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—— Abstract

Cell signaling pathways, which are a series of reactions that start at receptors and end at transcription
factors, are basic to systems biology. Properly modeling the reactions in such pathways requires
directed hypergraphs, where an edge is now directed between two sets of vertices. Inferring a pathway
by the most parsimonious series of reactions then corresponds to finding a shortest hyperpath in
a directed hypergraph, which is NP-complete. The state of the art for shortest hyperpaths in
cell-signaling hypergraphs solves a mixed-integer linear program to find an optimal hyperpath that
is restricted to be acyclic, and offers no efficiency guarantees.

We present for the first time a heuristic for general shortest hyperpaths that properly handles
cycles, and is guaranteed to be efficient. Its accuracy is demonstrated through exhaustive experiments
on all instances from the standard NCI-PID and Reactome pathway databases, which show the
heuristic finds a hyperpath that matches the state-of-the-art mixed-integer linear program on
over 99% of all instances that are acyclic. On instances where only cyclic hyperpaths exist, the
heuristic surpasses the state-of-the-art, which finds no solution; on every such cyclic instance,
enumerating all possible hyperpaths shows that the solution found by the heuristic is in fact optimal.
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1 Introduction

Signaling pathways are cornerstones of molecular and cellular biology. They underly cellular
communication, govern environmental response, and their perturbation has been implicated
in the cause of many diseases. While signaling pathways have classically been modeled as
ordinary graphs, using directed or undirected edges to link pairs of interacting molecules [31,
32], both Klamt, Haus and Theis [20] and Ritz, Tegge, Kim, Poirel and Murali [28] have shown
that ordinary graphs cannot adequately represent cellular activity that involves the assembly
and disassembly of protein complexes, and multiway reactions among such complexes.
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Directed hypergraphs are generalizations of ordinary graphs, where an edge (now called a
hyperedge) is directed from one set of vertices (called its tail) to another set of vertices (called
its head), and have been used to model many cellular processes [25, 16, 6, 14, 20, 24, 33, 27, 28].
In particular, a biochemical reaction that involves multiple reactants — all of which must be
present for the reaction to proceed — and that results in multiple products — all of which are
produced upon its completion — is correctly captured by a single hyperedge, directed from its
set of reactants to its set of products. Despite hypergraphs affording more faithful models of
reaction networks, the lack of practical hypergraph algorithms has hindered their potential
for correctly representing and reasoning about molecular reactions.

Biologically, a typical cell-signaling pathway consists of membrane-bound receptors that
bind to extracellular ligands, triggering intracellular cascades of reactions, culminating in the
activation of transcriptional regulators and factors [2]. Computationally, treating receptors
as sources, and transcription factors as targets, finding the most efficient way to synthesize
a particular transcription factor from a set of receptors maps to the shortest hyperpath
problem we consider here: Given a cell-signaling network whose reactants and reactions are
modeled by the vertices and weighted hyperedges of a directed hypergraph, together with a
set of sources and a target, find a hyperpath consisting of hyperedges from the sources to the
target of minimum total weight. We briefly summarize prior work on related problems next.

Related work

Hypergraphs have been studied in the algorithms community [18, 12, 4] and applied within
systems biology to metabolic networks [8, 1, 3, 5] and cell-signaling networks [27, 26, 11, 30].

In the field of algorithms, Italiano and Nanni [18] first proved that finding a shortest
source-sink hyperpath is NP-complete, even when hyperedges have a single head vertex. In a
seminal paper that is the source for much of the subsequent work on hypergraphs, Gallo,
Longo, Pallottino and Nguyen [12] explore special cases of hypergraphs, and define several
versions of hyperpaths, including what they call a B-path (though see the correction of
Nielsen and Pretolani [22]), which is essentially equivalent to our definition of hyperpath
in Section 2. They show the vertices reachable from a source vertex in a hypergraph can
be found in time linear in the total size of the tail and head sets of all hyperedges, give
an efficient algorithm for a variant of shortest hyperpaths with a so-called additive cost
function, and prove that finding a minimum cut in a hypergraph is NP-complete. Ausiello
and Laura [4] survey results on hypergraphs whose hyperedges have singleton head sets,
and note that a consequence of the NP-completeness reduction [18] for shortest hyperpaths
from the set cover problem is that, unless P=NP, no approximation algorithm can exist for
shortest hyperpaths on hypergraphs of n vertices with approximation ratio (1—0(1)) Inn.

In metabolic networks, Cottret, Milreu and Acuifia et al. [8] examine the minimum
precursor problem: given a hypergraph G, a set of sources S, and a set of targets 7', find a
source subset P C S of minimum cardinality that has a hyperpath from P to T. They show
this problem is NP-complete, and give an algorithm that enumerates all minimal precursor
sets whose hyperpath is acyclic. Acuia, Milreu and Cottret et al. [1] subsequently enumerate
all minimal precursor sets allowing cycles. Andrade, Wannagat and Klein et al. [3] extend
these algorithms to accommodate stoichiometry and conserve intermediate metabolites within
the hyperpath. Carbonell, Fichera, Pandit and Faulon [5] give an efficient algorithm to find
a source-sink hyperpath if one exists — irrespective of its length — and prove that finding any
hyperpath that must contain a specified set of hyperedges is NP-complete. They also offer
an approach to hyperpath enumeration that relies on solutions to this NP-complete problem,
for which they employ a heuristic.
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In cell-signaling networks, Ritz, Avent and Murali [27, 26] were the first to solve the shortest
acyclic hyperpath problem by formulating it as a mixed-integer linear program (MILP) — the
current state of the art for shortest hyperpaths — and showed that in practice optimal acyclic
hyperpaths can be found even for large cell-signaling hypergraphs. Their formulation does
not extend to hyperpaths with cycles, and requires exponential time in the worst-case (which
may be unavoidable, as the acyclic problem remains NP-complete). Recently, Franzese,
Groce, Murali and Ritz [11] defined a parameterized notion of connectivity that interpolates
between hyperpath- and ordinary-path-connectivity, while Schwob, Zhan and Dempsey [30]
modified the acyclic MILP of Ritz et al. [26] to include time-dependence among reactions.

Our contributions

In contrast to prior work, we give a heuristic for shortest hyperpaths that handles cycles, is
worst-case efficient, and finds hyperpaths that are demonstrably optimal or close to optimal
in real cell-signaling hypergraphs. In particular, we make the following contributions.

We present an efficient heuristic for shortest hyperpaths, that on a hypergraph of size ¢,
which measures the total cardinality of all hyperedge tail and head sets, with m hyperedges
that are doubly-reachable from the source and sink vertices, and k defined analogously
to £ over these doubly-reachable hyperedges, runs in O(¢ + m? k) time.

We also give a practical algorithm for hyperpath enumeration that generates all possible
hyperpaths, allowing us to tractably measure how close our heuristic is to the optimum.

Our heuristic matches the state-of-the-art MILP for shortest acyclic hyperpaths on
over 99% of all instances from two standard databases of cell-signaling pathways.

Our heuristic surpasses the state-of-the-art on instances where every source-sink hyperpath
is cyclic, and hence the MILP finds no solution. On all such cyclic instances, our hyperpath
enumeration algorithm verified that the heuristic was in fact optimal.

To our knowledge, this heuristic is the first in the literature for shortest source-sink
hyperpaths in general directed hypergraphs, where hyperedges have arbitrary tail and head
sets, and the length of a hyperpath is the sum of the weights of its hyperedges.

Plan of the paper

The next section defines the shortest source-sink hyperpath problem. Section 3 then presents
our heuristic for shortest hyperpaths, and analyzes its time complexity. Section 4 compares
the heuristic, through experiments on all source-sink instances from standard databases,
to the state-of-the-art MILP for acyclic instances, or to the optimum of all enumerated

hyperpaths for cyclic instances, and discusses biological examples of cyclic shortest hyperpaths.

Section 5 concludes, and Appendix A gives our algorithm for generating all hyperpaths.

2 Shortest hyperpaths in directed hypergraphs

A directed hypergraph is a generalization of an ordinary directed graph, where an edge,
instead of touching two vertices, now connects two subsets of vertices. Formally, a directed
hypergraph is a pair (V, E), where V is a set of vertices, and E is a set of directed hyperedges.?

Each hyperedge e € E is an ordered pair (X,Y), where both X, Y C V are vertex subsets.

Edge e is directed from set X to set Y. We call set X the tail of e, and set Y the head

2 The literature sometimes uses the term hyperarc for an edge in a directed hypergraph, but we prefer the
simpler term hyperedge (just as the term edge is used for both directed and undirected ordinary graphs).
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Figure 1 A hyperedge e with tail(e) = {v1,...,vx} and head(e) = {w1,...,w¢}. To use ¢ in a
hyperpath P, every vertex v; € tail(e) must have a preceding hyperedge f on P with v; € head(f).

of e, and refer to these sets by the functions tail(e) = X and head(e) =Y. We also refer
to the in-edges of vertex v by in(v) := {e€ E : v € head(e)}, and the out-edges of v by
out(v) :={e€FE : v € tail(e)}. Figure 1 shows a directed hyperedge.

In ordinary directed graphs, a path from a vertex s to a vertex ¢ is a sequence of edges
starting from s and ending at ¢, where for consecutive edges e and f in the sequence, the
preceding edge e must enter the vertex that the following edge f leaves. We say ¢ is reachable
from s when there is such a path from s to t.

In generalizing these notions to directed hypergraphs, the conditions both for when
a hyperedge can follow another in a hyperpath, and when a vertex is reachable from
another, become more involved. A hyperpath is again a sequence of hyperedges, but now for
hyperedge f in a hyperpath, for every vertex v € tail(f), there must be some hyperedge e
that precedes f in the hyperpath for which v € head(e). Reachability is captured by the
following notion of superpath.

» Definition 1 (Superpath). In a directed hypergraph (V, E), an s, t-superpath, for vertices
s,t € V, is an edge subset F' C E such that the hyperedges of F' can be ordered eq,es, ..., ey,
where

(i) tail(es) = {s},

(ii) for each 1 < i<k,

tail(e;) C {s} U U head(e;),

1<j<i

(iii) and t € head(ey).

For an s, t-superpath, we call s its source, t its sink, and we say t is reachable from s.

We can now define hyperpaths in terms of superpaths. Recall that a set S is minimal
with respect to some property X if S satisfies X, but no proper subset of S satisfies X.

» Definition 2 (Hyperpath). An s,t-hyperpath is a minimal s, t-superpath.

In other words, a hyperpath P is a superpath for which removing any edge e € P leaves a
subset P — {e} that is no longer a superpath. Essentially, hyperpaths eliminate unnecessary
edges from superpaths. Figures 5 and 6 later show examples of hyperpaths.

We say a hyperpath P contains a cycle if, for every ordering ey, ..., e, of its hyperedges
satisfying properties (i)—(iii) in the definition of superpath, P contains some hyperedge f
with a vertex in head(f) that also occurs in tail(e) for an earlier hyperedge e in the ordering.
While in ordinary graphs a minimal s, ¢-path can never contain a cycle, in hypergraphs an
s, t-hyperpath can in fact contain cycles, as shown in the examples discussed in Section 4.6.

We can now define the shortest hyperpath problem. For an edge weight function w(e),
we extend w to edge subsets F' C E by w(F) 1= > p w(e).
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» Definition 3 (Shortest Hyperpaths). The Shortest Hyperpaths problem is the following.
Given a directed hypergraph (V, E), a positive edge weight function w : E—R™, source s € V
and sink t € V, find an s, t-hyperpath P C E of minimum total weight w(P).

Note that for positive edge weights, Shortest Hyperpaths is equivalent to finding an
s, t-superpath of minimum total weight.

Shortest Hyperpaths with a single source and sink vertex also captures more general
versions of the problem with multiple sources and multiple sinks, as follows. To find a
hyperpath that starts from a set of sources S C V, simply add a new source vertex s to the
hypergraph together with a single hyperedge ({s},S) of zero weight, and equivalently find a
hyperpath from the single source s. To find a hyperpath that reaches all vertices in a set
of sinks T'C V, add a new sink vertex ¢, a zero-weight hyperedge (7', {t}), and equivalently
find a hyperpath to the single sink ¢. To find a hyperpath that reaches some vertex in a set
of sinks T C V, add new sink vertex ¢, zero-weight hyperedges ({v}, {t}) from all v € T, and
again equivalently find a hyperpath to the single sink ¢. Thus versions of shortest hyperpaths
with multiple sources and sinks can be reduced to the problem with a single source and sink.

Shortest Hyperpaths is NP-complete [18] (even for acyclic hypergraphs with singleton
head sets), so we likely cannot efficiently compute shortest hyperpaths in the worst-case. The
next section presents an efficient heuristic for shortest hyperpaths that is highly accurate at
finding demonstrably optimal or near-optimal hyperpaths in real cell-signaling hypergraphs.

3 An efficient shortest hyperpath heuristic

We now give a fast heuristic for Shortest Hyperpaths that always finds an s, t-hyperpath
if one exists. While the heuristic is not guaranteed to find a shortest s,t-hyperpath, our
later experiments on real cell-signaling hypergraphs show it quickly finds a hyperpath that
is optimal or remarkably close to optimal on the overwhelming majority of instances from
exhaustive experiments over the two standard cell-signaling databases in the literature. We
present detailed pseudocode for the heuristic at a level that can be directly implemented, as
the heuristic is carefully designed and many of its component algorithms are surprisingly
tricky to implement correctly. After describing the heuristic, we give a time analysis that
shows it is always efficient.

The pseudocode accesses a hypergraph G through fields G.vertices and G.edges. We
access the tail-set and head-set of a hyperedge edge e through fields e.head and e.tail. We
access the set of in-edges and out-edges of a vertex v through fields v.in and v.out. For
a list @ that is handled as a queue, operation @).Put(z) appends item z to the rear of @,
while operation Q.Get() removes and returns the item at the front of Q. For a min-heap H,
operation H .Insert(x, k) inserts item x with key k into H, and returns a reference p to the
heap node containing this pair (z, k) in H; operation H.Extract() removes and returns the
item in H with minimum key; and operation H.Decrease(p, k) takes a reference p to a heap
node in H and decreases its key to k if k is smaller than its current key. All functions assume
hypergraph G is passed by reference.

The heuristic builds on fast algorithms for computing reachability in a hypergraph, and
we discuss these algorithms first. In general, vertex v is forward reachable from source s in
hypergraph G if there is an s, v-hyperpath in G. A hyperedge e is forward reachable from s if
all vertices v € tail(e) are forward reachable from s. When e is forward reachable from s, an
s, e-hyperpath is a hyperpath from s to tail(e) followed by e. A vertex v is backward traceable
from sink ¢ if v = ¢, or recursively if v € tail(e) for an edge e where some w € head(e) is
backward traceable from ¢t. A hyperedge e is backward traceable from ¢ if some v € head(e)
is backward traceable from t.
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Figure 2 gives pseudocode for the functions ForwardReachable and BackwardTraceable.
Function ForwardReachable returns the set of all hyperedges that are forward reachable
from source s, while function BackwardTraceable returns the set of hyperedges that
are backward traceable from sink t. Function ForwardReachable uses Boolean vertex
field v.reached, and integer edge field e.count, which it assumes have already been initialized
to the values v.reached = false for all v € V and e.count = ’tail(e)‘ for all e € E. Func-
tion BackwardTraceable also uses Boolean edge field e.marked, which it similarly assumes
is initialized to false for all e. (This initialization will be done once for hypergraph G in the
shortest hyperpath heuristic, which allows these functions when called repeatedly to run in
time bounded by just the size of the forward-reachable or backward-traceable subgraphs.)
Function ForwardReachable uses field e.count to detect when all vertices in tail(e) have been
reached from s, and hence e is now reached from s. Function BackwardTraceable performs
a similar but simpler computation in reverse from sink ¢. The worst-case time for both these
functions is linear in the size of the subgraph they explore, as analyzed in Section 3.1.

Figure 3 gives pseudocode for function ShortestHyperpathHeuristic, our heuristic.
Like Dijkstra’s algorithm for shortest paths in an ordinary graph (see [7, pp. 658-663]), this
function maintains a heap H, but in contrast to Dijkstra’s algorithm this is now a heap of
hyperedges e (rather than a heap of vertices), which are prioritized by keys that are the best
known estimate of the length of a shortest s, e-hyperpath. We refer to this estimate as the
current path length for e. The heuristic starts from the out-edges of source s, and in a reaching
computation repeatedly extracts from heap H the hyperedge e with minimum key. When
hyperedge e is removed from H, the estimated path length for e is evaluated, and stored in
field e.length. To compute this length estimate, it must construct the best s, e-hyperpath it
can find, and evaluate its total weight. Of course, computing an optimal s, e-hyperpath is NP-
complete, so it uses a greedy heuristic to construct this path by function RecoverShortPath.
This path-construction heuristic consists of two steps: (1) recovering an s, e-superpath by
recursively backward-traversing hyperedges that enter tail(e), and (2) finding a minimal
subset of this superpath that is an s, e-hyperpath while attempting to minimize its weight.

Figure 4 gives pseudocode for function RecoverShortHyperpath that implements this
greedy path-construction heuristic. For the first step, recovering the s, e-superpath S is done
by recursively backward-traversing what we call in-edges: those hyperedges whose head-
sets intersect the tail-set of a given hyperedge. Function ShortestHyperpathHeuristic
maintains for a hyperedge e the field e.inedges, which stores the subset of the in-edges to e
whose length field has been determined.

For the second step, function RecoverShortHyperpath attempts to find the minimum
weight subset of S that is still a superpath by greedily considering hyperedges f € S for
removal in decreasing order of f.length. This repeatedly tests whether tail(e) is still reachable
from s on removing f by calling Boolean function IsReachable. Pseudocode for IsReachable
is not given, but it simply implements a version of function ForwardReachable that halts
and returns true as soon as it adds e to the set of hyperedges reachable from s, or returns
false after collecting the entire reachable set without encountering e.

To summarize, the shortest hyperpath heuristic proceeds greedily like Dijkstra’s algorithm,
but with some important differences: it maintains a heap of hyperedges prioritized by
estimated shortest path lengths to tail-sets, records a set of potential in-edges to a given
hyperedge used for recovering a hyperpath to the hyperedge, and recovering such a hyperpath
now involves another greedy heuristic to find a minimal superpath of small total weight.
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function ForwardReachable (s, G) begin

Create queue Q

Q.Put(s)
s.reached := true
(F, R) = (0,0)
while not @.Empty() do begin
v = Q.Get()
R U:= {v}
for e € v.out do begin
e.count —:= 1
if e.count = 0 then begin
F uU:= {e}

for w € e.head do

e Find all edges forward-reachable from source s in G

e Initialize a queue of reached vertices

e Process the reached vertices v

e Detect which out-edges e of v are now reached

e All vertices in tail(e) have been reached, so e is reached

if not w.reached then begin

Q.Put(w)
w.reached := true
end
end
end

end

for v € R do begin

v.reached := false

for ¢ € v.out do e.count +:= 1
end
return F'

end

function BackwardTraceable (¢, G) begin

Create queue @

Q.Put(t)

t.reached := true

(F, B) == (0, 0)

while not @.Empty() do begin
v = Q.Get()
B U:= {v}

for e € v.in do
if not e.marked then begin
F U:= {e}
e.marked := true
for w € e.tail do

e Restore fields, and return the reachable hyperedges

e Find all edges backward-traceable from sink t in G

e Initialize a queue of reached vertices

e Process the reached vertices v

e Collect the traceable hyperedges e

if not w.reached then begin

Q.Put(w)
w.reached := true
end
end
end

for v € B do v.reached := false
for ¢ € F do e.marked := false
return F'

end

Figure 2 Reachability computations.

hypergraph G, returns all hyperedges e for which tail(e) is reachable by a hyperpath from s.

e Restore fields, and return the traceable hyperedges

Function ForwardReachable, given source vertex s in

Function BackwardTraceable, given sink vertex ¢ in G, returns all hyperedges e for which some

vertex v € head(e) is backward-traceable from ¢. These functions assume fields v.reached, e.marked,

and e.count have been initialized to false, false, and |tail(e)|, respectively, for all v and e in G.
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function ShortestHyperpathHeuristic (s, ¢, G, w) begin e Find a short s, t-hyperpath in G
for v € G.vertices do o Initialize fields
(v.reached, v.removed) := (false, false)
for e € G.edges do
(e.count, e.marked, e.node, e.inedges) := (Je.taill, false, nil, 0)
D := ForwardReachable(s, G) ® Restrict G to doubly-reachable edges D

N BackwardTraceable(t, G)
Remove from G all edges not in D

Create min-heap H e Initialize edge heap H
for e € s.out with e.tail = {s} do

enode := H.Insert(e, w(e))
s.reached := true

while not H.Empty() do begin e Process reached hyperedges by their path lengths
e := H.Extract()
e.removed := true

P := RecoverShortHyperpath(s, e, G) e Recover a short hyperpath to e, and its path length
elength := w(P)

F =0 e Collect for e its out-edges F', and detect which are now reached
for v € e.head do begin
for f € v.out do begin
if not v.reached and not f.marked then

f.count —= 1
if not f.marked then begin
F U= {f}
f.marked := true
end
end
v.reached := true
end
for f € F do
f.marked := false
for f € F do begin e Update path lengths, in-edges, and add reached edges to H
f.inedges U:= {e}
if f.node # nil and not f.removed then e Update path length to an edge on H
H Decrease( f.node, w(RecoverShortHyperpath(s, f, G)))
else if f.node = nil and f.count = 0 then e Add reached edge to H
f.node := H.Insert(f, w(RecoverShortHyperpath(s, f, G)))
end
end
(P*, L*) == (0, 00) e Recover the best s,t-hyperpath P*

for e € t.in do
if e.node # nil then begin
P := RecoverShortHyperpath(s, e, G)
if w(P) < L* then
(P, L7) := (P, w(P))
end

Restore to G all edges not in D e Unrestrict G, and return the best hyperpath
return P~
end

Figure 3 Efficient heuristic for shortest source-sink hyperpaths. Given source s, sink t, and
edge weights w, function ShortestHyperpathHeuristic finds an s, ¢t-hyperpath in hypergraph G,
attempting to minimize its length. If no s,t-hyperpath exists, the empty path is returned. For
doubly-reachable hyperedges e, the heuristic maintains fields e.length (the total weight of the shortest
hyperpath found to e), and e.inedges (the subset of edges f with head(f) touching tail(e) where
f.length is known), which are used in RecoverShortHyperpath to recover a short hyperpath to e.
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function RecoverShortHyperpath (s, e, G) begin e Recover a short s, e-hyperpath in G

Create queue @ e Initialize a queue with the in-edges entering e
for f € e.inedges do begin

Q-Put(f)

f.marked := true
end

S = {e} e Collect s, e-superpath S, tracing backward from e
while not Q.Empty() do begin
f = Q.Get()
S U= {f}
for g € f.inedges do
if not g.marked then begin

Q.Put(g)
g.marked := true
end
end
for f € S do
f.marked := false

Remove from G all edges not in S e Greedily construct an s,e-hyperpath P C S
S —= {e}
P = {e}

for f € S in decreasing order of f.length do begin
Remove f from G
if not IsReachable(s, e, G) then begin
Restore f back to G

P U= {f}
end
end
Restore back to G all edges removed e Restore G, and return hyperpath P
return P
end

Figure 4 Recovering a short hyperpath from the source to a hyperedge. Given source vertex s
and hyperedge e, function RecoverShortHyperpath returns an s, e-hyperpath P in hypergraph G,
attempting to minimize its length. The edges of hyperpath P are greedily selected from an
s, e-superpath S that is guaranteed to exist in GG, where S is recovered by tracing backward from e.

We note for this heuristic that the inapproximability of the shortest hyperpath problem [4],
together with the polynomial time analysis of the following section, imply that unless P = NP,
the heuristic cannot be a constant-factor approximation algorithm for shortest hyperpaths.

3.1 Time complexity

We now bound the time complexity of our shortest hyperpath heuristic. To obtain the overall
running time of function ShortestHyperpathHeuristic, we analyze in turn its component
functions ForwardReachable, BackwardTraceable, and RecoverShortHyperpath.

Our analysis is in terms of the following parameters measured on a hypergraph (or an
induced subgraph). For a hypergraph G with vertices V and hyperedges E, we denote its

number of vertices and edges by n := |V| and m := |E|. We also use the size parameter
¢ = 3 (Jtail(e)] + [nead(e)])
ecE

and degree parameter

d = max{ |in(v)], |out(v)] }

veV
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We assume all tail and head sets are nonempty, and every vertex is touched by a hyperedge,
which implies m +n = O(£). When we need to refer to these measures for a particular
hypergraph G, such as on an induced subgraph, we explicitly subscript the parameters by
the specific hypergraph, such as ng, ..., dqg, where these parameters are then measured in
terms of the vertices and edges of subscripted hypergraph G.

For the reachability computations ForwardReachable and BackwardTraceable, their run-
ning time can be expressed in an output-sensitive way, in terms of the size of the edge sets they
return (or equivalently the size of the subgraph of G they explore). For ForwardReachable,
let R C V be the set of vertices reachable from source s, and F' C FE be the set of hyperedges
reachable from s that are returned. The total time for ForwardReachable is dominated by
the time for its main while-loop, which takes time © (3, cplout(v)| + >, p|head(e)]), or
equivalently, O (Y . |tail(e) N R’ + ZfGF‘head(f) ’) In terms of input hypergraph G, this
is O({g). For BackwardTraceable, let B C V be the set of vertices it reaches from sink ¢,
and F' C E be the set of hyperedges traceable from ¢ that are returned. A similar analysis
shows the time for BackwardTraceable is O (), |head(e) N B| + ZfeF’tail(f) ), which
is again O({g). So the time for both ForwardReachable and BackwardTraceable is O({g),
but can be bounded more tightly in terms of the subgraph they actually explore.

For function RecoverShortHyperpath, all its computations are performed on G restricted
to edge subset D C E, the doubly-reachable edges that are both forward-reachable from s and
backward-traceable from ¢. Let us call the doubly-reachable subgraph of G induced by D, that
RecoverShortHyperpath computes over, hypergraph H. The time to collect s, e-superpath S
by tracing back from e is at most O(Zfes > vetail(f) |in(v)]), which is O(dg £g). The time
to greedily construct the s, e-hyperpath P C S, in terms of its cardinality & = |S|, is at most
O(mpg + klogk + k £g), which is O(k £r). Thus the total time for RecoverShortHyperpath
is O(dg £g) + O(kLy), which is O(ly my).

For function ShortestHyperpathHeuristic, we break its time down as follows. The time
for the initialization, collecting the doubly-reachable edges D by calling ForwardReachable
and BackwardTraceable, and restricting G to its subgraph H induced by D, is O({g). The
main while-loop executes for my iterations, and spends O(mpy log my) time for all Extracts.
The total time across all iterations to compute s, e-hyperpath P for all extracted edges e
by calling RecoverShortHyperpath is O(¢y m%). The total time to collect the out-edges F
for extracted e across all iterations is O (3>, 2 vehead(e) lout(v)|) = O(dg £). The total
time across all iterations for Decrease and Insert, which take O(1) amortized time per
edge in F using a Fibonacci heap (see [7, pp. 510-522]), is also O(dg £g). The time to
recover the best s, t-hyperpath P* is O(dg ¢g mp). Adding up these bounds, the total time
for ShortestHyperpathHeuristic is O({g) + O(mpy log my) + O(lym?%) + O(du by) +
O(dy £ mpy), which is O(lg + Ly m?).

Notice that the overall running time of the heuristic is dominated by the total time to
recover short hyperpaths, which requires invoking RecoverShortHyperpath whenever the
path length to a hyperedge is updated. This is necessary in hypergraphs, since in contrast to
ordinary graphs the length of the hyperpath to a hyperedge can no longer be expressed as a
simple function (like a sum or a minimum) of the lengths of the hyperpaths to its in-edges.

To summarize, the time complexity of the shortest s, t-hyperpath heuristic, in terms of the
number of hyperedges m and size parameter ¢, measured on both the input hypergraph G
and its restriction to the doubly-reachable subgraph H of hyperedges that are simultaneously
forward-reachable from source s and backward-traceable from sink ¢, is

O(ZG - m%{) .
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As demonstrated in Section 4, for real biological instances the size of the doubly-reachable
subgraph H is significantly smaller than the full input hypergraph G, so designing the
heuristic to compute mainly over H yields a large speedup in practice.

The next section shows this heuristic is remarkably close to optimal on real cell-signaling
hypergraphs. Given that no practical exact algorithm exists for general shortest hyperpaths,
we determine the optimum by enumerating all s, t-hyperpaths, and taking the minimum of
their lengths. Appendix A gives our algorithm for generating all source-sink hyperpaths.

4 Experimental results

We now present results from computational experiments on real pathway databases comparing
our heuristic to the optimum, study the prevalence of cyclic instances of shortest hyperpaths,
report actual running times, and discuss biological examples of cyclic hyperpaths.

4.1 Datasets

We evaluate the quality of our heuristic on four datasets built by combining different annotated
signaling pathways from two pathway databases, NCI-PID and Reactome. NCI-PID [29] is a
curated human-pathway database containing biochemical reactions for complex assembly,
cellular transport, and transcriptional regulation. Reactome [19] also contains curated human
signaling pathways, and is actively maintained with new reactions being continuously added.
We constructed hypergraphs from three subsets of NCI-PID pathways used in Ritz et al. [28],
named the Small, Medium, and Large datasets. The Small dataset is a small Wnt signaling
pathway consisting of the union of two pathways: “degradation of -catenin” and “canonical
Wnt signaling”. The Medium dataset is a larger Wnt signaling pathway including four
additional pathways: “noncanonical Wnt signaling”, “Wnt signaling network”, “regulation of
nuclear §-catenin”, and “presenilin action in Notch and Wnt signaling”, which correspond to
non-canonical branches of Wnt signaling. The Large dataset contains all NCI-PID pathways.
Similarly, the Reactome dataset is the union of all Reactome pathways. The NCI-PID and
Reactome pathways were downloaded in the BioPAX format [10] from Pathway Commons,
and processed using a parser from Franzese et al. [11] built on PaxTools [9].

To construct the hypergraphs for each dataset, we mapped each entity (protein, small
molecule, and so on) to a vertex in the hypergraph. We parsed each complex as a unique
vertex, different from the entities in the complex. Multiple forms of the same protein map
to different vertices denoting compartmentalization and post-translational modifications,
such as phosphorylation and ubiquitination. We treated each variant as a distinct entity
because many pathways show the transportation of a protein from one cellular compartment
to another, or a protein being marked for degradation by ubiquitination, so the corresponding
vertices need to be distinct to reflect these variants. Each reaction was mapped to a hyperedge,
where the reactants and positive regulators comprise the hyperedge tail, and the head contains
the products. All hyperedges were given unit weight, even though the heuristic handles
weighted edges, as many NCI-PID reactions have no reaction rate.

Table 1 gives statistics on these four signaling hypergraphs. The hypergraphs are very
sparse: there are fewer hyperedges than vertices in all four datasets. The hypergraphs from
the Large and Reactome datasets contain respectively 40 and 433 self-loops, showing that
many cyclic hyperpaths are likely to exist. However, a small number of these self-loops are
unreachable, due to an otherwise unreachable vertex appearing in both the head and tail of
the hyperedge. The sources and targets in the experiments are respectively vertices with no
in-edges (or whose only in-edge is an unreachable self-loop), and vertices with no out-edges.
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Table 1 Dataset Summaries.

Fast Approximate Shortest Hyperpaths in Cell Signaling Hypergraphs

NCI-PID

Dataset Small Medium Large Reactome
Vertices 56 350 9,009 20,458
Hyperedges 36 228 8,456 11,802
Pathways 2 6 213 2,516
Sources 19 138 3,200 8,296
Targets 10 102 2,636 5,066
Self-loops 1 8 40 433
Unreachable self-loops 1 7 14 32

mean max | mean max | mean Imax | mean max
Tail size 1.8 3 1.9 5 1.9 10 2.4 26
Head size 1.3 3 1.3 4 1.1 5 1.6 28
Forward-reachable set 35 35 192 192 | 6,169 6,169 | 4,645 4,645
Backward-traceable set 28 28 49 70 | 1,198 2,863 | 4,027 7,021
Doubly-reachable set 27 27 42 60 756 1,836 929 1,725
In-degree 0.8 5 0.8 15 1.0 323 0.9 1,056
Out-degree 1.1 4 1.2 24 1.7 326 1.4 1,167

On average, hyperedges from all four hypergraphs have small head and tail sets, and the
average in- and out-degree of vertices is low, reflecting the sparseness of the hypergraphs.

4.2 Experimental setup

To prepare hypergraphs from each dataset for our experiments, we parsed the union of the
pathways in the dataset. We then connected a supersource to all source vertices (vertices
without in-edges) by a single zero-weight hyperedge. We also connected vertices whose only
in-edge was a self-loop to the supersource, as otherwise the hyperedge was not traversable. For
each target (a vertex without out-edges), we connected the target to the sink by a zero-weight
ordinary directed graph edge, giving us a target instance. Note that the supersource is the
same for each instance. These vertices are reasonable choices for sources and targets, as they
are the molecules at which biologists stopped annotating a given pathway.

For each target instance, we trimmed the hypergraph to the doubly-reachable set: the
set of hyperedges that were both forward-reachable from the source, and backward-traceable
from the sink. Table 1 gives the average and maximum size of the forward-reachable,
backward-traceable, and doubly-reachable sets over all instances for a given dataset, which
dramatically decrease the size of the hypergraph. For each instance, we found a hyperpath
from the supersource to the sink using our shortest hyperpath heuristic, and compared
its length to the solution of the MILP of Ritz et al. [26] if the heuristic hyperpath was
acyclic. For each instance with a cyclic heuristic hyperpath, we exhaustively enumerated
all supersource-to-sink hyperpaths, and compared the heuristic hyperpath to the shortest
hyperpath. Enumerating all hyperpaths takes many hours in practice, and is not feasible to
compute for all target instances.

4.3 Abundance of cyclic hyperpaths

Cyclic shortest hyperpaths appear in all four datasets. To take one example, in the Small
and Medium datasets, the shortest — and only — hyperpath from ubiquitinated S-catenin
to APC is cyclic, so for this target instance the acyclic shortest hyperpath MILP returns no
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Table 2 Acyclic Instance Summaries.

NCI-PID
Dataset Small Medium Large Reactome
Target instances 10 102 2,636 5,066
Reachable instances 10 90 2,220 2,432
Acyclic instances 9 89 2,182 2,210

Heuristic optimal 100% (9) | 100% (89) | 99% (2,159) | 100% (2,210)

hyperpath. This particular source-target pair is specially selected to create a cyclic shortest
hyperpath, as ubiquitinated S-catenin has an in-edge and APC has an out-edge, so they
would not normally be considered sources and targets under our definition. Nevertheless,
this demonstrates there are cyclic hyperpaths in the NCI-PID database, even in the union
of just two pathways, that are missed by the state of the art when computing only acyclic
shortest hyperpaths.

In the Large dataset, 38 instances have cyclic heuristic hyperpaths. Of these, 22 were
cyclic because of a self-loop, and 16 were cyclic due to a non-trivial cycle. For all these
instances, no acyclic hyperpath exists between the supersource and the sink. It is likely
that even more cycles exist within the hypergraph from the Large dataset, as there were 8
self-loops that were not on any hyperpath found by the heuristic.

In the Reactome dataset, we found 22 targets with cyclic shortest hyperpaths, where only
one of these targets was cyclic due to a self-loop. Reactome is much sparser than NCI-PID,
and 432 of the 433 self-loops in Reactome are never used in a heuristic hyperpath.

The abundance of cyclic hyperpaths in the NCI-PID and Reactome datasets demonstrates
the importance of a shortest hyperpath algorithm that properly handles cycles. We discuss
two examples of these cyclic shortest hyperpaths later in Section 4.6.

4.4 Quality of the hyperpath heuristic

To determine the quality of our hyperpath heuristic, we compared the length of the heuristic
hyperpath to the optimal shortest hyperpath. On the target instances with cyclic heuristic
hyperpaths, there is no practical exact algorithm for finding the shortest hyperpath. Therefore,
to find the optimum we generated all source-sink hyperpaths and kept the shortest one,
using the enumeration algorithm presented in Appendix A. On target instances where the
heuristic returned an acyclic hyperpath, we compared its length to the hyperpath returned
by the MILP for shortest acyclic hyperpaths. It is possible that a shorter cyclic hyperpath
exists, but enumerating all hyperpaths is not practical for all instances.

Table 2 summarizes the quality of the heuristic on acyclic instances. On the Small,
Medium, and Reactome datasets, the heuristic hyperpath is optimal on all target instances,
meaning the heuristic hyperpath and the shortest acyclic hyperpath from the MILP have the
same length. On the Large dataset, the heuristic is optimal on over 99% of the instances,
demonstrating the quality of our heuristic on these biological datasets. On the small fraction
of instances where our heuristic was suboptimal, the maximum length difference between the
heuristic hyperpath and the MILP hyperpath was 6, while the median difference was 1.

Table 3 summarizes the quality of the heuristic on instances where it returned a cyclic
hyperpath. On all these cyclic instances, the acyclic MILP returned no hyperpath, so we
could not compare the heuristic to an optimal shortest hyperpath other than by exhaustively
enumerating all hyperpaths and picking the shortest. Each cyclic instance from the Reactome
dataset had many enumerated hyperpaths, with an average of 25.6 hyperpaths enumerated
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Table 3 Cyclic Instance Summaries.

NCI-PID

Dataset Small Medium Large Reactome
Target instances 10 102 2,636 5,066
Reachable instances 10 90 2,220 2,432
Cyclic instances 1 1 38 22
Heuristic optimal 100% 100% 100% 100%
Non-trivial cycles 1 1 22 21

mean max | mean max | mean Inax | mean max
Number of paths™ 1 1 1 1 49.8 364 25.6 136
Path length range! 0 0 0 0 9.2 43 7.3 15

*Total number of hyperpaths for a cyclic target instance
TDifference between the length of the longest hyperpath and the heuristic hyperpath

per instance and a maximum of 136 hyperpaths. The hyperpaths also tended to have different
lengths with a maximum difference between the heuristic hyperpath length and the longest
enumerated hyperpath length of 15, with an average of 7.3. The cyclic instances from the
Large dataset had even more alternate hyperpaths, with an average of 49.8 hyperpaths
per instance, and a maximum of 364. These instances also had an even greater range of
hyperpath lengths, with an average difference of 9.2, and one instance where the difference
between the longest hyperpath and the shortest was 43 hyperedges. This demonstrates that
the heuristic is discriminating between hyperpaths of different lengths and choosing the
shortest hyperpath over worse hyperpaths, indicating the quality of the heuristic. For all
cyclic target instances, the enumerated hyperpaths were cyclic, and many shared the same
cycle, with most of their differences occurring in hyperedges outside this cycle.

4.5 Implementation and running time

The heuristic is implemented in Python 2.7.3, comprising around 500 lines of code. The parser
used to convert the BioPAX format into hypergraphs is from [11]. For directed hypergraph rep-
resentations and reachability calculations, we used Halp (github.com/Murali-group/halp/).
All heuristic and enumeration source code is available at hyperpaths.cs.arizona.edu.

Experiments were run on a laptop with a 2.9 GHz Intel Core i5 CPU, and 16 GB of RAM.
The running time of the hyperpath heuristic was 55 seconds on average for the instances
from the Large and Reactome datasets, which have just under 1,000 hyperedges on average.
Memory usage was low, taking less than 2 GB of memory for the heuristic.

4.6 Biological examples

We now discuss two instances with cyclic shortest hyperpaths from the Large and Reactome
datasets. The hyperpath found by our heuristic for these two instances is optimal (as was
the case for all instances where the heuristic found a cyclic path), and is drawn in Figures 5
and 6. We describe the hypergraph structure and constituent reactions for each instance.

Assembly of the JUP/DSP complex

The first example captures the assembly of the JUP/DSP complex from the Large dataset.
Figure 5 shows the shortest hyperpath returned by our heuristic with the JUP/DSP complex
as the target. All vertices at the top of the figure are connected to the supersource.
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Figure 5 The cyclic shortest hyperpath from the supersource to the JUP/DSP complex in the
Large dataset. All vertices in the hyperpath connected to the supersource are shown at the top
of the figure. The hyperedges in this hyperpath come from four different pathways, and show the
different complexes JUP participates in until finally being free to bind with desmoplakin (DSP).
Hyperedge es, shown in red, creates two separate cycles back to a-catenin and J-catenin.
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Figure 6 The cyclic shortest hyperpath from the supersource to phosphorylated p53 in the
Reactome dataset. All vertices in the hyperpath connected to the supersource are shown at the top
of the figure. The hyperedges in this hyperpath show the transcription of STK11 and p53 (TP53)
before NUAK1 (ARKS5) participates in the phosphorylation of the p53 tetramer. Hyperedge ez,
shown in red, creates a cycle when the phosphorylation of p53 breaks up a complex, returning STK11
to its solitary state. Hyperedges e2 and es show transcription, and are drawn dotted.

This hyperpath includes seven hyperedges from four different NCI-PID pathways: “E-
cadherin signaling in the nascent adherens junction” (hyperedges e; and es), “Posttransla-
tional regulation of adherens junction stability and dissassembly” (hyperedges es, eg and e7),
“Signaling events mediated by PRL” (hyperedge e3), and “Signaling events mediated by
hepatocyte growth factor receptor (c-Met)” (hyperedge es). We briefly describe the key
events in this hyperpath. Protein «-catenin (also known as junction plakoglobin or JUP) is
initially complexed with Cadherin 1 (CDH1) in the tail of hyperedge e;. In hyperedge es, the
metalloprotease mepring cleaves E-cadherin (CDH1), releasing it from its complex with a-
catenin (CTNNAL1) and d-catenin (CTNND1) [17]. The CDH1/JUP complex adds a-catenin
(CTNNA1, in hyperedge e;) and CTNND1 and Ca?* (in hyperedge e5) to form a five-member
complex. Hepatocyte growth factor (HGF) activates the proto-oncogene tyrosine-protein
kinase Src (hyperedge e4) [23]. Src regulates the breakup of this complex into its individual
components [21] (hyperedge eg), freeing JUP to bind with DSP and creating the two cycles
in this hyperpath via CTNNA1 and CTNNBI1. The hyperpath culminates in the formation
of a complex between desmoplasmin (DSP) and JUP.
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The hypergraph for this instance is large, with 6,168 forward-reachable hyperedges,
2,642 backward-traceable hyperedges, and 1,665 doubly-reachable hyperedges. There is no
acyclic hyperpath from the supersource to JUP/DSP. When enumerating all s, t-hyperpaths
for this instance, there were 16 alternate hyperpaths, and the longest hyperpath had 3 more
hyperedges than the heuristic path, which was verified to be optimal.

Phosphorylation of p53

The second example captures the phosphorylation of p53 by NUAK1 (ARKS5) from the
Reactome dataset. The heuristic hyperpath, which is optimal, is shown in Figure 6. All of
the vertices at the top are connected to the supersource.

Hyperedge e shows the complex formation of FOX03 and FOXO4 with the STK11 gene,
allowing for the transcription of the gene in hyperedge e;. Hyperedges es and ey deal with
the transcription of protein p53 (TP53), and its formation into a homotetramer. The p53
tetramer then forms a complex with NUAK1 (ARKS5) and STK11 in hyperedge es, allowing
for the phosphorylation of NUAKI1 via ATP in hyperedge eg. Once NUAKI is phosphorylated,
it directly phosphorylates p53 [15], activating it and allowing it to assist in DNA damage
repair. The final hyperedge e7, shown in red, breaks apart the p53 tetramer/NUAK1/STK11
complex, resulting in a cycle of free STK11. This hyperpath features two transcriptional
hyperedges es and es, shown dotted.

This example from Reactome is slightly smaller than the example from the Large dataset,
with only 4,645 forward-reachable edges, 7,021 backward-traceable edges, and 1,632 hyper-
edges in the doubly-reachable set. There was no acyclic hyperpath for this instance. In
contrast to the first example, no alternate hyperpaths to the target exist in the hypergraph.

5 Conclusion

We have presented the first heuristic for Shortest Hyperpaths in general directed hypergraphs
with positive edge weights, where the length of a hyperpath is the sum of the weights of its
hyperedges. The heuristic handles cycles, is guaranteed to be efficient, and is highly accurate
in practice. It matches the state-of-the-art mixed-integer linear program for shortest acyclic
hyperpaths on over 99% of all instances from the NCI-PID and Reactome databases, and
surpasses the state-of-the-art on all instances where no acyclic hyperpath exists. Moreover,
exhaustive enumeration of all source-sink hyperpaths demonstrates that on every cyclic
instance from these databases, the heuristic was provably optimal.

Further research

Given that we can quickly find hyperpaths that are close to optimal on real cell-signaling
hypergraphs, several research directions beckon. While the inapproximability of Shortest
Hyperpaths [4] rules out a constant-factor approximation unless P=NP, is there an approxi-
mation algorithm whose approzimation ratio on hypergraphs with n vertices matches the
theoretical lower bound of Inn? More practically, given that in our experiments our heuristic
was suboptimal only on acyclic instances, is there a fast method for acyclic hyperpaths that
outperforms our heuristic? Since a user would like to know how close to optimal a computed
hyperpath is for their particular input graph, is there an efficient heuristic that, as well as
giving an upper bound on the optimum through its hyperpath, also outputs a lower bound
on the length of the shortest hyperpath? Many intriguing research avenues are open.
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A Appendix: Generating all source-sink hyperpaths

In this appendix, we give our algorithm for tractably generating all the hyperpaths in a
hypergraph from a fixed source to a fixed sink.

The technique of inclusion and exclusion of Hamacher and Queyranne [13] provides a
general method for generating all the solutions to any combinatorial optimization problem
whose feasible solutions are subsets of a ground set — where in our context, hyperpaths are
subsets of hyperedges from a hypergraph — but it relies on the ability to efficiently compute
a feasible solution that is constrained to include a given in-set and exclude a given out-set.
Interestingly, for hyperpaths, Carbonell et al. [5] have shown that just determining whether
an s, t-hyperpath exists that contains a specified in-set of hyperedges (regardless of the
length of the hyperpath) is already NP-complete. Consequently, we cannot generate all
s, t-hyperpaths using the standard inclusion-exclusion technique, as we cannot tractably solve
the resulting subproblem that has both in- and out-set constraints.
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function AllHyperpaths (s, t, G) begin e Generate all s,t-hyperpaths in G
Create queue @ e Initialize a queue of subproblems, and a set A of hyperpaths
Q.Put((@7 @))

A =10
while not Q.Empty() do begin e Process all subproblems on the queue
(Out, Keep) := Q.Get()

P := OneHyperpath(s, t, Out, G) e Find an s, t-hyperpath excluding edges in Out
if P#( and P ¢ A then begin

A U:= {P} e Save the new hyperpath
K := Keep e Add all child subproblems to the queue
for e € P with e ¢ Keep do begin
Q.Put((Out U{e}, K)) e Children cannot exclude edges in Keep ...
K U:= {e} e ... or edges excluded by prior siblings
end
end
end
return A e Return the set A of all hyperpaths
end

Figure 7 Generating all source-sink hyperpaths. Function Al1Hyperpaths, given source ver-
tex s, sink vertex t, and hypergraph G, returns the set of all s,t-hyperpaths in G. It calls a
function OneHyperpath that returns an s, t-hyperpath not containing any hyperedge from a specified
set Out, and which returns the empty path if no such hyperpath exists.

Instead, we generate all hyperpaths through a simple and practical algorithm that only
involves out-sets, given in Figure 7. Function AllHyperpaths returns a list of all s,¢-
hyperpaths in hypergraph G, leveraging a function OneHyperpath that just has to return one
s,t-hyperpath P in G that does not contain any hyperedges from set Out (so P N Out = ),
or determine that no such hyperpath exists. This constrained hyperpath problem with only
out-sets is easy to solve: remove all hyperedges in set Out from G, collect all vertices R
and hyperedges F' reachable from s in this reduced hypergraph, and if ¢ € R, then find
any minimal subset P C [ in which t is still reachable from s; otherwise if ¢ € R, no
such hyperpath exists. Function OneHyperpath can efficiently find such an s, t-hyperpath P
excluding set Out using repeated calls to ForwardReachable (given earlier in Figure 2).

Function Al1Hyperpaths uses a queue of subproblems. A subproblem is described by
a pair (Out, Keep), which corresponds to finding an s, t-hyperpath excluding Out, where
any subsequent subproblems that arise from this given subproblem must not exclude any
hyperedges from set Keep (though their solutions are not required to actually use edges
from Keep). The purpose of this set Keep is to ensure that all subproblems ever placed on
the queue have distinct Out sets. (So any given subproblem described by an out-set is only
ever solved once.) A subproblem that arises from a given one we call a child subproblem (as
the entire collection of subproblems conceptually forms a tree that is explored breadth-first
using the queue). Each child subproblem excludes one edge from the hyperpath found for its
parent subproblem; in this way, the children will generate hyperpaths that are distinct from
their parent hyperpath, if they have a solution. (Once a subproblem becomes infeasible due
to its out-set eliminating any s, t-hyperpath as a solution, it also does not generate further
subproblems.) Though the whole approach never repeatedly solves the same subproblem,
in contrast to the inclusion-exclusion technique it can generate the same hyperpath from
different subproblems, so we check whether hyperpath P is distinct from those already found
before adding it to the list A of all hyperpaths.
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We bound the running time for Al1Hyperpaths as follows. Let m be the number of
hyperedges in hypergraph G, and ¢ be the size parameter for G defined in Section 3.1. Solving
a given subproblem by OneHyperpath involves at most m calls to ForwardReachable, which
takes O(¢m) time. Suppose AllHyperpaths terminates after solving k subproblems from
the queue. Its total time is then O(k£m).

In the worst-case, this is O(2™ £ m) time, since the out-sets of subproblems are all distinct.
In practice, though, typically k<2™, so the running time is much faster than the worst-case
suggests. Function AllHyperpaths can tractably generate all source-sink hyperpaths for
large hypergraphs, as shown in Section 4, since many of its subproblems quickly become
infeasible for real cell-signaling networks.
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