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Abstract

Fuzzy extractors derive stable keys from noisy sources. They are a fundamental tool for key derivation
from biometric sources. This work introduces a new construction, code offset in the exponent. This
construction is the first reusable fuzzy extractor that simultaneously supports structured, low
entropy distributions with correlated symbols and confidence information. These properties are
specifically motivated by the most pertinent applications – key derivation from biometrics and
physical unclonable functions – which typically demonstrate low entropy with additional statistical
correlations and benefit from extractors that can leverage confidence information for efficiency.

Code offset in the exponent is a group encoding of the code offset construction (Juels and
Wattenberg, CCS 1999). A random codeword of a linear error-correcting code is used as a one-time
pad for a sampled value from the noisy source. Rather than encoding this directly, code offset in
the exponent encodes by exponentiation of a generator in a cryptographically strong group. We
introduce and characterize a condition on noisy sources that directly translates to security of our
construction in the generic group model. Our condition requires the inner product between the
source distribution and all vectors in the null space of the code to be unpredictable.
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15:2 Code Offset in the Exponent

1 Introduction

Fuzzy extractors [13] permit derivation of a stable key from a noisy source. Specifically,
given a reading e from the noisy source, the fuzzy extractor produces a pair (key, pub),
consisting of a derived key and a public value; the public value pub must then permit key to
(only) be recovered from any e′ that is sufficiently close to e in Hamming distance. Fuzzy
extractors are the emblematic technique for robust, secure key derivation from biometrics
and physical unclonable functions. These applications place special emphasis on the source
distribution and for this reason a principal goal of fuzzy extractor design is to precisely
identify those distributions over e for which extraction is possible and, moreover, produce
efficient constructions for these distributions.

Despite years of work, existing constructions do not simultaneously secure practical
sources while retaining efficient recovery. Canetti et al.’s construction [8, 9] is secure for the
widest variety of sources. However, Simhadri et al.’s [31] implementation for the iris estimates
only 32 bits of security with algorithms that take ≈ 10 seconds on a 32-core machine.

The fuzzy extraction problem is well-understood in the information-theoretic setting,
where the fundamental quantity of interest is the fuzzy min-entropy [18, 19] of the distribution
of e; this measures the total weight of an arbitrarily centered ball of radius t in the probability
distribution over e. While this measure is sufficient for determining the feasibility of
information-theoretic fuzzy extraction for a distribution, it doesn’t indicate whether it
is possible in polynomial time [18, 34]. In the information-theoretic setting, it is not
possible to build an information-theoretic fuzzy extractor that simultaneously works for all
distributions [18, 17, 19]. That is, a fuzzy extractor exists for each distribution with fuzzy
min-entropy but no construction can secure all such distributions.

One can hope to sidestep these limitations by providing only computational security [15,
16]. However, even in this more favorable setting no universal theory has emerged without
resorting to general purpose obfuscation. Two known fuzzy extractors use “computational”
tools1 to correct errors, they are:

Canetti et al.’s [8, 9] construction explicitly places random subsets of e in a digital
locker [7] and records the indices used in each subset. To recover, one attempts to open
each digital locker with subsets of the value e′. Canetti et al.’s construction is secure
when a random subset of locations is hard to predict (Definition 10). However, Simhadri’s
implementation for the iris provides poor security (32 bits) in order to run in 10 seconds
and still requires millions of digital lockers [31].
Fuller et al. [15, 16] modify the code-offset construction [24]. The code-offset construction
construction is determined by a linear error-correcting code A ∈ Fn×kq and a secret,
uniformly random x ∈ Fkq ; given a sample e ∈ Fnq from the noisy source, the construction
publishes the pair pub = (A,Ax + e) . All operations are carried out over the field
with q elements. To reproduce the value e note that with a second sample e′ from
the source – which we assume has small Hamming distance from e2 – the difference
(Ax + e)− e′ = Ax + (e− e′) is evidently close to the codeword Ax. By decoding the
error correcting code one can recover x (and e).3 Security analysis of the code offset
treats Ax as a biased one time pad, proving that Ax + e leaks no more than (n− k) log q

1 Multiple computational fuzzy extractors retain the information-theoretic core and analyze it using
standard information-theory techniques [32, 33]; these works are subject to the above limitations.

2 It is also possible to consider other distances between e and e′. However the error correction techniques
required are different. We consider Hamming error in this work.

3 Applying a randomness extractor [25] on either x or e yields a uniform key.
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bits about e. However, many real distributions have entropy less than (n− k) log q, which
we call low entropy, for which this analysis provides no security guarantee. To support low
entropy distributions, Fuller et al. instantiate this construction with A being randomly
distributed and show security whenever the distribution over e yields a secure learning
with errors (LWE) instance. Known LWE error distributions consider i.i.d. symbols
(discretized Gaussian [28] and uniform interval [14]).

The digital locker construction supports more distributions (i.i.d. symbols implies that all
subsets have entropy). Both constructions use information set decoding [26], that is, repeated
selection of random subsets of coordinates with the hope to find a subset with no errors.

The digital locker construction comes with an important drawback. Many physical sources
are sampled along with correlated side information that is called confidence. Confidence
information is a secondary probability distribution z (correlated with the reading e) that
can predict the error rate in a symbol ei. When zi is large this indicates that the symbol of
ei is less likely to differ. Examples include the magnitude of a convolution in the iris [31]
and the magnitude of the difference between two circuit delays in ring oscillator PUFs [22].
By considering bits with high confidence it is possible to reduce the effective error rate from
t = n/10 to t = 3n/106 [22]. For a subset size of 128 and t = n/10 unlocking with 95%
probability requires testing approximately 2 · 106 subsets while t = 3n/106 requires testing a
single subset. This confidence information cannot be used in the digital locker construction
as subsets are specified at enrollment time whereas confidence information is determined
when e is drawn. The LWE construction can use this information [23] as it allows on-the-fly
testing of all large enough subsets. Confidence information is critical: fuzzy extractors that
secure low entropy distributions do not support t = Θ(n) which is demonstrated in practice,
leading to inefficient implementations. Because constructions are used with sources beyond
their designed error tolerance any reduction in error rate has a drastic impact on efficiency
(see Subsection 3.2).

Our contributions

This work introduces the code offset in the exponent construction. Code offset in the exponent
yields the first reusable fuzzy extractor that simultaneously

allows the symbols of e to be correlated,
supports structured but low entropy distributions over e (less than (n− k) log q), and
allows the use of confidence information for improved efficiency.

This work introduces the Code Offset in the Exponent problem:

Distinguish rAx+e, given (A, r), from a random tuple of group elements, where r is
a random generator of a prime order group, A is a suitable linear code, and x is a
uniform dimension k vector.

A natural fuzzy extractor constructor exists when rAx+e has such pseudorandom properties.
We show that when the group effectively limits the adversary to linear operations – by
adopting the generic group model – the resulting fuzzy extractor is secure for many low
entropy distributions while retaining the ability to use confidence information. This allows
code offset in the exponent to benefit from the efficiency gains of using confidence information
while remaining secure for a large family of distributions. Specifically, we present three
contributions:
Sec 1.1 We define the code offset in the exponent construction and show that it yields a

reusable fuzzy extractor if the distribution on e is good enough.

ITC 2021



15:4 Code Offset in the Exponent

Sec 1.2 We define and describe what constitutes good enough in the generic group model
with a novel information-theoretic sufficient condition we call MIPURS.

Sec 1.3 We characterize MIPURS, establishing containment relations between MIPURS and
the secured distributions in Canetti et al. [8] and Fuller et al. [15] (see Figure 1).

We then review further related work and offer a table of comparisons (Sec 1.4). Section 2
covers definitions and preliminaries including the MIPURS condition. Section 3 details the
code offset in the exponent construction. Section 4 characterizes MIPURS distributions.

1.1 Code offset in the exponent
Code offset in the exponent is motivated by the observation that reproduction of e in the LWE
construction uses only linear operations. Thus, we explore an adaptation of the code offset
construction that effectively limits the adversary to linear operations by translating all relevant
arithmetic into a “hard” group. Specifically, we introduce code offset in the exponent: If r is
a random generator for a cyclic group G of prime order q, we consider pub = (A, r, rAx+e)
where we adopt the shorthand notation rv, for a vector v = (v1, . . . , vn)⊺ ∈ (Zq)n, to indicate
the vector (rv1 , . . . , rvn)⊺. This construction possesses strong security properties under
natural cryptographic assumptions on the group G. We focus on code-offset in the exponent
with a random linear code (given by A) and adopt the generic group model [30] to reflect the
cryptographic properties of the underlying group. As stated above, the goal is to characterize
the distributions on e for which rAx+e given (A, r) is pseudorandom. Pseudorandomness
suffices to show security of a fuzzy extractor that leaks nothing about e. Analysis of this
construction is most natural when e has symbols over a large alphabet, but binary e can be
amplified (see Section 3.1).

Looking ahead, if one uses a random generator in each enrollment the construction allows
multiple (noisy) enrollments of e, known as a reusable fuzzy extractor [6]. The reusability
proof uses the details of the generic group proof, while the one time analysis is just based on
pseudorandomness. See the full version of this work for details of that proof.

1.2 When is code offset in the exponent hard?
In the generic group model, we establish that distinguishing code offset in the exponent from
a random vector of group elements is hard (Theorem 4) for any error distribution e where
the following game is hard to win for any information-theoretic adversary A:4

Experiment EMIPURS
A,e (n, k):

ψ ← e; A $← Fn×kq .
(b, g)← A(A, e).
If b ∈ null(A), b ̸= 0⃗ and ⟨b, ψ⟩ = g output 1.
Output 0.

Observe that the role of the random matrix A in the game above is merely to define a random
subspace of (typical) dimension k.

We call this condition on an error distribution MIPURS or maximum inner product
unpredictable over random subspace. Specifically, a random variable e over Fnq is (k, β)–
MIPURS if for all A (which knows the distribution of e but not the sampled value ψ),
Pr[EMIPURS

A,e (n, k) = 1] ≤ β.

4 We use boldface to represent random variables, capitals to represent random variables over matrices,
and plain letters to represent samples. We use ψ to represent samples from e to avoid conflict with
Euler’s number.
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When e is a (k − Θ(1), β)–MIPURS distribution for a code with dimension k and β =
ngl(n) then code-offset in the exponent yields a fuzzy extractor in the generic group model
(Theorem 5). Showing this requires one additional step of key extraction; we use a result of
Akavia, Goldwasser, and Vaikuntanathan [1, Lemma 2] which states that dimensions of x
become hardcore once there are enough dimensions for LWE to be indistinguishable. This
reduction is entirely linear and holds in the generic group setting.

MIPURS is necessary. When A is information theoretic, for all distributions e that are
not MIPURS one can find a nonzero vector b in the null space of A whose inner product with
e is predictable, thus predicting ⟨b,Ax + e⟩ = ⟨b, e⟩ ?= g. This is not the case for a uniform
distribution, U: the value ⟨b,U⟩ is uniform (and thus is ⟨b,U⟩ = g with small probability if
the size of q is super polynomial). Thus the vector b serves as a way to distinguish Ax + e
from U.

Beullens and Wee [3] recently introduced the KOALA assumption which roughly assumes
that an adversary’s only mechanism for distinguishing a vector from a subspace from random
is by outputting a vector that is likely to be the null space of the provided vector. This can
be seen as specializing [11, Assumption 5] that vectors can only be distinguished by fixed
inner products.

The adversary has more power in the MIPURS setting (than in KOALA) in three ways.
First, the distribution e and thus Ax + e is not linear, second the adversary doesn’t have to
“nullify” all subspaces – only a single vector, and third, the adversary can predict any inner
product, not just 0. One can view MIPURS as an assumption on a group: Whenever an
adversary can distinguish the (nonlinear) vector Ax + e from uniform that there is another
adversary that can choose some b and predict ⟨b, Ax + e⟩ (in our setting this choice of b is
after seeing A). Theorem 4 can be interpreted as the MIPURS “assumption” holding in the
generic group model.

1.3 Supported Distributions
Our technical work characterizes the MIPURS property (summarized in Figure 1). The
most involved relationship is showing that all high entropy sources are MIPURS. To provide
intuition for our results, we summarize this result here.

For any d = poly(n) there is an efficiently constructible distribution e whose entropy is
approximately log(dqn−k−1) where the MIPURS game is winnable by an efficient adversary
with noticeable probability: For 1 ≤ i ≤ d, sample some d random linear spaces Bi of
dimension n − k − 1 and define Ei to be all points in a random coset gi of Bi. Consider
the following distribution e: Pick i ← {1, ..., d} for some polynomial size d then output a
random element of Ei. The support size of this distribution is approximately dqn−k−1. Then
since null(A) has dimension at least n − k, ∃bi ̸= 0⃗ such that bi ∈ null(A) ∩ null(Bi)
(since dim(null(A)) + dim(null(Bi)) > n). The adversary can calculate these bi’s. Then
the adversary just picks a random i and predicts (bi, gi).5 This result is nearly tight: all
distributions whose entropy is greater than log(poly(n)qn−k) are MIPURS. Note this is a
factor of q away from matching the size of our counterexample for a random code. Informally,
this yields the following (see Corollary 25):

▶ Theorem 1 (Informal). Let n, k ∈ Z be parameters. Let q = q(n) be a large enough
prime. For all e ∈ Znq whose minentropy is at least ω(logn) + log(qn−k), there exists some
β = ngl(n) for which e is (k, β)–MIPURS.

5 If A is some fixed code (chosen before adversary specifies e), then Ei can directly be a coset of A and
one can increase the size of E to dqn−k.

ITC 2021



15:6 Code Offset in the Exponent

As mentioned above, information theoretic analysis of code offset provides a key of length
ω(logn) when the initial entropy of e is at least ω(logn)+(n−k) log(q). However, information
theoretic analysis of code offset reduces the entropy of e which may allow prediction of sensitive
attributes. In the generic group analysis no predicate of e is leaked. The generic group
analysis also allows the construction to be safely reused multiple times (with independent
generators).

Proof Intuition

Suppose in the above game the adversary generated e as the span of a linear space E with
the goal that null(A) ∩ null(E) ⊃ {⃗0}. For a random, independent B def= null(A), the
probability of B and null(E) overlapping is noticeable only if the sum of the dimensions
is more than n (Lemma 19). This creates an upper bound on the dimension of E of n− k
(ignoring the unlikely case when A is not full rank).

Our proof is dedicated to showing that the general case (where E is not linear) does not
provide the adversary with more power. First we upper bound the size of a set E where
each vector is predictable in the MIPURS game. We show for a random sample from E to
have a large intersection with a low dimensional space requires E to have size at least that
of the low dimensional space (Lemma 18). In Lemma 20, we switch from measuring the size
of intersection of a sample of E with respect to the worst case subspace to how “linear” E
is with respect to the worst vector in an average case subspace. This result thus controls
an “approximate” algebraic structure in the sense of additive combinatorics. We show the
adversary can’t do much better on a single vector b as long as it is chosen from a random B.

The above argument considers the event that the adversary correctly predicts an inner
product of 0; this can be transformed to an arbitrary inner product by a compactness
argument which introduces a modest loss in parameters (Theorem 22). Once we have a
bound on how large a predictable set E can be, another superlogarithmic factor guarantees
that all distributions e with enough minentropy are not predictable.

1.4 Further Related Work
We have already introduced the work of Canetti et al. [8] and Fuller et al. [16]. Canetti et
al. [8] explicitly place some subsets into a digital locker, for security they require that an
average subset has average min-entropy, which we call average subsets have entropy.

Lemma 11 shows that the MIPURS condition is contained in average subsets have entropy.
This containment is proper, we actually show that there are distributions where all subsets
have entropy that are not MIPURS. Suppose that e is a Reed-Solomon code, then all subsets
of e have entropy but as long as the dimension of the code < n− k − 1 then the null space
of e is likely to intersect with null(A) (Prop. 14).

There are also MIPURS sources where not all subsets have entropy. Consider a uniform
distribution over n−k coordinates with a fixed value in the remaining k coordinates (Prop. 13).
Since null(A) is unlikely to have non zero coordinates only at these fixed k coordinates,
predicting the inner product remains difficult. Fortunately, multiplying a binary source where
all subsets have entropy by a random vector produces a location source which is contained in
MIPURS. It is this transformation we recommend for actual biometrics, see Section 3.1.

One can additionally build a good fuzzy extractor assuming a variant of multilinear
maps [5]. Concurrent work of Galbraith and Zobernig [20] introduces a new subset sum
assumption to build a secure sketch that is able to handle t = Θ(n) errors; they conjecture
hardness for all securable distributions. A secure sketch is the error correction component in
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Figure 1 Implications between different types of supported distributions for fuzzy extraction.
Arrows are implications. All shown implications are proper. Location sources are those that have
random group elements in some locations with zeroes in other locations but it is hard to find a
subset of all zero locations. A location source can be produced as the component wise product of a
binary source where all subsets have entropy and a random vector of group elements. We consider
this type of distribution in Section 3.1.

most fuzzy extractors. Their assumption is security of the cryptographic object and deserves
continued study. A line of works [32, 33] use information-theoretic tools for error correction
and computational tools to achieve additional properties. Those constructions embed a
variant of the code offset. Table 1 summarizes constructions that use computational tools for
the “correction” component and the traditional information theoretic analysis of the code
offset construction.

2 Notation and Preliminaries

2.1 Notation
We use boldface to represent random variables, capitals to represent random variables over
matrices or sets, and corresponding plain letters to represent samples. As one notable
exception, we use ψ to represent samples from e to avoid conflict with Euler’s number. We
denote the exponential function with exp(·). When defining ranges for parameters, we use [
and ] to indicate ranges inclusive of indicated values and ( and ) to indicate ranges exclusive
of the indicated values. For random variables xi over some alphabet Z we denote the tuple
by x = (x1, ...,xn). For a vector v we denote the ith entry as vi. For a set of indices J , xJ
denotes the restriction of x to the indices in J . For m ∈ N, we let [m] = {1, . . . ,m}, so that
[0] = ∅. We use the notation span(S) to denote the linear span of a set S of vectors and apply
the notation to sequences of vectors without any special indication: If F = (f1, . . . , fm) is a
sequence of vectors, span(F ) = span({fi | i ∈ [m]}). The min-entropy of a random variable
x is H∞(x) = − log(maxx Pr[x = x]).

We consider the Hamming metric. Let Z be a finite set and consider elements of Zn; then
we define dis(x, y) = |{i | xi ̸= yi}|. Un denotes the uniformly distributed random variable
on {0, 1}n. Logarithms are base 2. We denote the vector of all zero elements as 0. We let ·c

ITC 2021



15:8 Code Offset in the Exponent

Table 1 Comparison of computational techniques for fuzzy extractors. Many schemes [32, 33] use
information theoretic techniques for information reconciliation and these are grouped together. These
techniques all inherit the information theoretic analysis on the strength of information reconciliation.
Reuse is denoted as G# if reuse is supported with some assumption about how multiple readings
are correlated and  if no assumption is made. See Figure 1 for relations between supported
distributions. The LWE works considered the setting when k = Θ(n) which leads to t = Θ(logn). If
one sets k = ω(logn) one can achieve error tolerance of o(n) using the analysis in this work, we thus
present the more favorable regime for the above comparison.

Construction Supported low entropy dist. Reuse Error rate (t) Weakness
Code Offset [13] - G# Θ(n)
LWE [2, 15] Independent G# o(n)
Subset sum [20] Fuzzy min-ent. # Θ(n) Assumes security
Grey box obf. [5] Fuzzy min-ent. # Θ(n) Multilinear maps
Digital Locker [8] Average Subsets have Ent.  o(n) No confidence info
This work MIPURS  o(n)

denote component-wise multiplication. In our theorems we consider a security parameter
γ, when we use the term negligible and super polynomial, we assume other parameters are
functions of γ. We elide the notational dependence of other parameters on γ.

2.2 Fuzzy Extractors

Our motivating application is a new fuzzy extractor that performs error correction “in the
exponent.” A fuzzy extractor is a pair of algorithms designed to extract stable keys from a
physical randomness source that has entropy but is noisy. If repeated readings are taken
from the source one expects these readings to be close in an appropriate distance metric
but not identical. We consider a generic group version of security (computational security is
defined in [15], information-theoretic security in [13]).

Before introducing the definition, we review some notation from the generic group model;
the model is reviewed in detail in the full version of this work. Let G be a group of prime
order q. For each element r ∈ G in the standard game, rather than receiving r, the adversary
receives a handle σ(r) where σ is a random function with a large range. The adversary is
given access to an oracle, which we denote as OσG, which given x = σ(r1), y = σ(r2) computes
σ(σ−1(x) + σ−1(y)); when σ can be inferred from context, we write OG. Since the adversary
receives random handles they cannot infer anything about the underlying group elements
except using the group operation and testing equality. We assume throughout that the range
of σ is large enough that the probability of a collision is statistically insignificant (that is
≪ 1/q).

We overload the notation σ(·) to apply to tuples and, furthermore, adopt the convention
that σ(·) is the identity on non-group elements; thus, it can be harmlessly applied to all
inputs provided to the adversary. Specifically, when z

def= z1, . . . , zn then σ(z) only passes zi
through σ if zi ∈ Gq. For example, if z = (r,A, rAx+w), then σ(z) = (σ(r),A, σ(rAx+w)).

▶ Definition 2. Let E be a family of probability distributions over the metric space (M, dis).
A pair of procedures (Gen : M → {0, 1}κ × {0, 1}∗,Rep : M× {0, 1}∗ → {0, 1}κ) is an
(M, E , κ, t)-fuzzy extractor that is (ϵsec,m)-hard with error δ if Gen and Rep satisfy the
following properties:
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Correctness: if dis(ψ,ψ′) ≤ t and (key, pub)← Gen(ψ), then

Pr[Rep(ψ′, pub) = key] ≥ 1− δ.

Security: for any distribution e ∈ E, the string key is close to random conditioned on pub
for all A making at most m queries to the group oracle OG, that is∣∣Pr[AOG(σ(key, pub)) = 1]− Pr[AOG(σ(U, pub)) = 1]

∣∣ ≤ ϵsec.
Where the probability of the statement is taken over σ $← Σ and key, pub)← Gen(e).

We also assume that the adversary receives σ(1). The errors are chosen before pub: if the
error pattern between ψ and ψ′ depends on the output of Gen, then there is no guarantee
about the probability of correctness.

2.3 The MIPURS condition
In this section, we introduce our novel Maximum Inner Product Unpredictable over Random
Subspace (MIPURS) condition.

▶ Definition 3. Let e be a random variable taking values in Fnq and let A be uniformly
distributed over Fn×kq and independent of e. We say that e is a (k, β)−MIPURS distribution
if for all random variables b ∈ Fnq ,g ∈ Fq independent of e (but depending arbitrarily on A
and each other)

E
A

[
Pr
[
⟨b, e⟩ = g and b ∈ null(A) \ 0⃗

]]
≤ β .

To see the equivalence between this definition and the game presented in the introduction,
the random variables b and g can be seen as encoding the “adversary” and quantifying over
all (b,g) is equivalent to considering all information-theoretic adversaries.

▶ Theorem 4. Let γ be a security parameter. Let q be a prime and n, k ∈ Z+ with k ≤ n ≤ q.
Let A ∈ Fn×kq and x ∈ Fkq be uniformly distributed. Let e be a (k, β)−MIPURS distribution.
Let u ∈ (Fq)n be uniformly distributed. Let Σ be the set of random functions with domain of
size q and range of size q3. Then for all adversaries D making at most m queries∣∣∣∣∣ Pr

σ
$←Σ

[DOG(A, σ(Ax + e)) = 1]− Pr[DOG(A, σ(u)) = 1]

∣∣∣∣∣ < µ

(
3
q

+ β

)

for µ = ((m+ n+ 2)(m+ n+ 1))2
/2. If 1/q = ngl(γ), n,m = poly(γ), and β = ngl(γ)

then the statistical distance between the two cases is ngl(γ).

In the above, the adversary is provided the code directly in the group, not its image in
the handle space. The proof of Theorem 4 is a relatively straightforward application of the
simultaneous oracle game introduced by Bishop et al. [4, Section 4]; this proof appears in
the full version of this work.

3 A Fuzzy Extractor from Hardness of Code Offset in the Exponent

One can directly build a fuzzy extractor out of any e that satisfies the MIPURS condition. To
do so, one instantiates the code-offset construction “in the exponent” and then uses hardcore
elements of x as the key.

ITC 2021



15:10 Code Offset in the Exponent

▶ Construction 1. Let γ be a security parameter, t be a distance, k = ω(log γ), α ∈ Z+,
ℓ ∈ Z+, let q be a prime and let Gq be a cyclic group of order q. Let Fq be the field with q
elements. Suppose that e and e′ ∈ Fnq , and let dis be the Hamming metric. Define (Gen,Rep)
as follows:

Gen(ψ = ψ1, . . . , ψn)
1. Sample generator r of Gq.
2. Sample A← Fn×(k+α)

q , x← Fk+α
q .

3. For i = 1, ..., n: set rci = rAi·x+ψi .
4. Set key = rx0 , ..., rxα−1 .
5. Set pub = (r, A, {rci}ni=1).
6. Output (key, pub).

Rep(ψ′, pub = (r,A, rc1 . . . rcn ))
1. For i = 1, ..., n, set rc′

i = rci/rψ
′
i .

2. For i = 1, ..., ℓ:
(i) Sample Ji ⊆ {1, ..., n} where |J | = k + α.
(ii) If A−1

Ji
does not exist go to 2.

(iii) Compute rs = r
A−1

Ji
c′

Ji .
(iv) Compute rc′′

= rAs.
(v) If dis(rc′

, rc′′
) ≤ t, output rs0 , ..., rsα .

3. Output ⊥.

▶ Theorem 5. Let c be a constant. Let all parameters be as in Construction 1. Let E be the
set of all (k, β)-MIPURS distributions. Suppose that

k′
def= k + α = o(n) and k′ = ω(logn),

t is such that tk′ ≤ cn logn for some constant c, which with the above implies t = o(n),
Let δ′ > 0 be some value,
Let η > 0 be some constant and let ℓ = n2(1+η)c log 1

δ′ , and
Let δ be some value such that δ ≤ δ′ + exp(−Ω(n)).

Then (Gen,Rep) is a (Fnq , E , |Fαq |, t)-fuzzy extractor that is (ϵsec,m)-hard that is correct with
probability 1− δ for all adversaries in the generic group model (making at most m queries)
where

ϵsec =
(

((m+ n+ 2)(m+ n+ 1))2

2

)(
3
q

+ β

)
.

The proof of Theorem 5 is shown in the full version of this work [12].

3.1 Handling binary sources
In this section we show one way to transform binary sources to a good MIPURS distribution
and consider the associated impact on correctness. Assume that the source e takes binary
vlaues and all subsets of e are hard to predict, one can form a MIPURS distribution by
multiplying by an auxiliary random and uniform random variable r ∈ Fnq . This has the effect
of placing random errors in the locations where ei = 1. Since decoding finds a subset without
errors (it does not rely on the magnitude of errors) we can augment errors into random errors.
We prove that this augmented vector is MIPURS in Section 4.

However, this transform creates a problem with decoding. When bits of e are 1, denoted
ei = 1 we cannot use location i for decoding as it is a random value (even if e′j = 1 as well).
When one amplifies a binary e, we recommending using another uniform random variable
y ∈ {0, 1}n and check when yi ̸= ei to indicate when to include a random error. Then
in reproduction the algorithm should restrict to locations where yi = ei. Using Chernoff
bounds one can show this subset is big enough and the error rate in this subset is not much
higher than the overall error rate (except with negligible probability). If k + α is just barely
ω(logn) one can support error rates that are just barely o(n).

To introduce the construction we first need to formalize the required property of the
distribution e. We introduce a notion called all subsets have entropy:



L. Demarest, B. Fuller, and A. Russell 15:11

▶ Definition 6. Let a source e = e1, . . . , en consist of n-bit binary strings. For some
parameters k and β we say that the source e is a source where all k-subsets have entropy
β if H∞(ej1 , . . . , ejk

) ≥ β for any 1 ≤ j1, . . . , jk ≤ n, ja ̸= jb for a ̸= b.

▶ Construction 2. Let γ be a security parameter, t be a distance, k = ω(log γ), α ∈ Z+, q be
a prime and let Gq be some cycle group of order q. Let Fq be the field with q elements. Let
E ∈ {0, 1}n and let dis be the Hamming metric. Let τ = max(0.01, t/n). Define (Gen,Rep)
as follows:

Gen(ψ = ψ1, ..., ψn)
1. Sample random generator r of Gq.
2. Sample A← (Fq)n×(k+α),
3. Sample x← (Fq)k+α.

4. Sample y $← {0, 1}n.
5. For i = 1, ..., n:

(i) If ψi = yi, set rci = rAi·x.
(ii) Else set rci

$← Gq.
6. Set key = rx0...α−1 .
7. Set pub = (r, y, A, {rci}ni=1).
8. Output (key, pub).

Rep(ψ′, pub = (r, y, A, rc1 . . . rcℓ ))
1. Let I = {i|ψ′

i = yi}.
2. For i = 1, ..., ℓ:

(i) Choose random Ji ⊆ I, with |Ji| = k.
(ii) If A−1

Ji
does not exist, output ⊥.

(iii) Compute rs = r
A−1

Ji
cJi .

(iv) Compute rc′
= r

A(A−1
Ji

cJi
).

(v) If dis(cI , c′
I) ≤ 2|cI |τ , output rs0 , ..., rsα−1 .

3. Output ⊥.

▶ Theorem 7. Let all parameters be as in Construction 2. Let γ ∈ N and let E be the set
of all sources where all (k − γ)-subsets have entropy β (Definition 6) over {0, 1}n. Then
(Gen,Rep) is a ({0, 1}n, E , |Fαq |, t)-fuzzy extractor that is (ϵsec,m)-hard for all adversaries in
the generic group model (making at most m queries) where

ϵsec =
(

((m+ n+ 2)(m+ n+ 1))2

2

)(
4
q

+ 2−β +
(

(k − γ)
(

n
k−γ−1

)
qγ+1

))
.

Furthermore, suppose that
k′

def= k + α = o(n) and k′ = ω(logn),
t is such that tk′ ≤ cn logn for some constant c, which with the above implies t = o(n),
Let δ′ > 0 be some value.
Let η > 0 be some constant.
Let ℓ = n2(1+η)c log 1

δ′ , (if tk′ = o(n logn) setting ℓ = n log 1/δ′ suffices)
Then there is some function negligible ngl(n) such that the Rep is correct with probability
1− δ′ − ngl(n).

We defer proving Theorem 7 to the full version of this work [12].

3.2 The power of confidence information
Most PUFs and biometrics demonstrate a constant error rate τ = t/n. This is higher than
the correction capacity of our construction and Canetti et al.’s digital locker construction [8].
However, existing fuzzy extractors that support constant τ do not support the low entropy
distributions found in practice.

While code offset in the exponent is not designed for constant error rates it is efficient
for small constant τ . As described in the introduction for the case of PUFs and biometrics,
using confidence information can lead to a multiplicative decrease in the effective error rate
of bits chosen for information set decoding. The important tradeoff is between the fractional
error rate τ = t/n and the number of required iterations.
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Figure 2 Expected number of iterations ℓ to have Rep output a value with .95 probability across
error rate. Three lines represent original error rate t and two reduced error rates of t/2 and t/10
that may be achievable by using confidence information. Note that the y-axis is in log scale.

We observe, for practical parameters, multiplicative changes in τ lead to exponential
changes in the required iterations ℓ. To demonstrate we consider the following parameters: a
source of length n = 1024 (common for the iris), a subset size of k = 128, and an output key
of a single group element (α = 1). Figure 2 shows how log ℓ increases for different τ . Three
lines represent the original error rate and two potential reduced error rates (multiplicative
decreases of 2 and 10 respectively). Figure 2 considers τ steps of .001. Between 0 and .06,
each step of .001 increases log ℓ by .667 (r2 value of .999).

As mentioned in the introduction, Canetti et al. [8] digital locker6 condition for security
is that average subsets have entropy. A distribution satisfying MIPURS implies that average
subsets have entropy (see Section 4.3). Since code offset in the exponent allows the adversary
to test any subset, average subsets having entropy does not suffice (see Section 1.4). Section 3.1
showed how to handle distributions where all subsets have entropy by multiplying by a
random error vector. Unfortunately, as we show in Section 4.4, MIPURS and all subsets
have entropy are incomparable notions creating a barrier to removing this random vector in
Construction 2.

Reusability

Reusability is the ability to support multiple independent enrollments of the same value,
allowing users to reuse the same biometric or PUF, for example, with multiple noncooperating
providers. More precisely, the algorithm Gen may be run multiple times on correlated
readings e1, ..., eρ of a given source. Each time, Gen will produce a different pair of values

6 Intuitively, a digital locker is a symmetric encryption that is semantically secure even when instantiated
with keys that are correlated and only have entropy [10].
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(key1, pub1), ..., (keyρ, pubρ). Security for each extracted string keyi should hold even in the
presence of all the helper strings (pub1, . . . , pubρ) . The reproduction procedure Rep at the
ith provider still obtains only a single e′ close to ei and uses a single helper string pubi.
Because providers may not trust each other keyi should be secure even when all keyj for
j ≠ i are also given to the adversary. In the full version of this work [12] we show that
Construction 1 is reusable if a random generator is used with each enrollment.

4 Characterizing MIPURS

Definition 3 of MIPURS is admittedly unwieldy. It considers a property of a distribution
e ∈ Fnq with respect to a random matrix. We turn to characterizing distributions that satisfy
MIPURS. We begin with easier distributions and conclude with the general entropy case is
in Section 4.5. Throughout, we consider a prime order group G of prime size q, a random
linear code A ∈ Fn×kq and the null space B def= null(A).

4.1 Independent Sources ⊂ MIPURS
In most versions of LWE, each error coordinate is independently distributed and contributes
entropy. Examples include the discretized Gaussian introduced by Regev [28, 29], and
a uniform interval introduced by Döttling and Müller-Quade [14]. We show that these
distributions fit within our MIPURS characterization.

▶ Lemma 8. Let e = e1, . . . , en ∈ Fnq be a distribution where each ei is independently
sampled. Let α = min1≤i≤n H∞(ei). For any k ≤ n, e is a (k, β)−MIPURS distribution for
β = 2−α.

Proof of Lemma 8. Consider a fixed element b ̸= 0 in B. Since the components of e are
independent, predicting ⟨b, e⟩ is at least as hard as predicting ei for each i such that bi ≠ 0.
This can be seen by fixing b and ej for j ̸= i and noting that the value of ei then uniquely
determines ⟨b, e⟩. Since b ̸= 0 there exists at least one such i. Thus,

Pr
B

[
max
g

max
b∈B\0

Pr
e

[⟨b, e⟩ = g]
]
≤ 2−α def= β. ◀

4.2 Location Sources ⊂ MIPURS
Next, we consider e′ given by the coordinatewise product of a uniform vector r ∈ Fnq and
a “selection vector” e ∈ {0, 1}n: that is, e′i = ri ·c ei where all large enough subsets of e
are unpredictable (·c is component-wise multiplication). Location sources are important for
applications (see Section 3).

▶ Lemma 9. Let γ ∈ N and k ∈ Z+. Let e ∈ {0, 1}n be a distribution where all (k−γ)-subsets
have entropy α. Define the distribution e′ as the coordinatewise product of a uniform vector
r ∈ Fnq and e: that is, e′i = ei ·c ri. Then the distribution e′ is a (k, β)-MIPURS distribution
for β = 2−α + ((k − γ)

(
n

k−γ−1
)
/qγ+1.

Proof of Lemma 9. We use A ∈ Fn×kq to represent the random matrix from the definition of
a MIPURS distribution and let B ∈ Fn×n−kq represent its null space. We start by bounding the
“minimum distance” of B, that is, the minimum weight of a non-zero element of B = null(A).
Observe that the number of vectors in Fnq of weight less than k − γ is

k−γ−1∑
j=0

(
n

j

)
qj ≤ (k − γ)

(
n

k − γ − 1

)
qk−γ−1 .
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The probability that any fixed, nonzero vector lies x in B is q−k, as it must annihilate k
independent, uniform linear equations. That is,

∑
i xiAis = 0 for each 1 ≤ s ≤ k. Thus

E[|{w ∈ null(A) \ 0 | wt(w) < k − γ}|] ≤ (k − γ)
(

n

k − γ − 1

)
q−γ−1 . (1)

By Markov’s inequality, the probability that there is at least one such small weight vector in
null(A) is no more than the expected number of such vectors. Hence

Pr[∃w ∈ null(A) \ 0,wt(w) < k − γ] ≤ (k − γ)
(

n

k − γ − 1

)
q−γ−1 .

For some b in the span of B with weight at least k − γ, consider the product ⟨b, e′⟩ =∑n
i=1 bi · ei · ri. Define I as the set of nonzero coordinates in b. With probability at least

1− 2−α there is some nonzero coordinate in eI . Conditioned on this fact this means that at
least one value ri is included in the inner product. Thus, the entropy of the inner product is
bounded below by the entropy of ei · ri which since ei ̸= 0 is bounded by the entropy of ri.
In this case, the prediction probability of an inner product (and therefore a single element of
) is 1/q. The argument concludes by assuming perfect predictability when there exists b in
B with weight of at most k − γ − 1. ◀

4.3 MIPURS ⊂ Average Subasets Have Entropy
As mentioned in the Introduction, Canetti et al. [8] showed a fuzzy extractor construction
for all sources where an average subset has entropy:7

▶ Definition 10 ([8] average subsets have entropy). Let the source e = e1, . . . , en consist of
strings of length n over some arbitrary alphabet Z. We say that the source e is a source with
a k-average subsets have entropy β if

E
j1,...,jk

$←[1,...,n],jα ̸=jγ

(
max
z
{Pr[(ej1 , . . . , ejk

) = z | j1, . . . , jk]}
)
≤ β.

We now show that a MIPURS distribution also has that average subsets have entropy.

▶ Lemma 11. Let e = e1, . . . , en be a source over alphabet Z such that e is (k, β)−MIPURS.
Then e has (k′, β′)-entropy samples for any k′ and

β′ = β(
1− (qk′−(k+1))

(2k′( n
k′))

) .

Proof of Lemma 11. We proceed by contradiction, that is suppose that e does not have
k′, β′ entropy samples. That is,

E
j1,...,j′

k

$←[1,...,n],jα ̸=jγ

(
max
z
{Pr[(ej1 , . . . , ejk

) = z | j1, . . . , j
′
k]}
)
> β′.

We consider the following definition of b,g in the MIPURS game:
1. Receive input A, compute B = null(A).

7 We make a small modification to their definition changing to sampling without replacement.
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2. Select random b ∈ B such that wt(b) ≤ k′, b ̸= 0. If no such b exists output b = 0,g = 0.
3. Define I as the set of nonzero locations in b. If |I| < k′ insert random distinct locations

until |I| = k′.
4. Compute z = arg maxz {Pr[eI = z | I]}.
5. Output g = ⟨b, z⟩.

If z is the correct prediction for eI then g = ⟨b, z⟩ = ⟨b, e⟩. As noted above, the
probability of any particular value nonzero b being in B is q−k. Thus, conditioned on finding
a good b, the distribution of the random variable b is exactly that of a uniform weight
k′ value. This implies that Eb [maxz {Pr[(eI) = z | I}] > β′. It remains to analyze the
probability that B contains no vectors of weight k′. Here we derive an elementary bound,
asymptotic formulations exist in the information theory literature [21, Theorem 1.1].

▶ Lemma 12. Let V denote a random subspace of Fnq of dimension κ. Let Wℓ denote the
subset of Fnq consisting of all vectors with weight ℓ, then

Pr[V ∩Wℓ = 0] ≤ (qn − 1)((
n
ℓ

)
(q − 1)ℓ−1(qκ − 1)

) .
Proof of Lemma 12. We begin by noting that |Wℓ| =

(
n
ℓ

)
(q − 1)ℓ. For a vector v⃗ ∈ Wℓ,

define Xv⃗ = 1 if v⃗ ∈ V and 0 otherwise. Then

E

∑
v⃗∈Wℓ

Xv⃗

 =
(
n

ℓ

)
(q − 1)ℓ q

κ − 1
qn − 1 .

We wish to compute the second moment of the sum
∑
Xv⃗. We have

E

 ∑
v⃗,w⃗∈Wℓ

Xv⃗Xw⃗

 = E

 ∑
v⃗,w⃗∈Wℓ

v⃗,w⃗ independent

Xv⃗Xw⃗

+ E

 ∑
v⃗,w⃗∈Wℓ

v⃗,w⃗ dependent

Xv⃗Xw⃗


≤
(
n

ℓ

)
(q − 1)ℓ

((
n

ℓ

)
(q − 1)ℓ − (q − 1)

)
max

indep. v⃗,w⃗
Pr[v⃗, w⃗ ∈ V ]

+
(
n

ℓ

)
(q − 1)ℓ+1 max

dependent v⃗,w⃗
Pr[v⃗, w⃗ ∈ V ]

≤
((

n

ℓ

)
(q − 1)ℓ

)2 (qκ − 1)(qκ−1 − 1)
(qn − 1)(qn−1 − 1)︸ ︷︷ ︸

(‡)

+
(
n

ℓ

)
(q − 1)ℓ+1 q

κ − 1
qn − 1 .

Note that (m− t)/(n− t) < m/n assuming that t ≤ m < n and hence that that

(‡) =
((

n

ℓ

)
(q − 1)ℓ

)2 (qκ − 1)(qκ − q)
(qn − 1)(qn − q) ≤

((
n

ℓ

)
(q − 1)ℓ

)2 (qκ − 1)2

(qn − 1)2 ≤ E
[∑

Xv⃗

]2
.

It follows that

Var
[∑

Xv⃗

]
= E

[(∑
Xv⃗

)2
]
− E

[∑
Xv⃗

]2
≤
(
n

ℓ

)
(q − 1)ℓ+1 q

κ − 1
qn − 1 .

Then using Chebyshev’s inequality with a constant of

α =

√((
n

ℓ

)
(q − 1)ℓ q

κ − 1
qn − 1

)2/((n
ℓ

)
(q − 1)ℓ+1 q

κ − 1
qn − 1

)
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one finds:

Pr
[∑

Xv⃗ = 0
]
≤ Var[

∑
Xv⃗]

E [
∑
Xv⃗]2

≤
(
n
ℓ

)
(q − 1)ℓ+1 qκ−1

qn−1((
n
ℓ

)
(q − 1)ℓ qκ−1

qn−1

)2 ≤
(qn − 1)((

n
ℓ

)
(q − 1)ℓ−1(qκ − 1)

) .
This completes the proof of Lemma 12. ◀

Thus, for dim(B) ≥ n− k it is true that for any k′:

Pr[B ∩Wk′ = 0] ≤ (qn − 1)(
n
k′

)
(q − 1)k′−1(qn−k − 1)

≤ qn

2k′(n
k′

)
qn−k+k′−1 = qk

′−(k+1)

2k′(n
k′

) .

We note that the overall success of prediction of b,g in the MIPURS game is bounded below
by Pr[B ∩ Wk′ = 0] ∗ 0 + (1 − Pr[B ∩ Wk′ = 0]) ∗ β′ = β. This completes the proof of
Lemma 11. ◀

4.4 MIPURS and all subsets have entropy
We now consider the relationship between MIPURS and all subsets have entropy. Recall, that
we showed that for a distribution e where all subsets have entropy multiplying by a random
vector produced a MIPURS distribution. With two simple examples, we show that MIPURS
is not contained by all subsets have entropy and all subsets have entropy is not contained by
MIPURS.

▶ Proposition 13 (MIPURS ̸→ all subsets have entropy). Define e ∈ Fnq as the distribution
that is fixed in the first k positions and uniform in all other positions. Clearly for any β > 0
it does not hold that all k-subsets have entropy. Furthermore, e is (k, β) − MIPURS for
β ≥ (1− 1

qk − k
qn−k ) log q.

To show the above proposition, assume perfect predictability in the MIPURS game in the
case when A is not full rank or when 1k||0n−k is in null(A). Otherwise, full entropy results
from the same argument as Lemma 8.

For the second direction we assume that e is a Reed-Solomon [27] code (the counterexample
is similar to the one presented in Section 1.3). For the field Fq of size q, a message length
k, and code length n, such that k ≤ n ≤ q, define the Vandermonde matrix V where the
ith row, Vi = [i0, i1, ...., ik]. The Reed Solomon Code RS(n, k, q) is the set of all points Vx
where x ∈ Fkq .

▶ Proposition 14 (all subsets have entropy ̸→ MIPURS). Let k < n/2 and let e be the uniform
distribution over RS(n, n− k− 1, q) then all k subsets of e have entropy k log q. Furthermore,
e is not (k, β)−MIPURS for any β < 1.

Note dim(null(A)) ≥ n− k and thus null(A) and null(RS(n, n− k− 1, q)| are guaranteed
to a have a nontrivial intersection. The result follows by picking some b in this intersection
and setting g = 0.

4.5 High entropy ⊂ MIPURS
We now turn to the general entropy condition: MIPURS is hard for all distribution where the
min-entropy exceeds log qn−k (by a super logarithmic amount). For conciseness, we introduce
κ

def= n− k.
The adversary is given a generating matrix of the code, A; this determines B = null(A).

Our proof is divided into three parts. Denote by E a set of possible error vectors.
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1. Theorem 16: We show that the number of vectors ψ ∈ E that are likely to have 0 inner
product with an adversarially chosen vector in B is small. Intuitively, we show that this
set is “not much larger than a κ-dimensional subspace.”

2. Theorem 22: We then show it is difficult to predict the value of the inner product: even if
the adversary may select arbitrarily coupled b and g, it is difficult to achieve ⟨b, ψ⟩ = g.

3. Lemma 24: We show that any distribution e with sufficient entropy cannot lie in the set
of predictable error vectors E with high probability.

We codify the set of possible adversarial strategies by introducing a notion of κ-induced
random variables. For the moment, we assume that B is a uniformly selected subspace of
dimension exactly κ; at the end of the proof we remove this restriction to apply these results
when B has the distribution given by null(A) (Corollary 25).

▶ Definition 15. Let b be a random variable taking values in Fnq . We say that b is κ-induced
if there exists a (typically dependent) random variable B, uniform on the collection of κ-
dimensional subspaces of Fnq , so that b ∈ B and b ̸= 0⃗ with certainty: Pr

[
b ∈ B ∧ b ̸= 0⃗

]
= 1.

Note, in fact, that the random variables B and b are necessarily dependent unless n = κ.

It suffices to consider the maximum probability in Definition 3 with respect to κ-induced
random variables. This is because for any b that is not κ-induced we can find another b
that is κ induced that does no worse in the game in Definition 3. For example when b is not
in B or is the zero vector, one can replace b with a random element in the span of B.

We now show that if the set E is large enough there is no strategy for b that guarantees
⟨b, ψ⟩ = 0 with significant probability. The next theorem (Thm. 22) will, more generally,
consider prediction of the inner product itself. For a κ induced random variable b, define

E(b,0)
ϵ =

{
f ∈np

∣∣∣∣ Pr
b

[⟨b, f⟩ = 0] ≥ ϵ
}
.

When b can be inferred from context, we simply refer to this set as Eϵ. Then define
Pκ,ϵ = max

b
|E(b,0)
ϵ | where the maximum is over all κ-induced random variables in Fnq .

▶ Theorem 16. Let q be a prime and let d > 1, κ,m, η ∈ Z+ be parameters for which κ ≤ n.
Then assuming Pκ,ϵ > d · qκ we must have

ϵ ≤
(
κ+ η

m

)
+
(
m

κ

)((
m

η

)(
1
d

)η
+
(

2
q

))
.

Before proving Theorem 16, we introduce and prove two combinatorial lemmas (18 and
20). We then proceed with the proof of Theorem 16. The major challenge is that the set
Eϵ (for a particular b) is typically not a linear subspace; these results show that is has
reasonable “approximate linear” structure. We begin with the notion of linear density to
measure, intuitively, how close the set is to linear.

▶ Definition 17. The ℓ-linear density of a sequence of vectors F = (f1, . . . , fm), with each
f i ∈ Fnq , is the maximum number of entries that are covered by a subspace of dimension ℓ.
Formally,

∆ℓ(F ) = max
V,dim(V )=ℓ

|{i | f i ∈ V }|.

▶ Lemma 18. Let q be a prime and let n, ℓ ∈ Z+ satisfy ℓ ≤ n. Let E ⊂ Fnq satisfy |E| ≥ qℓ
and let F = (f1, . . . , fm) be a sequence of uniformly and independently chosen elements of E.
Define d so that |E| = dqℓ; then for any η ≥ 0,

Pr
F

[∆ℓ(F) ≥ ℓ+ η] ≤
(
m

ℓ

)(
m− ℓ
η

)(
1
d

)η
.
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Proof of Lemma 18. By the definition of linear density, if ∆ℓ(F) ≥ ℓ+ η there must be at
least one subset of ℓ + η indices I ⊂ [m] so that {f i | i ∈ I} is contained in a subspace of
dimension ℓ. In order for a subset I to have this property, there must be a partition of I into a
disjoint union S∪L, where S has cardinality ℓ and T indexes the remaining η “lucky” vectors
that lie in the span of the vectors given by S. Formally, ∀t ∈ T, f t ∈ span({f s | s ∈ S}).

Fix, for the moment, ℓ indices of F to identify a candidate subset of vectors to play the
role of S and η indices of F to identify a candidate set T . The probability that each of the η
vectors indexed by T lie in the space spanned by S is clearly no more than (qℓ/|E|)η ≤ (1/d)η.
Taking the union bound over these choices of indices completes the argument: The probability
of a sequence is no more than

(
m
ℓ

)(
m−ℓ
η

)
d−η, as desired. ◀

Before introducing our second combinatorial lemma (Lem 20), we need a Lemma bounding
the probability of a fixed subspace having a nontrivial intersection with a random subspace.

▶ Lemma 19. Let q be a prime and κ, n ∈ N with κ ≤ n. Let V be a random variable uniform
on the set of all κ-dimensional subspaces of Fnq . Let W be a fixed subspace of dimension ℓ.
Then

Pr[V ∩W ̸= {0}] ≤ qκ+ℓ−(n+1) ·
(

q

q − 1

)
.

Proof of Lemma 19. Let L denote the set of all 1-dimensional subspaces in W . Each 1-
dimensional subspace is described by an equivalence class of q − 1 vectors under the relation
x ∼ y ⇔ ∃λ ∈ F∗q , λx = y. Thus |L| = (qℓ − 1)/(q − 1) ≤ qℓ−1(q/(q − 1)). Then

Pr[V ∩W ̸= {⃗0}] ≤
∑
L∈L

Pr[L ⊂ V] ≤ |L| max
v∈n

q \{0⃗}
Pr[v ∈ V] ≤ qκ+ℓ−(n+1)

(
q

q − 1

)
,

where we recall the fact that for any particular fixed nonzero vector v, Pr[v ∈ V] = qκ−1
qn−1 ≤

qκ−n. ◀

▶ Lemma 20. Let q be a prime, let ℓ, κ, n ∈ Z+ satisfy ℓ, κ ≤ n. Let F = (f1, . . . , fm) be a
sequence of elements of Fnq with dim(span(F )) ≥ ℓ. Then, for any κ-induced random variable
b taking values in Fnq ,

Pr
b

[
|{i | ⟨b, f i⟩ = 0}| ≥ ∆ℓ(F )

]
≤
(
m

ℓ

)
qκ−ℓ−1

(
q

q − 1

)
≤ 2
(
m

ℓ

)
qκ−ℓ−1 .

Proof of Lemma 20. Let VF denote the collection of all ℓ-dimensional subspaces of Fnq
spanned by subsets of elements in the sequence F . That is,

VF = {V | V = span({f i | i ∈ I}), I ⊂ [m],dim(V ) = ℓ} .

Then |VF | ≤
(
m
ℓ

)
, as each such subspace is spanned by at least one subset of F of size ℓ. As

dim(span(F )) ≥ ℓ, the set VF is nonempty.
Observe that if I ⊂ [m] has cardinality at least ∆ℓ(F ) then, by definition, dim(span({f i |

i ∈ I})) ≥ ℓ; otherwise, an additional element of F could be added to the set indexed by I to
yield a set of size exceeding ∆ℓ(F ) which still lies in a subspace of dimension ℓ (contradicting
the definition of ∆ℓ). Note in the case that m = ℓ (and there is no element to add) then
∆ℓ(F ) = ℓ = dim(span({f i | i ∈ I})). Thus, if I ⊂ [m] has cardinality at least ∆ℓ(F ), there
must be some V ∈ VF for which V ⊂ span({f i | i ∈ I}). In particular

Pr
b

[
|{f i ∈ F | ⟨b, f i⟩ = 0}| ≥ ∆ℓ(F )

]
≤ Pr

b

[
∃V ∈ VF ,∀v ∈ V, ⟨v,b⟩ = 0

]
≤
∑
V ∈VF

Pr
b

[
∀v ∈ V, ⟨v,b⟩ = 0

]
=
∑
V ∈VF

Pr
b

[
b ∈ V ⊥] ,
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where we have adopted the notation V ⊥ = {w | ∀v ∈ V, ⟨v, w⟩ = 0}. Recall that when V

is a subspace of dimension ℓ, V ⊥ is a subspace of dimension n− ℓ. To complete the proof,
we recall that b is κ-induced, so that there is an associated random variable B, uniform on
dimension κ subspaces, for which b ∈ B with certainty; applying Lemma 19 we may then
conclude∑

V ∈VF

Pr
b

[
b ∈ V ⊥] ≤

∑
V ∈VF

Pr
B

[
B ∩ V ⊥ ̸= {⃗0}] ≤

(
m

ℓ

)
qκ−ℓ−1

(
q

q − 1

)
.

This completes the proof of Lemma 20. ◀

Proof of Theorem 16. Now we analyze the relationship between our two paramenters of
interest: ϵ and d. Fix some ϵ > 0. Let b be a κ-induced random variable for which
|E(b,0)
ϵ | = Pκ,ϵ and let B be the coupled variable, uniform on subspaces, for which b ∈ B.
For the purposes of analysis we consider a sequence of m vectors chosen independently

and uniformly from Eϵ = E
(b,0)
ϵ with replacement; we let F = (f1, . . . , fm) denote the set

of vectors so chosen. We study the expectation of the number of vectors in F that are
orthogonal to b. We first give an immediate lower bound by linearity of expectation and the
definition of Eϵ: Eb,F[|{f i ∈ F | ⟨b, f i⟩ = 0}|] ≥ ϵ ·m.

We now infer an upper bound on this expectation using Lemmas 18 and 20. We say that
the samples F from Eϵ are compact if ∆κ(F) ≥ κ+ η. The probability of this compact event
is no more than

(
m
κ

)(
m−κ
η

) ( 1
d

)η by Lemma 18. For compact selections, we crudely upper
bound the expectation by m; for spread selections we further split the expectation based on
the random variable B. We say that B is susceptible (for a fixed F = (f1, ..., fm)) if there
exists some b ∈ B such that |{f i ∈ F | ⟨b, f i⟩ = 0}| ≥ ∆κ(F ). Otherwise, B is resistant. The
probability of a susceptible selection of B is bounded above by (2/q)

(
m
κ

)
in light of Lemma 20

(applied with ℓ = κ). In the pessimistic case (that B is susceptible), we again upper bound
the expectation by m. Then if the experiment is neither compact nor susceptible, we may
clearly upper bound the expectation by κ+ η. So, for any η > 0 we conclude that

E
b,B,F

[|{fi ∈ F | ⟨b, fi⟩ = 0}|] ≤ (κ+ η) +m

((
m

κ

)(
m− κ
η

)(
1
d

)η
+ 2
q

(
m

κ

))
and hence that

ϵ ≤
(
κ+ η

m

)
+
(
m

κ

)((
m

η

)(
1
d

)η
+ 2
q

)
.

This completes the proof of Theorem 16. ◀

▶ Corollary 21. Let κ and n be parameters satisfying 1 ≤ κ < n and let q be a prime such
that q ≥ 24κ. Then for ϵ ≥ 5eq−1/(2(κ+1)) we have Pκ,ϵ ≤ 5eqκ/ϵ. In particular, for such ϵ

and any κ-induced b, the set |E(b,0)
ϵ | ≤ 5eqκ/ϵ.

Proof of Corollary 21. Consider parameters for Theorem 16 that satisfy the following:

1 < d ≤ q1/(2(κ+1)), m = dη

2e , and η = log q .

First note that κ < 4κ ≤ log q = η (as q ≥ 24κ). Then, consider a set E(b,0)
ϵ for some b. We

have

ϵ ≤
(
κ+ η

m

)
+
(
m

κ

)((
me

ηd

)η
+ 2
q

)
≤
(

2η
m

)
+ 3
(
m

κ

)
q−1 ≤

(
4e
d

)
+ 3
(
dη/2e
κ

)
q−1︸ ︷︷ ︸

(†)

.
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Since q ≥ 24κ, we may write q = 22ακ for some α ≥ 2 and it follows that
(

log q
κ

)κ
= (2α)κ ≤

(2α)κ = √q because 2α ≤ 2α for all α ≥ 2. In light of this, consider the second term in the
expression (†) above:

3
(
dη/2e
κ

)
q−1 ≤ 3

(
dη

2κ

)κ
q−1 ≤ 3

2

(
dη

κ

)κ
q−1 ≤ 3

2

(
dκ
√
q

)((
log q
κ

)κ 1
√
q

)
≤ 3

2d ≤
e

d
.

We conclude that for any 1 < d ≤ q1/(2(κ+1)), Pκ,ϵ ≥ dqk =⇒ ϵ ≤ 5e/d. Observe then that
for any ϵ > 5e/q1/(2(κ+1)) we may apply the argument above to Pκ,ϵ with d = 5e/ϵ and
conclude that Pκ,ϵ ≤ 5eqκ/ϵ. ◀

Predicting Arbitrary Values

We now show that the adversary cannot due much better than Theorem 16 even if the task
is predicting and arbitrary inner product (not just zero).

▶ Theorem 22. Let b be a κ-induced random variable in n
q and let g be a random variable

over Fq (arbitrarily dependent on b). For ϵ > 0 we generalize the notation above so that

E(b,g)
ϵ =

{
f ∈nq

∣∣∣∣ Pr
b,g

[⟨b, f⟩ = g] ≥ ϵ
}
. then |E(b,0)

ϵ2/8 | ≥
ϵ2

8 |E
(b,g)
ϵ | .

Proof of Theorem 22. For an element ψ ∈ E(b,g)
ϵ , define Fψ = {(x, ⟨x, ψ⟩) | x ∈ Fnq }. Note

that Prb,g[(b,g) ∈ Fψ] ≥ ϵ by assumption. For any δ < ϵ, there is a subset F ∗ ⊂ E(b,g)
ϵ for

which |F ∗| ≤ 1/δ and for any ψ ∈ E(b,g)
ϵ , Pr

b,g

[
(b,g) ∈

(
Fψ ∩

(⋃
f ′∈F∗ Ff ′

))]
≥ ϵ − δ. To

see this, consider incrementally adding elements of E(b,g)
ϵ into F ∗ so as to greedily increase

Pr
b,g

[
(b,g) ∈

⋃
f ′∈F∗ Ff ′

]
. If this process is carried out until no ψ ∈ E

(b,g)
ϵ increases the

total probability by more than δ, then it follows that every Fψ intersects with the set with
probability mass at least ϵ − δ, as desired. Note also that this termination condition is
achieved after including no more than 1/δ sets. It follows that for any ψ ∈ E(b,g)

ϵ ,

E
f ′∈F∗

Pr
b

[⟨b, ψ⟩ = ⟨b, f ′⟩] ≥ (ϵ− δ)δ and E
f ′∈F∗

E
ψ∈E(b,g)

ϵ

Pr
b

[⟨b, ψ⟩ = ⟨b, f ′⟩] ≥ (ϵ− δ)δ .

Then there exists an f∗ for which

E
ψ∈E(b,g)

ϵ

Pr[⟨b, ψ⟩ = ⟨b, f∗⟩] ≥ (ϵ− δ)δ .

Setting δ = ϵ/2 and we see that

E
ψ∈E(b,g)

ϵ

Pr[⟨b, ψ⟩ = ⟨b, f∗⟩] = Pr
b,ψ∈E(b,g)

ϵ

[⟨b, ψ⟩ = ⟨b, f∗⟩] ≥ ϵ2

4 .

Using this expectation (of a probability), we bound the probability it is greater than 1/2 its
mean. As the inner product is bi-linear,

Pr
ψ∈E(b,g)

ϵ

[
Pr
b

[⟨b, ψ − f∗⟩ = 0] ≥ ϵ2

8

]
≥ ϵ2

8 .

Thus, an ϵ2/8 fraction of the set {ψ− f∗ | ψ ∈ E(b,g)
ϵ } must be a subset of E(b,0)

ϵ2/8 : The claim
of the theorem follows, that |E(b,0)

ϵ2/8 | ≥ (ϵ2/8)|E(b,g)
ϵ | . ◀
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With the language and settings of this last Theorem, applying Corollary 21 to appropriately
control |E(b,0)

ϵ2/8 | yields the following bound on |E(b,g)
ϵ |.

▶ Corollary 23. Let κ and n be parameters satisfying 1 ≤ κ < n and let q be a prime such
that q ≥ 24κ. Let b be any κ-induced random variable in Fnq and g any random variable in
Fq. Then for any ϵ ≥ 11q−1/(4(κ+1)) it holds that |E(b,g)

ϵ | ≤ (320eqκ)
/

(ϵ4).

This implies all high min-entropy distributions are not predictable in the above game.

▶ Lemma 24. Let b be a κ-induced random variable in Fnq . Let g be an arbitrary random
variable in Fq. Let e be a random variable with H∞(e) = s. Let E(b,g)

ϵ be as defined in
Theorem 22. Then for ϵ > 0, Pr

ψ←e,b,g
[⟨b, ψ⟩ = g] ≤ 2−s|E(b,g)

ϵ |+ ϵ .

Proof of Lemma 24. Our predictable set Eϵ = E
(b,g)
ϵ gives us no guarantee on the instability

of the inner product. If ψ ∈ Eϵ then we upper bound the probability by 1. Because e
has min-entropy s, we know that no element is selected with probability greater than 2−s,
thus the probability of a lying inside a set of size |Eϵ| is at most |Eϵ|/2s. Outside of our
predictable set, we know that the probability of a stable inner product cannot be greater
than ϵ by definition of Eϵ. Therefore if ψ does not fall in the predictable set, we bound the
probability by ϵ (for simplicity, we ignore the multiplicative term less than 1). ◀

▶ Corollary 25. Let k and n be parameters with n > k and let q be a prime such that
q ≥ 24(n−k). Let ϵ ≥ 11q−1/(4(n−k+1)) be a parameter. Then for all distributions e ∈ Fnq such
that H∞(e) ≥ log

(
320eqn−kϵ−5) , it holds that (for any b and g above)

Pr
b,g,e

[⟨b, e⟩ = g] ≤ 2ϵ+ k/qn−k

and thus e is (k, 2ϵ+ k/qn−k)−MIPURS.

The additional k/qn−k term is due to the probability that A may not be full rank, all of the
above analysis was conditioned on A being full rank. The corollary then follows by replacing
κ = n− k.
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