
Genome Halving and Aliquoting Under the Copy
Number Distance
Ron Zeira1 #

Department of Computer Science, Princeton University, NJ, USA

Geoffrey Mon1 #

Department of Computer Science, Princeton University, NJ, USA

Benjamin J. Raphael2 #

Department of Computer Science, Princeton University, NJ, USA

Abstract
Large-scale genome rearrangements occur frequently in species evolution and cancer evolution.
While the computation of evolutionary distances is tractable for balanced rearrangements, such as
inversions and translocations, computing distances involving duplications and deletions is much more
difficult. In the recently proposed Copy Number Distance (CND) model, a genome is represented
as a Copy Number Profile (CNP), a sequence of integers, and the CND between two CNPs is the
length of a shortest sequence of deletions and amplifications of contiguous segments that transforms
one CNP into the other. In addition to these segmental events, genomes also undergo global events
such as Whole Genome Duplication (WGD) or polyploidization that multiply the entire genome
content. These global events are common and important in both species and cancer evolution. In
this paper, we formulate the genome halving problem of finding a closest preduplication CNP that
has undergone a WGD and evolved into a given CNP under the CND model. We also formulate the
analogous genome aliquoting problem of finding the closest prepolyploidzation CNP under the CND
distance. We give a linear time algorithm for the halving distance and a quadratic time dynamic
programming algorithm for the aliquoting distance. We implement these algorithms and show that
they produce reasonable solutions on simulated CNPs.
2012 ACM Subject Classification Applied computing → Molecular evolution
Keywords and phrases Genome rearrangements, Copy number distance, Whole genome duplication,
polyploidization, genome halving distance, genome aliquoting distance
Digital Object Identifier 10.4230/LIPIcs.WABI.2021.18
Supplementary Material Software (Source Code): https://github.com/raphael-group/CND-
aliquoting

Funding Benjamin J. Raphael2]Corresponding author : This work is supported by a US National
Institutes of Health (NIH) grants U24CA211000 and U24CA248453.

1 Introduction

Genomes evolve over time through many types of mutations ranging from single-nucleotide
mutations through large-scale alterations that affect both the order and the amount of genetic
material. Such large-scale changes, termed genome rearrangements, are observed both in the
evolution of species and of cancer cells [38, 28, 37, 10, 6, 23, 16]. Genome rearrangements can
be categorized into two classes: structural rearrangements such as reversals, translocations
and transpositions that change the order of DNA segments but not their quantity; and
numerical rearrangements such as duplications and deletions that either create new copies
of existing DNA segments or remove segments of the genome. The result of one genome
evolving into another by a series of genome rearrangements is a new genome having a different
structure and amount of DNA.

1 First author
2 Corresponding author

© Ron Zeira, Geoffrey Mon, and Benjamin J. Raphael;
licensed under Creative Commons License CC-BY 4.0

21st International Workshop on Algorithms in Bioinformatics (WABI 2021).
Editors: Alessandra Carbone and Mohammed El-Kebir; Article No. 18; pp. 18:1–18:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rzeira@princeton.edu
https://orcid.org/0000-0003-2477-3078
mailto:gmon@princeton.edu
https://orcid.org/0000-0003-4414-1019
mailto:braphael@princeton.edu
https://orcid.org/0000-0003-1274-048X
https://doi.org/10.4230/LIPIcs.WABI.2021.18
https://github.com/raphael-group/CND-aliquoting
https://github.com/raphael-group/CND-aliquoting
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 CND Halving and Aliquoting

Computational models of genome rearrangements aim to calculate the minimum number
of rearrangement events that transform one genome into the other, also called the genome
rearrangement distance. Several types of rearrangement models have been proposed for
structural events including the breakpoint (BP) distance [32, 31, 39], single-cut-or-join
(SCJ) [13], the Hannenhalli-Pevzner model (HP) [18, 19] and the more general double-
cut-and-join (DCJ) model [43, 3]. Representing the genome in these models requires the
identification of homologous segments between the two genomes analyzed and determining
the adjacencies between these segments in each genome. However, while these models admit
polynomial time algorithms for the rearrangement distance when each genomic segment
has a single copy in each genome, allowing for multiple copies often results in NP-hard
problems [14].

Besides local rearrangement events, whole genome duplication (WGD) or polyploidization
(>2 multiplication) events are viewed as a fundamental step in genome evolution as the
multiplication of the genomic contents allows greater diversification of gene functions. In
species evolution there has been strong evidence for WGD events reported for vertebrates [21],
yeast [42] and for many plant genomes [5]. In fact, all angiosperms have undergone at least
one WGD event in their evolutionary history and polyploidization is recognized as a major
driving force for plant speciation [29]. In addition to species evolution, WGD is also a
frequent event in cancer evolution with an estimated frequency of more than 30% in recent
cancer studies [7, 45, 4, 9]. Furthermore, WGD is associated with poor prognosis across
cancer types [4].

A basic question in the computational analysis of WGD is to reconstruct a closest
ancestral preduplicated genome for a given extant genome. Namely, given a genome G and a
rearrangement distance d(·, ·), the genome halving problem seeks to find an ancestral genome
A such that the rearrangement distance d(2A, G) between the duplicated genome 2A and
the extant genome G is minimized [12]. The genome halving problem can be solved in linear
time for the BP distance [39, 22], the SCJ distance [13], the HP distance [1] and the DCJ
distance [25, 40, 2]. A generalization of the halving problem for polyploidization, i.e. finding
a closest premultiplication (p > 2) genome is called the genome aliquoting problem [40]. The
genome aliquoting problem can be solved in polynomial time for the BP distance [41] and the
SCJ distance [13], while the complexity of the problem is not resolved for the DCJ distance,
though a 2-approximation algorithm exists [41]. Apart from finding a preduplication genome,
the genome halving and aliquoting problems also measure how close the extant genome is
to a duplicated genome. By comparing different values of p. this allows us, for example, to
distinguish if a genome has undergone duplication or triplication.

Motivated by applications in cancer evolution, alternative genome rearrangement models
that focus on numerical rearrangement have recently been introduced [34, 8]. These models
represent a genome as a copy number profile (CNP), a vector of integers indicating the number
of copies of each segment from a reference genome. Thus, unlike structural rearrangement
models, CNPs do not model the sequence of rearranged segments, but only the number of
copies of segments of the reference genome. Therefore, genomes with different order of the
segments may have the same CNP. However, the CNP representation is useful because it
can be readily derived from DNA sequencing data or microarrays [7, 26, 17, 27, 35, 15]. The
Copy Number Transformation (CNT) model models the evolution of CNPs by amplifications
and deletions [34]. In this model an amplification (resp. deletion) increases (resp. decreases)
the entries in a contiguous interval of the CNP. The Copy Number Distance (CND) between
two profiles is defined as the length of a shortest sequence of amplifications and deletions that
transform one profile into the other. The CND can be computed in linear time [46], and has

R. Zeira, G. Mon, and B. J. Raphael 18:3

been used to analyze evolution of the genomes of multiple cancer types [34, 33, 36, 24, 44].
However, the CND does not adequately model WGD and polyploidzation events, which are
frequent in cancer.

In this paper, we formulate the genome halving and genome aliquoting problems for
CNPs under the CND model and give polynomial time algorithms for both problems. Similar
to other rearrangement models, we define the halving and aliquoting distances under the
CND model as the minimum CND from some duplicated CNP to a given extant CNP. For
the copy number halving distance problem, we give a very simple linear time algorithm for
finding a closest preduplicated CNP of an extant CNP. Moreover, we show that we can
find a closest preduplicated CNP such that a the CND to the extant profile contains only
deletions or a maximum number of amplifications. WGD followed by massive loss of genes
is commonly known in evolution and thus finding a preduplication profile having such that
after WGD there are only deletions is biologically reasonable [20]. For the copy number
aliquoting problem we give a quadratic time dynamic programming algorithm. To this end
we show that there exists a preduplicated CNP where each position in the profile is either
amplified or deleted, and the number of new operations starting at each position is bounded.
Furthermore, we show that each row in the dynamic programming table is a non decreasing
function, thus enabling the calculation of each entry in constant time. We implement our
algorithms and show on simulated data they are able to reconstruct a preduplication profile.

2 Preliminaries

In this section we present the CND model (Section 2.1) and formulate the halving and
aliquoting problem under this model (Section 2.2).

2.1 Copy number profiles and distance
A copy number profile (CNP) V = ⟨v1, . . . , vn⟩ is a vector of non-negative integers. We refer
to each coordinate in a copy number profile as a gene although more generally these entries
correspond to genomic segments or synteny blocks. Each entry of a copy number profile
gives the number of copies of the gene in the genome. For example, V = ⟨0, 10, 15, 30⟩ is a
CNP with four genes, where the second gene of V has 10 copies.

For integers i, j with i ≤ j let [i, j] = [i, i + 1, i + 2, . . . , j] denote the interval of integers
from i to j. A copy number operation (CNO) is a triple (ℓ, h, w) where ℓ, h ∈ [1, n] denote
two genes, and w ∈ {−1, 1} denotes whether the CNO is a deletion or an amplification,
respectively. We call ℓ and h the start and end genes (inclusive) of the contiguous segment
[ℓ, h] of the CNP onto which the CNO is applied. When a CNO c = (ℓ, h, w) is applied to a
CNP V = ⟨vi⟩n

i=1, the result is a new CNP c(V) = U = ⟨ui⟩n
i=1 defined as follows:

ui =


vi i /∈ [ℓ, h]
0 vi = 0 and i ∈ [ℓ, h]
vi + w vi > 0 and i ∈ [ℓ, h]

We say that a gene i is targeted by a CNO c = (ℓ, h, w) if ℓ ≤ i ≤ h.
A copy number transformation (CNT) is a vector C = ⟨c1, c2, . . . , cm⟩ of CNOs. We apply

a CNT C on a CNP U in order, i.e., C(U) = cm(cm−1(. . . c2(c1(U)) . . .)). The cardinality
or size of a CNT is the number of CNOs, and is denoted |C|. We say that a CNT C has
direction U → V if C(U) = V .

WABI 2021

18:4 CND Halving and Aliquoting

Given two CNPs U and V of n genes, the copy number distance (CND) d(U, V) is the
smallest integer t such that there exists some CNT C where |C| = t and C(U) = V , i.e. t

is the minimum number of CNOs required to transform U into V . While we use the term
distance for CND, note that the CND is neither symmetric nor satisfies the triangle inequality.
We call a CNT C optimal for the direction U → V if |C| = d(U, V) and C(U) = V . For
example, d(⟨2, 1, 0, 1, 2, 2⟩, ⟨4, 0, 0, 0, 3, 4⟩) = 3 and an optimal transformation includes one
deletion and two amplifications (Figure 1a). If no CNT of any size exists between U and
V , then the distance d(U, V) = ∞. For instance, there is no transformation for the reverse
direction ⟨4, 0, 0, 0, 3, 4⟩ → ⟨2, 1, 0, 1, 2, 2⟩ in the previous example (Figure 1a).

In addition to CNOs that increase or decrease the CNs of a CNP by 1, we introduce here
a new operation for multiplying a CNP by a scalar. For a CNP S and an integer p > 1, we
denote by pS = ⟨ps1, ps2, . . . , psn⟩ a duplicated CNP where each gene is multiplied by p. We
call S the preduplicated CNP of duplicated CNP pS.

𝟐𝟐𝟏𝟎𝟏𝟐

210002

320003

𝟒𝟑𝟎𝟎𝟎𝟒 𝒕𝟔𝒕𝟓𝒕𝟒𝒕𝟑𝒕𝟐𝒕𝟏

𝑠'𝑠(𝑠)𝑠*𝑠+𝑠,

𝑝𝑠'𝑝𝑠(𝑝𝑠)𝑝𝑠*𝑝𝑠+𝑝𝑠,

×𝑝(2,5, −1)

(1,6, +1)

(1,6, +1)
𝐶 = 𝑐!, … , 𝑐"

𝟔𝟏𝟓𝟒𝟐𝟑

313212

626424

×2

626423

(1,1, −1)

(4,5, −1)

𝟔𝟏𝟓𝟒𝟐𝟑

212211

636633

×3

(2,5, −1)

(3,3, −1)

625523

(5,5, −1)

(𝑎) (𝑑)(𝑐)(𝑏)

Figure 1 (a) A copy number transformation from ⟨2, 1, 0, 1, 2, 2⟩ to ⟨4, 0, 0, 0, 3, 4⟩ includes one
deletion (red dotted line) and two amplifications (green solid lines). (b) Schematic overview of the
aliquoting problem. Given a CNP T = ⟨t1, . . . , tn⟩ (bold) and integer p ≥ 2, find a preduplication
profile S = ⟨s1 . . . sn⟩ that minimizes d(pS, T). (c-d) The halving and aliquoting (p = 3) solutions
for CNP ⟨3, 2, 4, 5, 1, 6⟩.

2.2 Copy number halving and aliquoting problems
Given a CNP T , we define the CNP halving distance η2(T) as the minimum CND between a
doubled profile 2S and T :

η2(T) = min
S

d(2S, T)

Similarly, for a CNP T and an integer p ≥ 2, we define the CNP aliquoting distance ηp(T) as
the minimum CND between a duplicated profile pS and T :

ηp(T) = min
S

d(pS, T)

We say that Ŝ is an optimal preduplicated CNP of an extant CNP T for the halving (aliquoting
resp.) problem if η2(T) = d(2Ŝ, T) (ηp(T) = d(pŜ, T) resp.). We formulate the problems of
finding an optimal preduplicated CNP as follows (Figure 1b).

▶ Copy Number Profile Halving Problem. Given a CNP T , compute the halving distance
η2(T) and find an optimal preduplication profile Ŝ.

▶ Copy Number Aliquoting Halving Problem. Given a CNP T and an integer p, compute
the aliquoting distance ηp(T) and find an optimal preduplication profile Ŝ.

R. Zeira, G. Mon, and B. J. Raphael 18:5

For example, for the CNP T = ⟨3, 2, 4, 5, 1, 6⟩ the halving distance is η2(T) = 2 using
a preduplication profile Ŝ = ⟨2, 1, 2, 3, 1, 1⟩ (Figure 1c) whereas the aliquoting distance is
η3(T) = 3 using a preduplication profile Ŝ = ⟨1, 1, 2, 2, 1, 2⟩ (Figure 1d). Therefore under
parsimony assumption, T is more likely to have originated from whole genome duplication
than triplication.

3 Algorithms

In this section we give algorithms for the CNP halving and aliquoting problems. We begin
by showing several properties that enable us to reduce the problem size and limit the search
space of possible preduplication profiles (Section 3.1). Then we give a simple linear time
algorithm for the halving problem in Section 3.2 and a quadratic dynamic programming
algorithm for the aliquoting problem in Section 3.3.

3.1 Properties of aliquoting solutions
Here, we show a few properties that will simplify the halving and aliquoting problems. We
first show that we may assume without loss of generality that the input CNP T has no
zeroes and that T has no two adjacent genes that are congruent mod p. Therefore we can
preprocess an T to remove such positions and reduce the profile size.

We start by showing we can remove genes with zero copy number without changing the
halving/aliquoting distance. For brevity, we refer the reader to Appendix Section S1.1.1 for
the full proof.

▶ Proposition 1. Let T = ⟨t1, t2, . . . , ti−1, 0, ti+1, . . . , tn⟩ be a profile with ti = 0 and let
T ′ = ⟨t1, t2, . . . , ti−1, ti+1, . . . , tn⟩ be the profile with gene i removed. Then, ηp(T) = ηp(T ′).

Next, we show that we can assume that no two consecutive genes in T have the same
value modulo p. We rely on the following observation proved in [46]. The full proof of
Proposition 2 is omitted and given in Appendix Section S1.1.2.

▶ Observation 1. Let S and T be profiles whose entries are strictly positive and let C be a
CNT from S → T . Let ai be the number of amplification events in C that target gene i, and
let di be the number of deletion events that target gene i. Then, ti = si + ai − di.

▶ Proposition 2. Let T = ⟨t1, t2, . . . , tn⟩ be a CNP with ti ≡ ti+1 mod p and ti, ti+1 ̸= 0.
Without loss of generality, assume that ti ≤ ti+1. Let T ′ = ⟨t1, t2, . . . , ti−1, ti+1, . . . , tn⟩ be
the CNP obtained by removing gene i from T . Then, ηp(T) = ηp(T ′).

By applying Propositions 1 and 2 repeatedly on T we obtain a shorter CNP T ′ such
that ηp(T) = ηp(T ′). Moreover, the proofs of Propositions 1 and 2 are also constructive,
enabling us to obtain a preduplication profile for T given a preduplication profile for T ′.
Therefore, we can now assume without loss of generality that for the input CNT T , ti > 0
and ti ̸≡ ti+1 mod p for all i.

We now turn to showing properties of optimal preduplication profiles and transformations
that will help us analyze the problems and reduce the search space. We say the CNT C for
U → V is disjoint if no gene is both amplified and deleted. We first show that there exists
an optimal disjoint transformation for ηp(T). This reduces the number of solutions we need
to consider.

▶ Lemma 1. For any optimal preduplication profile Ŝ there exists an optimal transformation
C for pŜ → T such that C is disjoint.

WABI 2021

18:6 CND Halving and Aliquoting

Proof. As noted above, we assume that Ŝ, T have strictly positive values. We prove the
claim by induction on the number of pairs of amplifications and deletions that overlap. In
the base case, we show that one such pair can be replaced by two operations that do not
overlap. Let (i, j, 1) be an amplification event, and let (k, ℓ, −1) be a deletion event, such
that a = [i, j] and d = [k, ℓ] intersect.
(a) If a ⊆ d, then we can replace the pair with two deletions, where each targets one of the

two (contiguous) segments of d \ a (Figure 2a). If d ⊆ a, vice versa. One or both of the
subsequent segments may be empty; we can delete those operations because they do not
affect any gene.

(b) If a ̸⊆ d, then replace the pair with one amplification targeting a \ d and one deletion
targeting d \ a (Figure 2b).

Since we assume Ŝ, T are strictly positive, by Observation 1 we only require that the number
of amplifications minus the number of deletions stays the same at each gene. Hence, validity
is preserved for all genes, and we have eliminated a pair of overlapping amplification and
deletion events.

For the inductive case, we can apply the same modification to eliminate a pair of
overlapping amplification and deletion events. To complete this case, it only remains to show
that we decreased the number of such overlapping pairs. This is easy to see because each
new operation targets a segment which is a subset of the segment of some operation of the
same type that it replaced, so any overlapping pairs after the modification would have been
overlapping pairs before the modification. ◀

3 4 7 2

4 4 8 3

3 4 7 2

4 4 8 3
⇒

(a) One segment is a subset of the other.

3 4 7 2

4 4 6 2

3 4 7 2

4 4 6 2
⇒

(b) Neither segment is a subset of the
other.

Figure 2 Modifying pairs of overlapping operations to obtain a disjoint transformation.

In conjunction with Observation 1, Lemma 1 implies that given ti, the value of ŝi

determines how many events (either all amplifications or all deletions) target gene i in some
optimal transformation. Conversely, the number of amplifications or deletions that affect
each i uniquely determines the preduplication profile si. So, it suffices to find an optimal
preduplication profile for ηp(T), which induces an optimal disjoint transformation.

Finally, we bound the number of events in affecting each gene in any optimal disjoint
transformation for ηp(T), which also bounds how many preduplication profiles we need to
consider to find an optimal one.

▶ Lemma 2. For all CNPs T and p ≥ 2, ηp(T) ≤ np.

Proof. Pick S = ⌈T/p⌉, which may not be optimal in general. Then, for each of the n genes,
we will need p⌈ti/p⌉ − ti ≤ p deletion events. Assuming for an upper bound that each event
targets exactly gene i, we can build a transformation for pS → T with ≤ np events. ◀

▶ Corollary 1. For any CNP T and integer p ≥ 2, there is an optimal preduplication profile
with an optimal disjoint transformation in which every gene is affected by at most np deletions
or at most np amplifications.

R. Zeira, G. Mon, and B. J. Raphael 18:7

3.2 CNP halving
In this section, we derive a simple algorithm for the CNP halving problem. We note that
some cases of CNP halving are easy. For instance, if every value of T is even, then the CNP
halving distance is zero because Ŝ = T/2 is an optimal preduplication profile, and we need
no CNOs at all since 2Ŝ = T . On the other hand if every value of T is odd, then the CNP
halving distance is always 1 by setting Ŝ = ⌈T/2⌉ = (T + 1)/2 as a preduplication profile and
applying one CNO (1, n, −1), which decrements by one. We will show here how to generalize
this result to CNPs that contain both even and odd numbers.

To derive an algorithm for CNP halving, we make a few observations. We define an odd
run in a CNP as a maximal-length contiguous segment of genes such that all of the gene
values are odd. Similarly, an even run of a CNP is a maximal-length contiguous segment of
genes such that all of the gene values are even. For example, in the CNP ⟨1, 2, 4, 3, 5⟩ there
are two odd runs, ⟨1⟩ and ⟨3, 5⟩, and one even run ⟨2, 4⟩. We denote by odd(V) (even(V))
the number of odd (even resp.) runs in a CNP V . We first show in the following proposition
how each CNO affects the number of odd runs in a profile.

▶ Proposition 3. Let V be a CNP and let c = (ℓ, h, w) be a CNO such that ∀i, c(V)i ≥ 1.
Then, odd(c(V)) − odd(V) ≤ 1.

Proof. Denote by ∆o = odd(c(V)) − odd(V) and ∆e = even(c(V)) − even(V), the difference
in odd and even runs respectively between c(V) and V . Notice that amplifications and
deletions affect the parity of each value in the CNP in the same way and therefore our proof is
invariant to the operation type. We first observe that for any run [i, j] fully contained within
the target segment [ℓ, h], the parity of the run in c(V) is toggled. Thus a fully contained odd
run becomes and even run and vice versa. This enables us to separate our analysis into two
cases: (a) operations that start and end in runs with the same parity, and (b) operations
that start and end in runs with opposite parities (Figure 3ab). We divide each such case into
five sub-cases: (I) the start and end of the operation are strictly within a run, (II) one side
of the operation is bordering the next run and the other not, (III) one side of the operation
is bordering the next run and the other is bordering the end of the profile, (IV) both sides of
the operation are bordering the ends of the profile, and (V) both sides of the operation are
bordering adjacent runs (Figure 3I-V).

We see that in all cases analyzed, both ∆o ≤ 1 and ∆e ≤ 1 (Figure 3). Notice that
although all operations in case (a) affect only even runs, the complement operations that affect
only odd runs are symmetrical by replacing each odd run with an even run. We conclude
that each operation can increase the number of odd runs in a profile by at most 1. ◀

We now use this property to solve the CNP halving problem in linear time.

▶ Theorem 1. η2(T) = odd(T) and Ŝ = ⌈T/2⌉ is an optimal preduplicated CNP for a
profile T .

Proof. First, we show that η2(T) ≤ d(2Ŝ, T) ≤ odd(T). Note that 2ŝi = ti if and only
if ti is even, so we need CNOs to correct the odd genes. We can do this with odd(T)
deletions, one for each odd run. Each deletion decrements the genes in one odd run, and
the deletions target pairwise disjoint segments because each odd run is a maximal segment.
Hence, η2(T) ≤ d(2Ŝ, T) ≤ odd(T).

Next, we show that odd(T) ≤ η2(T). Any duplicated profile 2S has no odd runs, while T

has odd(T) odd runs. On the hand, by Proposition 3, each CNO can increase the number of
odd runs in a profile by at most 1. Therefore, it takes at least odd(T) CNOs to transform a
doubled profile 2S into T showing that d(2S, T) ≥ odd(T) for any CNP S. Specifically we
have η2(T) = minS d(2S, T) ≥ odd(T). ◀

WABI 2021

18:8 CND Halving and Aliquoting

000

010
Δ! = 1, Δ" = 1

100

110

Δ# = 0, Δ$ = 0

10

11
Δ# = 0, Δ$ = −1

Δ! = 1, Δ" = 1

0

1

Δ# = 1, Δ$ = −1

1100

1010
Δ# = 0, Δ$ = 0

0100

0010
Δ# = 0, Δ$ = −1

010

001

10

01
Δ# = 0, Δ$ = 0

101

111

Δ# = −1, Δ$ = −1

Δ# = 0, Δ$ = 0

0101

0011

(𝑎)

(𝑏)

𝑉

𝑐(𝑉)

(I) (II) (III) (IV) (V)

𝑉

𝑐(𝑉)

Figure 3 The affect of a CNO c on a CNP V in terms of the number of odd (∆o = odd(c(V)) −
odd(V)) and even (∆e = even(c(V)) − even(V)) runs. Values in each profile represent the parity of
the CN and the affected segment is marked in bold. Horizontal partition – operations that start and
end in runs with (a) the same parity, (b) opposite parities. Vertical partition – the start and end of
the operation are (I) strictly within a run, (II) one side bordering the next run and the other not,
(III) one side bordering the next run and the other bordering the end of the profile, (IV) both sides
bordering the ends of the profile, (V) both sides bordering adjacent runs (Figure 3(I-V)).

Notice that an optimal preduplication profile for the halving problem is not unique. For
example, Ŝ = ⟨1⟩ and Ŝ = ⟨2⟩ are both optimal preduplication profiles for T = ⟨3⟩. One way
to distinguish between optimal preduplication profiles is to look at the transformation they
induce to the extant profile. For instance, Theorem 1 gives us the following corollary:

▶ Corollary 2. Ŝ = ⌈T/2⌉ is an optimal preduplicated CNP for a profile T and the trans-
formation Ŝ → T uses only deletions.

On the other hand, in the following proposition we show how to select an optimal predu-
plication profile such that the transformation will use a maximum number of amplifications.

▶ Proposition 4. The maximum number of amplifications in a transformation from an
optimal duplicated genome 2Ŝ to T is odd(T) if there is no ti = 1 and odd(T) − 1 if there is
some ti = 1.

Proof. First, suppose there is no i such that ti = 1. In this case we use Ŝ = ⌊T/2⌋. We
define a transformation Ŝ → T that uses odd(T) amplifications by applying one amplification
on every odd run. For every even ti value we have that 2ŝi = ti and therefore this genes do
not need to be modified. On the other hand, for odd ti values we have that 2ŝi = ti − 1 and
therefore one amplification on every odd runs transform 2Ŝ into T .

Conversely, suppose there is a gene i having ti = 1. For any CNP S, a duplicated CNP
2S has only values greater or equal to 2. Hence any transformation from a duplicated profile
2S to an extant profile T containing a value one must use at least one deletion. We define
Ŝ = ⌈T/2⌉ and show how to construct a transformation Ŝ → T that uses one deletion and
odd(T) − 1 amplifications. Let î be the leftmost gene of the leftmost odd run and let ĵ be
the rightmost gene of the rightmost odd run. We apply one deletion (̂i, ĵ, −1) which adjusts
every odd value to its value in T . However, now we need to adjust the even runs in [̂i, ĵ]. We
do so by applying one amplification on each even run of T in [̂i, ĵ]. Since [̂i, ĵ] covers all odd
runs, there are odd(T) − 1 even runs in that segment. ◀

R. Zeira, G. Mon, and B. J. Raphael 18:9

pŜ 5 5 5 5 5 5 5 5 5 5 5

T 6 7 8 9 10 11 10 9 8 7 6

Figure 4 A non-trivial example of the aliquoting distance η5(T) with an optimal preduplication
profile Ŝ = ⟨1, 1, . . . , 1⟩. For genes 5, 6 and 7 (with copy numbers 10, 11, and 10 in T , respectively),
ŝi ̸∈ {⌈ti/p⌉, ⌊ti/p⌋}.

3.3 CNP aliquoting
In this section we derive an algorithm for the CNP aliquoting problem. While CNP halving
is equivalent to CNP aliquoting with p = 2, generalizing the solution to CNP halving for
p > 2 by rounding T/p up or down does not work with CNP aliquoting. Namely, there are
instances T, p for the aliquoting problem where the genes of an optimal preduplication profile
are not necessarily ⌈ti/p⌉ nor ⌊ti/p⌋. Moreover, even for genes where ti ≡ 0 mod p, the
optimal preduplication may not contain ti/p in the i’th gene. For example, let p = 5 and
consider the following “triangle” CNP T = ⟨6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6⟩ (Figure 4). Using a
preduplication profile ⌈T/p⌉ = ⟨2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2⟩, the CN distance d(p⌈T/p⌉, T) is 12.
Similarly, using a preduplication profile ⌊T/p⌋ = ⟨1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1⟩ the CN distance
d(p⌊T/p⌋, T) is 9. On the other hand, if we use the preduplication profile Ŝ = ⟨1, 1, . . . , 1⟩,
we have that d(pŜ, T) = 6 using a “triangle” of amplification CNOs (Figure 4):

(1, 11, +1), (2, 10, +1), (3, 9, +1), . . . , (6, 6, +1)

Each successive amplification targets two fewer genes than the previous amplification. For
this example ηp(T) ≤ 6, which is also the best possible distance (proof omitted) and therefore
Ŝ is an optimal preduplication profile.

We begin by proposing a simple dynamic programming algorithm (Section 3.3.1). Then, we
refine it with additional observations that enables us to improve the run time (Section 3.3.2).

3.3.1 An O(n3) dynamic programming algorithm
As we showed in Corollary 1, we can limit our search to finding an optimal preduplication
profile Ŝ where we have ≤ 2n choices for the value of each si. We explicitly enumerate these
choices:

We use ≤ np deletions at gene i to reach ti from ŝi. In this case, pŝi ≥ ti and pŝi −ti ≤ np.
Let b−

i be the “base” number of deletions, i.e., the minimum number of deletions needed
to reach ti from any choice of pŝi.

b−
i = p − ti mod p = −ti mod p

This equation holds because pŝi must be a multiple of p, and so we calculate the minimum
number of deletions we need to reach ti from any multiple of p. Now, gene i could be
subject to either b−

i deletions, b−
i + p deletions, etc. until we reach our bound of ≤ np

deletions. Each of these choices for number of deletions corresponds to a unique value for
ŝi. We denote the set of possible number of deletion of gene i as:

Di = {b−
i + kp | k ≥ 0 ∧ b−

i + kp ≤ np} = {b−
i , b−

i + p, . . . , b−
i + (n − 1)p}

Notice that |Di| = n.

WABI 2021

18:10 CND Halving and Aliquoting

Alternatively, we use ≤ np amplifications at gene i to reach ti. However, unlike the
deletion case where we could always increase ŝi in order to accommodate more deletions
at a gene, for amplifications, we must decrease ŝi to add more amplifications. At the
same time, we must have ŝi ≥ 1 since ti ̸= 0. This bounds the maximum number of
amplifications we can have at each gene. For example, if ti < p then we cannot reach ti

using amplifications.
Similar to deletions, we can also define a base number of amplification, corresponding to
the minimum number of amplifications required to reach ti for some choice of ŝi:

b+
i = ti mod p

In addition, we define the set of choices for the number of amplifications of gene i as
follows:

Ai = {b+
i + kp | k ≥ 0 ∧ b+

i + kp ≤ np ∧ ti − b+
i − kp ≥ p}

Note that pŝi ≥ p since ŝi ≥ 1, which is where we derive the additional condition in the
set. Therefore, |Ai| = min{n, ⌊ti/p⌋} and in the case ti < p we have Ai = ∅.

We define the following dynamic programming tables. For every 1 ≤ i ≤ n and every
x ∈ Di, D[i, x] will hold minS d(pS, ⟨t1, . . . , ti⟩) such that psi − x = ti, i.e there is a disjoint
transformation that applies exactly x deletions on the i’th gene. Similarly, for every 1 ≤ i ≤ n

and every x ∈ Ai, A[i, x] will hold minS d(pS, ⟨t1, . . . , ti⟩) such that psi + x = ti, i.e. there is
a disjoint transformation that applies exactly x amplifications on the i’th gene. There are at
most 2n2 values in the arrays A and D put together, because there are ≤ n choices for x in
each table and n for each coordinate i, each corresponds to a value for si. We now show how
to calculate each value in the tables in O(n) time, using the values for the previous gene.
For completeness, we initialize the tables using D[0, 0] = A[0, 0] = 0.

▶ Theorem 2. The following hold:

D[i, x] = min
{

min
y∈Di−1

{
D[i − 1, y] + max{0, x − y}

}
, min

y∈Ai−1

{
A[i − 1, y] + x

}}
(1)

A[i, x] = min
{

min
y∈Ai−1

{
A[i − 1, y] + max{0, x − y}

}
, min

y∈Di−1

{
D[i − 1, y] + x

}}
(2)

Proof. We prove the result for D[i, x]; an analogous proof works for A[i, x]. We show
our result by induction on i. For an empty CNP the property holds by our initialization
D[0, 0] = A[0, 0] = 0. Assume now that the theorem holds up to i − 1.

First, we show that D[i, x] ≤ RHS(1), the right hand side of Equation 1:

min
y∈Di−1

{
D[i − 1, y] + max{0, x − y}

}
, min

y∈Ai−1

{
A[i − 1, y] + x

}}
.

This is because we can assemble a solution for D[i, x] using the following three cases (Figure 5):
(a) We select y ∈ Di−1 such that y ≥ x and look at the transformation corresponding to

D[i − 1, y]. In this case, we do not need to add any new operations, because we can
pick x arbitrary deletions that target coordinate i − 1 and extend them to also target
coordinate i (Figure 5a). Hence,

D[i, x] ≤ min
y∈Di−1

y≥x

{D[i − 1, y]}

R. Zeira, G. Mon, and B. J. Raphael 18:11

(b) We select y ∈ Di−1 such that y ≤ x and look at the transformation corresponding to
D[i − 1, y]. Then, we extend all of the deletions at i − 1 to also affect coordinate i, and
add x − y new deletions at coordinate i (Figure 5b). We have,

D[i, x] ≤ min
y∈Di−1

y≤x

{D[i − 1, y] + (x − y)}

(c) Finally, we select y ∈ Ai−1 and look at the transformation corresponding to A[i − 1, y].
We always need to introduce x new deletions because we cannot make use of any of the
existing operations at i − 1 since they are all amplifications and the transformation we
are looking for is disjoint (Figure 5c). Therefore,

D[i, x] ≤ min
y∈Ai−1

{A[i − 1, y] + x}

Taking the min of all three cases gives us RHS(1).
To complete the proof, suppose for contradiction that D[i, x] < RHS(1). Then, there

exists some optimal transformation for the i’th prefix where coordinate i is affected by x

deletions and coordinate i − 1 is affected by y∗ operations (either amplifications or deletions).
If i − 1 is affected by y∗ amplifications, then removing the x deletions at i gives a copy
number transformation for the (i − 1)th prefix with y∗ amplifications at coordinate i − 1.
But, D[i, x] − x < miny{A[i − 1, y] + x} − x = miny{A[i − 1, y]} which is a contradiction.
Similarly, if i − 1 is affected by y∗ deletions, we can remove either zero or x − y∗ deletions
to get a copy number transformation for the (i−1)th prefix with y∗ deletions at coordinate
i − 1 that is better than D[i − 1, y∗], which is a contradiction.

In all cases we get a contradiction, which completes the proof. ◀

. pŝi−1 . . .

y

. ti−1 ti . . .

. pŝi−1 pŝi . . .

x

. ti−1 ti . . .

⇒
(a) ∀y ∈ Di−1 such that y ≥ x, extend x of the existing deletions to gene i.

. pŝi−1 . . .

y

. ti−1 ti . . .

. pŝi−1 pŝi . . .

x

. ti−1 ti . . .

⇒
(b) ∀y ∈ Di−1 such that y ≤ x, extend all y deletions to i and add x−y new deletions
starting at i.

. pŝi−1 . . .

y

. ti−1 ti . . .

. pŝi−1 pŝi . . .

x

. ti−1 ti . . .

⇒
(c) ∀y ∈ Ai−1, start x new deletions at i.

Figure 5 Illustration of different cases in the dynamic programming algorithm to compute D[i, x]
(Theorem 2).

Tables D and A can be populated in time O(n3), by trying each of the O(n) values for
D[i − 1, y] and A[i − 1, y] in order to calculate D[i, x] or A[i, x]. Once all the values are
calculated, we can find the aliquoting distance ηp(T) = min

{
minx{D[n, x]}, minx{A[n, x]}

}
,

WABI 2021

18:12 CND Halving and Aliquoting

. 3 . . .

. . .ii− 1. . .

. 8 . . .

. . .ii− 1. . .

. 6 . . .

. 8 . . .

⇒

Figure 6 Trimming p = 3 events to show that A[i, x] is non-decreasing in x.

which takes time O(n). We also record the argmin that we use to populate each entry of D

and A, which allows us to backtrack in order to compute the optimal pre-duplication profile.
Hence, the entire algorithm works in time O(n3) and O(n2) space . Notice however that due
to Propositions 1 and 2, the length of the profile n that we solve the problem for can be
smaller than the original input profile.

3.3.2 An improved O(n2) dynamic programming algorithm
Here, we show that we only need to check O(1) possibilities to calculate each entry of D

and A, which reduces the run time of the algorithm to O(n2), the number of entries in both
tables. First, we note that D[i, x] and A[i, x] are non-decreasing as we increase the number
of operations x.

▶ Lemma 3. If {x, x + p} ⊆ Di, then D[i, x + p] ≥ D[i, x] (similarly, if {x, x + p} ⊆ Ai,
A[i, x + p] ≥ A[i, x]).

Proof. We prove the statement for A (a similar proof works for D). Suppose that {x, x+p} ⊆
Ai. Then, we show we can take a disjoint transformation for the i’th prefix that has A[i, x+p]
events, including x+p amplifications at gene i, and modify it to get a transformation that has
≤ A[i, x + p] events but has x amplifications at gene i. This implies that A[i, x] ≤ A[i, x + p].

To do so, we can pick p arbitrary amplifications that target gene i, and shrink each of
them by decrementing the end index of their segments, so that they no longer target gene i,
but that they still target all of the genes other than i that it targeted before (Figure 6). Note
that this implies that we increment the preduplication gene ŝi, because we have shown that
the number of events at a gene implies the value of the preduplication gene there, and vice
versa. In addition, since we are only considering the i’th prefix, this modification preserves
the contiguity of every amplification. ◀

Moreover, we now show we can bound the increase in aliquoting distance when we increase
the number of deletions/amplifications on a gene.

▶ Lemma 4. If {x, x + p} ⊆ Ai, then A[i, x + p] − A[i, x] ≤ p (and similarly, D[i, x + p] −
D[i, x] ≤ p).

Proof. We prove the statement for A (a similar proof works for D). We can always add p new
operations to A[i, x] to get a solution for A[i, x+p] if x+p ∈ Ai, so A[i, x+p] ≤ A[i, x]+p. ◀

Using these results, we improve the performance of the dynamic programming algorithm.
First, at the end of the algorithm we return either D[n, b−

n] or A[n, b+
n] (base number of

deletions or amplifications) instead of checking each entry in D[n, . . .] and A[n, . . .], since
larger number of operations at coordinate n will have at least as large aliquoting distances.
However, this does not improve the overall asymptotic time complexity of the algorithm. To
achieve our improved time complexity, we show that we only need to try O(1) possibilities

R. Zeira, G. Mon, and B. J. Raphael 18:13

to calculate each entry in D and A. To accomplish this, we prove that the minimum of O(n)
y values in RHS(1) and RHS(2) in Theorem 2 can be expressed as the minimum of O(1)
values. To that end we define the following functions for every i and x:

y1(x) := min{y ∈ Di−1 | y ≥ x}; y2(x) := max{y ∈ Di−1 | y ≤ x};
y′

1(x) := min{y ∈ Ai−1 | y ≥ x}; y′
2(x) := max{y ∈ Ai−1 | y ≤ x};

▶ Theorem 3. The following hold:

D[i, x] = min{D[i − 1, y1(x)], D[i − 1, y2(x)] + (x − y2(x)), A[i − 1, b+
i−1] + x}

A[i, x] = min{A[i − 1, y′
1(x)], A[i − 1, y′

2(x)] + (x − y′
2(x)), D[i − 1, b−

i−1] + x}

Proof. We prove the result for D[i, x] with y1(x) and y2(x); an analogous proof works for
A[i, x] together with y′

1(x) and y′
2(x). We rearrange equation (1) in Theorem 2 as follows:

D[i, x] = min
{

min
y∈Di−1

{
D[i − 1, y] + max{0, x − y}

}
, min

y∈Ai−1

{
A[i − 1, y] + x

}}
= min

{
min

y∈Di−1
y≥x

{
D[i − 1, y]

}
, min

y∈Di−1
y≤x

{
D[i − 1, y] + (x − y)

}
, min

y∈Ai−1

{
A[i − 1, y] + x

}}
(3)

Now, we show that each of the three inner min expressions in equation (3) can be replaced
with a single term (Figure 7).
(a) If there exists at least one y ∈ Di−1 such that y ≥ x (Figure 7a), then

min
y∈Di−1

y≥x

{D[i − 1, y]} = D[i − 1, y1(x)]

This is because the non-decreasing property from Lemma 3 implies that we can check
the entry for the minimum y to get the smallest value. So, we can replace the first min
terms in equation (3) with D[i − 1, y1(x)].

(b) If there exists y ∈ Di−1 such that y ≤ x (Figure 7b), then

min
y∈Di−1

y≤x

{D[i − 1, y] + (x − y)} = D[i − 1, y2] + (x − y2) (4)

Let y2 = y2(x) for conciseness. Suppose by contradiction there is some other value in
Di−1 (which we can express as y2 − kp for k ≥ 1) minimizes equation (4): D[i − 1, y2 −
kp] + (x − (y2 − kp)) < D[i − 1, y2] + (x − y2). Rearranging, we get

D[i − 1, y2] > D[i − 1, y2 − kp] + kp

which contradicts Lemma 4. Hence, we can replace the second min terms in equation (3)
with D[i − 1, y2] + (x − y2).

(c) Finally, the following equation hold (Figure 7c):

min
y∈Ai−1

{A[i − 1, y] + x} = min
y∈Ai−1

{A[i − 1, y]} + x = A[i − 1, b+
i−1] + x

This follows from Lemma 3; we pick the smallest y to get some min of A[i − 1, ·]. So, we
can replace the third min terms in equation (3) with A[i − 1, b+

i−1] + x. ◀

WABI 2021

18:14 CND Halving and Aliquoting

Since y1, y′
1, y2, y′

2 are computable in O(1) time (Supplemental Proposition S5), we can
leverage Theorem 3 to populate each table entry in O(1) time, because we can figure out
which three values we need to check using yj , y′

j and take the minimum of these values. In
conclusion, we can populate D and A in O(n2) time O(n2) space. However, if we are just
interested in calculating the aliquoting distance without finding an optimal preduplication
profile, we can use only O(n) space since we simply need D[i − 1, ·] and A[i − 1, ·] to compute
D[i, ·] and A[i, ·].

. pŝi−1 pŝi . . .

y1(x) x

. ti−1 ti . . .

. pŝi−1 pŝi . . .

y
x

. ti−1 ti . . .

≤

(a) ∀y ∈ Di−1 such that y ≥ x, since we extend x of the existing deletions, Lemma 3
shows us we should keep y to minimum (i.e. y1(x)).

. pŝi−1 pŝi . . .

y2(x) x

. ti−1 ti . . .

. pŝi−1 pŝi . . .

y
x

. ti−1 ti . . .

≤

(b) ∀y ∈ Di−1 such that y ≤ x, since we add x − y new deletions, y should be as
large as possible (i.e. y2(x)) to minimize the number of additional deletions due to
Lemma 4.

. pŝi−1 pŝi . . .

b+i−1
x

. ti−1 ti . . .

. pŝi−1 pŝi . . .

y

x

. ti−1 ti . . .

≤

(c) ∀y ∈ Ai−1, since we start x new deletions, we should pick the smallest y possible
(i.e. b+

i−1) due to Lemma 3.

Figure 7 The cases for computing D[i, x] for the improved dynamic programming algorithm
(Theorem 3).

4 Experiments

We evaluated our halving and aliquoting algorithms on simulated CNPs in order to assess
their ability to recover preduplication profiles. In each simulation, we generate a random pre-
duplication profile S ∈ {1, . . . , 5}n, multiply each entry by p and then apply k amplifications
and deletions to create an extant profile T . We then use the aliquoting algorithm on T to
estimate the aliquoting distance ηp(T) and find a preduplication profile Ŝ. We run simulations
for profile lengths n ∈ {100, 200, 300}, polyploidity p ∈ {2, 3, 4} and k ∈ {5, 10, 15} events
after polyploidization. To simulate events, we apply k random CNOs with uniform length
and position, and with a ratio of deletions/amplifications of 3 to 1. We also make sure that
the profiles pS and T generated have no zeros. We implemented the halving and aliquoting
algorithms in Python 3, and we ran the simulations on a Thinkpad T470 computer with an
Intel i7-7600U processor running Linux 5.11.10. For each configuration n, p, k, 100 instances
were simulated.

R. Zeira, G. Mon, and B. J. Raphael 18:15

We use several metrics to measure the algorithm performance. First, we evaluate d(S, Ŝ) to
measure how close the aliquoting preduplication profile is to the actual preduplication profile.
However, there may exist multiple duplicated profiles with the same copy number distance
from T . Therefore, we also compare ∆ηp(T) := d(pS, T) − ηp(T) = d(pS, T) − d(pŜ, T),
to measure how close the estimated aliquoting distance was from the actual copy number
distance between the true duplicated profile pS and T . This is a measure of how accurately
we can recover the number of events that have occurred after polyploidization. Finally, we
assess the effective run time of our algorithms as we increase the profile sizes.

We find that CNP aliquoting is more accurate than halving (Figures 8, S2 and S2). When
aliquoting p ≥ 3, we have ∆ηp(T) ≤ 2 and d(S, Ŝ) ≤ 4 for every simulated CNP, which
suggests that not only are we are able to estimate the number of post-polyploidization events,
but we can also recover a very close profile to the original preduplication profile S by solving
the aliquoting problem. On the other hand, for halving (p = 2), ∆η2(T) and d(S, Ŝ) are
larger, which is likely because there are many different preduplication profiles for halving.
For instance, in Corollary 2 we show that there exists a preduplication profile that maximizes
the number of deletions in the optimal transformation, but in Proposition 4 we prove that
there exists a different preduplication profile that maximizes the number of amplifications.
Notice however, that as the length of the profile increases, we do estimate the number of
post-duplication events more accurately. This is partially because with larger CNPs, there is
a smaller chance for events to cancel one another.

Finally, we measured the running time of our halving and aliquoting algorithms from
Theorem 1 and Theorem 3, respectively (Figures 8c, S2c, and S3c). Notice that our
implementation of the aliquoting algorithm contracts runs that have the same value modulo
p, using Proposition 2. This preprocessing is done in linear time and does not affect the
overall worst-case asymptotic time complexity. However, we find that in practice, it improves
the run time significantly. Although the aliquoting dynamic programming algorithm is
quadratic in the worst case, we see that on simulated profiles, the increase in running time
is much lower. This is because the effective profile length for which we solve the problem
depends on the number of runs modulo p and not the original length of the profile.

5 Discussion

In this paper, we formulate and solve the genome halving and genome aliquoting problems
for CNPs under the CNT model. For the halving distance we derive a simple linear time
algorithm and show how to obtain preduplicated genomes having a transformation with
maximum number of deletions or amplifications. For the CNP aliquoting distance we derive a
quadratic time dynamic programming algorithm by showing several properties of an optimal
preduplication profile and carefully analyzing aliquoting sub problems. We further note that
with O(n) time preprocessing and postprocessing, the latter algorithm is quadratic in the
number of distinct runs modulo p which can be effectively quite lower than the length of
the profile, as we show on simulated CNPs. Finally, our simulations show that we are able
accurately estimate the number of events post-duplication.

There are several directions for further research. First, for some CNPs there be many
optimal preduplication profiles and our algorithm will not distinguish between these solutions,
selecting one arbitrarily based on the implementation. It is therefore interesting to further
explore the space of optimal preduplication profiles. Similar ambiguity in selecting a
preduplication genome arises in other rearrangement distances, and one solution is to use an
out-group in order to further constrain the preduplication genome. This modification, called

WABI 2021

18:16 CND Halving and Aliquoting

100 200 300
0

1

2

3

4

p(
T)

(b) Difference between simulated and estimated number of events
100 200 300

0

2

4

6

8

d(
S,

S)

(a) Distance between simulated and estimated preduplication profiles

100 200 300
n

0.000

0.010

0.020

0.030

0.040

0.050

Ru
nn

in
g

tim
e

(s
)

(c) Running time

Results for k = 10

p
2
3
4

Figure 8 Simulation results for using k = 10 events after duplication. (a) d(S, Ŝ) - the distance
between simulated and estimated preduplication profiles. (b) ∆ηp(T) - the difference between the
simulated and estimated number of events after duplication. (c) running time in seconds.

the guided genome halving problem, seeks to find a preduplication genome that minimizes
the distance to a given out-group plus the distance from the duplicated genome to the extant
genome [47]. An alternative solution which might be more biologically relevant in some
cases such as cancer samples is to extend the copy number distance to also include a WGD
event [30]. In this case, the copy number distance between a pair of profiles would be the
minimum number of amplifications, deletions and WGDs that transform profile into the other.
Third, these algorithms could be extended to address the issues of normal cell admixture
and subclonality that arise in analyzing cancer sequencing data as has been previously done
for CNPs [11, 44]. Finally, applying our algorithms to real cancer genomes with high tumor
ploidy could help identify genomes with strong evidence for polyploidization during cancer
evolution and provide new insights into highly aneuploid cancer genomes.

R. Zeira, G. Mon, and B. J. Raphael 18:17

References
1 Max A. Alekseyev and Pavel A. Pevzner. Genome halving problem revisited. In Kamal

Lodaya and Meena Mahajan, editors, FSTTCS 2004: Foundations of Software Technology
and Theoretical Computer Science, pages 1–15, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

2 Max A Alekseyev and Pavel A Pevzner. Colored de Bruijn graphs and the genome halving
problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4(1):98–107,
2007. doi:10.1109/TCBB.2007.1002.

3 Anne Bergeron, Julia Mixtacki, and Jens Stoye. A unifying view of genome rearrangements.
In Philipp Bücher and Bernard M.E. Moret, editors, Proc. Workshop on Algorithms in
Bioinformatics, volume 4175 of LNCS, pages 163–173. Springer, 2006. doi:10.1007/11851561_
16.

4 Craig M Bielski, Ahmet Zehir, Alexander V Penson, Mark TA Donoghue, Walid Chatila,
Joshua Armenia, Matthew T Chang, Alison M Schram, Philip Jonsson, Chaitanya Bandlamudi,
et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nature
genetics, 50(8):1189–1195, 2018.

5 John E Bowers, Brad A Chapman, Junkang Rong, and Andrew H Paterson. Unravelling
angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events.
Nature, 422(6930):433, 2003.

6 Peter J. Campbell, Gad Getz, Jan O. Korbel, Joshua M. Stuart, Jennifer L. Jennings, Lincoln D.
Stein, Marc D. Perry, Hardeep K. Nahal-Bose, B. F. Francis Ouellette, Constance H. Li, Esther
Rheinbay, G. Petur Nielsen, Dennis C. Sgroi, Chin-Lee Wu, William C. Faquin, Vikram
Deshpande, Paul C. Boutros, Alexander J. Lazar, Katherine A. Hoadley, David N. Louis,
L. Jonathan Dursi, Christina K. Yung, Matthew H. Bailey, Gordon Saksena, Keiran M. Raine,
Ivo Buchhalter, Kortine Kleinheinz, Matthias Schlesner, Junjun Zhang, Wenyi Wang, David A.
Wheeler, Li Ding, Jared T. Simpson, Brian D. O’Connor, Sergei Yakneen, Kyle Ellrott,
Naoki Miyoshi, Adam P. Butler, Romina Royo, Solomon I. Shorser, Miguel Vazquez, Tobias
Rausch, Grace Tiao, Sebastian M. Waszak, Bernardo Rodriguez-Martin, Suyash Shringarpure,
Dai-Ying Wu, German M. Demidov, Olivier Delaneau, Shuto Hayashi, Seiya Imoto, Nina
Habermann, Ayellet V. Segre, Erik Garrison, Andy Cafferkey, Eva G. Alvarez, JoséMaría
Heredia-Genestar, Francesc Muyas, Oliver Drechsel, Alicia L. Bruzos, Javier Temes, Jorge
Zamora, Adrian Baez-Ortega, Hyung-Lae Kim, R. Jay Mashl, Kai Ye, Anthony DiBiase,
Kuan-lin Huang, Ivica Letunic, Michael D. McLellan, Steven J. Newhouse, Tal Shmaya,
Sushant Kumar, David C. Wedge, Mark H. Wright, Venkata D. Yellapantula, Mark Gerstein,
Ekta Khurana, Tomas Marques-Bonet, Arcadi Navarro, Carlos D. Bustamante, Reiner Siebert,
Hidewaki Nakagawa, Douglas F. Easton, Stephan Ossowski, Jose M. C. Tubio, Francisco M.
De La Vega, Xavier Estivill, Denis Yuen, George L. Mihaiescu, Larsson Omberg, Vincent
Ferretti, Radhakrishnan Sabarinathan, Oriol Pich, Abel Gonzalez-Perez, Amaro Taylor-
Weiner, Matthew W. Fittall, Jonas Demeulemeester, Maxime Tarabichi, Nicola D. Roberts,
Peter Van Loo, Isidro Cortés-Ciriano, Lara Urban, Peter Park, Bin Zhu, Esa Pitkänen,
Yilong Li, Natalie Saini, Leszek J. Klimczak, Joachim Weischenfeldt, Nikos Sidiropoulos,
Ludmil B. Alexandrov, Raquel Rabionet, Georgia Escaramis, Mattia Bosio, Aliaksei Z. Holik,
Hana Susak, Aparna Prasad, Serap Erkek, Claudia Calabrese, Benjamin Raeder, Eoghan
Harrington, Simon Mayes, Daniel Turner, Sissel Juul, Steven A. Roberts, Lei Song, Roelof
Koster, Lisa Mirabello, Xing Hua, Tomas J. Tanskanen, Marta Tojo, Jieming Chen, Lauri A.
Aaltonen, Gunnar Rätsch, Roland F. Schwarz, Atul J. Butte, Alvis Brazma, Stephen J.
Chanock, Nilanjan Chatterjee, Oliver Stegle, Olivier Harismendy, G. Steven Bova, Dmitry A.
Gordenin, David Haan, Lina Sieverling, Lars Feuerbach, Don Chalmers, Yann Joly, Bartha
Knoppers, Fruzsina Molnár-Gábor, Mark Phillips, Adrian Thorogood, David Townend, Mary
Goldman, Nuno A. Fonseca, Qian Xiang, Brian Craft, Elena Piñeiro-Yáñez, Alfonso Muñoz,
Robert Petryszak, Anja Füllgrabe, Fatima Al-Shahrour, Maria Keays, David Haussler, John
Weinstein, Wolfgang Huber, Alfonso Valencia, Irene Papatheodorou, Jingchun Zhu, Yu Fan,

WABI 2021

https://doi.org/10.1109/TCBB.2007.1002
https://doi.org/10.1007/11851561_16
https://doi.org/10.1007/11851561_16

18:18 CND Halving and Aliquoting

David Torrents, Matthias Bieg, Ken Chen, Zechen Chong, Kristian Cibulskis, Roland Eils,
Robert S. Fulton, Josep L. Gelpi, Santiago Gonzalez, Ivo G. Gut, Faraz Hach, Michael Heinold,
Taobo Hu, Vincent Huang, Barbara Hutter, Natalie Jäger, Jongsun Jung, Yogesh Kumar,
Christopher Lalansingh, Ignaty Leshchiner, Dimitri Livitz, Eric Z. Ma, Yosef E. Maruvka,
Ana Milovanovic, Morten Muhlig Nielsen, Nagarajan Paramasivam, Jakob Skou Pedersen,
Montserrat Puiggròs, S. Cenk Sahinalp, Iman Sarrafi, Chip Stewart, Miranda D. Stobbe,
Jeremiah A. Wala, Jiayin Wang, Michael Wendl, Johannes Werner, Zhenggang Wu, Hong
Xue, Takafumi N. Yamaguchi, Venkata Yellapantula, Brandi N. Davis-Dusenbery, Robert L.
Grossman, Youngwook Kim, Michael C. Heinold, Jonathan Hinton, David R. Jones, Andrew
Menzies, Lucy Stebbings, Julian M. Hess, Mara Rosenberg, Andrew J. Dunford, Manaswi
Gupta, Marcin Imielinski, Matthew Meyerson, Rameen Beroukhim, Jüri Reimand, Priyanka
Dhingra, Francesco Favero, Stefan Dentro, Jeff Wintersinger, Vasilisa Rudneva, Ji Wan Park,
Eun Pyo Hong, Seong Gu Heo, André Kahles, Kjong-Van Lehmann, Cameron M. Soulette,
Yuichi Shiraishi, Fenglin Liu, Yao He, Deniz Demircioğlu, Natalie R. Davidson, Liliana Greger,
Siliang Li, Dongbing Liu, Stefan G. Stark, Fan Zhang, Samirkumar B. Amin, Peter Bailey,
Aurélien Chateigner, Milana Frenkel-Morgenstern, Yong Hou, Matthew R. Huska, Helena
Kilpinen, Fabien C. Lamaze, Chang Li, Xiaobo Li, Xinyue Li, Xingmin Liu, Maximillian G.
Marin, Julia Markowski, Tannistha Nandi, Akinyemi I. Ojesina, Qiang Pan-Hammarström,
Peter J. Park, Chandra Sekhar Pedamallu, Hong Su, Patrick Tan, Bin Tean Teh, Jian Wang,
Heng Xiong, Chen Ye, Christina Yung, Xiuqing Zhang, Liangtao Zheng, Shida Zhu, Philip
Awadalla, Chad J. Creighton, Kui Wu, Huanming Yang, Jonathan Göke, Zemin Zhang,
Angela N. Brooks, Matthew W. Fittall, Iñigo Martincorena, Carlota Rubio-Perez, Malene
Juul, Steven Schumacher, Ofer Shapira, David Tamborero, Loris Mularoni, Henrik Hornshøj,
Jordi Deu-Pons, Ferran Muiños, Johanna Bertl, Qianyun Guo, and The ICGC/TCGA Pan-
Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes.
Nature, 578(7793):82–93, 2020. doi:10.1038/s41586-020-1969-6.

7 Scott L Carter, Kristian Cibulskis, Elena Helman, Aaron McKenna, Hui Shen, Travis Zack,
Peter W Laird, Robert C Onofrio, Wendy Winckler, Barbara A Weir, et al. Absolute
quantification of somatic dna alterations in human cancer. Nature biotechnology, 30(5):413,
2012.

8 Salim Akhter Chowdhury, Stanley E Shackney, Kerstin Heselmeyer-Haddad, Thomas Ried,
Alejandro A Schäffer, and Russell Schwartz. Algorithms to model single gene, single chro-
mosome, and whole genome copy number changes jointly in tumor phylogenetics. PLoS
computational biology, 10(7):e1003740, 2014.

9 Stefan C. Dentro, Ignaty Leshchiner, Kerstin Haase, Maxime Tarabichi, Jeff Wintersinger,
Amit G. Deshwar, Kaixian Yu, Yulia Rubanova, Geoff Macintyre, Jonas Demeulemeester,
Ignacio Vázquez-García, Kortine Kleinheinz, Dimitri G. Livitz, Salem Malikic, Nilgun Donmez,
Subhajit Sengupta, Pavana Anur, Clemency Jolly, Marek Cmero, Daniel Rosebrock, Steven E.
Schumacher, Yu Fan, Matthew Fittall, Ruben M. Drews, Xiaotong Yao, Thomas B. K. Watkins,
Juhee Lee, Matthias Schlesner, Hongtu Zhu, David J. Adams, Nicholas McGranahan, Charles
Swanton, Gad Getz, Paul C. Boutros, Marcin Imielinski, Rameen Beroukhim, S. Cenk Sahinalp,
Yuan Ji, Martin Peifer, Inigo Martincorena, Florian Markowetz, Ville Mustonen, Ke Yuan,
Moritz Gerstung, Paul T. Spellman, Wenyi Wang, Quaid D. Morris, David C. Wedge, Peter
Van Loo, Stefan C. Dentro, Amit G. Deshwar, Santiago Gonzalez, David J. Adams, Paul C.
Boutros, David D. Bowtell, Peter J. Campbell, Shaolong Cao, Elizabeth L. Christie, Yupeng
Cun, Kevin J. Dawson, Ruben M. Drews, Roland Eils, Dale W. Garsed, Gavin Ha, Lara
Jerman, Henry Lee-Six, Dimitri G. Livitz, Thomas J. Mitchell, Layla Oesper, Myron Peto,
Benjamin J. Raphael, S. Cenk Sahinalp, Adriana Salcedo, Steven E. Schumacher, Ruian
Shi, Seung Jun Shin, Lincoln D. Stein, Oliver Spiro, Shankar Vembu, David A. Wheeler,
Tsun-Po Yang, Quaid D. Morris, Paul T. Spellman, and David C. Wedge. Characterizing
genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell, 2021. doi:
10.1016/j.cell.2021.03.009.

https://doi.org/10.1038/s41586-020-1969-6
https://doi.org/10.1016/j.cell.2021.03.009
https://doi.org/10.1016/j.cell.2021.03.009

R. Zeira, G. Mon, and B. J. Raphael 18:19

10 Li Ding, Timothy J Ley, David E Larson, Christopher A Miller, Daniel C Koboldt, John S
Welch, Julie K Ritchey, Margaret A Young, Tamara Lamprecht, Michael D McLellan, Joshua F
McMichael, John W Wallis, Charles Lu, Dong Shen, Christopher C Harris, David J Dooling,
Robert S Fulton, Lucinda L Fulton, Ken Chen, Heather Schmidt, Joelle Kalicki-Veizer,
Vincent J Magrini, Lisa Cook, Sean D McGrath, Tammi L Vickery, Michael C Wendl, Sharon
Heath, Mark A Watson, Daniel C Link, Michael H Tomasson, William D Shannon, Jacqueline E
Payton, Shashikant Kulkarni, Peter Westervelt, Matthew J Walter, Timothy A Graubert,
Elaine R Mardis, Richard K Wilson, and John F DiPersio. Clonal evolution in relapsed acute
myeloid leukaemia revealed by whole-genome sequencing. Nature, 481(7382):506–10, 2012.
doi:10.1038/nature10738.

11 Mohammed El-Kebir, Benjamin J Raphael, Ron Shamir, Roded Sharan, Simone Zaccaria,
Meirav Zehavi, and Ron Zeira. Complexity and algorithms for copy-number evolution problems.
Algorithms for Molecular Biology, 12(1):13, 2017.

12 Nadia El-Mabrouk, Joseph H. Nadeau, and David Sankoff. Genome halving. In Martin Farach-
Colton, editor, Proc. Combinatorial Pattern Matching, pages 235–250, Berlin, Heidelberg,
1998. Springer Berlin Heidelberg.

13 Pedro Feijão and Joao Meidanis. SCJ: a breakpoint-like distance that simplifies several
rearrangement problems. IEEE/ACM Transactions on Computational Biology and Bioinform-
atics, 8(5):1318–29, 2011. doi:10.1109/TCBB.2011.34.

14 Guillaume Fertin, Anthony Labarre, Irena Rusu, Stéphane Vialette, and Eric Tannier. Com-
binatorics of genome rearrangements. MIT press, 2009.

15 Andrej Fischer, Ignacio Vázquez-García, Christopher JR Illingworth, and Ville Mustonen.
High-definition reconstruction of clonal composition in cancer. Cell reports, 7(5):1740–1752,
2014.

16 Moritz Gerstung, Clemency Jolly, Ignaty Leshchiner, Stefan C. Dentro, Santiago Gonzalez,
Daniel Rosebrock, Thomas J. Mitchell, Yulia Rubanova, Pavana Anur, Kaixian Yu, Maxime
Tarabichi, Amit Deshwar, Jeff Wintersinger, Kortine Kleinheinz, Ignacio Vázquez-García,
Kerstin Haase, Lara Jerman, Subhajit Sengupta, Geoff Macintyre, Salem Malikic, Nilgun
Donmez, Dimitri G. Livitz, Marek Cmero, Jonas Demeulemeester, Steven Schumacher, Yu Fan,
Xiaotong Yao, Juhee Lee, Matthias Schlesner, Paul C. Boutros, David D. Bowtell, Hongtu Zhu,
Gad Getz, Marcin Imielinski, Rameen Beroukhim, S. Cenk Sahinalp, Yuan Ji, Martin Peifer,
Florian Markowetz, Ville Mustonen, Ke Yuan, Wenyi Wang, Quaid D. Morris, Stefan C. Dentro,
Amit G. Deshwar, David J. Adams, Paul C. Boutros, David D. Bowtell, Peter J. Campbell,
Shaolong Cao, Elizabeth L. Christie, Yupeng Cun, Kevin J. Dawson, Ruben M. Drews,
Roland Eils, Matthew Fittall, Dale W. Garsed, Gavin Ha, Henry Lee-Six, Dimitri G. Livitz,
Inigo Martincorena, Thomas J. Mitchell, Layla Oesper, Myron Peto, Benjamin J. Raphael,
S. Cenk Sahinalp, Adriana Salcedo, Ruian Shi, Seung Jun Shin, Oliver Spiro, Lincoln D.
Stein, Shankar Vembu, David A. Wheeler, Tsun-Po Yang, Quaid D. Morris, Paul T. Spellman,
David C. Wedge, Peter Van Loo, Paul T. Spellman, David C. Wedge, PCAWG Evolution &
Heterogeneity Working Group, and PCAWG Consortium. The evolutionary history of 2,658
cancers. Nature, 578(7793):122–128, 2020. doi:10.1038/s41586-019-1907-7.

17 Gavin Ha, Andrew Roth, Jaswinder Khattra, Julie Ho, Damian Yap, Leah M Prentice, Nataliya
Melnyk, Andrew McPherson, Ali Bashashati, Emma Laks, et al. Titan: inference of copy
number architectures in clonal cell populations from tumor whole-genome sequence data.
Genome research, 24(11):1881–1893, 2014.

18 Sridhar Hannenhalli and Pavel A Pevzner. Transforming cabbage into turnip. In Proc. Annual
ACM Symposium on the Theory of Computing, volume 46, pages 178–189, New York, New
York, USA, 1995. doi:10.1145/225058.225112.

19 Sridhar Hannenhalli and Pavel A Pevzner. Transforming men into mice (polynomial algorithm
for genomic distance problem). In Proc. IEEE Symposium on Foundations of Computer
Science, volume 36, pages 581–592, 1995. doi:10.1109/SFCS.1995.492588.

WABI 2021

https://doi.org/10.1038/nature10738
https://doi.org/10.1109/TCBB.2011.34
https://doi.org/10.1038/s41586-019-1907-7
https://doi.org/10.1145/225058.225112
https://doi.org/10.1109/SFCS.1995.492588

18:20 CND Halving and Aliquoting

20 Jun Inoue, Yukuto Sato, Robert Sinclair, Katsumi Tsukamoto, and Mutsumi Nishida. Rapid
genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested
by mathematical modeling. Proceedings of the National Academy of Sciences, 112(48):14918–
14923, 2015. doi:10.1073/pnas.1507669112.

21 Olivier Jaillon, Jean-Marc Aury, Frédéric Brunet, Jean-Louis Petit, Nicole Stange-Thomann,
Evan Mauceli, Laurence Bouneau, Cécile Fischer, Catherine Ozouf-Costaz, Alain Bernot,
et al. Genome duplication in the teleost fish tetraodon nigroviridis reveals the early vertebrate
proto-karyotype. Nature, 431(7011):946–957, 2004.

22 Jakub Kováč. On the complexity of rearrangement problems under the breakpoint distance.
Journal of Computational Biology, 21(1):1–15, 2014. doi:10.1089/cmb.2013.0004.

23 Yilong Li, Nicola D. Roberts, Jeremiah A. Wala, Ofer Shapira, Steven E. Schumacher, Kiran
Kumar, Ekta Khurana, Sebastian Waszak, Jan O. Korbel, James E. Haber, Marcin Imielinski,
Kadir C. Akdemir, Eva G. Alvarez, Adrian Baez-Ortega, Rameen Beroukhim, Paul C. Boutros,
David D. L. Bowtell, Benedikt Brors, Kathleen H. Burns, Peter J. Campbell, Kin Chan,
Ken Chen, Isidro Cortés-Ciriano, Ana Dueso-Barroso, Andrew J. Dunford, Paul A. Edwards,
Xavier Estivill, Dariush Etemadmoghadam, Lars Feuerbach, J. Lynn Fink, Milana Frenkel-
Morgenstern, Dale W. Garsed, Mark Gerstein, Dmitry A. Gordenin, David Haan, James E.
Haber, Julian M. Hess, Barbara Hutter, David T. W. Jones, Young Seok Ju, Marat D. Kazanov,
Leszek J. Klimczak, Youngil Koh, Jan O. Korbel, Eunjung Alice Lee, Jake June-Koo Lee,
Andy G. Lynch, Geoff Macintyre, Florian Markowetz, Iñigo Martincorena, Alexander Martinez-
Fundichely, Matthew Meyerson, Satoru Miyano, Hidewaki Nakagawa, Fabio C. P. Navarro,
Stephan Ossowski, Peter J. Park, John V. Pearson, Montserrat Puiggròs, Karsten Rippe,
Nicola D. Roberts, Steven A. Roberts, Bernardo Rodriguez-Martin, Steven E. Schumacher,
Ralph Scully, Mark Shackleton, Nikos Sidiropoulos, Lina Sieverling, Chip Stewart, David
Torrents, Jose M. C. Tubio, Izar Villasante, Nicola Waddell, Jeremiah A. Wala, Joachim
Weischenfeldt, Lixing Yang, Xiaotong Yao, Sung-Soo Yoon, Jorge Zamora, Cheng-Zhong
Zhang, Peter J. Campbell, PCAWG Structural Variation Working Group, and PCAWG
Consortium. Patterns of somatic structural variation in human cancer genomes. Nature,
578(7793):112–121, 2020. doi:10.1038/s41586-019-1913-9.

24 Stefano Mangiola, Matthew KH Hong, Marek Cmero, Natalie Kurganovs, Andrew Ryan,
Anthony J Costello, Niall M Corcoran, Geoff Macintyre, and Christopher M Hovens. Comparing
nodal versus bony metastatic spread using tumour phylogenies. Scientific reports, 6:33918,
2016.

25 Julia Mixtacki. Genome halving under DCJ revisited. In Xiaodong Hu and Jie Wang,
editors, Proc. Computing and Combinatorics, volume 5092 of Lecture Notes in Computer
Science, pages 276–286. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. doi:10.1007/
978-3-540-69733-6.

26 Serena Nik-Zainal, Peter Van Loo, David C Wedge, Ludmil B Alexandrov, Christopher D
Greenman, King Wai Lau, Keiran Raine, David Jones, John Marshall, Manasa Ramakrishna,
et al. The life history of 21 breast cancers. Cell, 149(5):994–1007, 2012.

27 Layla Oesper, Ahmad Mahmoody, and Benjamin J Raphael. Theta: inferring intra-tumor
heterogeneity from high-throughput dna sequencing data. Genome biology, 14(7):R80, 2013.

28 J D Palmer and L A Herbon. Plant mitochondrial DNA evolves rapidly in structure, but
slowly in sequence. Journal of Molecular Evolution, 28(1-2):87–97, 1988. URL: http://www.
ncbi.nlm.nih.gov/pubmed/3148746.

29 Alexandre Pelé, Mathieu Rousseau-Gueutin, and Anne-Marie Chèvre. Speciation success of
polyploid plants closely relates to the regulation of meiotic recombination. Frontiers in Plant
Science, 9:907, 2018. doi:10.3389/fpls.2018.00907.

30 Marina Petkovic, Thomas BK Watkins, Emma C Colliver, Sofya Laskina, Charles Swanton,
Kerstin Haase, and Roland F Schwarz. Whole-genome doubling-aware copy number phylogenies
for cancer evolution with medicc2. bioRxiv, 2021. doi:10.1101/2021.02.28.433227.

https://doi.org/10.1073/pnas.1507669112
https://doi.org/10.1089/cmb.2013.0004
https://doi.org/10.1038/s41586-019-1913-9
https://doi.org/10.1007/978-3-540-69733-6
https://doi.org/10.1007/978-3-540-69733-6
http://www.ncbi.nlm.nih.gov/pubmed/3148746
http://www.ncbi.nlm.nih.gov/pubmed/3148746
https://doi.org/10.3389/fpls.2018.00907
https://doi.org/10.1101/2021.02.28.433227

R. Zeira, G. Mon, and B. J. Raphael 18:21

31 Pavel Pevzner and Glenn Tesler. Transforming men into mice. In Proc. Seventh annual
international conference on Research in Computational Molecular Biology, pages 247–256, New
York, New York, USA, 2003. ACM Press. doi:10.1145/640075.640108.

32 David Sankoff and Mathieu Blanchette. Multiple genome rearrangement and breakpoint
phylogeny. Journal of computational biology, 5(3):555–570, 1998.

33 Roland F Schwarz, Charlotte KY Ng, Susanna L Cooke, Scott Newman, Jillian Temple,
Anna M Piskorz, Davina Gale, Karen Sayal, Muhammed Murtaza, Peter J Baldwin, et al.
Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis.
PLoS medicine, 12(2):e1001789, 2015.

34 Roland F Schwarz, Anne Trinh, Botond Sipos, James D Brenton, Nick Goldman, and Florian
Markowetz. Phylogenetic quantification of intra-tumour heterogeneity. PLoS computational
biology, 10(4):e1003535, 2014.

35 Ronglai Shen and Venkatraman E Seshan. Facets: allele-specific copy number and clonal
heterogeneity analysis tool for high-throughput dna sequencing. Nucleic acids research,
44(16):e131–e131, 2016.

36 Andrea Sottoriva, Haeyoun Kang, Zhicheng Ma, Trevor A Graham, Matthew P Salomon,
Junsong Zhao, Paul Marjoram, Kimberly Siegmund, Michael F Press, Darryl Shibata, et al. A
big bang model of human colorectal tumor growth. Nature genetics, 47(3):209, 2015.

37 Steven H Strauss, Jeffrey D Palmer, Glen T Howe, and Allan H Doerksen. Chloroplast genomes
of two conifers lack a large inverted repeat and are extensively rearranged. Proceedings of the
National Academy of Sciences, 85(11):3898–3902, 1988.

38 Alfred H Sturtevant and Th Dobzhansky. Inversions in the third chromosome of wild races of
drosophila pseudoobscura, and their use in the study of the history of the species. Proceedings
of the National Academy of Sciences, 22(7):448–450, 1936.

39 Eric Tannier, Chunfang Zheng, and David Sankoff. Multichromosomal median and halving
problems under different genomic distances. BMC Bioinformatics, 10(1):120, 2009. doi:
10.1186/1471-2105-10-120.

40 Robert Warren and David Sankoff. Genome halving with double cut and join. Journal of
Computational Biology, 7(2):357–371, 2009.

41 Robert Warren and David Sankoff. Genome aliquoting revisited. Journal of Computational
Biology, 18(9):1065–1075, 2011. URL: http://online.liebertpub.com/doi/abs/10.1089/
cmb.2011.0087.

42 Kenneth H. Wolfe and Denis C. Shields. Molecular evidence for an ancient duplication of the
entire yeast genome. Nature, 387:708 EP–, 1997. doi:10.1038/42711.

43 Sophia Yancopoulos, Oliver Attie, and Richard Friedberg. Efficient sorting of genomic
permutations by translocation, inversion and block interchange. Bioinformatics, 21(16):3340–
3346, 2005. doi:10.1093/bioinformatics/bti535.

44 Simone Zaccaria, Mohammed El-Kebir, Gunnar W. Klau, and Benjamin J. Raphael. Phylogen-
etic copy-number factorization of multiple tumor samples. Journal of Computational Biology,
25(7):689–708, 2018. PMID: 29658782. doi:10.1089/cmb.2017.0253.

45 Travis I Zack, Steven E Schumacher, Scott L Carter, Andrew D Cherniack, Gordon Saksena,
Barbara Tabak, Michael S Lawrence, Cheng-Zhong Zhang, Jeremiah Wala, Craig H Mermel,
et al. Pan-cancer patterns of somatic copy number alteration. Nature genetics, 45(10):1134,
2013.

46 Ron Zeira, Meirav Zehavi, and Ron Shamir. A linear-time algorithm for the copy number
transformation problem. Journal of Computational Biology, 24(12):1179–1194, 2017.

47 Chunfang Zheng, Qian Zhu, Zaky Adam, and David Sankoff. Guided genome halving:
hardness, heuristics and the history of the hemiascomycetes. Bioinformatics (Oxford, England),
24(13):i96–i104, July 2008. doi:10.1093/bioinformatics/btn146.

WABI 2021

https://doi.org/10.1145/640075.640108
https://doi.org/10.1186/1471-2105-10-120
https://doi.org/10.1186/1471-2105-10-120
http://online.liebertpub.com/doi/abs/10.1089/cmb.2011.0087
http://online.liebertpub.com/doi/abs/10.1089/cmb.2011.0087
https://doi.org/10.1038/42711
https://doi.org/10.1093/bioinformatics/bti535
https://doi.org/10.1089/cmb.2017.0253
https://doi.org/10.1093/bioinformatics/btn146

18:22 CND Halving and Aliquoting

S1 Appendix

S1.1 Reducing input profile size

In order to show these Proposition 1 and Proposition 2, we define two ways of modifying
profiles that “preserve” the validity of a transformation between them. Let S = ⟨si⟩ and
T = ⟨ti⟩ be CNPs with n genes, and let C be a transformation for S → T . We remove a
gene i from S and T to obtain new CNPs S′ and T ′, where

S′ = ⟨s1, s2, . . . , si−1, si+1, . . . , sn⟩
T ′ = ⟨t1, t2, . . . , ti−1, ti+1, . . . , tn⟩

Then, we can modify C to obtain a new transformation C ′ for S′ → T ′, where |C ′| ≤ |C|,
because we can modify each event in C to “skip” gene i (Figure S1a).

Similarly, we can insert a gene i to S and T to get S∗ and T ∗, such that

S∗ = ⟨s1, s2, . . . , si, si, si+1, . . . , sn⟩
T ∗ = ⟨t1, t2, . . . , ti, ti, ti+1, . . . , tn⟩

That is, we create a new gene next to gene i, with the same value as the gene at i. Then,
we can modify a transformation C for S → T to create a transformation C∗ for S∗ → T ∗,
where |C∗| ≤ |C|, because we can modify each event in C to “stretch over” a new gene at i

(Figure S1b).

3 5 4 7 2

5 6 4 5 1

3 4 7 2

5 4 5 1

(a) Removing gene 2.

3 4 7 2

5 4 5 1

3 3 4 7 2

5 5 4 5 1

(b) Inserting gene 1.

Figure S1 Modifying profiles and transformations by removing and inserting genes.

S1.1.1 Proof of Proposition 1

Proof. Let Ŝ be an optimal preduplication profile for ηp(T) and let C be a transformation
for pŜ → T of size ηp(T). We can delete gene i from Ŝ to get Ŝ′ and since T ′ can be formed
from T by also removing gene i, we can obtain a transformation C ′ for pŜ′ → T ′ such that
|C ′| ≤ |C|. This implies ηp(T ′) ≤ ηp(T).

To show the other direction, we insert a gene at i into Ŝ′ and T ′ to get Ŝ∗ and T ∗,
respectively. Then, we have some transformation C∗ for pŜ∗ → T ∗ such that |C∗| ≤ |C ′|.
Finally, we can set ŝ∗

i = 0 and t∗
i = 0, such that Ŝ∗ is now equal to Ŝ and T ∗ is now equal to

T . But, C∗ is still valid for pŜ → T , because modifying Ŝ∗ in such a manner does not affect
any other gene, and preserves the validity of C∗ at gene i, which has value zero in both pŜ

and T . So, ηp(T) ≤ ηp(T ′), which completes the proof. ◀

R. Zeira, G. Mon, and B. J. Raphael 18:23

S1.1.2 Proof of Proposition 2
Proof. First, we show ηp(T ′) ≤ ηp(T). Let Ŝ be an optimal preduplication profile for ηp(T),
and let C be a transformation pŜ → T . We can remove gene i + 1 from Ŝ to get Ŝ′, and so
there is a valid transformation C ′ for pŜ′ → T ′ that is no larger than C. This implies that
ηp(T ′) ≤ ηp(T), and that we can get an optimal preduplication profile for T ′ by deleting a
gene of T .

Next, we show ηp(T ′) ≥ ηp(T). Let Ŝ′ be an optimal preduplication profile (with n − 1
genes) for ηp(T ′), and let C ′ be a transformation pŜ′ → T ′ of size ηp(T ′). Then, we can insert
a gene at i into Ŝ′ to get Ŝ∗. Similarly, we can insert a gene at i into T ′ to get T ∗. Then, we
obtain a transformation C∗ for pŜ∗ → T ∗ such that |C∗| ≤ |C ′|. Finally, because ti+1 ≥ ti,
we need to modify Ŝ∗ and T ∗ such that T ∗ = T , while preserving the validity of C∗ for
pŜ∗ → T ∗. Note that because ti ≡ ti+1 mod p and ti ≤ ti+1, it follows that (ti+1 − ti) = kp

for some k ≥ 0. Since S∗ and T ∗ are a result of gene insertion at i, we have ŝ∗
i+1 = ŝ′

i ̸= 0
and t∗

i+1 = ti ̸= 0. Thus, we can increase ŝ∗
i+1 by k and increase t∗

i+1 by kp to get two new
profiles, S̃ and T̃ . After doing so, C∗ is still a valid transformation for pS̃ → T̃ because:

We did not change the values of genes other than i + 1 in either profile and we did not
modify C∗, so C∗ is still valid at these genes.
Consider gene i + 1. Before modifying Ŝ∗ and T ∗, we had that ŝ∗

i+1 = ŝ′
i ̸= 0 and

t∗
i+1 = ti ̸= 0. Hence, by Observation 1, if a is the number of amplifications in C∗ that

target gene i + 1 and if d is the number of deletions that target gene i + 1, then

t∗
i+1 = pŝ∗

i+1 + a − d

Now, when we modify Ŝ∗ and T to get S̃ and T̃ , we set s̃i+1 = ŝ∗
i+1+k and t̃i+1 = t∗

i+1+kp.
Note that t̃i+1 = ps̃i+1 + a − d, because we can add kp to both sides of the previous
equation. In addition, both t̃i+1 and s̃i+1 are nonzero, so C∗ is valid at gene i + 1.

Together, we have T ∗ = T , a preduplication profile S∗ and transformation pŜ∗ → T of size
ηp(T ′), This implies ηp(T) ≤ ηp(T ′). ◀

S1.2 Computing y1(x), y′
1(x), y2(x), y′

2(x)
▶ Proposition S5. y1(x), y′

1(x), y2(x), y′
2(x) are all computable in O(1) time.

Proof. We show each computation separately.
To compute y1(x), note that

y1(x) = min{y | y ∈ Di−1, y ≥ x}
= min{b−

i−1 + kp | k ≥ 0 ∧ b−
i−1 + kp ≤ np ∧ b−

i−1 + kp ≥ x}
= b−

i−1 + p · min{k ≥ 0 | np ≥ b−
i−1 + kp ≥ x}

So, we can find the min k that satisfies these conditions in order to compute y1.

b−
i−1 + kp ≥ x

kp ≥ x − b−
i−1

k ≥ (x − b−
i−1)/p

We can compute the right hand side, take the ceiling; the result is always non-negative
because |x − b−i − 1| cannot exceed p. Afterwards, we double check that this satisfies
the bound b−

i−1 + kp ≤ np that we get from bounding the number of total events. If it
does, we have all we need to compute y1(x). If it does not, then y1(x) does not exist,
and we ignore its term in the min{. . . } when computing D[i, x].

WABI 2021

18:24 CND Halving and Aliquoting

To compute y2(x), we use a similar approach.

y2(x) = max{y | y ∈ Di−1, y ≤ x}
= max{b−

i−1 + kp | k ≥ 0 ∧ b−
i−1 + kp ≤ np ∧ b−

i−1 + kp ≤ x}
= b−

i−1 + p · max{k ≥ 0 | b−
i−1 + kp ≤ np ∧ b−

i−1 + kp ≤ x}

So, we can find the max k that satisfies the conditions to compute y2.

b−
i−1 + kp ≤ x

kp ≤ x − b−
i−1

k ≤ (x − b−
i−1)/p

We can pick the max k that works by computing the right hand side and taking the floor
to get k. We do not need to check that b−

i−1 + kp ≤ np, because we get this from x ≤ np,
but we do need to be careful to check if k ≥ 0; if not, then x is small enough that no
choice of k works. If such a k exists, then y2(x) = b−

i−1 + kp. Note that y2(x) = y1(x) − p,
because y2 and y1 are computed from the closest multiples of p that “sandwich” x.
Computing y′

1(x) is similar to computing y1(x), with the additional condition that
ti−1 − b+

i−1 − kp ≥ p to ensure that ŝi−1 ≥ 1.

y′
1(x) = min{y | y ∈ Ai−1, y ≥ x}

= min{b+
i−1 + kp | k ≥ 0 ∧ b−

i−1 + kp ≤ np ∧ b−
i−1 + kp ≥ x ∧ ti−1 − b+

i−1 − kp ≥ p}

= b+
i−1 + p · min{k ≥ 0 | np ≥ b+

i−1 + kp ≥ x ∧ ti−1 − b+
i−1 ≥ (k + 1)p}

So, we can find the min k that satisfies the first condition in the same way that we
computed y1(x), and check that this k satisfies the additional condition which enforces
ŝi ≥ 1.
Computing y′

2(x) is similar to computing y2(x), with the additional condition as mentioned
in the case for y′

1(x).

y′
2(x) = max{y | y ∈ Ai−1, y ≤ x}

= max{b+
i−1 + kp | k ≥ 0 ∧ b−

i−1 + kp ≤ np ∧ b−
i−1 + kp ≤ x ∧ ti−1 − b+

i−1 − kp ≥ p}

= b+
i−1 + p · max{k ≥ 0 | b+

i−1 + kp ≤ np ∧ b+
i−1 + kp ≤ x ∧ ti−1 − b+

i−1 ≥ (k + 1)p}

We compute the max k that satisfies all but the last condition in the same way that we
computed y2(x). Then, compute the max k that satisfies the second condition, which is
an upper bound on k. We can take the min of these two values to get the max k that
satisfies both. ◀

R. Zeira, G. Mon, and B. J. Raphael 18:25

S1.3 Supplemental results

100 200 300
0

1

2

p(
T)

(b) Difference between simulated and estimated number of events
100 200 300

0

1

2

3

4

5

d(
S,

S)

(a) Distance between simulated and estimated preduplication profiles

100 200 300
n

0.000

0.005

0.010

0.015

0.020

Ru
nn

in
g

tim
e

(s
)

(c) Running time

Results for k = 5

p
2
3
4

Figure S2 Simulation results for using k = 5 events after duplication. (a) d(S, Ŝ) - the distance
between simulated and estimated preduplication profiles. (b) ∆ηp(T) - the difference between the
simulated and estimated number of events after duplication. (c) running time in seconds.

100 200 300
0

1

2

3

4

5

6

p(
T)

(b) Difference between simulated and estimated number of events
100 200 300

0

2

4

6

8

10

d(
S,

S)

(a) Distance between simulated and estimated preduplication profiles

100 200 300
n

0.000

0.020

0.040

0.060

0.080

Ru
nn

in
g

tim
e

(s
)

(c) Running time

Results for k = 15

p
2
3
4

Figure S3 Simulation results for using k = 15 events after duplication. (a) d(S, Ŝ) - the distance
between simulated and estimated preduplication profiles. (b) ∆ηp(T) - the difference between the
simulated and estimated number of events after duplication. (c) running time in seconds.

WABI 2021

	1 Introduction
	2 Preliminaries
	2.1 Copy number profiles and distance
	2.2 Copy number halving and aliquoting problems

	3 Algorithms
	3.1 Properties of aliquoting solutions
	3.2 CNP halving
	3.3 CNP aliquoting
	3.3.1 An O(n^3) dynamic programming algorithm
	3.3.2 An improved O(n^2) dynamic programming algorithm

	4 Experiments

	5 Discussion
	S1 Appendix
	S1.1 Reducing input profile size
	S1.1.1 Proof of Proposition 1
	S1.1.2 Proof of Proposition 2

	S1.2 Computing y_1(x), y_1'(x), y_2(x), y_2'(x)
	S1.3 Supplemental results

