Then, we select any element x1

′ = (u′
1, u

′
2, . . . , u

′
k) from

C(u1) × · · · × C(uk). Note that ui collides with u′
i and ui ̸= u′

i for every i. Similarly, let
x2 := (x2 : C(x2) ̸= ∅) = (v1, v2, . . . , vℓ) with an arbitrary order in X2, and we then select
any element x2

′ = (v′
1, v

′
2, . . . , v

′
ℓ) from C(v1) × · · · × C(vℓ).

Then, we can show that for every choice of x1
′ and x2

′, we have∑
i,j

µ(ui, vj)µ(u′
i, v

′
j) ≤ α(µ)2−H∞(µ).

The reason is as follows. We consider two rectangles R := (x1,x2) and R′ := (x′
1,x′

2).
We observe that R(|ψ1(x1; r)⟩|ψ2(x2; r)⟩) = R(|ψ1(x′

1; r′)⟩|ψ2(x′
2; r′)⟩) (where R(|φ⟩) denotes

the classical value that R outputs on input |φ⟩) if x1 collides with x′
1 and x2 collides with x′

2
from the perfect correctness. Therefore, X1-disjoint rectangles R and R′ are similar; that is,
Fn[R] = Fn[R′]. Without loss of generality, we can assume that µ(R) ≤ µ(R′). Hence, we
have µ(R) ≤ α(µ). Thus, we can see that for random variables X1, X2, X

′
1, X

′
2∑

i,j

µ(ui, vj)µ(u′
i, v

′
j) =

∑
i,j

Pr
[

(X1, X2) = (ui, vj) ∧ (X ′
1, X

′
2) = (u′

i, v
′
j)
]

≤ max
(x1,x2)

µ(x1, x2)
∑
i,j

Pr [ (X1, X2) = (ui, vj) ]

≤ 2−H∞(µ)α(µ).

Furthermore, it holds for every i, j that

∑
u′

i
∈C(ui),v′

j
∈C(vj)

w1(ui, u
′
i)w2(vj , v

′
j) =

∑
u′

i
∈C(ui)

w1(ui, u
′
i)

 ∑
v′

j
∈C(vj)

w2(vj , v
′
j)


≤

∑
u′

i
∈C(ui)

w1(ui, u
′
i) ≤ 1

from Lemma 9. Thus, we have∑
x1 ̸=x′

1,x2,x′
2

µ(x1, x2)µ(x′
1, x

′
2)w1(x1, x

′
1)w2(x2, x

′
2)

=
∑
i,j

∑
u′

i
∈C(ui),v′

j
∈C(vj)

µ(ui, vj)µ(u′
i, v

′
j)w1(ui, u

′
i)w2(vj , v

′
j)

≤
∑
i,j

µ(ui, vj)µ(ûi, v̂j)
∑

u′
i
∈C(ui),v′

j
∈C(vj)

w1(ui, u
′
i)w2(vj , v

′
j)

≤
∑
i,j

µ(ui, vj)µ(ûi, v̂j)

≤ α(µ)2−H∞(µ),

where µ(ûi, v̂j) = maxu′
i
∈C(ui),v′

j
∈C(vj) µ(u′

i, v
′
j). Eventually, an upper bound of Eq. (7) is

α(µ)2−H∞(µ). ◀
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4 Power of Shared Entanglement for Total Functions

In this section, we prove Theorem 2, which implies a factor two gap between PSQMs with
shared entanglement and without shared entanglement for a total function. The main part of
Theorem 2 provides a k-party PSQM protocol for a total function GEQ2l : ({0, 1}2l)k → {0, 1}
defined by

GEQ2l(x1, x2, . . . , xk) =
{

1 (
∑k

j=1 x
1
j =

∑k

j=1 x
2
j = · · · =

∑k

j=1 x
2l−1
j =

∑k

j=1 x
2l
j = 0),

0 (otherwise),

where each xj = x1
jx

2
j · · ·x2l−1

j x2l
j is an element of {0, 1}2l, and the summation is taken

over F2. To reduce the communication complexity from the trivial 2kl qubits to kl qubits,
we encode half of the input bits by bit flipping of the shared state 1√

2 (|0k⟩ + |1k⟩) (called
the k-qubit GHZ state) among the k parties, and the other half by phase flipping of the
state, by a method similar to superdense coding (e.g., see [27]). More precisely, we exploit
an encoding similar to two-party quantum SMP protocols with shared entangled states to
compute the equality function [20]. However, this is not sufficient for PSQM protocols. To
convert quantum SMP protocols into PSQM protocols, we further use shared randomness
among the k parties, and hide the input strings from the referee except for the output of the
function GEQ2l. This hiding can be shown to be possible by multiplying a random element
in F∗

22l by the element in F∗
22l that corresponds to the input xj .

For the proof of Theorem 2, we first consider a PSQM protocol for a finite function. Let
Sum2 : ({0, 1}2)k → {0, 1}2 be

Sum2(x1, x2, . . . , xk) =

 k∑
j=1

x1
j ,

k∑
j=1

x2
j

 ,

where each xj = x1
jx

2
j is an element of {0, 1}2, and the summation is taken over F2.

▶ Lemma 10. For any even (resp. odd) k, Qpsm,∗
0 (Sum2) ≤ k (resp. ≤ k + 1).

Proof. First, we consider the case in which k is even. The quantum protocol is as follows.

Protocol PSum2 : 0. All the parties share the entangled state

1√
2

 k⊗
j=1

|0⟩Qj
+

k⊗
j=1

|1⟩Qj

 ,

where the single-qubit register Qj is owned by party Pj . Moreover, the parties share a k-bit
string r = r1r2 · · · rk such that

∑k
j=1 rj = 0.

1. Each party Pj applies Z on Qj if x2
j = 1. The resulting state is

1√
2

 k⊗
j=1

|0⟩Qj +
k⊗

j=1
(−1)

∑k

j=1
x2

j |1⟩Qj

 .

2. Each party Pj applies X on Qj if x1
j ⊕ rj = 1. The resulting state is

1√
2

 k⊗
j=1

|x1
j ⊕ rj⟩Qj

+ (−1)
∑k

j=1
x2

j

k⊗
j=1

|x1
j ⊕ rj ⊕ 1⟩Qj

 . (8)



A. Kawachi and H. Nishimura 20:11

3. Each party Pj sends Qj to the referee R.
4. R measures quantum registers Q1, Q2, . . . , Qk in the basis{

|Φ(y1, y2, . . . , yk−1, z)⟩ := 1√
2

(|y1, y2, . . . , yk−1, 0⟩ + (−1)z|y1 ⊕ 1, y2 ⊕ 1, . . . , yk−1 ⊕ 1, 1⟩)
}
,

and let y1y2 · · · yk−1z be the measurement result.
5. R outputs the two bits

∑k−1
j=1 yj and z.

Correctness: The second bit of the output of R is z =
∑k

j=1 x
2
j , as desired. For the first

bit, we consider two cases: (i) x1
k ⊕ rk = 0 and (ii) x1

k ⊕ rk = 1. We first consider case (i).
Then, yj = x1

j ⊕ rj for j = 1, 2, . . . , k − 1, and we thus obtain the desired output

k−1∑
j=1

yj =
k−1∑
j=1

x1
j ⊕ rj =

k∑
j=1

x1
j ⊕ rj =

k∑
j=1

x1
j ,

where the second inequality originates from x1
k ⊕ rk = 0, and the last equality originates

from
∑k

j=1 rk = 0. For case (ii), yj = x1
j ⊕ rj ⊕ 1 for j = 1, 2, . . . , k − 1, and we thus obtain

the desired output

k−1∑
j=1

yj =
k−1∑
j=1

x1
j ⊕ rj ⊕ 1 =

k−1∑
j=1

x1
j ⊕ rj

⊕ 1 =
k∑

j=1
x1

j ⊕ rj =
k∑

j=1
x1

j ,

where the second equality originates from the fact that k is even, the third equality originates
from x1

k ⊕ rk = 1, and the last equality originates from
∑k

j=1 rk = 0.

Privacy: Let the output of Sum2 be (b1, b2), where b1 =
∑k

j=1 x
1
j and b2 =

∑k
j=1 x

2
j . As R

has no knowledge about r1, . . . , rk except that the sum is 0, we can observe that the quantum
state that R receives (represented by Eq. (8)) is taken from the set of 2k−2 orthogonal pure
states|Φ(y1, . . . , yk−1, b2)⟩ :

k−1∑
j=1

yj = b1


(up to the total phase) uniformly at random. Thus, the simulator can simulate the distribution
of the message given the output of Sum2.

In the case in which k is odd, the last party Pk prepares an extra two-bit string xk+1 = 00,
and PSum2 is run for the (k + 1)-party case, where Pk also plays the role of the party
Pk+1. ◀

Next, we present the main lemma for Theorem 2.

▶ Lemma 11. For any even (resp. odd) k, Qpsm,∗
0 (GEQ2l) ≤ kl (resp. ≤ (k + 1)l).

Proof. We only demonstrate the case in which k is even (as the odd case is considered
similarly to the proof of Lemma 10). The quantum protocol is as follows.
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Protocol PGEQ2l : 0. All parties share the entangled state

l⊗
i=1

 1√
2

 k⊗
j=1

|0⟩Qi
j

+
k⊗

j=1
|1⟩Qi

j

 ,

where the single-qubit registers Q1
j , . . . , Q

l
j are owned by party Pj . Moreover, they share l

k-bit strings ri := ri
1r

i
2 · · · ri

k such that
∑k

j=1 r
i
j = 0 (i = 1, 2, . . . , l), and a non-zero 2l-bit

string r′ = r′
1r

′
2 · · · r′

2l−1r
′
2l.

1. Each party Pj computes the 2l-bit string aj = a1
ja

2
j · · · a2l

j defined as p(aj) = p(r′)p(xj).
2. Each party Pj applies Z on Qi

j if a2i
j = 1. The resulting state is

l⊗
i=1

 1√
2

 k⊗
j=1

|0⟩Qi
j

+
k⊗

j=1
(−1)

∑k

j=1
a2i

j |1⟩Qi
j

 .

3. Each party Pj applies X on Qi
j if a2i−1

j ⊕ ri
j = 1. The resulting state is

l⊗
i=1

 1√
2

 k⊗
j=1

|a2i−1
j ⊕ ri

j⟩Qi
j

+ (−1)
∑k

j=1
a2i

j

k⊗
j=1

|a2i−1
j ⊕ ri

j ⊕ 1⟩Qi
j

 . (9)

4. Each party Pj sends l quantum registers Q1
j , . . . , Q

l
j to R.

5. R measures kl quantum registers Q1
1, . . . , Q

1
k, . . . , Q

l
1, . . . , Q

l
k in the basis

B :=


l⊗

j=1
|Φ(yi

1, . . . , y
i
k−1, z

i)⟩ : yi
1 · · · yi

k−1z
i ∈ {0, 1}k for every i ∈ [l]

 ,

and let yi
1y

i
2 · · · yi

k−1z
i (i = 1, · · · , l) be the measurement results.

6. R accepts if
(∑k−1

j=1 y
i
j

)
= zi = 0 for all i = 1, · · · , l and rejects otherwise.

Correctness: Note that (
∑k

j=1 x
1
j , . . . ,

∑k
j=1 x

2l
j ) = (0, . . . , 0) if and only if

(
∑k

j=1 a
1
j , . . . ,

∑k
j=1 a

2l
j ) = (0, . . . , 0), since

p

(
k∑

j=1
a1

j , . . . ,

k∑
j=1

a2l
j )

 = p(r′)p

(
k∑

j=1
x1

j , . . . ,

k∑
j=1

x2l
j )

 . (10)

Now, the correctness of PSum2 in Lemma 10 also guarantees the correctness of PGEQ2l
.

Privacy: First, we consider the case in which GEQ2l(x1, x2, . . . , xk) = 0: that is,
(
∑k

j=1 x
1
j , . . . ,

∑k
j=1 x

2l
j ) = (0, . . . , 0). Then, as demonstrated in Eq. (10), (a1, a2, . . . , ak) sat-

isfies (
∑k

j=1 a
1
j , . . . ,

∑k
j=1 a

2l
j ) = (0, . . . , 0). Moreover, (a2i−1

1 , a2i−1
2 , . . . , a2i−1

k ) is uniformly
randomized by ri in Step 3 under the restriction that the sum is 0. Thus, the quantum state
that R receives (represented by Eq. (9)) is taken from the set of 2(k−2)l orthogonal pure
states

l⊗
i=1

|Φ(yi
1, . . . , y

i
k−1, 0)⟩ :

k−1∑
j=1

yi
j = 0 for every i ∈ [l]
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(up to the total phase) uniformly at random. Second, we consider the case in which
GEQ2l(x1, x2, . . . , xk) = 1, i.e., (

∑k
j=1 x

1
j , . . . ,

∑k
j=1 x

2l
j ) is in the set

S := {(b1, . . . , b2l) : b1 · · · b2l ∈ {0, 1}2l} \ {(0, . . . , 0)}.

Then, by Eq. (10), (a1, a2, . . . , ak) is taken so that (
∑k

j=1 a
1
j , . . . ,

∑k
j=1 a

2l
j ) can be distributed

from S uniformly at random. Moreover, (a2i−1
1 , a2i−1

2 , . . . , a2i−1
k ) is uniformly randomized

by ri in Step 3 under the restriction that the sum remains the same (since
∑k

j=1 r
i
j = 0).

Thus, the quantum state that R receives (represented by Eq. (9)) is taken from the set of
(22l − 1)2(k−2)l orthogonal pure states

B \


l⊗

i=1
|Φ(yi

1, . . . , y
i
k−1, 0)⟩ :

k−1∑
j=1

yi
j = 0 for every i ∈ [l]


(up to the total phase) uniformly at random. ◀

Now Lemma 11 provides the upper bound kn/2 of Theorem 2. The lower bound kn of
Theorem 2 originates from the lower bound n of the exact (two-party) one-way quantum
communication complexity with no shared entanglement of the n-bit equality function (see,
e.g., [24, Theorem 5.11]) as it implies that for any j ∈ [k], the jth party must send n qubits
(considering the one-way communication setting from the jth party with input x ∈ {0, 1}n to
the group of the referee and the other k − 1 parties in which one party has input y ∈ {0, 1}n

and the k − 2 remaining parties have input 0n, the length of the message of the jth party
must be n). This completes the proof of Theorem 2.

Actually, the upper bound kl of Lemma 11 for GEQ2l is tight when k is even. The
matching lower bound kl originates from the lower bound l of the exact one-way quantum
communication complexity with shared entanglement of the 2l-bit equality function shown
by Klauck [24, Theorem 5.12] as it implies that each party must send l qubits.

5 Power of Shared Entanglement for Partial Functions

In this section, we prove Theorem 3. We consider the so-called distributed Deutsch-Jozsa
problem DJn introduced by Brassard, Cleve, and Tapp [7]. First we show that Cpsm,∗

0 (DJn) =
O(log n). Our PSM protocol is based on the protocol provided in [7], which we modify so
that the privacy condition can be satisfied. Second we show Qpsm

0 (DJn) = Ω(n) by observing
that the fact that the exact classical and quantum SMP communication complexities are the
same for total functions can be extended to the case of partial functions.

Let n be any power of 2. The distributed Deutsch-Jozsa problem DJn : {0, 1}n×{0, 1}n →
{0, 1}, introduced in [7], is defined as

DJn(x, y) =
{

1 if x = y

0 ∆(x, y) = n/2,

where ∆(x, y) denotes the Hamming distance between x = x0x1 · · ·xn−1 and y = y0y1 · · · yn−1.

▶ Lemma 12. There is a PSM protocol with shared entanglement that solves DJn with
probability 1, and the classical communication complexity is 2 logn.

Proof. The PSM protocol is as follows.
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Protocol PDJ : Let n = 2m.
0. P1 and P2 share the entangled state

1√
n

∑
i∈{0,1}m

|i⟩A|i⟩B

and the two prearranged random m-bit strings r ∈ {0, 1}m \ {0m} and r′ ∈ {0, 1}m.
1. P1 (resp. P2) adds phase (−1)xi ((−1)yi) to the m-qubit register A (B) if the content

of A (B) is i (where i ∈ {0, 1}m is identified as the corresponding non-negative integer).
The resulting state is

1√
n

∑
i∈{0,1}m

(−1)xi |i⟩A(−1)yi |i⟩B .

2. P1 and P2 apply the Hadamard gate H for each qubit of their registers A and B,
respectively. The resulting state is

1
n

√
n

∑
i∈{0,1}m

(−1)xi

∑
k∈{0,1}m

(−1)i·k|k⟩A

(−1)yi

∑
l∈{0,1}m

(−1)i·l|l⟩B

 . (11)

3. P1 and P2 measure A and B in the computational basis, respectively, and let K and L

be the resulting bit strings in {0, 1}m.
4. P1 and P2 send classical messages mA and mB defined as p(mA) = p(r)p(K) + p(r′) and

p(mB) = p(r)p(L) + p(r′) to R, respectively.
5. R accepts if mA = mB and rejects otherwise.

Correctness: Note that the amplitude of |k⟩A|l⟩B in Eq. (11) is

1
n3/2

∑
i∈{0,1}m

(−1)xi⊕yi(−1)i·(k⊕l). (12)

When x = y, Eq. (12) is 0 if K ≠ L. Thus, the event K = L occurs with probability 1;
therefore, R always accepts. When ∆(x, y) = n/2, Eq. (12) is 0 if K = L. Thus, the event
K ̸= L occurs with probability 1; therefore, R always rejects.

Privacy: Again, by Eq. (12), if x = y, then K = L = k is obtained with 1/n for each
k ∈ {0, 1}m. Thus, the simulator can simulate the messages by generating the same m-
bit string chosen uniformly at random as P1’s and P2’s messages. If ∆(x, y) = n/2, the
element p(K) − p(L) in F2m is nonzero; thus, the difference between p(r)p(K) + p(r′) and
p(r)p(L) + p(r′) is distributed uniformly at random in F∗

2m . Moreover, p(K) (and p(L))
is distributed uniformly at random in F2m by multiplying p(r) and adding p(r′). Thus,
the simulator can simulate the messages by choosing two different m-bit non-zero strings
uniformly at random as P1’s and P2’s messages. ◀

Using the result in [9] that DJn has the exact classical communication complexity Ω(n)
(even in the two-way communication model), we can show that DJn provides the following
exponential separation between exact PSMs with shared entanglement and exact PSQMs
without shared entanglement. (Note that Theorem 13 implies Theorem 3, namely, an
exponential gap between Qpsm,∗

0 (DJn) and Qpsm
0 (DJn), as well as between Cpsm,∗

0 (DJn)
and Cpsm

0 (DJn).)
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▶ Theorem 13. Cpsm,∗
0 (DJn) = O(log n) and Qpsm

0 (DJn) = Ω(n).

Proof. The upper bound Cpsm,∗
0 (DJn) = O(log n) is shown by Lemma 12.

The lower bound comes from the fact that both the exact quantum and classical SMP
communication complexities of a total function f over X × Y are equal to the sum of the
number of the different row vectors of the communication matrix of f , Mf , and the number
of the different column vectors of Mf (this fact can be found in [30, p.142]). The proof idea
is that any two (classical or quantum) messages mx and mx′ corresponding to different row
vectors indexed with input x and x′ must be perfectly distinguished since there is some column
input y such that Mf (x, y) ̸= Mf (x′, y) (and a similar argument holds for different column
vectors), and choosing different messages for such different row vectors or column vectors is
sufficient for the referee to compute f exactly. This proof idea also holds for a partial function
by replacing the number of the different row (resp. column) vectors by the size of the maximum
clique of the graph G1(Mf ) = (X,E1,f ) (resp. G2(Mf ) = (Y,E2,f )) defined as follows: two
rows x and x′ (resp. columns y and y′) have an edge in E1,f (resp. E2,f ) if and only if there
is a column y (resp. row x) such that (x, y) and (x′, y) (resp. (x, y) and (x, y′)) are in the
domain of the partial function f and Mf (x, y) ̸= Mf (x′, y) (resp. Mf (x, y) ̸= Mf (x, y′)).

The above observation implies that the exact quantum and classical SMP communication
complexities of the partial function DJn are the same. By the result in [9], DJn has the
exact classical communication complexity Ω(n). This concludes the desired lower bound
Qpsm

0 (DJn) = Ω(n). ◀

Theorem 13 provides an exponential gap between PSMs with shared entanglement and
PSQMs without shared entanglement for partial functions; however, it is obtained only in
the exact setting, and we do not know whether this exponential gap can be obtained in the
bounded-error setting for partial or total functions. However, we can observe that there is a
relational problem that has an exponential gap between PSMs with shared entanglement
and PSQMs without shared entanglement in the bounded-error setting from the result by
Gavinsky et al. [18]. They demonstrated that the problem has an exponentially smaller
communication complexity of a classical SMP protocol with shared entanglement than the
communication complexity of quantum SMP protocols only with shared randomness, while
it is easy to see that their protocol is in fact a PSQM.

6 Conclusion

This paper introduced a quantum analogue of the well-studied PSM model which was called
the PSQM model, and provided several initial results in the exact setting. Here we list a
number of open problems.

Can the lower bound of Theorem 1 be extended to the bounded-error setting or to the
shared entanglement case?
Can any non-trivial communication complexity gap between the PSM model and the
PSQM model for some function in the bounded-error setting? How about any non-trivial
communication complexity gap between the PSQM model with shared entanglement and
the PSQM model without it in the bounded-error setting?
The PSQM model in this paper was defined only for perfect privacy. What results are
obtained for imperfect privacy? To extend the lower bound of Theorem 1 to imperfect
privacy, a quantumly tailored modification of [1, Section 5] might be worth considering,
while it seems much more complicated than the proof of Theorem 1.

ITC 2021



20:16 Communication Complexity of PSQM Protocols

References
1 Benny Applebaum, Thomas Holenstein, Manoj Mishra, and Ofer Shayevitz. The communication

complexity of private simultaneous messages, revisited. Journal of Cryptology, 33(3):916–953,
2020. doi:10.1007/s00145-019-09334-y.

2 Marshall Ball, Justin Holmgren, Yuval Ishai, Tianren Liu, and Tal Malkin. On the complexity
of decomposable randomized encodings, or: how friendly can a garbling-friendly PRF be? In
Proceedings of the 11th Innovations in Theoretical Computer Science Conference (ITCS 2020),
pages 86:1–86:22, 2020. doi:10.4230/LIPIcs.ITCS.2020.86.

3 Ziv Bar-Yossef, T. S. Jayram, and Iordanis Kerenidis. Exponential separation of quantum and
classical one-way communication complexity. SIAM Journal on Computing, 38(1):366–384,
2008. doi:10.1137/060651835.

4 Amos Beimel, Yuval Ishai, Ranjit Kumaresan, and Eyal Kushilevitz. On the cryptographic
complexity of the worst functions. In Proceedings of the 11th IACR Theory of Cryptography
Conference (TCC 2014), pages 317–342, 2014. doi:10.1007/978-3-642-54242-8_14.

5 Amos Beimel, Eyal Kushilevitz, and Pnina Nissim. The complexity of multiparty PSM
protocols and related models. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Part
II, pages 287–318, 2018. doi:10.1007/978-3-319-78375-8_10.

6 Zvika Brakerski and Henry Yuen. Quantum garbled circuits. arXiv:2006.01085, 2020. URL:
https://arxiv.org/abs/2006.01085.

7 Gilles Brassard, Richard Cleve, and Alain Tapp. Cost of exactly simulating quantum en-
tanglement with classical communication. Physical Review Letters, 83:1874–1877, 1999.
doi:10.1103/PhysRevLett.83.1874.

8 Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf. Quantum fingerprinting.
Physical Review Letters, 87:167902 (4pages), 2001. doi:10.1103/PhysRevLett.87.167902.

9 Harry Buhrman, Richard Cleve, and Avi Wigderson. Quantum vs. classical communication
and computation. In Proceedings of the 30th annual ACM Symposium on Theory of Computing
(STOC 1998), pages 63–68, 1998. doi:10.1145/276698.276713.

10 Claude Crépeau, Daniel Gottesman, and Adam Smith. Secure multi-party quantum computa-
tion. In Proceedings of the 34th Annual Symposium on Theory of Computing (STOC 2002),
pages 643–652, 2002. doi:10.1145/509907.510000.

11 Ivan Damgård, Kasper Green Larsen, and Jesper Buus Nielsen. Communication lower bounds
for statistically secure MPC, with or without preprocessing. In Proceedings of the 39th
Annual International Cryptology Conference (CRYPTO 2019) Part II, pages 61–84, 2019.
doi:10.1007/978-3-030-26951-7_3.

12 Deepesh Data, Manoj M. Prabhakaran, and Vinod M. Prabhakaran. Communication and
randomness lower bounds for secure computation. IEEE Transactions on Information Theory,
62(7):3901–3929, 2016. doi:10.1109/TIT.2016.2568207.

13 Yfke Dulek, Alex B. Grilo, Stacey Jeffery, Christian Majenz, and Christian Schaffner. Secure
multi-party quantum computation with a dishonest majority. In Proceedings of the 39th
Annual International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT 2020) Part III, pages 729–758, 2020. doi:10.1007/978-3-030-45727-3_25.

14 Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation (extended
abstract). In Proceedings of the 26th Annual ACM Symposium on Theory of Computing
(STOC 1994), pages 554–563, 1994. doi:10.1145/195058.195408.

15 Dmitry Gavinsky. Quantum versus classical simultaneity in communication complexity.
IEEE Transactions on Information Theory, 65(10):6466–6483, 2019. doi:10.1109/TIT.2019.
2918453.

16 Dmitry Gavinsky. Bare quantum simultaneity versus classical interactivity in communication
complexity. In Proceedings of the 52nd Annual ACM Symposium on Theory of Computing
(STOC 2020), pages 401–411, 2020. doi:10.1145/3357713.3384243.

https://doi.org/10.1007/s00145-019-09334-y
https://doi.org/10.4230/LIPIcs.ITCS.2020.86
https://doi.org/10.1137/060651835
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-319-78375-8_10
https://arxiv.org/abs/2006.01085
https://doi.org/10.1103/PhysRevLett.83.1874
https://doi.org/10.1103/PhysRevLett.87.167902
https://doi.org/10.1145/276698.276713
https://doi.org/10.1145/509907.510000
https://doi.org/10.1007/978-3-030-26951-7_3
https://doi.org/10.1109/TIT.2016.2568207
https://doi.org/10.1007/978-3-030-45727-3_25
https://doi.org/10.1145/195058.195408
https://doi.org/10.1109/TIT.2019.2918453
https://doi.org/10.1109/TIT.2019.2918453
https://doi.org/10.1145/3357713.3384243


A. Kawachi and H. Nishimura 20:17

17 Dmitry Gavinsky and Tsuyoshi Ito. Quantum fingerprints that keep secrets. Quantum
Information and Computation, 13(7-8):583–606, 2013. doi:10.26421/QIC13.7-8-3.

18 Dmitry Gavinsky, Julia Kempe, Oded Regev, and Ronald de Wolf. Bounded-error quantum
state identification and exponential separations in communication complexity. SIAM Journal
on Computing, 39(1):1–24, 2009. doi:10.1137/060665798.

19 Masahito Hayashi, Satoshi Ishizuka, Akinori Kawachi, Gen Kimura, and Tomohiro
Ogawa. Introduction to Quantum Information Science. Springer, 2015. doi:10.1007/
978-3-662-43502-1.

20 Rolf T. Horn, A. J. Scott, Jonathan Walgate, Richard Cleve, A. I. Lvovsky, and Barry C.
Sanders. Classical and quantum fingerprinting with shared randomness and one-sided error.
Quantum Information and Computation, 5(3):258–271, 2005. doi:10.26421/QIC5.3-6.

21 Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocol with applications.
In Proceedings of the 5th Israel Symposium on Theory of Computing and Systems (ISTCS
1997), pages 174–183, 1997. doi:10.1109/ISTCS.1997.595170.

22 Roy Kasher and Julia Kempe. Two-source extractors secure against quantum adversaries.
Theory of Computing, 8:461–486, 2012. doi:10.4086/toc.2012.v008a021.

23 Hartmut Klauck. Quantum and approximate privacy. Theory of Computing Systems, 37(1):221–
246, 2004. doi:10.1007/s00224-003-1113-7.

24 Hartmut Klauck. One-way communication complexity and the Nečiporuk lower bound
on formula size. SIAM Journal on Computing, 37(2):552–583, 2007. doi:10.1137/
S009753970140004X.

25 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1997. doi:10.1017/CBO9780511574948.

26 Tomoyuki Morimae. Quantum randomized encoding, verification of quantum computing,
no-cloning, and blind quantum computing. arXiv:2011.03141, 2020. URL: https://arxiv.
org/abs/2011.03141.

27 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

28 Ran Raz. Exponential separation of quantum and classical communication complexity. In
Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC 1999), pages
358–367, 1999. doi:10.1145/301250.301343.

29 Dominique Unruh. Universally composable quantum multi-party computation. In Proceedings
of 29th Annual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT 2010), pages 486–505, 2010. doi:10.1007/978-3-642-13190-5_25.

30 Ronald de Wolf. Quantum Computing and Communication Complexity. PhD thesis,
University of Amsterdam, 2001. URL: https://dare.uva.nl/search?identifier=
480e76ad-11b7-4226-9c54-6b39c51e6f37.

31 Andrew C.-C. Yao. Some complexity questions related to distributive computing (preliminary
report). In Proceedings of the 11th Annual ACM Symposium on Theory of Computing (STOC
1979), pages 209–213, 1979. doi:10.1145/800135.804414.

A Proofs of Claim 7, Claim 8, and Lemma 9

In this appendix, we give the detailed proofs of the technical claims and lemma used in the
proof of Lemma 5.
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sufficient) for perfect discrimination of the two states (see, e.g., Proposition 5.13 in [19]). Since
the referee R perfectly discriminates ρ(x1, x2) and ρ(x′
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′
2) for which Fn(x1, x2) ̸= Fn(x′

1, x
′
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from the correctness, it must hold that ρ(x1, x2)ρ(x′
1, x

′
2) = 0. Then, we have

tr
∑

(x1,x2) ̸=(x′
1,x′

2)

µ(x1, x2)ρ(x1, x2)µ(x′
1, x

′
2)ρ(x′

1, x
′
2)

=
∑

y

tr
∑

(x1,x2)̸=(x′
1,x′

2)
Fn(x1,x2)=Fn(x′

1,x′
2)=y

µ(x1, x2)ρ(x1, x2)µ(x′
1, x

′
2)ρ(x′

1, x
′
2).

From the privacy, there exists a quantum state ρy for each y such that ρy = ρ(x1, x2) for
every (x1, x2) for which Fn(x1, x2) = y. Therefore,∑

y

tr
∑

(x1,x2) ̸=(x′
1,x′

2)
Fn(x1,x2)=Fn(x′

1,x′
2)=y

µ(x1, x2)ρ(x1, x2)µ(x′
1, x

′
2)ρ(x′

1, x
′
2)

=
∑

y

trρ2
y

∑
(x1,x2)̸=(x′

1,x′
2)

Fn(x1,x2)=Fn(x′
1,x′

2)=y

µ(x1, x2)µ(x′
1, x

′
2)

=
∑

y

∑
(x1,x2) ̸=(x′

1,x′
2)

Fn(x1,x2)=Fn(x′
1,x′

2)=y

µ(x1, x2)µ(x′
1, x

′
2)∑

Fn(x1,x2)=Fn(x′
1,x′

2)=y µ(x1, x2)µ(x′
1, x

′
2) trρ2

y

∑
Fn(x1,x2)=Fn(x′

1,x′
2)=y

µ(x1, x2)µ(x′
1, x

′
2)

=
∑

y

Pr [ (X1, X2) ̸= (X ′
1, X

′
2) |Fn(X1, X2) = Fn(X ′

1, X
′
2) = y ] trρ2

y

×
∑

Fn(x1,x2)=Fn(x′
1,x′

2)=y

µ(x1, x2)µ(x′
1, x

′
2)

≥ β(µ)
∑

y

trρ2
y

∑
Fn(x1,x2)=Fn(x′

1,x′
2)=y

µ(x1, x2)µ(x′
1, x

′
2)

= β(µ)tr
∑

x1,x2,x′
1,x′

2

µ(x1, x2)ρ(x1, x2)µ(x′
1, x

′
2)ρ(x′

1, x
′
2). ◁

Proof of Claim 8. From the privacy, there exists ρy such that ρy = ρ(x1, x2) for every
y ∈ {0, 1} and every (x1, x2) for which Fn(x1, x2) = y. From the correctness and the
necessary condition of the perfect quantum state discrimination, ρ0ρ1 = 0 must hold. From
the spectral decomposition we have ρy =

∑
i λy,i|ϕy,i⟩⟨ϕy,i| for some orthonormal basis

{|ϕy,i⟩}i (λy,i > 0). Then, we have ⟨ϕ0,i|ϕ1,j⟩ = 0 for every i, j since ρ0ρ1 = 0. Therefore,
we can assume R0 =

∑
i |ϕ0,i⟩⟨ϕ0,i| and R1 = I − R0 without loss of generality. This

R = {Ry}y∈{0,1} is a PVM. ◁

Proof of Lemma 9. We demonstrate that |⟨ψ1(z; r′)|ψ1(z′; r′)⟩|2 = 0 for every distinct z, z′

and every r′. Assuming this, we can decompose

|ψ1(x1; r)⟩ =
∑
z′

αz′ |ψ1(z′; r′)⟩ + α⊥|ψ⊥
1 ⟩

with orthonormal vectors {|ψ1(z′; r′)⟩}z′ ∪ {|ψ⊥
1 ⟩} for some coefficients αz′ and α⊥. Then, it

holds that

∑
z ̸=x1

|⟨ψ1(x1; r)|ψ1(z; r′)⟩|2 =
∑

z ̸=x1

∣∣∣∣∣∑
z′

α∗
z′⟨ψ1(z′; r′)|ψ1(z; r′)⟩ + α⊥∗⟨ψ⊥

1 |ψ1(z; r′)⟩

∣∣∣∣∣
2

=
∑

z ̸=x1

|αz|2 ≤ 1.
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Therefore, it suffices to demonstrate |⟨ψ1(z; r′)|ψ1(z′; r′)⟩|2 = 0 for every distinct z, z′

and every r′. For contradiction, assume that |⟨ψ1(z; r′)|ψ1(z′; r′)⟩|2 > 0 for some z, z′ and
some r′.

From this assumption, we have

|ψ1(z′; r′)⟩ = β|ψ1(z; r′)⟩ + β⊥|ψ⊥
1 (z; r′)⟩,

where β ̸= 0 and |ψ⊥
1 (z; r′)⟩ is orthogonal to |ψ1(z; r′)⟩.

We fix x2 arbitrarily. Then, we have

|ψ1(z′; r′)⟩|ψ2(x2; r′)⟩ = β|ψ1(z; r′)⟩|ψ2(x2; r′)⟩ + β⊥|ψ⊥
1 (z; r′)⟩|ψ2(x2; r′)⟩.

Since R is a PVM, we have

RFn(z,x2)|ψ1(z; r′)⟩|ψ2(x2; r′)⟩ = |ψ1(z; r′)⟩|ψ2(x2; r′)⟩

from the correctness. We also have

|ψ⊥
1 (z; r′)⟩ = γ|ϕ(z; r′)⟩ + γ⊥|ϕ⊥(z; r′)⟩,

where |ψ1(z; r′)⟩, |ϕ(z; r′)⟩, |ϕ⊥(z; r′)⟩ are orthogonal to each other, and
RFn(z,x2)|ϕ(z; r′)⟩|ψ2(x2; r′)⟩ = |ϕ(z; r′)⟩|ψ2(x2; r′)⟩, RFn(z,x2)|ϕ⊥(z; r′)⟩|ψ2(x2; r′)⟩ = 0.

Therefore, it holds that∣∣⟨ψ1(z; r′)|⟨ψ2(x2; r′)|RFn(z,x2)|ψ1(z′; r′)⟩|ψ2(x2; r′)⟩
∣∣2 = |β|2 + |γ|2 > 0.

The value |β|2 + |γ|2 > 0 must be 1 from the correctness; therefore,
R(|ψ1(z′; r′)⟩|ψ2(x2; r′)⟩) = Fn(z′, x2) for every x2 and every r′. This implies that
Fn(z, x2) = Fn(z′, x2) holds for every x2, which contradicts the non-degeneracy of Fn.
The same argument also works for x2. ◀
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1 Overview

1.1 Introduction
Recently, research and development efforts towards building a universal quantum computer
have intensified. As quantum computers will break currently deployed public-key cryptosys-
tems [27], finding adequate replacement schemes (called post-quantum secure) has been
increasingly a priority, too, as reflected by the ongoing NIST standardization effort for
post-quantum secure digital signature schemes and key encapsulation mechanisms [1].

Quantum-access security. While post-quantum security is the most important attack
model involving quantum computers, the stronger quantum-access or quantum world attack
model [7, 13], where attackers are granted quantum access to secret-keyed functionalities,
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has received considerable attention, too. There are a number of reasons why this stronger
attack model is important. On the one hand, it is of theoretical importance because it
captures the strongest-known achievable security notions for standard classical cryptographic
primitives. On the other hand, there are a number of conceivable scenarios where they
become relevant, e.g. for composability with obfuscation or when constructing quantum-
cryptographic schemes, or to prevent implementation-level vulnerabilities in a future hybrid
quantum-classical computing infrastructure. Finally, results in the quantum access model can
inform post-quantum cryptographic research, as exemplified by the offline Simon’s algorithm
attack [8].

Blind unforgeability. In this work, we study the security of signature schemes under quantum-
access attacks, in the quantum random oracle model (QROM) [6]. Here, generalizing the
standard notion of existential unforgeability under chosen message attacks, the attacker is
granted quantum query access to the signing algorithm. In the end, the adversary should
output a forgery that they did not obtain from a query. Formalizing such a security notion is
complicated due to the so-called quantum no-cloning principle according to which quantum
states cannot be copied. We use the notion of blind unforgeability introduced in [2] (see
[7, 15] for previous and complementary notions). We remark that the choice of the blind
unforgeability definition is due to the fact that it implies the previous notions, which are the
Boneh and Zhandry definition [7] and the one-time unforgeabilty [15], as established in [2].
Informally, blind unforgeability credits an adversary with a successful break of, e.g., a digital
signature scheme, if it outputs a valid message-signature pair given a modified signing oracle
that is “blinded” on a random subset of all messages, in the sense that it outputs a dummy
symbol instead of a signature, and if the output message is among these blinded messages
(see Section 2 for details).

Hash-based signature schemes. Hash-based signature schemes are prominent candidates
for the replacement of digital signature schemes based on quantum-broken number-theoretic
hardness assumptions. In particular, the stateful hash-based signature scheme XMSS [10]
has been standardized as RFC8391 [19], and the stateless hash-based signature scheme
SPHINCS+ [4] is an alternate candidate in the ongoing NIST standardization process for
post-quantum cryptographic schemes [1]. The security of hash-based signature schemes can
be based on weak computational assumptions, like e.g. the one-wayness of the underlying
hash function. Common hash-based signature schemes, including the mentioned examples,
are constructed using one-time1 signature (OTS) schemes in combination with a hash-based
authentication graph (e.g. a Merkle tree). The most well-known OTSs are the Lamport [21]
and Winternitz [24] OTS. Variations of the latter are used in both XMSS and SPHINCS+.

Previous work. In [2], the Lamport OTS is studied in the context of blind-unforgeability.
More precisely, a proof of one-time blind-unforgeability in the QROM is provided. That
proof, however, has a gap in the analysis of the adversarial success. In particular, an auxiliary
measurement is used to “collapse” an invariant property that holds in superposition into
holding classically, but the effect of the dependence of this auxiliary measurement on the
forgery message is not analyzed.

1 And sometimes few-time signature schemes, e.g. in SPHINCS+.
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Related work. Quantum-access security for encryption is an active research area, and
generalizing chosen-ciphertext security notions to the quantum-access setting has posed, and
poses, similar challenges as the ones encountered in the authenticity setting [7, 13, 14]. On
the negative side, key recovery attacks in the quantum-access model against a number of
symmetric-key primitives that are secure in the respective standard attack models have been
discovered [26, 20], and have lead to the discovery of quantum attacks that can be performed
without quantum access to secret-keyed functionalities [8].

There are a number of works that prove query lower bounds using variants of the
superposition oracle technique [22, 17, 11, 5]. The last two papers prove query complexity
lower bounds for creating hash chains, which are not directly useful for the analysis of
hash-based signatures.

1.2 Summary of results
The Lamport OTS is blind-unforgeable. We revisit the analysis of the Lamport OTS in
the QROM presented in [2] and give a complete proof of blind unforgeability as stated in the
following theorem.

▶ Theorem 1 (Blind unforgeability of the Lamport OTS, informal). The Lamport OTS is
blind-unforgeable if the underlying hash function h is modeled as a quantum-accessible random
oracle. More precisely, the success probability of any blind unforgeability adversary A against
the Lamport OTS that makes q > 0 quantum queries to the random oracle is bounded as

Pr[A succeeds] ≤ CLq
2l3 · 2−n,

where CL is a constant, n is the security parameter of the Lamport OTS and l is the message
length.

Compared to [2], our security proof features the following improvements:
We streamline the usage of the superposition oracle technique of Zhandry [28]. In
particular, our analysis only uses (a variant of) the superposition oracle technique to
sample the secret key. We reprogram, in superposition, the standard random oracle at
inputs contained in the secret key. This technique represents a general tool to analyze
hash chains in the QROM and might be of independent interest.
We give a full analysis of the success probability using an auxiliary measurement idea
from [2]. To tackle the problem mentioned above, we introduce a novel technique of
tracking an invariant property in superposition using projectors and commutators.

The Winternitz OTS is blind-unforgeable. With the full blind unforgeability analysis of
the Lamport OTS in hand, we generalize the approach to the Winternitz OTS.

▶ Theorem 2 (Blind unforgeability of the Winternitz OTS, informal). The Winternitz OTS
is blind-unforgeable if the underlying hash function h is modeled as a quantum-accessible
random oracle. More precisely, the success probability of any blind unforgeability adversary
A against the Winternitz OTS that makes q > 0 quantum queries to the random oracle is
bounded as

Pr[A succeeds] ≤ CW q2a3 w4

log3 w
· 2−n,

where CW is a constant, n is the security parameter of the Winternitz OTS, a is the message
length and w ≥ 2 is the Winternitz parameter used to trade off signature size versus signing
and verification time.

ITC 2021



21:4 Quantum-Access Security of the Winternitz One-Time Signature Scheme

While the simplified analysis of hash chains in the QROM described above was advanta-
geous in proving the blind unforgeability security of the Lamport OTS, it is indispensable
in the analysis of the Winternitz scheme. Here, long hash chains are considered and the
technique of using the superposition oracle to detect which hash chain elements are known
to the adversary relies on the oracle register (or rather here: the hash chain register) being
in a product state.

1.3 Technical overview

In this technical overview, we give a high-level description of our techniques for analyzing
the blind unforgeability security of the Lamport and Winternitz OTSs in the QROM.

The superposition oracle technique and hash chains. As in many contexts that concern
message authenticity and integrity, the main roadblock we have to overcome in our analysis
is the so-called recording barrier : quantum oracle queries can, in general, not be recorded for
later use. In particular, after a single quantum signing query, it is not possible to reason
about the unused parts of the secret key. This is because, in general, all secret key strings
have been used in some part of the superposition.

In [2], Zhandry’s superposition oracle technique is used in a novel way to recover the
ability to reason about which secret key strings are (un)known to the adversary. There, the
secret key of the Lamport scheme, which is a 2× l array of independent uniformly random
n-bit strings, is essentially regarded as a random function from {0, 1} × {1, . . . , l}. This
function, as well as the hash function the Lamport OTS is constructed from, is then modelled
using the superposition oracle technique.

We improve this technique as follows. We use the fact that sampling two correlated
random variables X and Y can be done by first sampling X, and then Y according to
the conditional distribution, or vice versa. In the context of hash chains in the (Q)ROM,
i.e. sequences of strings x0, x1 = H(x0), x2 = H(x1), . . . for a random oracle H, this means
that instead of sampling x0 and H, and then computing the remaining hash chain elements,
we can as well sample x0, x1, . . . from their joint distribution, sample H, and reprogram
H to be consistent with the xi. This allows us to i) change the distribution of the xi to
a simpler one that is close in total variational distance, and ii) refrain from using the full
superposition oracle technique for H. In particular, we use i) to replace the hash chains
that are generated by the key generation algorithms of the Lamport and Winternitz schemes
by tuples of independent random strings. This incurs only a small error, as the uniform
distribution and the distribution of a hash chain in the (Q)ROM with random starting value
x0 are equal conditioned on all xi being distinct. But collisions between different hash chain
elements are unlikely.

Now that the hash chain elements are independent strings, we can use the full power of
the superposition oracle technique. In particular, the one-to-one correspondence between the
adversary’s ignorance of a hash chain element and the corresponding superposition oracle
register being in uniform superposition, is restored.

Throughout the paper, and in the rest of this technical overview, we perform the analysis
in a world where hash chains are formed using a superposition oracle modeling independent
uniformly random strings, and the random oracle is reprogrammed accordingly. We call this
the Quantum independent world. To conclude our analysis, we make use of the approximate
indistinguishability of the Real and the Quantum independent world.
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Blind unforgeability and classical invariants in superposition. With the tools for analyzing
hash chains in the QROM in hand, the next challenge consists of generalizing the classical
security arguments for the Blind Unforgeability (BU) of the Lamport and Winternitz OTSs
to the quantum-access setting. The core of these security arguments is, at a high level,
that for each unqueried message, any valid signature contains a string that is unknown
to the adversary.2 As mentioned above, this kind of reasoning does not generalize to the
quantum-access setting, as here an adversary can query all messages in superposition.

In the security game for the notion of BU instead of the full signing oracle the adversary
is provided with a modified oracle that is “blinded” on a random subset of messages, in the
sense that for these messages it outputs a dummy symbol ⊥ instead of a signature. These
“blinded messages” can now replace the unqueried messages in security arguments, as by
definition the adversary is prevented from obtaining a valid signature for them from the
blinded signing oracle.

For obtaining a quantum generalization, we need to reformulate this argument. The
statement that for each unqueried message any valid signature contains a string unknown to
the adversary, is equivalent to saying that, for each fixed message m∗ and all m ̸= m∗, some
information related to the secret key and not revealed by the signature of m is necessary to
compute the signature for m∗. For BU, it suffices to consider blinded m∗ and unblinded m.
In the superposition oracle framework, the statement “there exists an unblinded message
such that the registers corresponding to all parts of the secret key not revealed by that
message are in the uniform superposition state” defines a subspace I. By definition, the
global state after a BU-adversary makes a single query to the blinded signing oracle, and no
queries to the random oracle, is in that subspace.

The crucial step in our analysis is to show that the joint adversary-oracle state approx-
imately remains in the subspace I, even if the adversary performs a moderate number of
quantum queries to the random oracle. This means the subspace I can serve as an invariant.

Random oracle queries and commutators. To analyze the “leakage” from the invariant
subspace I, we use bounds on the norm of matrix commutators: to prove that the final
oracle-adversary state is approximately in the invariant subspace I, we can equivalently
show that applying the corresponding projector ΠI does not change the state by a lot. We
know, however, that the projector does not change the state at all before any random oracle
queries have been made. Therefore it suffices to bound the operator norm of the commutator
between the projector ΠI and the unitary operator that facilitates random oracle queries in
the Quantum independent world. We derive such a norm bound (see e.g. Lemma 15 for the
Lamport case), and the proof follows the classical intuition about the one-wayness of the
random oracle.

2 Preliminaries

We introduce some notation and conventions that will be used throughout the paper. Registers
of quantum systems will be denoted by capital letters. We say that ϵ = ϵ(n) is negligible
if, for all polynomials p(n), ϵ(n) < 1/p(n) for large enough n ∈ N. We use the notation
x

$← D to say that x is chosen uniformly at random from a set D. We write Sc to denote the

2 When basing the security on one-wayness, “unknown” is to be taken in a computational sense, but as
this paper is about security in the (Q)ROM, it is sufficient to interpret “unknown to” as “independent
of the state of”.
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complement of set S (in a superset that is clear from the context). We write s ∥ t to denote
the concatenation of strings s and t, and [A,B] = AB − BA to denote the commutator
of operators A and B. Throughout this paper, quantum adversaries refer to quantum
polynomial-time algorithms and are denoted by A.

Quantum computing. We use standard quantum computing notation, see e.g. [25]. A
d-level quantum system is associated with a d-dimensional complex Euclidean space H = Cd

with inner product ⟨·|·⟩. We refer to the standard basis of Cd as the computational basis. The
state of a system is described by a unit vector in |ψ⟩ ∈ H, and ⟨ψ| denotes its dual vector.
Given two quantum systems A and B, the composite system AB has state space equal to
the tensor product HA ⊗HB. We will often refer to the subsystems A and B as registers.
We denote the n-bit uniform superposition and the corresponding projector by

|Φ⟩ = 1√
2n

∑
x∈{0,1}n

|x⟩, Φ = |Φ⟩⟨Φ|. (1)

Quantum computation proceeds by applying unitary transformations, i.e., complex d× d
matrices U such that UU † = I, where U† = ŪT denotes the conjugate transpose of U . We
omit tensor products with identity matrices, indicating which registers an operator acts on
by subscripts, e.g. UA|ψ⟩AB = (UA ⊗ IB)|ψ⟩AB .

We can extract information from a quantum state |ψ⟩ by performing a measurement. A
(projective) measurement is described by a set {P1, . . . , Pk} of orthogonal projectors (P †

i = Pi

and P 2
i = Pi) such that

∑k
i=1 Pi = I. When performing a measurement on a quantum state

|ψ⟩, the probability of getting outcome i is p(i) = ⟨ψ|Pi|ψ⟩. Upon getting outcome i, the
state |ψ⟩ collapses to Pi|ψ⟩/

√
p(i).

The standard way of modelling quantum black-box access to a function f : {0, 1}n →
{0, 1}m is by providing an oracle for the unitary operation Of that acts on n+m qubits as
Of |x⟩|y⟩ = |x⟩|y ⊕ f(x)⟩ for all x ∈ {0, 1}n and y ∈ {0, 1}m. Without loss of generality, an
algorithm A that makes q queries to such an oracle has the form UqOf · · ·U1OfU0|Ψ0⟩ =
V

Of

A |Ψ0⟩ = |Ψ⟩, possibly followed by a measurement. Here, |Ψ0⟩ is an initial state and Ui

are arbitrary unitary operations that do not depend on f .
We will deal with algorithms that have two oracles, O1 and O2, but may only query O2

at most once (O1 will be a random oracle and O2 a signing oracle for a one-time signature
scheme). We can regard such an algorithm AO1,O2 = (AO1

0 ,AO1
1 ) as a two-stage process:

AO1
0 prepares the input for O2 and an internal register, AO1

1 receives the internal state and
the output of O2, and produces the final output of A, |Ψ⟩ = V O1

A1
O2V

O1
A0
|Ψ0⟩.

The most well-known situation in cryptography that features a quantum oracle is the
so-called quantum random oracle model (QROM) [6]. In the QROM, just as in the classical
random oracle model (ROM) [3], a hash function is modeled as a uniformly random function
h that all agents have oracle access to.

Tools from linear algebra. In this section, we state a couple of simple lemmas used in
security proofs in Sections 4 and 5. For the first lemma, we use the formulation from [7]
(Lemma 2.1), and the proof is also provided in the same reference.

▶ Lemma 3 (Special case of the pinching lemma [18]). Let A be a quantum algorithm and x
any output value of A. Let A0 be another quantum algorithm obtained from A by pausing A
in an arbitrary stage of execution, performing a projective measurement that obtains one of k
outcomes, and then resuming A. Then, Pr[A0(1n) = x] ≥ Pr[A(1n) = x]/k.
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▶ Lemma 4. Let A and {Bi}n
i=1 be operators, acting on the same space, with ∥A∥∞, ∥Bi∥∞ ≤

1. Then
∥∥[A,∏n

i=1 Bi

]∥∥
∞ ≤

∑n
i=1∥[A,Bi]∥∞.

▶ Lemma 5. Let X and Y be two n-qubit quantum systems and let P=
XY =∑

x∈{0,1}n |x⟩⟨x|X ⊗ |x⟩⟨x|Y be the projector onto the subspace spanned by those compu-
tational basis vectors where the two registers are equal. Let Φ = |Φ⟩⟨Φ| denote the projector
onto the uniform superposition, see Equation (1). Then ∥P=

XY ΦY ∥∞ = 2−n/2.

By applying the triangle inequality, Lemma 5 implies ∥[P=
XY ,ΦY ]∥∞ ≤ 2 · 2−n/2.

Hash-based one-time signature schemes. Hash-based signature schemes [21, 24] are digital
signature schemes whose security relies on cryptographic hash functions. In this paper, we
study hash-based one-time signatures (OTSs), i.e. schemes that use a pair of keys for a single
message. Below we introduce the Lamport and Winternitz OTSs.

The Lamport OTS is the simplest hash-based OTS. It uses a hash function h : {0, 1}n →
{0, 1}n for key generation and verification and is defined as follows:
1. Parameters: Security parameter n ∈ N and message length l ∈ N.
2. Key generation algorithm (KeyGen): On receiving the security parameter n in unary,

KeyGen outputs a secret signing key sk = (sj
i )j=0,1

i=1,...,l with sj
i

$← {0, 1}n and a public
verification key pk = (pj

i )j=0,1
i=1,...,l where pj

i = h(sj
i ) ∈ {0, 1}n.

3. Signature algorithm (Signsk): On input message m = m1 . . .ml ∈ {0, 1}l of length l,
Signsk outputs Signsk(m) = σ = σ1 . . . σl where σi = smi

i ∈ {0, 1}n.
4. Verification procedure (Verpk): Upon receiving a message m and a signature σ = σ1 . . . σl,

Verpk outputs acc if h(σi) = pmi
i for all i ∈ {1, . . . , l}, and rej otherwise.

The Winternitz OTS was introduced by Merkle [24]. In this work, we study a variant
that uses a hash function h : {0, 1}n → {0, 1}n and is defined as follows:
1. Parameters: Security parameter n, binary message length a, and the Winternitz parameter

w ≥ 2. Based on parameters a and w we define

l1 = ⌈a/ log(w)⌉, l2 = ⌊log(l1(w − 1))/ log(w)⌋+ 1, l = l1 + l2. (2)

2. Key generation algorithm (KeyGen): On receiving the security parameter n, choose
uniformly at random l values that form the signing key sk = (s1, . . . , sl)

$← ({0, 1}n)l.
Then, compute the public verification key pk = (p1, . . . , pl) =

(
hw−1(s1), . . . , hw−1(sl)

)
.

3. Signature algorithm (Signsk): For a given input message x ∈ {0, 1}a and secret key sk,
convert x to base w: m = (b1, . . . , bl1) where bi ∈ {0, . . . , w − 1}. Next, compute the
checksum C(m) =

∑l1
i=1(w−1−bi) and convert it to base w: C(m) = (bl1+1, . . . , bl). The

reader may refer to [12] for more details on the checksum. Then set b(m) = (b1, . . . , bl) =
m ∥ C(m). The signature is then computed as σ = (σ1, . . . , σl) =

(
hb1(s1), . . . , hbl(sl)

)
.

4. Verification algorithm (Verpk): Given input message m, signature σ and public verification
key pk, compute (b1, . . . , bl) as described above and output acc if hw−1−bi(σi) = pi for
all i ∈ {1, . . . , l}, and rej otherwise.

Blind unforgeability. Blind unforgeability (BU) [2] is a quantum-access replacement for
EU-CMA introduced in [16]. It uses the concept of blinding. Let f : X → Y be a function
and B ⊂ X a subset of X. The blinded function Bf with respect to the blinding set B is
defined as Bf(x) = ⊥ if x ∈ B and Bf(x) = f(x) otherwise, where ⊥ is a special blinding
symbol. One concrete way to instantiate this is by means of an extra bit: given a function
f : {0, 1}n → {0, 1}m, we define Bf : {0, 1}n → {0, 1}m+1 by setting ⊥ = 0n ∥ 1 and
replacing f(x) by f(x)∥0. We refer to Bc as the set of unblinded messages.
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Let S = (KeyGen, Sign,Ver) be a digital signature scheme with a security parameter n
and message space M . Let A be an adversary and let ϵ : N→ R+ be a negligible function.
We define the blind forgery experiment BlindForgeS,A(n, ϵ) as follows:

Key generation: (sk, pk)← KeyGen(1n).
Generation of blinding set: Select B ⊆ M by choosing each m ∈ M independently at
random with probability ϵ(n) provided by the adversary A.
Forgery: (m,σ)← AB Signsk(1n).
Outcome: Win if Verpk(m,σ) = acc and m ∈ B, and lose otherwise.

▶ Definition 6 (Blind unforgeability (BU)). A digital signature scheme S is q-BU secure if for
any adversary A making at most q queries to B Signsk and for all ϵ, the success probability
of winning the blind forgery experiment is negligible in the security parameter n.

3 Hash chains in the QROM

3.1 Quantum hash chain sampling
In this section, we introduce hash chains and describe a technical tool consisting of modeling
hash chains as independent uniform superposition states akin to Zhandry’s compressed oracle
technique [28]. This technique will enable us to prove BU security for the Lamport and
Winternitz OTSs. Hash chain is a sequences of strings obtained by iteratively applying a
hash function. They provide key pairs for the Lamport and Winternitz OTS’.

In the (Q)ROM, to generate a hash chain based on a hash function h, we first sample an
initial string s0 uniformly at random and then compute si = h(si−1) for i = 1, . . . , w − 1 to
obtain a hash chain of length w. For key generation in the Lamport and Winternitz OTSs,
the secret key sk is, respectively, a tuple of 2l and l initial strings sampled uniformly at
random in the domain {0, 1}n. Then a tuple of hash chains γ = (γj

i )j=0,...,w−1
i=1,...,l is obtained

by querying the hash function h on each string of the secret key w − 1 times:

γ0
i = si, γj

i = hj(γ0
i ), pi = γw−1

i = hw−1(γ0
i ), j = 0, . . . , w − 1, i = 1, . . . , l,

where w is the length of the hash chain (w = 2 for Lamport) and l is the number of hash
chains. The final entry of each chain is used as a public key.

In the BlindForge game, the secret key is only used by the blinded signing oracle. When
analyzing this game, we can thus modify the key generation, signing and random oracle
algorithms in an arbitrary way, as long as the modified triple is indistinguishable from the
real one to an adversary.

In the proofs in Sections 4 and 5 we make use of the following modified triple, which we
will refer to as defining the Quantum independent world. We construct the secret key and the
intermediate hash chain elements initially in uniform superposition. That is, we prepare each
hash chain register (Γj

i )j=0,...,w−2
i=1,...,l in the uniform superposition state |Φ⟩, with the intention

of measuring them to sample the strings γj
i in mind. Then, we sample the final hash chain at

random. The random oracle is then “reprogrammed in superposition” to be approximately
consistent with the hash chains.

We proceed to show that the way of implementing the hash chain and the random oracle
in the Real world and in the Quantum independent world are indistinguishable. For that
purpose, we first formally define both worlds and some intermediate worlds between them.
Each world is specified by two oracles, H and Sign, replacing the random oracle h and the
signing oracle in the Real world (in each world, the KeyGen algorithm is implicitly replaced
by the setup described below that generates the initial state and the public key). The oracles
of the Quantum independent world are described below as well.
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Real world. In the Real world, the first element γ0
i of each hash chain γi is generated

at random and the hash function is evaluated to generate the rest of the hash chain, i.e.,
γj

i = hj(γ0
i ). Here, the random oracle is implemented at random, i.e. H = h, and the Sign

oracle uses the secret key sk consisting of the γ0
i .

Intermediate world 1. Here, the first hash chain element is generated at random and the
following elements are successively sampled uniformly except for the collision tuples. That is
si = γ0

i
$← {0, 1}n and γ1

i is uniform except for the cases where γ1
i = γ1

i′ if γ0
i = γ0

i′ ; γ2
i is

uniform except for the cases where γ2
i = γ1

i′ if γ1
i = γ0

i′ ; γ2
i′ = γ2

i if γ1
i = γ1

i′ , etc. This world
is very similar to the Real world, the only difference is that here we first sample the secret
and public key (hash chain), then we reprogram the random oracle according to the secret
and public key that we sampled, i.e. whenever the input to the random oracle is equal to
a hash chain element γj

i with j ≤ w − 2, we return γj+1
i , otherwise answer with the actual

random oracle. The Sign oracle is the same as in the Real world.

Intermediate world 2. In this world, the hash chain elements γj
i are first sampled uniformly

at random with possible collision tuples. It means that the γj
i are uniformly independent

strings. Afterwards, the random oracle is reprogrammed to be consistent with the secret
and public keys. When queried, it compares the input with the hash chain. If the input is
not equal to any of the hash chain elements, the oracle answers with a random function ĥ.
Otherwise, for each hash chain element the input is equal to, it XORs the next hash chain
element into the output register. If there are two hash chain elements that are the same, the
random oracle XORs both following hash chain elements into the output register. In this
case, the Sign oracle uses the full list of hash chains (γj

i )j=0,...,w−1
i=1,...,l to answer the query with

all the hash chain elements consistent with the input.

Quantum independent world. In this world, the hash chain registers (Γj
i )j=0,...,w−2

i=1,...,l are
initially prepared in the uniform superposition |Φ⟩, and the last hash chain elements
(γw−1

i )i=1,...,l are sampled uniformly at random. The random oracle is constructed in
such a way that it is compatible with the hash chain. When queried with register X and
Y , the random oracle compares the X and Γ registers, then answers the query in the Y
register. Abstractly speaking, H is implemented as in the Intermediate world 2, except
that the comparison and XOR operations involving γj

i are replaced by controlled unitary
operations with Γ as the control register. It can be expanded as3

(Uh)XY Γ =

 l∏
i=1

w−2∏
j=0

(U j
i )XY Γj

i
Γj+1

i

U ̸=
XY Γ, (3)

where the unitaries Uij apply CNOT from register Γj+1
i into Y , controlled on registers X

and Γj
i being equal, and U ̸= uses the actual random oracle in case X is not equal to any

of the registers Γj
i . The signing oracle on the other hand just uses the superposition hash

chain elements by means of a controlled unitary with control register Γ. For a detailed
mathematical description, see the full version [23].

3 Note that the ordering of the product is unimportant because the operators U j
i commute.
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3.2 Indistinguishability
The following lemma allows us to conclude the indistinguishability of the Real world and the
Quantum independent world.

▶ Lemma 7. Let p and q be output distributions over n-bit strings of an algorithm A
interacting with the Real and the Quantum independent world, respectively. Then

∥∥p− q∥∥1 ≤
3(wl)2/2n.

This lemma follows from the following three results (see the full version [23] for proofs).

▶ Lemma 8. The Real world and the Intermediate world 1 are indistinguishable.

▶ Lemma 9. The distribution p and q of hash chains in the Intermediate worlds 1 and 2 are
close:

∥∥p− q∥∥1 ≤ 3(wl)2/2n.

▶ Lemma 10. The way the random oracle is implemented in the Intermediate world 2 and in
the Quantum independent world are indistinguishable.

4 One-time BU security of the Lamport OTS

In the BlindForge experiment, the adversary has quantum access to both a blinded signing
oracle and a random oracle. For one-time signature schemes, the adversary is allowed only
to query the signing oracle at most once. So, to produce a forged message-signature pair,
the adversary can make a desired number of quantum queries to the random oracle, then
query the signing oracle once, and then query again the random oracle as many times as
desired. Our goal is to prove that the probability that an adversary outputs a correct forged
signature on a valid forged message is negligible.

In the Lamport OTS, the signature algorithm uses only half of the secret key to produce
the signature. Classically, the property that enables security is that the adversary does not
have any information about the other half, the invariant, of the secret key. Quantumly, since
in the BlindForge experiment the forged message must be outside the queried region, for any
queried message there exists at least one bit in which the forged and queried messages differ.
Thus, the secret key corresponding to that bit should still be in its initial state. To show
blind-unforgeability, we separately analyze three cases: hash queries before Sign query, Sign
query, and hash queries after Sign query. We describe below our proof strategy in these cases
on a high level.

For hash queries before Sign query, we know that before any query the entire secret key
is in uniform superposition. We therefore define a projector of the secret key register being
in uniform superposition, and show that this projector approximately commutes with the
random oracle unitary. This means that after a moderate number of queries, the secret key
registers will still be in uniform superposition, indicating that the adversary learns almost
no information about the secret key.

In the Sign query case, the first step is to track the unused part of the secret key. This
part can be easily determined in the classical setting since the adversary queries only one
message in each query. In contrast, in the quantum setting we consider quantum queries and
hence have to track the invariant in superposition over the different queried messages. This is
difficult because the invariant is different within each term of the superposition, so we cannot
simply describe the invariant for the whole state. We address this problem as follows. We
define an invariant projector that tracks the invariance of the unused superposition-secret-
keys under queries and show that this projector is orthogonal to the projector corresponding
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to the outcome where none of the secret key registers relevant to the forged signature belong
to the invariant. Then, we show that if there is only Sign query, this new projector does not
change the adversary state immediately after the signature. We also establish that if the
adversary state after forgery is in the range of this new projector, then the adversary has
negligible probability to win the BlindForge game. Besides, we prove that the new projector
approximately commutes with the random oracle unitary.

Finally, for the case of hash queries after Sign query, we use the latter argument of the
commutator to prove that after hash queries the final adversary state remains roughly in the
image of the invariant projector of the secret key.

The arguments from these three cases together constitute a proof of the following theorem.

▶ Theorem 11. The Lamport OTS is 1-BU secure if the hash function h is modeled as
a quantum-accessible random oracle. More precisely, let A be an adversary that plays the
BlindForge game for the Lamport OTS, making a total of q queries to the random oracle.
Then A succeeds with a probability bounded as

Pr[A wins BlindForge] ≤ l2 · 2−n
(
3137q2(l + 1) + 12

)
≤ 6286q2l3 · 2−n, (4)

where n is the security parameter of the Lamport OTS, l is the message length, and the
simplified bound holds for q > 0.

We present a proof of this result in subsequent sections. In particular, we prove it in the
Quantum independent world first, and then conclude the statement in the Real world via an
application of Lemma 7. In the remainder of the article, we use a subscript QI to indicate
that a probability statement holds in the Quantum independent world.

4.1 Q measurement for Lamport OTS
We begin by presenting some concepts and tools which will be used in the proof. Subsequently,
we prove the steps outlined above as separate lemmas. Our proof will make use of a projective
measurement to track an invariant on the Quantum independent world secret key register for
the verification of the forged message in the case of no hash queries. Let (m∗, σ∗) be a forged
message-signature pair with σ∗ = s

m∗
1

1 · · · sm∗
l

l , where (sj
i )j=0,1

i=1,...,l is the secret key and l is the
message length.

For any message m∗ ∈ {0, 1}l we define an (l + 1)-outcome projective measurement that
finds the smallest index i∗ ∈ {1, . . . , l} for which the register Sm∗

i∗
i∗ is in uniform superposition,

or determines that none of the relevant secret key registers are in uniform superposition (this
corresponds to the outcome l+ 1). We define projectors Qm∗

i∗ with i∗ ∈ {1, . . . , l} in terms of
projectors Φ = |Φ⟩⟨Φ| and Φ⊥ = I − |Φ⟩⟨Φ| placed onto different registers depending on the
message m∗ (they act as I on all other registers Sj

i that are not specified):

Qm∗

i∗ = Φ⊥
S

m∗
1

1

⊗ · · · ⊗ Φ⊥

S
m∗

i∗−1
i∗−1

⊗ Φ
S

m∗
i∗

i∗
, Qm∗

l+1 =
l⊗

i=1
Φ⊥

S
m∗

i
i

. (5)

4.2 Invariant projector
In this section we define a projector PS that will be useful for our analysis, and state some
of its properties as lemmas.

Let α = (αj
i )j=0,1

i=1,...,l be a 2l-bit string whose each bit αj
i ∈ {0, 1} indicates that the

projector Φ(αj
i ) is applied on the corresponding secret key register Sj

i where Φ(0) = Φ and
Φ(1) = Φ⊥. For each string α, we define the associated projector Φ(α) on the whole secret
key register S as Φ(α)S =

⊗l
i=1
⊗1

j=0 Φ(αj
i )Sj

i
. Note that

∑
α∈{0,1}2l Φ(α)S = IS .
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Since we are interested in the unused part of the secret key register S, we need to filter
those α’s for which Sj

i is in state |Φ⟩. Recall from our discussion of blind unforgeability in
Section 2 that B denotes the set of blinded messages. Since the blinded signing oracle has
signed (at most) a single, un-blinded message, the state after the oracle call can be written
as a superposition of states where, for some un-blinded message m ∈ Bc, the secret key
register of the complementary value m̄i is still in the uniform superposition |Φ⟩, for all i.
We collect all strings α that are consistent with no blinded messages having been signed
in B̂c =

⋃
m∈Bc

{
α ∈ {0, 1}2l

∣∣∣ αm̄i
i = 0 for all i = 1, . . . , l

}
. These strings indicate which

secret key registers were not used during hash queries and Sign query. Finally, we define
PS =

∑
α∈B̂c

Φ(α)S as the projector onto the subspace compatible with B̂c. Note that PS is
indeed a projector since it is a sum of mutually orthogonal projectors.

We proceed to state several lemmas used to prove our main results both for the Lamport
and Winternitz OTSs. Proofs of these lemmas are provided in the full version [23].

The first lemma says that hash queries do not affect the secret key registers significantly
as long as they are in their initial state Φ.

▶ Lemma 12. Let Uh be the random oracle unitary for any given function h (see Section 3)
and let Φ = |Φ⟩⟨Φ| denote the projector onto the uniform superposition. Then, for any
i ∈ {1, . . . , l} and j ∈ {0, 1},

∥∥[Uh,ΦSj
i

]∥∥
∞ ≤ 6/2n/2 = ϵL(n) is negligible in n.

The quantum analogue of the following property holds: signing a message m∗ requires at
least one secret key string that was not used to sign m ̸= m′.

▶ Lemma 13. For all m∗ ∈ B, the projectors Qm∗

l+1 defined in Equation (5) and PS are
orthogonal.

The projector PS defined above is an invariant of the secret key registers after a signing
query but no hash queries.

▶ Lemma 14. Let B Signsk be the blinded signing oracle for the Lamport OTS and let |ψ0⟩
be the adversary’s state before the Sign query. If there are no hash queries, PSB Signsk |ψ0⟩ =
B Signsk |ψ0⟩.

The invariant specified by PS approximately holds also after hash queries.

▶ Lemma 15. The invariant projector PS defined above and the random oracle unitary Uh

defined in the Quantum independent world approximately commute, i.e.,
∥∥[Uh, PS ]

∥∥
∞≤ δL(n),

where δL(n) = 32l/2n/2 is negligible in n.

In the following sections, we use the above lemmas to analyze the situation where the
adversary makes q0 hash queries before the Sign query and q1 hash queries after. Maximizing
the resulting bound under the condition q0 + q1 = q gives Theorem 11.

4.3 Hash queries before Sign query
In this section, we study the impact of hash queries before Sign query on the secret key
register S. Our main goal is to show that, for a moderate number of queries to the random
oracle, no adversary can learn a significant amount of information about the secret key.
Therefore, she cannot produce a valid forgery except with a small probability.

Let |ψ⟩XY MΣE be adversary’s initial state before any queries (see Table 1 for a summary
of registers and their roles). Before any query is performed, the whole secret key register S
is in the uniform superposition state |Φ⟩⊗2l. Assume the adversary A0 queries the random



C. Majenz, C. M. Manfouo, and M. Ozols 21:13

Table 1 Registers used in the analysis.

Register Meaning
X adversary’s input
Y adversary’s output
M Sign query input
Σ Sign query output
E adversary’s internal workspace
S secret key

oracle q0 times before querying the signing oracle. If V i
XY E denotes the unitary she performs

after the i-th query, the final adversary state after q0 hash queries is

|ψ0⟩XY MΣES = V q0
XY E(Uh)XY SV

q0−1
XY E · · ·V

2
XY E(Uh)XY SV

1
XY E(Uh)XY S |ψ⟩XY MΣE |Φ⟩⊗2l

S

(6)

where Uh is the random oracle unitary that answers hash queries. The following lemma
shows that secret key registers of this state are still close to the uniform superposition.

▶ Lemma 16. In the Quantum independent world, without querying the B Sign oracle, hash
queries leave the state of the secret key registers approximately unchanged:∥∥Φ⊗2l

S |ψ0⟩XY MΣES − |ψ0⟩XY MΣES

∥∥
2 ≤ 2lq0ϵL(n).

Proof. We want to show that after q0 hash queries, the state of the secret key register S is
still approximately in the uniform superposition state |Φ⟩⊗2l. Let us abbreviate the overall
unitary in Equation (6) by WXY ES . Since the only operations in WXY ES that act on the S
register are the hash queries Uh, and they are in fact controlled by the S register, we have
WXY ESΦ⊗2l

S = WXY ES . Using this, we get∥∥Φ⊗2l
S |ψ0⟩XY MΣES − |ψ0⟩XY MΣES

∥∥
2

=
∥∥Φ⊗2l

S WXY ES |ψ⟩XY MΣE |Φ⟩⊗2l
S −WXY ESΦ⊗2l

S |ψ⟩XY MΣE |Φ⟩⊗2l
S

∥∥
2 (7)

=
∥∥[Φ⊗2l

S ,WXY ES

]
|ψ⟩XY MΣE |Φ⟩⊗2l

S

∥∥
2 (8)

≤
∥∥[Φ⊗2l

S ,WXY ES

]∥∥
∞

∥∥|ψ⟩XY MΣE |Φ⟩⊗2l
S

∥∥
2︸ ︷︷ ︸

=1

(9)

=
∥∥∥[Φ⊗2l

S , V q0
XY E(Uh)XY SV

q0−1
XY E · · ·V

2
XY E(Uh)XY SV

1
XY E(Uh)XY S

]∥∥∥
∞

(10)

≤ q0
∥∥[Φ⊗2l

S , (Uh)XY S

]∥∥
∞ +

q0∑
i=1

∥∥[Φ⊗2l
S , V i

XY E

]∥∥
∞, (11)

where Equation (9) follows from the definition of the operator norm and the last inequality
follows from Lemma 4.

The first term in Equation (11) can be bounded as follows:∥∥[Φ⊗2l
S , (Uh)XY S

]∥∥
∞ ≤

∑
i∈{1,...,l}
j∈{0,1}

∥∥∥[ΦSj
i
, (Uh)XY S

]∥∥∥
∞
≤ 2lϵL(n),

which follows by first applying Lemma 4 and then Lemma 12. Since Φ⊗2l
S and V i

XY E act on
different registers, they commute and the second term in Equation (11) vanishes. Hence∥∥Φ⊗2l

S |ψ0⟩XY MΣES − |ψ0⟩XY MΣES

∥∥
2 ≤ 2lq0ϵL(n). ◀
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4.4 Query to the signing oracle
Now that we have control over the advantage an adversary can gain from making hash queries
before the sign query, we need to analyze the possible advantage from hash queries after the
sign query and bound the overall success probability using Lemma 16.

A crucial property of the Lamport OTS when analyzing classical security is that for all
messages m that have not been queried, there exists an index j such that smj

j is hidden from
the adversary by the one-wayness of the used hash function. In blind-unforgeability (for
classical adversaries), this property holds for all blinded messages. In the setting of quantum
queries, we have to track this property in superposition while the adversary is making hash
queries after the sign query. As this is complicated by the “for all”-quantifier, we begin by
analyzing the case where the adversary makes no hash queries after the sign query to ease
the reader into our proof technique.

The discussion in this section does not concern the random oracle, so we absorb the
random oracle query registers XY into E for the purpose of this section. In the 1-BlindForge
game, an adversary A is allowed to query the Sign-oracle at most once to produce a valid
forged message-signature pair (m∗, σ∗). To analyze the interaction between A and the signing
oracle, we will break it into the following steps:

|ψ0⟩MΣBES
B Signsk7−−−−−→ |ψ1⟩MΣBES

UMΣE7−−−−→ |ψ2⟩MΣBES
⟨m∗|M7−−−−→ |ψ3(m∗)⟩ΣBES

⟨σ∗|Σ7−−−−→ |ψ4(m∗, σ∗)⟩BES .

They correspond to applying the Sign-oracle and an arbitrary unitary UMΣE , followed by
measuring the message and signature registers M and Σ. Let us now analyze these steps in
more detail and write down the corresponding quantum states.

First, A prepares her input state as an arbitrary superposition of messages:

|ψ0⟩MΣBES =

 ∑
m∈{0,1}l

∑
σ∈({0,1}n)l

∑
b∈{0,1}

κmσb|m⟩M |σ⟩Σ|b⟩B |αmσb⟩E

⊗ (|Φ⟩⊗2l
)

S

(12)

where the B register indicates whether the message is blinded or not (|1⟩B for blinded and
|0⟩B for un-blinded). The adversary then supplies this to the Sign oracle which produces the
following signed state:

|ψ1⟩MΣBES = B Signsk |ψ0⟩MΣBES = |ψ1
1⟩MΣBES + |ψ0

1⟩MΣBES (13)

where superscripts 1 and 0 refer to blinded (B) and un-blinded (Bc) messages, respectively:

|ψ1
1⟩MΣBES =

∑
m∈B

∑
σ∈({0,1}n)l

κmσ1|m⟩M |σ⟩Σ|1⟩B |αmσ1⟩E |Φ⟩⊗2l
S ,

|ψ0
1⟩MΣBES =

∑
m∈Bc

∑
σ∈({0,1}n)l

1
2nl/2

∑
s∈({0,1}n)l

κmσ0|m⟩M |σ ⊕ s⟩Σ|0⟩B |αmσ0⟩E |Ω(s,m)⟩S ,

where m = m1 . . .ml, σ = σ1 . . . σl, and

|Ω(s,m)⟩S = |sm1
1 ⟩Sm1

1
· · · |sml

l ⟩Sml
l
|Φ⟩

S
m̄1
1
· · · |Φ⟩

S
m̄l
l

. (14)

Once the adversary A gets the signed state |ψ1⟩MΣBES , she performs some operations
with the intention of producing a forgery message m∗. Intuitively, those operations can
be considered as applying an arbitrary unitary UMΣE to |ψ1⟩MΣBES . Let us denote the
resulting state by |ψ2⟩MΣBES = UMΣE |ψ1⟩MΣBES .
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Next, A measures the registers M and Σ to produce a forgery candidate (m∗, σ∗),
collapsing the state to |ψ4(m∗, σ∗)⟩BES = ⟨σ∗|Σ|ψ3(m∗)⟩ΣBES = ⟨m∗|M ⟨σ∗|Σ|ψ2⟩MΣBES .
Similar to Equation (13), we can split the final (unnormalized) post-measurement state as

|ψ4(m∗, σ∗)⟩BES = |ψ1
4(m∗, σ∗)⟩BES + |ψ0

4(m∗, σ∗)⟩BES

where |ψi
4(m∗, σ∗)⟩BES = ⟨m∗|M ⟨σ∗|ΣUMΣE |ψi

1⟩MΣBES . We can rewrite |ψ0
4⟩BES as

|ψ0
4(m∗, σ∗)⟩BES =

∑
m∈Bc

1
2nl/2

∑
s∈({0,1}n)l

|η(m, s)⟩BE |Ω(s,m)⟩S (15)

where only |η(m, s)⟩BE depends on m∗ and σ∗:

|η(m, s)⟩BE =
∑

σ∈({0,1}n)l

κmσ0⟨m∗|M ⟨σ∗|ΣUMΣE |m⟩M |σ ⊕ s⟩Σ|0⟩B |αmσ0⟩E .

Finally, the adversary A outputs the measurement outcome (m∗, σ∗) as a forged message-
signature pair. The probability of producing this pair is ∥|ψ0

4(m∗, σ∗)⟩BES∥2.
The next step is to analyse the probability that A’s forgery candidate (m∗, σ∗) is correct.

For that purpose, we consider two cases. The first case, namely when m∗ /∈ B, is trivial since
then A has lost the BlindForge experiment because m∗ must be blinded by definition. The
rest of this section is devoted to analyzing the second case.

If m∗ ∈ B, the forged message m∗ has not been signed since the blinded signing oracle
signs only un-blinded messages. Hence, for any message m /∈ B, there exists at least one
index i ∈ {1, . . . , l} such that mi ≠ m∗

i . This implies that for some index i∗ ∈ {1, . . . , l}
the register Sm∗

i∗
i∗ has not been used for the signature of the adversary’s queried message

and is therefore still in the uniform superposition state |Φ⟩. Note that this holds only in
superposition over m. Indeed, i∗ depends on m and is in general different for each term of
the superposition.

We break that superposition by analyzing a modified BlindForge experiment, where an
additional measurement, the Q-measurement defined in Equation (5), is performed on the
secret key register after the adversary has output their forgery, but before the secret key
register is measured to actually sample the secret key as required in the Quantum independent
world. Since the measurement has few outcomes, its effect on the adversary’s winning
probability is limited and can be bounded by the pinching lemma (Lemma 3).

If the Q-measurement yields outcome i∗ ∈ {1, . . . , l}, then the secret key sub-register
Smi∗

i∗ is in uniform superposition, and the adversary is bound to fail as σ∗ is independent of
the secret key string smi∗

i∗ (the result of measuring Smi∗
i∗ ). Hence, it remains to analyze the

outcome l + 1 that corresponds to the projector Qm
l+1 = (Φ⊥)⊗l, see Equation (5), where

Φ⊥ = I − |Φ⟩⟨Φ| projects onto the orthogonal complement of |Φ⟩.
For the rest of our analysis, we fix the message m∗ and focus on the un-blinded term

|ψ0
4(m∗, σ∗)⟩BES whose expression is given by Equation (15). Given that for each m /∈ B

there is at least one index i ∈ {1, . . . , l} such that mi ̸= m∗
i , we define i(m) = min{j ∈

{1, . . . , l} | mj ̸= m∗
j} as the smallest index for which m ̸= m∗. Intuitively, it is the

first sub-register of S that still remains in uniform superposition. In the following, let
S(m) := Sm1

1 · · ·Sml

l . We want to split the first sum in Equation (15) into l parts, one
for each value of i(m), so that we can easily evaluate (Φ⊥)⊗l

S(m̄)|ψ
0
4(m∗, σ∗)⟩BES . For that
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purpose, we define Bc
j = {m ∈ Bc | i(m) = j} and note that

⋃l
j=1 B

c
j = Bc. We can now

rewrite |ψ0
4(m∗, σ∗)⟩BES as

|ψ0
4(m∗, σ∗)⟩BES =

l∑
j=1

∑
m∈Bc

j

1
2nl/2

∑
s∈({0,1}n)l

|η(m, s)⟩BE |sm⟩S(m)|Φ⟩⊗l
S(m̄)

=
l∑

j=1
|η̂(m∗, σ∗, j)⟩BES{(j,m∗

j
)}c |Φ⟩

S
m∗

j
j

, (16)

where we absorbed all registers except for Sm∗
j

j into the first system. The remaining register
S

m∗
j

j is still in the uniform superposition |Φ⟩ since j = i(m) is the smallest index such that
mj ≠ m∗

j . Applying Ql+1 hence clearly maps the state to zero, and so the situation where
none of the secret key sub-registers relevant for the verification of the forged signature σ∗ is
in state |Φ⟩ can ever occur.

Now, we execute the last part of the BlindForge experiment which consists of checking
the correctness of the forged signature σ∗. For this purpose, we perform a computational
basis measurement on the entire secret key register S to sample the strings sj

i . As mentioned
above, the probability of (m∗, σ∗) being valid is at most 2−n as smi

i is independent of σ∗
i ,

where i is the outcome of the Q-measurement. Applying the pinching lemma (Lemma 3) to
relate the success probabilities with and without Q-measurement, and Lemma 7 for w = 2 to
relate the success probabilities in the Real world and the Quantum independent world (see
details in the full version [23]), we arrive at

Pr
[
A wins BlindForge

]
≤ l + 1

2n
+ 12l2 · 2−n. (17)

Hence, the success probability of the adversary A in winning the BlindForge experiment game
is at most (l + 1)/2n, which is negligible since l is polynomial in n, and n is large enough.
We conclude that a Sign query does not help the adversary to get significant information
about the secret key.

4.5 Hash queries after Sign query
To complete the proof of Theorem 11 and bound the success probability an adversary can
achieve in the BlindForge game with a given number of queries, it remains to analyse hash
queries after Sign query. In this case, it is not obvious how to track the secret key invariant
(the fact that there is at least one unused part of the secret key that is relevant for the forged
signature). Therefore we use a special projector PS that projects onto the subspace of the
secret key register that is consistent with a single blinded sign query and no hash queries. If
the final adversary state after producing the forgery candidate is in the image of PS , then
according to Lemma 13 the outcome l + 1 corresponding to the situation when none of the
secret key sub-registers useful for the forged signature is in state |Φ⟩ can never occur. We
thus want to show that adversary’s final state is approximately in the range of PS .

If there are no hash queries before the Sign query, then from Lemma 14 the adversary
state after the Sign query remains completely in the range of PS , which means that the
outcome l+ 1 cannot occur. That is, PS |ψ1⟩ = PSB Signsk |ψ0⟩ = B Signsk |ψ0⟩ = |ψ1⟩ where
|ψ0⟩ and |ψ1⟩ are adversary’s states immediately before and after the Sign query.

Now, assuming there are hash queries before the Sign query, since the projector PS and
the random oracle unitary Uh approximately commute by Lemma 15, it follows that hash
queries before Sign query give no significant information to the adversary about the invariant
of the secret key register.
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Suppose there are hash queries after the Sign query and let us examine in detail what
happen in this case. From the previous case, we know that the adversary’s state directly after
the Sign query is |ψ1⟩MΣXY ES . Just like for hash queries before the Sign query, suppose that
the adversary makes q1 hash queries after querying the signing oracle. Let (W i

XY E)i=1,...,q1

be the unitaries applied between the hash queries. Then, let

|ψ′
1⟩MΣXY ES = (Uh)XY SW

q1
XY E(Uh)XY SW

q1−1
XY E · · ·W

2
XY E(Uh)XY SW

1
XY E |ψ1⟩MΣXY ES

be the adversary’s state after q1 hash queries and before performing some unitary operation
UMΣE on the post-hash-queried state, or any measurement leading to the forgery candidate.

▶ Lemma 17. In the Quantum independent world, the state |ψ′
1⟩MΣXY ES right before the

adversary’s measurement determining the forgery is applied is approximately in the range of
PS:∥∥PS |ψ′

1⟩MΣXY ES − |ψ′
1⟩MΣXY ES

∥∥
2 ≤ q1δL(n) + 4lq1ϵL(n) = q1(δL(n) + 4lϵL(n)). (18)

The proof uses commutator arguments via Lemma 15 akin to the ones used in the proof
of Lemma 16, and can be found in the full version [23].

Recall that, just like in Section 4.4, we want to analyze the modified BlindForge experiment
where the Q-measurement is applied after the adversary has output a forgery, but before
the secret key register is measured to sample the secret key and verify the forgery. It thus
remains to show that due to the fact that |ψ′

1⟩ is approximately in the range of PS , the
outcome l + 1 only occurs with small probability.

To that end, we define a new measurement given by projectors Q̃i that performs the
Q-measurement controlled on the content of the M -register, i.e., Q̃i =

∑
m |m⟩⟨m|M ⊗Qm

i .
Now, observe that applying the Q-measurement after the adversary has output a forgery is
equivalent to applying the Q̃-measurement right before the adversary’s measurement that
produces the forgery. If m∗ ∈ B, the outcome l + 1 occurs only with small probability in the
modified BlindForge experiment and it suffices to prove the following lemma.

▶ Lemma 18. In the Quantum independent world, for blinded messages, the outcome l +
1 occurs with small probability:

∥∥Q̃l+1ΠB
M |ψ′

1⟩MΣXY ES

∥∥
2 ≤ q1(δL(n) + 4lϵL(n)), ΠB =∑

m∈B |m⟩⟨m|.

The proof is a simple application of Lemma 13 and can be found in the full version [23].
We are now ready to combine our lemmas and prove Theorem 11.

Proof of Theorem 11. We begin by bounding the success probability of the adversary in
the modified BlindForge experiment, in the Quantum independent world. Abbreviating the
modified BlindForge experiment as MBF and writing “outcome i” to denote the event that
the Q-measurement yields outcome i,

Pr
QI,MBF

[A succeeds] =
l+1∑
i=1

Pr
QI,MBF

[A succeeds ∧ outcome i]

=
l∑

i=1

Pr
QI,MBF

[A succeeds ∧ outcome i] + Pr
QI,MBF

[A succeeds ∧ outcome l + 1]

≤
l∑

i=1

Pr
QI,MBF

[outcome i] × 2−n + Pr
QI,MBF

[outcome l + 1] ≤ 2−n + q2(δL(n) + 4lϵL(n))2,
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where the first inequality uses the fact that σ∗ and s
m∗

i
i are independent conditioned on

outcome i, and the last inequality uses the square of the inequality from Lemma 18.
Exactly as in the simplified case in Section 4.4, we can bound the success probability in

the actual BlindForge experiment using the pinching lemma (Lemma 3):

Pr
QI,BlindForge

[A succeeds] ≤ (l + 1)
(

2−n + q2(δL(n) + 4lϵL(n)
)2
)
.

Finally, plugging in the functions ϵL(n) and δL(n) from Lemmas 12 and 15, and applying
Lemma 7 for w = 2, we obtain

Pr
BlindForge

[A succeeds] ≤ (l + 1)
(

2−n + q2
(

32l
2n/2 + 4l 6

2n/2

)2
)

+ 12l22−n

≤ l2 · 2−n
(
3137q2(l + 1) + 12

)
. ◀

5 One-time BU security of the Winternitz OTS

The Lamport OTS that we analyzed in the last section is, in some sense, a special case
of the Winternitz OTS. Indeed, the Winternitz scheme for w = 2 is fairly similar to the
Lamport OTS, except that the public key is used to sign the bits that are equal to 1, which
is compensated for by the checksum encoding. As a result, the analysis of the Winternitz
OTS in the QROM is, in a similar sense, a generalization of the one of the Lamport OTS.

Before getting started, we give and overview of our strategy. In this section, we use the
same register labels as in Table 1, except that the secret key register S is now replaced by
the hash chain register Γ. The security proof follows a similar outline as in the Lamport
case. Some differences are as follows. After a Winternitz signing query, the adversary does
not have any information about the part of the hash chain below the queried position, and
this represents the invariant of the hash chain. Quantumly, this invariant has to be tracked
in superposition like for the Lamport scheme, requiring the definition of a new and slightly
more involved invariant projector (see details in the full version [23]).

▶ Theorem 19. The Winternitz OTS is 1-BU secure if the function chain C is modeled as
a quantum-accessible random oracle. More precisely, let A be an adversary that plays the
BlindForge game for the Winternitz OTS, making a total of q queries to the random oracle.
Then A succeeds with a probability bounded as

Pr[A wins BlindForge] ≤ 2−n
[(

1 + q2l2(w − 1)2(20w − 4)2) (l + 1) + 3w2l2
]

(19)
≤ 800w4q2l3 · 2−n. (20)

Here, l is the length of the encoded message in w-ary, see Equation (2), w ≥ 2 is the
Winternitz parameter, and the simplified bound in the last line holds for q > 0.

The main difference between the analyses of the Lamport and Winternitz OTS is as
follows. For the Lamport OTS, the public key is obtained from the private key by applying
a hash function once. For the Winternitz OTS, on the other hand, the secret and public
keys consist of the start and end points of length-w hash chains, respectively. Thus, while
following the same proof strategy, the Q projectors as well as the invariant projector P needs
to be defined differently. Thus, we start our analysis by describing the Q projectors and the
invariant projector for the Winternitz OTS.
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The Q-measurement for the Winternitz OTS. The Winternitz signature of a message
consists of l hash chain elements. In complete analogy to Equation (5) in Section 4.1, we
define a measurement whose projectors correspond, respectively, to the events that the i-th
hash chain element relevant for the forged signature is in state |Φ⟩ and none of them is in
state |Φ⟩:

Qb∗

i∗ = Φ⊥
Γ

b∗
1

1

⊗ · · · ⊗ Φ⊥

Γ
b∗

i∗−1
i∗−1

⊗ Φ
Γ

b∗
i∗

i∗
, Qb∗

l+1 =
l⊗

i=1
Φ⊥

Γ
b∗

i
i

(21)

where i∗ ∈ {1, . . . , l}, b∗
i = bi(m∗) and l is the number of blocks of the message and the

checksum, see Equation (2). These operators act as I on all other registers Γj
i not specified.

The Invariant projector for the Winternitz OTS. In this section, we define the invariant
projector PΓ, the analogue of PS for the Winternitz OTS. We also state several of its
properties. Just like in Section 4.2, for any string α = (αj

i )j=0,...,w−2
i=1,...,l we define an associated

projector Φ(α) on the whole hash chain (except for the last) register Γ. This is a complete
set of projectors:

∑
α∈{0,1}l(w−1) Φ(α)Γ = IΓ.

Since we are interested in the unused part of the hash chain register, we need to filter
those α’s for which Γj

i is in state |Φ⟩. By construction of the checksum, if a block b of a
message m is computed, then in the block b′ of any other message m′ there exists at least
one position i at which b′

i < bi, 1 ≤ i ≤ l. Therefore, since the blinded signing oracle signs
at most a single un-blinded message m ∈ Bc, the state after the signing oracle call can be
written as a superposition of states where, for some un-blinded message m′ ∈ Bc, b′

i < bi for
all i. The latter implies that the hash chain registers corresponding to those b′

i are still in
the uniform superposition |Φ⟩, for all i. Thus, we collect all strings α that are consistent
with no blinded messages having been signed in the set

B̂c =
⋃

m∈Bc

{
α ∈ {0, 1}l(w−1)

∣∣∣ αj
i = 0 for all i = 1, . . . , l and j < bi(m)

}
. (22)

Finally, we define the invariant projector as PΓ =
∑

α∈B̂c
Φ(α)Γ.

Using these definitions of the Qi and PΓ, a set of lemmas similar to Lemmas 12–15 forms
the basis of the BU security proof for the Winternitz OTS. In fact, Lemma 12 is a special
case of Lemma 20 where the register Γ is replaced by S and we set w = 2 (see Appendix A.1
of [23] for proof). Lemma 13 holds for the new projectors Ql+1 and PΓ by construction.
Finally, Lemmas 14 and 15 need to be changed slightly for the Winternitz OTS and are
stated below. Lemmas 21–23 are proved in the full version [23].

▶ Lemma 20. Let Uh be the random oracle unitary for any given function h (see Section 3)
and let Φ = |Φ⟩⟨Φ| denote the projector onto the uniform superposition |Φ⟩. Furthermore, let
Γ≤j

i = Γ0
i . . .Γ

j
i and ΦΓ≤j

i
=
(
Φ⊗j

)
Γ≤j

i

. Then, for any i′ ∈ {1, . . . , l} and j′ ∈ {0, . . . , w− 2},∥∥[(Uh)XY Γ,ΦΓ≤j′
i′

]∥∥
∞ ≤ 6(w − 1)/2n/2 = ϵW (n) is negligible in n.

▶ Lemma 21. Let B Signsk be the blinded signing oracle for the Winternitz OTS, and let |ψ0⟩
be the adversary’s state before the Sign query. If there are no hash queries, then after making
a single Sign query the adversary’s state |ψ1⟩ = B Signsk |ψ0⟩ is completely in the range of the
invariant projector PΓ defined below Equation (22). That is, PΓB Signsk |ψ0⟩ = B Signsk |ψ0⟩.

▶ Lemma 22. Let m∗ ∈ B and b∗ = b(m∗) the concatenation of m∗ and its checksum in
w-ary. Then the projectors Qb∗

l+1 defined in Equation (21) and PΓ are orthogonal, that is
Qb∗

l+1PΓ = 0.
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▶ Lemma 23. Let PΓ and Uh be, respectively, the invariant projector for the Winternitz
OTS and the random oracle unitary defined with respect to the Quantum independent world.
If there are hash queries after the Sign query, then

∥∥[Uh, PΓ]
∥∥

∞≤ δW (n) where δW (n) =
8l(w + 1)(w − 1)/2n/2.

The proof of Theorem 19 is based on the preceding lemmas and follows the same outline
as the proof for the Lamport OTS. It can be found in the full version [23].

6 Tightness

The notion of blind-unforgeability does not have as close of a relation to the intuitive security
property it strives to model as EU-CMA.4 The concrete security bounds, however, arguably
nevertheless provide an indication of concrete security levels. It is hence an interesting
question whether the bounds proven in Section 4 above and in Section 5 of the full version
[23] are tight. In the following, we present an attack against the BU security of the Lamport
scheme in the QROM and analyze its success probability to show that the bound in Theorem 11
is tight up to a factor l in the number of queries. The attack generalizes to the Winternitz
scheme in a straight-forward manner.

We begin by describing a straightforward classical attack based on search. To attack
the BU security of the Lamport scheme, choose a blinding probability of 1/2. Now make q
distinct queries to the random oracle to search for a preimage of one of the 2l public key
strings. This succeeds with probability

psearch(q) = 1− (1− 2l · 2−n)q ≥ 2ql · 2−n. (23)

Suppose this search succeeded, finding a preimage y∗ of pj∗

i∗ . Then chose m ∈ {0, 1}l such that
mi∗ = j̄∗ and query the oracle to obtain a signature for m. This succeeds with probability
1/2. Now output m′ obtained from m by flipping the i∗th bit, and σ′ obtained from σ by
replacing σi∗ with y∗. Note that m′ is blinded with probability 1/2, and y∗ is equal to
the correct secret key string sj∗

i∗ with constant probability. In summary, the entire attack
succeeds with constant probability if q = Ω(2n · l−1).

This search step can now be replaced by a Grover search in the QROM. Using the analysis
of Grover’s algorithm for multiple targets from [9], together with a basic analysis of the
number of targets (which follows a binomial distribution), a constant success probability can
be achieved if q = Ω(2n/2 · l−1/2). To compare this result with Theorem 11, note that the
inequality in Equation (4), implies that to achieve a constant success probability, at least
q ≥ C · 2n/2 · l−3/2 are necessary for some constant C, i.e. the upper and lower bounds on the
number of queries the optimal attack requires indeed differ by a factor of l up to constant
factors. For the Winternitz scheme, the bounds differ by a factor of w2l.
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Abstract
A Proof of Sequential Work (PoSW) allows a prover to convince a resource-bounded verifier that the
prover invested a substantial amount of sequential time to perform some underlying computation.
PoSWs have many applications including time-stamping, blockchain design, and universally verifiable
CPU benchmarks. Mahmoody, Moran, and Vadhan (ITCS 2013) gave the first construction of
a PoSW in the random oracle model though the construction relied on expensive depth-robust
graphs. In a recent breakthrough, Cohen and Pietrzak (EUROCRYPT 2018) gave an efficient PoSW
construction that does not require expensive depth-robust graphs.

In the classical parallel random oracle model, it is straightforward to argue that any successful
PoSW attacker must produce a long H-sequence and that any malicious party running in sequential
time T − 1 will fail to produce an H-sequence of length T except with negligible probability. In this
paper, we prove that any quantum attacker running in sequential time T − 1 will fail to produce
an H-sequence except with negligible probability – even if the attacker submits a large batch of
quantum queries in each round. The proof is substantially more challenging and highlights the power
of Zhandry’s recent compressed oracle technique (CRYPTO 2019). We further extend this result to
establish post-quantum security of a non-interactive PoSW obtained by applying the Fiat-Shamir
transform to Cohen and Pietrzak’s efficient construction (EUROCRYPT 2018).
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1 Introduction

As we make progress towards the development of quantum computers, it is imperative to
understand which cryptographic primitives can be securely and efficiently instantiated in
a post-quantum world. In this work, we consider the security of proofs of sequential work
against quantum adversaries.

A proof of sequential work (PoSW) [37, 23, 3, 26] is a protocol for proving that one spent
significant sequential computation work to validate some statement χ. One motivation for a
proof of sequential work is in time-stamping, e.g., if Bob can produce a valid proof πχ that
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N sequential steps were spent to validate χ, then Bob can prove that he must have known
about χ at least time Ω(N) seconds in the past. A verifier should be able to validate the
proof πχ quickly, i.e., in time polylog(N).

Mahmoody et al. [37] gave the first construction of a proof of sequential work in the
random oracle model. Their construction was based on labeling a depth-robust graph,
i.e., given a random oracle H and a directed acyclic graph G = (V = [N ], E) with N

nodes and an initial input x, we can compute labels ℓ1, . . . , ℓN , where the label of the
source node is ℓ1 = H(χ, 1, x) and an internal node v with parents v1, . . . , vδ has label
ℓv = H(χ, v, ℓv1 , . . . , ℓvδ

).
The prover commits to labels ℓ′

1, . . . , ℓ
′
N (a cheating prover might commit to the wrong

labels) and then the verifier selects a random subset S ⊂ [N ] of |S| = c challenge nodes.
For each challenge node v ∈ S with parents v1, . . . , vδ, the prover reveals ℓ′

v along with
ℓ′

v1
, . . . , ℓ′

vδ
and the verifier checks that v is locally consistent, i.e., ℓ′

v = H(χ, v, ℓ′
v1
, . . . , ℓ′

vδ
).

If we let R denote the subset of locally inconsistent nodes, then the verifier will accept with
probability at most (1− |R|/N)c.

Mahmoody et al. [37] selected G such that G was ϵ-extremely depth-robust1, meaning
that for any set R ⊆ [N ] of locally inconsistent nodes, there is a directed path of length
T + 1 = (1− ϵ)N −R. This path P = v0, . . . , vT corresponds to an H-sequence of length T

where an H-sequence is any sequence of strings x0, . . . , xT with the property that H(xi) is
a substring of xi+1 for each i < T . Note that the labels ℓ′

v0
, . . . , ℓ′

vT
have this property. In

the classical parallel random oracle model (pROM), it is relatively straightforward to prove
that any algorithm running in T − 1 rounds and making at most q queries in total fails
to produce an H-sequence except with probability Ω̃

(
q22−λ

)
when H : {0, 1}δλ → {0, 1}λ

outputs binary strings of length λ [23].
The ϵ-extreme depth-robust graphs used in the construction of Mahmoody et al. [37]

were quite expensive, having indegree δ = Ω̃(logN). Alwen et al. [7] showed how to construct
ϵ-extreme depth-robust graphs with indegree just O (logN) though the hidden constants
were quite large. Cohen and Pietrzak [23] gave an efficient (practical) construction that
avoids depth-robust graphs entirely by cleverly modifying the Merkle tree structure to obtain
a graph G on N = 2n+1 − 1 nodes2, for any integer n ≥ 1.

Both proofs of sequential work can (optionally) be converted into a non-interactive proof
by applying the Fiat-Shamir paradigm [28], i.e., given a commitment c′ to labels ℓ′

1, . . . , ℓ
′
N

we can use public randomness r = H(χ,N+1, c′) to sample our set of challenge nodes S. The
non-interactive version could be useful in cases where a prover wants to silently timestamp
a statement χ without even signaling that s/he might have a statement important enough
to timestamp, e.g., a researcher who believes they might resolved a famous open problem
may wish to timestamp the discovery without signaling the community until s/he carefully
double checks the proof.

In all of the above constructions, security relies on the hardness of computing H-sequences
of length T in sequential time T − 1. While this can be readily established in the classical
parallel random oracle model, proving that this task is in fact hard for a quantum attacker
is a much more daunting challenge. As Boneh et al. [16] pointed out, many of the convenient

1 A DAG G is said to be ϵ-extremely depth-robust if it is (e, d)-depth robust for any e, d > 0 such that
e + d ≤ (1 − ϵ)N where N is the number of nodes in G. Recall that a DAG G = (V, E) is (e, d)-depth
robust if for any subset S ⊆ V with |S| ≤ e there exists a path of length d in G − S.

2 The graph G is “weighted” depth robust. In particular, there is a weighting function w : V → R≥0
with the property that

∑
v

w(v) ∈ O (N log N) and for any subset S ⊆ V with sufficiently small weight∑
v∈S

w(v) ≤ cN the DAG G − S contains a path of length Ω(N).
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properties (e.g., extractability, programmability, efficient simulation, rewinding, etc.) that
are used in classical random oracle security proofs no longer apply in the quantum random
oracle model (qROM). An attacker in the (parallel) quantum random oracle model is able
to submit entangled queries, giving the attacker much more power. For example, given y a
quantum attacker can find a preimage x′ such that H(x′) = y with just O

(
2λ/2)

quantum
random oracle queries using Grover’s algorithm. By contrast, a classical attacker would
need at least Ω(2λ) queries to a classical random oracle. Similarly, a quantum attacker can
find hash collisions with at most O

(
2λ/3)

queries, while a classical attacker requires Ω(2λ/2)
queries. In this paper, we explore the post-quantum security of proofs of sequential work in
the parallel quantum random oracle model. We aim to answer the following questions:

Can a quantum attacker running in T − 1 sequential rounds produce an H-sequence
of length T?

Can a quantum attacker running in time T = (1−α)N produce a valid non-interactive
proof of sequential work with non-negligible probability?

1.1 Our Contributions
We answer these questions in the negative, thus confirming the security of proof of sequential
work schemes in a post-quantum world. We first prove that any quantum attacker making
N − 1 rounds of queries cannot produce an H-sequence of length N , except with negligible
probability.

▶ Definition 1 (H-Sequence). An H-sequence x0, x1, . . . , xs ∈ {0, 1}∗ satisfies the property
that for each 1 ≤ i ≤ s, there exist a, b ∈ {0, 1}∗ such that xi = a||H(xi−1)||b. For indexing
reasons, we say such an H-sequence has length s (even though there are s+ 1 variables xi).

In the classical random oracle model (ROM), it is straightforward to argue that any PoSW
prover must find a long H-sequence to pass the audit phase with non-negligible probability.
Thus, this result already provides compelling evidence that proofs of sequential work are
post-quantum secure in the parallel random oracle model.

Next we consider a non-interactive proof of sequential work applying the Fiat-Shamir
transform to the efficient construction of Cohen and Pietrzak [23], and we prove that this
construction is secure in the quantum parallel random oracle model. In particular, we show
that any attacker running in sequential time T = (1− α)N will fail to produce a valid proof
πχ for any statement χ ∈ {0, 1}λ.

While Cohen and Pietrzak [23] proved analogous results in the classical random oracle
model, we stress that from a technical standpoint, proving security in the quantum random
oracle model is significantly more challenging. In general, there is a clear need to develop new
techniques to reason about the security of cryptographic protocols in the quantum random
oracle model. Most of the techniques that are used in classical random oracle model do
not carry over to the (parallel) quantum random oracle model [16]. For example, if we are
simulating a classical attacker, then we can see (extract) all of the random oracle queries
that the attacker makes, while we cannot observe a quantum query without measuring it,
which would collapse the attacker’s quantum state might significantly alter the final output.

Warm-Up Problem: Iterative Hashing

As a warm-up, we first prove an easier result in Theorem 2 that an attacker cannot compute
HN (x) in sequential time less than N − 1 in the parallel quantum random oracle model,
where a similar result was previously proved by Unruh [39] in the (non-parallel) quantum
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random oracle model. Along the way we highlight some of the key challenges that make it
difficult to extend the proof to arbitrary H-sequences.

▶ Theorem 2. Given a hash function H : {0, 1}∗ → {0, 1}λ and a random input x, any
quantum attacker that makes up to q queries in each of N − 1 sequential steps can only
compute HN (x) with probability at most N2

2λ + 1
2λ−N

+
√

48λN4q2T
2λ/2 in the quantum parallel

random oracle model.

The proof of Theorem 2 is straightforward and we defer it to the full version. Intuitively,
iteratively computing HN (x) induces an H-sequence x0, x1, . . . , xn with x0 = x, xN = HN (x)
and xi+1 = H(xi). One can easily define a sequence of indistinguishable hybrids where in
the last hybrid the final output xN = HN (x) = H(xN−1) is information theoretically hidden
from the attacker. In general, in hybrid i, for each j ≤ i, the value xj = Hj(x) = H(xj−1)
remains information theoretically hidden until round j. In particular, we replace the random
oracle H with a new stateful oracle H′

i(·) that is almost identical to H(·), except that for
any j ≤ i if the query H(xj) is submitted to H′(·) before round j then the response will be a
random unrelated λ-bit string instead of H(xj).

We can argue indistinguishability of hybrids i using a result of [10] because if j > i, then
xj is information theoretically hidden up until round i and the total query magnitude of
xj = Hj(x) during round i is negligible. Here, the total query magnitude of a string xj

during round i is defined as the sum of squared amplitudes on states where the attacker is
querying string xj . It then follows that except with negligible probability a quantum attacker
cannot compute HN (x). The argument does rely on the assumption that the running time
T of the attacker is bounded, e.g., T ≤ 2cλ for some constant c > 0.

Our main results are summarized in Theorem 3 and Theorem 4. We show that quantum
attackers running in at most N − 1 sequential steps cannot find an H-sequence of length
N with high probability. We also show that for any quantum attackers making at most q
quantum queries to the random oracle H over at most (1− α)N rounds will only be able to
produce a valid PoSW with negligible probability.

Technical Challenges: Iterative Hashing vs H-Sequences

Proving that an attacker cannot find an H-sequence of length N in N − 1 rounds of parallel
queries is significantly more challenging. One key difference is that there are exponentially
many distinct H-sequences of length N that are consistent with the initial string x0. By
contrast, when we analyze a hash chain, each value on the chain Hj(x0) can be viewed as
fixed a priori. For H-sequences, it is not clear how one would even define a hybrid where
all candidate values of xi are information-theoretically hidden because these values are not
known a priori and there might be exponentially many such candidates. In fact, for any
2 ≤ i ≤ N and any string y, it is likely that there exists an H-sequence x0, . . . , xN such that
y = xi.

Instead, we use a recent idea introduced by [42] that views the random oracle as a
superposition of databases rather than queries. This view facilitates intuitive simulation of
quantum random oracles in a manner similar to classical models, which provides intuitive
simulation for queries and circumvents the need to “record all possible queries”, which would
give an exponential number of possible H-sequences in our case. We give significantly more
intuition in Section 4, after formalizing the relevant definitions.
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▶ Theorem 3. Let H : {0, 1}∗ → {0, 1}λ be a random hash function and let δ ≥ 1 be a
parameter. Let p be the probability that a quantum adversary making at most q queries over
N − 1 rounds outputs (x0, y0), . . . , (xN−1, yN−1) and xN s.t. |xi| ≤ δλ, yi = H(xi) and
Substring(yi−1, xi) = 1 for each i, i.e., x0, . . . , xN is an H-sequence. Then

p ≤ 64q3δλ

2λ
+ 2N

2λ
.

Here, Substring(yi−1, xi) = 1 means that yi−1 is a substring of xi, i.e., there exist a, b ∈ {0, 1}∗

such that xi = a∥yi−1∥b.

From H-Sequences to Proof of Sequential Work

Theorem 4 focuses on a non-interactive proof of sequential work obtained by applying
the Fiat-Shamir transform to the efficient construction of Cohen and Pietrzak [23]. This
construction is based on a DAG G with N = 2n+1 − 1 nodes and maximum indegree n.
Given a random oracle H : {0, 1}λ(n+2) → {0, 1}λ, an honest prover can generate a proof for
any statement χ ∈ {0, 1}λ in sequential time O (N). We prove that for any constant α > 0,
an attacker making q queries over s = N(1− α) rounds will fail to produce a valid proof of
sequential work for any statement except with negligible probability.

▶ Theorem 4. Suppose A makes at most q quantum queries to our random oracle H
over at most s = N(1 − α) rounds and let p denote the probability that A outputs a valid
(non-interactive) proof of sequential work. Then

p ≤ 32q2(1− α)⌊λ/n⌋ + 2q3

2λ
+ 64q3(n+ 2)λ

2λ
+ 2⌊λ/n⌋(n+ 2)

2λ
.

The main intuition for the proof Theorem 4 works as follows. Given a quantum database
D = {(xi, yi) : i ≥ 1} where yi encodes the output on input xi with λ bits, we define a set
LUCKYs of databases D based on the graph coloring (see the full version), in which D does
not contain any collision or H-sequence of length s, yet still contains a “lucky” Merkle tree
that has a green path from the challenged node to the root that can be used to extract a
proof of sequential work. We show that any attacker making (possibly parallel) q queries can
only succeed in measuring a lucky database D with negligible probability. Finally, we show
that any attacker who produces a valid PoSW must measure a database D that either (1)
contains an H-sequence of length s, (2) contains a collision, or (3) is a lucky database. Since
each of these events has negligible probability, then it follows that with high probability, the
attacker cannot produce a valid PoSW.

1.2 Related Work
Functions that are inherently sequential to compute are a cryptographic primitive used
in many applications, such as proof of sequential work [37], verifiable delay functions [15],
and time-lock puzzles [36]. The original construction [37] used depth-robust graphs, which
have found applications in many areas of cryptography including memory-hard functions
(e.g., [8, 5, 6, 14, 13, 7, 12]), proofs of replication [29, 20], and proofs of space [27, 38]. Recently,
Cohen and Pietrzak [23] show that H-sequences are difficult for a classical adversary to
compute in the classical parallel random oracle model.

The Quantum Random Oracle Model (qROM) was introduced by Boneh et al. [16], who
pointed out that for any real world instantiation for the hash function H (e.g., SHA3), one
can build a quantum circuit implementing H. Boneh et al. [16] also provided an example
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of a protocol that is secure in the classical ROM, but not in the qROM. Quantum attacks
and constructions under the quantum random oracle model have been studied in a number
of previous settings, such as unclonable public-key quantum money [1, 2], quantum Merkle
puzzles [19, 18], signature schemes [17] and construction of random functions [41].

Security reductions in the classical ROM often exploit properties such as programability
and extractability of queries – properties that are lost in the qROM. Zhandry introduced
compressed oracles [42] as a way to record quantum queries so that they can be viewed after
computation has completed. The new technique has proven to be a useful tool to extend
many classical security proofs to the quantum random oracle model, e.g., [11, 21, 34, 4, 31].
Don et. al. [25] recently showed how queries can be extracted on-the-fly in certain settings,
e.g., once the algorithm outputs a classical commitment t (e.g., t = H(x) or t = Encpk(H(x)))
that is tightly related to the input x.

The non-interactive PoSW we consider in this work is obtained by applying the Fiat-
Shamir transform to the interactive PoSW construction of Cohen and Pieterzak [23]. While
there is a recent line of work analyzing the security of the Fiat-Shamir transform [28] in the
quantum random oracle model [33, 24, 35], applying these results would require us to first
establish the security of the interactive PoSW in the (parallel) qROM. We find it easier to
directly show that the non-interactive PoSW construction is secure in the (parallel) qROM.

There have been a number of work on parallelizing quantum algorithms or considering
parallel queries in the quantum random oracle model. Zalka [40] showed that the parallel
version of Grover’s algorithm is optimal, e.g., in the ideal cipher model, any parallel key-
recovery attacker making at most q = O(

√
k2λ) quantum queries to the ideal cipher must

run in sequential time Ω(
√

2λ/k). Grover and Radhakrishnan [30] generalized Zalka’s result
in the setting of multiple items to search. Jeffery et al. [32] studied the parallel quantum
query complexity for the element distinctness and the k-sum problem. Ambainis et al. [9]
provided an improved one-way to hiding (O2H) theorem in the parallel quantum random
oracle model.

In independent work, Chung et al. [22] also studied the problem of finding an H-sequence
and non-interactive proofs of sequential work in the parallel quantum random oracle model.
They gave comparable bounds also using Zhandry’s compressed oracle technique [42], while
leveraging an abstract view of Fourier transforms for arbitrary finite Abelian groups. By
comparison, our proofs avoid the need for an understanding of abstract algebra, instead using
quantum information theory to bound the quantum query complexity through a reduction
to classical query complexity. Thus we believe our techniques to be of independent interest,
perhaps appealing to a more general audience while also providing the necessary framework
to analyze the security of other classical protocols in a post-quantum world.

2 Preliminaries

Let N denote the set {0, 1, . . .}, [n] denote the set {1, 2, . . . , n}, and [a, b] = {a, a+ 1, . . . , b}
where a, b ∈ N with a ≤ b. For a function f(x), we recursively define fN (x) = f ◦ fN−1(x)
where ◦ is a function/operator composition. We say that a non-negative function µ(x) is
negligible, if for all polynomials p(x), it holds that 0 ≤ µ(x) < 1

p(x) for all sufficiently large x.
Let {0, 1}n be the set of all bitstrings of length n. Then we define {0, 1}≤n = ∪n

i=0{0, 1}i

to be the set of all bitstrings of length at most n including an empty string ε. We denote ||
as the concatenation of bitstrings. For a bitstring x ∈ {0, 1}∗, x[i] denotes its ith bit, and
x[i...j] = x[i]|| . . . ||x[j].
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Given quantum states |ϕ⟩ =
∑
αx|x⟩ and |ψ⟩ =

∑
βx|x⟩, we define the Euclidean

distance between the two states to be the quantity
√∑

|αx − βx|2. The magnitude of |x⟩ in
|ϕ⟩ =

∑
αx|x⟩ is αx and the query probability is |αx|2 – when we measure the state |ϕ⟩x we

will observe |x⟩ with probability |αx|2.

2.1 Quantum Random Oracle Model
In the (sequential) quantum random oracle model (qROM), an adversary is given oracle
access to a random hash function H : {0, 1}m → {0, 1}λ. The adversary can submit quantum
states as queries to the oracle, so that H takes as input superposition |ϕ1⟩, |ϕ2⟩, . . .. Each
|ϕi⟩ can be expanded as |ϕi⟩ =

∑
αi,x,y|x, y⟩ so that the output is

∑
αi,x,y|x, y ⊕ H(x)⟩.

Note that when the initial state is of the form |ϕ⟩ =
∑
αx|x, 0w⟩, then the output state will

be of the form
∑
αx|x,H(x)⟩.

Compressed Oracle Technique in the Sequential qROM

Here we introduce the compressed oracle representation introduced by Zhandry [42], which is
equivalent to the standard oracle in function. However, the difference between the compressed
oracle and the regular oracle is in the encodings of the oracle and query registers as queries
are made to the oracles. We will extend the ideas of this technique to the parallel qROM
later on.

First, we formally define a database D. A database D is defined by D = {(xi, yi) : i ≥ 1}
where we write D(xi) = yi to denote that yi encodes the output on input xi with λ

bits. When D = {} is empty, it is equivalent to viewing the random oracle as being in
superposition of all possible random oracles. After q queries, the state can be viewed as∑

x,y,z,D αx,y,z|x, y, z⟩ ⊗ |D⟩, where D is a compressed dataset of at most q input/output
pairs, x, y are the query registers, and z is the adversary’s private storage.

Formally, the compressed oracle technique for the sequential qROM works as follows. Let
H : {0, 1}m → {0, 1}λ be a random hash function and suppose an adversary is given an
oracle access to H. Then we have the following observations:

It is equivalent to view the usual random oracle mapping |x, y⟩ 7→ |x, y⊕H(x)⟩ (denote as
StO) as the phase oracle PhsO that maps |x, y⟩ to (−1)y·H(x)|x, y⟩ by applying Hadamard
transforms before and after the oracle query.3
It is also equivalent to view the oracle H as being in (initially uniform) superposition∑

H |H⟩ where we can encode H as a binary vector of length 2m × λ encoding the
λ-bit output for each m-bit input string. Under this view the oracle maps the state
|ϕ⟩ =

∑
x,y αx,y|x, y⟩ ⊗

∑
H |H⟩ to

∑
x,y αx,y|x, y⟩ ⊗

∑
H |H⟩(−1)y·H(x).

If the attacker makes at most q queries, then we can compress the oracle H and write
|ϕ⟩ =

∑
x,y αx,y|x, y⟩ ⊗

∑
D |D⟩, where each dataset D ∈ {0, 1}λ×2m is sparse, i.e., D(x) ̸= ⊥

for at most q entries. Intuitively, when D(x) = ⊥, we view the random oracle as being in
a uniform superposition over potential outputs. Moreover, we can think of the basis state
|D⟩ as corresponding to the superposition

∑
H∈HD

|H⟩ where HD ⊆ {0, 1}2mλ denote the set
of all random oracles that are consistent with D, i.e., if H ∈ HD then for all inputs x we
either have D(x) = ⊥ or D(x) = H(x). When viewed in this way, the basis state |D⟩ encodes
prior queries to the random oracle along with the corresponding responses. We can use a
compressed phase oracle CPhsO (described below) to model a phase oracle.

3 Notice that both StO and PhsO are unitary matrices and StO = (Im ⊗ H⊗λ)PhsO(Im ⊗ H⊗λ) where
Im is the identity matrix on the first m qubits and H⊗λ is the Hadamard transform on the λ output
qubits.
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Compressed Phase Oracle

To properly define a compressed phase oracle CPhsO in the sequential qROM, a unitary
local decompression procedure StdDecompx that acts on databases was first defined in [42].
Intuitively, StdDecompx decompresses the value of the database at position x when the
database D is not specified on x and there is a room to expand D, and StdDecompx does
nothing when there is no room for decompression. If D is already specified on x, then
we have two cases: if the corresponding y registers are in a state orthogonal to a uniform
superposition, then StdDecompx is the identity (no need to decompress). If the y registers are
in the state of a uniform superposition, then StdDecompx removes x from D. We refer to the
full version for a full description of StdDecompx. Now we define StdDecomp, Increase,CPhsO′

on the computational basis states as

StdDecomp (|x, y⟩ ⊗ |D⟩) = |x, y⟩ ⊗ StdDecompx|D⟩,
Increase (|x, y⟩ ⊗ |D⟩) = |x, y⟩ ⊗ |D⟩|(⊥, 0λ)⟩, and

CPhsO′ (|x, y⟩ ⊗ |D⟩) = (−1)y·D(x)|x, y⟩ ⊗ |D⟩,

where the procedure Increase appends a new register |(⊥, 0λ)⟩ at the end of the database.
Note that |D⟩|(⊥, 0λ)⟩ is a database that computes the same partial function as D, but the
upper bound on the number of points is increased by 1. Here, we remark that we define
⊥ · y = 0 when defining CPhsO′, which implies that CPhsO′ does nothing if (x, y) has not yet
been added to the database D. Finally, the compressed phase oracle CPhsO can be defined
as follows:

CPhsO = StdDecomp ◦ CPhsO′ ◦ StdDecomp ◦ Increase,

which means that when we receive a query, we first make enough space by increasing the
bound and then decompress at x, apply the query, and then re-compress the database. We
remark that CPhsO successfully keeps track of positions that are orthogonal to the uniform
superposition only because if (x, y) was already specified in D and the y registers are in the
state of a uniform superposition, then StdDecomp removes x from D so that CPhsO′ does
nothing as explained before and the second StdDecomp in CPhsO will revert (x, y) back to
the database.

2.2 Useful Lemmas for Compressed Oracles
Next we introduce some useful lemmas given by Zhandry [42] that are helpful for proving our
main result. We first introduce the following variant of Lemma 5 from [42], which is still true
for CPhsO because StO and PhsO are perfectly indistinguishable by applying a Hadamard
transform before and after each query.

▶ Lemma 5 ([42]). Consider a quantum algorithm A making queries to a random oracle H
and outputting tuples (x1, . . . , xk, y1, . . . , yk, z). Let R be a collection of such tuples. Suppose
with probability p, A outputs a tuple such that (1) the tuple is in R, and (2) H(xi) = yi

for all i. Now consider running A with the oracle CPhsO, and suppose the database D is
measured after A produces its output. Let p′ be the probability that (1) the tuple is in R, and
(2) D(xi) = yi for all i (and in particular D(xi) ̸= ⊥). Then √p ≤

√
p′ +

√
k/2n.

We say that a database D contains a collision if we have (x, y), (x′, y) ∈ D for x ≠ x′. We use
the notation COLLIDE to denote the set of all databases that contain a collision. Zhandry
upper bounded the probability of finding collisions in a database after making queries to a
compressed oracle in the following lemma.
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▶ Lemma 6 ([42]). For any adversary making q queries to CPhsO and an arbitrary number
of database read queries, if the database D is measured after the q queries, the resulting
database will contain a collision with probability at most q3/2λ.

3 Parallel Quantum Random Oracle Model

Quantum Query Bounds with Compressed Dataset

As a warm-up, we review how Zhandry [42] used his compressed oracle technique to provide
a greatly simplified proof that Grover’s algorithm is asymptotically optimal. Theorem 7
proves that the final measured database D will not contain a pre-image of 0λ except with
probability O

(
q2/2λ

)
. We sketch some of the key ideas below as a warm-up and to highlight

some of the additional challenges faced in our setting.

▶ Theorem 7 ([42]). For any adversary making q queries to CPhsO and an arbitrary number
of database read queries, if the database D is measured after the q queries, the probability it
contains a pair of the form (x, 0λ) is at most O

(
q2/2λ

)
.

We can view Theorem 7 as providing a bound for amplitudes of basis states with a
database D in a set BAD that is defined as

BAD = {D : D contains a pair of the form (x, 0λ)}.

Given a basis state |x, y, z⟩ ⊗ |D⟩ with D ̸∈ BAD and x ̸∈ D, then the random oracle CPhsO
maps this basis state to

|ψ⟩ = |x, y, z⟩ ⊗ 1
2λ/2

∑
w

(−1)y·w|D ∪ (x,w)⟩,

where the amplitude on states with the corresponding database D in BAD is just 2−λ/2. We
use the following notation to generalize this approach for other purposes:

▶ Definition 8. For a collection of basis states S̃ and |ψ⟩ =
∑

X αX |X⟩, we define

L2(|ψ⟩, S̃) =
√ ∑

X∈S̃

|αX |2

to denote the root of the sum of the squared magnitudes of the projection of ψ onto the set
of basis states S̃. If S is a set of databases and |ψ⟩ =

∑
x,y,z,D αx,y,z,D|x, y, z⟩ ⊗ |D⟩ is a

state we define L2(|ψ⟩,S) =
√∑

x,y,z

∑
D∈S |αx,y,z,D|2.

An equivalent way to define L2(|ψ⟩, S̃) is L2(|ψ⟩, S̃) =
∥∥∥PS̃(|ψ⟩)

∥∥∥
2

where PS̃ projects |ψ⟩

onto the space spanned by S̃ e.g., if |ψ⟩ =
∑

x,y,z,D αx,y,z,D|x, y, z⟩ ⊗ |D⟩ then

PS̃(|ψ⟩) =
∑

|x,y,z⟩⊗|D⟩∈S̃

αx,y,z,D|x, y, z⟩ ⊗ |D⟩.

Using this notation, we can view the proof of Theorem 7 as bounding L2(CPhsO|ψ⟩,BAD)
− L2(|ψ⟩,BAD), i.e., the increase in root of squared amplitudes on bad states after each
random oracle query.

There are a number of challenges to overcome when directly applying this idea to analyze
H-sequences. First, we note that Theorem 7 works in the sequential qROM, which means
that the attacker can make only one query in each round. In our setting, the quantum
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attacker is allowed to make more than T queries provided that the queries are submitted in
parallel batches over T − 1 rounds. Without the latter restriction, an attacker that makes T
total queries will trivially be able to find an H-sequence, even if the attacker is not quantum,
by computing HT (x) over T rounds. We formalize the parallel quantum random oracle model
pqROM in Section 3.1 to model an attacker who submits batches (x1, y1), . . . of random
oracle queries in each round.

The second primary challenge is that we can not find a static (a priori fixed) set BAD.
A naïve approach would fix BAD to be the set of databases that contain an H-sequence
of length T , but this would not allow us to bound L2(CPhsO|ψ⟩,BAD)− L2(|ψ⟩,BAD). In
particular, if our state |ψ⟩ after round r has non-negligible squared amplitudes on datasets D
that contain an H-sequence of length r + 1, then it is likely that the attacker will be able to
produce an H-sequence of length T after round T − 1 – in this sense a bad event has already
occurred. In our setting, the bad sets must be defined carefully in a round-dependent fashion
r. Intuitively, we want to show that L2(CPhsOk|ψ⟩,BADr+1)−L2(|ψ⟩,BADr) is small, where
BADr contains datasets D that contain an H-sequence of length r + 1 and CPhsOk denotes
a parallel phase oracle that processes k ≥ 1 queries in each round. However, reasoning about
the behavior of CPhsOk introduces its own set of challenges when k > 1. We address these
challenges by carefully defining sets BADr,j , i.e., the bad set of states after the first j (out of
k) queries in round j have been processed. See Section 4 for more details.

3.1 Parallel Quantum Random Oracle Model pqROM
Recall that in the sequential quantum random oracle model (qROM), an adversary can submit
quantum states as queries to the oracle, so that a random hash function H takes as input
superposition |ϕ1⟩, |ϕ2⟩, . . . , and so on. Each |ϕi⟩ can be expanded as |ϕi⟩ =

∑
αi,x,y|x, y⟩

so that the output is
∑
αi,x,y|x, y ⊕H(x)⟩. Note that when the initial state is of the form

|ϕ⟩ =
∑
αx|x, 0w⟩, then the output state will be of the form

∑
αx|x,H(x)⟩. In the parallel

quantum random oracle model (pqROM), the adversary can make a batch of queries q1, q2, . . .

each round and receives the corresponding output for each of the queries. More precisely, if ri

is the number of queries made in round i, then the input takes the form |(x1, y1), . . . , (xri
, yri

)⟩
and the corresponding output is |(x1, y1 ⊕H(x1)), . . . , (xri , yri ⊕H(xri))⟩.

We also remark that the equivalence of the standard and phase oracles that we discussed
in Section 2.1 remains true with parallelism (by applying Hadamard transforms before and
after the query); therefore, we will only consider extending the compressed oracles only on
the CPhsO by convenience.

Extending Compressed Oracle Technique to pqROM

As mentioned before, we need to extend CPhsO to be able to handle parallel queries. To
make the analysis simpler, we have an approach that essentially sequentially simulates a
batch of parallel queries, which as a result, is equivalent to process parallel queries at once.
Consider the following example; given a state |Bi⟩ = |(x1, y1), . . . , (xk, yk), z⟩ ⊗ |D⟩, let |ψ1⟩
be the state after processing the first query (x1, y1), and let |ψ2⟩ be the state after processing
the second query (x2, y2) so that |ψ2⟩ = CPhsO|ψ1⟩. However, recall that CPhsO only acts
on the first coordinate. Thus to handle the parallel query sequentially, we would need to
switch the order of the coordinates to process the second query properly. Hence, we make a
slight modification and redefine |ψ2⟩ = Swap1,2 ◦ CPhsO ◦ Swap1,2|ψ1⟩, where

Swap1,2|(x1, y1), (x2, y2), . . .⟩ = |(x2, y2), (x1, y1), . . .⟩,
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and similarly Swapi,j(·) = Swapj,i(·) swaps the positions of queries xi and xj . Thus, we
now define our parallel version of a CPhsO oracle, called as CPhsOi, which handle i parallel
queries, recursively as

CPhsOi = Swap1,i ◦ CPhsO ◦ Swap1,i ◦ CPhsOi−1,

where CPhsO1 = CPhsO. For a compact notation, we define

SCPhsOi := Swap1,i ◦ CPhsO ◦ Swap1,i.

That is, we can interpret CPhsOi as applying SCPhsOj (essentially) sequentially for j =
1, . . . , i, i.e., CPhsOi =

∏i
j=1 SCPhsOj = SCPhsOi ◦ · · · ◦ SCPhsO1.

We remark that there are other possible approaches in extending CPhsO to the pqROM.
For example, see the full version for further details regarding an additional approach to
extending CPhsO to the pqROM.

4 Finding H-Sequences in the pqROM

In this section, we show that quantum adversaries cannot find H-sequences of length N using
fewer than N − 1 steps, thereby showing the security of a construction for proof of sequential
work in the parallel quantum random oracle model in the next section. Recall that an H-
sequence x0, x1, . . . , xs ∈ {0, 1}∗ satisfies the property that for each 0 ≤ i ≤ s− 1, there exist
a, b ∈ {0, 1}∗ such that xi+1 = a||H(xi)||b. Note that the sequence H(x),H2(x), . . . ,HN (x)
is an H-sequence, so in fact, this proves that quantum adversaries are even more limited
than being unable to compute HN (x) for a given input x in fewer than N − 1 steps. In our
analysis, we require that H outputs a λ-bit string but permit each term xi in the H-sequence
to have length δλ, for some variable parameter δ ≥ 1.

We begin by introducing some helpful notation. Given a database D = {(x1, y1), . . . ,
(xq, yq)} in the compressed standard oracle view, we can define a directed graph GD on q

nodes (vx1 , . . . , vxq
) so that there is an edge from node vxi

to node vxj
if and only if there

exist strings a, b such that xj = a||yi||b. Thus, the graph GD essentially encodes possible
H-sequences by forming edges between nodes vxi

and vxj
if and only if yi is a substring of

xj . More precisely, given a path P = (vxi0
, vxi1

, . . . , vxik
) in GD, we define

HSeq(P ) := (xi0 , xi1 , . . . , xik
) denotes a corresponding H-sequence of length k, and

LAST(P ) := vxik
denotes the endpoint of the path P in GD that corresponds to the

output of the last label in the corresponding H-sequence.
We also define a predicate Substring(x, y) where Substring(x, y) = 1 if and only if x is a
substring of y, i.e., there exist a, b ∈ {0, 1}∗ such that y = a||x||b, and Substring(x, y) = 0
otherwise.

▶ Example 9. Suppose that D = {(x1, y1), . . . , (x8, y8)} where (x1, y1) = (00000, 000),
(x2, y2) = (00010, 001), (x3, y3) = (00101, 010), (x4, y4) = (00110, 011), (x5, y5) =
(01001, 100), (x6, y6) = (01100, 101), (x7, y7) = (10010, 110), and (x8, y8) = (11001, 111). We
observe that the graph GD induced from the database D should include the edge (v1, v2)
since x2 = 00010 = y1||10, and so forth. Then we have the following graph GD (see the
full version), which includes an H-sequence of length s = 5. In this example, we can say
that for a path P = (v1, v2, v3, v5, v7, v8) of length 5, we have a corresponding H-sequence
HSeq(P ) = (x1, x2, x3, x5, x7, x8) of length 5 since we have x2 = y1||10, x3 = y2||01, and so
on. Note that in this case we have LAST(P ) = v8.
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▶ Definition 10. We define PATHs to be the set of the databases (compressed random oracles)
D such that GD contains a path of length s.

PATHs := {D : GD contains a path of length s}.

Note that PATHs intuitively corresponds to an H-sequence of length s. We also define P̃ATHs

to be the set of basis states with D in PATHs as follows:

P̃ATHs := {|(x1, y1), . . . , (xk, yk), z⟩ ⊗ |D⟩ : D ∈ PATHs}.

Challenges of Quantum Query Bounds on Finding an H-Sequence

To bound the probability that a single round of queries finds an H-sequence of length s+ 1
conditioned on the previous queries not finding an H-sequence of length s, we consider
the set of basis states {|Bi⟩}i of the form |(x1, y1), . . . , (xk, yk), z⟩ ⊗ |D⟩, where D contains
at most q − k entries and D /∈ PATHs. Let |ψ⟩ =

∑
αi|Bi⟩ be an arbitrary state that is

a linear combination of {|Bi⟩}i and let |ψ′⟩ = CPhsOk|ψ⟩. Then we would like to bound
L2(|ψ′⟩,PATHs+1), but there are substantial challenges in computing L2(|ψ′⟩,PATHs+1)
directly.

For example, given a decomposition of |ψ⟩ =
∑

B αB |B⟩ into basis states, we might like to
compute ηB = CPhsOk(|B⟩) for each basis state |B⟩ and then decompose |ψ′⟩ =

∑
B αBηB .

However, each term ηB is no longer a basis state making it difficult to describe the state |ψ′⟩
in a helpful way so that we can bound L2(|ψ′⟩, P̃ATHs+1). The challenges are amplified as
|ψ′⟩ is the result of k parallel queries.

Overcoming the Challenges

Our approach is to consider an intermediate sequence of states |ψ0⟩ = |ψ⟩, . . . , |ψk⟩ = |ψ′⟩,
where |ψi⟩ intuitively encodes the state after the ith query (in the block of parallel queries)
is processed. Then from the definition of CPhsOi, we have |ψi+1⟩ = Swap1,i+1 ◦ CPhsO ◦
Swap1,i+1|ψi⟩ = SCPhsOi+1|ψi⟩ for all i ∈ [k]. This approach presents a new subtle challenge.
Consider a basis state |B⟩ = |(x1, y1), . . . , (xk, yk)⟩ ⊗ |D⟩, where the longest path in GD

(the H-sequence) has length s − 1. We can easily argue that L2(SCPhsO1|B⟩, P̃ATHs+1)
is negligible since the initial basis state |B⟩ ̸∈ P̃ATHs. Now we would like to argue that
L2(SCPhsO2 ◦ SCPhsO1|B⟩, P̃ATHs+1) is negligibly small, but it is unclear how to prove this
since we might have L2(SCPhsO1|B⟩, P̃ATHs) = 1, e.g., all of the datasets D found in the
support of SCPhsO1|B⟩ have paths of length s.

Overcoming this barrier requires a much more careful definition of our “bad” states. We
introduce some new notions to make the explanations clearer. Suppose that a database
D /∈ PATHs. If D has no H-sequence of length s, it may not be the case that |ψi⟩ has no
H-sequence of length s. However, the intuition is that since the queries x1, . . . , xk are made
in the same round, then it is acceptable to have an H-sequence of length s, provided that
the last entry in the H-sequence involves some (xi, yi). Thus we define PATHs,i(x1, . . . , xk)
to be a set of the databases with the induced graph GD having a path of length s that does
not end in a term that contains H(xi):

PATHs,i(x1, . . . , xk) := {D : GD contains a path P of length s and
LAST(P ) /∈ {vx1 , . . . , vxi}},
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where we recall that LAST(P ) denotes the endpoint of the path P in GD, which corresponds
to the output of the last label in the corresponding H-sequence as defined before. We then
define

P̃ATHs,i := {|(x1, y1), . . . , (xk, yk), z⟩ ⊗ |D⟩ : D ∈ PATHs,i(x1, . . . , xk)},

which denotes the set of the states where the corresponding database D is in the set
PATHs,i(x1, . . . , xk).

Now we define a set Contains,i, which intuitively represents the set of databases so that
the queries correspond to the guesses for preimages:

Contains,i(x1, . . . , xk) := {D : ∃j ≤ k s.t. Substring(D(xi), xj) = 1 and
GD contains a path of length s ending at xi}.

We then define

C̃ontains,i := {|(x1, y1), . . . , (xk, yk), z⟩ ⊗ |D⟩ : D ∈ Contains,i(x1, . . . , xk)},

which denotes the set of the states where the corresponding database D is in the set
Contains,i(x1, . . . , xk). Therefore, we define BADs,i(x1, . . . , xk) to be the set of databases
that are not in PATHs but upon the insertion of (x1, y1), . . . , (xi, yi), is a member of PATHs+1:

BADs,i(x1, . . . , xk) := PATHs,i(x1, . . . , xk) ∪
i⋃

j=1
Contains,j(x1, . . . , xk)

Finally, we define

B̃ADs,i := {|(x1, y1), . . . , (xk, yk), z⟩ ⊗ |D⟩ : D ∈ BADs,i(x1, . . . , xk)}

to represent the set of the states where the corresponding database D is in the set
BADs,i(x1, . . . , xk).

We now process each query (x1, y1), . . . , (xk, yk) sequentially and argue that the mass
projected onto PATHs+1 by each step CPhsOi is negligible. To prove this, we argue that
L2(|ψi⟩, B̃ADs,i) is negligible for all i ≤ k. We use the convention that |ψ0⟩ is the initial state
and |ψi⟩ = SCPhsOi|ψi−1⟩ for all i ∈ [k] so that |ψk⟩ is the last state, after all the queries
have been processed. Similarly, we use the convention that B̃ADs,0 = P̃ATHs.

We first give the following lemma.

▶ Lemma 11. Suppose that D′ is a database such that D′(xi+1) = ⊥. If D = D′∪(xi+1, w) /∈
BADs,i(x1, . . . , xk), then D /∈ BADs,i+1(x1, . . . , xk).

Proof. Since D /∈ PATHs,i(x1, . . . , xk), any path of length s must end at one of the vertices
vx1 , . . . , vxi

in the graph GD. Hence, no path of length s ends at vxi+1 unless we have a
duplicate query xj = xi+1 for some j < i+ 1. Now we have two cases:
(1) If xi+1 is distinct from xj for all j < i+1, then by the previous observation we immediately

have that D /∈ PATHs,i+1(x1, . . . , xk). Furthermore, GD contains no path of length s

ending at node vxi+1 since any path of length s must end at one of vx1 , . . . , vxi
. Hence,

D /∈ Contains,i+1(x1, . . . , xk). Taken together, we have that D /∈ BADs,i+1(x1, . . . , xk).
(2) If xi+1 = xj (j < i + 1) is a duplicate query, then there might be a path of length s

ending at vxi+1 = vxj in D. However, due to the duplicate we have {vx1 , . . . , vxi} =
{vx1 , . . . , vxi+1}. Therefore, D /∈ PATHs,i+1(x1, . . . , xk). Now we want to argue that
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D /∈ Contains,i+1(x1, . . . , xk). Note that D(xi+1) = D(xj) for some j < i + 1, which
implies that Substring(D(xj), xl) = 1 ⇔ Substring(D(xi+1), xl) = 1 for all l ∈ [k]. If
D ∈ Contains,i+1(x1, . . . , xk), then there exists a path of length s ending at xj and
Substring(D(xj), xl) = 1 for some l ≤ k. This implies that D ∈ Contains,j(x1, . . . , xk)
and therefore D ∈ BADs,i(x1, . . . , xk), which is a contradiction. Hence, we have that
D /∈ Contains,i+1(x1, . . . , xk) and therefore D /∈ BADs,i+1(x1, . . . , xk) in this case as well.

Taken together, we can conclude that if D /∈ BADs,i(x1, . . . , xk), then it is also the case that
D /∈ BADs,i+1(x1, . . . , xk). ◀

▶ Lemma 12. For each i ∈ {0, 1, . . . , k − 1},

L2(|ψi+1⟩, B̃ADs,i+1)− L2(|ψi⟩, B̃ADs,i) ≤
4
√
qδλ+ kδλ

2λ/2 .

Proof. To argue that the projection onto B̃ADs,i increases by a negligible amount for each
query, we use a similar argument to [42]. Recall that SCPhsOi+1 = Swap1,i+1 ◦ CPhsO ◦
Swap1,i+1. Namely, we consider the projection of |ψi+1⟩ = SCPhsOi+1|ψi⟩ onto orthogonal
spaces as follows:

We first define Pi (resp. P ) to be the projection onto the span of basis states |(x1, y1), . . . ,
(xk, yk), z⟩ ⊗ |D⟩ ∈ B̃ADs,i (resp. basis states in B̃ADs,i+1).
Next we define Qi to be the projection onto states |(x1, y1), . . . , (xk, yk), z⟩ ⊗ |D⟩ ̸∈
B̃ADs,i such that yi+1 ≠ 0 and D(xi+1) = ⊥. Intuitively, Qi represents the projec-
tion onto states that are not bad where SCPhsOi+1|(x1, y1), . . . , (xk, yk), z⟩ ⊗ |D⟩ =
|(x1, y1), . . . , (xk, yk), z⟩

∑
w ⊗|D ∪ (xi+1, w)⟩ will add a new tuple (xi+1, w) to the data-

set.
We then define Ri to be the projection onto states |(x1, y1), . . . , (xk, yk), z⟩ ⊗ |D⟩ such
that |(x1, y1), . . . , (xk, yk), z⟩ ⊗ |D⟩ /∈ B̃ADs,i, yi+1 ̸= 0 and D(xi+1) ̸= ⊥, so that the
value of xi+1 has been specified in databases corresponding to these states.
Finally, we define Si to be the projection onto states |(x1, y1), . . . , (xk, yk), z⟩ ⊗ |D⟩ such
that |(x1, y1), . . . , (xk, yk), z⟩ ⊗ |D⟩ /∈ B̃ADs,i and yi+1 = 0.

Since Pi, Qi, Ri, Si project onto disjoint states that span the entirety of |ψi+1⟩ then we
have Pi + Qi + Ri + Si = I, where I denotes the identity operator. We analyze how P

acts on these components separately. For the component Pi|ψi⟩, it is easy to verify that
∥P ◦ SCPhsOi+1(Pi|ψi⟩)∥2 ≤ ∥SCPhsOi+1(Pi|ψi⟩)∥2 ≤ ∥Pi|ψi⟩∥2. See the full version for the
formal proof of Lemma 13.

▶ Lemma 13. ∥P ◦ SCPhsOi+1(Pi|ψi⟩)∥2 ≤ ∥Pi|ψi⟩∥2.

Next, to analyze how the projection P acts on SCPhsOi+1(Qi|ψi⟩), we note that SCPhsOi+1(
|(x1, y1), . . . , (xk, yk), z⟩ ⊗ |D⟩) = |(x1, y1), . . . , (xk, yk), z⟩ ⊗

∑
w 2−λ/2(−1)w·yi+1 |D ∪

(xi+1, w)⟩ for any basis state in the support of Qi|ψi⟩. We then use a classical counting argu-
ment to upper bound the number of strings w such that |(x1, y1), . . . , (xk, yk), z⟩ ⊗

∑
w |D ∪

(xi+1, w)⟩ ∈ B̃ADs,i+1 by decomposing the databases in BADs,i+1(x1, . . . , xk) into the data-
bases in PATHs,i+1(x1, . . . , xk) and the databases in

⋃i+1
j=1 Contains,j(x1, . . . , xk). Intuitively,

since D ̸∈ BADs,i(x1, . . . , xk) the only way to have D ∪ (xi+1, w) ∈ PATHs,i+1(x1, . . . , xk) is
if w is a substring of some xj with j ≤ k or w is the substring of some other input x in
the database D. We bound the number of databases in PATHs,i+1(x1, . . . , xk) by noting
that any string x ∈ {0, 1}δλ contains at most δλ unique contiguous substrings of length λ,
so there are at most δλ values of w such that Substring(w, x) = 1. Since |D ∪ (xi+1, w)⟩
contains at most q entries, then by a union bound, there are at most qδλ strings w such
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that exists x ∈ {0, 1}∗ such that Substring(w, x) = 1 and D(x) ̸= ⊥ or x = xi+1. Thus,
|{w : D ∪ (xi+1, w) ∈ BADs,i+1(x1, . . . , xk)}| ≤ qδλ. We similarly bound the number of data-
bases in

⋃i+1
j=1 Contains,j(x1, . . . , xk) by noting that if D ̸∈ BADs,i(x1, . . . , xk) then the only

way for D∪ (xi+1, w) to be in
⋃i+1

j=1 Contains,j(x1, . . . , xk) is if for some j ≤ k the string w is
a substring of xj i.e., Substring(w, xj) = 1. A similar argument shows that the number of
strings w such that D ∪ (xi+1, w) ∈

⋃i+1
j=1 Contains,j(x1, . . . , xk) is at most kδλ.

We thus show the following (see the full version for the full proof):

▶ Lemma 14. ∥P ◦ SCPhsOi+1(Qi|ψi⟩)∥2
2 ≤

qδλ+kδλ
2λ .

We next consider how P acts upon the basis states of SCPhsOi+1(Ri|ψi⟩). We first
relate this quantity to SCPhsOi+1(|x, y, z⟩ ⊗ |D′ ∪ (xi+1, w)⟩), where D′ is the database D
with xi+1 removed. Since D = |D′ ∪ (xi+1, w)⟩ ̸∈ BADs,i(x1, . . . , xk), then we again use
a similar classical counting argument to upper bound the number of strings w′ such that
D′ ∪ (xi+1, w

′) ∈ BADs,i+1(x1, . . . , xk). Lemma 15 then follows from algebraic manipulation
similar to [42]. See the full version for the formal proof.

▶ Lemma 15. ∥P ◦ SCPhsOi+1(Ri|ψi⟩)∥2
2 ≤

9(qδλ+kδλ)
2λ .

Finally, we bound the projection of P onto the states of SCPhsOi+1(Si|ψi⟩):

▶ Lemma 16. ∥P ◦ SCPhsOi+1(Si|ψi⟩)∥2 = 0.

Proof. We observe that P ◦ SCPhsOi+1(Si|ψi⟩) = 0, since for any basis state |(x1, y1), . . . ,
(xk, yk), z⟩ ⊗ |D⟩ state in the support of Si|ψi⟩, we have

SCPhsOi+1|(x1, y1), . . . , (xk, yk), z⟩ ⊗ |D⟩ = |(x1, y1), . . . , (xk, yk), z⟩ ⊗ |D⟩,

i.e., SCPhsOi+1(Si|ψi⟩) = Si|ψi⟩. We also note that since D ̸∈ BADs,i(x1, . . . , xk) and xi+1
is not being inserted into the dataset that D ̸∈ BADs,i+1(x1, . . . , xk). Hence, we have that
∥P ◦ SCPhsOi+1(Si|ψi⟩)∥2 = 0. ◀

Thus from Lemma 13, Lemma 14, Lemma 15, Lemma 16, and by triangle inequality, we have

∥P ◦ SCPhsOi+1|ψi⟩∥2 ≤ ∥P ◦ SCPhsOi+1(Pi|ψi⟩)∥2 + ∥P ◦ SCPhsOi+1(Qi|ψi⟩)∥2

+ ∥P ◦ SCPhsOi+1(Ri|ψi⟩)∥2 + ∥P ◦ SCPhsOi+1(Si|ψi⟩)∥2

≤ ∥Pi|ψi⟩∥2 + 3
√
qδλ+ kδλ

2λ/2 +
√
qδλ+ kδλ

2λ/2

≤ ∥Pi|ψi⟩∥2 + 4
√
qδλ+ kδλ

2λ/2 .

Since we have ∥P ◦ SCPhsOi|ψi⟩∥2 = L2(|ψi+1⟩, B̃ADs,i+1) and ∥Pi|ψi⟩∥2 = L2(|ψi⟩, B̃ADs,i),

we can conclude that L2(|ψi+1⟩, B̃ADs,i+1)− L2(|ψi⟩, B̃ADs,i) ≤
4
√

qδλ+kδλ

2λ/2 . ◀

We now bound the probability that a single round of queries finds an H-sequence of
length s+ 1 conditioned on the previous queries not finding an H-sequence of length s.

▶ Lemma 17. Let |ψ⟩ be an initial state and let |ψ′⟩ = CPhsOk|ψ⟩. Then we have
L2(|ψ′⟩, P̃ATHs+1)− L2(|ψ⟩, P̃ATHs) ≤ 4k

√
qδλ+kδλ

2λ/2 .

Proof. We consider the sequence of states |ψ⟩ = |ψ0⟩, . . . , |ψk⟩ = |ψ′⟩ with |ψi⟩ = CPhsOi|ψ⟩.
By Claim 18 it suffices to bound L2(|ψk⟩, B̃ADs,k) as L2(|ψk⟩, P̃ATHs+1) ≤ L2(|ψk⟩, B̃ADs,k).
See the full version for the proof of Claim 18.
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▷ Claim 18. P̃ATHs+1 ⊆ B̃ADs,k.

Recall that we use the convention B̃ADs,0 = P̃ATHs and |ψ0⟩ is the initial state so that
by Lemma 12,

L2(|ψk⟩, B̃ADs,k) = L2(|ψ0⟩, B̃ADs,0) +
k−1∑
i=0

[
L2(|ψi+1⟩, B̃ADs,i+1)− L2(|ψi⟩, B̃ADs,i)

]
≤ L2(|ψ0⟩, B̃ADs,0) +

k−1∑
i=0

4
√
qδλ+ kδλ

2λ/2

= L2(|ψ0⟩, P̃ATHs) + 4k
√
qδλ+ kδλ

2λ/2 .

Hence, L2(|ψk⟩, P̃ATHs+1) ≤ L2(|ψk⟩, B̃ADs,k) ≤ L2(|ψ0⟩, P̃ATHs) + 4k
√

qδλ+kδλ

2λ/2 which im-

plies that L2(|ψ′⟩, P̃ATHs+1)− L2(|ψ⟩, P̃ATHs) ≤ 4k
√

qδλ+kδλ

2λ/2 . ◀

We now show that a quantum adversary that makes up to q rounds over N − 1 rounds
can only find an H-sequence of length N with negligible probability.

▶ Lemma 19. Suppose that in each round i ∈ [N − 1], the adversary A makes a query
to the parallel oracle CPhsOki and that the total number of queries is bounded by q, i.e.,∑N−1

i=1 ki ≤ q. Then A measures a database in PATHN with probability at most 32q3δλ
2λ .

Proof. Let |ψ0⟩ be the initial state and let Ur represent a unitary transform applied by A in
between batches of queries to the quantum oracle. Then we define |ψr⟩ = Ur ◦CPhsOkr |ψr−1⟩
for each round r ∈ [N − 1]. Thus, the attacker A yields a sequence of states |ψ0⟩, . . . , |ψN−1⟩.
We remark that Ur may only operate on the state |x, y, z⟩ and cannot impact the compressed
oracle D, e.g., Ur (|x′, y′, z′⟩ ⊗ |D⟩) =

∑
x,y,z αx,y,z|x, y, z⟩ ⊗ |D⟩. Thus,

L2(Ur ◦ CPhsOkr |ψr−1⟩, P̃ATHr+1) = L2(CPhsOkr |ψr−1⟩, P̃ATHr+1),

so we can effectively ignore the intermediate unitary transform Ur in our analysis below.
Now we can apply the previous lemma to conclude that

L2(|ψi⟩, P̃ATHi+1) ≤ 4ki

√
2qδλ

2λ/2 + L2(|ψi−1⟩, P̃ATHi) .

By the triangle inequality we have

L2(|ψN−1⟩, P̃ATHN ) ≤
N−1∑
i=0

4ki

√
2qδλ

2λ/2 ≤
√

32q3δλ

2λ/2 .

Hence, A measures a database in PATHN with probability at most
(√

32q3δλ

2λ/2

)2
= 32q3δλ

2λ . ◀

Thus we have shown that a quantum adversary that makes N − 1 rounds of parallel
queries should generally not find an H-sequence of length N within their queries. Then we
bound the probability that the quantum adversary outputs an H-sequence of length N by a
standard approach, e.g. [23, 42] of additionally the probability that the quantum adversary
makes a “lucky guess”.
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▶ Theorem 3. Let H : {0, 1}∗ → {0, 1}λ be a random hash function and let δ ≥ 1 be a
parameter. Let p be the probability that a quantum adversary making at most q queries over
N − 1 rounds outputs (x0, y0), . . . , (xN−1, yN−1) and xN s.t. |xi| ≤ δλ, yi = H(xi) and
Substring(yi−1, xi) = 1 for each i, i.e., x0, . . . , xN is an H-sequence. Then

p ≤ 64q3δλ

2λ
+ 2N

2λ
.

Proof. By Lemma 5 the probability p is upper bounded by 2p′ + 2N2−λ where p′ denotes
the probability that an attacker measures D ∈ PATHN . By Lemma 19 we have p′ ≤ 32q3δλ

2λ

and the result follows immediately. ◀

5 Security of PoSW in the pqROM

In this section, we show the security of a construction for proofs of sequential work in the
parallel quantum random oracle model (pqROM). Here, we focus on the non-interactive
version of PoSW, which can be obtained by applying a Fiat-Shamir transform to the PoSW
defined in [23]. Note that the PoSW defined in both [37] and [23] are interactive, in which a
statement χ is randomly sampled from the verifier and the prover constructs a proof based
on the input statement χ.

5.1 The Definition of Non-Interactive PoSW
We first formally define the non-interactive PoSW in the random oracle model.

▶ Definition 20 (Non-Interactive PoSW). A Non-Interactive Proof of Sequential Work
(niPoSW) consists of polynomial-time oracle algorithms ΠniPoSW = (Solve,Verify) that use
public parameters, as defined below.

Public Parameters. Security parameter λ ∈ N and a random oracle H : {0, 1}∗ →
{0, 1}λ.
Solve. Given a time parameter T ∈ N, the statement χ, P computes a solution π ←
SolveH(·)(1λ, T, χ). The final proof is (χ, π).
Verify. P can verify that the proof is genuine by running {0, 1} ← VerifyH(·)(1λ, T, χ, π).

We require the following properties:
(1) Correctness. For any χ ∈ {0, 1}λ, λ, T ∈ N we have

VerifyH(·)(1λ, T, χ, SolveH(·)(1λ, T, χ)) = 1.

That is, an honest prover should always produce a valid proof with probability 1,
regardless of the choice of the statement χ ∈ {0, 1}∗, running in time parameter T and
security parameter λ.

(2) Efficiency. Solve should run in time T · poly(λ) and Verify should run in time
poly(λ, log T ). Similarly, the solution π must have size poly(λ, log T ).

(3) Security. We say that a construction ΠniPoSW is (T (·), q(·), ϵ(·))-secure (resp. ΠniPoSW is
(T (·), q(·), ϵ(·))-quantum secure) if any algorithm A running in sequential time at most
T = T (λ) in the pROM (resp. pqROM) and making at most q = q(λ) total queries to the
random oracle should fail to produce a valid proof for any statement χ ∈ {0, 1}λ (selected
by the adversary) except with a negligible probability ϵ(λ), i.e., if (π′, χ)← AH(·)(1λ, T )
denotes the solution generated from A, then

Pr
H(·)

[
VerifyH(·)(1λ, T, χ, π′) = 1

]
≤ ϵ(λ),

where the probability is taken over the randomness of the random oracle H.
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5.2 The Underlying DAG GPoSW
n ([23])

We will use the same DAG in our construction of the non-interactive PoSW as the DAG
defined in [23]. Here, we briefly recall their construction of the DAG GPoSW

n (the figure is
given in the full version). For n ∈ N, let N = 2n+1 − 1 and first construct a complete binary
tree Bn = (V,E′) of depth n, where |V | = N and all the directed edges go from the leaves
towards the root. We identify the N nodes V = {0, 1}≤n with the binary strings of length at
most n except for the root, and we let the root be the empty string ε. Below the root we
add directed edges from nodes 0 and 1 to node ε. Similarly, for each node v we add directed
edges from nodes (v∥0) and (v∥1) to v. Here, ∥ denotes the concatenation of the strings.
Now we define the DAG GPoSW

n = (V,E) by starting with Bn = (V,E′) and appending some
edges as follows:

For all leaf nodes u ∈ {0, 1}n, add an edge (v, u) for any v that is a left sibling of a node
on the path from u to the root ε.

For example, for u = 0110, the path from u to the root is 0110→ 011→ 01→ 0→ ε and the
left siblings of the nodes on this path are 010 and 00. Hence, we add the edges (010, 0110)
and (00, 0110) to E′. We refer to [23] for the full description of GPoSW

n .

5.3 The Non-Interactive Version of [23] Construction
Applying the Fiat-Shamir transform to the interactive PoSW construction [23], we have the
following algorithms Solve and Verify in the non-interactive PoSW construction. For the
notational simplicity, let Gn = GPoSW

n be the underlying DAG from [23].
SolveH(·)(1λ, T, χ, C):

Compute the labels of the graph Gn with n = 1+⌈log T ⌉, i.e., compute ℓi = Hχ(i, ℓpi
1
, . . . ,

ℓpi
di

), 1 ≤ i ≤ N , where pi
1, . . . , p

i
di

denotes the parents4 of node i and Hχ(·) := H(χ, ·).
Compute R = Hχ(N + 1, ℓε) and parse R to get k = ⌊λ/n⌋ strings c1, . . . , ck ∈ {0, 1}n.
Compute the challenges C = {c1, . . . , ck} where each n-bit string ci corresponds to a leaf
node in Gn.
Prove that everything on the path from node ci to the root is locally consistent. This can
be done by a Merkle tree reveal MT.Reveal, which reveals the labels of all the siblings on
path from node ci to the root. More precisely, for a node y ∈ {0, 1}≤n, we define

MT.Reveal(y) = {ℓy[0...j−1]∥(y[j]⊕1)}k
j=1,

where we recall that y[0 . . . j] denotes the substring of y to the jth bit and y[0 . . . 0] denotes
the empty string. In this way, we can reveal the labels of all the siblings on path from x

to the root ε. In particular, a solution π consists of the following:

π = {ℓε, ci,MT.Reveal(ci) for 1 ≤ i ≤ k}.

Output (χ, π).
VerifyH(·)(1λ, T, χ, π):

Parse π to extract ℓ′
ε and c′

1, . . . , c
′
k. Set R′ = Hχ(N + 1, ℓ′

ε) and split R′ to obtain
k = ⌊λ/n⌋ challenges c′′

1 , . . . , c
′′
k each of length n. Output 0 if c′′

i ≠ c′
i for any i ≤ k.

Otherwise, let (pi
1

′
, . . . , pi

di

′) = parents(c′
i) for each i.

4 Given a DAG G and a directed edge (u, v) we say that node u is a parent of node v. While this is the
standard notion of parent in a DAG it can be counter-intuitive since the “tree” edges in our DAG are
directed towards the root i.e., nodes 011 and 010 are both parents of node 01.
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Extract ℓ′
c′

i
and ℓ′

pi
j

′ from π for each i ≤ k and j ≤ d′
i.

Check that each leaf node c′
i is locally consistent. That is, one checks that ℓ′

c′
i

is correctly
computed from its parent labels:

ℓ′
c′

i

?= Hχ(c′
i, ℓ

′
pi

1
′ , . . . , ℓpi

di

′) where (pi
1

′
, . . . , pi

di

′) = parents(c′
i).

(Note that in Gn all of c′
i’s parents are siblings of nodes on the path from c′

i to the root
ϵ).
Check the Merkle tree openings for consistency. That is, for i = n− 1, n− 2, . . . , 0, check
that

ℓc′
i
[0...i] := Hχ(c′

i[0...i], ℓc′
i
[0...i]∥0, ℓc′

i
[0...i]∥1),

and verify that the computed root ℓc′
i
[0...0] is equal to ℓε ∈ π that we received in the proof.

5.4 Security
We argue that for any fixed constant α > 0 the non-interactive proof of sequential work
outline above is (T = (1− α)N, q, ϵ)-secure for ϵ(λ) = 32q2(1− α)⌊λ/n⌋ + 2q32−λ + 64q3(n+
2)λ2−λ + 2⌊λ/n⌋(n + 2)2−λ. We first define a set LUCKYs of databases D in which D
contains no collision or H-sequence of length s, yet the dataset D contains a lucky Merkle
tree that can be used to extract a proof of sequential work for some statement χ. We then
argue that any attacker making q queries fails to measure such a lucky dataset D except
with negligible probability. This is true even if the attacker is not restricted to run in
sequential time s. Finally, to complete the argument we argue that any cheating attacker who
produces a valid proof of sequential work can be converted into an algorithm that measures
a dataset D that either (1) contains an H-sequence of length s, (2) contains a collision or
(3) is in LUCKYs. Assuming that our attacker is sequentially bounded and makes at most q
queries, the probability of any of these three outcomes must be negligible. Thus, the PoSW
construction must be secure against any sequentially bounded attacker.

Coloring the Graph Gn
PoSW

Given a database D, a statement χ, and a candidate PoSW solution y = ℓϵ we define an
algorithm ColoredMTD(χ, y) which returns a copy of the DAG GPoSW

n in which each node
is colored red or green. Intuitively, green nodes indicate that the corresponding labels are
locally consistent with the database D while red nodes are locally inconsistent. If the PoSW
solution ℓϵ is entirely consistent with D then every node in Gn

PoSW will be colored green. On
the other hand, if there is no entry of the form (x, y) ∈ D then the root node in Gn

PoSW would
be colored red along with every other node below it. To define ColoredMTD(χ, y) we use a
recursive helper function ColorSubTreeD which outputs a colored subgraph rooted at an
intermediate node v. We briefly introduce how these algorithms work below and refer to the
full version for the complete descriptions.

(1) The algorithm ColorSubTreeD(χ, v, xv, yv) generates a subset of nodes that consists of
a Merkle subtree along with the coloring of each node in the set.

5 Note that if we have another entry (x′
1, y1) ∈ D satisfying x′

1 = χ∥1∥ℓ10∥ℓ11 then we have a collision in
the database and we do not have a parsing fail here. Similar argument holds for another parsing fail
case in (3) as well. We will deal with the case that the database has collisions separately and assume
that we do not have any collisions so that a unique Merkle subtree is generated as output.
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D = {(xε = χ∥ℓ0∥ℓ1, yε), (x0 = χ∥0∥ℓ00∥ℓ01, y0),
(x1 = χ∥0∥ℓ10∥ℓ11, y1), (x01 = χ∥01∥ℓ010∥ℓ011, y01),
(x010 = χ∥010∥ℓ′

00, y010), (x011 = χ∥011∥ℓ00∥ℓ010, y011)}

ε

0 1

00 01

010 011

ℓε = yε

ℓ1 = y1

x1 ̸= χ∥1∥ℓ10∥ℓ11, parsing fail!

ℓ0 = y0

ℓ00 = y00

̸∃x00 s.t. (x00, y00) ∈ D

ℓ01 = y01

ℓ010 = y010

(x010, y010) ∈ D, but
ℓ′

00 ̸= ℓ00, local inconsistency!

ℓ011 = y011

Figure 1 A succinct illustration of ColorSubTreeD(χ, ε, xε, yε) where ε is an empty string and the
database D is defined as above. Note that since n = 3, the nodes on the lowest layer are leaf nodes
and the dashed edges are shown to help understand how the coloring works (we do not actually draw
the edges in the algorithm). As described above, we have the following cases to color the node to red:
(1) in node 1, there exists x1 such that (x1, y1) ∈ D, however, x1 cannot be parsed properly, i.e.,
x1 ≠ χ∥1∥ℓ10∥ℓ11 (parsing fail5), (2) in node 00, there is no x00 such that (x00, y00) ∈ D (undefined
entry in D), and (3) in node 010 – which is a leaf node – we have an entry (x010, y010) ∈ D, but
when parsing x010 into χ∥010∥ℓ′

00, we observe that the predefined label ℓ00 of node 00 and the value
ℓ′

00 does not match (local inconsistency).

The algorithm takes as input (χ, v, xv, yv) where χ ∈ {0, 1}∗ is a statement, v ∈
{0, 1}≤n denotes a node in GD

6, and xv ∈ {0, 1}∗, yv ∈ {0, 1}λ are the bitstrings.
Here, yv is a potential candidate to be the label of node v. It outputs a subset of
nodes V ′ ⊆ V (GD), which consists of a Merkle subtree with root node v and the
corresponding coloring set Color(V ′) := {Color(v) : v ∈ V ′}.
Recall that a node v is green if it is locally consistent; for example, let (x, y) ∈ D
and for node v with label ℓv = y, if v0, v1 with labels y0, y1 are the parents of v then
v is locally consistent if and only if it satisfies Hχ(v, y0, y1) = y. Since we satisfies
H(x) = y as (x, y) ∈ D, one would need to satisfy x = χ∥v∥y0∥y1 for v to be locally
consistent.
Hence, we start parsing xv into χ∥v′∥yv∥0∥yv∥1 and see if it succeeds. That is, check
if v′ = v. If it fails, then we say it as “parsing fail”, which is illustrated in Figure 1
(node 1). In this case, we color the node red and stop generating the subtree.
If we succeed to parse xv, then we color v to green and can proceed to its parents and
see if there is an entry in the database D with having its y-coordinate as the label of
its parent node. If it fails, then it becomes our second fail and we color the node red
and stop generating the subtree. It is illustrated in Figure 1 (node 00).
When we color the leaf nodes, we follow the same procedure except that we could
have more than two parents based on the edge structure in [23], and we have another

6 We remark that v corresponds to the identification of a node that is a binary string of length at most n,
different from the label of the node ℓv.
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possibility of “parsing fail” because the labels of its parents should be predefined by
construction. If this kind of parsing fail occurs (node 010 in Figure 1), then we color
the node to red.

(2) ColoredMTD(χ, y) generates a complete Merkle tree rooted at a node ε with label ℓε = y

and appends the edges as shown in [23]. The algorithm works simple; find an entry
(x, y) ∈ D and call ColorSubTreeD(χ, ε, x, y). Fill the missing nodes with label ⊥ and
color them all red. Then we add the edges as described in Section 5.2. If there is no
such (x, y) in D then we abort the entire algorithm. We refer to Figure 2 for an example
of running the algorithm.

ε

0 1

00 01

000 001 010 011

⇒

ε

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Figure 2 One example of ColoredMTD(χ, y) where n = 3 and (x, y) ∈ D. On the left side is the
output of ColorSubTreeD(χ, ε, x, y) (different from Figure 1) and we fill the undefined nodes colored
red and add the edges on the right side. Note that newly added nodes and edges are shown in blue.

Notations

Recall that in Definition 10, we defined PATHs to be the set of the databases (compressed
random oracles) D such that GD contains a path of length s, which corresponds to the
H-sequence of length s. Now we define the set COLLIDE to be the set of the databases that
contains a collision:

COLLIDE := {D : D contains pairs (x, y), (x′, y) such that x ̸= x′}.

Given a node (string) v = (v1∥ . . . ∥vn) ∈ {0, 1}n, we use v≤i ∈ {0, 1}i to denote the substring
v1∥ . . . ∥vi, v≤0 := ε, and we use PTR(v, χ) = {v≤i : 0 ≤ i ≤ n} to denote the set of all nodes
on the direct path from v to the root of a Merkle tree constructed from ColoredMTD(χ, ·).
Given a coloring of the Merkle tree, we define the predicate gPTR(v, χ), which verifies that
every node on the path from v to the root is green.7 That is, gPTR(v, χ) = 1 if and only if
Color(v′) = green for all v′ ∈ PTR(v, χ) and 0 otherwise. For example, in Figure 2, we have
gPTR(011, χ) = 1 because the color of nodes in PTR(011, χ) = {011, 01, 0, ε} are all green.
On the other hand, we observe that gPTR(000, χ) = 0 despite the node 000 is green as we
have an intermediate red node 00 in PTR(000, χ).

Now we define LUCKY(D, χ, y) to be the set of λ-bit strings that produce lucky challenges
for the Merkle tree rooted at y:

LUCKY(D, χ, y) := {w ∈{0, 1}λ : w = w1∥ . . . ∥wk∥z where k = ⌊λ/n⌋,
|wi| = n, and gPTR(wi, χ) = 1 ∀0 ≤ i ≤ k}.

7 Here, PTR stands for “Path To the Root” and gPTR stands for “green Path To the Root”.
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Then the set LUCKYs is defined to be the set of databases that contains lucky challenges not
in COLLIDE and PATHs, i.e.,

LUCKYs :={D : ∃(x, y) ∈ D s.t. x = χ∥N + 1∥ℓϵ ∧ y ∈ LUCKY(D, χ, ℓϵ)}
\ (COLLIDE ∪ PATHs) .

We also define ˜LUCKYs to be the set of basis states with D in LUCKYs as follows:

˜LUCKYs := {|x, y, z⟩ ⊗ |D⟩ : D ∈ LUCKYs}.

We remark that when defining the set LUCKYs, we need to assume that D ̸∈ COLLIDE to
ensure that we get a unique Merkle tree rooted at ℓε and we additionally need to assume
that D ̸∈ PATHs otherwise the set {v ∈ {0, 1}n : gPTR(v, χ) = 0} may not be large, i.e., if
all nodes are green.

We also define PRE(D) to be the set of λ-bit strings w that become a preimage of a hash
value. It happens when w is a substring of x where (x, y) ∈ D.

PRE(D) := {w ∈ {0, 1}λ : ∃(x, y) ∈ D s.t. Substring(w, x) = 1}.

Security of PoSW against Quantum Attackers

Let Gn = (V,E), Color(V )← ColoredMTD(χ, ·). We first introduce a helper lemma that is a
classical argument (not quantum) and comes immediately from rephrasing the intermediate
claim in the proof of [23, Theorem 1].

▶ Lemma 21 ([23]). If D ̸∈ COLLIDE and D ̸∈ PATHT with T = (1−α)N for some constant
0 < α < 1, then

|{v ∈ {0, 1}n : gPTR(v, χ) = 0}| ≥ α2n ,

i.e., at least α2n out of 2n challenges (leaf nodes) in Gn must fail to respond correctly.

We immediately have the following corollary which bounds the number of tuples (v1, . . . , vk, y)
such that all challenges vi are lucky i.e., gPTR(vi, χ) = 1 ∀i ≤ k. Here, y ∈ {0, 1}k′ is an
auxiliary string.

▶ Corollary 22. If v1, . . . , vk are the leaf nodes in Gn (i.e., vi ∈ V, |vi| = n ∀i ≤ k), then we
have that∣∣{(v1, . . . , vk, y) : gPTR(vi, χ) = 1 ∀i ≤ k, y ∈ {0, 1}k′

}
∣∣ ≤ 2nk+k′

(1− α)k.

▶ Lemma 23. Let α be any constant satisfying q ≤ 2λ(1−α)⌊λ/n⌋

(n+1)λ then for any state

|ϕ⟩ =
∑

x,y,z,D:|D|≤q

αx,y,z,D|x, y, z⟩ ⊗ |D⟩

whose database register is a superposition of databases with at most q entries, we have

L2(CPhsO|ϕ⟩, ˜LUCKYs)− L2(|ϕ⟩, ˜LUCKYs) ≤ 4(1− α)
⌊λ/n⌋

2 .
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Proof. (Sketch) The proof of Lemma 23 is similar to Lemma 12. We provide a complete
proof in the full version and sketch the high level details here. We consider the projection
of |ϕ′⟩ = CPhsO|ϕ⟩ onto orthogonal spaces P,Q,R, S where (1) P projects onto the span
of basis states |x, y, z⟩ ⊗ |D⟩ ∈ ˜LUCKYs, (2) Q projects onto states |x, y, z⟩ ⊗ |D⟩ such that
|x, y, z⟩ ⊗ |D⟩ ̸∈ ˜LUCKYs, y ̸= 0, and D(x) = ⊥, (3) R projects onto states |x, y, z⟩ ⊗ |D⟩
such that |x, y, z⟩ ⊗ |D⟩ ̸∈ ˜LUCKYs, y ̸= 0, and D(x) ̸= ⊥, and (4) S projects onto states
|x, y, z⟩⊗|D⟩ such that |x, y, z⟩⊗|D⟩ ̸∈ ˜LUCKYs and y = 0. Then since P,Q,R, S project onto
disjoint states that span the entirety of |ϕ′⟩ then we have P +Q+R+S = I, where I denotes
the identity operator. We analyze how P acts on these components separately and have that
∥P ◦ CPhsO(P |ϕ⟩)∥2 ≤ ∥P |ϕ⟩∥2, ∥P ◦ CPhsO(Q|ϕ⟩)∥2

2 ≤ (1−α)⌊λ/n⌋, ∥P ◦ CPhsO(R|ϕ⟩)∥2
2 ≤

9(1− α)⌊λ/n⌋., and ∥P ◦ CPhsO(S|ϕ⟩)∥2 = 0. Then by triangle inequality, we have that

∥P ◦ CPhsO|ϕ⟩∥2 ≤ ∥P ◦ CPhsO(P |ϕ⟩)∥2 + ∥P ◦ CPhsO(Q|ϕ⟩)∥2

+ ∥P ◦ CPhsO(R|ϕ⟩)∥2 + ∥P ◦ CPhsO(S|ϕ⟩)∥2

≤ ∥P |ϕ⟩∥2 + (1− α)
⌊λ/n⌋

2 + 3(1− α)
⌊λ/n⌋

2

≤ L2(|ϕ⟩, ˜LUCKYs) + 4(1− α)
⌊λ/n⌋

2 .

Since we have that ∥P ◦ CPhsO|ϕ⟩∥2 = L2(CPhsO|ϕ⟩, ˜LUCKYs), we complete the proof. ◀

From Lemma 23, we have the following Lemma. The proof of Lemma 24 can be found in
the full version.

▶ Lemma 24. Suppose that our quantum attacker A makes at most q queries to CPhsO
then the probability p′ of measuring a database D ∈ LUCKYs for s = N(1 − α) is at most
16q2(1− α)⌊λ/n⌋.

▶ Theorem 4. Suppose A makes at most q quantum queries to our random oracle H
over at most s = N(1 − α) rounds and let p denote the probability that A outputs a valid
(non-interactive) proof of sequential work. Then

p ≤ 32q2(1− α)⌊λ/n⌋ + 2q3

2λ
+ 64q3(n+ 2)λ

2λ
+ 2⌊λ/n⌋(n+ 2)

2λ
.

Proof. Suppose that A make queries to a random oracle H and outputs tuples ((x1, y1), . . . ,
(xk, yk), z) and let R be a collection of such tuples that contain a valid PoSW for some
statement χ ∈ {0, 1}λ. Recall that with probability p, the algorithm A outputs a tuple such
that (1) the tuple is in R (contains a valid PoSW), and (2) H(xi) = yi for all i. Now consider
running A with the oracle CPhsO (applying the Hadamard Transform before/after each
query) and measuring the database D after A outputs. We first observe that if the final tuple
is in R and D(xi) = yi for all i, then we must have D ∈ LUCKYs+1 ∪ PATHs+1 ∪ COLLIDE.
In particular, if D does not contain an H-sequence of length s + 1 or a collision, then we
must have D ∈ LUCKYs+1 since the proof of sequential work is valid.

However, the probability of measuring a dataset D ∈ LUCKYs+1 ∪ PATHs+1 ∪ COLLIDE
can be upper bounded by 16q2(1−α)⌊λ/n⌋ + 32q3(n+ 2)λ2−λ + q32−λ by applying Lemma 24
(Lucky Merkle Tree), Lemma 19 (Long H-sequence), and Lemma 6 to upper bound the
probability that D ∈ LUCKYs+1, D ∈ PATHs+1 and D ∈ COLLIDE, respectively.

We also observe that the number of input/output pairs in our PoSW is k = ⌊λ/n⌋(n+ 2)
since we have ⌊λ/n⌋ challenges where each challenge consists of a statement χ, a node itself,
and at most n parents. Hence, by applying Lemma 5, we have that

√
p ≤

√
16q2(1− α)⌊λ/n⌋ + 32q3(n+ 2)λ

2λ
+ q3

2λ
+

√
⌊λ/n⌋(n+ 2)

2λ
,
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which implies that

p ≤ 32q2(1− α)⌊λ/n⌋ + 2q3

2λ
+ 64q3(n+ 2)λ

2λ
+ 2⌊λ/n⌋(n+ 2)

2λ
,

since
√
a ≤
√
b+
√
c implies a ≤ b+ c+ 2

√
bc ≤ 2(b+ c) for any a, b, c > 0. ◀

6 Conclusion

We have shown that any attacker in the parallel quantum random oracle model making
q ≪ 2λ/3 total queries cannot find an H-sequence of length N in N − 1 sequential rounds
except with negligible probability. Using this result as a building block, we then prove that
the non-interactive proof of sequential work of Cohen and Pietrzak [23] is secure against any
attacker making q ≪ 2λ/n queries and running in sequential time T = (1− α)N . We leave
it as an open question whether or not the λ/n term from this lower bound is inherent or
whether the construction could be tweaked to establish security when q ≪ 2λ/n. The main
technical hurdle is extracting more than λ/n challenges from a single random oracle output
or adapting the proof to handle a modified construction where we extract challenges from
multiple random oracle outputs. An alternative approach would be to introduce a second
random oracle with longer outputs, which could be used to extract Ω(λ) challenges.

Our results also highlight the power of the recent compressed random oracle technique of
Zhandry [42] and raises a natural question about whether or not these techniques could be
extended to establish the security of important cryptographic primitives such as memory-hard
functions or proofs of space in the quantum random oracle model. Alwen and Serbinenko [8]
previously gave a classical pebbling reduction in the classical parallel random oracle model
showing that the cumulative memory complexity of a data-independent memory hard function
is tightly characterized by the pebbling complexity of the underlying graph. Would it be
possible to establish the post-quantum security of memory hard functions through a similar
reduction in the parallel quantum random oracle model?
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Abstract
This article is motivated by the classical results from Shannon that put the simple and elegant
one-time pad away from practice: key length has to be as large as message length and the same
key could not be used more than once. In particular, we consider encryption algorithm to be
defined relative to specific message distributions in order to trade for unconditional security. Such a
notion named honey encryption (HE) was originally proposed for achieving best possible security for
password based encryption where secrete key may have very small amount of entropy.

Exploring message distributions as in HE indeed helps circumvent the classical restrictions on
secret keys.We give a new and very simple honey encryption scheme satisfying the unconditional
semantic security (for the targeted message distribution) in the standard model (all previous
constructions are in the random oracle model, even for message recovery security only). Our new
construction can be paired with an extremely simple yet “tighter” analysis, while all previous
analyses (even for message recovery security only) were fairly complicated and require stronger
assumptions. We also show a concrete instantiation further enables the secret key to be used for
encrypting multiple messages.
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1 Introduction

The celebrated one-time pad is extremely simple and elegant, while satisfying perfect secrecy
that can be against an even computationally unbounded attacker. It also has two well-known
drawbacks that hinder its practical deployment: (1) the key length has to be as large as the
message size as shown in Shannon’s classical work [23] that perfect secrecy must incur such
a cost; and (2) one key can only be used to encrypt one message. These two main drawbacks
of one time pad have motivated cryptographers to introduce the concept of computational
security, and invented corresponding tools. In particular, pseudo-random generators were
developed to stretch a short key to be longer for the stream cipher, and pseudo-random
functions were introduced to design a symmetric key encryption that can use the same short
key to encrypt multiple messages.
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Despite that encryption schemes based on computational hardness are commonly used
in practice (as one of the greatest achievements of modern (computational) cryptography
in general), various application scenarios exist where information-theoretic models and
arguments still play a dominant or defining role: (i) one wishes to maintain security despite
the use of “weak” keys, such as passwords [16], or short keys in resource constraint devices
such as IoT nodes – the information-theoretic setting is forced upon by the fact that brute-
force attacks on the key space become feasible; (ii) one wishes to maintain long-term or even
everlasting security [8] for encrypted storage of highly confidential contents, such as user
secret keys, passwords, or genomics data – the information theoretic setting is demanded as
the validity of computational assumptions highly depends on existing cryptanalysis techniques
and computing powers and infrastructures, (e.g., the emerging threats of quantum computers).

In this article, we ask whether we can have an information theoretic encryption in the
plain model (without random oracles or extra common random sources) whose secret key
can be used as “conveniently” as that in the computational encryption, i.e., with length at
security parameter, and can be used to encrypt arbitrary number of messages (polynomially
bounded). We consider how to circumvent the well-known obstacles by trading generality
of the encryption for unconditional security, in particular, via the lens of honey encryption
[15, 14], which works on message distributions that are known to the encryption algorithm.

Fooling an unbounded adversary with a short key. There have been interesting progresses
regarding how to achieve information theoretic encryption with a short key. To circumvent
the inherent barrier that perfect secrecy requires each message bit to “burn up” a bit of secret
key during encryption, a thread of research considers to give encryptor more information
about the plaintext (but no more than what is known to the adversary). Or to put it another
way, instead of encrypting arbitrary message, the encryption algorithm only works for specific
types of messages to trade for unconditional security.

It began with Russell and Wang ’s 2002 article on Entropic Security [21], and the follow-
up work of Dodis and Smith [9]. They showed how to sidestep the obstacle of key length,
obtaining (information-theoretic) semantic security guarantees even with small keys, by
assuming that the message comes from a high-entropy distribution. On the positive side,
entropic security circumvents the classical entropy bound on the secret key. This model,
however, still requires the key to be long enough and satisfies µ > n − ℓ, where n is the
message length, and µ, ℓ are the key entropy and message entropy respectively. Such an
entropy requirement (though relaxed than one-time pad) still puts a restriction on the key
length, which is often much larger than O(λ). To achieve best possible security of (weak)
password based encryption facing an offline brute-force attack, Juels and Ristenpart proposed
an interesting concept of honey encryption [15] that further explores the message distribution.
The encryption algorithm there is provided with the details of the message distribution. The
key insight is putting attacker to face all plausible messages after brute-force decryption.
However, they considered only a security notion that prevents the adversary to recover the
whole message, which is arguably insufficient in practice.

For this reason, Jaeger, Ristenpart and Tang (JRT) [14] did an in-depth study of honey
encryption: they first defined a semantic security like notion 1 that requires the ciphertext
to hide all partial information, when message is sampled from the distribution (for example,
password, bio-metric data or secret key); and they demonstrated that a simple hash based
encryption achieves the security assuming the hash is a random oracle (or ideal cipher).

1 It is called targeted distribution semantic security, as the encryption algorithm now is designed relative
to a specific message distribution.
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More importantly, the analysis were done in the information theoretic setting. A par-
ticularly interesting message [14] about honey encryption was that designing an encryption
algorithm for a particular message distribution may help to approach our goals: it seems
possible in this case to have semantic security like notion against even unbounded attackers,
but only requiring a secret key that could be as short as that in the computational setting.

Honey encryption with “semantic security” in the standard model. Relying on random
oracles to establish security is certainly unsatisfying, especially in the information theoretic
setting, as a random oracle can pump out unlimited amount of entropy as an idealized
assumption that could not be instantiated in real-life. An immediate natural question to
consider is whether we can construct honey encryption that satisfies a unconditional semantic
security in the standard model, which was left as an open problem in [15, 14]. Thus this
becomes the first problem for us to tackle in this article.

Our first standard model HE construction is a natural instantiation of the DTE-then-
Encrypt construction from [14, 15]: previously, encrypting algorithm is simply the hash
based encryption using hash as a random function (or even an ideal cipher) to generate a
session key for the message. Now we would like to instantiate the random oracle. Let us first
walk through the high-level intuition of the complicated security analysis from [14] (similar
for [15] even though it was only against a weaker message recovery adversary):

Phase (1) of the security analysis in JRT [14] and JR [15] was to transform from the
security game defining semantic security (for a targeted message distribution) to a game in
which the ciphertext is chosen uniformly, and the secret key is sampled after the adversary
has run. In the new game, one can show that the advantage of any adversary is no larger
than that of an “optimal” adversary who decrypts the ciphertext using all possible keys,
computes the predicate value on the resulting plaintext, and outputs the bit which has the
higher cumulative mass of keys that resulted in this bit. Such a cumulative probability can
be viewed as the total weight of the balls in a bin at the end of a balls-and-bins game.

Phase (2) is the complicated part that was to analyze the maximum load in the non-
uniform bin selection with non-uniform balls. A majorization lemma [4] was applied to
upper-bound the quantity that obtained from uniformly weighted balls (with the same
weights). The latter thus can be simply be derived by bounding the number of balls in the
experiment, for which we can use Chernoff inequality.

Now without the random oracle, the balls-into-bins experiment is no longer valid (at least
not in the normal sense), since “ball throws” become correlated with each other. Furthermore,
the majorization technique also requires independence. To get around the major challenges,
we observe that a direct analysis might be possible without using the majorization techniques,
if we leverage a generalized Chernoff-bound [22] to deal with correlated (to some extent)
random variables that even may not be identically distributed. Such technique may also
be applied to simplify the analysis of the JRT result regarding semantic security [14] and
also the JR result [15] for even message recovery security. Since a generalized Chernoff
bound dealt with q-wise independent random variables, it becomes natural to instantiate the
random oracle with a q-wise independent hash. Moreover, after a careful analysis, we can set
the parameter with just a small q such as the security parameter.

Our second standard model HE construction starts from an entropically secure encryption
(ES). This construction and analysis turn out to be surprisingly simple. There is a seeming
dilemma: what we would like to have is an HE scheme with a key of length at most O(λ),
where λ is the security parameter, as in the computational setting; while entropic security
requires the key entropy (length) no smaller than message length minus message entropy. For
most of the message distributions (say with entropy half of the length), it already requires
the key length to be depending on message length.

ITC 2021
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But a closer look reveals the power of one important building block for all existing HE
constructions, distribution transforming encoder (DTE for short). A distribution transforming
encoder takes a message distribution, and encodes it to an almost uniform distribution over
another space S. If S is close to {0, 1}n, the encoded distribution is already close to uniform.
Applying an entropically secure encryption on “encoded message distribution” now offers
opportunities to allow the key entropy to be minimal. Interestingly, it is very easy to see the
security of the DTE-then-ES construction of HE, though previous concrete constructions of
HE were all paired with very complicated analysis. 2

It is also worth noting that we can consider the output of DTE to be a uniform distribution
in our analysis, which only adds negligible error. Since the ES scheme is applied on this
distribution, we can further lessen restrictions on the ES scheme: it only needs to work for
uniform input (with full entropy). In this way, we can achieve an even better security bound
than those previous ones, which was considered to be asymptotically optimal.

Fooling an unbounded adversary again with the same short key. It’s well-known that
in one-time pad (and many related constructions), if the secret key is used to encrypt two
messages, some pattern (e.g., whether two messages are equal) is leaked immediately. Such
vulnerability was widely exploited in practice, and lead to numerous highly impacting attacks
[5, 25]. With the encouragement of HE in circumventing the entropy bound in the information
theoretic setting, we are now more ambitious and would like to ask whether one can further
encrypt multiple messages using the same short key. This becomes our second major question
to address in this article.

Insecurity of ES when reusing a key. Neither previous works on entropic security, nor
honey encryption discussed the key reuse issue. To see whether entropic security is helpful
enabling key reuse, we start with the security notion which generalizes the conventional
semantic security definition. Conventionally, the adversary who sees a ciphertext, tries to
learn a predicate on the corresponding message. Now, adversary seeing a vector of ciphertext,
can infer a predicate bit on the vector of messages (which were sampled independently).

Having this definition in place, (informal) intuition that entropic security does not seem
to be promising enabling the key reuse can be seen as follows: One can view the vector of
messages as one large piece of message. Plugging in the entropy bound from [21, 9], suppose
there are t messages, each with entropy n/2 and length n. The entropy bound would require
length of the key to be no smaller than t · n− t · n/2 = tn/2. Even a secret key with length
n could be at most used twice. Such intuition can be easily generalized to the case that
message entropy to be n− 1 (in which the key could be reused at most µ times, where µ is
the entropy of the key)! To formally prove the impossibility, we establish the lower bound
on the key length if an ES scheme reuses the key for T times. This generalizes the original
lower bound in the single ciphertext setting [21, 9]. An analysis on key length requirements
is given in Sec. 4.1 to show that in order to reuse the key for T times, we must have the key
length at least to be (n− t)T , where the messages are from distribution with entropy t.

2 We remark that, as far as we know, such a simple construction has not been shown before. Previously,
honey encryption was motivated by password based encryption, thus their main goal is to obtain security
with a weak key. Thus comparison focused on the insufficiency of entropic security [15, 14] due to its
key length requirement. When we consider honey encryption from the angle of unbounded security,
entropic security becomes a natural candidate to leverage, which enables us to simplify the analysis for
HE [15, 14] dramatically. We still presented the q-wise independent hash based construction to showcase
(already simplified) existing analysis structure, which in turn demonstrates the simplicity of HE from
entropic security. Ironically, with existing analysis of the q-wise independent hash based construction,
we cannot even choose q to be as small as 2, while entropic security based construction can!
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Honey encryption that allows key re-use in the standard model. The existence of entropy
bounds in both one-time pad and entropic security hints that security in those two settings
needs to burn key entropy for each ciphertext. However, the entropy bounds do not seem to
appear in honey encryption when one encrypts only for a particular message distribution.
We ask whether HE can remain secure when the secret key is reused.

We first remark that, key re-use does not come for free in honey encryption. The above
impossibility in entropic security directly hints this, and also gives an example: the HE
construction instantiating with the small-biased set based ES scheme from [21], does not
allow key reuse, even when the message is uniform. There, the overall construction is basically
in the form of M ⊕ s(K) for a function s() defining the small biased set.

Fortunately, we show, the HE construction from the pairwise independent hash (trivially
holds for the q-wise independent hash based construction as well) allows one to reuse key for
arbitrary number of times t with only a security loss linear to t. We also give a definition
of (targeted distribution) semantic security that allows key reuses. Interestingly, the view
that leads to the entropy deficiency in entropic security explains the intuition why the
second HE construction enables key reuses. As a high level intuition, now facing a vector of
independently sampled messages, encoding them individually and then concatenating works
as a good DTE; hashing them individually and then concatenating also works as a good
pairwise independent hash! Those observations essentially reduce the security of key reuse to
the security of HE on another message distribution.

Now we finally have an information theoretically secure encryption that can have and use
a key as convenient as in the computational setting, just by giving the encryption algorithm
details of the message distribution (which is no more than what the adversary knows).

Discussions. Honey encryption was originally proposed to deal with best possible security
for password based encryption, where a very small amount of entropy in password is available.
We find the underlying concept exploring the message distribution to “mute” the brute-force
attack very inspiring and applicable to broader information theoretic setting, which motivated
us to examine information theoretic encryption via the HE lens and vise versa.

As we demonstrate, exploring message distribution enables us to circumvent the major
obstacle about secret key in information theoretic encryption; on the other hand, putting
HE in the unbounded security domain also leads to a very natural and simple construction
of HE from entropic security, which simplifies our understanding of HE itself. Indeed, all
previous HE constructions (even in the random oracle model and only against a weaker
message recovery adversary) require fairly complicated analysis.

Other related works. There exist several lines of exploration of relaxing information
theoretic security or adding extra setup for smaller key length. One attempt is adding
constraints to the adversary, e.g. restricting adversary’s access to limited ciphertext bits[19],
or constraining adversary’s memory usage (bounded storage model)[6, 3, 8, 11, 18]. These
schemes mostly focus on key expansion by leveraging honest guy’s advantage. In bounded
storage model, for example, a short secret key is expanded to a one-time pad key using
the random sources, and the actual key in use should still satisfy Shannon’s bound. In
comparison, we do not give encryption algorithm any extra knowledge in honey encryption;
what we give to the encryption algorithm (message distribution) is already known to the
attacker. Another relaxed notation proposed by Calmon et al. is ε-symbol secrecy[10], in
which it is hard for an adversary to recover message bits (but not functions of messages).
Limited by underlying encoding scheme, though, the key size cannot be compressed to be
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23:6 Fooling an Unbounded Adversary with a Short Key, Repeatedly

as small as security parameter. A third way of relaxation is to restrict input messages
to concrete distribution, for example, maximal correlation secrecy[17] requires input to be
uniformly distributed.

We note that, none of the constructions dealt with security when a key is reused, except
that might be possible in the bounded storage model; but, essentially, the random source
generate fresh randomness for each encryption, which implicitly uses a super large key.

Shikata[24] proposed formalization of several information theoretic security definitions
and gave lower bounds of key length, which was later extended to multiple-use model. While
our work restricts the input messages to follow certain distribution, in their work, however, a
key is required to have Ω(mT ) length if it is reused T times, where m denotes the message
length. Therefore, it is clear they cannot have a short key and enable the key reuse.

HE has a number of real-world applications, such as secure password vaults[7, 12],
genomic data[13], and natural languages [20, 1]. Recently, a systematic study about various
pseudorandom encodings including DTE was given in [2].

2 Preliminaries and Honey Encryption Background

Notations. Let S be a set, a distribution on S is defined to be a function p : S → [0, 1]
such that

∑
s∈S p(s) = 1. Denote US to be the uniform distribution on S. For a set B ⊆ S,

define p(B) =
∑

s∈B p(s). By s←pS we mean sampling an element s from S according to
distribution p, and by s←$S we mean s is sampled uniformly from S. Let A be a randomized
algorithm, then by y←$A(X) we mean y is the output of algorithm A running on input
X. We use y ← A(X) if A is a deterministic algorithm instead. For a game G, we use
Pr[G⇒ true] to denote the probability that G outputs true.

Min-entropy. Let X ←pS be a random variable with distribution p. The min-entropy of X

is H∞(X) = − log maxs∈S p(s). We also use notations H∞(p) = H∞(X) for simplicity.

q-wise independent hash functions. A family of hash functions {Hi : M → S}i∈I is
called universal hash family if for all m1, m2 ∈ M, m1 ≠ m2, Pri←I [Hi(m1) = Hi(m2)] ≤

1
|S| . Furthermore, the hash family {Hi} is called q-wise independent if for any distinct
m1, m2, · · · , mq ∈M and any t1, t2, · · · , tq ∈ S,∣∣∣ Pr

i←I
[Hi(m1) = t1 ∧ Hi(m2) = t2 ∧ · · · ∧ Hi(mq) = tq]

∣∣∣ = 1
|S|q

{Hi} is also called pairwise independent when q = 2.
Let F be a field. A (polynomial) q-wise independent hash family H(a0,··· ,aq−1) : F → F,

where each ai ∈ F, can be constructed [26] as

H(a0,··· ,aq−1)(m) =
q−1∑
i=0

aim
i

Entropic security. The definition of entropic security was first proposed by Russel and
Wang in [21] and later studied by Dodis and Smith[9]. A probabilistic map Y is said to hide
all functions of X with leakage ε if for every adversary A, there exists some adversary A′
such that for all functions f ,

|Pr[A(Y (X)) = f(X)]− Pr[A′() = f(X)]| ≤ ε
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TDSS0As,f
HE,pm,pk

M ←pmM
b←$As

return b = f(M)

TDSS1A,f
HE,pm,pk

K ←pk K
M ←pmM
C ←$ HEnc(K, M)
b←$A(C)
return b = f(M)

Figure 1 TDSS Security Games.

The map Y () is called (µ, ε)-entropically secure if Y () hides all functions of X, whenever the
min-entropy of X is at least µ. We say Y () is (µ, ε)-entropically secure for predicates if Y ()
hides all functions of X that take value in {0, 1}.

Honey encryption[15, 14]. A honey encryption (HE) scheme HE = (HEnc, HDec) is designed
for a specific input distribution. We use K, M and C denote the key space, the message
space and the ciphertext space, and pk, pm denote the key distribution on K and the message
distribution on M respectively. The encryption algorithm will take pm as input.

Target distribution semantic security (TDSS) [14]. Since honey encryption is designed
only for each specific message distribution, the semantic security type of definition has to be
adapted for a targeted distribution. For more detailed discussions, we refer to [14].

Let f : M → {0, 1} be a predicate on M, pf (b) = Pr[f(M) = b |M ←pmM ], and
ωf = max{pf (0), pf (1)}. Define security games for HE with respect to distributions pk, pm

in Figure 1: In game TDSS0 an adversary As called a simulator tries to guess the value of
f(M) with no access to ciphertexts, while in game TDSS1 the adversary A guess f(M) given
an encryption of M . The advantage of an adversary A with respect to HE, distributions
pm, pk and predicate f is defined as:

Advtdss
HE,pm,pk

(A, f) = Pr
[
TDSS1A,f

HE,pm,pk
⇒ true

]
− Pr

[
TDSS0As,f

HE,pm,pk
⇒ true

]
The optimal strategy for As in TDSS0 is to output the most probable value of f(M)
given pm, f , which gives Pr

[
TDSS0As,f

HE,pm,pk
⇒ true

]
= ωf . Therefore we can rewrite

Advtdss
HE,pm,pk

(A, f) = Pr
[
TDSS1A,f

HE,pm,pk
⇒ true

]
− ωf .

▶ Definition 1. An HE scheme HE with respect to key distribution pk and message distribution
pm is said to be ε−TDSS secure if

Advtdss
HE,pm,pk

= max
A,f

Advtdss
HE,pm,pk

(A, f) ≤ ε

where the max is over all (unbounded) adversary A and arbitrary predicate f .

Distribution-transforming encoder (DTE)[15]. A DTE is a pair of algorithms DTE =
(encode, decode) defined relative to sets M and S, where randomized encoding algorithm
encode takes as input a message M ∈ M and outputs S ∈ S, and deterministic decoding
algorithm decode takes as input S ∈ S and outputs M ∈ M. DTE should always satisfy
correctness: for all M ∈M, Pr[decode(encode(M)) = M ] = 1.
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SAMP0DDTE

S ←$S
b←$D(S)
return b = 1

SAMP1DDTE,pm

M ←pmM
S ←$ encode(M)
b←$D(S)
return b = 1

Figure 2 DTE Security Games.

HEnc(K, M)
S ←$ encode(M)
C ←$ Enc(K, S)
return C

HDec(K, C)
S ← Dec(K, C)
M ← decode(S)
return M

HEnc(K, M)
S ←$ encode(M)
R←$ {0, 1}r

C̃ ← HR(K)⊕ S

C ← (R, C̃)
return C

HDec(K, C)
(R, C̃)← C

S ← HR(K)⊕ C̃

M ← decode(S)
return M

Figure 3 Left: DTE-then-Encrypt; Right: DTE-then-Hash.

The security property for DTE schemes is defined via the security games in Figure 2.
The advantage of an adversary D against DTE and distribution pm is:

Advdte
DTE,pm

(D) = Pr
[
SAMP1DDTE,pm

⇒ true
]
− Pr

[
SAMP0DDTE ⇒ true

]
Define DTE advantage as measurement for DTE security as follows:

▶ Definition 2. The DTE advantage of a scheme DTE with respect to distribution pm is defined
to be Advdte

DTE,pm
= maxD Advdte

DTE,pm
(D), where the maximization is over all (unbounded)

adversary D.

Although it is mentioned in [2] that DTE does not exist for all distributions, a large
number of distributions can be encoded using a DTE. For example, a distribution can be
encoded using inverse-sampling DTE in [15] if values of all probability mass functions are
explicitly given.

DTE-then-Encrypt[15, 14]. DTE-then-Encrypt serves as a framework to construct HE
schemes with respect to a target distribution. A message is first encoded using DTE and then
encrypted using a symmetric encryption. The framework is described in Fig 3. In [15, 14], the
encryption is instantiated with a hash-based encryption scheme Enc(K, M) = (R, HR(K)⊕M),
where R is randomly drawn. We rename this DTE-then-Hash for clarity. The DTE-then-Hash
construction is described in Fig 3.

3 HE Constructions Secure in the Standard Model

Recall that for an n-bit input, one-time pad requires the key to have at least n bits of min-
entropy. Entropically secure encryption scheme (ES scheme) relaxes this entropy requirement
to n− t by restricting the input with at least t bits of min-entropy. If the ES scheme uses a
key with min-entropy n− t + δ, it would achieve a security around 2−δ/2[9]. HE completely
removes the key entropy requirement by working on a specific message distribution (called
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target distribution). JRT showed that an HE scheme using a key with min-entropy δ would
achieve ε-TDSS (targeted distribution semantic security) for ε slightly bigger than 2−δ/2 (e.g.
ε is around 2−13 when δ = 30[14]), albeit in random oracle model.

Below we present our two attempts at HE constructions in the standard model as well
as security analysis: the first using q-wise independent hash family, and the second using
an ES scheme. The first construction, which is a natural extension of JR[15] and JRT[14]’s
construction in standard model, gives a security bound comparable to the random oracle case,
and requires q to be around key length. While this is acceptable for low-entropy key settings,
it turns out that our second HE construction using ES scheme can achieve asymptotically
optimal security bounds and only requires a pairwise independent hash family.

3.1 HE from q-wise independent hash
Our first attempt to construct HE in standard model follows from the previous works of [15]
and [14]. Their construction applies DTE-then-Hash framework where the hash function is
modeled as a random oracle. While we cannot use random oracle since we are working in
standard model, it is natural to consider the case where the hash function is modeled as a
q-wise independent hash family instead. As we will see, the overall structure of the analysis
of [15] and [14] still applies with the use of new techniques, yet it results in a relatively weak
bound. We give a high level overview in this section and leave the full proof in the appendix.

Let us recall the TDSS security analysis of DTE-then-Hash construction presented in
[14, 15], which came in two main steps. In the first step, game transitions are performed on
the original TDSS security game to another game where the adversary’s best strategy is to
decrypt the ciphertext using all possible keys, compute the predicate value on all decryptions,
and output the bit which is supported by larger probability mass of keys. Note that such
transition does not rely on random oracle, and incurs an error which is bounded by DTE
advantage. In the second step, different balls-into-bins analysis are applied where each
decryption attempt is considered as throwing a “ball” into a “bin”. Each decryption result is
considered to be independent if random oracle is used; however, we introduce correlations to
the decryption results using q-wise independent hash family, and we cannot use majorization
lemma to simplify the probability analysis. We overcome these problems by using a more
general Chernoff-like bound on q-wise independent random variables[22]. An advantage of
this bound is that it does not require the random variables to have the same distribution, so
that we can even omit the majorization step in previous proofs.

Game transitions. Similar to previous results [14, 15] , the first part of the proof is
summarized by the following lemma from [14], which transforms the estimation of the
adversary’s advantage Advtdss

HE,pm,pk
(A, f) in TDSS games to the expected outcome E

[
LH,DTE,f

pk

]
in an experiment EH,DTE,f

pk
defined in 4, via a sequence of games. The bias of the predicate is

ωf = max{pf (0), pf (1)}.
Note that experiment EH,DTE,f

pk
actually describes a brute-force attack, and the expectation

E
[
LH,DTE,f

pk

]
denotes the success probability of this attack. In other words, we are transitioning

to an experiment in which a brute-force attack is performed, and we are concerned with the
success probability of such attack.

▶ Lemma 3 ([14]). Let HE be defined using DTE-then-Hash construction with respect to
distributions pm, pk, q-wise independent hash family {Hi} and DTE scheme DTE, f be a
predicate on M, A be any adversary, then

Advtdss
HE,pm,pk

(A, f) ≤ Advdte
DTE,pm

+ E
[
LH,DTE,f

pk

]
− ωf

where LH,DTE,f
pk

is defined via experiment EH,DTE,f
pk

.
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Experiment EH,DTE,f
pk

R←$ {0, 1}r, C̃ ←$S
B0 ← ∅, B1 ← ∅
for i = 1, 2, · · · , |K| do
Si ← HR(Ki)⊕ C̃

Mi ← decode(Si)
bi ← f(Mi)
Bbi ← Bbi ∪ {Ki}
endfor
LH,DTE,f

pk
← max

b∈{0,1}
pk(Bb)

Figure 4 Experiment used in security analysis of DTE-then-Hash.

Proof for Lemma 3 is given in Appendix A.

Bounding success probability of predicting. In the second part of our proof, we give a
bound on E

[
LH,DTE,f

pk

]
, which represents the probability of a success brute-force attack. This

is the different part of analysis we have to do without the luxury of relying on random oracle
to get independence or majorization technique to simplify the balls-into-bins experiment.
Our main tool is the following more general Chernoff-like result which is a special case of a
theorem from [22]:

▶ Lemma 4 ([22]). Let X1, · · · , Xn be q-wise independent random variables confined to the
interval [0, 1], and X =

∑n
i=1 Xi with µ = E[X], then

1) For δ ≤ 1 satisfying q ≤ ⌊δ2µe−1/3⌋, Pr[|X − µ| ≥ δµ] ≤ e−⌊q/2⌋;
2) For δ ≥ 1 satisfying q ≤ ⌊δµe−1/3⌋, Pr[|X − µ| ≥ δµ] ≤ e−⌊q/2⌋.
Define pd to be the probability distribution of M given by sampling a uniformly random
seed from S and then applying decode, i.e.

pd(M) = Pr[M∗ = M |S←$S, M∗ ← decode(S) ]

The following lemma gives a bound on E
[
LH,DTE,f

pk

]
; we defer detailed proof to Appendix B:

▶ Lemma 5. Let pt(b) = Pr[f(M) = b |M ←pdM ] and ωt = max{pt(0), pt(1)}. Let ωk

denote the maximum key probability. Then for all q ≤ e−1/3/2ωk,

E
[
LH,DTE,f

pk

]
≤ ωt + e−⌊q/2⌋ + (1− 2e−⌊q/2⌋)(qωk)1/2e1/6

Finalizing the bound. The following theorem sums up the two steps above and gives a
TDSS security bound:

▶ Theorem 6. Let HE be constructed using DTE-then-Hash with respect to distributions
pm, pk and q-wise independent hash family {Hi}i∈{0,1}r , where ωk denotes the maximum key
probability. Then for all q ≤ e−1/3/2ωk,

Advtdss
HE,pm,pk

≤ 2Advdte
DTE,pm

+ e−⌊q/2⌋ + (1− 2e−⌊q/2⌋)(qωk)1/2e1/6

In other words, HE is ε−TDSS secure for

ε = 2Advdte
DTE,pm

+ e−⌊q/2⌋ + (1− 2e−⌊q/2⌋)(qωk)1/2e1/6
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The proof for Lemma 5 and Theorem 6 are given in Appendix B.
Note that if we choose q = log(1/ωk) = H∞(pk) in Theorem 6, the security bound is

asymptotic to O((ωk log(1/ωk))1/2), which is close to O(ω1/2
k ) in low min-entropy key settings.

This implies that we can choose q ≈ λ if we are using a key of length λ. However, we cannot
choose q = O(1) because of the results in Lemma 4. Furthermore, although the O(log(1/ωk)))
hardly affects the security bound, we can actually push harder towards the O(ω1/2

k ) bound,
which is considered to be optimal in [14].

3.2 HE from entropically secure encryption
We now give an HE construction satisfying TDSS in the standard model via entropic security.
This idea arises when we view both of them as information theoretic encryption candidates.
An observation is that entropic security notion and TDSS notion are similar in some way:
they both capture the hardness for an unbounded adversary to learn any predicate of the
input message given an encryption of this message. The difference is that entropic security
expects entropy from the message, while HE scheme further explores the message distribution.
Intuitively, we would like to “modify” input message to gain enough entropy.

In order to match the entropy requirement in entropic security, we first encode input
messages using DTE (constructed specifically for message distribution, see above definition
in Sec.2). It should be pointed out, however, that DTE actually outputs a near-uniform
distribution which has almost full entropy. We can think of the DTE output as a uniform
distribution in our analysis, which only incurs negligible error. Such ES schemes are easy to
find; in fact, any (n− α, ε)-ES scheme for α ≥ 0 supports uniform input, since it supports
any input with min-entropy at least n− α. In this way, the entropy requirements in the ES
scheme becomes unimportant since we are using uniform distribution as input; We can even
use an ES scheme which only supports uniform input, which leads to better parameters. In
fact, according to an observation in JRT[14], our construction achieves asymptotically best
TDSS security bound O(ω1/2

k ).
More interestingly, our analysis is much simpler than that in JRT[14] and even the

message recovery security analysis in JR[15], which is a strictly weaker security notion than
TDSS; while at the same time, this simpler analysis is “tighter”: the entropic security path
gives an instantiation from pairwise-independent hash, but following the more complicated
analysis structure in Sec. 3.1, the resulting bound does not allow us to choose q to be as
small as 2 in the q-wise independent hash based construction.

▶ Theorem 7. Let pm be a distribution on a set M, pk be a distribution on a set K, and n

be an integer. Let e = (EEnc, EDec) be an (n− α, ε)-ES scheme for arbitrary 0 ≤ α < n with
key space K, key distribution pk and message space {0, 1}n, and DTE = (encode, decode) a
DTE scheme with respect to pm that outputs an n-bit binary string. Then the DTE-then-
Encrypt construction using e and DTE is an ε′−TDSS secure HE scheme with respect to key
distribution pk and message distribution pm, where ε′ = ε + Advdte

DTE,pm
.

Proof. It is easy to check that the HE construction is well defined and satisfies correctness.
We show that HE satisfies ε−TDSS security. For every adversary A and arbitrary predicate
f , consider the following sequence of games:

Now game G0 is exactly the same as game TDSS1A,f
HE,pm,pk

. Consider the following
adversary D(S) against DTE security: One can check that D simulates G1 when S←$S and
simulates G0 when S is an encoding of M ←pmM. Furthermore, D returns 1 if and only if
A wins in corresponding games. It follows from DTE advantage definition that

Pr[G0 ⇒ true]− Pr[G1 ⇒ true] ≤ Advdte
DTE,pm

(1)
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Game G0

K ←pk K
M ←pmM
S ←$ encode(M)
C ←$ EEnc(K, S)
b←$A(C)
return b = f(M)

Game G1

K ←pk K
S ←$ {0, 1}n

M ← decode(S)
C ←$ EEnc(K, S)
b←$A(C)
return b = f(M)

Figure 5 Sequence of games used in Theorem 7.

Adversary D(S)
K ←pk K
M ← decode(S)
C ←$ EEnc(K, S)
b←$A(C)
if b = f(M) return 1
else return 0

Figure 6 Adversary D(S) against DTE security.

We now work in game G1. Note that the random variable S is uniformly sampled from
{0, 1}n, therefore S has min-entropy n. By the definition of entropic security, there exists
some adversary A′ such that for all functions f̃ ,∣∣Pr

[
A(EEnc(K, S)) = f̃(S)

]
− Pr

[
A′() = f̃(S)

]∣∣ ≤ ε

Setting f̃(S) = f(decode(S)) we get

|Pr[A(EEnc(K, S)) = f(M)]− Pr[A′() = f(M)]| ≤ ε

Now Pr[A(EEnc(K, S)) = f(M)] is exactly the probability that A returns true in game G1,
in other words Pr[A(EEnc(K, S)) = f(M)] = Pr[G1 ⇒ true]. On the other hand, we have
Pr[A′() = f(M)] ≤ Pr

[
TDSS0As,f

pm
⇒ true

]
since the simulator As can simply run A′ and

return the same value as A′ does. In other words,∣∣Pr[G1 ⇒ true]− Pr
[
TDSS0As,f

pm
⇒ true

]∣∣ ≤ ε (2)

Combining 1 and 2 we have

Advtdss
HE,pm,pk

(A, f) = Pr
[
TDSS1A,f

HE,pm,pk
⇒ true

]
− Pr

[
TDSS0As,f

pm
⇒ true

]
≤ ε + Advdte

DTE,pm
= ε′

Since this holds for all A and f , we have

Advtdss
HE,pm,pk

= max
A,f

Advtdss
HE,pm,pk

(A, f) ≤ ε′

In other words, HE is ε′−TDSS secure. ◀

As a special case, let e be the random hashing construction in [9]:
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▶ Lemma 8 ([9]). Let {Hi}i∈I be a pairwise independent hash family from {0, 1}n to {0, 1}n,
and K is sampled according to pk, then the encryption scheme Enc(K, M ; i) = (i, Hi(K)⊕M)
is (µ, ε)-entropically secure for µ = n−H∞(pk) + 2 log(1/ε) + 2. Specifically, Enc(K, M ; i)
is (n− δ, ε)-entropically secure for H∞(pk) = δ + 2 log(1/ε) + 2.

In our HE construction we only require the entropically secure encryption scheme to
support uniform distribution, therefore we can choose δ = 0 for optimal parameters. This
leads to the following corollary:

▶ Corollary 9. Let HE with respect to key distribution pk and message distribution pm be
constructed using the DTE-then-Hash construction, in which a pairwise independent hash
family and an DTE scheme with advantage Advdte

DTE,pm
are applied. Then HE is ε−TDSS

secure for ε = 2(2−H∞(pk))/2 + Advdte
DTE,pm

= 2ω
1/2
k + Advdte

DTE,pm
, where ωk denotes the

maximum key probability.

Corollary 9 shows that we can achieve O(ω1/2
k ) TDSS security using a pairwise independent

hash family. Comparing this to Remark 5.6 in JRT[14] which states that TDSS security
is at least at the order of ω

1/2
k , we conclude that our construction achieves asymptotically

best security bound while only requiring pairwise independent hash. This is an improvement
over JRT[14]’s results, especially since we are working in standard model compared to their
random oracle assumption (and also to JR[15] which only considered a weaker message
recovery attack with RO).

4 Multi-Message Security

In this section, we are concerned with another drawback of information theoretic encryption
besides the key length: the same key must not be used to encrypt multiple messages. Indeed,
using one-time pad to encrypt two messages m1, m2 with the same key k yields two ciphertexts
m1 ⊕ k, m2 ⊕ k, from which one can easily recover the value of m1 ⊕m2. We first analyze
the (in)security of key reuse in entropic security, which also has implication that a honey
encryption which is not carefully designed for key reuse will also be facing attacks when
re-using the same key. Nevertheless, we prove that our HE construction in the standard
model using pairwise independent hash further allows one to re-use a short key: this HE
construction finally addresses both issues.

4.1 Insecurity of key re-use in entropic security

Entropic security leveraging message entropy helps decrease the key length, however, entropy
security does not give a solution to this problem: ES schemes become insecure when a
single key is used to encrypt multiple messages, even if these messages are independently
sampled. Informally speaking, each encryption requires a slice of fresh randomness from
the key, thus the key has to be long enough in order to provide sufficient randomness. We
give an analysis on lower bound of the key needed for reuse: generalizing the analysis from
single-message settings in [9], first we show that entropic security for multiple messages
implies indistinguishability of multiple ciphertexts; then the lower bound can be derived
from a Shannon-style bound (when we choose a special representative message distribution).
This lower bound implies that a secret key in an ES scheme can only be used to encrypt
very limited number of messages.
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Key reuse for independent messages in entropy security. We first give a formal definition
of entropic security in key reuse scenario, where a single key is used to encrypt multiple
independently sampled messages. Note that the security definition becomes stronger if we
remove the independence restriction; since we are after a negative result, it suffices to consider
this weaker variant.

▶ Definition 10. A probabilistic map Y () is called (t, ε, T )-entropically secure if for all
independent random variables X1, · · · , XT where each Xi has min-entropy at least t, and for
all adversary A, there exists some adversary A′ such that for all functions f ,

|Pr[A(Y (X1), · · · , Y (XT )) = f(X1, · · · , XT )]− Pr[A′() = f(X1, · · · , XT )]| ≤ ε

In the first part of the proof, we will show that for a (t, ε, T )-entropically secure encryption
scheme, the joint distribution of T ciphertexts (using the same key) satisfies indistinguishab-
ility definition. The latter basically requires that for any two message distributions with
the same entropy, the ciphertext distribution would be indistinguishable. An alternative
(and equivalent) definition that makes the following easier is that there exists one particular
distribution G (that is irrelevant to the system), for all message distributions, the resulting
ciphertext is indistinguishable with G. We first generalize those definitions to fit our setting
of multiple messages:

▶ Definition 11. A randomized map Y () is (t, ε, T )-indistinguishable, if there is a random
variable G, such that for every independent random variables Xt, · · · , XT over {0, 1}n where
each Xi has min-entropy at least t, we have

SD((Y (X1), · · · , Y (XT )), G) ≤ ε

We prove the following lemma: an entropic secure encryption that can re-use the key for
T times implies a form of indistinguishability.

▶ Lemma 12. (t, ε, T )-entropic security for predicates implies (t− 1, 4Tε, T ) -indistinguish-
ability.

Proof. Let (X1, · · · , XT ) and (X ′1, · · · , X ′T ) be two vectors of random variables where each
Xi is independent from each Xj , each X ′i is independent from each X ′j , and each Xi, X ′i has
min-entropy at least t− 1.

First of all, it suffices to prove the indistinguishability of (X1, · · · , XT ) and (X ′1, · · · , X ′T )
when each Xi and each X ′i is a flat distribution on some set of 2t−1 points. Otherwise we
can rewrite (X1, · · · , XT ) and (X ′1, · · · , X ′T ) as sum of distributions

(X1, · · · , XT ) =
∑

i

ai(Xi1 , · · · , XiT
), (X ′1, · · · , X ′T ) =

∑
j

bj(X ′j1
, · · · , X ′jT

)

where each coordinate Xik
, X ′jl

is a flat distribution. SD((X1, · · · , XT ), (X ′1, · · · , X ′T )) can
then be upper bounded by

∑
i,j aibjSD(Xi1 , · · · , XiT

), (X ′j1
, · · · , X ′jT

). Therefore it suffices
to show that for every pair of (Xi1 , · · · , XiT

), (X ′j1
, · · · , X ′jT

),

SD((Xi1 , · · · , XiT
), (X ′j1

, · · · , X ′jT
)) ≤ 4Tε.

Now assume (X1, · · · , XT ) and (X ′1, · · · , X ′T ) satisfy that: for each i, Xi and X ′i are two
flat distributions over disjoint sets of 2t−1 points each. Let X̃ = (X̃1, · · · , X̃T ) be sampled
as follows: to sample from X̃i, first sample a random bit bi uniformly; if bi = 0, sample
X̃i according to Xi, and otherwise sample X̃i according to X ′i. In this way, each X̃i has
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min-entropy t, and X̃1, · · · , X̃T are independent from each other. For every i, let fi be the
predicate which outputs 0 if X̃i is sampled according to Xi, and 1 if X̃i is sampled according
to X ′i, regardless of the choices of other coordinates.

For each i, define an adversary Ai which, given inputs y = (Y (X̃1), · · · , Y (X̃T )), outputs
0 if Y (X̃i) is more likely under the distribution Y (Xi) than Y (X ′i), and 1 otherwise. Note
that the output of Ai is independent of the choices of X̃1, · · · , X̃i−1, X̃i+1, · · · , X̃T . Therefore
the probability that Ai successfully predicts fi is

Pr
[
Ai(Y (X̃1), · · · , Y (X̃T )) = fi(X̃1, · · · , X̃T )

]
= 1

2 + 1
2SD(Y (Xi), Y (X ′i))

On the other hand, for any random variable G over {0, 1} independent of X̃i, the probability
that G = fi(X̃1, · · · , X̃T ) is exactly 1

2 . By (t, ε, T )-entropic security we get

Pr
[
Ai(Y (X̃1), · · · , Y (X̃T )) = fi(X̃1, · · · , X̃T )

]
≤ max

G
Pr

[
G = fi(X̃1, · · · , X̃T )

]
+ε = 1

2 +ε

From two inequalities above we get SD((Y (Xi), Y (X ′i))) ≤ 2ε for every i ∈ [1, T ]. Therefore,

SD((Y (X1), · · · , Y (XT )), (Y (X ′1), · · · , Y (X ′T ))) ≤
T∑

i=1
SD((Y (Xi), Y (X ′i))) ≤ 2Tε

For the case where Xi and X ′i are not disjoint, we can find a third vector (X ′′1 , · · · , X ′′T )
where each X ′′i is a flat distribution on 2t−1 points disjoint from both Xi and X ′i. In this
way,

SD((Y (X1), · · · , Y (XT )), (Y (X ′′1 ), · · · , Y (X ′′T ))) ≤ 2Tε

SD((Y (X ′1), · · · , Y (X ′T )), (Y (X ′′1 ), · · · , Y (X ′′T ))) ≤ 2Tε

We then use the triangle inequality to show that

SD((Y (X1), · · · , Y (XT )), (Y (X ′1), · · · , Y (X ′T ))) ≤ 4Tε ◀

The indistinguishability result can be used to bound the key size: essentially, we will
choose a special distribution of vector such that each coordinate has a fixed prefix wi, while
the remaining parts are sampled uniformly. ES ciphertexts can be seen as a statistically
secure encryption scheme with all the wi as input, which gives us the desired bound.

▶ Lemma 13. Any encryption scheme which is (t, ε, T )-entropically secure for inputs of
length n requires a key of length at least (n− t + 1)T − 1.

Proof. For every w = (w1, · · · , wT ) ∈ {0, 1}(n−t+1)T , where each wi ∈ {0, 1}n−t+1, let Mwi

be uniformly chosen from {wi} × {0, 1}t−1 and Mw = (Mw1 , · · · , MwT
). Then each Mwi

has min-entropy t− 1, and any (t, ε, T )-entropically secure encryption scheme Enc produces
indistinguishable distributions (Enc(Mw1), · · · , Enc(MwT

)), and (Enc(Mw′
1
), · · · , Enc(Mw′

T
))

for any pair (w, w′). Therefore (Enc(Mw1), · · · , Enc(MwT
)) can be seen as an encryption

scheme for (n− t + 1)T -bit strings, and thus Enc must have key length (n− t + 1)T − 1. ◀

▶ Remark 14. Lemma 13 implies that in an ES scheme, a key of length µ can only be used to
encrypt O(µ) messages even if these messages have entropy n−O(1). Therefore one cannot
expect ES to remain secure in multi-message settings, especially with the use of a short key.
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5 Conclusions and Future Works

In this paper, we investigate the following problem: is it possible to have an encryption
scheme (for a class of messages) that satisfies unbounded semantic type of security, but
using only a short key and the key can be re-used. We give an affirmative answer with a
construction of honey encryption from pair-wise independent hash that satisfies both.

Approaching the problem via the lens of honey encryption inspires us to explore a nice
trade-off between security and generality. We hope our initial positive results can motivate
more researches on exploring message distribution for better information theoretic encryption:
more general encoding mechanisms, relaxing message independence requirement in key reuse,
considering integrity and more.
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A Proof for Lemma 3

Proof. We use the sequence of games in Figure 7:

Game G0

1 : K ←pk K
2 : M ←pmM
3 : S ←$ encode(M)
4 : R←$ {0, 1}r

5 : C̃ ← HR(K)⊕ S

6 : C ← (R, C̃)
7 : b←$A(C)
8 : return b = f(M)

Game G1

K ←pk K
S ←$S
M ← decode(S)
R←$ {0, 1}r

C̃ ← HR(K)⊕ S

C ← (R, C̃)
b←$A(C)
return b = f(M)

Game G2

R←$ {0, 1}r

C̃ ←$S
C ← (R, C̃)
b←$A(C)
K ←pk K
S ← HR(K)⊕ C̃

M ← decode(S)
return b = f(M)

Figure 7 Sequence of games used in Lemma 3.

First of all, game G0 is exactly game TDSS1 with the HEnc part written in details.
Therefore, we have Pr[G0 ⇒ true] = Pr

[
TDSS1A,f

HE,pm,pk
⇒ true

]
. By definition we have

Advtdss
HE,pm,pk

(A, f) = Pr[G0 ⇒ true]− ωf (3)

Next, the gap between G0 and G1 can be reduced to DTE security. Note that the only
difference between G0 and G1 appears in line 2 and line 3. For any adversary A, consider
the following adversary D (in Fig 8) against DTE security: It is clear that D outputs 1 if
and only if A outputs the correct bit. Furthermore, D simulates G1 when S←$S, and D
simulates G0 when S is the DTE encoding of message M ←pmM. It follows that:

Pr[G0 ⇒ true]− Pr[G1 ⇒ true] ≤ Advdte
DTE,pm

(4)

Adversary D(S)
K ←pk K
M ← decode(S)
R←$ {0, 1}r

C̃ ← HR(K)⊕ S

C ← (R, C̃)
b←$A(C)
if b = f(M) return 1
else return 0

Figure 8 Adversary D(S) against DTE security games.

https://doi.org/10.1145/3133956.3134027
https://doi.org/10.1109/SFCS.1979.26
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Adversary A∗(C)
(R, C̃)← C

L0 ← 0, L1 ← 0
for K ∈ K do
S ← HR(K)⊕ C̃

M ← decode(S)
Lf(M) ← Lf(M) + pk(K)
endfor
b∗ ← argmaxb∈{0,1}Lb

return b∗

Figure 9 Adversary A∗(C) in game G2.

The next step is to show that G2 is equivalent to G1. Note that in G1 we first sample
S uniformly from S and independently from K, which guarantees C̃ also to be a uniform
sample from S independent from K. Therefore, we can first sample C̃ uniformly and choose
K after the execution of A, which is exactly the case in G2. Therefore,

Pr[G1 ⇒ true] = Pr[G2 ⇒ true] (5)

Now consider the following adversary A∗ in G2: Adversary A∗ adds up the probability
mass of all the keys resulting in f(M) = 0 and f(M) = 1 respectively; therefore, we have
L0 = Pr[f(M) = 0] and L1 = Pr[f(M) = 1]. This implies that A∗ is the best possible
adversary in game G2. If we denote Pr[G∗2 ⇒ true] to be the probability that A∗ succeeds in
G2, we have

Pr[G2 ⇒ true] ≤ Pr[G∗2 ⇒ true] (6)

Finally, consider Experiment EH,DTE,f
pk

. For fixed choice of (R, C̃), the value LH,DTE,f
pk

is
exactly Lb∗ in adversary A∗, which is the probability that A∗ succeeds conditioned on the
choice of (R, C̃). Taking expectation over all (R, C̃) gives

Pr[G∗2 ⇒ true] = E
[
LH,DTE,f

pk

]
(7)

Combining 3, 4, 5, 6 and 7 gives the proof for Lemma 3. ◀

B Proof for Lemma 5 and Theorem 6

Proof. In order to bound E
[
LH,DTE,f

pk

]
, we would like to give an upper bound of

Pr
[
LH,DTE,f

pk
≥ α

]
for some α ∈ (0, 1). Recall that LH,DTE,f

pk
= max{pk(B0), pk(B1)}, where

pk(B0), pk(B1) represents the probability that predicate f returns 0 or 1 respectively, under
random choices of K. by union bound

Pr
[
LH,DTE,f

pk
≥ α

]
= Pr[max{pk(B0), pk(B1)} ≥ α]
≤ Pr[pk(B0) ≥ α] + Pr[pk(B1) ≥ α]

(8)

It turns out that we only need to bound Pr[pk(B0) ≥ α] and Pr[pk(B1) ≥ α], where pk(B1) =∑
f(Mi)=1 pk(Ki) =

∑|K|
i=1 f(Mi)pk(Ki), pk(B0) = 1− pk(B1) =

∑|K|
i=1(1− f(Mi))pk(Ki). At

this point, the value of each pk(Ki) is fixed given pk, therefore we are only concerned with
the distributions of f(Mi).
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▶ Lemma 15. The random variables M1, · · · , M|K| are q-wise independent, and each Mi

has the same distribution pd.

Here the q-wise independence follows from the fact that HR(K1), · · · , HR(K|K|) are q-wise
independent (for randomly chosen R), and that each Mi is a function of HR(Ki). Each
Mi has distribution pd since C̃ is uniformly chosen from S and independent from R, and
therefore each Si is uniformly chosen from S.

Now let pt(b) = Pr[f(M) = b |M ←pdM ] and ωt = max{pt(0), pt(1)}. We can assume
without loss of generality that ωt = pt(1) ≥ pt(0). It follows that 1/2 ≤ ωt ≤ 1. In this
way, f(M1), · · · , f(M|K|) are q-wise independent random variables satisfying for every i,
Pr[f(Mi) = 1] = ωt, Pr[f(Mi) = 0] = 1− ωt.

We can apply Lemma 4 to prove the following proposition:

▶ Proposition 16. Let ωk = max1≤i≤|K| pk(Ki), and α = ωt + (qωkωt)1/2e1/6. For q ≤
ωte
−1/3/ωk,

Pr[pk(B1) ≥ α] ≤ e−⌊q/2⌋, Pr[pk(B0) ≥ α] ≤ e−⌊q/2⌋

Proof. We first prove the proposition for pk(B1). Define Xi = f(Mi)pk(Ki)/ωk for 1 ≤
i ≤ |K|, X =

∑|K|
i=1 Xi and µ = E[X]. Since for each i, pk(Ki)/ωk is a constant value

independent of Mi, the random variables X1, X2, · · · , X|K| are q-wise independent satisfying
Pr[Xi = pk(Ki)/ωk] = ωt, Pr[Xi = 0] = 1− ωt for all 1 ≤ i ≤ |K|. Therefore

µ = E[X] = E

 |K|∑
i=1

Xi

 =
|K|∑
i=1

E[Xi] =
|K|∑
i=1

pk(Ki)
ωk

ωt = ωt

ωk

Furthermore, pk(B1) =
∑|K|

i=1 f(Mi)pk(Ki) =
∑|K|

i=1 Xiωk = ωkX.
We apply Lemma 4 on X by choosing δ = (q/µe−1/3)1/2 = (qωk/ωt)1/2e1/6 and assuming

that δ ≤ 1, which is equivalent to q ≤ ωte
−1/3/ωk. One can check that α = (1+δ)ωt. Lemma

4 states that Pr[X ≥ (1 + δ)µ] ≤ e−⌊q/2⌋. On the other hand,

Pr[X ≥ (1 + δ)µ] = Pr
[
X ≥ (1 + δ) ωt

ωk

]
= Pr[ωkX ≥ (1 + δ)ωt] = Pr[pk(B1) ≥ α]

Therefore Pr[pk(B1) ≥ α] ≤ e−⌊q/2⌋. This proves the first part of the proposition.
The second part of the proof for pk(B0) comes in a similar fashion. This time we

redefine Xi = (1− f(Mi))pk(Ki)/ωk, X =
∑|K|

i=1 Xi and µ = E[X] = (1− ωt)/ωk. Note that
pk(B0) = ωkX. Consider both cases of Lemma 4:
1) If q ≤ µe−1/3 = (1 − ωt)e−1/3/ωk, we choose δ = (q/µe−1/3)1/2 ≤ 1, ensuring that

q = δ2µe−1/3. Conditions of the first inequality of Lemma 4 are satisfied since q is always
an integer. Therefore,

Pr[pk(B0) ≥ (1 + δ)µωk] = Pr[X ≥ (1 + δ)µ] ≤ e−⌊q/2⌋

One can check that (1+δ)µωk = (1−ωt)+(qωk(1−ωt))1/2e1/6 ≤ ωt +(qωkωt)1/2e1/6 = α.
(inequality follows from 1/2 ≤ ωt ≤ 1) Thus

Pr[pk(B0) ≥ α] ≤ Pr[pk(B0) ≥ (1 + δ)µωk] ≤ e−⌊q/2⌋



X. Li, Q. Tang, and Z. Zhang 23:21

2) If q ≥ µe−1/3 = (1−ωt)e−1/3/ωk, we choose δ = q/µe−1/3 ≥ 1, ensuring that q = δµe−1/3.
Again, conditions of the second inequality of Lemma 4 are satisfied since q is an integer.
Therefore,

Pr[pk(B0) ≥ (1 + δ)µωk] = Pr[X ≥ (1 + δ)µ] ≤ e−⌊q/2⌋

This time we have (1 + δ)µωk = (1−ωt) + qωke1/3 ≤ ωt + (qωkωt)1/2e1/6 = α. (inequality
follows from the assumption q ≤ ωte

−1/3/ωk and 1/2 ≤ ωt ≤ 1) Thus

Pr[pk(B0) ≥ α] ≤ Pr[pk(B0) ≥ (1 + δ)µωk] ≤ e−⌊q/2⌋

Combining both cases, we conclude that for q ≤ ωte
−1/3/ωk, Pr[pk(B0) ≥ α] ≤ e−⌊q/2⌋.

This ends the proof for the second part of the proposition. ◀

For the rest of the proof assume q ≤ ωte
−1/3/ωk. From Proposition 16 and eq.8,

Pr
[
LH,DTE,f

pk
≥ α

]
≤ 2e−⌊q/2⌋. In this way

E
[
LH,DTE,f

pk

]
≤ α(1− Pr

[
LH,DTE,f

pk
≥ α

]
) + Pr

[
LH,DTE,f

pk
≥ α

]
≤ α + 2e−⌊q/2⌋(1− α)

= ωt + 2e−⌊q/2⌋(1− ωt) + (1− 2e−⌊q/2⌋)(qωkωt)1/2e1/6

Since 1/2 ≤ ωt ≤ 1, E
[
LH,DTE,f

pk

]
is further bounded by

E
[
LH,DTE,f

pk

]
≤ ωt + e−⌊q/2⌋ + (1− 2e−⌊q/2⌋)(qωk)1/2e1/6 (9)

This finishes the proof for Lemma 5.
From Lemma 3 and 9,

Advtdss
HE,pm,pk

(A, f) ≤ Advdte
DTE,pm

+ E
[
LH,DTE,f

pk

]
− ωf

≤ Advdte
DTE,pm

+ ωt + e−⌊q/2⌋ + (1− 2e−⌊q/2⌋)(qωk)1/2e1/6 − ωf

(10)

for all A, f and q ≤ e−1/3/2ωk.
Now consider the following adversary Df against the DTE security game: on input S,

Df decodes S, applies f to the decoded message and outputs the f -value obtained. One
can check that Pr

[
SAMP1Df

DTE,pm
⇒ true

]
= ωf and Pr

[
SAMP0Df

DTE ⇒ true
]

= ωt. By the
definition of DTE advantage |ωf − ωt| ≤ Advdte

DTE,pm
. This combining with inequality (10)

gives

Advtdss
HE,pm,pk

(A, f) ≤ 2Advdte
DTE,pm

+ e−⌊q/2⌋ + (1− 2e−⌊q/2⌋)(qωk)1/2e1/6 (11)

Notice that the right hand side of inequality (11) is independent of the choice of (A, f).
This finishes the proof of Theorem 6. ◀
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1 Introduction

A fundamental problem in cryptography is the construction of a hash function using idealized
building blocks. A natural way to approach this problem is to use λn-to-n-bit compression
functions. Two well-known and widely-deployed constructions follow this approach:

the Merkle-Damgård construction [10, 21], a sequential construction that is used in hash
functions such as MD5, SHA-1 and SHA-2, and
the Merkle tree [20], a parallel construction used in hash-based signatures (of interest due
to their post-quantum security), version control systems such as git, and cryptocurrencies
such as Ethereum.

The collision resistance of the Merkle-Damgård construction and the Merkle tree can
be proven, based on the collision-resistance of the compression functions. The number of
compression function calls is (essentially) the same for both constructions. For example,
setting λ = 2, which is the focus of this work,1 they both process t message blocks using t

and (t− 1) compression function calls, respectively.

m1 m2 m3 m4

h1 h2

h3

m5

Figure 1 The T5 construction with five message blocks m1, m2, m3, m4, m5 and three compression
function calls.

New Compression Function T5. In this paper, we introduce the T5 construction (see
Fig. 1) that processes five message blocks using three 2n-to-n-bit compression function calls,
thereby improving over the state-of-the-art of Merkle-Damgård (with IV counted as message
block) and Merkle trees by processing an additional message block with the same number of
compression function calls and essentially the same level of collision security.

Although T5 is of independent theoretical interest to the construction of a compression
function, we will also investigate Merkle-Damgård and Merkle trees when instantiated with
T5.

T5 with Merkle-Damgård. Our variant of the Merkle-Damgård construction, depicted in
Figure 4, processes t message blocks using 3t/4 calls to the 2n-to-n compression functions. If
the chaining value is provided as m5 in T5, then h1 and h2 can not only be computed in

1 Without loss of generality, all our results easily generalize to any λ ≥ 2.
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parallel, but independently of the chaining value. This allows a fully parallel implementation
of h1, h2, and h3 (with h3 “one-round behind”), which is four times faster than MD which
requires four sequential compression function calls to process a single input of the same
length.

T5 with Merkle Trees. For our variant of Merkle trees, depicted in Figure 5, we will
consider how they are often used in practice: for proof-of-inclusion of data in a larger set.

A full opening of a Merkle tree corresponds to the list of all message blocks, which can be
used to verify that the message corresponds to a given hash value. An advantage of Merkle
trees is it is possible to provide a local opening: to verify that one message block belongs to
the tree, it suffices to provide a list of compression function outputs that is proportional to
the depth of the tree.

These two types of openings give rise to three different notions of collision resistance for
trees:

full-full collision resistance, the “traditional” notion that requires finding two distinct
messages that result in the same hash value,
local-local collision resistance, where the goal is to find two local openings with the same
hash value,
full-local collision resistance, the setting of finding a collision between a full tree and a
local opening.

The full-local setting is relevant in the common scenario where a hash value is honestly
computed, but the proof is composed by an untrusted party. This happens, for example,
when a user sends a message to a cloud server after hashing it, and then later wants to
retrieve some message block from the server. Another natural application is the Merkle
accumulator, where a protocol accumulates message blocks using a Merkle tree, and later
parties provide proofs that a message block is in the tree.

Standard Merkle trees provide the same level of security under all three notions of collision
resistance, and the same holds for our Merkle tree variant using T5 if all four siblings are
opened. In this case, our variant of the Merkle tree will process t message blocks using
0.75(t− 1) instead of t− 1 compression function calls, and depth 0.86 log2 t instead of log2 t.
Due to the need to open four siblings, the opening proof will increase from log2 t to 1.72 log2 t,
and the verification time increases as well from log2 t to 1.29 log2 t

However, we also propose an aggressive variant of our construction that only opens three
siblings. See Figure 3. When this saving of one element for T5 is translated to the whole
Merkle tree, one gets a smaller local opening proof of 1.29 log2 t, and a shorter verification
time of 0.86 log2 t. We prove that this more aggressive variant nevertheless provides the
same full-local collision resistance, under a conjecture related to the 3-XOR problem. For
local-local collision resistance, we prove security up to 2n/3 under a conjecture related to the
4-XOR problem. The k-XOR problem is the subject of the well-studied generalized birthday
problem by Wagner [33], and used in proof-of work algorithms such as Equihash. A full
comparison of these three constructions will be given in Table 1 of Section 7.2.

Our Results for T5. We prove the following security results for T5 in terms of adversarial
advantage after q queries to the inner compression functions:2

2 For simplicity of reading, we only list dominant terms, and ignore constant and even small poly(n)
factors; i.e., omit Õ notation below.
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q2/2n collision resistance, i.e., full-full collision resistance (CR) security (Theorem 2);
q3/22n + q/2n preimage resistance (Theorem 3).
q2/2n full-local CR security under a conjecture related to the 3-XOR problem (Proposi-
tion 7);
q3/2n full-local CR security unconditionally, i.e., 128-bit security for n = 384 (Theorem 4);
q3/2n local-local CR security under a conjecture related to the 4-XOR problem (Proposi-
tion 10);
q4/2n local-local CR security unconditionally, i.e., 128-bit security for n = 512 (Theo-
rem 4).

These results almost immediately imply corresponding security claims for our Merkle-Damgård
variant (see Section 6) and our Merkle tree variant (see Section 7 and Table 1). Matching
attacks for these security results are provided in the full version of this paper [11].

2 Related Work

The design of a hash function is usually based on one or more primitives with fixed-length
inputs and outputs. Historically, the most common choice for these primitives were block
ciphers. This gives rise to the following question: how can we construct a hash function with
the minimum number of block cipher calls?

This question motivated a significant research effort into efficient block-cipher-based hash
function constructions. Block ciphers such as Triple-DES and AES have a block size of 64
and 128 bits respectively, which may not provide sufficient collision security when used in
the Merkle-Damgård construction. Therefore, one line of work focuses on combining smaller
primitives to produce a wider hash function. Results of interest include the Knudsen-Preneel
construction based on linear error correcting codes [16], and a double-length construction by
Nandi et al. [22] that was generalized by Peyrin et al. [26], and by Seurin and Peyrin [28],
which interestingly also links the security to a conjecture related to the 3-sum problem.

A related line of research attempted to improve upon the Merkle-Damgård construction to
process additional message blocks. A brief overview of some constructions and an impossibility
result was given by Black et al. [6, 7]. More specifically, they considered hash functions that
make one block cipher call (under a small set of keys) for each message block to be hashed,
and showed that all such constructions are vulnerable to a simple attack.

This work was later generalized by Rogaway and Steinberger [27], and refined in subsequent
papers by Stam [29], and by Steinberger et al. [30, 31]. This result, commonly known as
“Stam’s bound,” puts a limit on the efficiency (in terms of primitive calls) of any secure hash
function construction.

Stam’s bound states that there always exists a collision attack and a preimage attack with
at most 2n(λ−(t−0.5)/r) and 2n(λ−(t−1)/r) queries respectively on a tn-to-n-bit hash function
making r calls to λn-to-n-bit compression functions. We have t = 5, λ = 2, and r = 3 in the
case of T5, thereby showing that we cannot hope to do better than 2n/2 collision and 22n/3

preimage security.
As explained by Stam [29], the bound applies to hash functions that satisfy the uniformity

assumption, and applies to cryptographic permutations (λ = 1) as well as compressing
primitives (λ ≥ 1). However, the main focus of this line of work had been on combining
smaller non-compressing primitives (see e.g., Mennink and Preneel [18, 19]).

Recently, McQuoid et al. [17] provided a general framework to prove the collision and
second-preimage security of various hash functions. Our T5 construction is covered by their
framework. Unfortunately, their framework does not provide tight collision and second-
preimage security bounds for T5.
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Lastly, we recall that a series of papers have investigated optimal trade-offs between time
and space for Merkle tree traversal, e.g., Jakobsson et al. [15], Szydlo [32], and Berman et
al. [4]. Given that we propose T5 inside a standard Merkle tree, these trade-offs can also be
directly applied to the constructions in this paper. We would also like to mention Haitner et
al. [13]’s construction which only has depth one, at the cost of making significantly more
calls than the standard Merkle tree.

3 Preliminaries

3.1 Notation
If S is a set, x

$← S denotes the uniformly random selection of an element from S. We
let y ← A(x) and y

$← A(x) be the assignment to y of the output of a deterministic and
randomized algorithm A(x), respectively.

For positive integers m, n, we let Func(m, n) denote the set of all functions mapping
{0, 1}m into {0, 1}n. We write h

$← Func(m, n) to denote random sampling from the set
Func(m, n) and assignment to h, and say that h is modeled as an ideal hash function. For
fixed m and n, such modeling is attempting to approximate the security of real-world, keyless,
fixed-input-size compression functions, such as the compression function of SHA-2.

3.2 Security Definitions of Hash Functions
An adversary A is a probabilistic algorithm, possibly with access to oracles O1, . . . ,Oℓ

denoted by AO1,...,Oℓ . Our definitions of collision (Coll), and preimage (Pre) security are
given for any general fixed-input length hash function H built upon the compression functions
hi for i = 1, . . . , ℓ where hi are modeled as ideal functions. Namely, for a fixed adversary A
and for all i = 1 to ℓ with hi

$← Func(2n, n), we define the following advantage functions:

AdvColl
H (A) = Pr

[
Hh1,...,hℓ(M) = Hh1,...,hℓ(M ′) and M ̸= M ′

| (M, M ′) $← Ah1,...,hℓ()
]

and

AdvPre
H (A) = Pr

[
Hh1,...,hℓ(M) = Hh1,...,hℓ(M ′)

|M $←MH , M ′ $← Ah1,...,hℓ(Hh1,...,hℓ(M))
]

We define the Advatk
H (q) against the atk = {Coll, Pre}-security of H as the maximum

advantage over all adversaries making at most q total queries to its oracles.

3.3 Local Opening Security
We define local opening security of a hash function output (viewed as a commitment of a
message). Given a function H built upon compression functions h1, h2, . . . where hi are all
modeled as ideal functions, a local opening Openh1,...(·, ·) for Hh1,... maps a pair (M, i) to π

(called proof) where M = (m1, m2, . . . , mc) is a message (a tuple of blocks) and 1 ≤ i ≤ c is
an index.
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24:6 T5: Hashing Five Inputs with Three Compression Calls

Correctness of Local Opening. There is an efficient function Verh1,... such that for all
message M , all index i,

Verh1,...(i, mi, Openh1,...(M, i), H(M)) = 1.

Security of Local Opening. We provide two notions of local opening security. For the
stronger variant, which we call “local-local,” the adversary wins if it produces an output f

corresponding to two contradicting local openings for some position i. For the weaker variant,
which we call “full-local,” the adversary wins if it produces an output f corresponding to a
local opening contradicting a full opening.

▶ Definition 1 (local-local and full-local opening advantage). Let H be a hash function and
Open is a correct local opening for H with Ver is the verification function. For any adversary
A, we define the local-local opening advantage as

Advlocal-local
H (A) = Pr

[
Ver(i, m, π, f) = Ver(i,m′, π′, f) = 1, m ̸= m′

| (i, m, m′, π, π′, f) $← Ah1,...
]

We define full-local opening advantage (a weaker variant of the above) of A as

Advfull-local
H (A) = Pr

[
Ver(i, m′, π′, H(M)) = 1, m′ ̸= mi

| (i, M, m′, π′) $← Ah1,...
]

And finally, for a function H with local opening algorithms (Open, Ver) and attack z ∈
{local-local, full-local}, we define Advz

H(q) = maxA Advz
H(A) as the maximum advantage

over all adversaries making at most q total queries to its oracles.

Intuitively, the weaker definition protects against situations where the initial commitment
f was honestly produced, using some long message M . Thus, a contradictory local opening
will result in finding a collision between a local opening and a full opening. In contrast,
the (traditional) stronger definition is directly concerned with somebody producing two
contradictory local openings.

By-Pass Hash Computation. We say that H has a by-pass computation Hi corresponding
to a local opening Open for a fixed index 1 ≤ i ≤ c, if for all M ,

Hh1,...
i (mi, Openh1,...(M, i)) = Hh1,...(M).

In other words, given a proof (output of the Open) and the message block for the index (for
which the proof is produced), we can compute the hash output of the message (without
knowing the other blocks of the message).

The presence of by-pass computationsH = {Hi} for all indices lead to a natural verification
algorithm as follows: Ver(i, m, π, f) = 1 whenever Hh1,...

i (m, π) = f . For a fixed index i, we
define the cross-collision advantage between the hash function H and a by-pass computation
Hi as

AdvColl
H,Hi

(A) = Pr
[

H(M) = Hi(m′, π) and Mi ̸= m′ | (M, m′, π) $← Ah1...
]

Similarly, we define the inter-collision advantage for by-pass computation Hi as

AdvColl
Hi

(A) = Pr
[

Hi(m, π) = Hi(m′, π′) and m ̸= m′ | (m, π, m′, π) $← Ah1...
]
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Let H = {Hi} be the family of by-pass computations for all indices i. We define

AdvColl
H,H(q) = max

A
max

i
AdvColl

H,Hi
(A) and AdvColl

H (q) = max
A

max
i

AdvColl
Hi

(A)

as the maximum advantage over all by-pass computations for all adversaries making at most
q total queries to its oracles.

Now we make a simple observation when by-pass computations H = {Hi} for all indices
exist for a hash function H, the induced verification procedure Ver satisfies

Advfull-local
H (q) ≤ AdvColl

H,H(q) and Advlocal-local
H (q) ≤ AdvColl

H (q) (1)

The above observation helps us to reduce the local opening security to cross-collision or
inter-collision security problem for the family H. As all the function Hi in this family are
often symmetric, a proof for a fixed function Hi implies the one for the entire family H.

4 Construction T5

We define T5 : {0, 1}5n → {0, 1}n based on the 2n-to-n-bit compression functions h1, h2, h3
as follows:

T5(m1, m2, m3, m4, m5) := h3(h1(m1, m2)⊕m5, h2(m3, m4)⊕m5)⊕m5

For all our proofs we will assume that the compression functions hi for i = 1 to 3 are
ideal functions.

m1 m2 m3 m4

h1 h2

h3

m5

a b

c d

e

f

Figure 2 Modified 2-level Merkle tree T5(m1, m2, m3, m4, m5) with an extra input m5 for the
same 3 hash calls.

Notation. As shown in Figure 2, we use the variables
m1 and m2 (resp. m3 and m4) to denote the left and right halves of various inputs to h1
(resp. h2);
a (resp. b) to denote various outputs of h1 (resp. h2);
c and d to denote the left and right halves of various inputs to h3;
e to denote various outputs of h3;
M = (m1, m2, m3, m4, m5) to denote various inputs to T5;
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24:8 T5: Hashing Five Inputs with Three Compression Calls

f to denote various outputs of T5.
Hence, a valid computation of T5(M) = T5(m1, . . . , m5) proceeds as follows:
1. Set a = h1(m1, m2), b = h2(m3, m4).
2. Set c = a⊕m5, d = b⊕m5.
3. Set e = h3(c, d), and output f = e⊕m5.
We say that a triple of queries ((m1, m2), a) to h1, ((m3, m4), b) to h2, and ((c, d), e) to h3 is
consistent if

a⊕ b = c⊕ d, (2)

in which case we define m5 = a ⊕ c = b ⊕ d, and say that this consistent triple of queries
(uniquely) defines a valid T5 evaluation (M, f), where M = (m1, m2, m3, m4, m5) and
f = e⊕ a⊕ c = e⊕ b⊕ d.

Main Results of the Section. The main result of this paper is to provide the collision and
preimage security of the T5 hash function. The following theorem shows that T5 achieves
nearly birthday collision security, despite hashing one more input than the traditional
Merkle-Damgård function of depth 2.

▶ Theorem 2. The T5 construction achieves nearly birthday-bound collision security:

AdvColl
T5

(q) ≤ (n2 + 10)q2

2n
(3)

The full formal proof of this result is somewhat subtle, and will be given in the full version
of this paper [11]. But an informal proof intuition for a representative special case will be
given in Section 4.1.

As our second main result, we also show that T5 maintains nearly optimal preimage
security Õ(q/2n) for q < 2n/2, which means it offers optimal preimage and collision-resistance
security in the common range of q < 2n/2.

However, even when q grows above 2n/2, T5 still offers non-trivial security O(q3/22n) for
values of q < 22n/3−1, which is likely sufficient for most applications. As we show in the full
version of this paper [11], T5 is indeed not preimage resistant when q > 22n/3, so our result
is tight.

▶ Theorem 3. Assuming q ≤ 22n/3−1, the T5 construction achieves the following preimage
security:

AdvPre
T5

(q) ≤ 2q3

22n
+ O

(qn

2n

)
(4)

We give a formal proof in the full version of this paper [11], but present some proof intuition
(for an important special case) in Section 4.2, similar to what was done in Section 4.1.

4.1 Proof Intuition for Collision Resistance of T5

Below we give the proof intuition for the simple, but natural special case where the adversary
A makes all of its queries to h1 and h2 before any query to h3 is made. As we explain in the
formal proof in the full version of this paper [11], this assumption is with a significant loss of
generality, and several special arguments are needed to cover the fully general case. However,
this simplified case will already demonstrate some of the main arguments of our analysis.

The proof will roughly consist in arguing that A, making q total hash queries, is unlikely
– up to birthday advantage – to succeed in the following four tasks.
(These tasks are formalized in the full version of this paper [11].)
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1. Task 1: finding any simple collision in h1 or h2.3
2. Task 2: finding some value z for which there exist more than n distinct pairs of queries

((m1, m2), (m3, m4)) to h1 and h2 result in4

h1(m1, m2)⊕ h2(m3, m4) = z

3. Task 3: generate more than nq valid evaluations of T5.
4. Task 4: generate a non-trivial collision of T5.
The argument of each subsequent task will inductively assume that the adversary indeed
failed in the previous task.

For Task 1, this is the trivial birthday bound on h1 or h2.
For Task 2, we will formally define the set C12(z) to consist of pairs of queries ((m1, m2), a)

to h1 and ((m3, m4), b) satisfying a⊕ b = z. Using the fact that no simple collisions in h1
and h2 are found, it is easy to see that each of the n queries to h1 and h2 inside C12(z) must
be distinct. Moreover, the latter of the two queries ((∗, a), (∗, b)) ∈ C12(z) must collide with
a fixed value z plus the former of the two queries. E.g., if the query (∗, a) to h1 was made
before (∗, b) to h2, this tuple will fall inside C12(z) only if b = z ⊕ a, which happens with
probability 2−n. Taking the union bound over all values z and all possible choices of 2n out
of q queries to be included inside C12(z), we see that

Pr [ ∃z s.t. |C12(z)| ≥ n ] ≤ 2n · q2n ·
(

1
2n

)n

≤
(

2q2

2n

)n

≪ O

(
q2

2n

)
For Task 3, we will use our simplifying assumption that A makes all of its queries to h1

and h2 before any query to h3 is made. In this case, all consistent triples of queries to h1,
h2 and h3 defining a valid input-output (M, f) to T5 get created by making a call to h3.
For each of at most q such queries to h3 on some input (c, d), we claim that this query will
“match up” with a pair of earlier queries (∗, a) to h1 and (∗, b) to h2 only if m5 = a⊕c = b⊕d,
which is equivalent to a⊕ b = c⊕ d, which means that

((∗, a), (∗, b)) ∈ C12(c⊕ d)

But we already assumed that |C12(z)| ≤ n for all z, meaning that each query (c, d) can form
a consistent tuple with at most n pairs of queries to h1 and h2. Summing over all (up to) q

queries to h3, the total number of evaluations will be at most nq.5
Finally, for Task 4 that we care about, we will once again use our simplifying assumption.

In particular, under our assumption, such a collision can only be caused by a call to h3 on
some input (c, d). From the previous argument, we already know that this query will “match
up” with a pair of earlier queries (∗, a) to h1 and (∗, b) to h2 only if ((∗, a), (∗b)) ∈ C12(c⊕d),
meaning there are at most n new evaluations of T5 caused by this query. Also, any two of these
n new evaluations cannot collide among themselves, as they have two different values a ̸= a′

(remember, no collisions in h1), so the final outputs f = h3(c, d)⊕c⊕a ̸= h3(c, d)⊕c⊕a′ = f ′.
Thus, the only chance the adversary has is if one of these n new evaluations of T5 (call the
output f) collides with one of at most nq already defined previous evaluations f ′ of T5.

But each of the n new output values f will be individually random, as it is equal to
random e = h3(c, d) plus m5 = a ⊕ c. Hence, this individually random f can collide with

3 For the general case, we will also need no collisions in a slightly modified variant of h3.
4 For the general case, we will also need similar guarantees for the combinations of h1 + h3 and h2 + h3.
5 As we will see, in the general case a very different proof strategy will be needed to extend this argument

to valid evaluations of T5 completed by calls to h1 and h2.
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the previously defined output f ′ of T5 with probability at most nq/2n, because from failing
Task 3 we know there are at most nq previous evaluations of T5 completed so far. Taking
the union bound over n values of f , and q queries to h3, the final bound O(n2q2/2n) follows.

General Case. We will not fully detail the general case (see full argument in the full version
of this paper [11]), but briefly demonstrate that making queries to h1 or h2 after some queries
to h3 could be potentially helpful to the adversary, and will require adjustments to our proof
strategy above.

For example, our proof sketch above showed that, modulo very rare events, the number of
valid evaluations of T5 can increase by at most n for each new query to h3. However, imagine
that A first makes a query to h2 with output b. Then A can make Ω(q) queries (ci, di) all
satisfying ci ⊕ di = z (for some z). Now, a query to h1 (made after these Ω(q) queries to h3)
has a chance to simultaneously match with Ω(q)≫ n tuples ((∗, b), ((ci, di), ∗). Of course, in
order for this to happen, the random answer a must match b⊕ z, which happens with tiny
probability. In fact, we could apply Markov’s equality to argue that the probability a query
to h1 will produce more than n new evaluation points is at most (what turns out to be by an
easy calculation) O(q2/2n). By itself, this is good enough, but it will not “survive” a union
bound over up to q potential queries to h1. Instead, we will use linearity of expectation to
make a global, “stochastic” argument that all such (up to) q queries to h1 and h2 will define
more than nq new evaluations with at most “birthday” probability. See the full version of
this paper [11] for the details.

Overall, the full proof in the general case will be noticeably more subtle than the proof
intuition given above, but will still follow the same high-level structure.

4.2 Proof Intuition for Preimage Resistance of T5

As in Section 4.1, we will only consider the special case when the adversary A makes all of
its queries to h1 and h2 before any query to h3 is made, as it will contain most of the ideas
needed in the general proof. Also, we will assume that q = Ω(

√
n · 2n/2), as this is the case

where the “unexpected” term q3/22n appears.6
In this setting, there are several differences from the case of collision-resistance we

considered so far. First, A is given a specific target f to invert. In particular, we will not
care about local collisions in functions h1, h2, and the c- or d-“shifted” versions of h3, as
such collisions will happen, but will not help the adversary invert f . Instead, we will care
that in each new call to h3(c, d), the number of valid new evaluations of T5 will be not much
higher than what we expect. Recall, in our special case of only h3 queries causing all new
evaluations of T5, this number of new evaluations is bounded by |C12(c⊕ d)|, where C12(z)
is the set of pairs of queries ((m1, m2), a) to h1 and ((m3, m4), b) satisfying a⊕ b = z. And
since each such evaluation defines an individually random output value f ′ = h3(c, d)⊕ c⊕ a,
the probability this f ′ matches f is 2−n, meaning A’s overall chance to invert f in this query
is |C12(c⊕ d)|/2n.

Of course, the adversary can select any value of z = c⊕ d to make sure it chooses the
largest set C12(z). Thus, if we want to upper bound A’s probability of success, we must
argue that K = maxz |C12(z)| is not much higher than its expectation with high probability.
In the collision resistance proof, we manage to upper bound K ≤ n with “good enough”

6 Our general proof will not treat this case separately, but the calculations are slightly easier to write for
the “beyond-birthday” case.
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probability (q2/2n)n. Indeed, this was enough to withstand the union bound over z to give
the final probability (2q2/2n)n ≤ 2q2/2n that K ≥ n in that setting.

We will do a similar union bound in our case as well, except that we have q ≫ 2n/2, so
even in the best case scenario we expect |C12(z)| ≥ q2/2n ≫ n for any given z, let alone
the z chosen by the adversary. Moreover, the final birthday bound will not be good enough
for us in this setting as well. But first let us optimistically assume that for any fixed z, we
managed to get the following very strong concentration bound:7

Pr
[
|C12(z)| ≥ 2q2

2n

]
≤ 1

22n
(5)

Then we will be done, because we can take the union bound over z to conclude that
Pr

[
K ≥ 2q2/2n

]
≤ 2−n. And, finally, there will be at most 2q2/2n new evaluations f ′ per

each query to h3. Thus, taking the union bound over at most q such queries, A’s overall
inversion probability (ignoring 2−n failure event above) is upper bounded by:

q · 2q2

2n
· 1

2n
= 2q3

22n

High Concentration Bound via Tabulation Hashing. So it remains to argue the high
concentration bound in (5). This turns out to be much harder than in the collision-resistance
case, where the bound we needed was the much weaker O((q2/2n)n), which is meaningless
when q > 2n/2.

The next naive attempt is to write |C12(z)| as a sum of q2 indicator variables Xij , equal to
1 is the i-th output ai of h1 and the j-th output bj of h2 satisfy ai ⊕ bj = z. And then try to
use a Chernoff bound to argue that the probability that the sum of these indicator variables
is twice as large as its expectation is exponentially low. Unfortunately, the random variables
Xij are not even 4-wise independent; e.g., (a1⊕ b1)⊕ (a1⊕ b2)⊕ (a2⊕ b1)⊕ (a2⊕ b2) = 0. So
we cannot apply the Chernoff bound, and the Chebyshev inequality for pairwise independent
random variables is not strong enough. Indeed, the question of getting our concentration
bound turned out to be quite deep.

Fortunately, the setting we need turns out to be equivalent to the classical hashing
problem, called simple tabulation hashing, introduced in the seminal paper of Carter and
Wegman [9]. Applied to our setting, given two random “hash tables” T1 and T2 with range of
size N = 2n, tabulation hashing would map a “ball” y = (u, v) into a “bin” z = T1[u]⊕ T2[v].
The classical question studied by tabulation hashing is to upper bound occupancy of any
such bin z after some Q balls are thrown using tabulation hashing. We defer the details to
the formal proof in Section 4.2, but point out that in our setting the tables are implemented
using hash functions h1 and h2, and the number of balls Q ≤ q2 corresponds to all pairs of
queries to h1 and h2.

Designing strong enough concentration bound for tabulation hashing (which is exactly
what we need!) was an open problem for many years, until the breakthrough result of
Pǎtraşcu and Thorup [24] showed a Chernoff-type concentration bound which enables us to
show (5), and thus complete the proof.

7 This bound, as stated, is only true if q = Ω(
√

n · 2n/2). In the general case the term becomes
|C12(z)| ≥ Ω(n) + 2q2/2n, as we expect Ω(n) multi-collisions already when q ≈ 2n/2.
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5 Aggressive Opening for T5

In this section we describe a non-trivial opening for T5. We first note that a straightforward
way to open a block mi in T5 is to provide all four siblings mj ̸=i. For a single T5 the full-local
and the local-local security (Section 3.3) definitions are the same and correspond to the
collision security of T5 which we have already studied. The performance of this method in
a full tree is somewhat less attractive and is given in detail in Section 7.2. Thus we call it
conservative.

Now we provide another point on the security-performance tradeoff for T5, which we call
aggressive. We see that even though the provable security bounds decrease, the heuristic
security (as the complexity of best attacks) remains the same under plausible conjectures.
Both openings are depicted in Figure 3.

m1 m2 m3 m4

h1 h2

h3

m5

a b

c d

e

m1 m2 m3 m4

h1 h2

h3

m5

a b

c d

e

Conservative Aggressive

Figure 3 Conservative and aggressive openings for T5. Green m1 is opened. Red are opening
elements (4 vs 3) and recomputed compression functions (3 vs 2).

Our (aggressive) local opening Open for T5 is defined as follows, where we have m =
(m1, m2, m3, m4, m5).
1. Openh1,h2,h3(1, m) = (m2, m5, h2(m3, m4)⊕m5).
2. Openh1,h2,h3(2, m) = (m1, m5, h2(m3, m4)⊕m5).
3. Openh1,h2,h3(3, m) = (m4, m5, h1(m1, m2)⊕m5).
4. Openh1,h2,h3(4, m) = (m3, m5, h1(m1, m2)⊕m5).
5. Openh1,h2,h3(5, m) = (m1, m2, h2(m3, m4)⊕m5).
We first show that the above defined opening has a by-pass computation T′

5 for index 1 (one
can similarly show for the other indices) and hence it satisfies the correctness condition of an
opening. For the sake of simplicity, we skip the hash oracles notation h1, h2, h3. We define
T′

5 : {0, 1}4n → {0, 1}n based on the 2n-to-n-bit compression functions h1, h3 as follows:

T′
5(m′

1, m′
2, m′

3, m′
4) := h3(h1(m′

1, m′
2)⊕m′

3, m′
4)⊕m′

3

A straightforward calculation shows that T′
5(m1, Open(1, m)) = T5(m). Hence T′

5 is a
by-pass computation of T5 for the opening function defined above.

▶ Theorem 4.

Advfull-local
T5

(q) ≤ AdvColl
T5,T′

5
(q) ≤ nq3 + 9q2

2n
(6)
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and

Advlocal-local
T5

(q) ≤ AdvColl
T′

5
(q) ≤ q4

2n
(7)

We note that the relation between the collision advantage and the opening advantage is
already described in (1). So it only remains to bound the cross-collision probability and
the collision probability for a family of by-pass hash computations. The full formal proof
of the cross-collision bound is somewhat similar to the collision security analysis of T5,
and is provided in the full version of this paper [11]. But an informal proof intuition for a
representative special case will be given in Section 5.1 below. However, the bound for collision
advantage of the by-pass family is more or less straightforward and described afterwards.

5.1 Proof Intuition for Theorem 4 (Cross-Collision Bound)
Here, we give a proof sketch of the cross-collision advantage between T5 and T′

5. We first
note that in the case of T′

5, all queries are consistent. Hence q queries each to h1 and h3 can
generate a maximum of q2 T′

5 evaluations. And, as we have already seen before, q oracle
queries can generate at most nq evaluations of T5 if bad events B1 and B2 don’t happen.
Now, we approach as in the earlier theorem. We break the event that a collision between T5
and T′

5 has occurred into three parts, depending upon which oracle was queried by the i-th
query and give an upper bound to the collision probability. Then, we apply a union bound
over the q queries to give the intended result. Let Xi be the event that none of bad events
B1, B2 or B3 happened. The three cases are as follows:

The i-th query is ((m1, m2), a) to h1. As in the earlier proof, a collision can happen in
two ways, either this output a induces a T5 tuple and a T′

5 tuple which collide, or there
is some previous value (∗, f) ∈ Evali−1 such that the random answer h1(m1, m2) = a

caused the collision with this f . The former case implies only the trivial collision, which
we have ruled out. In the latter case, for a collision to happen, there are two subcases
depending on whether (∗, f) comes from a previous evaluation of T5 or T′

5 evaluation.
If (∗, f) comes from a T5 evaluation, the random answer a can combine with any of the
queries ((c, d), e) of h3 such that f = a⊕ c⊕ e. We note that there are a maximum of nq

prior T5 evaluations, and q h3 queries. The probability that f = a ⊕ c ⊕ e is 1/2n for
each such query. Therefore,

Pr[Xi] ≤ nq · q · 1
2n

= nq2

2n

If (∗, f) comes from a T′
5 evaluation, we note that there are at most q2 such evaluations.

There exist tuples ((∗, b), ((c, d), e)) ∈ C23(f), which can be at most n in number, and
the random answer a = h1(m1, m2) should be equal to b⊕ c⊕ d. This again gives

Pr[Xi] ≤ q2 · n · 1
2n

= nq2

2n

The i-th query is ((m3, m4), b) to h2. The only way this query can cause a collision is that
there exists some previous value (∗, f) ∈ Evali−1

T′
5

such that the random answer creates a
T5 output equal to f . This case is exactly the same as the first subcase of Case 1.
The i-th query is ((c, d), e) to h3. The case generated by this query is the same as that
in the first case. If this query generates a T5 tuple and a T′

5 tuple that collide, we again
get only the trivial collision. If there is some previous T5 evaluation with which this
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query collides, then again, q such queries can combine with n evaluations of T5, and the
collision probability for each combination is 1/2n, resulting in the same probability as in
the first case. If this query collides with some previous T′

5 evaluation, which are nq in
number, we note that there exist tuples ((∗, a), (∗, b)) ∈ C12(c⊕ d) which can be at most
n in number. Again, we get the same probability.

Taking a union bound over the q queries, we find that

Pr
[

B4 ∩B1 ∩B2 ∩B3
]
≤ q ·max

i
Pr[Xi] ≤

nq3

2n
.

5.2 Proof of (7) (Collision Bound of Family of By-Pass Hash)
Now we prove the second part of the result (collision of by-pass hash family). Here we show the
collision probability for T′

5 (i.e., for the index 1). The proof for the other indices will be very
similar and will have the same bound. As we take the maximum collision probability for all
indices, the result will follow. Following a similar notation, let h1(m1, m2) = b, h1(m′

1, m′
2) =

b′, c = b ⊕ m5 and c′ = b′ ⊕ m′
5. So, the hash outputs are T′

5(m1, m2, m5, d) = f =
h3(c, d)⊕m5 and T′

5(m′
1, m′

2, m′
5, d′) = f ′ = h3(c′, d)⊕m′

5. If f = f ′ with (m′
1, m′

2, m′
5, d′) ̸=

(m1, m2, m5, d) (i.e., collision happens) then we have

h1(m′
1, m′

2)⊕ h1(m′
1, m′

2)⊕ (c⊕ h3(c, d))⊕ (c′ ⊕ h3(c′, d′)) = 0 (8)

Let us write h3(x, y) ⊕ x as h′
3(x, y). It is obvious that h′

3 behaves exactly like a random
function (independent with h1, h2). Thus, we have shown that collision problem of T′

5 is
reduced to finding ((m1, m2), (c, d)) ̸= ((m′

1, m′
2), (c′, d′)) such that

h1(m1, m2)⊕ h1(m′
1, m′

2)⊕ h′
3(c, d)⊕ h′

3(c′, d′) = 0 (9)

We call this problem 4-XOR′ (a variant of 4-XOR problem described in the following section).
It is also not difficult to construct a collision pair from four pairs satisfying a 4-XOR′ relation.
In other words, 4-XOR′ is equivalent to finding a collision of T′

5. Now, by applying a union
bound, the collision probability can be simply bounded above by q4/2n.

5.3 Reduction of Local Opening Security to 3-XOR/4-XOR Problem
k-XOR Problem. Let F1, F2, . . . , Fk be k oracles that output strings of n bits. Find
x1, x2, . . . , xk such that

F1(x1)⊕ F2(x2)⊕ · · ·Fk(xk) = 0.

Reduction for full-local. When k = 3, the k-XOR problem has an information-theoretical
security of n/3-bits, however the best algorithm requires more than 2n/2/

√
n time (ignoring a

log n factor) and queries [8,23]. Bridging this gap would imply a solution to the long-standing
3-XOR problem, which would be a substantial breakthrough.

▶ Conjecture 5. (3-XOR Hardness.) For any algorithm A that makes less than q < 2n/2

queries to F1, F2, F3 and runs for time q, the probability that for randomly chosen F1, F2, F3
it solves the 3-XOR problem is at most n2q2/2n.

Note that we have kept some margin on the power of n in our conjecture. Until now we
have attack with advantage about nq2/2n. Now we provide a heuristic reduction of full-local
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security to the 3-XOR problem. Let us look at the full-local security definition. To break it,
we are required to find (m1, m2, m3, m4, m5, m′

1, m′
2, m′

5, d′) such that

T5(m1, m2, m3, m4, m5) = h3(h1(m′
1, m′

2)⊕m′
5, d′)⊕m′

5

or equivalently

T5(m1, m2, m3, m4, m5) = h3(c′, d′)⊕ h1(m′
1, m′

2)⊕ c′. (10)

In our reduction we consider only algorithms which we call valid-aware. Those (1) make
all queries to h1, h2 before h3 and (2) for any query (c, d) they make to h3 are aware of all
valid T5 executions that are created this way. Concretely, with any query (c, d) they attach
(a potentially empty) list of all pairs h1, h2 that are valid with c, d. This list cannot be long
as we had argued for Theorem 2 where there cannot be more than n of them. We stress that
this is a natural assumption as every valid execution ever considered by an algorithm must
be discovered in some way, and if all h3 queries are made last, it only makes sense to make
queries that yield valid executions. The speculative nature of this argument makes us claim
that the reduction is only heuristic.

▶ Lemma 6. Given any valid-aware algorithm A, which makes at most q queries to oracles
h1, h2, h3, which solves (10) with probability ϵ, there is an algorithm A′ making at most
q < 2n/2 queries to oracles F1, F2, F3 (with runtime almost the same as A) that solves 3-XOR
problem with probability at least ϵ/(4n).

Proof. First we note that a solution to (10) must have (c, d) ̸= (c′, d′), i.e., h3 gets a non-zero
difference. Indeed, otherwise the output e of h3 and thus m5 must both have a zero difference,
which in turn implies that a and b have a zero difference, i.e., we have found a collision in h1
or h2 which we are ruling out (or we can extend our reduction with this outcome).

Now, A works as follows:
It calls A to find a collision between T5 and T′

5.
When A queries h1(m1, m2) it is given F1(0||m1||m2).
When A queries h2(m3, m4) it is given F1(1||m3||m4).
When A queries h3(c, d) with list L of valid tuples (m1, m2, m3, m4) such that h1 ⊕ h2 =
c⊕ d. If the list is empty, A′ returns F2(c||d)⊕ c to A. Otherwise A′ flips a coin:

For tails A′ selects a random entry of L and returns F3(c||d)⊕ c⊕ F1(0||m1||m2) to A.
For heads A′ returns F2(c||d)⊕ c to A.

Now suppose A finds a solution to (10). This implies that

h1(m1, m2)⊕ h3(c, d)⊕ c = h1(m′
1, m′

2)⊕ h3(c′, d′)⊕ c′.

Recall that (c, d) ̸= (c′, d′). Now note that:
(c, d) yields a valid execution of T5. Note that the validity was known at the time of
query.
With probability at least 1/(2n) the value for h3(c, d) is selected as F3(c||d) ⊕ c ⊕
F1(0||m1||m2) (i.e., we had selected the same m1, m2 as in h1 of the solution) since we
have at most n pairs (h1, h2) with given difference c⊕ d.
With probability 1/2 the value for h3(c′, d′) is selected as F3(c′||d′)⊕ c′.
The value for h1(m1, m2) is F1(0||m1||m2) and should cancel out due to our outcome for
h3(c, d).
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Therefore with total probability at least 1/(4n) the solution found by A is translated into

F3(c||d) = F1(0||m′
1||m′

2)⊕ F2(c′||d′)

which yields a solution for the 3-XOR problem. ◀

Together with the hardness conjecture, we obtain the following proposition.

▶ Proposition 7. Assuming the 3-XOR hardness and that the best algorithm that breaks
full-local aggressive collision security is valid-aware, the adversary that runs in time q finds
a full-local collision with probability at most 4n3q2/2n.

Reduction for Local-Local. The best known algorithm for solving 4-XOR problem runs
in O(n2n/3) time and O(2n/3) queries [33]. So, we pose a similar conjecture for the 4-XOR
problem.

▶ Conjecture 8. (4-XOR Hardness.) For any algorithm A that makes q < 2n/3 queries
to random oracles F1, F2, F3, F4, runs for time q, the probability that it solves the 4-XOR
problem is at most q3/2n.

Now we consider a simple variant of 4-XOR problem, called 4-XOR′, which uses two lists.
Let F, F ′ be oracles that output random n-bit strings. Find x, y, z, w with (x, y) ̸= (z, w)
such that

F (x)⊕ F (y)⊕ F ′(z)⊕ F ′(w) = 0.

▶ Lemma 9. Given any algorithm A′ making at most q queries to all its oracles which solves
the 4-XOR′ problem with probability ϵ there is an algorithm A making at most q queries to all
its oracles (with run time almost same as A′) which solves 4-XOR problem with probability
at least ϵ/4.

Proof. The reduction from A′ to A works as follows. We run A′ and it makes two types of
queries, namely to F and to F ′. For each query we choose b randomly from {1, 2}. If it is an
F (x) query, then A returns Fb(x). Similarly, if it is an F ′(z) query, A returns F2+b(z) to A′.
Finally, A′ returns (x, y, z, w) such that F (x)⊕ F (y)⊕ F ′(z)⊕ F ′(w) = 0. Now, A succeeds
if F (x) = Fb(x), F (y) = F3−b(y) and F ′(z) = F2+b′(z), F ′(w) = F5−b′(w). We note that the
b values are chosen randomly. As F and F ′ are independent random functions, the output
to A′ is independent of b. In other words, the view of A′ remains independent with the b

values chosen by A. Thus, A succeeds with probability 1/4 given that A′ succeeds. ◀

We have already seen that given a collision adversary B of T′
5 we can construct an

algorithm A′ for solving the 4-XOR′ problem and hence we can construct an algorithm A
solving the 4-XOR problem. Moreover the success probability of solving the 4-XOR is at
least 1

4 ·AdvColl
T′

5
(B). This leads us to conclude with the following claim.

▶ Proposition 10. Assuming the 4-XOR hardness and that the best algorithm that breaks
local-local aggressive collision security is valid-aware, the adversary that runs in time q finds
a local-local collision with probability at most 4q3/2n.

6 Merkle-Damgård Variant

We can plug in our 5-to-1 compression function to the standard Merkle-Damgård (MD) mode
to get a sequential hash t-to-1 function making only 3t/4 calls to the underlying 2n-to-n
compression functions h1, h2 and h3, and inheriting the birthday security of T5. This function
is depicted in Figure 4.
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Figure 4 Merkle-Damgård Hash based on T5.

Parallel Implementation. In addition to providing a 25% speedup when compared to the
traditional MD mode applied to a 2n-to-n-compression function h, another advantage of our
new variant is that it is easily parallelizable for architectures that support parallel execution.

For example, if we have three execution units P1, P2, P3, the unit Pi can be responsible
for all hi computations. This allows to compute a hash of t = 4k message blocks using
only (k + 2) = (t/4 + 2) parallel rounds of hashing, saving a factor (almost) 4 over the
traditional MD mode. The execution unit P3 will be “one-round behind” units P1 and P2
(so that in the first round only P1 and P2 hash (m1, m2) and (m3, m4), and in the last
round only P3 produces the final hash). Namely, when P3 just completed the computation
of the previous initial value IVj , P1 completed aj = h1(m4j+1, m4j+2), and P2 completed
bj = h2(m4j+3, m4j+4), in the next round P3 will set the next initial value

IVj+1 = h3(IVj ⊕ a, IVj ⊕ b)⊕ IVj ,

while P1 and P2 respectively compute aj+1 = h1(m4j+5, m4j+5) and bj+1 = h2(m4j+6, m4j+7).
Similarly, two execution units P ′

1, P ′
2 can perform the same task in only 2k = t/2 parallel

rounds, saving a factor 2 over the traditional MD mode.

Larger Compression. Although our results are stated for 2n-to-n compression functions, we
can also easily extend them to the λn-to-n case, by simply adding (λ− 2) “dummy” inputs
to each of h1, h2, h3. For example, for λ = 3, this gives us an 8n-to-n analog of T5, using
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three calls to some 3n-to-n hash function. Which gives a new MD mode for t = 7k block
messages, using only 3k = 3t/7 compression calls. In contrast, a naive MD mode will use t/2
calls, saving a factor (1− (3t/7)/(t/2)) = 1/7 ≈ 14.2%. Similar calculations can be done for
larger λ.

7 Merkle Tree Variant

Our 2-level construction extends straightforwardly to a full-blown t-to-1 tree H . In Section 7.1
we briefly recall how to build Merkle Trees (MT) from smaller compression functions (such as
T5). We then present our faster and shallower MT variant and its properties in Section 7.2.

7.1 General Merkle Trees and Their Security
The Merkle tree is a data structure to store long lists of t n-bit elements, so that insertion,
deletion, update, or proof of membership for an element need only O(log t) time and space.
It is built on a λn-to-n compression function Hλ (typically λ = 2 but other values are used
too) and retains all its security properties regarding collision and preimage resistance from
the compression function. The tree is defined recursively:

MTλ(m1, . . . , mλ︸ ︷︷ ︸
m[1:λ]

) = Hλ(m1, . . . , mλ);

MTλt(m[1:λt]) = Hλ(MTλ(m[1:λ]), . . . , MTλ(m[λt−t+1:λt]))

where t = λk ≥ 2, with the last hash called a root and mi called leafs.
As for the compression function, we define the terms full opening and local opening for

the entire MT, with the former being all t elements and the latter for a leaf in a tree is a
sequence of logλ t local openings of an element in all compression functions on the path from
the leaf to the root. In the simplest case λ = 2 an opening is one element per tree layer,
whereas for wider compression functions it is λ − 1 or fewer (in case Hλ has “aggressive”
local opening). The full-local security for the tree is defined analogously to the compression
function and corresponds to the case of a public tree to which an adversary makes a forged
membership proof. The local-local security matches the case when the adversary provides
two valid openings for an alleged tree root but the full tree is unknown. Both full-local and
local-local security for the tree follows from their compression function counterparts. So
overall we have the following parameters:

Efficiency E(t) as the number of compression function calls is (t− 1)/(λ− 1).
Depth D(t) of the tree is logλ t.
Update/insert/delete complexity as the number of compression function recomputations
equals D(t).
The total length of conservative opening L(t) is (λ− 1) logλ t.
In case Hλ might have a more compact (i.e., “aggressive”) local opening of length
ℓ ≤ λ − 1, then the total length of the resulting “aggressive” local opening for MTλ

becomes L(t) = ℓ logλ t.
Number of calls to F needed to verify the opening: V (t) = logλ t.
Collision, full-local, and local-local opening security the same as that of Hλ (ideally 2n/2,
if one uses a 2n-to-n hash function as last building block).
Preimage security the same as that of Hλ (ideally 2n, if one uses 2n-to-n hash function
as last building block).
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Table 1 We compare standard Merkle trees to two variants of Merkle trees with T5. The
conservative variant requires opening four siblings in a local opening proof, compared to three
siblings in the aggressive variant. The boxed formulas are conjectures based on the 3-XOR and
4-XOR problems. We have 2/ log2 5 ≈ 0.86, 3/ log2 5 ≈ 1.29, 4/ log2 5 ≈ 1.72. Note that full-full
collision resistance (CR) security is listed for completeness, this is the “traditional” collision resistance
involving two distinct messages (and the entire corresponding Merkle trees).

Standard Merkle Merkle with T5 Merkle with T5

(conservative) (aggressive)

build calls/t 1 0.75 0.75

update/log2 t 1 0.86 0.86

verify/log2 t 1 1.29 0.86

opening/log2 t 1 1.72 1.29

full-full CR security n/2 n/2 n/2

full-local CR security n/2 n/2 n/3 → n/2

local-local CR security n/2 n/2 n/4 → n/3

7.2 Faster and Shallower Merkle Tree based on T5

m1 m2 m3 m4

h1 h2

h3

m5

a b

c d

e

f

T5

m2 m4m3 m5 m7 m9m8 m10m6m1
mt−3 mt−1

mt−2 mtmt−4

H

update: 0.86 log2 t calls

build: 0.75t calls to h

T5 T5

T5T5

T5

opening length:

1.72 log2 t conservative

1.29 log2 t aggressive

calls for verification:

1.29 log2 t conservative

0.86 log2 t aggressive

Figure 5 Full-blown tree based on T5. Security is 2n/2 (tight) for conservative openings, 2n/3

provable and 2n/2 heuristic for full-local aggressive opening, 2n/4 provable and 2n/3 heuristic for
local-local aggressive opening.

Our construction extends straightforwardly to a full-blown t-to-1 tree H of any depth
k, as depicted in Figure 5, with optimal t = 5k. Notice, unlike our compression function
T5 for H, which needed domain separation for functions h1, h2, h3 (see the full version of
this paper [11]), the final tree H can reuse the same h1, h2, h3 across all invocations, which
follows from general security properties of standard Merkle trees.

The overall trade-offs of our construction are summarized in Table 1, but we expand on
it below.

Efficiency. Let us summarize the performance of our tree construction:
Build: In H we compress every 5 inputs using our 5n-to-n compression function T5,
therefore using (t− 1)/4 calls to T5, which is equivalent to

E(t) = 0.75(t− 1)
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calls to the hj ’s, thus giving us 25% improvement over the regular Merkle tree.
Depth/update: The depth D(t) of the tree, measured in the calls to the hj ’s, reduces
from log2 t to

D(t) = 2 log5 t ≈ 0.86 log2 t

which is a 14% saving compared to standard Merkle trees.
Opening length (conservative): In the conservative opening we open all 4 siblings,
thus L(t) increases from log2 t of standard Merkle trees to 4 log5 t ≈ 1.72 log2 t (loss of
72%). It is still useful though when bandwidth is not critical which is sometimes the case.
Opening length (aggressive): In the aggressive opening we open 3 elements, thus
L(t) increases to only 3 log5 t ≈ 1.29 log2 t (loss of 29%, which may be tolerated for some
applications).
Verification time (conservative): the number of hi calls needed to verify the proof
increases to V (t) = 3 log5 t ≈ 1.29 log2 t.
Verification time (aggressive): the number of hi calls needed to verify the proof
decreases to V (t) = 2 log5 t ≈ 0.86 log2 t. This is very handy in applications when opening
verification time is crucial (such as zero-knowledge membership proofs where proving
time linearly depend on the circuit size needed for the opening verification). However we
pay for this with security (see below).

Security. Since our construction applies the standard Merkle paradigm to the 5-to-1 com-
pression function T5, the resulting hash function H inherits the same global (or local opening)
collision and preimage security as the compression function T5:

Full-local (aggressive) security: provable security up to (taking poly(n) factors aside)
2n/3 queries (Theorem 4), heuristic security up to 2n/2 running time (Proposition 7).
Local-local (aggressive) security: provable security up to 2n/4 queries (Theorem 4),
heuristic security up to 2n/3 running time (Proposition 10).
Both full-local and local-local (conservative) security: provable security up to
2n/2 queries (Theorem 2).

Additionally, non-trivial preimage security holds up to 22n/3 queries (and at optimal level
O(q/2n), in the region of interest where q ≤ 2n/2).

Applications. Merkle trees are used in a number of protocols, but their exhaustive list
is beyond the scope of this paper. To name just a few: anonymous cryptocurrencies and
mixers [14, 25], interactive oracle proof (IOP) compilers [2, 3], and post-quantum hash-
based signatures [5]. Among them, cryptocurrencies and mixers are the examples of publicly
controlled Merkle trees, i.e., where the full-local opening makes sense and where the aggressive
opening with its improved verification time is appealing.

From all this diverse range of applications, the ones who benefit also from the conservative
opening strategy are those for which the performance and depth are more important than
the local opening size. Of course, basic hashing by itself is a very important example of such
an application. The next examples are zero-knowledge proof systems where circuit depth is
a major performance factor [34, 35]. Finally, a more speculative area where our construction
could help is multiparty computation protocols applied to functionalities involving hashing,
whose complexity depends on the circuit depth (e.g., variants of the original BGW [1] and
GMW [12] protocols).



Y. Dodis, D. Khovratovich, N. Mouha, and M. Nandi 24:21

Summary. Our construction has clear advantage over the regular Merkle tree in build and
update efficiency, but loses in the opening length. For the verification time and security
we have a tradeoff: an aggressive opening needs fewer hi calls but only heuristic security
argument of 2n/2 with provable security reaching 2n/3 only, whereas the conservative opening
has the same security properties as in the regular tree but requires 30% more verification
calls. Thus whether or not our construction outperforms the regular Merkle tree depends on
the setting.

8 Generalizations and Future Work

Our construction is likely to be extended to wider compression functions. For example,
a natural generalization of our construction can hash T = 3 · 2k − 1 inputs using only
E = 2 · 2k − 1 = (2T − 1)/3 evaluations, where standard 2n-to-n hash h corresponds to
k = 0, and our T5 corresponds to k = 1. As k increases, E(k)/T (k)→ 2/3, which matches
Stam’s bound for building Tn-to-n hash functions from 2n-to-n compression functions.
Unfortunately, as k grows, the local opening size also grows, so it is unclear if this overall
hash saving is worthwhile for applications. We leave the security analysis of this, and other
optimized hashing constructions to future work.

Finally, it remains to prove the reduction of the full-local aggressive security to the 3-XOR
problem unconditionally, i.e., without restrictions on the adversary.
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Abstract
In self-encryption, a device encrypts some piece of information for itself to decrypt in the future. We
are interested in security of self-encryption when the state occasionally leaks. Applications that use
self-encryption include cloud storage, when a client encrypts files to be stored, and in 0-RTT session
resumptions, when a server encrypts a resumption key to be kept by the client. Previous works
focused on forward security and resistance to replay attacks. In our work, we study post-compromise
security (PCS). PCS was achieved in ratcheted instant messaging schemes, at the price of having
an inflating state size. An open question was whether state inflation was necessary. In our results,
we prove that post-compromise security implies a super-linear state size in terms of the number of
active ciphertexts which can still be decrypted. We apply our result to self-encryption for cloud
storage, 0-RTT session resumption, and secure messaging. We further show how to construct a
secure scheme matching our bound on the state size up to a constant factor.
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1 Introduction

In many deployed applications, the design of the application involves various devices
communicating with each other securely. They sometimes require one of the devices to
encrypt some piece of information that will be used in the future by itself. We call this
self-encryption. One application is massive client-server connections where millions of clients
connect to a server, causing the server being unable to afford to store any client-specific
information. On the other hand, recent protocols such as TLS 1.3 offers an alternate way to
make the server to resume past sessions without going through a new round-trip handshake
when a client reconnects to the server.1 While clients would surely benefit from a smooth
connection experience, the server has to “remember” each session in a secure manner, possibly
by keeping a (small or big) size of state. More precisely, when a client connects to a website
for the first time, the web server generates a ticket for the client. This ticket is a piece
of information that helps the server to remember the session. Somehow, this is a helper
that the server encrypts for itself which is to be kept by the client like cookies. When the
client reconnects to the same website with her ticket, the server may use the information
contained in the ticket to resume their session. As desired, it gives the freedom not to store
any client-specific information on the server-side. However, the server needs a secret state for

1 As of November 2019, 34% of TLS connections use session resumption [11].
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the cryptographic operations which are used in generating and decrypting tickets. From the
security point of view, then, the concern becomes to provide security against replay attacks
or occasional exposures of the internal state of the server.

In general, the internal state is any type of information that would let a device decrypt
(some part of) the communication. In this work, we investigate the security of self-encryption
which comes in two forms: forward security (FS) and post-compromise security (PCS).
Intuitively, forward security provides security for the past communication when exposure
happens, whereas post-compromise security aims to heal the future communication when
exposure occurs [6]. Before going forward with security, we list three applications.

0-RTT in TLS 1.3

In the TLS 1.3 protocol, a client connects to a server and establishes a common secret key
through a handshake key agreement protocol. This is succeeded with a full round trip time
(1-RTT) communication. Ideally, when the client reconnects to the same server after a while,
the connection should be resumed with no round trip time (0-RTT). 0-RTT has been an
active research domain in the last few years [2, 7, 10]. It is achieved in practice through
two elementary approaches called session caches and session tickets as described by Aviram,
Gellert, and Jager (AGJ) [2]. In the former technique, the server resumes the session by
assigning a different resumption key for each connection and sending the client a look-up
index that links to the resumption key. The ticket is that index. When the client comes back,
it includes the ticket and the payload data. This provides forward security. Nevertheless, the
solution depends on maintaining a big database on the server, which is not alluring.

The other approach for 0-RTT in TLS 1.3 configurations is to create session tickets for
each client by using a long-term secret key K (the ticket encryption key). Therefore, instead
of storing a unique key for each session, the server generates a secret material for each client
and encrypts it under K. The secret material is called resumption key whereas the encrypted
resumption key is the ticket. The client stores both the resumption key and the ticket.
Later on, the client encrypts the payload with the resumption key and includes her ticket in
0-RTT message to remind herself. The server can decrypt the ticket with K and retrieve the
resumption secret to decrypt the payload. This approach avoids storing a big database; it is
easy to implement and to integrate in existing systems, yet, it does not provide any kind of
security in the case of a key exposure.2

In their recent work, Aviram, Gellert, and Jager (AGJ) [2] studied the forward security
and the resistance to replay attacks of session resumption, specifically focusing on session
tickets. However, they did not consider PCS in their security model.

Cloud Storage

In a single client-server cloud storage, the client wants to outsource her files in a remote
storage (cloud) in an encrypted form. The encryption of the files occurs locally on the client
who keeps the secret decryption material. The adversary has full access to the cloud and
can also keep archives of removed storage. If the client encrypts all files with the same key,
the leakage of the key becomes catastrophic as all files (even the removed ones) become
compromised. Besides, the client aims to minimize the storage on her local while maintaining

2 In TLS 1.3, it is considered good practice to rotate the long-term key K every few hours by assuming
that all the clients will resume their sessions in the “life-time” of K. Nevertheless, as soon as the key K
is compromised, there is neither FS nor PCS during the active period of K.
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strong security in case of a compromise of her internal state. This cloud storage problem
shares similarities with the 0-RTT problem: the cloud client and the 0-RTT server want to
minimize their storage while conserving security.

On the other hand, keys should not be used more than what the encryption method
can guarantee to be secure or age too long. This is part of a common good practice in key
management. Regulations actually mandate the encrypted files to be updated from an old
key to a new key often enough. This is called key rotation. The fundamental motivation,
however, comes with the desire to achieve resilience to key exposure. Key rotation was
formally studied by Boneh et al. [3]. More recently, Everspaugh et al. [9] considered the
integrity problem with key rotation.

The naive way to achieve key rotation is to make the client download the encrypted files
on the local, decrypt them with the existing key, generate a new fresh key, re-encrypt, and
finally outsource back. However, it is a very cumbersome solution for the client. The main
task of key rotation is to avoid the complexity of communication and the complexity of
treatment on the client side. In practice, AWS and Google deploy a more practical methods
based on hybrid encryption: a header ct1 = EncK(eph) is formed by encrypting an ephemeral
key eph and the rest of the ciphertext ct2 = Enceph(pt) is formed by encrypting the plaintext
pt using eph. Key rotation is done by updating the header as ct′

1 = EncK′(eph) but keeping
the same ephemeral key so ct′

2 = ct2. This was argued to be a bit cheating with the concept
of key rotation as the encryption of data under the same key was remaining in ct2.

We tackle the privacy problem differently. Instead of updating a ciphertext to be
decryptable with a chosen key, we let ciphertexts unchanged but update the state which is
stored by the client3. Naturally, our concern becomes more focused on the storage space
on the client side. In our setting, the client stores one state and needs no operation on
ciphertexts.

Instant Messaging

Post-compromise security in instant messaging was formally studied during the last few
years [14, 12, 13, 1, 8]. It is addressed by the notion of ratchet. A ratchet consists of updating
a key in a one-way manner (for FS) by using some unpredictable randomness (for PCS).
Bidirectional secure communication applications can be transformed into self-encryption. In
fact, roughly speaking, we can merge both participants into one single device which would
encrypt for itself. A ratcheted scheme is normally FS and PCS secure, hence defines an FS
and PCS secure self encryption which we call a self-ratchet.

Our Perspective

In order to study the security of self-encryption, we consider a scheme which generates
ciphertexts with the ability to decrypt later, even when the state to decrypt evolves. We
define it in a way that it covers the three (and potentially more) applications we described
earlier. Furthermore, we are interested in forward security and post-compromise security
of these systems. The former captures that the system generates ciphertexts that should
remain decryptable for a limited time and that are not going to be decryptable anymore after
they “expire” (it could happen either because the settings allow the ciphertexts to stay alive
for a limited time or because there is an inherent latency to rotate keys). The ciphertexts
that are still decryptable are called active ciphertexts. Making a ciphertext become inactive

3 We do not mean to pick a fresh key to “rotate” the key and update the header as practiced by AWS.
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is a way to have forward security: if the state of the scheme is exposed after a ciphertext
becomes inactive, this ciphertext is still safe. The PCS defines what happens to the security
after an exposure of a state. When an exposure takes place, the post-compromise secure
system should be able to heal the state such that the ciphertexts which are generated after
the healing are secure. In many studies, PCS is interchangeably used with healing.

While studying self-ratcheted schemes with PCS guarantees (as well as FS), it was intuitive
to expect that the state size of any post-compromise secure self-ratcheted scheme will grow
because decryption keys would need to be independent. However, it was not clear why and
with what bounds we could achieve it. The first contribution of our work is to show that
we cannot achieve post-compromise security better than adding a trivial solution to already
existing efficient FS schemes.

As for forward security, AGJ [2] specifically consider the session resumption in TLS 1.3
and they designed solutions for FS and replay attacks without PCS. Their construction is
practical. In another study by Günther et al. [10] and Derler et al. [7], the authors consider
a solution without any shared secret. In these works, the clients resume connections without
having to store any session-specific information on her local. The client keeps only the
long-term public key pk of the server. Therefore, they look for forward-secure solutions
when the long-term secret key sk evolves throughout time although the associated public key
never changes, hence the clients never updates its state. Although it is remarkable that such
schemes with forward security exist, both constructions are less practical due to the heavy
cryptographic tools they use. Therefore, we rather focus on the FS scheme AGJ to add PCS.

In their seminal paper on PCS, Cohn-Gordon, Cremers, and Garratt [6] focus on
Authenticated Key Exchange (AKE). In AKE, the protocol starts with a state and ends when
both participants have obtained the exchanged key. The typical exposure threats happen
before or after the protocol but not during it because the protocol is rather short. The AKE
protocol proposed by Cohn-Gordon et al. [6] requires to store nonces and ephemeral secrets
during the execution, which inflate the state. Deflation happens when the protocol is fully
complete. In our perspective (and specially about instance messaging), communication is
asynchronous and it can take some time before a protocol fully terminates. Hence, there is
the case when several protocols run concurrently. This is the case where the state would
grow with the number of incomplete sessions, just like in the instance messaging case (which
we illustrate on Fig. 15).

Our Contribution

In the present work, we start with the definition of a minimal primitive called Self-Encrypted
Queue (SEQ) with correctness and one-way (OW) security. It gives the minimal functionality
for any PCS construction, more particularly self-encryption schemes. Then, we prove that
for every SEQ primitive with states of bounded length, there is an adversary with small
complexity and high probability of success to break OW security. More precisely, the
probability of success is at least 1

4n2−2 ℓ+1
⌊n/∆⌋ when the state size is bounded by ℓ, n is the

number of active ciphertexts, and ∆ = 1 (or defined below). This result led us to conclude
that when self-encryption is post-compromise secure, it must have a state which grows more
than linearly in n.4 This does not provide the practicality we were hoping for. Therefore,
we define a refinement which is a relaxed version of post-compromise security. In layman

4 It grows linearly if we take the key size as a memory unit. (The key size cannot have a constant bit
length. Otherwise, exhaustive search breaks it with constant complexity.)
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terms, we look into the following case: Maybe the first ciphertext that will be generated
after an exposure is not secure, but the system could be designed to heal the security after
the generation of ∆ ciphertexts, where ∆ is a constant parameter of our scheme. We call it
∆-PCS. We show that in refined definitions, the state size is super-linear in n

∆ as opposed to
growing super-linear in n.

We prove that this impossibility result applies both in self-encryption and in secure
messaging. In addition to this, we prove that this result is tight by constructing a simple
self-encryption scheme achieving ∆-PCS with a state size matching our bounds.

After our impossibility results, we focus on few applications by borrowing already existing
formal interfaces from AGJ [2] in order to add PCS security in the discussed settings. We
modify the interface in a way that decryption and puncturing happens with separate function
calls in case the puncturing is not always necessary. Later on, we look at secure ratcheted
protocols which provides PCS security from the literature. We show that the state of these
protocols grows linearly (in terms of number of keys) as they “ratchet” every time a new
message is generated, hence falling into the case where ∆ = 1. On the other hand, we have
two secure communication protocols given by Alwen, Coretti, and Dodis (called ACD and
ACD-PK) [1] which model well what Signal is deploying. We observe that the state in both
schemes does not grow linearly like other PCS schemes. This is due to the fact that these
two protocols do not guarantee ∆-PCS for any constant ∆. In fact, healing happens only
when the direction of communication changes.

We conclude that adding PCS to FS-secure systems can be succeeded at the price of a
minimal state growth with proven bounds and we cannot hope for better.

Structure of the Paper

In Section 2, we define a basic PCS-secure primitive called SEQ and we prove that its state
size must grow super-linearly. In Section 3, we apply this result to self-encryption. We
construct a scheme based on AGJ with super-linear growth and PCS security. Finally, in
Section 4, we show how to apply our result to instant secure messaging.

2 Impossibility Result

In this section, we first define a minimal primitive called Self Encrypted Queue (SEQ)
achieving post-compromise security. This primitive is not meant to have any concrete
application. However, we will prove that (examples of) useful primitives imply SEQ, and
that SEQ must have a linearly growing state.

2.1 Definition of a Minimal Primitive
We define below a minimal primitive which works in two phases: It iteratively generates
a sequence of plaintext/ciphertext pairs (pt, ct) by updating its state. Then, it takes the
sequence of ct in the same order as generated and recovers the exact sequence of pt. The
primitive is minimal in the sense that all considered applications which claim PCS must
achieve this functionality and even more (such as being able to receive the list of ct in
different order, or to have encryption and decryption steps mixed up). We build a limited
self-encryption (actually, we build a KEM) which we call a SEQ.

▶ Definition 1 (SEQ). A Self Encrypted Queue (SEQ) is a primitive defined by
Gen(1λ) → st which generates an initial state;
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Correctness at level-n:
1: Gen(1λ)→ st0

2: for i = 1 to n do ▷ fill up the queue
3: Enc(sti−1)→ (sti, pti, cti)
4: end for
5: for i = 1 to n do ▷ empty the queue
6: Dec(stn+i−1, cti)→ (stn+i, pt′

i)
7: if pti ̸= pt′

i then return 0
8: end for
9: return 1

Game OWm,∆,λ(A):
1: Gen(1λ)→ st0

2: for i = 1 to m do
3: Enc(sti−1)→ (sti, pti, cti)
4: end for
5: A(1λ, stm−∆, ct1, . . . , ctm)→ z

6: return 1z=ptm

Figure 1 Correctness and OW games for SEQ.

Enc(st) → (st′, pt, ct) which updates the state and adds to the queue a new message which
is pt in clear and ct in encrypted form;

Dec(st, ct) → (st′, pt/⊥) which updates the state and decrypts ct which leads the queue.
This is deterministic.

We say that SEQ is correct to level-n if the correctness game in Fig. 1 always return 1.5

The principle of this primitive is that a state is updated at every encryption/decryption so
that the new state can decrypt the released ciphertext in the order they have been released.
In the correctness game, the queue is filled up with (ct1, . . . , ctn), then emptied.

▶ Definition 2. Let n(λ) and ∆(λ) be polynomially bounded positive integer functions of
a security parameter λ. We consider the OWm,∆,λ game in Fig. 1. We say that SEQ with
level n is ∆-secure if for any PPT adversary A, λ 7→ max1≤m≤n Pr[OWm,∆,λ(A)→ 1] is
a negligible function.

The value of ∆ represents the time the scheme needs to heal security after an exposure. This
means that ∆ steps after exposing the state, the new state has become safe again and the
encryptions to follow will protect confidentiality. In the game, stm−∆ is exposed and the
goal of the adversary is to decrypt ctm. Most secure schemes are 1-secure, because security
heals after ∆ = 1 encryption.

It is easy to design a secure SEQ of level n with a state with O(n) keys inside. For
instance, for any n, the scheme in Fig. 2 is a 1-secure SEQ to level n with state of size nλ,
where λ is the security parameter. This SEQ is trivially correct: st accumulates all pt in a
queue during encryption and releases them during decryption. It is also perfectly secure: pt
is independent from the corresponding ct and from the previous states. Hence, any OWm,∆,λ

adversary has an advantage of 2−λ.
Ideally, states should not inflate. For that, one can count on ct to transport a helper

to recover pt without having to store it in st. However, we prove next that a correct and
OW-secure SEQ primitive with st in a space ST of size 2o(n log n) does not exist.

2.2 Impossibility Result
▶ Theorem 3. There exists a (small) constant c such that for every probability α ∈]0, 1] and
integers λ, n, ℓ, ∆, k, for every correct SEQ primitive of level n as in Def. 1 with st in a

5 Throughout this paper, 1P denotes a function returning 1 if the predicate P is true, and 0 otherwise.



G. Choi, F. B. Durak, and S. Vaudenay 25:7

Gen(1λ):
1: st← (λ, []) ▷ a list of length 0
2: return st

Enc(st):
3: parse st = (λ, L)
4: pick pt of length λ at random
5: L← (L, pt) ▷ append pt in L

6: st← (λ, L)
7: ct← ⊥
8: return (st, pt, ct)

Dec(st, ct):
9: parse st = (λ, L)

10: parse L = (pt, L′)
▷ pt is the first length-λ element of st

11: st← (λ, L′)
12: return (st, pt)

Figure 2 A trivial SEQ.

space ST of size |ST | ≤ 2ℓ, there exist m ≤ n and an OWm,∆,λ adversary A of complexity
(n−m + ∆)TEnc + mTDec + c, and advantage at least

Pr[OWm,∆,λ(A)→ 1] >
α

n

(
1−

(
1
k

+ k − 1
2 α

)⌊ n
∆⌋

2ℓ

)

where TEnc and TDec are the complexities of Enc and Dec.

Interestingly, for k = 2 and α = 1
⌊n/∆⌋ , this theorem gives Pr[OWm,∆,λ(A)→ 1] > ∆

n2 (1−

e2ℓ−⌊ n
∆⌋). Thus, it is clear that ℓ ≤

⌊
n
∆
⌋
− 2 is insecure.

We can be more precise and obtain insecurity when ℓ∆
n is bounded by a logarithmic term

(of the security parameter). Let ε = 2− ℓ+1
⌊n/∆⌋ . Th. 3 with α = ε2

2 and k =
⌈ 2

ε

⌉
gives the

following result:

▶ Corollary 4. There exists a (small) constant c such that for every integers λ, n, ℓ, and ∆,
for every correct SEQ primitive of level n as in Def. 1 with st in a space ST of size |ST | ≤ 2ℓ,
there exist m ≤ n and an OWm,∆,λ adversary A of complexity (n−m + ∆)TEnc + mTDec + c,
and advantage at least

Pr[OWm,∆,λ(A)→ 1] >
1

4n
2−2 ℓ+1

⌊n/∆⌋

where TEnc and TDec are the complexities of Enc and Dec.

This means that the state needs a size ℓ such that

ℓ >
1
2

⌊
n

∆

⌋
log2

1
4nε

− 1 (1)

to achieve ∆-security up to n encryptions with advantage bounded by ε. For
ε = 2−λ and n = Poly(λ), the dominant term is λn

2∆ .
We can now prove Th. 3:

Proof. Let us consider a correct primitive of level n with st in a space ST such that
|ST | ≤ 2ℓ. We will show that it is insecure. To do so, we will first express that the state
st after n encryptions are constrained. Namely, constraints are that st must decrypt the
generated sequence of ct correctly. The constraints increase with n, and the set of possible
st values which make decryption correct decreases. The set of constrained states does not
decrease exponentially because of the surprising existence of “super states” which are able to
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decrypt more than their constraints. Namely, super states can decrypt universaly, including
encryptions from the “future” which have not been generated yet. This is counter-intuitive.
This set of super states is a hard core in the set of constrained states. We show that the set
of constrained which are non-super states does decrease exponentially. Hence, by taking n

large enough, constrained states become all super states: the state after n encryptions must
be a super state. We use the property of the super state to mount an attack.

We first define notations. We extend the Enc and Dec functions. First of all, with random
coins ρ, we write Enc(st; ρ) = (st′, pt, ct) and consider Enc as deterministic with explicit coins.
For X ∈ {Enc, Dec} and y ∈ {st, pt, ct}, we denote by Xo_y the generated output of type
y by the X operation: for both Enc and Dec, the output components define subfunctions
Enco_st, Enco_pt, Enco_ct, Deco_st, Deco_pt by

Enc(st; ρ) = (Enco_st(st; ρ), Enco_pt(st; ρ), Enco_ct(st; ρ))
Dec(st, ct) = (Deco_st(st, ct), Deco_pt(st, ct))

We further extend those functions with a variable number of inputs ρ or ct. We define

Enco_st(st, ρ1, . . . , ρi) = Enco_st(Enco_st(st, ρ1, . . . , ρi−1); ρi)
Deco_st(st, ct1, . . . , cti) = Deco_st(Deco_st(st, ct1, . . . , cti−1), cti)

with the convention that Enco_st(st) = st and Deco_st(st) = st, i.e., the functions with
zero coins do nothing but returning st unchanged. Next, Enco_pt(st, ρ1, . . . , ρi) is the list of
generated pt, Enco_ct(st, ρ1, . . . , ρi) is the list of generated ct, and Deco_pt(st, ct1, . . . , cti) is
the list of decrypted pt:

Enco_pt(st, ρ1, . . . , ρi) = (Enco_pt(Enco_st(st, ρ1, . . . , ρj−1); ρj))j=1,...,i

Enco_ct(st, ρ1, . . . , ρi) = (Enco_ct(Enco_st(st, ρ1, . . . , ρj−1); ρj))j=1,...,i

Deco_pt(st, ct1, . . . , cti) = (Deco_pt(Deco_st(st, ct1, . . . , ctj−1), ctj))j=1,...,i

Let stn be the state which is obtained after n encryptions, before starting the decryption
phase. In order to characterize the constraints on stn coming from the first i encryptions,
we introduce a set C[ri] corresponding to (and indexed with) each update operation ri =
(st0, ρ1, . . . , ρi). Due to correctness, stn must decrypt Enco_ct(ri) to Enco_pt(ri). Hence, we
define the set of states which are constrained to ri by

C[ri] = {st ∈ ST ; Deco_pt(st, Enco_ct(ri)) = Enco_pt(ri)}

Clearly, for any i and any st0, ρ1, . . . , ρn, we have

Enco_st(st0, ρ1, . . . , ρn) ∈ C[st0, ρ1, . . . , ρi]

We note that C[r0], where r0 = st0 is the set of states subject to no restriction, hence
C[st0] = ST . Furthermore, we note that

C[rn] ⊆ · · · ⊆ C[r2] ⊆ C[r1] ⊆ C[r0] = ST

A state in C[ri−∆] decrypts well the first i−∆ ciphertexts. It may also be element of
C[ri−∆, ρi−∆+1, . . . , ρi] if it decrypts the next ∆ ciphertexts which are produced with coins
ρi−∆+1, . . . , ρi. It may also be in C[ri−∆, ρ′

i−∆+1, . . . , ρ′
i] and decrypt ∆ ciphertexts produced

with other coins. With good probability, some state may actually have the “super-power”
to decrypt ciphertexts produced with ∆ more random coins. We call those states the super
states. Intuitively, this is unexpected to happen but we show below that super-states exist
and an adversary can build some easily.
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More concretely, let α > 0 be the probability from the statement of the theorem. We
define a set of super states for rj−∆ = (st0, ρ1, . . . , ρj−∆):

S[rj−∆] =
{

st ∈ ST ; Pr
ρ′

j−∆+1,...,ρ′
j

[st ∈ C[rj−∆, ρ′
j−∆+1, . . . , ρ′

j ]] > α

}

This set S[rj−∆] defines a set of states which are α-likely to decrypt a “fork” in the sequence
of random coins. (See Fig. 3.)

We note that S[rj−∆] ⊆ C[rj−∆] since for st ∈ S[rj−∆], there must exist (due to a
non-zero probability) ρ′

j−∆+1, . . . , ρ′
j such that

st ∈ C[rj−∆, ρ′
j−∆+1, . . . , ρ′

j ] ⊆ C[rj−∆]

We define a union of super states as follows:

S∪[st0, ρ1, . . . , ρn−∆] = S[st0] ∪ S[st0; ρ1] ∪ · · · ∪ S[st0; ρ1, . . . , ρn−∆]

Clearly

S∪[rn−∆] ⊇ · · · ⊇ S∪[r1] ⊇ S∪[r0]

The idea of the proof is to show that states with too many constraints tend to become
super-states. Namely, we first prove that for n large enough, C[rn] is included in S∪[rn−∆]
with large probability p. This means that after n encryptions, a state becomes a super-state.
Hence, this state belongs to some S[rm−∆], with a random m ≤ n. We now take a fixed
value of m which is taken with probability at least 1

n . (It exists, due to the pigeon-hole
principle.) We take n encryptions from random coins st0, ρ1, . . . , ρm−∆, ρ′

m−∆+1, . . . , ρ′
n. We

deduce that there is a probability at least p
n to get a state st′

n in S[rm−∆]. If it happens,
st′

n decrypts what is generated by the fork st0, ρ1, . . . , ρm with probability at least α (by
definition of the super states). We define an adversary that exploits this fact in Fig. 3. The
m encryptions with st0, ρ1, . . . , ρm are generated by the game, the state stm−∆ leaks, and
the adversary can fork to construct st′

n from it. We obtain the success probability of the
adversary in the OWm,∆,λ game:

Pr[OWm,∆,λ(A)→ 1] >
αp

n
(2)

In what follows, we show that p ≥ 1−
( 1

k + k−1
2 α

)⌊ n
∆⌋ 2ℓ.

Let i be an integer. We consider for the moment that st0, ρ1, . . . , ρi−∆ are fixed. For
simplicity, we denote

Ci−∆ = C[st0, ρ1, . . . , ρi−∆]
Ci(ρ⃗) = C[st0, ρ1, . . . , ρi−∆, ρ⃗]

S∪
i−∆ = S∪[st0, ρ1, . . . , ρi−2∆]
S∪

i = S∪[st0, ρ1, . . . , ρi−∆]

for a vector ρ⃗ of dimension ∆. We take k independent random ∆-dimensional vectors
ρ⃗j , for integers j = 1, . . . , k and we define Ci,j = Ci(ρ⃗j). (k is defined in the statement of
the Lemma.) Given ρ⃗j fixed and some st ∈ Ci,j − S∪

i fixed, we have st ̸∈ S∪
i meaning that

st ̸∈ S[st0, ρ1, . . . , ρi−∆], thus

Pr
ρ⃗j′

[st ∈ Ci,j′ ] ≤ α
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•st0

•st1

•st2

•stm−∆

•st′
n ∈ S[rm−∆]

•

•stm

generated with
(ρm−∆+1, . . . , ρm)

generated with
(ρ′

m−∆+1, . . . , ρ′
n)

A(1λ, stm−∆, ct1, . . . , ctm):
1: st′

m−∆ ← stm−∆
2: for i = m−∆ + 1 to n do
3: pick ρ′

i

4: Enc(st′
i−1; ρ′

i)→ (st′
i, pt′

i, ct′
i)

5: end for
6: for i = 0 to m− 1 do
7: Dec(st′

n+i, cti+1)→ (st′
n+i+1, pti+1)

8: end for
9: return ptm

Figure 3 Starting from state st0 and applying m encryption that generates ct1, . . . , ctm, we hope
that leaking stm and forking to n encryptions in total will end up in st′

n ∈ S[rm−∆]. Therefore, st′
n

decrypts all the ciphertext with probability at least α.

Ci−∆

Ci,j Ci,j′

S∪
i

Figure 4 Illustration of the intersection (Ci,j′ − S∪
i ) ∩ (Ci,j − S∪

i ).

for any ρ⃗j′ independent vector indexed with j′ ̸= j, by definition of Si and Ci,j′ . We count

|(Ci,j′ − S∪
i ) ∩ (Ci,j − S∪

i )| =
∑

st∈Ci,j−S∪
i

1st∈Ci,j′

We obtain

E⃗
ρj′

[|(Ci,j′ − S∪
i ) ∩ (Ci,j − S∪

i )|] ≤ α|Ci,j − S∪
i | ≤ α|Ci−∆ − S∪

i−∆|

for any j, j′, and ρ⃗j with j ̸= j′. This is illustrated in Fig. 4. Clearly, we can then randomize
ρ⃗j and obtain

E [|(Ci,j′ − S∪
i ) ∩ (Ci,j − S∪

i )|] ≤ α|Ci−∆ − S∪
i−∆|

for any j and j′ with j ̸= j′.
Let Aj = Ci,j − S∪

i . This denotes one of the k subsets of A = Ci−∆ − S∪
i−∆. We have

k∑
j=1
|Aj | ≤ |A|+

∑
1≤j<j′≤k

|Aj ∩Aj′ |

Indeed, any element x of A occurring in exactly m subsets Aj is counted m times on the
left-hand side and 1 + m(m−1)

2 times on the right-hand side. However, m ≤ 1 + m(m−1)
2 for



G. Choi, F. B. Durak, and S. Vaudenay 25:11

every integer m. We deduce

E

 k∑
j=1
|Ci,j − S∪

i |

 ≤ (1 + k(k − 1)
2 α

)
|Ci−∆ − S∪

i−∆|

Given that all E [|Ci,j − S∪
i |] are equal, we have proven that

E⃗
ρ

[|Ci(ρ⃗)− S∪
i |] ≤

(
1
k

+ k − 1
2 α

)
|Ci−∆ − S∪

i−∆|

We can now randomize ρ1, . . . , ρn−∆ as well and obtain

E [|C[st0, ρ1, . . . , ρn]− S∪[st0, ρ1, . . . , ρn−∆]|] ≤
(

1
k

+ k − 1
2 α

)⌊ n
∆⌋
|ST |

We bound |ST | ≤ 2ℓ and Pr[E ̸= ∅] ≤ E[|E|] (due to the Markov inequality) for a random
set E and obtain

Pr[C[st0, ρ1, . . . , ρn]− S∪[st0, ρ1, . . . , ρn−∆] ̸= ∅] ≤
(

1
k

+ k − 1
2 α

)⌊ n
∆⌋

2ℓ

By assumption on the size of ST , for n large enough, we obtain that the set difference
C[st0, ρ1, . . . , ρn]− S∪[st0, ρ1, . . . , ρn−∆] is likely to be empty which means that the states
in C[st0, ρ1, . . . , ρn] are super states. By the definition of C[rn], Enco_st(st0; ρ1, . . . , ρn) ∈
C[st0; ρ1, . . . , ρn]. Hence, Enco_st(st0; ρ1, . . . , ρn) is likely to be in S∪[st0, ρ1, . . . , ρn−∆]. More
precisely,

Pr[Enco_st(st0, ρ1, . . . , ρn) ̸∈ S∪[st0, ρ1, . . . , ρn−∆]] ≤
(

1
k

+ k − 1
2 α

)⌊ n
∆⌋

2ℓ

If Enco_st(st0, ρ1, . . . , ρn) ∈ S∪[st0, ρ1, . . . , ρn−∆], it means there exists (at least) one m ≤ n

such that

Pr
ρ⃗′

[Enco_st(st0, ρ1, . . . , ρn) ∈ C(st0, ρ1, . . . , ρm−∆, ρ⃗′)] > α

Therefore, we obtain the success probability in the OWm,∆,λ game (from Eq. (2)):

Pr[OWm,∆,λ(A)→ 1] >
α

n

(
1−

(
1
k

+ k − 1
2 α

)⌊ n
∆⌋

2ℓ

)
The complexity of A is n−m + ∆ encryptions and m decryptions. ◀

Uniform Impossibility Result

Our Th. 3 and Cor. 4 are non-uniform in the sense that the parameter m depends on λ in
an unknown manner. However, A is constructed in a polynomially bounded manner based
on m. Thus, by guessing m, we obtain a uniform result with advantage divided by n.

3 Self-Ratchet

3.1 Definitions
Consider a self-ratcheted scheme SR = (lg, Init, Enc, Dec, Punc) with the following syntax:
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lg(λ) (length of the plaintext)
SR.Init(1λ) $−→ st (output an initial state for the device)
SR.Enc(st, pt) $−→ (st′, ct) (update the state while encrypting pt ∈ {0, 1}lg(λ))
SR.Dec(st, ct)→ pt or ⊥ (decrypt ct into pt)
SR.Punc(st, ct)→ st′ (update the state by puncturing ct in st)

In our settings, there exists a device following a protocol which produces some pt/ct for itself
so that it can eventually decrypt ct to recover pt in the future. Encryption is stateful. The
protocol makes sure that when the device should no longer be able to decrypt ct and should
be secure against any future state exposure, it can “puncture” the state. This means that
the state st which can decrypt ct is replaced by a new (punctured) state st′ so that ct is not
decryptable by st′. With this notion, we aim at forward security and PCS.

▶ Definition 5 (SR). A self-ratcheted scheme (SR) of level n is a primitive SR =
(Init, Enc, Dec, Punc) which is n-correct in the sense that for any sequence sched, the game
in Fig. 5 never returns 1. Here, sched is a sequence of scheduled instructions which can be of
three different types: (“Enc”, pt) (encrypt plaintext pt), (“Dec”, j) (decrypt the j-th produced
ciphertext), and (“Punc”, j) (puncture the j-th produced ciphertext).

The correctness notion must consider any order of Enc/Dec/Punc instructions. This is what
sched is modeling. We describe what should happen when this sequence of instructions is
sched. Actually, we declare in Lct the ciphertexts which are “active” and we put in Lpt how
they are expected to decrypt.

This definition assumes that the number of “active” ciphertexts remains bounded by a
parameter n (line number 5).

Compared to SEQ, an SR does not update the state during decryption (this is rather
done by a separate function) and decryption can be done in any order of the ciphertexts (i.e.,
not only in the oder they have been created). As applications will show, SR appears to be a
most wanted primitive.

Application to Cloud Storage

SR schemes can be used for cloud storage where a client wants to store her files on the cloud
in an encrypted form. Ideally, a single file is encrypted with SR.Enc to obtain a ct. For
retrieval, the SR.Dec is run to decrypt the file. Eventually, when the client wants to remove
the file from the cloud, the protocol will puncture her state for ct. The first desired security
is that after a client erases an encrypted file, even though a copy was illegally kept and the
state of the client later leaks, the file is unrecoverable. This is forward security. With SR, it
is achieved by puncturing. The second desired security is that after the state of a client has
leaked, if the client wants to store a new file in the cloud, this file should be safe, as long as
no exposure occurs during the activity time of this file. This is post-compromise security. It
is achieved by what we call self-ratchet.

One problem specific to cloud storage is that files are typically big and SR should handle
them in encryption, decryption, and puncturing. One common approach is to use a domain
expander based on a hybrid construction. Like the KEM/DEM hybrid cryptosystems, we
can use SR to encrypt an ephemeral key K and symmetrically encrypt the plaintext with K.

We could also add key rotation, if required, by using SR to encrypt the encryption key: to
encrypt a file pt, we pick a random key k (in the key domain of the key rotation scheme) and
we run ct1 ← SR.Enc(st, k). Then, we encrypt pt with k following the key rotation scheme
and obtain a header ct2 and a ciphertext ct3. The final ciphertext is ct = (ct1, ct2, ct3). To
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1: SR.Init(1λ) $−→ st
2: set lists Lpt and Lct to empty
3: for i = 1 to |sched| do
4: if schedi parses as (“Enc”, pt) for some pt then
5: if the number of Lct entries which are different from ⊥ is at most n− 1 then
6: SR.Enc(st, pt)→ (st, ct)
7: Lpt ← (Lpt, pt)
8: Lct ← (Lct, ct)
9: end if

10: else if schedi parses as (“Dec”, j) for some j then
11: if Lct[j] exists and Lct[j] ̸= ⊥ then
12: SR.Dec(st, Lct[j])→ pt
13: if pt ̸= Lpt[j] then return 1
14: end if
15: else if schedi parses as (“Punc”, j) for some j then
16: if Lct[j] exists and Lct[j] ̸= ⊥ then
17: SR.Punc(st, Lct[j])→ st
18: Lct[j]← ⊥
19: end if
20: end if
21: end for
22: return 0

Figure 5 Correctness game for SR of level n.

rotate the key k, we puncture st with ct1, run the key rotation scheme on (ct2, ct3) to get a
new key k′ and new (ct′

2, ct′
3), and run ct′

1 ← SR.Enc(st, k′) to form ct′ = (ct′
1, ct′

2, ct′
3).

Application to 0-RTT Session Resumption

SR schemes can be used for 0-RTT session resumption. Essentially, a server having a secure
connection with a client using a key K would use SR.Enc(st, K) to issue a ticket ct and send
ct to the client. To resume a session, the client, who kept K and ct, would resend ct to the
server who would use SR.Dec to recover K. The server might also immediately puncture it
to avoid any replay of the ticket ct and for forward security.

Previous Work on 0-RTT Session Resumption

Def. 5 is more general than the definition of 0-RTT session resumption [2]. The differences
are as follows:

the notations for 0-RTT session resumption are Setup, TicketGen, and ServerRes instead
of Init, Enc, Dec;
SR separates SR.Dec and SR.Punc instead of having both functionalities in ServerRes.

There is no formal definition of correctness for 0-RTT session resumption in Aviram et al. [2].
However, we can fairly assume it is the same as our notion of correctness in Def. 5, but when
sequences sched are limited such that every decryption is followed by puncturing: for all i and
j, if schedi = (“Dec”, j) then schedi+1 = (“Punc”, j). In 0-RTT session resumption, it makes
sense to merge SR.Dec with SR.Punc as one of the security goal is precisely to prevent a ct
to be replayed. For cloud storage, the client may need to decrypt the same ct several times
before she removes the file from the cloud. Hence, we keep SR.Dec and SR.Punc separate.

We adapt the security definition of 0-RTT session resumption with our notations to which
we add specific instructions for post-compromise security. We define the INDSR,opt

b,n,∆,λ(A) game
in Fig. 6. We also generalize it to adaptive security. In the AGJ security model, the game
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starts with many OEnc and only after that, the adversary can play with oracles except OEnc
(it is somehow non-adaptive). The AGJ model uses opt = {noPCS, replay} and it is formalized
for key establishment rather than encryption. (This means that there is a Test oracle to test
a decryption instead of a Challenge oracle to get an encryption challenge.)

▶ Definition 6 (SR security). Let n(λ) and ∆(λ) be polynomially bounded positive integer
functions of a security parameter λ. The option set opt specifies some variants in the game
in Fig. 6. The advantage is

AdvINDSR,opt

n,∆,λ (A) =
∣∣∣Pr
[
INDSR,opt

1,n,∆,λ(A)→ 1
]
− Pr

[
INDSR,opt

0,n,∆,λ(A)→ 1
]∣∣∣

We say that SR is IND-opt secure at level n with delay ∆ if for any PPT adversary A,
λ 7→ AdvINDSR,opt

n,∆,λ (A) is a negligible function.

When “replay” ∈ opt, the security notion aims to address replay attacks. It enforces puncturing
after decryption. Hence, decryption must puncture, as well. When “noPCS” ∈ opt, the
security notion aims to capture forward security without post-compromise security. Absence
of noPCS in opt is a stronger security notion as it captures FS and PCS together.

Game INDSR,opt
b,n,∆,λ(A):

1: Init(1λ)→ st
2: Active, Revealed← ∅
3: challenged← false
4: AfterExp← ∆
5: AOEnc,ODec,Challenge,OPunc,OExp(1λ)→ b∗

6: return b∗

Oracle OEnc(pt):
7: if |Active| ≥ n then return ⊥
8: SR.Enc(st, pt)→ (st, ct)
9: Active← Active ∪ {ct}

10: Revealed← Revealed ∪ {ct}
11: AfterExp← AfterExp + 1
12: return ct

Oracle ODec(ct):
13: if ct ∈ Active− Revealed then
14: return ⊥
15: end if
16: SR.Dec(st, ct)→ r

17: if “replay” ∈ opt then OPunc(ct)
18: return r

Oracle OPunc(ct):
19: SR.Punc(st, ct)→ st
20: Active← Active− {ct}
21: Revealed← Revealed− {ct}
22: return

Oracle Challenge(pt1):
23: if challenged then return ⊥
24: if |Active| ≥ n then return ⊥
25: if AfterExp < ∆ then return ⊥
26: pick pt0 of same length as pt1 at random
27: SR.Enc(st, ptb)→ (st, ct)
28: Active← Active ∪ {ct}
29: AfterExp← AfterExp + 1
30: challenged← true
31: return ct

Oracle OExp():
32: if (¬challenged and “noPCS” ∈ opt) or

(Active− Revealed ̸= ∅) then
33: return ⊥
34: end if
35: AfterExp← 0
36: return st

Figure 6 Indistinguishability game for self-ratchet.
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S.Gen = SR.Init

S.Enc(st):
1: pick K ∈ {0, 1}lg(λ) at random
2: SR.Enc(st, K)→ (st′, ct)
3: return (st′, K, ct)

S.Dec(st, ct):
4: SR.Dec(st, ct)→ K
5: if K ̸= ⊥ then SR.Punc(st, ct)→ st
6: return (st, K)

Figure 7 SEQ from SR.

AOEnc,ODec,Challenge,OPunc,OExp(1λ):
1: pick m ∈ {∆, . . . , n}
2: for i = 1 to m−∆ do
3: pick pti at random
4: OEnc(pti)→ cti

5: end for
6: OExp()→ stm−∆

7: for i = m−∆ + 1 to m− 1 do
8: pick pti at random
9: OEnc(pti)→ cti

10: end for
11: pick ptm at random
12: Challenge(ptm)→ ctm

13: B(1λ, stm−∆, ct1, . . . , ctm)→ z

14: return 1z=ptm

Figure 8 Adversary against SR based on an adversary for SEQ.

3.2 Impossibility Result

▶ Theorem 7. For every integer n, ℓ, ∆ > 0 and any n-correct self-ratcheted scheme SR
following Def. 5, and such that st belongs to a space of size bounded by 2ℓ, there exist a (small)
constant c and an adversary of complexity bounded by (n + ∆)(TEnc + TDec + TPunc + 1) + c

having advantage

AdvINDSR,opt

n,∆,λ (A) >
1

4n2 2−2 ℓ+1
⌊n/∆⌋ − 2−lg(λ)

for opt = ⊥ and opt = replay, and where T$ is the complexity to pick an element of {0, 1}lg(λ)

at random and TEnc, TDec and TPunc are the complexities of Enc, Dec and Punc.

Proof. We construct a SEQ from a self-ratcheted protocol SR in Fig. 7. Clearly, the n-
correctness of SR implies the n-correctness of S for any n. The SEQ scheme only imposes
ciphertexts to be received in the same order as they have been produced.

Due to Cor. 4, there exists m and an OWm,∆,λ adversary B such that Pr[OWm,∆,λ →
1] = p with p > 1

4n 2−2 ℓ+1
⌊n/∆⌋ . B is constructed uniformly from m. Then, we can construct an

INDSR,opt
b,n,∆,λ adversary A who guesses m as in Fig. 8.
The Challenge oracle encrypts ptm which is either ptm or random. Since A simulates

well the OWm,∆,λ game, we have Pr[z = ptm] ≥ p
n . Hence, Pr[INDSR,opt

1,n,∆ → 1] = p
n and

Pr[INDSR,opt
0,n,∆ → 1] = 2−lg(λ). Hence, the advantage is p

n − 2−lg(λ).
The adversary A picks m plaintexts and issues m− 1 OEnc queries, one OExp query and

one Challenge query, and then simulates an OWm,∆,λ adversary B. The complexity of B is
the complexity of n−m + ∆ encryptions and m decryptions, and the complexities of S.Enc
and S.Dec are respectively TEnc + T$ and TDec + TPunc. The complexity of A therefore is
n −m + ∆ encryptions, m decryptions, m punctuations, m + 1 oracle calls and (n + ∆)
random selections. ◀
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SR.Init(1λ):
1: st← (0, [])

▷ a counter set to 0 and
an empty list

2: return st

SR.Dec(st, ct):
3: parse st = (c, L) and ct = (i, ct0)
4: FSSR.Dec(L[i], ct0)→ pt
5: return pt

SR.Punc(st, ct):
6: parse st = (c, L) and ct = (i, ct0)
7: FSSR.Punc(L[i], ct0)→ L[i]

▷ L[i] is updated
8: st← (c, L)
9: return st

SR.Enc(st, pt):
10: parse st = (c, L)
11: if c = 0 then
12: c← ∆
13: FSSR.Init(1λ)→ s

14: L← (L, s)
▷ add a new FSSR state in L

15: end if
16: c← c− 1
17: set ℓ to the length of L

18: FSSR.Enc(L[ℓ], pt)→ (L[ℓ], ct0)
▷ L[ℓ] is updated

19: st← (c, L)
20: ct← (ℓ, ct0)
21: return (st, ct)

Figure 9 Post-compromise secure self-ratchet from forward secure self-ratchet.

3.3 Constructions

We provide a generic construction SR from an FSSR scheme6 providing forward security. For
every ∆, we create a new structure with forward security and store it. Given a scheme FSSR
offering only forward security, we construct SR as in Fig. 9.

▶ Theorem 8. Let n(λ) and ∆(λ) be polynomially bounded positive integer functions of a
security parameter λ. Let opt be either ⊥ or {replay}. Let FSSR be a self-ratcheted scheme
which is IND-(opt ∪ {noPCS}) secure at level ∆. Then, SR (in Fig. 9, with parameter ∆) is
a self-ratcheted scheme which is IND-opt secure at level n with delay ∆.

Proof. Let opt be either ⊥ or {replay} and B be an IND-opt adversary against SR with
delay ∆. Assume that B queries at most q encryption and challenge queries. Then, we can
construct an IND-(opt ∪ {noPCS}) adversary A against FSSR at level ∆ as shown on Fig. 10.

By the construction, SR generates a new state of FSSR for each ∆ encryptions. The
adversary A therefore simulates the IND-opt security game with delay ∆ while trying to
replace ∆ ciphertexts by the ciphertexts that the adversary is challenging. If the oracle
Challenge′ does not abort the game, the adversary A can correctly guess b if B can correctly
guess it. The probability that the game is not aborted by Challenge′ is about ∆/q. Then,
the advantage of A is

AdvINDFSSR,(opt∪{noPCS})

∆,·,λ (A) = 1
⌈q/∆⌉AdvINDSR,opt

n,∆,λ (B)

Since q is polynomially bounded and ∆ ≥ 1, if AdvINDFSSR,(opt∪{noPCS})

∆,·,λ (A) is negligible, then
AdvINDSR,opt

n,∆,λ (B) is negligible too. Hence, SR is IND-opt secure at level n with delay ∆ if FSSR
is IND-(opt ∪ {noPCS}) secure at level ∆. ◀

6 FSSR means FS-secure self-ratcheted scheme.
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AOEnc,ODec,Challenge,OPunc,OExp(1λ):

1: idx $←− {1, . . . , ⌈q/∆⌉}
2: SR.Init(1λ)→ st
3: Active, Revealed← ∅
4: challenged← false
5: AfterExp← ∆
6: BOEnc′,ODec′,Challenge′,OPunc′,OExp′

(1λ)→ b′

7: return b′

Subroutine OEnc′(pt):
8: if |Active| ≥ n then return ⊥
9: SR.Enc(st, pt)→ (st, ct)

10: parse ct = (ℓ, ct0)
11: if ℓ = idx then
12: OEnc(pt)→ ct0

13: end if
14: ct← (ℓ, ct0)
15: Active← Active ∪ {ct}
16: Revealed← Revealed ∪ {ct}
17: AfterExp← AfterExp + 1
18: return ct

Subroutine ODec′(ct):
19: if ct ∈ Active− Revealed then
20: return ⊥
21: end if
22: parse ct = (ℓ, ct0)
23: if ℓ = idx then
24: ODec(ct0)→ pt
25: else
26: SR.Dec(st, ct)→ (st, pt)
27: end if
28: if “replay” ∈ opt then OPunc′(ct)
29: return pt

Subroutine OPunc′(ct):
30: parse ct = (ℓ, ct0)
31: if ℓ = idx then
32: OPunc(ct0)
33: else
34: SR.Punc(st, ct)→ st
35: end if
36: Active← Active− {ct}
37: Revealed← Revealed− {ct}
38: return

Subroutine Challenge′(pt):
39: if |Active| ≥ n or AfterExp < ∆ then
40: return ⊥
41: end if
42: parse st = (c, L)
43: if (c ̸= 0 or |L| ̸= idx − 1) and (c = 0 or
|L| ̸= idx) then

44: abort the game
45: end if
46: SR.Enc(st, pt)→ (st, ct)
47: Challenge(pt)→ ct
48: Active← Active ∪ {ct}
49: AfterExp← AfterExp + 1
50: challenged← true
51: return ct

Subroutine OExp′():
52: parse st = (c, L)
53: if |L| ≥ idx then
54: OExp()→ st′

55: if st′ = ⊥ then return ⊥
56: L[idx]← st′

57: end if
58: AfterExp← 0
59: return (c, L)

Figure 10 FS adversary for FSSR based on an adversary for SR.

Optimization

Our SR scheme can obviously be optimized for storage. For each state L[i], we can add a
counter of active ciphertexts with L[i] which is incremented by Enc and decremented by
Punc (after checking that decryption works). Then, when the counter becomes 0, L[i] can be
erased.

Another convenient optimization holds when the application wants to operate bulk
puncturing of too old ciphertexts. This implies to erase all first L[i]. It is quite compatible
with recent policies of session resumption: a session which is too old cannot be resumed.
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FSSR.Init(1λ):
1: PPRF.Setup(1λ)→ kPPRF

2: st← (kPPRF, 0)
3: return st

FSSR.Punc(st, ct):
4: parse st = (kPPRF, cnt)
5: parse ct = (cnt′, ct0)
6: pt← FSSR.Dec(st, ct)
7: if pt = ⊥ then return ⊥
8: PPRF.Punc(kPPRF, cnt′)→ kPPRF

9: if kPPRF = ⊥ then return ⊥
10: st← (kPPRF, cnt)
11: return st

FSSR.Enc(st, pt):
12: parse st = (kPPRF, cnt)
13: κ← PPRF.Eval(kPPRF, cnt)
14: if κ = ⊥ then return ⊥
15: ct0 ← AEAD.Enc(κ, cnt, pt)
16: ct← (cnt, ct0)
17: st← (kPPRF, cnt + 1)
18: return st, ct

FSSR.Dec(st, ct):
19: parse st = (kPPRF, cnt)
20: parse ct = (cnt′, ct0)
21: κ← PPRF.Eval(kPPRF, cnt′)
22: if κ = ⊥ then return ⊥
23: pt← AEAD.Dec(κ, cnt′, ct)
24: return pt

Figure 11 FS-secure SR.

3.4 FS-Secure Self-Ratcheted Scheme (from AGJ)

We adapt7 the generic construction from Aviram et al. [2] based on a puncturable PRF denoted
as PPRF. We use authenticated encryption with associated data AEAD = (Gen, Enc, Dec).
(In our notation, the second input to Enc and Dec is the associated data i.e. the header to
be authenticated.) The construction is in Fig. 11.

AGJ presented two possible PPRF constructions. One is based on the Camenisch-
Lysyanskaya RSA accumulator [5]. The other is based on a tree structure.

RSA-based PPRF

The RSA-based construction uses a PPRF key of linear size in terms of the number of
encryptions and can only handle a polynomial number of encryptions. This is the total
number of encryptions, i.e. not only the ones remaining active. We give the construction
in Fig. 12, using a random oracle H and the list of first odd primes (p1, . . . , pm). In the
original paper [2], the authors have shown that the above construction is a secure PPRF
in the random oracle model, under the strong RSA assumption. The PPRF key is of size
2λ + m. However, the N part of the key can be set as a domain parameter which is common
to many keys.

In our construction, the device only needs to encrypt ∆ messages per PPRF key. Hence,
we can set m = ∆ in the above PPRF, meaning that the FSSR has states of size λ+∆+log2 ∆
plus λ bits of common parameter N . Finally, our SR has states of size

ℓ = n

∆ (λ + ∆ + log2 ∆) + log2 ∆ + λ (3)

We can see that ℓ∆
n is at least linear in λ, hence super-logarithmic. Compared to (1), we are

within a factor close to 2 to the lower bound.

7 The only change is the separation between Dec and Punc.
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PPRF.Setup(1λ):
1: generate an RSA modulus

N = pq of length λ using
safe primes

2: erase p and q

3: pick g ∈ ZN at random
4: r ← (0, 0, . . . , 0) ∈ {0, 1}m

5: kPPRF ← (N, g, r)
6: return kPPRF

PPRF.Eval(kPPRF, x):
7: parse kPPRF = (N, g, r)
8: if rx = 1 then return ⊥
9: Px ←

∏m

i=1 p
ri·1i̸=x

i

10: y ← H(gPx mod N)
11: return y

PPRF.Punc(kPPRF, x):
12: parse kPPRF = (N, g, r)
13: if rx = 1 then return ⊥
14: g ← gpx mod N

15: rx ← 1
16: kPPRF ← (N, g, r)
17: return kPPRF

Figure 12 RSA-based PPRF.

Tree-based PPRF

The tree-based constructions is formed with two functions G0 and G1 from {0, 1}λ to itself,
which we extend to functions Gz for every binary word z by Gxy(L) = Gy(Gx(L)). Then,
the PPRF defines a binary tree of depth d which is partially labeled. The PPRF key is a set
of (x, L) pairs where x is a binary word (hence a node in the binary tree) and L is its label
in {0, 1}λ. Initially, the key consists of the label of the root ε. To evaluate on x, one should
find a labeled node (y, L) such that y is a prefix of x, write x = yz, and return Gz(L). The
interface of the PPRF only takes d-bit input x (i.e. leaves), but our evaluation is defined for
every node. To puncture a leaf x, one should find this y again and replace (y, L) from the
key by the list of (x′, L′) with x′ = yz1 · · · zi−1z̄i and L′ being the evaluation on x′, where
z1 · · · z|z| is the binary expansion of z and z̄i is the bit complement of zi. Hence, a PPRF
key is an anti-chain with no siblings. In the worst case, it could inflate by d pairs at every
puncture, but the maximum length is of 2d−1 pairs.

Same as the RSA construction, one only needs to evaluate 2d = ∆ leaves. In the worst case,
a PPRF key has length 2d−1 × dλ which is 1

2 λ∆ log2 ∆. Hence, the FS-secure self-ratcheted
scheme has states of size bounded by 1

2 λ∆ log2 ∆ + log2 ∆. Finally, our secure self-ratcheted
scheme has states of size

ℓ = n

∆

(
1
2λ∆ log2 ∆ + log2 ∆

)
+ log2 ∆

which is larger than with the RSA-based method.

3.5 Experimental Results
We instantiate an SR based on FSSR with the RSA-based PPRF. We assumed that the same
RSA modulus is used for all PPRF keys, the RSA modulus so is precomputed and given as
a parameter to SR. Hence, the cost of setting up the RSA modulus is not covered in our
analysis. For H and AEAD, we used SHA-256 and AES-GCM.

Our experiment was done on a machine with the AMD Opteron 8354 processor and
128 GB of RAM by using the SageMath version 8.7. We picked a common 2048-bit RSA
modulus.

We tried many values for ∆ from ∆ = 100 to ∆ = 10 000 by steps of 100. We measured
the worst case complexity of an SR.Enc encryption, which is actually the very first one when
nothing is punctured and which includes FSSR.Init, as well as the best case complexity of
SR.Enc, which is the very last one after all other values have been punctured. For accuracy,
we did it 1000 times for each ∆ and took the average. The results are plotted in Fig. 13.
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On the plot, we added the total state size divided by the total number n of encryptions as
it goes to infinity. This is essentially ℓ

n with ℓ given by Eq.(3). As we can see, the execution
time grows linearly with ∆ while ℓ

n − 1 is inverse proportional to ∆.
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Figure 13 The execution time of SR.Enc in the worst/best case and the state size divided by the
number of encryptions with 2048-bit RSA modulus.

4 Bipartite Ratcheted Communication

4.1 Definitions
We consider a ratcheted scheme S = (Gen, Enc, Dec) following the syntax

S.Gen(1λ)→ (stA, stB) (generate a pair of states)
S.Enc(st)→ (st′, pt, ct) (update the state while producing a pt/ct pair)
S.Dec(st, ct)→ (st′, pt) (update the state while decrypting ct)

To avoid defining a general correctness and security for ratcheted schemes, which is quite
lengthy and complicated, we only adopt a definition matching a particular case of our interest.
This is the case when one participant Alice desperately tries to reach her counterpart
Bob by consistently sending messages without receiving any response, while Bob actually
acknowledges for the receipt of every message from Alice but his acknowledgments somehow
never make it through. (See Fig. 15.)

▶ Definition 9. A simple ratcheted scheme is a primitive S defined by S = (Gen, Enc, Dec)
which is n-correct in the sense that the game in Fig. 14 never returns 1.

In this communication pattern, protocols such as PR [14], JS [12], JMM [13], and DV [8]
have growing states. We can clearly see it on the implementation results by Caforio et al. [4].
Protocols such as Signal [15] or ACD [1] keep constant-size states but offer no post-compromise
security in our communication pattern. In fact, in ACD, Alice keeps sending messages in
the same “epoch” (following the terminology of ACD [1]) using the forward secure scheme
called FS in ACD, while Bob receives those messages from an old epoch (for him) and keeps
sending messages in his own epoch, using FS as well. Since the FS scheme is deterministic, it
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1: S.Gen(1λ)→ (stA
0 , stB

0 )
2: for i = 1 to n do
3: S.Enc(stA

i−1)→ (stA
i , pt′

i, ct′
i)

4: S.Dec(stB
i−1, ct′

i)→ (x, pt′
i)

5: S.Enc(x)→ (stB
i , pti, cti)

6: end for

7: x← stA
n

8: for i = 1 to n do
9: S.Dec(x, cti)→ (x, pt)

10: if pt ̸= pti then return 1
11: end for
12: return 0

Figure 14 Correctness game for a simple ratcheted scheme of level-n.
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ctn...
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stB
1
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Figure 15 Simulation of the level-n correctness game.

offers no post-compromise security. In ACD-PK, there is an extra public-key encryption but
the decryption key remains constant within the same epoch. Hence, exposing stA

1 is enough
to decrypt all ciphertexts in both ACD and ACD-PK.

Post-compromise security should make impossible to decrypt ctm which was released
after having ratcheted ∆ times both participants after the last state exposure which revealed
stA

m−∆ and stB
m−∆. For instance, with ∆ = 1 and m = 2, it should be impossible on Fig. 15

to compute pt2 from (stA
1 , stB

1 , ct1, ct2). This is formalized by the following definition.

▶ Definition 10. Let n(λ) and ∆(λ) be polynomially bounded positive integer functions of a
security parameter λ. For a simple ratcheted scheme S which is n-correct, we define the game
in Fig. 16 with parameters m ≤ n and ∆ > 0: We say that S with level n is ∆-secure if
for any PPT adversary A, λ 7→ max1≤m≤n Pr[OWm,∆,λ(A)→ 1] is a negligible function.

4.2 Impossibility Result
▶ Theorem 11. For every integer n, ℓ, ∆ > 0 and any n-correct simple ratcheted scheme
S following Def. 9, and such that (stA, stB) belongs to a space of size bounded by 2ℓ, there
exists an adversary of low complexity having advantage

Pr[OWm,∆,λ(A)→ 1] >
1

4n2 2−2 ℓ+1
⌊n/∆⌋

in the security game of Def. 10.

Proof. We construct a SEQ protocol P as shown in Fig. 17. If S is n-correct (in the sense of
Def. 9), then this new scheme P is correct to level n (in the sense of Def. 1). This comes
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OWm,∆,λ:
1: S.Gen(1λ)→ (stA

0 , stB
0 )

2: for i = 1 to m do
3: S.Enc(stA

i−1)→ (stA
i , pt′

i, ct′
i)

4: S.Dec(stB
i−1, ct′

i)→ (x, pt′
i)

5: S.Enc(x)→ (stB
i , pti, cti)

6: end for
7: A(1λ, stA

m−∆, stB
m−∆, ct1, . . . ctm)→ x

8: return 1x=ptm

Figure 16 OW game for a simple ratcheted scheme.

P.Gen(1λ)→ st:
1: S.Gen(1λ)→ (stA, stB)
2: st← (stA, stB)
3: return st

P.Dec(st, ct)→ (st′, pt):
4: parse st = (stA, stB)
5: S.Dec(stA, ct)→ (st′

A, pt)
6: st′ ← (st′

A, stB)
7: return (st′, pt)

P.Enc(st)→ (st′, pt, ct):
8: parse st = (stA, stB)
9: S.Enc(stA)→ (st′

A, pt′, ct′)
10: S.Dec(stB , ct′)→ (st′

B , pt′′)
11: S.Enc(st′

B)→ (st′′
B , pt, ct)

12: st′ ← (st′
A, st′′

B)
13: return (st′, pt, ct)

Figure 17 Simple ratchet S to SEQ.

from a direct translation of definitions. Furthermore, any uniform adversary against P (in
the sense of Def. 2) translates into an adversary against S in the sense of Def. 10: guess m

then given (stA
m−∆, stB

m−∆) the adversary decrypts ctm. We conclude by applying Cor. 4. ◀

5 Conclusion

We defined a self-encryption mechanism involving a device which encrypts a secret message
for herself to use in the future. We are interested in security when the state of a device
in such settings leaks causing the leakage of the secret message. We started giving some
instances where self-ratcheting finds applications in cloud storage, when a client encrypts
files to be stored, and in 0-RTT session resumption, when a server encrypts a resumption
key to be kept by the client. Unlike previous works which focused on forward security and
resistance to replay attacks, we studied how to add post-compromise security, as well.

We first proved that post-compromise security implies a super-linear state size in terms
of the number of ciphertexts which can still be decrypted by the state. We then give formal
definitions of self-ratchet. We finally showed how to design a secure scheme satisfying our
bound on the state size.

Furthermore, we showed that our results on the growth of state size matches with
existing secure bidirectional secure messaging applications. Given the fact that the messaging
applications provide different level of PCS, we observed that there exist some protocols
such as ACD without growing state size. It is due to the fact that the protocol is secure
with a weaker notion of PCS which could allow constant-size states. It would be interesting
to investigate weaker PCS notions in self-encryption applications such as cloud storage or
0-RTT.
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Abstract
Following the pioneering work of Boneh and Franklin (CRYPTO ’01), the challenge of constructing
an identity-based encryption scheme based on the Diffie-Hellman assumption remained unresolved
for more than 15 years. Evidence supporting this lack of success was provided by Papakonstantinou,
Rackoff and Vahlis (ePrint ’12), who ruled out the existence of generic-group identity-based encryp-
tion schemes supporting an identity space of sufficiently large polynomial size. Nevertheless, the
breakthrough result of Döttling and Garg (CRYPTO ’17) settled this long-standing challenge via a
non-generic construction.

We prove a tight impossibility result for generic-group identity-based encryption, ruling out
the existence of any non-trivial construction: We show that any scheme whose public parameters
include npp group elements may support at most npp identities. This threshold is trivially met by
any generic-group public-key encryption scheme whose public keys consist of a single group element
(e.g., ElGamal encryption).

In the context of algebraic constructions, generic realizations are often both conceptually simpler
and more efficient than non-generic ones. Thus, identifying exact thresholds for the limitations of
generic groups is not only of theoretical significance but may in fact have practical implications
when considering concrete security parameters.
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1 Introduction

Identity-based encryption [16, 5, 9] is one of the key pillars underlying modern cryptography,
enabling a variety of access-control applications and paving a path towards more expressive
forms of encryption schemes. Starting with the first realizations of identity-based encryption
schemes by Boneh and Franklin [5] (based on the bilinear Diffie-Hellman assumption) and
Cocks [9] (based on the quadratic residuosity assumption) in the random-oracle model [2],
extensive research has been devoted to constructing such schemes in the standard model
(e.g., [7, 3, 4, 18]) and based on other cryptographic assumptions (e.g., [12, 8, 1]).

Despite the significant progress, a substantial gap remained for nearly two decades
between the cryptographic assumptions that are known to imply public-key encryption
and those that are known to imply identity-based encryption. This gap was first studied
by Boneh, Papakonstantinou, Rackoff, Vahlis, and Waters [6] who showed that identity-
based encryption cannot be realized in a black-box manner based on trapdoor permutations
or CCA-secure public-key encryption. Then, Papakonstantinou, Rackoff and Vahlis [15]
studied the possibility of constructing generic-group identity-based encryption schemes
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(i.e., identity-based encryption schemes that do not exploit any particular property of the
representation of the underlying group [17, 14]). They showed that there are no generic-group
constructions of identity-based encryption schemes supporting an identity space of sufficiently
large polynomial size. The result of Papakonstantinou, Rackoff and Vahlis explained, in
particular, the lack of success in resolving the long-standing open problem of constructing an
identity-based encryption scheme based on the Diffie-Hellman assumption. Nevertheless, the
recent breakthrough of Döttling and Garg [11, 10] settled this open problem via a non-generic
construction.

Our contribution: A tight impossibility result for generic-group IBE. In the context of
algebraic constructions, generic realizations are often both conceptually simpler and more
efficient than non-generic ones. Thus, identifying exact thresholds for the limitations of
generic groups is not only of theoretical significance but may in fact have practical implications
when considering concrete security parameters.

For identity-based encryption schemes, such a potential threshold naturally arises by
comparing the size of the scheme’s identity space to the number of group elements that
are included in the scheme’s public parameters. Specifically, for any npp ≥ 1, already
ElGamal encryption yields a generic-group identity-based encryption scheme that supports
npp identities and whose public parameters consist of npp group elements (not including the
group’s generator). However, the work of Papakonstantinou, Rackoff and Vahlis [15] only
ruled out the existence of generic-group identity-based encryption schemes over an identity
space of sufficiently large polynomial size1.

We prove a tight impossibility result for constructing generic-group identity-based en-
cryption schemes, showing that any such scheme whose public parameters consist of npp
group elements may support up to npp identities. This matches the above-mentioned naive
threshold that is obtained via ElGamal encryption, and more generally via any generic-group
public-key encryption scheme whose public keys consist of a single group element. We prove
the following theorem:

▶ Theorem 1 (Simplified). Let IBE be a secure generic-group identity-based encryption
scheme over an identity space ID = {IDλ}λ∈N whose public parameters consist of npp(λ)
group elements, where λ ∈ N is the security parameter. Then, |IDλ| ≤ npp(λ) for all
sufficiently large λ ∈ N.

We prove our result by presenting a generic-group adversary that breaks the security of
any identity-based encryption scheme whose public parameters consist of npp group elements
and supports more than npp identities. Our result applies to schemes satisfying a rather
weak (non-adaptive) notion of security (thus ruling out, in particular, schemes that satisfy
more standard notions of security), and to schemes with imperfect correctness.

Compared to the work of Papakonstantinou, Rackoff and Vahlis [15], on the one hand our
proof follows a similar two-step structure: We first show that any generic-group identity-based
encryption scheme can be transformed into one in which secret keys do not contain group
elements, and then we present an attack on any such scheme that supports more identities
than the number of group elements included in its public parameters. On the other hand,
however, our result does not only provide a tight impossibility result, but in fact provides
a somewhat more direct technical description of our attack and of its analysis. Such a
description is enabled partially due to the fact that we prove our result within Maurer’s

1 Papakonstantinou et al. proved their result for an identity space of exponential size, but their proof
seems to hold for an identity space of sufficiently large polynomial size.
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generic-group model [14], whereas Papakonstantinou et al. proved their result within Shoup’s
incomparable generic-group model [17], as discussed in Section 1.1 (e.g., in Maurer’s model
we do not have to take into account the additional randomness that is somewhat artificially
“injected” into cryptographic computations in Shoup’s model due to its random injective
encoding of group elements).

Specifically, for our first step, our transformation for eliminating group elements from
secret keys is essentially identical to the corresponding transformation of Papakonstantinou
et al. and is provided together with a significantly more direct analysis. For our second step,
our attack is based on that of Papakonstantinou et al. which relies on the common technique
of attacking the security of an idealized-model scheme relative to a partly-simulated view of
the model. Unlike our first step, in this step our attack and its analysis simultaneously refine
and simplify those of Papakonstantinou et al. for obtaining a tight bound.

1.1 Overview of Our Approach
The framework. We prove our result within the generic-group model introduced by Maurer
[14], which together with the incomparable model introduced by Shoup [17], seem to be the
most commonly used approaches for capturing generic-group computations. At a high level,
in both models algorithms have access to an oracle O for performing the group operation
and for testing whether two group elements are equal. The difference between the two
models is in the way that algorithms specify their queries to the oracle. In Maurer’s model
algorithms specify their queries by pointing to two group elements that have appeared in the
computation so far (e.g., the 4th and the 7th group elements), whereas in Shoup’s model
group elements have an explicit representation (sampled uniformly at random from the set of
all injective mappings from the group to sufficiently long strings) and algorithms specify their
queries by providing two strings that have appeared in the computation so far as encodings
of group elements.

Jager and Schwenk [13] proved that the complexity of any computational problem that is
defined in a manner that is independent of the representation of the underlying group (e.g.,
computing discrete logarithms) in one model is essentially equivalent to its complexity in the
other model. More generally, however, these two models are rather incomparable. On one
hand, the class of cryptographic schemes that are captured by Maurer’s model is a subclass
of that of Shoup’s model – although as demonstrated by Maurer his model still captures all
schemes that only use the abstract group operation and test whether two group elements
are equal. On the other hand, the same holds also for the class of adversaries, and thus in
Maurer’s model we have to break the security of a given scheme using an adversary that
is more restricted when compared to adversaries in Shoup’s model. We refer the reader to
Section 2.1 for a formal description of Maurer’s generic-group model.

Generic-group identity-based encryption. A generic-group identity-based encryption
scheme IBE over an identity space ID consists of four algorithms, denoted Setup, KG,
Enc and Dec. Informally (and quite briefly), the algorithm Setup produces a master secret
key msk ∈ {0, 1}∗ and public parameters pp, and the algorithm KG on input the master
secret msk and an identity id ∈ ID produces a secret key skid. Next, the algorithm Enc
on input public parameters pp, an identity id ∈ ID and a message b ∈ {0, 1}, produces
a ciphertext c, which should be correctly decrypted (allowing decryption error) by the
decryption algorithm Dec using the secret key skid. The outputs of these four algorithms
may consist of a combination of group elements and an explicit string, with the exception
of assuming without loss of generality that the master secret key msk is always an explicit
string (e.g., the internal randomness on which Setup is invoked).

ITC 2021
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The structure of our proof. We prove our result by presenting a generic-group adversary
that breaks the security of any identity-based encryption scheme whose public parameters
pp consist of npp group elements (and, possibly, an additional explicit string) and supports
more than npp identities. As mentioned above, at a high level, we follow a two-step structure
similar to that introduced in the work of Papakonstantinou et al. [15]: We first show that any
generic-group identity-based encryption scheme can be transformed into one in which secret
keys do not contain group elements (while modifying only its key-generation and decryption
algorithms), and then we present an attack on any such scheme that supports more identities
than the number of group elements included in its public parameters. The remainder of
this section consists of a high-level informal description of these two steps (we note that the
following description omits crucial technical details, and we refer the reader to the relevant
sections for formal descriptions and proofs).

In what follows, given a generic-group identity-based encryption scheme we let pp1, . . . ,

ppnpp , skid,1, . . . , skid,nsk and c1, . . . , cnct denote the group elements included in its public
parameters pp and in each of its secret keys skid and ciphertexts c, respectively (for simplicity,
we assume throughout this informal overview that public parameters, secret keys and
ciphertexts do not additionally contain explicit strings).

Step I: Eliminating group elements from secret keys. Given a generic-group identity-based
encryption scheme IBE = (Setup, KG, Enc, Dec), we modify its key-generation algorithm KG
and decryption algorithm Dec as follows:

The modified key-generation algorithm K̃G on input the public parameters pp, the master
secret key msk ∈ {0, 1}∗ and an identity id ∈ ID, first produces a secret key skid by
invoking the underlying key-generation algorithm KG. Then, for each message b ∈ {0, 1},
it repeatedly computes DecO(pp, skid, EncO(pp, id, b)) using fresh randomness for Enc
and Dec, and collects into a set Lid all linear equations that result from the positively-
answered equality queries in these computations. Note that since the group elements
that are given as input to these computations are those included in pp and skid (as well
as the generator 1 ∈ ZN that is given as input to all computations), then each such
equation is of the form α0 · 1 +

∑npp
ℓ=1 αℓ · ppℓ +

∑nsk
ℓ=1 βℓ · skid,ℓ = 0 for some coefficients

α0, . . . , αnpp , β1, . . . , βnsk ∈ ZN . The algorithm then outputs the modified secret key
s̃kid = Lid which consists of (npp + nsk + 1)-dimensional vectors of coefficients over ZN

(and does not contain group elements).
The modified decryption algorithm D̃ec on input the public parameters pp, a modified
secret key s̃kid = Lid and a ciphertext c, emulates the computation DecO(pp, skid, c) using
symbolic variables instead of the group elements skid,1, . . . , skid,nsk included in the secret
key skid. As long as it is able to obtain and to respond with the correct answer to all
emulated equality queries, then the emulation will be identical to the actual computation
DecO(pp, skid, c).
Note that since the group elements that are given as input to the actual computation are
those included in pp, skid and c (as well as the generator 1 ∈ ZN ), then each emulated
equality query corresponds to a linear equation of the form α0 ·1+

∑npp
ℓ=1 αℓ ·ppℓ +

∑nsk
ℓ=1 βℓ ·

skid,ℓ +
∑nct

ℓ=1 γi · ci = 0, for coefficients α0, . . . , αnpp , β1, . . . , βnsk , γ1, . . . , γnct ∈ ZN . Now,
the algorithm D̃ec uses the set Lid and the actual oracle O for responding to this query as
follows. If there exist α′

0, . . . , α′
npp
∈ ZN such that (α′

0, . . . , α′
npp

, β1, . . . , βnsk ) ∈ span(Lid),
then D̃ec issues to the actual oracle O an equality queries corresponding to the linear
equation (α0 − α′

0) · 1 +
∑npp

ℓ=1(αℓ − α′
ℓ) · ppℓ +

∑nct
ℓ=1 γℓ · cℓ = 0, and return its output as

the response. If there do not exist such α′
0, . . . , α′

npp
∈ ZN , then D̃ec responds negatively.

In other words, the algorithm D̃ec uses the knowledge provided by the set Lid in order to
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translate each equality query involving the group elements of pp, skid and c into an equality
queries that involves the group elements of only pp and c. A simple probabilistic argument
(see Claim 6) shows that this translation introduces only an arbitrary polynomially-small
decryption error 1/p(λ) when setting the number of iterations performed by the modified
key-generation algorithm to p(λ) · (npp(λ) + nsk(λ)).

Step II: Our attack. Let IBE = (Setup, KG, Enc, Dec) be a generic-group identity-based
encryption scheme over an identity space ID whose public parameters consist of npp group
elements, whose secret keys do not contain group elements, and that supports at least npp + 1
identities. For simplicity and without loss of generality we assume that {1, . . . , npp +1} ⊆ ID.

The key observation underlying our attack is based on considering the set of linear
equations that result from the positively-answered equality queries in the computations
DecO(pp, skid, EncO(pp, id, b)) for each message b ∈ {0, 1} and identity id ∈ {1, . . . , npp + 1}.
Given that the secret keys skid do not contain any group elements, then the group elements
that are given as input to these computations are only those that are included in the public
parameters pp (as well as the generator 1 ∈ ZN that is given as input to all computations).
Thus, each such equation is of the form α0 · 1 +

∑npp
ℓ=1 αℓ · ppℓ = 0 for some coefficients

α0, . . . , αnpp ∈ ZN . Given that (1, pp1, . . . , ppnpp) is a non-zero vector, then the vectors of
coefficients of these sets of equations span a linear subspace of dimension at most npp.

Therefore, for at least one identity id ∈ {1, . . . , npp +1}, it must be the case that the set of
linear equations that result from the positively-answered equality queries in the computation
DecO(pp, skid, EncO(pp, id, b)) is contained in the linear subspace spanned by the sets of
linear equations that result from the positively-answered equality queries in the computations

DecO(pp, sk1, EncO(pp, 1, b)), . . . , DecO(pp, skid−1, EncO(pp, id− 1, b)).

Moreover, once our adversary discovers this subspace by using the secret keys sk1, . . . , skid−1,
then it can intuitively generate alternative public parameters pp∗ that are consistent with
this subspace, together with a matching alternative master secret key msk∗. Then, it
uses the alternative public parameters pp∗ and master secret key msk∗ for generating an
alternative secret key sk∗

id for decrypting the challenge ciphertext. The correctness of the
scheme guarantees that, with high probability, sk∗

id will decrypt correctly a ciphertext that is
encrypted and decrypted relative to pp∗, and we show that sk∗

id is in fact useful also when
encrypting and decrypting relative to pp.

1.2 Paper Organization
The remainder of this paper is organized as follows. First, in Section 2 we present the basic
notation used throughout the paper, and formally describe the framework of generic-group
identity-based encryption. Then, in Section 3 we show that any generic-group identity-based
encryption scheme can be transformed into one in which secret keys do not contain group
elements. Finally, in Section 4 we present an attack on any generic-group identity-based
encryption scheme whose secret keys do not contain group elements, and that supports more
identities than the number of group elements included in its public parameters.

2 Preliminaries

In this section we present the basic notions and standard cryptographic tools that are used
in this work. For a distribution X we denote by x← X the process of sampling a value x

from the distribution X. Similarly, for a set X we denote by x← X the process of sampling
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a value x from the uniform distribution over X . For an integer n ∈ N we denote by [n] the
set {1, . . . , n}. A function ν : N→ R+ is negligible if for any polynomial p(·) there exists an
integer N such that for all n > N it holds that ν(n) ≤ 1/p(n).

2.1 Generic Groups and Algorithms
We prove our results within the generic-group model introduced by Maurer [14]. We consider
computations in cyclic groups of order N (all of which are isomorphic to ZN with respect to
addition modulo N), for a λ-bit prime N that is generated by an order-generation algorithm
PrimeGen(1λ), where λ ∈ N is the security parameter.

When considering such groups, each computation in Maurer’s model is associated with
a table B. Each entry of this table stores an element of ZN , and we denote by Vi the
group element that is stored in the ith entry. Generic algorithms access this table via an
oracle O, providing black-box access to B as follows. A generic algorithm A that takes
d group elements as input (along with an optional bit-string) does not receive an explicit
representation of these group elements, but instead, has oracle access to the table B, whose
first d entries store the ZN elements corresponding to the d group elements in A’s input.
That is, if the input of an algorithm A is a tuple (g1, . . . , gd, x), where g1, . . . , gd are group
elements and x is an arbitrary string, then from A’s point of view the input is the tuple
(ĝ1, . . . , ĝd, x), where ĝ1, . . . , ĝd are pointers to the group elements g1, . . . , gd (these group
elements are stored in the table B), and x is given explicitly.

All generic algorithms in this paper receive as input the order N and a generator of the
group (we capture this fact by always assuming that the first entry of B is occupied by
1 ∈ ZN ). The oracle O allows for two types of queries:

Group-operation queries: On input (i, j, ◦) for i, j ∈ N and ◦ ∈ {+,−}, the oracle
checks that the ith and jth entries of the table B are not empty, computes Vi ◦Vj mod N

and stores the result in the next available entry. If either the ith or the jth entries are
empty, the oracle ignores the query.
Equality queries: On input (i, j, =) for i, j ∈ N, the oracle checks that the ith and jth
entries of the table B are not empty, and then returns 1 if Vi = Vj and 0 otherwise. If
either the ith or the jth entries are empty, the oracle ignores the query.

In this paper we consider interactive computations in which multiple algorithms pass
group elements (as well as non-group elements) as inputs to one another. This is naturally
supported by the model as follows: When a generic algorithm A outputs k group elements
(along with a potential bit-string σ), it outputs the indices of k (non-empty) entries in
the table B (together with σ). When these outputs (or some of them) are passed on as
inputs to a generic algorithm C, the table B is re-initialized, and these values (and possibly
additional group elements that C receives as input) are placed in the first entries of the table.
Additionally, we rely on the following conventions:
1. Throughout the paper we refer to values as either “explicit” ones or “implicit” ones.

Explicit values are all values whose representation (e.g., binary strings of a certain length)
is explicitly provided to the generic algorithms under consideration. Implicit values are
all values that correspond to group elements and that are stored in the table B – thus
generic algorithms can access them only via oracle queries. We will sometimes interchange
between providing group elements as input to generic algorithms implicitly, and providing
them explicitly. Note that moving from the former to the latter is well defined, since a
generic algorithm A that receives some of its input group elements explicitly can always
simulate the computation as if they were received as part of the table B.
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2. For a group element g, we will differentiate between the case where g is provided explicitly
and the case where it is provided implicitly via the table B, using the notation g in the
former case, and the notation ĝ in the latter. Additionally, we extend this notation to
a vector v of group elements, which may be provided either explicitly (denoted v) or
implicitly via the table B (denoted v̂).

2.2 Generic-Group Identity-Based Encryption

The following definition adapts the standard notion of an identity-based encryption scheme
to the generic-group model.

▶ Definition 2. A generic-group identity-based encryption scheme over an identity space
ID = {IDλ}λ∈N is a quadruple IBE = (Setup, KG, Enc, Dec) of generic algorithms defined
as follows:

The algorithm Setup is a probabilistic algorithm that receives as input the security para-
meter λ ∈ N and the group order N , and outputs a master secret key msk ∈ {0, 1}∗ and
public parameters pp = (ppG, ppstr), where ppG is a tuple of npp group elements and ppstr
is a binary string.
The algorithm KG is a (potentially) probabilistic algorithm that receives as input public
parameters pp, a master secret key msk and an identity id. It outputs an identity secret
key skid = (skid,G, skid,str), where skid,G is a tuple of group elements and skid,str is a binary
string.
The algorithm Enc is a probabilistic algorithm that receives as input public parameters pp,
an identity id, and a bit b ∈ {0, 1}. It outputs a ciphertext c = (cG, cstr), where cG is a
tuple of group elements and cstr is a binary string.
The algorithm Dec is a (potentially) probabilistic algorithm that receives as input public
parameters pp, an identity secret key skid, and a ciphertext c. It outputs either a bit
b ∈ {0, 1} or the special rejection symbol ⊥.

We consider the standard correctness and security requirements of identity-based encryp-
tion schemes. In fact, we consider a rather weak notion of non-adaptive security asking the
attacker to choose both the challenge identity and the identities for which secret keys are
provided ahead of time (since we prove an impossibility result then this can only strengthen
our result).

▶ Definition 3. A generic-group identity-based encryption scheme IBE =
(Setup, KG, Enc, Dec) over an identity space ID = {IDλ}λ∈N has decryption error
ϵ = ϵ(λ) if for any security parameter λ ∈ N, for any N produced by PrimeGen(1λ), for any
(msk, pp) produced by SetupO(1λ), for any id ∈ IDλ, and for any b ∈ {0, 1} it holds that

Pr
[
DecO(pp, skid, EncO(pp, id, b)) = b

]
≥ 1− ϵ

where skid ← KGO(pp, msk, id), and the probability is taken over the internal randomness of
the algorithms KG, Enc and Dec.

We note that our results can be easily adapted to a more relaxed notion of correctness,
asking that the above holds for almost all (msk, pp) produced by SetupO(1λ) instead of for
all such (msk, pp).
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▶ Definition 4. A generic-group identity-based encryption scheme IBE =
(Setup, KG, Enc, Dec) over an identity space ID = {IDλ}λ∈N is non-adaptively se-
cure if for any generic-group algorithm A = (A1,A2) that issues a polynomial number of
queries there exists a negligible function ν(λ) such that∣∣∣∣Pr

[
ExptIBE,A(λ) = 1

]
− 1

2

∣∣∣∣ ≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment ExptIBE,A(λ) is defined as follows:
1. N ← PrimeGen(1λ).
2. (id∗, id1, . . . idk, state)← AO

1 (1λ, N), for a polynomial k = k(λ), where id∗, id1, . . . idk ∈
IDλ and id∗ /∈ {id1, . . . idk}.

3. (msk, pp)← SetupO(1λ, N).
4. skidi

← KGO(pp, msk, idi) for i ∈ [k].
5. c∗ ← EncO(pp, id∗, b) for b← {0, 1}.
6. b′ ← AO

2 (state, pp, c∗, skid1 , . . . , skidk
).

7. If b′ = b then output 1, and otherwise output 0.

3 Eliminating Group Elements From Secret Keys

In this section we show that any generic-group identity-based encryption scheme can be
transformed into one in which secret keys do not contain group elements. The transformation
supports the same identity space, and does not modify the scheme’s setup and encryption
procedures (in particular, it does not increase the number of group elements that are
contained in the scheme’s public parameters). The transformation does modify the scheme’s
key-generation and decryption algorithms, leading to an arbitrary polynomially-small increase
in the scheme’s decryption error. We prove the following theorem:

▶ Theorem 5. Let IBE be a generic-group identity-based encryption scheme over an identity
space ID = {IDλ}λ∈N with decryption error ϵ(λ) and whose public parameters consist of
npp(λ) group elements. Then, for any polynomial p(λ), there exists a generic-group identity-
based encryption scheme ĨBE over the identity space ID with decryption error ϵ(λ) + 1/p(λ),
whose public parameters consist of npp(λ) group elements, and whose secret keys do not
contain group elements.

Preliminaries. Let A be a generic-group algorithm that receives as input group elements
g1, . . . , gk (in addition to the group element 1 ∈ ZN that is always provided as the first
input to all algorithms) and an explicit string str. We let EQ

(
AO(ĝ1, . . . , ĝk, str)

)
denote the

random variable corresponding to the set of all (k + 1)-dimensional vectors over ZN resulting
from the positively-answered equality queries in the (possibly randomized) computation
AO(ĝ1, . . . , ĝk, str).

Formally, for each equality query (i, j) that is positively answered during this computation,
let Vi and Vj denote the group elements that are located in the ith and jth entries of the table
B associated with oracle O in this computation (i.e., Vi and Vj are the two group elements
for which A issues this equality query). Then, Vi and Vj are linear combinations of the group
elements 1, g1, . . . , gk that are provided as input to the computation, and the coefficients
of these linear combinations can be determined by keeping track of the computation’s
group-operation queries. Let Vi − Vj = α0 · 1 +

∑k
ℓ=1 αℓ · gℓ for α0, . . . , αk ∈ ZN . The set

EQ
(
AO(ĝ1, . . . , ĝk, str)

)
consists of all such vectors (α0, . . . , αk) ∈ Zk+1

N .
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In addition, for a generic-group identity-based encryption IBE = (Setup, KG, Enc, Dec),
and for any public parameters pp produced by Setup we let pp = (pp1, . . . , ppnpp , ppstr), where
pp1, . . . , ppnpp are group elements and ppstr is an explicit string (recall that any msk produced
by Setup is an explicit string). Similarly, for any secret key skid produced by KG we let
skid = (skid,1, . . . , skid,nsk , skid,str) where skid,1, . . . , skid,nsk are group elements and skid,str is
an explicit string, and for any ciphertext c produced by Enc we let c = (c1, . . . , cnct , cstr),
where c1, . . . , cnct are group elements and cstr is an explicit string.

Finally, our proof relies on the following lemma (which is proved in Appendix A):

▶ Lemma 6. Let k ≥ 1, and let X1, . . . , Xk be independent and identically distributed random
variables over subsets of a linear vector space V of dimension dim(V ). Then,

Pr [Xk ⊈ span (X1 ∪ · · · ∪Xk−1)] ≤ dim(V )
k

.

The remainder of this section consists of the proof of Theorem 5.

Proof of Theorem 5. Let IBE = (Setup, KG, Enc, Dec), and let p = p(λ) be a polynomial.
We construct a generic-group identity-based encryption scheme ĨBE = (S̃etup, K̃G, Ẽnc, D̃ec)
by letting S̃etup = Setup and Ẽnc = Enc, and by defining the algorithms K̃G and D̃ec as
follows.

The key-generation algorithm K̃G
O

(pp, msk, id):

1. Generate skid = (ŝkid,1, . . . , ŝkid,nsk , skid,str)← KGO(pp, msk, id).
2. For every b ∈ {0, 1} and i ∈ [M − 1], where M = p · (npp + nsk), compute

DecO(pp, skid, EncO(pp, id, b)) using fresh randomness for Enc and Dec, and let

Lid,b,i = EQ
(
DecO(pp, skid, EncO(pp, id, b))

)
⊆ Znpp+nsk+1

N .

3. Output s̃kid = (Lid, skid,str), where Lid =
⋃

b∈{0,1},i∈[M−1] Lid,b,i.

The decryption algorithm D̃ec
O

(pp, s̃kid, c):

1. Let pp = (p̂p1, . . . , p̂pnpp , ppstr), s̃kid = (Lid, skid,str), and c = (ĉ1, . . . , ĉnct , cstr).
2. Emulate the computation DecO(pp, skid, c) using symbolic variables instead of

skid,1, . . . , skid,nsk (recall that skid = (ŝkid,1, . . . , ŝkid,nsk , skid,str)) by responding to each
equality query (i, j) as follows:

a. Let Vi and Vj denote the corresponding group elements, and let

Vi − Vj = α0 · 1 +
npp∑
ℓ=1

αℓ · ppℓ +
nsk∑
ℓ=1

βℓ · skid,ℓ +
nct∑
ℓ=1

γi · ci,

where α0, . . . , αnpp , β1, . . . , βnsk , γ1, . . . , γnct ∈ ZN (as explained above, these coeffi-
cients can be found by keeping track of the emulated computation’s group-operation
queries ).

b. If there exist α′
0, . . . , α′

npp ∈ ZN such that (α′
0, . . . , α′

npp , β1, . . . , βnsk ) ∈ span(Lid),
then issue group-operation queries for positioning the group element Wi,j = (α0 −
α′

0) · 1 +
∑npp

ℓ=1(αℓ − α′
ℓ) · ppℓ +

∑nct
ℓ=1 γℓ · cℓ in the table B. If Wi,j = 0 (this can be

determined by issuing a single equality query), then answer the equality query (i, j)
positively, and otherwise answer it negatively.
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c. If there do not exist such α′
0, . . . , α′

npp ∈ ZN , then answer the equality query (i, j)
negatively.

3. Output the result of the emulated computation.

First, in terms of efficiency, note that if the algorithms (Setup, KG, Enc, Dec) issue at most
a polynomial number of queries, then so do the algorithms (S̃etup, K̃G, Ẽnc, D̃ec). Second, in
terms of security, note that the scheme ĨBE is at least as secure as the scheme IBE : The
schemes have the same setup and encryption algorithms, and the modified key-generation
algorithm K̃G is defined by applying a poly-query procedure to the output of the underlying
key-generation algorithm KG. Therefore, any adversary attacking the scheme ĨBE while
issuing a polynomial number of queries (recall Definition 4) can be efficiently transformed
into an adversary attacking the scheme IBE while issuing a polynomial number of queries
and with (at least) the same advantage.

We are thus left with bounding the decryption error of the scheme ĨBE (recall Definition
3). Fix a security parameter λ ∈ N, an integer N that is produced by PrimeGen(1λ), a pair
(msk, pp) that is produced by SetupO(1λ), an identity id ∈ IDλ, and a message b ∈ {0, 1}.
The scheme IBE has decryption error at most ϵ(λ), and therefore

Pr
[
D̃ec

O
(pp, s̃kid, EncO(pp, id, b)) ̸= b

]
(1)

≤ ϵ(λ) + Pr
[
D̃ec

O
(pp, s̃kid, EncO(pp, id, b)) ̸= DecO(pp, skid, EncO(pp, id, b))

]
In order to bound the probability in which the computations D̃ec

O
(pp, s̃kid, EncO(pp, id, b))

and DecO(pp, skid, EncO(pp, id, b)) do not produce the same output, it suffices to bound
the probability in which an equality query is answered positively in one computation but
negatively in the other computation (as long as the responses to all equality queries are
consistent then the emulated computation carried out by D̃ec perfectly simulates Dec’s
computation).

Assuming that the responses to equality queries are consistent among the two computations
up to a certain point, then both computations issue the exact same next equality query (i, j).
Following the description of D̃ec, let Vi and Vj denote the group elements in the ith and
jth entries of the emulated table B̃, and let Vi − Vj = α

(t)
0 · 1 +

∑npp
ℓ=1 α

(t)
ℓ · ppℓ +

∑nsk
ℓ=1 β

(t)
ℓ ·

skid,ℓ +
∑nct

ℓ=1 γ
(t)
ℓ · cℓ. There are three cases to consider:

Case I: If there exist α′
0, . . . , α′

npp
∈ ZN such that

(
α′

0, . . . , α′
npp

, β
(t)
1 , . . . , β

(t)
nsk

)
∈ span(Lid),

then α′
0 ·1+

∑npp
ℓ=1 α′

ℓ ·ppℓ+
∑nsk

ℓ=1 β
(t)
ℓ ·skid,ℓ = 0. Therefore, α

(t)
0 ·1+

∑npp
ℓ=1 α

(t)
ℓ ·ppℓ+

∑nsk
ℓ=1 β

(t)
ℓ ·

skid,ℓ +
∑nct

ℓ=1 γ
(t)
i ·ci = 0 if and only if (α(t)

0 −α′
0) ·1+

∑npp
ℓ=1(α(t)

ℓ −α′
ℓ) ·ppℓ +

∑nct
ℓ=1 γ

(t)
ℓ ·cℓ = 0,

and thus the emulation obtains the correct answer to the equality query (i, j).

Case II: If the equality query (i, j) is negatively answered in Dec’s computation, and there
do not exist α′

0, . . . , α′
npp
∈ ZN such that

(
α′

0, . . . , α′
npp

, β
(t)
1 , . . . , β

(t)
nsk

)
∈ span(Lid), then it is

also answered negatively in D̃ec’s computation.

Case III: If the equality query (i, j) is positively answered in Dec’s computation, and there
do not exist α′

0, . . . , α′
npp
∈ ZN such that

(
α′

0, . . . , α′
npp

, β
(t)
1 , . . . , β

(t)
nsk

)
∈ span(Lid), then the
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equality query (i, j) is negatively answered in D̃ec’s computation. However, we show that
this case occurs with probability at most 1/p(λ).

Recall that a ciphertext c ← EncO(pp, id, b) is of the form c = (c1, . . . , cnct , cstr), where
c1, . . . , cnct are group elements and cstr is an explicit string. Since the only group elements
that are given as input to the computation EncO(pp, id, b) are 1, pp1, . . . , ppnpp , then each
cv is of the form cv = δv,0 · 1 +

∑npp
ℓ=1 δv,ℓ · ppℓ, for coefficients δv,0, . . . , δv,npp ∈ ZN that are

determined by the group-operation queries issued during the computation EncO(pp, id, b).
Therefore,

Vi − Vj = α
(t)
0 · 1 +

npp∑
ℓ=1

α
(t)
ℓ · ppℓ +

nsk∑
ℓ=1

β
(t)
ℓ · skid,ℓ +

nct∑
ℓ=1

γ
(t)
ℓ · cℓ

=
(

α
(t)
0 +

nct∑
v=1
·δv,0

)
· 1 +

npp∑
ℓ=1

(
α

(t)
ℓ +

nct∑
v=1
·δv,ℓ

)
· ppℓ +

nsk∑
ℓ=1

β
(t)
ℓ · skid,ℓ.

Now, in this case there do not exist α′
0, . . . , α′

npp
∈ ZN such that(

α′
0, . . . , α′

npp
, β

(t)
1 , . . . , β

(t)
nsk

)
∈ span(Lid), and therefore in particular(

α′
0, . . . , α′

npp
, β

(t)
1 , . . . , β

(t)
nsk

)
/∈ span(

⋃
i∈[M−1] Lid,b,i) for the specific choice of

α′
ℓ =

(
α

(t)
ℓ +

∑nct
v=1 ·δv,ℓ

)
for every ℓ ∈ {0, . . . , npp}. That is, this implies that for

the computation DecO(pp, skid, EncO(pp, id, b)) it holds that

EQ
(

DecO(pp, skid, EncO(pp, id, b))
)
⊈ span

 ⋃
i∈[M−1]

Lid,b,i

 .

Applying Lemma 6 with the linear subspace V ⊆ Znpp+nsk+1
N defined as

V =
{(

α0, . . . , αnpp , β1, . . . , βnsk

)
∈ Znpp+nsk+1

N

∣∣∣ α0 · 1 +
npp∑
ℓ=1

αℓ · ppℓ +
nsk∑
ℓ=1

βℓ · skid,ℓ = 0
}

,

which is of dimension at most npp + nsk since (1, pp1, . . . , ppnpp , skid,1, . . . , skid,nsk) is a non-
zero vector, and with random variables X1, . . . , XM that are independently sampled from
the distribution EQ

(
DecO(pp, skid, EncO(pp, id, b))

)
, we obtain from Eq. (1) that

Pr
[
D̃ec

O
(pp, s̃kid, EncO(pp, id, b)) ̸= b

]
≤ ϵ(λ) + Pr

EQ(DecO(pp, skid, EncO(pp, id, b))
)
⊈ span

 ⋃
i∈[M−1]

Lid,b,i


= ϵ(λ) + Pr [XM ⊈ span (X1 ∪ · · · ∪XM−1)]

≤ ϵ(λ) + dimV

M(λ)

≤ ϵ(λ) + npp(λ) + nsk(λ)
M(λ)

= ϵ(λ) + 1
p(λ) . ◀
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4 Attacking Generic-Group IBE Schemes

In this section we present a generic-group adversary that breaks the security of any generic-
group identity-based encryption scheme whose secret keys do not contain group elements,
and that supports more identities than the number of group elements included in its public
parameters. We prove the following theorem:

▶ Theorem 7. Let npp(λ) be a function of the security parameter λ ∈ N. Let IBE be a secure
generic-group identity-based encryption scheme over an identity space ID = {IDλ}λ∈N with
decryption error ϵ(λ) ≤ 1/160(npp(λ) + 1), whose public parameters consist of npp(λ) group
elements, and whose secret keys do not contain group elements. Then, |IDλ| ≤ npp(λ) for
all sufficiently large λ ∈ N.

Regarding the decryption error ϵ(λ) ≤ 1/160(npp(λ) + 1) considered in the above theorem,
recall that our transformation from Section 3 leads to an arbitrary polynomially-small increase
in the scheme’s decryption error.

Preliminaries. Recall that for any generic-group algorithm A that receives as input group
elements g1, . . . , gk and an explicit string str we let EQ

(
AO(ĝ1, . . . , ĝk, str)

)
denote the

random variable corresponding to the set of all (k + 1)-dimensional vectors over ZN resulting
from the positively-answered equality queries in the computation AO(ĝ1, . . . , ĝk, str) (see
Section 3 for the more formal definition). Our proof relies on the following lemma (which is
proved in Appendix B):

▶ Lemma 8. Let k ≥ 1, and let X1, . . . , Xk be random variables over subsets of a linear
vector space V of dimension dimV . Let Y be distributed uniformly over {1, . . . , k} and
independent of X1, . . . , Xk. Denote by GoodSpan the set of all (i, U1, . . . , Uk) ⊆ [k]×

(
2V
)k

for which

Pr
X1,...,Xk,Y

[XY ⊆ span (X1 ∪ · · · ∪XY −1) | Y = i, X1 = U1, . . . , Xi−1 = Ui−1] ≥ k − dimV

2k
.

Then,

Pr
X1,...,Xk,Y

[(Y, X1, . . . , Xk) ∈ GoodSpan] ≥ k − dimV

2k
.

The remainder of this section consists of the proof of Theorem 7.

Proof of Theorem 7. Let IBE be a generic-group identity-based encryption scheme over an
identity space ID = {IDλ}λ∈N with decryption error ϵ(λ) ≤ 1/160(npp + 1), whose public
parameters consist of npp = npp(λ) group elements, and whose secret keys do not contain
group elements. Assume toward a contradiction that |IDλ| ≥ npp + 1 for infinitely many
values of λ ∈ N, and assume without loss of generality that {1, . . . , npp + 1} ⊆ IDλ for
any such λ ∈ N. We present a generic-group adversary A that issues a number of queries
which is polynomial in λ, npp, and in the number of queries issued by Enc and Dec, and for
which

∣∣Pr
[
ExptIBE,A(λ) = 1

]
− 1/2

∣∣ is non-negligible for any such λ ∈ N (recall Definition 4
describing the experiment ExptIBE,A). The adversary A = (A1,A2) is defined as follows:
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Our adversary A = (A1,A2)

The algorithm AO
1 (1λ, N):

1. Sample i ← {1, . . . , npp + 1}, and output the challenge identity id∗ = i, the identities
(1, . . . , i− 1) for which secret keys will be provided to A2, and the state state = (1λ, N, i).

The algorithm AO
2 (state, pp, c∗, sk1, . . . , ski−1):

1. Let pp = (pp1, . . . , ppnpp , ppstr) for group elements pp1, . . . , ppnpp and an explicit string
ppstr (and recall that sk1, . . . , ski−1 are explicit strings).

[Part I: Using sk1, . . . , ski−1 for learning information on pp]

2. For each j ∈ {1, . . . , i− 1} perform the following steps:

a. Initialize a set Ej = ∅ of (npp + 1)-dimensional vectors over ZN .
b. For each message b ∈ {0, 1} repeat the following step for 8(npp + 1) iterations:

Compute DecO(pp, skj , EncO(pp, j, b)) using fresh randomness for Enc and Dec, and
update Ej ← Ej ∪ EQ

(
DecO(pp, skj , EncO(pp, j, b))

)
.

c. Emulate a fresh oracle Ô in order to find (pp∗, msk∗, sk∗
j ), where pp∗ =

(pp∗
1, . . . , pp∗

npp , pp∗
str) for group elements pp∗

1, . . . , pp∗
npp and explicit strings pp∗

str, msk∗

and sk∗
j , subject to the following requirements:

i. (pp∗, msk∗) and sk∗
j are in the supports of SetupÔ(1λ, N) and KGÔ(pp∗, msk∗, j),

respectively.
ii. pp∗

str = ppstr.
iii. For every (α0, . . . , αnpp ) ∈ E1 ∪ · · · ∪ Ej−1 it holds that α0 · 1 +

∑npp
ℓ=1 αℓ · pp∗

ℓ = 0
(i.e., pp∗ satisfies the constraints induced by E1 ∪ · · · ∪ Ej−1).

iv. For each b ∈ {0, 1} it holds that Pr
[
DecÔ(pp∗, sk∗

j , EncÔ(pp∗, j, b)) = b
]
≥ 19/20,

where the probability is taken over the internal randomness of Enc and Dec (i.e.,
the decryption error of sk∗

j is at most 1/20).
v. For each b ∈ {0, 1} it holds that

Pr
[
EQ
(

DecÔ(pp∗, sk∗
j , EncÔ(pp∗, j, b))

)
⊈ span (E1 ∪ · · · ∪ Ej−1)

]
≤ 1

5 ,

where the probability is taken over the internal randomness of Enc and Dec.
d. If such (msk∗, pp∗, sk∗

j ) are found then for each message b ∈ {0, 1} repeat the following
step for 8(npp + 1) iterations:
Compute DecO(pp, sk∗

j , EncO(pp, j, b)) using fresh randomness for Enc and Dec, and
update Ej ← Ej ∪ EQ

(
DecO(pp, sk∗

j , EncO(pp, j, b))
)
.

[Part II: Constructing an alternative sk∗
i for decrypting the challenge

ciphertext]

3. Emulate a fresh oracle Ô in order to find (pp∗, msk∗, sk∗
i ), where pp∗ =

(pp∗
1, . . . , pp∗

npp , pp∗
str) for group elements pp∗

1, . . . , pp∗
npp and explicit strings pp∗

str, msk∗

and sk∗
i , subject to the following requirements:

a. (pp∗, msk∗) and sk∗
i are in the supports of SetupÔ(1λ, N) and KGÔ(pp∗, msk∗, i),

respectively.
b. pp∗

str = ppstr.
c. For every (α0, . . . , αnpp ) ∈ E1 ∪ · · · ∪ Ei−1 it holds that α0 · 1 +

∑npp
ℓ=1 αℓ · pp∗

ℓ = 0 (i.e.,
pp∗ satisfies the constraints induced by E1 ∪ · · · ∪ Ei−1).

d. For each b ∈ {0, 1} it holds that Pr
[
DecÔ(pp∗, sk∗

i , EncÔ(pp∗, i, b)) = b
]
≥ 19/20 ,

where the probability is taken over the internal randomness of Enc and Dec (i.e., the
decryption error of sk∗

i is at most 1/20).
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e. For each b ∈ {0, 1} it holds that

Pr
[
EQ
(

DecÔ(pp∗, sk∗
i , EncÔ(pp∗, i, b))

)
⊈ span (E1 ∪ · · · ∪ Ei−1)

]
≤ 1

5 ,

where the probability is taken over the internal randomness of Enc and Dec.

4. If such (msk∗, pp∗, sk∗
i ) are not found then sample and output b′ ← {0, 1}.

5. If such (msk∗, pp∗, sk∗
i ) are found then compute DecO(pp, sk∗

i , EncO(pp, i, b)) for λ times,
where each computation uses fresh randomness for Enc, Dec and b, and count the
number of times in which decryption was correct. If decryption was correct less than
λ · 11

20 ·
(
1− 1

20

)
times, then sample and output b′ ← {0, 1}.

6. Compute and output b′ ← DecO(pp, sk∗
i , c∗).

In what follows we first analyze the number of queries issued by A, and then analyze its
success probability. It terms of oracle queries (i.e., group-operations queries and equality
queries), note that A1 does not issue any queries, and that A2 issues queries only in Steps
2(b), 2(d), 5 and 6. These queries result from invoking the algorithms Enc and Dec, where
Steps 2(b) and 2(d) consist of at most O((npp)2) such invocations, Step 5 consists of λ such
invocations, and Step 6 consists of one such invocation.

For analyzing A’s success probability, fix a security parameter λ ∈ N, a prime integer
N that is produced by PrimeGen(1λ), and a pair (msk, pp) that is produced by SetupO(1λ).
Our proof relies on the following notation:

The experiment ExptIBE,A and the description of our adversary define the random
variables sk1, . . . , ski−1 corresponding to the secret keys that A2 is given as input. For
our analysis, we additionally consider the random variables ski, . . . , sknpp+1 that are
independently sampled by computing skj ← KGO(pp, msk, j) for each j ∈ {i, . . . , npp + 1}.
We denote by Y the random variable corresponding to the choice of the challenge identity
i← {1, . . . , npp + 1} by A1.
For each j ∈ {1, . . . , npp + 1} we let Ej = ∪8(npp+1)

v=1 Ej,v, where each Ej,v denotes the
random variable corresponding to the set of vectors of coefficients of the equations found
in one iteration of Step 2(b) and of Step 2(d). More specifically, each Ej,v is sampled
from the distribution

EQ
(

DecO(pp, skj , EncO(pp, j, 0))
)
∪ EQ

(
DecO(pp, skj , EncO(pp, j, 1))

)
∪ EQ

(
DecO(pp, sk∗

j , EncO(pp, j, 0))
)
∪ EQ

(
DecO(pp, sk∗

j , EncO(pp, j, 0))
)

,

where if A2 does not find a suitable sk∗
j in Step 2(c), then we define

EQ
(

DecO(pp, sk∗
j , EncO(pp, i, 0))

)
= EQ

(
DecO(pp, sk∗

j , EncO(pp, i, 0))
)

= ∅.

We denote by GoodSpan the set of all (i, U1, . . . , Unpp+1) ∈ {1, . . . , npp+1}×
(

2Z
npp+1
N

)npp+1

for which

Pr[EY ⊆ span (E1 ∪ · · · ∪ EY −1) | Y = i, E1 = U1, . . . Ei−1 = Ui−1] ≥ 1
2(npp + 1) .

For avoiding additional notation, we abuse notation and denote by GoodSpan the event
in which (Y, E1, . . . , Enpp+1) ∈ GoodSpan.
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▷ Claim 9. Pr[GoodSpan] ≥ 1
2(npp+1) .

Proof. This is direct application of Lemma 8 with k = npp + 1, (X1, . . . , Xk) = (E1, . . . , Ek),
Y as defined above, and

V =
{

(α0, . . . , αnpp) ∈ Znpp+1
N

∣∣∣∣∣ α0 · 1 +
npp∑
ℓ=1

αℓ · ppℓ = 0
}

.

Note that since (1, pp1, . . . , ppnpp) is a non-zero vector then dimV ≤ npp. ◁

For the next claim, we denote by FindKey the event that A2 finds (msk∗, pp∗, sk∗
i ) in Step

3 that satisfies the required properties.

▷ Claim 10. GoodSpan ⊆ FindKey.

Proof. We show that whenever the event GoodSpan occurs, then msk, pp, and at least one
skY in the support of KGO(pp, msk, Y ) already satisfy the the required properties. Therefore,
in particular, A2 finds some (msk∗, pp∗, sk∗

i ) in Step 3 that satisfies the required properties.
Properties (a), (b) and (c) are trivially satisfied by (msk, pp, skY ) for any skY in the support
of KGO(pp, msk, Y ). In what follows we show that properties (d) and (e) are satisfied by at
least one skY in the support of KGO(pp, msk, Y ).

The decryption error of the scheme is at most 1
160(npp+1) . Therefore, for any value of Y it

holds that

Pr
KG,Enc,Dec

[
DecO(pp, skY , EncO(pp, Y, b)) = b

]
≥ 1− 1

160(npp + 1)

where skY ← KGO(pp, msk, Y ), and the probability is taken over the internal randomness of
the algorithms KG, Enc and Dec. The above holds for any value of Y and independently of
E1 ∪ · · · ∪ EY −1, and therefore

Pr
KG,Enc,Dec

[
DecO(pp, skY , EncO(pp, Y, b)) = b

∣∣∣ GoodSpan
]
≥ 1− 1

160(npp + 1) ,

where skY ← KGO(pp, msk, Y ), and the probability is taken over the internal randomness
of the algorithms KG, Enc and Dec. Denote by SkSmallErrorY the set of all outputs skY of
KGO(pp, msk, Y ) for which

Pr
Enc,Dec

[
DecO(pp, skY , EncO(pp, Y, b)) = b

∣∣∣ GoodSpan
]
≥ 19

20 ,

where now the probability is taken only over the internal randomness of the algorithms Enc
and Dec. Then,

1− 1
160(npp + 1) ≤ Pr

[
DecO(pp, skY , EncO(pp, Y, b)) = b

∣∣∣ GoodSpan
]

≤ Pr [skY ∈ SkSmallErrorY | GoodSpan] · 1

+ (1− Pr [skY ∈ SkSmallErrorY | GoodSpan]) · 19
20 .

Therefore,

Pr[skY ∈ SkSmallErrorY | GoodSpan] ≥ 1− 1
8(npp + 1) . (2)
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Similarly, denote by SkGoodY the set of all outputs skY of KGO(pp, msk, Y ) for which

Pr[EY ⊆ span (E1 ∪ · · · ∪ EY −1) | (Y, E1, . . . , Enpp+1) ∈ GoodSpan, skY ] ≥ 1
4(npp + 1) .

Then, from the definition of GoodSpan we obtain

1
2(npp + 1) ≤ Pr[EY ⊆ span (E1 ∪ · · · ∪ EY −1) | (Y, E1, . . . , Enpp+1) ∈ GoodSpan]

≤ Pr[SkGoodY | GoodSpan] · 1 + (1− Pr[SkGoodY | GoodSpan]) · 1
4(npp + 1)

and therefore

Pr[skY ∈ SkGoodY | (Y, E1, . . . , Enpp+1) ∈ GoodSpan] ≥ 1
4(npp + 1) . (3)

Therefore, combining Eq. (2) and (3) we obtain

Pr[skY ∈ SkGoodY ∩ SkSmallErrorY | (Y, E1, . . . , Enpp+1) ∈ GoodSpan]

≥ 1
4(npp + 1) −

1
8(npp + 1)

= 1
8(npp + 1) . (4)

Note that property (d) is satisfied by any skY ∈ SkSmallErrorY . We will now show that
property (e) is satisfied by any skY ∈ SkGoodY conditioned on GoodSpan, which together
with Eq. (4) (and the fact that Pr[GoodSpan] > 0 as shown in Claim 9) settles the proof.

Recall that EY = ∪8(npp+1)
v=1 EY,v where {EY,v}

8(npp+1)
v=1 are identically distributed and

independent given E1, . . . , EY −1 and skY . Therefore, the definition of SkGoodY implies that
1

4(npp + 1)

≤ Pr
[
EY ⊆ span (E1 ∪ · · · ∪ EY −1)

∣∣∣∣ (Y, E1, . . . , Enpp+1) ∈ GoodSpan
skY ∈ SkGoodY

]
= Pr

[
∧8(npp+1)

v=1 (EY,v ⊆ span (E1 ∪ · · · ∪ EY −1))
∣∣∣∣ (Y, E1, . . . , Enpp+1) ∈ GoodSpan

skY ∈ SkGoodY

]

=
8(npp+1)∏

v=1
Pr
[
(EY,v ⊆ span (E1 ∪ · · · ∪ EY −1))

∣∣∣∣ (Y, E1, . . . , Enpp+1) ∈ GoodSpan
skY ∈ SkGoodY

]

=
(

Pr
[
(EY,1 ⊆ span (E1 ∪ · · · ∪ EY −1))

∣∣∣∣ (Y, E1, . . . , Enpp+1) ∈ GoodSpan
skY ∈ SkGoodY

])8(npp+1)
.

Therefore,

Pr [(EY,1 ⊆ span (E1 ∪ · · · ∪ EY −1)) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ∈ SkGoodY ]

≥
(

1
4(npp + 1)

) 1
8(npp+1)

≥ 4
5 .

In addition, recall that,

EY,v = EQ
(

DecO(pp, skY , EncO(pp, Y, 0))
)
∪ EQ

(
DecO(pp, skY , EncO(pp, Y, 1))

)
∪ EQ

(
DecO(pp, sk∗

Y , EncO(pp, Y, 0))
)
∪ EQ

(
DecO(pp, sk∗

Y , EncO(pp, Y, 0))
)

,
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Now, since for each b ∈ {0, 1}, EQ
(

DecO(pp, skY , EncO(pp, Y, b))
)
⊆ EY,1, then for each

b ∈ {0, 1} it holds that

Pr

EQ(DecO(pp, skY , EncO(pp, Y, b))
)

⊆ span (E1 ∪ · · · ∪ Ei−1)

∣∣∣∣∣∣ (Y, E1, . . . , Enpp+1) ∈ GoodSpan
skY ∈ SkGoodY

 ≥ 4
5 ,

as required. ◁

For the next claim, note that if the event GoodSpan occurs, then by Claim 10 the event
FindKey occurs as well, and therefore pp∗, msk∗ and sk∗

i are well defined.

▷ Claim 11. For each b ∈ {0, 1} it holds that

Pr
[

DecO(pp, sk∗
i , EncO(pp, i, b; r); r′) = DecÔ(pp∗, sk∗

i , EncÔ(pp∗, i, b; r); r′)
∣∣∣GoodSpan

]
≥ 3

5 ,

where the probability is taken over the internal randomness r ∈ {0, 1}∗ and r′ ∈ {0, 1}∗ of
Enc and Dec, respectively.

Proof. Fix b ∈ {0, 1}. The definition of the set GoodSpan, together with the fact that
EY = ∪8(npp+1)

v=1 EY,v where {EY,v}
8(npp+1)
v=1 are identically distributed and independent given

E1, . . . , EY −1 and skY , imply that

1
2(npp + 1)

≤ Pr[EY ⊆ span (E1 ∪ · · · ∪ EY −1) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ]

= Pr[∧8(npp+1)
v=1 (EY,j ⊆ span (E1 ∪ · · · ∪ EY −1)) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ]

=
8(npp+1)∏

v=1
Pr[(EY,j ⊆ span (E1 ∪ · · · ∪ EY −1)) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ]

=
(

Pr[(EY,1 ⊆ span (E1 ∪ · · · ∪ EY −1)) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ]
)8(npp+1)

.

Therefore,

Pr[(EY,1 ⊆ span (E1 ∪ · · · ∪ EY −1)) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ]

≥
(

1
2(npp + 1)

) 1
8(npp+1)

≥ 4
5 .

Since

Ei,1 = EQ
(

DecO(pp, ski, EncO(pp, i, 0))
)
∪ EQ

(
DecO(pp, ski, EncO(pp, i, 1))

)
∪ EQ

(
DecO(pp, sk∗

i , EncO(pp, i, 0))
)
∪ EQ

(
DecO(pp, sk∗

i , EncO(pp, i, 0))
)

,

then, in particular, it holds that

Pr[EQ
(

DecO(pp, sk∗
i , EncO(pp, i, b))

)
⊆ span (E1 ∪ · · · ∪ Ei−1) | GoodSpan, ski] ≥

4
5 .

Since sk∗
i and the randomness of Enc and Dec are independent of ski, then also

Pr
[
EQ

(
DecO(pp, sk∗

i , EncO(pp, i, b))
)
⊆ span (E1 ∪ · · · ∪ Ei−1)

∣∣∣ GoodSpan
]
≥ 4

5 .
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One of the requirements of (msk∗, pp∗, sk∗
i ) is that

Pr
[
EQ

(
DecÔ(pp∗, sk∗

i , EncÔ(pp∗, i, b))
)
⊆ span (E1 ∪ · · · ∪ Ei−1)

]
≥ 4

5 ,

where the probability is taken over the internal randomness of Enc and Dec, and therefore

Pr

 EQ
(

DecO(pp, sk∗
i , EncO(pp, i, b; r); r′)

)
∪

EQ
(

DecÔ(pp∗, sk∗
i , EncÔ(pp∗, i, b; r); r′)

)
⊆ span (E1 ∪ · · · ∪ Ei−1)

∣∣∣∣∣∣ GoodSpan


≥ 4

5 + 4
5 − 1 = 3

5 ,

where the probability is taken over the internal randomness r ∈ {0, 1}∗ and r′ ∈ {0, 1}∗ of
Enc and Dec, respectively. Now, for each such r and r′ that satisfy

EQ
(

DecO(pp, sk∗
i , EncO(pp, i, b; r); r′)

)
∪ EQ

(
DecÔ(pp∗, sk∗

i , EncÔ(pp∗, i, b; r); r′)
)

⊆ span (E1 ∪ · · · ∪ Ei−1)

we claim that

DecO(pp, sk∗
i , EncO(pp, i, b; r); r′) = DecÔ(pp∗, sk∗

i , EncÔ(pp∗, i, b; r); r′).

The two computations have the same explicit inputs since ppstr = pp∗
str and sk∗

i does not
contain group elements. Assuming that the responses to the equality queries are consistent
among the two computations up to a certain point, then both computations issue the exact
same next equality query (i1, i2). Let Vi1 and Vi2 denote the group elements that are located
in the corresponding entries of the table B associated with oracle O. Let V ∗

i1
and V ∗

i2
denote

the group elements that are located in the corresponding entries of the table B̂ associated
with oracle Ô. Let Vi1 − Vi2 = α0 · 1 +

∑npp
r=1 αr · ppr for α0, . . . , αr ∈ ZN . Since the two

computations are the same up to this point, V ∗
i1
− V ∗

i2
= α0 · 1 +

∑npp
r=1 αr · pp∗

r .
On the one hand, if the equality query (i1, i2) is answered positively in the computation

DecO(pp, sk∗
i , EncO(pp, i, b; r); r′), then

(α0, . . . , αnpp) ∈ EQ
(

DecO(pp, sk∗
i , EncO(pp, i, b; r); r′)

)
and therefore (α0, . . . , αnpp) ∈ span (E1 ∪ · · · ∪ Ei−1). But pp∗ is chosen to satisfy E1 ∪
· · ·∪Ei−1, and so α0 ·1+

∑npp
r=1 αr ·pp∗

r = 0, and this equality query is also answered positively
by the computation DecÔ(pp∗, sk∗

i , EncÔ(pp∗, i, b; r); r′).
On the other hand, if the equality query (i1, i2) is answered positively by the computation

DecÔ(pp∗, sk∗
i , EncÔ(pp∗, i, b; r); r′), then an symmetric argument shows that this equality

query is also answered positively by the computation DecO(pp, sk∗
i , EncO(pp, i, b; r); r′). ◁

▷ Claim 12. For each b ∈ {0, 1} it holds that

Pr
[

DecO(pp, sk∗
i , EncO(pp, i, b)) = b

∣∣∣GoodSpan
]
≥ 11

20 .

Proof. The event GoodSpan implies the event FindKey, and therefore the secret key sk∗
i

chosen in Step 3 satisfies

Pr
[
DecÔ(pp∗, sk∗

i , EncÔ(pp∗, i, b)) = b
]
≥ 19

20 ,
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where the probability is taken over the internal randomness of the algorithms Enc and Dec.
Combining this with Claim 11 we obtain

Pr
[
DecO(pp, sk∗

i , EncO(pp, i, b)) ̸= b
∣∣∣ GoodSpan

]
≤ Pr

[
DecO(pp, sk∗

i , EncO(pp, i, b; r); r′)

̸= DecÔ(pp∗, sk∗
i , EncÔ(pp∗, i, b; r); r′)

∣∣∣∣∣ GoodSpan
]

+ Pr
[
DecÔ(pp∗, sk∗

i , EncÔ(pp∗, i, b)) ̸= b
]

≤ 2
5 + 1

20
= 9

20 . ◁

For the following claims, we denote by Pass the event that sk∗
i passes the test in Step 5,

and denote by Win the event in which ExptIBE,A(λ) = 1.

▷ Claim 13. Pr[Win | GoodSpan] ≥ 11
20 ·

(
1− e−Ω(λ)).

Proof. Claim 12 and Chernoff’s bound imply that

Pr[Win | GoodSpan] ≥ Pr[Win | Pass ∩ GoodSpan] · Pr[Pass | GoodSpan]

≥ 11
20 ·

(
1− e− (0.05)2

2 · 11
20 ·λ
)

. ◁

▷ Claim 14. Pr[Win | GoodSpan] ≥ 1
2 ·
(
1− e−Ω(λ)).

Proof. Recall that FindKey denotes the event in which A finds (msk∗, pp∗, sk∗
i ) in Step 3 that

satisfies the required properties. Therefore,

Pr[Win | GoodSpan] = Pr[Win | FindKey ∩ GoodSpan] · Pr[FindKey | GoodSpan]
+ Pr[Win | FindKey ∩ GoodSpan] · Pr[FindKey | GoodSpan]

= Pr[Win | FindKey ∩ GoodSpan] · Pr[FindKey | GoodSpan]

+ 1
2 · Pr[FindKey | GoodSpan] (5)

Denote by FoundUseful the event in which A finds sk∗
i in Step 3 and the success probability

of sk∗
i at decrypting correctly is at least 1/2. That is, FoundUseful is the event in which

for each b ∈ {0, 1} it holds that Pr[DecO(pp, sk∗
i , EncO(pp, i, b)) = b] ≥ 1/2, where the

probability is taken over the internal randomness of the algorithms Enc and Dec. Then,
FoundUseful ⊆ FindKey, and therefore,

Pr[Win | FindKey ∩ GoodSpan]

= Pr[Win | FoundUseful ∩ GoodSpan] · Pr[FoundUseful | FindKey ∩ GoodSpan] (6)

+ Pr[Win | FindKey ∩ FoundUseful ∩ GoodSpan] · Pr[FoundUseful | FindKey ∩ GoodSpan]

Now, it holds that

Pr[Win | FoundUseful ∩ GoodSpan] ≥ 1
2 (7)

and that

Pr[Win | FindKey ∩ FoundUseful ∩ GoodSpan]
≥ Pr[Win | Pass ∩ FindKey ∩ FoundUseful ∩ GoodSpan]
· Pr[Pass | FindKey ∩ FoundUseful ∩ GoodSpan] (8)
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Recall that in Step 5 sk∗
i passes the test when decryption is correct for more than λ · 11

20 ·(
1− 1

20
)

= 0.5225 · λ times out of λ times. Therefore, by Chernoff’s bound,

Pr[Pass | FindKey ∩ FoundUseful ∩ GoodSpan] ≤ e− (0.0225)2
3 · 1

2 ·λ = e−Ω(λ). (9)

In addition,

Pr[Win | Pass ∩ FindKey ∩ FoundUseful ∩ GoodSpan] = 1
2 (10)

Thus, combining Eq. (8), (9) and (10) we obtain

Pr[Win | FindKey ∩ FoundUseful ∩ GoodSpan] ≥ 1
2 ·
(

1− e−Ω(λ)
)

(11)

and combining Eq. (6), (7) and (11) we obtain

Pr[Win | FindKey ∩ GoodSpan] ≥ 1
2 ·
(

1− e−Ω(λ)
)

. (12)

Finally, combining Eq. (5) and (12) we obtain

Pr[Win | GoodSpan] ≥ 1
2 ·
(

1− e−Ω(λ)
)

. ◁

▷ Claim 15. Pr
[
ExptIBE,A(λ) = 1

]
≥ 1

2 + 1
40(npp+1) − e−Ω(λ)

Proof. From Claim 13 and Claim 14 we obtain

Pr[Win] = Pr[Win | GoodSpan] · Pr[GoodSpan] + Pr[Win | GoodSpan] · Pr[GoodSpan]

≥ 11
20 ·

(
1− e−Ω(λ)

)
· Pr[GoodSpan] + 1

2 ·
(

1− e−Ω(λ)
)
· (1− Pr[GoodSpan])

= 1
2 +

(
11
20 −

1
2

)
· Pr[GoodSpan]− e−Ω(λ)

= 1
2 + 1

20 · Pr[GoodSpan]− e−Ω(λ).

Lemma 9 now implies that

Pr[Win] ≥ 1
2 + 1

20 ·
1

2(npp + 1) − e−Ω(λ)

= 1
2 + 1

40(npp + 1) − e−Ω(λ) ◁

This settles the proof of Theorem 7. ◀
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A Proof of Lemma 6

The random variables X1, . . . , Xk are independent and identically distributed, and therefore
for every i ∈ [k] it holds that

Pr [Xk ⊈ span (X1 ∪ · · · ∪Xk−1)] = Pr [Xi ⊈ span (X1 ∪ · · · ∪Xi−1 ∪Xi+1 ∪ · · · ∪Xk)] .

Thus,

Pr [Xk ⊈ span (X1 ∪ · · · ∪Xk−1)]

= 1
k
·

k∑
i=1

Pr [Xi ⊈ span (X1 ∪ · · · ∪Xi−1 ∪Xi+1 ∪ · · · ∪Xk)]

= 1
k
·

k∑
i=1

∑
U1,...,Uk⊆V

Pr [(X1, . . . , Xk) = (U1, . . . , Uk)] · 1{Ui⊈span(U1∪···∪Ui−1∪Ui+1∪···∪Uk)}

= 1
k
·

∑
U1,...,Uk⊆V

Pr [(X1, . . . , Xk) = (U1, . . . , Uk)] ·
k∑

i=1

1{Ui⊈span(U1∪···∪Ui−1∪Ui+1∪···∪Uk)},
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where for any event E we denote by 1E its indicator. Since the vector space V is of dimension
dim(V ), then for any U1, . . . , Uk ⊆ V there are at most dim(V ) indices i ∈ [k] for which
Ui ⊈ span (U1 ∪ · · · ∪ Ui−1 ∪ Ui+1 ∪ · · · ∪ Uk). Therefore,

Pr [Xk ⊈ span (X1 ∪ · · · ∪Xk−1)]

≤ 1
k
·

∑
U1,...,Uk⊆V

Pr [(X1, . . . , Xk) = (U1, . . . , Uk)] · dim(V ) = dim(V )
k

. ◀

B Proof of Lemma 8

Our proof of Lemma 8 relies on the following lemma (note that, unlike in the statement
of Lemma 6, here the random variables X1, . . . , Xk are not assumed to be independent or
identically distributed):

▶ Lemma 16. Let k ≥ 1, and let X1, . . . , Xk be random variables over subsets of a linear
vector space V of dimension dim(V ). Let Y be distributed uniformly over {1, . . . , k} and
independent of X1, . . . , Xk. Then,

Pr
X1,...,Xk,Y

[XY ⊈ span (X1 ∪ · · · ∪XY −1)] ≤ dim(V )
k

.

Proof of Lemma 16. Observe that

Pr
X1,...,Xk,Y

[XY ⊈ span (X1 ∪ · · · ∪XY −1)]

=
k∑

i=1

∑
U1,...,Uk⊆V

Pr
X1,...,Xk,Y

[Y = i ∧ (X1, . . . , Xk) = (U1, . . . , Uk)] · 1{Ui⊈span(U1∪···∪Ui−1)}

=
k∑

i=1

∑
U1,...,Uk⊆V

Pr
Y

[Y = i] · Pr
X1,...,Xk

[(X1, . . . , Xk) = (U1, . . . , Uk)] · 1{Ui⊈span(U1∪···∪Ui−1)} (13)

= 1
k
·

∑
U1,...,Uk⊆V

Pr
X1,...,Xk

[(X1, . . . , Xk) = (U1, . . . , Uk)] ·

(
k∑

i=1

1{Ui⊈span(U1∪···∪Ui−1)}

)
(14)

≤ 1
k
·

∑
U1,...,Uk⊆V

Pr
X1,...,Xk

[(X1, . . . , Xk) = (U1, . . . , Uk)] · dim(V ) (15)

= dim(V )
k

where Eq. (13) follows from the fact that Y is independent of X1, . . . , Xk, Eq. (14) follows
from the fact that Y is uniformly distributed, and Eq. (15) follows from the fact that V is of
dimension dimV . ◀

Equipped with Lemma 16, we now prove Lemma 8.

Proof of Lemma 8. On the one hand, Lemma 16 implies that

k − dimV

k
≤ Pr [XY ⊆ span (X1 ∪ · · · ∪XY −1)] .
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On the other hand,

Pr [XY ⊆ span (X1 ∪ · · · ∪XY −1)]
= Pr [XY ⊆ span (X1 ∪ · · · ∪XY −1) | (Y, X1, . . . , Xk) ∈ GoodSpan] · Pr[GoodSpan]

+ Pr
[
XY ⊆ span (X1 ∪ · · · ∪XY −1) | (Y, X1, . . . , Xk) ∈ GoodSpan

]
· Pr[GoodSpan]

≤ Pr[GoodSpan] + k − dimV

2k
.

Therefore,

Pr[GoodSpan] ≥ k − dimV

2k
. ◀
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