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Abstract
We give the first differentially private algorithms that estimate a variety of geometric features of
points in the Euclidean space, such as diameter, width, volume of convex hull, min-bounding box,
min-enclosing ball, etc. Our work relies heavily on the notion of Tukey-depth. Instead of (non-
privately) approximating the convex-hull of the given set of points P , our algorithms approximate
the geometric features of DP pκq – the κ-Tukey region induced by P (all points of Tukey-depth
κ or greater). Moreover, our approximations are all bi-criteria: for any geometric feature µ our
pα, ∆q-approximation is a value “sandwiched” between p1 ´ αqµpDP pκqq and p1 ` αqµpDP pκ ´ ∆qq.

Our work is aimed at producing a pα, ∆q-kernel of DP pκq, namely a set S such that (after a shift)
it holds that p1 ´ αqDP pκq Ă CHpSq Ă p1 ` αqDP pκ ´ ∆q. We show that an analogous notion of a
bi-critera approximation of a directional kernel, as originally proposed by [1], fails to give a kernel,
and so we result to subtler notions of approximations of projections that do yield a kernel. First,
we give differentially private algorithms that find pα, ∆q-kernels for a “fat” Tukey-region. Then,
based on a private approximation of the min-bounding box, we find a transformation that does turn
DP pκq into a “fat” region but only if its volume is proportional to the volume of DP pκ ´ ∆q. Lastly,
we give a novel private algorithm that finds a depth parameter κ for which the volume of DP pκq

is comparable to the volume of DP pκ ´ ∆q. We hope our work leads to the further study of the
intersection of differential privacy and computational geometry.
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1 Introduction

With modern day abundance of data, there are numerous datasets that hold the sensitive
and personal details of individuals, yet collect only a few features per user. Examples of
such low-dimensional datasets include locations (represented as points on the 2D-plane),
medical data composed of only a few measurements (e.g., [25, 27]), or high-dimensional data
restricted to a small subset of features. It is therefore up to us to make sure that the analyses
of such sensitive datasets do not harm the privacy of their participants. Differentially private
algorithms [10, 12] alleviate such privacy concerns as they guarantee that the presence or
absence of any single individual in the dataset has only a limited affect on any outcome.
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18:2 Differentially Private Approximations of a Convex Hull

Figure 1 An example showing that DP pκq’s volume, width and min-enclosing triangle can be
greatly affected by a single point in the input.

Often (usually motivated by data-visualization), understanding the geometric features
of such low-dimensional datasets is a key step in their analysis. Yet, to this day, very little
work has been done to establish differentially private algorithms that approximate the data’s
geometrical features. This should not come as a surprise seeing as most geometric features –
such as diameter, width,1 volume of convex-hull, min-bounding ball radius, etc. – are highly
sensitive to the presence / absence of a single datum. Moreover, while it is known that
differential privacy generalizes [11, 2], geometrical properties often do not: if the dataset P

is composed on n i.i.d. draws from a distribution P then it might still be likely that, say,
diampP q and diampPq are quite different.2

But differential privacy has already overcome the difficulty of large sensitivity in many
cases, the leading example being the median – despite the fact that the median may
vary greatly by the presence/absence of a single datum, we are still capable of privately
approximating the median. The crux in differentially private median approximations [21, 4]
is that the quality of the approximation is not measured by the actual distance between the
true input-median and the result of the algorithm, but rather by the probability mass of the
input’s CDF “sandwiched” between the true median and the output of the private algorithm.
A similar effect takes place in our work. While we deal with geometric concepts that exhibit
large sensitivity, we formulate robust approximation guarantees of these concepts, guarantees
that do generalize when the data is drawn i.i.d. from some unknown distribution. Yet unlike
the private median approximations, our private kernel-approximation algorithm does not
always return an output. It first verifies that certain niceness assumptions about the input
hold; if they don’t hold, it is capable of finding a sufficiently “deep” portion of the input
which can be privately approximated. Details to follow.

Much like in previous works in differential privacy [3, 19], our approximation rely heavily
on the notion of the depth of a point. Specifically, our approximation guarantees are with
respect to Tukey depth [26]. Roughly speaking (see Section 2), a point x has Tukey depth κ

w.r.t. a dataset P , denoted TDpx, P q “ κ, if the smallest set S Ă P one needs to remove from
P so that some hyperplane separates x from P zS has cardinality κ. This also allows us to
define the κ-Tukey region DP pκq “ tx P Rd : TDpx, P q ě κu. So, for example, DP p0q “ Rd

and DP p1q “ CHpP q (the convex-hull of P ). It follows from the definition that for any
1 ď κ1 ď κ2 we have CHpP q “ DP p1q Ą DP pκ1q Ą DP pκ2q. It is known that for any dataset

1 The min gap between two hyperplanes that “sandwich” the data.
2 For example, consider P as a uniform distribution over 2n discrete points whose diameter greatly shrinks

unless two specific points are drawn into P .
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P and depth κ the Tukey-region DP pκq is a convex polytope, and moreover (see [14]) that for
any P of size n it holds that DP pn{pd ` 1qq ‰ H. Moreover, there exists efficient algorithms
(in low-dimensions) that find DP pκq.

One pivotal property of the Tukey depth, which enables differentially private approx-
imations, is that it exhibits low-sensitivity at any given point. As noted by [3], it follows
from the very definition of Tukey-depth that if we add to / remove from P any single datum,
then the depth of any given x P Rd changes by no more than 1. And so, in this work, we
give bi-criteria approximations of key geometric features of DP pκq – where the quality
of the approximation is measured both by a multiplicative factor and with respect to a
shallower Tukey region. Given a measure µ of the convex polytope DP pκq, such as diameter,
width, volume etc., we return a pα, ∆q-approximation of µ – a value lower bounded by
p1´αqµpDP pκqq and upper-bounded by p1`αqµpDP pκ´∆qq. This implies that the quality of
the approximation depends on both the approximation parameters fed into the algorithm and
also on the “niceness” properties of the data. For datasets where µpDP pκ ´ ∆qq « µpDP pκqq,
our pα, ∆q-approximation is a good approximation of µpDP pκqq; but for datasets where
µpDP pκ ´ ∆qq " µpDP pκqq our guarantee is rather weak. Note that no differentially private
algorithm can correctly report for all P whether µpDP pκqq and µpDP pκ ´ ∆qq are / are-not
similar seeing as, as Figure 1 shows, such proximity can be highly affected by the existence
of a single datum in P . Again, this is very much in line with private approximations of the
median [21, 4].3

Our main goal in this work is to produce an kernel for DP pκq. Non privately, a α-kernel [1]
of a dataset P is a set S Ă P where for any direction u it holds that p1´αq maxp,qPP xp´q, uy ď

maxp,qPSxp ´ q, uy ď maxp,qPP xp ´ q, uy. Agarwal et al. [1] showed that for any P there
exists such a kernel whose size is p1{αqOpdq. (We thus assume |P | " p1{αqOpdq for otherwise
the non-private algorithm can trivially output P itself.) More importantly, the fact that S is
a α-kernel implies that p1 ´ OpαqqCHpP q Ă CHpSq Ă CHpP q. It is thus tempting to define an
analogous notion of pα, ∆q-kernel as “for any direction u we have p1 ´ αq maxp,qPDP pκqxp ´

q, uy ď maxp,qPSxp ´ q, uy ď p1 ` αq maxp,qPDP pκ´∆qxp ´ q, uy” and hope that it yields that
p1 ´ OpαqqDP pκq Ă CHpSq Ă DP pκ ´ ∆q. Alas, that is not the case. Having S Ă DP pκq

turns out to be a crucial component in arguing about the containment of the convex-hulls,
and the argument breaks without it. We give a counter example in a later discussion (in
Section 3). Therefore, viewing this directional-width approximation property as means to
an end, we define the notion of pα, ∆q-kernel directly w.r.t. the containment of the convex
bodies.

▶ Definition 1. Given a dataset P and a parameter κ, a set S is called a pα, ∆q-kernel
for DP pκq if there exist two points c1, c2 such that p1 ´ αqpDP pκq ´ c1q Ă CHpSq ´ c1 and
CHpSq ´ c2 Ă p1 ` αqpDP pκ ´ ∆q ´ c2q.

Non privately, the “center” points c1 and c2 may just as well be the origin, since we can
shift the points so that the origin is in the convex-hull; but privately we cannot make
such an assumption as it differentiates between two neighboring datasets. Note that in
particular, a pα, ∆q-kernel gives the pα, ∆q-approximation of the projection along every
direction u proposed earlier (in quotation-marks above). In fact, a pα, ∆q-kernel yields

3 In particular, in the case where P is drawn from a distribution P, it is known that @x P Rd, |
1
n TDpx, P q´

TDpx, Pq| “ Op

b

d logpnq

n q [8], where TDpx, Pq denotes the smallest measure P places on any halfspace
containing x. Thus, if DP pκq and DP pκ ´ ∆q vary drastically, then it follows that the distribution P is
“volatile” at depth κ

n .
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pα, ∆q-approximations of numerous properties of DP pκq, like volume, min-bounding box,
min-enclosing / max-enclosed ball radius, surface area, etc. Our work is the first to give a
private approximation of any of these concepts.

The main caveat of our work is that we are able to output a pα, ∆q-kernel of DP pκq only
when DP pκq satisfies some “niceness” properties. We briefly describe the structure of our
work to better explain these properties and how they relate. We begin with preliminaries in
Section 2. In Section 3 we give our algorithm for finding a kernel, which works under the
premise that the width of DP pκq is large. This means that our goal is complete if we are
able to assert, using a private algorithm, that DP pκq has large width (we design a heuristics
for this purpose, but it is deferred to the full version of this work); or if we can find a
value of κ for which DP pκq can be privately transformed into a region with large width – a
complicated task for which we require multiple “stepping stones” that are detailed in the
following sections.

In Sections 4 and 5 we establish some basic privacy-preserving algorithms for tasks we
require later.In Section 6, we give a private pOp1q, ∆q-approximation of the min-bounding
box of DP pκq; and show that this box yields a transformation that turns DP pκq into a region
of large width, but only if the volumes of DP pκq and DP pκ ´ ∆q are comparable. So finally,
in Section 7, we give an algorithm that finds a value of κ for which is this premise about
the volumes of DP pκq and DP pκ ´ ∆q holds, rendering us capable of privately finding a
pα, ∆q-kernel for this particular DP pκq.

Providing further details about the private approximation algorithms we introduce in
this work requires that we first delve into some background details and introduce some
parameters.

The Setting: Low-Dimension and Small Granularity

Differential privacy deals with the trade-offs between the privacy parameters, ε and δ, and
an algorithm’s utility guarantee. Unlike the majority of works in differential privacy, we
don’t express these trade-offs based on the size n of the data.4 Instead, in our work we
upper bound the ∆-term of a private pα, ∆q-approximation as a function of the privacy-
and accuracy-parameters, as well as additional two parameters. These two parameters are
(i) the dimension, d, which we assume to be constant and so npolypdq is still considered
efficient for our needs; and (ii) the granularity of the grid on which the data resides. In
differential privacy, it is impossible to provide useful algorithms for certain basic tasks [6]
when the universe of possible entries is infinite. Therefore, we assume that the given input P

lies inside the hypercube r0, 1sd and moreover – that its points reside on a grid Gd whose
granularity is denoted as Υ. This means that each coordinate of a point p P P can be
described using υ “ log2p1{Υq many bits. We assume here that 1{Υ is large (say, all numbers
are ints in C, so Υ “ 2´32), too large for the grid to be efficiently traversed. And so, for
each pε, δq-differentially private algorithm we present, an algorithm that returns with a high
probability of 1 ´ β a pα, ∆q-approximation of some geometric feature of DP pκq, we upper
bound the ∆-term as a function of pα, β, ε, δ, d, υq. (Of course, we must also have that κ ą ∆
otherwise the algorithm can simply return r0, 1sd.) In addition, any algorithm with runtime
of pn ¨ υ ¨ ε´1 ¨ α´1 ¨ logp1{βδqqpolypdq is considered efficient.

4 Though n comes into play in our work, both in requiring that for large enough κ we have that DP pκq ‰ H

and in bounding ∆, since if ∆ ą n then it is trivial to give a pα, ∆q-kernel. Moreover, ideally we
would have that ∆ ď

a

dn logpnq so that both DP pκq and DP pκ ´ ∆q (roughly) represent the same
Tukey-depth region w.r.t to the distribution the dataset was drawn from, based on the above-mentioned
bounds of [8].
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Lastly, as pre-processing we apply the algorithm of Kaplan et al. [19] that asserts that
for sufficiently large κ it holds that DP pκq is non-empty and non-degenerate (doesn’t have
0-volume).

Detailed Contribution and Organization

First, in Section 2 we survey some background in differential privacy and geometry. Our
contributions are detailed in the remaining section and are as follows.

In Section 3 we give our private pα, ∆q-kernel approximation, that much like its non-
private equivalent [1], requires some “fatness” condition. In fact, we have two somewhat
different conditions. Our first algorithm requires a known (constant) lower bound on
widthpDP pκqq, and our second algorithm requires a known (constant) lower bound on
the ratio widthpDP pκqq

diampDP pκ´∆qq
. More importantly, the resulting sets from each algorithm do

not satisfy an analogous property to the non-private kernel definition of [1], but rather
more intricate properties regarding projections along any direction. Thus, Section 3
begins by discussing these two properties and proving that they are sufficient for finding
a pα, ∆q-kernel. Due to brevity, we provide here only the high-level ideas of the first (and
very simply) algorithm, whereas its full details, as well as the second algorithm and a
heuristic that may allow us to tell if a region is “fat”,5 are all deferred to the full version
of this work. The remainder of the work presents multiple tools designed in order to
privately find a transformation that turns DP pκq into a fat Tukey-region, each of which
may be of independent interest.
Beimel et al. [3] constructed a function for Tukey-Depth Completion (TDC): given a
prefix of 0 ď i ă d coordinates, each x P R is mapped to the max Tukey-depth of a
point whose first i ` 1 coordinates are the given prefix concatenated with x. Beimel
et al. showed that this TDC-function is quasi-concave (details in Section 4), so (i) by
off-the-shelf private approximation algorithms for quasi-concave functions [4, 7] we can
find x with high TDCpxq-value; and (ii) repeating this process d times returns a point
with high TD. So our first tool is detailed in Section 4 where we present a simple and
efficient implementation of the TDC-function in low-dimensions. We also introduce a
function that takes an additional parameter ℓ and maps x to min tTDCpxq, TDCpx ` ℓqu,
which is also quasi-concave and can also be computed efficiently. The two functions play
an important role in the construction of all following algorithms – we often rotate the
space so that some direction v aligns with first axis and then apply TDC to find a good
extension of a particular coordinate along v into a point inside DP pκq. While we highlight
the main ideas, the full details of this section appear in the full version of this work.
In Section 5 we give a second batch of rudimentary tools – our efficient private algorithms
for pα, ∆diamq-diameter approximation and pα, ∆widthq-width approximation. These
algorithms are quite standard and rely on the Sparse-Vector Technique; thus their formal
descriptions are deferred to the full version of this work.
In Section 6 we turn our attention to asserting that the fatness condition required for
the kernel-approximation algorithm holds. We present a private pc, ∆q-approximation of
the min bounding box problem – it returns a box B that (a) contains DP pκq and (b)
with volume upper bounded by c ¨ volpDP pκ ´ ∆qq. We then show that if volpDP pκqq ě
volpDP pκ´∆qq

2 then by affinely mapping B to r0, 1sd we turn DP pκq into a fat Tukey region.

5 This heuristic allows us to take κ as input to our algorithm: if the heuristic returns “OK” then the
niceness conditions hold and we can return a pα, ∆q-approximation of DP pκq; o/w the algorithms of
Sections 6 and 7 allow us to replace the value of the given κ with a different value, one for which we
can return a pα, ∆q-approximation of DP pκq.

ITC 2021



18:6 Differentially Private Approximations of a Convex Hull

In Section 7 we give a private algorithm for finding a “good” depth-parameter κ, one for
which it does hold that volpDP pκqq ě volpDP pκ ´ ∆qq{2. We formulate a certain query
q where any κ for which qP pκq is large must also be a good κ, and then give a private
algorithm for finding a κ with a large qP pκq-value. The ε-differentially private algorithm we
give is actually rather novel – it is based on a combination of the Exponential-Mechanism
with additive Laplace noise. Its privacy is a result of arguing that for any neighboring P

and P 1 where P 1 “ P Y txu we can match κ with κ ` 1 so that |qP pκq ´ qP 1 pκ ` 1q| ď 1,
and then using a few more observations that establish pure ε-differential privacy (rather
than pε, δq-DP). Again, due to space considerations, the full-details and proofs from
Sections 6 and 7 appear in the full version of this work.

Our work thus culminates in the following theorem.

▶ Theorem 2. There exists an efficient pε, δq-differentially private algorithm, that for
any sufficiently large dataset P , where |P | ě Ω̃pd4υ ¨ ∆q, with probability ě 1 ´ β finds
a “good” depth parameter κ and a set S such that S is a pα, ∆q-kernel of DP pκq where
∆ “ Op

fpdq

ε ¨ p 1
α q

d
2

b

logp 1
δ q logp 1

αβ qq for some function fpdq “ 2d2 poly logpdq.

In fact, it is also required that ∆ ě ∆BBpd, υ, ε, δ, βq where ∆BB is guarantee of the private
min-bounding-box algorithm, as detailed in Theorem 16; yet this lower-bound holds under a
very large regime of parameters.

Additional Works

In addition to the two works [3, 19] that privately find a point inside a convex hull, it is
also worth mentioning the works regarding privately approximating the diameter [23, 22]
(they return a Op1q-approximation of the diameter that may miss a few points) as well
as the recent work of [15] which can also be used to approximated the diameter; and the
work of [18] that privately approximates a k-edges polygon yet requires a dataset of points
where many lie inside the polygon and many lie outside the polygon. No additional works
that we know of lie in the intersection of differential privacy and computational geometry.
Computational geometry, of course, is a rich fied of computer science replete with many
algorithms for numerous tasks in geometry. Our work only give private analogs to (a few
of) the algorithms of [9, 1], but there are far many more algorithms to be privatized and
the reader is referred to [16] for a survey of the field. Many works deal with computing the
Tukey-depth and the Tukey region [24, 20], and others give statistical convergence rates for
the Tukey-depth when the data is composed of i.i.d. draws from a distribution [28, 8, 5].

2 Preliminaries

Geometry

In this work we use x¨, ¨y to denote the inner-product between two vectors in Rd. We use ej

to denote the nature basis element with 1 on jth coordinate and zeros elsewhere. A closed
half-space is defined by a vector u and a scalar λ and it is the set tx P Rd : xx, uy ď λu. A
polytope, which is a convex body, is the intersection of finitely many closed half-spaces. For
a polytope P and a point x we define P ´ x as the shift of P by x (namely z P P ´ x iff
Dy P P s.t. z “ y ´ x), and we define by cP the blow-up of P by a scalar c. An inner product
xx, uy “ }x}}u} cosp=px, uqq is also known a projection of x onto the subspace spanned by u.
A projection onto a subspace ΠV maps any x P Rd to its closest point in the subspace V .
The following fact is well-known.
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▶ Fact 3. Let S be a convex body. Let u be any vector and let ΠKu be the projection onto
the subspace orthogonal to u. Denote ℓ as the max-length of the intersection of S with any
affine line in direction u, and denote A as the volume of the projection of S onto the subspace
orthogonal to u, A “ volpΠKupSqq. Then A¨ℓ

d ď volpSq ď A ¨ ℓ.

The fact follows from reshaping S so that it is contained in the “cylinder” whose base is A

and height is ℓ, and contains a “pyramid” with base of A and height of ℓ.
The unit-sphere Sd´1 is the set of vectors in Rd of length 1. The diameter of the

convex body P is defined as diampP q “ maxp,qPP }p ´ q}, and it is simple to see that
diampP q “ maxuPSd´1 maxp,qPP xp ´ q, uy. The width of a convex body P is analogously
defined as widthpP q “ minuPSd´1 maxp,qPP xp ´ q, uy. A ζ-angle cover of the unit sphere is a
set of vectors Vζ such that for any v P Sd´1 there exist u such that =pu, vq ď ζ. It is known
that each vector in the sphere can be characterized by d ´ 1 angles φ1, φ2, ..., φd´1 where
φi P r0, 2πs and for any other j, φj P r0, πs. Therefore by discretizing the interval r0, πs we
can create a ζ-angle cover of size 2rπ{ζsd´1.

▶ Proposition 4 (Proof omitted.). Let ζ ă 1
2 . Let Vζ be a ζ-angle cover of Sd´1. Then

@u P Sd´1 the closest v P Vζ satisfies }u ´ v} ď
?

2ζ.

Tukey Depth

Given a finite set of points P Ă Rd, the Tukey depth [26] of a point x P Rd w.r.t P is defined
as TDpx, P q “ minuPSd´1 |tp P P : xp, uy ď xx, uyu|. Given P and a depth parameter κ ě 0
we denote the κ-Tukey region as DP pκq “ tx P Rd : TDpx, P q ě κu. It is known that for any
set of points P it holds that κ˚ “ maxx TDpx, P q P r

|P |

d`1 , |P |

2 s (see [14]). It is also known
that for all κ, the (non-empty) set DP pκq is a convex polytope which is the intersection of
all closed halfspaces that contain at least n ´ κ ` 1 points out of P [24], this yields a simple
algorithm to compute the κ-Tukey region in time Opnpd´1qt d

2 uq. There is a faster algorithm to
compute the κ-Tukey region in time Opnd log nq [20], and so to compute all of the non-empty
Tukey-regions in time Opnd`1 log nq.

Differential Privacy

The formal definition of differential privacy [10, 12] is as follows.

▶ Definition 5. Two datasets P and P 1 are called neighbors if they differ on a single datum,
and in this work we assume that this means that |P△P 1| “ 1. A randomized algorithm A is
said to be pε, δq-differentially private (DP) if for any two neighboring datasets P and P 1 and
for any set of possible outputs S it holds that PrrApP q P Ss ď eε PrrApP 1q P Ss ` δ. When
δ “ 0 we say A is ε-DP or ε-pure DP.

Differential privacy composes: if A is pε, δq-DP and B is pε1, δ1q-DP, then applying A
and then applying B sequentially on P is a pε ` ε1, δ ` δ1q-DP algorithm. It is also worth
noting the advanced-composition theorem [13], where the sequential application of k pε, δq-
DP algorithms yields in total an algorithm which is pOpε

a

k lnp1{kδqq, 2kδq-DP (provided
ε ă 1). Since we deal with a constant dimension d, then whenever we compose polypdq-many
mechanisms, we rely on the basic composition; and whenever we compose exppdq-many
mechanisms, we rely on the advanced composition.

The Laplace additive noise is a ε-DP algorithm that works as follows. Given a func-
tion f that maps inputs to real numbers, we first find its global sensitivity GSpfq “

maxP,P 1neighbors |fpP q ´ fpP 1q|, then output fpP q ` LappGSpfq{εq. It is also worth noting

ITC 2021



18:8 Differentially Private Approximations of a Convex Hull

the Sparse Vector Technique which is an ε-DP algorithm that allows us to assess t queries
q1, q2, .., qt, each with GSpqiq “ 1, and halt on the very first query that exceeds a certain
(noisy) threshold. Our algorithms repeatedly rely on the SVT.

Private Approximations of Quasi-Concave Functions

In our work we use as “building blocks” several known results in differential privacy regarding
approximating quasi-concave functions. A function q : R Ñ R is a quasi-concave function if
for any x ď y ď z it holds that qpyq ě mintqpxq, qpzqu. Quasi-concave functions that obtain
a maximum (namely, there exists some x P R such that @y, qpxq ě qpyq) have the property
that the maximum is obtained on a single closed interval I “ rx, ys (we allow the case x “ y,
or I “ txu). Moreover, it follows that on the interval p´8, xq the function q is monotone
non-decreasing and on the interval py, 8q the function q is monotone non-increasing. The
following is known about DP-approximations of quasi-concave functions.

▶ Theorem 6. Let q be any function q : R Ñ R satisfying (i) q is quasi-concave, (ii)
q has global-sensitivity 1 and (iii) for every closed interval I one can efficiently compute
maxxPI qpxq. Let G Ă R be a grid of granularity Υ “ 2´υ, and denote q˚ “ maxxPG qpxq.
Then, for any 0 ă β ă 1{2 there exist differentially private algorithms that w.p. ě 1 ´ β

return some x P G such that qpxq ě q˚ ´ αqcpε, δ, βq where

αqc
pε, δ, βq “

$

’

’

’

&

’

’

’

%

Op
υ`logp1{βq

ε
q, using ε-DP binary-search

Õp
logpυ{βεδq

ε
q, using the “Between Thresholds” Algorithm [7]

O

ˆ

8log˚pυq log˚pυq

ε
¨ logp

log˚pυq

βδ
q

˙

using the “RecConvace” algorithm [4]

The first bound is given by standard ε-DP binary search algorithm (folklore). The second
bound is given by the rather intuitive “Between Threshold” algorithm of Bun et al. [7]
where instead of the standard counting function fpzq “ |tx : x ď zu| we use the function
fpzq “ max

xPp´8,zs
qpxq ´ max

xPrz,8q
qpxq and set thresholds close to 0 (indicating a maximization

point of q). The third is the RecConcave algorithm by [4] and is rather involved. (It is
unknown6 whether the recent work [17] is applicable to general quasi-concave functions.)

3 Notions of Kernels and Fatness Suitable for Private Approximation

Prior to presenting our algorithm(s) for finding a kernel of a Tukey-region, we first discuss
our goal – what it is we wish to output, and our premise – the kinds of datasets on which
we are guaranteed to release such outputs. Recall, our goal is to give a differentially private
algorithm that outputs a collection of points S which is a pα, ∆q-kernel of DP pκq. Namely,
this S satisfies that (after shifting) p1 ´ αqDP pκq Ă CHpSq Ă p1 ` αqDP pκ ´ ∆q. Clearly,
for any two convex bodies s.t. A Ă B and for any projection Π we have that ΠpAq Ă ΠpBq.
(In fact, this holds for any affine transformation.) So if S is a pα, ∆q-kernel of DP pκq then it
also holds that

@u P Sd´1 p1´αq max
p,qPDP pκq

xp´q, uy ď max
p,qPCHpSq

xp´q, uy ď p1`αq max
p,qPDP pκ´∆q

xp´q, uy (1)

In the standard / non-private setting, the definition of kernel [1] is equivalent to pα, 0q-kernel
(i.e., setting ∆ “ 0). Moreover, as defined in [1], a pα, 0q-kernel must satisfy both the property

6 Uri Stemmer, private correspondence.
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Figure 2 An example showing that the property of Equation (1) doesn’t imply that p1´αqDP pκq Ă

CHpSq. Suppose DP pκq is an equilateral triangle of edge-length 2r and S happens to be a ball of
diameter 2 ¨ 0.99 ¨ r (and DP pκ ´ ∆q is a much larger region). Note that S does satisfy Equation (1)
for α “ 0.01 yet 0.99DP pκq Ć CHpSq.

in (1) and the property that S Ă DP pκq; and it is straight-forward to show that together, the
two properties yield the containment p1 ´ OpαqqDP pκq Ă CHpSq Ă DP pκq. It turns out that
in the private setting, with ∆ ą 0, since it doesn’t necessarily hold that S Ă DP pκq, then
property (1) alone does not guarantee that we output an pα, ∆q-kernel. Figure 2 illustrates
such a setting. So instead, we give algorithms whose resp. outputs satisfy variations of the
projection property in (1). Below we state two claims showing that the different variations
do yield a kernel. The (far from trivial) proofs of the two claims are deferred to the full
version of this work.

▷ Claim 7. Let S be a set that satisfies the following property in regards to DP pκq and
DP pκ ´ ∆q:

@u P Sd´1, max
pPDP pκq

xp, uy ´ α ¨ widthκ ď max
pPCHpSq

xp, uy ď max
pPDP pκ´∆q

xp, uy ` α ¨ widthκ´∆ (2)

then, denoting α1 “ 2α
b

d ` 1
2 , there exists two vectors p1 and p2 such that we can

shift DP pκq and DP pκ ´ ∆q and have that p1 ´ α1qpDP pκq ´ p1q Ă CHpSq ´ p1 and
CHpSq ´ p2 Ă p1 ` α1qpDP pκ ´ ∆q ´ p2q.

▷ Claim 8. Fix α ă 1{6 and let S Ă DP pκ ´ ∆q be a set such that there exists a point
c P DP pκq X S for which

@u P Sd´1, p1 ´ αq max
pPDP pκq

xp ´ c, uy ď max
pPCHpSq

xp ´ c, uy ` α ¨ widthκ (3)

then, denoting α1 “ α
1´α p1 ` 4

b

d ` 1
2 q, there exists a vector b such that we can shift DP pκq

and CHpSq by b and have that DP pκq ´ b Ă p1 ` α1q pCHpSq ´ bq.

Definition of Fatness

The algorithms we provide are such that their respective outputs satisfy the premises of
Claims 7 and 8. Unfortunately, these algorithms do not return useful sets S for any DP pκq.
Much like in the non-private setting [1], in order for each algorithm to output a kernel of
DP pκq we must require that DP pκq satisfies a certain “fatness” property. In the standard,
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18:10 Differentially Private Approximations of a Convex Hull

non-private setting, a convex polytope DP pκq is called cd-fat [1] if there exists a constant
cd ě 1 (depending solely on the dimension d) where diampDP pκqq ď cdwidthpDP pκqq. Alas,
our differentially private algorithms require something stronger. Formally, we define the
follow various notions of fatness, using the shorthand notation widthκ

def
“ widthpDP pκqq.

▶ Definition 9. We say DP pκq is pcd, ∆q-fat if it holds that widthκ ě
diamκ´∆

cd
. We say

DP pκq is cd-absolutely fat if widthκ ě 1
cd

.

It is clear that the fatness properties can be violated by the addition or removal of a
single datapoint to/from P . Therefore, no differentially private algorithm can always assert
w.h.p. whether DP pκq is fat or not, nor estimate its fatness parameter cd. We comment
that in the non-private version [16] the obtained constant is d5{22dpd!q, whereas our fatness
constant is fairly similar: 4d5{25dpd!q.

A Simple Private Kernel Approximation Under “Absolute Fatness”

Under the premise that DP pκq is cd-absolutely fat, that is, that widthκ ě 1{cd (when cd is
known to the algorithm), we are able to give a pretty simple pα, ∆q-kernel approximation
algorithm. The algorithm partitions the r0, 1sd-cube into subcubes of side length 2α

cd

?
d
, and

for each subcube C checks whether max
xPC

TDpx, P q perturbed by Laplace noise is greater than

κ1 “ κ ´ ∆
2 , and if so – adds C’s center to S. Here ∆ is set using the union-bound on all

Laplace random-variables so that w.h.p. any C where C X DP pκq ‰ H adds its center to S.
The full details of the algorithm are deferred to the full version.

▶ Theorem 10. There exists an efficient, pε, δq-DP algorithm that returns w.p.
ě 1 ´ β a set S that satisfies that @u P Sd´1, maxpPDP pκqxp, uy ´ α ¨

widthκ ď maxpPSxp, uy ď maxpPDP pκ´∆kernelqxp, uy ´ α ¨ widthκ´∆kernel , where ∆kernel “

Opdp
cd

?
d

α qd{2
a

logp1{δq logp
cdd
αβ q{εq. So by Claim 7 S is a kernel for DP pκq.

Applications

Agarwal et al. [1] define a function µ of a dataset as a faithful measure if (i) µ is non-
negative, (ii) for every P Ă Rd we have µpP q “ µpCHpP qq, (iii) µ is monotone w.r.t
containment of convex bodies, and most importantly, that (iv) for some c P p0, 1q a p1 ´ cαq-
kernel of P yields a p1 ´ αq-approximation of µpP q “ µpCHpP qq. Obviously, any faithful
measure µ can be approximated by a pα, ∆q-kernel S where p1 ´ α

c qµpDP pκqq ď µpCHpSqq ď

p1 ` α
c qµpDP pκ ´ ∆qq. Thus, a pα, ∆q-kernel gives suitable approximations for problems such

as min/max enclosing ball, min bounding box, John’s Ellipsoid, surface-area etc. (all are
faithful measures).

3.1 Remainder of this Extended Abstract
In the full version of this work, we also present another (and more complex) algorithm, that
works under the premise that DP pκq is pcd, ∆q-fat. Similarly, our proposed heuristic for
finding whether the data is pcd, ∆q-fat is also deferred to the full version of this work. This
alternative algorithm and heuristics require additional “building blocks” such as privately
finding a point inside DP pκq and privately estimating the diameter, width and various
projections. These building blocks are described in Setions 4 and 5 resp. Note that these
additional algorithm and heuristics enable us to return a private kernel of DP pκq for a
user-specified value of κ provided the heuristics return “Yes.” Yet, should the heuristics
return “No,” what we do is to find a different value of κ for which a kernel of DP pκq we can
approximated.
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In Section 6 we show how to (privately) approximate the bounding box of DP pκq,
outputting a box whose volume is comparable to volpDP pκ ´ ∆qq. (This algorithm may
be of independent interest.) Furthermore, we argue that if it is indeed the case that the
volumes of DP pκq and DP pκ ´ ∆q are similar up to a multiplicative factor of 2, then such a
bounding box approximation yields a transformation that turns DP pκq into a p4d

5
2 5dpd!q, ∆q-

fat Tukey region. Thus, in Section 7 we detail an algorithm that returns a value of κ for
which volpDP pκ´∆qq

volpDP pκqq
ď 2. So the algorithm from Section 7 returns a value of κ, for which

the bounding box approximation algorithm of Section 6 does give a transformation that
turns DP pκq fat; implying that the above-mentioned kernel-approximation algorithm can
be successfully applied. The reader should be advised that Sections 4-7 are very succinctly
described, where we tried to highlight the main ideas of each algorithm and the (often quite
subtle) novelties in each algorithm’s design.

4 Tools, Part 1: The Tukey-Depth Completion Function

In this section we discuss the implementation of the following Tukey Depth Completion
function. This function takes as a parameter an i-long tuple of coordinates, where 0 ď i ă d,
and scores each x P R with a value κ if the i ` 1 prefix ȳ ˝ x can be completed to a point
with Tukey-depth of κ.

▶ Definition 11 ([3]). Fix d P N and let P be a collection of points in Rd. For any i-tuple of
coordinates ȳ “ py1, y2, ..., yiq where 0 ď i ď d ´ 1 we define the function TDCȳ : R Ñ R by

TDCP
ȳ pxq “ max

pz1,z2,...,zd´1´iqPRd´i´1
TD

`

py1, .., yi, x, z1, .., .zd´1´iq, P
˘

(4)

For any closed interval I “ ra, bs Ă R we overload the definition of TDC to denote
TDCP

ȳ pIq “ maxxPra,bs TDCP
ȳ pxq. Lastly, for any such ȳ and any ℓ P R we denote

ℓ-TDCP
ȳ pxq “ mintTDCP

ȳ pxq, TDCP
ȳ px ` ℓqu, and similarly, ℓ-TDCP

ȳ pIq “ max
xPI

ℓ-TDCP
ȳ pxq.

We omit the superscript P whenever the dataset is clear.

In the full version of this work we prove that both the TDC-function and the ℓ-TDC-
function are quasi-concave. So it follows that on the real line the values of the TDC-function
ascend from 0 to the max-value (ď n{2), then descend back to 0. In particular, for any κ

(ranging from 0 to the max-value of the TDCȳ-function), there exists an interval raκ, bκs such
that x P raκ, bκs if and only if TDCȳpxq ě κ. And so, we give a simple, LP-based, algorithm
that finds these set of nested intervals traκ, bκsuκą0, and then – through binary search –
finds the maximum κ whose interval intersect the given point x or interval I. (Note that
this binary search is over ď n elements so it runs in time Oplogpnqq.)

Extension

One of the key uses to the TDC-function we rely on is when we rotate directions so that the
first axis aligns with a given direction v. In such a case, this is equivalent to rotating the set
P , so we use the notation TDCRvpP q

ȳ and on occasion just TDCRv
ȳ .

A Technical Point: Grid Refinement

We established that for any 0 ď i ď d ´ 1 and any prefix ȳ there exists an efficient algorithm
that computes TDCȳpxq and ℓ-TDCȳpxq. But as by Beimel et al. [3] noted, it is not a-priori
clear that the coordinates of the completion lie on the same grid Gd we start with. Throughout
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18:12 Differentially Private Approximations of a Convex Hull

most of this paper we ignore this subtlety,7 but we do formally show in the full version
how to refine G into a grid G1 with granulatiry of at least pΥ{dqOpd4

q where the output has
all of its coordinates in G1. The crux of this result is that all coordinates of all vertices of
DP pκq have granularity ě pΥ{dqOpd2

q (see [19]), and that finding the above-mentioned aκ, bκ

requires inverting a pi ` 1q ˆ pi ` 1q-matrix whose entries are coordinates of vertices of DP pκq.
So we end up requiring a refinement of only pΥ{dqOpi¨d2

q per i P t1, 2, .., du, so overall our
refinement has granularity pΥ{dqOpd4

q.

Summary

Now that we refined the grid from G to G1 with granularity Υ4d4
“ 2´υp4d4

q, we can apply
any DP-algorithm that w.p.ě 1 ´ β returns a point on G1 with roughly the same value of
the maximal value. This gives a DP-algorithm that returns w.p.ě 1 ´ β a point x P G1 with
either TDCȳ-value or ℓ-TDCȳ-value which is αqcp¨, ¨, ¨q-close to the max-possible value on the
grid. Altogether, we have the following corollary.

▶ Corollary 12. Fix ε ą 0, δ ě 0, β P p0, 1{2q. There exists an efficient pε, δq-DP-algorithm,
denoted DPPointInTukeyRegion, that takes as input a dataset P and a parameter κ where
DP pκq ‰ H and w.p. ě 1 ´ β returns a point x̄ P pG1qd whose Tukey-depth is at least
κ ´ dαqcp ε

d , δ
d , β

d q ě n
d`1 ´ dαqcp ε

d , δ
d , β

d q. In particular, for any κ ě 0 we return a point of
Tukey-depth ě κ provided n “ Ωpdκ ` d2αqcp ε

d , δ
d , β

d qq

“

$

’

’

&

’

’

%

Ωpdκ ` d3 d4υ`logpd{βq

ε
q, Using the ε-DP binary-search

Ω̃pdκ ` d3 logpdυ{βεδq

ε
q, Using the “Between Thresholds” algorithm

Ωpdκ ` d3 8log˚pdυq log˚pdυq¨logpd log˚pυq{δβq

ε
q, Using the “RecConcave” algorithm

(5)

We comment that quantitatively, the results are just as those obtained by [3] (with a minor
exception of their granularity level set to Υ2d), and as such are better than the utility
guarantee of [19] when δ ą 0. The key improvement of our work is the runtime, decreased to
polypυq.

5 Tools, Part 2: Approximating the Diameter and Width of a
Tukey-Region

The Diameter

In this section our goal is to approximate the diameter of DP pκq, denoted diamκ “

maxa,bPDP pκq

}b ´ a}. Our algorithm returns a pα, ∆q-approximation of diamκ, namely a value ℓ

satisfying p1 ´ αqdiamκ ď ℓ ď diamκ´∆. In order to find such an approximation, we leverage
on the idea of discretizing all possible directions, which is feasible in constant-dimension
Euclidean space. Denoting Vζ as a ζ-angle cover of the unit sphere it is straight-forward
to show that p1 ´ ζ2qdiampP q ď maxvPVζ

maxa,bPP xb ´ a, vy ď diampP q. Based on Vζ , our
approximation merely uses the Sparse-Vector Technique (SVT). For each ℓ we pose the
query qP pℓq “ maxvPVζ

maxxPR ℓ-TDCRvpP q
pxq where Rv is a rotation that sets v as the first

vector basis. The details of the algorithm and its proof of correctness are deferred to the full
version of this work.

7 So instead of formally stating “we find a point p inside the convex body” we should say “we find a
point p within distance

?
dΥ from a point inside the convex body.” After all, our work already deals

with approximations, so under the (rather benign) premise that the diameter of the convex body is
sufficiently larger than Υ, this little additive factor changes very little in the overall scheme.
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▶ Theorem 13. There exists an algorithm DPTukeyDiam which is an efficient ε-DP algorithm
that w.p. ě 1 ´ β returns a value ℓ which is pα, ∆q-approximation of diamκ for ∆diampε, βq “

Op
logppυ`logpdqq{αβq

ε q.

The Width

We now turn our attention to the width estimation of the Tukey region DP pκq. Informally, the
width of a set is the smallest “sandwich” of parallel hyperplanes that can hold the entire set.
Formally, widthκ “ minvPSd´1 maxa,bPDP pκq |xb, vy ´ xa, vy|. Our private approximation gives
a pα, ∆q-approximation of the width – a value w where p1´αqwidthκ ď w ď p1`αqwidthκ´∆.
It is tempting to think that, much like the approach for diameter approximation, a similar
discertization/cover of all directions ought to produce a p1 ` αq-approximation of the width.
Alas, this approach fails when the width is very small, smaller than the discretization level.
But when the discretization is up-to-scale, then we can easily argue the correctness of the
discretization approach. The following is proven in the full version of this work.

▶ Proposition 14. Fix any α ą 0. Given a set P Ă Rd with diameter D and width w, if we
set ζ ď mint αw?

2D
, 1

2 u and take Vζ as a ζ-angle cover of the unit-sphere, then we have that
w ď minvPVζ

maxa,bPP xb ´ a, vy ď p1 ` αqw.

Following Proposition 14 we present our private approximation of widthκ. This approx-
imation also leverages on the query ℓ-TDC for a decreasing sequence of lengths ℓ1 ą ℓ2 ą ...,
however, as opposed to diameter approximation, with each smaller ℓ we also use a dif-
ferent discretization of the unit sphere. For each ℓi we set ζi “ αℓi

4D and use the query
qP pℓiq “ minvPVζi

maxxPR ℓi-TDCRvpP q
pxq. We prove that (i) if widthpDP pκqq ě ℓi then

qP pℓiq ě κ; and (ii) if widthpDP pκqq ď p1 ´ αqℓi and ζi ď αℓ
4D then qP pℓiq ă κ. Thus our

algorithm is merely an application of the SVT with these queries. Algorithm’s details and
proofs appear in the full version of this work.

▶ Theorem 15. There exists an algorithm DPApproxWidth which is a ε-DP algorithm that
w.p. ě 1 ´ β returns a value ℓ which is pα, ∆q-approximation of widthκ for ∆widthpε, βq “

Op
logppυ`logpdqq{αβq

ε q.

Note that our width-approximation algorithm requires we refine the angle-cover Vζ with
each iteration. Without any a-priori lower bound on the width, the refinement can be as small
as Υ, which renders our algorithm inefficient. That is why in our work we rely on having a
particular lower bound, of 1{p4d

5
2 ¨ 5d ¨ pd!qq (which is our fatness bound). In addition, our

full version also describes here two additional algorithms (also SVT-based) for subroutines
we will require later: estimating the max-projection from a point and finding a direction on
which some specific scalar has large TDC-value.

6 Private Approximation of the Bounding Box of DP pκq

In this section we give a differentially private algorithm that returns a transformation
that turns DP pκq into a fat Tukey-region. The transformation is based on (privately)
finding an approximated bounding-box for DP pκq, and once such a box is found, then the
transformation T is merely an affine transformation, composed of rotation and scaling, that
maps the bounding box B to the hypercube r0, 1sd. We thus focus in this section on a
private algorithm that gives a pcd, ∆q-approximation of the bounding box of DP pκq, so our
algorithm’s guarantee relates to both the volume of DP pκq and the volume of DP pκ ´ ∆q.
Formally, we return (w.h.p) a box B which is a bounding box that holds DP pκq and where
volpBq ď 5d ¨ pd!q ¨ volpDP pκ ´ ∆qq.
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18:14 Differentially Private Approximations of a Convex Hull

The algorithm mimics the non-private bounding-box algorithm in [16] (Ch.18). It is a
recursive algorithm, where in each level of the recursion we find a segment s̄t and an interval
I on the line extending this segment where the following three properties must hold: (i) both
s, t P DP pκ ´ ∆q, (ii) the length of I is ď 5}s ´ t} and (iii) @x P DP pκq, the projection of
x onto this line lies inside I. We then project onto the space orthogonal to s̄t and recurse.
Property (iii) asserts that DP pκq is contained inside the box we return; property (i) combined
with Fact 3 allows us to infer that volpDP pκ ´ ∆qq ě }s ´ t} ¨ volpΠKstpDP pκ ´ ∆qqq{d where
ΠKst is the projection onto the subspace orthogonal to the line connecting s and t; and
property (ii) asserts }s ´ t} ě |I|{5 so that recursively we get a 5d ¨ d! approximation of
volpDP pκ ´ ∆qq. Thus, asserting that these properties hold w.h.p. becomes the goal of our
algorithm, which is far from trivial. Details appear in the full version, along with the proof
of the algorithm’s correctness.

▶ Theorem 16. Let P Ă Gd be a set of points whose Tukey-region κ `

dαqcp ε
d2`2d´1 , δ

d2`2d´1 , β
d2`2d´1 q is non-empty. Then there exists an efficient pε, δq-DP

algorithm that w.p. ě 1 ´ β returns a box B where DP pκq Ă B and volpDP pκqq ď volpBq ď

5dpd!qvolpDppκ ´ ∆BBqq for

∆BB
pε, δ, βq “

$

’

’

&

’

’

%

Op
d3pυ`logpd{βqq

ε
q, Using ε-DP binary search

Õp
d3logpdυ{εδβq

ε
q, Using the “Between Threshold” Alg

Op
d3logpdυ{βq

ε
`

d38log˚pυq log˚pυq logpd log˚pυq{δβq

ε
q, Using the “RecConcave” algorithm

From a Bounding Box to a “Fat” Input

In classic, non-private, computational geometry, the bounding-box approximation algorithm
can be used to design an affine transformation T that turns the input dataset into a fat
input, using a rotation and a separate rescaling of each axis so that B is mapped to r0, 1sd.
Then, finding a kernel for the fat dataset and applying T ´1 gives a kernel for the original
set of points. Unfortunately, we cannot make a similar claim in our setting. Granted, our
bounding box is pcd, ∆q-approximation for any P ; but the resulting affine transformation does
not, always, guarantee that applying it turns DP pκq to be pc1

d, ∆q-fat or c1
d-absolutely fat.

This should be obvious, since when DP pκ ´ ∆BBq is drastically bigger than DP pκq and B is
proportional to DP pκ ´ ∆BBq, mapping B to r0, 1sd doesn’t “stretch” DP pκq enough to make
it fat. Luckily, we show that non-comparable volumes is the only reason this transformation
fails to produce a fat Tukey-region.

▶ Lemma 17. Fix ε ą 0, δ ě 0 and β ą 0, and define ∆BB as in Theorem 16. Suppose
P Ă Gd is such that for some two parameters κ ě κ1, where κ ´ κ1 ě ∆BB, we have that
volpDP pκqq ě 1

2 volpDP pκ1qq. Then there exists a pε, δq-differentially private algorithm that
w.p. ě 1 ´ β computes (i) an affine transformation M that turns MpDP pκqq into a convex
polytope which is pcd, κ ´ κ1q-fat, for cd “ 4d

5
2 5d ¨ pd!q, and (ii) a transformation M̃ making

M̃pDP pκqq 2d ¨ 5d ¨ pd!q-absolutely fat.

7 Finding a “Good” κ Privately

Our discussion in Section 6 leaves us with the question of finding a “good” κ and κ1 “

κ ´ ∆kernel – where volpDP pκqq ě volpDP pκ ´ ∆kernelqq{2. First, we establish that there
are many such good pairs. [19] proved that if the volume of a Tukey region is non-zero,
then it is at least pd{Υq´d3 . Thus, we set t “ rd3υ ` d3 log2pdqs and so it must hold for
any series κ1 ă κ2 ă ... ă κt of length t that at least one pair of adjacent κi, κi`1 is good,



Y. Gao and O. Sheffet 18:15

for otherwise the volpDP pκtqq is below the lower bound of [19]. Consider the specific series
where κi “ i ¨ p4∆kernelq and denote m “ κt. Here, a good pair κi, κi`1 are 4∆kernel apart,
therefore many κs in some interval rκi, κi`1s are good, a fact we rely on in the design of our
private algorithm.

To that end, we define the query
qP pκq

def
“ max

!

0 ď i ď mintκ ´ 1, m ´ κu : volpDP pκ`iqq

volpDP pκ´iqq
ě 1

2

)

. Our goal is to retrieve a
κ where qP pκq ě ∆kernel since then pκ, κ ´ ∆kernelq is a good pair. It is obvious that
@κ, qppκq ě 0 and that qP p1q “ qP pmq “ 0, but we also prove in the full version that for
any neighboring P and P 1 “ P Y txu it holds that |qP pκq ´ qP 1 pκ ` 1q| ď 1. And so our
ε-DP algorithm first picks a value of κ w.p. 9 expp ε

8 qP pκqq and then adds Laplace noise
(rounded to an integer) to it. Based on all of the above mentioned properties we prove that
this “Shifted Exponential Mechanism” is indeed ε-DP. We then argue about its utility, which
is far more straight-forward, and obtain the following conclusion.

▶ Corollary 18. Fix ε ą 0, δ ě 0, β ą 0 and set ∆kernel as in The-
orem 10 and m “ 4rd3υ ` d3 log2pdqs∆kernel. Let P Ă Gd be a set of
points such that DP pmq is non-empty and non-degenerate. Then w.p. ě

1 ´ β, our “Shifted Exponential Mechanism”’ returns a value κ such that
volpDP pκqq{volpDP pκ ´ ∆kernelqq ě 1{2.
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